DSun.

microsystems

Developing CORBA Applications

Solstice Enterprise Manager ~4.1

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Part No. 806-7977-10
October 2001, Revision A



Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun Enterprise Manager, SunOS, and Solaris are trademarks, registered trademarks, or service marks of
Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réserveés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Sun Enterprise Manager, SunOS, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et
sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant
les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L'ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

B 4}

Adobe PostScript



Contents

Preface xiii

Introduction to SEM CORBA Development Environment 1-1

11
1.2
13

Overview of SEM CORBA Architecture 1-1
SEM CORBA ToolKit Development Environment 1-2

References 1-4

Interacting With SEM CORBA Gateway 2-1

2.1

2.2

2.3
2.4

JIDM Interfaces 2-2

2.1.1  Interfaces Required for Manager Applications 2-2
2.1.2 Interfaces Required for Agent Applications 2-2
2.1.3  OSI Management Interfaces 2-3

Interacting With Solstice EM CORBA Request Gateway 2-4
2.2.1  Connecting Clients for the First Time 2-5

2.2.2  Authenticating Clients 2-8

2.2.3  Accessing the Managed Object Domain and Creating
JIDM::ProxyAgent 2-8

2.24 Handling CMIS Requests and Responses 2-9

Non JIDM interfaces 2-9

Interacting With Solstice EM Event Gateway 2-10

2.4.1  Gaining Access to a Manager or Client Application 2-10

Contents



2.4.2 Dynamically Creating JIDM::EventPort Objects 2-11
2.4.3  Obtaining References to JIDM::EventPort 2-14
2.4.4  Finding a JIDM::EventPort given the AE-title 2-14
2.5 Interacting With Solstice EM Metadata Gateway 2-14
2.6 Controlling Access and Authorization 2-15
2.6.1 Encrypting and Decrypting the User Profile 2-15
2.6.2  Authenticating User Profiles 2-16
2.7 Enabling Access From Non-Unix Environments 2-16
2.8 Enabling Internet Connections to Solstice EM via CORBA Gateways 2-16
2.9 Providing an Extra Layer of Authentication 2-17

3. Managing Networks With SEM CORBA Gateway 3-1
3.1  General Concepts 3-1
3.1.1 Modeling Objects 3-1
3.1.2 Managers 3-2
3.1.3 Agents 3-2
3.1.4 Managed Resources 3-2
3.1.5 Managed Objects 3-3
3.1.6 Management Protocols 3-3
3.1.7  Concepts Specific to CORBA and TMN  3-3
3.2  Operating on CORBA Clients and Objects 3-4
3.2.1  Operating Asynchronously and Synchronously 3-4
3.2.2  Handling Replies and Errors in Client Applications 3-7
3.2.3 Creating Objects 3-12
3.2.4  Deleting Objects 3-20
3.2.5 Obtaining Object Attributes 3-25
3.2.6  Obtaining Multiple Object Attributes 3-33
3.2.6.1 Selecting Objects Through Scoping and Filtering 3-33
3.2.6.2 Synchronization and Access Control 3-34
3.2.6.3 attribute_id_list parameters 3-34

iv. Developing CORBA Applications ¢ October 2001



3.2.7 Modifying Object Attributes 3-36

3.2.8  Performing an Operation on a Managed Object 3-41
3.2.9 Cancelling a Request 3-46

3.2.10 Subscribing to an Event 3-51

Handling Events With SEM CORBA Gateway 4-1

4.1

4.2
4.3
4.4
4.5
4.6

Enabling Inter-Process Communication Between EDS Sinks and CORBA
Clients 4-4

4.1.1 Finding an EventPort 4-5

4.1.2 Creating an EventPort 4-5

Subscribing to Events 4-6

Unsubscribing From Event Notifications 4-7
Formatting Event Reports 4-7

Sharing Events Between Multiple Clients 4-8
Listening to Events—Client Applications 4-8

4.6.1 Resolving the EventPortFactory Interface 4-9
4.6.2 Assigning a Client to an EventChannel 4-9
4.6.3 Creating an EventPort 4-10

4.6.4  Subscribing to Events 4-11

4.6.5 Sample PushConsumer 4-12

Translating Data 5-1

5.1
5.2
5.3

Metadata Gateway Interface 5-1
Encoding and Decoding Attribute Values 5-2

Decoding Events and Responses 5-6

Accessing Information Through Metadata Gateway 6-1

6.1
6.2
6.3

Browsing Metadata 6-1
Walking Through Metadata 6-8
Obtaining Metadata Information 6-11

6.3.1  Listing Documents in the MDR Using the get_doc_list()
Method 6-12

Contents



6.3.2

6.3.3
6.3.4
6.3.5

Listing Managed Obiject Classes in the GDMO Document Name
6-13

Getting the Managed Object Class Attributes 6-13
Getting Managed Object Class Notifications 6-14
Obtaining the Textual Representation of an Attribute 6-15

7. Managing Agents 7-1

7.1  Solstice EM-specific Generic Interfaces 7-1
7.2 Managing OSI/CMIP Objects 7-2

7.3 Managing SNMP Objects 7-3

7.4 Management of CORBA Obijects 7-4

8. Interoperating SEM CORBA Gateway 8-1

8.1 Background on Interoperability 8-1

8.2  ORBs for Developing Client/Manager Applications 8-2

8.3 Implementing Client Applications on Other ORBs 8-2

A. IDLs Used by SEM CORBA Gateway A-1
A.1 IDLs Based on Standards A-2
A.2  IDLs Specific to SEM CORBA Gateway A-4

B. Programming Techniques B-1

B.1 Compiling and Linking Applications B-1

B.2  Troubleshooting Gateway Processes B-8

B.2.1  Checking the Log Files B-8
B.2.2 Using Dynamic Debugging B-10

. Criteria for ProxyAgent s C-1

Developing CORBA Applications « October 2001



Figures

FIGURE 1-1

FIGURE 1-2

FIGURE 2-1

FIGURE 3-1

FIGURE 3-2

FIGURE 3-3

FIGURE 4-1

FIGURE 5-1

FIGURE 6-1

FIGURE 6-2

FIGURE 6-3

FIGURE 6-4

FIGURE 6-5

FIGURE 6-6

FIGURE 6-7

FIGURE 7-1

FIGURE 7-2

SEM CORBA Gateway Architecture 1-2

SEM CORBA ToolKit Development Environment  1-3

Interfaces Exposed by SEM CORBA Gateway Components 2-4

get Asynchronous Operation 3-5

get Synchronous Operation 3-6

Subscribing to an Event  3-52

The CORBA Event Gateway and Its Interfaces 4-3

Encoding/Decoding Done by RGW  5-3

Class Hierarchy Followed in the IDL Representation 6-4

Decomposition of IDL Data Structures Defined in metadatagw.idl 6-5
The ASN1 Defined Type Mapped Into the IDL Structure DefinedType 6-5
Decomposition of Component IDL Types 6-6

Decomposition of IDL Subtype 6-7

Decomposition of NamedNumberFormat  6-8

IDL Mapping Wrapped Into Node Structure 6-10

Managing CMIP Objects From CORBA Manager Applications 7-2

Managing SNMP Objects From CORBA Manager Applications 7-3

Figures

vii



vii  Developing CORBA Applications  October 2001



Tables

TABLE P-1

TABLE P-2

TABLE 4-1

TABLE 5-1

TABLE 5-2

TABLE A-1

TABLE B-1

TABLE B-2

TABLE C-1

Typographic Conventions xv

Shell Prompts  xvi

Reasons for Typical Exceptions Being Raised 4-5

Sample Primitive Mappings Between ASN1 Types and IDL Types 5-2

Steps for Mapping CORBA IDL Data to GDMO Format

OSIMgmt.idl  Functions Extended in OSIMgtExt.idl

CORBA Gateway Log Files B-8

CORBA Gateway Debugging Objects B-10

criteria

for ProxyAgent s C-1

5-5

A-5

Tables

ix



x  Developing CORBA Applications = October 2001



Code Samples

CODE EXAMPLE 2-1

CODE EXAMPLE 2-2

CODE EXAMPLE 2-3

CODE EXAMPLE 3-1

CODE EXAMPLE 3-2

CODE EXAMPLE 3-3

CODE EXAMPLE 3-4

CODE EXAMPLE 3-5

CODE EXAMPLE 3-6

CODE EXAMPLE 3-7

CODE EXAMPLE 3-8

CODE EXAMPLE 3-9

CODE EXAMPLE 3-10

CODE EXAMPLE 4-1

CODE EXAMPLE 4-2

CODE EXAMPLE 4-3

CODE EXAMPLE 4-4

CODE EXAMPLE 4-5

CODE EXAMPLE 4-6

Connecting to the SEM CORBA Gateway (for VisiBroker) 2-6
Creating a JIDM::EventPort and Registering for Events 2-11
Initializing AuthenticationClient 2-17
Implementation of LinkedReplyHandler 3-7
Creating Managed Objects 3-13
Deleting Managed Objects Asynchronously 3-20
Getting Object Attributes using cmis_get() 3-25
Getting Object Attributes using cmis_get_text() 3-29
Obtaining Multiple Object Attributes  3-35
Modifying Object Attributes  3-36
Performing an Operation on a Managed Object 3-41
Cancelling a Request 3-46
Subscribing to an Event  3-52
IDL Definition for EventPortRegistry 4-4
IDL Definition of subscribe() (from OSIMgmtExt.idl) 4-6
Method for Unsubscribing From Event Notifications 4-7
IDL Event Report Format  4-7
Resolving the EventPortFactory Interface  4-9

Assigning a Client to an EventChannel 4-9

Xi



CODE EXAMPLE 4-7

CODE EXAMPLE 4-8

CODE EXAMPLE 4-9

CODE EXAMPLE 5-1

CODE EXAMPLE 5-2

CODE EXAMPLE 5-3

CODE EXAMPLE 5-4

CODE EXAMPLE 6-1

CODE EXAMPLE 6-2

CODE EXAMPLE 6-3

CODE EXAMPLE 6-4

CODE EXAMPLE 6-5

CODE EXAMPLE 6-6

CODE EXAMPLE 6-7

CODE EXAMPLE B-1

CODE EXAMPLE B-2

CODE EXAMPLE B-3

CODE EXAMPLE B-4

CODE EXAMPLE B-5

Creating an EventPort 4-10
Subscribing to Events  4-11
Sample PushConsumer  4-12

Encoding of CORBA::Any Corresponding to CurrentAttributes 5-4
Decoding an Attribute Value 5-4

Mapping data from CORBA IDL Format to GDMO Format 5-5
Definition of attributeValueChange Notification 5-7
Connecting to the MGW  6-2

Obtaining the ASN1 Type of an Attribute From the Metadata 6-11

Invoking the MDR Interface to List All Documents Loaded on MDR  6-12

Obtaining Managed Obiject Class Attributes Based on GDMO Document Name and Object
Class 6-13

Obtaining Noatifications Defined in a Managed Object Class From the MDR  6-14

Obtaining Notifications of a Managed Class Object Based on Its oid  6-15

Obtaining the ASN1 Textual Representation of an Attribute  6-16

UNIX Script for Compiling and Linking a Sample CORBA Program B-1
Getting Root Naming Context B-4
Getting ProxyAgentFinder B-5
Getting ProxyAgent B-6

Sample Log File Contents for RGW B-9

xii  Developing CORBA Applications ¢ October 2001



Preface

The Developing CORBA Applications guide provides information required to develop
CORBA based network manager applications that interact with the SEM CORBA
Gateway. It contains procedures, guidelines and examples for various functions that
can be carried out through these interactions.

Who Should Use This Book

This document is intended for SEM CORBA applications developers, which includes
architects, designers and coders. No prior experience with Solstice Enterprise
Manager (Solstice EM) is assumed. However, if you are not familiar with Solstice
EM, see Section “Related Books” on page -xv for a listing of books to refer.

Before You Read This Book

Read through the Solstice EM documentation so that you have an understanding of
the programming context, because many parts of this book refer to concepts that are
covered in documents listed in Section “Related Books” on page -xv.

It is assumed that you have a basic understanding of CORBA application
development as well as Network Management concepts. It is also recommended that
you go through the JIDM document, Inter-Domain Management: Specification
Translation and Interaction Translation.

Preface  xiii



Xiv

How This Book Is Organized

This book contains the following chapters:

Chapter 1 "Introduction to SEM CORBA Development Environment" provides an
introduction to SEM CORBA development environment.

Chapter 2 "Interacting With SEM CORBA Gateway" introduces the various
interfaces that SEM CORBA Gateway implements and explains how to interact with
the SEM CORBA Gateway.

Chapter 3 "Managing Networks With SEM CORBA Gateway" explains SEM
CORBA Gateway from the network management perspective.

Chapter 4 "Handling Events With SEM CORBA Gateway" explains event handling
in detail.

Chapter 5 "Translating Data" describes various data formats used in SEM CORBA
Gateway and how to transform from one to the other.

Chapter 6 "Accessing Information Through Metadata Gateway" describes
Metadata Gateway functionality and how to interact with Metadata Gateway.

Chapter 7 "Managing Agents" describes how to manage different kinds of agents
(SNMP/CMIP) using SEM CORBA Gateway.

Chapter 8 "Interoperating SEM CORBA Gateway" considers scenarios where the
manager application is developed using different ORBs other than the ORB used for
SEM CORBA Gateway.

Appendix A "IDLs Used by SEM CORBA Gateway" provides a listing of IDLs used
by SEM CORBA Gateway.

Appendix B "Programming Techniques" details a few programming tips for
CORBA application development.

Appendix C "criteria for ProxyAgents" details criteria for ProxyAgent s.

Developing CORBA Applications * October 2001



Related Books

Following is a list of related books:
= Developing C++ Applications

= Management Information Server (MIS) Guide

= Managing Your Network
= Customizing Guide
= CORBA Gateway Administration Guide

What Typographic Changes Mean

The following table describes the typographic changes used in this book.

TABLE P-1  Typographic Conventions

Typeface or
Symbol Meaning

Example

AaBbCc123
and directories; on-screen
computer output.

AaBbCc123 What you type, contrasted with
on-screen computer output.

AaBbCc123 Command-line placeholder:
replace with a real name or
value.

AaBbCc123 Book titles, new words or terms,

or words to be emphasized.

The names of commands, files,

Edit your .login file.
Usels -a to list all files.
machine_name% You have mail.

machine_name% su
Password:

To delete a file, type rm filename.

Read Chapter 6 in User’s Guide. These
are called class options.
You must be root to do this.

XV



Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P-2  Shell Prompts

Shell Prompt

C shell prompt machine_name%
C shell superuser prompt machine_name#
Bourne shell and Korn shell $

prompt

Bourne shell and Korn shell #

superuser prompt

Accessing Sun Documentation Online

The docs.sun.com ™ web site enables you to access Sun technical documentation
on the Web. You can browse the docs.sun.com archive or search for a specific book
title or subject at http://docs.sun.com

Also, you can view the online documentation by pointing your browser to the
following URL, file:/opt/SUNWconn/em/docs/SEMDOCHP/index.html

Xvi

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can send your comments by email to docfeedback@sun.com

Please include the part number of your document in the subject line of your email.

Developing CORBA Applications * October 2001



CHAPTER 1

Introduction to SEM CORBA
Development Environment

You can use the SEM CORBA development environment to extend the functionality
of Solstice Enterprise Manager (Solstice EM) by developing custom applications to
meet your particular network management needs. These applications will interact
with the SEM CORBA Gateway and provide a means for a comprehensive CORBA.-
based north-bound interface. Your applications can be truly independent of the
platform (they can be on a different machine), the ORB and the language of
implementation.

In order to set up the SEM CORBA development environment you should install
and execute configuring scripts of the SEM CORBA ToolKit. You also need to build
the SEM CORBA Gateway executables using the ToolKit. For more information refer
to Chapter 2 “SEM CORBA ToolKit” in the CORBA Gateway Administration Guide.

This chapter introduces the SEM CORBA ToolKit development environment,
provides an overview of the SEM CORBA architecture, and introduces you to related
technical terms and resources. It describes the following topics:

= Section 1.1 “Overview of SEM CORBA Architecture” on page 1-1
= Section 1.2 “SEM CORBA ToolKit Development Environment” on page 1-2
= Section 1.3 “References” on page 1-4

1.1

Overview of SEM CORBA Architecture

The SEM CORBA Gateway translates CORBA manager requests in Interface
Description Language (IDL) to Solstice EM Portable Management Interface (PMI) or
equivalent requests. CORBA Gateways also translate Solstice EM PMI responses to
IDL or Internet Inter-ORB Protocol (IIOP) responses, and PMI events to CORBA
events. This product supports the manager-side interfaces to Solstice EM based on
the CORBA/Telecommunications Management Network (TMN) Interworking

1-1



standard. Solstice EM also provides an Abstract Syntax Notation 1 (ASN1) metadata
server, which enables client applications to access and traverse ASN1 type
information for a given attribute of a managed object or notification.

CORBA-based TMN CORBA-based TMN
Manager application Manager application

IDL
requests

A

IDL responses,
CORBA events

IDL
requests

A 4

A

IDL responses,
CORBA events

CORBA ORB (Object Request Broker)

IIOP/IDL

SEM CORBA
Gateway

PMI

PMI applications

PMI

C EM (MIS and other EM components) >

FIGURE 1-1 SEM CORBA Gateway Architecture

For more information about the CORBA/TMN Interworking standard, refer to the
proposed standards at the Object Management Group (OMG) website listed in
Section 1.3 “References” on page 1-4.

1.2 SEM CORBA ToolKit Development
Environment

The development environment is provided by the ToolKit. The ToolKit is ORB
specific, which means the configuration files and Makefiles that get installed are
dependent on the ORB you choose while installing Solstice EM.The machine on
which you install the ToolKit will be your development machine.

1-2 Developing CORBA Applications * October 2001



The ToolKit consists of a set of IDLs, source files, header files, Makefiles and
configuration files. You must execute the Makefile  in the home directory of the
ToolKit to build, package and optionally install the SEM CORBA Gateway on the
development machine. The runtime package created can be used to deploy SEM
CORBA Gateway on any other machine.

| _Runtime
Environment

FIGURE 1-2 SEM CORBA ToolKit Development Environment

For more information refer to Chapter 2 “SEM CORBA ToolKit” in the CORBA
Gateway Administration Guide.

Chapter 1 Introduction to SEM CORBA Development Environment ~ 1-3



1.3

1-4

References

1. CORBA/TMN Interworking (also known as JIDM Interaction Translation) Standard -
final submission to OMG's CORBA/TMN Interworking RFP. Refer to the OMG
web site at:

http://www.omg.org/cgi-bin/doc?telecom/98-10-10
2. CORBA Standards Specifications; CORBA 2.3 by the Object Management Group.

3. Your ORB vendor’s documentation.

Developing CORBA Applications * October 2001



CHAPTER 2

Interacting With SEM CORBA
Gateway

The CORBA applications need to interact with SEM CORBA Gateway to perform
network management functions. You should know the interfaces and methods
exposed by the SEM CORBA Gateway in order to develop these applications which
will interact with SEM CORBA Gateway.

This chapter describes the following topics:

= Section 2.1 “JIDM Interfaces” on page 2-2

= Section 2.2 “Interacting With Solstice EM CORBA Request Gateway” on page 2-4

= Section 2.3 “Non JIDM interfaces” on page 2-9

= Section 2.4 “Interacting With Solstice EM Event Gateway” on page 2-10

= Section 2.5 “Interacting With Solstice EM Metadata Gateway” on page 2-14

= Section 2.6 “Controlling Access and Authorization” on page 2-15

= Section 2.7 “Enabling Access From Non-Unix Environments” on page 2-16

= Section 2.8 “Enabling Internet Connections to Solstice EM via CORBA Gateways”
on page 2-16

= Section 2.9 “Providing an Extra Layer of Authentication” on page 2-17

The SEM CORBA Gateway is compliant with Joint Inter-Domain Management
(JIDM) standards and provides a set of interfaces based on these standards. The SEM
CORBA Gateway is designed to work with standard management reference models
(such as SNMP/IP and CMIP/OSI). The interfaces defined and implemented by the
SEM CORBA Gateway define the interaction between it and applications. Hence, it
is critical for developing efficient applications to understand these interfaces.

Note — You are assumed to have installed the SEM CORBA ToolKit and setup the
development environment. All examples cited henceforth are more appropriate in a
scenario in which the ToolKit has been installed and configured.

2-1



2.1 JIDM Interfaces

The JIDM Standards specify interfaces that define a basic set of services, of which the
SEM CORBA Gateway implements a subset. This section lists the implemented
interfaces sorted into different categories.

2.1.1 Interfaces Required for Manager Applications

The following interfaces are required for manager (client) applications:

ProxyAgent interface
ProxyAgentController interface
ProxyAgentFinder interface
EventPort interface
EventPortFactory interface

Note — Throughout this document, the terms “manager application” and “client”
are used interchangeably.

The ProxyAgent interface implements the following CMIS commands required for
a client application to interact with the SEM CORBA Gateway:

= Cmis_get

= Cmis_set

= Cmis_create

= CMmis_create_sync
= cmis_delete

= Cmis_action

2.1.2 Interfaces Required for Agent Applications

The following interface is required for agent applications:
= EventPortFinder interface

2-2  Developing CORBA Applications * October 2001



2.1.3

OSI Management Interfaces

The Open System Interconnection (OSI) management interface definitions provided
by JIDM standards (OSIMgmt.idl ) include features that are specific to the OSI
management model and support the following functionality:

= Scope and filtering

= Naming of objects according to OSI management principles

= Creation and deletion of objects according to OSI principles

= Creation of DomainPort s and EventPort s associated with OSI AE-titles

The SEM CORBA Gateway implements the following OSI management interfaces
which are a subset of the JIDM standards:

= ProxyAgent interface derived from JIDM::ProxyAgent

= LinkedReplyHandler and EndOfRepliesHandler interfaces

The ProxyAgent interface provides all the OSI network management functionality.

The LinkedReplyHandler and EndOfRepliesHandler interfaces facilitate
implementation of the asynchronous model of communication.

Note — Appendix A provides more information on the IDL files and interfaces
implemented by the SEM CORBA Gateway.

FIGURE 2-1 shows the interfaces exposed by the SEM CORBA Gateway components
that are the basis on which applications can be developed.

Chapter 2 Interacting With SEM CORBA Gateway 2-3



Meta

Data Event
Repositor
P Y Igggistry Event
Proxy A Port Event
Zg%xr%/t Agent .o Event 4 Port
i izati P Factor
Controller Finder agent Authorization ort y

\ K f Prox; Fin;er | ] /

i

Event
Gateway

Request
Gateway

Metadata
Gateway

SEM CORBA GATEWAY

FIGURE 2-1 Interfaces Exposed by SEM CORBA Gateway Components!

2.2

2-4

Interacting With Solstice EM CORBA
Request Gateway

The Request Gateway (RGW) is primarily designed to handle the initial CORBA
client connections to the gateway and CMIS requests or responses. Hence, it
implements the interfaces that support the following functionality:

1

Connecting clients for the first time

Authenticating clients

Accessing the managed object domain and creating JIDM::ProxyAgent
Handling CMIS requests and responses

. The interfaces shown with dotted lines are created dynamically.

Developing CORBA Applications * October 2001



2.2.1

Connecting Clients for the First Time

A client application (for example a CORBA manager application) must be connected
to the SEM CORBA Gateway before you can carry out any manager functions. The
steps involved in connecting to the Gateway are:

= Getting the ProxyAgentFinder object
= Creating an AuthenticationClient

= Encrypting the user profile

= Finding/Creating the ProxyAgent

A detailed explanation of each step, and a code example follow.

. Get the ProxyAgentFinder object

The first step is to get a reference to the ProxyAgentFinder , an interface
implemented by the RGW. This enables client programs to get access to a given
managed object domain.

The client application must initialize the Object Request Broker (ORB), initialize the
Object Adapter, and resolve the root naming context before the Proxy Agent Finder
can be resolved.

. Create an AuthenticationClient

The second step in connecting to the Gateway is to create an

AuthenticationClient . The Solstice EM provides UNIX CLEAR encryption and
decryption for authenticating users, but you can implement an authentication class
and integrate it with Solstice EM (see Section 2.9 “Providing an Extra Layer of
Authentication” on page 2-17).

. Encrypt the user profile

The third step is to specify the user profile in the JIDM::Criteria structure. The
authentication client created in Step 2, provides a method for encrypting the user
profile. The encrypted user profile is specified in the JIDM:Criteria structure.

. Find/Create the ProxyAgent

The user profile provided as part of criteria is validated before finding or
creating the ProxyAgent

The ProxyAgentFinder has a method called access_domain that locates the
ProxyAgent , for the key and the criteria that are passed as parameters.
criteria is the attribute that is specified in Step 3, with the encrypted user profile.

Chapter 2 Interacting With SEM CORBA Gateway 2-5



The following code segment shows how to get connected to the SEM CORBA
Gateway.

For detailed working examples, refer to /opt/SUNWconn/em/src/
corba_gateway/requests directory of the Solstice EM package.

CODE EXAMPLE 2-1  Connecting to the SEM CORBA Gateway (for VisiBroker)

/I Example to show how to get connected to SEM CORBA gateway.
1

#include <corba.h>

#include <stdlib.h>

#include <cos/CosNaming_c.hh>

int
main(
int argc,
char **argv
)4
CORBA::ORB_var orb;
PortableServer::POA_var root_poa;
PortableServer::POAManager_var poa_manager;
PortableServer::POA_var cgwPOA;

/I CORBA Orb intialization
orb = CORBA::ORB_linit(argc, argv);
root_poa =
PortableServer::POA::_narrow(orb-
>resolve_initial_references("RootPOA"));

/I Get rootnaming context

CosNaming::NamingContext_var root_nc;

CORBA::Object_var object = orb-
>resolve_initial_references("NameService");

root_nc = CosNaming::NamingContext::_narrow(object);

if(CORBA::is_nil(root_nc)) {
cerr << "FAILED: Unable to obtain root naming context\n" <<
flush;
exit(0);
}

/I STEP NO 1: Find proxy agent finder

CosNaming::Name name;

name.length(1);

JIDM::ProxyAgentFinder_var proxy_agent_finder;

name[0].id = CORBA::string_dup("JIDM::ProxyAgentFinder");

2-6  Developing CORBA Applications * October 2001



CODE EXAMPLE 2-1  Connecting to the SEM CORBA Gateway (for VisiBroker) (Continued)

name[0].kind = CORBA::string_dup("™);
CORBA::Object_var object = root_nc->resolve(name);
proxy_agent_finder = JIDM::ProxyAgentFinder::_narrow(object);
if (CORBA::is_nil(proxy_agent_finder)) {
cerr << "FAILED:Unable to obtain correct Proxy Agent Finder\n"
<< flush;
exit(1);
}
if(proxy_agent_finder->_non_existent()) {
cerr << "FAILED: Proxy Agent Finder does not exist\n" <<
flush;
exit(1);
}

/I Get use name and password user

cout << "Enter User Name: " << flush;

char user_name[128];

cin >> user_name;

const char* password_prompt = "Enter Password: ";

/I getpassphrase return a pointer to static data which should

not be

// deleted

char* raw_password = getpassphrase(password_prompt);

cout << "Got your password will authenticate..\n " << flush;

/I STEP NO 2: create authentication client
AuthenticationClient* ac = new
AuthenticationClientHandle("UNIX_CLEAR");

/I STEP NO 3: ENcrypt the user profile
JIDM::Criteria a_criteria;
a_criteria[1].name = CGWGlobal::JIDM_USER_PROFILE;
cout << "JIDM user profile done ..\n" << flush ;
a_criteria[1].value = *(ac->encrypt_user_profile(
user_name,
raw_password,
NULL));
f(a_criteria[1].value.type()->kind() == CORBA::tk_null) {
cerr << "FAILED: Unable to obtain encrypted user profile\n"
<< flush;
exit(3);
}

/I STEP NO 4: Find the proxy agent
JIDM::ProxyAgent_var proxy_agent;

Chapter 2 Interacting With SEM CORBA Gateway 2-7



CODE EXAMPLE 2-1  Connecting to the SEM CORBA Gateway (for VisiBroker) (Continued)

proxy_agent = proxy_agent_finder->access_domain(a_key,
a_criteria);
if (CORBA::is_nil(proxy_agent)) {
cerr << "FAILED: Unable to obtain correct Proxy Agent" << endl
<< flush;
exit(4);
}
if(proxy_agent->_non_existent()) {
cerr << "FAILED: Proxy Agent does not exist" << end| <<
flush;
exit(4);
}

/I Successfully for the Proxy Agent, hence connected to SEM
CORBA Gateway

}

2.2.2 Authenticating Clients

Authentication of clients is done by ProxyAgentFinder . The ProxyAgentFinder
implementation uses internal Solstice EM functionality to check whether the
supplied user profile refers to a valid user of Solstice EM and if so, the
ProxyAgentFinder returns a reference of the ProxyAgent to the client.

