
Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303
U.S.A. 650-960-1300

C++ API Reference

Solstice Enterprise Manager ™ 4.1

Part No. 806-7971-10
October 2001, Revision A

Please

Recycle

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, SunExpress, Solstice, Solstice Enterprise Manager, SunOS, and Solaris are trademarks, registered

trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are

based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, SunExpress, Solstice, Solstice Enterprise Manager, SunOS, et Solaris sont des marques de fabrique

ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC

sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans

d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents

Preface xxxvii

1. Application Programming Interface 1-1

1.1 API Classes 1-1

1.2 Viewer API 1-2

1.3 ViewerApi Class 1-2

1.3.1 ViewerApi Member Functions 1-3

1.3.2 Communication Protocol 1-6

1.3.3 ViewerApi Actions 1-6

1.3.4 Event Handling 1-9

1.3.5 Network Views Messages 1-11

1.3.6 Sample Programs 1-15

1.4 Grapher API 1-15

1.5 EMdataset Class 1-16

1.6 EMdynamicDataset Class 1-16

1.6.1 Constructor 1-17

1.6.2 Destructor 1-17

1.7 EMstaticDataset Class 1-17

1.7.1 Constructor 1-17

1.7.2 Destructor 1-18

1.8 EMgraph Class 1-18
Contents iii

1.8.1 Constructor 1-18

1.8.2 Destructor 1-18

1.8.3 EMgraph Member Functions 1-18

1.9 Err Class 1-19

1.9.1 Member Functions 1-20

1.10 Application-to-Application API 1-20

1.11 AppInstComm Class 1-21

1.11.1 Constructors 1-21

1.11.2 Destructor 1-21

1.11.3 AppInstComm Member Functions 1-21

1.12 AppInstObj Class 1-26

1.12.1 Constructors 1-26

1.12.2 Destructor 1-27

1.12.3 AppInstObj Member Functions 1-27

1.13 AppRequest Class 1-28

1.13.1 Constructor 1-28

1.13.2 AppRequest Member Functions 1-28

1.14 Actions 1-29

1.15 Notifications 1-30

1.16 Example 1-31

1.17 AppTarget Class 1-35

1.17.1 Constructor 1-35

1.17.2 AppTarget Member Functions 1-35

2. Common API 2-1

2.1 Common API Classes 2-1

2.2 Class Categories 2-2

2.3 Variable Types 2-3

2.4 Class Descriptions 2-4

2.5 Address Class 2-5
iv C++ API Reference • October 2001

2.5.1 Constructor 2-6

2.5.2 Operator 2-7

2.5.3 Address Member Functions 2-7

2.6 Arraydeclare Macro 2-8

2.7 Asn1ParsedValue Class 2-9

2.7.1 Constructors 2-9

2.7.2 Asn1ParsedValue Operator Overloading 2-10

2.7.3 Asn1ParsedValue Member Functions 2-10

2.8 Asn1Tag Class 2-11

2.8.1 Constructors 2-12

2.8.2 Asn1Tag Operator Overloading 2-12

2.8.3 Asn1Tag Member Functions 2-13

2.9 Asn1Type Class 2-13

2.9.1 Constructors 2-15

2.9.2 Destructor 2-16

2.9.3 Asn1Type Operator Overloading 2-16

2.9.4 Asn1Type Member Functions 2-17

2.9.5 Related Types 2-27

2.10 Asn1Value Class 2-27

2.10.1 Assignment and Data Sharing 2-28

2.10.2 Type Conversion 2-28

2.10.3 Encoding Functions 2-28

2.10.4 Encoding of a Distinguished Name 2-29

2.10.5 Decoding Simple and Constructed Asn1Values 2-30

2.10.6 Constructors 2-31

2.10.7 Destructor 2-32

2.10.8 Asn1Value Operator Overloading 2-33

2.10.9 Asn1Value Member Functions 2-33

2.10.10 Related Global Functions 2-48

2.11 Blockage Class 2-49
Contents v

2.11.1 Constructor 2-50

2.11.2 Blockage Member Functions 2-50

2.11.3 Related Global Functions 2-52

2.12 Callback Class 2-55

2.12.1 Constructor 2-56

2.12.2 Callback Operator Overloading 2-56

2.12.3 Callback Member Functions 2-56

2.13 Command Class 2-57

2.13.1 Constructor 2-57

2.13.2 Operator 2-57

2.14 Config Class 2-57

2.14.1 Constructors 2-58

2.14.2 Config Member Functions 2-58

2.15 DataUnit Class 2-59

2.15.1 Constructors 2-60

2.15.2 Destructor 2-62

2.15.3 DataUnit Operator Overloading 2-62

2.15.4 DataUnit Member Functions 2-65

2.16 Dictionary Class 2-69

2.16.1 Constructor 2-69

2.16.2 Dictionary Operator Overloading 2-70

2.16.3 Dictionary Member Functions 2-70

2.17 GenInt Class 2-71

2.17.1 Constructors 2-71

2.17.2 Copy Constructor 2-72

2.17.3 GenInt Member Functions 2-72

2.18 Hash Class 2-79

2.18.1 Hash Member Functions 2-79

2.19 Hashdeclare Macro 2-81

2.20 HashImpl Class 2-81
vi C++ API Reference • October 2001

2.20.1 Constructor 2-83

2.20.2 Destructor 2-83

2.20.3 HashImpl Member Functions 2-83

2.21 Hdict Class 2-85

2.21.1 Constructors 2-86

2.21.2 Hdict (K,T) Operator Overloading 2-86

2.21.3 Hdict Member Functions 2-86

2.22 Hrefdict Class 2-87

2.22.1 Constructors 2-88

2.22.2 Hrefdict (K, T) Operator Overloading 2-88

2.22.3 Hrefdict Member Functions 2-89

2.23 Oid Class 2-90

2.23.1 Constructors 2-91

2.23.2 Oid Operator Overloading 2-91

2.23.3 Oid Member Functions 2-92

2.24 Asn1TypeDefinedType Declarations 2-94

2.24.1 Asn1SubTypeKind 2-95

2.24.2 Asn1SubTypeSize 2-95

2.24.3 Asn1Kind 2-96

2.24.4 Asn1TypeE 2-96

2.24.5 Asn1TypeEL 2-96

2.24.6 Asn1TypeNN 2-97

2.24.7 Asn1TagClass 2-97

2.24.8 Asn1Tagging 2-97

2.25 Queue Class 2-97

2.25.1 Queue Member Functions 2-98

2.26 Queuedeclare Macro 2-100

2.27 Timer Class 2-101

2.27.1 Default Constructor 2-101

2.27.2 Constructor 2-102
Contents vii

2.27.3 Operator 2-102

2.27.4 Related Global Functions 2-102

3. High-Level PMI 3-1

3.1 Design Objectives 3-1

3.2 Object Management Model 3-2

3.2.1 Naming Objects 3-2

3.2.2 Relationships Between Objects 3-3

3.2.3 Managing Notifications 3-3

3.2.4 Managing Data Types 3-3

3.2.5 Object Schema Management 3-4

3.2.6 Filtering as an Aspect of Album Derivation 3-5

3.3 Meta Data Repository 3-7

3.3.1 getAttribute Action 3-8

3.3.2 getAllDocuments Action 3-8

3.3.3 getAsn1Module Action 3-8

3.3.4 getObjectClass Action 3-8

3.3.5 getDocument Action 3-9

3.3.6 getPackage Action 3-9

3.3.7 getPackagesByOC Action 3-14

3.3.8 getOidName Action 3-16

3.3.9 Sample MDR Action Program 3-17

3.4 Symbolic Constants 3-18

3.5 Defined Types 3-21

3.5.1 Asn1Int 3-22

3.5.2 CCB 3-22

3.5.3 CDU 3-22

3.5.4 DU 3-22

3.5.5 FBits 3-22

3.6 Error Handling and Event Dispatching 3-24
viii C++ API Reference • October 2001

3.6.1 Event Dispatching Functions 3-25

3.7 pmi_sched_get_fds Function 3-25

3.8 High-Level PMI Classes 3-26

3.9 Album Class 3-27

3.9.1 Constructors 3-29

3.9.2 Album Operator Overloading 3-30

3.9.3 Album Member Functions 3-30

3.10 AlbumImage Class 3-52

3.10.1 Constructors 3-53

3.10.2 Destructors 3-54

3.10.3 AlbumImage Operator Overloading 3-54

3.10.4 AlbumImage Member Functions 3-55

3.11 AppTarget Class 3-56

3.11.1 Constructors 3-56

3.11.2 AppTarget Operator Overloading 3-56

3.12 AuthApps Class 3-56

3.12.1 Constructors 3-57

3.12.2 AuthApps Operator Overloading 3-57

3.12.3 AuthApps Member Functions 3-57

3.13 AuthFeatures Class 3-58

3.13.1 Constructor 3-59

3.13.2 AuthFeatures Operator Overloading 3-59

3.13.3 AuthFeatures Member Functions 3-59

3.14 Coder Class 3-60

3.14.1 Constructors 3-61

3.14.2 Coder Operator Overloading 3-61

3.14.3 Coder Member Functions 3-62

3.15 CurrentEvent Class 3-62

3.15.1 Constructors 3-64

3.15.2 CurrentEvent Operator Overloading 3-64
Contents ix

3.15.3 CurrentEvent Member Functions 3-65

3.16 Error Class 3-72

3.16.1 Constructor 3-73

3.16.2 Error Operator Overloading 3-73

3.16.3 Error Public Data Member 3-73

3.16.4 Error Member Functions 3-74

3.16.5 Error Types and Strings 3-76

3.17 Image Class 3-77

3.17.1 Image Constructor 3-80

3.17.2 Image Operator Overloading 3-81

3.17.3 Image Member Functions 3-81

3.17.4 Related Global Functions 3-115

3.18 Morf Class 3-116

3.18.1 Constructors 3-118

3.18.2 Destructor 3-120

3.18.3 Morf Operator Overloading 3-120

3.18.4 Morf Member Functions 3-121

3.19 MorfBuilder Class 3-135

3.19.1 Constructors 3-136

3.19.2 Destructor 3-137

3.19.3 MorfBuilder Operator Overloading 3-137

3.19.4 MorfBuilder Member Functions 3-137

3.20 PasswordTty Class 3-148

3.20.1 Constructors 3-149

3.20.2 PasswordTty Operator Overloading 3-149

3.20.3 PasswordTty Member function 3-149

3.21 Platform Class 3-149

3.21.1 Constructors 3-151

3.21.2 Destructor 3-151

3.21.3 Platform Operator Overloading 3-151
x C++ API Reference • October 2001

3.21.4 Platform Member Functions 3-152

3.21.5 GETENV Macro 3-168

3.22 Syntax Class 3-168

3.22.1 Constructors 3-169

3.22.2 Syntax Operator Overloading 3-170

3.22.3 Syntax Member Functions 3-171

3.23 Waiter Class 3-175

3.23.1 Constructors 3-176

3.23.2 Waiter Operator Overloading 3-179

3.23.3 Waiter Member Functions 3-179

4. Low-Level PMI 4-1

4.1 Communication Path 4-1

4.2 Root Classes for the Low-Level PMI 4-3

4.3 Low-Level PMI Classes 4-3

4.3.1 Class Inheritance 4-3

4.3.2 Class Summary 4-6

4.4 AccessDenied Class 4-9

4.4.1 Constructor 4-9

4.5 ActionReq Class 4-10

4.5.1 Constructor 4-10

4.6 ActionRes Class 4-11

4.6.1 Constructor 4-11

4.7 AssocReleased Class 4-12

4.7.1 Constructor 4-12

4.8 CancelGetReq Class 4-13

4.8.1 Constructor 4-13

4.9 CancelGetRes Class 4-14

4.9.1 Constructor 4-14

4.10 ClassInstConfl Class 4-15
Contents xi

4.10.1 Constructor 4-15

4.11 CreateReq Class 4-16

4.11.1 Constructor 4-16

4.12 CreateRes Class 4-17

4.12.1 Constructor 4-17

4.13 DeleteReq Class 4-18

4.13.1 Constructor 4-18

4.14 DeleteRes Class 4-19

4.14.1 Constructor 4-19

4.15 DuplicateOI Class 4-20

4.15.1 Constructor 4-20

4.16 DupMessageId Class 4-21

4.16.1 Constructor 4-21

4.17 ErrorResUnexp Class 4-22

4.17.1 Constructor 4-22

4.18 EventReq Class 4-23

4.18.1 Constructor 4-23

4.19 GetListErr Class 4-24

4.19.1 Constructor 4-24

4.20 GetReq Class 4-25

4.20.1 Constructor 4-25

4.21 GetRes Class 4-26

4.21.1 Constructor 4-26

4.22 InvalidActionArg Class 4-27

4.22.1 Constructor 4-27

4.23 InvalidAttrVal Class 4-28

4.23.1 Constructor 4-28

4.24 InvalidEventArg Class 4-29

4.24.1 Constructor 4-29

4.25 InvalidFilter Class 4-30
xii C++ API Reference • October 2001

4.25.1 Constructor 4-30

4.26 InvalidOI Class 4-31

4.26.1 Constructor 4-31

4.27 InvalidOperation Class 4-32

4.27.1 Constructor 4-32

4.28 InvalidOperator Class 4-33

4.28.1 Constructor 4-33

4.29 InvalidScope Class 4-34

4.29.1 Constructor 4-34

4.30 LinkedResUnexp Class 4-35

4.30.1 Constructor 4-35

4.31 Message Class 4-36

4.31.1 Constructor 4-37

4.31.2 Message Member Functions 4-37

4.32 MessageSAP Class 4-39

4.32.1 Constructor 4-41

4.32.2 MessageSAP Member Functions 4-41

4.32.3 MessageSAP Initialization 4-44

4.33 MessQOS Class 4-45

4.34 MessScope Class 4-45

4.34.1 Constructors 4-46

4.35 MissingAttrVal Class 4-47

4.35.1 Constructor 4-47

4.36 MistypedArg Class 4-48

4.36.1 Constructor 4-48

4.37 MistypedError Class 4-49

4.37.1 Constructor 4-49

4.38 MistypedOp Class 4-50

4.38.1 Constructor 4-50

4.39 MistypedRes Class 4-51
Contents xiii

4.39.1 Constructor 4-51

4.40 NoSuchAction Class 4-52

4.40.1 Constructor 4-52

4.41 NoSuchActionArg Class 4-53

4.41.1 Constructor 4-53

4.42 NoSuchAttr Class 4-54

4.42.1 Constructor 4-54

4.43 NoSuchEvent Class 4-55

4.43.1 Constructor 4-55

4.44 NoSuchEventArg Class 4-56

4.44.1 Constructor 4-56

4.45 NoSuchMessageId Class 4-57

4.45.1 Constructor 4-57

4.46 NoSuchOC Class 4-58

4.46.1 Constructor 4-58

4.47 NoSuchOI Class 4-59

4.47.1 Constructor 4-59

4.48 NoSuchRefOI Class 4-60

4.48.1 Constructor 4-60

4.49 ObjReqMess Class 4-61

4.49.1 Constructor 4-61

4.50 ObjResMess Class 4-62

4.50.1 Constructor 4-62

4.51 OpCancelled Class 4-63

4.51.1 Constructor 4-63

4.52 ProcessFailure Class 4-64

4.52.1 Constructor 4-64

4.53 ReqMess Class 4-65

4.53.1 Constructor 4-65

4.54 ResMess Class 4-66
xiv C++ API Reference • October 2001

4.54.1 Constructor 4-66

4.55 ResourceLimit Class 4-67

4.55.1 Constructor 4-67

4.56 ScopedReqMess Class 4-68

4.56.1 Constructor 4-68

4.57 SetListErr Class 4-69

4.57.1 Constructor 4-69

4.58 SetReq Class 4-70

4.58.1 Constructor 4-70

4.59 SetRes Class 4-71

4.59.1 Constructor 4-71

4.60 SyncNotSupp Class 4-72

4.60.1 Constructor 4-72

4.61 TimedOut Class 4-73

4.61.1 Constructor 4-73

4.62 UnexpChildOp Class 4-74

4.62.1 Constructor 4-74

4.63 UnexpError Class 4-75

4.63.1 Constructor 4-75

4.64 UnexpRes Class 4-76

4.64.1 Constructor 4-76

4.65 UnrecError Class 4-77

4.65.1 Constructor 4-77

4.66 UnrecLinkedId Class 4-78

4.66.1 Constructor 4-78

4.67 UnrecMessageId Class 4-79

4.67.1 Constructor 4-79

4.68 UnrecOp Class 4-80

4.68.1 Constructor 4-80

4.69 Constants and Defined Types 4-81
Contents xv

4.69.1 MessId 4-81

4.69.2 MessMode 4-82

4.69.3 MessagePtr 4-82

4.69.4 MessScopeType 4-82

4.69.5 MessSync 4-83

4.69.6 MessBaseType 4-83

4.69.7 MessType 4-84

4.69.8 MESSTYPE_MAX4-86

4.69.9 ResponseHandle 4-86

4.69.10 SendResult 4-86

5. Access Control API 5-1

5.1 Design Objectives 5-1

5.2 Access Control Types 5-2

5.3 Class Hierarchy 5-2

5.4 Symbolic Constants and Defined Types 5-4

5.4.1 Constants 5-4

5.4.2 Defined Types 5-8

5.5 Access Control API Classes 5-11

5.6 ACAccessControlRules Class 5-12

5.6.1 Constructor 5-12

5.6.2 Destructor 5-13

5.6.3 ACAccessControlRules Member Functions 5-13

5.7 ACAccessUserList Class 5-20

5.7.1 Constructor 5-20

5.7.2 Destructor 5-20

5.7.3 ACAccessUserList Member Functions 5-21

5.8 ACAppFeatureContainer Class 5-23

5.8.1 Constructor 5-23

5.8.2 Destructor 5-23
xvi C++ API Reference • October 2001

5.8.3 ACAppFeatureContainer Member Functions 5-23

5.9 ACApplication Class 5-24

5.9.1 Constructor 5-24

5.9.2 Destructor 5-25

5.9.3 ACApplication Member Functions 5-25

5.10 ACApplicationContainer Class 5-26

5.10.1 Constructor 5-26

5.10.2 Destructor 5-26

5.10.3 ACApplicationContainer Member Functions 5-26

5.11 ACApplicationFeature Class 5-27

5.11.1 Constructor 5-27

5.11.2 Destructor 5-28

5.11.3 ACApplicationFeature Member Functions 5-28

5.12 ACCallback Class 5-29

5.12.1 Constructors 5-29

5.12.2 Destructor 5-30

5.12.3 ACCallback Operator Overloading 5-30

5.12.4 ACCallback Member Functions 5-30

5.13 ACContainer Class 5-31

5.13.1 Constructor 5-31

5.13.2 Destructor 5-31

5.13.3 ACContainer Operator Overloading 5-32

5.13.4 ACContainer Member Functions 5-32

5.14 ACDbObject Class 5-35

5.14.1 Constructor 5-35

5.14.2 Destructor 5-35

5.14.3 ACDbObject Member Functions 5-36

5.14.4 Notes About the ACDbObject Class 5-38

5.15 ACDbObjectContainer Class 5-40

5.15.1 Constructor 5-40
Contents xvii

5.15.2 Destructor 5-40

5.15.3 ACDbObjectContainer Member Functions 5-40

5.16 ACEMNotificationEmitter Class 5-42

5.16.1 Constructor 5-42

5.16.2 Destructor 5-42

5.16.3 ACEMNotificationEmitter Member Functions 5-43

5.17 ACEMTargets Class 5-44

5.17.1 Constructor 5-45

5.17.2 Destructor 5-45

5.17.3 ACEMTargets Member Functions 5-45

5.18 ACGroup Class 5-46

5.18.1 Constructor 5-46

5.18.2 Destructor 5-46

5.18.3 ACGroup Member Functions 5-47

5.19 ACGroupContainer Class 5-52

5.19.1 Constructor 5-53

5.19.2 Destructor 5-53

5.19.3 ACGroupContainer Member Functions 5-53

5.20 ACInterface Class 5-54

5.20.1 Constructor 5-54

5.20.2 Destructor 5-55

5.20.3 ACInterface Member Functions 5-55

5.21 ACObject Class 5-57

5.21.1 Constructor 5-57

5.21.2 Destructor 5-57

5.21.3 ACObject Operator Overloading 5-58

5.21.4 ACObject Member Functions 5-58

5.22 ACRule Class 5-62

5.22.1 Constructor 5-63

5.22.2 Destructor 5-63
xviii C++ API Reference • October 2001

5.22.3 ACRule Member Functions 5-63

5.23 ACRuleContainer Class 5-66

5.23.1 Constructor 5-66

5.23.2 Destructor 5-67

5.23.3 ACRuleContainer Member Functions 5-67

5.24 ACScope Class 5-68

5.24.1 Constructors 5-68

5.25 ACTargets Class 5-69

5.25.1 Constructor 5-70

5.25.2 Destructor 5-70

5.25.3 ACTargets Member Functions 5-70

5.26 ACTargetsContainer Class 5-74

5.26.1 Constructor 5-74

5.26.2 Destructor 5-75

5.26.3 ACTargetsContainer Member Functions 5-75

5.27 ACUser Class 5-76

5.27.1 Constructors 5-76

5.27.2 ACUser Operator Overloading 5-77

5.27.3 ACUser Member Functions 5-77

6. Access Control Engine API 6-1

6.1 Symbolic Constants 6-2

6.1.1 ACEOperationType 6-2

6.1.2 ACEEnforcementAction 6-2

6.2 ACE API Classes 6-3

6.3 ACE Class 6-3

6.3.1 Constructor 6-4

6.3.2 Destructor 6-4

6.3.3 ACE Member Functions 6-4

6.4 ACEContext Class 6-6
Contents xix

6.4.1 Constructor 6-7

6.4.2 Destructor 6-7

6.4.3 ACEContext Operator Overloading 6-7

6.4.4 ACEContext Member Functions 6-7

6.5 ACEDecision Class 6-9

6.5.1 Constructor 6-9

6.5.2 Destructor 6-10

6.5.3 ACEDecision Member Functions 6-10

6.6 ACEDomain Class 6-11

6.6.1 Constructor 6-11

6.6.2 Destructor 6-11

6.6.3 ACEDomain Member Function 6-11

6.7 ACEReqData Class 6-12

6.7.1 Constructor 6-12

6.7.2 Destructor 6-13

6.8 AuxServerUtils Class 6-14

6.8.1 Constructor 6-14

6.8.2 Destructor 6-14

6.8.3 AuxServerUtils Virtual Functions 6-15

7. Nerve Center Interface 7-1

7.1 Requests 7-1

7.2 Class and Function Summary 7-2

7.3 NC Requests 7-3

7.3.1 Synchronous Launches 7-3

7.3.2 Asynchronous Launches 7-4

7.4 NCI Library Classes 7-5

7.5 NCAsyncResIterator Class 7-5

7.5.1 Constructor 7-5

7.5.2 Destructor 7-6
xx C++ API Reference • October 2001

7.5.3 Operator Overloading for Prefix Operator++ 7-6

7.5.4 Member Functions 7-6

7.6 NCParsedReqHandle Class 7-7

7.6.1 Constructors 7-8

7.6.2 Default Destructor 7-8

7.6.3 Member Functions 7-8

7.7 NCTopoInfoList Class 7-9

7.7.1 Default Constructor 7-10

7.7.2 Copy Constructor 7-10

7.7.3 Destructor 7-10

7.7.4 Operator Overloading for Operator= 7-10

7.7.5 Member Functions 7-11

7.8 NCI Library Functions 7-11

7.9 NCI Global Variables 7-13

7.9.1 nci_error_reason 7-13

7.9.2 topoNodeId Argument 7-13

7.10 NCI Functions 7-14

7.10.1 nci_action_add 7-14

7.10.2 nci_action_delete 7-14

7.10.3 nci_async_request_start 7-15

7.10.4 nci_condition_add 7-16

7.10.5 nci_condition_delete 7-16

7.10.6 nci_condition_get 7-16

7.10.7 nci_init 7-17

7.10.8 nci_parse_handle 7-18

7.10.9 nci_pollrate_add 7-18

7.10.10 nci_pollrate_delete 7-19

7.10.11 nci_request_delete 7-19

7.10.12 nci_request_dump 7-19

7.10.13 nci_request_info 7-20
Contents xxi

7.10.14 nci_request_list 7-20

7.10.15 nci_request_start 7-21

7.10.16 nci_severity_add 7-23

7.10.17 nci_severity_delete 7-24

7.10.18 nci_state_add 7-24

7.10.19 nci_state_delete 7-24

7.10.20 nci_state_get 7-25

7.10.21 nci_template_add 7-25

7.10.22 nci_template_copy 7-26

7.10.23 nci_template_create 7-26

7.10.24 nci_templete_delete 7-26

7.10.25 nci_template_find 7-27

7.10.26 nci_template_revert 7-27

7.10.27 nci_template_store 7-28

7.10.28 nci_transition_add 7-28

7.10.29 nci_transition_delete 7-29

7.10.30 nci_transition_find 7-29

7.10.31 nci_transition_get 7-30

8. Topology API 8-1

8.1 Topology Classes 8-2

8.1.1 General Comments 8-3

8.1.2 General Description 8-3

8.2 Class Overview 8-5

8.2.1 Relationship to the GDMO 8-5

8.2.2 Relationship to PMI 8-6

8.3 EMTopoPlatform Class 8-7

8.3.1 get_attributes_by_mo() 8-8

8.3.2 set_attributes_by_mo() 8-9

8.4 Persistent Object Classes 8-10
xxii C++ API Reference • October 2001

8.4.1 EMObject Class 8-10

8.4.2 EMObject Member Functions 8-11

8.4.3 EMTopoType Class 8-11

8.4.4 EMTopoNode Class 8-12

8.4.5 EMSnmpAgent Class 8-12

8.4.6 EMCmipAgent Class 8-12

8.4.7 EMRpcAgent Class 8-13

8.5 Utility Classes 8-13

8.5.1 EMIntegerSet Class 8-13

8.5.2 EMStatus Class 8-13

8.6 Topology API Concepts 8-14

8.6.1 Element Naming 8-14

8.6.2 Duplicate Topology Node Names 8-14

8.6.3 MIS-MIS Awareness 8-15

8.6.4 Performance Considerations 8-15

8.7 Examples 8-15

8.7.1 Makefile 8-15

8.7.2 Finding Topology Nodes 8-16

8.7.3 Registering Events for EMTopoNode 8-20

8.7.4 Printing the Topology Hierarchy 8-25

8.8 Class Reference 8-29

8.9 EMStatus Class 8-29

8.9.1 Constructors and Destructor 8-31

8.9.2 Operators 8-31

8.9.3 Global Operators 8-32

8.10 EMIntegerSet Class 8-32

8.10.1 Example 8-33

8.10.2 Constructors and Destructor 8-33

8.10.3 Operators 8-34

8.10.4 Member Functions 8-35
Contents xxiii

8.10.5 Global Operators 8-37

8.11 EMIntegerSetIterator Class 8-37

8.11.1 Example 8-38

8.11.2 Constructors and Destructor 8-38

8.11.3 Member Functions 8-39

8.12 EMTopoPlatform Class 8-39

8.12.1 Example 8-40

8.12.2 Static Member Functions 8-41

8.12.3 Access Member Functions 8-42

8.12.4 General Member Functions 8-43

8.13 EMObject Class 8-47

8.13.1 Constructors and Destructor 8-48

8.13.2 EMObject Member Functions Supported By POC Classes 8-49

8.13.3 Operators Supported by all POC classes 8-52

8.13.4 Other Member Functions Supported by POC Classes. 8-53

8.13.5 Static Member Functions Supported by POC Classes 8-54

8.14 EMTopoNodeDn Class 8-55

8.14.1 Constructors and Destructor 8-56

8.14.2 Operators 8-57

8.14.3 Access Member Functions 8-57

8.14.4 General Member Functions 8-58

8.14.5 Related Global Operators 8-58

8.15 EMTopoNode Class 8-59

8.15.1 Example 8-62

8.15.2 Constructors and Destructor 8-68

8.15.3 Access Member Functions 8-68

8.15.4 Static Member Functions for Event Subscription 8-91

8.15.5 Related Global Operators 8-92

8.16 EMTopoTypeDn Class 8-93

8.16.1 Constants 8-93
xxiv C++ API Reference • October 2001

8.16.2 Constructors and Destructor 8-93

8.16.3 Operators 8-94

8.16.4 Access Member Functions 8-95

8.16.5 General Member Functions 8-95

8.17 EMTopoType Class 8-96

8.17.1 Example 8-97

8.17.2 Constructors and Destructor 8-98

8.17.3 Operators 8-99

8.17.4 Access Member Functions 8-99

8.17.5 Static Member Functions 8-103

8.17.6 Static Member Functions for Event Subscription 8-105

8.17.7 Global Operators 8-106

8.18 EMAgent Class 8-107

8.18.1 Access Member Functions 8-108

8.19 EMCmipAgentDn Class 8-109

8.19.1 Constructors and Destructor 8-109

8.19.2 Operators 8-110

8.19.3 Access Member Functions 8-110

8.19.4 General Member Functions 8-111

8.19.5 Related Global Operators 8-111

8.20 EMCmipAgent Class 8-112

8.20.1 Example 8-114

8.20.2 Access Member Functions 8-115

8.20.3 Global Operators 8-123

8.21 EMRpcAgentDn Class 8-123

8.21.1 Constructors and Destructor 8-123

8.21.2 Operators 8-124

8.21.3 Access Member Functions 8-125

8.21.4 General Member Functions 8-125

8.21.5 Global Operators 8-126
Contents xxv

8.22 EMRpcAgent Class 8-126

8.22.1 Example 8-127

8.22.2 Constructors and Destructor 8-129

8.22.3 Access Member Functions 8-129

8.22.4 Global Operators 8-132

8.23 EMSnmpAgentDn Class 8-132

8.23.1 Constructors, and Destructor 8-133

8.23.2 Operators 8-133

8.23.3 Access Member Functions 8-134

8.23.4 General Member Functions 8-134

8.23.5 Global Operators 8-135

8.24 EMSnmpAgent Class 8-135

8.24.1 Example 8-137

8.24.2 Constructors and Destructor 8-139

8.24.3 Access Member Functions 8-140

8.24.4 Related Global Operators 8-145

9. Object Services API 9-1

9.1 Operational Flow 9-2

9.2 Service Request Function Parameters 9-3

9.3 Service Response Callback Function Parameters 9-7

9.4 Services Interface Descriptions and Examples 9-7

9.4.1 Get Request Service 9-8

9.4.2 Get Response Callback 9-15

9.4.3 Set Request Service 9-19

9.4.4 Set Response Callback 9-24

9.4.5 Action Request Service 9-26

9.4.6 Action Response Callback 9-30

9.4.7 Create Request Service 9-33

9.4.8 Create Response Callback 9-39
xxvi C++ API Reference • October 2001

9.4.9 Delete Request Service 9-42

9.4.10 Delete Response Callback 9-49

9.4.11 Delete Response Callback Parameter Description 9-49

9.4.12 Event Report Request Service (Unconfirmed) 9-53

9.4.13 Event Report Response Callback 9-57

9.5 Supporting Functions for Example Code 9-57

9.5.1 Debugging Flags 9-58

9.5.2 get_sys_dn Function 9-58

9.5.3 get_graphstr_rdn Function 9-59
Contents xxvii

xxviii C++ API Reference • October 2001

Figures

FIGURE 4-1 Applications to MRM Communication 4-2

FIGURE 4-2 Inheritance Tree of the Message Class 4-5

FIGURE 4-3 Inheritance Tree of the MessageSAP Class 4-40

FIGURE 5-1 C++ Container Classes and Their Inheritance 5-2

FIGURE 5-2 Access Control C++ Classes and Their Inheritance 5-3

FIGURE 8-1 Position of the Topology API 8-4
Figures xxix

xxx C++ API Reference • October 2001

Tables

TABLE 1-1 Application Programming Interface Classes 1-1

TABLE 1-2 ViewerApi Class Defined Actions 1-6

TABLE 1-3 Network Views Event Messages 1-10

TABLE 1-4 Using ViewRegisterEvents 1-11

TABLE 2-1 Common API Classes 2-1

TABLE 2-2 Class Categories 2-2

TABLE 2-3 Basic Variable Types 2-3

TABLE 2-4 Common API Classes 2-4

TABLE 2-5 AddressClass Data Members 2-5

TABLE 2-6 AddressTag Data Members 2-5

TABLE 2-7 Directory Services 2-6

TABLE 2-8 Address Public Variables 2-6

TABLE 2-9 Asn1ParsedValue Public Functions 2-9

TABLE 2-10 Asn1Tag Public Variables 2-12

TABLE 2-11 Asn1Tag Public Functions 2-12

TABLE 2-12 Asn1Type Public Functions 2-14

TABLE 2-13 Asn1Value Functions 2-30

TABLE 2-14 decode_ext Variable Descriptions 2-36

TABLE 2-15 encode_ext Arguments 2-41
Tables xxxi

TABLE 2-16 Blockage Public Functions 2-49

TABLE 2-17 Callback Public Variables 2-55

TABLE 2-18 Callback Public Functions 2-55

TABLE 2-19 Config Public Functions 2-58

TABLE 2-20 DataUnit Public Functions 2-60

TABLE 2-21 Dictionary Protected Variables 2-69

TABLE 2-22 Dictionary Functions 2-69

TABLE 2-23 HashImpl Public Functions 2-82

TABLE 2-24 Hdict Protected Variables 2-85

TABLE 2-25 Hdict Public Functions 2-85

TABLE 2-26 Hrefdict Protected Variables 2-88

TABLE 2-27 Hrefdict Public Functions 2-88

TABLE 2-28 Oid Public Functions 2-90

TABLE 3-1 Properties in Album, Image, and Platform 3-4

TABLE 3-2 Scoping Parameters 3-6

TABLE 3-3 String Constants 3-19

TABLE 3-4 Format Bit Values on get Function Calls 3-22

TABLE 3-5 Format Bit Values on set Function Calls 3-23

TABLE 3-6 High-Level PMI Classes 3-26

TABLE 3-7 Album Method Types 3-27

TABLE 3-8 Properties Supported by Most Albums 3-42

TABLE 3-9 Events Supported by Album 3-52

TABLE 3-10 CurrentEvent Method Types 3-63

TABLE 3-11 Error Types 3-76

TABLE 3-12 Image Method Types 3-78

TABLE 3-13 Properties Supported by Most Image Attributes 3-92

TABLE 3-14 Properties Supported by Most Images 3-98

TABLE 3-15 Image-specific Asynchronous Events 3-115
xxxii C++ API Reference • October 2001

TABLE 3-16 Morf Method Types 3-117

TABLE 3-17 Properties Addressed by key 3-144

TABLE 3-18 Platform Method Types 3-150

TABLE 3-19 MIS Properties Supported 3-163

TABLE 3-20 MIS Events Supported 3-167

TABLE 3-21 Syntax Method Types 3-169

TABLE 3-22 Waiter Method Types 3-175

TABLE 4-1 Low-Level PMI Classes 4-6

TABLE 4-2 AccessDenied Public Data Member 4-9

TABLE 4-3 ActionReq Public Data Members 4-10

TABLE 4-4 ActionRes Public Data Members 4-11

TABLE 4-5 CancelGetReq Public Variable 4-13

TABLE 4-6 ClassInstConfl Public Data Members 4-15

TABLE 4-7 CreateReq Public Data Members 4-16

TABLE 4-8 CreateRes Public Data Members 4-17

TABLE 4-9 DeleteRes Public Data Member 4-19

TABLE 4-10 DuplicateOI Public Variable 4-20

TABLE 4-11 EventReq Public Data Members 4-23

TABLE 4-12 GetListErr Public Data Members 4-24

TABLE 4-13 GetReq Public Variable 4-25

TABLE 4-14 GetRes Public Data Members 4-26

TABLE 4-15 InvalidActionArg Public Data Members 4-27

TABLE 4-16 InvalidAttrVal Public Variable 4-28

TABLE 4-17 InvalidEventArg Public Data Members 4-29

TABLE 4-18 InvalidFilter Public Variable 4-30

TABLE 4-19 InvalidOI Public Variable 4-31

TABLE 4-20 InvalidOperator Public Variable 4-33

TABLE 4-21 InvalidScope Public Variable 4-34
Tables xxxiii

TABLE 4-22 Message Class Public Data Members 4-36

TABLE 4-23 Message Class Method Types 4-36

TABLE 4-24 MessageSAP Subclasses 4-39

TABLE 4-25 MessageSAP Public Data Members 4-40

TABLE 4-26 MessageSAP Method Types 4-40

TABLE 4-27 Types of MessScope Scoping 4-45

TABLE 4-28 MessScope Public Data Members 4-46

TABLE 4-29 MissingAttrVal Public Variable 4-47

TABLE 4-30 NoSuchAction Public Data Members 4-52

TABLE 4-31 NoSuchActionArg Public Data Members 4-53

TABLE 4-32 NoSuchAttr Public Variable 4-54

TABLE 4-33 NoSuchEvent Public Data Members 4-55

TABLE 4-34 NoSuchEventArg Public Data Members 4-56

TABLE 4-35 NoSuchMessageId Public Variable 4-57

TABLE 4-36 NoSuchOC Public Variable 4-58

TABLE 4-37 NoSuchOI Public Variable 4-59

TABLE 4-38 NoSuchRefOI Public Variable 4-60

TABLE 4-39 ObjReqMess Public Data Members 4-61

TABLE 4-40 ObjResMess Public Data Members 4-62

TABLE 4-41 ProcessFailure Public Variable 4-64

TABLE 4-42 ReqMess Public Data Members 4-65

TABLE 4-43 ResMess Public Variable 4-66

TABLE 4-44 ScopedReqMess Public Data Members 4-68

TABLE 4-45 SetListErr Public Data Members 4-69

TABLE 4-46 SetReq Public Variable 4-70

TABLE 4-47 SetRes Public Data Members 4-71

TABLE 4-48 SyncNotSupp Public Variable 4-72

TABLE 5-1 Access Control API Classes 5-3
xxxiv C++ API Reference • October 2001

TABLE 6-1 check_access() Parameters 6-5

TABLE 6-2 ACEReqData() Constructor Parameters 6-12

TABLE 7-1 Nerve Center Classes and Functions 7-2

TABLE 7-2 NCI Library Classes 7-5

TABLE 7-3 Nerve Center Library Functions 7-12

TABLE 8-1 Topology API Classes 8-2

TABLE 8-2 Topology API and GDMO Object Relationship 8-5

TABLE 8-3 cache_view_graph Option 8-42

TABLE 8-4 EMTopoNode Attributes Table 8-59

TABLE 8-5 EM TopoType Attributes 8-96

TABLE 8-6 EMCmipAgent Attributes 8-112

TABLE 8-7 EMRpcAgent Attributes 8-127

TABLE 8-8 EMSnmpAgent Attributes 8-136

TABLE 9-1 Service Request Function Parameters 9-3

TABLE 9-2 Service Response Callback Function Parameters 9-7

TABLE 9-3 send_get_request Parameters 9-9

TABLE 9-4 Get Response Callback Parameters 9-15

TABLE 9-5 send_set_request Parameters 9-20

TABLE 9-6 Set Response Callback Parameters 9-24

TABLE 9-7 send_action_req Parameters 9-26

TABLE 9-8 Action Response Callback Parameters 9-31

TABLE 9-9 send_create_req Parameters 9-34

TABLE 9-10 Create Response Callback Parameters 9-40

TABLE 9-11 send_delete_req Parameters 9-44

TABLE 9-12 Delete Response Callback Parameters 9-49

TABLE 9-13 send_event_req Parameters 9-53
Tables xxxv

xxxvi C++ API Reference • October 2001

Preface

The C++ API Reference provides an extensive list of the classes and member methods

(functions) defined in the Portable Management Interface (PMI) used to

communicate with the Solstice Enterprise Manager™ (Solstice EM) Management

Information Server (MIS).

Who Should Use This Book

This document is intended for programmers developing applications running with

the Solstice EM MIS. A thorough working knowledge of C++ and experience using

complex programmatic interfaces is assumed.

Before You Read This Book

If you have just acquired the Solstice EM product, read the Managing Your Network
for an overview of the Solstice EM product functions, features, and components.

Read the Release Notes for information on installing and starting the product,

compatibility issues, minimum hardware and software requirements, known

problems, an inventory of the product components, and late breaking information.

Also refer the books listed in “Related Books section for relevant information.
Preface xxxvii

How This Book Is Organized

This document is organized as follows:

Chapter 1, “Application Programming Interface,” describes the Application

Programming Interfaces , Viewer, and Grapher APIs.

Chapter 2, “Common API,” describes the classes, methods, and data members that

are useful when using the low- or high-level portions of the PMI.

Chapter 3, “High-Level PMI,” describes the classes and methods used for the high-

level PMI.

Chapter 4, “Low-Level PMI,” describes the classes and methods used for the low-

level PMI.

Chapter 5, “Access Control API,” describes the classes and methods used for the

Access Control Class.

Chapter 6, “Access Control Engine API,” describes the classes and methods used

for Access Control Engine Class.

Chapter 7, “Nerve Center Interface” describes the classes and methods that make

up the Request Interface Library, which allows your application to build, send, and

receive requests.

Chapter 8, “Topology API,” explains how to use this tool to create applications

without learning the details of the MIT naming tree.

Chapter 9, “Object Services API,” explains how developers who implement object

classes can use this API to describe how and when a notice is sent after receiving an

event.

Related Books

Following is a list of related books:

■ Developing C++ Applications
■ Customizing Guide
■ Managing Your Network
xxxviii C++ API Reference • October 2001

What Typographic Changes Mean

The following table describes the typographic changes used in this book.

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the

C shell, Bourne shell, and Korn shell.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted with

on-screen computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:

replace with a real name or

value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,

or words to be emphasized

Read Chapter 6 in User’s Guide. These

are called class options.

You must be root to do this.

TABLE P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell

prompt

$

Bourne shell and Korn shell

superuser prompt

#

xxxix

Accessing Sun Documentation Online
The docs.sun.com sm web site enables you to access Sun technical documentation

on the Web. You can browse the docs.sun.com archive or search for a specific book

title or subject at http://docs.sun.com .

Also, you can view the online documentation by pointing your browser to the

following URL, file:/opt/SUNWconn/em/docs/SEMDOCHP/index.html

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. You can send your comments by email to docfeedback@sun.com .

Please include the part number of your document in the subject line of your email.
xl C++ API Reference • October 2001

CHAPTER 1

Application Programming Interface

This chapter describes how communication between applications can be achieved

using Application Programming Interfaces (APIs).

This chapter comprises the following topics:

■ Section 1.2 “Viewer API” on page 1-2

■ Section 1.4 “Grapher API” on page 1-15

■ Section 1.10 “Application-to-Application API” on page 1-20

1.1 API Classes
The APIs addressed in this chapter are Enterprise Manager’s Viewer, Grapher, and

Application-to-Application APIs. TABLE 1-1 lists the classes described in this chapter.

TABLE 1-1 Application Programming Interface Classes

Class API Description

AppInstComm Class Application-to-Application Used to establish communication

with the platform that

communicates with another

Solstice EM application

AppInstObj Class Application-to-Application Used to identify the target

application for sending message

AppRequest Class Application-to-Application Used to request a single message

AppTarget Class Application-to-Application Used to send messages to

applications

EMdataset Class Grapher Stores values or attributes
1-1

Viewer API
1.2 Viewer API
The Viewer API enables applications to communicate with and modify the

Solstice EM Network Views tool. Platform developers can leverage both the

functionality of the Network Views tool and integrate their applications with the

tool. The Network Views tool, therefore, can serve as an application’s central

location for performing management tasks.

The Viewer API allows the application to do the following:

■ Communicate with and modify the Network Views tool. For example, an

application can get the current view, or set the contents of the Network Views

tool’s footer.

■ Register with the Network Views tool to receive events generated by the tool. This

involves telling the Network Views tool to send events, and, on the application’s

end, registering callbacks for selected events and responding to them.

The Viewer API has only one class: ViewerApi, in AppInstComm , from the

Application-to-Application API.

1.3 ViewerApi Class
This section describes the member functions for the ViewerApi class.

EMdynamicDataset Class Grapher Stores attributes of a dynamic

dataset

EMgraph Class Grapher Creates new graphs

EMstaticDataset Class Grapher Stores values for graphing

statically

Err Class Grapher Provides error checking

ViewerApi Class Viewer Used to communicate with

applications running the

Solstice EM Network Views tool

TABLE 1-1 Application Programming Interface Classes (Continued)

Class API Description
1-2 C++ API Reference • October 2001

ViewerApi Class
1.3.1 ViewerApi Member Functions

Communication is achieved by invoking actions on application instance objects, or

targets, corresponding to one or more running Network Views applications.

Individual applications are represented as the AppInstObj , which is a member of

AppTarget class.

viewerapi_send_request

This function sends a synchronous confirmed request to a specified application

object and returns data. Zero is returned if there is an error. The action is the

operation for the Network Views tool to perform and action_data consists of all

parameters to be passed to the Network Views tool. For example, if

viewerSetCurrentZoomLevel is the action and action_data is 20 the Network

Views tool’s zoom level is set to 20%.

viewerapi_start_send_request

This function sends an asynchronous confirmed request to a specified obj and

returns handles for waiting. The action is the operation for the Network Views tool to

perform and action_data contains all parameters to be passed to the Network Views

tool.

static DU viewerapi_send_request(
AppInstObj & obj,
 ViewerApiAction action,
 DU & action_data =DU()

)

static AppRequest viewerapi_start_send_request(
AppInstObj & obj,
 ViewerApiAction action,
 DU & action_data =DU()

)

Chapter 1 Application Programming Interface 1-3

ViewerApi Class
viewerapi_send_request_unconfirmed

This function sends an unconfirmed request to a specified obj, while action is the

operation for the Network Views tool to perform and action_data contains all

parameters to be passed to the Network Views tool.

viewerapi_build_target

This function builds the target set of viewer applications to whom API actions are

sent. The userid is the system ID of the person running the application.

viewerapi_send_request

This function sends a synchronous confirmed request to one or more targets and

returns with data. Zero is returned if there is an error. The action is the operation for

the Network Views tool to perform and action_data contains all parameters to be

passed to the Network Views tool.

static Result viewerapi_send_request_unconfirmed(
AppInstObj & obj,
 ViewerApiAction action,
 DU & action_data=DU()

)

static AppTarget viewerapi_build_target(
Array(DU) & userid = Array(DU)()

)

static Array (AppRequest) viewerapi_send_request(
AppTarget & target,
ViewerApiAction action,
DU & action_data=DU()

)

1-4 C++ API Reference • October 2001

ViewerApi Class
viewerapi_start_send_request

This function sends an asynchronous confirmed request to one or more targets and

returns handles for waiting. The action is the operation for the Network Views tool to

perform and action_data contains all parameters to be passed to the Network Views

tool.

viewerapi_send_request_unconfirmed

This function sends an unconfirmed request to one or more targets. The action is the

operation for the Network Views tool to perform and action_data contains all

parameters to be passed to the Network Views tool.

set_indication_handler

This function registers a specific callback function (handler) callback for the event

specified by pmt, defined as one of the GDMO PARAMETER templates shown in

CODE EXAMPLE 1-1 and CODE EXAMPLE 1-2 in this chapter.

static Array(AppRequest)
ViewerApi::viewerapi_start_send_request(

AppTarget & target,
ViewerApiAction action,
DU & action_data=DU()

)

static Result viewerapi_send_request_unconfirmed(
AppTarget & target,
ViewerApiAction action,
DU & action_data=DU()

)

static set_indication_handler(
AppEventHandler callback,
const DU & pmt

)

Chapter 1 Application Programming Interface 1-5

ViewerApi Class
1.3.2 Communication Protocol

Two modes of communication (with an em_viewer application) are supported:

confirmed and unconfirmed.

In the confirmed mode, the sender of the request waits for confirmation of receipt

from the receiver. After confirmation is received, control is returned to the sender.

The sender can also pass data to the receiver with the request, and the receiver can

pass data with the response. Both synchronous and asynchronous versions are

provided for confirmed requests.

In the unconfirmed mode, the request is sent to the receiving Network Views

instance(s). The sender of the request neither requires nor waits for a confirmation of

receipt.

Communication with an em_viewer application occurs in a specific order:

1. A program using ViewerApi sends a request to an em_viewer .

2. The receiving instance(s) of the Network Views tool gets the notification and

performs the action.

3. The receiving instance of the Network Views tool sends a response to the sending

program.

4. The sending program receives confirmation.

1.3.3 ViewerApi Actions

An application written using the ViewerApi class can communicate with any

running viewer applications. All the actions supported by the Viewer API are

described by enum ViewerApiAction . For any action requested, each viewer

application receiver responds with a reply. TABLE 1-2 summarizes the actions.

TABLE 1-2 ViewerApi Class Defined Actions

Viewer API Action String Function
Request Data
Format Reply Data Format

viewerGetCurrentView Returns current view. N/A quoted string

viewerSetCurrentView Sets Network Views

tool’s view.

quoted string status (TRUEor

FALSE)

viewerSetFocusObject Selects object in

Network Views tool.

quoted string status

viewerSetZoomLevel Sets zoom level for

view.

int (%) status
1-6 C++ API Reference • October 2001

ViewerApi Class
Note – The viewerSetViewCriteria action is equivalent to selecting a status

name in File→Customize→Display Settings...→Colors→User-Defined. You can also

pass the argument SEVERITY to select Alarm Severity instead of User-Defined.

You can set icon colors based on values set in topoNodeDisplayStatus attribute

of topology nodes. This attribute contains a list of tags and value pairs, for example,

{{"CPU", 4}, {"Diskload", 3}} . Use the MIS Objects tool to enable tags by

adding them to the topoAllStatus attribute of the object topoNodeDB=NULL . For

example, {"CPU", " Diskload"}.

viewerSetFooterContents Places a text string in

the Network Views

tool’s footer.

quoted string status

viewerSetViewCriteria Sets which status

variable is being used

for coloring objects.

quoted string status (TRUEor

FALSE)

viewerPopupMessage Displays a message

box with the

appropriate message

in the Network Views

tool.

quoted string status (TRUEor

FALSE)

ViewerPopupQuestion Displays a message

box with appropriate

message in the

Network Views tool.

Sends response back to

the application.

quoted string quoted string—a

comma-separated

string with 1st

parameter TRUE/
FALSE and reset

the button number

clicked beginning

from 0)

viewerRegisterForEvents Registers interest in

Network Views events.

(See Section 1.3.4

“Event Handling” on

page 1-9.”)

N/A status (TRUEor

FALSE)

viewerMarkObject Add a mark to the

display of listed icons.

quoted string status (TRUEor

FALSE)

viewerUnMarkObject Remove a mark from

the display of listed

icons.

quoted string status (TRUEor

FALSE)

TABLE 1-2 ViewerApi Class Defined Actions (Continued)

Viewer API Action String Function
Request Data
Format Reply Data Format
Chapter 1 Application Programming Interface 1-7

ViewerApi Class
The same color mapping used for severities is used for the user-defined values, so

that means the values must be between 0 and 5. You can add additional color

mappings by using the MIS Objects tool to expand the range of values.

