DSun.

microsystems

Developing Java~ Applications

Solstice Enterprise Manager ~4.1

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Part No. 806-7972-10
October 2001, Revision A

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun Enterprise Manager, SunOS, Java, Java Coffee Cup logo, JavaBeans, Java Dynamic Management, and
Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.
Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réserveés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Sun Enterprise Manager, SunOS, Java, Java Coffee Cup logo, JavaBeans, Java Dynamic Management, et
Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans
d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC
International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L'ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

B 4}

Adobe PostScript

Contents

Preface xiii

Introduction 1-1

11
1.2
13
1.4
1.5
1.6

Important Terms 1-1

Architectural Overview 1-2

Java APIs 1-3

JIDMK MPA 1-4

JDMK to CMIS Event Forwarder 1-4
JIMA 14

Using the Java Management Interface APl 2-1

2.1

2.2
2.3

2.4
2.5

Overview 2-2

2.1.1 Java Management Tasks 2-2

2.1.2 Java Management Task Flow 2-3

Instantiating the Platform Class 2-4

Defining Local Representation of Managed Objects 2-6
2.3.1 Instantiating the MOHandle Class 2-6

2.3.2 Instantiating MOHCollectionByRule = and MOHCollectionEnum
Classes 2-7

Registering Event Listeners 2-10

Handling Events 2-13

Contents i

2.6 C++ Equivalents for the JIMI API Classes 2-14
2.7 Sample JMI Application 2-14

2.7.1 PlatformEvent.java 2-15

2.7.2 MOHandleTest.java 2-17

2.7.3 MOHandleEvent.java 2-19

2.7.4 EmWho.java 2-21

2.7.5 CollectionEvent.java 2-23

3. Using the Java Alarm APl 3-1
3.1 Overview 3-2
3.1.1 Alarm Management Tasks 3-3
3.1.2 Alarm Management Task Flow 3-4
3.2 Instantiating the AlarmLog Class 3-4
3.3 Creating Query Objects 3-6
3.3.1 Creating Filterltem Objects 3-7
3.3.2 Creating Filter Objects 3-8
3.3.3 Creating GenericQuery Objects 3-9
3.4 Creating AlarmRecordAttributeSet Objects 3-10
3.5 Getting Alarms 3-11
3.5.1 Getting Alarm Counts 3-12
3.5.2 Getting Alarms 3-12
3.5.3 Getting Alarms in Batches 3-12
3.6 Clearing and Acknowledging Alarms 3-14
3.7 Listening for Alarm Log Events 3-15
3.8 Sample Programs 3-16
3.8.1 AlarmBatch 3-16
3.8.2 AlarmEvent 3-20
3.8.3 AlarmClear 3-24
3.8.4 AlarmDelete 3-29
3.85 AlarmQuery 3-33

iv. Developing Java Applications e« October 2001

Using the Java Topology APl 4-1

4.1

4.2
4.3

4.4

4.5

Overview 4-1

4.1.1 Topology Management Tasks 4-2
Differences Between the C++ and Java Topology APIs 4-3
Performing Node Operations 4-4

4.3.1 Creating Nodes 4-5

4.3.2 Loading Node Attributes 4-7
4.3.3 Changing Node Attributes 4-9
4.3.4 Destroying Nodes 4-11

4.3.5 Listening to Node Events 4-12
Performing Type Operations 4-14

4.4.1 Creating Topology Types 4-14
4.4.2 Loading Topology Types 4-16
4.43 Changing Topology Types 4-16
4.4.4 Destroying Topology Types 4-17
Performing Agent Operations 4-18

45.1 Creating Agents 4-19

45.2 Loading Agents 4-20

453 Changing Agents 4-21

45.4 Destroying Agents 4-22

Configuring the JDMK Agent/Behavior Service 5-1

5.1

5.2

5.3

Overview 5-1
5.1.1 Supported Versions of IDMK 5-2

5.1.2 Prerequisites for Configuring the DMK Agent/Behavior Service
5-2

Setting Up the JIDMK MPA 5-2

5.2.1 Configuring the IDMK MPA 5-3

5.2.2 Starting and Stopping the IDMK MPA 5-3
Generating GDMO From Java Classes 5-4

5.3.1 Class Definition Conversions 5-4

Contents

5.3.2 Generation of GDMO Documents 5-5
5.3.3 Assignment of Object Identifiers 5-6
5.3.4 Mapping Between Java Constructs and GDMO 5-7
534.1 MODULE onstruct 5-8
5.34.2 MANAGED OBJECT CLASEonstruct 5-9
5.34.3 ATTRIBUTE Construct 5-11
5.34.4 ACTIONConstruct 5-12
5.34.5 NOTIFICATION Construct 5-13
5.3.5 Mapping of M-Bean Object Names 5-14
5.3.6 Mapping JDMK Java Types to ASN.1 5-15
5.3.7 Mapping Limitations 5-15
54 Compiling and Loading the Generated GDMO Files Into the MDR 5-16
5.5 Configuring Persistent jdmkAgent Objects 5-16
5.5.1 Starting em_jdmk_config 5-17
5.5.2 Configuration Examples 5-18
5.6 Testing Your Agent With the MIS Objects Tool 5-19
5.7 Sample Java Files 5-22
5.7.1 Converting Sample Java Classes Into GDMO 5-23
5.7.2 Listings of the Sample Java Classes 5-23

A. Using the Java Alarm and Topology APIs Together A-1

vi Developing Java Applications < October 2001

Figures

FIGURE 1-1

FIGURE 2-1

FIGURE 2-2

FIGURE 2-3

FIGURE 2-4

FIGURE 2-5

FIGURE 3-1

FIGURE 3-2

FIGURE 3-3

FIGURE 3-4

FIGURE 3-5

FIGURE 4-1

FIGURE 5-1

Architectural Overview 1-2

Interaction Between JMI API Classes and the MIS 2-3

Task Flow in a Java Management Application 2-4

Platform Objects 2-5

MOHandle Object 2-6

Example of MOHCollectionByRule Usage 2-8

The Java Alarm APl 3-2

Main “Players” in the Java Alarm APl 3-3

Flow of Tasks When Handling an Event
AlarmLog Objects 3-4

Query Objects 3-6

Sample Viewer Application 4-2

Java to GDMO Conversion 5-5

3-4

Figures

vii

vii Developing Java Applications October 2001

Tables

TABLE P-1

TABLE P-2

TABLE 1-1

TABLE 2-1

TABLE 2-2

TABLE 2-3

TABLE 2-4

TABLE 3-1

TABLE 4-1

TABLE 5-1

TABLE 5-2

TABLE 5-3

TABLE 5-4

TABLE 5-5

TABLE 5-6

TABLE 5-7

TABLE 5-8

TABLE 5-9

TABLE 5-10

Typographic Conventions xv

Shell Prompts xv

Important Terms 1-1

MOHCollectionByRule versus MOHCollectionEnum 2-8
Event Types 2-10

Event Type Mapping 2-11

C++ Equivalents for IMI API Classes 2-14

AlarmRecord Attributes 3-10

Agent Operation Types 4-18

JDMK MPA Configuration Options 5-3

em_java2gdmo Arguments 5-4

Parts of an OID Assigned by em_java2gdmo 5-6

Mapping Between Java Constructs and GDMO Constructs 5-7
MODULKeywords 5-8

MANAGED OBJECT CLAS&eywords 5-10

ATTRIBUTE Objects Keywords 5-11

ACTIONObjects Keywords 5-12

NOTIFICATION Objects Keywords 5-13

Examples of Mapping Class Names and M-Bean Names 5-14

Tables

TABLE 5-11 Java to GDMO Type Translation 5-15
TABLES5-12 jdmkAgent Object Attributes 5-16

TABLE 5-13 em_jdmk_config Options 5-18

x Developing Java Applications = October 2001

Code Samples

CODE EXAMPLE 2-1 Instantiating the MOHandle Class 2-7
CODE EXAMPLE 2-2 Creating an MOHCollectionByRule Object 2-9
CODE EXAMPLE 2-3 Registering Event Listeners 2-12

CODE EXAMPLE 2-4 Defining a handler 2-13

CODE EXAMPLE 2-5 PlatformEvent.java 2-15
CODE EXAMPLE 2-6 MOHandleTest.java 2-17
CODE EXAMPLE 2-7 MOHandleEvent.java 2-19

CODE EXAMPLE 2-8 EmWho.java 2-21

CODE EXAMPLE 2-9 CollectionEvent.java 2-23

CODE EXAMPLE 3-1 Defining Alarm Record Attributes 3-11
CODE EXAMPLE 3-2 Getting Alarms in Batches 3-13

CODE EXAMPLE 3-3 Clearing and Acknowledging Alarms 3-14
CODE EXAMPLE 3-4 AlarmBatch 3-16

CODE EXAMPLE 3-5 AlarmEvent 3-20

CODE EXAMPLE 3-6 AlarmClear 3-24

CODE EXAMPLE 3-7 AlarmDelete 3-29

CODE EXAMPLE 3-8 AlarmQuery 3-33

CODE EXAMPLE 4-1 Creating a Topology Node 4-5

CODE EXAMPLE 4-2 Loading Node Attributes 4-7

Code Samples xi

CODE EXAMPLE 4-3

CODE EXAMPLE 4-4

CODE EXAMPLE 4-5

CODE EXAMPLE 4-6

CODE EXAMPLE 4-7

CODE EXAMPLE 4-8

CODE EXAMPLE 4-9

CODE EXAMPLE 4-10

CODE EXAMPLE 4-11

CODE EXAMPLE 4-12

CODE EXAMPLE 4-13

CODE EXAMPLE 5-1

CODE EXAMPLE 5-2

CODE EXAMPLE 5-3

CODE EXAMPLE 5-4

CODE EXAMPLE A-1

Changing Node Attributes 4-9

Destroying Nodes 4-11

Listening to Node Events 4-12

Creating Types 4-15

Loading Types 4-16

Changing Topology Types 4-16

Destroying Types 4-17
Creating Agents 4-19
Loading Agents 4-20
Changing Agents 4-21
Destroying Agents 4-22

MinimalAgent.java 5-23

SimpleStandardMBean.java

SimpleStandard.java 5-27

5-26

em_jdmk_unpackaged.gdmo 5-30

GetAlarmsForNode.java A-1

xii Developing Java Applications « October 2001

Preface

The Developing Java Applications book explains how to develop Java™ applications
using the Java Management Interface (JMI), Alarm, and Topology APIs of Solstice
Enterprise Manager (Solstice EM). In addition, it explains how to manage Java
Dynamic Management™ Kit (JDMK) agents with Solstice EM. The Developing Java
Applications book is a companion document to Java APl Reference, which provides a
definitive list of the Java API classes and methods.

Who Should Use This Book

This document is intended for telecommunications application developers and
service providers developing Java applications and managing JDMK agents with
Solstice EM. No prior experience with Solstice EM is required. However, if you are
not familiar with Solstice EM, see Section “Related Books” on page xiv for a listing
of books to refer.

Before You Read This Book

Read through the Solstice EM documentation so that you have an understanding of
the programming context, because many parts of this book refer to concepts that are
covered elsewhere in the Solstice EM documentation.

It is also recommended that you familiarize yourself with JDMK concepts, explained
in your JDMK documentation.

Preface xiii

How This Book Is Organized

This book contains the following chapters:
Chapter 1 "Introduction” is an overview of the Java/MIS architecture.

Chapter 2 "Using the Java Management Interface API" explains how to use the Java
Management Interface (JMI) API to create general Solstice EM management
applications.

Chapter 3 "Using the Java Alarm API" details how to create alarm management
applications using the Java Alarm API.

Chapter 4 "Using the Java Topology API" describes how to create Java topology
applications.

Chapter 5 "Configuring the JDMK Agent/Behavior Service" explains how to
manage JDMK agents with Solstice EM.

Appendix A "Using the Java Alarm and Topology APIs Together" provides an
example that shows you how to use the Java Alarm and Java Topology APIs
together.

Xiv

Related Books

Following is a list of related books:

= Java API Reference

= Developing C++ Applications

= C++ API Reference

= Management Information Server (MIS) Guide
= Managing Your Network

= Customizing Guide

Developing Java Applications ¢ October 2001

What Typographic Changes Mean

The following table describes the typographic changes used in this book.

TABLE P-1

Typographic Conventions

Typeface or

Symbol Meaning Example
AaBbCc123 The names of commands, files, Edit your.login file.
and directories; on-screen Usels -a to list all files.
computer output. machine_name% You have mail.
AaBbCc123 What you type, contrasted with machine_name% su
on-screen computer output. Password:
AaBbCc123 Command-line placeholder: To delete a file, type rm filename.
replace with a real name or
value.
AaBbCc123 Book titles, new words or terms, Read Chapter 6 in User’s Guide. These

or words to be emphasized.

are called class options.
You must be root to do this.

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P-2

Shell Prompts

Shell

Prompt

C shell prompt

C shell superuser prompt

Bourne shell and Korn shell $
prompt
Bourne shell and Korn shell #

superuser prompt

machine_name%

machine_name#

XV

Accessing Sun Documentation Online

The docs.sun.com ™ web site enables you to access Sun technical documentation
on the Web. You can browse the docs.sun.com archive or search for a specific book
title or subject at http://docs.sun.com

Also, you can view the online documentation by pointing your browser to the
following URL, file:/opt/SUNWconn/em/docs/SEMDOCHP/index.html

Xvi

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can send your comments by email to docfeedback@sun.com

Please include the part number of your document in the subject line of your email.

Developing Java Applications ¢ October 2001

CHAPTER 1

Introduction

1.1

This chapter provides an overview of the Java development tools and associated
infrastructure that enables you to create Java applications and manage Java Dynamic
Management Kit (JDMK) agents with Solstice Enterprise Manager (Solstice EM).

This chapter covers the following topics:

= Section 1.1 “Important Terms” on page 1-1

= Section 1.2 “Architectural Overview” on page 1-2

= Section 1.3 “Java APIs” on page 1-3

= Section 1.4 “JDMK MPA” on page 1-4

= Section 1.5 “JDMK to CMIS Event Forwarder” on page 1-4
= Section 1.6 “JMA” on page 1-4

Important Terms

The following table lists terms that are used in this book.

TABLE 1-1 Important Terms

Term Description

MPA Management Protocol Adaptor. A Solstice EM term used for a
daemon process that maps the Common Management Information
Protocol (CMIP) to another protocol.

JavaBeans™ A Java component specification that requires individual Java classes

component to conform to strict design specifications thereby allowing plug and

architecture play with other classes that conform to the same specifications.

JDMK Java Dynamic Management Kit. A set of Java classes, Java
interfaces, and tools that simplify the development of management
services.

1.2 Architectural Overview

Before starting to develop Java applications with Solstice EM, it is important for you
to understand how the Java components required to do the job relate to the
Management Information Server (MIS) architecture; as illustrated in the following

figure.
Java Applications
JMI API Alarm API Topology API
\\ * y
JMA JMA JMA
MIT MIS
MDR S N\
L
JDM Event Forwarder

JDMK MPA

JDMK Framework

JDMK Beans

FIGURE 1-1 Architectural Overview

1-2 Developing Java Applications * October 2001

As you can see in FIGURE 1-1, there are two main components for developing Java
solutions with Solstice EM:

= The Java API environment consisting of the JMI API, Alarm API, and Topology
API
Allows you to develop Java applications that can interact with the MIS
transparently.

= JDMK

Allows you to build agents.

These two development components are supported by other “adaptor” components
that allow Java and C++ Solstice EM applications, JDMK agents, and other types of
agents to communicate seamlessly through the MIS.

Note — The Java APIs and associated tools of Solstice EM require the Java 2 SDK.
Earlier versions of the Java Development Kit are not compatible with Solstice EM.

1.3

Java APIs

The JMI API, Alarm API, and Topology APIs allow you to develop low-cost, multi-
platform Java applications to help manage your network. These applications take
full advantage of the advanced distributed management services provided by
Solstice EM.

These APIs follow the thin class paradigm. They delegate the bulk of their
implementation to a more powerful server. Class state and cache data are located on
the server to minimize memory usage by the client.

In addition, it is totally transparent to the user whether a method of a class in these
APIs is executed locally or remotely. As a result, you can continue to use these
classes in the same manner as any other programming language, like C++.

For example, if you instantiate the Platform class, some of the methods in this class
would be executed locally, while other methods would be executed on a
corresponding remote class or object present on a JMA server.

Chapter 1 Introduction 1-3

The Java APIs and associated infrastructure are optimized for efficiency and
performance based on the application processing requirements and available
resources. For example:

= Memory or CPU intensive operations occur on the server transparently.

= Both the Topology and Alarm APIs provide methods to enable the batch-loading
of records, which improves the responsiveness of the client.

= Class state and cache data are located on the server to minimize memory usage by
the client.

1.4

JDMK MPA

The JDMK Management Protocol Adapter (MPA) maps Common Management
Information Service (CMIS) requests into JavaBeans JDMK calls. The JDMK MPA
allows Java applications to access JavaBeans components through JDMK as GDMO
objects. However, the JDMK MPA does not allow Java objects to make CMIS requests
back into the MIS. You can only make such requests through the JMI APIl. A IDMK
agent can send M-Events to the MIS through the JDMK to CMIS Event listener,
which routes events through the JDM Event component. (See FIGURE 1-1.)

1.5

JDMK to CMIS Event Forwarder

The JDMK to CMIS Event listener is a daemon process that converts JDMK JavaBean
events to Solstice EM CMIS notifications. JDMK agents can send events through the
JDMK event mechanism that translates them into Solstice EM CMIS notifications.
The type of notification generated is handled transparently as part of the JavaBean to
GDMO tool. Any JavaBean that implements the addXXXListener and
removeXXXListener classes causes the JavaBean to GDMO tool to generate an XXX
notification type.

1.6

JIMA

The Java Management Adapter (JMA) provides the framework for the thin client/fat
server model. JMA is not exposed to end users or developers. It is a transparent
component lying between services such as the JMI and the MIS.

1-4 Developing Java Applications * October 2001

JMA provides the infrastructure for services such as JMI API, Topology API, and
Alarm API to communicate seamlessly with the MIS. It is responsible for the
scheduling and synchronization of all PMI calls made by each Java API. It provides
an event handling mechanism, which allows clients to register their own events and
servers to forward the events to the clients.

Chapter 1 Introduction 1-5

1-6 Developing Java Applications October 2001

CHAPTER 2

Using the Java Management
Interface API

The JMI API provides a set of classes and methods that allow effective access to the
Solstice Enterprise Manager (Solstice EM) Management Information Server (MIS)
without requiring detailed specification of the underlying MIS or mechanism. For
most applications, the high-level usage of the JMI API is sufficient for all interaction
with the Solstice EM MIS.

This chapter describes the following topics:

= Section 2.1 “Overview” on page 2-2

= Section 2.2 “Instantiating the Platform Class” on page 2-4

= Section 2.3 “Defining Local Representation of Managed Objects” on page 2-6
= Section 2.4 “Registering Event Listeners” on page 2-10

= Section 2.5 “Handling Events” on page 2-13

= Section 2.6 “C++ Equivalents for the JMI API Classes” on page 2-14

= Section 2.7 “Sample JMI Application” on page 2-14

These topics are arranged, as far as possible, to reflect the order which you need to
follow when creating Java management applications. For example, before handling
events, you should have defined a Platform object, instantiated handlers, and
registered event types. This sequence will become clear as you go through this
chapter.

Also note, the code samples used in this chapter are based on the sample JMI
application that is provided in Section 2.7 “Sample JMI Application” on page 2-14.

2-1

2.1 Overview

The JMI API enables you to develop client applications that perform the following
operations:

= Accessing information about managed objects inside an MIS.
= Performing object management tasks that are not supported by the existing
Solstice EM components.

For example:

= You may want to present information in a fashion that is not possible using the
Solstice EM Viewer or the Alarms window. The presentation of information could
include specialized presentation window, GUI-based device front ends, or
terminal output.

= You may want to manipulate information in a manner that is not possible using
Solstice EM subcomponents. The manipulation of information could include
summarization of data and specialized gathering and processing of data.

Because of its generic nature, the JIMI API could be used to provide the same
functionality that other specialized Java APls provide, such as the Java Alarm API
and the Java Topology API.

2.1.1 Java Management Tasks

The JMI API allows you to perform the following tasks:

= Initializing objects that simplify connecting with the Solstice EM MIS;
= Accessing event notification, subscription, and propagation services;
= Accessing object instance and object class information; and

= Representing and managing the different types of relationships.

These tasks could be performed using the following main classes of the JMI API:

= MOHandle class

= MOHCollectionByRule and MOHCollectionEnum classes (subclasses of the
MOHCollection class)

= EventReportListener interface

2-2 Developing Java Applications * October 2001

2.1.2

The interaction between JMI API classes and the MIS is illustrated in the following
figure.

r— - - - - — > MIT | MIS

MOHandIe\

L:L__________:: && ;___J:

EventReportListener objects

FIGURE 2-1 Interaction Between JMI API Classes and the MIS

The MOHandle, MOHCollectionByRule , and MOHCollectionEnum classes
provide the necessary functionality for managing objects over the network, whether
individually (MOHandle) or as a collection (MOHCollectionByRule and
MOHCollectionEnum).

The EventReportListener interface allows you to define event handler classes
and their handler methods that will be invoked upon event delivery.

Java Management Task Flow

When creating Java management applications, keep in mind the task flow as
illustrated in the following figure.

Chapter 2 Using the Java Management Interface APl 2-3

2.2

Define Platform object(s)

Y

Define MOHandle and
MOHCollection objects

v

Define Event Handlers

v

Perform Management Operations
(MGet, MDelete and so on)

FIGURE 2-2 Task Flow in a Java Management Application

Instantiating the Platform Class

An instance of the Platform class represents an actual or potential connection to a
Solstice EM MIS, along with all the implied semantics of the particular MIS. You use
a Platform object to gain access to an MIS.