2.2.3 Accessing the Managed Object Domain and
Creating JIDM::ProxyAgent

Managed objects are classified into domains. Manager applications that need to
interact with a managed object, must first get access to its domain. The SEM CORBA
RGW creates a ProxyAgent whenever a client gains access to the domain. The RGW
searches through its list of ProxyAgent s for any pre-existing ProxyAgent that

matches the criteria  , and if one is found, it returns a reference for it back to the
client application. If a ProxyAgent for the required criteria is not found, the
ProxyAgentFinder interface creates a new ProxyAgent and returns its reference

to the client application.

2-8 Developing CORBA Applications « October 2001



2.2.4

Handling CMIS Requests and Responses

The RGW is solely responsible for handling requests sent by manager applications
and the responses sent back to them. The RGW accepts the manager requests in IDL,
translates them into low-level PMI requests, and sends them to the Solstice EM MIS.
The Solstice EM MIS responds to the RGW. The RGW then translates these responses
back into IDL format and sends them back to the CORBA application.

The RGW implements the OSI management features specified by the JIDM standards
and hence supports those specific to OSI management. The OSI management
implementation of the RGW includes a ProxyAgent interface (derived from
JIDM::ProxyAgent ) and includes methods to support all the OSI management
CMIS operations, such as get , set , and create

2.3

Non JIDM interfaces

The SEM CORBA Gateway provides an extension by means of text based CMIS
commands, listed in Section 2.1.1 “Interfaces Required for Manager Applications” on
page 2-2.

The following text commands are supported by implementing an interface which is
derived from JIDM::ProxyAgent

= CMis_get_text

= CMmis_set_text

= CMis_create_text

= CMis_create_sync_text
= Cmis_delete_text

= Cmis_action_text

For details on the arguments to be passed to these commands, refer to the examples
in the EM_HOME/src/corba_gateway/examples directory. Also refer to the IDL
files ASN1TypesExt.idl , CMIExt.idl , and OSIMgmtExt.idl

Chapter 2 Interacting With SEM CORBA Gateway 2-9



2.4

2.4.1

Interacting With Solstice EM Event
Gateway

The Solstice EM Event Gateway (EGW) primarily handles the delivery of CMIS
events/notifications to CORBA clients or manager applications. To listen to events,
the clients or manager applications created by you must handle the following
functionality in the given order:

1. Creating and registering event ports (using the EventPort interface)

2. Creating event discriminating filters (EDFs) using M-create

3. Issue of cmis_create() commands on the ProxyAgent simplemented by RGW.
The Solstice EM EGW implements the following three interfaces specified by JIDM

standards:

= EventPort interface
= EventPortFactory interface
» EventPortFinder interface

Apart from the three JIDM standard interfaces, the Solstice EM EGW provides
another interface called EventPortRegistry

These interfaces and instructions for the interfacing of client/manager applications
are described in the following sections.

Gaining Access to a Manager or Client
Application

A managed object gains access to a manager or a client application, through the
EventPort  so that the event notifications can be forwarded to the manager. This
port is created according to certain criteria and contains the title that identifies the
manager domain. The Solstice EM event dispatcher (part of MIS) sets up a
connection with the CosEventChannelAdmin::SupplierAdmin object associated
with the JIDM::EventPort (implemented by the EGW) with the appropriate title.

2-10 Developing CORBA Applications * October 2001



2.4.2

Dynamically Creating JIDM::EventPort Obijects

The EventPortFactory interface facilitates dynamic creation of

JIDM::EventPort objects by providing the create_event_port() method. This
interface is implemented by the EGW and basically does the following every time a
new manager/client application registers with the EGW:

= Gets a reference to the CosEventChannelAdmin::SupplierAdmin that is to be
used to receive events.

= Creates JIDM::EventPort with the criteria supplied by the manager
application.

The following code example gives you the steps to follow for implementing a
manager application.

CODE EXAMPLE 2-2  Creating a JIDM::EventPort and Registering for Events

/I Example to show how to create JIDM::EventPort and register for
events
/I Assumes ORB is initialized and naming service is resolved.

CosNaming::Name name;

name.length(1);

name[0].id = CORBA::string_dup("EventPortRegistry");
name[0].kind = CORBA::string_dup(™);

EventPortRegistry_var epr;
try {
CORBA::Object_var object = root_nc->resolve(name);
epr = EventPortRegistry::_narrow(object);
if (CORBA::is_nil(epr)) {
cerr << "FAILED: Could not get EventPortRegistry\n";
exit(3);
}
}
catch (const CORBA::Exception& e) {
cerr << "FAILED: Could not resolve EventPortRegistry name\n";
exit(4);

}
cout << "PASSED: Accessing the EventPortRegistry\n" << flush;

JIDM::EventPortFactory_var ep_factory;
name[0].id = CORBA::string_dup("EventPortFactory");
try {
CORBA::Object_var object = root_nc->resolve(name);
ep_factory = JIDM::EventPortFactory::_narrow(object);

if (CORBA::is_nil(epr)) {

Chapter 2 Interacting With SEM CORBA Gateway 2-11



CODE EXAMPLE 2-2  Creating a JIDM::EventPort and Registering for Events (Continued)

cerr << "FAILED: Could not get EventPortFactory\n™;
exit(3);
}

}
catch (const CORBA::Exception& e) {

cerr << "FAILED: Could not resolve EventPortFactory name\n®;
exit(4);
}
cout << "PASSED: Accessing the EventPortFactory\n" << flush;

JIDM::EventPortFinder_var ep_finder;
name[0].id = CORBA::string_dup("EventPortFinder");
try {
CORBA::Object_var object = root_nc->resolve(name);
ep_finder = JIDM::EventPortFinder::_narrow(object);
if (CORBA::is_nil(epr)) {
cerr << "FAILED: Could not get EventPortFinder\n®;
exit(3);
}

}
catch (const CORBA::Exception& e) {

cerr << "FAILED: Could not resolve EventPortFinder name\n”;
exit(4);
}
cout << "PASSED: Accessing the EventPortFinder\n" << flush;

/I Find an EventPort with a right key and criteria

JIDM::Key key;

key.length();

key[0].id = CORBA::string_dup("OSI Management");
key[0].kind = CORBA::string_dup("XSM environment");

JIDM::Criteria event_criteria;

event_criteria.length(2);

event_criteria[0].name = “domain title”;
event_criteria[0].value <<= CORBA::string_dup(ae_title);

event_criteria[1].name = CORBA::string_dup("ProxyAgent Access
Criteria™);
event_criteria[1].value <<= criteria;

//[Find/Create Event Port
try {
CosEventChannelAdmin::SupplierAdmin_var supplier_admin =
epr->find_event_port(key, event_criteria);

2-12  Developing CORBA Applications * October 2001



CODE EXAMPLE 2-2  Creating a JIDM::EventPort and Registering for Events (Continued)

}
catch (const JIDM::NoEventPort& el) {

cout << "PASSED: Finding EventPort with wrong key.\n" <<
"\tAs expected, NoEventPort exception was raised\n" << endl;
}

catch (const CORBA::Exception& e) {
cerr << "FAILED: Finding EventPort with wrong key" << e._name() <<
"\nExpected to get NoEventPort exception\n";
exit(5);
}

/I Resolve the EventChannel
name[0].id = CORBA::string_dup("event_channel");

CosEventChannelAdmin::EventChannel_var channel =
resolve_name<CosEventChannelAdmin::EventChannel>(root_nc,name);

CosEventChannelAdmin::SupplierAdmin_var supplier_admin =
channel->for_suppliers();

try {
JIDM::EventPort_var ep = epr->create_event_port(key,
event_criteria,
supplier_admin);
}
catch (const CORBA::Exception& e) {
cerr << "FAILED: Could not create event port\n" << e._name()<<
endl;
exit(8);
}
/I Event port has been successfully created....
cout << "PASSED: Event port creation\n" << flush;

//Listen to events by creating the push_consumer object

/I Set policy for the root POA
policies[(CORBA::ULong)0] =
root_poa->create_lifespan_policy(
PortableServer:: TRANSIENT);

/IThePushConsumerimplisderivedfromPOA_CosEventComm::PushConsumer
// and implements method push to receieve events.
PushConsumerimpl push_consumer;

Chapter 2 Interacting With SEM CORBA Gateway

2-13




2.4.3

2.4.4

CODE EXAMPLE 2-2  Creating a JIDM::EventPort and Registering for Events (Continued)

PortableServer.::POAManager_var rootManager =
root_poa->the_POAManager();

root_poa->activate_object(&push_consumer);

rootManager->activate();

ffmmmm e endofexample2.2

Note: This example activates a POA push consumer object.

Obtaining References to JIDM::EventPort

CORBA manager applications can obtain references to JIDM::EventPort objects
by using the EventPortFinder interface. This interface provides a
find_event_port method which returns a reference to the
CosEventChannelAdmin::SupplierAdmin object.

Finding a JIDM::EventPort given the AE-
title

The EventPortRegistry interface provides a method for finding a
JIDM::EventPort given the AE-title . The current implementation of SEM
CORBA Gateway has a one-to-one relationship between titles and event ports.

2.5

Interacting With Solstice EM Metadata
Gateway

The Solstice EM Metadata Gateway (MGW) implements the Metadata Repository
interface, which provides methods to access ASN1 metadata in Solstice EM. The
MGW is independent of the CORBA Gateway of the JIDM, which means that it can
be used by any application (even a non-JIDM application) to obtain information
about events or attributes, or to traverse the type tree.

See Chapter 5 and Chapter 6 for examples on how to interact with the Solstice EM
MGW.

2-14  Developing CORBA Applications * October 2001



2.6

2.6.1

~N o O

Controlling Access and Authorization

SEM CORBA Gateway access control involves two aspects:

= Encrypting and decrypting the user profile
= Authenticating user profiles

Encrypting and Decrypting the User Profile

Encryption and decryption are implemented in the following two libraries:

= /opt/SUNWconn/em/lib/libauth_server.so
= /opt/SUNWconn/em/lib/libauth_client.so

These libraries are built based on implementation of classes declared in the
following two header files respectively:

= /opt/SUNWconn/em/include/auth_helper/auth_server_handle.hh
= /opt/SUNWconn/em/include/auth_helper/auth_client_handle.hh

You can use these class definitions to implement your own encryption and
decryption.

Specific steps to be performed are as follows:
Implement *.cc files for auth_server_handle.hh

Implement *.cc files for auth_client_handle.hh

Create a Makefile to compile the *.cc files and to build the libraries (create two

separate libraries, one for the client and one for server object files).

Make a backup of the client and server libraries provided with Solstice EM.
Stop SEM CORBA services.

Replace (overwrite) the default libraries with those created in Step 3.

Restart SEM CORBA services.

Chapter 2 Interacting With SEM CORBA Gateway

2-15



2.6.2

Authenticating User Profiles

The authentication of user profiles is implemented as part of ProxyAgentFinder

To be able to successfully connect to the Gateway, every application that connects to
the SEM CORBA Gateway must provide a correct user profile which is authenticated
while accessing the ProxyAgentFinder

2.7

Enabling Access From Non-Unix
Environments

The SEM CORBA Gateway can be accessed from any environment, irrespective of
the machine, the operating system, or the programming language. The only
requirement is that the ORB used to develop the client applications use Object
Management Group’s (OMG's) Internet Inter-ORB Protocol (I11OP) to communicate
with the SEM CORBA Gateway.

The examples included with the Solstice EM package in the /opt/SUNWconn/em/
src/corba_gateway/requests directory implement sample clients in both Java
and C++.

2.8

2-16

Enabling Internet Connections to
Solstice EM via CORBA Gateways

The SEM CORBA Gateway is a set of objects. The applications that wish to connect
to the gateways must obtain references of these objects.

The SEM CORBA implementation publishes the references of objects through the
naming service and all the gateways are accessed by resolving the naming service.

A CORBA Gateway can be accessed from anywhere on the network, as long as client
applications use IIOP. The firewalls and the gateways can be programmed to pass
IIOP messages and hence it is possible for a client application to communicate with
a CORBA Gateway from anywhere on the network.

Developing CORBA Applications ¢ October 2001



2.9

Providing an Extra Layer of
Authentication

You can use the SEM CORBA Gateway to add an extra layer of authentication by
providing the following exposed classes:

= AuthenticationClientHandle
= AuthenticationClientBody
= AuthenticationClient

= AuthenticationServerHandle
= AuthenticationServerBody
» AuthenticationServer

Client applications that want to connect to the SEM CORBA Gateway use
AuthenticationClientHandle to initialize the AuthenticationClient . The
following code example shows how to initialize the AuthenticationClient

CODE EXAMPLE 2-3 Initializing AuthenticationClient

AuthenticationClient* ac =
new AuthenticationClientHandle("UNIX_CLEAR");

char user_name[128];

cout << "Enter User Name: " << flush;
cin >> user_name;
const char* password_prompt = "Enter Password: ";

/I getpassphrase return a pointer to static data which should not
be

// deleted

char* raw_password = getpassphrase(password_prompt);

//Assuming that a_criteria is already declared and
/ffirst entry in the criteria is IDM_MANAGER_TITLE
a_criteria[1].name = CGWGlobal::JIDM_USER_PROFILE;
a_criteria[1].value = *(ac->encrypt_user_profile(
user_name,
raw_password,
NULL));

Chapter 2 Interacting With SEM CORBA Gateway 2-17




2-18

The AuthenticationClientHandle class implements the following two useful
methods:

= get_user_profile(), and
= encrypt_user_profile()

The current Solstice EM-supplied implementation of the

AuthenticationServerHandle class is used only for decrypting the user profiles
sent by client applications. The method implemented for this purpose by
AuthenticationServerHandle is decrypt_user_profile()

Application developers can extend these classes to implement additional layers of
security.

Note — Implementations of the exposed functions mentioned earlier must retain
their signatures and also the names of the shared libraries are to be retained as per
the ToolKit requirement.

Developing CORBA Applications ¢ October 2001



CHAPTER 3

Managing Networks With SEM
CORBA Gateway

This chapter discusses network management through the SEM CORBA Gateway.

This chapter describes the following topics:

= Section 3.1 “General Concepts” on page 3-1
= Section 3.2 “Operating on CORBA Clients and Objects” on page 3-4

3.1

3.1.1

General Concepts

The SEM CORBA Gateway provides internetworking between CORBA-based
management stations and Solstice Enterprise Manager (Solstice EM). Since Solstice
EM provides Solstice EM south-bound interfaces to various network technologies
(such as SNMP, CMIP and RPC), the SEM CORBA Gateway also accommodates
these technologies.

The following sections are adapted from Developing C++ Applications guide for
Solstice Enterprise Manager™ 4.1; refer to the guide for more information.

Modeling Objects

Network management in the Solstice EM environment follows the 1SO network
management model. This object-oriented model is based around manager and agent
applications that exchange network management information. To manage your

3-1



3.1.2

3.1.3

3.14

resources in the Solstice EM environment, you must define an object model for those
resources. The object model defines the characteristics of resources your application
will manage.

Managers

A manager performs the following functions:

= Issuing management requests to one or more agents
= Collecting and filtering information from agents
= Presenting information about the managing system to human operators

A manager receives information from agents in the form of notifications and
responses, as follows:

= Notifications - A notification is an unsolicited message sent to the manager
indicating that a change has occurred in the managed resource.

= Responses - A response is a message sent in response to a management request
containing either the information the manager requested or a confirmation that
the request was carried out.

A manager resides in the managing system.

Agents

An agent acts as an intermediary between a manager and managed resources. An
agent responds to requests and issues notifications. Each agent acts as an interpreter
and a filter, sending commands to each of the managed resources it controls to get
the data it requires. Each agent in a managed system is responsible for carrying out
management directives to control or return information from managed resources.

An agent can reside in a managed resource or be located elsewhere and operate
remotely.

Managed Resources

A managed resource is any network resource that can be managed. The resource can
be a physical device such as a host, server, router, or subnet, or it can be a conceptual
entity such as a line, a queue, or some other aspect of network operation that must
be managed.

3-2  Developing CORBA Applications ¢ October 2001



3.1.5

3.1.6

3.1.7

Managed Objects

The 1SO management model on which Solstice EM is based is object oriented.
According to this model, a managed resource is represented as a managed object. A
managed object is a software abstraction of a managed resource. The managed object
presents the information needed to manage the resource. A managed resource may
be represented by one or more managed objects. An agent typically contains or
provides views of many managed objects.

Management Protocols

A management protocol is a set of rules that specifies how information is exchanged
between two entities that are communicating, such as a manager and an agent. A
management protocol provides the common language required to enable managers
and agents to exchange information.

A management protocol defines:

= The types of management requests and responses that agents and managers are
allowed to issue.

= The syntax and encoding of each type of request and response.

= The sequence in which management requests and responses are allowed to be
issued.

Concepts Specific to CORBA and TMN

Some concepts are specific to CORBA and Telecommunication Management
Network (TMN). The objects (both managed and manager) are grouped into domains
according to some specific criteria. Domains are identified by titles and are
individually accessible using titles. Hence, it is necessary for an entity (manager or
managed) to gain access to the domain in order to access the object.

Access to a domain is granted through a port (not to be confused with TCP/IP
ports). Two types of ports are defined in the JIDM standards, the EventPort and
the DomainPort .

When a manager (or agent) gains access to a managed (or manager) domain, a
session has been established. A session can be released (terminated), after which no
further communication can take place. Establishing a session involves checking for
the user’s authorization and privileges. Any number of sessions can be active at any
given time between any two objects.

Chapter 3 Managing Networks With SEM CORBA Gateway  3-3



3.2

3.2.1

Operating on CORBA Clients and
Obijects

CORBA clients first need to get access to the domain (or get connected to the
gateways) so that they can operate on objects. The operations on the objects can be
carried out either synchronously or asynchronously. These operations basically map to
the CMIS services on managed objects. Each of these operations is explained with
examples in the following sections.

Note — The operation of creating objects requires two different functions for
synchronous and asynchronous creation, while other operations on the objects
requires only one function, the end_of_replies_handler , based on whose value
the operation on the object is synchronous or asynchronous.

Operating Asynchronously and Synchronously

The LinkedReplyHandle  r and EndOfRepliesHandler interfaces defined in the
JIDM standards enable the clients or applications to handle the replies sent back by
the gateways.

These two interfaces must be implemented by the client or manager application.
CMIS functions such as cmis_get()  require references to these two interfaces to be
passed as arguments. The LinkedReplyHandler interface handles replies sent back
(both error and no error responses) and is mandatory. The EndOfRepliesHandler
interface is optional; if implemented and passed as an argument to the CMIS
function, it will render the CMIS operation asynchronous; if NULL is passed in place
of this argument, the operation will be treated as synchronous and client
applications will be blocked until a reply or an error message is received.

3-4  Developing CORBA Applications ¢ October 2001



CORBA Manager SEM CORBA Solstice EM

Application Gateway MIS
1 .
LRH - ) cmis_get()
PMI request
-
ERH -
2) cmis_get()
— T
Not | Blocked
i 3) cm|s_}get() >
PMI
send_reply() - response

end_of_replies()

response to 1) cmis_get()

LRH - LinkedReplyHandler
ERH - EndOfRepliesHandler

FIGURE 3-1 get Asynchronous Operation

In a get asynchronous operation, the manager application creates both
LinkedReplyHandler and EndOfRepliesHandler

When the CORBA application does a cmis_get() , it passes the reference for
LinkedReplyHandler along with the other arguments to the SEM CORBA
Gateway. The Gateway passes on the request to Solstice EM MIS. In an
asynchronous operation the CORBA manager application is not blocked, and can
continue processing.

When a reply from the Solstice EM MIS corresponds to the get request, the
reference to EndOfRepliesHandler that was passed by the CORBA manager
application is used to send the reply back to the application, by executing the
end_of_replies()

Chapter 3  Managing Networks With SEM CORBA Gateway 3-5



3-6

Note — All other operations are similar to the get operation except the create
operation. The cmis_create_sync (synchronous create) command does not have
LinkedReplyHandler nor EndOfRepliesHandler |, whereas cmis_create()
(asynchronous create) has only LinkedReplyHandler

If there is an error in processing the request, the SEM CORBA Gateway executes

either send_subtree_error() or send_no_error() , depending on the error
condition.
CORBA Manager SEM CORBA Solstice EM
Application Gateway MIS
LRH _‘ 1) cmis_get() - .
request >
Blocked
PMI response
. send_reply() -
-
response to 1) cmis_get()

LRH - LinkedReplyHandler

FIGURE 3-2 get Synchronous Operation

In a get synchronous operation, the manager application creates only the
LinkedReplyHandler and a NULL is passed in place of EndOfRepliesHandler
Once the request is sent to the Solstice EM MIS, communication between the CORBA
manager application and the SEM CORBA Gateway is blocked.

Developing CORBA Applications * October 2001



3.2.2

When a reply is received, it is forwarded to the CORBA manager application by
executing send_reply()

If there is an error in processing the request, the SEM CORBA Gateway executes
either send_subtree_error() or send_no_error() , depending on the error
condition.

Handling Replies and Errors in Client
Applications

The replies sent back by the SEM CORBA Gateway in response to a request are
handled by the send_reply() method exposed by the LinkedReplyHandler
interface. The send_reply() method returns the object interface, the object Id, the
time at which the command was handled, and the result of the command.

The error condition returned by the SEM CORBA Gateway is handled by the
send_subtree_error() or the send_mo_error() method.

The following code example shows the implementations of send_reply() ,
send_subtree_error() and send_mo_error() for a cmis_get() command.

CODE EXAMPLE 3-1  Implementation of LinkedReplyHandler

/I Copyright 05/11/99 Sun Microsystems, Inc. All Rights Reserved.

#pragma ident "@(#)get_linked_reply_handler_impl.cc1.1 99/05/11
Sun Microsystems"

#include <pmi/sys_type.hh>
#include <corba_utils/corba_utils.hh>

#include "get_linked_reply_handler_impl.hh"
#include "corba_gateway_connection.hh"

GetLinkedReplyHandlerimpl::GetLinkedReplyHandlerimpl(
) throw (
CORBA::SystemException
) : POA_OSIMgmt::LinkedReplyHandler()
{
}

void
GetLinkedReplyHandlerlmpl::send_reply(
const char* object_interface,
const CosNaming::Name& object_name,

Chapter 3  Managing Networks With SEM CORBA Gateway 3-7




3-8

CODE EXAMPLE 3-1  Implementation of LinkedReplyHandler (Continued)

const X711CMI::ASN1_GeneralizedTimeOpt& current_time,
const CORBA::Any& reply_info
) throw (CORBA.::SystemException)

{

cout << "get_client received a response from CORBA Gateway\n"
<< flush;

try {

if ((object_interface '= NULL) && strcmp(object_interface,

"))
cout << "Object Interface: " << object_interface << endl;
CORBA::ULong oi_len = object_name.length();
for (int j=0; j < oi_len; j++)
cout << "object name[" << j << "]: " << object_name[j].id

<< endl;

#if defined ORBACUS || defined ORBIX
const X711CMI::GetResultAttributeListType* attr_list = new
X711CMI::GetResultAttributeListType;
#else
X711CMI::GetResultAttributeListType attr_list;
#endif
if (I(reply_info >>= attr_list)) {
cout << "Can't extract GetResultAttributeListType\n" <<
flush;
return;

}

#if defined ORBACUS || defined ORBIX
CORBA::Long n = (*attr_list).length();
#else
CORBA::Long n = attr_list.length();
#endif
for (int i=0; i<n; i++) {
#if defined ORBACUS || ORBIX
X711CMI::AttributeType tmp = (*attr_list)[i];
cout << "Attribute ID[" <<i<<"]: " <<
tmp.attributeld.globalForm() << end| << flush;

cout << "Attribute Value [" << i << "]: " << flush;
CORBA::Long max_log_size;
if (tmp.attributeValue >>= max_log_size)
cout << max_log_size << end| << flush;
else {
cerr << "FAILED to extract result from any\n";

Developing CORBA Applications * October 2001



CODE EXAMPLE 3-1  Implementation of LinkedReplyHandler (Continued)

CORBAUils::print_any(cout, tmp.attributeValue,
orb_, true);
}
#else
X711CMI::AttributeType& tmp = attr_list[i];
cout << "Attribute ID[" << i<<"]: " <<
tmp.attributeld.globalForm() << endl << flush;

cout << "Attribute Value [" <<i<<"]: " << flush;
CORBA::Long max_log_size;
if (tmp.attributeValue >>= max_log_size)
cout << max_log_size << endl << flush;
else {
cerr << "FAILED to extract result from any\n";
CORBAUIils::print_any(cout, tmp.attributeValue, orb_,
true);

}
#endif

}
#if defined ORBACUS
free((X711CMI::GetResultAttributeListType*)attr_list);
#endif

}

catch (const CORBA::Exception& e) {
cerr << "FAILED: Unexpected CORBA exception:\n" << endl;

}

catch (...) {
cerr << "FAILED: Unexpected exception\n®;

}

}

void
GetLinkedReplyHandlerImpl::send_subtree_error(
const char* object_interface,
const CosNaming::Name& object_name,
const X711CMI::ASN1_GeneralizedTimeOpt& current_time,
CORBA::Short error_code,
const CORBA::Any& error_info
) throw (CORBA::SystemException)
{
cout << "get_client received subtree error from CORBA
Gateway\n" << flush;

try {
if ((object_interface !'= NULL) && strcmp(object_interface,
")

Chapter 3  Managing Networks With SEM CORBA Gateway

3-9




3-10

CODE EXAMPLE 3-1  Implementation of LinkedReplyHandler (Continued)

cout << "Object Interface: " << object_interface << endl;

CORBA::ULong oi_len = object_name.length();
for (int i=0; i< oi_len; i++)
cout << "object name[" << i << "]: " << object_name]i].id
<< endl;

if (current_time._d() == TRUE)
cout << "time: "<< current_time.value() << endl;

cout << "error code: "<< error_code << endl;

cout << "error info:\n" << flush;
CORBAUtils::print_any(cout, error_info, orb_, true);
}
catch (const CORBA::Exception& e) {
cerr << "FAILED: Unexpected CORBA exception:\n" << endl;

}
catch (...) {
cerr << "FAILED: Unexpected exception\n";
}
}

void
GetLinkedReplyHandlerlmpl::send_mo_error(
const char* object_interface,
const CosNaming::Name& object_name,
const X711CMI::ASN1_GeneralizedTimeOpt& current_time,
CORBA::Short error_code,
const CORBA::Any& error_info
) throw (CORBA.::SystemException)

{
cout << "get_client received MO error from CORBA Gateway\n" <<
flush;

try {
if ((object_interface !'= NULL) && !strcmp(object_interface,
Illl))

cout << "Object Interface: " << object_interface << end|;
CORBA::ULong oi_len = object_name.length();
for (int i=0; i< o0i_len; i++)
cout << "object name[" << i << "]: " << object_name]i].id

<< endl;

if (current_time._d() == TRUE)

Developing CORBA Applications ¢ October 2001



CODE EXAMPLE 3-1  Implementation of LinkedReplyHandler (Continued)

cout << "time: "<< current_time.value() << endl;
cout << "error code: "<< error_code << endl;

cout << "error info:\n" << flush;
CORBAUtils::print_any(cout, error_info, orb_, true);
}
catch (const CORBA::Exception& e) {
cerr << "FAILED: Unexpected CORBA exception:\n" << endl;

}
catch (...) {
cerr << "FAILED: Unexpected exception\n";
}
}

GetEndOfRepliesHandlerImpl::GetEndOfRepliesHandlerimpl(
) throw (CORBA.::SystemException)
: POA_OSIMgmt::EndOfRepliesHandler()
{
}

void
GetEndOfRepliesHandlerimpl::end_of replies(
) throw (CORBA::SystemException)
{
cout << "get_client received end of replies from CORBA
Gateway\n" << flush;

try {
CORBAGatewayConnection::disconnect();
}

catch (const CORBA::Exception& e) {
cerr << "FAILED: Unexpected CORBA exception:\n" << endl;
exit(1);

}
catch (...) {
cerr << "FAILED: Unexpected exception\n";
exit(1);
}
}

Chapter 3  Managing Networks With SEM CORBA Gateway

3-11




3.2.3

Creating Obijects

The JIDM standard specifies two ways of creating managed objects:

= Using the ManagedObjectFactory interface
= Using the ProxyAgent interface

The SEM CORBA Gateway supports creating managed objects using only the
ProxyAgent interface.