Note – The request data of the viewerSetCurrentView action expects a view

name in the format of system:id. For example, \"myhost:0\". For more

information, see the Troubleshooting Guide.

1.3.3.1 Inputs

The viewerPopupMessageDialog requires the following parameters:

1. Modality: modal or modeless. [MODAL | MODELESS]

2. Dialog-type: warning, error, information or question:

[WARNING | ERROR | INFO | QUESTION]

The dialog-type action determines the look of the dialog, including the title and

the icon cue used.

3. Message-text: The text of the message to be displayed in the dialog.

The viewerPopupQuestionDialog requires the same three parameters as the

viewerPopupMessageDialog . In addition, the following parameters are required:

1. num-buttons: The number of buttons in the dialog.

2. button-labels: A sequence of num-buttons text labels for the buttons, from left to

right.

3. default-button: The position of the default button to activate if the user hits the

return key in the dialog. The position is a 0-based integer with 0 being the left-

most button.

Note – A status of TRUEmeans that the action requested from the Network Views

tool was completed successfully; a status of FALSE means that the action requested

from the Network Views tool was not completed successfully.
1-8 C++ API Reference • October 2001

ViewerApi Class
1.3.4 Event Handling

Applications cannot affect only the Network Views tool; they can also listen for

Network Views events, and, through callbacks, respond to those events. In this way,

an application can use the Network Views tool as a central place for network

management.

The general scheme is as follows:

1. The application tells the Network Views tool of the events in which it has an

interest.

It does this with the AppInstComm:set_indication_handler() method,

described in Section 1.3.1 “ViewerApi Member Functions” on page 1-3.”

For example, assume that the user has written a callback, obj_sel_cb , to do

something when a person selects an object in the Network Views tool.

set_indication_handler takes the callback as its first argument, and the

Network Views event as its second:

ob_sel_cb is called when a Network Views tool object is selected.

2. The application notifies the Network Views tool that it is interested in events.

The application sets the ViewerAPIAction to viewerRegisterForEvents
(described in TABLE 1-2), then calls send_request_unconfirmed()
(Section 1.3.1 “ViewerApi Member Functions” on page 1-3”). The target is the set

of viewer applications to which API actions are sent.

ViewerApi va; // create ViewerApi object
va = ViewrApi(em);// em is the Platform

// notify Network Views tool we have a callback
//for object selection

va.set_indication_handler(obj_sel_cb, duObjectSelectedEvent);

// set the action to send the Network Views tool to
// 'register for events'
ViewerApiAction v_act =
va.du2ViewerApiAction("viewerRegisterForEvent");
// send the register action to the Network Views tool
va.viewerapi_send_request_unconfirmed(target, v_act, DU()));
Chapter 1 Application Programming Interface 1-9

ViewerApi Class
The syntax for AppEventHandler:set_indication_handler() is:

viewerRegisterForEvents notifies the Network Views tool that the

application is interested in events in general; it becomes an On switch for event

notification. The Network Views tool now informs the application of all events,

not just the ones that the application has indicated an interest in (in Step 1). Of

course, the application ignores all events except the ones for which it has

callbacks.

3. The Network Views tool sends events to the application.

TABLE 1-3 shows the messages that the Network Views tool sends to applications

when an event occurs. See Section 1.3.5 “Network Views Messages” on

page 1-11,” for more information.

typedef int (IAppEventHander)
(

DU input_info,
DU & reply_action,
DU & reply_info,
AppInstObj sender

)

TABLE 1-3 Network Views Event Messages

Network Views Message Data Format Event Described

duObjectSelectedEvent quoted string A user selected an object in the

Network Views tool.

duObjectDeselectedEvent quoted string A user deselected an object in the

Network Views tool.

duPopupMenuEvent quoted string A user brought up a Popup menu over

an object.

duLayerChangeEvent quoted string The user moved a window onto

another, changing the view.

duToolsMenuEvent quoted string The user selected from the Tools menu.

duObjectCreationEvent quoted string An object is added to the view being

displayed.
1-10 C++ API Reference • October 2001

ViewerApi Class
4. The registered callback for that event, if any, is called. Note that an application

must both:

a. Notify the Network Views tool of specific events for which the application has

callbacks, using set_indication_handler() (Step 1).

b. Notify the Network Views tool that it is interested in receiving events, using

ViewRegisterEvents (Step 2).

1.3.5 Network Views Messages

The following describes the Network Views messages shown in TABLE 1-3. These are

messages sent to applications when a Network Views event occurs.

duObjectSelectedEvent

This message notifies the application that a user has selected an object in the

Network Views tool.

duObjectDeletionEvent quoted string An object is deselected from the

current view.

duViewChangeEvent quoted string The Network Views tool changes the

current view.

duRegisterForEvents quoted string Use this to tell the Network Views tool

to send the calling application

Network Views events.

TABLE 1-4 Using ViewRegisterEvents

Event Handlers
Interest in Receiving Event Notification
Registered

Interest in Receiving Event
Notification not Registered

Event Handlers

Registered

Network Views tool sends all

events; registered callbacks called

(non-registered callbacks ignored).

Network Views tool does not

send event messages.

Event Handlers Not

Registered

Network Views tool notifies of all

events; all events ignored.

Network Views tool does not

send event messages.

TABLE 1-3 Network Views Event Messages (Continued)

Network Views Message Data Format Event Described
Chapter 1 Application Programming Interface 1-11

ViewerApi Class
Input: This message is generated by any form of selection that the user performs in

the Network Views tool (including adding an object to the current selection — that

is, selecting a second object without deselecting the first). Also, when the Network

Views tool changes back to a previous view that contains already selected objects,

messages are sent as if the user had just selected those objects.

Processing: Whenever the Network Views tool performs a selection, it checks for

any registered applications and sends them a message. If no applications have

registered with the Network Views tool, no message is generated (follows the

format: “system_name=unique_id”).

Outputs: The action generated is viewerObjectSelection , and the parameter to

the action is a quoted string containing the name(s) (format:’system_name:unique_id’)

of the selected objects, separated by commas (for example,

“name:id1,name:id2,name:id3”).

duObjectDeselectedEvent

This action informs applications when the user deselects objects in the Network

Views tool.

Inputs: Any deselection action in the Network Views tool that causes objects to be

deselected generates this message. This includes any new selection action that

destroys the previous selection; it also includes deleting an object that is already

selected. Additionally, it includes changing views. (The Network Views tool

maintains selections across views, but the application listening for selection/

deselection events doesn’t need to do this.)

Processing: Whenever a deselection occurs, the Network Views tool checks for any

registered applications and sends them a message. If no applications have registered

with the Network Views tool, no message is generated.

Outputs: The action generated is viewerObjectDeselection . Its parameter is a

quoted string containing a comma-separated list of the

“system_name:unique_ids ” of the objects being deselected.

duPopupMenuEvent

This event allows applications to be notified when the user brings up a popup menu

item over an object.

Inputs: This message results from any selection, by a user, of an item on a popup

menu in the Network Views tool canvas.
1-12 C++ API Reference • October 2001

ViewerApi Class
Processing: Whenever a popup menu is selected, the Network Views tool

determines the object on which the popup menu was “popped,” the menu item

selected (the label, menu item number, and actual command associated with the

popup) and generate a corresponding message. If no applications have registered

with the Network Views tool, no message is generated.

Outputs: The action generated is viewerPopupMenu. The parameter accompanying

it is a quoted string containing a comma separated list as follows:

‘topoNodeName,menu label,menu item #,menu command ’.

duLayerChangeEvent

This event notifies applications when a user changes the layers currently being

displayed in a view (that is, moves a window on top of or underneath another

window).

Inputs: Any change of the currently selected layers (including the background

image) in the current view via the Layers Dialog produces this message. (Note:

this does not include the various “levels” within a geographic map.) Any view

change also generates a viewerLayerChange message reflecting the layer flags for

the new view.

Processing: When any layer change is detected, the Network Views tool generates a

message that formulates a list of all the active layers and whether the background

image is on/off and generates a message. If no applications have registered with the

Network Views tool, no message is generated.

Outputs: The action generated is viewerLayerChange. The parameter to the message

is a quoted string containing a comma-separated list of all of the layers currently

being displayed. The first entry in the list always represents the background image

and is either “on” or “off,” depending on the current value in the Network Views

tool.

duToolsMenuEvent

This event notifies applications when the user has selected something from the Tools

Menu.

Inputs: The user makes a selection from the Tools menu.

Processing: When the user chooses something from the Tools Menu, the Network

Views tool generates a message based on the user’s selection. If no applications have

registered with the Network Views tool, no message is generated

Outputs: The action generated is viewerToolsMenu. The parameter accompanying

the message is a quoted string containing a comma-separated list as follows: ‘menu
label,menu item,menu command ’.
Chapter 1 Application Programming Interface 1-13

ViewerApi Class
duObjectCreationEvent

This event notifies when any new object is added to the current view, either by the

Network Views tool or from an alternative source (such as discover). These objects

include links.

Inputs: This message is generated when a user creates an object within a view using

■ The Network Views GUI or

■ Programmatic creation of objects within the view via another PMI program (such

as the Network Discovery tool).

Processing: When an object is added to the view being displayed by the Network

Views tool, the Network Views tool generates a message. If no applications have

registered with the Network Views tool, no message is generated.

Outputs: The action generated is viewerObjectCreationEvent . The parameter

accompanying the message is a quoted string containing a comma-separated list as

follows: “system_name:unique_id ”.

duObjectDeletionEvent

This event message informs registered applications when an object is deleted from

the Network Views tool’s current view.

Inputs: This message is engendered by any object-deletion event occurring from

either

■ GUI manipulation within the Network Views tool, or

■ Another PMI-based application (such as em_obed).

Processing: When an object deletion is seen by the Network Views tool, it checks to

see if that object is the one currently being displayed by the Network Views tool. If

it is, the Network Views tool issues a viewerObjectDeletionMessage .

Outputs: The action generated is a viewerObjectDeletionEvent . The parameter

accompanying the messages is a quoted string containing a comma-separated list as

follows: “system_name:unique_id ”.

duViewChangeEvent

This event notifies applications when the user (or another application) changes the

view that the Network Views tool is currently displaying.

Inputs: A change of view causes this message to be generated. Either the user of the

program can change the view.
1-14 C++ API Reference • October 2001

Grapher API
Processing: When the Network Views tool successfully changes the view it displays,

it generates a message containing the new view name. If no applications have

registered with the Network Views tool, no message is generated.

Outputs: The action generated is viewerViewChange. The parameter accompanying

the message is a quoted string containing the “system_name:unique_id” of the new

view being displayed.

duRegisterForEvents

This message is never sent by the Network Views tool to any application. See event

description in TABLE 1-3.

1.3.6 Sample Programs

Sample programs using methods provided by the ViewerApi class are located in

the /opt/SUNWconn/em/src/viewer_api directory. For example, the program

viewerapi_eventtester.cc gives an example of how to use event handling with

the Network Views tool.

For an example of the application instance object of a running Network Views tool,

refer to subsystemId=”EM-MIS”/emApplicationID=8 . The example program,

viewerapi_driver , uses the integer 8 to create a singular target ID. Requests can

be sent to this target ID.

For more information on actions, refer to the GDMO and ASN.1 documents,

em_apps_msg.gdmo and em_apps_msg.asn1 .

1.4 Grapher API
A Grapher API is available with Enterprise Manager. It can be used by a client

application to send data to the Graphs tool. If the Graphs tool is not running, the

API will start it automatically. A grapher library (libemgraphapi.so) by default is

located in $EM_HOME/lib, and the header files (EMdataset.hh , EMerror.hh ,

EMgraph.hh and emgraphrpc.h) are located (by default) in

$EM_HOME/include/grapher .

A graph contains one or more datasets. There are two types of datasets: static and

dynamic. The contents of a static dataset cannot be changed after it is created. A

dynamic dataset is one which can be updated after it is created. A dynamic dataset

can be used to plot a variable that changes with time.
Chapter 1 Application Programming Interface 1-15

EMdataset Class
Each dataset is plotted as a three dimensional bar chart by default. The X-axis

represents ticks that increase in a linear fashion. Each tick on the Y-axis represents a

dataset. The Z-axis represents the variable value for each dataset.

Each graph that is created has a graph name and the name of the client application

associated with it. A dataset is registered only once with the Graphs tool when

dynamic plotting is used. If you do not intend to use the Graphs tool for dynamic

plotting, you can register the same dataset more than once. For example, you might

want to do this to display graphs with the same data but with different colors or plot

methods (such as absolute, cumulative, and delta) at the same time. The color of a

dataset and the plot method can be changed with the Graphs tool. You can define a

blank spot in a graph, called a “hole,” by specifying a large double value as the Z-

value for that point. This value must be set when the dataset is created.

A sample program using the Grapher API is included with the Solstice EM product.

The default directory for the sample program is $EM_HOME/src/grapher_api .

This directory includes a READMEfile that discusses the sample program as well as

the Grapher API.

The Grapher API section includes the following classes:

■ EMdataset Class

■ EMdynamicDataset Class

■ EMgraph Class

■ EMstaticDataset Class

■ Err Class

1.5 EMdataset Class
The EMdataset is a common base class for both EMStaticDataset and

EMdynamicDataset .

1.6 EMdynamicDataset Class
An object of the class EMdynamicDataset represents a dataset whose variable value

changes with time. A dynamic dataset can be updated with new values.
1-16 C++ API Reference • October 2001

EMstaticDataset Class
1.6.1 Constructor

Where mode is EM_DYN_ABSOLUTE, EM_DYN_CUMULATIVE, or EM_DYN_DELTAfor a

dataset with absolute, cumulative, or delta values.

This constructor function creates a new dynamic dataset in the Grapher API.

1.6.2 Destructor

1.7 EMstaticDataset Class
The EMstaticDataset class is for storing values to be graphed statically. The

values of a static dataset cannot be updated after the dataset is created.

1.7.1 Constructor

This constructor function creates a new static dataset in the Grapher.

EMdynamicDataset(
RWCString name, //Name of the dataset
DynamicMode mode, //Mode of dynamic display

~EMdynamicDataset()

EMstaticDataset(
RWCString name, //Name of the dataset
int numx, //Number of X values
double * xgrid, //Array of X values
double * zgrid, //Array of Z values
double * zvalues, //Data values for numx grid points
Chapter 1 Application Programming Interface 1-17

EMgraph Class
1.7.2 Destructor

1.8 EMgraph Class
The EMgraph class is for creating a new graph. The graph can consist of one or more

datasets.

1.8.1 Constructor

These constructor functions create a new graph in the Grapher.

1.8.2 Destructor

1.8.3 EMgraph Member Functions

The following are member functions for the EMgraph class.

~EMstaticDataset()

EMgraph(
char * graph_title, //Title of the graph
char * client_name) //Name of the client creating the graph

EMgraph(
RWCString graph_title, //Title of the graph
RWCString client_name) //client creating the graph

~EMgraph()
1-18 C++ API Reference • October 2001

Err Class
add_dataset

This function adds a dataset to the graph and returns a handle to the added dataset.

The handle is necessary to add new values to the dataset.

Note – To update the dataset, it must be of the class EMdynamicDataset .

add_values

This function adds a new value to a dataset.

draw

This function draws a new graph in the Grapher.

1.9 Err Class
The Err class provides error checking capability. Both EMgraph and EMdataset are

inherited from it.

EMhandle
add_dataset(EMdataset * dataset) //Add a dataset

void add_values(
EMhandle handle, //Handle of the dataset obtained when

 // dataset is added to the graph
double xval, //X value
double zval, //Z value

void draw()
Chapter 1 Application Programming Interface 1-19

Application-to-Application API
1.9.1 Member Functions

The following are member functions for the Err class.

GetErrType

This function returns an error type. Error types are listed in EMerror.hh. The

sample program under $EM_HOME/src/grapher_api illustrates how to check

error conditions.

GetErrStr

This function returns an error string that can be printed or copied.

SetErrType

This function sets an error type. The GetErrType function returns the set error type.

Error types are listed in EMerror.hh. The sample program under $EM_HOME/src/
grapher_api illustrates how to check error conditions.

1.10 Application-to-Application API
The Application-to-Application API uses the following classes to aid communication

with the emApplicationInstance object.

■ AppInstComm Class

■ AppInstObj Class

■ AppRequest Class

ErrType GetErrType() const

char* GetErrStr() const

void SetErrType(ErrType)
1-20 C++ API Reference • October 2001

AppInstComm Class
■ AppTarget Class

The emApplicationInstance object is created for any application that connects to

the MIS. An application can send a message to another Solstice EM application

through this object using the actions emSendApplicationMessage and

emSendApplicationReply .

When an action has been sent to an application instance, the application represented

by that particular emApplicationInstance object is notified by either an

emApplicationMessage or emApplicationReply event. The emitting of the

events to the applications is achieved through the behavior of the

emApplicationInstance object.

1.11 AppInstComm Class
This class is used to establish communication with the platform that communicates

with another Solstice EM application. All messages are sent and received through an

instance of this class.

1.11.1 Constructors

In addition to the default constructor, the above constructor is also available. It

constructs an instance that maintains a connection to platform. The platform instance

must be in the connected state.

1.11.2 Destructor

1.11.3 AppInstComm Member Functions

The following are member functions for the AppInstComm class.

AppInstComm(Platform & platform)

~AppInstComm()
Chapter 1 Application Programming Interface 1-21

AppInstComm Class
build_target

This function builds the target set of applications.

DataFormatter

A DataFormatter function can be defined for post- and pre-processing of message

data. The function defined as DataFormatter takes the arguments data and action,

does some processing, and returns new data.

The action is the PARAMETER defined in GDMO, while data is the string

representation of the ASN.1 syntax defined for the PARAMETER.

reply_data_formatter

Allows the sender to pre-process the reply data before the sender’s callback is

executed.

request_data_formatter

Allows the sender to pre-process the data of the message before sending it to the

target application.

static AppTarget
build_target (

DU & apptype,
Array(DU) & userid = Array(DU)(),
Array(DU) & display = Array(DU)());

typedef DU (*DataFormatter)(DU & data ,DU & action)

static DataFormatter reply_data_formatter

static DataFormatter request_data_formatter
1-22 C++ API Reference • October 2001

AppInstComm Class
indication_data_formatter

Allows receiver of a message indication to pre-process the message before the

receivers callback is executed.

response_data_formatter

Allows the receiver of a message to pre-process the message before the reply is sent

back to the caller.

send_request

Sends the action with data info to the application represented by the

AppInstObj class.

send_request_unconfirmed

Same as send_request but there is no reply to the message.

static DataFormatter indication_data_formatter

static DataFormatter response_data_formatter

static DU send_request(
AppInstObj & to,
DU & action,
DU & info=DU())

static Result
send_request_unconfirmed(

AppInstObj & to,
DU & action,
DU & info=DU())
Chapter 1 Application Programming Interface 1-23

AppInstComm Class
start_send_request

Same as send_request , but the response is asynchronous. Use the AppRequest
member functions begin() , wait() , and get_reply_data() with this call.

send_request for multiple targets

These member functions are the same as the previous ones, except they are used for

sending requests to multiple target applications. This is achieved by using the

AppTarget class instead of the AppInstObj class.

static AppRequest
start_send_request(

AppInstObj & to,
DU & action,
DU & info=DU())

static Array(AppRequest)
send_request(

AppTarget & target,
DU & action,
DU & info=DU()

)

static Array(AppRequest)
start_send_request(

AppTarget & target,
DU & action,
DU & info=DU()

)

static Result
send_request_unconfirmed(

AppTarget & target,
DU & action,
DU & info=DU())
1-24 C++ API Reference • October 2001

AppInstComm Class
set_indication_handler

This function calls the handler defined by callback when an indication of type pmt is

received. The pmt parameter must be defined as one of the GDMO PARAMETER

templates.

set_default_indication_handler

This function calls the handler callback for any application message that is not

handled.

send_response

This member function is called after a successful return from an indication handler.

This function is not called when the sender sends the request in unconfirmed mode.

static AppEventHandler
set_indication_handler(

AppEventHandler callback,
const DU & pmt

)

static AppAllEventsHandler
set_default_indication_handler(

AppAllEventsHandler callback)

static Result
send_response(

AppInstObj & whosent,
int id,
DU & reply_action,
DU & reply_data)
Chapter 1 Application Programming Interface 1-25

AppInstObj Class
1.12 AppInstObj Class
This class is used to identify the application to which the predefined messages are

sent, and inherits properties and methods from the Image class. One instance of this

class represents one application.

This is the class which is used to represent the target application for sending

messages. If you want to send messages to multiple applications at once, use the

AppTarget class.

1.12.1 Constructors

In addition to the above constructor, the following also applies to this class.

Constructs an instance of AppInstObj , which represents a Solstice EM application.

The argument id is the naming attribute of the emApplicationInstance object

that this instance represents.

Constructs an instance of AppInstObj which represents a Solstice EM application.

The argument fdn is the fully distinguished name of the emApplicationInstance
object which this instance represents.

Constructs an instance of AppInstObj which represents the current application.

AppInstObj()

AppInstObj(int id)

AppInstObj(DU & fdn)

AppInstObj(platform&)

AppInstObj(Image & im)
1-26 C++ API Reference • October 2001

AppInstObj Class
Constructs an instance of AppInstObj, which represents a Solstice EM application.

The argument im is an Image that contains the find of the

emApplicationInstance object, which this instance represents.

1.12.2 Destructor

1.12.3 AppInstObj Member Functions

get_objname

Returns the fully distinguished name of the application object instance represented

by this instance of AppInstObj . This function is inherited from the Image class.

get_oi

Returns the fully distinguished name of the application object instance represented

by this instance of AppInstObj . This function is inherited from the Image class.

Note – Other inherited functions like get_error , set_error , and reset_error
are found in the Image class listings under the High-Level PMI classes. Source code

references for this class and others of the AppInst type are found in the app_com.hh
file.

~AppInstObj()

DU get_objname()

Asn1Value get_oi()
Chapter 1 Application Programming Interface 1-27

AppRequest Class
1.13 AppRequest Class
This class represents one message. The message can be synchronous or can be

asynchronous waiting to complete.

1.13.1 Constructor

Destructor

1.13.2 AppRequest Member Functions

begin

begin() and wait() are used in conjunction with asynchronous send_request
functions. begin() calls the request function and wait() blocks until the reply has

been received for the message.

get_reply_data

After a wait() has returned from an asynchronous send_request,
get_reply_data() is used to get the message data.

AppRequest(AppInstObj & to, DU & action,DU & info,int id=0)

~AppRequest()

Result begin()
Result wait(Timeout api_timeout = API_DEFAULT_TIMEOUT)

DU get_reply_data()
1-28 C++ API Reference • October 2001

Actions
get_receiver

Gets the AppInstObj that represents this AppRequest . This can be used when

multiple replies are received.

get_action

Gets the name of the message type which corresponds to this AppRequest . The DU

returned contains a GDMO PARAMETER template name.

is_complete

Returns 1 means the AppRequest is completed, a reply has been received. Returns

0 means the reply has not been received. This can be used in conjunction with the

asynchronous send_request methods.

1.14 Actions
The emSendApplicationMessage action is used to send a message to an

Solstice EM application represented by the emApplicationInstance object to

which the action is sent.

Syntax:

AppInstObj get_receiver()

DU get_action()

int is_complete()

EMSendApplicationMessage ::= SEQUENCE {
messageId EMMessageID,
messageType EMMessageType,
message ANYDEFINEDBY messageType
}

Chapter 1 Application Programming Interface 1-29

Notifications
messageId EMMessageID (INTEGER) : Agreed-upon identifier for message.

messageType (OBJECT IDENTIFIER): This parameter is an OID for a

PARAMETERtype defined in GDMO. The parameter defines what the ASN.1 syntax is

for the specified message type.

emSendApplicationReply : This action allows a Solstice EM application to send a

reply to the Solstice EM application represented by this emApplicationInstance

object.

The syntax is the same as for emSendApplicationMessage .

The messageType , message , and reply fields for these actions must be agreed

upon between applications.

1.15 Notifications
The emApplicationMessage notification is emitted when another application

performs an emSendApplicationMessage action on an

emApplicationInstance object.

sender OBJECT INSTANCE: The fdn of the emApplicationInstance of the

application which triggered the action.

COMPONENTS OF EMSendApplicationMessage: This contains the messageID,

messageType, and message data that was part of the original action.

emApplicationReply: This notification is emitted when another application

performs an emSendApplicationReply action on an emApplicationInstance
object.

emSendApplicationReply ::= SEQUENCE
messageId EMMessageID,
messageType EMMessageType,
reply ANYDEFINEDBY messageType
}

EMApplicationMessage ::= SEQUENCE {
sender EMApplicationOI,
COMPONENTS OF EMSendApplicationMessage
}

1-30 C++ API Reference • October 2001

Example
Syntax:

Both of these notifications contain the same information from the original action,

and also identify the application that sent the action.

1.16 Example
Suppose you have two applications that want to keep track of each other. You have

decided the best way to do this is to use an application-to-application “ping”

function.(See CODE EXAMPLE 1-1 and CODE EXAMPLE 1-2 for such an application.)

You need two messages for the application: appHello and appAlive.

Following are the steps to be followed.

EMApplicationReply ::= SEQUENCE {
sender EMApplicationOI,
COMPONENTS OF EMSendApplicationReply
}

Chapter 1 Application Programming Interface 1-31

Example
1. Define the GDMO PARAMETER templates for these messages.

The sample below indicates how you can define these templates.

2. Compile the GDMO into the MIS.

3. Write a driver and a listener application.

The driver sends the appHello message with a GraphicString30 string as data. The

listener replies with an appReply message containing a GraphicString30 string as

data. Make sure to link with libappapi.so .

4. Start the listener first.

The listener prints out its application ID. Run the driver with the ID of the listener as

arg1 .

MODULE “EM APP PING”

appHello PARAMETER
CONTEXT ACTION-INFO;
WITH SYNTAX FORUM-ASN1-1.GraphicString30;
BEHAVIOUR appHelloBehaviour;

REGISTERED AS { 1 2 3 4 5 6 90 };

appHelloBehavior BEHAVIOUR

DEFINED AS
!Ping hello message for app to app communication!;

appReply PARAMETER
CONTEXT ACTION-INFO;
WITH SYNTAX FORUM-ASN1-1.GraphicString30;
BEHAVIOUR appReplyBehaviour;

REGISTERED AS { 1 2 3 4 5 6 91 };

appReplyBehaviour BEHAVIOUR

DEFINED AS
!Ping reply message for app to app communication!;

END

hostname% em_gdmo hostname app_ping.gdmo
1-32 C++ API Reference • October 2001

Example
This is one way to identify what application you want to communicate with. You can

also dynamically send messages to applications based on their names and what user

started them. See the sample programs for more information.

CODE EXAMPLE 1-1 Listener Application

// Listener Application for App2App API

#include <hi.hh>
#include “app_comm.hh”

Platform plat;
int handler(DU,DU&,DU&);

main(int argc, char **argv)
{
 plat = Platform(duEM);
 char *host = “localhost”;
 printf(“Connecting to %s ... “,host);
 if (!plat.connect(host, “sample_app2app”)) {
 printf(“Connect failed\n”)

”, plat.get.error.string());
 exit(0);
 }
 printf(“Connected. \n”);
 AppInstComm app(plat);

AppInstObj::appObj(plat);
 printf(“ID %s\n”,appObj.get_objname().chp());
 app.set_indication_handler(handler,”appHello”);
 while (1)
 dispatch_recursive(TRUE);
}

int
AppEventHandler(
 DU input_info,
 DU &reply_action,
 DU &reply_info,

AppInstObj sender
)
{
 printf(“Message Received %s\n”,input_info.chp());
 reply_action = “appReply”;
 reply_info = “\”I am alive\””;
 return 1;
}

Chapter 1 Application Programming Interface 1-33

Example
CODE EXAMPLE 1-2 Driver Program for Listener Application

//Driver Program for App2App API

#include <hi.hh>
#include “app_comm.hh”

Platform plat;

main(int argc, char **argv)
{

if (argc != 2) {
 printf(“Usage: <listener_id>\n”);
 exit(1);
 }
 plat = Platform(duEM);
 char *host = “localhost”;
 printf(“Connecting to %s ... “,host);
 if (!plat.connect(host, “sample_app2app”)) {
 printf(“Connect failed\n”);

printf(“Reason:%ln”, plat.get.error.string());
exit(0);

 }
 printf(“Connected. \n”);
 AppInstComm app(plat);
 char action[500];
 char info[500];
 strcpy(action , “appHello”);
 strcpy(info , “\”Hello there\””);
 AppInstObj to(atoi(argv[1]));
 DU reply;
 reply = app.send_request(to,DU(action),DU(info));
 printf(“Reply is %s\n”,reply.chp());
}

1-34 C++ API Reference • October 2001

AppTarget Class
1.17 AppTarget Class
This class is used for sending messages to a set of applications based on the

application name and user IDs, and inherits properties and methods from the Album
class. An instance of this class can represent a group of applications or a single

application.

1.17.1 Constructor

Constructs an AppTarget instance that represents a set of applications based on the

apptype and userid. The apptype is the name of the application set in the

Platform::connect() method. The userid is an array of the UNIX logins of the

users who connect to the platform.

1.17.2 AppTarget Member Functions

The following are member functions for the AppTarget class.

num_objs

Returns the number of applications represented in the AppTarget instance.

AppTarget(
int id,
DU & apptype,
Array(DU) & userid = Array(DU)(),
Array(DU) & display = Array(DU)());

int num_objs()
Chapter 1 Application Programming Interface 1-35

AppTarget Class
first_obj

Returns the first AppInstObj in the AppTarget instance. The AppInstObj can

then be used in a AppInstComm::send_request() method.

next_obj

Returns the next AppInstObj in the AppTarget instance. The AppInstObj can

then be used in a AppInstComm::send_request() method.

Note – Other inherited functions like get_error , set_error , and reset_error
are found in the Album class listings under the High-Level PMI classes. Source code

references for this class and others of the App class type are found in the

app_com.hh file.

AppInstObj first_obj()

AppInstObj next_obj()
1-36 C++ API Reference • October 2001

CHAPTER 2

Common API

This chapter describes classes and their member functions that can be used by all the

Application Programming Interface (API) libraries.

This chapter comprises the following topics:

■ Section 2.1 “Common API Classes” on page 2-1

■ Section 2.2 “Class Categories” on page 2-2

■ Section 2.3 “Variable Types” on page 2-3

■ Section 2.4 “Class Descriptions” on page 2-4

2.1 Common API Classes
TABLE 2-1 lists the classes described in this chapter.

TABLE 2-1 Common API Classes

Class Description

Address Class Used to store an address

Arraydeclare Macro Used to create a class whose structure is an array

Asn1ParsedValue Class Represents a parsed Asn1Value that is invalidated

Asn1Tag Class Defines an ASN.1 tag class and value

Asn1Type Class Used to implement ASN.1 encoding and decoding

Asn1Value Class Defines storage and operations for ASN.1 values

Blockage Class Used to manage blocked callback events

Callback Class Used to post and dispatch callback events

CommandClass Used to define unique commands
2-1

Class Categories
2.2 Class Categories
There are five general categories of classes, as shown in TABLE 2-2, that can be used

with the Application Programming Interface.

■ Address Classes

■ ASN.1 Classes

■ Scheduling and Callback Handling Classes

■ Array and Hashing Class

■ Dictionary Macro Classes

Config Class Used to manage database configuration file defaults

DataUnit Class Used as a basic storage unit for data

Dictionary Class Provides facilities to classes created by the

Dictionarydeclare macro

GenInt Class Represents integers of arbitrary size

Hash Class

HashImpl Class Used to implement a dynamically growing hash table

Hashdeclare Macro Used to create a hash table class

Hdict Class Provides facilities to classes created by the

Hdictdeclare macro

Oid Class Defines a container for an object identifier

Queue Class

Queuedeclare Macro Used to create a queue class with the specified type.

Timer Class Used to schedule events to occur after a specific interval

TABLE 2-2 Class Categories

Category Class/Macro

Address Address Class

Address CommandClass

Address Config Class

TABLE 2-1 Common API Classes (Continued)

Class Description
2-2 C++ API Reference • October 2001

Variable Types
2.3 Variable Types
The basic types of variables shown in TABLE 2-3 are declared in the /opt/
SUNWconn/em/include/pmi/basic.hh file.

Asn1 Asn1ParsedValue Class

Asn1 Asn1Tag Class

Asn1 Asn1Type Class

Asn1 Asn1Value Class

Asn1 DataUnit Class

Asn1 Oid Class

Scheduling/Callback Blockage Class

Scheduling/Callback Callback Class

Scheduling/Callback Timer Class

Arrays/Hashing Hashdeclare Macro

Arrays/Hashing HashImpl Class

Dictionary Dictionary Class

Dictionary Hdict Class

TABLE 2-3 Basic Variable Types

Variable Description

TRUE 1

FALSE 0

I8 Signed 8 bit character

U8 Unsigned 8 bit character

I16 Signed 16 Bit character

U16 Unsigned 16 Bit character

I32 Signed 32 Bit character

U32 Unsigned 32 Bit character

TABLE 2-2 Class Categories (Continued)

Category Class/Macro
Chapter 2 Common API 2-3

Class Descriptions
2.4 Class Descriptions
TABLE 2-4 lists each Common API Class with a brief description of each class.

Boolean General type used to distinguish true from FALSE

by 0 or nonzero.

Octet Unsigned char

Ptr Void pointer (void *)

Result Enumerated type with 2 valid values (OK,

NOT_OK) used as return code in many functions.

MTime Unsigned 32 bit quantity to hold time in

Milliseconds

TABLE 2-4 Common API Classes

Class Description

Address Class Used to store an address

Asn1ParsedValue Class Represents a parsed Asn1Value that has not be validated

against a type.

Asn1Tag Class Defines an ASN.1 tag class and value

Asn1Type Class Used to implement ASN.1 encoding and decoding

Asn1Value Class Defines storage and operations for ASN.1 values

Blockage Class Used to manage blocked callback events

Callback Class Used to post and dispatch callback events

CommandClass Used to define unique commands

Config Class Used to manage database configuration file defaults

DataUnit Class Used as a basic storage unit for data

Dictionary Class Provides facilities to classes created by the

Dictionarydeclare macro

HashImpl Class Used to implement a dynamically growing hash table

TABLE 2-3 Basic Variable Types (Continued)

Variable Description
2-4 C++ API Reference • October 2001

Address Class
2.5 Address Class
Inheritance: class Address

#include <pmi/address.hh>

This class defines a structure used to contain an address. An instance of Address
contains an address class, an address tag, and an address value. The address tag is

used with the value to form an address. The Address class distinguishes between

members of the enum AddressClass , as shown in TABLE 2-5.

The address tag can be one of the values shown in TABLE 2-6.

Hdict Class Provides facilities to classes created by the

Hdictdeclare macro

Hrefdict Class Provides facilities to classes created by the

Hrefdictdeclare macro

Oid Class Defines a container for an object identifier

TABLE 2-5 AddressClass Data Members

Address Variables Description

AC_DEFAULT Route by object instance in request

AC_APP Application address

AC_DIR_SERVICE A directory service for resolution

AC_PRIMITIVE Protocol driver address

TABLE 2-6 AddressTag Data Members

Address Tag Variables Value Description

AT_PRIM_OAM 0 OAM MIS module

AT_PRIM_EMM 1 EMM MIS module

AT_PRIM_CMIP_PRES_ADDR 2 CMIP address

AT_PRIM_SNMP_ADDR 3 SNMP address

AT_PRIM_AET_ADDR 4 ASN.1 Address Entity Title

TABLE 2-4 Common API Classes (Continued)

Class Description
Chapter 2 Common API 2-5

Address Class
TABLE 2-7 lists the well-known address types for directory services.

TABLE 2-8 lists the Address class public variables.

2.5.1 Constructor

Default for a class is AC_DEFAULT. Default for a tag is AT_PRIM_OAM.

AT_PRIM_MPA_ADDR 5 MPA address

AT_PRIM_AGENT_DN 6 ASN.1 FDN

AT_PRIM_RPC_ADDR 7 RPC address

AT_PRIM_CMIP_CONFIG 8 String consisting of: {PSEL, SSEL, TSEL,

NSAP}

TABLE 2-7 Directory Services

Directory Service Value Description

AT_DS_OBJ_INST 0 Object Instance

AT_DS_APP_ENT_TITLE 1 Application Entity Title

AT_DS_DOMAIN_NAME 2 Domain

TABLE 2-8 Address Public Variables

Variable Type Parameter Description

AddressClass aclass The address class

AddressTag atag The address tag

DataUnit aval ASN.1-encoded address value

Address::Address()

TABLE 2-6 AddressTag Data Members (Continued)

Address Tag Variables Value Description
2-6 C++ API Reference • October 2001

Address Class
2.5.2 Operator

The operator above creates an instance of Address having the same values as the

argument addr.

This operator returns TRUE if the two Addresses have the same class, tag, and

value.

This operator returns TRUE unless the two Address es have the same class, tag, and

value.

2.5.3 Address Member Functions

This section describes the member functions of the Address class.

print

These function calls append a record of the Address’s class, tag, and value to the

file fp or to the debug stream deb.

const Address &operator = (const Address & addr)

int operator == (const Address & a) const

int operator != (const Address & a) const

void print(FILE * fp) const

void print(Debug & deb = misc_stdout) const
Chapter 2 Common API 2-7

Arraydeclare Macro
2.6 Arraydeclare Macro
#include <omi/array.hh>

The Arraydeclare macro declares a class whose name is formed from “Array”

followed by its argument. This permits creation of a class whose structure is an array

with each element containing an instance of the class named in its argument.

Because an Array object thus created is confined to the scope in which the macro is

used, it deletes itself when the scope is exited. This obviates the need for “array

delete” statements before return, since arrays are automatically deleted at return.

The definition for the overloaded = operator assures that only one Array is in charge

of a piece of memory at a time. It does this by swiping the array pointer from the

other Array. If you want to have multiple people referencing the same array, you

must pass a reference to the Array object, or sneak the pointer out of the Array

object. Be careful not to place the pointer in another Array object; that would cause a

double delete. The array’s size is defined as a “pseudo const” although the class

itself cheats on the const -ness, it expects the user not to.

Because the subscripting operator is defined in-line, there should be no extra

overhead from using this class instead of subscripting directly. If you want the

subscripting operator to do extra checking, define SUBSCRIPTCHECKappropriately.

This macro provides validation of the subscripts used in indexing an array, but only

while operating in debug mode.

The following are array declarations pre-defined in array.hh :

#define Arraydeclare(T)

#define SUBSCRIPTCHECK assert(subscript < size)

Arraydeclare(Boolean);
Arraydeclare(I8);
Arraydeclare(U8);
Arraydeclare(I16);
Arraydeclare(U16);
Arraydeclare(I32);
Arraydeclare(U32);
Arraydeclare(Ptr);
Arraydeclare(Result);
Arraydeclare(char);
2-8 C++ API Reference • October 2001

Asn1ParsedValue Class
2.7 Asn1ParsedValue Class
Inheritance: class Asn1ParsedValue

#include <pmi/asn1_type.hh>

Data Members: No public data members are declared in this class.

An Asn1ParsedValue represents a parsed Asn1Value that has not yet been

validated against a type. This form is used to hold a parsed value until its type has

been completely determined. The Asn1ParsedValue is represented internally by an

Asn1Value of the type ASN-PARSED-VALUE.

Classes used in various aspects of the implementation of ASN.1 encoding and

decoding rely on the ISO specifications of Abstract Syntax Notation One. TABLE 2-9

lists the Asn1ParsedValue public functions.

2.7.1 Constructors

These are constructors for the Ans1ParsedValue class.

TABLE 2-9 Asn1ParsedValue Public Functions

Function Name Descriptions

operator=()

operator!()

operator void*()

get_real_val() Returns the Real ASN.1 value based on the given Asn1Type .

get_parsed_val() Returns the parsed ASN.1 value.

format_value() Returns the parsed ASN.1 value as a string buffer.

Asn1ParsedValue()

Asn1ParsedValue(const Asn1Value & pv)

Asn1ParsedValue(const Asn1ParsedValue & pv)
Chapter 2 Common API 2-9

Asn1ParsedValue Class
2.7.2 Asn1ParsedValue Operator Overloading

These are the operators for the Ans1ParsedValue class.

This operator is provided so that you can say “if (!Asn1ParsedValue)… ”

2.7.3 Asn1ParsedValue Member Functions

This section describes the member functions of the Asn1ParsedValue class.

format_value

This function writes into the buffer buf a string representation of the

Asn1ParsedValue . The representation must have a length no greater than buf_len
characters, including indent leading blanks. This function returns OK if the value can

be extracted and fits in buffer length provided.

get_parsed_val

This function returns the encoded parsed value as an Asn1Value .

const Asn1ParsedValue &operator = (const Asn1ParsedValue & pv)

operator void *() const

int operator !() const

Result format_value(char *& buf ,
U32 & buf_len,
U32 indent,
Asn1Tagging tagging = TAG_EXPLICIT,
const DataUnit def_mod = DataUnit(),
Asn1Flags flags = 0) const

Asn1Value get_parsed_val() const
2-10 C++ API Reference • October 2001

Asn1Tag Class
get_real_val

This function, given an Asn1Type , returns an Asn1Value representation of the

value.

2.8 Asn1Tag Class
Inheritance: class Asn1Tag

#include <pmi/basic.hh>

#include <pmi/asn1_val.hh>

Asn1Tag is a class that defines an ASN.1 tag class and an ASN.1 value for a tag. An

ASN.1 tag value is defined as a U32 value. The enumeration Asn1TagClass (see

Section 2.24.7 “Asn1TagClass” on page 2-97”) has the following possible values:

Following are some predefined macros which assist in making tags of specific

classes. Each of the macros below creates an Asn1Tag instance of tag number v.

Classes used in various aspects of the implementation of ASN.1 encoding and

decoding rely on the ISO specifications of Abstract Syntax Notation One. For details,

please consult the sources cited in the standards document.

Asn1Value get_real_val(const Asn1Type & type ,
Boolean indefinite = FALSE) const

CLASS_UNIV
CLASS_APPL
CLASS_CONT
CLASS_PRIV

TAG_UNIV(v)
TAG_APPL(v)
TAG_CONT(v)
TAG_PRIV(v)
Chapter 2 Common API 2-11

Asn1Tag Class
TABLE 2-10 lists the Asn1Tag class public variables.

TABLE 2-11 lists the Asn1Tag public functions.

2.8.1 Constructors

These are the constructors for the Asn1Tag class. The following constructor creates

an instance of an Asn1Tag with a tag class of CLASS_UNIVand a tag value of 0.

This constructor creates an Asn1Tag with a tag class specified by cl and a tag value

specified by val.

2.8.2 Asn1Tag Operator Overloading

This section describes the operators for the Asn1Tag class.

TABLE 2-10 Asn1Tag Public Variables

Variable Type Parameter Description

Asn1TagClass tclass The Asn1Tag class

Asn1TagValue value The value of the tag within the class

TABLE 2-11 Asn1Tag Public Functions

Function Name Descriptions

operator==()

operator!=()

size() Report the tag’s size

Asn1Tag()

Asn1Tag(Asn1TagClass cl,Asn1TagValue val)

int operator == (const Asn1Tag & tag) const
2-12 C++ API Reference • October 2001

Asn1Type Class
This operator compares the operand tags and returns nonzero if the two are equal,

zero otherwise.

This operator compares the operand tags and returns nonzero if the two are

different, zero otherwise.

2.8.3 Asn1Tag Member Functions

This section describes the member function of the Asn1Tag class.

size

This function call returns a U32 value containing the number of octets in the tag.

2.9 Asn1Type Class
Inheritance: class Asn1Type

#include <pmi/asn1_type.hh>

Classes used in various aspects of the implementation of ASN.1 encoding and

decoding rely on the ISO specifications of Abstract Syntax Notation One. For details,

please consult the sources cited in the standards document.

Associated classes: Asn1Module, ATData , Asn1TypeEL , Asn1TypeE ,

Asn1TypeChoice , Asn1ParsedValue , and D3SyntaxData .

int operator != (const Asn1Tag & tag) const

U32 size() const
Chapter 2 Common API 2-13

Asn1Type Class
TABLE 2-12 lists Asn1Type public functions.

TABLE 2-12 Asn1Type Public Functions

Function Name Description

=
void*()
!()

Operator overloading

base_kind
base_type
kind
needs_explicit
primitive_type

Report kind and type

format_type Conversion

add_tags
remove_tags
format_value
parse_value
validate
validate_tag

Construct an Asn1Value from a string

cmp
equivalent

Compare two values

determine_real_val Return encoded from parsed form

find_component
find_subcomponent
encode

Find components

set_intersects_with
set_is_subset
set_add_members
set_remove_members
set_remove_dup_members

Set operations on Asn1Values (of the type identified

by this Asn1Type)

lookup_type Retrieve type information

register_any_handler
unregister_any_handler

Provide user-defined function for the key-to-value

lookup

get_range
get_size_constraint
get_bit_string_identifiers
get_enum_identifiers
2-14 C++ API Reference • October 2001

Asn1Type Class
2.9.1 Constructors

Use the preceding constructor as the default constructor.

Use the preceding constructor to initialize from an Asn1Value representation of the

Asn1Type .

Asn1Type()
Asn1Type(const Asn1Type & at)
Asn1Type(Asn1Kind k)
Asn1Type(const Asn1Value & av)
Asn1Type(const DataUnit & module_name , char*, Asn1Flags flags=0)

Asn1Type();

Asn1Type(const Asn1Type & at);
Chapter 2 Common API 2-15

Asn1Type Class
Use the preceding constructor to construct BOOLEAN, OCTET_STRING,
NULL,OBJECT_IDENTIFIER, and REALentities. Asn1Kind has the following

numeric definitions of enumerated data types.

Use the preceding constructor to initialize from an Asn1Value representation of the

Asn1Type.

This constructor is initialized from the canonical text representation of the

Asn1Type . Where module_name comes from the defined DataUnit module_name .

2.9.2 Destructor

2.9.3 Asn1Type Operator Overloading

This section describes operator overloading for Asn1Type .

Asn1Type(Asn1Kind k);

enum Asn1Kind {
 AK_NONE, AK_BOOLEAN, AK_INTEGER, AK_BIT_STRING,
AK_OCTET_STRING,
 AK_NULL, AK_SEQUENCE, AK_SEQUENCE_OF, AK_SET, AK_SET_OF,
 AK_CHOICE, AK_SELECTION, AK_TAGGED, AK_ANY,
AK_OBJECT_IDENTIFIER,
 AK_ENUMERATED, AK_REAL, AK_SUBTYPE, AK_DEFINED_TYPE
};

Asn1Type(const Asn1Value & av);

Asn1Type(const DataUnit & module_name, char*, Asn1Flags flags=0)

~Asn1Type()

Asn1Type &operator = (const Asn1Type & at)
2-16 C++ API Reference • October 2001

Asn1Type Class
This operator assigns the value of at to Asn1Type .

This operator tests whether Asn1Type is initialized.

This operator converts the Asn1Type to its Asn1Value representation.

This operator is provided so that you can say “if (!Asn1ParsedValue)… ”

2.9.4 Asn1Type Member Functions

This section describes the member functions of the Asn1Type class.

add_tags

This function call retags or adds tags to a value to make it conform to the type.

base_kind

This function call returns the underlying “kind” of the base type, recursing through

TAGGED, SELECTION, DEFINED_TYPE, and SUBTYPE.

operator void *() const

operator Asn1Value() const

int operator !() const

Asn1Value add_tags(const Asn1Value & av,
Boolean indefinite=FALSE)const;

Asn1Kind base_kind() const
Chapter 2 Common API 2-17

Asn1Type Class
base_type

This function call retrieves the underlying “type” without respect to tagging or

selection.

cmp

This function call determines the ordering of two Asn1Value s. Returns a negative, 0

or positive value, as av1 is less than, equal to, or greater than av2. It throws an

exception if an error is encountered.

determine_real_val

This function call takes (determines) an Asn1Value in parsed form and returns it in

encoded form.

encode

This function call re-encodes the Asn1Value according to the specified encoding

rules.

Asn1Type base_type() const

int cmp(const Asn1Value & av1 , const Asn1Value & av2) const;

Asn1Value determine_real_val(const Asn1Value & parsed_val ,
Boolean indefinite =FALSE , Asn1Flags flags = 0) const;

Asn1Value encode (const Ans1Value &av,
 Asn1Encoding encoding = ENC_BER);
2-18 C++ API Reference • October 2001

Asn1Type Class
equivalent

This function call determines whether two Asn1Value s are equivalent. It assumes

that both values have been validated against the type.

find_all_components

This function call finds all the named components of the Asn1Type in the given

Asn1Value . A component is a named field for SEQUENCE, SET, CHOICE, or a

number for SEQUENCE OF, SET OF(0 is the count of the number of elements).

Returns the type of the component in comp_types.

find_component

This function call finds the named component of the Asn1Type in the given

Asn1Value . A component is a named field for SEQUENCE, SET, CHOICE, or a

number for SEQUENCE OF, SET OF(0 is the count of the number of elements).

Returns the type of the component in comp_type.

Boolean equivalent(const Asn1Value & av1 ,const Asn1Value & av2)
const;

Result find_all_components(const Asn1Value & val ,
 Array(DataUnit) & comp_names,
 Array(Asn1Type) & comp_types ,
 Array(Asn1Value) & comp_vals ,
 Boolean resolve =FALSE) const;

Asn1Value find_component(const DataUnit & field_name ,
const Asn1Value & val ,
Asn1Type & comp_type , Boolean resolve = FALSE) const;
Chapter 2 Common API 2-19

Asn1Type Class
find_subcomponent

This function call finds the named subcomponent of the Asn1Type in the given

Asn1Value . A subcomponent is a list of component names separated by a period.

format_type

This function call converts the Asn1Type to its canonical text representation.

format_value

This function converts an Asn1Value to its canonical text representation.

Asn1Value find_subcomponent(
const DataUnit & field_name ,
const Asn1Value & val ,
Asn1Type & comp_type , Boolean resolve = FALSE) const;

Result format_type(char *& buf ,
 U32 & buf_len ,
 U32 indent = 0,
 Asn1Tagging tagging = TAG_EXPLICIT,
 const DataUnit def_mod = DataUnit(),
 Asn1Flags flags = 0) const;

Result format_value(const Asn1Value & av ,
char *& buf ,
U32 & buf_len ,
U32 indent = 0,
Asn1Tagging tagging = TAG_EXPLICIT,
const DataUnit def_mod = DataUnit(),
Asn1Flags flags = 0) const;
2-20 C++ API Reference • October 2001

Asn1Type Class
get_enum_identifiers ()

This function returns a reference to an array of type Asn1NamedNumber, which

holds the identifiers and associated values for the ASN.1 ENUMERATEDtype. If this

function fails, it returns NOT_OK; otherwise, it returns OK.

get_range()

If this function is applied to an Asn1Type object that represents an ASN.1 type

different from REALor INTEGER, the function returns NOT_OK. If the invocation is

successful, the function returns OK.