The first step in creating a JMI application is to define the server instance that allows
your application to talk to the MIS. You can do this by creating an instance of the
Platform class. See FIGURE 2-3.

Note — You can instantiate multiple Platform objects in your application so that it
can connect to multiple MIS environments.

2-4 Developing Java Applications * October 2001

Your application

"

MIS B
Platfi A
atform -
Platform B
(ﬂ]]]’< > MISC
Platform C

FIGURE 2-3 Platform Objects

The Platform object you create becomes the key that the MOHandle and
MOHCollection classes you instantiate later will use to access management
information.

In addition, the Platform object allows you to register Callbacks (see Section 2.4
“Registering Event Listeners” on page 2-10) and allows you to perform access
control.

For more information about the Platform class, refer to Chapter 2 “Java PMI API”
in Java APl Reference.

To create a Platform object, you need to provide the following four parameters:

= Host (on which the JMA is running)
= MIS name

= User name

= Password

Following is a code segment that creates a Platform object:

plat = new Platform(host, mis, user, passwd);

Chapter 2 Using the Java Management Interface APl 2-5

2.3

2.3.1

Defining Local Representation of
Managed Objects

When you create a JMI application, you must define a local representation of the
network’s Managed Obiject Instances (MOI) that your application will manage. You
can perform this task by instantiating the following JMI API classes:

= MOHandle: Allows you to represent a single MOI (physical or conceptual).

= MOHCollectionByRule and MOHCollectionEnum : Allow you to represent
groups of MOls (physical or conceptual).

Instantiating the MOHandle Class

An instance of the MOHandle class is the local representation of an actual or
potential MOI. Typically, an MOI is a managed object that represents a physical
resource: a host, server, router, subnet (that is, the representation of a physical
device), or a conceptual entity (a line, a queue, or some other aspect of network
operation that can be represented as a managed object). See the following figure.

JMI Application

MOHandle
object

Solstice
EM MIS CMIP

FIGURE 2-4 MOHandle Object

Think of the MOHandle object as the object itself, even though the actual object is
across the network, or in the MIS. MOHandle objects give you access to the object’s
methods and attributes.

To instantiate the MOHandle class, you need to provide the following three
parameters:

= dn: DistinguishedName for the MOI.

2-6 Developing Java Applications * October 2001

= Class name : The name of the managed object class of the MOI specified in the
dn parameter. The name must be the same as the name defined in the GDMO
specification of the managed object class.

= Platform : The Platform object you instantiated earlier in the application.

The following code example creates an MOHandle instance:

CODE EXAMPLE 2-1 Instantiating the MOHandle Class

String dn = new String("topoTypeDBId=NULL/
topoTypeld=\"Host\"");
System.out.print("This ex. retrieves the attributes of: " +

dn);
System.out.printin(“and prints them on the screen.");
String className = new String(“topoType");

/l instantiate a MOHandle with the object name and class

/I call an MGet to retrieve all the information about the
MOHandle

/I from the mis into the MOHandle.

moh = new MOHandle(dn, className, plat);
moh.MGet(TIMEOUT);

This code segment creates the MOHandle object moh, and uses its MGet method to
retrieve all the attribute values of the MOls it represents from the network.

For more information about the MOHandle class, refer to Chapter 2 “Java PMI API”
in Java APl Reference.

2.3.2 Instantiating MOHCollectionByRule and
MOHCollectionEnum Classes

When creating JMI applications, it is often more efficient to treat a set of MOls as one
collection. In addition, it is sometimes necessary to maintain information about a set
of MOIs in an MIS and be able to manage the set as a whole.

For example, your application may contain a GUI element that displays the MOIs in
a particular subtree of the management information tree (MIT) in an MIS. The GUI
element will have to refresh the screen whenever a change occurs in the subtree it
represents. In addition, your application may allow network operators to delete or
change the attributes of a particular subtree in the MIT. See the following figure.

Chapter 2 Using the Java Management Interface APl 2-7

2-8

Viewer Application

Base Object
(Level 0)

MIT MIS

FIGURE 2-5 Example of MOHCollectionByRule Usage

Although you can use MOHandle objects to perform these operations, the burden is
on you to provide the necessary mechanism for creating and maintaining sets of

these objects.

For this reason, the JMI API provides the MOHCollectionByRule and the

MOHCollectionEnum

classes. These are similar classes that allow you to represent a

group of MOHandle objects. The following table compares the two classes.

TABLE2-1 MOHCollectionByRule versus MOHCollectionEnum

Class

Description

MOHCollectionByRule

MOHCollectionEnum

= Member MOHandle objects satisfy a particular rule
Member MOHandle objects cannot be user-manipulated
Tracks all the MOHandles within the collection, based on
changes in the network for these MOHandles

Member MOHandle objects are added with no constraints
Member MOHandle objects can be user-manipulated

Developing Java Applications * October 2001

v To Instantiate the MOHCollectionByRule Class

e Provide the following parameters:
= Base object : Specifies the root object of the collection.
= Scope: Defines the scope of the MIT based on the Base object.

« A value of LV(n), where n is an Integer, specifies the nth level of the tree
whose root is specified by the base object parameter. LV(0) is the same as the
Base object.

« A value of TO(n), where n is an Integer, specifies a tree of n levels whose root
is the Base object.

= Filter : Specifies the criteria to use for passing events and automatically updates
the collection. For example, you can define a filter so that any event taking place
in the first four levels (0 to 3) of a collection will be passed to the collection’s
event listener. If any MOI that the collection monitors gets deleted, the collection
will be updated accordingly to maintain an up-to-date view of the collection.

= Platform : Specifies the Platform object that allows you to gain access to the
MIS.

Following is an example of a code segment that creates an MOHCollectionByRule
object.

CODE EXAMPLE 2-2 Creating an MOHCollectionByRule Object

MOHCollectionByRule app_instances = null;
String base = new String("subsystemId=\"EM-MIS\"");
System.out.printin("Base object is " + base);
String scope = new String("LV(1)");
System.out.printin("Scope is " + scope);
String filter = new String("CMISFilter(item:equality:
{objectClass, emApplicationinstance})");

System.out.printin("Filter used " + filter);
/I get all app instance objects
try {

app_instances =

new MOHCollectionByRule(base, scope, filter, plat);

System.out.printin("constructed album™);

app_instances.populate(TIMEOUT);
System.out.printin("populated the MOHCollectionByRule ");

This code segment creates the MOHCollectionByRule object app_instances using
the base, scope , filter , and plat objects as parameters and populates it using
the populate method.

Chapter 2 Using the Java Management Interface APl 2-9

v To Instantiate the MOHCollectionEnum Class

e Provide one or both of the following parameters:

= MOHCollectionByRule object: This object is used to initialize the new
MOHCollectionEnum object with the member MOHandle objects that
MOHCollectionByRule contains.

= Platform : The Platform object that allows you to gain access to the MIS.

Note — If only the platform parameter is specified, the new MOHCollectionEnum
collection will not contain any MOHandle object.

2.4 Registering Event Listeners

The most important aspect of a JMI application is the ability to be able to update
information about the MOlIs the application is managing. This is done by registering
event listeners and defining the handlers (discussed in Section 2.5 “Handling
Events” on page 2-13) that will be invoked when an event indicating a change in the
network occurs.

The JMI API allows you to register six types of events as shown in the following
table:

TABLE2-2 Event Types

Event Description

AttributeValueChange Gets generated when one or more attribute values change
for an MOI

ObjectCreation Gets generated when an MOI object is created

ObjectDeletion Gets generated when an MOI object is deleted

RawEvent Any event

MOHandlelncluded Gets generated when an object is added to a collection

MOHandleExcluded Gets generated when an object is deleted from a collection

2-10 Developing Java Applications « October 2001

These events can be registered against Platform , MOHandle,
MOHCollectionByRule , and MOHCollectionEnum objects as shown in the
following table.

TABLE 2-3 Event Type Mapping

Event Level Description

Platform You can register Callbacks for the following events that affect
any object in the network defined by a Platform object:
= Attribute value change events
= Obiject deletion events
« Object creation events
= Raw events

MOHandle Registers Callbacks for the following events that affect the MOI
represented by an MOHandle object:
= Attribute value change events
= Object deletion events
= Object creation events
= Raw events

MOHCollectionByRule Registers Callbacks for the following events that affect any
MOHandle object in an MOHCollectionByRule object’s
collection:

= Attribute value change events
« Object deletion events

= Object creation events

= Raw events

= MOHandle included events

< MOHandle excluded events

MOHCollectionEnum Registers Callbacks for the following events that affect any
MOHandle object in an MOHCollectionEnum object’s
collection:

= Attribute value change events
= Object deletion events

= Object creation events

= Raw events

Chapter 2 Using the Java Management Interface APl 2-11

v To Register an Event Listener

1. Define a class that implements the EventReportListener interface of the JMI
API.

Part of defining this class is to define the interface’s handler method that will be
invoked when the corresponding event arrives (see Section 2.5 “Handling Events”
on page 2-13).

2. Register for Callbacks for the events that you’re interested in using the
appropriate methods of the Platform , MOHandle, MOHCollectionByRule , or
MOHCollectionEnum objects.

For example:

= To register an AttributeValueChange event listener for a Platform object, use
its addAttributeValueChangelListener method.

= To register an ObjectCreation event listener for an MOHandle object, use its
addObjectCreationListener method.

= To register an MOHandlelncluded event listener for an MOHCollectionByRule
object, use its addMOHandlelncludedListener method.

Following is an example of a code segment that registers AttributeValueChange
ObjectCreation , and ObjectDeletion event listeners.

CODE EXAMPLE 2-3 Registering Event Listeners

public class MOHandleEvent implements EventReportListener {

public static final double TIMEOUT = 3600.0;
static Platform plat = null;

Il register for Callbacks for AVC, ObjectCreation and

/I ObjectDeletion

System.out.printin("MOHandle is logld=\"AlarmLog\"");
System.out.printin("Registering for events for MOHandle *);
moh.addAttributeValueChangeListener(gt);
moh.addObjectCreationListener(gt);
moh.addObjectDeletionListener(gt);
System.out.printin("Waiting for events ...");

/I wait here as the events arrive from mis.
// user can modify an attribute here for AlarmLog to
Il verify the event delivery.

2-12 Developing Java Applications ¢ October 2001

For more information about registering event listeners, refer to the method
descriptions of the Platform , MOHandle, MOHCollectionByRule , and
MOHCollectionEnum classes in Chapter 2 “Java PMI API” in Java APl Reference.

2.5 Handling Events

In addition to registering event listeners, you need to define the handlers that will be
invoked in response to an event. For each listener object you create, you must define
the body of its handler method.

CODE EXAMPLE 2-4 defines an event listener’s handler method.

The following code prints the event type, the name of the object that generated the
event, the name of the class of the object that generated the event, and, in the case of
a raw event, information about the event.

CODE EXAMPLE 2-4 Defining a handler

public void handler(EventReport ind) {
String type = ind.getName();
System.out.printin("Event Type =" + type);
System.out.printin("Object Name =" + ind.getMOName());
System.out.printin("Object Class =" + ind.getMOClIass());
try {
System.out.printin("Event Info = " +
ind.getinfo());
AbstractData abs = ind.getInfoRaw();
System.out.printin("Event Info Raw =" +
abs.getStr());
} catch (JmiException ex) { ex.printStackTrace(); }

}

Chapter 2 Using the Java Management Interface APl 2-13

2.6

C++ Equivalents for the JMI API Classes

The following table shows the C++ PMI classes that are equivalent to the JMI API
classes.

TABLE 2-4 C++ Equivalents for IMI API Classes

JMI API Class Equivalent C++ PMI Class
Platform Platform

MOHandle Image
MOHCollectionByRule Album
MOHCollectionEnum Album

AbstractData Morf

EventReport CurrentEvent

2.7

2-14

Sample JMI Application

This section lists the code of the following five sample applications that use the JMI
API:

= PlatformEvent.java (CODE EXAMPLE 2-5)

= MOHandleTest.java (CODE EXAMPLE 2-6)

= MOHandleEvent.java (CODE EXAMPLE 2-7)

= EmWho.java (CODE EXAMPLE 2-8)

= CollectionEvent.java (CODE EXAMPLE 2-9)

Developing Java Applications * October 2001

2.7.1

PlatformEvent.java

The following code example shows you how to:

Instantiate the Platform class.
Register Callbacks for attribute value change, object creation, and object deletion.

Verify event delivery.

CODE EXAMPLE 2-5 PlatformEvent.java

/*

* Copyright (c) 12/08/97 Sun Microsystems, Inc.
* All Rights Reserved.

*/

import com.sun.em.api.pmi.*;
import java.net.*;
import java.util.*;

public class PlatformEvent implements EventReportListener {

public static final double TIMEOUT = 3600.0;

static void usage() {
System.err.printin("Usage:");
System.err.printin(“java PlatformEvent <servername> <mis-

name> <user-name> <password>");
System.err.printin("\t-Run the example with <servername> as
the remote server and <misname> where EM mis is running.");
System.exit(-1);
}

public static void main(String args][]) {

if (args.length < 4)
usage();

PlatformEvent gt0, gtl, gt2;
MOHandle moh = null;

try {
gt0 = new PlatformEvent(args[0], args[1], args[2],
args[3]);
}
catch (JmiException ex) {System.out.printin(ex); }
}

public void handler(EventReport ind) {

Chapter 2 Using the Java Management Interface APl 2-15

CODE EXAMPLE 2-5 PlatformEvent.java (Continued)

String type = ind.getName();
System.out.printin("Event Type =" + type);
System.out.printin("Object Name =" + ind.getMOName());
System.out.printin("Object Class =" + ind.getMOClass());
try {
System.out.printin("Event Info = " +
ind.getInfo());
AbstractData abs = ind.getinfoRaw();
System.out.printin("Event Info Raw =" +
abs.getStr());
} catch (IJmiException ex) { ex.printStackTrace(); }

}

public PlatformEvent(String host, String mis, String user,
String passwd) throws JmiException {

try {
/I instantiate Platform

plat = new Platform(host, mis, user, passwd);
/I register for events
System.out.printin("Registering for events for Platform

plat.addAttributeValueChangelListener(this);
plat.addObjectCreationListener(this);
plat.addObjectDeletionListener(this);
System.out.printin("Callbacks registered");
System.out.printin("Waiting for events ...");

}

catch (JmiException ex) { throw ex; }

}

Platform plat = null;
private static final String sccsID =
"@(#)PlatformEvent.javal.4 97/12/08 Sun Microsystems,
Inc.";

}

2-16 Developing Java Applications « October 2001

2.7.2 MOHandleTest.java

The following code example shows you how to:

= Get attributes of an MOHandle.
= Create an MOHandle (logld="testLog") after setting attributes.

CODE EXAMPLE 2-6 MOHandleTest.java

/*

* Copyright (c) 01/27/98 Sun Microsystems, Inc. All Rights
Reserved.

*/

import com.sun.em.api.pmi.*;

import java.net.*;

import java.util.*;

public class MOHandleTest {

public static final double TIMEOUT = 3600.0;
static Platform plat = null;

static void usage() {
System.err.printin("Usage:");
System.err.printin("java MOHandleTest <servername> <mis-name>
<username> <password>");
System.err.printin("\t-Run the example with <servername> as
the remote server and <misname> where EM mis is running.");
System.exit(-1);
}

public static void main(String args[]) {

MOHandleTest gt = null;
MOHandle moh = null;

if (args.length < 4) usage();

try { gt = new MOHandleTest();

/l instantiate Platform with the supplied server name and
/I mis name.

plat = new Platform(args[0],args[1], args[2],args[3]);

String [] attrNames = null;

String dn = new String("topoTypeDBId=NULL/
topoTypeld=\"Host\"");

System.out.print("This example retrieves the attributes of: "
+dn);

Chapter 2 Using the Java Management Interface APl 2-17

2-18

CODE EXAMPLE 2-6 MOHandleTest.java (Continued)

System.out.printin("and prints them on the screen.");
String className = new String("topoType");

/l instantiate a MOHandle with the object name and class

/I call a MGet to retrieve all the information about the
MOHandle

/I from the mis into the MOHandle.

moh = new MOHandle(dn, className, plat);
moh.MGet(TIMEOUT);

/I verify that the object exists in the network.

if (moh.exists() == false)
System.out.printin(dn + "does not exist");

/I Get the attribute names of the MOHandle
attrNames = moh.getAttrNames();

System.out.printin("The attributes for the object are ..");

for (int i=0; i <attrNames.length; i++)
System.out.printin("Attribute: " + attrNamesli]);

/I second part of the example. Create a object in the mis.
String testdn = new String("logld=\"testLog\"");

String testclass = new String("log");
System.out.printin("Create a object " + testdn + "in mis");
/I instantiate the MOHandle and retrieve the attribute info.
MOHandle mo = new MOHandle(testdn, testclass, plat);
mo.MGet(TIMEOUT);

if (mo.exists()) {
System.out.printin("object exists! quitting ...");
System.exit(11);

}

mo.setStr("logFullAction”, "wrap");
System.out.printin("set logFullAction™);

mo.setStr("administrativeState", "unlocked");
System.out.printin("set administrativeState");

mo.setStr("maxLogSize", "1000000");
System.out.printin("set maxLogSize");

Developing Java Applications * October 2001

2.7.3

CODE EXAMPLE 2-6 MOHandleTest.java (Continued)

mo.setStr("discriminatorConstruct"”, "or: {}");
System.out.printin("set discriminatorConstruct");

mo.MCreate(TIMEOUT);

}

catch (JmiException ex) {System.out.printin(ex); }
System.exit(2);

public MOHandleTest() throws JmiException { }
private static final String sccsID =
"@(#)MOHandleTest.javal.4 98/01/27 Sun Microsystems,
Inc.";

}

MOHandleEvent.java

The following code example shows you how to:

= Register Callbacks for an AttributeValueChange , ObjectCreation
ObjectDeletion events or an MOHandle object.
= Verify event delivery.

CODE EXAMPLE 2-7 MOHandleEvent.java

, and

/*

* Copyright (c) 05/05/98 Sun Microsystems, Inc. All Rights
Reserved.

*/

import com.sun.em.api.pmi.*;

import java.rmi.*;

import java.rmi.server.UnicastRemoteObject;
import java.net.*;

import java.util.*;

public class MOHandleEvent implements EventReportListener {

public static final double TIMEOUT = 3600.0;
static Platform plat = null;

static void usage() {

Chapter 2 Using the Java Management Interface API

2-19

CODE EXAMPLE 2-7 MOHandleEvent.java (Continued)

System.err.printin("Usage:™);

System.err.printin(“java MOHandleEvent <servername> <mis-
name> <username> <password>");

System.err.printin("\t-Run the example with <servername> as
the remote server and <misname> where EM mis is running.");

System.exit(-1);

}

public static void main(String args][]) {

if (args.length < 4)
usage();

MOHandleEvent gt = null;

MOHandle moh = null;

String dn = new String("logld=\"AlarmLog\"");

String className = new String("log");

try { gt = new MOHandleEvent();
/l instantiate the platform.
plat = new Platform(args[0], args[1], args[2], args[3]);
/I nstantiate the MOHandle and retrieve the attribute info
moh = new MOHandle(dn, className, plat);
moh.MGet(TIMEOUT);
/I register for Callbacks for AVC, ObjectCreation and
/I ObjectDeletion
System.out.printin("MOHandle is logld=\"AlarmLog\"");
System.out.printin("Registering for events for MOHandle

ll);

moh.addAttributeValueChangeListener(gt);
moh.addObjectCreationListener(gt);
moh.addObjectDeletionListener(gt);
System.out.printin("Waiting for events ...");

/I wait here as the events arrive from mis.
/I user can modify an attribute here for AlarmLog to
/I verify the event delivery.

}

catch (JmiException ex) {System.out.printin(ex); }

catch (Exception ex) {System.out.printin(ex); }

}

2-20 Developing Java Applications ¢ October 2001

2.7.4

CODE EXAMPLE 2-7 MOHandleEvent.java (Continued)

public void handler(EventReport ind) {

String type = ind.getName();

System.out.printin("Event Type =" + type);
System.out.printin("Object Name =" + ind.getMOName());
System.out.printin("Object Class =" + ind.getMOClass());
}

public MOHandleEvent() throws JmiException { }
private static final String sccsID =

"@(#)MOHandleEvent.javal.7 98/05/05 Sun Microsystems,
Inc.”;

}

EmWho.java

The following code example shows you how to:

= Create a collection and populate it.
= Print out the members of the collection, which are the application instances
connected to MIS.

CODE EXAMPLE 2-8 EmWho.java

/*

* Copyright (c) 05/05/98 Sun Microsystems, Inc. All Rights
Reserved.