Managed objects can be created synchronously or asynchronously.

Synchronous creation of managed objects uses the cmis_create_sync() function
of the OSIMgmt::ProxyAgent interface.

Asynchronous creation of managed objects uses the cmis_create() function of the
OSIMgmt::ProxyAgent interface.

cmis_create_sync() and cmis_create() return the following conditions to
indicate errors:

= Duplicate Invocation

= Mistyped Argument

= Resource Limitation

= Unrecognized Operation

= Access Denied

= Class Instance Conflict

= Duplicate Managed Object Instance
= Invalid Attribute Value

= Invalid Object Instance

= Missing Attribute Value

= No Such Attribute

= No Such Object Class

= No Such Object Instance
= No Such Reference Object
= Processing Failure

= Processing Failure Empty

CODE EXAMPLE 3-2 is a complete program that does exception handling for all the
ORB and JIDM operations. It creates a managed object with the following instance
name:

/systemld=name:<MIS-HOST>/emApplicationDatabase="TEST1"

3-12 Developing CORBA Applications * October 2001




CODE EXAMPLE 3-2  Creating Managed Objects

/I Copyright 05/25/99 Sun Microsystems, Inc. All Rights Reserved.

#pragma ident "@(#)create_client.cc1.1 99/05/25 Sun
Microsystems™

#include <unistd.h>
#include <iostream.h>

#ifdef ORBACUS

#include <OB/CORBA.h>

#include <CosNaming.h>

#include <jidm/OSIMgmt.h>

#include <jidm_ext/ASN1TypesExt_skel.h>
#else
#ifdef ORBIX

#include <omg/orb.hh>

#include <CosNaming.hh>

#include <jidm/OSIMgmt.hh>

#include <jidm_ext/ASN1TypesExtS.hh>
#else

#include <cos/CosNaming_c.hh>

#include <jidm/OSIMgmt_c.hh>

#include <jidm_ext/ASN1TypesExt_s.hh>
#endif
#endif

#include <em_c++utils/dynamic_output_string_stream.hh>
#include <em_c++utils/ts_shutdown_manager.hh>

#include "corba_gateway_connection.hh"
#include "create_linked_reply_handler_impl.hh"

int main(int argc, char **argv)

{

if (argc < 4) {

cout << "create_client -SVCnameroot <Root Naming Context>"
<< " <MIS host name> [-ORBagentaddr <I/P address>/<host
name>]\n"
<< flush;
exit(1);
}

CORBA::ORB_var orb;

PortableServer::POA_var root_poa;
PortableServer::POA_var action_poa;

Chapter 3  Managing Networks With SEM CORBA Gateway

3-13




CODE EXAMPLE 3-2  Creating Managed Objects (Continued)

PortableServer:POAManager_var poa_manager;

TSShutdownManager& shutdown_mgr =
TSShutdownManager::instance();

SampleShutdownCallback* sample_shutdown_cb = new
SampleShutdownCallback();

shutdown_mgr.add_callback(sample_shutdown_cb);

Il
/I STEP NO 1: Initialize the ORB,
I Get NameService and root naming context
[ [N ikl
try {
orb = CORBA::ORB_linit(argc, argv);
cout << "PASSED: Resolving RootPOA reference" << endl;

root_poa = PortableServer::POA::_narrow(orb-
>resolve_initial_references("RootPOA"));

if (CORBA::is_nil(root_poa)) {
cout << "Unable to get RootPOA context!!" << endl;
exit(1);

}

poa_manager = root_poa->the_POAManager();

/I Create policies for our action POA

CORBA::PolicyList policies;

policies.length(1);

policies[(CORBA::ULong)0] =

root_poa-
>create_lifespan_policy(PortableServer: TRANSIENT);

action_poa = root_poa->create_POA("action_poa", NULL,
policies);

}

catch(const CORBA::Exception& €) {
cerr << "FAILED: Caught CORBA Exception " << endl;
exit(1);

}

CORBAGatewayConnection cgw_connection();

3-14  Developing CORBA Applications * October 2001



CODE EXAMPLE 3-2  Creating Managed Objects (Continued)

[k kool
/I STEP NO 2: Get ProxyAgentFinder

Py Sk

JIDM::ProxyAgentFinder_var proxy_agent_finder =
cgw_connection.get_proxy_agent_finder();

JIDM::ProxyAgent_var proxy_agent;

try {
proxy_agent = cgw_connection.get_proxy_agent();

catch (
const CORBA::Exception& e
) {

cerr << "FAILED: Unable to obtain proxy agent:\n" << flush;
}

try {
OSIMgmt::ProxyAgent_var osi_agent=
OSIMgmt::ProxyAgent::_narrow(proxy_agent);

/Ixx *% *kkkhkkkhkkhhkkkhrk *% *% *kkkkkkkkkk

/I STEP NO 3: Build the Managed Object name to be created
[ kil

const char* interface_name = (const char
*)"emApplicationDatabase";

DynamicOutputStringStream tmp_buf;
tmp_buf << "systemld=name:" << argv[3] << ™";

CosNaming::Name object_name(3);

object_name.length(3);

object_name[0].id = (const char *)"root";

object_name[1].id = (const char *)tmp_buf.get_string();
object_name[2].id = (const char *)"emApplicationType="TEST1";

OSIMgmt::CreationKind kind = OSIMgmt::simple;
/l dummy access control
X711CMIl::AccessControlTypeOpt access_control;

access_control._default();

OSIMgmt::AttributeValueSeq attribute_id_list(1);
attribute_id_list.length(1);

Chapter 3  Managing Networks With SEM CORBA Gateway

3-15




CODE EXAMPLE 3-2  Creating Managed Objects (Continued)

ASN1_Choice oc_choice;
oc_choice.selector = 0;
oc_choice.value <<= (const char *)"emApplicationDatabase";

attribute_id_list[O].attribute_id = (const char
*)"objectClass";
attribute_id_list[0].value <<= oc_choice;

e SRR

/[l STEP NO 4: Prepare reply handler

/xxx *% *kkkkkkkkkkhhkkhkkkhrrkk *% *kkkkkkkkkk

CreateLinkedReplyHandlerlmpl reply_handler;

cout << "\ncreate_client: LinkedReplyHandler is ready\n" <<
flush;

action_poa->activate_object(&reply_handler);

CosNaming::Name ref_oi(0); // empty
ref_oi.length(0);

/I‘x * K*hkkkkkkk *

/I STEP NO 5: Build the Managed Object name to be created

/In * Fkkkkkkkkkk * *

0si_agent->cmis_create(
interface_name,
kind,
object_name,
access_control,
ref_oi,
attribute_id_list,
reply_handler._this()
);

poa_manager->activate();
orb->run();
}
catch(
const CORBA::Exception& e
) {
cerr << "FAILED: caught exception " << endl;
exit(1);
}

3-16 Developing CORBA Applications * October 2001



CODE EXAMPLE 3-2  Creating Managed Objects (Continued)

catch(...) {
cerr << "FAILED: Unexpected exception " << endl;
exit(1);

}

/I' * F*khkkkk * *hkkkk

/I STEP NO 6: "release the Session" or destroy ProxyAgent

/Ir\ *kkkkk Fkkkkkkkkkk

try {
JIDM::Criteria_var return_criteria = proxy_agent->destroy(

JIDM::ProxyAgent::gracefully, a_criteria );
if (JIDM::Criteria*)NULL != return_criteria) {
cout << "PASSED : Deleted Proxy Agent gracefully" << endl;

}

}
catch(...) {

cerr << "FAILED: Unable to delete Proxy Agent gracefully\n" <<
flush; exit(1);
}

return O;

}

Note — <MIS-HOST> is passed as the third parameter to this test program. MIS-
HOSTis the host machine on which Solstice EM MIS is running, NAME-HOSTis the
host machine on which naming services is running and NAME-PORTis the TCP/IP
port number on which the naming service on host <NAME-HOST> is listening for
1IOP messages coming from client or manager applications.

The steps in this program are:

1. Initializing the ORB and object adapters; Resolving the naming services and
getting the root naming context.

Note that the SEM CORBA package provides a class called CGWGIobal which has
static declarations for the ORBand POAattributes.

2. Getting the reference for ProxyAgentFinder

Chapter 3  Managing Networks With SEM CORBA Gateway 3-17



3-18

3. Building the key and criteria for getting access to the ProxyAgent which is

implemented by the RGW (see Section 2.2.1 “Connecting Clients for the First
Time” on page 2-5).

The key and criteria access parameters are critical for identifying the domain of
the managed object (done by calling access_domain() ).

key consists of akey id and akey_kind . The following key values are adopted by
JIDM standards for key_id and key_kind
= key id :

« "OSI Management"
« "Internet Management
= key kind

« "XSM environment"

criteria is the second parameter in the call access_domain()  and contains the
information needed to establish the session between the managed object domain and
the manager. criteria has many components, but only domain title is identified as
being required for all the Systems Management Reference Models.

The following are the components of criteria
= criteria_name

« domain title of type CORBA::string
« controller object of type JIDM::ProxyAgentController
« user profile of type CORBA::Any

Note — This list of criteria_name components is for general domain access and
applies to both OSI and the Internet. There are some criteria_name parameters
that are specific to the OSI management model. A complete list can be found in
Appendix C.

Note — In CODE EXAMPLE 3-2, criteria has two components — domain title and user
profile. domain title is the title associated with managed objects, and is defined for
Solstice EM as "Solstice EM MIS"

The value passed for user profile is the encrypted user profile. The user profile is
encrypted by invoking the
AuthenticationClientHandle::encrypt_user_profile operation.

The controller object lets manager applications control the destruction of
ProxyAgent s. The value passed in this case must be the reference of the
JIDM::ProxyAgentController

4. Getting the ProxyAgent reference for the key and criteria parameters.

Developing CORBA Applications ¢ October 2001



5. Creating a reply handler.
The details of what the reply handler class does
(CreateLinkedReplyHandlerImpl ) is not shown in the example.
6. Deciding the name of the managed object to be created.

7. Calling the OSImgmt::cmis_create method.
The cmis_create() function requires the following input parameters:
= interface_name : The interface to be exported by the newly created object.

= creation_kind : The type of creation mechanism to be used; also identifies the
use of the next parameter; the possible values are:

« simple : Create the object named in the following parameter.

« autonaming : Ignore the contents of the following parameter, and
automatically assign a name for the newly created object.

« subordinate : The name specified in the next parameter is the name of the
superior object under which the object is to be created.

= object_name : Specifies the IDL name of the managed object to be created (if
creation_kind is simple ) or the name of the superior object (if
creation_kind is subordinate ); if creation_kind is autonaming , the
contents of this parameter are ignored.

= access_control : This parameter of type X711CMI::AccessControlTypeOpt
is optional and contains information to be used as input to access control
functions.

= reference_object : This parameter indicates the reference to a managed object
needed to create the new object.

= req_attribute_values . Specifies a set of attribute values to be assigned at
object creation time.

= LinkedReplyHandler . Interface implemented by the client or the application
and a reference is passed. For more information see Section 3.2.1 “Operating
Asynchronously and Synchronously” on page 3-4.

For synchronous operation using cmis_create_sync() refer to the IDL file,
OSIMgmt.idl

8. Releasing (terminating) the session by destroying the ProxyAgent

Chapter 3  Managing Networks With SEM CORBA Gateway 3-19



3.24

Deleting Objects

You can delete managed objects using the cmis_delete() function of the
OSIMgmt::ProxyAgent interface. If you attempt to delete a non-existent object, it
will result in a sub-tree error. For details see Section 3.2.1 “Operating
Asynchronously and Synchronously” on page 3-4.

cmis_delete() returns the following conditions to indicate errors:

= Operation Cancelled

= Access Denied

= Complexity Limitation

= Complexity Limitation Empty
= Invalid Scope

= No Such Object Class

= No Such Object Instance
= Processing Failure

= Processing Failure Empty
= Synchronous Not Supported

The following code example shows how to delete a managed object asynchronously

CODE EXAMPLE 3-3  Deleting Managed Objects Asynchronously

/I Copyright 05/19/99 Sun Microsystems, Inc. All Rights Reserved.

#pragma ident "@(#)delete_client.cc1.1 99/05/19 Sun
Microsystems™

#include <unistd.h>
#include <iostream.h>
#ifdef ORBACUS

#include <OB/CORBA.h>

#include "CosNaming.h"

#include "jidm/OSIMgmt.h"

#include <jidm_ext/ASN1TypesExt_skel.h>
#else
#ifdef ORBIX

#include <omg/orb.hh>

#include "CosNaming.hh"

#include "jidm/OSIMgmt.hh"

#include <jidm_ext/ASN1TypesExtS.hh>
#else

#include "cos/CosNaming_c.hh"

#include "jidm/OSIMgmt_c.hh"

#include <jidm_ext/ASN1TypesExt_s.hh>
#endif

3-20 Developing CORBA Applications * October 2001



CODE EXAMPLE 3-3  Deleting Managed Objects Asynchronously (Continued)

#endif

#include "em_c++utils/dynamic_output_string_stream.hh"
#include "em_c++utils/ts_shutdown_manager.hh"

#include "corba_gateway_connection.hh"
#include "delete_linked_reply_handler_impl.hh"

int
main(
int argc,
char **argv
) {
if (argc < 4) {
cout << "delete_client -SVCnameroot <Root Naming Context>"
<< " <MIS host name> [-ORBagentaddr <I/P address>/<host
name>]\n"
<< flush;
exit(1);
}

CORBA::ORB var orb;

PortableServer::POA_var root_poa;
PortableServer::POA_var action_poa;
PortableServer::POAManager_var poa_manager;

TSShutdownManager& shutdown_mgr =
TSShutdownManager::instance();

SampleShutdownCallback* sample_shutdown_cb = new
SampleShutdownCallback();

shutdown_mgr.add_callback(sample_shutdown_cb);

try {
orb = CORBA::ORB _init(argc, argv);
cout << "PASSED: Resolving RootPOA reference" << endl;

root_poa = PortableServer::POA::_narrow(orb-
>resolve_initial_references("RootPOA"));

if (CORBA::is_nil(root_poa)) {
cout << "Unable to get RootPOA context!!" << endl;
exit(1);

}

Chapter 3  Managing Networks With SEM CORBA Gateway

3-21




3-22

CODE EXAMPLE 3-3  Deleting Managed Objects Asynchronously (Continued)

poa_manager = root_poa->the_POAManager();

/I Create policies for our action POA

CORBA::PolicyList policies;

policies.length(1);

policies[(CORBA::ULong)0] =

root_poa-
>create_lifespan_policy(PortableServer:: TRANSIENT);

/I Create the action servant and activate it on action_poa
I/l Create action poa with our own policies
action_poa = root_poa->create_ POA("action_poa", NULL,
policies);

catch(const CORBA::Exception& e) {
cerr << "FAILED:Caught CORBA Exception " << endl;
exit(1);

}

CORBAGatewayConnection cgw_connection(
CORBA::ORB::_duplicate(orb)//,

);

JIDM::ProxyAgentFinder_var proxy_agent_finder =
cgw_connection.get_proxy_agent_finder();

JIDM::ProxyAgent_var proxy_agent;

try {
proxy_agent = cgw_connection.get_proxy_agent();
}
catch (
const CORBA::Exception& e
) {
cerr << "FAILED: Unable to obtain proxy agent:\n" << flush;
}
try {

// beginning of preparing reply handler
OSIMgmt::ProxyAgent_var osi_agent =
OSIMgmt::ProxyAgent::_narrow(proxy_agent);

Il Issue cmis_delete()

Developing CORBA Applications ¢ October 2001



CODE EXAMPLE 3-3  Deleting Managed Objects Asynchronously (Continued)

/I construct oc
const char* interface_name = (const char *)"log";

/I construct oi

DynamicOutputStringStream tmp_buf;

tmp_buf << "systemld=name:" << argv[3] << ""; // mis host
name

CosNaming::Name object_name(3);
object_name.length(3);

object_name[0].id = (const char *)"root";

object_name[1].id = (const char *)tmp_buf.get_string();
object_name[2].id = (const char *)"logld=string:'AlarmLog™;

/I construct scope
X711CMI::ScopeType scope;
scope.individualLevels(1); // NTH_LEVEL 1

/I construct filter:
// "item : equality : {objectClass, objectCreationRecord}"

X711CMI::CMISFilterType filter;
X711CMl::FilterltemType item_type;
X711CMI::AttributeType val;

val.attributeld.globalForm((const char *)"objectClass");

ASN1_Choice ac;

ac.selector = 0;

ac.value <<= (const char *)"objectCreationRecord";
val.attributeValue <<= ac;

item_type.equality(val);
filter.item(item_type);

item_type.equality(val);
filter.item(item_type);

/I construct sync
X711CMI::CMISSyncType sync = X711CMI::bestEffort;

/l dummy access control
X711CMI::AccessControlTypeOpt access_control;
access_control._default();

DeleteLinkedReplyHandlerimpl reply_handler;

Chapter 3  Managing Networks With SEM CORBA Gateway

3-23




CODE EXAMPLE 3-3  Deleting Managed Objects Asynchronously (Continued)

/1 If want to test sync version of cmis_delete(), make
// end_of_replies_handler to NULL.

DeleteEndOfRepliesHandlerimpl end_of_replies_handler;

cout << "\ndelete_client: LinkedReplyHandler is ready\n" <<
flush;

action_poa->activate_object(&reply_handler);

/' If want to test sync version of cmis_delete(),
// don't call obj_is_ready(end_of_replies_handler).

action_poa->activate_object(&end_of_replies_handler);

osi_agent->cmis_delete(
interface_name,
object_name,
scope,
filter,
sync,
access_control,
reply_handler._this(),
end_of_replies_handler._this()

);

cout << "cmis_delete() returns " << endl;

poa_manager->activate();
orb->run();
}
catch(
const CORBA::Exception& e
)
cerr << "FAILED: impl is interrupted" << endl;
exit(1);

}

catch(...) {
cerr << "FAILED: Unexpected exception " << endl;
exit(1);

3-24  Developing CORBA Applications * October 2001



3.2.5

CODE EXAMPLE 3-3  Deleting Managed Objects Asynchronously (Continued)

}

return O;

}

Obtaining Object Attributes

You can obtain the value or the attribute of a managed object by calling the
cmis_get()  function of the OSIMgmt::ProxyAgent interface.

cmis_get()  returns the following conditions to indicate errors:

= Get List Error

= Operation Cancelled

= Access Denied

= Complexity Limitation

=« Complexity Limitation Empty
= Invalid Scope

= No Such Object Class

= No Such Object Instance
= Processing Failure

= Processing Failure Empty
= Synchronous Not Supported
= Duplication Invocation

= Mistyped Argument

= Resource Limitation

= Unrecognized Operation

The following code example shows how to get object attributes using cmis_get()

asynchronously.

CODE EXAMPLE 3-4  Getting Object Attributes using cmis_get()

/I Copyright 05/17/99 Sun Microsystems, Inc. All Rights Reserved.
#pragma ident "@(#)get_client.cc1.2 99/05/17 Sun Microsystems"

#include <unistd.h>
#include <iostream.h>

#ifdef ORBACUS
#include <OB/CORBA.h>

#include "jidm/OSIMgmt.h"

Chapter 3  Managing Networks With SEM CORBA Gateway

3-25




CODE EXAMPLE 3-4  Getting Object Attributes using cmis_get()  (Continued)

#include "jidm_ext/ASN1TypesExt_skel.h"
#else
#ifdef ORBIX

#include <omg/orb.hh>

#include "jidm/OSIMgmt.hh"

#include "jidm_ext/ASN1TypesExtS.hh"
#else

#include "cos/CosNaming_c.hh"

#include "jidm/OSIMgmt_c.hh"

#include <jidm_ext/ASN1TypesExt_s.hh>
#endif
#endif

#include <em_c++utils/dynamic_output_string_stream.hh>
#include <em_c++utils/ts_shutdown_manager.hh>

#include "corba_gateway_connection.hh"
#include "get_linked_reply_handler_impl.hh"

int main(int argc, char **argv) {

if (argc < 4) {
cout << "get_client -SVCnameroot <Root Naming Context> <MIS
host name>"
<< " [F-ORBagentaddr <I/P address>/<host name>]\n"
<< flush;
exit(1);
}

PortableServer::POA_var root_poa;
PortableServer::POA_var action_poa;
PortableServer::POAManager_var poa_manager;

TSShutdownManager& shutdown_mgr =
TSShutdownManager::instance();

SampleShutdownCallback* sample_shutdown_cb = new
SampleShutdownCallback();

shutdown_mgr.add_callback(sample_shutdown_cb);

try {
CORBA::ORB_var orb = CORBA::ORB_linit(argc, argv);

cout << "PASSED: Resolving RootPOA reference" << endl;
root_poa = PortableServer::POA::_narrow(orb-
>resolve_initial_references("RootPOA"));

3-26  Developing CORBA Applications ¢ October 2001



CODE EXAMPLE 3-4  Getting Object Attributes using cmis_get()  (Continued)

if (CORBA::is_nil(root_poa)) {
cout << "Unable to get RootPOA context!!" << endl;
exit(1);

}

poa_manager = root_poa->the_POAManager();

/I Create policies for our action POA

CORBA::PolicyList policies;

policies.length(1);

policies[(CORBA::ULong)0] =

root_poa-
>create_lifespan_policy(PortableServer: TRANSIENT);

/I Create the action servant and activate it on action_poa
I/l Create action poa with our own policies
action_poa = root_poa->create_POA("action_poa", NULL,
policies);

cout << "Connecting to the CORBA Gateway ...\n" << flush;
CORBAGatewayConnection cgw_connection(
CORBA::ORB::_duplicate(orb));

JIDM::ProxyAgentFinder_var proxy_agent_finder =
cgw_connection.get_proxy_agent_finder();
JIDM::ProxyAgent_var proxy_agent =
cgw_connection.get_proxy_agent();

OSIMgmt::ProxyAgent_var osi_agent =
OSIMgmt::ProxyAgent::_narrow(proxy_agent);

Il Issue cmis_get()

/I construct oc

DynamicOutputStringStream tmp_buf;

tmp_buf << "systemld=name:™ << "gemini" << ""; [/ mis host
name

const char* interface_name = (const char *)"log";

Il construct oi

CosNaming::Name object_name(3);
object_name.length(3);

object_name][0].id = (const char *)"root";
object_name[1].id = (const char *)tmp_buf.get_string();
object_name[2].id = (const char *)"logld=string:'AlarmLog";

Chapter 3  Managing Networks With SEM CORBA Gateway

3-27




3-28

CODE EXAMPLE 3-4  Getting Object Attributes using cmis_get()

(Continued)

/I construct scope
X711CMI::ScopeType scope;
scope.individualLevels(0);

/I construct filter: "item : equality : {objectClass, log}"
X711CMI::CMISFilterType filter;
X711CMI::FilterltemType item_type;
X711CMI::AttributeType val;

val.attributeld.globalForm((const char *)"objectClass");

ASN1_Choice ach;

ach.selector = 0;

ach.value <<= (const char *)"log";
val.attributeValue <<= ach;

item_type.equality(val);
filter.item(item_type);

Il construct sync
X711CMI::CMISSyncType sync = X711CMI::bestEffort;

/l dummy access control
X711CMI::AccessControlTypeOpt access_control;
access_control._default();

/I construct attribute_id_list
OSIMgmt::ASN1_ObjectldentifierSeq attribute_id_list(0);
attribute_id_list.length(0);

#if O

OSIMgmt::ASN1_ObjectldentifierSeq attribute_id_list(1);
attribute_id_list.length(1);

attribute_id_list[0] = (const char *)"maxLogSize";

#endif

GetLinkedReplyHandlerlmpl reply_handler;
GetEndOfRepliesHandlerimpl end_of _replies_handler;

cout << "\nget_client: LinkedReplyHandler is ready\n" <<

flush;

action_poa->activate_object(&reply_handler);
action_poa->activate_object(&end_of_replies_handler);

osi_agent->cmis_get(
interface_name,

Developing CORBA Applications ¢ October 2001




CODE EXAMPLE 3-4  Getting Object Attributes using cmis_get()  (Continued)

object_name,

scope,

filter,

sync,

access_control,
attribute_id_list,
reply_handler._this(),
end_of_replies_handler._this());

cout << "get_client has sent the M-Get request to CORBA
Gateway\n"
<< flush;

poa_manager->activate();
orb->run();

}

catch(const CORBA::Exception& e) {
cerr << "FAILED: \n" << endl;
exit(1);

}

catch (...) {
cerr << "FAILED: Unexpected exception caught\n";
exit(1);

}

return O;

}

The following code example shows how to get object attributes using
cmis_get_text asynchronously.

CODE EXAMPLE 3-5  Getting Object Attributes using cmis_get_text()

/I Copyright 06/01/99 Sun Microsystems, Inc. All Rights Reserved.

#pragma ident "@(#)get_text_client.cc1.1 99/06/01 Sun
Microsystems"

#include <unistd.h>
#include <iostream.h>

#ifdef ORBACUS

#include <OB/CORBA.h>

#include <jidm_ext/ASN1TypesExt_skel.h>
#else
#ifdef ORBIX

Chapter 3  Managing Networks With SEM CORBA Gateway 3-29



CODE EXAMPLE 3-5  Getting Object Attributes using cmis_get_text() (Continued)

#include <omg/orb.hh>

#include <jidm_ext/ASN1TypesExtS.hh>
#else

#include <jidm_ext/ASN1TypesExt_s.hh>
#endif
#endif

#include <em_c++utils/dynamic_output_string_stream.hh>
#include <em_c++utils/ts_shutdown_manager.hh>

#include "corba_gateway_connection.hh"
#include "get_text_linked_reply_handler_impl.hh"

I

*kkkkkk

/l Usage:

/I get_text_client -SVCnameroot <Root Naming Context> <MIS host
name>

1 [-ORBagentaddr <I/P address>/<host name>]

1

Il get_text_client sample program starts a connection with the
CORBA Gateway,

// obtains a proxy_agent

/I It sends a cmis get command to get the maxLogSize attribute
value of the

/I alarmLog.