In addition, this function returns, by reference, the lower and upper range limits

defined for a subtype of an INTEGERor REALbase type as variables of type

Asn1ParsedValue , and the lower_open and upper_open Boolean variables

that specify whether the corresponding range limit is open or closed. If the range

limit is open, the lower_open and upper_open variables are set to TRUE;
otherwise, these two variables are set to FALSE.

The X.208 standard defines ranges on INTEGERand REAL types. In addition, the

X.208 standard uses MIN and MAXto specify lower and upper range limits

respectively.

■ MIN specifies the lower range limit defined for the parent type

■ MAXspecifies the upper range limit defined for the parent type

Result get_enum_identifiers(Array(Asn1NamedNumber) &idents)
const;

Result get_range(Asn1ParsedValue & lower ,
 Boolean & lower_open ,
 Asn1ParsedValue & upper ,
 Boolean & upper_open
) const;
Chapter 2 Common API 2-21

Asn1Type Class
The PMI library encodes MIN and MAXas NULL Asn1ParsedValue values.

Therefore, after invoking the get_range method, you must check whether the

returned values for the upper and lower range limits are NULL, before attempting to

decode them; see CODE EXAMPLE 2-1.

kind

This function call returns the “kind” of the type, i.e, BOOLEAN, INTEGER, SEQUENCE,
DEFINED_VALUE, etc.

CODE EXAMPLE 2-1 Asn1Type::get_range() Example

 Asn1ParsedValue lower, upper;
 Boolean lower_open, upper_open;
 Asn1Value asn1lower, asn1upper;
 Asn1TypeInt int_type(AK_INTEGER);
 GenInt low, up;

 rslt = type.get_range(lower, lower_open, upper, upper_open);
 if (rslt == OK) {
 if (lower) {
 asn1lower = lower.get_real_val(int_type);
 asn1lower.decode_int(low);
 } else {
 // The lower range limit is MIN
 }
 if (upper) {
 asn1upper = upper.get_real_val(int_type);
 asn1upper.decode_int(up);
 }
 } else {
 // The upper range limit is MAX
 }
 }

Asn1Kind kind() const
2-22 C++ API Reference • October 2001

Asn1Type Class
lookup_type

This function call returns the Asn1Type associated with a particular key value from

an ANY DEFINED BYclause.

any_name is the name of the field of the sequence or set which is the ANY.
defined_by_name is the name of the field storing the key. any_value is the value of the

key.

An application can use this to discover the syntax of an attributes action,

notification, parameter, and so on. For example, consider the type:

The following expression would return the Asn1Type associated with this particular

combination of the three arguments.

The method by which lookup_type() identifies a particular key-and-value

combination can be provided explicitly by the static method

register_any_handler() (below). After register_any_handler() has been

invoked, lookup_type() first searches to find a function registered with an exact

match in the any_name and defined_by_name fields.

Then it tries to find the function registered with a matching any_name but an empty

defined_by_name field. Finally it tries to find a function with both names empty. If it

can’t find a function, or if the function can’t locate the key, it returns a null

Asn1Type as the result of lookup_type() .

static Asn1Type lookup_type(const DataUnit & any_name,
 const DataUnit & defined_by_name ,
 const Asn1Value & any_value)

SEQUENCE {
key OBJECT IDENTIFIER
value ANY DEFINED BY KEY}

Asn1Value::lookup_type("value", "key", myOID)
Chapter 2 Common API 2-23

Asn1Type Class
needs_explicit

This function call determines whether the Asn1Type requires explicit tagging.

parse_value

This function call constructs an Asn1Value from a given string.

register_any_handler

This function call specifies a key-to-value lookup function to be used by

lookup_type (discussed above) for a particular combination of any_name and

defined_by_name. Usually register_any_handler is invoked automatically by the

PMI, but an application can invoke it explicitly.

See also: Asn1Type::unregister_any_handler() and

Asn1Type::lookup_type() .

remove_tags

This function call removes explicit tags from a value to get to the underlying base

value.

Boolean needs_explicit() const

Ans1Value parse_value(const DataUnit & module_name , char*,
Asn1Flags = 0) const;

static Result register_any_handler(const DataUnit & any_name,
const DataUnit & defined_by_name, AnyHandler handler);

Asn1Value remove_tags(const Asn1Value & av) const
2-24 C++ API Reference • October 2001

Asn1Type Class
set_add_members

This function call’s arguments of and to are Asn1Value s. Both of them are of the

type identified by this Asn1Type . The unique members of the parameter of are

inserted into to. One of the operations on SET_OF’s.

Returns OKif the operation completed successfully, and NOT_OKotherwise (for

example, if the Asn1Value s were not both of the appropriate type).

set_intersects_with

This function call’s arguments left and right are Asn1Value s. Both of them are of the

type identified by this Asn1Type . One of the operations on SET_OF’s.

Returns OKif components of left intersect with the components of right; that is, if any

member of left is a member of right.

set_is_subset

This function call’s arguments left and right are Asn1Value s. Both of them are of the

type identified by this Asn1Type . One of the operations on SET_OF’s.

Returns OKif left is a subset of right; that is, if all the members of left are also

members of right.

Result set_add_members(const Asn1Value & of , Asn1Value & to) const;

Boolean set_intersects_with(const Asn1Value & left ,
Asn1Value & right) const;

Boolean set_is_subset(const Asn1Value & left ,
const Asn1Value & right),
Boolean mutual = FALSE) const;
Chapter 2 Common API 2-25

Asn1Type Class
set_remove_dup_members

This function call’s argument of is an Asn1Value s of the type identified by this

Asn1Type . The method removes any duplicate members from of. One of the

operations on SET_OF’s.

Returns OKif the operation completed successfully, and NOT_OKotherwise (for

example, if the Asn1Value s were not both of the appropriate type).

set_remove_members

This function call’s arguments of and from are Asn1Values . Both of them are of the

type identified by this Asn1Type . The method removes from from any members that

are also present in of. One of the operations on SET_OF’s.

Returns OKif the operation completed successfully, and NOT_OKotherwise (for

example, if the Asn1Value s were not both of the appropriate type).

unregister_any_handler

This function call undoes the effect of registering an AnyHandler function to work

with lookup_type() .

Result set_remove_dup_members(Asn1Value & of) const;

Result set_remove_members(const Asn1Value & of , Asn1Value & from)
const;

static Result unregister_any_handler(const DataUnit & any_name,
const DataUnit & defined_by_name ,
AnyHandler handler)
2-26 C++ API Reference • October 2001

Asn1Value Class
validate

This function call determines whether the specified Asn1Value is correctly

formatted for the type.

validate_tag

This function call determines whether the specified Asn1Value has the correct tag

for the type.

2.9.5 Related Types

AnyHandler

Declared in: asn1_type.hh

Declares a pointer to a function that looks up the Asn1Type of any_value, for a

specific combination of any_name and defined_by_name.

2.10 Asn1Value Class
Inheritance: class Asn1Value

#include <pmi/asn1_val.hh>

Result validate(const Asn1Value & av , Boolean ignore_tag = FALSE)
const;

Result validate_tag(const Asn1Value & av) const;

typedef class Asn1Type(*AnyHandler)(const DataUnit & any_name,
const DataUnit & defined_by_name, const Asn1Value & any_value)
Chapter 2 Common API 2-27

Asn1Value Class
The Asn1Value class defines storage and operations for ASN.1 values. The class is

capable of supporting multiple encoding schemes but presently only supports Basic

Encoding Rules (BER) encoding and encoding in a native machine format. The

Asn1Value class uses the DataUnit class to store encoded values. It can also use

other classes to store special types of data. To store unencoded data, the Asn1Value
class makes use of the protected class AVData (declared as a class but not otherwise

specified in /opt/SUNWconn/em/include/pmi/asn1_val.hh).

The new and delete operators should not be used with the Asn1Value constructor

and destructor functions because the class manages and allocates memory for the

values it stores.

2.10.1 Assignment and Data Sharing

The = operator is overloaded to permit assignment of one instance of Asn1Value to

another, so that both refer to the same data.

2.10.2 Type Conversion

The Asn1Value class facilitates type conversion by overloading the void *() and

DataUnit operators.

2.10.3 Encoding Functions

The class defines a set of encoding functions. Each allocates an AVData instance to

store a value in native machine encoding. If the Asn1Value previously contained a

value, the memory for it is freed prior to allocating memory for the new value. These

functions normally return OK, unless memory cannot be allocated for the new value,

or under certain conditions noted in the descriptions that follow.

In general, the functions do not actually perform the encoding. In most cases, the

Asn1Value class handles the encoding automatically the first time a function

requests the data in an encoded form.
2-28 C++ API Reference • October 2001

Asn1Value Class
2.10.4 Encoding of a Distinguished Name

A distinguished name (DN) is represented by a constructed ASN.1 value. Consider a

DN containing a single RDN that has an id=1.2.6.1.2.1.42.1.13 and a value=2. It

would have the following format:

A code fragment to construct the distinguished name might be as follows:

T L V

SEQ x T L V

SET y T L V

SEQ z T L V

OID a 1.2.6.1.2.1.78.1.13

(unencoded here)

INT b 2

Octet*id = “1.3.6.1.2.1.42.1.13”;

I32value = 2;

Asn1Value dn_ex1;
Asn1Value rdn_ex1;
Asn1Value ava_ex1;
Asn1Value id_ex1;
Asn1Value val_ex1;
Result status_ex1 = OK;

if (
dn_ex1.start_construct(TAG_SEQ) != OK ||// init the RDN
rdn_ex1.start_construct(TAG_SET) != OK ||// init the RDN
ava_ex1.start_construct(TAG_SEQ) != OK || // init the AVA
id_ex1.encode_oidstr(TAG_OID, (Octet *)id) != OK || // encode the
OID
val_ex1.encode_int(TAG_INT, value) != OK || // encode the integer
ava_ex1.add_component(id_ex1)) != OK || // create the AVA from
ava_ex1.add_component(val_ex1) != OK || // ...OID and integer
rdn_ex1.add_component(ava_ex1)!= OK || // complete the RDN
dn_ex1.add_component(rdn_ex1) != OK // complete the DN
)

status_ex1 = NOT_OK;
Chapter 2 Common API 2-29

Asn1Value Class
2.10.5 Decoding Simple and Constructed Asn1Values

The Asn1Value class defines functions for decoding both simple and constructed

Asn1Value s. If a simple Asn1Value stores the value in the native machine format

specified by the function, it is returned directly. If the value is stored in an encoded

form, it is decoded, stored in the Asn1Value in the decoded form (it also still exists

in the encoded form) and then returns the decoded value.

The functions return NOT_OKif called for an uninitialized Asn1Value , if called for a

constructed value, or if called for an Asn1Value that is initialized but contains

neither a decoded value or encoded value of the proper type.

Classes used in various aspects of the implementation of ASN.1 encoding and

decoding rely on the ISO specifications of Abstract Syntax Notation One.

TABLE 2-13 lists Asn1Value functions.

TABLE 2-13 Asn1Value Functions

Function Name Description

constructed
contents_size
encoding
incl_embedded
size
tag

Query Asn1Value info

encode_bits
encode_boolean
encode_enum
encode_ext
encode_int
encode_null
encode_octets
encode_oid
encode_oidstr
encode_real
encode_unsigned

Encoding Asn1Value simple types
2-30 C++ API Reference • October 2001

Asn1Value Class
2.10.6 Constructors

The following constructor allocates storage for an uninitialized ASN.1 value.

Memory is not allocated for an AVData instance or for a DataUnit instance. The

constructor creates an instance of an Asn1Value and sets its AVData pointer to 0.

No memory is allocated for the AVData instance or for a DataUnit in the

constructor. If the encoding specified by the enc parameter matches the encoding

specified for Asn1Value specified by the av parameter, the constructor instantiates

an Asn1Value that points to the AVData contained in av (that is, it shares data with

av). The reference count for the AVData instance pointed to by av is incremented.

The default encoding for this constructor follows the Basic Encoding Rules (BER);

currently only BER is supported.

The new operator should not be used with the above constructor function.

decode_bits
decode_boolean
decode_enum
decode_ext
decode_int
decode_octets
decode_oid
decode_real
decode_unsigned

Decoding Asn1Value simple types

add_component
make_explicit_tagged
start_construct

Encoding constructed Asn1Values

delete_component
first_component
make_explicit_tagged
next_component
retag
tagged_component

Decoding constructed Asn1Values

Asn1Value();

Asn1Value(const Asn1Value & av);

TABLE 2-13 Asn1Value Functions (Continued)

Function Name Description
Chapter 2 Common API 2-31

Asn1Value Class
In the following constructor, memory is allocated for an AVData instance and the

AVData instance is pointed at the DataUnit referenced by du. The reference count

for the AVData instance created is set to one. No memory is allocated for the

DataUnit . If the DataUnit specified by du is not valid, the pointer to the AVData
instance is set to 0 and the memory for the AVData instance is deallocated.

The new operator should not be used with the above constructor function.

In the following constructor, memory is allocated for an AVData instance, but the

DataUnit is shared with the DataUnit specified by the du parameter. The tag for

the Asn1Value is set to the value specified by the tag parameter.

An Asn1Value can be a constructed type or a simple type. The constr parameter

specifies whether the value specified by du is a constructed type. The type attribute

of the newly instantiated Asn1Value is set to the value specified by constr.

The new operator should not be used with the above constructor function.

2.10.7 Destructor

The destructor decrements the reference count for the AVData instance pointed at by

this Asn1Value . If the reference count goes to zero, the memory for the AVData
instance is deallocated.

Asn1Value(const DataUnit & du);

Asn1Value(const Asn1Tag & tag ,
 Boolean const ,
 const DataUnit & du);

~Asn1Value();
2-32 C++ API Reference • October 2001

Asn1Value Class
2.10.8 Asn1Value Operator Overloading

The = operator is overloaded so that one Asn1Value can share data with another

Asn1Value . In the returned Asn1Value , the AVData pointer points to the same

object as the AVData pointer in av. At the same time, assignment increases the

reference count for the AVData unit that av points to.

If the instance of the Asn1Value that this function is operating was pointed to

another AVData instance, the reference count for the instance is decremented; if the

reference count goes to zero, the memory for instance is deallocated. The ‘=’

operator returns a reference to an Asn1Value .

The operator void *() returns a void pointer to the AVData instance pointed to by

the Asn1Value . This function performs a type conversion from an Asn1Value to a

void * and can be used for implicit type conversions.

The operator DataUnit performs a type conversion from an Asn1Value to a

DataUnit . If the Asn1Value is uninitialized, it returns a zero length DataUnit .

This function can be used for implicit type conversions.

This allows you to say “if(!Asn1Value...) ”

2.10.9 Asn1Value Member Functions

This section describes the member functions of the Asn1Value class.

Asn1Value &operator = (const Asn1Value & av);

operator void *() const;

operator DataUnit() const;

int operator !() const
Chapter 2 Common API 2-33

Asn1Value Class
add_component

This function call adds a component to this constructed Asn1Value . Alternatively,

returns OK if the operation completes normally, but NOT_OKif it encounters any of

the following conditions:

■ The Asn1Value has not been initialized;

■ The Asn1Value is not a constructed type;

■ The Asn1Value specified by component has not been initialized;

■ The encoding of Asn1Value specified by component does not match the

encoding of the Asn1Value to which the component is being added; or

■ Memory cannot be allocated to add the new component.

The size of the constructed value is updated to reflect the size of the component(s)

added.

compute_total_size

This function call reports on Memory size information.

constructed

This function call returns a boolean value indicating if the Asn1Value is a

constructed type. (An Asn1Value can either be a constructed type or a simple type.)

Result add_component(Asn1Value & comp)

Result add_components(const class Array(Asn1Value) & comps)

 void compute_total_size(U32 & size);

Boolean constructed() const
2-34 C++ API Reference • October 2001

Asn1Value Class
contents_size

This function call sets the value of the sz parameter to the total size of a constructed

Asn1Value . This function decodes each component of a constructed Asn1Value
and returns the sum of the size of each DataUnit in the constructed value. If the

Asn1Value does not decode properly, this function returns NOT_OK; otherwise it

returns OK.

decode_bits

This function call decodes an encoded boolean value and stores the result in the

DataUnit specified by the du parameter. The length of the bitstring, in bits, is

assigned to the parameter specified by len.

This function call decodes an encoded boolean value and store the result in the Octet

string pointed to by the val parameter. The length of the bit string, in bits, is assigned

to the parameter specified by len.

decode_boolean

This function call decodes an encoded boolean value and stores the result in the

variable referenced by val.

Result contents_size(U32 & sz, Boolean inc_embed = FALSE) const

Result decode_bits(DataUnit & du,U32 & len)const

Result decode_bits(Octet * val ,U32 & len)const

Result decode_boolean(Boolean & val)const
Chapter 2 Common API 2-35

Asn1Value Class
decode_enum

This function call decodes an enumerated value and stores the result in the I32

variable referenced by the val parameter.

Alternatively, this function call decodes an enumerated value and stores the result in

the Asn1Int variable referenced by the val parameter.

decode_ext

This function call decodes an ASN1 external value, decomposing it into its

components by setting the variables shown in TABLE 2-14 below.

Result decode_enum(I32 & val)const;

Result decode_enum(Asn1Int & val)const;

Result decode_ext(Oid & oid ,
 I32 & indirect ,
 DataUnit & odes ,
 Asn1Value & encoding)const

TABLE 2-14 decode_ext Variable Descriptions

Variable Description

oid Its (optional) object identifier

indirect Its (optional) indirect reference

odes Its (optional) data-value descriptor

encoding Its choice of the following, indicated by its tag:

[0] ANY

[1] Implicit octet string

[2] Implicit bit string
2-36 C++ API Reference • October 2001

Asn1Value Class
decode_int

This function call decodes an encoded I32 value and stores the result in the variable

referenced by val.

Alternatively, this function call decodes an encoded Asn1Int value and stores the

result in the variable referenced by val.

decode_octets

This function decodes an encoded octet string.

This function call decodes an octet string of length len, and stores a copy of the

decoded string into the Octet string pointed to by val.

decode_oid

These function calls decode an OID.

These function calls decode an OID (Object IDentifier). The argument can be the

address of an OID, or a pointer to an octet string and the string’s length. The

decoding is formed by calling decode_octets . If the oid is not constructed, the

function returns NOT_OK; otherwise it returns the result of decode_octets .

Result decode_int(I32 & val)const;

Result decode_int(Asn1Int & val)const;

Result decode_octets(DataUnit & du)const;

Result decode_octets(Octet * val , U32 & len)const;

Result decode_oid(Oid & oid)const;

Result decode_oid(Octet * val , U32 & len)const;
Chapter 2 Common API 2-37

Asn1Value Class
decode_real

These function calls decode an encoded real value and stores the result in the

variable referenced by val, which takes the form of the specified type. The double

integer is specified above.

For I32 scientific notation,

For Asn1Int scientific notation,

decode_unsigned

This function call decodes an encoded U32 value and stores the result in the variable

referenced by val.

delete_component

This function call finds the component specified by zap, and removes it from the

Asn1Value . The routine assigns the component that originally followed the deleted

component to the Asn1Value specified by next. If no components remain following

the one specified by zap, next is assigned an uninitialized Asn1Value , but the

function still returns OK. Internally, this function performs lazy decoding, and only

decodes values into components as they are needed.

Returns NOT_OKif the Asn1Value is not initialized, or if the Asn1Value can not be

decoded into separate components.

Result decode_real(double & val)const;

Result decode_real(I32 & mantissa , U8 & base , I32 & exponent)const;

Result decode_real(Asn1Int & mantissa , U8 & base ,
 Asn1Int & exponent)const;

Result decode_unsigned(U32 & val)const;

Result delete_component(const Asn1Value & zap , Asn1Value & next)
2-38 C++ API Reference • October 2001

Asn1Value Class
drop_encoding

This function call will remove any cached values that have been encoded.

encode_bits

These function calls copy and store the value specified by val into the Asn1Value .

The length of val, in bits, is specified by len. The bit value specified by val is expected

to be passed to this function as an ASN.1 bit value.

If the Asn1Value previously contained a value, the storage for the previous value is

deallocated before the new value is stored. The tag for the Asn1Value is set to the

value specified by the tag parameter. The encoding of the Asn1Value defaults to

BER.

Returns NOT_OKif memory cannot be allocated to store the encoded bit value.

encode_boolean

This function call stores a copy of the boolean value specified by the val parameter in

the Asn1Value . If the Asn1Value previously contained a value, the storage for the

previous value is deallocated before the new value is stored. The tag for the

Asn1Value is set to the value specified by the tag parameter. The encoding of the

Asn1Value is assumed to be BER.

void drop_encoding();

Result encode_bits(const Asn1Tag & tag , const Octet * val , U32 len);

Result encode_bits(const Asn1Tag & tag ,
const DataUnit & val , U32 len);

Result encode_boolean(const Asn1Tag & tag , const Boolean val ;
Chapter 2 Common API 2-39

Asn1Value Class
encode_enum

These function calls store a copy of the value specified by val in the Asn1Value . If

the Asn1Value previously contained a value, the storage for the previous value is

deallocated before the new value is stored. The tag for the Asn1Value is shared

which is set to the tag value specified by the tag parameter. The encoding of the

Asn1Value defaults to BER.

Returns NOT_OKif storage cannot be allocated for the Asn1Value .

encode_ext

This function call inserts into this instance of Asn1Value an encoding of the

EXTERNALtype, as defined by ISO 8824/X.208.

In that standard, the EXTERNAL type is defined as follows:

The arguments that are not applicable to a particular case can be empty, provided

that not all of tag, oid, indirect, odes, and encoding are empty.

Result encode_enum(const Asn1Tag & tag , const I32 val);

Result encode_enum(const Asn1Tag & tag , const Asn1Int & val);

Result encode_ext(const Asn1Tag & tag ,
 const Oid & oid
 I32 indirect ,
 const DataUnit & odes ,
 Asn1Value & encoding ,
 Boolean indefinite = FALSE);

[UNIVERSAL 8] IMPLICIT SEQUENCE
 {direct-reference OBJECT IDENTIFIER OPTIONAL,
 indirect-reference INTEGER OPTIONAL,
 direct-reference ObjectDescriptor OPTIONAL,
 encoding CHOICE
 {single-ASN1-type [0] ANY
 octet-aligned [1] IMPLICIT OCTET STRING,
 arbitrary [2] IMPLICIT BIT STRING
 }
 }
2-40 C++ API Reference • October 2001

Asn1Value Class
TABLE 2-15 describes the encode_ext arguments:

Returns OKif a value based on the arguments is successfully inserted into this ASN1

value.

encode_int

These function calls store a copy of the value specified by the val parameter in the

Asn1Value . If the Asn1Value previously contained a value, the storage for the

previous value is deallocated before the new value is stored. The tag for the

Asn1Value is shared with is set to the tag value specified by the tag parameter. The

encoding of the Asn1Value is set to the encoding specified by the enc parameter, but

defaults to BER if not specified.

encode_minus_infinity

This function call encodes an Asn1Value having a tag specified by tag which may

be a large negative number in the set of possible Asn1 numbers, larger than

permitted by the limits of the compiler’s integer type.

TABLE 2-15 encode_ext Arguments

tag Tag identifying the class of encoding

oid Object identifier

indirect Indirect reference

odes Object descriptor

encoding ASN1 encoding

indefinite Whether this is an indefinite-length encoding

Result encode_int(const Asn1Tag & tag , const I32 val);

Result encode_int(const Asn1Tag & tag , const Asn1Int & val);

Result encode_minus_infinity(const Asn1Tag & tag);
Chapter 2 Common API 2-41

Asn1Value Class
encode_null

This function call encodes a zero-length Asn1Value having a tag as specified by tag.

The encoding of the Asn1Value defaults to BER. If the Asn1Value previously

contained a value, the storage for the previous value is deallocated before the null

value is stored. This function allocates storage for an AVData instance, but does not

allocate storage for a DataUnit .

Returns NOT_OKif storage cannot be allocated for the AVData instance.

encode_octets

These function calls store a copy of the value specified by val in the Asn1Value . The

length of the octet value, in octets, is specified by len. DataUnit has no specified

length. If the Asn1Value previously contained a value, the storage for the previous

value is deallocated before the new value is stored. The tag for the Asn1Value is set

to the tag value specified by tag. The encoding of the Asn1Value defaults to BER.

Returns NOT_OKif memory cannot be allocated to store the octet value.

The alternate form of the function call shares data with the DataUnit specified by

val. The tag for the Asn1Value is set to the tag value specified by tag. The encoding

of the Asn1Value defaults to BER. If the Asn1Value previously contained a value,

the storage for the previous value is deallocated before the new value is stored.

Returns NOT_OKif memory cannot be allocated to store the portion of the

Asn1Value that points to the shared DataUnit .

Result encode_null(const Asn1Tag & tag);

Result encode_octets(const Asn1Tag & tag ,
 const Octet * val ,U32 len);

Result encode_octets(const Asn1Tag & tag ,
 const DataUnit & val);
2-42 C++ API Reference • October 2001

Asn1Value Class
encode_oid

These function calls encode and store an OID as an ASN.1 oid . The OID can be

either the address of an OID, or an octet string and length. The tag of the encoded

oid is set to the tag specified by tag.

The encoding of the Asn1Value is BER(ENC_BER), which is also the default

encoding. If any other encoding is specified, the method returns NOT_OK. It also

returns NOT_OKif it cannot allocate the temporary storage needed as part of the

encoding process.

encode_oidstr

This function call encodes and stores an integer dot string (for example,

“1.3.6.1.2.1.78”) as an ASN.1 oid . The tag of the encoded oid is set to the tag

specified by tag. The encoding of the Asn1Value is BER(ENC_BER), which is also

the default encoding. Any other encoding causes the function to return NOT_OK. The

function also returns NOT_OKif it cannot allocate the temporary storage needed as

part of the encoding process.

encode_plus_infinity

This function call encodes an Asn1Value having a tag specified by tag which may

be a large positive number in the set of possible Asn1 numbers, larger than

permitted by the limits of the compiler’s integer type.

Result encode_oid(const Asn1Tag & tag ,
 const Octet * val ,
 U32 len);

Result encode_oid(const Asn1Tag & tag ,
 const Oid & val);

Result encode_oidstr(const Octet * dot_str ,
 const Asn1Tag & tag = TAG_OID);

Result encode_plus_infinity(const Asn1Tag & tag);
Chapter 2 Common API 2-43

Asn1Value Class
encode_real

The first function stores a copy of the value specified val into the Asn1Value . The

second and third functions store the value derived from the mantissa, base, and

exponent parameters. The tag for the Asn1Value is set to the value specified by tag.

The Asn1Value ’s encoding defaults to BER. If the Asn1Value previously contained

a value, the storage for the previous value is deallocated before the new value is

stored.

Returns NOT_OKif storage cannot be allocated for the Asn1Value .

encode_unsigned

This function call stores a copy of the unsigned integer value specified by the val
parameter in the Asn1Value . If the Asn1Value previously contained a value, the

storage for the previous value is deallocated before the new value is stored. The tag

for the Asn1Value is set to the tag value specified by the tag parameter. The

encoding of the Asn1Value defaults to BER.

first_component

This function call assigns the first component in an Asn1Value to the Asn1Value
specified by comp. The function returns NOT_OKif the Asn1Value is not initialized,

or if the Asn1Value can not be decoded into separate components.

Result encode_real(const Asn1Tag & tag ,
 double val);

Result encode_real(const Asn1Tag & tag , I32 mantissa ,
 U8 base , I32 exponent);

Result encode_real(const Asn1Tag & tag , const Asn1Int & mantissa ,
 U8 base , const Asn1Int & exponent);

Result encode_unsigned(const Asn1Tag & tag , const U32 val);

Result first_component(Asn1Value & comp) const
2-44 C++ API Reference • October 2001

Asn1Value Class
get_components

This function call finds all the components in an Asn1Value and assigns them to the

Asn1Value array specified by comps.

The function returns NOT_OKif the Asn1Value is not initialized, or if the

Asn1Value can not be decoded into separate components.

indefinite_length

This function call returns FALSE if the Asn1Value is not initialized, or if the

Asn1Value can not be decoded into separate components or components of a

specified length.

make_explicit_tagged

This function call re-constructs the Asn1Value with the input comp Asn1Value, and

retags it with tag.

The function returns NOT_OKif the Asn1Value is not initialized, or if the

Asn1Value can not be decoded into separate components.

Result get_components(class Array(Asn1Value) &comps) const;

 Boolean indefinite_length() const;

 Result make_explicit_tagged(const Asn1Tag & tag ,
const Asn1Value & comp,
Boolean indefinite = FALSE);
Chapter 2 Common API 2-45

Asn1Value Class
next_component

This function call finds the component specified by prev, and assigns the component

that follows it to the Asn1Value specified by the next parameter. If no components

remain following the one specified by prev, next is assigned an uninitialized

Asn1Value , but the function still returns OK. If no components remain, an empty

Asn1Value is returned.

Internally, this function performs lazy decoding, and only decodes values into

components as the components are needed. Returns NOT_OKif the Asn1Value is not

initialized, or if the Asn1Value can not be decoded into separate components.

num_comps

This function call returns the number of components of the Asn1Value.

print

Each of the preceding function calls prints a formatted record of the Asn1Value

class , appending it either to the file whose pointer is fp, or the debug stream deb, or

to the character string pointed to by c.

Result next_component(const Asn1Value & prev ,Asn1Value & next)
const

U32 num_comps()const;

void print(FILE * fp , U32 indent = 0) const;

void print(Debug & deb = misc_stdout, U32 indent = 0) const;

void print(char * c , U32 indent = 0) const;
2-46 C++ API Reference • October 2001

Asn1Value Class
retag

This function call replaces the Asn1Value ’s previous tag with the tag specified in

the argument.

size

This function call returns a U32 value containing the length of an encoded

Asn1Value . If the Asn1Value is uninitialized, it returns a length of zero. The size

returned is the length DataUnit in which the encoded value is stored

start_construct

This function call initiates the creation of a constructed Asn1Value . The tag of the

constructed type is set to the value specified by tag. If the Asn1Value previously

contained a value, the storage for the previous value is deallocated before the new

value is stored. The constructor sets a flag value to indicate whether the Asn1Value
contains a constructed type; start_construct also sets the size of the value to

zero.

Tag

This function call returns a reference to the Asn1Value ’s tag.

Result retag(const Asn1Tag & tag)

U32 size()const;

Result start_construct(const Asn1Tag & tag ,
Boolean indefinite = FALSE)

const Tag &tag()const;
Chapter 2 Common API 2-47

Asn1Value Class
tagged_component

This function call checks to see if an Asn1Value contains only a single component.

If the Asn1Value contains a single, initialized component, it assigns the component

to the Asn1Value specified by the comp parameter.

If the Asn1Value contains more than one component, or is uninitialized, the

function returns NOT_OK.

2.10.10 Related Global Functions

enc

The enc function returns an Asn1 encoded value of data based on the module and

type information, or returns a NULL Asn1Value in case of an error.

getGeneralizedTime

The getGeneralizedTime function gets the local time as a generalized time. The gt
parameter indicates where to store the generalized time, and tag specifies the tag to

be used. The function returns OKwhen the generalized time is stored where

specified in gt, or NOT_OKif there is an error.

Result tagged_component(Asn1Value & comp)const;

extern Asn1Value enc(
char * module ,
char * type ,
char * data
);

extern Result getGeneralizedTime(
Asn1Value & gt ,
const Asn1Tag & tag
);
2-48 C++ API Reference • October 2001

Blockage Class
2.11 Blockage Class
Inheritance: class Blockage

An instance of the Blockage class is a queue of callback events that are currently

blocked and must be handled when they become unblocked. The class provides

methods by which you can instruct the Blockage function on how to deal with the

callbacks on its list as they become unblocked, or force their invocation at once.

The scheduler uses an instance of Blockage to maintain the scheduler queue, called

sched_q , which is declared as extern .

sched_q

Declared in: sched.hh

The functions post_callback() , purge_callback() ,

purge_callback_handler() , and purge_callback_data() use sched_q , the

extern instance of Blockage used to manage scheduler events.

Events in the scheduler queue are blocked only until the next time the scheduler

runs. The scheduler dispatches callbacks before calling select () and before

returning. Callbacks are invoked in the order in which they were posted (FIFO).

sched.hh

extern Blockage sched_q;

TABLE 2-16 Blockage Public Functions

Post to a wait queue One new callback sleep

Invoke All waiting callbacks wakeup
wakeup_now

Invoke Any matching callbacks wakeup

Invoke Any callbacks with matching handler wakeup
Chapter 2 Common API 2-49

Blockage Class
2.11.1 Constructor

Establishes a new instance with an empty queue of callback events.

2.11.2 Blockage Member Functions

purge_call

Purges from the Blockage’s queue those callbacks whose callback data matches cdata.

size

Returns the number of members in the blockage’s queue.

sleep

Posts a callback to the Blockage’s wait queue.

Invoke Any callbacks with matching data wakeup

Invoke or purge Any callbacks with matching call data wakeup_call
purge_call

Retrieve Number of callbacks in the queue size

Blockage()

void purge_call(Ptr cdata)

U32 size()

void sleep(const Callback & e, Ptr call_data =0)

TABLE 2-16 Blockage Public Functions (Continued)
2-50 C++ API Reference • October 2001

Blockage Class
wakeup

This function invokes all of the Blockage’s waiting callbacks.

Invokes the callback event identified by e.

Invokes any of the Blockage’s callbacks whose handler matches handler.

Invokes any of the Blockage’s callbacks whose data matches data.

wakeup_call

Invokes any of the Blockage’s callbacks whose callback data matches cdata.

wakeup_now

Invokes immediately all waiting callback events in the Blockage’s queue.

void wakeup()

void wakeup(Callback & e)

void wakeup(CallbackHandler handler)

void wakeup(Ptr data)

void wakeup_call(Ptr cdata)

void wakeup_now()
Chapter 2 Common API 2-51

Blockage Class
2.11.3 Related Global Functions

post_callback

Adds a Callback instance to the end of the scheduler’s immediate callback queue,

optionally with callback data cdata. The scheduler dispatches callbacks just before

calling select() and just before returning. Callbacks will occur in the order posted.

purge_callback

This function purges any matching callbacks from the scheduler queue. The

scheduler will not dispatch these callbacks the next time it is run.

purge_callback_data

This function removes all callbacks whose USERdata matches the parameter data
from the scheduler callback queue. It calls the (overloaded) operator == to do the

comparison.

purge_callback_cdata

This function removes all callbacks whose CALL data matches the parameter data
from the scheduler callback queue.

inline void post_callback(const Callback & e, Ptr cdata =0_)

inline void purge_callback(const Callback & e)

inline void purge_callback_data(Ptr data)

inline void purge_callback_cdata(Ptr data)
2-52 C++ API Reference • October 2001

Blockage Class
purge_callback_handler

This function purges all callbacks with matching handler from the scheduler queue.

post_fd_read_callback

The post_fd_read_callback function posts callback cb to the scheduler’s read

callback queue for file descriptor fd. When the scheduler detects (by select())

something ready to read on fd, the callback cb gets called.

post_fd_write_callback

The post_fd_write_callback function posts callback cb to the scheduler’s write

callback queue for file descriptor fd. When the scheduler detects (by select())

something ready to write on fd, the callback cb gets called.

post_fd_except_callback

The post_fd_except_callback function posts callback cb to the scheduler’s

exception callback queue for file descriptor fd. When the scheduler detects (by

select()) any exception on fd, the callback cb gets called.

inline void purge_callback_handler(CallbackHandler handler)

void post_fd_read_callback(int fd , const Callback & cb);

void post_fd_write_callback(int fd , const Callback & cb);

void post_fd_except_callback(int fd , const Callback & cb);
Chapter 2 Common API 2-53

Blockage Class
purge_fd_read_callback

The purge_fd_read_callback function calls FD_CLRon fd for the read mask.

Any previously posted read callback will not get called by the scheduler.

purge_fd_write_callback

The purge_fd_write_callback function calls FD_CLRon fd for the write mask.

Any previously posted write callback will not get called by the scheduler.

purge_fd_except_callback

The purge_fd_except_callback function calls FD_CLRon fd for the exception

mask. Any previously posted exception callback will not get called by the scheduler.

purge_fd_callbacks

The purge_fd_callbacks function calls FD_CLRon fd for the read, write, and

exception masks. Any previously posted read, write, or exception callbacks will not

get called by the scheduler.

flush_events_callbacks

The flush_events_callbacks function allows applications to flush all events to

the MIS by executing all callbacks in both scheduler read and write callback queues.

void purge_fd_read_callback(int fd);

void purge_fd_write_callback(int fd);

void purge_fd_except_callback(int fd);

void purge_fd_callbacks(int fd);

void flush_events_callbacks();
2-54 C++ API Reference • October 2001

Callback Class
2.12 Callback Class
Inheritance: class Callback

Declared in: callback.hh

This class serves to post and dispatch callback events. Callbacks are declared by the

application and posted to the scheduler by the various posting routines. A callback

contains a function pointer specifying the handler to be called when the callback is

eventually dispatched. When a callback handler is called, it is passed two pieces of

data:

■ user_data : The data placed in the Callback by the application

■ call_data : Supplied by the routine dispatching the call (and can be NULL)

The scheduler keeps a queue of callbacks that should happen immediately. The

scheduler routine dispatches these callbacks once the routine is entered, and again

after it has dispatched all I/O and timeouts, in case the I/O or timeout callbacks

scheduled any immediate callbacks themselves. Immediate callbacks occur in the

order posted.

The callback class has the following typedef :

CallbackHandler

TABLE 2-17 Callback Public Variables

CallbackHandler handler; The function the scheduler should call

Ptr data; Data provided as argument to the callback function

TABLE 2-18 Callback Public Functions

Operator overloading void*

Invoke the callback directly exec

typedef void (*CallbackHandler)(Ptr user_data , Ptr call_data)
Chapter 2 Common API 2-55

Callback Class
2.12.1 Constructor

Creates a callback instance with no handler or data.

Creates a callback instance with handler hand and data d.

2.12.2 Callback Operator Overloading

Returns TRUEif the two callbacks have equal data and the same context and the

same callback handler; FALSE otherwise.

Returns a pointer to the callback’s handler.

2.12.3 Callback Member Functions

exec

This function invokes the callback’s handler with the callback’s data and exec ’s

call_data as arguments. The callback handler is executed, in its own Try block, with

CATCHALLset to write a record of any exceptions to misc_stderr.print .

Callback()

Callback(CallbackHandler hand , Ptr d)

friend int operator == (const Callback & el , const Callback & e2)

operator void*() const

void exec(Ptr call_data)
2-56 C++ API Reference • October 2001

CommandClass
2.13 CommandClass
Inheritance: class Command

#include <pmi/command.hh>

Data Members: No public data members are declared in this class.

The Commandclass is used to define unique commands that can be passed between

entities. The address of the Commandobject itself is used to identify it uniquely from

all other Commandobjects. A Commandobject should only be defined at the global

scope, and should always be const .

2.13.1 Constructor

This is the constructor for the Commandclass.

2.13.2 Operator

Following is the operator for the Commandclass. It casts a Commandinstance to an

unsigned integer.

2.14 Config Class
Inheritance: class Config

#include <pmi/config.hh>

Data Members: No public data members are declared in this class.

The Config class is used to define the orderly management of per-program or per-

MIS defaults from configuration database files.

Command();

operator U32() const;
Chapter 2 Common API 2-57

Config Class
Each instance of the Config class has its own mapping of default names to default

values. This mapping is loaded from a file defined either in the constructor or as a

result of a call to the load member function.

Each line in the file is of the form:

Initial and trailing whitespace are ignored. A comment sign (‘#’) can be used to

indicate that the remainder of the line should be ignored. TABLE 2-19 lists the Config
public functions.

2.14.1 Constructors

These are both constructors for the Config class.

2.14.2 Config Member Functions

This section describes the member functions of the Config class.

key : value

TABLE 2-19 Config Public Functions

Function Name Descriptions

fetch Retrieve a default data value

load Load a configuration database

Config()

Config(const char * file)
2-58 C++ API Reference • October 2001

DataUnit Class
load

This function call loads the configuration file into the mapping table. If the

environment variable env has been set, the function loads the file corresponding to

env’s value. If it is not set, the file $EM_MIS_HOME/file is used. If $EM_MIS_HOMEis
not set, the local directory copy of file is used.

This function call loads the configuration file file into the mapping table.

fetch

This function call looks up a mapping in the table. If the mapping does not exist, the

value dflt is returned. Otherwise, returns a pointer to the string representing the

value.

2.15 DataUnit Class
#include <pmi/du.hh>

Inheritance: class DataUnit

Data Members: No public data members are declared in this class.

The DataUnit class is a basic storage unit for data. Each instance of a DataUnit
contains attribute information (defined by the DataUnit class definition) which

includes a pointer to a chunk of memory allocated by the DataUnit for the storage

of data.

The allocated storage provided by the DataUnit is typically allocated when the

DataUnit is instantiated, but can also be reallocated when a value is assigned to a

DataUnit . A DataUnit can be referenced (or shared) by a number of attributes or

variables. Each DataUnit maintains a count of the number of attributes or variables

that reference it.

void load(const char * env , const char * file)

void load(const char * file)

const char *fetch(const char * key , const char * dflt = 0)
Chapter 2 Common API 2-59

DataUnit Class
When a DataUnit is created, its reference count is set to one. The count is

incremented each time another value references it, and is decremented each time

another value dereferences it. When the reference count goes to zero, the storage

allocated for the DataUnit is deallocated. Each DataUnit also keeps track of the

amount of dynamic memory it has allocated for storing data.

TABLE 2-20 lists the DataUnit class public functions.

2.15.1 Constructors

This section describes the constructors for the DataUnit class.

This constructor creates an instance of a DataUnit , but does not allocate any

memory for storing data. The size of the DataUnit is set to zero.

TABLE 2-20 DataUnit Public Functions

Function Name Description

Octet*
*
[]
=
==
!=

Operator overloading

size Description of the DataUnit

cmp Compare two DataUnits for sorting

copy
catenate

Create a new data unit from an existing one,

or from two existing ones

fragment
copyin
copyout

Set or get a portion of the DataUnit

chp Data as a character string

DataUnit();

DataUnit(U32 size , Octet * data = 0);
2-60 C++ API Reference • October 2001

DataUnit Class
This constructor creates an instance of a DataUnit and allocates the number of

bytes of memory specified by size for storing data. If the data specified by the Octet

*data parameter is non-null, size bytes of data are copied from the octet string

specified by data to the newly allocated storage, and the size of the DataUnit is set

to size.

This constructor creates an instance of DataUnit from a NULL terminated string str.

Note – The DataUnit instance points to the same memory as str and it is assumed

that the memory pointed by str is valid and is not changed during the lifetime of the

DataUnit instance being created.

Unlike DataUnit (char * str) , this constructor does not allocate new memory and

copy contents of str into it. (See DataUnit(char * str))

Note – This constructor does not make a deep copy of the data passed to it. The

correct way to use RWCString.data() to construct a DataUnit is to type cast

const char * to char * so that DataUnit will keep its own copy of chars in

RWCString , otherwise DataUnit will share the same data (chars) with RWCString .

When RWCString goes out of scope, the data in RWCString gets destroyed, the

DataUnit is still trying to use that data which has been destroyed by RWCString .

This constructor creates an instance of DataUnit but does not allocate any storage

for it. The new DataUnit points at the storage allocated for the DataUnit
identified by du. The reference count for the shared memory is incremented to reflect

the additional DataUnit that is now pointing to it.

Note – The DataUnit instance points to the same memory as du and it is assumed

that the memory pointed by du is valid and is not changed during the lifetime of the

DataUnit instance being created.

This constructor creates an instance of DataUnit which points at the storage

associated with data. Its length is indicated by size.

DataUnit(const char * str)

DataUnit(const DataUnit & du);

DataUnit(U32 size , const Octet * data);
Chapter 2 Common API 2-61

DataUnit Class
Note – This constructor does not make a deep copy of the data passed to it. The

correct way to use RWCString.data() to construct a DataUnit is to type cast

const char * to char * so that DataUnit will keep its own copy of chars in

RWCString , otherwise DataUnit will share the same data (chars) with RWCString .

When RWCString goes out of scope, the data in RWCString gets destroyed, the

DataUnit is still trying to use that data which has been destroyed by RWCString .

This constructor creates an instance of DataUnit and allocates storage of length size
bytes. Each byte of the allocated storage is assigned the value fill.

This constructor creates an instance of DataUnit with storage sufficient to hold a

duplicate of str (assumed to be null-terminated), which is copied to the DataUnit .

The DataUnit points to the same area of memory as const char *str; this assumes

that the string could change.

2.15.2 Destructor

This destructor decrements the reference count for the (potentially) shared memory

region used to store data for the DataUnit . If the reference count reaches zero, the

memory used to store data is deallocated.

2.15.3 DataUnit Operator Overloading

This sections describes the operators for the DataUnit class.

DataUnit(U32 size , int fill);

DataUnit(const char * str);

~DataUnit();

 operator const Octet *() const;
2-62 C++ API Reference • October 2001

DataUnit Class
This operator returns a pointer to the first Octet of allocated storage in the

DataUnit .

This operator returns a reference to the storage allocated for the DataUnit specified

by du. The reference count for the storage is incremented. If the DataUnit (*this)
previously pointed to allocated storage, the reference count for that storage is

decremented, and if the reference count reaches zero, the storage is deallocated.

This operator returns a reference to the first Octet of allocated storage in the

DataUnit . This operator triggers an assertion failure if the DataUnit is

uninitialized.

const DataUnit &operator = (const DataUnit & du);

Octet &operator *();

const Octet &operator *() const;
Chapter 2 Common API 2-63

DataUnit Class
These operators return a reference to the Octet of allocated storage that is index bytes

past the first byte of storage allocated for the DataUnit . The first byte of allocated

storage would have an index value of 0; the second byte, an index value of 1; the

third byte, an index value of 2; and so on. This operator triggers an assertion failure

if the value specified by the index parameter is greater then the size of the allocated

storage, or if the DataUnit is uninitialized.

This operator compares the DataUnit specified by du to a previously defined

DataUnit, and returns a nonzero integer if the two are equivalent. Similar

functionality is found in the cmp member function.

This operator compares the contents of the DataUnit with str. If they are the same,

the function returns 1. If they differ, it returns 0.

This operator compares the DataUnit specified by du to a previously defined

DataUnit, and returns a nonzero integer if the two are not equivalent. Similar

functionality is found in the cmp member function.

This operator compares the contents of the DataUnit with str. If they are the same,

the function returns 0. If they differ, it returns 1.

 Octet &operator [] (U32 index);

const Octet &operator [] (U32 index) const;

 int operator == (const DataUnit & du)const

int operator == (const char * str) const;

 int operator != (const DataUnit & du) const

int operator != (const char * str) const;
2-64 C++ API Reference • October 2001

DataUnit Class
2.15.4 DataUnit Member Functions

This sections describes the member functions of the DataUnit class.

catenate

This function call constructs a DataUnit and allocates it dynamic storage equal to

the size of the dynamic storage of du1, plus the size of the dynamic storage for du2.

The catenate function then copies the allocated storage from du1, followed by the

storage from du2, to the newly allocated storage. The function then returns the new

DataUnit .

chp

This function call returns a pointer to a character string containing a representation

of the DataUnit ’s data. The representation does not have a trailing newline

character.

cmp

This function call performs a machine-dependent comparison of the two

DataUnit ’s specified by du1 and du2. The function returns a result in the same way

as strcmp : that is, the result is 0 if the two DataUnit ’s compare equal, -1if du1 is

lexicographically less than du2, and 1 if du1 is lexicographically greater than du2.

friend DataUnit catenate(const DataUnit & du1 ,
const DataUnit & du2)

char* chp() const;

friend int cmp(const DataUnit & du1 , const DataUnit & du2)
Chapter 2 Common API 2-65

DataUnit Class
copy

This function call copies data from the DataUnit specified by du to the DataUnit
specified by *this . Data is copied from du starting from an offset into du’s allocated

storage specified by du_pos. The data is copied to *this starting at an offset into

*this ’s allocated storage specified by pos. The number of octets copied is specified

by ln. This function triggers an assertion failure if the number of octets to copy,

specified by ln, plus the starting point specified by either du_pos or pos, is greater

than the storage allocated for either du or *this , respectively.

copy

This function copies one DataUnit structure to another DataUnit structure.

copyin

This function call copies data from the location specified by the Octet * data
parameter, into the dynamic memory allocated for the DataUnit . Data is copied

into the allocated storage starting at a point that is pos bytes past the start of the

allocated storage. The number of octets to copy is specified by ln. The function

triggers an assertion failure if the starting position (specified by pos), plus the length

to copy (specified by ln) is greater than the number of octets of storage allocated for

the DataUnit .

void copy (U32 pos
 U32 ln ,
 const DataUnit & du,
 U32 du_pos)

DataUnit copy()

void copyin (const Octet * const data ,U32 pos ,U32 ln);
2-66 C++ API Reference • October 2001

DataUnit Class
copyout

This function call copies data from the DataUnit to location specified by the Octet

* data parameter. Data is copied from the allocated storage of the DataUnit starting

at a point that is pos bytes past the start of the allocated storage. The number of

octets to copy is specified by ln. The function triggers an assertion failure if the

starting position (specified by pos), plus the length to copy (specified by ln) is greater

than the number of octets of storage allocated for the DataUnit .

equiv

This function call is used to compare two DataUnit pointers in a manner consistent

with the declaration of the Hash macros. The result is zero if the DataUnit pointed

by n1 is equal to the DataUnit pointed by n2, otherwise no zero.

fragment

This function call returns a DataUnit that points to a portion (or fragment) of the

dynamic storage allocated for the DataUnit specified by *this . The fragment

shares data with a portion of the storage allocated for the original DataUnit . The

fragment starts st octets after the start of the allocated storage and extends for ln
octets.

This function triggers an assertion failure either of the following occur:

■ The start of the fragment, specified by st, plus the length of the fragment,

specified by ln, is greater than the length of the allocated storage of DataUnit
specified by *this .

■ The DataUnit , specified by *this , is not initialized but st or ln is nonzero.

void copyout (Octet * const data
 U32 pos ,
 U32 ln) const;

static int equiv (Ptr n1,Ptr n2);

DataUnit fragment(U32 st,U32 ln) const;
Chapter 2 Common API 2-67

DataUnit Class
hash

This function call can be used when declaring Hash macros where a DataUnit is

used as the key.

print

Each of the preceding function calls prints a formatted record of the DUclass ,

appending it either to the file whose pointer is fp, or the debug stream deb, or to the

character string pointed to by c.

size

This function call returns the number of Octets of the storage allocated for the

DataUnit .

unshare

This function call makes memory storage associated with a DataUnit not shared.