*/

import com.sun.em.api.pmi.*;

import java.net.*;

import java.util.*;

public class EmWho {

public static final double TIMEOUT = 3600.0;
static Platform plat = null;

static void usage() {
System.err.printin("Usage:");
System.err.printin("java EmWho <servername> <mis-name>
<username> <password>");
System.err.printin("\t-Run the example with <servername> as

the remote server and <misname> where EM mis is running.");

Chapter 2 Using the Java Management Interface API

2-21

2-22

CODE EXAMPLE 2-8 EmWho.java (Continued)

System.exit(-1);
}

public static void main(String args][]) {
EmWho ew = null;
if (args.length < 4)
usage();
try {
ew = new EmWho();
System.out.printin("Instantiating platform");
plat = new Platform(args[0],args[1] , args[2],args[3]);

ew.get_users();

}

catch (JmiException ex) {System.out.printin(ex); }

}

public void get_users() {

System.out.printin("Findout the applications connected to
mis");

MOHCollectionByRule app_instances = null;

String base = new String("subsystemld=\"EM-MIS\"");

System.out.printin("Base object is " + base);

String scope = new String("LV(1)");

System.out.printin("Scope is " + scope);

String filter = new String("CMISFilter(item:equality:
{objectClass, emApplicationinstance})");

System.out.printin("Filter used " + filter);
/I get all app instance objects
try {
app_instances = new MOHCollectionByRule(base, scope,
filter, plat);
System.out.printin("constructed album®);
app_instances.populate(TIMEOUT);
System.out.printin("populated the MOHCollectionByRule ");

MOHandle[] mohs = null;

mohs = app_instances.getMOHandles();

System.out.printin("# of app instance objects =" +
mohs.length);

1
/I snarf user name out of emUserlD attribute
1l

Developing Java Applications * October 2001

CODE EXAMPLE 2-8 EmWho.java (Continued)

for (int i=0; i < mohs.length; i++) {
mohs[i]. MGet(TIMEOUT);
System.out.printin(mohsJi].getObjectName());

System.out.printin(mohsJi].getStr("emApplicationType"));
}

}

catch (JmiException ex) {
System.out.println(ex);
System.exit(1);

}

private static final String sccsID =
"@(#)EmWho.javal.5 98/05/05 Sun Microsystems, Inc.";

2.7.5 CollectionEvent.java

The following code example shows you how to:

= Register Callbacks for AttributeValueChange , ObjectCreation , and
ObjectDeletion events for a collection.
= Verify event delivery.

CODE EXAMPLE 2-9 CollectionEvent.java

/*

* Copyright (c) 05/05/98 Sun Microsystems, Inc. All Rights
Reserved.

*/

import com.sun.em.api.pmi.*;
import java.net.*;
import java.util.*;

public class CollectionEvent implements EventReportListener {

public static final double TIMEOUT = 3600.0;
static Platform plat = null;

Chapter 2 Using the Java Management Interface APl 2-23

2-24

CODE EXAMPLE 2-9 CollectionEvent.java (Continued)

static void usage() {
System.err.printin("Usage:");
System.err.printin("java CollectionEvent <servername> <mis-
name> <username> <password>");
System.err.printin("\t-Run the example with <servername> as
the remote server and <misname> where EM mis is running.");
System.exit(-1);
}

public static void main(String args[]) {

if (args.length < 4)
usage();

CollectionEvent gt = null;

MOHCollectionByRule mcl = null;

String base = new String("/systemld=name:\""+ args[1] + "\'"");
/I String base = null;

String scope = new String("LV(1)");

String filter = new String("");

System.out.printin("Populate the MOHandles for: "),
System.out.printin(base);

try { gt = new CollectionEvent();

plat = new Platform(args|[0], args[1], args[2], args[3]);;
System.out.printin("Platform instantiated");

}

catch (JmiException ex) { System.out.printin(ex); }
try { mcl = new MOHCollectionByRule(base, scope, filter, plat);

catch (JmiException ex) {
System.out.printin(ex);
System.exit (1);

}

System.out.printin("Collection created");

try { mcl.populate(TIMEOUT); }
catch (JmiException ex) { System.out.printin(ex); }
System.out.printin("Collection populated”);

try {
System.out.printin("Scope: " + mcl.getScope());
System.out.printin("Filter: " + mcl.getFilter());

Developing Java Applications * October 2001

CODE EXAMPLE 2-9 CollectionEvent.java (Continued)

System.out.printin("Base Object: " +
mcl.getBaseManagedObiject());
}

catch (JmiException ex) {}

MOHandle[] mohs = null;
try { mohs = mcl.getMOHandles(); }
catch (JmiException ex) { System.out.printin(ex); }
System.out.printin("The # of MOHandles are .." + mohs.length);
System.out.printin("The MOHandles for the Collection are ..");
try {
for (int i=0; i <mohs.length; i++) {
System.out.printin("Object Name: " +
mohs]i].getObjectName()); }

catch (JmiException ex) {System.out.printin(ex); }

System.out.printin("Got all the MOHandles");

try {

mcl.MGet(TIMEOUT);
/I set the collection in tracking mode
mcl.setTracking(true);

/I register for events

/I MOHandlelncluded and MOHandleExcluded
mcl.addMOHandlelncludedListener(gt);
mcl.addMOHandleExcludedListener(gt);
System.out.printin("Wait for events ..");

}

catch (JmiException ex) {System.out.printin(ex); }

}

public CollectionEvent() throws JmiException {

}

public void handler(EventReport ind) {

String type = ind.getName();

System.out.printin("Event Type =" + type);

System.out.printin("Object Name =" + ind.getMOName());
System.out.printin("Object Class = " + ind.getMOCIlass());

Chapter 2 Using the Java Management Interface APl 2-25

CODE EXAMPLE 2-9 CollectionEvent.java (Continued)

try {
System.out.printin("Object Raw info =" +
ind.getinfoRaw().getStr());
} catch (JmiException ex) { ex.printStackTrace(); }

}
private static final String sccsID =

"@(#)CollectionEvent.javal.7 98/05/05 Sun Microsystems,
Inc.";

}

2-26 Developing Java Applications ¢ October 2001

CHAPTER 3

Using the Java Alarm API

The Java Alarm API defines the classes and methods which allow you to create
applications that perform alarm management operations. This chapter covers the
most important aspects of using the APl and provides detailed examples. For more
information about the API, refer to Java APl Reference.

The following topics are covered in this chapter:

Section 3.1 “Overview” on page 3-2

Section 3.2 “Instantiating the AlarmLog Class” on page 3-4

Section 3.3 “Creating Query Objects” on page 3-6

Section 3.4 “Creating AlarmRecordAttributeSet Objects” on page 3-10
Section 3.5 “Getting Alarms” on page 3-11

Section 3.6 “Clearing and Acknowledging Alarms” on page 3-14
Section 3.7 “Listening for Alarm Log Events” on page 3-15

Section 3.8 “Sample Programs” on page 3-16

These topics are arranged, as far as possible, to reflect the order you need to follow
when creating alarm management applications. For example, before getting alarms,
you must have associated an AlarmLog object with a log, created a query, and
specified the attributes to be returned. This sequence becomes clear as you go
through this chapter.

3-1

3.1

Overview

Alarms are events indicating abnormal conditions that the MIS logs (through the
logging subsystem) into alarm logs (the default log object is AlarmLog). Each log
entry (record) represents an alarm and is created based on the mapping provided in
evv2oclist object in the MIS and the filter created for the log. An alarm:

= Can be logged.

= Has attributes that allows it to be acknowledged and cleared.

= Is recognized by and displayed in the Solstice Enterprise Manager (Solstice EM)
Alarms window tool.

When the MIS receives an event, it uses a predefined filter to determine whether the
event is an alarm and logs it accordingly as an alarm record. You can use the Alarms
window to view and monitor alarms.

The Java Alarm API provides a programmatic interface to achieve functionality
similar to the Alarms window. The Java Alarm API hides the implementation details
of how logs stored in databases are accessed and processed, and provides the classes
and methods that allow you to create alarm management applications. If the
implementation details change, your application still works. See the following
figure.

Alarms window Java Alarm API

N
v

Events Logging
—P MIS Subsystem
Log Server Alarm
Logs

o

FIGURE 3-1 The Java Alarm API

Note — The Java Alarm API works only on alarms that are derived from the GDMO
object emAlarmRecord and does not work with user-defined alarms.

3-2 Developing Java Applications ¢ October 2001

3.1.1

Alarm Management Tasks

The Java Alarm API allows you to perform the following alarm management tasks:

= Monitor alarms

= Acknowledge alarms

= Take actions based on alarms
= Clear alarms

These tasks can be performed using the following main classes of the Java Alarm
API:

= AlarmLog class

= Query classes (Filterltem , Filter , and GenericQuery)
= Listener classes (such as AlarmLogListener and
AlarmLogCreationListener)

See the following figure.

Alarm
log

Query objects \://
=

ALarmLog object Listener objects

FIGURE 3-2 Main “Players” in the Java Alarm API

Each instance of the AlarmLog class represents an alarm log and contains methods
for accessing and modifying alarm information. The query classes provide the
filtering mechanism needed by some of the AlarmLog class methods. The listener
classes provide the mechanism for reacting to alarms.

Chapter 3 Using the Java Alarm APl 3-3

3.1.2 Alarm Management Task Flow

When creating alarm management applications, keep in mind the following model
of task flow, as illustrated in the following figure.

Alarm against a device

Acknowledge alarm

Y

I

I

I

' I

Fix problem automatically or allow Your I
I

I

I

I

operator to fix problem application

]

Clear alarm

FIGURE 3-3 Flow of Tasks When Handling an Event

3.2 Instantiating the AlarmLog Class

The first step to take when performing alarm operations is to instantiate the
AlarmLog class. This class represents the MIS’s log objects that contain alarms. Each
instance of this class represents one log. See the following figure.

L
2

FIGURE 3-4 AlarmLog Obijects

alarmLog2

AlarmLog class

alarmLog3

3-4 Developing Java Applications ¢ October 2001

v To Instantiate the AlarmLog Class

1. Create a LogName object as shown in the following example:

LogName logName = new LogName(MISName, “AlarmLog”);

The logName object allows you to hide the naming internals of the log. When
creating the logName object, you must supply the following two arguments:

« MISName The name of the MIS on which the log exists.
« LogName The name of the log (in this case AlarmLog).

Note — Don’t confuse “AlarmLog ”, which is the name of the default log object in
Solstice EM, with the AlarmLog class.

2. Create an AlarmLog object as shown in the following example:

AlarmLog log = new AlarmLog(platform, logName);

The AlarmLog object constructor takes the following parameters:

« platform : An instance of the Platform class that represents the MIS to
which the application is connected.

« logName : A LogName object representing a log’s name.

Note — The MIS name parameter used to create the LogName object and the MIS
which the platform parameter represents when creating the AlarmLog object can be
different.

Chapter 3 Using the Java Alarm APl 3-5

3.3

Creating Query Objects

The Java Alarm API allows you to create filter objects that you can use to query
alarm logs. For example, you can create queries to retrieve all alarm records that
have a perceived severity that is major or critical.

To Create a Query Object

. Create one or more Filterltem objects that define the conditions to check for in

the query.
This topic is described in Section 3.3.1 “Creating Filterltem Objects” on page 3-7.

. Create a Filter object that combines the Filterltem objects you defined in Step 1

based on a logical criteria (ANDor OR.
This topic is described in Section 3.3.2 “Creating Filter Objects” on page 3-8.

. Create a GenericQuery object that combines the Filter objects you defined in

Step 2 based on a logical criteria (ANDor OR. See the following figure.
This topic is described in Section 3.3.3 “Creating GenericQuery Objects” on page 3-9.

Alarm Log Filteritem Filter GenericQuery
Attributes Objects Objects Object

ACK_STATE —1— ‘\
N
CLEAR_STATE ——— 6 N
= < N
> N
N
CLEAR_TIME | 6/ <

CLEAR_TEXT —_—

FIGURE 3-5 Query Objects

As shown in FIGURE 3-5, the GenericQuery object is used to join various Filter
objects and the Filter object is used to join various Filterltem objects.
Constructing a GenericQuery object in this fashion hides the implementation
details of filtering, allows Filterltem and Filter objects to be reused in the same
application to create different queries, and allows you to create complicated queries.

3-6 Developing Java Applications ¢ October 2001

3.3.1

Creating Filterltem Obijects

A Filterltem object represents a condition in a query that affects only one alarm
record attribute. For example, you might want to retrieve all alarm records whose
PERCEIVED_SEVERIT Yattribute is equal to EMSeverity. MAJOR or
EMSeverity.CRITICAL

To create a Filterltem object, you need to provide the following three parameters:

= Attribute name: Name of the alarm record attribute to be checked by the
condition. See Section 3.4 “Creating AlarmRecordAttributeSet Objects” on
page 3-10 for more information on alarm record attributes.

= Relational operator: A RelationCriteria object that defines a relation operator
for the condition (=, >,<).

= Attribute values: One or more attribute values.

Following is an example of a code segment that creates a Filterltem object:

EMSeverity[] sev = {
EMSeverity.MAJOR,
EMSeverity.CRITICAL

b

Filterltem filterltem1 =

new Filterltem(AlarmRecordAttribute. PERCEIVED_SEVERITY,

RelationCriteria. EQUAL, sev);

This code creates a Filterltem object based on the severity of the alarm record.

The first statement in the code above defines the attribute values that will be used
when creating the Filterltem object filterltem1

The second statement creates the Filterltem object filterltem1 . All alarm
records whose perceived severity is major or critical will pass this filter.

Chapter 3 Using the Java Alarm APl 3-7

3.3.2

Creating Filter Objects

A Filter object implements an alarm filter. You construct a filter by combining an
instance of the LogicalCriteria object with a list of Filterltem objects. In other
words, an alarm filter consists of one or more conditions combined together by the
logical operators ANDor OR

To create a Filter object, you need to provide the following two parameters:

= LogicalCriteria object: The logical operator (ANDor OR to be used in the
filter.

= Filterltem object: The object specifying a condition to check for. You can add
more Filterltem objects using the addFilter method of the Filter object.

Note — If you don’t specify a logical criteria, ANDis assumed by default.

Following is a code segment that creates a Filter object:

LogicalCriteria logCriterial = new LogicalCriteria OR;
Filter filter = new Filter(logCriterial, filterltem1);

In this code segment, the first statement defines ORas the logical operator to be used
when creating the filter.

The second statement creates the Filter object filter based on the logical operator
defined in the previous statement and the Filterltem object defined in
Section 3.3.1 “Creating Filterltem Objects” on page 3-7.

To add more Filterltem objects to the filter object, you can use the addFilter
method as follows:

filter.addFilterltem(filteritem2);
filter.addFilterltem(filterltem3);

In this case, the filter object consists of three conditions combined by the ORoperator
(filterltem1l OR filterltem2 OR filterltem3).

3-8 Developing Java Applications ¢ October 2001

3.3.3

Creating GenericQuery Obijects

A GenericQuery object implements a generic alarm filter. You construct a
GenericQuery object by combining a LogicalCriteria object with Filterltem
objects.

To create a GenericQuery object, you need to provide the following two
parameters:

= LogicalCriteria object: The logical operator (ANDor OR to be used in the
filter.

= Filter object: The object specifying one or more conditions to be checked. You
can add more Filter objects using the addFilter method of the
GenericQuery object.

Note — If you don’t specify a LogicalCriteria object, ANDis assumed by default.

Following is a code segment that creates a GenericQuery object:

GenericQuery query =new GenericQuery ();
query.addFilter(filterl);
query.addFilter(filter2);

In this code segment, the first statement creates a new GenericQuery object
(query). The second and third statements add two Filter objects to the query.
These two filters are combined using the ANDoperator.

Chapter 3 Using the Java Alarm APl 3-9

3.4

3-10

Creating AlarmRecordAttributeSet

Obijects

Each record in an alarm log consists of 22 fields or attributes. However, in many
instances you only need to retrieve or modify a subset of these attributes, which you

can specify using the AlarmRecordAttributeSet

objects. These objects are used

by the APl methods that retrieve or modify alarm record attributes.

The following table contains a list of the 22 alarm record attributes that are
represented as variables in the AlarmRecordAttribute class:

TABLE 3-1 AlarmRecord Attributes

Attribute

Description

ACK_OPERATOR
ACK_STATE
ACK_TEXT
ACK_TIME
CLEAR_OPERATOR
CLEAR_STATE
CLEAR_TEXT
CLEAR_TIME
DISPLAY_OPERATOR

DISPLAY_STATE

DISPLAY_TEXT

DISPLAY_TIME

EVENT_TIME

EVENT_TYPE

LOGGING_TIME
LOG_RECORD_ID
MANAGED_OBJECT_INSTANCE
PERCEIVED_SEVERITY
PROBABLE_CAUSE

User ID of the operator who acknowledged the alarm
Specifies whether the alarm is acknowledged

Text added when the alarm was acknowledged

Time when the alarm was acknowledged

User ID of the operator who cleared the alarm
Specifies whether the alarm is cleared

Text added when the alarm was cleared

Time when the alarm was cleared

User ID of the operator who made a change to the
display state flag

A flag that can be used by applications to determine
whether to display an alarm

Text added when the alarm display flag is changed
Time when the alarm display state was changed
Time when the event occurred

Type of event

Time when the event got logged

ID of the log record created

Actual object that raised this alarm

Severity of the alarm

Probable cause of the alarm

Developing Java Applications * October 2001

TABLE 3-1 AlarmRecord Attributes (Continued)

Attribute Description

ADDITIONAL_TEXT Additional information about the alarm
LOG_NAME Name of the log in which this alarm is logged
MIS_NAME MIS name on which this log exists

To define a set of alarm record attributes, create an AlarmRecordAttributeSet
object and add the required attributes (using the add method) as shown in the
following code example:

CODE EXAMPLE 3-1 Defining Alarm Record Attributes

AlarmRecordAttributeSet attrSet = new AlarmRecordAttributeSet();
attrSet.add(AlarmRecordAttribute.LOG_RECORD_ID);
attrSet.add(AlarmRecordAttribute. PERCEIVED_SEVERITY);
attrSet.add(AlarmRecordAttribute. PROBABLE_CAUSE);
attrSet.add(AlarmRecordAttribute. CLEAR_STATE);
attrSet.add(AlarmRecordAttribute. CLEAR_TIME);
attrSet.add(AlarmRecordAttribute. CLEAR_TEXT);
attrSet.add(AlarmRecordAttribute. CLEAR_OPERATOR);
attrSet.add(AlarmRecordAttribute. ACK_STATE);
attrSet.add(AlarmRecordAttribute. ACK_TIME);
attrSet.add(AlarmRecordAttribute. ACK_TEXT);
attrSet.add(AlarmRecordAttribute.LOGGING_TIME);
attrSet.add(AlarmRecordAttribute. EVENT_TYPE);
attrSet.add(AlarmRecordAttribute. MANAGED_OBJECT_INSTANCE);
attrSet.add(AlarmRecordAttribute.LOG_NAME);
attrSet.add(AlarmRecordAttribute. ADDITIONAL_TEXT);
attrSet.add(AlarmRecordAttribute. DISPLAY_OPERATOR);
attrSet.add(AlarmRecordAttribute. DISPLAY_STATE);
attrSet.add(AlarmRecordAttribute.DISPLAY_TIME);
attrSet.add(AlarmRecordAttribute. EVENT_TIME);

3.5

Getting Alarms

Once the AlarmLog and query objects are created, you can perform alarm
management operations. This section describes how to get:

= Alarm counts
= Alarms
= Alarms in batches

Chapter 3 Using the Java Alarm API

3-11

3.5.1

3.5.2

3.5.3

Getting Alarm Counts

To get the number of alarms in an alarm log that satisfy a particular query, use the
getAlarms method of the AlarmLog class as shown in the following code segment:

count = log.getAlarmCount(query);

This code segment gets the alarm count based on query . If query is null |, the
getAlarmCount method returns the total number of alarms in the alarm log.

Getting Alarms

To retrieve the attributes of alarms that satisfy a particular query, use the getAlarms
method of the AlarmLog object as shown in the following code segment:

AlarmRecord[] alarms = log.getAlarms(query, attrSet);

This code segment retrieves the alarm records that satisfy the query and stores them
into the alarms array. The returned attributes contain the attributes specified by
attrSet only.

Getting Alarms in Batches

It is often more efficient to retrieve alarm information in batches. This method frees
the system to perform other operations while alarm information is being gathered.

To retrieve alarms in batches, you need to define a BatchListener object and pass
it as an argument to the getAlarmsinBatches method. This method takes the
following parameters:

= Query object: See Section 3.3.3 “Creating GenericQuery Objects” on page 3-9.
= Size: Batch size.

= BatchListener object: Implements methods (that you define) that tell the
application what to do when alarm batches are received and when alarm batching
is done.

= AlarmRecordAttributeSet object: See Section 3.4 “Creating
AlarmRecordAttributeSet Objects” on page 3-10.

3-12 Developing Java Applications * October 2001

The following code example shows how to get alarms in batches.

CODE EXAMPLE 3-2 Getting Alarms in Batches

BatchListener batchList = new BatchListener("Critical”);
System.out.printin("Getting critical alarms in batches");

int batchld = log.getAlarmsinBatches(query, 5000, batchlList,
attrSet);

System.out.printin("Batch Id: " + batchid);

class BatchListener implements AlarmsBatchListener {
String id = null;
public BatchListener(String id) {
this.id = id;
}
public void batchReceived(int callld, AlarmRecord[] record) {
System.out.printin("Batchld: " + callld);
System.out.printin("Number of alarms received: " +
record.length);

public void batchDone(int callld) {
System.out.printin("Batchld :" + callld);
System.out.printin("Batch complete");

}

Notice that this code segment also contains the implementation of the
batchReceived and batchDone methods of the BatchListener class. These
methods specify what to do when a batch is received and when batching is done.

Chapter 3 Using the Java Alarm APl 3-13

3.6

3-14

Clearing and Acknowledging Alarms

Clearing and acknowledging alarms is a routine task that you perform when
managing alarms. The AlarmLog class provides the setClearAlarms and
setAckAlarms methods that you can use to clear and acknowledge alarms. The
following code example shows how to acknowledge and clear alarms.

CODE EXAMPLE 3-3 Clearing and Acknowledging Alarms

AlarmRecordld alrmld =alarms[0].getLogRecordld();
AlarmRecordld[] alrm = {alrmld};
log.setAckAlarms(alrm, "meaningful text needed");
log.setClearAlarms(alrm, "meaningful text needed");

In this code segment, the setAckAlarms and setClearAlarms methods
acknowledge and clear the alarm whose log id is specified by the alarms array (in
this case the array contains only one id) by modifying the ACK_TEXTand
CLEAR_TEXTattributes, respectively, of the corresponding alarm record in the
corresponding log.