1

*kkkhkkkhkkkkk *% * *kkkhkkkhkkhhkkkkkk *% *kkkkkkkk

K*kkkkkk

int
main(
int argc,
char **argv
)
if (argc < 4) {
cout << "get_text_client -SVCnameroot <Root Naming Context>"
<< " <MIS host name> [-ORBagentaddr <I/P address>/<host
name>]\n"
<< flush;
exit(1);
}

PortableServer::POA_var root_poa;
PortableServer::POA_var action_poa;

3-30 Developing CORBA Applications ¢ October 2001



CODE EXAMPLE 3-5  Getting Object Attributes using cmis_get_text() (Continued)

PortableServer:POAManager_var poa_manager;

TSShutdownManager& shutdown_mgr =
TSShutdownManager::instance();

SampleShutdownCallback* sample_shutdown_cb = new
SampleShutdownCallback();

shutdown_mgr.add_callback(sample_shutdown_cb);

try {
CORBA::ORB_var orb = CORBA::ORB_linit(argc, argv);

cout << "PASSED: Resolving RootPOA reference" << endl;
root_poa = PortableServer::POA::_narrow(orb-
>resolve_initial_references("RootPOA"));

if (CORBA::is_nil(root_poa)) {
cout << "Unable to get RootPOA context!!" << endl;
exit(1);

}

poa_manager = root_poa->the_POAManager();

/I Create policies for our action POA

CORBA::PolicyList policies;

policies.length(1);

policies[(CORBA::ULong)0] =

root_poa-
>create_lifespan_policy(PortableServer: TRANSIENT);

/I Create the action servant and activate it on action_poa
/I Create action poa with our own policies
action_poa = root_poa->create_POA("action_poa", NULL,
policies);

cout << "Connecting to the CORBA Gateway ...\n" << flush;

CORBAGatewayConnection cgw_connection(
CORBA::ORB::_duplicate(orb)

);

JIDM::ProxyAgentFinder_var proxy_agent_finder =
cgw_connection.get_proxy_agent_finder();

JIDM::ProxyAgent_var proxy_agent =
cgw_connection.get_proxy_agent();

Chapter 3  Managing Networks With SEM CORBA Gateway

3-31




CODE EXAMPLE 3-5  Getting Object Attributes using cmis_get_text() (Continued)

OSIMgmtExt::ProxyAgent_var osi_agent =
OSIMgmtExt::ProxyAgent::_narrow(proxy_agent);

Il Issue cmis_get_text()
/I construct oc
const char* interface_name = (const char *)"log";

/I construct oi

DynamicOutputStringStream object_name;

object_name << "/systemld=name:" << argv[3]
<< "/logld=string:'AlarmLog";

/I construct scope
X711CMI::ScopeType scope;
scope.individualLevels(0);

/I construct filter: "item : equality : {objectClass, log}"
CMIExt::CMISFilterType filter = CORBA::string_dup("and : {

}Il);
X711CMI::CMISSyncType sync = X711CMI::bestEffort;
/I construct attribute_id_list
OSIMgmt::ASN1_ObjectldentifierSeq attribute_id_list(0);
attribute_id_list.length(0);
GetTextLinkedReplyHandlermpl reply_handler;
GetEndOfRepliesHandlerimpl end_of_replies_handler;
cout << "get_text_client: LinkedReplyHandler is ready\n" <<
flush;

action_poa->activate_object(&reply_handler);
action_poa->activate_object(&end_of_replies_handler);

cout << "BEFORE CMIS_GET_TEXT " << end|;
osi_agent->cmis_get_text(

interface_name,

object_name.get_string(),

scope,

filter,

sync,

attribute_id_list,

reply_handler._this(),

end_of_replies_handler._this()

3-32  Developing CORBA Applications ¢ October 2001



3.2.6

3.2.6.1

CODE EXAMPLE 3-5  Getting Object Attributes using cmis_get_text() (Continued)

);
cout << " AFTER CMIS_GET_TEXT " << endl;

cout << "get_text_client has sent the M-Get(text) request to
CORBA"
<< "Gateway\n" << flush;

poa_manager->activate();
orb->run();

}

catch(const CORBA::Exception& e) {
cerr << "FAILED: \n" << endl;
exit(1);

}

catch (...) {
cerr << "FAILED: Unexpected exception caught\n";
exit(1);

}

return O;

Obtaining Multiple Object Attributes

You can obtain multiple attributes from the RGW by specifying the scope and the
filtering to be applied when calling the CMIS functions. You can also get multiple
attributes by using attribute_id_list in a special way, as discussed later in this
section. You can also define the interaction characteristics of selected objects
(through scoping and filtering) by specifying synchronization and access control
parameters.

Selecting Objects Through Scoping and Filtering

To specify the set of managed objects on which the operation is to be applied, select
the appropriate integer value for the scope option:

= A value of 0 specifies the base object alone.
= A value of 1 specifies the first level only.
= A value of 2 specifies the whole subtree.

To specify the set of filtering tests to be performed on the set of managed objects
(selected by applying scope) use the filter option. Group multiple tests together
using combinations of AND, OR and NOT.

Chapter 3  Managing Networks With SEM CORBA Gateway  3-33




3.2.6.2

3.2.6.3

You can test for the following filter conditions:

= equality

= greater than or equal to
= less than or equal to

= presence

= Ssubset of

= superset of

= non-Null intersection

= substring

If the managed object is not selected by the scope specified, the filter assertion test
for that managed object evaluates to FALSE and the managed object is not chosen
for that operation; if no filter is specified, however, all of the managed objects
included by the defined scope are selected for the operation.

Synchronization and Access Control

The synchronization parameter has two possible values, Best Effort  and Atomic .
Best Effort synchronization only requires that all the managed objects chosen
(through filtering and scoping), be requested to perform the operation without any
guarantee of a successful response. Atomic synchronization ensures that all the
managed objects chosen (through scoping and filtering) are able to successfully
perform the operation together—if one or more objects cannot perform the
operation, then none of them are requested to perform it.

If only the base object is selected by the scope for the operation, the synchronization
parameter is ignored.

The access control option specifies the functions to be used for access control. If this
optional parameter (as specified in the JIDM standards) is not specified, the access
control parameters specified at the time of ProxyAgent creation are used instead.
At present the SEM CORBA Gateway implementation only supports access control
through ProxyAgent

attribute_id_list parameters

You can use the attribute_id_list parameters available for some CMIS
operations (such as get ) to enable clients to implement scope operations. This list is
a sequence of ASN1_Obijectldentifier s of the managed objects on which the
operation is to be carried out. If this list is empty, all the managed objects under the
current base object will be fetched.

3-34  Developing CORBA Applications * October 2001



The following code segment shows how to use a get operation to read all the
attributes under "systemld=name:faith/logld=string:AlarmLog "

CODE EXAMPLE 3-6  Obtaining Multiple Object Attributes

DynamicOutputStringStream tmp_buf;
CosNaming::Name object_name(3);
object_name.length(3);
object_name][0].id = (const char *)"root";
tmp_buf << "systemld=name:" << "faith" << "";
object_name[1].id = (const char *)tmp_buf.get_string();
object_name[2].id = (const char *)"logld=string:'AlarmLog™;

/I construct scope

X711CMI::ScopeType scope;
/l Whole substree

scope.level(2);

X711CMI::CMISFilterType filter;
X711CMl::FilterltemType item_type;
X711CMI::AttributeType val;

/I Construct a null filter
_and_seq filter_seq(0);
filter_seq.length(0);
filter._cxx_and(filter_seq);

/I construct sync
X711CMI::CMISSyncType sync = X711CMI::bestEffort;

/I dummy access control
X711CMl::AccessControlTypeOpt access_control;
access_control._default();

/I construct attribute_id_list
/I We want to get all the attributes under the subtree, so set att
list=0
OSIMgmt::ASN1_ObjectldentifierSeq attribute_id_list(0);
attribute_id_list.length(0);

I/l Rest of the code is not shown in this code segment

Chapter 3 Managing Networks With SEM CORBA Gateway  3-35



3.2.7

Modifying Object Attributes

You can modify or set the managed object attributes using the cmis_set()
function exposed by OSIMgmt::ProxyAgent interface. CODE EXAMPLE 3-7 shows
how to set or modify attributes of an object.

cmis_set()  returns the following conditions to indicate errors:

= Operation Cancelled

= Access Denied

= Complexity Limitation

= Complexity Limitation Empty
= Invalid Scope

= No Such Object Class

= No Such Object Instance
= Processing Failure

= Processing Failure Empty
= Synchronous Not Supported
= Set List Error

CODE EXAMPLE 3-7  Modifying Object Attributes

/I Copyright 05/17/99 Sun Microsystems, Inc. All Rights Reserved.
#pragma ident "@(#)set_client.cc1.1 99/05/17 Sun Microsystems"

#include <unistd.h>
#include <iostream.h>

#ifdef ORBACUS

#include <OB/CORBA.h>

#include "CosNaming.h"

#include "jidm/OSIMgmt.h"

#include "jidm_ext/ASN1TypesExt_skel.h"
#else
#ifdef ORBIX

#include <omg/orb.hh>

#include "CosNaming.hh"

#include "jidm/OSIMgmt.hh"

#include "jidm_ext/ASN1TypesExtS.hh"
#else

#include "cos/CosNaming_c.hh"

#include "jidm/OSIMgmt_c.hh"

#include <jidm_ext/ASN1TypesExt_s.hh>
#endif
#endif

3-36  Developing CORBA Applications ¢ October 2001




CODE EXAMPLE 3-7  Modifying Object Attributes (Continued)

#include <em_c++utils/dynamic_output_string_stream.hh>
#include <em_c++utils/ts_shutdown_manager.hh>

#include "corba_gateway_connection.hh"
#include "set_linked_reply_handler_impl.hh"

int
main(
int argc,
char **argv
)
if (argc < 4) {
cout << "get_client -SVCnameroot <Root Naming Context> <MIS
host name>"
<< " [F-ORBagentaddr <I/P address>/<host name>]\n"
<< flush;
exit(1);
}

CORBA::ORB_var orb;

PortableServer::POA_var root_poa;
PortableServer::POA_var action_poa;
PortableServer::POAManager_var poa_manager;

TSShutdownManager& shutdown_mgr =
TSShutdownManager::instance();

SampleShutdownCallback* sample_shutdown_cb = new
SampleShutdownCallback();

shutdown_mgr.add_callback(sample_shutdown_cb);

try {
orb = CORBA::ORB._init(argc, argv);
cout << "PASSED: Resolving RootPOA reference" << endl;

root_poa = PortableServer::POA::_narrow(orb-
>resolve_initial_references("RootPOA"));

if (CORBA::is_nil(root_poa)) {
cout << "Unable to get RootPOA context!!" << endl;
exit(1);

}

poa_manager = root_poa->the_POAManager();

Chapter 3  Managing Networks With SEM CORBA Gateway

3-37




CODE EXAMPLE 3-7  Modifying Object Attributes (Continued)

/I Create policies for our action POA

CORBA::PolicyList policies;

policies.length(1);

policies[(CORBA::ULong)0] =

root_poa-
>create_lifespan_policy(PortableServer: TRANSIENT);

/I Create the action servant and activate it on action_poa
/I Create action poa with our own policies
action_poa = root_poa->create_POA("action_poa", NULL,
policies);

}

catch(const CORBA::Exception& e) {
cerr << "FAILED: " << endl;
exit(1);

}

CORBAGatewayConnection cgw_connection(
CORBA::ORB::_duplicate(orb)//,

);

JIDM::ProxyAgentFinder_var proxy_agent_finder;
JIDM::ProxyAgent_var proxy_agent;
try {
proxy_agent_finder = cgw_connection.get_proxy_agent_finder();
proxy_agent = cgw_connection.get_proxy_agent();

catch (
const CORBA::Exception& e
) {

cerr << "FAILED: Unable to obtain proxy agent:\n" << flush;

}

try {
/I beginning of preparing reply handler
OSIMgmt::ProxyAgent_var osi_agent =
OSIMgmt::ProxyAgent::_narrow(proxy_agent);

/I construct oc

DynamicOutputStringStream tmp_buf;

tmp_buf << "systemld=name:" << argv[3] << ""; // mis host
name

Developing CORBA Applications ¢ October 2001



CODE EXAMPLE 3-7  Modifying Object Attributes (Continued)

const char* interface_name = (const char *)"log";

/I construct oi

CosNaming::Name object_name(3);
object_name.length(3);

object_name[0].id = (const char *)"root";

object_name[1].id = (const char *)tmp_buf.get_string();
object_name[2].id = (const char *)"logld=string:'AlarmLog";

/I construct scope
X711CMI::ScopeType scope;
scope.individualLevels(0);

1l

/I construct filter: "item : equality : {objectClass, log}"
i

X711CMI::CMISFilterType filter;
X711CMI::FilterltemType item_type;
X711CMI::AttributeType val;

val.attributeld.globalForm((const char *)"objectClass");

ASN1_Choice ach;

ach.selector = 0;

ach.value <<= (const char *)"log";
val.attributeValue <<= ach;

item_type.equality(val);
filter.item(item_type);

/I construct sync
X711CMI::CMISSyncType sync = X711CMI::bestEffort;

/l dummy access control
X711CMIl::AccessControlTypeOpt access_control;
access_control._default();

/I construct modify_list

OSIMgmt::SetOperationArgument modify_list(1);
modify_list.length(1);

modify_list[0].modify_operator = OSIMgmt::replace;
modify_list[O].attribute_id = (const char*)"maxLogSize";
modify_list[0].attribute_value <<= (CORBA::Long)900000;

SetLinkedReplyHandlerImpl reply_handler;
SetEndOfRepliesHandlerimpl end_of_replies_handler;

Chapter 3  Managing Networks With SEM CORBA Gateway  3-39



CODE EXAMPLE 3-7  Modifying Object Attributes (Continued)

action_poa->activate_object(&reply_handler);
action_poa->activate_object(&end_of_replies_handler);

cout << "\nset_client: LinkedReplyHandler is ready\n" <<
flush;

osi_agent->cmis_set(
interface_name,
object_name,
scope,
filter,
sync,
access_control,
modify_list,
reply_handler._this(),
end_of replies_handler._this()

);

cout << "set_client has sent the M-Set request to CORBA
Gateway\n"
<< flush;

poa_manager->activate();
orb->run();
}
catch(const CORBA::Exception& e) {
cerr << "FAILED: Unexpected CORBA Exception" << end|;
exit(1);
}

}

3-40 Developing CORBA Applications ¢ October 2001



3.2.8

Performing an Operation on a Managed Object

You can use the cmis_action() function of the OSIMgmt::ProxyAgent interface
to perform a certain action on a managed object and indicate the result of the action
back to the client.

cmis_action() returns the following conditions to indicate errors:

= Operation Cancelled

= Access Denied

= Complexity Limitation

= Complexity Limitation Empty
= Invalid Scope

= No Such Object Class

= No Such Object Instance
= Processing Failure

= Processing Failure Empty
= Synchronous Not Supported
= Invalid Argument Value

= No Such Action

= No Such Argument

The following code example shows how to perform an operation on a managed
object.

CODE EXAMPLE 3-8  Performing an Operation on a Managed Object

/I Copyright 05/25/99 Sun Microsystems, Inc. All Rights Reserved.

#pragma ident "@(#)action_client.cc1.1 99/05/25 Sun
Microsystems™"

#include <unistd.h>
#include <iostream.h>

#ifdef ORBACUS
#include <OB/CORBA.h>
#include <CosNaming.h>
#include <jidm/OSIMgmt.h>
#include "jidm/X711CMI.h"
#include <jidm_ext/ASN1TypesExt_skel.h>

#else

#ifdef ORBIX
#include <omg/orb.hh>
#include <CosNaming.hh>
#include <jidm/OSIMgmt.hh>

#include "jidm/X711CMI.hh"

Chapter 3  Managing Networks With SEM CORBA Gateway 3-41




3-42

CODE EXAMPLE 3-8  Performing an Operation on a Managed Object (Continued)

#include <jidm_ext/ASN1TypesExtS.hh>
#else
#include <cos/CosNaming_c.hh>
#include <jidm/OSIMgmt_c.hh>
#include "jidm/X711CMI_c.hh"
#include <jidm_ext/ASN1TypesExt_s.hh>
#endif
#endif
#include <em_c++utils/dynamic_output_string_stream.hh>
#include <em_c++utils/ts_shutdown_manager.hh>

#include "corba_gateway_connection.hh"
#include "action_linked_reply_handler_impl.hh"

int main(
int argc,
char **argv
) {
if (argc < 5) {
cout << "action_client -SVCnameroot <Root Naming
<<" <MIS host name> <Device Name>"
<<" [-ORBagentaddr <I/P address>/<host name>]\n"
<< flush;
exit(1);
}

CORBA::ORB_var orb;

PortableServer::POA_var root_poa;
PortableServer::POA_var action_poa;
PortableServer::POAManager_var poa_manager;

TSShutdownManager& shutdown_mgr =
TSShutdownManager::instance();

SampleShutdownCallback* sample_shutdown_cb = new
SampleShutdownCallback();

shutdown_mgr.add_callback(sample_shutdown_cb);

try {
orb = CORBA::ORB_linit(argc, argv);
cout << "PASSED: Resolving RootPOA reference" << endl;

root_poa = PortableServer::POA::_narrow(orb-
>resolve_initial_references("RootPOA"));

Context>"

Developing CORBA Applications ¢ October 2001




CODE EXAMPLE 3-8  Performing an Operation on a Managed Object (Continued)

if (CORBA::is_nil(root_poa)) {
cout << "Unable to get RootPOA context!!" << endl;
exit(1);

}

poa_manager = root_poa->the_POAManager();

/I Create policies for our action POA

CORBA::PolicyList policies;

policies.length(1);

policies[(CORBA::ULong)0] =
root_poa->create_lifespan_policy(PortableServer::TRANSIENT);

/I Create the action servant and activate it on action_poa
/I Create action poa with our own policies
action_poa = root_poa->create_POA("action_poa", NULL,
policies);

}

catch(
const CORBA::Exception& e
)
cerr << "FAILED: Caught CORBA Exception " << endl|;
exit(1);
}

CORBAGatewayConnection cgw_connection(
CORBA::ORB::_duplicate(orb)
)i

JIDM::ProxyAgentFinder_var proxy_agent_finder;
JIDM::ProxyAgent_var proxy_agent;
try {
proxy_agent_finder = cgw_connection.get_proxy_agent_finder();
proxy_agent = cgw_connection.get_proxy_agent();

catch (
const CORBA::Exception& e
) {
cerr << "FAILED: Unable to obtain proxy agent:\n" << flush;

}

try {
/I beginning of preparing reply handler
OSIMgmt::ProxyAgent_var osi_agent =
OSIMgmt::ProxyAgent::_narrow(proxy_agent);

Chapter 3  Managing Networks With SEM CORBA Gateway

3-43




CODE EXAMPLE 3-8  Performing an Operation on a Managed Object (Continued)

/I lssue cmis_action()
/I construct oc
const char* interface_name = (const char *)"topoNodeDB";

/I construct oi
DynamicOutputStringStream mis_host_name;
mis_host_name << "systemld=name:" << argv[3] <<™";

CosNaming::Name object_name(3);

object_name.length(3);

object_name[0].id = (const char *)"root";

object_name[1].id = (const char *)mis_host_name.get_string();
object_name[2].id = (const char *)"topoNodeDBId=NULL";

/I construct scope
X711CMI::ScopeType scope;
scope.level(0); // BASE_OBJECT

/I construct filter: default
X711CMI::CMISFilterType filter;
/l_and_seq filter_seq(0);
[ffilter_seq.length(0);
[ffilter._cxx_and(filter_seq);

Il construct sync
X711CMI::CMISSyncType sync = X711CMI::bestEffort;

/l dummy access control
X711CMI::AccessControlTypeOpt access_control;
access_control._default();

/I construct action name - topoNodeGetByName

ASN1_Objectldentifier action_name =
CORBA::string_dup("topoNodeGetByName");

cout << "Device Type: " << argv[4] << endl;

/I construct action info

ASN1_DefinedAny action_info;

action_info <<= (const char*)argv[4];

ActionLinkedReplyHandlerimpl reply_handler;
ActionEndOfRepliesHandlerimpl end_of_replies_handler;

action_poa->activate_object(&reply_handler);

3-44  Developing CORBA Applications ¢ October 2001



CODE EXAMPLE 3-8  Performing an Operation on a Managed Object (Continued)

action_poa->activate_object(&end_of_replies_handler);

cout << "\n action_client: LinkedReplyHandler is ready\n" <<
flush;

osi_agent->cmis_action(
interface_name,
object_name,
scope,
filter,
sync,
access_control,
action_name,
action_info,
reply_handler._this(),
end_of_replies_handler._this()

);

poa_manager->activate();
orb->run();
}
catch(
const CORBA::Exception& e
)
cerr << "FAILED: Unexpected CORBA Exception" << endl;
exit(1);

Chapter 3 Managing Networks With SEM CORBA Gateway  3-45



3.2.9

Cancelling a Request

To cancel a request that has already been sent, delete or deactivate the
LinkedReplyHandler interface before the reply is received. The SEM CORBA
Gateway that is processing the request will only send a reply if the
LinkedReplyHandler i nterface still exists. If the LinkedReplyHandler interface
does not exist, the gateway assumes that the request has been cancelled.

The following code example shows how to cancel a request that has already been
sent.

CODE EXAMPLE 3-9  Cancelling a Request

/I Copyright 06/01/99 Sun Microsystems, Inc. All Rights Reserved.

#pragma ident "@(#)cancel_get_client.cc1.2 99/06/01 Sun
Microsystems™"

#include <unistd.h>
#include <iostream.h>

#ifdef ORBACUS

#include <OB/CORBA.h>

#include "jidm/OSIMgmt.h"

#include <jidm_ext/ASN1TypesExt_skel.h>
#else
#ifdef ORBIX

#include <omg/orb.hh>

#include "jidm/OSIMgmt.hh"

#include <jidm_ext/ASN1TypesExtS.hh>
#else

#include "jidm/OSIMgmt_c.hh"

#include <jidm_ext/ASN1TypesExt_s.hh>
#endif
#endif

#include <pthread.h>

#include <em_c++utils/dynamic_output_string_stream.hh>
#include <em_c++utils/ts_shutdown_manager.hh>

#include "corba_gateway_connection.hh"
#include "cancel_get_linked_reply_handler_impl.hh"

CORBA::ORB_var orb;

PortableServer::POA_var root_poa;

3-46  Developing CORBA Applications * October 2001



CcODE EXAMPLE 3-9  Cancelling a Request (Continued)

PortableServer::POA_var action_poa;
PortableServer::POAManager_var poa_manager;
PortableServer::Objectld_var oid;
PortableServer::Objectld_var oid1;

void*

deactivate_reply_handler(
void*

) {

cout << "Cancelling get request...\n" << flush;

action_poa->deactivate_object(oid);
/laction_poa->deactivate_object(oidl);

return NULL;

int
main(

int argc,

char **argv
) {

if (argc < 4) {

cout << "cancel_get_client -SVCnhameroot <Root Naming
Context>"
<< " <MIS host name> [-ORBagentaddr <I/P address>/<host
name>]\n"
<< flush;
exit(1);

}
/*

PortableServer::POA_var root_poa;

PortableServer::POA_var action_poa;

PortableServer::POAManager_var poa_manager;
*/

TSShutdownManager& shutdown_mgr =
TSShutdownManager::instance();

SampleShutdownCallback* sample_shutdown_cb = new
SampleShutdownCallback();

shutdown_mgr.add_callback(sample_shutdown_cb);

try {
orb = CORBA::ORB_init(argc, argv);
cout << "PASSED: Resolving RootPOA reference" << endl;

Chapter 3  Managing Networks With SEM CORBA Gateway

3-47




CcODE EXAMPLE 3-9  Cancelling a Request (Continued)

root_poa = PortableServer::POA::_narrow(orb-
>resolve_initial_references("RootPOA"));

if (CORBA::is_nil(root_poa)) {
cout << "Unable to get RootPOA context!!" << endl;
exit(1);

}

poa_manager = root_poa->the_POAManager();

/I Create policies for our action POA

CORBA::PolicyList policies;

policies.length(1);

policies[(CORBA::ULong)0] =

root_poa-
>create_lifespan_policy(PortableServer: TRANSIENT);

/I Create the action servant and activate it on action_poa
/I Create action poa with our own policies
action_poa = root_poa->create_POA("action_poa", NULL,
policies);

}
catch(const CORBA::Exception& e) {

cerr << "FAILED: Caught CORBA Exception " << endl;
exit(1);
}

CORBAGatewayConnection cgw_connection(
CORBA::ORB::_duplicate(orb)//,

);

JIDM::ProxyAgentFinder_var proxy_agent_finder;
JIDM::ProxyAgent_var proxy_agent;
try {
proxy_agent_finder = cgw_connection.get_proxy_agent_finder();
proxy_agent = cgw_connection.get_proxy_agent();
}
catch (
const CORBA::Exception& e
){

cerr << "FAILED: Unable to obtain proxy agent:\n" << flush;
}

3-48 Developing CORBA Applications ¢ October 2001



CcODE EXAMPLE 3-9  Cancelling a Request (Continued)

try {
/I beginning of preparing reply handler
OSIMgmt::ProxyAgent_var osi_agent =
OSIMgmt::ProxyAgent::_narrow(proxy_agent);

/I construct oc
const char* interface_name = (const char *)"log";

/I construct oi
DynamicOutputStringStream tmp_buf;

CosNaming::Name object_name(3);
object_name.length(3);

object_name[0].id = (const char *)"root";

tmp_buf << "systemld=name:" << argv[3] << ™";
object_name[1].id = (const char *)tmp_buf.get_string();
object_name[2].id = (const char *)"logld=string:'AlarmLog™;

/I construct scope
X711CMI::ScopeType scope;
scope.individualLevels(1);

1

/I construct filter:

// "item : equality : {objectClass, nerveCenterAlarmRecord}"
1

X711CMI::CMISFilterType filter;

X711CMI::FilterltemType item_type;
X711CMI::AttributeType val;

val.attributeld.globalForm((const char *)"objectClass");

ASN1_ Choice ach;

ach.selector = 0;

ach.value <<= (const char *)"emAlarmRecord";
val.attributeValue <<= ach;

item_type.equality(val);
filter.item(item_type);

/I construct sync
X711CMI::CMISSyncType sync = X711CMI::bestEffort;

/l dummy access control
X711CMl::AccessControl TypeOpt access_control;

Chapter 3  Managing Networks With SEM CORBA Gateway

3-49




3-50

CcODE EXAMPLE 3-9  Cancelling a Request (Continued)

access_control._default();

/I construct attribute_id_list
OSIMgmt::ASN1_ObjectldentifierSeq attribute_id_list(1);
attribute_id_list.length(1);

attribute_id_list[0] = (const char *)"logRecordId";

GetLinkedReplyHandlerImpl reply_handler;
GetEndOfRepliesHandlerImpl end_of_replies_handler;

oid = action_poa->activate_object(&reply_handler);
oid1 = action_poa->activate_object(&end_of replies_handler);

cout << "\ncancel_get_client: LinkedReplyHandler is ready\n"
<< flush;

osi_agent->cmis_get(
interface_name,
object_name,
scope,
filter,
sync,
access_control,
attribute_id_list,
reply_handler._this(),
end_of_replies_handler._this()

);

cout << "cancel_get_client has sent the M-Get request to CORBA
Gateway"
<< endl << flush;

pthread_t tid;
if(pthread_create(&tid, NULL, deactivate_reply handler,
NULL)) {
cerr << "FAILED: unable to start
deactivate_reply_handler\n"
<< flush;

}

poa_manager->activate();
orb->run();

}
catch(const CORBA::Exception& e) {

Developing CORBA Applications ¢ October 2001



3.2.10

CcODE EXAMPLE 3-9  Cancelling a Request (Continued)

cerr << "FAILED: Unexpected CORBA Exception" << endl;
exit(1);
}
}

Subscribing to an Event

Applications that collect events need to subscribe to events as shown in
CODE EXAMPLE 3-10. The SEM CORBA Gateway provides an OSIMgmt Extended
ProxyAgent (OSIMgmtExt::ProxyAgent ) that includes the functions

subscribe_events() and unsubscribe_events()

subscribe_events() creates Event Forwarding Discriminators (EFDs) using
cmis_create_text , and returns the subscription Id.

subscribe_events() returns the following conditions to indicate errors:

= Access Denied
= Processing Failure

unsubscribe_events() deletes the EFDs (using cmis_delete_text ) and
returns the following conditions to indicate errors:

= Access Denied
= Processing Failure
= Invalid Subscription

Chapter 3  Managing Networks With SEM CORBA Gateway

3-51




A pictorial representation of the steps involved in subscribing to an event is given in
the following figure.