Creates a private copy if it is currently shared.

static U32 hash(DataUnit * du)

static DataUnit printf(const char *format,...);

void print(FILE * fp) const;

void print(Debug & deb = misc_stdout) const;

void print(char * c) const;

U32 size() const

void unshare()
2-68 C++ API Reference • October 2001

Dictionary Class
2.16 Dictionary Class
Declared in: dict.hh

The Dictionary class is the set of facilities that are provided to C++ classes created

using the Dictionarydeclare macro. Dictionary tables are accessed in two ways:

as indexable elements and using a key/value paradigm. Implicit in the definition of

the dictionary is the lookup () function that provides the mechanism to map an

arbitrary key value to an index in the array.

2.16.1 Constructor

This constructor initializes a table pointer to t and assigns a length of ne.

#define Dictionary (K,T)
name3(K,T, Dict)

#define Dictionarydeclare(K,T)

TABLE 2-21 Dictionary Protected Variables

const T *table_ The internal table of elements

U32 len_ The number of elements in the table

TABLE 2-22 Dictionary Functions

lookup Look up an element

num_elems Return the number of elements

position Return the index of an element

table Return a pointer to the table

[] Operator overloading

Dictionary(K,T)(const T *t ,U32 ne)
Chapter 2 Common API 2-69

Dictionary Class
2.16.2 Dictionary Operator Overloading

This function returns the nth element of the table where pos equals n.

2.16.3 Dictionary Member Functions

lookup

The lookup function, which must be implemented for each K and T that are defined

for a usage of Dictionarydeclare() , returns a pointer to a table element of type

T based on a key of type K.

num_elems

The num_elems function returns the number of elements in the table.

position

Given a pointer to the table element t, this function returns the index to the table.

const T&operator[](U32 pos)) const

const T*lookup(const K &key) const

U32 num_elems() const

U32 position(const T * t) const
2-70 C++ API Reference • October 2001

GenInt Class
table

This function returns a pointer to the table of elements managed within the

Dictionary object.

2.17 GenInt Class
Declared in: genint.hh

The GenInt class is used to represent integers of arbitrary size.

2.17.1 Constructors

GenInt() is the default constructor.

Constructs an instance of GenInt with initial value ival.

Constructs an instance of GenInt with initial value ival.

Constructs an instance of GenInt with initial value uval.

const T *table() const

GenInt()

GenInt(int ival)

GenInt(I32 ival)

GenInt(U32 uval)

GenInt(const char * cval)
Chapter 2 Common API 2-71

GenInt Class
Constructs an instance of GenInt given the human readable string format in two’s

complement form.

Constructs an instance of GenInt given a DataUnit .

2.17.2 Copy Constructor

2.17.3 GenInt Member Functions

sign

The sign function returns the sign of the integer.

bits

The bits function returns the number of bits in the integer.

size

The size function returns the storage size, in bytes, of the integer.

GenInt(const DataUnit & d)

GenInt(const GenInt & val)

I32 sign() const;

U32 bits() const;

U32 size() const;
2-72 C++ API Reference • October 2001

GenInt Class
div

The div function invokes the division operation.

format

The format function converts an integer to a character string.

encode

The encode function returns the two’s complement form of the integer.

operator double

The operator double function returns the double value of GenInt.

operator I32

The operator I32 function returns the I32 value of GenInt . If GenInt is larger, it

returns only the four most significant bytes.

GetInt div(const GenInt & v, GenInt & remainder) const;

U32 format(char * buf , U32 buf_len) const;

DataUnit encode() const;

operator double() const;

operator I32() const;
Chapter 2 Common API 2-73

GenInt Class
operator U32

The operator U32 function returns the U32 value of GenInt . If GenInt is larger,

it returns only the four most significant bytes.

operator +

Unary + operator.

Addition operation.

&operator +=

The compound additive assignment operator.

operator -

Unary - operator.

The subtraction operation.

operator U32() const;

operator +() const;

operator +(const GenInt & v) const;

&operator +=(const GenInt & v)

operator -() const;

operator -(const GenInt & v) const;
2-74 C++ API Reference • October 2001

GenInt Class
&operator -=

The compound subtractive assignment operator.

operator !

Unary boolean operator. Returns TRUE if value is 0, FALSE otherwise.

operator *

The operator * function multiplies two GenInt s.

&operator *=

The compound multiplicative assignment operator.

operator /

The division operation.

&operator -=(const GenInt & v) {
*this = *this - v;
return *this;
};

operator !() const;

operator *(const GenInt & v) const;

&operator *=(const GenInt & v)

operator /(const GenInt & v) const;
Chapter 2 Common API 2-75

GenInt Class
&operator /=

The compound division assignment operator.

operator %

The mod operation.

&operator %=

The compound mod assignment operator.

operator <

The “less than” operator.

operator >

The “greater than” operator.

&operator /=(const GenInt & v)

operator %(const GenInt & v) const;

&operator %=(const GenInt & v)

operator <(const GenInt & v) const;

operator >(const GenInt & v) const;
2-76 C++ API Reference • October 2001

GenInt Class
operator <=

The “less than or equal” operator.

operator =>

The “greater than or equal” operator.

operator &

The bitwise AND operator.

&operator &=

The compound bitwise AND assignment operator.

operator |

The bitwise OR operator.

operator <=(const GenInt & v) const;

operator =>(const GenInt & v) const;

operator &(const GenInt & v) const;

&operator &=(const GenInt & v)

operator |(const GenInt & v) const;
Chapter 2 Common API 2-77

GenInt Class
&operator |=

The compound bitwise OR assignment operator.

operator ^

The bitwise XOR operator.

&operator ^=

The compound bitwise XOR assignment operator.

operator ~

The bitwise NOT operator.

operator ==

The binary equality operator.

&operator |=(const GenInt & v)

operator ^(const GenInt & v) const;

&operator ^=(const GenInt & v)

operator ~() const;

operator ==(const GenInt & v) const;
2-78 C++ API Reference • October 2001

Hash Class
operator !=

The binary not equal operator.

2.18 Hash Class
Inheritance: class HashImpl

Declared in: hash.hh

2.18.1 Hash Member Functions

fetch

or

This function fetches an element with the specified keytype or with specified

keytype and hashval from the hash table.

store

or

operator !=(const GenInt & v) const;

valtype *fetch(const keytype *key) const

valtype *fetch(const keytype *key, U32 hashval) const

void store(const keytype *key, valtype *val)

void store(const keytype *key, valtype *val, U32 hashval)
Chapter 2 Common API 2-79

Hash Class
This function stores an element with the specified keytype and valtype or with the

specified keytype, valtype, and hashval into the hash table.

destroy

or

This function destroys an element with the specified keytype or with the specified

keytype and hashval from the hash table.

iterate

This function iterates the hash table.

next

This function checks whether there is an element after the element with the specified

keytype , valtype , and hashval from the hash table. If there is one, it returns

TRUE, otherwise FALSE.

void destroy(const keytype *key)

void destroy(const keytype *key, U32 hashval)

void iterate()

Boolean next(keytype* &key, valtype* &val, U32 &hashval)
2-80 C++ API Reference • October 2001

Hashdeclare Macro
2.19 Hashdeclare Macro
Declared in: hash.hh

Hashdeclare is a macro used to create a hash table class that is specific to the types

of its keys and values. To refer to the class thus created, use the Hash(keytype,
valtype) macro (described below).

The arguments keytype and valtype are the names of declared types or classes. The

arguments hashfun, eqfun, delkey, and delval are the names of functions required by

the constructor for the HashImpl class.

Because the macro invokes functions defined in the HashImpl class, the class it

produces is in a sense “derived” from HashImpl . Each of the member functions

defined by Hashdeclare has a corresponding function of the same name defined

by the HashImpl class. The macro and the HashImpl class also provide alternate

calls to calculate the hashed values for you when you don’t want to do it yourself.

2.20 HashImpl Class
Inheritance: class HashImpl

Declared in: hash.hh

The HashImpl class provides a template class used by the Hashdeclare () macro to

implement a dynamically growing hash table. It maintains the private data

structures that constitute the hash table.

The HashImpl class is intended to be somewhat primitive; it is normally hidden

behind the HashDeclare macro. The HashImpl member functions have no idea

what they’re actually managing. All keys and values are passed to them as void*
values.

For this reason, when the constructor for HashImpl is called, you must supply

pointers to three functions:

■ A function that takes two arguments of type void* and returns whether the two

values are to be considered equal.

Hashdeclare(keytype, valtype, hashfun, eqfun, delkey, delval)
Chapter 2 Common API 2-81

HashImpl Class
■ A function (which might be NULL) to invoke when keys are to be destroyed. It is

passed a single void* value.

■ A function (which might also be NULL) to invoke when values are to be

destroyed. It is also passed a single void* value.

These last two functions, if specified, are called whenever key/value pairs need to

be deleted from the hash table, including when the entire table is destroyed.

It is often the case that the same key is used several times in a row. For this reason,

all of the member functions that take a key argument also take an argument that is

the hashed value of the key. The hash value needs to be recomputed only when the

key changes. You can call any hash function you like, but it should return an

unsigned 32-bit integer, hopefully with a uniformly pseudorandom distribution in

the lowest n bits (where n is the number of bits necessary to index into a hash table

big enough to hold the maximum number of entries, more or less). A sample hash

function for null-terminated strings is supplied; see the member function,

strhash ().

In order for a key to match an entry in the table, its hashed value must first match

the hashed value stored in the table entry. You could conceivably make use of this in

a smart hash function to make otherwise identical keys behave as if they’re different

keys.

Variables: No public variables declared in this class.

TABLE 2-23 HashImpl Public Functions

Public

Fetch a value from the hash table fetch
next

Store a key and value in the hash table store

Destroy a key-value pair destroy
2-82 C++ API Reference • October 2001

HashImpl Class
2.20.1 Constructor

2.20.2 Destructor

2.20.3 HashImpl Member Functions

Apart from iterate() , the member functions of HashImpl are provided as

implementations of the member functions of the specific hash class created by a use

of the Hashdeclare macro.

clear

The preceding function call nulls out the class structure,

destroy

Deletes the key/value pair from the hash table. Returns the deleted value (which

might have been destroyed, if a delval function was specified to the constructor).

HashImpl(int (* eqfun)(Ptr, Ptr),
 void (* delkey)(Ptr),
 void (* delval)(Ptr))

~HashImpl()

void clear()

void destroy(Ptr key , U32 hashval)
Chapter 2 Common API 2-83

HashImpl Class
fetch

Returns a pointer to the value associated with key and hashval.

iterate

Used internally by the class constructed by the Hashdeclare macro to reset the

hash table’s built-in iterator to the beginning.

next

Returns TRUEif more entries remain in the hash table. Sets pointer (Ptr) variables

for the next key/value pair from the hash table, according to the table’s built-in

iterator. It also sets the corresponding hashval variable. It is legal to destroy the

current value.

store

Stores a pointer to the value associated with the specified key and hashval, and

returns that value. Any previous value associated with that key and hashval are

destroyed. Returns the new value.

Ptr fetch(const Ptr key, U32 hashval) const

void iterate()

Boolean next(Ptr & key ,
Ptr & val ,
U32 & hashval)

void store(Ptr key ,
U32 hashval ,
Ptr value);
2-84 C++ API Reference • October 2001

Hdict Class
strhash

Declared in: hash.hh

The strhash () function is a sample hashing function for null-terminated strings. It

could be used to calculate hash values for passing to the member functions of

HashImpl , or its name could be passed to the Hashdeclare macro as the hash

function for keys of the appropriate type.

2.21 Hdict Class
Declared in: dict.hh

The Hdict class is the set of facilities provided to C++ classes created using the

Hdictdeclare () macro. It utilizes the Hash mechanism to manage the lookup of

elements in its table. It assumes that an appropriate Arraydeclare(T) and

Hashdeclare(K,T) have preceded its declaration.

U32 strhash(const char * str)

#define Hdict(K,T)
name3(K,T ,Hdcit)

#define Hdictdeclare(K,T)

TABLE 2-24 Hdict Protected Variables

Hash(K,T) *_hash; The internal hash table of elements

Array(T) _array; The array of elements

TABLE 2-25 Hdict Public Functions

lookup Lookup an element

num_elems Return the number of elements

table Return a pointer to the table

position Return the index of an element

set Initialize the array and the hash table
Chapter 2 Common API 2-85

Hdict Class
2.21.1 Constructors

This constructor creates an empty table.

This constructor creates a hashing dictionary by stealing the array associated with a
and initializing an internal hash table.

2.21.2 Hdict (K,T) Operator Overloading

This function returns the nth element of the table where n equals pos.

2.21.3 Hdict Member Functions

lookup

The lookup function, which must be implemented for each K and T that are defined

for a usage of Hdictdeclare() , returns a pointer to a table element of type T based

on a key of type K.

num_elems

The num_elems function returns the number of elements in the table.

Hdict(K,T)

Hdict(K,T)(Array(T)& a)

const T&operator[](U32 pos)) const

const T*lookup(K * k) const

U32 num_elems() const
2-86 C++ API Reference • October 2001

Hrefdict Class
position

Given a pointer to the table element t, the position function returns the index to

the table.

table

The table function returns a pointer to the table of elements managed within the

Hdict Dictionary.

set

The set function allows you to populate your Hdict Dictionary with the specified

array.

2.22 Hrefdict Class
Declared in: dict.hh

The Hrefdict class is the set of facilities provided to C++ classes created using the

Hrefdictdeclare () macro. It utilizes the Hash mechanism to manage the lookup

of elements in its table. It assumes that an appropriate Arraydeclare(T) and

Hashdeclare(K,T) have preceded its declaration.

U32 position(const T * t) const

const T *table() const

void set(Array(T)& a)

#define Hrefdict(K,T)
name3(K,T ,Hrefdict)

#define Hrefdictdeclare(K,T)
Chapter 2 Common API 2-87

Hrefdict Class
TABLE 2-25 lists the Hrefdick protected variables.

TABLE 2-27 lists the Hrefdict public functions.

2.22.1 Constructors

This constructor creates an empty table.

This constructor initializes a table pointer to t and assigns a length of ne.

2.22.2 Hrefdict (K, T) Operator Overloading

This function returns the nth element of the table where n equals pos.

TABLE 2-26 Hrefdict Protected Variables

Hash(K,T) *_hash; The internal hash table of elements

const T *table_ The internal table of elements

U32 len_ The number of elements in the table

TABLE 2-27 Hrefdict Public Functions

lookup Lookup an element

num_elems Return the number of elements

table Return a pointer to the table

position Return the index of an element

set Initialize the hash table

Hrefdict(K,T)

Hrefdict(K,T)(const T * t ,const U32 ne)

const T&operator[](U32 pos)) const
2-88 C++ API Reference • October 2001

Hrefdict Class
2.22.3 Hrefdict Member Functions

lookup

The lookup function, which must be implemented for each K and T that are defined

for a usage of Hrefdictdeclare (), returns a pointer to a table element of type T
based on a key of type K.

num_elems

The num_elems function returns the number of elements in the table.

position

Given a pointer to the table element t, the position function returns the index to

the table.

table

The table function returns a pointer to the table of elements managed within the

Dictionary.

const T*lookup(K * k) const

U32 num_elems() const

U32 position(const T * t) const

const T *table() const
Chapter 2 Common API 2-89

Oid Class
set

The set function allows you to populate your Hrefdict Dictionary with the table

specified in the constructor.

2.23 Oid Class
Inheritance: class Oid : public DataUnit

Data Members: No public data members declared in this class

#include <pmi/oid.hh>

The Oid class defines a container for an object identifier. Each object identifier is a

sequence of numbers that identify an object by an integer denoting its assigned

position at each level of a tree-structured registry of object names.

Many of the properties of the Oid implementation (for example, data storage,

sharing) are derived from DataUnit . TABLE 2-28 lists the Oid class public functions.

void set()

TABLE 2-28 Oid Public Functions

Function Name Descriptions

= Operator overloading

copy_oid
format
print

Extract the entire oid

num_ids Length of the oid

get_id Extract a given id from within the oid

add_id
add_last_id
append

Add to the oid

is_same_prefix Compare two ids values
2-90 C++ API Reference • October 2001

Oid Class
2.23.1 Constructors

This section describes the constructors of the Oid class.

This constructor constructs an empty Oid .

Each of the preceding constructors construct an Oid from a particular representation

of the list of IDs that comprise it.

This constructor constructs an object identifier whose first identifier is first_id and

whose second identifier is second_id. The size of the allocated memory is size. The

returned value place is used when appending new identifiers to the object identifier

string (see add_id).

2.23.2 Oid Operator Overloading

This section describes the operators for the Oid class.

This operator shares the data storage associated with oid.

Oid()

Oid(U32 size , const Octet * data = 0)

Oid(const DataUnit & du)

Oid(const Oid & oid)

Oid(const char * str)

Oid(U32 size ,
 U32 first_id ,
 U32 second_id ,
 U32 & place)

const Oid &operator = (const Oid & oid)
Chapter 2 Common API 2-91

Oid Class
2.23.3 Oid Member Functions

This section describes the member functions of the Oid class.

add_id

This function call appends id to the Oid , and sets place to the current size (and hence

the position at which id was inserted).

The Oid(U32 , U32, U32, U32) constructor initializes place.

If need be, add_id() extends the Oid to accommodate the new id. (You could use

the Oid (size) constructor to pre-extend the Oid instance to the desired size.)

add_last_id

This function call appends id to the last id in the Oid instance. Any additional

storage is released.

append

This function call modifies front by appending the IDs contained in back. Returns OK
if this is completed. Sets front_place to the last-written position in front (which is also

the numbers of ids in front when the operation is complete).

Result add_id(U32 id ,U32 & place)

Result add_last_id(U32 id ,U32 & place)

static Result append(Oid & front ,
 Oid & back ,
 U32 front_place)
2-92 C++ API Reference • October 2001

Oid Class
copy_oid

This function call makes dest the same as src.

format

This function call writes to buf a string of length buf_len containing the formatted

representation of the Oid . In the string, each ID is represented as decimal digits, and

successive IDs are separated by a dot.

get_id

This function call extracts from the Oid its id_num'th id and stores it in id . (The first

id is considered to be at position 1). To speed up subsequent access, stores at place
the current position within the Oid , and initialize it to zero before the first use.

is_same_prefix

This function call compares two Oid s to determine whether the one with the shorter

sequence of IDs is a prefix of the other, and returns TRUEif it is. (If both Oid s

contain the same number of IDs, this boils down to asking whether they are equal.)

This function returns FALSE if the two Oid s do not have the same prefix.

static Result copy_oid(const Oid & src , Oid & dest)

Result format(char * buf ,U32 buf_len) const

Result get_id(U32 id_num ,
 U32 & id ,
 U32 & place) const

static Boolean is_same_prefix(const Oid & o1,const Oid & o2)
Chapter 2 Common API 2-93

Asn1TypeDefinedType Declarations
num_ids

This function call returns the number of IDs in the Oid instance.

print

Each of the preceding function calls print a formatted record of the Oid , appending

it either to the file whose pointer is fp, or the debug stream deb, or to the character

string pointed to by c.

2.24 Asn1TypeDefinedType Declarations
Following is a list of the Asn1TypeDefinedType declarations:

U32 num_ids() const

void print(FILE * fp) const;

void print(Debug & deb = misc_stdout) const;

void print(char * c) const;

extern Asn1TypeDefinedType NumericStringType;
extern Asn1TypeDefinedType PrintableStringType;
extern Asn1TypeDefinedType TeletexStringType;
extern Asn1TypeDefinedType VideotexStringType;
extern Asn1TypeDefinedType VisibleStringType;
extern Asn1TypeDefinedType IA5StringType;
extern Asn1TypeDefinedType GraphicStringType;
extern Asn1TypeDefinedType GeneralStringType;
extern Asn1TypeDefinedType GeneralizedTimeType;
extern Asn1TypeDefinedType UTCTimeType;
extern Asn1TypeDefinedType EXTERNALType;
extern Asn1TypeDefinedType ObjectDescriptorType;
2-94 C++ API Reference • October 2001

Asn1TypeDefinedType Declarations
2.24.1 Asn1SubTypeKind

Following is the Asn1SubTypeKind declaration:

2.24.2 Asn1SubTypeSize

Following is the Asn1SubTypeSize declaration:

enum Asn1SubTypeKind
 {ASK_NONE,
 ASK_SINGLE,
 ASK_CONTAINED,
 ASK_RANGE,
 ASK_PERMITTED,
 ASK_SIZE,
 ASK_INNER_SINGLE,
 ASK_INNER_MULTIPLE
 } ;

typedef Asn1SubTypeSize Asn1SubTypePermitted;
typedef Asn1SubTypeSize Asn1SubTypeInnerSingle;
Chapter 2 Common API 2-95

Asn1TypeDefinedType Declarations
2.24.3 Asn1Kind

Following is the Asn1Kind declaration:

2.24.4 Asn1TypeE

Following is the Asn1TypeE declaration:

2.24.5 Asn1TypeEL

Following is the Asn1TypeEL declaration:

enum Asn1Kind {
 AK_NONE,
 AK_BOOLEAN,
 AK_INTEGER,
 AK_BIT_STRING,
 AK_OCTET_STRING,
 AK_NULL,
 AK_SEQUENCE,
 AK_SEQUENCE_OF,
 AK_SET,
 AK_SET_OF,
 AK_CHOICE,
 AK_SELECTION,
 AK_TAGGED,
 AK_ANY,
 AK_OBJECT_IDENTIFIER,
 AK_ENUMERATED,
 AK_REAL,
 AK_SUBTYPE,
 AK_DEFINED_TYPE
};

typedef Asn1TypeE Asn1TypeSeqOf;
typedef Asn1TypeE Asn1TypeSetOf;

typedef Asn1TypeEL Asn1TypeSeq;
typedef Asn1TypeEL Asn1TypeSet;
2-96 C++ API Reference • October 2001

Queue Class
2.24.6 Asn1TypeNN

Following is the Asn1TypeNN declaration:

2.24.7 Asn1TagClass

Following is the Asn1TagClass declaration:

2.24.8 Asn1Tagging

Following is the Asn1Tagging declaration:

2.25 Queue Class
Inheritance: class QueueImpl

Declared in: queue.hh

typedef Asn1TypeNN Asn1TypeInt;
typedef Asn1TypeNN Asn1TypeEnum;
typedef Asn1TypeNN Asn1TypeBitStr;

declared in: /opt/SUNWconn/em/include/pmi/asn1_val.hh
typedef enum Asn1TagClass
 {CLASS_UNIV,
 CLASS_APPL,
 CLASS_CONT,
 CLASS_PRIV} ;

// declared in: /opt/SUNWconn/em/include/pmi/asn1_val.hh
typedef enum Asn1Tagging
 {TAG_EXPLICIT,
 TAG_IMPLICIT,
 } ;
Chapter 2 Common API 2-97

Queue Class
2.25.1 Queue Member Functions

enq

This function inserts an element at the end of a queue with the specified type.

prq

This function inserts an element at the head of a queue with the specified type.

inq

This function inserts the element nqe into a queue with the specified type before the

element oqe .

apq

This function appends a queue to a queue with the specified type.

ppq

This function prepends a queue to a queue with the specified type.

type *enq(type * qe)

type *prq(type * qe)

type *inq(type * oqe , type * nqe)

type *apq(Queue (type) & q)

type *ppq(Queue (type) & q)
2-98 C++ API Reference • October 2001

Queue Class
deq

This function deletes the first element in a queue with the specified type.

rnq

This function rotates to the next element in a queue with the specified type.

rpq

This function rotates to the previous element in a queue with the specified type.

fiq

This function returns the first element in a queue with the specified type.

liq

This function returns the last element in a queue with the specified type.

type *deq()

type *rnq()

type *rpq()

type *fiq() const

type *liq() const
Chapter 2 Common API 2-99

Queuedeclare Macro
exq

This function deletes an element in a queue with the specified type.

niq

This function finds the next element in a queue with the specified type.

piq

This function finds the previous element in a queue with the specified type.

nmq

This function returns the number of elements in a queue with the specified type.

2.26 Queuedeclare Macro
Declared in: queue.hh

The Queuedeclare macro is used to create a queue class with the specified type.

Please see class queue(type) for more detail.

type *exq(type *qe)

type *niq(type *qe) const

type *piq(type *qe) const

U32 nmq() const

Queuedeclare(type)
2-100 C++ API Reference • October 2001

Timer Class
2.27 Timer Class
Inheritance: class Timer

#include <pmi/gsched.hh>

An event that is scheduled to occur after a specific interval is represented as an

instance of the Timer class. Timer events are posted or removed from the timer

queue by the functions post_timer(), purge_timer(),
purge_timer_data(), and purge_timer_handler() . Each function is declared

in sched.hh.

A Timer event is not dispatched before the specified interval has elapsed. However,

it might have to wait longer if other processing has to happen when its interval has

elapsed.

When the callback does occur, the timer automatically reposts itself if you specified

a reload time in the Timer. (By default, the reload time is 0, meaning no reposting.)

Both the invocation time and the reload time are specified in milliseconds.

The invocation time is the interval from the time at which you call the

post_timer () routine. The reload time is the interval from the originally scheduled

time (not from the time at which the callback was actually dispatched).

If the callback is delayed to the point that the reload interval has already elapsed, the

scheduler skips a reload for an interval that has now elapsed, and schedules the

reload for the next upcoming multiple of the reload interval.

Timers only guarantee that the callback does not run too early. There is no guarantee

about it running too late, so don’t try to use this to control real-time interactions.

Timers can be purged from the timer queue by matching on the enqueued object’s

handler, data, or both.

2.27.1 Default Constructor

Resets the time and reloads the timer.

Timer()
Chapter 2 Common API 2-101

Timer Class
2.27.2 Constructor

Resets the time and reloads the timer. This constructor has four arguments. The time

(t) between now and the first callback; the reload time (re) between callbacks; the

callback pointer (hand) to the functions which is executed; and the pointer (d) to the

user data which is passed to the callback hand.

2.27.3 Operator

Compares the timers to determine whether they have the same callback function or

not.

2.27.4 Related Global Functions

post_timer

Posts a timer event into the timer queue.

post_timer_handler

Posts from the timer queue any timer events whose handler matches the specified

handler.

Timer(MTime t, MTime re, CallbackHandler hand, Ptr d)

friend int operator==(const Timer &t1, const Timer &t2)

void post_timer(const Timer&)

void post_timer_handler(CallbackHandler handler);
2-102 C++ API Reference • October 2001

Timer Class
purge_timer

Purges from the timer queue any matching timer events.

purge_timer_data

Purges from the timer queue any timer events whose data matches data.

purge_timer_handler

Purges from the timer queue any timer events whose handler matches handler

getGeneralizedTime

The getGeneralizedTime function creates an ASN.1 encoded generalized time

value for the current time.

void purge_timer(const Timer &)

void purge_timer_data(Ptr data);

void purge_timer_handler(CallbackHandler handler);

void getGeneralizedTime();
Chapter 2 Common API 2-103

Timer Class
2-104 C++ API Reference • October 2001

CHAPTER 3

High-Level PMI

The Solstice EM product provides a Portable Management Interface (PMI) with a

suite of classes and member functions that provide effective access to the Solstice EM

Management Information Server (MIS) without requiring detailed specification of

the underlying MIS or mechanism. For most applications, the high-level usage of the

PMI is sufficient for all interactions with the Solstice EM MIS.

This chapter comprises the following topics:

■ Section 3.1 “Design Objectives” on page 3-1

■ Section 3.2 “Object Management Model” on page 3-2

■ Section 3.3 “Meta Data Repository” on page 3-7

■ Section 3.4 “Symbolic Constants” on page 3-18

■ Section 3.5 “Defined Types” on page 3-21

■ Section 3.6 “Error Handling and Event Dispatching” on page 3-24

■ Section 3.8 “High-Level PMI Classes” on page 3-26

3.1 Design Objectives
The PMI seeks to balance two contrasting goals:

■ Location transparency. It should be convenient to write an application without

having to know where and how its objects are stored.

■ Location flexibility. It should be convenient to write an application that takes

specific account of where and how its objects are stored.

To achieve location transparency, you need:

■ MIS independence

■ Automatic propagation of event sieves from the application to the MIS

■ Automatic caching of various sorts of data in the application process
3-1

Object Management Model
To achieve location flexibility, you need to:

■ Access (some of) the low level primitives upon which the high-level usage of the

PMI is built

■ Use the low level primitives of the PMI in a way that does not confuse the

high-level primitives of the PMI

3.2 Object Management Model
Low-level routines for manipulating objects tend to manage objects by sending them

messages and waiting for replies. In Common Management Information Service

(CMIS), for instance, there are messages to create and delete objects, to get and set

attributes, and to perform various actions or to signal events.

The PMI replaces these notions with a model in which objects appear (as far as

possible) to be local. The remote object is tracked in the application process by a

local class object called an image, which acts as a surrogate for the remote object and

tracks where it is and what it is doing.

3.2.1 Naming Objects

Objects are named by starting from a known starting point in a tree and traversing a

map of containment relationships. The object’s name is formed by concatenating the

“key” for each of the steps in the traversal, with slashes between the components. To

find an object’s container, you have only to strip off the final component of the

object's name.

An object name that begins without a slash is a local distinguished name and is

under the local root. In the case of the Solstice EM MIS, the local root is /systemID .

An object name that begins with a slash is a distinguished name, and refers to an

object that is global (in the literal sense). Names used in the PMI can comprise a

superset of the OSI naming tree. Names that are not part of the OSI naming tree

must not conflict with those on the OSI naming tree.

Within the application, any object can also have a nickname. Nicknames offer a

convenient way for you to program readably, and also provide a level of indirection

that helps in the quest for abstraction.
3-2 C++ API Reference • October 2001

Object Management Model
3.2.2 Relationships Between Objects

The relationships between objects are represented using album objects.

You can think of undirected sibling-like relationships as a form of set membership.

The album contains a set of image s, so membership of an image in an album can

model the inclusion of objects in a mathematical set. The application can build up an

album by enumerating the image s that it wants to include.

Other relationships are of a directed nature. The PMI models these relationships as

albums built by a derivational rule rather than by enumeration. A simple derivation

might form the set of objects that are “children” of another object. A more complex

derivation might examine all the objects in another album, select a subset of them,

and for each of that subset specify a relational attribute that defines a new set of

objects.

3.2.3 Managing Notifications

An image (or an album of image s) can alert the application when a change of state

in which the application has expressed an interest occurs. The PMI transmits the

event to the application by invoking the callback function that the application

registered earlier.

3.2.4 Managing Data Types

Each image knows the attributes that a given object class supports. It also knows the

type of each attribute. That lets the application deal with the object on a purely

textual basis if it chooses.

The language in which textual data is expressed looks much like ASN.1 textual data.

Scoping is indicated by curly braces, choice names are delimited by a colon, and so

on. This approach was decided upon because ASN.1 specification is complete and

mature, at least when compared with other abstract syntax notations. You can

represent other abstract notations with this data language, but it maps most easily

onto ASN.1.

Sometimes the application needs to deal with data apart from the definition of any

particular object. While this can be done using text, as mentioned above, it is

sometimes more convenient to pass around encoded data. The PMI supports the

notion of typed, encoded data. Such an object is called a Morf . You can think of a

Morf as a bare attribute without any associated object. It knows its type and the

associated syntax, so you can convert its value to and from textual representation, as

you would an attribute of an image object.
Chapter 3 High-Level PMI 3-3

Object Management Model
3.2.5 Object Schema Management

The application program can discover various facts about the object class and its

various attributes by using the get_prop() and get_attr_prop() functions.

These routines work much like the UNIX getenv call, but acquire their information

from the MIS or from some associated repository of metadata. To avoid confusing

these facts with the ordinary attributes contained in a managed object instance, these

attribute-like facts are called "properties."

Properties occur among attributes used by the Image class, and in the arguments or

results of methods of the Image , Album , and Platform classes. TABLE 3-1

summarizes where various properties occur. See also the descriptions of:

■ get_prop , under the description of the Album class

■ get_prop , under the description of the Image class

■ get_attr_prop , also under the description of the Image class

TABLE 3-1 Properties in Album, Image, and Platform

Property
Image
Attribute Image Album Platform

ACCESS X

APPLICATION_INSTANCE_NAME X

APPLICATION_TYPE X

AUTOIMAGE X

DEFAULT_ALLOWED X

DEFAULT_TIMEOUT X

DERIVATION X

EXCLUDE_ALLOWED X

EXISTS X X

IGNORE_ALLOWED X

LOCATION X

MOD_PENDING X

MODIFIABLE X

NICKNAME X X

NICKNAME_IS_PERMANENT X

OBJCLASS X

OBJNAME X
3-4 C++ API Reference • October 2001

Object Management Model
3.2.6 Filtering as an Aspect of Album Derivation

The Album function set_derivation() (or its more general form set_prop) can

specify a derivation that includes a CMIS filter. The derivation specifies three items,

in this order:

■ Object name

■ Scope

■ Filter

A slash separates the scope from the object name. If there is a filter, a slash separates

the scope from the filter.

3.2.6.1 Object Name

An object name is a distinguished name in slash form. The object name specifies the

base object for scoping. This base object is not necessarily one of the objects in the

album.

It is permissible to omit the object name. If you omit the object name, the system

object is assumed. Also if you omit the object name, you should not insert the slash

that would separate the name from the derivation. If you write /ALL , you are

indicating an object name of / (indicating the system object), followed by the scope

ALL.

OWNERSHIP X

PLATFORM_NICKNAME X

PLATFORM_OBJNAME X

PLATFORM_TYPE X

REPLACE_ALLOWED X

STATE X X X

TRACKMODE X X X

TABLE 3-1 Properties in Album, Image, and Platform (Continued)

Property
Image
Attribute Image Album Platform
Chapter 3 High-Level PMI 3-5

Object Management Model
3.2.6.2 Scope

The scope can be any of those shown in TABLE 3-2.

If omitted, the scope defaults to the base object only. The asterisk forms are short for

LV(n), not TO(n).

3.2.6.3 Filter

The filter is currently specified in raw ASN.1 format. The definition of the filter goes

inside the parentheses that follow CMISFilter . This syntax makes CMISFilter
look like a function. In fact, it is not a function; the use of parentheses is a

convention for delimiting the filter definition.

Omitting the filter has the same effect as a filter whose definition is TRUE, meaning

“include everything specified by the scope.” The definition of a legal CMISFilter is

specified in etc/asn1/x711.asn1 , which is a formalization of the X.711 standard.

As an example of filtering, to find all of the OMNIPoint logs under the system

object, any of the expressions shown below would be a valid argument to

Album::set_derivation() .

TABLE 3-2 Scoping Parameters

Parameter Description

ALL All descendants of named object, including object.

LV n Level n descendants only. Children are at LV(1). Grandchildren are at

LV(2). The base object is at LV(0).

TOn All levels down to level n, including object

* Short for LV(1), i.e. children only

/ Short for LV(2), i.e. grandchildren only.

//* Short for LV(3), i.e. great-grandchildren only.

/systemId=”mysys”/LV(1)/
CMISFilter(item:equality:{objectClass,log})
 or
LV(1)/CMISFilter(item: equality: {objectClass, log})
 or
*/CMISFilter(item:equality:{objectClass,log})
3-6 C++ API Reference • October 2001

Meta Data Repository
Building on the previous examples, to get only logs that are enabled, filter on

operationalState , using and , as shown below:

For the PMI, newlines are allowed and might enhance readability. The newlines

might not be accepted by a shell.

3.2.6.4 Operation of a Filtering Derivation

When a filtered album is derived, the filtering is done automatically by the platform,

so you never see any callbacks for the objects that are bypassed by the filter. If the

album’s TRACKMODEis set to TRACK, the album is maintained on the basis of the

filter. That is, if an attribute changes in a way that makes the value of the filter TRUE
(when it has been FALSE) or FALSE (when it has been TRUE), the album is

automatically updated so that the image of the object is included (or excluded, as

appropriate).

If the album is not set to TRACK, you can perform another scoped and filtered M-GET
by calling derive() again.

If you execute all_destroy() on an album that has a derivation and that album is

in a DOWNstate, or is an AUTOIMAGEalbum, then the request is optimized to do a

single scoped M-DELETEusing the scope and filter specified for the album.

(Otherwise a separate M-DELETEis issued for each member of the album, as before.)

The other ALL operations are not yet optimized in this way, but you can get the

effect of an optimized all_boot() . If you execute derive() on an AUTOIMAGE
album, the initial scoped M-GETfetches all the attributes at that time, rather than

issuing a subsequent M-GETfor each image.

3.3 Meta Data Repository
The Meta Data Repository (MDR) is where descriptions of managed objects are

stored. A description for every object known to the MIS is stored in the MDR. This

data encompasses everything from the syntax required to refer to the attribute, to the

LV(1)/CMISFilter(
 and: {
 item: equality: {objectClass, log},
 item: equality: {operationalState, enabled}
}
)

Chapter 3 High-Level PMI 3-7

Meta Data Repository
composition of an object package. The MDR is initialized and updated by using the

GDMO and ASN.1 compilers. MDR supports the following actions to provide

information about the objects.

3.3.1 getAttribute Action

This action provides information about an attribute. It gives information about

which ASN.1 module the attribute is actually defined.

3.3.2 getAllDocuments Action

This action provides a list of all documents. You still have to provide either a class

name or an oid as the argument.

3.3.3 getAsn1Module Action

This action provides the complete information about an attribute in textual form.

You can provide either the ASN.1 module name or the oid as the argument.

3.3.4 getObjectClass Action

This action provides the complete information about a class in textual form, which

includes all the class attributes and their properties. You can provide either the class

name or the oid as the argument.

getAttribute ’"GDMO DOCNAME":attrName’

getAllDocuments getAllDocuments

getAsn1Module ’"ASN1 DOCNAME"’

getObjectClass ’"GDMO DOCNAME":objectClass’
3-8 C++ API Reference • October 2001

Meta Data Repository
3.3.5 getDocument Action

This action provides a list of all objects (and the oids) defined in a particular

document. This action expects the document name.

3.3.6 getPackage Action

This action provides the following information about the content of the given

package:

■ Complete package name

■ All package attributes

For each attribute, the getPackage action displays the following information:

■ Type information

■ Default value (if any)

■ Initial value (if any)

■ Permitted values (if any)

■ Required values (if any)

■ Properties (such as GET, REPLACE, ADD, REMOVE, and REPLACE-WITH-
DEFAULT)

■ All package actions

For each package action, the getPackage action displays the following

information:

■ Action name

■ Information syntax of the action

■ Reply syntax of the action (if any)

■ All package notifications

For each notification, the getPackage action displays a list of all attribute IDs.

And for each attribute ID, the action displays the following information:

■ Notification name

■ Attribute full name

■ Field name

■ Label name

getDocument ’"GDMO DOCNAME"’
Chapter 3 High-Level PMI 3-9

Meta Data Repository
CODE EXAMPLE 3-1 shows the input syntax (information syntax) and the output

syntax (reply syntax) of the getPackage action. The input syntax can be either the

fully qualified name of the package (for example, docLabel : { document
"CD", label "cdPlayOptionsPackage" }), or the object identifier of the

package (for example, oid : {1 3 6 1 4 1 42 2 2 3 20 1 6 1}).

CODE EXAMPLE 3-1 Input/Output Syntax of the getPackage Action

Input Syntax is CHOICE {
 docLabel SEQUENCE {

document [UNIVERSAL 19] IMPLICIT OCTET STRING (SIZE (0 ..
64)),

label [UNIVERSAL 19] IMPLICIT OCTET STRING (SIZE (0 ..
64))
 },
 oid OBJECT IDENTIFIER
}
Result Syntax is SEQUENCE {
 oid [0] IMPLICIT OBJECT IDENTIFIER,
 labels SEQUENCE OF SEQUENCE {
 document [0] IMPLICIT OCTET STRING (SIZE (0 .. 64)),
 label [1] IMPLICIT OCTET STRING (SIZE (0 .. 64))
 },
 attributes SEQUENCE OF SEQUENCE {
 oid [0] IMPLICIT OBJECT IDENTIFIER,
 labels SEQUENCE OF SEQUENCE {
 document [0] IMPLICIT OCTET STRING (SIZE (0 .. 64)),
 label [1] IMPLICIT OCTET STRING (SIZE (0 .. 64))
 },
 types SEQUENCE {
 name ASN-1.Reference,
 type ASN-1.Asn1-Type
 },
 defaultval SEQUENCE {
 value ASN-1.Asn1-Parsed-Value OPTIONAL
 },
 initialval SEQUENCE {
 value ASN-1.Asn1-Parsed-Value OPTIONAL
 },
 permittedvals SEQUENCE {
 value ASN-1.Asn1-Type OPTIONAL
 },
 requiredvals SEQUENCE {
 value ASN-1.Asn1-Type OPTIONAL
 },
 props SET OF ENUMERATED {
 get(0),
3-10 C++ API Reference • October 2001

Meta Data Repository
CODE EXAMPLE 3-2 shows the output of the getPackage action.

 replace(1),
 add(2),
 remove(3),
 replace-with-default(4)
 }
 },
 actions SET OF SEQUENCE {
 document [0] IMPLICIT OCTET STRING (SIZE (0 .. 64)),
 label [1] IMPLICIT OCTET STRING (SIZE (0 .. 64)),
 infosyntax SEQUENCE {
 module PrintableString,
 name PrintableString
 },
 replysyntax SEQUENCE {
 module PrintableString,
 name PrintableString
 } OPTIONAL
 },
 notifications SET OF SEQUENCE {

document [UNIVERSAL 19] IMPLICIT OCTET STRING (SIZE (0
.. 64)),

label [UNIVERSAL 19] IMPLICIT OCTET STRING (SIZE (0
.. 64)),
 attributeids SET OF SEQUENCE {
 oid [0] IMPLICIT OBJECT IDENTIFIER,
 field [1] IMPLICIT OCTET STRING (SIZE (0 .. 64)),
 label [2] IMPLICIT OCTET STRING (SIZE (0 .. 64))
 }
 }
}

CODE EXAMPLE 3-2 Output of the getPackage Action Example

On running the "mdr_action" sample program
from /opt/SUNWconn/em/src/pmi_hi

./mdr_action -a getPackage -l 'docLabel :
{ document "CD", label "cdPlayOptionsPackage" }'

Input Morf--> {
 document "CD",
 label "cdPlayOptionsPackage"
}

CODE EXAMPLE 3-1 Input/Output Syntax of the getPackage Action (Continued)
Chapter 3 High-Level PMI 3-11

Meta Data Repository
Result --> {
 oid "CD":cdPlayOptionsPackage,
 labels {
 {
 document "CD",
 label "cdPlayOptionsPackage"
 }
 },
 attributes {
 {
 oid "CD":cdPlayList,
 labels {
 {
 document "CD",
 label "cdPlayList"
 }
 },
 types {
 name "TrackList",
 type choice : {
 {
 name "all",
 type null : NULL
 },
 {
 name "selection",
 type set-of : defined : {
 module "CD-asn1Module",
 name "TrackId"
 }
 }
 }
 },
 defaultval {
 value defined : {
 module "CD-asn1Module",
 value "playAllTracks"
 }
 },
 initialval {
 value defined : {
 module "CD-asn1Module",
 value "playAllTracks"
 }
 },
 permittedvals {
 },

CODE EXAMPLE 3-2 Output of the getPackage Action Example (Continued)
3-12 C++ API Reference • October 2001

Meta Data Repository
 requiredvals {
 },
 props {
 get,
 replace,
 add,
 remove,
 replace-with-default
 }
 }
 },
 actions {
 {
 document "CD",
 label "cdPlayerPlayTrack",
 infosyntax {
 module "CD-asn1Module",
 name "TrackId"
 }
 }
 },
 notifications {
 {
 document "Rec. X.721 | ISO/IEC 10165-2 : 1992",
 label "attributeValueChange",
 attributeids {
 {
 oid "Rec. X.721 | ISO/IEC 10165-2 :
1992":sourceIndicator,
 field "sourceIndicator",
 label """Rec. X.721 | ISO/IEC 10165-2 :
1992"":sourceIndicator"
 },
 {
 oid "Rec. X.721 | ISO/IEC 10165-2 :
1992":attributeIdentifierList,
 field "attributeIdentifierList",
 label """Rec. X.721 | ISO/IEC 10165-2 :
1992"":attributeIdentifierList"
 },
 {
 oid "Rec. X.721 | ISO/IEC 10165-2 :
1992":attributeValueChangeDefinition,
 field "attributeValueChangeDefinition",
 label """Rec. X.721 | ISO/IEC 10165-2 :
1992"":attributeValueChangeDefinition"
 },

CODE EXAMPLE 3-2 Output of the getPackage Action Example (Continued)
Chapter 3 High-Level PMI 3-13

Meta Data Repository
3.3.7 getPackagesByOC Action

This action provides a list of all the packages defined in the given GDMO Managed

Object Class (MOC), and provides the following information about each package:

■ Document – document name of the package

■ Label – package name

■ Type – mandatory or conditional

■ Hierarchy (optional) – originated (from the given MOC) or inherited (from

another MOC)

 {
 oid "Rec. X.721 | ISO/IEC 10165-2 :
1992":notificationIdentifier,
 field "notificationIdentifier",
 label """Rec. X.721 | ISO/IEC 10165-2 :
1992"":notificationIdentifier"
 },
 {
 oid "Rec. X.721 | ISO/IEC 10165-2 :
1992":correlatedNotifications,
 field "correlatedNotifications",
 label """Rec. X.721 | ISO/IEC 10165-2 :
1992"":correlatedNotifications"
 },
 {
 oid "Rec. X.721 | ISO/IEC 10165-2 :
1992":additionalText,
 field "additionalText",
 label """Rec. X.721 | ISO/IEC 10165-2 :
1992"":additionalText"
 },
 {
 oid "Rec. X.721 | ISO/IEC 10165-2 :
1992":additionalInformation,
 field "additionalInformation",
 label """Rec. X.721 | ISO/IEC 10165-2 :
1992"":additionalInformation"
 }
 }
 }
 }
}

CODE EXAMPLE 3-2 Output of the getPackage Action Example (Continued)
3-14 C++ API Reference • October 2001

Meta Data Repository
CODE EXAMPLE 3-3 shows the input syntax (information syntax) and the output

syntax (reply syntax) of the getPackagesByOC action. The input syntax can be

either the fully qualified name of the object class (for example, docLabel : {
document "Rec. X.721 | ISO/IEC 10165-2 : 1992", label "log" }),

or the object identifier of the object class (for example, oid : {2 9 3 2 3 6}).

CODE EXAMPLE 3-4 shows the output of the getPackagesByOC action example.

CODE EXAMPLE 3-3 Input and Output Syntax for the getPackagesByOC Action Example

Input Syntax is CHOICE {
 docLabel SEQUENCE {

document [UNIVERSAL 19] IMPLICIT OCTET STRING (SIZE (0 ..
64)),

label [UNIVERSAL 19] IMPLICIT OCTET STRING (SIZE (0 ..
64))
 },
 oid OBJECT IDENTIFIER
}
Result Syntax is SET OF SEQUENCE {

document [UNIVERSAL 19] IMPLICIT OCTET STRING (SIZE (0 .. 64)),
label [UNIVERSAL 19] IMPLICIT OCTET STRING (SIZE (0 .. 64)),

 type ENUMERATED {
 mandatory(0),
 conditional(1)
 },
 hierarchy ENUMERATED {
 originated(0),
 inherited(1)
 } OPTIONAL
}

CODE EXAMPLE 3-4 Output of the getPackagesByOC Action Example

On running the "mdr_action" sample program from
/opt/SUNWconn/em/src/pmi_hi

./mdr_action -a getPackagesByOC -l 'docLabel :
{ document "Rec. X.721 | ISO/IEC 10165-2 : 1992", label "log" }'

Input Morf--> {
 document "Rec. X.721 | ISO/IEC 10165-2 : 1992",
 label "log"
}
Result --> {
 {
 document "Rec. X.721 | ISO/IEC 10165-2 : 1992",
 label "logPackage",
Chapter 3 High-Level PMI 3-15

Meta Data Repository
3.3.8 getOidName Action

For a given object identifier, returns the name of the object.

 type mandatory
 },
 {
 document "Rec. X.721 | ISO/IEC 10165-2 : 1992",
 label "finiteLogSizePackage",
 type conditional
 },
 {
 document "Rec. X.721 | ISO/IEC 10165-2 : 1992",
 label "logAlarmPackage",
 type conditional
 },
 {
 document "Rec. X.721 | ISO/IEC 10165-2 : 1992",
 label "availabilityStatusPackage",
 type conditional
 },
 {
 document "Rec. X.721 | ISO/IEC 10165-2 : 1992",
 label "duration",
 type conditional
 },
 {
 document "Rec. X.721 | ISO/IEC 10165-2 : 1992",
 label "dailyScheduling",
 type conditional
 },
 {
 document "Rec. X.721 | ISO/IEC 10165-2 : 1992",
 label "weeklyScheduling",
 type conditional
 },
 {
 document "Rec. X.721 | ISO/IEC 10165-2 : 1992",
 label "externalScheduler",
 type conditional
 }
}

getOidName ’{oid}’

CODE EXAMPLE 3-4 Output of the getPackagesByOC Action Example (Continued)
3-16 C++ API Reference • October 2001

Meta Data Repository
3.3.9 Sample MDR Action Program

CODE EXAMPLE 3-5 gives a sample program so you can try out these different actions

of the MDR.

CODE EXAMPLE 3-5 MDR Actions

#include hi.hh
#include stdio.h

Platform plat;
main(int argc, char **argv)
{
 char dn[1024];
 if (argc != 4) {

printf("Usage dummy: mdr hostname < MDR action>
<arglist> \n");
 printf("\nSupported Actions:\n \n");
 printf("\t getObjectClass '\"GDMO
DOCNAME\":objectClass'\n");
 printf("\t getAllDocuments getAllDocuments\n");
 printf("\t getDocument '\"GDMO DOCNAME\"'\n");
 printf("\t getAttribute '\"GDMO
DOCNAME\":attrName'\n");

printf("\t getAsn1Module '\"ASN1 DOCNAME\"'\n");
 printf("\t getOidName '{oid}'\n");
 printf("\nSample Usage commands:\n\n");
 printf("\t mdr host getAsn1Module '\"EM-TOPO-
ASN1\"'\n");

printf("\t mdr host getOidName ' { 1 3 6 1 4 1 42
2 2 2 5 3 1
}'\n");
 printf("\t mdr host getAttribute '\"EM
TOPOLOGY\":topoNodeName'\n");
 printf("\t mdr host getDocument '\"EM
Topology\"'\n");
 printf("\t mdr host getObjectClass '\"EM
TOPOLOGY\":topoNode'\n");
 printf("\t mdr host getAllDocuments
getAllDocuments\n");
 exit(0);
 }
 char *host = argv[1];
 char *host = argv[1];
 char *action = argv[2];
 char *mod = argv[3];
Chapter 3 High-Level PMI 3-17

Symbolic Constants
3.4 Symbolic Constants
The following is an example of a symbolic constant.