You can also clear alarms by sending an event using the sendClearAlarmsEvent
method. This method sends an event that clears all alarms that originated from the
same source all at once without having to clear them one-by-one, as in the
setClearAlarms method.

log.sendClearAlarmsEvent(alrm);

Developing Java Applications * October 2001

3.7

Listening for Alarm Log Events

One of the main tasks in alarm management is to define how your application reacts
to alarm records being created, deleted, or modified. This task is done by creating
listener objects that define how to react to such events. These objects will be notified
of such events by the logging subsystem.

The Java Alarm API provides the following four interfaces for creating alarm event
listener objects:

AlarmLogCreationListener : Contains one method (alarmLogCreated). You
can define the body of this method to perform the appropriate actions when an
alarm log record is created.

AlarmLogDeletionListener : Contains one method (alarmLogDeleted). You
can define the body of this method to perform the appropriate actions when an
alarm log record is deleted.

AlarmLogModificationListener : Contains one method
(alarmLogModified). You can define the body of this method to perform the
appropriate actions when an alarm log record is modified.

AlarmLogListener : Contains three methods (alarmLogCreated
alarmLogDeleted , and alarmLogModified). You can define the body of these
methods to perform the appropriate actions when an alarm log record is created,
deleted, or modified.

To Create an Alarm Event Listener

. Use the setEventAttrSet method to specify the list of attributes to be returned.

. Use the addAlarmLogListener method to register to receive an event when the

alarm log is created, deleted, or modified, as shown in the following example.

/IListen for objectCreationEvent
It
log.setEventAttrSet(attrSet);

System.out.printin("Listening for alarm events");
log.addAlarmLogListener(new EventListener());

Note — If attributes other than the one specified in attrSet changes, an empty
event is generated.

. Fill the bodies of the AlarmLogListener methods with the appropriate code (see

CODE EXAMPLE 3-5 on page 3-20).

Chapter 3 Using the Java Alarm APl 3-15

3.8 Sample Programs

This section provides sample programs that perform alarm management.

3.8.1 AlarmBatch

This program gets alarms in batches. The query is based on perceivedSeverity
and the batchSize is 5000. See the following code example.

CODE EXAMPLE 3-4 AlarmBatch

/*
* Copyright 10/30/98 Sun Microsystems, Inc. All Rights Reserved.
*/
/*

AlarmBatch <servername> <mis-name> <username> <password>
<servername> - is the machine name on which the server is running.
<mis-name> - is the machine name on which the mis is running.
<username> - is the user login name.

<password> - is the password of the user login.

*/

import com.sun.em.api.alarm.*;
import com.sun.em.api.common.*;
import java.util. Enumeration;
import java.util.Vector;

import com.sun.em.api.pmi.*;

public class AlarmBatch {

static void usage() {
System.err.printin("Usage:");
System.err.printin("AlarmBatch <servername> <mis-name>
<username> <password >");
System.exit(-1);
}

public static void main(String[] args) {
try {
new AlarmBatch(args);

}

catch (Exception e) {

3-16 Developing Java Applications ¢ October 2001

CODE EXAMPLE 3-4 AlarmBatch (Continued)

e.printStackTrace();

}

System.out.printin("Done.");
System.exit(0);

}

public AlarmBatch(String[] args)
throws AlarmException {

if (args.length < 4)
usage();

/[Create an attribute set: The set of alarm record attributes
/lin which you are interested.
Il

AlarmRecordAttributeSet attrSet = new
AlarmRecordAttributeSet();
attrSet.add(AlarmRecordAttribute.LOG_RECORD_ID);
attrSet.add(AlarmRecordAttribute. PERCEIVED_SEVERITY);
attrSet.add(AlarmRecordAttribute. PROBABLE_CAUSE);
attrSet.add(AlarmRecordAttribute. CLEAR_STATE);
attrSet.add(AlarmRecordAttribute. CLEAR_TIME);
attrSet.add(AlarmRecordAttribute. ACK_TIME);
attrSet.add(AlarmRecordAttribute. LOGGING_TIME);
attrSet.add(AlarmRecordAttribute. EVENT_TYPE);
attrSet.add(AlarmRecordAttribute. ACK_STATE);
attrSet.add(AlarmRecordAttribute. MANAGED_OBJECT_INSTANCE);
attrSet.add(AlarmRecordAttribute. ACK_OPERATOR);
attrSet.add(AlarmRecordAttribute. ACK_TEXT);
attrSet.add(AlarmRecordAttribute. CLEAR_OPERATOR);
attrSet.add(AlarmRecordAttribute. CLEAR_TEXT);
attrSet.add(AlarmRecordAttribute. ADDITIONAL_TEXT);
attrSet.add(AlarmRecordAttribute. DISPLAY_OPERATOR);
attrSet.add(AlarmRecordAttribute.DISPLAY_STATE);
attrSet.add(AlarmRecordAttribute.DISPLAY_TIME);
attrSet.add(AlarmRecordAttribute. EVENT_TIME);

try {
System.out.printin("Connecting to " + args[1] + "...");

/[Create a Platform object based on the arguments passed
I

Chapter 3 Using the Java Alarm API

3-17

CODE EXAMPLE 3-4 AlarmBatch (Continued)

Platform platform =
new Platform(args[0],args[1] ,
args[2],args[3]);
System.out.printin("Platform instantiation complete ");

/lInstantiate a AlarmLog Object for a log named "AlarmLog"
I
System.out.printin("AlarmLog instantiation");
LogName logName = new LogName(args[1], "AlarmLog");
AlarmLog log = new AlarmLog(platform, logName);

/[Create a query

/[Create array of perceived severity values to be used to
/[create a filter item
EMSeverity[] sev = {
EMSeverity.CRITICAL

g

/I Create a Filterltem based on perceivedSeverity
Filterltem filterlteml =
new
Filterltem(AlarmRecordAttribute. PERCEIVED_SEVERITY,
RelationCriteria. EQUAL, sev);

Filter filter = new Filter(filterltem1);
GenericQuery query = new GenericQuery(filter);

/[Test batch mechanism

/I Create a listener object instance to handle to batch
events

BatchListener batchList = new BatchListener("Critical");

System.out.printin("Getting critical alarms in batches");
/IGet alarms in batches of 5000 each
int batchld =
log.getAlarmsinBatches(query, 5000, batchList,

attrSet);

System.out.printin("Batch Id: " + batchld);

//Stop batch

System.out.printin("Stopping the batch");
log.stopGetAlarmsinBatches(batchld);

3-18 Developing Java Applications ¢ October 2001

CODE EXAMPLE 3-4 AlarmBatch (Continued)

}
catch(Exception el) {

el.printStackTrace();
}
}

}

/I Implements a listener object to handle batch events
It
class BatchListener implements AlarmsBatchListener {

String id = null;

public BatchListener(String id) {
this.id = id;

}

/I When a batch is received the following method is called
public void batchReceived(int callld, AlarmRecord[] record) {
System.out.printin("Batchld: " + callld);
System.out.printin("Number of alarms received: " +
record.length);

}

/I ' When all batches have been received the following method is
called
public void batchDone(int callld) {
System.out.printin("Batchid :" + callld);
System.out.printin("Batch complete");

}

private static final String sccsID =
"@(#)AlarmBatch.java 1.5 98/10/30 Sun
Microsystems";

}

Chapter 3 Using the Java Alarm API

3-19

3.8.2 AlarmEvent

The following code example:

= Listens for alarm creation, deletion, and modification events.
= Prints the event data.

CODE EXAMPLE 3-5 AlarmEvent

/*
* Copyright 10/30/98 Sun Microsystems, Inc. All Rights Reserved.
*/

/*
AlarmEvent <servername> <mis-name> <username> <password>
<servername> - is the machine name on which the server is
running.
<mis-name> - is the machine name on which the mis is running.
<username> - is the user login name.
<password> - is the password of the user login.
*/

import com.sun.em.api.alarm.*;
import com.sun.em.api.common.¥;
import java.util. Enumeration;
import com.sun.em.api.pmi.*;

public class AlarmEvent {

static void usage() {
System.err.printin("Usage:");
System.err.printin("AlarmEvent <servername> <mis-name>
<username>
<password>");
System.exit(-1);
}

public static void main(String[] args) {
try {
new AlarmEvent(args);
}
catch (Exception e) {
e.printStackTrace();

}

System.out.printin("Done.");
System.exit(0);

3-20 Developing Java Applications ¢ October 2001

CODE EXAMPLE 3-5 AlarmEvent (Continued)

}

public AlarmEvent(String[] args)
throws AlarmException {

Platform platform = null;
if (args.length < 4)
usage();

try {
/IConnect to a platform
System.out.printin("Connecting to " + args[1] + "...");

platform = new Platform(args[0],args[1] , args[2],args[3]);
System.out.printin("Platform instantiation complete ");

/lInstantiate a AlarmLog Object for a log named "AlarmLog"

1l
System.out.printin("AlarmLog instantiation");
LogName logName = new LogName(args[1], "AlarmLog");
AlarmLog log = new AlarmLog(platform, logName);

/ICreate an attribute set: The set of alarm record attributes
/lin which you are interested.
I/

AlarmRecordAttributeSet attrSet = new

AlarmRecordAttributeSet();

attrSet.add(AlarmRecordAttribute.LOG_RECORD_ID);
attrSet.add(AlarmRecordAttribute. PERCEIVED_SEVERITY);
attrSet.add(AlarmRecordAttribute. PROBABLE_CAUSE);
attrSet.add(AlarmRecordAttribute. CLEAR_STATE);
attrSet.add(AlarmRecordAttribute. CLEAR_TIME);
attrSet.add(AlarmRecordAttribute. ACK_TIME);
attrSet.add(AlarmRecordAttribute. ACK_STATE);
attrSet.add(AlarmRecordAttribute. LOGGING_TIME);
attrSet.add(AlarmRecordAttribute. EVENT_TYPE);
attrSet.add(AlarmRecordAttribute. ACK_OPERATOR);

attrSet.add(AlarmRecordAttribute. MANAGED_OBJECT_INSTANCE);

/IListen for alarm related events
I
log.setEventAttrSet(attrSet);
System.out.printin("Listening for alarm events");
log.addAlarmLogListener(new EventListener());
Object o = new Object();

Chapter 3 Using the Java Alarm API

3-21

3-22

CODE EXAMPLE 3-5 AlarmEvent (Continued)

synchronized(o) {
try {
o.wait();
}
catch (InterruptedException ex) {}
}
}

catch(Exception el) {
el.printStackTrace();

}

}

class EventListener implements AlarmLogListener {

/ICallback for alarm record creation

Il

public void alarmRecordCreated(AlarmLogEvent event) {
System.out.printin("Received Alarm CREATION");

try {
/[Print the event data

AlarmRecord alrl = event.getAlarmRecord();
System.out.printin(alrl.toString());
}
catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}

}

/ICallback for alarm record deletion

Il

public void alarmRecordDeleted(AlarmLogEvent event) {
System.out.printin("Received Alarm DELETION");

try {
/[Print the event data

AlarmRecord alrl = event.getAlarmRecord();
System.out.printin(alrl.toString());
}
catch (Exception e) {
e.printStackTrace();
System.exit(-1);

Developing Java Applications * October 2001

CODE EXAMPLE 3-5 AlarmEvent (Continued)

}
}

/ICallback for alarm record modification

1

public void alarmRecordModified(AlarmLogEvent event) {
System.out.printin("Received Alarm MODIFICATION");

try {
/IPrint the event data

AlarmRecord alrl = event.getAlarmRecord();
System.out.printin(alrl.toString());
}
catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}

}

private static final String sccsID =
"@#)AlarmEvent.java 1.5 98/10/30 Sun

Microsystems";

}

Chapter 3

Using the Java Alarm API

3-23

3.8.3

AlarmClear

The following code example:

Retrieves all alarms which have major or critical severity.
Sets the display flag of the first alarm it retrieves.
Acknowledges the first alarm it retrieves.

Clears the first alarm it retrieves.

CODE EXAMPLE 3-6 AlarmClear

/*

* Copyright 10/30/98 Sun Microsystems, Inc. All Rights Reserved.

*/

/*

AlarmClear <servername> <mis-name> <username> <password>

<servername> - is the machine name on which the server is
running.

<mis-name> - is the machine name on which the mis is running.

<username> - is the user login name.

<password> - is the password of the user login.
*/

import com.sun.em.api.alarm.*;
import com.sun.em.api.common.*;
import java.util. Enumeration;
import java.util.Vector;

import com.sun.em.api.pmi.*;

public class AlarmClear {

static void usage() {
System.err.printin("Usage:");
System.err.printin("AlarmClear <servername> <mis-name>
<username> <password>");
System.exit(-1);
}

public static void main(String[] args) {

try {
new AlarmClear(args);

}
catch (Exception e) {
e.printStackTrace();

}

System.out.printin("Done.");

3-24 Developing Java Applications ¢ October 2001

CODE EXAMPLE 3-6 AlarmClear (Continued)

}

System.exit(0);

public AlarmClear(String[] args)

throws AlarmException {

if (args.length < 4)
usage();

/ICreate an attribute set: The set of alarm record attributes

/lwhich you are interested.
I

AlarmRecordAttributeSet attrSet = new

AlarmRecordAttributeSet();

attrSet.add(AlarmRecordAttribute.LOG_RECORD_ID);
attrSet.add(AlarmRecordAttribute. PERCEIVED_SEVERITY);
attrSet.add(AlarmRecordAttribute. PROBABLE_CAUSE);
attrSet.add(AlarmRecordAttribute. CLEAR_STATE);
attrSet.add(AlarmRecordAttribute. CLEAR_TIME);
attrSet.add(AlarmRecordAttribute. CLEAR_TEXT);
attrSet.add(AlarmRecordAttribute. CLEAR_OPERATOR);
attrSet.add(AlarmRecordAttribute. ACK_STATE);
attrSet.add(AlarmRecordAttribute. ACK_TIME);
attrSet.add(AlarmRecordAttribute. ACK_TEXT);
attrSet.add(AlarmRecordAttribute. LOGGING_TIME);
attrSet.add(AlarmRecordAttribute. EVENT_TYPE);
attrSet.add(AlarmRecordAttribute. MANAGED_OBJECT_INSTANCE);
attrSet.add(AlarmRecordAttribute.LOG_NAME);
attrSet.add(AlarmRecordAttribute. ADDITIONAL_TEXT);
attrSet.add(AlarmRecordAttribute.DISPLAY_OPERATOR);
attrSet.add(AlarmRecordAttribute. DISPLAY_STATE);
attrSet.add(AlarmRecordAttribute.DISPLAY_TIME);
attrSet.add(AlarmRecordAttribute. EVENT_TIME);

try {
/[Create a query based on perceivedSeverity
1l
EMSeverity[] sev = {
EMSeverity. MAJOR,
EMSeverity. CRITICAL
h
Filterltem filterlteml =
new

Filterltem(AlarmRecordAttribute. PERCEIVED_SEVERITY,

Chapter 3 Using the Java Alarm APl 3-25

3-26

CODE EXAMPLE 3-6 AlarmClear (Continued)

RelationCriteria. EQUAL, sev);

Filter filter = new Filter(filterltem1);
GenericQuery query = new GenericQuery(filter);
/IConnect to a platform

System.out.printin("Connecting to " + args[1] + "...");
Platform platform =

new Platform(args[0],args[1] , args[2],args[3]);
System.out.printin("Platform instantiation complete ");

/lInstantiate a AlarmLog Object for a log named "AlarmLog"
I
System.out.printin("AlarmLog instantiation");
LogName logName = new LogName(args[1], "AlarmLog");
AlarmLog log = new AlarmLog(platform, logName);

/INow retrieve the count of alarms satisfying the query

I

System.out.printin("\n Getting alarm Count for the
filter:\n");

System.out.printin(query.toString());

int count = log.getAlarmCount(query);

System.out.printin("Count of Alarms: " + count);

System.out.printin("Getting alarms for the above filter\n");
AlarmRecord[] alarms = log.getAlarms(query, attrSet);

/INow print out the result
printAlarmRecord(alarms, attrSet);

if (alarms.length == 0)
{
System.out.printin("Stop the test as no alarms match the
filter");
System.exit(-1);
}

try {
//Get the log record Id of the first alarm record

retrieved.

I

AlarmRecordld alrmld =alarms[0].getLogRecordld();
AlarmRecordId[] alrm = {alrmlId};

Developing Java Applications * October 2001

CODE EXAMPLE 3-6 AlarmClear (Continued)

System.out.printin("\n Get cleared alarm \n");
Filterltem filterltem?2 =
new Filterltem(AlarmRecordAttribute.LOG_RECORD_ID,
RelationCriteria.EQUAL, alrm);

Filter filter2 = new Filter(filteritem?2);
/IClear previous query

query.clear();

query.addFilter(filter2);
System.out.printin(query.toString());
System.out.printin("Getting alarms for the filter: ");
query.toString();

alarms = log.getAlarms(query, attrSet);
printAlarmRecord(alarms, attrSet);

/ISet the display flag

String[] str2 = {"};

System.out.printin("\n Set Display alarm \n");
log.setDisplayAlarms(alrm, str2);
/IAcknowledge the alarm

System.out.printin("\n Set Ack alarm \n");
log.setAckAlarms(alrm, str2);

/IClear the first alarm retrieved.

I
System.out.printin("\n Clear the alarm");
log.setClearAlarms(alrm, null);

catch (AlarmAttributeNotSetException e) {
e.printStackTrace();
}

}
catch(Exception el) {

el.printStackTrace();

}
}

private static void printAlarmRecord(AlarmRecord[] alarms,
AlarmRecordAttributeSet attrSet)
throws AlarmException

{
System.out.printin("Receive d: " + alarms.length + "Alarms ");
int ii;
for (ii=0; ii<alarms.length; ii++)
{

System.out.printin("Alarm number:" + ii);
AlarmRecord alrl = (AlarmRecord)alarmsii];

Chapter 3 Using the Java Alarm API

3-27

CODE EXAMPLE 3-6 AlarmClear (Continued)

System.out.printin(alrl.toString());

}
}

private static final String sccsID =
"@#)AlarmClear.java 1.598/10/30 Sun
Microsystems";

}

3-28 Developing Java Applications ¢ October 2001

3.8.4

AlarmDelete

The following code example:

= Queries to retrieve alarms based on perceivedSeverity from a log.

» Deletes the first alarm it retrieves.

CODE EXAMPLE 3-7 AlarmDelete

/*
* Copyright 10/30/98 Sun Microsystems, Inc. All Rights Reserved.
*/

/*
AlarmDelete <servername> <mis-name> <username> <password>
<servername> - is the machine name on which the server is
running.
<mis-name> - is the machine name on which the mis is running.
<username> - is the user login name.
<password> - is the password of the user login.
*/

import com.sun.em.api.alarm.*;

import com.sun.em.api.common.¥;

import com.sun.em.api.common.MOName;
import java.util. Enumeration;

import java.lang.reflect.Array;

import com.sun.em.api.pmi.*;

import java.util.*;

import java.lang.Integer;

import java.text.*;

public class AlarmDelete {

static void usage() {
System.err.printin("Usage:");
System.err.printin("AlarmDelete <servername> <mis-name>
<username> <password>");
System.exit(-1);
}

public static void main(String[] args) {
try {
new AlarmDelete(args);
}
catch (Exception e) {
e.printStackTrace();

}

Chapter 3 Using the Java Alarm API

3-29

CODE EXAMPLE 3-7 AlarmDelete (Continued)

System.out.printin("Done.");
System.exit(0);

}

public AlarmDelete(String[] args)
throws AlarmException {

if (args.length < 4)
usage();

/[Create an attribute set: The set of alarm record attributes
/lin which you are interested.
Il

AlarmRecordAttributeSet attrSet = new
AlarmRecordAttributeSet();
attrSet.add(AlarmRecordAttribute.LOG_RECORD_ID);
attrSet.add(AlarmRecordAttribute. PERCEIVED_SEVERITY);
attrSet.add(AlarmRecordAttribute. PROBABLE_CAUSE);
attrSet.add(AlarmRecordAttribute. CLEAR_STATE);
attrSet.add(AlarmRecordAttribute. CLEAR_TIME);
attrSet.add(AlarmRecordAttribute. CLEAR_TEXT);
attrSet.add(AlarmRecordAttribute. CLEAR_OPERATOR);
attrSet.add(AlarmRecordAttribute. ACK_STATE);
attrSet.add(AlarmRecordAttribute. ACK_TIME);
attrSet.add(AlarmRecordAttribute. ACK_TEXT);
attrSet.add(AlarmRecordAttribute. ACK_OPERATOR);
attrSet.add(AlarmRecordAttribute. LOGGING_TIME);
attrSet.add(AlarmRecordAttribute. EVENT_TYPE);
attrSet.add(AlarmRecordAttribute. MANAGED_OBJECT_INSTANCE);
attrSet.add(AlarmRecordAttribute.LOG_NAME);
attrSet.add(AlarmRecordAttribute. ADDITIONAL_TEXT);
attrSet.add(AlarmRecordAttribute. DISPLAY_OPERATOR);
attrSet.add(AlarmRecordAttribute.DISPLAY_STATE);
attrSet.add(AlarmRecordAttribute.DISPLAY_TIME);
attrSet.add(AlarmRecordAttribute. EVENT_TIME);

try {
/[Create a query based on perceivedSeverity

Il
EMSeverity[] sev = {
EMSeverity. MAJOR,
EMSeverity. CRITICAL

g

3-30 Developing Java Applications ¢ October 2001

CODE EXAMPLE 3-7 AlarmDelete (Continued)

Filterltem filterltem1 =
new
Filterltem(AlarmRecordAttribute. PERCEIVED_SEVERITY,
RelationCriteria. EQUAL, sev);

Filter filter = new Filter(filterltem1);
GenericQuery query = new GenericQuery(filter);

/IConnect to a platform

System.out.printin("Connecting to " + args[1] + "...");
Platform platform =

new Platform(args[0],args[1] , args[2],args[3]);
System.out.printin("Platform instantiation complete ");

llInstantiate a AlarmLog Object for a log named "AlarmLog"
I
System.out.printin("AlarmLog instantiation™);
LogName logName = new LogName(args[1], "AlarmLog");
AlarmLog log = new AlarmLog(platform, logName);

//Get the alarm count based on the query

I

System.out.printin("\n Getting alarm Count for the
filter:\n");

System.out.printin(query.toString());

int count = log.getAlarmCount(query);

System.out.printin("Count of Alarms: " + count);

//Get alarms based on the query
I

System.out.printin("Getting alarms for the above filter\n");
AlarmRecord[] alarms = log.getAlarms(query, attrSet);

/INow print out the result
printAlarmRecord(alarms, attrSet);

if (alarms.length == 0)

{

System.out.printin("Stop the test as no alarms match the
filter");
System.exit(-1);
}

/IDelete alarms

Chapter 3 Using the Java Alarm API

3-31

CODE EXAMPLE 3-7 AlarmDelete (Continued)

try {

/IGet the alarm Id of the first alarm and delete the alarm.
Il

AlarmRecordld alarmRcdld = alarms[0].getLogRecordId();

System.out.printin("Delete the first alarm: " +
alarmRcdld.toString());

AlarmRecordId[] alrmldArray = {alarmRcdld};

log.deleteAlarms(alrmlidArray);

/[Try to get it back to make sure
1l
Filterltem fdelete =
new Filterltem(AlarmRecordAttribute.LOG_RECORD_ID,
RelationCriteria.EQUAL, alrmidArray);
Filter filterDel = new Filter(LogicalCriteria.AND,
fdelete);
GenericQuery queryDel = new GenericQuery(filterDel);
System.out.printin("Try to get the alarm being deleted");
System.out.printin(queryDel.toString());
AlarmRecord[] alrm = log.getAlarms(queryDel, attrSet);
printAlarmRecord(alrm, attrSet);
}
catch (AlarmAttributeNotSetException e) {
e.printStackTrace();

}
}

catch (Exception e) {
e.printStackTrace();

}
}

private static void printAlarmRecord(AlarmRecord[] alarms,
AlarmRecordAttributeSet attrSet)
throws AlarmException

{
System.out.printin("Receive d: " + alarms.length + "Alarms ");
int ii;
for (ii=0; ii<alarms.length; ii++)
{
System.out.printin("Alarm number:" + ii);
AlarmRecord alrl = (AlarmRecord)alarmsiii];
System.out.printin(alrl.toString());
}

Developing Java Applications * October 2001

3.8.5

CODE EXAMPLE 3-7 AlarmDelete (Continued)

}

private static final String sccsID =
"@(#)AlarmDelete.java 1.5 98/10/30 Sun
Microsystems";

}

AlarmQuery

The following code example:

= Queries to retrieve all alarms from a log.