1

Event Collector

————®|| Application -

> 1. Resolve root 5. Resolve <
naming context EventChannel
T
/ \
/ \
/ \ Client
/ \
Y , \ y
Naming Service [>3. Create ProxyAgent \ Event Service
/ \
| \
A N W W W W . A A A 4. Get EventPortFactory \
/ \
2. Get ProxyAgentFinder & . \> 6. Create EventPort
7. Subscribe for Events
\
/ \ ORB/IIOP
\ \
\
AN A
ProxyAgent
interface
RGW EGW Solstice EM

FIGURE 3-3 Subscribing to an Event

CODE EXAMPLE 3-10 Subscribing to an Event

/I Copyright 06/01/99 Sun Microsystems, Inc. All Rights Reserved.
#pragma ident "@(#)subscribe_events.cc1.29/06/01SurMicrosystems"

#include <unistd.h>
#include <iostream.h>

#include <cos/CosNaming_c.hh>
#include <jidm_ext/OSIMgmtExt_c.hh>

#include <auth_helper/auth_client_handle.hh>
#include <corba_utils/corba_utils.hh>

3-52  Developing CORBA Applications ¢ October 2001



CODE EXAMPLE 3-10 Subscribing to an Event (Continued)

#include <jidm_ext/ASN1TypesExt_c.hh>
#include <em_c++utils/dynamic_output_string_stream.hh>

/
How to run this test program:

subscribe_events -a <ae_title> -SVCnameroot Quake

/

int

main(
int argc,
char **argv

)
CORBA::ORB _var orb;

if (argc < 5) {
cout << argv[0] << " -SVCnameroot Quake -a <ae_title>\n";
exit(1);
}

intc;

extern int optind;
extern char* optarg;
const char* ae_title;

while ((c = getopt(argc, argv, "a:S:")) I= EOF) {
switch (c) {
case 'a”
ae_title = CORBA::string_dup(optarg);
break;

case 'S’
break;

case '?"

default:

cerr << "Usage: " << argv[0] <<
" -a <OID-AE-title> -SVCnameroot <default root naming context>"
<< endl;
return 1;

}

Chapter 3  Managing Networks With SEM CORBA Gateway

3-53




3-54

CODE EXAMPLE 3-10 Subscribing to an Event (Continued)

try {
orb = CORBA::ORB_linit(argc, argv);
}

catch(const CORBA::Exception& e) {
cerr << "FAILED: to initialize the ORB" << ¢;
exit(1);

}

cout << "PASSED: ORB initialization\n" << flush;

CosNaming::NamingContext_var root_nc;
try{
CORBA::Object_var object =
orb->resolve_initial_references("NameService");
root_nc = CosNaming::NamingContext::_narrow(object);

if(CORBA::is_nil(root_nc)) {
cerr << "FAILED: Unable to obtain root naming context\n" <<
flush;
exit(2);
}
}
catch(const CORBA::Exception& e) {
cerr << "FAILED: Unable to obtain root naming context:\n"<<e;
exit(3);
}

cout << "PASSED: Obtained root naming context\n" << flush;

CosNaming::Name name;

name.length(1);

JIDM::ProxyAgentFinder_var proxy_agent_finder;

try{
name[0].id = CORBA::string_dup("JIDM::ProxyAgentFinder");
name[0].kind = CORBA::string_dup(");

CORBA::Object_var object = root_nc->resolve(name);
proxy_agent_finder = JIDM::ProxyAgentFinder::_narrow(object);

if (CORBA::is_nil(proxy_agent_finder)) {

cerr << "FAILED: Unable to obtain correct Proxy Agent Finder\n"
<< flush;

exit(4);
}

Developing CORBA Applications ¢ October 2001



CODE EXAMPLE 3-10 Subscribing to an Event (Continued)

if(proxy_agent_finder->_non_existent()) {
cerr << "FAILED: Proxy Agent Finder does not exist\n" << flush;
exit(5);
}
}
catch(const CORBA::Exception& e) {
cerr << "FAILED: Unable to resolve JIDM::ProxyAgentFinder:\n"
€,
exit(6);
}

cout << "PASSED: Obtained JIDM::ProxyAgentFinder reference\n" <<
flush;

JIDM::Key a_key;

a_key.length(1);

a_key[0].id = CORBA::string_dup("OSI Management");
a_key[0].kind = CORBA::string_dup("XSM environment");

JIDM::Criteria a_criteria;

a_criteria.length(2);

a_criteria[0].name = CORBA::string_dup("domain title");
a_criteria[0].value <<= (const char*)ae_title;

cout << "Enter User Name: " << flush;
char user_name[128];

cin >> user_name;

const char* password_prompt = "Enter Password: ";

I/l getpassphrase return a pointer to static data which should not be
/l deleted

char* raw_password = getpassphrase(password_prompt);

AuthenticationClient* ac = new
AuthenticationClientHandle("NBS_DES");

a_criteria[1].name = CORBA::string_dup("user_profile");
a_criteria[1].value = *(ac->encrypt_user_profile(
user_name,
raw_password,
NULL));

/I This will ensure that pass won't retain the raw password if process
/I dumps core

memset(raw_password, 0x0c, sizeof(raw_password));

delete ac;

<<

Chapter 3  Managing Networks With SEM CORBA Gateway

3-55




3-56

CODE EXAMPLE 3-10 Subscribing to an Event (Continued)

if(a_criteria[1].value.type()->kind() == CORBA::tk_null) {
cerr << "FAILED: Unable to obtain encrypted user profile\n"
<< flush;
exit(1);
}

cout << "PASSED: Obtained criteria from encrypting user profile\n"
<< flush;

JIDM::ProxyAgent_var proxy_agent;
try {
cout << flush;
proxy_agent = proxy_agent_finder->access_domain(a_key,
a_criteria);

if (CORBA::is_nil(proxy_agent)) {

cerr << "FAILED: Unable to obtain correct Proxy Agent"
<< endl << flush;

throw 0;

}

if(proxy_agent->_non_existent()) {
cerr << "FAILED: Proxy Agent does not exist" << end| << flush;
throw O;
}
}
catch(const CORBA::UserException& e) {
cerr << "FAILED: to get proxy_agent\n" << e << endl;
exit(1);
}
catch(
const CORBA::Exception& e
)
cerr << "FAILED: Unexcepted exception when trying to get
proxy_agent\n";
exit(1);
}

cout << "PASSED: Created a new Proxy Agent\n" << flush;

OSIMgmtExt::ProxyAgent_var osi_agent=
OSIMgmtExt::ProxyAgent::_narrow(proxy_agent);

StringSeq event_list;
#if 0

Developing CORBA Applications ¢ October 2001



CODE EXAMPLE 3-10 Subscribing to an Event (Continued)

/I For all events: equivalent to and :{}
event_list.length(0);
#endif

event_list.length(3);

event_list[0] = CORBA::string_dup(

"Rec. X.721 | ISO/IEC 10165-2 : 1992": objectCreation");
event_list[1] = CORBA::string_dup(

"Rec. X.721 | ISO/IEC 10165-2 : 1992": objectDeletion");
event_list[2] = CORBA::string_dup(

"Rec. X.721 | ISO/IEC 10165-2 : 1992" attributeValueChange");

StringSeq object_class_list;
object_class_list.length(0);

StringSeq object_name_list;
object_name_list.length(0);

OSIMgmtExt::ProxyAgent::Subscriptionld_var sid;
try {
sid = osi_agent->subscribe_events(
event_list,
object_class_list,
object_name_list
)i
cout << "Subscription ID =" << sid << endl;
cout << endl << " ++++++++++++H++H+ 4 << end
}
catch (const CORBA::Exception& e) {
cout << "subscribe_events() failed: " << e << endl;
return 1,

}

cout << "Hit return to continue\n";
char reply[3];
cin >> reply;
cout << "Now trying to unsubsribe for events..\n" << flush;

osi_agent->unsubscribe_events(sid);
cout << "Unsubsribed the previously subscribed event\n®;

try {
JIDM::Criteria_var return_criteria = proxy_agent->destroy(

JIDM::ProxyAgent::gracefully,
a_criteria

Chapter 3  Managing Networks With SEM CORBA Gateway

3-57




3-58

CODE EXAMPLE 3-10 Subscribing to an Event (Continued)

)i
if ((JIDM::Criteria*)NULL != return_criteria) {
cout << "PASSED : Deleted Proxy Agent gracefully" << endl;
}
}
catch(...) {
cerr << "FAILED: Unable to delete Proxy Agent gracefully\n" <<
flush;
exit(1);
}
return O;
}

Developing CORBA Applications ¢ October 2001



CHAPTER 4

Handling Events With SEM CORBA
Gateway

This chapter discusses how to handle events with the SEM CORBA Gateway.

This chapter describes the following topics:

= Section 4.1 “Enabling Inter-Process Communication Between EDS Sinks and
CORBA Clients” on page 4-4

Section 4.2 “Subscribing to Events” on page 4-6

Section 4.3 “Unsubscribing From Event Notifications” on page 4-7

Section 4.4 “Formatting Event Reports” on page 4-7

Section 4.5 “Sharing Events Between Multiple Clients” on page 4-8

= Section 4.6 “Listening to Events—Client Applications” on page 4-8

The SEM CORBA Event Gateway (EGW) is a conceptual entity comprising more
than one UNIX process. The SEM CORBA Gateway consists of interfaces for
registering a CORBA EventChannel , and an event distribution mechanism or
CORBA-enabled Event Distribution Server (EDS) sink. The mechanism for
subscribing to and unsubscribing from events is provided by the RGW.

The main component of the EGW subsystem is the CORBA-enabled EDS sink. This
is similar to other EDS sinks except that the events distributed by the sink are
CORBA events. It is possible for multiple instances of CORBA-enabled EDS sinks to
be running on a single system, thereby allowing different CORBA clients to receive
their events from different CORBA-enabled EDS sinks. However, CORBA clients are
not aware of this multitude of CORBA-enabled EDS sinks nor do they need to know
about it. Transparency is the outcome of this approach.

Note — Henceforth, the term EGW and CORBA-enabled EDS sinks will be used
interchangeably, unless there is a need to differentiate them.

4-1



4-2

Three JIDM IDL interfaces and one SEM CORBA Gateway-specific interface are
implemented by the EGW:

JIDM IDL interfaces:

» EventPort
= EventPortFactory
= EventPortFinder

SEM CORBA Gateway interface:
=« EventPortRegistry

EventPortFactory and EventPortFinder CORBA objects are singleton objects
for the entire system (in this case, one instance of Solstice EM). CORBA client
applications receive their event notifications through EventPort  objects, one of
which is typically created for each CORBA client application.

EventPor t objects are dynamically created based on the AE_Title  in the
criteria . The Event Port Registry (EPR) sets up a connection with the
CosEventChannelAdmin::SupplierAdmin object (a part of the Event Services
that is supplied by the Object Request Broker (ORB) vendor, or any other vendor)
associated with the EventPort  object that has the appropriate title.

Developing CORBA Applications * October 2001



CORBA Client A )

£ X

IIOP
CRequest Gateway ><
(To validate
11OP | creation of
EventPort s)
Delivering
events

1IOP

P

/

| EDS EDS
Sink 1 Sink 2

PMI

PMI

FIGURE 4-1 The CORBA Event Gateway and Its Interfaces

Chapter 4

»( CORBA Client B )
IIOP 11OP 11OP
Delivering Creating,
events finding
EventPorts
_______ - T NS
\
\ EventPortRegistry I
| Server |
IIOP |
| < > | EventPortFactory | |
I | EventPortFinder | I
I I
I | EventPortRegistry | I
I I
I I
| EventPort s |
I k / I
/ I
— < CORBA Event Gateway )
____________ e
Handling Events With SEM CORBA Gateway 4-3



4.1

4-4

Enabling Inter-Process Communication
Between EDS Sinks and CORBA Clients

The EventPortFactory and EventPortFinder server objects are implemented in
a separate stand-alone server. This server is a deemon UNIX process and is called an
EventPortRegistry object. This process also implements EventPortRegistry
objects that provide inter-process communication between EDS sinks and CORBA
clients.

On start up, the em_vb_corba_epr server process ((for VisiBroker) creates the
EventPortRegistry CORBA object which is registered with the CORBA Naming
Service. The server then proceeds to create an EventPortFinder, and finally,
creates an EventPortFactory.

The following code example gives the IDL definition for EventPortRegistry

CODE EXAMPLE 4-1  IDL Definition for EventPortRegistry

interface EventPortRegistry {

EventPort create_event_port (
in Key k,
in Criteria creation_criteria,
in CosEventChannelAdmin::SupplierAdmin
the_supplier_admin
) raises (InvalidKey, InvalidCriteria,
CannotMeetCriteria, AlreadyEXxists);
CosEventChannelAdmin::SupplierAdmin find_event_port (
in Key Kk,
in Criteria the_criteria
) raises (InvalidKey, InvalidCriteria,
CannotMeetCriteria, NoEventPort);
EventPort find_event_port_by ae_title(
in string ae_title
) raises(NoEventPort);

Developing CORBA Applications * October 2001



4.1.1

4.1.2

Finding an EventPort

The find_event_port_by_ae_title() registry method is used only by EDS
sinks that need to know the mapping between AE_Title s and EventPort s. The
find_event_port_by_ae_title() method should not be used by a CORBA
client. Instead, the find_event_port() method—which returns the

SupplierAdmin  registered previously—should be used.

Creating an EventPort

A CORBA client invokes the EventPortFactory::create_event_port()
method to create an EventPort . The client must supply the following
creation_criteria parameters:

= The AE_Title of the client (dot notation in an IDL string)

= A reference to the OSIMgmtEXxt::ProxyAgent CORBA object

= An EventinfoFormat criteria value of either CORBA::Any or
CORBA::string  (the default). This allows users to choose the encoding or format
of event information fields in events.

The following table gives reasons for the typical exceptions raised.

TABLE 4-1  Reasons for Typical Exceptions Being Raised

Exception Raised Reason

CannotMeetCriteria Validation of the ProxyAgent object reference failed
InvalidKey Key is not valid

AlreadyExists Key and Criteria already exist in the registry or there is

a one-to-one mapping between EventPort s and
AE_Title s in the given domain

Note — To delete an EventPort field use the destroy method of the EventPort
interface.

Chapter 4  Handling Events With SEM CORBA Gateway 4-5



4.2

4-6

Subscribing to Events

CORBA clients listen for events by issuing a subscribe() request to the RGW to
create an EFD (the definition of subscribe() is given in CODE EXAMPLE 4-2).
However, before they create any EFDs, they must create and register EventPort s.
When a subscribe request is processed by the CORBA RGW and sent to the MIS, the
EFD attribute Secty in MIS will process this create request and send the AE_title

as a listener to one of the CORBA EDS sinks.

The RGW ensures that it passes the user information in the create request. The
AE_Title along with the user information and CMIS filter are passed to the EDS
sink to make it an event-listener. The user information is required to enforce access
control on outgoing events.

CODE EXAMPLE 4-2  IDL Definition of subscribe() (from OSIMgmtExt.idl)

typedef string Subscriptionld;
typedef sequence<string> StringSeq;

Subscriptionld subscribe_events(
in StringSeq event_list,
in StringSeq object_class_list,
in StringSeq object_name_list
) raises (
OSIMgmt::AccessDenied,
ProcessingFailure

);
If both object_class_list and object_name_list are empty, this will cause
subscription to the event_type s specified in the event_list from the objects. If
object_name_list is empty and object_class_list is specified, this will

cause subscription to event types from objects of all classes from the
object_class_list

If the object_name_list and object_class_list are specified, this will cause
subscription to event types form the objects and classes (union of
object_class_list and object_name_list ).

The subscription is cancelled when it is explicitly unsubscribed or when the
ProxyAgent is destroyed.

Developing CORBA Applications * October 2001



4.3

Unsubscribing From Event Notifications

To explicitly unsubscribe from event notifications previously registered for, use the
unsubscribe_events () method from the ProxyAgent interface:

CODE EXAMPLE 4-3  Method for Unsubscribing From Event Notifications

void unsubscribe_events(
in Subscriptionld subscription_id
) raises (
OSIMgmt::AccessDenied,
ProcessingFailure,
InvalidSubscriptionid

);

4.4

Formatting Event Reports

Since JIDM does not explicitly mandate the IDL format for events, the IDL script
shown in the following code example (taken from CMIExt.idl ) is used for
formatting event reports.

CODE EXAMPLE 4-4  IDL Event Report Format

EventReport// Format of events received from the event_gateway
struct EventReport {
string event_type;
string object_class;
string object_name;
string event_time;
any event_info;

h

/Il Format of text events received from the event_gateway
struct TextEventReport {

string event_type;

string object_class;

string object_name;

string event_time;

Chapter 4  Handling Events With SEM CORBA Gateway 4-7



CODE EXAMPLE 4-4  IDL Event Report Format (Continued)

string event_info;

h

4.5

Sharing Events Between Multiple Clients

Since a CORBA EventChannel can serve multiple consumers, Solstice EM event
notifications can be distributed to multiple clients through the same EventChannel

In this case, the first of these clients gets the EventPort and the other clients bind to
the same EventPort

4.6

© g kc w DN

Listening to Events—Client Applications

To listen to event notifications, perform the following steps:

Initialize the ORB, resolve the NameServer interface and connect to the RGW
Get the ProxyAgent interface, osi_agent

Initialize, or get a reference to, an EventChannel

Resolve the EventPortFactory interface

Assign a client to the EventChannel

Create an EventPort

Subscribe to the events

The code fragments in the subsequent sections illustrate the steps listed above.

Note — Steps 1 and 3 vary from ORB to ORB and are not detailed here. Step 2 is
described in Section 4.2 “Subscribing to Events” on page 4-6. The rest of the code
fragments follow.

4-8 Developing CORBA Applications ¢ October 2001



4.6.1

4.6.2

Resolving the EventPortFactory Interface

The following code example shows how to resolve the EventPortFactory
interface.

CODE EXAMPLE 4-5  Resolving the EventPortFactory Interface

*Resolving the EventPort Factory interface */
CosNaming::Name name;
name.length(1);
name[0].id = CORBA::string_dup("EventPortFactory");
try {
CORBA::Object_var object = root_nc->resolve(name);
JIDM::EventPortFactory_var ep_factory =
JIDM::EventPortFactory::_narrow(object);
if (CORBA::is_nil(ep_factory)) {
cerr << "FAILED: Could not get EventPortFactory\n";
TSShutdownManager::shutdown();
}
cout << "PASSED: Accessing the EventPortFactory\n" << flush;
}
catch (const CORBA::Exception& e) {
cerr << "FAILED: Could not resolve EventPortFactory name\n";
throw;
}

Assigning a Client to an EventChannel

The following code example assumes that you have already initialized an

EventChannel interface pointer and that communication with the EventChannel

(i.e. PushConsumer ) has already been established. See Section 4.6.5 “Sample
PushConsumer” on page 4-12 for sample code of PushConsumer.

CODE EXAMPLE 4-6  Assigning a Client to an EventChannel

PortableServer::POAManager_var rootManager =
root_poa->the_POAManager();

root_poa->activate_object(&push_consumer);
rootManager->activate();

CosEventChannelAdmin::ConsumerAdmin_var consumer_admin =

channel->for_consumers();

Chapter 4  Handling Events With SEM CORBA Gateway

4-9




CODE EXAMPLE 4-6  Assigning a Client to an EventChannel  (Continued)

CosEventChannelAdmin::ProxyPushSupplier_var pushSupplier =
channel->for_consumers()->obtain_push_supplier();
pushSupplier->connect_push_consumer(&push_consumer);
supplier_admin = channel->for_suppliers();

4.6.3 Creating an EventPort

The following code example shows how to create an EventPort

CODE EXAMPLE 4-7  Creating an EventPort

JIDM::Key key;
key.length(2);
key[0].id = CORBA::string_dup("OSI Management");
key[0].kind = CORBA::string_dup("XSM environment");
JIDM::Criteria event_criteria;
event_criteria.length(3);
event_criteria[0].name = CORBA::string_dup("domain title");
event_criteria[0].value <<= (const char* )ae_title;
/I You need to pass ProxyAgent's access criteria for creating
event
/I ports. This is required for enforcing connection level access
/l control.
event_criteria[1].name = CORBA::string_dup(
"ProxyAgent Access Criteria");
event_criteria[1].value <<= criteria;
event_criteria[2].name = CORBA::string_dup("Eventinfo Format");
if (format != NULL)
event_criteria[2].value <<= (const char* )format;
else
event_criteria[2].value <<= (const char* )"CORBA::string";
ep = ep_factory->create_event_port(key, event_criteria,
supplier_admin);

4-10 Developing CORBA Applications * October 2001



4.6.4 Subscribing to Events

The following code example shows how to subscribe to events.

CODE EXAMPLE 4-8  Subscribing to Events

OSIMgmtExt::ProxyAgent::StringSeq event_list;

/I For all events: equivalent to CMIS Filter = and :{}

/I If you want to subscribe to specific events, then uncomment the
/I following line and comment out the previous line of code that

Il 'initializes event_list to zero length

/I event_list[0] = CORBA::string_dup("\"Rec. X.721 | ISO/IEC 10165-2:
1992\": objectCreation");

event_list.length(0);
/I Object Classes should be "document":oc format

OSIMgmtExt::ProxyAgent::StringSeq object_class_list;
object_class_list.length(0);

/I Ols should be either in the slash format or in brace format

Il Example: slash format: /systemld=name:"sesha"/
logld=string:"AlarmLog"

I/l brace format:

1
distinguishedName:{{{systemld,name:"sesha'"}},{{logld,string:"AlarmLog

"

OSIMgmtEXxt::ProxyAgent::StringSeq object_name_list;
object_name_list.length(0);

sid = osi_agent->subscribe_events(
event_list, object_class_list, object_name_list);

Chapter 4  Handling Events With SEM CORBA Gateway 4-11



4.6.5 Sample PushConsumer

The following code example shows how to implement PushConsumer .

CODE EXAMPLE 4-9  Sample PushConsumer

class PushConsumerlmpl : public _sk_CosEventComm::_sk_PushConsumer
{
public:
PushConsumerimpl()
{
}
void push(const CORBA::Any& data)
{
/* Put Event Processing Code Here */
}
void disconnect_push_consumer() {
cout << "disconnect_push_consumer() invoked" << endl;
_boa()->shutdown();
}
2

4-12  Developing CORBA Applications * October 2001



CHAPTER 5

Translating Data

The translation of data in SEM CORBA Gateway is in compliance with the JIDM
Specification Translation document.

The data translation (IDL to ASN1 and vice-versa) is based on the IDL files
ASN1Types.idl and ASN1Limits.idl , which contain the base definition and
classes.

CORBA client applications can use Metadata Gateway (MGW) to access the ASN1
type information of the attributes or events, and to traverse the Management
Information Tree (MIT) in Solstice Enterprise Manager (Solstice EM). The basic
design of MGW is independent of the JIDM standards and can therefore be accessed
by any client, even a non-JIDM client.

This chapter describes the following topics:

= Section 5.1 “Metadata Gateway Interface” on page 5-1
= Section 5.2 “Encoding and Decoding Attribute Values” on page 5-2
= Section 5.3 “Decoding Events and Responses” on page 5-6

5.1

Metadata Gateway Interface

The MGW interface that is exposed to clients is a singleton CORBA object. The UNIX
demon process, MGW, implements this object and provides the following
functionality:

= Get ASNL1 type given module name and label

= Look up Node by name, given the object type, GDMO document name, and
attribute name

= Get OID by name

= Get name by OID

= Get GDMO document list

= Get managed object class (MOC) list

5-1



= Get MOC attributes by OID
= Get MOC attributes by name
= Get MOC notifications by OID
= Get MOC notifications by name

Some of the above functionality is supported in both textual representation and
binary representation.

5.2

Encoding and Decoding Attribute
Values

Management requests sent by CORBA client applications to the SEM CORBA
Gateway are converted from IDL format to the PMI’s ASN1 values and conversely
responses received by the SEM CORBA Gateway are converted from ASN1 values
back to IDL format.

When a CORBA application sends a complex data type (for example, the
action_info attribute in cmis_action ) the application must encode the value
represented by the complex data type in IDL format.

When a CORBA application receives an attribute value represented by a complex
data type (for example, CORBA:Any) it must decode this value to extract the
information the value contains.

The SEM CORBA Gateway facilitates this by using a set of conversion libraries and
the Solstice EM Metadata interface.

The following table gives some sample mappings between ASN1 types and IDL
types. For more information on IDL mappings of ASN1 types refer Appendix A.

TABLE5-1  Sample Primitive Mappings Between ASN1 Types and IDL Types

ASN1 Type IDL Type
INTEGER long
REAL double
BOOLEAN boolean
NumericString String
PrintableString String
VisibleString String

5-2  Developing CORBA Applications * October 2001



TABLE5-1  Sample Primitive Mappings Between ASN1 Types and IDL Types (Continued)
ASN1 Type IDL Type

ObjectDescriptor String

GraphicString String

TeletexString String

Objectldentifier String

OCTET STRING sequence<octet>

GENERAL STRING sequence<octet>

VIDEOTEXTSTRING sequence<octet>

The following figure shows the encoding/decoding done by the CORBA Request
Gateway (RGW).

Request in Request in
Manager IDL format Convertor ASN1 format MIS
Application Response in RGW Response in
-
IDL format ASN1 format
FIGURE 5-1 Encoding/Decoding Done by RGW

Some of the complex IDL to ASN1 mappings are described in the following
paragraphs:

= The ASN1 SEQUENCE mapped to sequence<any>

= CHOICEIis mapped to typedef sequence<any> ASN1_Seq

The following code segment gives the ASN1Type syntax of FileAttribute and

CurrentAttributes

FileAttribute ::= CHOICE {
date-last-used INTEGER,
file-name VisibleString

}

CurrentAttributes ::= SEQUENCE {
date-last-used FileAttribute,
file-name FileAttribute

}

Chapter 5  Translating Data

5-3




CODE EXAMPLE 5-1 shows how to encode CORBA::Any corresponding to

CurrentAttributes . In the following code example, the CORBA application is
attempting to set an attribute fooFile  of type CurrentAttributes , with values
(200, "filename String "),

CODE EXAMPLE 5-1  Encoding of CORBA::Any Corresponding to CurrentAttributes

ASN1_Seq aseq(2),

ase(q[0] <<= CORBA::Long(100);
aseq[1] <<= "filename String" ;

CORBA::Any any_sel;

any_sel <<= aseq ;

In the cmis_set request the encoded value any_sel will be passed to the attribute
value.

CODE EXAMPLE 5-2 shows that the user is receiving a CORBA::any corresponding to
CurrentAttribute as a reply from a get request for an attribute that needs to be
decoded.

CODE EXAMPLE 5-2  Decoding an Attribute Value

/I assumed that attribute_value ( of type CORBA:Any ) is received
I as response.

ASN1_Seq seq(2);

CORBA::Long j;
char *visstr2;

attribute_value >> seq ;

if (seq[0] >>=j){
cout << "date_last_used" <<j;

}

if ( seq[1] >>= visstr2 ) {
cout << "file Attribute " << visstr2 ;

5-4  Developing CORBA Applications * October 2001



CODE EXAMPLE 5-3 gives the mapping of data from CORBA IDL format to GDMO
format. This following code represents CORBA data in a variable foo of type
ASN1_Seq

CODE EXAMPLE 5-3  Mapping data from CORBA IDL Format to GDMO Format

typedef sequence<any> ASN1_Seq;
ASN1_Seq foo(2);

long counter=2;

string message="";

CORBA::Any corba_anyl, corba_any2 ;

corba_anyl <<= counter ;
corba_any2 <<= message ;

foo[0] = corba_any1 ;
foo[1] = corba_any2 ;

The following table gives the steps for mapping CORBA IDL data to GDMO format.