DEFAULT_TIMEOUTis the default argument to several of the member functions of

the Platform class. -12345.0 is a distinguished value that causes those functions to

substitute the value of the TIME_OUTproperty from the Platform instance. Refer to

Section 3.5.5.2 “Timeout” on page 3-24,” for more information. For example:

 plat = Platform(duEM);
 printf("Connecting to %s ... ",host);
 plat.connect(host, "test_get");
 printf("Done.\n");

printf(dn,"/systemId=\"%s\"/metaName=\"MDR\"", host);
 Image mdr = Image(dn);
 mdr.boot();
 Syntax in = mdr.get_param_syntax(action);
 Syntax res = mdr.get_result_syntax(action);
 printf("Input Syntax is %s\n",in.get().chp());
 printf("\n-------------------------------------\n");
 printf("Result Syntax is %s\n",res.get().chp());
 DU mdr_data = mdr.call(action, mod);
 printf("--> %s\n",mdr_data.chp());
}

const Timeout DEFAULT_TIMEOUT = -12345.0;

const DU duREPLACE = “REPLACE”;

const Callback NO_CALLBACK;

enum Platformid
 { VOID_PLATFORM_ID,
 G2_PLATFORM_ID,
 };

CODE EXAMPLE 3-5 MDR Actions (Continued)

#include hi.hh
3-18 C++ API Reference • October 2001

Symbolic Constants
TABLE 3-3 is a list of often used string constants.

TABLE 3-3 String Constants

Constant Definition

duACCESS "ACCESS"

duACCESS_DENIED "ACCESS_DENIED"

duAPPLICATION_OBJNAME "APPLICATION_OBJNAME"

duAPPLICATION_TYPE "APPLICATION_TYPE"

duATTR_CHANGED "ATTR_CHANGED"

duAUTOIMAGE "AUTOIMAGE"

duBOOT "BOOT"

duCHANGED "CHANGED"

duDEFAULT "DEFAULT"

duDEFAULT_ALLOWED "DEFAULT_ALLOWED"

duDEFAULT_TIMEOUT "DEFAULT_TIMEOUT"

duDERIVATION "DERIVATION"

duDISCONNECTED "DISCONNECTED"

duDOWN "DOWN"

duEFFECTIVE_USER "EFFECTIVE_USER"

duERROR "PMI_ERROR"

duEXCLUDE "EXCLUDE"

duEXCLUDE_ALLOWED "EXCLUDE_ALLOWED"

duEXISTS "EXISTS"

duFALSE "FALSE"

duIGNORE "IGNORE"

duIGNORE_ALLOWED "IGNORE_ALLOWED"

duIMAGE_EXCLUDED "IMAGE_EXCLUDED"

duINCLUDE "INCLUDE"

duINCLUDE_ALLOWED "INCLUDE_ALLOWED"

duLAST_ERROR "LAST_ERROR"

duLOCATION "LOCATION"

duMAYBE "MAYBE"

duMISC_EVENT "MISC_EVENT"
Chapter 3 High-Level PMI 3-19

Symbolic Constants
duMODIFIABLE "MODIFIABLE"

duMOD_PENDING "MOD_PENDING"

duNICKNAME "NICKNAME"

duNICKNAME_IS_PERMANENT "NICKNAME_IS_PERMANENT"

duNO "NO"

duNONE "NONE"

duNOT_LOADED "NOT_LOADED"

duNO_VALUE "NO_VALUE"

duOBJCLASS "OBJCLASS"

duOBJECT_CREATED "OBJECT_CREATED"

duOBJECT_DESTROYED "OBJECT_DESTROYED"

duOBJNAME "OBJNAME"

duOBJFULLNAME "OBJFULLNAME"

duOWNERSHIP "OWNERSHIP"

duEM "EM"

duPLATFORM_NICKNAME "PLATFORM_NICKNAME"

duPLATFORM_OBJNAME "PLATFORM_OBJNAME"

duPLATFORM_TYPE "PLATFORM_TYPE"

duPOLL "POLL"

duRAW_EVENT "RAW_EVENT"

duREPLACE "REPLACE"

duREPLACE_ALLOWED "REPLACE_ALLOWED"

duSHARED "SHARED"

duSHUTDOWN "SHUTDOWN"

duSNAP "SNAP"

duSTATE "STATE"

duTICKET "TICKET"

duTRACK "TRACK"

duTRACKMODE "TRACKMODE"

duTRUE "TRUE"

TABLE 3-3 String Constants (Continued)

Constant Definition
3-20 C++ API Reference • October 2001

Defined Types
3.5 Defined Types
The defined types are shown in this section. They are declared in the /opt/
SUNWconn/em/include/pmi/hi.hh file.

duUP "UP"

duUSER "USER"

duWAIT "WAIT"

duYES "YES"

duACTUALCLASS "ACTUAL_CLASS"

TABLE 3-3 String Constants (Continued)

Constant Definition
Chapter 3 High-Level PMI 3-21

Defined Types
3.5.1 Asn1Int

3.5.2 CCB

3.5.3 CDU

3.5.4 DU

3.5.5 FBits

The bits have the meanings on a get shown in TABLE 3-4.

typedef GenInt Asn1Int;

typedef const Callback& CCB;

typedef const DU& CDU;

typedef DataUnit DU;

typedef U32 FBits;

TABLE 3-4 Format Bit Values on get Function Calls

Format Bit Description

USE_NUMERIC_NAMES Do not translate OIDs to names

OMIT_NEWLINES Do not “pretty-print”. Format only one line of output

USE_C_ESCAPES Format control characters as C does: \n, \033, etc

USE_EXPLICIT_TYPES Format type tags on ANY values
3-22 C++ API Reference • October 2001

Defined Types
The bits have the meanings on a set as shown in TABLE 3-5.

OMIT_SPACES Omit all nonessential space characters

USE_HEX Formats the string in the usual C hex format with a leading

0x.Valid for octet strings only.

USE_EXPLICIT_CHOICE Format choice with an explicit choice tag

TABLE 3-5 Format Bit Values on set Function Calls

Format Bit Description

USE_NUMERIC_NAMES (Ignored)

OMIT_NEWLINES (Ignored)

USE_C_ESCAPES Parse control characters as C does: \n, \033, etc.

USE_EXPLICIT_TYPES Require type tags on ANY values

OMIT_SPACES (Ignored)

USE_HEX (Ignored)

USE_EXPLICIT_CHOICE Expect choice to have an explicit choice tag.

TABLE 3-4 Format Bit Values on get Function Calls (Continued)

Format Bit Description
Chapter 3 High-Level PMI 3-23

Error Handling and Event Dispatching
3.5.5.1 FormatBits

3.5.5.2 Timeout

3.6 Error Handling and Event Dispatching
Error handling is provided by the base class Error . Each of the object classes is

derived from the Error class, except for the class, AlbumImage .

The function dispatch_recursive() maintains queues of callback routines. One

queue is maintained for each of the following: input, output, exception, and timers.

These queues are scanned in the following order:

■ Exception

■ Output

■ Timer

■ Input

You associate a file descriptor with each callback on a queue when you use a

function such as post_fd_read_callback() . When you call

dispatch_recursive() , this function does a select on all the open file descriptors

to determine their state, and then goes through each queue in the order indicated

above to determine if there is outstanding data to be read from, or written to, the file

descriptor.

Enum FormatBits
{ USE_NUMERIC_NAMES = 1,
 OMIT_NEWLINES = 2,
 USE_C_ESCAPES = 4,
 USE_EXPLICIT_TYPES = 8,
 OMIT_SPACES = 16,
USE_HEX = 32,
USE_EXPLICIT_CHOICE = 65536
};

typedef double Timeout ;
3-24 C++ API Reference • October 2001

pmi_sched_get_fds Function
Either FALSE or TRUEcan be passed as a value to the dispatcher as an argument. If

FALSE is the value passed, then the select on the open file descriptors is done with a

time-out value of 0. If TRUEis passed, then a short time interval is specified as the

time-out.

3.6.1 Event Dispatching Functions

The following functions maintain the queues of the callback routines.

void dispatch_main_loop();// Event dispatch queue for user applications

void dispatch_recursive(Boolean wait); // Flush scheduler buffer function

The following functions maintain critical region handling.

int writecallback_exists();// Checks callback queue for pending writes

void flush_events_callbacks();// Flush all pending events to the MIS

3.7 pmi_sched_get_fds Function
pmi_sched_get_fds

The pmi_sched_get_fds function returns the file descriptors that are set by the

scheduler for read, write and exception conditions into the corresponding file

descriptors rd_mask , wr_mask , expt_mask.

void pmi_sched_get_fds(fd_set &rd_mask, fd_set &wr_mask, fd_set
&expt_mask)
Chapter 3 High-Level PMI 3-25

High-Level PMI Classes
3.8 High-Level PMI Classes
Each of the classes shown in TABLE 3-6 is implemented as a reference-counting outer

class wrapped around an inner abstract-base class. The PMI requires no access to the

inner class.

Note – As all class destructors have an identical format, such as ~class name(), the

various class destructors are not specified in the following sections. Each class

destructor might or might not destroy the underlying class name object, depending

on the reference count.

TABLE 3-6 High-Level PMI Classes

Class Description

Album Class Represents a set of related objects

AlbumImage Class Represents the state of an iterator

AppTarget Class Represents target applications

AuthApps Class Used when you need to know which applications a user is

authorized to use

AuthFeatures Class Used to implement the feature level access control in your

application

Coder Class Represents a pair of methods for encoding and decoding

values

CurrentEvent Class Represents an event

Error Class Stores details of errors related to an object instance

Image Class Represents an actual or potential object in an MIS’

framework

Morf Class Represents a unit of data

MorfBuilder Class Provides flexibility with Morf objects

PasswordTty Class Implements the TTY based password query mechanism

Platform Class Represents a potential or actual connect to a MIS

Syntax Class Represents a type

Waiter Class Represents an ongoing asynchronous operation
3-26 C++ API Reference • October 2001

Album Class
3.9 Album Class
Inheritance: public Error

Data Members: No public data members are declared in this class.

An album contains a set of related objects, implemented as a set of image s. Like

mathematical sets, albums can be constructed either by rule or by enumeration. An

album instance allows you to perform certain operations on each of the image s that

it contains. Like image s, albums can be synchronized either manually or

automatically.

The Album class allows an attribute list to be specified as an argument; in this way

memory consumption of images is reduced. As examples, see derive() and

start_derive() .

#include pmi/hi.hh

TABLE 3-7 Album Method Types

Method Name Method Type

find_by_nickname Global lookup

get_prop
set_prop
all_set_prop
all_set_attr_prop

Control properties

get_derivation
set_derivation
derive
start_derive

Define membership of a derived album

include
exclude
clear

Manipulate membership of an enumerated album

num_images Census info

get_userdata
set_userdata

User-defined properties

first_image
all

Iterate over all images
Chapter 3 High-Level PMI 3-27

Album Class
Note – When in use, the start_m_get() , start_m_set() , start_m_action() ,

start_m_action_raw() , and start_m_delete() methods do not populate the

album like the start_derive() method does. Only the start_derive() and

include() methods populate the album with images. Also, the existing

all_start() method and the new all_start_raw() method only address

already populated albums. For more information, refer to the examples of

start_m_get() and all_start() method utilization.

all_boot
all_start_boot
all_shutdown
all_start_shutdown

Image activation

start_m_get
start_m_set
start_m_action
start_m_action_raw
start_m_delete

asynchronous CMIS

all_set
all_set_long
all_set_str
all_set_gint
all_set_dbl
all_set_raw
all_revert
all_store
all_start_store
all_set_from_ref

Setting attributes

all_create
all_start_create
all_create_within
all_start_create_within
all_destroy
all_start_destroy

Object existence

all_call
all_start_raw
all_start

Miscellaneous methods

all_when Object events

get_when_syntax
when

Album events

TABLE 3-7 Album Method Types (Continued)

Method Name Method Type
3-28 C++ API Reference • October 2001

Album Class
3.9.1 Constructors

Default Constructor

The default constructor creates an album instance that refers to no actual album

object. The value tests FALSE until you assign it a real album value.

Copy Constructor

This is an ordinary copy constructor. After the copy, both copies still refer to the

same album object. The reference count on the album object is incremented.

Album Constructor

This constructor constructs an album instance for a particular kind of Platform .

Because an album is really a wrapper for a set of related classes, this function

actually works somewhat like a virtual constructor.

Note – A nickname is an album’s unique identifier. If you create two albums with the

same nickname in one application, the second will be the same as the first.

Album()

Album(const Album& other);

Album(CDU nickname,
 Platform& p = Platform::default_platform(),)
Chapter 3 High-Level PMI 3-29

Album Class
3.9.2 Album Operator Overloading

Assignment Operator

The assignment operator works the same as the copy constructor.

Cast Operator

The cast operator is for use in conditionals. It returns TRUE if this album refers to an

actual album object. Do not attempt to use the returned value as a pointer to

anything, since it points to private data.

Not Operator

This is provided so that you can say “if (!album) …“

3.9.3 Album Member Functions

This section describes the member functions of the Album class.

all

Purpose: Apply a function, provided as an argument, over all of the images in the

album.

Album& operator = (const Album& other)

operator void *();

operator !();

virtual Result all(Result (* f)(Image & im, void* data),
 void* data = 0)
3-30 C++ API Reference • October 2001

Album Class
■ The first argument f is a pointer to the subfunction.

■ The next argument im is the instance of the image object class, supplied

automatically.

■ The next argument data is some arbitrary data to pass to the subfunction along

with each image.

The subfunction’s syntax (embedded in the declaration of all) is therefore required

to be:

The implementation of all calls the subfunction repeatedly, supplying an

appropriate value for im to refer in turn to each of the album’s image s, and passing

to it each time the arbitrary data that was passed to all .

The all function itself returns a TRUEvalue if all the calls to the subfunction

designated by f return TRUE. A thrown exception terminates the iteration.

all_boot

Purpose: Perform a boot on each of the images in the album.

The timeout value is reset on completion of each successful boot. This function

returns a TRUE value if all image operations succeeded.

Example: Boot all images in an album.

Result (* f)(Image & im, void* data) ;

Result all_boot(Timeout to = DEFAULT_TIMEOUT)

Album bunch = Album(“demoalbum”); // Define, construct bunch.
bunch.set.derivation("/LV(2)"); // Derive the album.
Timeout to ;
...
if (!bunch.all_boot(to)) { // Boot all images in bunch.

cout << “Using all_boot(): boot of one image failed.” ;
exit (1) ;

}

Chapter 3 High-Level PMI 3-31

Album Class
all_call

Purpose: Perform a call on each of the images in the album.

name is the name of the action.

param is the parameter associated with the action.

to is the timeout.

If param is not provided (or if it is set to duNONE), there is no parameter associated

with this action. The time-out is reset on completion of each successful call. Returns

a TRUE value if all image operations succeeded.

Example: Call all images in an album.

all_create

Purpose: Perform a create on each image in the album.

The Timeout value is reset on completion of each successful create call. Returns

a TRUE value if all image operations succeeded.

Result all_call(CDU name,
CDU param,
const Timeout to = DEFAULT_TIMEOUT)

Album bunch = Album(“demoalbum”); // Define, construct bunch.
bunch.set.derivation("/LV(2)"); // Derive the album.
CDU nm, prm ;
Timeout to ;
...
if (!bunch.all_call(nm, prm, to)) { // Call all images in bunch.

cout << “Using all_call(): call of one image failed.” ;
exit (1) ;

}

Result all_create(Image & refobj = Image(),
const Timeout to = DEFAULT_TIMEOUT)
3-32 C++ API Reference • October 2001

Album Class
Example: Create an object for each image in an album.

all_create_within

Purpose: Perform a create_within on each of the images in the album.

The Timeout value is reset on completion of each successful create_within call.

Returns a TRUE value if all image operations succeeded.

Example: Create an object within a container, for each image in an album.

all_destroy

Purpose: Perform a destroy on each of the images in the album.

The Timeout value is reset on completion of each successful destroy call. Returns a

TRUE value if all image operations succeeded.

Album bunch = Album(“demoalbum”); // Define, construct bunch.
bunch.set.derivation("/LV(2)"); // Derive the album.
Image robj;
Timeout to ;
// Set name and class before invoking bunch.all_create().See
create.cc
// Create object of each image in bunch.
if (!bunch.all_create(robj, to)) {

cout << “Using all_create(): create of one object failed.” ;
exit (1) ;

}

Result all_create_within(CDU container_objname,
Image & refobj = Image(),
Timeout to = DEFAULT_TIMEOUT)

// Create object of each image in bunch.
if (!bunch.all_create_within(cobj, robj, to)) {
cout << “Using all_create_within(): create of one object failed.”;

exit (1) ;
}

Result all_destroy(Timeout to = DEFAULT_TIMEOUT)
Chapter 3 High-Level PMI 3-33

Album Class
Example: Destroy each image in an album.

all_revert

Purpose: Perform a revert on each of the images in the album.

Returns a TRUEvalue if all image operations succeeded.

all_set

Purpose: Perform a set on each of the image s in the album.

Returns a TRUEvalue if all image operations succeeded.

all_set_attr_prop

Purpose: Set a property of an attribute in each of the image s of current MIS.

This function sets a property for some attribute in each of the image s of the current

MIS, provided that:

■ name specifies an existing attribute in the object class

■ key specifies a supported property

if (!bunch.all_destroy(to)) {// Create object of each image in
bunch.

cout << “Using all_destroy(): create of one object failed.” ;
exit (1) ;

}

Result all_revert()

Result all_set(CDU name,
CDU value,
CDU op = duREPLACE)

Result all_set_attr_prop(CDU name,
 CDU key,
 CDU value)
3-34 C++ API Reference • October 2001

Album Class
■ value specifies a legal value.

If all_set_attr_prop cannot do what you ask, it throws an invalid exception.

Refer to get_attr_prop , under the description of Image , for some typical

properties. Returns a TRUEvalue if all image operations succeeded.

all_set_dbl

Purpose: Perform a set_dbl on each of the image s in the album.

Returns a TRUEvalue if all image operations succeeded.

all_set_from_ref

Purpose: Perform a set_from_ref on each of the image s in the album.

Returns a TRUEvalue if all image operations succeeded.

all_set_gint

Purpose: Perform a set_gint on each of the image s in the album.

Returns a TRUEvalue if all image operations succeeded.

all_set_long

Purpose: Perform a set_long on each of the

Result all_set_dbl(CDU name,
 double value,
 CDU op = duREPLACE)

Result all_set_from_ref(Image& refobj)

Result all_set_gint(CDU name,
 GenInt& value,
 CDU op = duREPLACE)
Chapter 3 High-Level PMI 3-35

Album Class
s in the album.

Returns a TRUEvalue if all image operations succeeded.

all_set_prop

Purpose: Set a property for each of the image s of the current album.

This function sets a property for each of the images of the current album, provided

that:

■ key specifies a supported property.

■ value specifies a legal value.

If all_set_prop cannot do what you ask, it throws an invalid exception.

Refer to get_prop , under the description of Image , for some typical properties.

Returns a TRUEvalue if all image operations succeeded.

all_set_raw

Purpose: Perform a set_raw on each of the images in the album. Returns a TRUE
value if all image operations succeeded.

all_set_str

Purpose: Perform a set_str on each of the image s in the album.

Result all_set_long(CDU name,
 long value,
 CDU op = duREPLACE)

Result all_set_prop(CDU key, CDU value)

Result all_set_raw(CDU name,
Morf& value,
CDU op = duREPLACE)
3-36 C++ API Reference • October 2001

Album Class
Returns a TRUE value if all image operations succeeded.

The difference between set_str and set is that the data language used by set
requires quotes as part of the string, while set_str assumes them if necessary.

(They are not always necessary; you can also pass numeric values as strings, and

they are converted for you.)

Refer to TABLE 3-13 for a description of legal operations. For a list of possible fb
values, refer to Section 3.5.5.1 “FormatBits” on page 3-24."

all_shutdown

Purpose: Perform a shutdown on each of the image s in the album.

The Timeout value is reset on completion of each successful shutdown. Returns a

TRUE value if all image shutdowns succeed.

all_start

Purpose: Perform an asynchronous version of all_call .

The callback is called only once when all image s are complete.

all_start_boot

Purpose: Perform an asynchronous version of all_boot .

Result all_set_str(CDU name,
 CDU value,
 CDU op = duREPLACE,
 FBits fb = 0)

Result all_shutdown(const Timeout to = DEFAULT_TIMEOUT)

Waiter all_start(CDU name,
 CDU param,
 CCB cb = NO_CALLBACK)
Chapter 3 High-Level PMI 3-37

Album Class
The callback is called only once, when all image s are complete.

all_start_create

Purpose: Perform an asynchronous version of all_create .

The callback is called only once, when all image s are complete.

all_start_create_within

The preceding function call is the asynchronous version of all_create_within .

The callback is called only once, when all image s are complete.

all_start_destroy

The preceding function call is the asynchronous version of all_destroy . The

callback is called only once, after all image s are destroyed.

Waiter all_start_boot(CCB cb = NO_CALLBACK)

Waiter all_start_create(Image& refobj = Image(),
 CCB cb = NO_CALLBACK)

Waiter all_start_create_within(CDU container_objname,
 Image & refobj = Image(),
 CCB cb = NO_CALLBACK)

Waiter all_start_destroy (CCB cb = NO_CALLBACK)
3-38 C++ API Reference • October 2001

Album Class
all_start_raw

Performs a start_raw() action asynchronously on each image in the album. This

method offers exactly the same functionality as the existing Waiter all_start
method. It differs in that the parameter param is a Morf rather than a DataUnit .

The callback is called only once when all asynchronous start_raw() or start()
actions on images are completed.

Note – The all_start method performs a start() asynchronously on each

image in an album.

all_start_shutdown

The preceding function call is the asynchronous version of all_shutdown . The

callback is called only once, after all image shutdowns are complete.

all_start_store

The preceding function call is the asynchronous version of all_store . The callback

is called only once, after all image stores are complete.

all_store

The preceding function call performs a store on each of the image s in the album.

The Timeout value is reset on completion of each successful store. It returns a TRUE

value if all image stores succeed.

Waiter all_start_raw(CDU name, Morf param,
CCB cb = NO_CALLBACK)

Waiter all_start_shutdown(CCB cb = NO_CALLBACK)

Waiter all_start_store(CCB cb = NO_CALLBACK)

Result all_store(const Timeout to = DEFAULT_TIMEOUT)
Chapter 3 High-Level PMI 3-39

Album Class
all_when

The preceding function call performs a when on each of the image s in the album.

For a list of supported events, refer to when, under the description of Image .

Returns a TRUE value if all image when operations succeed.

clear

The preceding function call nulls out this album, which is presumably of the

enumerated variety. (The clear function is not as useful with derived albums, since

such albums either track membership automatically or are repopulated by calling

Album::derive again.)

derive

The preceding function call causes the album membership list to be computed (or

recomputed) using the derivation specified in the property DERIVATION. All

previous membership information is lost. You can initialize a non-tracking album

with a derive and then maintain it with include and exclude . A tracking album

does not track until the first derive is done, so it works much like a boot does on

an image.

derive

This function call allows a user to supply a list of attributes to be tracked when

deriving an auto-imaging album. Attributes that are specified in the list are

automatically tracked in each of the images in the derived album.

Result all_when(CDU eventname,
CCB cb = NO_CALLBACK)

Result clear()

Result derive(const Timeout to = DEFAULT_TIMEOUT)

virtual Result derive (Array (DU) attrlist,
Timeout to = DEFAULT_TIMEOUT)= 0;
3-40 C++ API Reference • October 2001

Album Class
exclude

This function call deletes from this album the set of image s that are in the album ai.

Note – Inclusion and exclusion are simple procedural operations for use on

enumerated albums, and do not “define” the membership of the album in any way

that would override subsequent membership operations.

find_by_nickname

The preceding function call looks up an album by its nickname and returns a pointer

to the corresponding instance of album. Because albums do not generally have object

names, this is the only way to find an album by name.

first_image

The preceding function call returns the first image in the album, in the form of an

AlbumImage iterator. The AlbumImage::next_image function returns subsequent

image s until there are no more.

Note – If you are tempted to use this iterator to see whether an image is a member

of an album, remember that the Image::is_in_album function does this much

more efficiently.

Result exclude(Album& * ai)

static Album find_by_nickname(CDU name,
 Platform& plat = Platform::def_platform))

AlbumImage first_image()
Chapter 3 High-Level PMI 3-41

Album Class
get_derivation

The preceding function call is a shortcut function for the get_prop function.

get_prop

The preceding function call returns a property of the current album. If the key does

not specify an existing property, a null DataUnit is returned, which tests FALSE in

a conditional.

Most albums support the properties described in TABLE 3-8.

DU get_derivation()

Du get_prop(CDU key)

TABLE 3-8 Properties Supported by Most Albums

Properties Description

STATE Whether the album is actively tracking:

DOWN - The album is not tracking.

BOOT - The album is currently being derived.

UP - The album is tracking.

SHUTDOWN - The album is shutting down.

DERIVATION How this album relates to other albums and images by scoping and

filtering. Refer to Section 3.2.6 “Filtering as an Aspect of Album

Derivation” on page 3-5."

NICKNAME The nickname of the album.

TRACKMODE How the membership of the album is to be maintained:

SNAP - the album does not maintain its membership list, but relies

on explicit derive() , include() , and exclude() calls to tell the

album which images are to be included. Note that a SNAP album

might contain tracking images.

TRACK — the album analyzes its derivation rule and automatically

includes or excludes images as they change, when they match or

fail to match the derivation rule. Refer to the AUTOIMAGEproperty

if you want included images to boot and start tracking

automatically.
3-42 C++ API Reference • October 2001

Album Class
get_userdata

The preceding function call returns any data stored by the application under the key
specified. There are no predefined values. If there is no data under that key for this

instance, the return value (a null DataUnit) evaluates to FALSE.

get_when_syntax

The preceding function call returns the Syntax of a given event type. The event

information comes into the callback as a CurrentEvent , from which the event

information can be extracted.

include

The preceding function call adds the specified image to this album.

The preceding function call adds the set of images in the album al to this album.

AUTOIMAGE

(YES, NO)

For any image included in the album, also automatically boots the

image as a tracking image. (This happens before any of the

registered callbacks, if any, are called.)

ACCESS (RWRWRW) The access permissions for this album, if persistent.

BEST_EFFORT

(YES, NO)

When set to ’NO’, any error will return an error response message.

DU get_userdata(CDU key)

Syntax get_when_syntax(CDU eventname)

Result include(Image& im)

Result include(Album& al)

TABLE 3-8 Properties Supported by Most Albums (Continued)

Properties Description
Chapter 3 High-Level PMI 3-43

Album Class
Note – Inclusion and exclusion are simple procedural operations for use on

enumerated albums, and do not “define” the membership of the album in any way

that would override subsequent membership operations.

num_images

The preceding function call returns the number of image s in this album.

set_derivation

The preceding function call is a shortcut function for the following:

The preceding function call sets a property of the current album, provided that key
specifies a supported property and value specifies a legal value. If set_prop cannot

do what you ask, it throws an invalid exception. Refer to get_prop under the

description of the Album class for some typical properties.

set_userdata

The preceding function call stores arbitrary data supplied by the application under

the key specified. There are no predefined values. If this instance already has data

under that key, the new data replaces the old without comment. Essentially, user data

is an associative array belonging to the album; an application can use it in any way.

U32 num_images()

Result set_derivation(CDU derivation)

Result set_prop(CDU key, CDU value)

Result set_userdata(CDU key, CDU value)
3-44 C++ API Reference • October 2001

Album Class
start_derive

The preceding function call is the asynchronous version of derive .

This function call is the asynchronous version of the derive function that accepts a

list of attributes.

start_m_get

The preceding function performs an asynchronous CMIS M_GET. The scope and

filter are built from the derivation string of the album. attrlist is the attribute list

whose values need to be retrieved. The callback is called only once upon completion

of the request.

start_m_set

The preceding function performs an asynchronous CMIS M_SET. The scope and

filter are built from the derivation string of the Album . The parameter attrmodq
represents a set of attributes, operations on the attributes, and, depending on the

operation, the new values of these attributes.

The callback is called only once upon completion of the request. The parameter sync
is intended for further implementation to indicate whether the synchronization

mode is best effort or atomic. Currently, the supported mode is best effort.

Waiter start_derive(CCB cb = NO_CALLBACK)

virtual Waiter start_derive(Array (DU) attrlist,
CCB cb = NO_CALLBACK)=0 ;

Waiter start_m_get(Array(DU) attrlist, CCB cb = NO_CALLBACK)

Waiter start_m_set(Queue(AttrModifier)& attrmodq,
CCB cb = NO_CALLBACK,CDU sync = duBEST_EFFORT)
Chapter 3 High-Level PMI 3-45

Album Class
start_m_action

The preceding function performs an asynchronous CMIS M_ACTION. The scope and

filter are built from the derivation string of the album. The name is the action name

and param is the parameter associated with the action. The param is required in

DataUnit format.

The callback is called only once upon completion of the request. The parameter sync
is intended for further implementation to indicate whether the synchronization

mode is best effort or atomic. Currently, the supported mode is best effort.

start_m_action_raw

The preceding function performs an asynchronous CMIS M_ACTION. The scope and

filter are built from the derivation string of the album. The name is the action name

and param is the parameter associated with the action. The param is required in Morf
format.

The callback is called only once upon completion of the request. The parameter sync
is intended for further implementation to indicate whether the synchronization

mode is best effort or atomic. Currently, the supported mode is best effort.

start_m_delete

The preceding function performs an asynchronous CMIS M_DELETE. The scope and

filter are built from the derivation string of the album. The callback is called only

once upon completion of the request.

Waiter start_m_action(CDU name, CDU param = duNONE,
CCB cb = NO_CALLBACK,CDU sync = duBEST_EFFORT)

Waiter start_m_action_raw(CDU name, Morf param = Morf(),
CCB cb = NO_CALLBACK,CDU sync = duBEST_EFFORT)

Waiter start_m_delete(CCB cb = NO_CALLBACK)
3-46 C++ API Reference • October 2001

Album Class
Example

CODE EXAMPLE 3-6 start_m_get() and all_start() Method Utilization

#include netdb.h
#include sys/systeminfo.h

#include stdio.h
#include hi.hh
#include message.hh

void done_cb(Ptr userData, Ptr);
void asyn_cb(Ptr , Ptr calldata);

int main(int argc, char **argv)
{
 // Get the host name from the environment variable.

 char *host = getenv("EM_SERVER");
 if (!host) {
 host = new char[MAXHOSTNAMELEN+1];
 sysinfo(SI_HOSTNAME, host, MAXHOSTNAMELEN);
 }

 // Set the fdn for the reference object.
 char fdn[1024];
 sprintf(fdn, "/systemId=name:\"%s\"/topoNodeDBId=NULL/
LV(0)",host);

 Platform plat = Platform(duEM);
 if (plat.get_error_type() != PMI_SUCCESS) {
 cout << plat.get_error_string() << endl;

exit(1);
 }

 cout << "Connecting to ... " << host << endl;

 // Connect to the host MIS.

 if (!plat.connect(host, "em_sample")) {
 cout << "Failed to connect to "<< host << endl;
 cout << plat.get_error_string() << endl;
 exit(2);
 } else {
 cout << "Connected. " << endl;
 }

 // Construct test_album.
Chapter 3 High-Level PMI 3-47

Album Class
 Album test_album = Album("myalbum");
 if (test_album.get_error_type() != PMI_SUCCESS) {
 cout << test_album.get_error_string() << endl;
 exit(3);
 }

// fill up the derivation property
if (!test_album.set_derivation(fdn)) {

 cout << test_album.get_error_string() << endl;
 exit(4);
 }

 // fill up all kinds of properties on this album
if (!test_album.set_prop(duREPORT_ANY_ERROR,duYES)) {

 cout << test_album.get_error_string() << endl;
 exit(5);
 }

if (!test_album.set_prop(duREPORT_GET_LIST_ERROR,duYES)) {
 cout << test_album.get_error_string() << endl;
 exit(6);
 }

 if (!test_album.set_prop(duAUTOIMAGE,duYES)) {
 cout << test_album.get_error_string() << endl;
 exit(7);
 }

// populate the album with image
if (!test_album.derive()) {

 cout << test_album.get_error_string() << endl;
 exit(8);
 }

cout << "The album contents " << test_album.num_images() << "
image(s)\n" << endl;

 // Will be set to 1 when Callback is done.
 int done = 0;

Waiter cur;

 if
(!(cur=test_album.all_start(DU("topoGetNodeReport"),DU("NULL"),C
allback(done_cb, &done)))) {
 cout << test_album.get_error_string() << endl;
 exit(9);

CODE EXAMPLE 3-6 start_m_get() and all_start() Method Utilization (Continued)
3-48 C++ API Reference • October 2001

Album Class
 }
 if (cur.get_except()) {
 cout << cur.get_except()->reason() << endl;
 exit(10);
 }
 // subscribe to any future incoming replies
 cur.when_resp(Callback(asyn_cb,0));

 // Enter the listen loop to wait for asyn operation to
complete
 cout << "Waiting for asyn operation to complete...\n";
 cout << endl << endl;
 while (!done) {
 dispatch_recursive(TRUE);
 }

 exit(0);
}

void done_cb(Ptr userData, Ptr)
{

cout << "\nExecuting THE LAST asyn callback function..."
<< endl;

cout << "--" <<
endl;
 cout << "After the operation is completed ";
 cout << "\n" << endl;

 // Set main done.
 (*((int*)userData))++;
}

void asyn_cb(Ptr , Ptr calldata)
{
static int num = 1;
 cout << "\nExecuting asyn1 callback function for ";

cout << num << " times";
 cout << endl;

cout << "--" <<
endl;

num++;
 // Get and print the new attribute value.
 cout << "During the all_start operation ";
 cout << endl;
if(calldata)

{

CODE EXAMPLE 3-6 start_m_get() and all_start() Method Utilization (Continued)
Chapter 3 High-Level PMI 3-49

Album Class
 CurrentEvent ce(calldata);
 cout << "OBJNAME = " << ce.get_objname().chp() << endl;

cout << "OBJCLASS = " << ce.get_objclass().chp() << endl;
 MessagePtr msg = (MessagePtr)ce.get_message();

if(msg->type()==ACTION_RES)
{
ActionRes* srmsg = (ActionRes*)msg;
cout << "OBJCLASS = " << oc2name(srmsg->oc).chp() << endl;
cout << "FDN = " << oi2fdn(srmsg->oi).chp() << endl;
cout << "ACTION-TYPE = " << endl;
(srmsg->action_type).print(stdout);
cout << "\n" << endl;
cout << "ACTION-REPLY = " << endl;
(srmsg->action_reply).print(stdout);
cout << "\n" << endl;
}

 Morf mf = ce.get_info_raw();
 Asn1Value val = mf.get_value();
 if(val)
 {

cout << "info_raw() field of current event ACTION-REPLY =
" << endl;
 val.print(stdout);
 cout << "\n" << endl;
 }

cout << "eventtype() field of current event ACTION-TYPE = " <<
ce.get_eventtype().chp() << endl;

cout << "Information setting in the current event related
Album " << endl;
 cout << "Derivation rule for the Album " <<
ce.get_album().get_prop(duNICKNAME).chp() << " is : " <<
ce.get_album().get_derivation().chp() << endl;
 cout << "\n" << endl;

cout << "Information setting in the current event related
Image" << endl;
 Image im = ce.get_image();

cout << " image name is " << im.get_objname().chp() << endl;
cout << " image class is " << im.get_objclass().chp() <<

endl;
cout << " image state is " << im.get_state().chp() << endl;

cout << " image last_error is " << im.get_last_error().chp()
<< endl;
 if (im.exists())

CODE EXAMPLE 3-6 start_m_get() and all_start() Method Utilization (Continued)
3-50 C++ API Reference • October 2001

Album Class
when

The Platform object receives all events at which time all callbacks registered for by

the Platform objects are executed. Next, all of the callbacks registered for by image

objects are executed, then all of the callbacks registered for by album objects are

executed.

The preceding function call establishes a callback routine to handle an album-

specific asynchronous event.

For example, you might want to know if any object was destroyed. You could say:

Caution – For the same album (albums having the same nickname are the same),

multiple callbacks for the same event type are not supported.

 cout << " image exists " << endl;
 else
 cout << " image does not exist " << endl;

cout << " attribute(s) and attribute value(s) setting in the
image " << endl;
 Array(DU) attr_names = im.get_attr_names();
 for (int i=0; i<attr_names.size; i++) {
 char *name = strdup(attr_names[i].chp());
 cout << name;
 cout << ": ";
 cout << im.get_str(name).chp() << endl;
 }
 cout << "\n" << endl;

}
}

Result when(CDU eventname,
 CCB cb = NO_CALLBACK)

when(“OBJECT_DESTROYED”,Callback(destroyed_cb, 0)) ;

CODE EXAMPLE 3-6 start_m_get() and all_start() Method Utilization (Continued)
Chapter 3 High-Level PMI 3-51

AlbumImage Class
The Album events shown in TABLE 3-9 are supported.

Refer to the description of the CurrentEvent::do_something and

CurrentEvent::do_nothing member functions in Section 3.15.3 “CurrentEvent

Member Functions” on page 3-65“ for more information on these CurrentEvent
member functions.

3.10 AlbumImage Class
Inheritance: class AlbumImage

Data Members: No public data members are declared in this class.

TABLE 3-9 Events Supported by Album

Events Description

IMAGE_INCLUDED An image was added to the album by some means. The new

image is not automatically booted unless the AUTOIMAGE
property was set. The CurrentEvent::do_something()
function does nothing. This is an internal event, and has no MIS

event info associated with it. Note: Use the method

Image::exists() to see whether a given image from within

IMAGE_INCLUDEDexists.

IMAGE_EXCLUDED An image was deleted from the album by some means or other.

The CurrentEvent::do_something() function does

nothing. Note that this is an internal event, and has no MIS

event info associated with it.

OBJECT_CREATED An object in the album came into existence.

Call CurrentEvent::do_something() to cause inclusion in

a tracking album before the end of the callback.

OBJECT_DESTROYED An object in the album was destroyed.

Call CurrentEvent::do_something() to cause exclusion in

a tracking album before the end of the callback.

RAW_EVENT Some album-related event occurred. You can examine it before

the PMI does anything with it.

The CurrentEvent::do_something() function does

nothing.

#include pmi/hi.hh
3-52 C++ API Reference • October 2001

AlbumImage Class
An instance of the AlbumImage class is an iterator that represents the current album

in a list of albums or the current image in a list of image s. It can also be viewed as a

two-way association between a given image and a given album.

3.10.1 Constructors

Default Constructor

The default constructor creates an AlbumImage instance that refers to no actual

AlbumImage . The value tests FALSE until you assign it a real AlbumImage value.

Copy Constructor

This is an ordinary copy constructor. After the copy, both copies still refer to the

same AlbumImage object. The reference count on the AlbumImage object is

incremented.

AlbumImage()

AlbumImage(AlbumImage& other)
Chapter 3 High-Level PMI 3-53

AlbumImage Class
3.10.2 Destructors

Default Destructor

3.10.3 AlbumImage Operator Overloading

Assignment Operator

The assignment operator works like the copy constructor.

Cast Operator

The cast operator is for use in conditionals. It returns TRUE if this AlbumImage
refers to an actual AlbumImage object. Do not attempt to use the returned value as a

pointer to anything, since it points to private data.

Not Operator

This operator definition is provided so that you can say “if (!albumimage) …”

~AlbumImage()

AlbumImage& operator = (const AlbumImage& other)

operator void *()

int operator !()
3-54 C++ API Reference • October 2001

AlbumImage Class
Album Operator

This returns the album pointed to by the current AlbumImage association.

Image Operator

This returns the image pointed to by the current AlbumImage association.

3.10.4 AlbumImage Member Functions

This section describes the member functions of the AlbumImage class.

next_album

Purpose: Return the next album.

This is used when iterating over all of the albums of an image.

next_image

Purpose: Return the next image.

This is used when iterating over all of the image s of an album.

operator Album()

operator Image()

AlbumImage next_album()

AlbumImage next_image()
Chapter 3 High-Level PMI 3-55

AppTarget Class
3.11 AppTarget Class
Inheritance: public Album

Data Members: No public data members are declared in this class.

3.11.1 Constructors

AppTarget is an abstraction that represents target applications.

3.11.2 AppTarget Operator Overloading

The ! is overloaded to check whether the Album is NULL or non NULL.

3.12 AuthApps Class
Inheritance: class AuthPri v

Data Members: No public data members are declared in this class.

This class is derived from AuthPriv , which is an abstract base class for this class as

well as the AuthFeatures class.

Note – AuthPriv is not documented since it is not directly used.

This class is used when you need to know which applications a user is authorized to

use. Currently, this is used by the Launcher application to gray out the application

icons which the user is not authorized to use.

AppTarget::operator !()

#include pmi/ auth_apps.hh
3-56 C++ API Reference • October 2001

AuthApps Class
After the application has successfully connected to the platform (using

Platform::connect), an instance of this class is passed as an argument to the

Platform::get_authorized_apps method. The method fills in the instance

with the information about the applications the user is authorized to use. After the

successful completion of this method, one can use the

AuthApps::is_authorize d method to find out whether an application is

authorized or not. For more information, please refer to the description of the

Platform::get_authorized_apps method.

3.12.1 Constructors

The default constructor, above, creates an empty instance of this class which can be

passed as an argument to the Platform::get_authorized_apps method.

3.12.2 AuthApps Operator Overloading

No public operators are defined for this class.

3.12.3 AuthApps Member Functions

The following are member functions for the AuthApps class.

all_authorized

This function determines if a given user has access to all applications or access to all

the features of an application. This is an inherited function from the AuthPriv class.

is_authorized

AuthApps ()

Result all_authorized() const

Result is_authorized (const char * appname) const
Chapter 3 High-Level PMI 3-57

AuthFeatures Class
Alternately,

This is an inherited function from the AuthPriv class. The function returns OK if

the user is authorized to access the given application or its features. It should be

called after successful completion of the Platform::get_authorized_apps
function. Otherwise, it will always return NOT_OK.

3.13 AuthFeatures Class
Inheritance: class AuthPriv

Data Members: No public data members are declared in this class.

This class is derived from AuthPriv , which is an abstract base class for this class as

well as the AuthApps class.

Note – AuthPriv is not documented because it is not directly used.

This class is used when you need to implement the feature level access control in

your application. The application writer decides which features the application

should have and what they control. The user who is running the application might

not have access to all features. The application should query the list of features the

user is authorized to use and accordingly restrict the operations the user can

perform using the application.

After the application has successfully connected to the platform (using

Platform::connect), an instance of this class is passed as an argument to the

Platform::get_authorized_features method. This method fills in the

instance with the information about the features the user is authorized to use. After

the successful completion of the method, you can use the

AuthFeatures::is_authorized method to find out whether a feature is

authorized or not. For more information, please refer to the description of the

Platform::get_authorized_features method. For an example program,

please refer to $EM_HOME/src/access_sample/access_feature_level.cc .

 virtual Result is_authorized (const char * appname,
const char * path) const;

#include pmi/auth_features.hh
3-58 C++ API Reference • October 2001

AuthFeatures Class
3.13.1 Constructor

The default constructor, above, creates an empty instance of this class which can be

passed as an argument to the Platform::get_authorized_features method.

3.13.2 AuthFeatures Operator Overloading

No public operators are defined for this class.

3.13.3 AuthFeatures Member Functions

The following are member functions for the AuthFeatures class.

all_authorized

This function determines if a given user has access to all applications or access to all

the features of an application. This is an inherited function from the AuthPriv class.

is_authorized

Alternately,

AuthFeatures ()

virtual Result all_authorized () const

virtual Result is_authorized (const char * feature) const

virtual Result is_authorized (const char * appname,
const char * path) const;
Chapter 3 High-Level PMI 3-59

Coder Class
This is an inherited function from the AuthPriv class. The function returns OK if

the user is authorized to access the given application or its features. It should be

called after successful completion of the Platform::get_authorized_apps
function. Otherwise, it will always return NOT_OK.

3.14 Coder Class
Inheritance: public Error

Data Members: No public data members are declared in this class.

An instance of the Coder class specifies custom encoding and decoding functions

for getting and setting the string value of a Morf or attribute. In general you would

not call the methods of this class yourself. The PMI calls them when doing

translation for various get_str and set_str operations. You set up these

translation functions by deriving from the inner CoderData class, supplying virtual

functions to do the appropriate translation, along with a virtual destructor to

correctly destroy your CoderData . You can also declare other items in your derived

class that are available to your routines.

The base CoderData class supplies an operator Coder to construct a Coder from a

CoderData . Hence, the correct C++ incantation for creating a Coder is shown

below.

You then register the Coder with either Platform::set_attr_coder or

Syntax::set_coder .

#include pmi/hi.hh

Coder(*new OiCoderData(arg1, arg2...));
3-60 C++ API Reference • October 2001

Coder Class
3.14.1 Constructors

Default Constructor

The default constructor creates a Coder instance that refers to no actual Coder . The

value tests FALSE until you assign it a real Coder value.

Copy Constructor

This is an ordinary copy constructor. After the copy, both copies still refer to the

same Coder object. The reference count on the Coder object is incremented.

3.14.2 Coder Operator Overloading

Assignment Operator

The assignment operator works like the copy constructor.

Cast Operator

This cast operator is for use in conditionals. It returns TRUE if this Coder refers to

an actual Coder object. Do not attempt to use the returned value as a pointer to

anything, since it points to private data.

Coder()

Coder(const Coder& other)

Coder& operator = (const Coder& other)

operator void*()
Chapter 3 High-Level PMI 3-61

CurrentEvent Class
Not Operator

This operator definition is provided for conditionals such as:

3.14.3 Coder Member Functions

This section describes the member functions of the Coder class.

get_str

Translate a Morf ’s value into a textual DUvalue.

set_str

Translate a textual DUvalue into a Morf ’s value.

3.15 CurrentEvent Class
Inheritance: public Error

Data Members: No public data members are declared in this class.

int operator!()

if (!albumimage) …

DU get_str(Morf& mf, FBits fb)

Morf& set_str(Morf& mf, CDU data, FBits fb)

#include pmi/hi.hh
3-62 C++ API Reference • October 2001

CurrentEvent Class
An instance of the CurrentEvent class represents all the information that is known

about an asynchronous event, available in a form that doesn’t require the arbitrarily

dangerous casting of various pointer values. A CurrentEvent is passed into every

callback function, and is also returned by the Waiter::wait function. Within a

callback, control is available both before and after any action that the PMI itself

would perform on your behalf.

TABLE 3-10 CurrentEvent Method Types

Method Name Method Type

do_nothing
do_something
handled

Control PMI performance

get_event
get_event_raw
get_info
get_info_raw
get_message
get_name
get_oid

Extract event information

get_album
get_eventtype
get_image
get_objclass
get_objname
get_platform
get_time

Extract contextual information

something_to_do Set control information

set_event_raw
set_info_raw
set_message
set_name
set_oid

Set event information (called primarily by the PMI)

set_album
set_eventtype
set_image
set_objclass
set_objname
set_time

Set contextual information (called primarily by the PMI)
Chapter 3 High-Level PMI 3-63

CurrentEvent Class
3.15.1 Constructors

Default Constructor

The default constructor creates a CurrentEvent instance that refers to no actual

CurrentEvent . The value tests FALSE until you assign it a real CurrentEvent
value.

Copy Constructor

This is an ordinary copy constructor. After the copy, both copies still refer to the

same CurrentEvent object. The reference count on the CurrentEvent object is

incremented.

Calldata Constructor

This constructs a CurrentEvent from the calldata pointer passed into a callback as

its second argument.

3.15.2 CurrentEvent Operator Overloading

Assignment Operator

This assignment operator works like the copy constructor.

CurrentEvent()

CurrentEvent(const CurrentEvent& other)

CurrentEvent(Ptr calldata)

CurrentEvent& operator = (const CurrentEvent& other)
3-64 C++ API Reference • October 2001

CurrentEvent Class
Cast Operator

This cast operator is for use in conditionals. It returns TRUE if this CurrentEvent
refers to an actual CurrentEvent object. Do not attempt to use the returned value

as a pointer to anything, since it points to private data.

Not Operator

This operator definition is provided for conditionals such as:

3.15.3 CurrentEvent Member Functions

This section describes the member functions of the CurrentEvent class.

do_nothing

Purpose: Throw away the current event by removing callbacks from the

CurrentEvent queue so that the PMI does nothing.

The PMI does not perform the action it would otherwise perform. This is meaningful

only within a callback. If multiple objects receive callbacks for a given event (for

example, one callback for an image, and one for the album containing the image),

then each callback needs to call this function to disable the operations ordinarily

done by the corresponding object.

Refer to TABLE 3-9 for information on how the member function

CurrentEvent::do_nothing applies to the Album::when member function.

operator void*()

int operator !()

if (!cur_event) …

void do_nothing()
Chapter 3 High-Level PMI 3-65

CurrentEvent Class
do_something

Purpose: Perform the customary action for this event by scheduling a callback in the

CurrentEvent queue "something."

This is meaningful only within a callback. Before a callback is executed in response

to an event, the PMI figures out what it wants to do and queues that operation using

the something_to_do function. At the end of the callback, if you have not handled

the event explicitly by calling either do_something or do_nothing , the PMI calls

do_something on your behalf.

Refer to TABLE 3-9 for information on how the member function

CurrentEvent::do_something applies to the Album::when member function.

get_album

Purpose: Return the associated album, if any.

get_event

Purpose: Return, in textual form, the entire event message, if one exists.

get_event_raw

Purpose: Return, in encoded form, the entire event message, if one exists.

void do_something()

Album get_album()

DU get_event()

Morf get_event_raw()
3-66 C++ API Reference • October 2001

CurrentEvent Class
get_eventtype

Purpose: Return the type of event as specified by the when function that established

the current callback.

get_image

Purpose: Return the image associated with this event, if one exists.

get_info

Purpose: Return, in textual form, the central event information.

get_info_raw

The preceding function call returns in encoded form the central event information.

get_message

Purpose: Return a pointer to the event message.

This customarily returns a pointer to the event message, if one exists, though it

could be used for any arbitrary data, depending on the event. You would not

generally call this function unless you were in some fashion cheating on the PMI.

DU get_eventtype()

Image get_image(Boolean create = FALSE)

DU get_info()

Morf get_info_raw()

Ptr get_message()
Chapter 3 High-Level PMI 3-67

CurrentEvent Class
The returned pointer is unlikely to be meaningful outside the scope of the

CurrentEvent , but if you’re already cheating, you probably know what to do

about that.

get_name

Purpose: Return the name of the event.