= Queries to retrieve alarms based on perceivedSeverity from a log.
= Queries to retrieve alarms based on loggingTime

= Gets alarm count based on a query.

CODE EXAMPLE 3-8 AlarmQuery

/*
* Copyright 10/30/98 Sun Microsystems, Inc. All Rights Reserved.
*/

/*
AlarmQuery <servername> <mis-name> <username> <password>
<servername> - is the machine name on which the server is
running.
<mis-name> - is the machine name on which the mis is running.
<username> - is the user login name.
<password> - is the password of the user login.
*/

import com.sun.em.api.alarm.*;

import com.sun.em.api.common.*;

import com.sun.em.api.common.MOName;
import java.util. Enumeration;

import java.lang.reflect.Array;

import com.sun.em.api.pmi.*;

import java.util.*;

import java.lang.Integer;

import java.text.*;

public class AlarmQuery {

Chapter 3 Using the Java Alarm API

3-33

3-34

CODE EXAMPLE 3-8 AlarmQuery (Continued)

static void usage() {
System.err.printin("Usage:");
System.err.printin("AlarmQuery <servername> <mis-name>
<username> <password> ");
System.exit(-1);
}

public static void main(String[] args) {
try {
new AlarmQuery(args);
}
catch (Exception e) {
e.printStackTrace();

}

System.out.printin("Done.");
System.exit(0);

}

public AlarmQuery(String[] args)
throws AlarmException {

if (args.length < 4)
usage();

/[Create an attribute set: The set of alarm record attributes
/lin which you are interested.
1!

AlarmRecordAttributeSet attrSet = new
AlarmRecordAttributeSet();
attrSet.add(AlarmRecordAttribute.LOG_RECORD_ID);
attrSet.add(AlarmRecordAttribute. PERCEIVED_SEVERITY);
attrSet.add(AlarmRecordAttribute. PROBABLE_CAUSE);
attrSet.add(AlarmRecordAttribute. CLEAR_STATE);
attrSet.add(AlarmRecordAttribute. CLEAR_TIME);
attrSet.add(AlarmRecordAttribute. CLEAR_TEXT);
attrSet.add(AlarmRecordAttribute. CLEAR_OPERATOR);
attrSet.add(AlarmRecordAttribute. ACK_STATE);
attrSet.add(AlarmRecordAttribute. ACK_TIME);
attrSet.add(AlarmRecordAttribute. ACK_TEXT);
attrSet.add(AlarmRecordAttribute. ACK_OPERATOR);
attrSet.add(AlarmRecordAttribute. LOGGING_TIME);
attrSet.add(AlarmRecordAttribute. EVENT_TYPE);

attrSet.add(AlarmRecordAttribute. MANAGED_OBJECT_INSTANCE);

Developing Java Applications * October 2001

CODE EXAMPLE 3-8 AlarmQuery (Continued)

attrSet.add(AlarmRecordAttribute. LOG_NAME);
attrSet.add(AlarmRecordAttribute. ADDITIONAL_TEXT);
attrSet.add(AlarmRecordAttribute.DISPLAY_OPERATOR);
attrSet.add(AlarmRecordAttribute. DISPLAY_STATE);
attrSet.add(AlarmRecordAttribute.DISPLAY_TIME);
attrSet.add(AlarmRecordAttribute. EVENT_TIME);

/[Create array of perceived severity values
try {
/I Create a Filterltem based on perceivedSeverity
Il
EMSeverity[] sev = {
EMSeverity. MAJOR,
EMSeverity. CRITICAL
h
Filterltem filterlteml =
new
Filterltem(AlarmRecordAttribute. PERCEIVED_SEVERITY,
RelationCriteria. EQUAL, sev);

Filter filter = new Filter(filterltem1);
/IConnect to a platform

System.out.printin("Connecting to " + args[1] + "...");
/I Create a Platform object based on the arguments passed
Platform platform = new Platform(args[0],args[1] ,
args(2],args(3]);
System.out.printin("Platform instantiation complete ");

/lInstantiate a AlarmLog Object for a log named "AlarmLog"
I
System.out.printin("AlarmLog instantiation");
LogName logName = new LogName(args[1], "AlarmLog");
AlarmLog log = new AlarmLog(platform, logName);

//Get the total count of all existing alarms

I

/I Create a query with no filters

GenericQuery query = new GenericQuery();

System.out.printin("\n Getting alarm Count for the
filter:\n");

System.out.printin(query.toString());

int count = log.getAlarmCount(query);

System.out.printin("Count of Alarms: " + count);

Chapter 3 Using the Java Alarm API

3-35

3-36

CODE EXAMPLE 3-8 AlarmQuery (Continued)

/IGet alarms based on a query
I

/I Add the filter created earlier to the query to change

the query

query.addFilter(filter);

System.out.printin("\n Getting alarm Count for the
filter:\n");

System.out.printin(query.toString());

/I Get the count of existing alarms based on the query

count = log.getAlarmCount(query);

System.out.printin("Count of Alarms: " + count);

System.out.printin("Getting alarms for the above filter\n");
/IGet alarms based on the query
AlarmRecord[] alarms = log.getAlarms(query, attrSet);

/INow print out the result
printAlarmRecord(alarms, attrSet);

if (alarms.length == 0)
{
System.out.printin("Stop the test as no alarms match the
filter™);
System.exit(-1);
}

//Getting alarms created after a specific date
Il
try {
Date loggingTime = alarms[0].getLoggingTime();
System.out.printin("Getting alarm Count for alarms created
after or on:" + loggingTime.toString());

Filterltem filterltem3 =
new Filterltem(AlarmRecordAttribute. LOGGING_TIME,
RelationCriteria. GREATER_THAN_OR_EQUAL, loggingTime);

Filter filterl = new Filter(filteritem3);
//Add to the previous query
query.addFilter(filterl);
System.out.printin(query.toString());
count = log.getAlarmCount(query);
System.out.printin("Received: " + count +

" alarms matching the filter");

Developing Java Applications * October 2001

CODE EXAMPLE 3-8 AlarmQuery (Continued)

catch (AlarmAttributeNotSetException e) {
e.printStackTrace();

}

//Getting alarms for perceived severity and clear State
I
Filterltem filterltem2 =

new Filterltem(AlarmRecordAttribute. CLEAR_STATE,

RelationCriteria.EQUAL, Boolean. TRUE);

Filter filter2 = new Filter(filteritem?2);

query.addFilter(filter2);

System.out.printin("\n Getting alarm Count for the
filter:\n");

System.out.printin(query.toString());

count = log.getAlarmCount(query);

System.out.printin("Count of Alarms: " + count);

}

catch (Exception e) {
e.printStackTrace();

}
}

private static void printAlarmRecord(AlarmRecord[] alarms,
AlarmRecordAttributeSet attrSet)

throws AlarmException

{
System.out.printin("Receive d: " + alarms.length + "Alarms ");
int ii;
for (ii=0; ii<alarms.length; ii++)
{
System.out.printin("Alarm number:" + ii);
AlarmRecord alrl = (AlarmRecord)alarmsii];
System.out.printin(alrl.toString());
}
}

private static final String sccsID =
"@#)AlarmQuery.java 1.598/10/30 Sun
Microsystems";

}

Chapter 3 Using the Java Alarm API

3-37

3-38 Developing Java Applications ¢ October 2001

CHAPTER 4

Using the Java Topology API

The Java Topology API defines the classes and methods which allow you to create
applications that perform topology management operations without learning the
details of the MIT naming tree. This chapter covers the important aspects of using
the API and provides detailed examples. For more information about the API, refer
to Java API Reference and C++ API Reference.

The following topics are covered in this chapter:

Section 4.1 “Overview” on page 4-1

Section 4.2 “Differences Between the C++ and Java Topology APIs” on page 4-3
Section 4.3 “Performing Node Operations” on page 4-4

Section 4.4 “Performing Type Operations” on page 4-14

Section 4.5 “Performing Agent Operations” on page 4-18

4.1

Overview

The Java Topology API allows you to create topology nodes to logically model
managed objects in their management environments. Each topology node can
correspond to one or more agents.

You can create applications using the Topology API. The following figure shows a
GUI-based viewer which is an example of such an application. A GUI-based viewer,
allows you to visualize interconnection among devices in a network.

41

FIGURE 4-1 Sample Viewer Application

4.1.1 Topology Management Tasks

The Java Topology API allows you to perform the following topology management
tasks:

= Node operations
= Type operations
= Agent operations

These tasks could be performed using the following main classes of the Java
Topology API:

= The EMTopoNodeclass allows you to perform the different operations on MOls.
= The EMTopoType class allows you to define node types.

= The EMCmipAgent, EMRpcAgent, and EMSnmpAgent classes allow you to
perform agent operations.

4-2 Developing Java Applications ¢ October 2001

4.2

Differences Between the C++ and Java
Topology APIs

The Java Topology API is very similar to the C++ Topology API. For example, the
main classes are still EMTopoNode EMTopoType, EMCmipAgent, EMSnmpAgent,
and EMRpcAgent in the Java Topology API. The other classes are helper classes. The
following differences exist:

= The Java Topology API contains more classes than the C++ Topology API since
almost all the enum and struct types in the C++ Topology API have classes as
their equivalent in Java Topology API. For example, the EMTopoNodeclass in the
C++ Topology API has an enum called Attribute that is represented as a class
(EMTopoNodeAttribute) in the Java Topology API.

= The following methods of the EMTopoPlatform class in the C++ Topology API
are available in the EMTopoNode class of the Java Topology API (instead of
EMTopoPlatform class).

« find_nodes_by name

« find_nodes_by type

« find_nodes_by managed_object
« find_mos_by_nodes

« load_nodes_in_view

These equivalent methods in the Java Topology API have the following names:

« findNodesByName

« findNodesByType

« findNodesByManagedObject
« findMOsByNodes

« loadNodesInView

Note — These methods provide support for the actions topoNodeGetByName ,
topoNodeGetByType , topoNodeGetByMO , topoGetMODataByNodeList , and
topoNodeChildAttrsByView that are supported by the topoNodeDB GDMO
object class.

= In the C++ Topology API, the EMPpcAgent class has an attribute called schemas,
but in the Java API, the same attribute is called INFOS.

For more detailed information about the C++ Topology API, especially on which
attributes are mandatory and settable for each persistent object, refer to Chapter 8
“Topology API” in C++ API Reference. And for more detailed information about the
Java Topology API, refer to Chapter 4 “Java Topology API” in Java APl Reference.

Chapter 4 Using the Java Topology APl 4-3

4.3

Performing Node Operations

The EMTopoNode class represents a topology node, which is the unit of topology
management in Solstice EM. It provides methods for creating, deleting, loading,
changing, and comparing topology nodes.

Using the EMTopoNode class’ access methods, you can get and set the name,
topology type, parents, topology pathname, logical and geographical location, and
associated managed objects and their corresponding CMIP, RPC, and SNMP agent
objects among other attributes. The EMTopoNode class also provides an event
listening mechanism to notify clients when a topology node has been created,
deleted, or has had one or more attributes changed.

This section covers three types of node operations that you can perform using the
methods of the EMTopoNode class:

= Creating nodes
= Destroying nodes
= Changing node attributes

For more information about the EMTopoNodeclass, refer to Chapter 4 “Java
Topology API” in Java API Reference and Chapter 8 “Topology API” in C++ API
Reference.

Note — Before performing node operations, you must instantiate the
EMTopoPlatform class.

4-4 Developing Java Applications ¢ October 2001

4.3.1

Creating Nodes

To Create a New Topology Node in the MIS

. Set the mandatory attributes required for creating the node.

. Use the createWithAllAttributes or createWithSomeAttributes method

create the object in the persistent store.

to

Note — The createWithAllAttributes method only uses attributes that have
been given a value. If the create method succeeds, the DNattribute is set with the
unique identifier of the new object.

The following code example shows how to create a topology node.

CODE EXAMPLE 4-1 Creating a Topology Node

import com.sun.em.api.pmi.Platform;
import com.sun.em.api.topology.*;

public class CreateTopoNode
{
static void usage() {
System.err.printin("Usage:");
System.err.printin("CreateTopoNode <jma-servername> <mis-name>
<username> <password> <node-name> <typename> <parentname>");
System.exit(-1);
}

public static void main(String[] args) {
if (args.length < 7)
usage();
try {
/ICreate a Platform and EMTopoPlatform:
Platform platform = new Platform(args[0], args[1], args[2],
args[3]);
EMTopoPlatform topoPlatform = new EMTopoPlatform(platform);

/I Create an empty EMTopoNode in memory (not persistent yet)
given
/[EMTopoPlatform instance
EMTopoNode node = new EMTopoNode(topoPlatform);

/ISet attribute values (still in cache)
node.setName(args[4]);

node.setTypeName(args[5]);

Chapter 4 Using the Java Topology API

4-5

4-6

CODE EXAMPLE 4-1 Creating a Topology Node (Continued)

/ITo set mandatory attribute parents, find the parent’s dn(s).

/I In this example, if there are more than one parent with
the given name, choose the first one.

EMTopoNodeDn parentDn = null;
EMTopoNodeDn[] dns = EMTopoNode.findNodesByName(topoPlatform,
args[6]);
if (dns.length == 0) {
System.err.printin("No nodes found with name " + args[6]);
System.exit(-1);
}else {
for (inti=0; i< dns.length; i++) {
/I The node is qualified to be a parent only when it is a view.
if (EMTopoNode.isView(topoPlatform,dnsli])) {
parentDn = dns[0];
break;
}
}
if (parentDn == null) {
System.err.printin("None of the nodes named \"' + args[6] +
"\" are views!");
System.err.printin("Aborting...");
System.exit(-1);
}
}
EMTopoNodeDn parents|[] = { parentDn },
node.setParents(parents);

/I Make the call to MIS to create a persistent node.
node.createWithAllAttributes();
}
catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
System.err.printin("Created node \"" + args[4] + "\"");
System.exit(-1);
}

}

Developing Java Applications * October 2001

4.3.2

Loading Node Attributes

To Get the Attribute Values of a Topology Node Object

. Set the DNidentifier.

. Use the loadAllAttributes or loadSomeAttributes method.

Once the attribute values are loaded, they stay cached within the EMTopoNodein the
API’s user process memory space and remain constant even if the values change in

the MIS. See the following code example.

CODE EXAMPLE 4-2 Loading Node Attributes

import com.sun.em.api.pmi.Platform;
import com.sun.em.api.topology.*;

public class LoadTopoNode
{
static void usage() {
System.err.printin("Usage:");
System.err.printin("ChangeTopoNode <jma-servername> <mis-name>
<username> <password> <node-name>");
System.exit(-1);
}

public static void main(String[] args) {
if (args.length < 5)
usage();
try {
/[Create a Platform and EMTopoPlatform:
Platform platform = new Platform(args[0], args[1], args[2],
args(3]);
EMTopoPlatform topoPlatform = new EMTopoPlatform(platform);

//[Find all the nodes with the name indicated by the 5th input
argument,
EMTopoNodeDn[] dns = EMTopoNode.findNodesByName(topoPlatform,
args([4]);
if (dns.length == 0) {
System.err.printin("No nodes found with name \"" + args[4] +
Y,
System.exit(-1);
}else {
System.err.printin("Found " + dns.length + " node(s) with name
\"" + args[4] + "\"");

Chapter 4 Using the Java Topology API

4-7

4-8

CODE EXAMPLE 4-2 Loading Node Attributes (Continued)

for (int1=0; i <dns.length; i++) {
EMTopoNode node = new EMTopoNode(topoPlatform, dns]i]);
/I Load the attributes from MIS
node.loadAllAttributes();
System.err.printin(node.toString());
}
}

catch (Exception e) {
e.printStackTrace();
System.exit(-1);

}

System.err.printin("Done");

System.exit(-1);

}
}

There are several static methods of EMTopoNodethat load multiple nodes instead of
just one node:

= EMTopoNode.loadNodes
= EMTopoNode.loadNodesInBatches
= EMTopoNode.loadNodesInView

Refer to Chapter 4 “Java Topology API” in Java APl Reference for more information.

Developing Java Applications * October 2001

4.3.3

Changing Node Attributes

To Set the Attribute Values Persistently in the MIS

. Set the DNattribute to identify the topology node.
. Use the setter methods to change attribute values of the node in the cache.

. Call either storeAllAttributes or storeSomeAttributes to commit these

changes persistently in the MIS.

Note — The storeAllAttributes method only stores attributes that have been
given a value.

The following code example shows how to change the name of topology nodes.

CODE EXAMPLE 4-3 Changing Node Attributes

import com.sun.em.api.pmi.Platform;
import com.sun.em.api.topology.*;

public class ChangeTopoNode
{
static void usage() {
System.err.printin("Usage:");
System.err.printin("ChangeTopoNode <jma-servername> <mis-name>
<username> <password> <old-name> <new-name>");
System.exit(-1);
}

public static void main(String[] args) {
if (args.length < 6)
usage();
try {
/ICreate a Platform and EMTopoPlatform
Platform platform = new Platform(args[0], args[1], args[2],
args[3]);
EMTopoPlatform topoPlatform = new EMTopoPlatform(platform);

/[Find all nodes with the name indicated by the 5th input
argument
EMTopoNodeDn[] dns = EMTopoNode.findNodesByName(topoPlatform,
args[4]);
if (dns.length == 0) {
System.err.printin("No nodes found with name \"" + args[4] +

)

Chapter 4 Using the Java Topology API

4-9

4-10

CODE EXAMPLE 4-3 Changing Node Attributes (Continued)

System.exit(-1);
}else {
System.err.printin("Found
\"" + args[4] + "\"");

+ dns.length + " node(s) with name

for (inti=0; i< dns.length; i++) {
EMTopoNode node = new EMTopoNode(topoPlatform, dns]i]);
//Set the node name to the new name, this setting is still in

cache

node.setName(args[5]);
/l we are ready to commit the change to MIS
node.storeAllAttributes();

}

}

catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
System.err.printin("Renamed node(s) of the name \"" + args[4]
+"\" to the new name \"" + args[5] + "\"");
System.exit(-1);
}
}

Developing Java Applications * October 2001

4.3.4 Destroying Nodes

v To Destroy a Topology Node

1. Set the DNidentifier.
2. Use the destroy method to delete the object from the MIS.

Caution — This is a permanent, non-reversible operation.

The following code example shows how to destroy a node.