TABLES-2  Steps for Mapping CORBA IDL Data to GDMO Format

Step No. Conversion Step Resulting GDMO expression
1 ASN1_Seq SEQUENCE
2 ASN1_Seq foo(2) foo ::=SEQUENCE {
}
3 foo[0] = corba_anyl foo ::=SEQUENCE {
any
}

Chapter 5 Translating Data  5-5



TABLE5-2  Steps for Mapping CORBA IDL Data to GDMO Format (Continued)
Step No. Conversion Step Resulting GDMO expression
4 foo[0] = corba_any2 foo::= SEQUENCE {
any
any
}
5 corba_anyl <<= counter foo ::= SEQUENCE {
INTEGER counter,
any
}
6 corba_any2 <<= message foo::= SEQUENCE {

INTEGER counter,
VisibleString message

5.3

Decoding Events and Responses

The following two code segments denote the two formats in which events will be

received from a CORBA Gateway:

struct EventReport {
string event_type;
string object_class;
string object_name;
string event_time;
any event_info;

5-6  Developing CORBA Applications * October 2001




struct TextEventReport {
string event_type;
string object_class;
string object_name;
string event_time;
string event_info;

The event_info  contains attributes of type Notification . In the EventReport
structure, event_info  contains a sequence of attributes that is defined for the
event_type , and corresponds to the ASN1 type defined in the GDMO document.

The following code example gives the attributeValueChange Notification as
defined in dmi.gdmo document.

CODE EXAMPLE 5-4  Definition of attributeValueChange Notification

attributeValueChange NOTIFICATION
BEHAVIOUR attributeValueChangeBehaviour;
WITH INFORMATION SYNTAX Notification-
ASN1Module.AttributeValueChangelnfo
AND ATTRIBUTE IDS
sourcelndicator sourcelndicator,
attributeldentifierList attributeldentifierList,
attributeValueChangeDefinition attributeValueChangeDefinition,
notificationldentifier notificationldentifier,
correlatedNotifications correlatedNotifications,
additionalText additional Text,
additionallnformation additionallnformation;

REGISTEREDAS {joint-iso-ccittms(9) smi(3) part2(2) notification(10)
1}

Chapter 5 Translating Data  5-7



5-8

When an attributeChange event occurs, the event information corresponds to the
AttributeValueChangelnfo , which is defined as follows:

AttributeValueChangelnfo ::= SEQUENCE {
sourcelndicator Sourcelndicator OPTIONAL,
attributeldentifierList [1] AttributeldentifierList OPTIONAL,
attributeValueChangeDefinition  AttributeValueChangeDefinition,

notificationldentifier Notificationldentifier OPTIONAL,
correlatedNotifications [2] CorrelatedNotifications OPTIONAL,
additional Text AdditionalText OPTIONAL,
additionallnformation [3] Additionallnformation OPTIONAL}
The event report for the attributeValueChange event is as follows:

any event_info

;

sequence <attributes>

sourcelndicator
attributeldentifierList
attributeValueChangeDefinition
notificationldentifier
correlatedNotifications
additionalText
additionallnformation

Here each attribute is expanded based on the types defined in the dmi.gdmo
document.

The ASNL1 type definitions for the attributes as defined in dmi.asnl document is as
follows:

Sourcelndicator ::= ENUMERATED { resourceOperation(0),
managementOperation(1), unknown(2)}

AttributeldentifierList ::= SET OF Attributeld
Attributeld ::= CHOICE {

globalForm OBJECT IDENTIFIER,
localForm INTEGER

Developing CORBA Applications * October 2001



Sourcelndicator ::= ENUMERATED { resourceOperation(0),
managementOperation(1), unknown(2)}

AdditionalText ::= GraphicString

Additionallnformation ::= SET OF ManagementExtension

AttributeValueChangeDefinition::= SET OF SEQUENCE {
attributelD  Attributeld,
oldAttributeValue [1] ANY DEFINED BY attributelD
OPTIONAL,
newAttributeValue [2] ANY DEFINED BY attributelD}

Notificationldentifier ::= INTEGER
CorrelatedNotifications ::= SET OF SEQUENCE {

correlatedNotifications ~ SET OF Notificationldentifier,
sourceObjectinst Objectinstance OPTIONAL }

In the following code segment, only the AttributeldList is expanded; other
attributes also are expanded in the same manner.

AttributeldentifierList

'

sequence <Attributeld>

struct ASN1_Choice {

unsigned short selector —1
any value
% l

localForm

|

Integer

Chapter 5  Translating Data

5-9




5-10 Developing CORBA Applications ¢ October 2001



CHAPTER 6

Accessing Information Through
Metadata Gateway

The SEM CORBA Metadata Gateway (MGW) implements the Metadata Repository
Interface (MRI), which provides methods to access the ASN1 metadata in Solstice
Enterprise Manager (Solstice EM).

The purpose of the MGW is to make available IDLs with the following functionality:

= Functionality to return the ASN1 type of a given attribute name or oid . This
functionality is used to encode or decode an IDL value for an attribute and
decode an event received as an IDL value.

= Functionality to extract information from the metadata. This functionality is used
to verify what is already loaded into the Metadata Repository (MDR), before
loading an updated object model.

= Utility functions to convert oid to name and vice versa.

This chapter discusses the MGW and how to access information through the MGW.

This chapter describes the following topics:

= Section 6.1 “Browsing Metadata” on page 6-1
= Section 6.2 “Walking Through Metadata” on page 6-8
= Section 6.3 “Obtaining Metadata Information” on page 6-11

6.1

Browsing Metadata

The CORBA MGW object acts as a tree-structured repository for ASN1 types
encapsulated in the Node IDL interface. The root of the tree is either a known ASN1
type or a type of class (attribute , actioninformation , eventtype  or
actionreply ). Structured ASNL1 types such as SET and SEQcontain Node
structures as sub-components for ASN1 tree navigation.

6-1



6-2

The Node structure wraps the actual ASN1 type definitions in IDL format. The
following code segment gives the definition of a Node structure.

/I ASN1 Type node in the metadata tree/graph
struct Node {
Asnl1Kind kind ;
Asn1Kind base_kind ;
any type_info ;

Each Node structure contains the underlying ASN1 type node in type_info . The
kind is identified by the built-in type member.

The client program must connect to the MGW to use the IDL functions.

To connect to the MGW, the client application must initialize the ORB and resolve
the root naming context before the MGW can be resolved, as shown in the following
code example.

CODE EXAMPLE 6-1  Connecting to the MGW

/I Example to show how to get connected to Metadata Gateway.

#include <iostream.h>

#include <corba.h>

#include <cos/CosNaming_c.hh>

#include <metadata_gw/SEMMetaData_c.hh>
#include <pmi/hi.hh>

int

main(
int argc,
char **argv

)
CORBA::ORB_var orb;

/I CORBA Orb intialization

try {
orb = CORBA::ORB _init(argc, argv);
}

catch(const CORBA::Exception& e) {
cerr << "ORB Init FAILED: " ;
exit(1);

}

/I Get rootnaming context
CosNaming::NamingContext_var root_nc;

try{

Developing CORBA Applications * October 2001



CODE EXAMPLE 6-1  Connecting to the MGW (Continued)

CORBA::Object_var object =
orb->resolve_initial_references("NameService");
root_nc = CosNaming::NamingContext::_narrow(object);
if(CORBA::is_nil(root_nc)) {
cerr << "FAILED: Unable to obtain root nhaming context\n" <<
flush;
exit(2);
}
}
catch(const CORBA::Exception& e) {
cerr << "FAILED: Unable to obtain root naming context:\n" ;
exit(3);
}
SEMMetaData::MetaDataRepository_var meta_data_repository;
try{
CosNaming::Name name;
name.length(1);
name[0].id =
CORBA::string_dup("SEMMetaData::MetaDataRepository");
name[0].kind = CORBA::string_dup("");

CORBA::Object_var object = root_nc->resolve(name);
meta_data_repository =
SEMMetaData::MetaDataRepository::_narrow(object);
if (CORBA::is_nil(meta_data_repository)) {
cerr << "FAILED: Unable to obtain correct MetaData
Repository\n"
<< flush;
exit(4);
}
if(meta_data_repository->_non_existent()) {
cerr << "FAILED: MetaData Repository does not exist\n" <<
flush;
exit(5);
}

catch(const CORBA::Exception& e) {
cerr << "FAILED: Unable to resolve"
SEMMetaData::MetaDataRepository:\n
exit(6);
}

Chapter 6  Accessing Information Through Metadata Gateway

6-3




The ASN1 types follow an inheritance hierarchy. Individual ASN1 classes are
modeled as structures when translated to IDL, and instances of a particular class are
represented in IDL as a sequence of structures derived from the base class.

The following figure shows the class hierarchy followed in the IDL representation.

1
0..n

Structured
Type
Component

contains\ll

.n

1A\Size
1]

contains

references

Constraint

Container
Type

.n

0
A
Choice
Type

1.n

getData()
1

Real

Type

Node

Type

Definition
Node
Abstract
Type

.n

—
Integer
Type
NamedNumbe

String
Type
A
BitString
Type

..n

Enumerated
Type
1
1
Enumerator

FIGURE 6-1 Class Hierarchy Followed in the IDL Representation

6-4 Developing CORBA Applications  October 2001



The following figure shows the decomposition of IDL data structures defined in
metadatagw.idl

Node

TypeDefinitionNode ValueDefinitionNode

FIGURE 6-2 Decomposition of IDL Data Structures Defined in metadatagw.idl ~ *

The following figure shows the mapping of ASN1 Defined Type into the IDL
structure DefinedType

DefinedType

String  name TypeDefinitionNode
reference

FIGURE 6-3 The ASN1 Defined Type Mapped Into the IDL Structure DefinedType

1. In the arrow notation used in these figures, a diamond-shaped arrowhead indicates an “Aggregation”
relationship; a triangular arrowhead indicates a “Generalization” relationship; a blank arrow between boxes
indicates an association between them.

Chapter 6  Accessing Information Through Metadata Gateway  6-5



The ASN1 Structured Types® are used for building complex data types, and are
mapped to IDL as follows. The four structured types SEQUENCESET, SEQUENCE OF
and SET OFare represented by ASN1 as ComponentType .

The following figure shows the decomposition of the IDL Component Type.

ComponentList

1..n
Component
Optional ComponentKind TypeDefinition OptionalValue
Reference Node DefinitionNode

FIGURE 6-4 Decomposition of Component IDL Types

The AsnlSubType is derived from ParentType by restricting the set of values
defined for ParentType . Six different forms of SubTypes are present in AsnlType .
The decomposition of these Asn1SubType mappings is shown in FIGURE 6-5.

1. Structured types are those consisting of components.

6-6 Developing CORBA Applications  October 2001



Subtype

&

Constraints_List TypeDefinitionNode
constraint_list ParentType
1.n
Constraint
<? union

single [ value contained|subtype size|/ single Inner|Type
\ValueDefinition TypeDefinition ValueRange any Multiplelnner

Node TypeConstraint

ValueDefinitionNode
lower_end_point

ValueDefinitionNode
upper_end_point

string

any Presence
Designator

Constraints_List

FIGURE 6-5 Decomposition of IDL Subtype

Chapter 6  Accessing Information Through Metadata Gateway

6-7



The NamedNumberformat of ASN1 follows the IDL mapping decomposition shown
in the following figure:

NamedNumberType

1..n

NamedNumber

<

i OptionalValue
String Integer 5 fllnlrt]lon
Identifier Value

FIGURE 6-6 Decomposition of NamedNumberFormat

6.2 Walking Through Metadata

When you wish to encode an IDL value for an attribute, you should get the type
information for the attribute, walk! the type, and encode IDL values based on the
subtypes using the following methods:

1.Node get_asnl_type (in string modname, in string label)

This method returns Node(ASN1Type) representing modname:label PMI:
AsnlType type(modname, label)

2. Node lookup_node_by name (in ObjectType object_type, in
string gdmo_doc_name, in string name) raises (NotFound);

Node get asnl_type (in string modname, in string label) gets the
IDL type Node structure, which is a wrapper of the Asn1Type .

1. “Walking” through the Metadata means traversing the subtypes based on ASN1 type .

6-8 Developing CORBA Applications  October 2001



The following code segment is an example for Asn1SubType ValueRange

TopoNodeld ::= INTEGER (0..4294967295)

The BNF syntax for the ASN1Tree structure for the type Asn1lSubType
ValueRange s as follows:

Type::= DefinedType

DefinedType::= ExternalvalueReference | valueReference
Subtype ::= SingleSubType | ValueRange| SizeConstrainst|
SinglelnnerSubType| Multiple.....

The Asnl SubType ValueRange applies only to INTEGER/REAL It is specified by
giving numerical values of the end points of the range.

The following code segment gives the corresponding IDL type mapping wrapped
into the Node structure.

Struct Node

{
AsnKind kind,
Asnl1Kind base_kind,
Any type-info

Chapter 6  Accessing Information Through Metadata Gateway  6-9



6-10

Node

kind AK_DEFINED_TYPE
base_kind AK_DEFINED_TYPE
type_info
DefinedType
name TopoNodeld
reference
Node
kind AK_SUBTYPE
base_kind AK_INTEGER
type_info
SubType v

constrain_list

sequence<Constraint,length=1>

parent_type

ValueRange Y

upper_end_point —

FIGURE 6-7

Developing CORBA Applications ¢ October 2001

Node Y
kind AK_INTEGER
base_kind | AK_INTEGER

type_info null

Node
kind AK_INTEGER
base_kind AK_INTEGER
J—' type_info (type=long, value=0))
lower_end_point —
Node
kind AK_INTEGER
base_kind AK_INTEGER
type_info (type=long, value=4294967295)

IDL Mapping Wrapped Into Node Structure




The following code example shows how to get the ASN1 type of an attribute from
the metadata.

CODE EXAMPLE 6-2  Obtaining the ASN1 Type of an Attribute From the Metadata

try {

const char* asnl_module_name = "ASN-1-TEST";
const char* label = "Patientldentifier";
SEMMetaData::ASN1ElementName input;

input.asnl_module_name = CORBA::string_dup(asnl_module_name);
input.label = CORBA::string_dup(label);

SEMMetaData::Node_var node =
meta_data_repository->get_asnl_type(
input
)i
CORBA::Any any ;
any <<= node;
cout << "Output : Contents of Node: " << endl;
CORBAUtils::print_any(cout, any, orb, true);

catch( const SEMMetaData::NotFound& nfe)

6.3

Obtaining Metadata Information

The MGW provides the following utility functions for obtaining information from
the MDR:

= get_doc_list()

= get_moc_list()

= get_moc_attributes_by _name()
= get_moc_attributes_by_oid()

= get_moc_notifications_by_name()
= get_moc_notifications_by_oid()

Chapter 6  Accessing Information Through Metadata Gateway  6-11




6.3.1

= get_textual_rep_by name()
= get_textual_rep_by_oid()

You can use these interfaces (utility functions) to verify what is already loaded on
the MDR before loading an updated object model.

Listing Documents in the MDR Using the
get_doc_list() Method

The get_doc_list method lists all the documents loaded into the MDR.

The following code example shows how to invoke the MDR interface to list all
documents loaded on MDR (it is assumed that the client has connected to the
metadata_gw and has the object reference, meta_data_repository ready).

CODE EXAMPLE 6-3  Invoking the MDR Interface to List All Documents Loaded on MDR

try {

SEMMetaData::StringSeq_var attr_list =
meta_data_repository->get_doc_list();

cout << "OUTPUT Printing doc_list :" << endl;
for (intj = 0; j < attr_list->length(); ++j) {
cout << "OUTPUT: " << "attr_list" << "["

<< j << "] " << attr_list[j] << endl << flush;
}
}
catch(
const SEMMetaData::NotFound& nfe
R
cerr << "FAILED: Request failed [Not Found]: " << end];
exit(7);
}
catch(
const SEMMetaData::ProcessingException& pe
)R
cerr << "FAILED: Request failed [Processing Failure]: " << endl;
exit(8);
}

6-12 Developing CORBA Applications * October 2001




6.3.2

6.3.3

Listing Managed Obiject Classes in the GDMO
Document Name

get_moc_list() lists all the managed object classes defined in the GDMO
document name.

Getting the Managed Object Class Attributes

You can use the get_moc_attributes_by_oid and
get_moc_attributes_by name IDL interfaces to obtain the attributes of the
specified managed object class from the MDR.

The syntax for these interfaces is:

GDMOEIlementNameSeq
get_moc_attributes_by oid (in string moc_oid)
raises( NotFound, ProcessingException)

GDMOEIlementNameSeq
get_moc_attributes_by name( in GDMOElementName gdmo_element_name)
raises ( NotFound, ProcessingException)

GDMOEIlementNameis a struct  type defined in the metadatagw.idl

struct GDMOElementName {
string gdmo_doc_name;
string label;

h

The following code example shows how to obtain the managed object class
attributes based on GDMO document name and object class.

CODE EXAMPLE 6-4 Obtaining Managed Object Class Attributes Based on GDMO
Document Name and Object Class

try {
const char* gdmo_doc_name = "Rec. X.721 | ISO/IEC 10165-2 :

1992 ;
const char* name = "alarmRecord";

Chapter 6  Accessing Information Through Metadata Gateway

6-13




CODE EXAMPLE 6-4  Obtaining Managed Object Class Attributes Based on GDMO
Document Name and Object Class (Continued)

SEMMetaData::GDMOElementName input;
input.gdmo_doc_name = CORBA::string_dup(gdmo_doc_name);
input.label = CORBA::string_dup(name);

SEMMetaData::GDMOElementNameSeq_var attr_list =
meta_data_repository->get_moc_attributes_by_name( input );

for (intj = 0; j < attr_list->length(); ++j) {
cout << "OUTPUT: " << "attr_list" << "["
<<j<<"] "<<attr_list[jl.gdmo_doc_name
<< " " << attr_list]j].label << endl << flush;

}

}
catch( const SEMMetaData::NotFound& nfe)

6.3.4 Getting Managed Object Class Notifications

You can use the IDL interfaces get_moc_notifications_by_oid and
get_moc_notifications_by name to get notifications defined in a managed
object class from the MDR.

The following code example shows how to obtain notifications defined in a managed
object class from the MDR.

CODE EXAMPLE 6-5 Obtaining Notifications Defined in a Managed Object Class From the
MDR

GDMOEIlementNameSeq
get_moc_notifications_by_oid(in string moc_oid)
raises ( NotFound, ProcessingException)

6-14 Developing CORBA Applications * October 2001



6.3.5

CODE EXAMPLE 6-5  Obtaining Notifications Defined in a Managed Object Class From the

MDR (Continued)

GDMOEIlementNameSeq
get_moc_notifications_by name(inGDMOElementNamegdmo_element_name)

raises ( NotFound, ProcessingException)

The following code example shows how to get the notifications of a managed object

class based on its oid.

CODE EXAMPLE 6-6  Obtaining Notifications of a Managed Class Object Based on Its oid

try {

SEMMetaData::GDMOElementNameSeq_var notif_list =

meta_data_repository->get_moc_notifications_by_oid(
CORBA::string_dup("1.3.6.1.4.1.42.2.2.2.19.3.1") );

}

catch( const SEMMetaData::NotFound& nfe)

{

}

catch(const SEMMetaData::ProcessingException& pe)

{

}

Obtaining the Textual Representation of an
Attribute

The ASN1 textual representation of class Attribute  /EventType /ActionReply
ActionInfo can be obtained by providing the oid or name.

The following IDL interfaces are used in the operation:

/

TextualRepresentation
get_textual_rep_by name(in ObjectType object_type,
in GDMOElementName gdmo_element_name)

TextualRepresentation
get_textual_rep_by name(in ObjectType object_type,
in string oid)

Chapter 6  Accessing Information Through Metadata Gateway

6-15




TextualRepresentation is defined in metadatagw.idl as a sequence of strings.

The following code example shows how to obtain the ASN1 textual representation of
an attribute.

CODE EXAMPLE 6-7  Obtaining the ASN1 Textual Representation of an Attribute

try {

const char* gdmo_doc_name = "Rec. X.721 | ISO/IEC 10165-2 :
1992 ;
const char* name = "probableCause”;

SEMMetaData::MetaDataRepository::ObjectType object_type =
SEMMetaData::MetaDataRepository::OT_ATTRIBUTE;

SEMMetaData::GDMOElementName input;
input.gdmo_doc_name = CORBA::string_dup(gdmo_doc_name);
input.label = CORBA::string_dup(name);

SEMMetaData:: TextualRepresentation_var text_var =
meta_data_repository->get_textual_rep_by name(
object_type,
input
);

cout << text_var[0] << endl;

catch( const SEMMetaData::NotFound& nfe)

6-16 Developing CORBA Applications ¢ October 2001



CHAPTER 7

Managing Agents

The “JIDM Interaction Translation” standards specify three levels of interfaces to
support interworking with different management environments:

= Generic interfaces which are management model independent
= Generic interfaces which are management model dependent
= Specific interfaces which are both information and management model dependent

The management model dependent generic interfaces define two management
reference models, OSI and SNMP. These sets of interfaces extend the generic JIDM
interfaces to support OSI- and SNMP-specific concepts.

This chapter discusses management model dependent generic interfaces that Solstice
EM implements and how they can be used for managing both SNMP and CMIP
agents.

The topics described in this chapter are:

= Section 7.1 “Solstice EM-specific Generic Interfaces” on page 7-1
= Section 7.2 “Managing OSI/CMIP Objects” on page 7-2

= Section 7.3 “Managing SNMP Objects” on page 7-3

= Section 7.4 “Management of CORBA Objects” on page 7-4

7.1

Solstice EM-specific Generic Interfaces

The SEM CORBA Gateway implements the generic interfaces that are specific to
supporting the OSI management model. Hence, the SEM CORBA Gateway
implements the interfaces that support the following functionality:

= Creating managed objects

= Deleting managed objects

=  Getting managed object attributes and values
= Setting managed object values

7-1



= Carrying out actions on managed objects

The CORBA Gateway converts all the requests from the client applications to CMIP/

LPP (Lightweight Presentation Protocol) before sending them to SEM MIS for
processing.

7.2

7-2

Managing OSI/CMIP Objects

The following figure depicts how CMIP objects are managed from CORBA manager
applications.

CORBA

CORBA

Manager Application Event Manager

cmis_get , cmis_set

cmis_create , cmis_action
sent on IIOP SEM CORBA
Gateway
1 CMIP/LPP
MIS
1 CMIP/LPP
CMIP MPA

i CMIP responses and events

(O]

Managed Object

FIGURE 7-1 Managing CMIP Objects From CORBA Manager Applications

Developing CORBA Applications * October 2001



Managing SNMP Objects

The SEM CORBA Gateway uses the SNMP MPA to manage SNMP objects. The
following figure depicts how an SNMP object is managed by the CORBA application
manager.

CORBA

CORBA

Manager Application Event Manager

cmis_get, cmis_se‘t\,A

and cmis_create (Originally SNMP Traps)

sent on [IOP SEM CORBA
Gateway

I CMIP/LPP

MIS

CMIP/LPIi/' CMIP/LPP

SNMP MPA

SNMP resp(& SNMP traps

SNMP
Managed Object

FIGURE 7-2 Managing SNMP Objects From CORBA Manager Applications

Chapter 7 Managing Agents  7-3



7.4

7-4

Management of CORBA Obijects

The SEM CORBA Gateway implementation does not as yet provide a CORBA south-
bound interface, and hence, cannot manage network elements that are pure CORBA

objects.

Developing CORBA Applications * October 2001



CHAPTER 8

Interoperating SEM CORBA
Gateway

The SEM CORBA Gateway consists of a set of CORBA objects built as per the JIDM
standards. These objects can be built and deployed to meet your requirements
depending on the ORB that you have installed. It is also possible to implement these
objects on one ORB and develop the client applications on another ORB and
communicate with Solstice Enterprise Manager (Solstice EM) in a seamless way. This
chapter describes the issues of interoperability.

This chapter describes the following topics:

= Section 8.1 “Background on Interoperability” on page 8-1
= Section 8.2 “ORBs for Developing Client/Manager Applications” on page 8-2
= Section 8.3 “Implementing Client Applications on Other ORBs” on page 8-2

8.1

Background on Interoperability

Interoperability in terms of CORBA standards is defined as “the ability of a client on
ORB A to invoke an OMG IDL-defined operation on an object on ORB B, where ORB
A and ORB B have been independently developed by the same vendor or by
different vendors.”

Interoperability as applicable to SEM CORBA Gateway is defined as “the ability of a
manager application developed on any SEM CORBA ToolKit supported ORB to be
able to interact with SEM CORBA Gateway interfaces developed on any SEM
CORBA ToolKit supported ORB and carry out all the Solstice EM supported
functions on any of the managed objects transparently.”

Interoperability to a large extent is ensured by IIOP, which is a mandatory OMG
requirement for all ORB vendors. All products that are compliant with CORBA 2.0
standards must implement 11OP as a standard communication protocol.

8-1



Some of the ORBs that are commercially available for developing client applications
are listed in the following sections. Steps to follow when developing manager
applications are also discussed.

8.2

ORB:s for Developing Client/Manager
Applications

The SEM CORBA ToolKit currently supports the following ORBs:

= VisiBroker 4.5
= Orbacus 4.0.5
=« Orbix 2000 1.2.1

Any of these ORBs can be used for developing client/manager applications.

8.3

8-2

Implementing Client Applications on
Other ORBs

If you wish to develop and implement client applications using other ORBs, which
are not supported by the SEM CORBA ToolKit, perform the following steps®:

. Create a template file for the ORB.

For example, if you are building applications for HP Orb Plus, you can create a
template file hp.tmpl . The template file defines the various parameters and flags
required for IDL to CPP/Java compilation.

The .tmpl file already exists for the ORB chosen at the time of SEM CORBA ToolKit
installation. You can use this .tmpl file as reference while creating the .tmpl file for
the current ORB.

1. Itis assumed here that the client applications are to be written using C++.

Developing CORBA Applications * October 2001



2. Create Makefiles for the ORB in the following IDL directories:
= jidm
= auth_proxy
= jidm_ext
= event_gw
= Mmetadata_gw
= COS

The Makefile already exists for the ORB chosen at the time of SEM CORBA ToolKit
installation. You can use this Makefile as reference while creating the Makefile
file for the current ORB.

While creating Makefiles, make sure that the header files, source files and the
libraries are installed in the required directories.

Note — The template file created in Step 1 is included in the Makefile created in
Step 2.

3. Execute the Makefiles individually in the directories mentioned in Step 2 by using
the following command:

dmake <makefile-name-for-the-orb> install

This step will create the C++ and header files; build the libraries and install them in
the required directories.

After creation and installation of the header files (.hh) and shared libraries; include
the header files in your client applications; compile and link the header files to the
shared libraries to build applications.

Chapter 8  Interoperating SEM CORBA Gateway  8-3



8-4  Developing CORBA Applications ¢ October 2001



APPENDIX A

IDLs Used by SEM CORBA
Gateway

The first section of this appendix describes some of the IDLs that are part of either
the JIDM standards or the OMG standards. The IDL files specific to Solstice
Enterprise Manager (Solstice EM) (which are not part of any standards) are
documented in the second section of this appendix.

This appendix describes the following topics:

= Section A.1 “IDLs Based on Standards” on page A-2
= Section A.2 “IDLs Specific to SEM CORBA Gateway” on page A-4

The following is a list of IDLs that the SEM CORBA Gateway implementation
includes:

1. From JIDM standards:

= ASN1Limits.idl
= JIDM.idl

= X501Inf.idl

= ASN1Types.idl
= OSIMgmt.idl
=« X711CML.idl

2. From OMG standards:

= CosLifeCycle.idl (Life Cycle Service)
= CosNaming.idl  (Naming Service)
= CosEventChannelAdmin.idl (Event Channel Admin)

= CosEventComm.idl (Event Service)

3. SEM CORBA Gateway specific:

= SEMAuthenticationProxy.idl
= EventPortRegistry.idl

= ASN1TypesExt.idl

= CMIExt.idI

A-1



=  OSIMgmtExt.idl
= SEMMetaData.idl

Al

IDLs Based on Standards

1.ASN1Limits.idl

This IDL file defines the maximum and minimum (biggest negative) double values
that your machine can hold, for IDL interfaces. Use conditional compilation to
support multiple architectures.

2. JIDM.idI

This IDL file comprises a collection of interfaces that together define a basic set of
services for developing systems management applications based on CORBA.
Following the JIDM reference model, these interfaces may be used between manager
applications and JIDM Frameworks, or between JIDM Frameworks and agent
applications.