Every event has a unique OID associated with it in its GDMO definition. The

get_name method returns the English name which corresponds to this OID

(CommunicationsAlarm, for example). Use get_oid to return the OID.

The get_name method returns the actual event name, which is not necessarily the

same as the one used in the when function call that caused the callback to be

invoked. Calling get_eventtype returns the internal event name used in the when
function call, such as RAW_EVENT, whereas get_name returns a real event name

such as CommunicationsAlarm.

get_objclass

Purpose: Return the name of the class of the associated image, if it exists.

get_objname

Purpose: Return the name of the associated image, if it exists.

get_oid

Purpose: Return the OID.

DU get_name()

DU get_objclass()

DU get_objname()
3-68 C++ API Reference • October 2001

CurrentEvent Class
The get_oid method returns the OID corresponding to the event name, if one

exists. Internal events like IMAGE_INCLUDEDhave no OID.

get_platform

Purpose: Return the platform.

This returns the MIS platform associated with this event.

get_time

Purpose: Return, in ISO format, the time of the event, if available.

handled

Purpose: Determine if the CurrentEvent was handled.

The handled method returns TRUE if and only if either of do_something or

do_nothing has been called on the CurrentEvent for the current callback.

set_album

Purpose: Set the associated album.

Oid get_oid()

Platform get_platform()

DU get_time()

Boolean handled()

void set_album(Album& al)
Chapter 3 High-Level PMI 3-69

CurrentEvent Class
set_event_raw

Purpose: Set the encoded event message.

set_eventtype

Purpose: Set the event type.

set_image

Purpose: Set the associated image.

set_info_raw

Purpose: Set the central event information.

set_message

Purpose: Set the message pointer.

void set_event_raw(Morf& mf)

void set_eventtype(CDU eventtype)

void set_image(const Image& im)

void set_info_raw(const Morf& mf)

void set_message(Ptr msg)
3-70 C++ API Reference • October 2001

CurrentEvent Class
set_name

Purpose: Set the event name.

set_objclass

Purpose: Set the object class.

set_objname

Purpose: Set the object name.

set_oid

Purpose: Set the event OID.

set_time

Purpose: Set the time of the event.

void set_name(CDU nm)

void set_objclass(CDU cl)

void set_objname(CDU nm)

void set_oid(Oid& o)

void set_time(CDU tm)
Chapter 3 High-Level PMI 3-71

Error Class
something_to_do

Purpose: Queue up something to be done when do_something is called.

Ordinarily the something_to_do method is called by the PMI before a callback is

called, but you could use it to queue up additional operations to occur after the PMI

calls do_something . It’s usually easier, however, to call do_something yourself

within the callback and then do whatever else needs doing.

3.16 Error Class
Inheritance: class Error

The class Error stores details of errors related to an object instance of a derived-

from-Error class, such as Image .

Example: If im1 is declared and used as follows:

...then if f1() fails, the error string and type can be retrieved with:

For any function f1() of a class such as Image , if f1() is a static function, then no

object is associated with that function. In such a case, you can use the variable

error for error handling, where error is declared as:

void something_to_do (CCB cb, Ptr cdata)

#include pmi/error.hh

Image im1 ;
im1.f1() ;

im1.get_error_string() ;
im1.get_error_type() ;

Error error ;
3-72 C++ API Reference • October 2001

Error Class
Example: f2() is a static function, in the class Image , called as follows:

If f2() fails you can query errors as follows:

3.16.1 Constructor

The syntax for the constructor for the Error class is:

3.16.2 Error Operator Overloading

Assignment Operator

This assignment operator works like the copy constructor.

3.16.3 Error Public Data Member

The Error class has the following public data member:

The pointed-to callback function, if set, is called after entering a function of a class

that is derived from Error . If that object instance is already in error, it might be

because a previous function call had failed.

Image::f2() ;

error.get_error_type() ;
error.get_error_string() ;

Error(ErrorType etype=PMI_SUCCESS)

const Error &operator = (const Error & err)

static void (* error_entry_callback)(Error *)
Chapter 3 High-Level PMI 3-73

Error Class
3.16.4 Error Member Functions

This section describes the member functions of the Error class.

error_to_string

Purpose: Return the default error string for a type.

get_error_string

When performing operations that interact with several objects in the MIS, be aware

that the operations are "best effort" operations (where access control allows, the

operation will succeed) and get_error_string may return a message which is

confusing. For example, if a user is not allowed access to at least one object in an

album, the user will receive the message, "Can't do this operation: access denied"

(assuming the access control behavior is denyWithResponse), even though the given

operation will succeed for all objects to which the user has access.

static const char * error_to_string (ErrorType etype);

char *get_error_string(void) const
3-74 C++ API Reference • October 2001

Error Class
get_error_type

set_error_string

set_error_type

set_error

reset_error

Note – All high level PMI calls must make use of the reset_error function to

ensure that successive calls of the same type can succeed. For example, consider an

Image::send_event() call which fails. If reset_error was not used in the call,

successive send_event calls will fail with the same error message as the first, even

if they would otherwise have succeeded.

ErrorType get_error_type(void) const

void set_error_string(char *)

void set_error_type(ErrorType)

void set_error(ErrorType,char *)

void reset_error(void)
Chapter 3 High-Level PMI 3-75

Error Class
set_error_entry_callback

3.16.5 Error Types and Strings

TABLE 3-11 shows the error types and strings returned by get_error_type() and

get_error_string() .

static void set_error_entry_callback(void (*eec)(Error *)=0)

TABLE 3-11 Error Types

Type Comment

MIS_ACCESS_NO_CONNECT_PRIVILEGE Missing application connect

privilege

MIS_ACCESS_USER_DOES_NOT_EXIST Missing user profile

MIS_ACCESS_USER_NOT_MEMBER_OF_ANY_GROUPUser is not a member of any access

control group

MIS_APP_INST_CREATE_FAILED Failed to create application instance

MIS_CONNECTION_PDU_PARSING_FAILED Failure during ape connect

MIS_CREATE_CALLBACK_FAILED Failure of ape instance to create

callback

MIS_ERROR Error in MIS (unexpected?)

MIS_INVALID_PASSWORD Invalid password on MIS host

MIS_RESOURCE_LIMIT Ran out of memory

MIS_USER_DOES_NOT_EXIST User does not exist on MIS host

PMI_CONNECTION_REPLY_PARSING_FAILED Data passed by an application is not

in an expected format

PMI_DATA_OBJECT_OP_FAILURE Operation on associated data object

failed

PMI_EM_LOGIN_DEAMON_PROBLEM Check em_login daemon on MIS

host

PMI_ENCODE_FAILED Encoding of attribute failed

PMI_ERROR Error

PMI_ILLEGAL_OPERATION This operation cannot be performed

on attribute
3-76 C++ API Reference • October 2001

Image Class
3.17 Image Class
Inheritance: public Error

Data Members: No public data members are declared in this class.

An image is the local representation of a potential or actual framework object. If it

represents an actual object, the image is capable of either manual or automatic

synchronization. In many respects you can think of the image as the object itself,

even though the actual object is off in the MIS, or even further away. Images give

access to the object's methods and attributes.

PMI_INVALID_ARGUMENT Argument is not valid in this

context

PMI_MESSAGE_SENDS_FAILED Sending of message failed

PMI_NEW_FAILED New memory allocation failed

PMI_NO_DATA_OBJECT Data object associated with this

object is NULL

PMI_NOT_IMPLEMENTED This feature is not implemented

PMI_NULL_ARGUMENT Argument passed OR attribute used

is NULL

PMI_OPERATION_FAILED Some operation failed

PMI_SUCCESS Success

PMI_UNKNOWN_PLATFORM Platform is unrecognized

PMI_USER_ABORTED_CONNECTION Canceled password dialog

#include pmi/hi.hh

TABLE 3-11 Error Types (Continued)
Chapter 3 High-Level PMI 3-77

Image Class
The image provides a model in which data is primarily textual, but also allows raw

data to be passed in the form of Morf s. Images also provide attribute-like access to

object and attribute schema information.

TABLE 3-12 Image Method Types

Member Function Method Type

first_album
is_in_album
num_albums

Determine album membership

find_by_nickname
find_by_objname
find_by_oi

Global lookup

boot
shutdown
start_boot
start_shutdown

Image Activation

get_prop
set_prop

Control Properties

get_userdata
set_userdata

User-defined information

set_nickname
set_objclass

Set object information

exists
get_objclass
get_nickname
get_objname
get_state
get_oi
get_oc
get_encoded_oi

Get object information

attr_changed
attr_exists
get_attr_names
get_attr_prop
get_attr_trackmode
set_attr_prop

Attribute information

get_attr_numerrors

get_attr_last_error

Get attribute error information
3-78 C++ API Reference • October 2001

Image Class
set
set_dbl
set_from_ref
set_gint
set_long
set_raw
set_str

Set imaginary attribute values

get
get_dbl
get_gint
get_long
get_raw
get_str

Get attribute values since last attribute value change

event notification from the managed object

get_set
get_set_dbl
get_set_gint
get_set_long
get_set_raw
get_set_str

Get imaginary attribute values (before they’ve been

stored)

revert
start_store
store

Realize or discard imaginary attribute values

create
start_create

Object creation, known name

create_within
start_create_within

Object creation, known container

destroy
start_destroy

Object destruction

call
call_raw
start
start_raw

Miscellaneous object method activation

get_param_syntax
get_result_syntax

Method data formats

get_when_syntax
when

Notification

TABLE 3-12 Image Method Types (Continued)

Member Function Method Type
Chapter 3 High-Level PMI 3-79

Image Class
3.17.1 Image Constructor

The Image class is designed as a wrapper for a set of related classes. Invoking any of

the constructors for the Image class creates an instance of this wrapper class. Note

that no methods should be applied to this new image object until the boot method is

applied, that is, the Image is booted. After booting, the image object is initialized

and methods can be applied to it.

Default Constructor

The default constructor creates an image instance that refers to no actual image

object. The value tests FALSE until you assign it a real image value.

Copy Constructor

This constructor is an ordinary copy constructor. After the copy, both copies still

refer to the same image object.

General Constructor

This constructor creates an image instance for a particular kind of MIS. Because an

image is really a wrapper for a set of related classes, this function actually works a

bit like a virtual constructor.

The objclass is required to create an object, if the object does not exist. If such an

object is creatable, then boot() succeeds. If the object is not creatable, then boot()
fails. Refer to the description of boot() .

If the object pointed to by objname already exists, the objclass parameter is not

required. The objclass is populated in the object whenever a get/set/delete response

is received from the MIS.

Image()

Image(const Image& im)

Image (CDU objname,
CDU objclass = duNO_VALUE,
Platform& plat = Platform::default_platform())
3-80 C++ API Reference • October 2001

Image Class
3.17.2 Image Operator Overloading

Assignment Operator

The assignment operator, above, works like the copy constructor.

Cast Operator

The cast operator, above, is for use in conditionals. It returns TRUE if this image

refers to an actual image object. Do not attempt to use the returned value as a

pointer to anything, since it points to private data.

Not Operator

The not operator, above, is provided so that you can say “if (!image) …”

3.17.3 Image Member Functions

This section describes the member functions of the Image class.

attr_changed

Purpose: Determine whether an attribute has changed.

This method returns TRUE if the real value of the named attribute was modified.

Image& operator = (const Image& other)

operator void*()

int operator ! ()

Boolean attr_changed(CDU name)
Chapter 3 High-Level PMI 3-81

Image Class
Calling Sequence:

This notification refers only to a change reported in the last received notification from

the MIS that an attribute was changed. The notification might be either an expected

response to a store request of your own, or a somewhat-less-expected attribute

change notification caused by someone else’s store request. In the latter case, if you

have asked for the ATTR_CHANGEDnotification, the image’s real attributes do not

change until the CurrentEvent::do_something function is called, either by you

within the callback, or by the PMI after your callback returns. This allows you to get

at the attribute values both before and after the change takes effect.

attr_exists

Purpose: Determine whether an attribute exists.

This function can return FALSE on an existing attribute if the value of EXISTS at

that point is MAYBE.

Calling Sequence:

...
Image thing = Image(dn, clsnm);
CDU atnm = "abcXYZ" ; // Some valid attribute name for this class
...
if (!thing.attr_changed(atnm)) {

cout << "The attribute was modified.\n" ;
}

Boolean attr_exists(CDU name)

...
Image thing = Image(dn, clsnm);
CDU atnm = "abcXYZ" ; // Some valid attribute name for this class
...
if (!thing.attr_exists(atnm)) {

cout << "The attribute does not exist.\n" ;
}

3-82 C++ API Reference • October 2001

Image Class
boot

Purpose: Activate an image and determine whether the object exists.

Alternatively,

If the object does exist, any attributes not marked IGNOREbecome available for the

various get functions. (If it does not exist, you can set attributes, then make a

create or create_within function call.) If TRACKMODEwas set to TRACK, the

image also begins tracking changes to its object. When the boot is complete, the

STATEof the image is set to UP.

If you pass boot without an attribute list argument, all attributes will be returned.

If, however, you pass boot with an empty attribute list argument (an argument

which contains an empty set of attributes), it will send a get request to the MIS to

determine if the object exists, but no attribute values will be returned in the get
response . In this way, you can check for the existence of an object without

incurring the overhead of retrieving attribute values.

Calling Sequence:

For a complete example, refer to the sample/image_boot.cc file.

For an existing object, if the class specified at the time of object construction is

incorrect, this is an error, and boot() fails. Refer to the description of the Image
constructors.

Result boot(Array (DU) attrlist,
 Timeout to = DEFAULT_TIMEOUT)

 Result boot(const Timeout to = DEFAULT_TIMEOUT);

...
Image im(fdn);
if(!im.boot()) { // Boot an image without an attribute list.
 printf("Error in boot\n");
 return 2;
}

Chapter 3 High-Level PMI 3-83

Image Class
call

Purpose: Call a method for an image, with parameter as textual representation.

Call a miscellaneous method for the managed object represented by this image. Both

parameter and result are passed as textual data language.

In the syntax above, name is the name of the action. param is the parameter

associated with the action. If param is not provided (or if it is set to duNONE), there

is no parameter associated with this action specified in the GDMO.

The syntax of the parameter can be found using the get_param_syntax function.

The syntax of the result is found using the get_result_syntax function. Action

requests sent as a result of call are always sent with the confirmed bit set. To send

unconfirmed action requests, please refer to Image::start() . This function

(Image::start()) also sends unconfirmed action requests message when callback

is NO_CALLBACK.

call_raw

Purpose: Call a method for an image, with parameter encoded.

Call a miscellaneous method for the managed object represented by this image. The

parameter must be in encoded form.

In the example above, name is the name of the action. param is the parameter

associated with the action. If param is not provided (or if it is set to duNONE, there is

no parameter associated with this action.

The syntax of the parameter can be found using get_param_syntax . The syntax of

the result can be found using get_result_syntax . Action requests sent as a result

of call are always sent with the confirmed bit set. To send unconfirmed action

requests, please refer to Image::start() .

DU call(CDU name,
 CDU param = duNONE,
 const TIMEOUT to = DEFAULT_TIMEOUT)

Morf call_raw(CDU name,
 Morf param = Morf(),
 const TIMEOUT to = DEFAULT_TIMEOUT)
3-84 C++ API Reference • October 2001

Image Class
create

Purpose: Create a managed object represented by a given image.

Calling Sequence:

You cannot create an object that already exists; however, you can check if an object

already exists before creating it .

For a complete example, refer to the sample/create.cc file.

The attributes of the new object are a combination of the attributes supplied in the

imaginary object, plus any additional attributes supplied by the reference object (if

one was supplied), plus any other attributes the MIS feels like creating.

The create function requires the following:

■ The object class of the image must be set correctly.

■ There is sufficient information in the object name, nickname, and/or attributes for

the MIS to figure out the complete object name for the new object (to the extent

that it cannot simply make up a name).

After the create , the OBJNAMEproperty has been set to the actual complete object

name, even if it was not specified completely before the create .

create_within

Purpose: Create an object in a container.

Result create(Image& refobj = Image(),
 const Timeout to = DEFAULT_TIMEOUT)

Image thing = Image(dn,oc);
before the next call, thing must be a valid image for an object. See create.cc

if (!thing.create()) {
 cout << "create failed" << endl;
 return 1;
 } else {
 cout << "create succeeded" << endl;
 }
Chapter 3 High-Level PMI 3-85

Image Class
Within a specified container object, create, the managed object represented by the

specified image.

For create_within() , first construct the image using the duNone constant as the

instance name (instead of the fdn) as follows:

Calling Sequence:

Typically you would use this when you want the MIS to make up a name for your

object, and you only want to specify the object’s location. You cannot create an object

that already exists, or you receive an Invalid exception. The attributes of the new

object are a combination of the attributes supplied in the imaginary object, plus any

additional attributes supplied by the reference object (if one was supplied), plus any

other attributes the MIS feels like creating.

The create_within function requires the following:

■ The object class of the image must be set correctly.

■ Sufficient information in the container object name plus the attributes for the MIS

exist to determine the complete object name for the new object (to the extent that

it cannot create a name).

After the create , the OBJNAMEproperty is set to the actual complete object name,

even though it was not specified before the create .

destroy

Purpose: Destroy the managed object represented by this image.

Result create_within(CDU container_objname,
 Image& refobj = Image(),
 const Timeout to = DEFAULT_TIMEOUT)

im = Image(duNone, object_class);
im.create_within(args ...);

...
Image thing = Image(duNone,oc);
if (!thing.create_within()) {
 cout << "create_within failed" << endl;
 return 1;
 }
3-86 C++ API Reference • October 2001

Image Class
Depending on the semantics of the MIS at that point, this might also delete any

children of the object in question, or it might refuse to delete anything if there are

any children.

Calling Sequence:

exists

Purpose: Determine whether an object exists.

Given a booted image, determine whether a managed object exists.

Calling Sequence:

This function can return FALSE on an existing object before the first boot , since at

that point the value of EXISTS is MAYBE.

Result destroy(const Timeout to = DEFAULT_TIMEOUT)

...
Image thing = Image(dn,oc); // Valid image of an object.
. . .
if (!thing.destroy()) {
 cout << "destroy failed" << endl;
 return 1;
 } else
 cout << "destroy succeeded" << endl;
}

Boolean exists()

...
Image thing = Image(dn, clsnm);
...
thing.boot(); // Before you call exists(), must boot the image.
if (!thing.exists()) {

cout << "The object does not exist.\n" ;
}

Chapter 3 High-Level PMI 3-87

Image Class
The following function call is equivalent to the above function call:

find_by_nickname

Purpose: Find an image by its nickname.

Returns the value Image() if not found, which in a conditional evaluates to FALSE.

All image nicknames are kept in a global registry.

Calling Sequence:

find_by_oi

Purpose: Returns an image for the object identified by the argument oi - the object

instance.

This static function is equivalent to the following member functions of the

Platform class:

Image find_image_by_oi(oi)

If the object exists, it will be returned as a result of the function invocation. If the

object does not exist the value Image() will be returned.

if (!thing.get_prop(“EXISTS”) == ”YES”) {

static Image find_by_nickname(CDU name,
 Platform& plat = Platform::def_platform)

...
CDU nicnam = "Server" ;
Image thing = Image::find_by_nickname(nicnam) ;
if (!thing) {

cout << "object not found" << endl;
return 1 ;

}

static Image find_by_oi(CDU oi, Platform$p1)
3-88 C++ API Reference • October 2001

Image Class
find_by_objname

Purpose: Find an image by its object name.

Returns the value Image() if not found, which in a conditional evaluates to FALSE.

All image object names are kept in a global registry.

Calling Sequence:

To guarantee that the image is created if not found, use the Image(objname)
constructor.

first_album

Purpose: Return the first album containing the image.

The return value is in the form of an AlbumImage iterator.

The AlbumImage::next_album function returns a next album until there are no

more.

get

Purpose: Return the value of the attribute,

static Image find_by_objname(CDU name,
 Platform& plat = Platform::def_platform)

...
CDU objnam = "Server" ;
Image thing = Image::find_by_objname(objnam) ;
if (!thing) {

cout << "object not found" << endl;
return 1 ;

}

AlbumImage first_album()
Chapter 3 High-Level PMI 3-89

Image Class
The attribute is formatted in data language, according to the implicit syntax of the

attribute.

Calling Sequence:

The syntax can specify either a list or a scalar. If the attribute is not present, a value

of DU() is returned.

get_attr_names

Purpose: Get attribute names.

Return an array containing the names the attributes for this image. The image must

be valid and booted before calling get_attr_names() .

If all is:

■ FALSE, returns the names of attributes that currently have values in the image.

■ TRUE, returns the names of all attributes that are defined for the object class.

You can examine the EXISTS attribute property to see if the attribute exists in this

image.

Calling Sequence:

For a complete example, see the sample/album.cc file.

DU get(CDU name, FBits fb = 0) const

Image thing ;
 ..
thing.boot() ; // thing must be complete & booted.
CDU atnam = "abcXYZ" ; // Some existing attribute name
CDU atval = thing.get(atnam) ;

Array DU get_attr_names(Boolean all = FALSE)

thing.boot(); // thing must be a booted image before this next
call.
Array(DU) attr_names = thing.get_attr_names();
3-90 C++ API Reference • October 2001

Image Class
get_attr_prop

Purpose: Get an attribute property.

Return a property key value of an attribute of the current image.

Where, the attrname is an attribute name, the key is a property key, and the Return

value is a property key value.

For instance, the property key TRACKMODEcan have any one of the property key

values IGNORE, SNAP, or TRACK. If key does not specify an existing property, a null

DataUnit is returned, which tests FALSE in a conditional.

Calling Sequence:

DU get_attr_prop(CDU attrname, CDU key)

Image thing ;
 ..
thing.boot() ; // thing must be complete & booted.
CDU atnm = "abcXYZ" ; // Some valid, existing attribute name
CDU propkey = "TRACKMODE" ; // Or: CDU propkey = duTRACKMODE
DU propval = get_attr_prop(atnm, propkey) ;
Chapter 3 High-Level PMI 3-91

Image Class
Some common property keys and values are listed in TABLE 3-13.

TABLE 3-13 Properties Supported by Most Image Attributes

Property Key Values Description

TRACKMODE IGNORE,
SNAP,
TRACK

This tells the PMI how to track an attribute. Track attributes are

maintained by monitoring attribute change events from the

MIS. IGNOREattributes are assumed to be uninteresting and

never fetched. Attempts to fetch an ignored attribute result in

an invalid exception.

In track mode, a PMI image is kept current based on Attribute

Value Change notifications (AVCs). However, when tracking is

off, AVCs are still issued but the image itself does not change

MOD_PENDING IGNORE,

REPLACE,
INCLUDE,

EXCLUDE,
DEFAULT

This tells the PMI how to modify this attribute at the next

store or start_store .

IGNOREis the initial value, indicating that this attribute is not

to be modified.

REPLACEis the default set operation, and requests the MIS to

do simple assignment using the supplied value.

INCLUDEand EXCLUDErequest the MIS to perform set

inclusion or exclusion on a multi-valued attribute. (On a single-

valued attribute, produces an invalid exception.)

DEFAULTrequests the MIS to set the attribute to its default

value.

IGNORE_ALLO
WED
REPLACE_ALL
OWED
INCLUDE_ALL
OWED
EXCLUDE_ALL
OWED
DEFAULT_ALL
OWED

YES,
NO

These read-only properties say whether you can perform the

corresponding modification to this attribute. They are

meaningful only if the MIS supplies the corresponding

information. It’s possible for an attribute to claim to be

modifiable and yet the MIS refuses to modify it.

MODIFIABLE YES,
NO

This read-only property is TRUEif any of REPLACE, INCLUDE,

EXCLUDE, or DEFAULTare allowed.

EXISTS YES,
NO,
MAYBE

This read-only property says whether this attribute is known to

exist in the managed object represented by the image.

Attributes with a TRACKMODEof IGNOREcan remain in MAYBE
state even though other attributes have been fetched.
3-92 C++ API Reference • October 2001

Image Class
get_attr_trackmode

Purpose: Get the attribute TRACKMODE.

Return the TRACKMODEproperty value for an attribute of the current image.

Calling Sequence:

The following function call is equivalent to the one above:

get_attr_numerrors

Purpose: Get the number of attributes with outstanding errors.

Returns the number of attributes that have outstanding error messages resulting

from the latest attempt to store.

Calling Sequence:

get_attr_last_error

Purpose: Get last error message for this attribute.

DU get_attr_trackmode(CDU attrname)

Image thing ;
 ..
thing.boot() ; // thing must be complete & booted
CDU atnm = "abcXYZ" ; // Some valid, existing attribute name
DU trkmd = thing.get_attr_trackmode(atnm) ;

DU trkmd = thing.get_attr_prop(atnm, “TRACKMODE”) ;

U32 get_attr_numerrors()

Image im ;
U32 n ;
 ...
n = im.get_attr_numerrors() // The im image must be booted.
Chapter 3 High-Level PMI 3-93

Image Class
Returns the error message associated with the last exception thrown by this

attribute, or returned by the MIS.

Calling Sequence:

get_dbl

Purpose: Get the attribute as a double .

Returns the value of the attribute formatted as a double . The Syntax must be a

scalar and be consistent with a double representation. If the attribute is not present,

a value of 0.0 is returned.

Calling Sequence:

get_gint

Purpose: Get the attribute as a GenInt .

Returns the value of the attribute formatted as a GenInt (arbitrarily long integer).

The Syntax must be a scalar and must be consistent with a GenInt representation.

If the attribute is not present, a value of GenInt is returned.

DU get_attr_last_error(CDU attrname)

Image im ;
CDU atnm = "abcXYZ" ; // Some valid attribute name
DU lem ;
lem = im.get_attr_last_error(atnm) ; // im must be booted.

double get_dbl(CDU attrname)

Image im ;
CDU atnm = "abcXYZ" ; // Some valid attribute name
double attrvalu = im.get_dbl(atnm) ; // im must be booted.

GenInt get_gint(CDU attrname)
3-94 C++ API Reference • October 2001

Image Class
Calling Sequence:

get_long

Get the attribute as a long .

Returns the value of the attribute formatted as a long . The Syntax must be a scalar

and be consistent with a long representation. If the attribute is not present, a value of

0 is returned.

Calling Sequence:

get_nickname

Purpose: Get nickname of image.

Returns the nickname of the current image.

The following function call is equivalent to the one above:

Calling Sequence:

Image im ;
CDU atnm = "abcXYZ" ; // Some valid attribute name
GenInt attrvalu = im.get_gint(atnm) ; // im must be booted.

long get_long(CDU attrname)

Image im ;
CDU atnm = "abcXYZ" ; // Some valid attribute name
long attrvalu = im.get_long(atnm) ; // im must be booted.

DU get_nickname()

DU get_prop(“NICKNAME”) ;

Image im ;
CDU ninm = im.get_nickname() ; // im must be booted.
Chapter 3 High-Level PMI 3-95

Image Class
get_objclass

Purpose: Get class of object.

Returns the name of the class of the managed object represented by this image.

The following function call is equivalent to the one above:

Calling Sequence:

get_objname

Purpose: Get object name.

Returns the full name of the managed object represented by this image in local

distinguished name (LDN) format.

The following is equivalent to the above expression:

Calling Sequence:

DU get_objclass()

DU get_prop(“OBJCLASS”) ;

Image im ;
DU obcl = im.get_objclass() ; // im must be booted.

DU get_objname()

DU get_prop(“OBJNAME”) ;

Image im ;
DU obnm = im.get_objname() ; // im must be booted.
3-96 C++ API Reference • October 2001

Image Class
get_oi

Purpose: Get the Managed Object Instance, in encoded ASN1 value format, for the

instance of the managed object represented by the Image.

get_encoded_oi

Purpose: Get the Managed Object Instance, in human readable format, for the

instance of the managed object represented by the Image.

get_oc

Purpose: Get the Managed Object Class of the Managed Object Instance represented

by the instance of the Image.

get_param_syntax

Purpose: Get the syntax for a method parameter.

For more information, refer to call and start under the description of Image .

Calling Sequence:

For the (arbitrarily chosen) object MDRand method getOidName :

Asn1Value get_oi()

DU get_encoded_oi()

Asn1Value get_oc()

Syntax get_param_syntax(CDU name)

Image im ("metaname=\"MDR\"") ;
im.boot() ; // im must be complete and booted.
Syntax sntx ;
sntx = im.get_param_syntax(DU ("getOidName")) ;
Chapter 3 High-Level PMI 3-97

Image Class
get_prop

Purpose: Get a property of the current image.

Where, the key is a property key and Return value is a property key value

For instance, If you specify the property TRACKMODE, and there is such a property,

then the function returns one of the values IGNORE, SNAP, or TRACK.

If you specify a key that does not match an existing property, then the function

returns a null DataUnit , which tests FALSE in a conditional.

Calling Sequence:

Most images support at least the following properties:

DU get_prop(CDU key)

Image thing ;
 ...
thing.boot() ; // thing must be complete and booted.
CDU propkey = "TRACKMODE" ; // You can use duTRACKMODE
DU propval = thing.get_prop(propkey) ;

TABLE 3-14 Properties Supported by Most Images

Properties Description

OBJNAME The full name of the managed object represented by

this image. To find an existing object, you must set

either this property or the NICKNAME.

OBJCLASS The name of the class of the managed object

represented by this image. You must set this property

in order to create an object.

NICKNAME The nickname of this image.
3-98 C++ API Reference • October 2001

Image Class
get_raw

Purpose: Get the attribute value, encoded form.

Returns the attribute value in an MIS-specific encoded form.

Calling Sequence:

TRACKMODE
(SNAP,

TRACK)

How the PMI keeps track of the attribute value.

SNAPimages are fetched when the image is booted, and

then left alone. TRACKimages are maintained by

monitoring events from the MIS.

In track mode, a PMI image is kept current based on

Attribute Value Change (AVC) notifications. However,

when tracking is off, AVCs are still issued but the

image itself does not change.

STATE
(DOWN,

BOOT,
UP,
SHUTDOWN)

The current state of the image. Read only. Initially, an

image is DOWN. When you call boot or start_boot ,

the image enters BOOTstate until the boot is done. The

image then remains in the UPstate until a shutdown or

a start_shutdown is done. It remains in SHUTDOWN
state until the shutdown is complete, at which time it is

DOWNagain.

EXISTS
(YES,

NO,
MAYBE)

Whether the object as a whole is real or imaginary.

Before the first boot , the state is indeterminate. Real

objects cannot be created (unless you enjoy getting the

Conflict exception). Imaginary objects can only be

created or used as a reference object for a

set_from_ref . Attempting to get a real attribute

value from an imaginary object results in the noshed
exception.

Morf get_raw(CDU attrname)

Image thing ;
 ...
thing.boot() ; // thing must be complete and booted.
CDU attrnam = "abcXYZ" ; // Some valid attribute name
Morf attrval = thing.get_raw(attrnam) ;

TABLE 3-14 Properties Supported by Most Images (Continued)

Properties Description
Chapter 3 High-Level PMI 3-99

Image Class
get_result_syntax

Purpose: Get the syntax for a method result.

Calling Sequence:

For more information, refer to call and start under the description of Image .

get_set

Purpose: Gets imaginary value from last set rather than real value.

The get_set function is like get , but it returns the imaginary value from the last

set rather than the real attribute value.

Calling Sequence:

get_set_dbl

Purpose: Get imaginary double value from last set .

Syntax get_result_syntax(CDU name)

Image thing ;
 ...
thing.boot() ; // thing must be complete and booted.
CDU methnam = "abcXyz" ; // Some valid method name
Syntax sntx = thing.get_result_syntax(methnam) ;

DU get_set(CDU attrname, FBits fb = 0)

Image thing ;
 ..
thing.boot() ; // thing must be complete & booted.
CDU atnam = "abcXYZ" ; // Some existing attribute name
DU atval = thing.get_set(atnam) ;
3-100 C++ API Reference • October 2001

Image Class
The get_set_dbl function is like get_dbl , but it returns the imaginary value from

the last set rather than the real attribute value.

Calling Sequence:

get_set_gint

Purpose: Like get_gint , but returns the imaginary value.

The get_set_gint function is like get_gint , but it returns the imaginary value

from the last set rather than the real attribute value.

Calling Sequence:

get_set_long

Purpose: Like get_long , but returns the imaginary value.

The get_set_long function is like get_long , but it returns the imaginary value

from the last set rather than the real attribute value.

double get_set_dbl(CDU attrname)

Image thing ;
 ..
thing.boot() ; // thing must be complete & booted.
CDU atnam = "abcXYZ" ; // Some existing attribute name
dbl atval = thing.get_set_dbl(atnam) ;

GenInt get_set_gint(CDU name)

Image thing ;
 ..
thing.boot() ; // thing must be complete & booted.
CDU atnam = "abcXYZ" ; // Some existing attribute name
GenInt atval = thing.get_set_gint(atnam) ;

long get_set_long(CDU name)
Chapter 3 High-Level PMI 3-101

Image Class
Calling Sequence:

get_set_raw

Purpose: Like get_raw , but returns the imaginary value from the last set .

The get_set_raw function call is like get_raw , but returns the imaginary value

from the last set rather than the real attribute value.

Calling Sequence:

get_set_str

Purpose: Like get_str , but returns the imaginary value from the last set .

The get_set_str function is like an ordinary get_str , but returns the imaginary
value from the last set rather than the real attribute value.

Image thing ;
 ..
thing.boot() ; // thing must be complete & booted.
CDU atnam = "abcXYZ" ; // Some existing attribute name
long atval = thing.get_set_long(atnam) ;

Morf get_set_raw(CDU name)

Image thing ;
 ..
thing.boot() ; // thing must be complete & booted.
CDU atnam = "abcXYZ" ; // Some existing attribute name
Morf atval = thing.get_set_raw(atnam) ;

DU get_set_str(CDU name, FBits fb = 0)
3-102 C++ API Reference • October 2001

Image Class
Calling Sequence:

get_str

Purpose: Get attribute as a string.

Returns the value of the attribute formatted as a string without quotes.

Calling Sequence:

The Syntax must be a scalar and be consistent with a string representation. It is

legal to get a numeric value as a string, it is converted for you. In fact, it’s legal to

get_str anything. If get_str doesn’t know anything special to do with the data, it

calls get for you.

The default format bits (0) sometimes produce strings containing newline characters.

You might want to suppress this by passing an fb argument of OMIT_NEWLINES.

By default, the choice specifier is not returned as part of the string for the

get_str() function. USE_EXPLICIT_CHOICE should be used as the second

argument of this function if you want the choice specifier in the returned value.

If you have registered a Coder for this attribute (or in the absence of that, for the

Syntax of this attribute), then that Coder is used to decode the attribute in

preference to the standard decoder (the value need not be a scalar value in this case).

Image thing ;
 ..
thing.boot() ; // thing must be complete & booted.
CDU atnam = "abcXYZ" ; // Some existing attribute name
DU atval = thing.get_set_str(atnam) ;

DU get_str(CDU attrname, FBits fb = 0)

Image thing ;
 ..
thing.boot() ; // thing must be complete & booted.
CDU atnam = "abcXYZ" ; // Some existing attribute name
DU atval = thing.get_str(atnam) ;
Chapter 3 High-Level PMI 3-103

Image Class
get_userdata

Purpose: Get data the application stored under the key specified.

Returns any data the application might have stored under the key specified. There

are no predefined values.

Calling Sequence:

If there is no data under that key for this instance, the return value (a null

DataUnit) evaluates to FALSE.

get_when_syntax

Purpose: Get the syntax of a given event type.

Calling Sequence:

For a list of events, refer to the description of when, under the description of the

Image class.

is_in_album

Purpose: Determine whether the image is in the album.

DU get_userdata(CDU key)

Image thing ;
 ..
thing.boot() ; // thing must be complete & booted.
CDU atnam = "abcXYZ" ; // Some existing attribute name
DU atval = thing.get_userdata(atnam) ;

Syntax get_when_syntax(CDU eventname)

Image thing ;
 ..
thing.boot() ; // thing must be complete & booted.
CDU evnam = "abcXYZ" ; // Some existing event name
Syntax sntx = thing.get_when_syntax(evnam) ;
3-104 C++ API Reference • October 2001

Image Class
Returns TRUEif the image is contained in the album.

Calling Sequence:

U32 num_albums

Purpose: Get the number of albums that contain this image.

Calling Sequence:

revert

Purpose: Cancel any pending set s.

Cancels any pending set s that have not yet been stored.

Calling Sequence:

Boolean is_in_album(Album& album)

Image thing ;
Album myalbum ;
 ... // Before the next call, derive myalbum.
DU atval = thing.is_in_album(myalbum) ;

U32 num_albums()

Image thing ;
thing.boot() ;
 ...
U32 na = thing.num_albums() ;

Result revert()

Image thing ;
thing.boot() ;
 ...
thing.revert() ;
Chapter 3 High-Level PMI 3-105

Image Class
send_event

Purpose: Send event notifications to the MIS.

■ Send an event to the MIS with a custom timestamp.

■ Send an event to the MIS with the timestamp expressed in ASN.1.

■ Send an event to the MIS with the default timestamp of now.

The image used in the send_event() call is the representation of the managed

object that is generating the event notification (such as an alarm). This notification is

sent to the MIS, from where it is forwarded to applications that are interested in

events of this type.

The image instance (of which send_event() is a member) is the generator of the

event. In using send_event() , a PMI application is acting in an agent role, since

only agents generate events.

Before calling send_event() , keep in mind that:

■ The image must be of a valid object class and have a valid name;

■ The syntax of the argument event_info is based on the event and is parsed

accordingly.

When the value of tt is zero, the event is sent with the timestamp of “Now”.

Timestamp fields follow standard UNIX conventions:

Result send_event (DU event_name ,
DU event_info =DU, struct tm *tt=0)

Result send_event (DU event_name ,
 Asn1Value & event_info ,
 Asn1Value & time =Asn1Value())

Result send_event (DU event_name ,
struct tm * tt)

Timestamp sent =
(tt->tm_year + 1900, tt->tm_mon + 1, tt->mday, tt->tm_hour,
 tt->tm_min, tt->tm_sec);
3-106 C++ API Reference • October 2001

Image Class
set

Purpose: Set attributes.

The set function encodes the textual data you pass and modifies the value of the

attribute using the encoded value.

Actually, it changes the imaginary value of the attribute. The real value is not changed

until the next store . The data language is interpreted according to the syntax

already implicit in the attribute. If the data cannot be so interpreted, an invalid

exception is thrown. The syntax can specify either a list or a scalar. A series of set
operations can be undone before the store by calling revert . Refer to the

MOD_PENDINGattribute property in TABLE 3-13 for a description of legal operations.

set_attr_prop

Purpose: Set a property of an attribute.

Sets a property of an attribute of the current image.

Requirements:

■ name specifies an existing attribute in the object class

■ key specifies a supported property

■ value specifies a legal value.

If set_attr_prop cannot do what you ask, it throws an invalid exception. Refer to

get_attr_prop , under the description of Image , for some typical properties.

set_dbl

Purpose: Modify an attribute using a double.

Encodes the double you pass and modifies the value portion of the attribute using

the encoded value.

Result set(CDU name, CDU val, CDU op = duREPLACE,
FBIts fb = 0)

Result& set_attr_prop(CDU name, CDU key, CDU value)
Chapter 3 High-Level PMI 3-107

Image Class
Actually, it changes the imaginary value of the attribute. The real value is not changed

until the next store . The syntax of the attribute must be a scalar and permit a

double representation, or an invalid exception is thrown.

Refer to the MOD_PENDINGattribute property in TABLE 3-13 for a description of legal

operations.

set_from_ref

Purpose: Copy attribute values from an object to its current image.

Copies the attribute values from the reference object into the current image.

The state of the reference object must be UP, but the reference object need not exist. If

the reference object exists, then its real attributes are copied. Otherwise its imaginary
attributes are copied. Attributes that receive existing values are automatically given

a MOD_PENDINGproperty of REPLACE. Attributes that receive nonexistent values are

given a MOD_PENDINGproperty of IGNORE.

set_gint

Purpose: Modify an attribute using a GenInt .

Encodes the arbitrarily long integer you pass and modifies the value portion of the

attribute using the encoded value. Actually, it changes the imaginary value of the

attribute. The real value is not changed until the next store .

The syntax of the attribute must be a scalar and permit a GenInt representation, or

an invalid exception is thrown. Refer to the MOD_PENDINGattribute property in

TABLE 3-13 for a description of legal operations.

Result set_dbl(CDU name,
double val,
CDU op = duREPLACE)

Result set_from_ref(Image& refobj)

Result set_gint(CDU name,
GenInt& val,
CDU op = duREPLACE)
3-108 C++ API Reference • October 2001

Image Class
set_long

Purpose: Modify an attribute using a long .

Encodes the long you pass and modifies the value portion of the attribute using the

encoded value. Actually, it changes the imaginary value of the attribute. The real
value is not changed until the next store .

The syntax of the attribute must be a scalar and permit a long representation, or an

invalid exception is thrown.

Refer to the MOD_PENDINGattribute property in TABLE 3-13 for a description of legal

operations.

set_nickname

Purpose: Set the nickname for an image.

The following is equivalent to the above:

set_objclass

Purpose: Set the object class for an image.

The following is equivalent to the above:

Result set_long(CDU name,
long val,
CDU op = duREPLACE)

Result set_nickname(CDU nickname)

Result set_prop(“NICKNAME”, nickname) ;

Result set_objclass(CDU name)

Result set_prop(“OBJCLASS”, name) ;
Chapter 3 High-Level PMI 3-109

Image Class
set_prop

Purpose: Set a property of the current image.

Requirements:

■ key specifies a supported property

■ value specifies a legal value

If set_prop cannot do what you ask, it throws an invalid exception. Refer to

get_prop under the description of the Album class, for some typical properties.

set_raw

Purpose: Load data into the imaginary value of an attribute.

The set_raw function loads a MIS-specific, encoded data value into the imaginary
value of the attribute. If you later do a store , that updates the real value of the

attribute.

Refer to the MOD_PENDINGattribute property in TABLE 3-13 for a description of legal

operations.

set_str

Purpose: Encode a string and modify the attribute.

The set_str function encodes the string you pass and modifies the value portion of

the attribute using the encoded value.

Result set_prop(CDU key,CDU value)

Result set_raw(CDU attrname,
Morf& val,
CDU op = duREPLACE)
3-110 C++ API Reference • October 2001

Image Class
Actually, it changes the imaginary value of the attribute. The real value is not changed

until the next store . The syntax of the attribute must be a scalar and permit a string

representation, or an invalid exception is thrown. For choice type attributes, a choice

specifier should be used.

Calling Sequence:

The difference between set_str and set is that the data language used by set
requires quotes as part of the string, while set_str assumes them if necessary.

(They're not always necessary; you can also pass numeric values as strings, and they

are converted for you.) Refer to the MOD_PENDINGattribute property in TABLE 3-13

for a description of legal operations.

If you have registered a Coder for this attribute (or in the absence of that, for the

Syntax of this attribute), then that Coder is used to encode the attribute in

preference to the standard encoder—the value need not be a scalar value in this case.

set_userdata

Purpose: Store data supplied by the application.

The set_userdata function stores arbitrary data supplied by the application,

under the key specified.

There are no predefined values. If there was already data under that key for this

instance, it is replaced without comment. Essentially, this is an associative array

belonging to the album that the application can use any way it pleases.

Result set_str(CDU attrname,
CDU val,
CDU op = duREPLACE, FBits fb = 0)

Image im ;
im.boot() ;
char dn[300] = "logId=\"AlarmLog\"";
char class_name[300] = "log";
char attribute_name[300]= "maxLogSize";
char set_val[300] = "666666";
 ...
if(!im.set_str(attribute_name, set_val)) {
...

Result set_userdata(CDU key, CDU value)
Chapter 3 High-Level PMI 3-111

Image Class
shutdown

Purpose: Deactivate an image.

The shutdown function deactivates an image and invalidates all locally cached

attribute values.

A tracking image stops tracking. When complete, the image’s STATE is set to DOWN.

start

Purpose: Provide an asynchronous version of call .

The start function is the asynchronous version of call . It sends an unconfirmed

action request message when callback is NO_CALLBACK(the default).

start_boot

Purpose: Provide an asynchronous version of boot .

start_create

Purpose: Provide an asynchronous version of create .

Result shutdown(const Timeout to = DEFUALT_TIMEOUT)

Waiter start(CDU name, CDU param = duNONE, CCB cb = NO_CALLBACK)

Waiter start_boot(CCB cb = NO_CALLBACK)

Waiter start_create(Image& refobj = Image(),
CCB cb = NO_CALLBACK);

virtual Result start_create(Image& refobj = Image(), CCB cb =
NO_CALLBACK)
3-112 C++ API Reference • October 2001

Image Class
start_create_within

Purpose: Provide an asynchronous version of create_within .

start_destroy

Purpose: Provide an asynchronous version of destroy .

start_raw

Purpose: Provide an asynchronous version of call_raw .

start_shutdown

Purpose: Provide an asynchronous version of shutdown .

start_store

Purpose: Provide an asynchronous version of store .

All start_store set requests are sent in unconfirmed mode when CCBis equal to

NO_CALLBACK(the default).

Waiter start_create_within(CDU container_objname,
Image& refobj = Image(),
CCB cb = NO_CALLBACK)

Result start_destroy(CCB cb = NO_CALLBACK)

Waiter start_raw(CDU name,
Morf param = Morf(),
CCB cb = NO_CALLBACK)

Waiter start_shutdown(CCB cb = NO_CALLBACK);

Waiter start_store(CCB & cb = NO_CALLBACK)
Chapter 3 High-Level PMI 3-113

Image Class
store

Purpose: Update actual attributes using imaginary attributes.

The store function updates the actual object's attributes using any imaginary

attributes that have been created by set and any others.

See also start_store() .

when

Purpose: Establish a callback routine.

The when function establishes a callback routine to handle an image-specific

asynchronous event.

The Platform object receives all events at which time all callbacks registered for by

the Platform objects are executed. Next, all of the callbacks registered for by image

objects are executed, then all of the callbacks registered for by album objects are

executed.

For example, you might want to know if an attribute of the image changed. You

might say:

Caution – For the same image, multiple callbacks for the same event type are not

supported.

Result store(const Timeout to = DEFAULT_TIMEOUT)

Result when(CDU eventname,
CCB cb = NO_CALLBACK)

when(“ATTR_CHANGED”, Callback(attr_change_cb, 0)) ;
3-114 C++ API Reference • October 2001

Image Class
Image Events include:

3.17.4 Related Global Functions

fdn2formal

Purpose: Take a fully distinguished name in "/" notation and convert it into "{...}"

notation.

When passed a fully distinguished name with fdn, the fdn2formal function re turns

the "{...}" notation value of the FDN.

fdn2oi

Purpose: Return the ASN1 encoded value for a fully distinguished name.

The fdn2oi function returns the encoded FDNif successful, otherwise NULL.

TABLE 3-15 Image-specific Asynchronous Events

Events Description

OBJECT_CREATED The object represented by this image was successfully created

(not necessarily by us!).

OBJECT_DESTROYED The object represented by this image was successfully

destroyed (not necessarily by us!).

ATTR_CHANGED An attribute of the object represented by this image has

changed in value.

RAW_EVENT Any object-related event can be examined as a raw event

before ordinary event processing by the PMI.

extern DU fdn2formal(CDU fdn);

extern Asn1Value fdn2oi(CDU fdn);
Chapter 3 High-Level PMI 3-115

Morf Class
name2oc

Purpose: Return the ASN1 encoded form of an object class, given the name in textual

form.

The name2oc function returns the encoded object class if successful, otherwise

NULL.

oc2name

Purpose: Return the name of an object class.

If successful, the oc2name function returns the object class name.

oi2fdn

Purpose: Return the decoded FDNstring, given the encoded FDN.

If successful, the oi2fdn function returns the decoded FDNstring in "/" format.

3.18 Morf Class
Inheritance: public Error

#include pmi/hi.hh

Data Members: No public data members are declared in this class.

A Morf is a reference-counting wrapper around an abstract base class—MorfData .

Each framework derives a new class from the base class and provides the

implementation for manipulating that type of data in the context of the framework.

Each instance of the derived class contains an opaque, encoded value along with the

information necessary for the PMI to decode it.

extern Asn1Value name2oc(DU oc);

extern DU oc2name(const Asn1Value& av);

extern DU oi2fdn(Asn1Value av);
3-116 C++ API Reference • October 2001

Morf Class
In the context of Asn1 encoded values, an instance of a Morf class contains an Asn.1

encoded value that can be retrieved as an Asn1Value instance through the Morf
methods (e.g. get_value). The Morf class also contains an instance of the Syntax
class, which specifies the type associated with the value.

As noted in their individual descriptions, some of this class’s methods require a list

argument, some a scalar, and some accept both.

TABLE 3-16 Morf Method Types

Method Name Data Domain Method Type

void*
=
==
!=

Operator Overloading

get_platform
get_syntax
get_type
has_value
ref

Defined type or list Get information about an existing morf

is_any
is_choice
is_list
is_set
is_sequence

Defined type or list Distinguish syntax types

extract
get_member_names
num_elements
split_array
split_queue

List only Pull apart list morfs

set Defined type or list Set the data value of an existing morf
Chapter 3 High-Level PMI 3-117

Morf Class
3.18.1 Constructors

The default constructor creates a Morf instance that refers to no actual morf. The

value tests FALSE until you assign it a real morf value.

The preceding constructor constructs a Morf instance for a particular kind of syntax.

Since a Morf is reall a wrapper for a set of related classes, this function actually

works like a virtual constructor. The newly constructed Morf will have an associated

Syntax (passed as the argument), but no associated value.

set_any
set_dbl
set_gint
set_long
set_str
set_value

Defined type only

Defined type or list

Set the data value of an existing morf

get()
get_bit_string_identifiers()
get_dbl
get_gint
get_long
get_str
get_size_constraint()

get_value

Defined type only

Defined type or list

Get the data value from an existing morf

get_memname
set_memname

Choice only

Morf()

Morf(Syntax& syn)

Morf(const Morf& other)

TABLE 3-16 Morf Method Types (Continued)

Method Name Data Domain Method Type
3-118 C++ API Reference • October 2001

Morf Class
The preceding constructor is a copy constructor. After the copy, both copies still refer

to the same underlying MorfData object. The reference count on the morf object is

incremented.

The preceding constructor constructs a Morf instance for a particular kind of syntax,

which implies a particular kind of MIS. Because a morf is really a wrapper for a set

of related classes, this function actually works something like a virtual constructor.

The textual data supplied as the second argument is parsed according to the syntax

supplied, so you can create either defined type or list morfs with this function.

The preceding constructor constructs a Morf instance for a particular kind of syntax.

Because a Morf is really a wrapper for a set of related classes, this function actually

works rather like a virtual constructor. The newly constructed Morf will be

associated with the specific Syntax that was passed as the first argument. Because an

array of Morf is supplied as the second argument, only list Morf can be created with

this function. The value associated with the newly constructed Morf will be

constructed from the values of the Morf array elements, passed as the second

argument.