CODE EXAMPLE 4-4 Destroying Nodes

import com.sun.em.api.pmi.Platform;
import com.sun.em.api.topology.*;

public class DestroyTopoNode
{
static void usage() {
System.err.printin("Usage:");
System.err.printin("DestroyTopoNode <jma-servername> <mis-
name> <username> <password> <node-name>");
System.exit(-1);
}

public static void main(String[] args) {
if (args.length < 5)
usage();
try {
/ICreate a Platform and EMTopoPlatform
Platform platform = new Platform(args[0], args[l1], args[2],
args[3]);
EMTopoPlatform topoPlatform = new EMTopoPlatform(platform);

/I Find all nodes with the name indicated by the 5th input
argument
EMTopoNodeDn[] dns = EMTopoNode.findNodesByName(topoPlatform,
args[4]);
if (dns.length == 0) {
System.err.printin("No nodes found with name \"" + args[4] +
),
System.exit(-1);
}else {
System.err.printin("Found " + dns.length + " node(s) with name
\"" + args[4] + "\"");

Chapter 4 Using the Java Topology API

4-11

CODE EXAMPLE 4-4 Destroying Nodes (Continued)

}

/ICreate an empty EMTopoNode in cache
EMTopoNode node = new EMTopoNode(topoPlatform);
/l delete found nodes one by one
for (inti = 0; i < dns.length; i++) {
node.setDn(dnsi]);
/I Make the call to MIS to really destory the object in
persistent store
node.destroy();
}
}

catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
System.err.printin("Deleted node(s) of name \"" + args[4] +
;
System.exit(-1);
}
}

4.3.5 Listening to Node Events

Node events include object creation, object deletion, and attribute value change
events.

v To Listen to Topology-Node-Related Events

1. Write a class that implements EMTopoNodeListener and define the body of its
prototype methods according to your application needs.

2. Register the listener with the EMTopoPlatform object in a relevant place in your
program.

The following code example shows how to listen to node events.

CODE EXAMPLE 4-5 Listening to Node Events

import com.sun.em.api.pmi.Platform;
import com.sun.em.api.topology.*;

public class ListenToTopoNodeEvent implements EMTopoNodeListener

{

static void usage() {

4-12 Developing Java Applications « October 2001

CODE EXAMPLE 4-5 Listening to Node Events (Continued)

System.err.printin("Usage:™);
System.err.printin("ListenToTopoNode <jma-servername> <mis-
name> <username> <password>");
System.exit(-1);
}

/I the following three method topotypes are in EMTopoNodeListener
public void nodeCreated(EMTopoNodeEvent event) {
/I do something particular to your application
System.err.printin(event.toString());

public void nodeChanged(EMTopoNodeEvent event) {
/I do something particular to your application
System.err.printin(event.toString());

public void nodeDeleted(EMTopoNodeEvent event) {
/I do something particular to your application
System.err.printin(event.toString());

}

public static void main(String[] args) {
if (args.length < 4)
usage();
try {
/I first create a Platform and EMTopoPlatform
Platform platform = new Platform(args[0], args[1], args[2],
args[3]);
EMTopoPlatform topoPlatform = new EMTopoPlatform(platform);

/I create a topo node event listener
ListenToTopoNodeEvent listener = new ListenToTopoNodeEvent();

/I install/register the listener
EMTopoNode.addEMTopoNodeListener(topoPlatform, listener);

}

catch (Exception e) {
e.printStackTrace();

}

}
}

There is another type of listener (EMIndividualNodeListener) that only listens to
object creation and attribute value change events of a single topology node.
EMTopoNodeListener listens to events of any topology node. Refer to Chapter 4
“Java Topology API” in Java API Reference for more information.

Chapter 4 Using the Java Topology APl 4-13

4.4

4.4.1

Performing Type Operations

Type operations can be performed using the methods of the EMTopoType class. Each
instance of this class represents a topology type that is used to classify topology
nodes. The topology types form a hierarchy with the following base types (and their
subtypes):

Array
Bus
Container
Device
Link
Monitor
Sun

This section covers the following four topology type operations:

Creating types
Loading types
Changing types
Destroying types

For more information about the EMTopoType class, refer to Chapter 4 “Java
Topology API” in Java API Reference.

Creating Topology Types

To Create a New Topology Type

. Instantiate the EMTopoType class in the cache by providing the following two

parameters:
= Platform : The object that gives your application access to a particular MIS.

= EMTopoTypeDn: The object that uniquely identifies a topology type out of the set
of topology types.

. Set at least the two mandatory attributes.

. Use the createWithAllAttributes or createWithSomeAttributes method to

create the object in the persistent store.

4-14 Developing Java Applications * October 2001

The following code example shows how to create a topology type.

CODE EXAMPLE 4-6 Creating Types

public static void createType(EMTopoPlatform topoPlatform, String
name,
String baseTypeName)
throws EMTopoException {

if (topoPlatform == null) {
System.err.printin("topoPlatform is null");

}

if (name == null) {
System.err.printin("name is null");

}

if (baseTypeName == null) {
System.err.printin("baseTypeName is null");

}

EMTopoTypeDn dn = new

EMTopoTypeDn(topoPlatform.getLocalSystemName(),name);
EMTopoType type = new EMTopoType(topoPlatform,dn);
type.setBaseType(baseTypeName);
type.setLayerName(baseTypeName);

try {
type.createWithAllAttributes();

}

catch (Exception e) {
e.printStackTrace();
System.exit(-1);

}

System.err.printin("Created type \""+name+"\"");

Chapter 4 Using the Java Topology API

4-15

4.4.2

4.4.3

Loading Topology Types

Use the loadAllAttributes or loadSomeAttributes method to load the
attributes of an EMTopoType object as shown in the following code example.

CODE EXAMPLE 4-7 Loading Types

public static void loadType(EMTopoPlatform topoPlatform,String
name)
throws EMTopoException {
EMTopoTypeDn dn = (EMTopoTypeDn) new

EMTopoTypeDn(topoPlatform.getLocalSystemName(),name);
EMTopoType type = new EMTopoType(topoPlatform,dn);

try {
type.loadAllAttributes();

}

catch (Exception e) {
e.printStackTrace();
System.exit(-1);

}

System.err.printin(type.toString());

Changing Topology Types
Use the storeAllAttributes or storeSomeAttributes method to change the

attribute values of a topology type persistent object as shown in the following code
example.

CODE EXAMPLE 4-8 Changing Topology Types

public static void changeType(EMTopoPlatform topoPlatform, String
typeName, String layerName) {
try {
EMTopoTypeDn dn = (EMTopoTypeDn) new
EMTopoTypeDn(topoPlatform.getLocalSystemName(), typeName);
EMTopoType type = new EMTopoType(topoPlatform,dn);

/I set the layer name, this setting is still in cache
type.setLayerName(layerName);

/I we are ready to commit the change to MIS
type.storeAllAttributes();

4-16 Developing Java Applications * October 2001

4.4.4

CODE EXAMPLE 4-8 Changing Topology Types (Continued)

}

catch (Exception e) {
e.printStackTrace();
System.exit(-1);

}

}

Destroying Topology Types

Use the EMTopoType destroy method to destroy topology types as shown in the
following code example.

CODE EXAMPLE 4-9 Destroying Types

public static void destroyType(EMTopoPlatform topoPlatform, String
name)
throws EMTopoException {

EMTopoTypeDn dn = (EMTopoTypeDn) new

EMTopoTypeDn(topoPlatform.getLocalSystemName(),name);
EMTopoType type = new EMTopoType(topoPlatform,dn);
try {
type.destroy();

}

catch (Exception e) {
e.printStackTrace();
System.exit(-1);

}

System.err.printin("Deleted type \""+name+"\"");

Chapter 4 Using the Java Topology APl 4-17

4.5

4-18

Performing Agent Operations

The Java Topology API allows you to perform operations on three types of agents as
shown in the following table.

TABLE 4-1 Agent Operation Types

Operation Type Description

SNMP The Java Topology API provides the EMSnmpAgent class that
represents the MIS object containing configuration information for
an SNMP agent. This information includes the read and write
community strings, supported MIBs, and the transport address.

CMIP The Java Topology API provides the EMCmipAgent class
representing the MIS object containing configuration information
for CMIP agent. This information includes the CMIP MPA
hostname and port number, list of managed objects DN, network
SAP, transport selector, presentation selector, session selector, and
application entity title (AET).

RPC The Java Topology API provides the EMRpcAgent class that
represents the MIS object that contains configuration information
for an RPC agent. This information includes the read and write
community strings and supported schemas.

This section covers the following four types of agent operations:

= Creating agents

= Loading agents

= Changing agents
= Destroying agents

For more information on the classes EMSnmpAgent EMCmipAgent, and
EMRpcAgent, refer to Chapter 4 “Java Topology API” in Java API Reference.

Note — The following sections are based on RPC sample code. The same concepts
can be applied to CMIP and SNMP agents.

Developing Java Applications * October 2001

4.5.1 Creating Agents

v To Create a New RPC Agent

1. Instantiate the EMRpcAgent class in the cache by providing the following two
parameters:

= Platform : The object that gives your application access to a particular MIS.

= RPCAgent: The object that uniquely identifies an RPC agent out of the set of RPC
agent objects.

2. Set the agent’s attributes, which are mandatory (and others if necessary).

3. Use the createWithAllAttributes or createWithSomeAttributes methods to
create the object in the persistent store.

The following code example shows how to create an RPC agent.

CODE EXAMPLE 4-10 Creating Agents

public static void createRpcAgent(
EMTopoPlatform topoPlatform, String nhame,
String getCommunityString, String setCommunityString,
EMRpcAgentinfo[] infos) throws EMTopoException {

EMRpcAgentDn dn = new

EMRpcAgentDn(topoPlatform.getLocalSystemName(),name);
EMRpcAgent rpcAgent = new EMRpcAgent(topoPlatform,dn);
rpcAgent.setGetCommunityString(getCommunityString);
rpcAgent.setSetCommunity String(setCommunityString);
if (infos != null) {
rpcAgent.setinfos(infos);
}else {
infos = new EMRpcAgentinfo[1];
infos[0] = new EMRpcAgentinfo("RPC Proxy -
ping","granite");
rpcAgent.setinfos(infos);

}

rpcAgent.setAdministrativeState(EMAgentAdministrativeState. UNLOC
KED);
try {
rpcAgent.createWithAllAttributes();
}
catch (Exception e) {
e.printStackTrace();
System.exit(-1);

Chapter 4 Using the Java Topology APl 4-19

CODE EXAMPLE 4-10 Creating Agents (Continued)

}

System.err.printin("Created rpcAgent \""+name+"\"");

4.5.2 Loading Agents

Use the loadAllAttributes or loadSomeAttributes method to load the
attributes of an EMRpcAgent object as shown in the following code example.

CODE EXAMPLE 4-11 Loading Agents

public static void loadRpcAgent(EMTopoPlatform
topoPlatform,String name)
throws EMTopoException {
EMRpcAgentDn dn = (EMRpcAgentDn) new

EMRpcAgentDn(topoPlatform.getLocalSystemName(),name);
EMRpcAgent rpcAgent = new EMRpcAgent(topoPlatform,dn);

try {
rpcAgent.loadAllAttributes();

}
catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
System.err.printin(rpcAgent.toString());

4-20 Developing Java Applications * October 2001

4.5.3 Changing Agents

Use the storeAllAttributes or storeSomeAttributes method to change the
attribute values of an agent’s persistent object as shown in the following code
example.

CODE EXAMPLE 4-12 Changing Agents

public static void changeAgent(EMTopoPlatform topoPlatform, String
agentName, EMAgentAdministrativeState adminState) {
try {
EMRpcAgentDn dn = (EMRpcAgentDn) new
EMRpcAgentDn(topoPlatform.getLocalSystemName(), agentName);
EMRpcAgent rpcAgent = new EMRpcAgent(topoPlatform,dn);
/I Set the administrative state, this setting is still in
cache
rpcAgent.setAdministrativeState(adminState);
/l 'You are ready to commit the change to MIS
rpcAgent.storeAllAttributes();
}
catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}

Chapter 4 Using the Java Topology APl 4-21

4.5.4 Destroying Agents

Use the destroy method to destroy RPC agents as shown in the following code
example.

CODE EXAMPLE 4-13 Destroying Agents

public static void destroyRpcAgent(EMTopoPlatform topoPlatform,

String name)
throws EMTopoException {

EMRpcAgentDn dn = (EMRpcAgentDn) new

EMRpcAgentDn(topoPlatform.getLocalSystemName(),name);
EMRpcAgent rpcAgent = new EMRpcAgent(topoPlatform,dn);

try {
rpcAgent.destroy();

}

catch (Exception e) {
e.printStackTrace();
System.exit(-1);

}

System.err.printin("Deleted rpcAgent \""+name+"\"");

4-22 Developing Java Applications * October 2001

CHAPTER 5

Configuring the IDMK
Agent/Behavior Service

The Java Dynamic Management Kit (JDMK) provides a set of Java classes and
interfaces that enable you to develop network agents and services in Java. To
manage JDMK agents by using Solstice Enterprise Manager (Solstice EM), you have
to configure the JDMK agent/behavior service of Solstice EM.

This chapter explains how to configure the JDMK agent/behavior service of Solstice
EM. It covers the following topics:

= Section 5.1 “Overview” on page 5-1

= Section 5.2 “Setting Up the IDMK MPA” on page 5-2

= Section 5.3 “Generating GDMO From Java Classes” on page 5-4

= Section 5.4 “Compiling and Loading the Generated GDMO Files Into the MDR”
on page 5-16

= Section 5.5 “Configuring Persistent jdmkAgent Objects” on page 5-16

= Section 5.6 “Testing Your Agent With the MIS Objects Tool” on page 5-19

= Section 5.7 “Sample Java Files” on page 5-22

°.1

Overview

Configuring the JDMK agent/behavior service of Solstice EM makes your JDMK
agents visible to the Java and C++ Solstice EM APIs.

Configuring the JDMK agent/behavior service involves:

= Optional: setting up the JDMK management protocol adaptor (MPA)
= Generating GDMO from Java classes

= Compiling and loading the generated GDMO files into the MDR

= Optional: configuring persistent jdmkAgent objects

= Optional: testing your agent with the MIS Objects tool

5-1

5.1.1

5.1.2

Note — Attribute value change events are not supported by JDMK agents. To obtain
attribute value change events, use the agent developer interface that enables agents
to send generic events through the framework.

Supported Versions of IDMK

Any JDMK agent that you want to manage by using Solstice EM must have been
developed with version 4.0 of JDMK. Earlier versions of JDMK are not compatible
with Solstice EM.

Prerequisites for Configuring the IDMK
Agent/Behavior Service

Before you configure the JDMK agent/behavior service, ensure that:

= The JDMK m-beans that you want to manage have been developed. For more
information on how to develop JDMK m-beans, refer to the documentation
supplied with JDMK.

= The JDMK m-beans that you want to manage have been compiled.

= The CLASSPATH:nvironment variable identifies the location of the compiled
m-beans.

5.2

Setting Up the IDMK MPA

The JDMK MPA and its associated event forwarder perform protocol translation
between the JDMK information model and the Solstice EM information model. This
translation allows MIS client applications to access and receive events from JDMK
agents.

5-2 Developing Java Applications ¢ October 2001

5.2.1

5.2.2

Configuring the IDMK MPA

The JDMK MPA is pre-configured for you. To override its configuration options, edit
the start-up script /etc/rc2.d/S98jdmkmpa . The following table describes the
JDMK MPA configuration options.

TABLE5-1 JDMK MPA Configuration Options

Option Description

EM_MIS_DEFAULT_HOST Preconfigured to the same machine on which the DMK
MPA package is installed

EM_JDMK_MPA_DEFAULT_PORTPort number to be used by JDMK MPA
Default: 5583

EM_JDMK_MPA_LOG_FILE Path and name of log file that stores debugging and
diagnostic messages
Default:
Ivar/lopt/SUNWconn/em/debug/em_mpa_jdmk.log

Note — If you change the JDMK MPA configuration options, you must stop and
restart the JIDMK MPA for your changes to take effect.

Starting and Stopping the IDMK MPA

If the IDMK component is installed, the JDMK MPA and the JDMK event forwarder
start automatically when Solstice EM is started. If you need to start or stop the
JDMK MPA and the JDMK event forwarder (for example, because you have changed
its configuration), you can do so from the command line.

v To Start the IDMK MPA and the DMK Event Forwarder

e As root, type the following command:

letc/rc2.d/S98jdmkmpa start

v To Stop the JDMK MPA and the JDMK Event Forwarder

e As root, type the following command:

letc/rc2.d/S98jdmkmpa stop

Chapter 5 Configuring the JDMK Agent/Behavior Service 5-3

5.3

5.3.1

Generating GDMO From Java Classes

Agents developed by using JDMK use the Java information model. For your JDMK
agents to be visible to your Solstice EM applications, the class definitions of these
agents must be represented in the GDMO information model, which Solstice EM
uses internally.

To generate a representation in GDMO of your Java class definitions, use the Java to
GDMO compiler (em_java2gdmo).

Class Definition Conversions

To Convert Java Interfaces to a GDMO Document

Type the following command:

% em_java2gdmo [-rootoid rootOid -output directory -verbose] interfaceList

The arguments to em_java2gdmo are defined in the following table.

TABLE5-2 em_java2gdmo Arguments

Argument Meaning

-rootoid rootOid Specifies the root of the object identifier (OID) that all GDMO
objects are registered under. See Section 5.3.3 “Assignment of
Object Identifiers” on page 5-6 for more information.

-output directory Specifies the directory where the generated GDMO document
file is written.

-verbose Specifies that the Java to GDMO compiler displays warning
messages and error messages during compilation. By default it
displays only error messages.

interfaceList A list specifying one or more compiled Java MBean interfaces
that you want to represent in GDMO. Each interface name you
specify may include the Java package prefix. Separate each
class name in the list with a space. The compiled Java classes
must be stored at a location identified by the CLASSPATH
environment variable.

5-4 Developing Java Applications ¢ October 2001

5.3.2

com.sun.em.sample.SimpleMBean

com.sun.em.sample.InterfaceMBean

Generation of GDMO Documents

The Java to GDMO compiler converts all the Java MBeaninterfaces in a Java package
into one GDMO document file and names the file as follows:

em_jdmk_ package.gdmo

Where package is the full name of the Java package containing the Java MBean
interfaces with each dot (.) changed to an underscore (). If the classes are not
contained in a Java package, the file is named em_jdmk_unpackaged.gdmo

For example, the interfaces SimpleMBean , InterfaceMBean and TroutMBean in
the Java package com.sun.em.sample would be mapped to a single GDMO file
named em_jdmk_com_sun_em_sample.gdmo containing these three object classes.
See the following figure.

D

Java to
B cpmMo [P

compiler

em_jdmk_com_sun_em_sample.gdmo

D

com.sun.em.sample.TroutMBean

FIGURE 5-1 Java to GDMO Conversion

Chapter 5 Configuring the JDMK Agent/Behavior Service 5-5

5.3.3 Assignment of Object Identifiers

The Java to GDMO compiler assigns all GDMO objects an object identifier (OID) of
the form:

{ rootOid documentld objectType javald }

The following table explains each part of this OID.

TABLE5-3 Parts of an OID Assigned by em_java2gdmo

Part Description

rootOid The root of the OID as specified in the command you typed to start the
Java to GDMO compiler. If you do not specify this root, it defaults to:
{iso(1) org(3) internet(1) private(4) enterprise(1)
sun(42) products(2) management(2) em(2) jdmk(1)}.

documentld A hashed, unsigned, 32-bit value based on the document name. Not used
if you specified the root of the OID in the command to start the compiler.

objectType A number based on the type of object being registered as listed below:
MANAGED OBJECT CLAS8SBject type OID: 6

ATTRIBUTE object type OID: 7

ACTION object type OID: 9

NOTIFICATION object type OID: 5

javald The ASCII values of the characters in the name of the object. Each
character is separated from the one that precedes it by a period.
For example, the class coolClass would translate to
99.111.111.108.67.108.97.115.115

5-6 Developing Java Applications ¢ October 2001

5.3.4

Mapping Between Java Constructs and GDMO

Once a set of Java MBean interfaces have been identified for translation, each
interface is examined through introspection to create a set of objects analogous to the
GDMO objects that will be generated from the Java MBean interface.

The following table illustrates the mapping between Java classes, packages,
methods, and GDMO objects.

TABLE5-4 Mapping Between Java Constructs and GDMO Constructs

Java Construct GDMO Analog Object
Package Module

MBean Interface ManagedObjectClass
Class derived from com.sun.em.jdmk.event.EMEvent Notification

Getter, setter, or predicate method Attribute

Other methods Action

The first step in translation is to examine each of the Java MBean interface to be
translated and decide if an interface will generate a ManagedObjectClass or
Notification

If the class extends com.sun.em.jdmk.event. EMEvent , @ Notification is
generated. Otherwise, a ManagedObjectClass is generated.

The attributes and actions of a managed object class are generated by examining
each method in a Java MBeaninterface. Based on the method name, return type and
parameter types, the Java to GDMO compiler does one of the following:

= Generates an Action object
= Generates an Attribute object

Chapter 5 Configuring the JDMK Agent/Behavior Service 5-7

5.34.1 MODULE onstruct

The GDMO MODULEs generated in the following form:

MODULE "EM JDMK JavaPackageName"
managedObjectClasses
notifications

END

The following table describes the keywords in italics.

TABLE5-5 MODULBKeywords

Keyword Description

JavaPackageName The name of the Java package being translated. If the
classes are not contained in a Java package, the document
is named unpackaged EM JDMK.

managedObjectClasses The GDMO equivalent for all managed object classes
translated from the source Java package.

notifications The GDMO equivalent for all notifications translated from
the source Java package.