From the Manager application perspective, the following interfaces are used:

= The ProxyAgent interface

= The ProxyAgentController interface
= The ProxyAgentFinder interface

= The EventPort interface

= The EventPortFactory interface

From the Agent application perspective, the following additional interfaces are used:

= The DomainPort interface
= The DomainPortFactory interface
= The EventPortFinder interface

3. X501inf.idl

This IDL file contains mappings for the pre-mapped or pre-defined types as part of
the JIDM standard.

4. ASN1Types.idl

This IDL file provides generic IDL mapping for those ASN1types that do not have a
generic IDL mapping in the CORBA/TMN Interworking standard (also known as
JIDM). This generic mapping is also known as Generic Translation (GT). The
mappings apply only to those ASN1 types that are not already mapped by the JIDM
standard in X711CMl.idl and X501Inf.idl ; types mapped in these IDL files are
known as pre-mapped or pre-defined types.

A-2  Developing CORBA Applications ¢ October 2001



5. OSIMgmt.idl

This IDL file defines the following interfaces:

= The ProxyAgent interface

The NamingContext interface

The ManagedObject interface

The ManagedObjectFactory interface

The LocalRoot interface

The LinkedReplyHandler , EndOfRepliesHandler and
MultipleRepliesHandler interfaces

= The Replieslterator and BufferedRepliesHandler interfaces
= The LNameinterface

6. X711CMLidl

This IDL file contains mappings for the pre-mapped or pre-defined types also, as
part of the JIDM standard.

7. CoslLifeCycle.idl (Life Cycle Service)

The Life Cycle Service defines the conventions used when creating, copying,
deleting, and moving CORBA objects.

The IDL file defines the following interfaces:

= The FactoryFinder interface
= The LifeCycleObject interface
= The GenericFactory interface

8. CosNaming.idl  (Naming Service)
The Naming Service obtains remote references to application-specific objects.

The IDL file defines the following interfaces:

= The NamingContext interface

= The Bindinglterator interface

The NamingContextFactory interface

The ExtendedNamingContextFactory interface
The LNameComponent interface

The LName Interface

The LNameFactory interfaces

The Log interface

9. CosEventChannelAdmin.idl (Event Channel Administration Services)

This IDL file defines the following interfaces:

= The ProxyPushConsumer interface
= The ProxyPullSupplier interface
= The ProxyPullConsumer interface
= The ProxyPushSupplier interface

Appendix A IDLs Used by SEM CORBA Gateway



= The ConsumerAdmin interface

= The SupplierAdmin  interface

= The EventChannel interface

= The EventChannelFactory interface
= The EventFactory interface

10. CosEventComm.idl  (Event Service)

The Event Service provides a decoupled communication channel between CORBA
objects.

The IDL file defines the following interfaces:

= The PushConsumer interface
= The PushSupplier interface
= The PullSupplier interface
= The PullConsumer interface

A.2

IDLs Specific to SEM CORBA Gateway

This section documents each of the IDLs listed above in the SEM CORBA Gateway-
specific list.

1.SEMAuthenticationProxy.idl

This IDL file implements an interface called AuthenticationProxy . The methods
provided by this interface serve the following functionality:

= To check if access control is turned in the MIS
= To get the User Id and password from the client
= To authenticate the user on the MIS host

The client application developer can use the AuthenticationClientBody class to
interact with AuthenticationProxy

2. EventPortRegistry.idl

This IDL file contains one interface specified by name: EventPortRegistry . This is
implemented by the Event Port Registry gateway (EPR). The methods provided by
the interface serve the following functionality:

= Creation of EventPort s
= Find EventPort for the key and the criteria
= Find EventPort given the AE-title

A-4  Developing CORBA Applications ¢ October 2001



3. ASN1TypesExt.idl, CMIExt.idl, and OSIMgmtExt.idl

These IDL files provide support for specifying the managed objects in text format
and the functions supported are basically the same as those defined in the JIDM IDL
files. For example, the OSIMgmtExt.idl  extends the functions supported in
OSIMgmt.idl by defining functions as listed below:

TABLEA-1  OSIMgmt.idl  Functions Extended in OSIMgtExt.idl

OSIMgmtExt.idl OSIMgmt.idl
cmis_get_text cmis_get
cmis_set_text cmis_set
cmis_create_text cmis_create
cmis_create_sync_text cmis_create_sync
cmis_delete_text cmis_delete
cmis_action_text cmis_action

The JIDM document (OSIMgmt.idl ) defines names of managed objects specified as
CosNaming::Name format (which complies with the OMG CORBA standards). For
more details refer to the OMG Naming Service standards.

6) SEMMetaData.id!

This is the IDL file which contains the interface MetaDataRepository , along with
the definition of all the ASN1 kinds that the Metadata Repository will support.

The interface MetaDataRepository has methods which support the following
functionality.

= Get ASNL1 type for the given ASN1 element

= Get textual name for an element given the ASN1 name
= Look up Node by name

= Look up Node by id

= Get textual representation of an object specified in oid
= Get oid by name

= Get doc list

= Get managed object class attributes given oid

= Get managed object class attributes given name

= Get managed object class notifications by oid

= Get managed object class notifications by name

Appendix A IDLs Used by SEM CORBA Gateway A-5



A-6  Developing CORBA Applications ¢ October 2001



APPENDIX B

Programming Techniques

The SEM CORBA Gateway ToolKit provides you with the tools you need to build
and deploy the SEM CORBA Gateway and also provides you with an environment
for the development of client applications that interact with Solstice Enterprise
Manager (Solstice EM) Management Information Server (MIS) via the SEM CORBA
Gateway.

This appendix briefly describes with examples the various steps involved in
developing a client application. It also describes steps to be followed for compiling,
linking and troubleshooting.

This appendix describes the following topics:

= Section B.1 “Compiling and Linking Applications” on page B-1
= Section B.2 “Troubleshooting Gateway Processes” on page B-8

B.1

Compiling and Linking Applications

To compile and link a sample CORBA program, write a UNIX script; example
follows:

CODE EXAMPLE B-1  UNIX Script for Compiling and Linking a Sample CORBA Program

cd $EM_HOME/src/corba_gateway

source $EM_HOME/bin/emenv.[c]sh

source $EM_HOME/bin/em_corba_env.[c]sh
make clean

make firstmake

make install/all

B-1



B-2

The individual lines of this script are explained as follows:
1. cd $EM_HOME/src/corba_gateway

Change your current directory to where your sample program resides

a. The environment variable $EM_HOMIHEs the EM install directory (e.g. /opt/

SUNWconn/em)

b. All CORBA sample programs reside in the $EM_HOME/src/corba_gateway

directory

c. Metadata Gateway sample programs reside in the
$EM_HOME/src/corba_gateway/metadata directory

d. Request Gateway sample programs reside in the
$EM_HOME/src/corba_gateway/requests directory

e. Event Gateway sample programs resides in the
$EM_HOME/src/corba_gateway/events directory

2. source $EM_HOME/bin/emenv.[c]sh

Set EM environment variables, for example:

setenv EM_HOME /opt/SUNWconn/em
setenv EM_MIS_HOME /opt/SUNWconn/em
setenv EM_RUNTIME Ivar/opt/SUNWconn/em

3. source $EM_HOME/bin/em_corba_env.[c]sh

Set EM CORBA environment variables, for example:

setenv VB_INSTALL_DIR /net/mars/export/tools/inprise/vbroker
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${VB_INSTALL_DIR}/lib
setenv OSAGENT_PORT 14567

4. make clean

Remove object files, executable files and libraries in metadata , requests
events directories.

Developing CORBA Applications ¢ October 2001

and




The Makefile used is:

RM = /bin/rm -f

$(EXEC):: $(LIBS) $(OBJS)
$(CPLUS) $(CCFLAGS) $(OBJS) $(LIBS)
$(LDIR) $(LDLB) -0
$(EXEC)

clean::
$(RM) $(EXEC)

5. make firstmake
a. Generate C++ stubs in the idl_generated/cpp directory.

b. Delete! the generated * c.cc and * s.cc files in the idl_generated
directory

The Makefile used is:

# define sub-directories
IDL_DIRS = cos jidm jidm_ext metadata_gw
FDIRS= $(IDL_DIRS)

firstmake include clobber Makefile:
@foriin $(FDIRS); do \
(echo "----- Creating cpp stubs in $$i";\

cd idl_generated/cpp/$$i; pwd ;\
[bin/rm -rf *.idI;\
cp $(ROOT)/idl/$$i/*.idl ./;)\
make .idl.module); \

done

@echo DONE

6. make install/Zall

a. Compile all the CORBA sample programs in the metadata , requests and
events  directories.

b. The generated object files, library files, and executable files will reside in the
corresponding directories.

1.0Only*_c.hh and*_s.hh filesare generated in the idl_generated directory.

Appendix B Programming Techniques  B-3



B-4

The Makefile used is:

CPLUS =CC
CCFLAGS = -features=no%localfor,no%conststrings -
library=iostream
$($(MODE)FLAG) $(3(INCLUDE_TNF_PROBES)TNF)
$(INCL) $(DEFN) -DCPP_5 0 _OR_HIGHER -0 $@
SRCS =\
action_client.cc \
action_linked_reply_handler_impl.cc

OBJS = $(SRCS:%.cc=%.0) $(SRCS.c:%.c=%.0)

LIBS =\
$(LIBRARY)

LDIR =\
L$(ROOT)/lib \
$(LD_PATH)

LDLB =\
$(LD_LIBRARY) \
$(MORE_LIBS)

all:: $(EXEC)
$(EXEC):: $(LIBS) $(OBJS)
$(CPLUS) $(CCFLAGS) $(OBJS) $(LIBS) $(LDIR)
$(LDLB) -0 $(EXEC)

CODE EXAMPLE B-2  Getting Root Naming Context

CosNaming::NamingContext_ptr
CORBAGatewayConnection::get_root_naming_context() throw() {
if (CosNaming::NamingContext::_nil() !=root_nc_) {
return CosNaming::NamingContext::_duplicate(root_nc_);

}

try{
CORBA::Object_var object =
orb_->resolve_initial_references("NameService");
root_nc_ = CosNaming::NamingContext::_narrow(object);

if(CORBA::is_nil(root_nc )) {

Developing CORBA Applications ¢ October 2001




CODE EXAMPLE B-2  Getting Root Naming Context (Continued)

cerr << "FAILED: Unable to obtain root naming context\n"
<< flush;
exit(2);
}

}
catch(const CORBA::Exception& e) {

cerr << "FAILED: Unable to obtain root naming context:\n\t"
<< endl;
exit(3);
}

cout << "PASSED: Obtained root naming context\n" << flush;

return CosNaming::NamingContext::_duplicate(root_nc_);

}

CODE EXAMPLE B-3  Getting ProxyAgentFinder

JIDM::ProxyAgentFinder_ptr
CORBAGatewayConnection::get_proxy_agent_finder() throw() {
try{
CosNaming::Name name;
name.length(1);
name[0].id = CORBA::string_dup("JIDM::ProxyAgentFinder");
name[0].kind = CORBA::string_dup("™);

CORBA::Object_var object;

object = root_nc_->resolve(name);

proxy_agent_finder_ =
JIDM::ProxyAgentFinder::_narrow(object);

if (CORBA::is_nil(proxy_agent_finder_)) {
cerr << "FAILED: Unable to obtain correct Proxy Agent
Finder\n"
<< flush;
exit(1);
}

if(proxy_agent_finder_->_non_existent()) {
cerr << "FAILED: Proxy Agent Finder does not exist\n"
<< flush;
exit(2);
}

}
catch(const CORBA::Exception& e) {

Appendix B Programming Techniques

B-5



CODE EXAMPLE B-3  Getting ProxyAgentFinder (Continued)

cerr << "FAILED: Unable to resolve
JIDM::ProxyAgentFinder:\n\t" << endl;
exit(3);
}
cout << "PASSED: Obtained JIDM::ProxyAgentFinder reference\n"
<< flush;
return
JIDM::ProxyAgentFinder::_duplicate(proxy_agent_finder_);
}

CODE EXAMPLE B-4  Getting ProxyAgent

JIDM::ProxyAgent_ptr
CORBAGatewayConnection::get_proxy_agent() throw() {
JIDM::Key a_key;
a_key.length(1);
a_key[0].id = CORBA::string_dup(JIDM_OSI_KEY_ID);
a_key[0].kind = CORBA::string_dup(JIDM_OSI_KEY_KIND);

JIDM::Criteria a_criteria;

a_criteria.length(2);

a_criteria[0].name = CORBA::string_dup(JIDM_MANAGER_TITLE);
a_criteria[0].value <<= (const char*)"SEM MIS";

a_criteria[1].name = CORBA::string_dup(JIDM_USER_PROFILE);

AuthenticationClient* ac =
new AuthenticationClientHandle("UNIX_CLEAR");

a_criteria[1].value =
*(ac->get_user_profile(get_root_naming_context(), NULL));

if(CORBA::tk_null == a_criteria[1].value.type()->kind()) {
cerr << "FAILED: Unable to obtain encrypted user profile\n"
<< flush;
exit(1);
}

cout << "PASSED: Obtained criteria from encrypting user
profile\n"
<< flush;

try {

B-6  Developing CORBA Applications ¢ October 2001



CODE EXAMPLE B-4  Getting ProxyAgent (Continued)

proxy_agent_ = proxy_agent_finder_->access_domain(a_key,
a_criteria);

if (CORBA::is_nil(proxy_agent_)) {
cerr << "FAILED: Unable to obtain correct Proxy Agent"
<< endl << flush;
exit(1);
}
if(proxy_agent_->_non_existent()) {
cerr << "FAILED: Proxy Agent does not exist" << endl
<< flush;
exit(1);
}
cout << "PASSED: Created a new Proxy Agent\n" << flush;
}
catch(const JIDM::InvalidKey& ue) {
cerr << "FAILED: Key is not recognized" << endl;
exit(1);
}
catch (const JIDM::InvalidCriteria& ue) {
cerr << "FAILED: Criteria is not recognized" << endl;
exit(1);
}
catch (const JIDM::CannotMeetCriteria& ue) {
cerr << "FAILED: Proxy Agent creation criteria is not met"
<< endl;
exit(1);
}
catch (const JIDM::CannotAccess& e) {
cerr << "FAILED: Access Denied to create proxy agent" <<
endl;
exit(1);
}
catch (const CORBA::Exception& e) {
cerr << "FAILED: Uncaught CORBA Exception - " << endl;

exit(1);
}
try {

criteria_ = proxy_agent_->access_criteria();

cout << "PASSED: Obtained access criteria\n" << flush;
}

catch (const CORBA::Exception& e) {
cerr << "FAILED:Caught CORBA Exception " << endl;
exit(1);

}

Appendix B Programming Techniques

B-7



CODE EXAMPLE B-4  Getting ProxyAgent (Continued)

SampleShutdownCallback::set_proxy_agent(proxy_agent_);

return JIDM::ProxyAgent::_duplicate(proxy_agent_);

B.2

B.2.1

Troubleshooting Gateway Processes

You can troubleshoot SEM CORBA Gateway processes by:

= Checking the log files associated with SEM CORBA Gateway processes.
= Using em_debug to turn on dynamic debugging in a CORBA gateway.

Checking the Log Files

The first thing to do when troubleshooting SEM CORBA Gateway is to check the log
files associated with the SEM CORBA Gateway processes. These files contain the
error messages that are logged by the Gateway. TABLE B-1 describes the log files that
are generated by default by the SEM CORBA Gateway. These files are located in /
var/opt/SUNWconn/em/debug directory.

TABLEB-1 CORBA Gateway Log Files

File Description
em_corba_epr.log Event Port Registry log file
em_corba_rgw.log Request Gateway log file
em_corba_mgw.log Metadata Gateway log file
em_corba_edsl.log CORBA EDS 1 log file
em_corba_eds2.log CORBA EDS 2 log file

B-8 Developing CORBA Applications ¢ October 2001



You can specify different files to be used as log files by changing the values of the

log file configuration variables.

CODE EXAMPLE B-5 Sample Log File Contents for RGW

rgw_trace: RequestSAPManager::RequestSAPManagerrgw_debug:
Successfully created User SAP
rgw_debug: Started the thread safe PMI scheduler
rgw_debug: Obtained initial name service reference
rgw_trace: JIDM::ProxyAgentController - created
rgw_debug: JIDM::ProxyAgentController is ready
rgw_debug: JIDM::ProxyAgentFinder is ready
rgw_debug: SEM::AuthenticationProxy is ready
rgw_debug: Ready to accept client requests
rgw_trace: ProxyAgentFinderlmpl::access_domain() starts
rgw_trace: JIDM::ProxyAgentFinder - validating key and access
criteria
rgw_trace: JIDM::ProxyAgentFinder - authenticating user profile
in [faith MIS]
rgw_trace: ProxyAgentFinderimpl::find_matching_proxy_agent()
starts
rgw_trace: JIDMProxyAgentimpl::JIDMProxyAgentimpl() start
rgw_trace: JIDMProxyAgentimpl::JIDMProxyAgentimpl() end
rgw_debug: OSIMgmtExt::ProxyAgent is ready
rgw_trace: ProxyAgentFinderimpl::returning this -
access_domain() ends
rgw_trace: JIDMProxyAgentimpl::access_criteria() start
rgw_trace: GetPendingRequest::translate_request() start
rgw_debug: message type = get request
rgw_debug:id =0
rgw_debug: source =
rgw_debug: aclass = PRIM, atag =2

aval =
"[Oxff][Oxff][0x2][0xe3][0xc4][0x1][0x4][0x81][0x9e][Oxe6][0xa3
I
rgw_debug: dest =
rgw_debug: aclass = PRIM, atag = 2

aval =
"[Oxff][Oxff][0x2][0x15][0xb3][0x1][0x4][0x81][0x9e][0xe6][0xa3
I
rgw_debug: remote =
rgw_debug: aclass = DEF, atag = 0

aval = Du: no data unit allocated
rgw_debug: mode = CONFIRMED
rgw_debug: app_context = Du: no data unit allocated
rgw_debug: oc =
rgw_debug: Tag Len Value

Appendix B Programming Techniques

B-9



B.2.2

Using Dynamic Debugging

Occasionally, you may need to use em_debug to turn on dynamic debugging for a
CORBA gateway. The output of em_debug is particularly useful if you have to file a
bug against the SEM CORBA Gateway. TABLE B-2 describes the debug objects that
you can enable:

TABLEB-2 CORBA Gateway Debugging Objects

Error Objects Debug Objects Corresponding Gateway

rgw_error rgw_debug Request Gateway

mgw_error mgw_debug Metadata Gateway

epr_error epr_debug Event Port Registry

egw_error egw_debug CORBA Event Distribution
Server

The debug objects! print out extensive debug statements, which will involve
printing the contents of a message going back and forth. The debug statements are
much more than just trace, but are not the actual error indicators.

For example, to see the error messages from the Request Gateway, you can enter the
following command:

em_debug -port 6666 -c 'on rgw_error'

The em_debug command sends messages to the window in which the command is
executed. If a large number of messages will be generated, it is recommended that
the output of the command be redirected to a file which can be viewed using a text-
editor or by executing the tail -f command.

1. Enabling debug objects degrades the performance of the system because of the large number of messages that
get generated. It is recommended that you disable debug objects when you no longer need the debug
information.

B-10 Developing CORBA Applications * October 2001




APPENDIX C

criteria for ProxyAgent s

The following table contains the criteria

TABLE C-1  criteria for ProxyAgent s

for ProxyAgent s.

criteria Name Type of Value

Semantics

domain string

title

gateway string

title

controller JIDM::ProxyAgentController
object

user any

profile

manager string

title

Value must be the name of the MIS
that client wants to connect to. This
criteria is mandatory.

Value must be the name of the
gateway (typically a host name)
that the client wants to connect to.
The value defaults to some
randomly assigned gateway,
typically the gateway that is
running on the MIS host. This
criteria is optional. This
criteria allows gateway
instances to be distributed. This
criteria is for future use.

Value must be a CORBA object
reference for
JIDM::ProxyAgentController
object which is created by the
manager (client) application. This
criteria is optional.

Opaque Value. Value is used to
extract the username and password.
This criteria is mandatory.

Title used to denote the manager
(client) which requested access to
the OSI managed object domain.
This criteria is optional.




C-2 Developing CORBA Applications * October 2001



Index

A

Abstract Syntax Notation 1 (ASN1), 1-2

Abstract Syntax Notation 1 (ASN1) metadata
server, 1-2

access control option, 3-34
default control parameters when unspecified, 3 -

34

Access Denied error condition, 3-12, 3-20, 3-25,
3-36, 3-41, 3-51

access_domain() , 3-18

accessing

managed object domain, 2-8
AE_Title , 4-5
AE_title , 4-6

agent applications

function of, 3-2

interfaces required for, 2-2
Agents, 3-2
AlreadyExists exception, 4-5
applications

client, 5-1
ASN1

definitions for attributes, 5-8

structured types, 6-1, 6-6
ASN1_Objectldentifier , 3-34
ASN1Limits.idl , A-2
AsnlSubType , 6-6
ASN1Type, 6-11
ASN1Types.idl , A-2
ASN1TypesExt.idl , A-5
asynchronous CMIS operation, 3-4
atomic synchronization, 3-34

attribute value
decoding
example, 5-4

attribute_id_list parameters, 3-34

attributes

ASN1 definitions for, 5-8

attributeValueChange
event report, 5-8
notification, 5-7
attributeValueChangelnfo
definition, 5-8
AuthenticationClient ,
creating, 2-5
initializing, 2-17
AuthenticationClientBody
AuthenticationClientHandle
decrypt_user_profile()
encrypt_user_profile()
get_user_profile()

2-17

, 2-17

, 2-17

operation, 2-18
operation, 2-18

operation, 2-18

AuthenticationClientHandle::encrypt_us
, 3-18

er_profile operation
AuthenticationServer ,
AuthenticationServerBody
AuthenticationServerHandle

B

2-17

, 2-17

before you read this book, xiii

best effort synchronization,
Bindinglterator , A-3
BufferedRepliesHandler

3-34

, A-3

, 2-17

Index-1



C

CannotMeetCriteria

Class Instance Conflict
12

client (manager) applications
implementation on other ORBs, 8-2
interfaces required for, 2-2

client and manager application
Note, 2-2

client applications, 5-1
handling errors, 3-7
handling replies, 3-7

exception, 4-5
error condition, 3-

clients

non-JIDM, 5-1
CMIExt.idl , A-5
CMIS

asynchronous operation, 3-4
handling requests and responses, 2-9
requests, 2-4
responses, 2-4
synchronous operation, 3-4
text based commands, 2-9

CMIS requests and responses
handling, 2-9

cmis_action() , 3-41,7-2

cmis_create() , 3-12,3-19,7-2,7-3
access_control , 3-19
creation_kind , 3-19
interface_name , 3-19
LinkedReplyHandler , 3-19
object_name , 3-19

reference_object , 3-19
req_attribute , 3-19
cmis_create_sync() , 3-12
cmis_create_text , 3-51

cmis_delete() , 3-20
cmis_delete_text , 3-51

cmis_get() , 3-5,3-7,3-25,7-2,7-3

cmis_set , 5-4

cmis_set() , 3-36,7-2,7-3

Compiling and Linking a Sample CORBA
Program, B-1

complex data type
CORBA application, 5-2

Complexity Limitation Empty error
condition, 3-20, 3-25, 3-36, 3-41

Complexity Limitation error condition, 3-20,
3-25, 3-36, 3-41

ConsumerAdmin , A-4

Index-2  Developing CORBA Applications ¢ October 2001

controller object, 3-18
converting
CORBA IDL data to GDMO format, 5-5
CORBA application
complex data type, 5-2
CORBA clients
authenticating, 2-8
CORBA object
OSIMgtExt::ProxyAgent , 4-5
CORBA/Telecommunications Management
Network (TMN) interworking standard, 1-1, 1-4
CORBA-enabled EDS sink, 4-1
CosEventChannelAdmin.idl
Administration Services), A-3
CosEventChannelAdmin::SupplierAdmin , 2-
10, 2-14, 4-2
CosEventComm.idl  (Event Service), A-4
CosLifeCycle.idl (Life Cycle Service), A-3
CosNaming.idl  (Naming Service), A-3
create_event_port() , 2-11
creating
JIDM ProxyAgent , 2-8
object, 2-3
criteria , 3-18
components, 3-18
Criteria  for ProxyAgent s, C-1

(Event Channel

D
deletion
object, 2-3
Development Environment, SEM CORBA
ToolKit, 1-2
documentation conventions, See typographic
conventions, xv
domain title, 3-18
DomainPort , A-2
JIDM, 3-3
DomainPortFactory , A-2
domains, 3-3
Duplicate Invocation
3-25
Duplicate Managed Object Instance error
condition, 3-12

error condition, 3-12,



E
EDS sink
CORBA-enabled, 4-1
EFD
Secty attribute, 4-6
EFD (Event Forwarding Discriminator), 3-51, 4-6
EGW (Event Gateway), 2-10, 4-1
EventPort
creating, 4-5, 4-10
deleting, 4-5
finding, 4-5
EventPort , 2-10, 4-5
EventPortFactory
create_event_port() , 2-11
EventPortFactory , 2-11
EventPortFinder

find_event_port , 2-14
EventPortFinder , 2-14
EventPortRegistry , 2-14

em_debug, B-10
em_vb_corba_epr  server process, 4-4
encoding
CORBA::any corresponding to
CurrentAttribute , 5-4
encrypting
user profile, 2-5
end_of_replies() , 3-5
EndOfRepliesHandler |, 2-3, 3-4, 3-6, A-3
passing NULLin place of, 3-6
equality filter condition, 3-34
Event Distribution Server (EDS)
CORBA-enabled, 4-1
Event Forwarding Discriminator (EFD), 3-51, 4-6
Event Gateway (EGW), 2-10, 4-1
function of, 2-10
Event Port Registry (EPR), 4-2
event_list , 4-6
event_type , 4-6
EventChannel , 4-8,4-9, A-4
EventChannelFactory , A-4
EventFactory , A-4
EventinfoFormat |, 4-5
EventPort , 2-2,2-10, 4-2, 4-8, A-2
creating, 2-11, 4-10
JIDM, 3-3
EventPortFactory
4-9, A-2
resolving, 4-9

, 2-2,2-10, 2-11, 4-2, 4-4, 4-8,

EventPortFactory::create_event_port() ,

4-5
EventPortFinder , 2-2,2-10,4-2, 4-4, A-2
EventPortRegistry , 2-10, 4-2

IDL definition, 4-4
EventPortRegistry.idl , A-4
events

formatting reports, 4-7
listening to, 4-8
registering for, 2-11
sharing, 4-8
subscribing

error conditions, 3-51
subscribing to, 3-51, 4-6, 4-11
unsubscribing, 3-51

error conditions, 3-51
unsubscribing from, 4-7

exceptions
AlreadyExists , 4-5
CannotMeetCriteria , 4-5
Invalidkey , 4-5
ExtendedNamingContextFactory , A-3
E

FactoryFinder , A-3

filter conditions, 3-34
logical operators, 3-33
testing for, 3-34

filtering, 2-3

find_event_port() , 4-5
find_event_port_by_ae_title() , 4-5
G

GDMOEIlementName 6-13
GenericFactory , A-3

Get List Error error condition, 3-25
get_asnl_type() , 6-8

get_doc_list() , 6-11, 6-12

get_moc_attributes_by name() , 6-11, 6-13
get_moc_attributes_by oid() , 6-11, 6-13
get_moc_list() , 6-11,6-13
get_moc_notifications_by_name() , 6-11
get_moc_notifications_by_oid() , 6-11
get_proxy_agent() , B-6
get_proxy_agent_finder() , B-5

Index-3



get_root_naming_context() , B-4 LNameFactory , A-3

get_textual_rep_by name() , 6-12 LocalRoot , A-3

get_textual_rep_by_oid() , 6-12 Log, A-3

greater than or equal to filter condition, 3- ManagedObject , A-3

34 ManagedObjectFactory , A-3

MultipleRepliesHandler , A-3
NameServer , 4-8
NamingContext , A-3

H NamingContextFactory , A-3

handling errors in client applications, 3-7
handling replies in client applications, 3-7