The preceding constructor constructs a Morf instance for a particular kind of syntax.

Because a Morf is really a wrapper for a set of related classes, this function actually

works like a virtual constructor. The newly constructed Morf will be associated with

the specific Syntax that was passed as the first argument. Because a queue of

MorfElems is supplied as the second argument, only list Morf can be created with

this function. The value associated with the newly constructed Morf will be

constructed from the values of the MorfElems , passed as the second argument.

The preceding constructor constructs a Morf instance for a particular kind of

attribute, which implies a particular syntax. The attrname passed as the first

argument does not imply any specific instance of that attribute. Another way to

accomplish this is to create an image for an object of the type containing the attribute

Morf(Syntax& syn, DU data)

Morf(Syntax& syn, Array Morf& ma)

Morf(Syntax& syn, class Queue MorfElem& mq)

Morf(CDU attrname, Platform& plat = Platform::def_platform)
Chapter 3 High-Level PMI 3-119

Morf Class
in question, and then extracting the Morf corresponding to that attribute. This

constructor, however, can be used even when the attribute passed as the first

argument is not associated with any specific class.

The preceding constructor constructs a Morf instance from a void* pointer created

by the ref method. It is primarily for internal PMI use within callbacks, when the

callback can occur after the original morf has gone out of scope, and would

ordinarily have been deleted. Each call to ref increments a reference count, and

each construction of a morf using this constructor eventually causes the reference

count to be decremented again when the morf is destructed at the end of the

callback. If multiple callbacks are to use the same pointer, then pass a reuse
parameter of TRUEon all but the last callback (or call ref again within the callback)

to keep the reference alive till the next callback.

3.18.2 Destructor

The destructor will decrement the reference count on the MorfData object,

associated with the Morf object. If the reference count reaches 0, the destructor on

the associated MorfData object is invoked.

3.18.3 Morf Operator Overloading

The assignment operator works like the copy constructor.

Morf(Ptr ptrdata, Boolean reuse = FALSE)

~Morf()

Morf& operator = (const Morf& other)

operator void*()
3-120 C++ API Reference • October 2001

Morf Class
The preceding cast operator is for use in conditionals. It returns TRUEif this Morf
refers to an actual morf object. Do not attempt to use the returned value as a pointer

to anything, since it points to private data.

The preceding function is provided so that you can say “if (!morf) …”

The preceding comparison operator returns TRUEif the two compared morfs are

equivalent in value. The definition of “equivalent” depends on the MIS system type.

Some values might be impossible to compare. The operator will test for equivalency

of the values associated with the two compared morfs, if both values are interpreted

to be of the specific type associated with the Morf .

Note – The type is implicitly associated with the Morf through the contained

Syntax object.

The preceding comparison operator returns TRUEif the two compared morfs are not
equivalent in value.

3.18.4 Morf Member Functions

This section describes the member functions of the Morf class.

extract

The extract function extracts a morf from a tree of morfs. The navigation parameter

is a string containing a dot-separated list of field names or position numbers. A

position number (with the exception of 0) is an integer that represents the offset of a

int operator !()

int operator == (const Morf& other)

int operator != (const Morf& other)

Morf extract(DU navigation)
Chapter 3 High-Level PMI 3-121

Morf Class
morf, or element, in a list of morfs. The position number 0 returns the number of

elements in the list at that level of the tree. In the case of Asn.1 encoded morfs, the

following conventions are followed:

■ If the Asn1Type associated with the Morf object is of type SETor SEQUENCE, then

the navigation string contains a dot-separated list of field names, identifying the

field as defined in the SET or SEQUENCE.

■ If the Asn1Type associated with the Morf object is of type SET OFor SEQUENCE
OF, the the navigation string contains a dot-separated list of position numbers,

identifying the position in the SET OFor SEQUENCE OFstructure.

For example, consider a morf, itself containing four morfs. If you call extract on

the morf with the navigation parameter set to 0, the function will return a morf which

can be checked over for the number of elements in the list.

Consider next a morf, itself containing five morfs, the third of which contains some

arbitrary number of morfs, one of which happens to be called "attributevalue". To

extract the morf "attributevalue", simply call extract on the original morf with the

navigation parameter set to the string "3.attributevalue".

By manipulating the navigation parameter in this way, it is possible to refer to any

morf in a tree of morfs. The string "3.6.2.attributevalue", for example, would refer to

a morf called "attributevalue" that was four levels down in a tree of morfs.

The extract function is valid only for a morf that describes a list of values (or a

choice). If called on a defined type morf it throws an invalid exception. When called

on a choice value with a null navigation string, it returns a morf of the current inner

type rather than the outer choice type.
3-122 C++ API Reference • October 2001

Morf Class
Example: Use extract to find a component in a complex morf.

get

The preceding function call returns the value of the morf formatted in data language

according to the implicit Syntax of the morf. The Syntax can describe either a list

or a defined type. Various format bits can be OR’ed together to influence the form of

output. If the morf has no value, DU() is returned.

// If the object instance exists,
// get the value for attribute topoNodeMOSet,
// and construct a Morf.
Morf m = im.get_raw("topoNodeMOSet");
if (m.get_error_type() != PMI_SUCCESS) {
 cout << "Reason: ";
 cout << m.get_error_string() << endl;
 exit(5);
}

Morf newm = m.extract("1");
cout << "Using 1" << endl;
cout << newm.get_str().chp() << endl;
// Print out the attribute value
// before using Morf to split.

cout << "Using 1.distinguished " << endl;
newm = m.extract("1.distinguishedName");
cout << newm.get_str().chp() << endl;

cout << "Using 1.distinguishedName.1" << endl;
newm = m.extract("1.distinguishedName.1");
cout << newm.get_str().chp() << endl;

cout << "Using 1.distinguishedName.1.1" << endl;
newm = m.extract("1.distinguishedName.1.1");
cout << newm.get_str().chp() << endl;

cout << "Using 1.distinguishedName.1.1.attributeValue" << endl;
newm = m.extract("1.distinguishedName.1.1.attributeValue");
cout << newm.get_str().chp() << endl;

DU get(FBits fb = 0) const
Chapter 3 High-Level PMI 3-123

Morf Class
get()

If applied on a Morf object that has the underlying syntax of an ENUMERATEDtype,

this function returns the identifier string associated with the ENUMERATEDvalue.

The same applies to the Morf::get_str() function.

CODE EXAMPLE 3-7 returns the identifier string associated with the enumerated value

as defined in the asn1 document.

get_bit_string_identifiers()

This method returns a reference to an array of type Asn1NamedNumber, which holds

the identifiers and associated position for the ASN.1 BIT STRING type. If this

method fails, it returns NOT_OK; otherwise, returns OK.

A sample program describing the use of the get_bit_string_identifiers
method is in CODE EXAMPLE 3-8.

Asn1Type get()

CODE EXAMPLE 3-7 Morf::get() Example

Morf mrf;
// Assuming that morf is initialized to an ENUMERATED type
attribute
cout << "The value of the morf is " << mrf.get().chp() << endl;

Result get_bit_string_identifiers(Array(Asn1NamedNumber) &idents)
const;

CODE EXAMPLE 3-8 Morf::get_bit_string_identifiers() Example

void show_idents(Array(Asn1NamedNumber) &idents) {
Asn1TypeInt int_type(AK_INTEGER);
DU ident;
GenInt numbvalue;
U32 i, orig_size;
 Asn1Value asn1number;
Asn1ParsedValue number;

orig_size = idents.size;
cout << "Number of identifiers is " << orig_size << " ;" <<

endl;
3-124 C++ API Reference • October 2001

Morf Class
get_dbl

The preceding function call returns the value of the morf formatted as a double. The

Syntax must describe a defined type and be consistent with a double

representation. Otherwise an invalid exception is thrown. If the morf has no value,

0.0 is returned.

 for (i = 0; i<orig_size; i++) {
number = idents[i].num;
 ident = idents[i].name;
 if (number) {

asn1number = number.get_real_val(int_type);
asn1number.decode_int(numbvalue);

}
cout << "Identifier # =>" << i << " Name is => ";
cout << ident.chp() << " ;";
cout << " Identifier position is => ";
if (number) {

cout << I32(numbvalue);
} else {

cout << "NULL";
}
cout << " ;" << endl;

}
}

void show_bit_string_identifiers(Asn1Type rrrtype1) {
Result rslt;
Array(Asn1NamedNumber) newidents;

rslt = rrrtype1.get_bit_string_identifiers(newidents);
if (rslt == OK) {

show_idents(newidents);
} else {

cout << "get_bit_string_identifiers returned NOT_OK!" <<
endl;

}
}

double get_dbl()

CODE EXAMPLE 3-8 Morf::get_bit_string_identifiers() Example (Continued)
Chapter 3 High-Level PMI 3-125

Morf Class
get_gint

The preceding function call the value of the morf formatted as a GenInt (arbitrarily

long integer). The Syntax must describe a defined type and be consistent with a

GenInt representation. Otherwise an invalid exception is thrown. If the morf has no

value, GenInt() is returned.

get_long

The preceding function call returns the value of the morf formatted as a long. The

Syntax must describe a defined type and be consistent with a long representation.

Otherwise an invalid exception is thrown. If the morf has no value, 0 is returned.

get_member_names

The preceding function call returns the member names (field names) for a list
value. For a choice value, it returns the member names of an inner list, presuming

that the current value of the choice is a list value. To get the choice names

themselves, you must use get_syntax and get_member_names instead.

get_memname

The preceding function call returns the name of the member (field) currently held by

the morf. Valid only for members of lists and choices. (The morf itself need not be a

list or choice.)

GenInt get_gint()

long get_long()

Array DU get_member_names()

DU get_memname()
3-126 C++ API Reference • October 2001

Morf Class
get_platform

The preceding function call returns the Platform of the Syntax that is implicitly

bound into the morf. Valid either for a morf that describes a defined type value or a

list of values.

get_size_constraint()

If this method is applied on an Asn1Type object that represents an ASN.1 type

different from BIT STRING, OCTET STRING, SEQUENCE OFor SET OF, the method

returns NOT_OK. If the invocation is successful, the method returns OK. In addition,

this method returns, by reference, the lower and upper size constraints defined on a

subtype of a BIT STRING, OCTET STRING, SEQUENCE OF, or SET OFbase type as

variables of type Asn1ParsedValue , and the lower_open and upper_open
Boolean variables that specify whether the corresponding size constraint is open or

closed. If the size constraint is open, the lower_open and upper_open variables

are set to TRUE; otherwise, these two variables are set to FALSE.

The X.208 standard defines size constraints on BIT STRING, OCTET STRING,
SEQUENCE OF, and SET OFtypes. In addition, the X.208 standard uses MIN and MAX
to specify lower and upper constraints respectively.

MIN specifies the lower constraint defined for the parent type. MAXspecifies the

upper constraint defined for the parent type The PMI library encodes MIN and MAX
as NULL Asn1ParsedValue values. Therefore, after invoking the

get_size_constraint method, you must check whether the returned values for

the upper and lower size constraints are NULL, before attempting to decode them

(see CODE EXAMPLE 3-9). CODE EXAMPLE 3-9 decodes and prints size constraints for

BIT STRING, OCTET STRING, SEQUENCE OF, or SET OFtypes.

Platform get_platform()

Result get_size_constraint(Asn1ParsedValue &lower,
 Boolean &lower_open,
 Asn1ParsedValue &upper,
 Boolean &upper_open
) const;

CODE EXAMPLE 3-9 Morf::get_size_constraint() Example

void show_size_constraint(Asn1Type type1) {
char buf1[5000], buf2[5000],

*buf1p = buf1, *buf2p = buf2;
Chapter 3 High-Level PMI 3-127

Morf Class
U32 buf1len = 5000, buf2len = 5000;

Asn1TypeInt int_type(AK_INTEGER);
Result rslt;
U32 i;
Asn1Value asn1lower, asn1upper;
Asn1ParsedValue lower, upper;
GenInt low, up;
Boolean lower_open, upper_open;
rslt = type1.get_size_constraint(lower, lower_open, upper,

upper_open);
if (rslt == OK) {

cout << "get_size_constraint was successfull!" << endl;
 } else {

cout << "get_size_constraint failed - NOT_OK!" << endl;
return;

}

{
if (lower) {

asn1lower = lower.get_real_val(int_type);
asn1lower.decode_int(low);

buf2len = 5000;
buf2p = buf2;
int_type.format_value(asn1lower, buf2p, buf2len,

0, TAG_EXPLICIT,DataUnit(),
0);

cout << "value of lower is "<<buf2<<" !"<<endl;
// cout << "value of low is "<<I32(low)<<" !"<<endl;
if (lower_open == TRUE) {

cout << "lower range is open !" << endl;
 } else {

cout << "lower range is closed !" << endl;
}

} else {
cout << "value of lower is MIN !" << endl;
}

}
{

if (upper) {
asn1upper = upper.get_real_val(int_type);
asn1upper.decode_int(up);
buf2len = 5000;
buf2p = buf2;
int_type.format_value(asn1upper, buf2p, buf2len,

0, TAG_EXPLICIT,DataUnit(),

CODE EXAMPLE 3-9 Morf::get_size_constraint() Example (Continued)
3-128 C++ API Reference • October 2001

Morf Class
get_str

The preceding function call returns the value of the morf formatted as a string

(without quotes). The Syntax must describe a defined type and be consistent with a

string representation. It is legal to get a numeric value as a string; it is automatically

converted for you. In fact, any value is legal. If the type is unrecognized, get_str
calls get for you. If the morf has no value, DU() is returned.

The default format bits (0) sometimes produce strings containing newline characters.

You might want to suppress this by passing an fb argument of OMIT_NEWLINES.

If you have registered a Coder for this morf’s attribute (or in the absence of that, for

the Syntax of this morf), then that Coder is used to decode the value in preference

to the standard decoder. (The value need not be a defined type value in this case.)

For more information, refer to set_attr_coder under the description of the

Platform class, and set_coder , under the description of the Syntax class.

get_syntax

The preceding function call returns the Syntax that is implicitly bound into the

Morf . Valid either for a morf that describes a defined type value or a list of values.

0);
cout << "value of upper is "<<buf2<<" !"<<endl;
// cout << "value of up is "<<I32(up)<<" !"<<endl;
if (upper_open == TRUE) {

cout << "upper range is open !" << endl;
 } else {

cout << "upper range is closed !" << endl;
}

} else {
cout << "value of upper is MAX !" << endl;

}
}

}

DU get_str(FBits fb = 0)

Syntax get_syntax()

CODE EXAMPLE 3-9 Morf::get_size_constraint() Example (Continued)
Chapter 3 High-Level PMI 3-129

Morf Class
get_type()

This method returns the underlying Asn1Type object associated with a Morf object.

If the Morf object is not initialized, the method returns a NULL Asn1Type (see

CODE EXAMPLE 3-10).

get_value

The preceding function call returns the encoded value stored in the morf, if any. No

attempt is made, at this point, to validate the value against the type associated with

the morf.

has_value

The preceding function call returns a pointer to the internal, MIS-specific value, if

any. Otherwise, returns 0. Note that this differs from operator void*() , which can

return TRUE even when the morf contains only a Syntax with no value.

Asn1Type get_type()

CODE EXAMPLE 3-10 Morf::get_type() Example

Morf tstmrf = Morf();

Asn1Type tsttype = tstmrf.get_type();

if (tsttype) {

 cout << "The Asn1Type is initialized!" << endl;

} else {

 cout << "The Asn1Type is not initialized!" << endl;

}

Asn1Value get_value()

void* has_value()
3-130 C++ API Reference • October 2001

Morf Class
is_any

This function returns TRUEif the type of the data is of the type "ANY DEFINED BY"
from the GDMO definition of the object.

is_choice

The preceding function call returns TRUE if the Syntax of the morf describes a

choice value. A choice value can have any one of a number of types of value. (The

get_memname function tells you which kind of value the current morf is holding.)

Valid either for a morf that describes a defined type value or a list of values.

is_list

The preceding function call returns TRUE if the Syntax of the morf describes a

compound data value, and FALSE if it describes a defined type value. Valid either

for a morf that describes a defined type value or a list of values. Note that a list with

only one element, or zero elements, is still a list and not a defined type.

is_sequence

The preceding function call returns TRUE if the type of the data describes a

compound data value that contains an ordered list of zero or more members.

Boolean is_any()

Boolean is_choice()

Boolean is_list()

Boolean is_sequence()
Chapter 3 High-Level PMI 3-131

Morf Class
is_set

The preceding function call returns TRUE if the type of the data describes a

compound data value that contains an unordered list of zero or more members.

num_elements

The preceding function call returns the number of elements in the morf’s list. Valid

only for a morf that describes a list of values.

ref

The preceding function call returns a reference-counted (refcnt) void* pointer to

this morf, from which you must, at some future time, reconstruct the morf using the

Morf(Ptr, Boolean) constructor. Refer to that constructor description earlier in

this section for further information.

set

The preceding function encodes the textual data you pass and replaces the value

portion of the morf with the encoded value. The data language is interpreted

according to the Syntax already implicit in the morf. If the data cannot be so

interpreted, an invalid exception is thrown. The Syntax can describe either a list or

defined type.

Boolean is_set()

U32 num_elements()

Ptr ref()

Morf set(CDU data, Fbits fb = 0)
3-132 C++ API Reference • October 2001

Morf Class
set_any

This function returns TRUE if the type of the data contained in the morf is of the

type "ANY DEFINED BY" from the GDMO definition of the object. The morf data is

provided in data.

set_dbl

The preceding function call encodes the double you pass and replaces the value

portion of the morf with the encoded value. The Syntax of the morf must be a

defined type and should permit a double representation, or an invalid exception is

thrown.

set_gint

The preceding function call encodes the GenInt you pass and replaces the value

portion of the morf with the encoded value. (A GenInt is an arbitrarily long

integer.) The Syntax of the morf must be a defined type and permit a GenInt
representation, or an invalid exception is thrown.

set_long

The preceding function call encodes the long you pass and replaces the value

portion of the Morf with the encoded value. The Syntax of the morf must be a

defined type and should permit a long representation, or an invalid exception is

thrown.

Morf set_any(Morf& data)

Morf set_dbl(double data)

Morf set_gint(GenInt& data)

Morf set_long(long data)
Chapter 3 High-Level PMI 3-133

Morf Class
set_memname

The preceding function call sets the name of the member (field) currently held by the

morf. Valid only for members of a choice type. The old value of the morf is

discarded.

set_str

The preceding function call encodes the string you pass and replaces the value

portion of the morf with the encoded value. The Syntax of the morf must be a

defined type and permit a string representation, or an invalid exception is thrown.

The difference between set_str and set is that the data language used by set
requires quotes as part of the string, while set_str assumes them if necessary.

(They're not always necessary; you might also pass numeric values as strings, and

they are converted for you.)

If you have registered a Coder for this morf’s attribute (or in the absence of that, for

the Syntax of this morf), then that Coder is used to encode the value in preference

to the standard encoder. (The value need not be a defined type value in this case.)

For more information, refer to set_attr_coder under the description of the

Platform class, and set_coder , under the description of the Syntax class.

set_value

The preceding function call sets the encoded value into the morf. Checking is not

performed on the value (so that it is not validated, at this point, against the type

associated with the morf).

Result set_memname(CDU name)

Morf set_str(CDU data, FBits fb = 0)

void set_value(Asn1Value& data)
3-134 C++ API Reference • October 2001

MorfBuilder Class
split_array

The preceding function call returns the elements of a list morf in Array form, such

that they can be indexed numerically.

Valid only for a morf that describes a list of values. If called on a defined type morf,

it throws an invalid exception.

split_queue

The preceding function call returns the elements of a list morf in Queue form, such

that they can be processed with ordinary Queue commands. Valid only for a morf

that describes a list of values. If called on a defined type morf it throws an invalid

exception.

3.19 MorfBuilder Class
Inheritance: None

Data Members: No public data members are declared in this class.

The MorfBuilder class is a utility wrapper built on top of the Morf class.

MorfBuilder provides more flexibility in dealing with Morf objects that represent

constructed types (SET, SET OF, SEQUENCE, and SEQUENCE OF) and minimizes the

amount of coding you have to do.

For example, using MorfBuilder objects, you can create empty Morf objects for a

constructed type and incrementally update the fields of the underlying Morf object.

This functionality is not supported at the Morf object level.

Array Morf split_array()

class :/Queue MorfElem split_queue()

#include extpmi/exthi.hh
Chapter 3 High-Level PMI 3-135

MorfBuilder Class
3.19.1 Constructors

The preceding constructor creates a MorfBuilder instance that contains a Morf
object and implicitly refers to that Morf object in most MorfBuilder methods.

Initially, the Morf object contained in the new MorfBuilder instance has the same

syntax and Asn1Value as morf. The syntax of the underlying Morf object does not

change throughout the life of the MorfBuilder object. The underlying Morf
object’s Asn1Value , however, can be modified using the MorfBuilder object’s

methods.

This constructor creates a MorfBuilder instance that contains a Morf object and

implicitly refers to this Morf object in most MorfBuilder methods. Initially, the

Morf contained in the new MorfBuilder instance has the same syntax as syn and

an empty Asn1value .

The syntax of the underlying Morf object does not change throughout the life of the

MorfBuilder object. The underlying Morf object’s Asn1Value , however, can be

modified using the MorfBuilder object’s methods.

The preceding constructor is a copy constructor. After the copy operation is

completed, the newly created MorfBuilder implicitly refers to a morf, that has the

same Syntax and Asn1Value as the morf associated with the MorfBuilder
instance being copied. Both instances of the MorfBuilder class are independent

copies, and both refer to two separate instances of the Morf class. Updates to the

Asn1Value of one of the MorfBuilder instances do not affect the Asn1Value of

the other MorfBuilder instance.

The preceding constructor creates a MorfBuilder instance for the given kind of

attribute which implies a particular syntax.

MorfBuilder (Morf& morf)

MorfBuilder (Syntax& syn)

MorfBuilder (const MorfBuilder& old_mbd)

MorfBuilder (CDU attrname, Platform& plat = Platform::def_platform)
3-136 C++ API Reference • October 2001

MorfBuilder Class
3.19.2 Destructor

This destructor releases all the resources associated with the MorfBuilder .

3.19.3 MorfBuilder Operator Overloading

The assignment operator works like the copy constructor.

The preceding cast operator is to be used in conditionals. It returns TRUEif the

MorfBuilder refers to an actual Morf object.

Caution – Do not attempt to use the returned pointer value because it points to

private data.

The preceding function is a logical negation that can be used in an “if
(!morfbuilder)... ” context.

3.19.4 MorfBuilder Member Functions

This section describes the member functions of the MorfBuilder class.

~MorfBuilder ()

MorfBuilder& operator = (const MorfBuilder& other)

operator void*()

int operator !()
Chapter 3 High-Level PMI 3-137

MorfBuilder Class
get_raw

If do_assemble is TRUE, this function updates the cached overall internal Asn1Value /

Syntax relation by assembling the Asn1Value /Syntax member values of the

underlying morf into a new morf.

Updating the cached overall internal Asn1Value /Syntax relation is needed when

MorfBuilder is associated with a constructed ASN.1 type such as SEQUENCE,
SEQUENCE OF, SET, and SET OF. In such a case, you can update the member values

of the underlying morf, but the overall internal Asn1Value /Syntax relation is not

updated until you use the get_raw method.

On successful completion, this function returns the newly assembled Morf .

Otherwise, the underlying Morf is not updated and an empty Morf is returned.

Therefore, you should check the returned Morf to determine whether it is empty. For

example, !morfbuilder.get_raw() .

If do_assemble is FALSE, this function returns the underlying Morf without

assembling a new Morf . Invoking get_raw(FALSE) does not reset any

modifications that might have been done to the MorfBuilder . These modifications

are still kept and can be assembled into a modified Morf by calling

get_raw(TRUE) at a later time. MorfBuilder always keeps a cached copy of the

latest successfully assembled valid Morf , and updates the cached copy with a new

Morf only if the new Morf is successfully assembled by invoking get_raw(TRUE) .

Used with a MorfBuilder that is associated with a constructed ASN.1 type, this

function recursively navigates to the specified morf in a MorfBuilder using the

given navigation string and calls get_raw (do_assemble).

The navigation parameter is a dot-separated list of field names or position numbers. A

position number, with the exception of 0, is an integer that represents the offset of a

Morf object in a list of Morf objects.

This function returns the Morf object that is associated with the MorfBuilder at the

field described by the navigation string. It splits the underlying MorfBuilder into

its component parts (for example, a tree of MorfBuilder classes) and recursively

invokes the get_raw (newnavigation, do_assemble) function, where the

newnavigation argument is the old navigation argument, stripped from the first

component of the dot separated list, until one entry is left in the navigation string.

This means that the function reached the Morf specified in the navigation string.

This function then calls the get_raw (do_assemble) function.

Morf get_raw (int do_assemble = TRUE);

Morf get_raw (CDU navigation, int do_assemble = TRUE);
3-138 C++ API Reference • October 2001

MorfBuilder Class
If the MorfBuilder does not represent a constructed type, or the navigation string

does not represent a valid field of the asn1 type, this function returns an empty

Morf object.

CODE EXAMPLE 3-11 shows how to use get_raw to find a component in a complex

morfbuilder .

CODE EXAMPLE 3-11 Using get_raw With a Complex morfbuilder

/*
SEQUENCE {
 seqint INTEGER DEFAULT 10,
 seqchar1 OCTET STRING OPTIONAL,
 seqbool1 BOOLEAN,
 seqseqof SEQUENCE OF OCTET STRING
}

If the syntax
Syntax syn
is associated with the above described SEQUENCE type,
and the morfbuilder
MorfBuilder mbd
is associated with the syntax syn
*/

 Morf m1 = mbd.get_raw("seqint");
 if (!m) {

cout << "Failed to get the morf field!" << endl;
 }
// returns the Morf associated with the field seqint

 Morf m2 = mbd.get_raw("seqseqof.2");
 if (!m2) {

cout << "Failed to get the morf field!" << endl;
 }
// returns the Morf associated with the field seqseqof.2 - i.e.
// the second field of the SEQUENCE OF seqseqof

 Morf m3 = mbd.get_raw(FALSE);
 if (!m3 {

cout << "Failed to get the old morf!" << endl;
 }
// returns the Morf associated with the MorfBuilder
// without attempting to reassemble the Morf, if fields of the
// morf were modified
Chapter 3 High-Level PMI 3-139

MorfBuilder Class
select_choice

Selects a syntax for the MorfBuilder associated with a CHOICEtype specified in

the member_name argument.

Returns OKon successful completion; otherwise, returns NOT_OK.

Note – This function should be applied only to MorfBuilder instances that

represent CHOICE ASN.1 types. If not, this function returns NOT_OK. Also, if the

specific type of a MorfBuilder representing a CHOICEtype has been already set,

either through a previous invocation of select_choice or through initialization

with a Morf object, this function returns NOT_OK.

Used with a MorfBuilder that is associated with a constructed ASN.1 type, this

function recursively navigates to the specified Morf in a MorfBuilder using the

given navigation string (navigation) and calls select_choice (member_name).

The navigation parameter is a dot-separated list of field names or position numbers. A

position number, with the exception of 0, is an integer that represents the offset of a

Morf object in a list of Morf objects.

If the MorfBuilder does not represent a constructed type, or the navigation string

does not represent a valid field of the ASN.1 type, the function returns NOT_OK.

 Morf m4 = mbd.get_raw(); // default argument is TRUE
 if (!m4 {

cout << "Failed to assemble and get the new morf!" << endl;
 }
// returns the Morf associated with the MorfBuilder
// first attempts to reassemble the Morf, if fields of the
// morf were modified

Result select_choice (CDU member_name);

Result select_choice (CDU navigation, CDU member_name);

CODE EXAMPLE 3-11 Using get_raw With a Complex morfbuilder (Continued)
3-140 C++ API Reference • October 2001

MorfBuilder Class
set_syntax

Selects a syntax for a MorfBuilder associated with a CHOICEtype in the new_syn
argument.

Returns OKon successful completion; otherwise, returns NOT_OK.

Note – This function should be applied only to MorfBuilder instances that

represent CHOICE ASN.1 types. If not, this function returns NOT_OK. Also, if the

specific type of a MorfBuilder representing a CHOICEtype has already been set,

either through a previous invocation of select_choice or through initialization

with a Morf object, this function returns NOT_OK.

Used with a MorfBuilder that is associated with a constructed ASN.1 type, this

function recursively navigates to the specified Morf in a MorfBuilder using the

given navigation string (navigation) and calls set_syntax (new_syn).

The navigation parameter is a dot-separated list of field names or position numbers. A

position number, with the exception of 0, is an integer that represents the offset of a

Morf object in a list of Morf objects.

If the MorfBuilder does not represent a constructed type, or the navigation string

does not represent a valid field of the ASN.1 type, the function returns NOT_OK.

set_raw

Replaces the MorfBuilder object’s underlying Morf object and any contained

MorfBuilder objects with morf. This means that if the MorfBuilder represents a

constructed type and parts of it have been previously updated, these updates are

lost.

 Result set_syntax (Syntax& new_syn);

Result set_syntax (CDU navigation, Syntax& new_syn);

Result set_raw (Morf& morf, FBits fb = 0);
Chapter 3 High-Level PMI 3-141

MorfBuilder Class
Note – To avoid losing previous updates to the member values of a MorfBuilder
object that represents a constructed type, use the get_raw function before using the

set_raw function.

Returns OKon successful completion; otherwise, returns NOT_OK.

Used with a MorfBuilder that is associated with a constructed ASN.1 type, this

function recursively navigates to the specified Morf in a MorfBuilder using the

given navigation string (navigation) and calls set_raw (morf, fb).

The navigation parameter is a dot-separated list of field names or position numbers. A

position number, with the exception of 0, is an integer that represents the offset of a

Morf object in a list of Morf objects.

If the MorfBuilder does not represent a constructed type, or the navigation string

does not represent a valid field of the ASN.1 type, the function returns NOT_OK.

set

This function replaces the MorfBuilder ’s underlying morf value and any

contained MorfBuilder objects with value. This means that if the MorfBuilder
represents a constructed type and parts of it have been previously updated, these

updates are lost.

Note – To avoid losing previous updates to the member values of a MorfBuilder
object that represents a constructed type, use the get_raw function before using the

set function.

Returns OKon successful completion; otherwise, returns NOT_OK.

Used with a MorfBuilder that is associated with a constructed ASN.1 type, this

function recursively navigates to the specified Morf in a MorfBuilder using the

given navigation string (navigation) and calls set (morf, fb).

Result set_raw (CDU navigation, Morf& morf, FBits fb = 0);

Result set (CDU value, FBits fb = 0);

Result set (CDU navigation, CDU value, FBits fb = 0);
3-142 C++ API Reference • October 2001

MorfBuilder Class
The navigation parameter is a dot-separated list of field names or position numbers. A

position number, with the exception of 0, is an integer that represents the offset of a

Morf object in a list of Morf objects.

If the MorfBuilder does not represent a constructed type, or the navigation string

does not represent a valid field of the ASN.1 type, the function returns NOT_OK.

validate

Validates the MorfBuilder ’s underlying Morf object. It does that by invoking

internally the function get_raw(TRUE) on the underlying Morf object. If the

get_raw(TRUE) operation fails, the validate function returns NOT_OK. Otherwise,

the validate function continues. It validates the Asn1Value of the Morf , against

the associated ASN.1 type by invoking the method

Asn1Type::validate(Asn1Value value , Boolean ignore_tag) .

Returns OKon successful completion; otherwise, returns NOT_OK.

Used with a MorfBuilder that is associated with a constructed ASN.1 type, this

function recursively navigates to the specified Morf in a MorfBuilder using the

given navigation string (navigation) and calls validate (ignore_tag).

The navigation parameter is a dot-separated list of field names or position numbers. A

position number, with the exception of 0, is an integer that represents the offset of a

Morf object in a list of Morf objects.

If the MorfBuilder does not represent a constructed type, or the navigation string

does not represent a valid field of the ASN.1 type, the function returns NOT_OK.

Result validate (Boolean ignore_tag = FALSE);

Morf validate (CDU navigation, Boolean ignore_tag = FALSE);
Chapter 3 High-Level PMI 3-143

MorfBuilder Class
get_prop

The preceding function returns the property addressed by the key key. The properties

are local to the MorfBuilder class and are used to control some of its behavior.

TABLE 3-17 lists the currently defined properties for the MorfBuilder class.

The access_type property is relevant only to a MorfBuilder class that represents

a SEQUENCEtype.

When the access_type property is set to by_name , all the MorfBuilder class

functions that use the navigation string argument interpret the string as the member

name of the SEQUENCEto be accessed.

When the access_type property is set to by_index , all the MorfBuilder functions

that use the navigation string argument interpret the string as the position index for

the member of the SEQUENCEto be accessed.

For example, suppose a MorfBuilder object represents an object whose type is the

SEQUENCE(see CODE EXAMPLE 3-12).

If the access_type property of the MorfBuilder object is set to by_name ,

members of the SEQUENCEtype can be accessed by their names (for example, int
and char).

DU get_prop (CDU key);

TABLE 3-17 Properties Addressed by key

Key Values

access_type by_index

by_name (default)

CODE EXAMPLE 3-12 SEQUENCEType Example

SEQUENCE {

 int INTEGER,

 char OCTET STRING

}

3-144 C++ API Reference • October 2001

MorfBuilder Class
If, however, the access_type property of the MorfBuilder object is set to

by_index , members of the SEQUENCEtype can be accessed by their position indexes

(for example, 1 and 2). CODE EXAMPLE 3-13 shows how to use the get_prop()
function.

Invokes get_prop(CDU key) on the sub-MorfBuilder member addressed by the

navigation string.

get_error_type

This function enables a MorfBuilder object to maintain the error status that results

from the invocation of a MorfBuilder function until another function is invoked on

the same MorfBuilder . The returned error type can be retrieved through the

get_error_type() function.

For example, suppose a MorfBuilder object represents an object whose type is

SEQUENCE(see CODE EXAMPLE 3-14).

CODE EXAMPLE 3-13 get_prop() Example

Morf morf;

if (mbd.get_prop("access_type") == DU("by_name")) {

 cout << "access_type is by_name !" << endl;

 morf = mbd.get_raw("char");

} else if (mbd.get_prop("access_type") == DU("by_index")) {

 cout << "access_type is by_index !" << endl;

 morf = mbd.get_raw("2");

 } else

 cout << "Invalid access_type is bad !" << endl;

DU get_prop (CDU navigation, CDU key);

ErrorType get_error_type(void) const;

CODE EXAMPLE 3-14 get_error_type() Example

SEQUENCE {

 int INTEGER,

 char OCTET STRING

}

Chapter 3 High-Level PMI 3-145

MorfBuilder Class
The error type returned by the get_error_type() function can be any of the error

types defined as enum ErrorType in include/pmi/error.hh .

Note – The Error type returned by the MorfBuilder::set function is the error

type set by the Morf::set function since the MorfBuilder::set function is

internally mapped to the Morf::set function.

The ErrorType from a function call must be accessed before a subsequent function

call on the same MorfBuilder object because the error status from a previous

function call is reset whenever a MorfBuilder function starts executing.

get_error_string

Enables a MorfBuilder object to maintain the error status that results from the

invocation of a MorfBuilder function until another function is invoked on the

same MorfBuilder . The returned error string can be retrieved through the

get_error_string() function.

For example, suppose a MorfBuilder object represents an object whose type is

SEQUENCE(see CODE EXAMPLE 3-15).

 Result rslt = mbd.set("char", "10");

 if (rslt == NOT_OK) {

 ErrorType etype = mbd.get_error_type();

cout << "Error string ==> " << mbd.get_error_string() <<
endl;

 }

char* get_error_string(void) const;

CODE EXAMPLE 3-15 get_error_string() Example

SEQUENCE {

 int INTEGER,

 char OCTET STRING

}

 Result rslt = mbd.set("char", "10");

 if (rslt == NOT_OK) {

CODE EXAMPLE 3-14 get_error_type() Example (Continued)
3-146 C++ API Reference • October 2001

MorfBuilder Class
The error type returned by the get_error_string() function can be any of the

error types defined as enum ErrorType in include/pmi/error.hh .

Note – The Error string returned by the MorfBuilder::set function is the error

string set by the Morf::set function since the MorfBuilder::set function is

internally mapped to the Morf::set function.

The error string from a function call must be accessed before a subsequent function

call on the same MorfBuilder object because the error status from a previous

function call is reset whenever a MorfBuilder function starts executing.

set_prop

Sets the property addressed by key to value. The properties are local to the

MorfBuilder object and are used to control some of its behavior. TABLE 3-17 lists the

currently defined properties for the MorfBuilder class. The access_type
property is relevant only to a MorfBuilder class that represents a SEQUENCEtype.

When the access_type property is set to by_name , all the MorfBuilder class

functions that use the navigation string argument interpret the string as the member

name of the SEQUENCEto be accessed.

When the access_type property is set to by_index , all the MorfBuilder
functions that use the navigation string argument interpret the string as the position

index for the member of the SEQUENCEto be accessed. CODE EXAMPLE 3-16 shows

how to use the set_prop() function.

 ErrorType etype = mbd.get_error_type();

cout << "Error string ==> " << mbd.get_error_string() <<
endl;

 }

Result set_prop (CDU key, CDU value);

CODE EXAMPLE 3-16 set_prop() Example

Result rslt;

Morf morf;

rslt = mbd.set_prop("access_type", "by_name");

CODE EXAMPLE 3-15 get_error_string() Example (Continued)
Chapter 3 High-Level PMI 3-147

PasswordTty Class
Invokes set_prop(CDU key, CDU value) on the sub-MorfBuilder member

addressed by the navigation string.

3.20 PasswordTty Class
Inheritance: none

Data Members: No public data members are declared in this class.

This class implements the TTY based password query mechanism. You can derive

from this class to implement different password query mechanism (for example,

dialog box based for GUI applications). All non-GUI Solstice EM applications

automatically get the TTY based password query mechanism. The

Platform::connect method determines if user's password is required and

accordingly calls a method on this class to get the password. If you don't wish to

alter the default TTY based password query mechanism, you don't need to use this

class.

At any given time, there can be at most one instance of this class or one of its

derived classes. If no instance exists, then the Platform::connect method temporarily

creates one and uses that to query the user's password. If you derive from this class

and create an instance of it before you call Platform::connect , then that instance

will be used to query the password. This is achieved using the virtual methods in

C++. You need to implement the PasswordTty::password_function virtual

method in your class to replace the default TTY based password query mechanism.

For an example program, please refer to files in $EM_HOME/src/access_passwd

which demonstrate how to implement dialog box based password query mechanism

in Motif based GUI applications.

morf = mbd.get_raw("char");

rslt = mbd.set_prop("access_type", "by_index");

morf = mbd.get_raw("2");

Result set_prop (CDU navigation, CDU key, CDU value);

#include pmi/password_tty.hh

CODE EXAMPLE 3-16 set_prop() Example (Continued)
3-148 C++ API Reference • October 2001

Platform Class
3.20.1 Constructors

Creates an instance of the PasswordTty class. This will result in an assertion failure

if an instance of this or its derived classes already exists. At any given time, there

can be at most one instance of this class or one of its derived classes.

3.20.2 PasswordTty Operator Overloading

No public operators are defined for this class.

3.20.3 PasswordTty Member function

password_function

This function queries the user for login name and password. The login name

defaults to the user argument. This method returns a non-zero value if password

query succeeds. If you derive from the PasswordTty class, you should implement

this method to provide your own password query mechanism.

3.21 Platform Class
Inheritance: public Error

Data Members: No public data members are declared in this class.

PasswordTty ()

virtual int password_function (char * user , char * password) const

#include pmi/hi.hh
Chapter 3 High-Level PMI 3-149

Platform Class
An instance of the Platform class represents a potential or actual connection to a

particular MIS, along with all the implied semantics of the framework implemented

by the MIS.

The Platform is a reference-counting wrapper around an inner abstract base class;

each framework derives a new class from the base class to implement framework-

specific semantics. (The base class does provide a generic attribute-like mechanism

that specific frameworks can use for specifying things like access tickets or default

time-outs.).

TABLE 3-18 Platform Method Types

Method Name Method Type

default_platform
set_default_platform

MIS default

get_prop
set_prop
replace_discriminator
replace_discriminator_classes

Property control

connect
start_connect
disconnect
start_disconnect
get_connection_fd
cleanup_def_platform

MIS connection

find_album_by_nickname
find_image_by_nickname
find_image_by_objname
find_image_by_oi

get_fdn

get_fullname
get_shortname

Name translation

get_when_syntax
when

Function callback

get_plat_id
get_raw_sap

Utility routines

get_attr_coder
set_attr_coder

String encoding/decoding hooks

get_authorized_features
get_authorized_applications

Access control
3-150 C++ API Reference • October 2001

Platform Class
3.21.1 Constructors

The default constructor creates a Platform instance that refers to no actual MIS.

The value tests FALSE until you assign it a real Platform value.

The preceding is an ordinary copy constructor. After the copy, both copies still refer

to the same MIS object. The reference count on the MIS object is incremented.

The preceding constructor constructs a Platform instance for a particular kind of

MIS. Because a Platform is really a wrapper for a set of related classes, this

function actually works a bit like a virtual constructor.

3.21.2 Destructor

Decrements the reference count and deletes the Platform if reference count is zero.

3.21.3 Platform Operator Overloading

The assignment operator, above, works like the copy constructor

Platform()

Platform(const Platform& other)

Platform(CDU plattype, CDU nickname = duNO_VALUE())

~Platform()

Platform& operator = (const Platform& other)

operator void*()
Chapter 3 High-Level PMI 3-151

Platform Class
The preceding cast operator is for use in conditionals. It returns TRUEif this

Platform refers to an actual MIS object (regardless of whether that MIS is

connected yet). Do not attempt to use the returned value as a pointer to anything,

since it points to private data.

The preceding operator definition is provided so that you can state:

“if (!platform) …”

3.21.4 Platform Member Functions

This section describes the member functions of the Platform class.

cleanup_def_platform

This method resets the default platform and clears the caches associated with the

default platform. The cleanup_def_platform method should be invoked after

disconnecting an existing platform and before attempting to establish a new

platform connection.

The cleanup_def_platform method does not by itself force an established

platform connection down. Rather it is used to clean up a connection after a

disconnect (e.g. a disconnect event was received). The cleanup_def_platform
method is usually used in the disconnect callback, registered for the platform.

Note – The attempt to reconnect to the platform must not occur in the disconnect

callback. The disconnect callback only post a timer to invoke a reconnect callback

sometimes later, after the disconnect callback has exited.

int operator !()

static void cleanup_def_platform(void);
3-152 C++ API Reference • October 2001

Platform Class
CODE EXAMPLE 3-17 is an example of this function’s use:

CODE EXAMPLE 3-17 Platform::cleanup_def_platform Method

void disc_cb(Ptr, Ptr);
void mis_retry_handler (Ptr, Ptr);
Platform *plat = 0;
char *host;

int main (int argc, char **argv)
{

host = getenv("EM_SERVER");
 if (!host) {
 host = new char[MAXHOSTNAMELEN+1];
 sysinfo(SI_HOSTNAME, host, 255);
 }

while (1) {
 plat = new Platform(duEM);
 cout << "Connecting to ... " << host << endl;
 if (!plat->connect(host, "em_sample", 20.0)) {

// Connect to the MIS
cout << "Failed to connect to " << host << endl;

 cout << plat->get_error_string() << endl;
 Platform::cleanup_def_platform();
 delete plat;
 plat = 0;

}
 else {
 break;
 }

} /* while */

 if (!plat->when("DISCONNECTED", Callback(disc_cb, 0))) {
 cout << plat->get_error_string() << endl;
 exit(3);
 }
...............

 while (TRUE) {
 dispatch_recursive(TRUE);

// Enter the infinite listen loop.
 }
 exit(0);
}

...............
Chapter 3 High-Level PMI 3-153

Platform Class
After a platform is disconnected, and the cleanup_def_platform is invoked, all

the PMI objects used in the previous connection are invalid. New instances (Image
and Album , for example) must be created and booted.

// Define a function to do something if disconnected.

void
disc_cb(Ptr, Ptr) {

cout << "****** DISCONNECTED event received ******" << endl;
 Platform::cleanup_def_platform();
 delete plat;
 plat = 0;
 post_timer(Timer((10 * 1000), 0, mis_retry_handler, 0));
 return;
}
...............

void
mis_retry_handler (Ptr user_data, Ptr passed_data) {

 plat = new Platform(duEM);
 cout << "Connecting to ... " << host << endl;
 if (!plat->connect(host, "em_sample", 20.0)) {

cout << "Failed to connect to " << host << endl;
 cout << plat->get_error_string() << endl;
 Platform::cleanup_def_platform();
 if (plat != 0) {

delete plat;
 plat = 0;
 }

post_timer(Timer((10 * 1000), 0, mis_retry_handler, 0));
 return;
 }

if (!plat->when("DISCONNECTED", Callback(disc_cb, 0))) {
 cout << plat->get_error_string() << endl;
 exit(3);
 }

return;
}

CODE EXAMPLE 3-17 Platform::cleanup_def_platform Method (Continued)
3-154 C++ API Reference • October 2001

Platform Class
Note – Attempts to access PMI objects from the previous platform connection can

result in segmentation violation, since the PMI program will attempt to access

memory that has already been freed up. The PMI library does not support multiple

concurrent platform connections within the same process (the same PMI program).

After one platform is disconnected, the PMI program can invoke the

cleanup_def_platform method to clear the platform caches and to reset the

default platform, and then it can post a timer, that will invoke a reconnect callback

and attempt to set up a new platform connection in that reconnect callback.

connect

This function call attempts to connect to the MIS. The value of location is

implementation dependent, but might be something as simple as a host name.

This method determines if the user is subject to password authentication. If the user

is, then this method queries the login name and password. By default, a tty-based

password query mechanism is used. An application can redefine the password query

mechanism by deriving from the PasswordTty class and providing its own

definition of the PasswordTty::password_function virtual method.

The argument application_name is used by the Access Control Module to determine if

the user has permission to use the application. If the user does not have permission

to use the application this method fails to connect to the MIS and returns NOT_OK.
The Platform::get_error_string function can be used to determine the reason

for the failure.

default_platform

This function call returns the default MIS. The Image and Album constructors use

this value if you invoke them without supplying an argument to specify an MIS. To

set the default MIS, use set_default_platform .

Result connect(CDU location,
 CDU application_name,
const Timeout to = DEFAULT_TIMEOUT)

static Platform default_platform()
Chapter 3 High-Level PMI 3-155

Platform Class
disconnect

This method forces a disconnect from the platform, resets the default platform, and

clears the caches associated with the default platform. Do not assume that the event

callbacks are executed before the connection to the MIS is closed (so that it cannot be

assumed that if a callback was registered for the DISCONNECTED event, that the

callback will be invoked).

The invocation of disconnect() must happen in an event callback function, called

indirectly through dispatch_recursive() . CODE EXAMPLE 3-18 sets a timer

callback that will be invoked when the timer expires and will call disconnect() . A

new timer can be set, within this callback, to execute a reconnect callback later.

Result disconnect(const Timeout to = DEFAULT_TIMEOUT)

CODE EXAMPLE 3-18 Platform::disconnect Method

void disc_cb(Ptr, Ptr);
void mis_retry_handler (Ptr, Ptr);
void disconnect_handler(Ptr, Ptr);

Platform *plat = 0;
char *host;

int main (int argc, char **argv)
{
 host = getenv("EM_SERVER");
 if (!host) {

host = new char[MAXHOSTNAMELEN+1];
 sysinfo(SI_HOSTNAME, host, 255);
 }

while (1) {
 plat = new Platform(duEM);
 cout << "Connecting to ... " << host << endl;
 if (!plat->connect(host, "em_sample", 20.0)) {

// Connect to the MIS.
cout << "Failed to connect to " << host << endl;

 cout << plat->get_error_string() << endl;
 Platform::cleanup_def_platform();
 delete plat;
 plat = 0;

}
 else {
 break;
 }
3-156 C++ API Reference • October 2001

Platform Class
 } /* while */

 if (!plat->when("DISCONNECTED", Callback(disc_cb, 0))) {
 cout << plat->get_error_string() << endl;
 exit(3);
 }

 post_timer(Timer((10 * 1000), 0, disconnect_handler, 0));

...............

 while (TRUE) {
 dispatch_recursive(TRUE);

 // Enter the infinite listen loop.
 }

exit(0);
}

...............
// Define a function to do something if disconnected.

void
disc_cb(Ptr, Ptr) {

cout << "****** DISCONNECTED event received ******" << endl;
 Platform::cleanup_def_platform();
 delete plat;
 plat = 0;
 post_timer(Timer((10 * 1000), 0, mis_retry_handler, 0));
 return;
}
...............

void
mis_retry_handler (Ptr user_data, Ptr passed_data) {

 plat = new Platform(duEM);
 cout << "Connecting to ... " << host << endl;

if (!plat->connect(host, "em_sample", 20.0)) {
 cout << "Failed to connect to " << host << endl;
 cout << plat->get_error_string() << endl;
 Platform::cleanup_def_platform();
 if (plat != 0) {
 delete plat;
 plat = 0;
 }

CODE EXAMPLE 3-18 Platform::disconnect Method (Continued)
Chapter 3 High-Level PMI 3-157

Platform Class
After a platform is disconnected, and the cleanup_def_platform is invoked, all

the PMI objects used in the previous connection are invalid. New instances (Image
and Album , for example) must be created and booted.

Note – Attempts to access PMI objects from the previous platform connection can

result in segmentation violation, since the PMI program will attempt to access

memory that has already been freed up. The attempt to reconnect to the platform

must not happen in the disconnect callback. The disconnect callback must only post

a timer to invoke a reconnect callback sometimes later, after the disconnect callback

has exited.

 post_timer(Timer((10 * 1000), 0, mis_retry_handler, 0));
 return;
 }

 if (!plat->when("DISCONNECTED", Callback(disc_cb, 0))) {
 cout << plat->get_error_string() << endl;
 exit(3);
 }
 return;
}

void
 disconnect_handler(Ptr user_data, Ptr passed_data) {
 char ch;

 cout << " disconnecting !" << endl;
 if (plat) {
 plat->disconnect();
 delete plat;
 plat = 0;

post_timer(Timer((10 * 1000), 0, mis_retry_handler, 0));
 }
}

CODE EXAMPLE 3-18 Platform::disconnect Method (Continued)
3-158 C++ API Reference • October 2001

Platform Class
find_album_by_nickname

The preceding function call locates the album that has registered itself with the

specified name. The null value Album() is returned if no such album is found.

find_image_by_nickname

The preceding function call locates the image that has registered itself with the

specified name. The null value Image() is returned if no such image is found.

find_image_by_objname

The preceding function call locates the image that has registered
itself with the specified name. The null value Image() is returned
if no such image is found. Note that the Image constructor can
also do lookups for you, should you want the image to be created
when not found

find_image_by_oi

This function returns the image that has registered itself with the specified oi. The

null value Image() is returned if no such image is found.