5-8 Developing Java Applications ¢ October 2001

5.3.4.2 MANAGED OBJECT CLA®3nstruct

The GDMO MANAGED OBJECT CLASSgenerated in the following form:

className MANAGED OBJECT CLASS
DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2 : 1992":top;
CHARACTERIZED BY
classNamePackage;
REGISTERED AS { classOid };

classNamePackage PACKAGE
BEHAVIOUR interfaceBehaviour BEHAVIOUR DEFINED AS
IThis class represents java bean class className!;;
ATTRIBUTES
-- haming attribute
classNameld GET,
-- other attributes
attributeList;
ACTIONS
actionList;
NOTIFICATIONS
"Rec. X.721 | ISO/IEC 10165-2 : 1992" :
objectCreation,
"Rec. X.721 | ISO/IEC 10165-2 : 1992" :
objectDeletion,
"Rec. X.721 | ISO/IEC 10165-2 : 1992" :
attributeValueChange
notifications;

l

className-jdmkAgent NAME BINDING
SUBORDINATE OBJECT CLASS className AND SUBCLASSES;
NAMED BY SUPERIOR OBJECT CLASS "EM JDMK":jdmkAgent;
WITH ATTRIBUTE classNameld;
CREATE;
DELETE;

REGISTERED AS { nameBindingOid };

classNameld ATTRIBUTE
WITH ATTRIBUTE SYNTAX EM-JDMK.JavaString;
MATCHES FOR EQUALITY;

REGISTERED AS { attributeOid};

Chapter 5 Configuring the JDMK Agent/Behavior Service

5-9

5-10

The following table describes the MANAGED OBJECT CLA%8ywords in italics.

TABLE5-6 MANAGED OBJECT CLAS®ywords

Keyword

Description

className

actionList

attributeList

notifications

ClassOid

nameBindingOid

attributeOid

The Java MBeaninterface name with a lowercase first
character and MBeanstring removed. A naming attribute
classNameld of type GraphicString and its name
binding are generated. The name binding forces Java
objects into a flat hierarchy under an instance of
jdmkAgent .

The list of actions the managed object class contains. Each
action is of the form className- actionName, where
className is as defined above, and actionName is the name
of the original Java method.

The list of attributes contained in the class. Each attribute
is of the form className- attributeName, where className is
as defined above, and attributeName is the Java
getter/setter method name, minus the get or set prefix,
with the first character in upper case.

Each attribute is defined as a GETor a GET-SET attribute
as follows:

= GETif only a getter is present in the original Java class.
Predicates are always GETattributes.

= GET-SET if the class contained both getters and setters.
Attributes have no initial or default values and are not
mandatory.

The list of all the custom notifications that a class supports
and objectCreation , objectDeletion , and
attributeValueChanged

The OID of the managed object class. See Section 5.3.3
“Assignment of Object Identifiers” on page 5-6.

The OID of the generated name binding. See Section 5.3.3
“Assignment of Object Identifiers” on page 5-6.

The OID of the generated naming attribute. See
Section 5.3.3 “Assignment of Object Identifiers” on
page 5-6.

Developing Java Applications * October 2001

5.34.3 ATTRIBUTE Construct

The GDMO ATTRIBUTE is generated in the following form:

className-attributeName ATTRIBUTE
WITH ATTRIBUTE SYNTAX EM-JDMK. attributeType;
REGISTERED AS { oid };

The following table describes the keywords in italics.

TABLE5-7 ATTRIBUTE Objects Keywords

Keyword Description

className The name of the managed object class to which the
attribute belongs.

attributeName The Java getter/setter method name, minus the get or set
prefix, with the first character in upper case.

attributeType The ASN.1 type based on the java type as described in
Section 5.3.6 “Mapping JDMK Java Types to ASN.1” on
page 5-15.

oid The OID of the object. See Section 5.3.3 “Assignment of

Obiject Identifiers” on page 5-6.

Chapter 5 Configuring the JDMK Agent/Behavior Service 5-11

5.34.4 ACTION Construct

The GDMO ACTION s generated in the following form:

className-actionName ACTION
BEHAVIOUR resetCountersBehaviour BEHAVIOUR DEFINED AS
laction maps with actionName method!;;
WITH INFORMATION SYNTAX EM-JDMK.paramType;
WITH REPLY SYNTAX EM-JDMK.returnType;
REGISTERED AS { oid };

The following table describes the ACTION objects keywords.

TABLE5-8 ACTION Objects Keywords

Keyword Description

className Name of the managed object class to which the action
belongs.

actionName Name of the original Java method.

attributeType The ASN.1 type based on the Java method’s attribute type

as described in Section 5.3.6 “Mapping JDMK Java Types to
ASN.1” on page 5-15.

returnType The ASN.1 type based on the Java method’s return type as
described in Section 5.3.6 “Mapping JDMK Java Types to
ASN.1” on page 5-15.

oid The OID of the object. See Section 5.3.3 “Assignment of
Object Identifiers” on page 5-6.

5-12 Developing Java Applications ¢ October 2001

5.3.4.5

NOTIFICATION Construct

The GDMO NOTIFICATION is generated in the following form:

classNameAlarm NOTIFICATION
BEHAVIOUR classNameAlarmBehaviour;
WITH INFORMATION SYNTAX
Notification-ASN1Module.Alarminfo
AND ATTRIBUTE IDS

probableCause probableCause,
perceivedSeverity perceivedSeverity,
additional Text additionalText;

REGISTERED AS { oid };

The following table describes the keywords in italics.

TABLE5-9 NOTIFICATION Objects Keywords

Keyword Description

className The name of the class from which the alarm is generated,
with a lower case first character. The attribute values are:

= probableCause
The OID of the class that generated the alarm.

= perceivedSeverity
Indeterminate.

= additionalText
A list of class attributes and their values in the form:
{ attributeName,, value;}
{ attributeName,, value,}

oid The OID of the object. See Section 5.3.3 “Assignment of
Object Identifiers” on page 5-6.

Chapter 5 Configuring the JDMK Agent/Behavior Service 5-13

5.3.5

Mapping of M-Bean Object Names

The Java to GDMO compiler translates an m-bean’s object name into a distinguished
name. A translated distinguished name is in the following format:

jdmkAgentld=" agentTableType=JDMK "/ JavaClassNameld=" ObjectName"

Where:

= JavaClassName is the Java class of the m-bean without the package prefix and with
its initial letter set to lower case. It is separated from the GDMO document name
by a colon.

= ObjectName is the object name of the m-bean. It is enclosed in quotes.

Note — The format of an m-bean’s object name is defined in the documentation
supplied with JDMK. Solstice EM imposes no additional restrictions on m-bean
names.

The following table gives examples of the mapping of class names and m-bean
names.

TABLE 5-10 Examples of Mapping Class Names and M-Bean Names

M-Bean Name:
Description:

GDMO MOC Name:

Distinguished Name:

myDomain:name=lel
Object of Java class Interface in package em.sample whose name attribute is lel .
"EM JDMK em.sample":interface

jdmkAgentld="agentTableType=JDMK"/interfaceld="name=le1"

M-Bean Name:

Description:

GDMO MOC Name:

Distinguished Name:

myDomain:type=Interface

Object of Java class Interface in package em.sample. The naming attribute is null
object is a singleton and is the only allowed instance of its class.

. This

"EM JDMK em.sample":interface

jdmkAgentld="agentTableType=JDMK"/interfaceld="type=Interface"

M-Bean Name:

Description:

GDMO MOC Name:

Distinguished Name:

myDomain:name=le1,desc=fddi

Obiject of Java class Interface
lel and desc attribute is fddi

in the default package (no package) whose name attribute is

"unpackaged EM JDMK".interface
jdmkAgentld="agentTableType=JDMK"/interfaceld="name=le1,desc=fddi"

5-14

Developing Java Applications * October 2001

5.3.6

5.3.7

Mapping JDMK Java Types to ASN.1

The compiler supports only basic Java types. The following table lists the supported
types with their ASN.1 counterparts. These types are legal return and attribute types
for getters, setters, and predicate methods from which GDMO Analog objects are
generated.

TABLE 5-11 Java to GDMO Type Translation

Java Class ASN.1 Type

String Graphic String

Float Real

Integer INTEGER (-2147483648 .. 2147483647)
Long INTEGER (-9223372036854775808 .. 9223372036854775807)
Boolean BOOLEAN

Byte OCTET (SIZE (1))

Short INTEGER (-32768..32767)

void NULL

Class that OCTET STRING

implements

java.io.Seria

lizable !

1. Action parameters only.

Mapping Limitations

Although mapping is done automatically, there are a few limitations:

= Super classes and interfaces are not mapped.

= Only Java simple types and arrays of simple types are mapped. Other types are
not mapped.

= Inner classes and anything private are ignored.

= Enums are not mapped.

Chapter 5 Configuring the JDMK Agent/Behavior Service 5-15

5.4

Compiling and Loading the Generated
GDMO Files Into the MDR

After you have generated a GDMO file representing your Java class definitions, you
have to compile it and load it into the MetaData Repository (MDR) of Solstice EM.

To compile a GDMO file, use the em_gdmocommand.
To load a GDMO file into the MDR, use the em_compose_all command.

To compile and load a GDMO file in a single operation, use the Load Data
Definitions (LDD) tool.

For information on how to use em_gdmq em_compose_all , and the LDD tool, refer
to Management Information System (MIS) Guide.

Note — The IDMK MPA must be running when you load generated GDMO files into
the MDR.

2.5

5-16

Configuring Persistent jJdmkAgent
Obijects

To configure jdmkAgent objects that reside persistently in the MIS MIT, use the
utility included with MIS em_jdmk_config . The jdmkAgent objects provide the
MIS with the necessary information to communicate with configured JDMK agents.

Each jdmkAgent object contains three attributes. These attributes are described in
the following table.

TABLE5-12 jdmkAgent Object Attributes

Attribute Description

agentContainerld Names the jdmkAgent object. This name may be any string which
the user chooses to represent a set of JDMK objects.
For example, it may be the IP name where the JDMK agent resides
in the network or it may be something which only represents a
subset of the objects in the agent, such as topology objects. Think of
this object as a named container to a set of JDMK objects.

Developing Java Applications * October 2001

5.5.1

TABLE 5-12 jdmkAgent Object Attributes (Continued)

Attribute Description

agentAddr A sequence containing the following:

= agentAddr (default: value of agentContainerld)
The IP name or IP address in dot format.

= agentPort (default: 1099)
Register the JDMK agent on this port. In your JDMK agent, you
can specify what port the agent listens on.
This feature allows you to run multiple agents or run other
applications that need to use the default port.

= agentAdaptor (default: RMI)
A string containing the DMK adapter that your agent is using.
The only supported protocol is the remote method invocation
(RMI) system.

= agentDomain (default: defaultDomain)
A string whose value is the Domain part of a JDMK object’s
name. You can only have one domain per jdmkAgent object. If
your agent contains multiple domains, you will need to create a
second jdmkAgent object with that domain.

supportedClasses A list of Java class names including the package name. Note that the
package name is the Java “Package.Class” name and not the GDMO
class name.

Starting em_jdmk_config

The easiest way to configure a jdmkAgent object is to use the command-line:
em_jdmk_config -config yyy, where yyy is the IP name or address of the
machine on which the JDMK agent is running. This command goes out and
interrogates the agent and configures the jdmkAgent object for you.

Note — The agent must be running and have the objects instantiated in order for this
option to configure it. If there is an agent running with no objects, the jdmkAgent
object will be configured, but the supportedClasses attribute will be empty.

The other way to configure an agent is to set the various em_jdmk_config options:

Usage: em_jdmk_config [-host] [-agent] [-help] [-get] [-delete]
[-set] [-create] [-dump] [-classes] [-info]

Chapter 5 Configuring the JDMK Agent/Behavior Service 5-17

These options are described in the following table.

TABLE 5-13 em_jdmk_config Options

Option Description
-host mis MIS server name.
-agent name Agent name for operation.
-help Lists Help information.
-get Prints the JDMK agent object specified with the -agent option.
-delete Deletes the JIDMK agent object specified with the -agent option.
-set Sets the agent object (specified with the -agent option) with the
information specified by the -info and -classes options.
-create Creates the agent object (specified with the -agent option) with the
information specified by the -info and -classes options.
-dump Prints all IDMK agent objects.
-info ipaddr port adaptor domain
« ipaddr:

Hostname or IP address on which the agent is running.
- port:

Port number on which the agent is listening for requests.
= adaptor:

The JDMK adaptor to be used for communication. Currently
supports only RMI.

= domain:
The JDMK domain for this agent.

-classes List of IDMK classes.

5.5.2 Configuration Examples

Before running the examples, make sure that the CLASSPATHnvironment variable
identifies the location of the compiled example class files.

This section contains five configuration examples.

= The following example automatically configures the JDMK agent running on the
host titleist using all default parameters.

5-18 Developing Java Applications * October 2001

Note — The agent must already be running with at least one object from each Java
class.

% em_jdmk_config -config titleist

= The following example configures a JDMK agent running on titleist (using all
defaults) with Java classes em.sample.Interface and
em.sample.Sample

% em_jdmk_config -create -agent titleist -classes
em.sample.Interface em.sample.Sample

= The following example prints out all configured agents:

% em_jdmk_config -dump

The following example deletes the jdmkAgent object titleist . This example
does not delete any objects on the JDMK agent. It only deletes the jdmkAgent
object in the MIS that represents the JIDMK agent:

% em_jdmk_config -delete -agent titleist

The following example sets the supported classes on the jdmkAgent object
titleist

% em_jdmk_config -set -agent titleist -classes em.sample.NewClass

5.6

Testing Your Agent With the MIS Objects
Tool

This section describes how to test your agents with the MIS Objects tool through an
example. This example is based on the following three Java test files included with
the JIDMK example programs:

= SimpleStandard.java (Java MBean Class)

Chapter 5 Configuring the JDMK Agent/Behavior Service 5-19

5-20

= SimpleStandardMBean.java (Java MBean Interface)
= MinimalAgent.java (JDMK Agent)

Note — For simplicity, the Java classes will be in the default package.

Once you have created your jdmkAgent object, you will be able to see it using the
MIS Obijects tool.

All the jdmkAgent objects may be found under the
/systemld="host"/agentTableType=JDMK object. All the objects under each
jdmkAgent object are the objects on that particular JDMK agent.

To enable the Solstice EM JDMK MPA to locate your JDMK classes, ensure that the
CLASSPATHenvironment variable identifies where they are located.

By default, the JDMK MPA searches the following directories and jar files for Java
classes:

= /var/tmp/jdmk
= installdir/SUNWjdmk/jdmk4.2/1.2/lib/rt.jar
= installdir/'SUNWconn/em/classes

To ensure that the IDMK MPA can locate the sample Java classes, you can do one of
two things:
= Store the classes in the /var/tmp/jdmk directory or create a link to it.

= Set the root CLASSPATHoO include your specific CLASSPATHand restart the
JDMK MPA.

letc/rc2.d/S98jdmkmpa stop
setenv CLASSPATH yourpath
[etc/rc2.d/S98jdmkmpa start

To Perform the Sample Test

Before you perform the sample test, ensure that the CLASSPATHnvironment
variable identifies where the JDMK classes and sample classes are located.

. Create a directory /var/tmp/jdmk

. Copy SimpleStandard.java, SimpleStandardMBbean.java and

MinimalAgent.java to /vartmp/jdmk

3. Go to the /var/tmp/jdmk directory.

Developing Java Applications * October 2001

4. Compile the sample Java classes:

% javac *.java

5. Convert Java to GDMO.

% em_java2gdmo SimpleStandardMbean

em_jdmk_unpackaged.gdmo file is generated by this command.
6. Load the GDMO into the MIS.
a. As root, start the Load Data Definitions tool.
b. Go to /var/tmp/jdmk and load the file em_jdmk_unpackaged.gdmo

7. Compile MinimalAgent

Add the following lines in the MinimalAgent.java file to load the
SimpleStandardMBean and compile the MinimalAgent.java file.

System.out.printin("\nCreate SimpleStandard");

ObjectName objName = new
ObjectName("DefaultDomain:type=SimpleStandard");
Objectinstance simple = server.createMBean("SimpleStandard",
objName);

% javac MinimalAgent.java

8. Start the JDMK agent.

% java MinimalAgent

9. Run the following configuration command:

% em_jdmk_config -create -agent yourhostname -info yourhostname 1099 \
name=RmiConnectorServer DefaultDomain -classes SimpleStandard

Chapter 5 Configuring the JDMK Agent/Behavior Service 5-21

10.

11.
12.

13.

14.

15.

16.

17.

Run the following configuration commands:

% em_jdmk_config -dump
% em_jdmk_config -get -agent yourhostname

Start up the MIS Objects tools from the Administration panel.

Browse down the agentTableType=JDMK part of the tree and look for your agent
object.

Browse down your agent object and you should see the SimpleStandardMBean
in the JDMK agent.

Set the SimpleStandard-State attribute of the SimpleStandardMBean
object.
Get the SimpleStandard-State attribute of the SimpleStandardMBean object

and verify that it has changed.

Select the same SimpleStandardMBean object and execute the
SimpleStandard-reset action.

The action takes a NULL string. The SimpleStandard bean resets the state.

Perform a get action and verify that the counters were reset.

5.7

5-22

Sample Java Files

This section explains how to convert the sample programs. It also gives you the
definition of a sample Java class, SimpleStandard , in CODE EXAMPLE 5-1 and its
equivalent GDMO class in CODE EXAMPLE 5-3 as generated by the Java to GDMO
compiler.

Developing Java Applications * October 2001

5.7.1

5.7.2

Converting Sample Java Classes Into GDMO

The following example shows you how to convert SimpleStandardMBean.class
into GDMO.

To Convert Sample Java Classes

. Run the SimpleStandardMBean.class file through the compiler using the

following command line:

% em_java2gdmo SimpleStandardMBean

The compiler generates one file: em_jdmk_unpackaged.gdmo . This file contains the
GDMO document unpackaged EM JDMK SimpleStandard which contains the
GDMO classes.

Note — If the SimpleStandardMBean class belongs to a package for example,
em.sample then the resulting document is called "EM JDMK em.sample".

. Load the converted files into the MIS by using the Load Data Definitions tool or

by typing the following command:

% em_gdmo -host yourhost -file em_jdmk_em_sample.gdmo

Listings of the Sample Java Classes

The following code example contains a sample JDMK Agent.

CODE EXAMPLE 5-1 MinimalAgent.java

import javax.management.ObjectName;

import javax.management.Objectinstance;
import javax.management.MBeanServer;

import javax.management.MBeanServerFactory;

public class MinimalAgent {
public static void main(String[] args) {

/Il Instantiate the MBean server
System.out.printin("\nCreate the MBean server");

Chapter 5 Configuring the JDMK Agent/Behavior Service 5-23

5-24

CODE EXAMPLE 5-1 MinimalAgent.java (Continued)

import javax.management.ObjectName;
MBeanServer server = MBeanServerFactory.createMBeanServer();

/l Create and start in the MBean server:
/- an HTML protocol adaptor
/I -an HTTP connector server
/I - an RMI connector server
try {
com.sun.jdmk.Trace.parseTraceProperties();
System.out.printin("\nCreate and start an HTML protocol
adaptor");
Objectinstance html =
server.createMBean("com.sun.jdmk.comm.HtmlAdaptorServer", null);
server.invoke(html.getObjectName(), "start", new
Object[0], new String[0]);

System.out.printin("\nCreate and start an HTTP connector
server");

Obijectinstance http =
server.createMBean("com.sun.jdmk.comm.HttpConnectorServer",
null);

server.invoke(http.getObjectName(), "start", new
Object[0], new String[0]);

System.out.printin("\nCreate and start an RMI connector
server");
Objectinstance rmi =
server.createMBean("com.sun.jdmk.comm.RmiConnectorServer", null);
server.invoke(rmi.getObjectName(), "start", new Object[0],
new String[0]);

System.out.printin("\nCreate SimpleStandard");

ObjectName objName = new
ObjectName("DefaultDomain:type=SimpleStandard");

Objectinstance simple =
server.createMBean("SimpleStandard", objName);

} catch(Exception e) {
e.printStackTrace();
return;

}

System.out.printin("\nNow, you can point your browser to
http://localhost:8082/");

System.out.printin(“or start your client application to
connect to this agent.\n");

Developing Java Applications * October 2001

CODE EXAMPLE 5-1 MinimalAgent.java (Continued)

import javax.management.ObjeciName;

}
}

Chapter 5 Configuring the JDMK Agent/Behavior Service 5-25

5-26

The following code example contains a sample MBean interface.

CODE EXAMPLE 5-2 SimpleStandardMBean.java

/**
* This is the management interface explicitly defined for the
"SimpleStandard" standard MBean.

* The "SimpleStandard" standard MBean implements this interface
* in order to be manageable through a JMX agent.

*
* The "SimpleStandardMBean" interface shows how to expose for

management:
* - a read/write attribute (named "State") through its getter and

setter methods,
* - a read-only attribute (named "NbChanges") through its getter

method,

* - an operation (named "reset").

*/

public interface SimpleStandardMBean {

/**

* Getter: set the "State" attribute of the "SimpleStandard"

standard MBean.
*

* @return the current value of the "State" attribute.
*/
public String getState() ;

/**

* Setter: set the "State" attribute of the "SimpleStandard”
standard MBean.

*
* @param <VAR>s</VAR> the new value of the "State" attribute.
*/

public void setState(String s) ;

/**
* Getter: get the "NbChanges" attribute of the "SimpleStandard"
standard MBean.

*

* @return the current value of the "NbChanges" attribute.
*/

public Integer getNbChanges() ;

/**
* Operation: reset to their initial values the "State" and
"NbChanges"

Developing Java Applications * October 2001

CODE EXAMPLE 5-2 SimpleStandardMBean.java (Continued)

/**
* attributes of the "SimpleStandard" standard MBean.
*/
public void reset() ;

}

The following code example contains a sample MBean implementation.

CODE EXAMPLE 5-3 SimpleStandard.java

/**

* Simple definition of a standard MBean, named "SimpleStandard".
*
* The "SimpleStandard" standard MBean shows how to expose
attributes and
* operations for management by implementing its corresponding
* "SimpleStandardMBean" management interface.
*
* This MBean has two attributes and one operation exposed
* for management by a JMX agent:
* - the read/write "State" attribute,
* - the read only "NbChanges" attribute,
* - the "reset()" operation.
*
* This object also has one property and one method not exposed
* for management by a JMX agent:
* - the "NbResets" property,
* - the "getNbResets()" method.
*/

public class SimpleStandard implements SimpleStandardMBean {

/*
*

* CONSTRUCTORS

*

*

[* "SimpleStandard" does not provide any specific constructors.
* However, "SimpleStandard" is JMX compliant with regards to
* contructors because the default contructor SimpleStandard()

* provided by the Java compiler is public.