Node, 6-1
ProxyAgent
implements, CMIS commands, 2-2

ProxyAgent , 2-2,2-3,4-8, A-2, A-3
| ProxyAgentController , 2-2, A-2
ProxyAgentFinder , 2-2, A-2
IDL, 1'1_ ProxyPullConsumer , A-3
mappings, 5-3 ProxyPullSupplier , A-3
IDL format, 5-2 ProxyPushConsumer , A-3
IDL structure ProxyPushSupplier , A-3

Class Hierarchy, 6-4
Decomposition
Component IDL Types, 6-6
IDL data structures, 6-5

PullConsumer , A-4
PullSupplier , A-4
PushConsumer , A-4

PushSupplier , A-4
IDL Subtype, 6-7 Replieslterator , A-3
NamedNumber format, 6-8 SupplierAdmin , A-4

mapping of ASN1 Defined Type, 6-5
IDLs specific to SEM CORBA Gateway, A-1, A-4
interface
Bindinglterator

Interface Description Language (IDL), 1-1
interfaces
CORBA Gateway, Figure, 4-3

» A3 required for agent applications, 2-2

Index-4

BufferedRepliesHandler A3 required for manager (client) applications, 2-2
ConsumerAdmin , A-4 See also interface
DomainPort , A-2 Interoperability, 8-1
DomainPortFactory , A-2 Invalid Argument Value error condition, 3-41
EndOfRepliesHandler —, 2-3, A-3 Invalid Attribute Value error condition, 3-
EventChannel , 4-9, A-4 12
EventChannelFactory , A-4 Invalid Object Instance error condition, 3-
EventFactory , A-4 12
EventPort , 2-2,2-10, 4-2, A-2 Invalid Scope error condition, 3-20, 3-25, 3-36,
EventPortFactory , 2-2,2-10, 4-2, 4-8, 4-9, A- 3.41

2 ) Invalid Subscription error condition, 3-51
EventPortFinder , 2-2, 2-10, 4-2, A-2 Invalidkey  exception, 4-5
EventPortRegistry , 2-10,4-2
ExtendedNamingContextFactory , A-3
FactoryFinder , A-3
GenericFactory , A-3 J
LifeCycleObject , A-3 JIDM
LinkedReplyHandler , 2-3, A-3 EndOfRepliesHandler , 3-4
LName A-3 EventPort

LNameComponent, A-3

Developing CORBA Applications * October 2001

creating, 2-11



Interaction Standard, 1-4

LinkedReplyHandler , 3-4

ProxyAgentController , 3-18

standards

OSI management model-specific features, 2-3

JIDM.idl |, A-2
JIDM::ProxyAgent

creating, 2-8

K

key, 3-18
key id , 3-18
key kind , 3-18

L
less than or equal to
LifeCycleObject , A-3
LinkedReplyHandler , 2-3,3-4, 3-6, 3-46, A-3
LName A-3
LNameComponent, A-3
LNameFactory , A-3
LocalRoot , A-3
locating
ProxyAgent , 2-5
Log, A-3
lookup_node_by name() , 6-8

filter condition, 3-34

M

Makefile , 8-3

managed object, 3-3

managed object domain
accessing, 2-8

Managed Resources, 3-2

ManagedObject , A-3

ManagedObjectFactory

management interfaces
osl, 2-3

management protocol, 3-3

manager (client) applications
function of, 3-2
interfaces required for, 2-2
notifications, 3-2
responses, 3-2

, 3-12, A-3

Managers, 3-2
Managing OSI/CMIP objects, 7-2
Managing SNMP objects, 7-3
mapping
between ASN1 types and IDL, 5-2
from CORBA Data to GDMO format, 5-5
Metadata Gateway (MGW), 5-1, 6-1
attribute values
decoding, 5-2
encoding, 5-2
browsing, 6-1
connecting to, 6-2
decoding, attribute values
Sample, 5-4
encoding CORBA ::any , Sample, 5-4
function of, 2-14, 6-1
functionality, 5-1
Get ASN1 type given module name and
label, 5-1
Get GDMO document list, 5-1
Get managed object class list, 5-1
Get MOC attributes by name, 5-2
Get MOC attributes by OID, 5-2
Get MOC natifications by name, 5-2
Get MOC natifications by OID, 5-2
Get name by OID, 5-1
Get OID by name, 5-1
Look up Node by name, 5-1
Mappings between ASN1 and IDL types,
Sample, 5-2
utility functions, 6-11
Metadata interface
Solstice EM, 5-2
MetaDataRepository , A-5
functionality, A-5
MGW (Metadata Gateway), 5-1, 6-1
Missing Attribute Value error condition, 3-
12
Mistyped Argument
Modeling Objects, 3-1
MultipleRepliesHandler , A-3

error condition, 3-12, 3-25

N

NamedNumber, 6-8
NameServer , 4-8
naming objects, 2-3
NamingContext , A-3

Index-5



NamingContextFactory , A-3

No Such Action error condition, 3-41

No Such Argument  error condition, 3-41

No Such Attribute error condition, 3-12

No Such Object Class error condition, 3-12, 3-
20, 3-25, 3-36, 3-41

No Such Object Instance
12, 3-20, 3-25, 3-36, 3-41

No Such Reference Object
12

Node, 6-1
structure of, 6-2

Node structure
IDL mapping wrapped into, 6-10

Non JIDM interfaces, 2-9

non-Null intersection

notifications
attributeValueChange , 5-7
manager application, 3-2

error condition, 3-

error condition, 3-

filter condition, 3-34

@)

object creation and deletion, 2-3

Object Management Group (OMG) Website, 1-4
object naming, 2-3

object_class_list , 4-6
object_name_list , 4-6
Operation Cancelled error condition, 3-20, 3-

25, 3-36, 3-41
operations on objects, 3-4

asynchronous get , 3-5
cancelling a request, 3-46
creating, 3-12

error conditions, 3-12

Note, 3-17
deleting, 3-20

error conditions, 3-20
end_of_replies_handler , 3-4
getting attributes, 3-25

error conditions, 3-25
modifying attributes, 3-36

error conditions, 3-36
operations other than creation , 3-4
performing action, 3-41

error conditions, 3-41
synchronous and asynchronous creation

Note, 3-4
synchronous get , 3-6

Index-6

Developing CORBA Applications * October 2001

Osl
management interfaces, 2-3
management model-specific features, 2-3
osi_agent , 4-8

OSIMgmt.idl
features
creation of DomainPort s associated with AE-
tittes , 2-3
creation of EventPort s associated with AE-
tittes |, 2-3
filtering, 2-3

object creation and deletion, 2-3
object naming, 2-3

scope, 2-3
OoSIMgmt.idl , A-3
OSIMgmt.idl  functions extended in

OSIMgtExt.idl , A-5
OSIMgmt::cmis_create , 3-19
OSIMgmtExt.idl , A-5
other applicable documents, See related books, xv

P
ParentType , 6-6
PMI

ASNL1 values, 5-2
port

DomainPort , 3-3
EventPort , 3-3

port, 3-3

Portable Management Interface (PMI)
ASNL1 values, 5-2

prerequisite knowledge, See before you read this
book

presence filter condition, 3-34

Processing Failure Empty error
condition, 3-12, 3-20, 3-25, 3-36, 3-41

Processing Failure error condition, 3-12, 3-
20, 3-25, 3-36, 3-41, 3-51

ProxyAgent , 2-2,2-3, 3-12, 4-6, 4-8, A-2, A-3
destroying to release the session, 3-19
implements, CMIS commands, 2-2

locating, 2-5
ProxyAgentController , 2-2, A-2
ProxyAgentFinder , 2-2, 2-5, 2-8, A-2

access_domain, 2-5
ProxyPullConsumer , A-3
ProxyPullSupplier , A-3



ProxyPushConsumer , A-3
ProxyPushSupplier , A-3
PullConsumer , A-4
PullSupplier , A-4
PushConsumer , 4-12, A-4
PushSupplier , A-4

R

related books, xv

releasing the session, 3-19

Replieslterator , A-3

Request Gateway (RGW), 2-4, 2-9
encoding/decoding attribute values, Figure, 5-3
function of, 2-4

Resource Limitation
25

responses
manager application, 3-2

RGW (Request Gateway), 2-4, 2-9

error condition, 3-12, 3-

S
scope, 2-3
SEM CORBA Gateway
access control
authenticating user profiles, 2-16
decrypting user profile, 2-15
encrypting user profile, 2-15
accessing from non-Unix environments, 2-16
Architecture, 1-1
component interfaces
Event Gateway (EGW), 2-3
Metadata Gateway (MGW), 2-3
Request Gateway (RGW), 2-3
Debugging Objects, B-10

EndofReplyHandler interface, 2-3
LinkedReplyHandler interface, 2-3
Log Files, B-8

troubleshooting, B-8

SEM CORBA ToolKit
Development Environment, 1-2
supported ORBs, 8-2

SEMAuthenticationProxy.idl , A-4
SEMMetaData.idl , A-5
send_mo_error() , 3-7

send_no_error() , 3-6,3-7

Set List Error
sharing events, 4-8
Singleton CORBA objects, 4-2

superset of
SupplierAdmin |, A-4
synchronization

send_reply() , 3-7
send_subtree_error()
server

, 3-6,3-7

ASN1 metadata, 1-2

server object

EventPortFactory , 4-4
EventPortFinder , 4-4

session

establishing and releasing, 3-3

session releasing

by destroying the ProxyAgent , 3-19
error condition, 3-36

EventPortFactory , 4-2
EventPortFinder , 4-2

Solstice EM

agent functions, 3-2

defining object models for resources, 3-1
manager functions, 3-2

managing resources, 3-1

Metadata interface, 5-2

south-bound interfaces, 3-1

subscribe() , 4-6
subscribing to events, 4-6, 4-11

subset of filter conditions, 3-34
substring filter condition, 3-34
SubType, 6-6

filter condition, 3-34

atomic, 3-34
best effort, 3-34

synchronous CMIS operation, 3-4
Synchronous Not Supported error

condition, 3-20, 3-25, 3-36, 3-41

text commands, 2-9
textual representation

attribute, 6-16

titles, 3-3
TMN, 1-1
tmpl , 8-2

ToolKit, See SEM CORBA ToolKit
typographic conventions, xv

Index-7



U
Unrecognized Operation error condition, 3-12,
3-25
unsubscribing from events, 4-7
user profiles
authenticating, 2-16
decrypting, 2-15
encrypting, 2-5, 2-15

X
X501Inf.idl , A-2
X711CMLidl , A-3

Index-8  Developing CORBA Applications * October 2001



	Developing CORBA Applications
	Solstice Enterprise Manager™ 4.1
	Contents
	1. Introduction to SEM CORBA Development Environment�1-1
	2. Interacting With SEM CORBA Gateway�2-1
	3. Managing Networks With SEM CORBA Gateway�3-1
	4. Handling Events With SEM CORBA Gateway�4-1
	5. Translating Data�5-1
	6. Accessing Information Through Metadata Gateway�6-1
	7. Managing Agents�7-1
	8. Interoperating SEM CORBA Gateway�8-1
	A. IDLs Used by SEM CORBA Gateway�A-1
	B. Programming Techniques�B-1
	C. criteria for ProxyAgents�C-1

	Figures
	Tables
	Code Samples
	Preface

	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	What Typographic Changes Mean
	TABLE�P�1 Typographic Conventions�

	Shell Prompts in Command Examples
	TABLE�P�2 Shell Prompts

	Accessing Sun Documentation Online
	Sun Welcomes Your Comments
	1
	Introduction to SEM CORBA Development Environment
	Section�1.1 “Overview of SEM CORBA Architecture” on page�1�1

	1.1 Overview of SEM CORBA Architecture
	FIGURE�1�1 SEM CORBA Gateway Architecture

	1.2 SEM CORBA ToolKit Development Environment
	FIGURE�1�2 SEM CORBA ToolKit Development Environment

	1.3 References
	1. CORBA/TMN Interworking (also known as JIDM Interaction Translation) Standard - final submissio...
	2. CORBA Standards Specifications: CORBA 2.3 by the Object Management Group.
	3. Your ORB vendor’s documentation.
	2
	Interacting With SEM CORBA Gateway
	Section�2.1 “JIDM Interfaces” on page�2�2

	2.1 JIDM Interfaces
	2.1.1 Interfaces Required for Manager Applications
	ProxyAgent interface
	cmis_get

	2.1.2 Interfaces Required for Agent Applications
	EventPortFinder interface

	2.1.3 OSI Management Interfaces
	Scope and filtering
	ProxyAgent interface derived from JIDM::ProxyAgent
	FIGURE�2�1 Interfaces Exposed by SEM CORBA Gateway Components



	2.2 Interacting With Solstice EM CORBA Request Gateway
	Connecting clients for the first time
	2.2.1 Connecting Clients for the First Time
	Getting the ProxyAgentFinder object
	1. Get the ProxyAgentFinder object
	2. Create an AuthenticationClient
	3. Encrypt the user profile
	4. Find/Create the ProxyAgent
	CODE�EXAMPLE�2�1 Connecting to the SEM CORBA Gateway (for VisiBroker)�



	2.2.2 Authenticating Clients
	2.2.3 Accessing the Managed Object Domain and Creating JIDM::ProxyAgent
	2.2.4 Handling CMIS Requests and Responses

	2.3 Non JIDM interfaces
	cmis_get_text

	2.4 Interacting With Solstice EM Event Gateway
	1. Creating and registering event ports (using the EventPort interface)
	2. Creating event discriminating filters (EDFs) using M-create
	3. Issue of cmis_create() commands on the ProxyAgents implemented by RGW.
	EventPort interface
	2.4.1 Gaining Access to a Manager or Client Application
	2.4.2 Dynamically Creating JIDM::EventPort Objects
	Gets a reference to the CosEventChannelAdmin::SupplierAdmin that is to be used to receive events.
	CODE�EXAMPLE�2�2 Creating a JIDM::EventPort and Registering for Events�


	2.4.3 Obtaining References to JIDM::EventPort
	2.4.4 Finding a JIDM::EventPort given the AE- title

	2.5 Interacting With Solstice EM Metadata Gateway
	2.6 Controlling Access and Authorization
	Encrypting and decrypting the user profile
	2.6.1 Encrypting and Decrypting the User Profile
	/opt/SUNWconn/em/lib/libauth_server.so
	/opt/SUNWconn/em/include/auth_helper/auth_server_handle.hh
	1. Implement *.cc files for auth_server_handle.hh
	2. Implement *.cc files for auth_client_handle.hh
	3. Create a Makefile to compile the *.cc files and to build the libraries (create two separate li...
	4. Make a backup of the client and server libraries provided with Solstice EM.
	5. Stop SEM CORBA services.
	6. Replace (overwrite) the default libraries with those created in Step�3.
	7. Restart SEM CORBA services.


	2.6.2 Authenticating User Profiles

	2.7 Enabling Access From Non-Unix Environments
	2.8 Enabling Internet Connections to Solstice EM via CORBA Gateways
	2.9 Providing an Extra Layer of Authentication
	AuthenticationClientHandle
	CODE�EXAMPLE�2�3 Initializing AuthenticationClient�

	get_user_profile(), and
	3
	Managing Networks With SEM CORBA Gateway

	Section�3.1 “General Concepts” on page�3�1

	3.1 General Concepts
	3.1.1 Modeling Objects
	3.1.2 Managers
	Issuing management requests to one or more agents
	Notifications - A notification is an unsolicited message sent to the manager indicating that a ch...

	3.1.3 Agents
	3.1.4 Managed Resources
	3.1.5 Managed Objects
	3.1.6 Management Protocols
	The types of management requests and responses that agents and managers are allowed to issue.

	3.1.7 Concepts Specific to CORBA and TMN

	3.2 Operating on CORBA Clients and Objects
	3.2.1 Operating Asynchronously and Synchronously
	FIGURE�3�1 get Asynchronous Operation
	FIGURE�3�2 get Synchronous Operation

	3.2.2 Handling Replies and Errors in Client Applications
	CODE�EXAMPLE�3�1 Implementation of LinkedReplyHandler�

	3.2.3 Creating Objects
	Using the ManagedObjectFactory interface
	Duplicate Invocation
	CODE�EXAMPLE�3�2 Creating Managed Objects�
	1. Initializing the ORB and object adapters; Resolving the naming services and getting the root n...
	2. Getting the reference for ProxyAgentFinder.
	3. Building the key and criteria for getting access to the ProxyAgent which is implemented by the...

	key_id:
	criteria_name:
	4. Getting the ProxyAgent reference for the key and criteria parameters.
	5. Creating a reply handler.
	6. Deciding the name of the managed object to be created.
	7. Calling the OSImgmt::cmis_create method.

	interface_name: The interface to be exported by the newly created object.
	creation_kind: The type of creation mechanism to be used; also identifies the use of the next par...
	object_name: Specifies the IDL name of the managed object to be created (if creation_kind is simp...
	access_control: This parameter of type X711CMI::AccessControlTypeOpt is optional and contains inf...
	reference_object: This parameter indicates the reference to a managed object needed to create the...
	req_attribute_values: Specifies a set of attribute values to be assigned at object creation time.
	LinkedReplyHandler: Interface implemented by the client or the application and a reference is pas...
	8. Releasing (terminating) the session by destroying the ProxyAgent.


	3.2.4 Deleting Objects
	Operation Cancelled
	CODE�EXAMPLE�3�3 Deleting Managed Objects Asynchronously�


	3.2.5 Obtaining Object Attributes
	Get List Error
	CODE�EXAMPLE�3�4 Getting Object Attributes using cmis_get()�
	CODE�EXAMPLE�3�5 Getting Object Attributes using cmis_get_text()�


	3.2.6 Obtaining Multiple Object Attributes
	3.2.6.1 Selecting Objects Through Scoping and Filtering
	A value of 0 specifies the base object alone.
	equality

	3.2.6.2 Synchronization and Access Control
	3.2.6.3 attribute_id_list parameters
	CODE�EXAMPLE�3�6 Obtaining Multiple Object Attributes �


	3.2.7 Modifying Object Attributes
	Operation Cancelled
	CODE�EXAMPLE�3�7 Modifying Object Attributes�


	3.2.8 Performing an Operation on a Managed Object
	Operation Cancelled
	CODE�EXAMPLE�3�8 Performing an Operation on a Managed Object�


	3.2.9 Cancelling a Request
	CODE�EXAMPLE�3�9 Cancelling a Request�

	3.2.10 Subscribing to an Event
	Access Denied
	Access Denied
	FIGURE�3�3 Subscribing to an Event
	CODE�EXAMPLE�3�10 Subscribing to an Event�
	4
	Handling Events With SEM CORBA Gateway

	Section�4.1 “Enabling Inter-Process Communication Between EDS Sinks and CORBA Clients” on page�4�4
	EventPort
	EventPortRegistry
	FIGURE�4�1 The CORBA Event Gateway and Its Interfaces



	4.1 Enabling Inter-Process Communication Between EDS Sinks and CORBA Clients
	CODE�EXAMPLE�4�1 IDL Definition for EventPortRegistry
	4.1.1 Finding an EventPort
	4.1.2 Creating an EventPort
	The AE_Title of the client (dot notation in an IDL string)
	TABLE�4�1 Reasons for Typical Exceptions Being Raised



	4.2 Subscribing to Events
	CODE�EXAMPLE�4�2 IDL Definition of subscribe() (from OSIMgmtExt.idl)�

	4.3 Unsubscribing From Event Notifications
	CODE�EXAMPLE�4�3 Method for Unsubscribing From Event Notifications

	4.4 Formatting Event Reports
	CODE�EXAMPLE�4�4 IDL Event Report Format�

	4.5 Sharing Events Between Multiple Clients
	4.6 Listening to Events—Client Applications
	1. Initialize the ORB, resolve the NameServer interface and connect to the RGW
	2. Get the ProxyAgent interface, osi_agent
	3. Initialize, or get a reference to, an EventChannel
	4. Resolve the EventPortFactory interface
	5. Assign a client to the EventChannel
	6. Create an EventPort
	7. Subscribe to the events
	4.6.1 Resolving the EventPortFactory Interface
	CODE�EXAMPLE�4�5 Resolving the EventPortFactory Interface

	4.6.2 Assigning a Client to an EventChannel
	CODE�EXAMPLE�4�6 Assigning a Client to an EventChannel�

	4.6.3 Creating an EventPort
	CODE�EXAMPLE�4�7 Creating an EventPort

	4.6.4 Subscribing to Events
	CODE�EXAMPLE�4�8 Subscribing to Events�

	4.6.5 Sample PushConsumer
	CODE�EXAMPLE�4�9 Sample PushConsumer �
	5
	Translating Data
	Section�5.1 “Metadata Gateway Interface” on page�5�1


	5.1 Metadata Gateway Interface
	Get ASN1 type given module name and label

	5.2 Encoding and Decoding Attribute Values
	TABLE�5�1 Sample Primitive Mappings Between ASN1 Types and IDL Types�
	FIGURE�5�1 Encoding/Decoding Done by RGW
	The ASN1 SEQUENCE is mapped to sequence<any>
	CODE�EXAMPLE�5�1 Encoding of CORBA::Any Corresponding to CurrentAttributes
	CODE�EXAMPLE�5�2 Decoding an Attribute Value�
	CODE�EXAMPLE�5�3 Mapping data from CORBA IDL Format to GDMO Format
	TABLE�5�2 Steps for Mapping CORBA IDL Data to GDMO Format�


	5.3 Decoding Events and Responses
	CODE�EXAMPLE�5�4 Definition of attributeValueChange Notification
	6
	Accessing Information Through Metadata Gateway
	Functionality to return the ASN1 type of a given attribute name or oid. This functionality is use...
	Section�6.1 “Browsing Metadata” on page�6�1

	6.1 Browsing Metadata
	CODE�EXAMPLE�6�1 Connecting to the MGW�
	FIGURE�6�1 Class Hierarchy Followed in the IDL Representation
	FIGURE�6�2 Decomposition of IDL Data Structures Defined in metadatagw.idl
	FIGURE�6�3 The ASN1 Defined Type Mapped Into the IDL Structure DefinedType
	FIGURE�6�4 Decomposition of Component IDL Types
	FIGURE�6�5 Decomposition of IDL Subtype
	FIGURE�6�6 Decomposition of NamedNumber Format

	6.2 Walking Through Metadata
	1. Node get_asn1_type (in string modname, in string label)
	2. Node lookup_node_by_name (in ObjectType object_type, in string gdmo_doc_name, in string name) ...
	FIGURE�6�7 IDL Mapping Wrapped Into Node Structure
	CODE�EXAMPLE�6�2 Obtaining the ASN1 Type of an Attribute From the Metadata


	6.3 Obtaining Metadata Information
	get_doc_list()
	6.3.1 Listing Documents in the MDR Using the get_doc_list() Method
	CODE�EXAMPLE�6�3 Invoking the MDR Interface to List All Documents Loaded on MDR

	6.3.2 Listing Managed Object Classes in the GDMO Document Name
	6.3.3 Getting the Managed Object Class Attributes
	CODE�EXAMPLE�6�4 Obtaining Managed Object Class Attributes Based on GDMO Document Name and Object...

	6.3.4 Getting Managed Object Class Notifications
	CODE�EXAMPLE�6�5 Obtaining Notifications Defined in a Managed Object Class From the MDR�
	CODE�EXAMPLE�6�6 Obtaining Notifications of a Managed Class Object Based on Its oid

	6.3.5 Obtaining the Textual Representation of an Attribute
	CODE�EXAMPLE�6�7 Obtaining the ASN1 Textual Representation of an Attribute
	7
	Managing Agents
	Generic interfaces which are management model independent
	Section�7.1 “Solstice EM-specific Generic Interfaces” on page�7�1


	7.1 Solstice EM-specific Generic Interfaces
	Creating managed objects

	7.2 Managing OSI/CMIP Objects
	FIGURE�7�1 Managing CMIP Objects From CORBA Manager Applications

	7.3 Managing SNMP Objects
	FIGURE�7�2 Managing SNMP Objects From CORBA Manager Applications

	7.4 Management of CORBA Objects
	8
	Interoperating SEM CORBA Gateway
	Section�8.1 “Background on Interoperability” on page�8�1

	8.1 Background on Interoperability
	8.2 ORBs for Developing Client/Manager Applications
	VisiBroker 4.5

	8.3 Implementing Client Applications on Other ORBs
	1. Create a template file for the ORB.
	2. Create Makefiles for the ORB in the following IDL directories:
	jidm
	3. Execute the Makefiles individually in the directories mentioned in Step�2 by using the followi...
	A
	IDLs Used by SEM CORBA Gateway

	Section�A.1 “IDLs Based on Standards” on page�A�2
	1. From JIDM standards:

	ASN1Limits.idl
	2. From OMG standards:

	CosLifeCycle.idl (Life Cycle Service)
	3. SEM CORBA Gateway specific:

	SEMAuthenticationProxy.idl

	A.1 IDLs Based on Standards
	1. ASN1Limits.idl
	2. JIDM.idl
	The ProxyAgent interface
	The DomainPort interface
	3. X501Inf.idl
	4. ASN1Types.idl
	5. OSIMgmt.idl

	The ProxyAgent interface
	6. X711CMI.idl
	7. CosLifeCycle.idl (Life Cycle Service)

	The FactoryFinder interface
	8. CosNaming.idl (Naming Service)

	The NamingContext interface
	9. CosEventChannelAdmin.idl (Event Channel Administration Services)

	The ProxyPushConsumer interface
	10. CosEventComm.idl (Event Service)

	The PushConsumer interface

	A.2 IDLs Specific to SEM CORBA Gateway
	1. SEMAuthenticationProxy.idl
	To check if access control is turned in the MIS
	2. EventPortRegistry.idl

	Creation of EventPorts
	3. ASN1TypesExt.idl, CMIExt.idl, and OSIMgmtExt.idl
	TABLE�A�1 OSIMgmt.idl Functions Extended in OSIMgtExt.idl


	Get ASN1 type for the given ASN1 element
	B
	Programming Techniques

	Section�B.1 “Compiling and Linking Applications” on page�B�1

	B.1 Compiling and Linking Applications
	CODE�EXAMPLE�B�1 UNIX Script for Compiling and Linking a Sample CORBA Program
	1. cd $EM_HOME/src/corba_gateway
	a. The environment variable $EM_HOME is the EM install directory (e.g. /opt/ SUNWconn/em )
	b. All CORBA sample programs reside in the $EM_HOME/src/corba_gateway directory
	c. Metadata Gateway sample programs reside in the $EM_HOME/src/corba_gateway/metadata directory
	d. Request Gateway sample programs reside in the $EM_HOME/src/corba_gateway/requests directory
	e. Event Gateway sample programs resides in the $EM_HOME/src/corba_gateway/events directory

	2. source $EM_HOME/bin/emenv.[c]sh
	3. source $EM_HOME/bin/em_corba_env.[c]sh
	4. make clean
	5. make firstmake
	a. Generate C++ stubs in the idl_generated/cpp directory.
	b. Delete the generated *_c.cc and *_s.cc files in the idl_generated directory

	6. make install/all
	a. Compile all the CORBA sample programs in the metadata, requests and events directories.
	b. The generated object files, library files, and executable files will reside in the correspondi...
	CODE�EXAMPLE�B�2 Getting Root Naming Context�
	CODE�EXAMPLE�B�3 Getting ProxyAgentFinder�
	CODE�EXAMPLE�B�4 Getting ProxyAgent�



	B.2 Troubleshooting Gateway Processes
	Checking the log files associated with SEM CORBA Gateway processes.
	B.2.1 Checking the Log Files
	TABLE�B�1 CORBA Gateway Log Files
	CODE�EXAMPLE�B�5 Sample Log File Contents for RGW

	B.2.2 Using Dynamic Debugging
	TABLE�B�2 CORBA Gateway Debugging Objects
	C
	criteria for ProxyAgents
	TABLE�C�1 criteria for ProxyAgents


	Index

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	X