*/

Chapter 5 Configuring the JDMK Agent/Behavior Service

5-27

5-28

CODE EXAMPLE 5-3 SimpleStandard.java (Continued)

/**

/*
*

* IMPLEMENTATION OF THE SimpleStandardMBean INTERFACE

*

*

/**

* Getter: get the "State" attribute of the "SimpleStandard"
standard MBean.
*
* @return the current value of the "State" attribute.
*/
public String getState() {
return state;

}

/**

* Setter: set the "State" attribute of the "SimpleStandard"
standard MBean.
*
* @param <VAR>s</VAR> the new value of the "State" attribute.
*/
public void setState(String s) {
state = s;
nbChanges++;

}

/**

* Getter: get the "NbChanges" attribute of the "SimpleStandard"
standard MBean.
*
* @return the current value of the "NbChanges" attribute.
*/
public Integer getNbChanges() {
return new Integer(nbChanges);

}

/**

* Operation: reset to their initial values the "State" and
"NbChanges"

* attributes of the "SimpleStandard" standard MBean.

*/

public void reset() {

Developing Java Applications * October 2001

CODE EXAMPLE 5-3 SimpleStandard.java (Continued)

/**
state = "initial state";
nbChanges = 0;
nbResets++;

}

/*
*
* METHOD NOT EXPOSED FOR MANAGEMENT BY A JMX AGENT

*

*/

/**
* Return the "NbResets" property.
* This method is not a Getter in the IMX sense because
* it is not exposed in the "SimpleStandardMBean" interface.
*
* @return the current value of the "NbResets" property.
*/
public Integer getNbResets() {
return new Integer(nbResets);

}

/*

* ATTRIBUTES ACCESSIBLE FOR MANAGEMENT BY A JMX AGENT

*

*/

private Stringstate = "initial state";
private intnbChanges = 0;

/*

*

* PROPERTY NOT ACCESSIBLE FOR MANAGEMENT BY A JMX AGENT

*

*/

private intnbResets = 0;

}

Chapter 5 Configuring the JDMK Agent/Behavior Service

5-29

5-30

The following code example contains the em_jdmk_unpackaged.gdmo

CODE EXAMPLE 5-4 em_jdmk_unpackaged.gdmo

file.

MODULE "unpackaged EM JDMK"

simpleStandard MANAGED OBJECT CLASS
DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2 : 1992":top;
CHARACTERIZED BY
simpleStandardPackage;

97 110 100 97 114 100 };

simpleStandardPackage PACKAGE
BEHAVIOUR simpleStandardBehaviour BEHAVIOUR DEFINED AS
IThis class represents the Java Bean
classSimpleStandardMBean !;;
ATTRIBUTES
simpleStandardIldGET,
simpleStandard-NbChangesGET,
simpleStandard-StateGET-REPLACE;

ACTIONS
simpleStandard-reset;

NOTIFICATIONS
"Rec. X.721 | ISO/IEC 10165-2 : 1992" :
objectCreation,
"Rec. X.721 | ISO/IEC 10165-2 : 1992" :
objectDeletion,
"Rec. X.721 | ISO/IEC 10165-2 : 1992" :
attributeValueChange;

1

simpleStandard-jdmkAgent NAME BINDING
SUBORDINATE OBJECT CLASS simpleStandard AND SUBCLASSES;
NAMED BY SUPERIOR OBJECT CLASS "EM MPA JDMK":;jdmkAgent;
WITH ATTRIBUTE simpleStandardld;
CREATE;
DELETE;

97 110 100 97 114 100 45 106 100 109 107 65 103 101 110 116 };
simpleStandardid ATTRIBUTE

WITH ATTRIBUTE SYNTAX EM-JDMK.JavaString;
MATCHES FOR EQUALITY;

REGISTERED AS { em-jdmk 162229001 6 115 105 109 112 108 101 83 116

REGISTERED AS { em-jdmk 162229001 1 115 105 109 112 108 101 83 116

Developing Java Applications * October 2001

CODE EXAMPLE 5-4 em_jdmk_unpackaged.gdmo (Continued)

MODULE "unpackaged EM JDMK"™
REGISTERED AS { em-jdmk 162229001 7 115 105 109 112 108 101 83 116
97 110 100 97 114 100 73 100 };

simpleStandard-NbChanges ATTRIBUTE

WITH ATTRIBUTE SYNTAX EM-JDMK.Javalnteger;
REGISTERED AS { em-jdmk 162229001 7 115 105 109 112 108 101 83 116
97 110 100 97 114 100 45 78 98 67 104 97 110 103 101 115 };

simpleStandard-State ATTRIBUTE

WITH ATTRIBUTE SYNTAX EM-JDMK.JavaString;
REGISTERED AS { em-jdmk 162229001 7 115 105 109 112 108 101 83 116
97 110 100 97 114 100 45 83 116 97 116 101 }

simpleStandard-reset ACTION
BEHAVIOUR simpleStandard-resetBehaviour BEHAVIOUR DEFINED AS
laction derived from SimpleStandardMBean.reset(...) Java
method!;;
WITH INFORMATION SYNTAX EM-JDMK.JavaVoid,;
WITH REPLY SYNTAX EM-JDMK.JavaVoid;
REGISTERED AS { em-jdmk 162229001 9 115 105 109 112 108 101 83 116
97 110 100 97 114 100 45 114 101 115 101 116 };

END

Chapter 5 Configuring the JDMK Agent/Behavior Service

5-31

5-32 Developing Java Applications * October 2001

APPENDIX A

Using the Java Alarm and Topology
APIs Together

In some scenarios, it is useful to use the Java Alarm and Java Topology APIs
together. For example, you may want to provide visual representation of alarms.
This can be done by using the Java Topology API to create the topology node
representation and the Alarm API to highlight the affected nodes.

This appendix provides a sample program that shows you how to use the Topology
and Alarm APIs together (see the following code example). The program gets all the
alarms pertaining to the specified node.

CODE EXAMPLE A-1 GetAlarmsForNode.java

* Copyright 10/30/98 Sun Microsystems, Inc. All Rights Reserved.
*/
import com.sun.em.api.common.*;
import com.sun.em.api.topology.*;
import com.sun.em.api.alarm.*;
import com.sun.em.api.pmi.Platform;

/*

GetAlarmsForNode <servername> <mis-name> <username> <password>
<name>

<servername> - is the machine name on which the server is running.

<mis-name> - is the machine name on which the mis is running.

<username> - is the user login name.

<password> - is the password of the user login.

<name> - is the name of the node.

*/

public class GetAlarmsForNode

{

A-1

CODE EXAMPLE A-1 GetAlarmsForNode.java (Continued)

static void usage() {
System.err.printin("Usage:\n"+ "GetAlarmsForNode <servername>
<mis-name> <username> <password> name");
System.err.printin("\t-Run the example with <servername> as the
remote server and <misname> \n\t where EM mis is
running.");
System.err.printin("\t name = Node name ");
System.exit(-1);
}

public static void main(String[] args) {
if (args.length < 5) {
usage();

}

Platform platform = null;
try {

/lInstantiate the Platform object
platform = new Platform(args[0],args[1] , args[2],args[3]);

/lInstantiate a AlarmLog Object for a log named "AlarmLog"
LogName logName = new LogName(args[1], "AlarmLog");
System.out.printin("AlarmLog instantiation™);

AlarmLog log = new AlarmLog(platform, logName);

llInstantiate the EMTopoPlatform
EMTopoPlatform topoPlatform = new EMTopoPlatform(platform);

/ICreate a list of toponode ids to be used to retrieve the
/Imanaged objects. This is a list since there could be more

/lthan one node with same name.

EMTopoNodeDn dns[] = null;

dns = EMTopoNode.findNodesByName(topoPlatform,args[4]);

int ids[] = new int[dns.length];

for(int k=0; k < dns.length; k++)

ids[k] = dns[k].getUniqueld(); // get the toponode id

/IGet all the managed object names for the given toponode ids
MOName[] monames = EMTopoNode.findMOsByNodes(topoPlatform,
args[1] , ids, false);

/[Create a query object to get all alarms for the list of
/Imanaged objects specified.

A-2 Developing Java Applications ¢ October 2001

CODE EXAMPLE A-1 GetAlarmsForNode.java (Continued)

Filterltem filterltem =
new
Filterltem(AlarmRecordAttribute. MANAGED_OBJECT_INSTANCE,
RelationCriteria.EQUAL, monames);

Filter filter = new Filter(filterltem);
GenericQuery query = new GenericQuery(filter);

/[Create an attribute set: The set of alarm record attributes
/lin which you are interested.
Il

AlarmRecordAttributeSet attrSet = new

AlarmRecordAttributeSet();
attrSet.add(AlarmRecordAttribute.LOG_RECORD_ID);
attrSet.add(AlarmRecordAttribute. PERCEIVED_SEVERITY);
attrSet.add(AlarmRecordAttribute. PROBABLE_CAUSE);
attrSet.add(AlarmRecordAttribute. CLEAR_STATE);
attrSet.add(AlarmRecordAttribute. CLEAR_TIME);
attrSet.add(AlarmRecordAttribute. ACK_TIME);
attrSet.add(AlarmRecordAttribute. LOGGING_TIME);
attrSet.add(AlarmRecordAttribute. EVENT_TYPE);
attrSet.add(AlarmRecordAttribute. ACK_STATE);
attrSet.add(AlarmRecordAttribute. ACK_OPERATOR);
attrSet.add(AlarmRecordAttribute. MANAGED_OBJECT_INSTANCE);
attrSet.add(AlarmRecordAttribute.LOG_NAME);
attrSet.add(AlarmRecordAttribute. MANAGED_OBJECT_INSTANCE);

//Get all the alarms satisfying the query created above.
System.out.printin("AlarmLog query begins");
AlarmRecord[] alarms = log.getAlarms(query, attrSet);

/INow print out the result

printAlarmRecord(alarms, attrSet);

}

catch (Exception e) {
e.printStackTrace();
System.exit(-1);

}

System.out.printin("Done.");
System.exit(0);
}

private static void printAlarmRecord(AlarmRecord[] alarms,

Appendix A Using the Java Alarm and Topology APIs Together

A-3

CODE EXAMPLE A-1 GetAlarmsForNode.java (Continued)

AlarmRecordAttributeSet attrSet)
throws AlarmException
{
System.out.printin("Receive d:
int ii;
for (ii=0; ii<alarms.length; ii++)
{
System.out.printin("Alarm number:" + ii);
AlarmRecord alrl = (AlarmRecord)alarmsiii];
System.out.printin(alrl.toString());

}
}

private static final String sccsID =
"@(#)GetAlarmsForNode.java 1.3 98/10/30 Sun
Microsystems";

}

+ alarms.length + " Alarms ");

A-4 Developing Java Applications ¢ October 2001

Index

A

abnormal conditions, 3-2

AbstractData , 2-14

Action objects, keywords description, 5-12

agents, testing, 5-19

alarm management, 3-11
applications, 3-1
sample programs, 3-16

alarm management applications, task flow, 3-4

Alarm Record Attributes
ACK_OPERATQR3-10
ACK_STATE 3-10
ACK_TEXT 3-10
ACK_TIME 3-10
ADDITIONAL_TEXT, 3-11
CLEAR_OPERATQOR-10
CLEAR_STATE 3-10
CLEAR_TEXT 3-10
CLEAR_TIME 3-10
DISPLAY_OPERATOR3-10
DISPLAY_STATE 3-10
DISPLAY_TEXT, 3-10
DISPLAY_TIME, 3-10
EVENT_TIME 3-10
EVENT_TYPE 3-10
LOG_NAME3-11
LOG_RECORD_IP3-10
LOGGING_TIME 3-10
MANAGED_OBJECT_INSTANCE-10
MIS_NAME 3-11
PERCEIVED_SEVERITY 3-10
PROBABLE_CAUSE-10

alarms, 3-2

acknowledging, 3-14
clearing, 3-14

getting a count, 3-12

getting attributes, 3-12
getting in batches, 3-12
management tasks, 3-3
retrieval of information, 3-12
user-defined, 3-2

Attribute

AttributeValueChange

B
base types

objects, keywords description, 5-11
, 2-10

Array, 4-14

Bus, 4-14
Container,
Device, 4-
Link, 4-14

4-14
14

Monitor, 4-14

Sun, 4-14

bean name examples, 5-14

C

C++ Topology API, 4-3

changing nod
class definitio
classes
alarm log,
query, 3-3

e attributes, 4-9
n conversion, 5-4

3-3

Index-1

CollectionEvent.java , 2-23
components
Java API environment, 1-3
Java Dynamic Management Kit, 1-3
configuring
examples, 5-18
jdmkAgent , 5-17
converting
java class definitions, 5-4
java class to GDMO, 5-4
creating
alarm management applications, 3-1
AlarmLog object, 3-5
AlarmRecordAttributeSet
applications, 2-1
Filterltem object, 3-6, 3-7
GenericQuery object, 3-6, 3-9
logName object, 3-5
nodes, 4-5
objects, 2-8
Platform object, 2-5
query objects, 3-6
topology nodes, 4-1

objects, 3-10

D

defining
alarm record attributes, 3-11
classes, 3-1
event handler classes, 2-3
handler methods, 2-13
handlers, 2-10
managed object instances, 2-6
methods, 3-1
server, 2-4

destroying nodes, 4-11

E
efficiency, 1-4
em_java2gdmo , 5-4
EmWho.java , 2-21
EventReport , 2-14
EventReportListener , 2-3
execution

local, 1-3

remote, 1-3

Index-2 Developing Java Applications ¢ October 2001

F
filters, 3-9

G
GDMO Constructs
ACTION 5-12
ATTRIBUTE, 5-11
MANAGED OBJECT CLASS5-9
MODULES5-8
NOTIFICATION, 5-13
GDMO conversion, 5-4
GUI elements, 2-7

I
implementing, alarm filter, 3-8
instantiating
alarm log class, 3-4
EMTopoType class, 4-14

J
Java
Alarm API, 3-1
APlIs, 1-1
beans, 1-1
components, 1-2
main classes, 3-3
management adapter, 1-4
management interface, 2-1
Topology API, 4-1
Java applications
alarm API, 1-2
JMI API, 1-2
Topology API, 1-2
JDMK, 1-1
conversion to CMIS natifications, 1-4
Java Management Adapter, 1-4
Management Protocol Adapter, 1-4
JDMK MPA, 1-1
configuring, 5-3
JDMK to CMIS Event Listener, 1-1
JIMA, 1-1,1-4
JMI API, 2-1
access to server, 2-1

C++ Equivalents for the IMI API Classes, 2-1

Defining Local Representation of Managed
Objects, 2-1

Handling Events, 2-1

high-level usage, 2-1

Instantiating the Platform Class, 2-1

Java Management, 2-2

manipulation of information, 2-2

Overview, 2-1

presentation of information, 2-2

Registering Event Listeners, 2-1

Sample JMI Application, 2-1

L
loading node attributes, 4-7

M
managed objects, 2-6
keywords descriptions, 5-10
Management Protocol Adapter, 1-4
managing objects, 2-3
mapping limitations, 5-15
memory usage, 1-4
Module , keywords description, 5-8
MOHandle
instantiating, 2-6
managed object, 2-6
object maintenance, 2-8
MOHandle, 2-3, 2-11, 2-14
MOHandleEvent.java , 2-19
MOHandleExcluded , 2-10
MOHandlelncluded , 2-10
MOHandleTest.java , 2-17
MOHCollectionByRule | 2-3,2-11, 2-14
MOHCollectionEnum , 2-3, 2-11, 2-14
MOIl, 2-7
MOI management, 2-7
monitoring alarms, 3-2
MPA, 1-1,1-4
MPA configuration options
EM_JDMK_MPA_DEFAULT_PQR53
EM_JDMK_MPA_LOG_FILE5-3
EM_MIS_DEFAULT_HOST5-3

N

network management, 1-3

nodes

changing attributes, 4-4

creating, 4-4

destroying, 4-4

events, 4-12

Notification objects, keywords description, 5-

13

O
object class

generating actions, 5-7
generating attributes, 5-7
, 2-10
, 2-10

ObjectCreation
ObjectDeletion
overview, 1-1

P
parameters
Base object
Class name
dn, 2-6
Filter , 2-9

, 2-9
2-7

Platform , 2-7,2-9

Scope, 2-9

Platform , 2-4,2-11, 2-14
Platform object parameters

Host, 2-5
MIS name, 2-5
Password, 2-5

User name, 2-5
PlatformEvent.java

programs
AlarmBatch
AlarmClear
AlarmDelete
AlarmEvent
AlarmQuery

R
RawEvent, 2-10
registering

3-16
3-24
, 3-29
3-20
3-33

Index-3

callbacks, 2-5, 2-12
event listeners, 2-10, 2-12
events, 2-10

S
sample
applications, 2-14
files, 5-22
test, 5-20
server delegation, 1-3
sources
host, 2-6
router, 2-6
server, 2-6
subnet, 2-6
starting, IDMK MPA, 5-3
stopping, IDMK MPA, 5-3
supported types, 5-15

T
task flow, 2-3
topology management, 4-1
agent operations, 4-2
node operations, 4-2
type operations, 4-2, 4-14
type operations, performing, 4-14
types
changing, 4-14, 4-16
creating, 4-14
destroying, 4-14, 4-17
loading, 4-14, 4-16

\Y,

versions supported
Java platform, 1-3
JDMK, 5-2

Index-4 Developing Java Applications ¢ October 2001

	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	What Typographic Changes Mean
	Shell Prompts in Command Examples
	Accessing Sun Documentation Online
	Sun Welcomes Your Comments
	1.1 Important Terms
	1.2 Architectural Overview
	1.3 Java APIs
	1.4 JDMK MPA
	1.5 JDMK to CMIS Event Forwarder
	1.6 JMA
	2.1 Overview
	2.1.1 Java Management Tasks
	2.1.2 Java Management Task Flow

	2.2 Instantiating the Platform Class
	2.3 Defining Local Representation of Managed Objects
	2.3.1 Instantiating the MOHandle Class
	2.3.2 Instantiating MOHCollectionByRule and MOHCollectionEnum Classes

	2.4 Registering Event Listeners
	2.5 Handling Events
	2.6 C++ Equivalents for the JMI API Classes
	2.7 Sample JMI Application
	2.7.1 PlatformEvent.java
	2.7.2 MOHandleTest.java
	2.7.3 MOHandleEvent.java
	2.7.4 EmWho.java
	2.7.5 CollectionEvent.java

	3.1 Overview
	3.1.1 Alarm Management Tasks
	3.1.2 Alarm Management Task Flow

	3.2 Instantiating the AlarmLog Class
	3.3 Creating Query Objects
	3.3.1 Creating FilterItem Objects
	3.3.2 Creating Filter Objects
	3.3.3 Creating GenericQuery Objects

	3.4 Creating AlarmRecordAttributeSet Objects
	3.5 Getting Alarms
	3.5.1 Getting Alarm Counts
	3.5.2 Getting Alarms
	3.5.3 Getting Alarms in Batches

	3.6 Clearing and Acknowledging Alarms
	3.7 Listening for Alarm Log Events
	3.8 Sample Programs
	3.8.1 AlarmBatch
	3.8.2 AlarmEvent
	3.8.3 AlarmClear
	3.8.4 AlarmDelete
	3.8.5 AlarmQuery

	4.1 Overview
	4.1.1 Topology Management Tasks

	4.2 Differences Between the C++ and Java Topology APIs
	4.3 Performing Node Operations
	4.3.1 Creating Nodes
	4.3.2 Loading Node Attributes
	4.3.3 Changing Node Attributes
	4.3.4 Destroying Nodes
	4.3.5 Listening to Node Events

	4.4 Performing Type Operations
	4.4.1 Creating Topology Types
	4.4.2 Loading Topology Types
	4.4.3 Changing Topology Types
	4.4.4 Destroying Topology Types

	4.5 Performing Agent Operations
	4.5.1 Creating Agents
	4.5.2 Loading Agents
	4.5.3 Changing Agents
	4.5.4 Destroying Agents

	5.1 Overview
	5.1.1 Supported Versions of JDMK
	5.1.2 Prerequisites for Configuring the JDMK Agent/Behavior Service

	5.2 Setting Up the JDMK MPA
	5.2.1 Configuring the JDMK MPA
	5.2.2 Starting and Stopping the JDMK MPA

	5.3 Generating GDMO From Java Classes
	5.3.1 Class Definition Conversions
	5.3.2 Generation of GDMO Documents
	5.3.3 Assignment of Object Identifiers
	5.3.4 Mapping Between Java Constructs and GDMO
	5.3.4.1 MODULE Construct
	5.3.4.2 MANAGED OBJECT CLASS Construct
	5.3.4.3 ATTRIBUTE Construct
	5.3.4.4 ACTION Construct
	5.3.4.5 NOTIFICATION Construct

	5.3.5 Mapping of M-Bean Object Names
	5.3.6 Mapping JDMK Java Types to ASN.1
	5.3.7 Mapping Limitations

	5.4 Compiling and Loading the Generated GDMO Files Into the MDR
	5.5 Configuring Persistent jdmkAgent Objects
	5.5.1 Starting em_jdmk_config
	5.5.2 Configuration Examples

	5.6 Testing Your Agent With the MIS Objects Tool
	5.7 Sample Java Files
	5.7.1 Converting Sample Java Classes Into GDMO
	5.7.2 Listings of the Sample Java Classes