Album find_album_by_nickname(CDU name)

Image find_image_by_nickname(CDU name)

Image find_image_by_objname(CDU name)

Image find_image_by_oi(CDU oi)
Chapter 3 High-Level PMI 3-159

Platform Class
get_attr_coder

The preceding method returns the encoder/decoder for a given attribute.

get_authorized_applications

This method is used to get the list of authorized applications for the given user. In

most cases, you should use the default value of the user argument, which will

default to the currently logged in user. The user logged in to MIS may be different

than the user running the application since the user name can be changed during the

password query.

This method should be called after Platform::connect has been successful. This

method returns OK if there is no unexpected PMI error and if the user is authorized

to use at least one application. You can query if an application is authorized or not

by using the AuthApps::is_authorized() method on the authApps argument.

Please notice, this method uses the AuthApps class, whereas, the method

Platform::get_authorized_features uses the AuthFeatures class. If all

applications are authorized, any argument to the AuthApps::is_authorized()

will return OK even if the application has not yet been registered in the MIS.

The following is an example of this function’s use:

Coder get_attr_coder(CDU attrname)

Result get_authorized_applications(AuthApps & apps ,
const char * user = 0);

include pmi/auth_apps.hh
// After Platform::connect has been successful ...

AuthApps authApps;
if (platform.get_authorized_applications(authApps) == OK) {

if (!authApps.is_authorized(“em_discover”)) {
// em_discover is not authorized

}
// Check other apps ...

}
else {

// handle unexpected PMI error

}

3-160 C++ API Reference • October 2001

Platform Class
get_authorized_features

This method is used get the list of authorized features for the given user and the

application. In most cases, you should use the default value of the user and the

application argument, which will default to the currently logged in user and the

current application being run. The user logged in to MIS may be different than the

user running the application since the user name can be changed during the

password query.

This method should be called after Platform::connect has been successful. This

method returns OK if there is no unexpected PMI error and if the user is authorized

to use at least one feature for the given application. You can query if a feature is

authorized or not by using the AuthFeatures::is_authorized() method on

the features argument.

Please notice, this method uses the AuthFeatures class, whereas, the method

Platform::get_authorized_applications uses the AuthApps class. If all

features are authorized, any argument to the AuthFeatures::is_authorized()
will return OK even if the feature has not yet been registered in the MIS.

Result get_authorized_features (AuthFeatures & features ,
const char * user = 0, const char * appname = 0);
Chapter 3 High-Level PMI 3-161

Platform Class
The following is an example of this function’s use:

get_connection

The preceding method returns the file descriptor corresponding to the connection to

an MIS. It is useful in a GUI program for waiting in a select() (3C) for platform

events.

get_fdn

The preceding method returns the ldn or fdn to the specified dn.

#include pmi/auth_features.hh
// After Platform::connect has been successful ...

AuthFeatures features;

if (platform.get_authorized_features(features) == OK) {

// For the sake of this example, it is assumed,

// there are two features, “Create” and “Delete”, in

// this application. It is also assumed that by default

these

// features are enabled. The following code

// checks if a feature is not authorized and disables

the feature.

if (!features.is_authorized(“Create”)) {

// Disable “Create” feature

}

if (!features.is_authorized(“Delete”)) {

// Disable “Delete” feature

}

}

else {

// handle unexpected PMI error

}

int get_connection_fd()

DU get_fdn (DU & dn)
3-162 C++ API Reference • October 2001

Platform Class
get_fullname

The preceding function call translates a short attribute name to its fully qualified

name. Refer also to the Platform::when method description for more information.

get_plat_id

The preceding function call returns the MIS ID number, which is not very useful

outside the PMI.

get_prop

The preceding function call returns a property of the current MIS. If key does not

specify an existing property, returns a null DataUnit , which tests FALSE in a

conditional. Most MISs support, at a minimum, the properties in TABLE 3-19.

DU get_fullname(CDU shortname)

PlatformId get_plat_id()

DU get_prop(CDU key)

TABLE 3-19 MIS Properties Supported

Properties Description

PLATFORM_TYPE As specified to the “virtual” constructor.

(Read Only)

PLATFORM_OBJNAME Absolute object name of the MIS itself.

(Read Only)

APPLICATION_OBJNAME Object instance name of the object (within the MIS) that

represents the current application's connection and/or

process. (Read Only)

PLATFORM_NICKNAME The nickname for the MIS that you specified to the

“virtual” constructor.

APPLICATION_TYPE The kind of application specified to connect . (Read

Only)
Chapter 3 High-Level PMI 3-163

Platform Class
If you want to construct an event sieve by hand, you need to know the application

instance name to tell the sieve where to forward events. The PMI constructs most

sieves for you automatically, so you generally need not be concerned with this.

The PMI makes no use of the nickname property; it is there merely as a convenience.

The synchronous version of any function that has both a synchronous and an

asynchronous version uses the default time-out. If you set the default time-out to 0,

only the asynchronous version works (unless of course you specify an explicit time-

out on the synchronous call itself).

See the description of the replace_discriminator() and

replace_discriminator_classes() methods, below. These methods allow you,

to construct an event seive, without a call to get_prop() in some programs.

replace_discriminator

The preceeding function call takes a discriminator construct, for example,

(and:{item:equality...}) . In certain cases using this function can allow you to

avoid a call to get_prop() . Using this function reduces network traffic and

unnecessary processing time. This function is more generalized and more difficult to

use than the replace_discriminator_classes function.

LOCATION The location of the MIS specified to connect . (Read

Only)

STATE The state of the connection (Read Only):

DOWN- Unconnected

BOOT- Connecting

UP - Connected

SHUTDOWN- Disconnecting

DEFAULT_TIMEOUT The default time-out for this MIS, in seconds, with

fractions allowed.

Result replace_discriminator (DU discriminatorConstruct)

TABLE 3-19 MIS Properties Supported (Continued)

Properties Description
3-164 C++ API Reference • October 2001

Platform Class
replace_discriminator_classes

The preceding function call takes an array of managed object classes, such as the

topo managed object class, and an array of events, such as object create. This

function works on an application instance object. In certain cases, using this function

can allow you to avoid a call to get_prop (). Using this function reduces network

traffic and unnecessary processing time.

get_raw_sap

The preceding function call returns the message SAP of the internal connection to

the MIS. This is useful for programs that need to use both the low- and high-levels

of the PMI, when both need to share the same connection.

get_shortname

The preceding function call translates a fully qualified attribute name to its

corresponding short name. Typically this involves stripping a document name from

it.

get_when_syntax

The preceding function call returns the syntax of the information that is passed to

the callback function. Primarily for internal use.

Result replace_discriminator_classes (Array (DU) object_classes,
 Array (DU) event_types = DEF_ARRAY_DU)

void* get_raw_sap()

DU get_shortname(CDU fullname)

Syntax get_when_syntax(CDU eventname)
Chapter 3 High-Level PMI 3-165

Platform Class
set_attr_coder

The preceding function call sets the encoder/decoder for a given attribute. The

Coder is used by the get_str and set_str functions in both Morf s and Image s.

See also set_coder , under the description of the Syntax class.

set_default_platform

The preceding function call sets the default MIS. The Image and Album constructors

use this value when you omit the platform argument. You do not usually need to

call this function, since the first time you connect to a MIS it is invoked for you, and

most applications talk to only one MIS.

set_prop

The preceding function call sets a property of the current MIS, provided that the key
specifies a supported property and the value specifies a legal value. If set_prop
cannot do what you ask, it throws an invalid exception. Refer to TABLE 3-19 for some

typical properties.

start_connect

The preceding function call is the asynchronous version of connect .

void set_attr_coder(CDU attrname, Coder cd)

static void set_default_platform(Platform& plat)

Result set_prop(CDU key, CDU value)

Waiter start_connect(CDU platform,
 CDU application_name,
 CCB cb = NO_CALLBACK)
3-166 C++ API Reference • October 2001

Platform Class
start_disconnect

The preceding function call is the asynchronous version of disconnect .

when

The Platform object receives all events at which time all callbacks registered for by

the Platform objects are executed. Next, all of the callbacks registered for by image

objects are executed, then all of the callbacks registered for by album objects are

executed.

The name of the event specified in the above call needs to be the fully specified

name defined in the GDMO definition unless it is a standard event supported by

the Platform such as OBJECT_CREATED, ATTR_CHANGEDetc. Refer also to the

Platform::get_fullname method description.

The following function call establishes a callback routine to handle a class of MIS-

specific asynchronous events.

For example, the following could be used to find out when an MIS disconnects:

TABLE 3-20 shows the supported Platform events.

Waiter start_disconnect(CCB cb = NO_CALLBACK)

Result when(CDU eventname, CCB cb = NO_CALLBACK)

when(“DISCONNECTED”, Callback(disconnect_cb, 0));

TABLE 3-20 MIS Events Supported

Event Description

ATTR_CHANGED An attribute of an object in the MIS changed.

DISCONNECTED The MIS dropped its end of the connection for some reason.

OBJECT_CREATED An object was created in the MIS.
Chapter 3 High-Level PMI 3-167

Syntax Class
3.21.5 GETENVMacro

The GETENV macro returns a null terminated string with the value of the

environment variable pointed to by key, or NULL when there is no such environment

variable. The parameter key is of type char * .

3.22 Syntax Class
Inheritance: public Error

Data Members: No public data members are declared in this class.

A Syntax is the representation of a type. All framework-encoded data, whether part

of an object or not, has a type. This type specifies, among other things, how to

produce and understand human-readable representations of the data. In general, the

application programmer need not deal with Syntax es directly except when building

Morf s from scratch.

OBJECT_DESTROYED An object was destroyed in the MIS.

RAW_EVENT A raw event came in from the MIS. You can examine it before the

PMI does anything else with it. But note that

CurrentEvent::do_something never does anything with a

raw event. You have to register a callback for the event under the

proper name, such as ATTR_CHANGED, and do_something in

that callback.

WAIT The PMI is entering a wait state. CurrentEvent::get_name
returns a string describing the wait state. The callback is called

again when leaving the wait state, but with a null name.

#include pmi/installation.hh
GETENV(key);

#include pmi/hi.hh

TABLE 3-20 MIS Events Supported (Continued)

Event Description
3-168 C++ API Reference • October 2001

Syntax Class
3.22.1 Constructors

The default constructor creates a Syntax instance that refers to no actual Syntax .

The value tests FALSE until you assign it a real Syntax value.

The preceding constructor is an ordinary copy constructor. After the copy, both

copies still refer to the same Syntax object. The reference count on the Syntax
object is incremented.

TABLE 3-21 Syntax Method Types

Method Name Method Type

expansion
get
get_raw
get_type

Access to the type representation

get_platform
is_any
is_choice
is_list
is_sequence
is_set

Collateral information

get_member_names
get_memname
get_members
member

List handling

get_coder
set_coder

String encoding/decoding hooks

Syntax()

Syntax(const Syntax& other)

Syntax(Platform& plat, DU text)
Chapter 3 High-Level PMI 3-169

Syntax Class
The preceding constructor constructs a Syntax instance for a particular kind of MIS.

Because a Syntax is really a wrapper for a set of related classes, this function

actually works somewhat like a virtual constructor.

The preceding constructor constructs a Syntax instance for a particular kind of MIS,

which is an implicit part of the Morf . The data portion of the Morf is interpreted as

a description of the correct Syntax . (The Syntax implicit to the Morf describes the

syntax of the description, not the Syntax to be created by the constructor.) Because

a Syntax is really a wrapper for a set of related classes, this function actually works

a little like a virtual constructor.

The preceding constructor constructs a Syntax instance for a particular kind of

attribute. You could conceivably accomplish the same end by creating an image for

an object of the type containing the attribute in question, extracting the Morf
corresponding to that attribute, and then extracting the Syntax from that Morf .

However, this is far more cumbersome than simply instantiating a Syntax instance.

3.22.2 Syntax Operator Overloading

The assignment operator works like the copy constructor.

The preceding cast operator is for use in conditionals. It returns TRUE(that is, a

nonzero value) if this Syntax refers to an actual syntax object. Do not attempt to use

the returned value as a pointer to anything, since it points to private data.

The preceding function call is provided so that you can use

“if (!syntax) …”.

Syntax(Morf& morf)

Syntax(CDU attrname, Platform& plat = Platform::def_platform)

Syntax& operator = (const Syntax& other)

operator void*()

int operator !()
3-170 C++ API Reference • October 2001

Syntax Class
3.22.3 Syntax Member Functions

This section describes the member functions of the Syntax class.

expansion

The purpose of the Syntax::expansion() is to return the syntax, without respect

to tagging or selection, from the current syntax.

get

Returns a textual expansion of the syntax

get_coder

The preceding function call returns the encoder/decoder for this type.

get_member_names

The preceding function call returns the list of member names (field names) for list

types that have such names.

Syntax expansion()

DU get(FBits fb = 0)

Coder get_coder()

Array(DU) get_member_names()
Chapter 3 High-Level PMI 3-171

Syntax Class
get_members

The preceding function call returns a list of syntax for the corresponding member

name (field name).

get_memname

The preceding function call returns the member name (field name) of this syntax, if

it happens to be a member of a list that has member names.

get_platform

The preceding function call returns the MIS implicit in every Syntax .

get_raw

The preceding function call returns the Syntax in encoded, MIS-specific form.

Array(syntax) get_members()

DU get_memname()

Platform get_platform()

Morf get_raw()
3-172 C++ API Reference • October 2001

Syntax Class
get_type()

This method returns the underlying Asn1Type object associated with a Syntax

object. If the Syntax object is not initialized, the method returns a NULL Asn1Type
(CODE EXAMPLE 3-19).

is_any

The preceding function call returns TRUEif the syntax describes a type that is any.

is_choice

The preceding function call returns TRUE if the Syntax describes a type that lets

you pick one of a set of other types.

Asn1Type get_type()

CODE EXAMPLE 3-19 Syntax::get_type() Example

Syntax tstsyn = tstmrf.get_syntax();

Asn1Type tsttype2 = tstsyn.get_type();

if (tsttype2) {

 cout << "The Asn1Type is initialized!" << endl;

} else {

 cout << "The Asn1Type is not initialized!" << endl;

}

Boolean is_any()

Boolean is_choice()
Chapter 3 High-Level PMI 3-173

Syntax Class
is_list

The preceding function call returns TRUE if the Syntax describes a compound data

value, and FALSE if it describes a scalar value.

is_sequence

The preceding function call returns TRUE if the syntax describes a compound data

value that contains an ordered list of zero or more members.

is_set

The preceding function call returns TRUE if the syntax describes a compound data

value that contains an unordered list of zero or more members.

member

The preceding function call returns the Syntax for a type that is a member of the

current type. Obviously, this is valid only for Syntax es that have members, namely

choices and lists. If a list type has unnamed members (or is a list of identical

elements, such as a “SET OF” or “SEQUENCE OF” ASN-1 type) the first anonymous

member type can be extracted by passing a null name argument. (Subsequent

anonymous types are inaccessible.)

Boolean is_list()

Boolean is_sequence()

Boolean is_set()

Syntax member(DU name = duNO_VALUE)
3-174 C++ API Reference • October 2001

Waiter Class
set_coder

The preceding function call sets the encoder/decoder for this type. The Coder is

used by the get_str and set_str functions in both Morf s and Image s. See also

set_attr_coder under the description of the Platform class.

3.23 Waiter Class
Inheritance: public Error

Data Members: No public data members are declared in this class.

A Waiter is the representation of an ongoing asynchronous operation. The Waiter
provides methods for cancelling and awaiting completion of the operation.

The Waiter can also serve as the basis for asynchronous operations of your own

construction.

void set_coder(Coder coder)

#include pmi/hi.hh

TABLE 3-22 Waiter Method Types

Method Name Method Type

wait Normal Wait
Chapter 3 High-Level PMI 3-175

Waiter Class
3.23.1 Constructors

The default constructor creates a Waiter instance that refers to no actual Waiter .

The value tests FALSE until you assign it a real Waiter value.

The preceding constructor is an ordinary copy constructor. After the copy, both

copies still refer to the same Waiter object. The reference count on the Waiter
object is incremented.

when_canceled
when_done
when_resp
when_tick

Schedule additional notifications

cancel
get_except
num_clobbered
time_remaining
waitmore
was_completed

Managing a Waiter you didn’t create

clobber
complete
dec
get_current_event
get_data
inc
send_resp
ref

Managing a Waiter you created

Waiter()

Waiter(const Waiter& other)

Waiter(Ptr ptrdata,
CCB callback,
Timeout defto = REAL_DEFAULT_TIMEOUT)

TABLE 3-22 Waiter Method Types (Continued)

Method Name Method Type
3-176 C++ API Reference • October 2001

Waiter Class
The preceding constructor constructs a Waiter instance that calls back to the

specified callback when the Waiter completes. The ptrdata is a convenient place to

store arbitrary data.

The preceding constructor constructs a Waiter instance from a void* pointer

created by the ref method. It is primarily for internal PMI use within callbacks,

when the callback can occur after the original Waiter has gone out of scope, and

would ordinarily have been deleted. Each call to ref increments a reference count,

and each construction of a Waiter using this constructor eventually causes the

reference count to be decremented again when the Waiter is destructed at the end

of the callback. If multiple callbacks are to use the same pointer, then pass a reuse
parameter of TRUE on all but the last callback (or call ref again within the callback)

to keep the reference alive till the next callback.

After the preceding constructor is constructed from a void* pointer by the ref()
method, make sure the waiter::complete() function is called. An example is

shown below.

Waiter(Ptr ptrdata, Boolean reuse = FALSE)

Waiter::complete

CODE EXAMPLE 3-20 waiter::complete() Function

 Callback cb_all(all_done, 0);
 Waiter all_waiter(0, cb_all);

 cout << "Image(" << obj1 << ") to be booted" << endl;
 Image im1 = Image(obj1);
 Callback cb1(f1, all_waiter.ref());
 Waiter waiter1 = im1.start_boot(cb1);

 cout << "Image(" << obj2 << ") to be booted" << endl;
 Image im2 = Image(obj2);
 Callback cb2(f2, all_waiter.ref());
 Waiter waiter2 = im2.start_boot(cb2);

 cout << "Waiting for callback event" << endl;

 while (!done_flag) {
 dispatch_recursive(TRUE);
 }
Chapter 3 High-Level PMI 3-177

Waiter Class
void
f1(Ptr user_data, Ptr)
{
 cout << "job1 is done" << endl;

 Waiter waiter1(user_data, FALSE);

 if (waiter1)
 {
 //Mark job1 is done
 waiter1.complete();
 }
}
void
f2(Ptr user_data, Ptr)
{
 cout << "job2 is done" << endl;

 Waiter waiter2(user_data, FALSE);

 if (waiter2)
 {
 //Mark job2 is done
 waiter2.complete();
 }
}

void
all_done(Ptr, Ptr)
{
 cout << "All Jobs are done" << endl;

 done_flag = 1;
}

CODE EXAMPLE 3-20 waiter::complete() Function (Continued)
3-178 C++ API Reference • October 2001

Waiter Class
3.23.2 Waiter Operator Overloading

The assignment operator, above, works like the copy constructor.

The preceding cast operator is for use in conditionals. It returns TRUE if this Waiter
refers to an actual Waiter object. Do not attempt to use the returned value as a

pointer to anything, since it points to private data.

The preceding function call is provided so that you can say

“if (!waiter) …”

3.23.3 Waiter Member Functions

This section describes the member functions of the Waiter class.

cancel

The preceding function call causes the asynchronous operation to time out

immediately. Essentially it's a waitmore(0.0) . Any existing callbacks are not

removed.

Waiter& operator = (const Waiter& other)

operator void*()

int operator !()

Result cancel()
Chapter 3 High-Level PMI 3-179

Waiter Class
clobber

The preceding function call causes the Waiter to be marked as deficient in some

respect or other. This function is primarily for internal use; the PMI uses it to pass

error information back to the application when, for instance, an unexpected error

response is received from the MIS. The function can be called multiple times, but

only the first error is remembered. This function does not complete the Waiter .

complete

The preceding function call marks the Waiter as complete. This function is

primarily for internal use; the PMI uses it to notify the Waiter so that it can call any

waiting external callbacks, and can let the wait function return to the application (if

the wait function was in fact called). Waiter.complete() should be called

regularly. Calls to this function are ignored if there are still pending internal

callbacks.

dec

The preceding function call decrements the Waiter ’s count of the number of

internal callbacks it is waiting for. The Waiter cannot complete while there are

pending internal callbacks. This function is primarily for internal use; it returns the

number of callbacks pending after the decrement.

void clobber(const ExceptionType* err = 0)

void complete()

U32 dec()
3-180 C++ API Reference • October 2001

Waiter Class
get_current_event

The preceding function call returns the CurrentEvent that is contained within the

Waiter . This is the event that is passed to all external callbacks when the Waiter
completes. The “message pointer” in this event is actually a pointer back to the

Waiter containing it.

get_data

The preceding function call returns the ptrdata originally passed to the Waiter
constructor. This function is primarily for internal use.

get_except

The preceding function call returns the exception that the Waiter was clobbered

with, if any.

inc

The preceding function call increments the Waiter ’s count of the number of internal

callbacks it is waiting for. The Waiter cannot complete while there are still pending

internal callbacks. This function is primarily for internal use. It returns the number

pending before the increment.

Note – It can be disastrous to lose track of the number of pending callbacks. You can

either hang forever or dump core.

CurrentEvent get_current_event()

Ptr get_data()

const ExceptionType* get_except()

U32 inc()
Chapter 3 High-Level PMI 3-181

Waiter Class
num_clobbered

The preceding function call returns the number of times the Waiter was clobbered.

ref

The preceding function call returns a reference-counted (refcnt) void* pointer to

this Waiter , from which you must, at some future time, reconstruct the Waiter
using the Waiter(Ptr, Boolean) constructor. Refer to the description of that

constructor earlier in this section for further information.

Note – If Waiter::ref() is used to pass waiters in callbacks, then the asynchronous

operation never completes. This is because the ref() function may do more than

increase the ref count on the Waiter. It also increases the pending count on the

Waiter.

send_resp

When invoked on a Waiter , this method posts the callback, stored during a

previous call to the when_resp() method, in the scheduler queue with the

associated Calldata. Calldata is a pointer that can be converted to a CurrentEvent
object which can be manipulated by the application that receives it.

U32 num_clobbered()

Ptr ref()

void send_resp(Ptr Calldata)
3-182 C++ API Reference • October 2001

Waiter Class
time_remaining

The preceding function call returns the time remaining before the Waiter would

expire due to a time-out. In combination with the when_tick function, this let’s you

give the user a countdown till the time the application blows up. Note that a

Timeout value is a (possibly fractional) number of seconds. Any rounding is up to

you.

wait

The preceding function call blocks for up to the specified period, waiting for the

asynchronous operation to complete. It returns a CurrentEvent . It it also capable

of throwing an exception if the Waiter was clobbered with a nonzero

ExceptionType pointer.

waitmore

The preceding function call is available for callbacks to reset the time-out clock to a

longer (or shorter) interval because some intermediate event occurred. For instance,

if receiving multiple messages, you might want to extend the time-out each time a

message comes in, and only time out if the gap between two subsequent messages

exceeds some threshold.

was_completed

The preceding function call returns TRUE if the Waiter : :complete function has

been called when there were no more pending internal callbacks.

Timeout time_remaining()

CurrentEvent wait(const Timeout to = DEFAULT_TIMEOUT)

Result waitmore(const Timeout to = DEFAULT_TIMEOUT)

Boolean was_completed()
Chapter 3 High-Level PMI 3-183

Waiter Class
when_canceled

The preceding function call specifies a callback to call if the operation is cancelled or

times out or is otherwise clobbered. Multiple callbacks can be added per waiter.

Note – All of the callbacks will be called if multiple callbacks are issued on the

Waiter . Multiple callbacks are supported so that more than one area of the program

code can be notified of the completion of an asynchronous operation.

If the callback is not specified, all callbacks are removed, including the original

callback passed to the constructor.

when_done

The preceding function call specifies a callback to call if the operation completes

successfully. Multiple callbacks can be added per waiter.

Note – All of the callbacks will be called if multiple callbacks are issued on the

Waiter . Multiple callbacks are supported so that more than one area of the program

code can be notified of the completion of an asynchronous operation.

If the callback is not specified, all callbacks are removed, including the original

callback passed to the constructor.

when_resp

When invoked on a Waiter returned from one of the Album methods, this function

allows the given callback cb to be called each time a reply related to the sent request

is available.

The callback’s second argument, which is a pointer of type void, cannot be ignored

and the callback must build a CurrentEvent with the second argument.

Result when_canceled(CCB cb = NO_CALLBACK)

Result when_done(CCB cb = NO_CALLBACK)

Result when_resp(CCB cb = NO_CALLBACK)
3-184 C++ API Reference • October 2001

Waiter Class
CODE EXAMPLE 3-21 is an example of appropriate callback use.

CODE EXAMPLE 3-22 is an example of inappropriate callback use.

The relevant information in the CurrentEvent depends on the request sent in the

case of CMIS M_GET, M_SET, or M_DELETE.

The following methods are available on the CurrentEvent object instance:

■ get_objname()

■ get_objclass()

■ get_image()

■ get_album()

■ get_message()

CODE EXAMPLE 3-21 Appropriate Callback Use Example

void cb(Ptr userdata, Ptr calldata)

{

// do whatever

if(calldata)

{

CurrentEvent ce(calldata);

// Do whatever and use and access the information

// within the CurrentEvent ce

}

// do whatever

}

CODE EXAMPLE 3-22 Inappropriate Callback Use Example

void cb(Ptr userdata,Ptr calldata)

{

// do whatever but never use calldata to

}

// or

void cb(Ptr userdata)

{

// do whatever and ignore the second argument

}

Chapter 3 High-Level PMI 3-185

Waiter Class
The get_message() method returns the message that caused the callback function

to be called. And in the case of CMIS M_ACTION, two additional methods are added

to the CurrentEvent object instance:

■ get_eventtype() : Returns the name of the action.

■ get_info_raw() : Returns a Morf instance that contains the action_reply
data member of the message.

when_tick

The preceding function call specifies a callback to call repeatedly as long as the

operation has not yet completed successfully. By default the callback is called once

per second, but you can specify a different Timeout parameter to modify that. Only

one such callback can be added per waiter. If the callback is not specified, the

callback is removed.

Result when_tick(CCB cb = NO_CALLBACK, const Timeout to = 1.0)
3-186 C++ API Reference • October 2001

CHAPTER 4

Low-Level PMI

The Solstice EM Portable Management Interface (PMI) provides a low-level

Common Management Information Server (CMIS)-like, distributed, transport-

independent interface for application programs. CMIS-like messages are sent and

received across this interface. These messages are routed to and from the Message

Routing Module (MRM) component of the Management Information Server (MIS).

This chapter comprises the following topics:

■ Section 4.1 “Communication Path” on page 4-1

■ Section 4.2 “Root Classes for the Low-Level PMI” on page 4-3

■ Section 4.3 “Low-Level PMI Classes” on page 4-3

■ Section 4.69 “Constants and Defined Types” on page 4-81

4.1 Communication Path
The Low-Level PMI uses paired sets of Transport-Independent and Transport-

Dependent Service Access Points (SAPs) to provide a communication path between

an application and the MRM. The set of paired SAPs use the transport mechanism

specified by the transport dependent SAP to pass messages between SAPs (between

an application and the MRM). Each set of SAPs normally resides in separate Unix

processes. Solstice EM currently uses a CMIS-like protocol over the Lightweight

Presentation Protocol (LPP) and TCP/IP to pass messages between the paired SAPs.
4-1

Communication Path
FIGURE 4-1 shows how the Low-Level PMI communicates between applications and

the MRM.

FIGURE 4-1 Applications to MRM Communication

Message Routing Module

Transport-Independent SAP

Application B

Transport-Dependent SAP

Transport-Dependent SAPTransport-Dependent SAP

Transport-Independent SAP

Application A

Transport-Dependent SAP

Transport-Independent SAPTransport-Independent SAP

Transport
Service

Transport
Service

Unix ProcessUnix Process

Unix Process

PMI PMI
4-2 C++ API Reference • October 2001

Root Classes for the Low-Level PMI
4.2 Root Classes for the Low-Level PMI
The root classes for the Low-Level PMI include:

■ Message Class

■ MessageSAP Class

■ MessScope Class

In addition, the Asn1Value and DataUnit classes are common base classes.

The data contained in the class structures based on Message class and defined in the

/opt/SUNWconn/em/include/pmi/message.hh file are primarily based on the

Asn1Value class, defined in asn1_val.hh . The Asn1Value class in turn relies

on structures and methods defined in the DataUnit class, defined in du.hh .

4.3 Low-Level PMI Classes

4.3.1 Class Inheritance

The Message class is the base class used by almost all messages passed between

SAPs and the PMI. The messages contained in the message.hh file largely define

the syntax of the low-level usage of the PMI.
Chapter 4 Low-Level PMI 4-3

Low-Level PMI Classes
A number of CMIS-like messages are subclasses of the Message class. The three

primary types of messages are:

■ Request messages

■ Response messages

■ Error response messages

Solstice EM CMIS messages are derived from Message , the base message class. It

contains data that is common to every type of message sent via a MessageSAP
interface. All of the other base message classes derive either directly or indirectly

from the Message class. You should never instantiate this class, only derive other

classes from it.

Other base message classes contain a parameter or set of parameters that are

commonly used together in more than one Solstice EM CMIS message. Some

messages commonly use more than one set of parameters and therefore, some of the

base message classes are combinations of other base message classes formed via

inheritance. The parameters that are included in the base message classes include

only those parameters that are used by the Message Routing Module (MRM) to

perform scoping, filtering, access control, and synchronization.

Note – Each of the classes derived from the Message class relies on the ISO

specifications of the CMIP protocol and ASN.1 data encoding.
4-4 C++ API Reference • October 2001

Low-Level PMI Classes
FIGURE 4-2 shows the inheritance hierarchy for the classes based on Message :

FIGURE 4-2 Inheritance Tree of the Message Class

ObjReqMess

CancelGetReq

Message

ReqMess

ScopedReqMess

GetReq
SetReq
ActionReq
DeleteReq

EventReq
CreateReq

ResMess

AssocReleased
CancelGetRes
ClassInstConfl
ComplexLimit
DestUnreach
DuplicateOI
DupMessageId
ErrorResUnexp
InvalidAttrVal
InvalidEventArg
InvalidFilter
InvalidOI
InvalidOperation
InvalidOperator
InvalidScope
LinkedResUnexp
MissingAttrVal
MistypedArg
MistypedError

MistypedOp
MistypedRes
NoSuchAttr
NoSuchDest
NoSuchEvent
NoSuchEventArg
NoSuchMessageId
NoSuchOC
NoSuchOI
NoSuchRefOI
OpCancelled
ResourceLimit
SyncNotSupp
TimedOut
UnexpChildOp
UnexpError
UnexpRes
UnrecError
UnrecLinkedId
UnrecMessageId
UnrecOp

ObjResMess

AccessDenied
ActionRes
CreateRes
DeleteRes
EventReportRes
GetListErr
GetRes
InvalidActionArg
NoSuchAction
NoSuchActionArg
ProcessFailure
SetListErr
SetRes
Chapter 4 Low-Level PMI 4-5

Low-Level PMI Classes
4.3.2 Class Summary

TABLE 4-1 lists the Low-Level PMI classes.

TABLE 4-1 Low-Level PMI Classes

Class Description

AccessDenied Encapsulates an AccessDenied error

ActionReq Serves as a repository for information identifying an

action request message

ActionRes Represents successful completion and results of an action

request

AssocReleased Represents an AssocReleased message

CancelGetReq Encapsulates a CancelGet message to stop a lengthy Get

request

CancelGetRes Response to a CancelGet message

ClassInstConfl Encapsulates a ClassConflict message

CreateReq Serves as a repository for information identifying a create

request message

CreateRes Represents successful completion and results of a create

request

DeleteReq Serves as a repository for information identifying a delete

request message

DeleteRes Represents successful completion and results of a delete

request

DuplicateOI Encapsulates a DuplicateOI error

DupMessageId Encapsulates a DupMessageId error

ErrorResUnexp Encapsulates an ErrorResUnexp error

EventReq Adds parameters to store an event type, time and

information

GetListErr Encapsulates a GetList error

GetReq Serves as a repository for information identifying a get

request message

GetRes Represents successful completion and results of a get

request

InvalidActionArg Encapsulates an InvalidActionArg error

InvalidAttrVal Encapsulates an InvalidAttrVal error
4-6 C++ API Reference • October 2001

Low-Level PMI Classes
InvalidEventArg Encapsulates an InvalidEventArg error

InvalidFilter Encapsulates an InvalidFilter error

InvalidOI Encapsulates an InvalidOI error

InvalidOperation Encapsulates an InvalidOperation error

InvalidOperator Encapsulates an InvalidOperator error

InvalidScope Encapsulates an InvalidScope error

LinkedResUnexp Encapsulates a LinkedResUnexp error

Message Contains data that is common to every type of message

sent via a MessageSAP interface

MessageSAP Defines queues of pointers to messages

MessQOS Represents the Quality of Service indicator included in all

messages

MessScope Defines a message’s scope—the range of objects where a

message is applied

MissingAttrVal Encapsulates a MissingAttrVal error

MistypedArg Encapsulates a MistypedArg error

MistypedError Encapsulates a MistypedError error

MistypedOp Encapsulates a MistypedOp error

MistypedRes Encapsulates a MistypedRes error

NoSuchAction Encapsulates a NoSuchAction error

NoSuchActionArg Encapsulates a NoSuchActionArg error

NoSuchAttr Encapsulates a NoSuchAttr error

NoSuchEvent Encapsulates a NoSuchEvent error

NoSuchEventArg Encapsulates a NoSuchEventArg error

NoSuchMessageId Encapsulates a NoSuchMessageId error

NoSuchOC Encapsulates a NoSuchOCerror

NoSuchOI Encapsulates a NoSuchOI error

NoSuchRefOI Encapsulates a NoSuchRefOI error

ObjReqMess Encapsulates an ObjReqMess message

ObjResMess Encapsulates an ObjResMess message

OpCancelled Encapsulates an OpCancelled message

TABLE 4-1 Low-Level PMI Classes (Continued)

Class Description
Chapter 4 Low-Level PMI 4-7

Low-Level PMI Classes
ProcessFailure Encapsulates a ProcessFailure error

ReqMess Encapsulates a ReqMess message

ResMess Encapsulates a ResMess message

ResourceLimit Encapsulates a ResourceLimit message

ScopedReqMess Encapsulates a ScopedReqMess message

SetListErr Encapsulates a SetListErr error

SetReq Encapsulates a SetReq message

SetRes Encapsulates a SetRes message

SyncNotSupp Encapsulates a SyncNotSupp message

TimedOut Encapsulates a TimedOut error

UnexpChildOp Encapsulates an UnexpChildOp error

UnexpError Encapsulates an UnexpError error

UnexpRes Encapsulates an UnexpRes error

UnrecError Encapsulates an UnrecError error

UnrecLinkedId Encapsulates an UnrecLinkedId error

UnrecMessageId Encapsulates an UnrecMessageId error

UnrecOp Encapsulates an UnrecOp error

TABLE 4-1 Low-Level PMI Classes (Continued)

Class Description
4-8 C++ API Reference • October 2001

AccessDenied Class
4.4 AccessDenied Class
Inheritance: public ObjResMess, public ResMess, public Message,
public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the AccessDenied class adds an

Asn1Value parameter to store a current time. The oc, oi, and curr_time members

are only defined when returning an error from a scoped ACTION_REQor

DELETE_REQ.

TABLE 4-2 lists the AccessDenied public data member.

4.4.1 Constructor

The constructor for AccessDenied takes no parameters. It initializes its parent

class.

TABLE 4-2 AccessDenied Public Data Member

Type Variable Description

Asn1Value curr_time An optional parameter specifying the time that

this response message was generated.

AccessDenied()
Chapter 4 Low-Level PMI 4-9

ActionReq Class
4.5 ActionReq Class
Inheritance: public ScopedReqMess, public ObjReqMess, public
ReqMess, public Message

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

An instance of ActionReq serves as a repository for information identifying an

action request message.

TABLE 4-3 lists the ActionReq public data members.

4.5.1 Constructor

The constructor for ActionReq takes no parameters and does nothing more than

initialize its parent classes.

TABLE 4-3 ActionReq Public Data Members

Type Variables Description

Asn1Value action_type The type of action being requested by this

message

Asn1Value action_info Information that might be included in this

action request. The data content of this

parameter depends on the action_type .

There are definitions for the action types in

the OSI Network Management Forum

document.

ActionReq()
4-10 C++ API Reference • October 2001

ActionRes Class
4.6 ActionRes Class
Inheritance: public ObjResMess, public ResMess, public Message,
public QueueElem

#include <pmi/message.hh >

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the ActionRes class adds three

Asn1Value parameters to store a current time, an action type, and some action reply

information.

TABLE 4-4 lists the ActionRes public data members.

4.6.1 Constructor

The constructor for ActionRes takes no parameters. It only initializes its parent

classes.

TABLE 4-4 ActionRes Public Data Members

Type Variables Description

Asn1Value curr_time An optional parameter specifying the time that

this response message was generated.

Asn1Value action_type The type of action for which this response is

being generated.

Asn1Value action_reply Information accompanying this action response.

The contents of this optional parameter vary

and are based on the action type specified. The

formats for this parameter for the various action

types are given in the GDMO and ASN.1

documents.

ActionRes()
Chapter 4 Low-Level PMI 4-11

AssocReleased Class
4.7 AssocReleased Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh >

Method Types: No public member functions are declared in this class.

The AssocReleased class defines no functions or variables beyond those it inherits.

The error message that this class represents is patterned after the ROSE error

message initiator-releasing. The usage of this message is described in detail in the

documentation covering the ROSE protocol. It is used within the Solstice EM MIS to

indicate that a request could not be serviced because the association on which that

request was received is either about to or has already gone away.

4.7.1 Constructor

This constructor takes no parameters. It initializes its parent classes.

AssocReleased()
4-12 C++ API Reference • October 2001

CancelGetReq Class
4.8 CancelGetReq Class
Inheritance: public ReqMess, public Message, public QueueElem

#include <pmi/message.hh >

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the CancelGetReq class adds a

MessId parameter. This parameter specifies the ID of the CMIS Get request that is

being cancelled by this request.

TABLE 4-5 lists the CancelGetReq public variable.

4.8.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-5 CancelGetReq Public Variable

Type Variable Description

MessId get_id The ID of the CMIS Get request that is being cancelled by

this request

CancelGetReq()
Chapter 4 Low-Level PMI 4-13

CancelGetRes Class
4.9 CancelGetRes Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh >

Method Types: No public member functions are declared in this class.

The CancelGetRes object class contains all of the member variables and member

functions that are present in the classes it has derived from, whether directly or

indirectly. No additional parameters are available for this response message.

4.9.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

CancelGetRes()
4-14 C++ API Reference • October 2001

ClassInstConfl Class
4.10 ClassInstConfl Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh >

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the ClassInstConfl class adds

two Asn1Value parameters to store an object class and an object instance.

TABLE 4-6 lists the ClassInstConfl public data members.

4.10.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-6 ClassInstConfl Public Data Members

Type Variables Description

Asn1Value oc The object class that was specified in the request message

Asn1Value oi The object instance, whose object class is not the same as

oc , that caused the generation of this error message

ClassInstConfl()
Chapter 4 Low-Level PMI 4-15

CreateReq Class
4.11 CreateReq Class
Inheritance: public ObjReqMess, public ReqMess, public Message,
public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the CreateReq class adds four

Asn1Value parameters to store a superior object instance, access control

information, a reference object instance, and an attribute list.

TABLE 4-7 lists the CreateReq public data members.

4.11.1 Constructor

This constructor takes no parameters. It initializes its parent classes and its internal

data.

TABLE 4-7 CreateReq Public Data Members

Type Variables Description

Asn1Value superior_oi The object that will be the parent object (in

the MIT) to this newly created object.

Asn1Value access Access control information that is checked

by the destination to determine if the issuer

of this request message is allowed to

perform a creation. This parameter is

optional.

Asn1Value reference_oi The optional object instance of an object

whose attributes are to be copied into this

new object.

Asn1Value attr_list An optional list of attributes that the newly

created object is to contain.

CreateReq()
4-16 C++ API Reference • October 2001

CreateRes Class
4.12 CreateRes Class
Inheritance: public ObjResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the CreateRes class adds two

Asn1Value parameters to store a current time and an attribute list.

TABLE 4-8 lists the CreateRes public data members.

4.12.1 Constructor

This constructor takes no parameters. It initializes its parent classes.

TABLE 4-8 CreateRes Public Data Members

Type Variables Description

Asn1Value curr_time An optional parameter specifying the time that

this response message was generated.

Asn1Value attr_list This optional parameter contains a list of

attribute IDs and values with which the new

object was created.

CreateRes()
Chapter 4 Low-Level PMI 4-17

DeleteReq Class
4.13 DeleteReq Class
Inheritance: public ScopedReqMess, public ObjReqMess, public
ReqMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

The DeleteReq object class contains all of the member variables and member

functions that are present in the classes that it has derived from, either directly or

indirectly. It does not add any parameters other that those that it inherits.

4.13.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

DeleteReq()
4-18 C++ API Reference • October 2001

DeleteRes Class
4.14 DeleteRes Class
Inheritance: public ObjResMess, public ResMess, public Message,
public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the DeleteRes class adds an

Asn1Value parameter to store a current time.

TABLE 4-9 lists the DeleteRes public data member.

4.14.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-9 DeleteRes Public Data Member

Type Variable Description

Asn1Value curr_time An optional parameter specifying the time that

this response message was generated

DeleteRes()
Chapter 4 Low-Level PMI 4-19

DuplicateOI Class
4.15 DuplicateOI Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the DuplicateOI class adds an

object instance parameter.

TABLE 4-10 lists the DuplicateOI public variable.

4.15.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-10 DuplicateOI Public Variable

Type Variable Description

Asn1Value oi This is an invalid object instance that caused the

generation of this error message. This is sent in

response to a create request when the object

whose creation was requested was given the

same object instance as an already existing

object.

DuplicateOI()
4-20 C++ API Reference • October 2001

DupMessageId Class
4.16 DupMessageId Class
Inheritance: public ResMess, class Message, class QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

The DupMessageId object class contains all of the member variables and member

functions that are present in the classes that it has derived from, either directly or

indirectly. This class defines no functions or variables beyond those it inherits. The

error message that this class represents is patterned after the ROSE error message

duplicate-invocation.

4.16.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

DupMessageId()
Chapter 4 Low-Level PMI 4-21

ErrorResUnexp Class
4.17 ErrorResUnexp Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

The ErrorResUnexp object class contains all of the member variables and member

functions that are present in the classes that it has derived from, either directly or

indirectly. This class defines no functions or variables beyond those it inherits. The

error message that this class represents is patterned after the ROSE error message

error-response-unexpected. It is used to indicate that an error message was

generated in response to a non-confirmed request.

4.17.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

ErrorResUnexp()
4-22 C++ API Reference • October 2001

EventReq Class
4.18 EventReq Class
Inheritance: public ObjReqMess, public ReqMess, public Message,
public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the EventReq class adds three

Asn1Value parameters to store an event type, an event time, and some event

information.

TABLE 4-11 lists the EventReq public data members.

4.18.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-11 EventReq Public Data Members

Type Variables Description

Asn1Value event_type The type of event reported via this

message.

Asn1Value event_time The time that the originator of the event

chose to place here (probably, but not

necessarily the time that the event

occurred).

Asn1Value event_info Any supplemental information that is to

accompany this request. Specific data

formats for this parameter depend on the

event_type and are defined in OSI

Network Management Forum

documentation.

EventReq()
Chapter 4 Low-Level PMI 4-23

GetListErr Class
4.19 GetListErr Class
Inheritance: public ObjResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the GetListErr class adds two

Asn1Value parameters to store a current time and a get an information list.

TABLE 4-12 lists the GetListErr public data members.

4.19.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-12 GetListErr Public Data Members

Type Variables Description

Asn1Value get_info_list The list of attributes that were requested in

the Get request. This list contains attributes

which could be accessed. Those attributes

which could not be accessed, and hence

caused the generation of this error message,

are not included in this list.

Asn1Value curr_time An optional parameter specifying the time

that this response message was generated.

GetListErr()
4-24 C++ API Reference • October 2001

GetReq Class
4.20 GetReq Class
Inheritance: public ScopedReqMess, public ObjReqMess, public
ReqMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the GetReq class adds an

attribute ID list parameter.

TABLE 4-13 lists the GetReq public variable.

4.20.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-13 GetReq Public Variable

Type Variable Description

Asn1Value attr_id_list A list of attribute IDs whose attribute

values are to be returned in the response to

this Get request.

GetReq()
Chapter 4 Low-Level PMI 4-25

GetRes Class
4.21 GetRes Class
Inheritance: public ObjResMess, public ResMess, public Message,
public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the GetRes class adds two

ASN1Value parameters to store a current time and an attribute list.

TABLE 4-14 lists the GetRes public data members.

4.21.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-14 GetRes Public Data Members

Type Variables Description

Asn1Value curr_time An optional parameter specifying the time

that this response message was generated.

Asn1Value attr_list A list of attributes was specified in the Get

request message for which this response is

being generated. This parameter represents

the list of attributes that were compiled and

are being returned to the requestor.

GetRes()
4-26 C++ API Reference • October 2001

InvalidActionArg Class
4.22 InvalidActionArg Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the InvalidActionArg class

adds two Asn1Value parameters to store a current time and some action

information. There are two choices defined for the invalidArgument error

message and this class defines the actionValue choice (first of the two). The oi
and curr_time members are only defined when returning an error from a scoped

ACTION_REQ.

TABLE 4-15 lists the InvalidActionArg public data members.

4.22.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-15 InvalidActionArg Public Data Members

Type Variables Description

Asn1Value action_info Additional information about the action,

revealing why this error message was

generated.

Asn1Value curr_time An optional parameter specifying the time

that this response message was generated.

InvalidActionArg()
Chapter 4 Low-Level PMI 4-27

InvalidAttrVal Class
4.23 InvalidAttrVal Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the InvalidAttrVal class adds

an attribute parameter.

TABLE 4-16 lists the InvalidAttrVal public variable.

4.23.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-16 InvalidAttrVal Public Variable

Type Variable Description

Asn1Value attr This is the invalid attribute that caused the

generation of this error message.

InvalidAttrVal()
4-28 C++ API Reference • October 2001

InvalidEventArg Class
4.24 InvalidEventArg Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the InvalidEventArg class

adds three Asn1Value parameters to store an object class, event type, and some

event information. There are two choices defined for the invalidArgument error

message and this class defines the eventValue choice (second of the two).

TABLE 4-17 lists the InvalidEventArg public data members.

4.24.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-17 InvalidEventArg Public Data Members

Type Function Description

Asn1Value oc The object that the event report request was

generated for.

Asn1Value event_type The invalid event type that caused the

generation of this error message.

Asn1Value event_info Additional information indicating why this

error message was generated. The format of

this parameter is variable and depends on

the event_type specified in this message.

InvalidEventArg()
Chapter 4 Low-Level PMI 4-29

InvalidFilter Class
4.25 InvalidFilter Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the InvalidFilter class adds a

filter parameter.

TABLE 4-18 lists the InvalidFilter public variable.

4.25.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-18 InvalidFilter Public Variable

Type Variable Description

Asn1Value filter The filter that was invalid and caused the

generation of this error message.

InvalidFilter()
4-30 C++ API Reference • October 2001

InvalidOI Class
4.26 InvalidOI Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the InvalidOI class adds an

object instance parameter.

TABLE 4-19 lists the InvalidOI public variable.

4.26.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-19 InvalidOI Public Variable

Type Variable Description

Asn1Value oi The invalid object instance that caused the

generation of this error message.

InvalidOI()
Chapter 4 Low-Level PMI 4-31

InvalidOperation Class
4.27 InvalidOperation Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

The InvalidOperation object class contains all of the member variables and

member functions that are present in the classes that it has derived from, either

directly or indirectly. This class defines no functions or variables beyond those it

inherits.

4.27.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

InvalidOperation()
4-32 C++ API Reference • October 2001

InvalidOperator Class
4.28 InvalidOperator Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the InvalidOperator class

adds a modify operator parameter.

TABLE 4-20 lists the InvalidOperator public variable.

4.28.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-20 InvalidOperator Public Variable

Type Variable Description

Asn1Value mod_op The invalid modify operator that was

specified in a Set request and thus caused

the generation of this error message.

InvalidOperator()
Chapter 4 Low-Level PMI 4-33

InvalidScope Class
4.29 InvalidScope Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

In addition to the functions or variables it inherits, the InvalidScope class adds a

scope parameter.

TABLE 4-21 lists the InvalidScope public variable.

4.29.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-21 InvalidScope Public Variable

Type Variable Description

MessScope scope The invalid scope parameter, extracted from

the request message, which caused the

generation of this error message.

InvalidScope()
4-34 C++ API Reference • October 2001

LinkedResUnexp Class
4.30 LinkedResUnexp Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

The LinkedResUnexp object class contains all of the member variables and member

functions that are present in the classes that it has derived from, either directly or

indirectly. This class defines no functions or variables beyond those it inherits. The

error message that this class represents is patterned after the ROSE error message

“linked-response-unexpected.” It is used within the Solstice EM MIS to indicate that

a linked request was received and the linked ID specified did not refer to a request

for which a linked ID could be generated.

4.30.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

LinkedResUnexp()
Chapter 4 Low-Level PMI 4-35

Message Class
4.31 Message Class
Inheritance: public QueueElem

#include <pmi/message.hh>

The Message class is the base class used by almost all messages passed between

SAPs and the PMI. The messages contained in the message.hh file largely define

the syntax of the low-level usage of the PMI.

TABLE 4-22 lists the Message class public data members.

TABLE 4-23 lists the Message class method types.

TABLE 4-22 Message Class Public Data Members

Type Variables Description

MessId id The Message ID, unique to the originator of the

message.

Address source The address of the Solstice EM module or

application that originated this message.

Address dest The address of the Solstice EM module or

application that is the intended destination of this

message. This field is optional when the message

is first issued. If this is not supplied, the MRM

determines the destination for this message and

fills in this field.

MessQOS qos The quality of service to be used in processing this

request.

TABLE 4-23 Message Class Method Types

Functions Description

type
base type

Return the message’s type or base type

is_request
is_response
is_error

Test type of message

dup Make a copy of message

new_message Create new message types

delete_message Delete a message
4-36 C++ API Reference • October 2001

Message Class
4.31.1 Constructor

This constructor, above, takes a MessType as its argument and records it as the

value of the private variable type. For the possible values of MessType , refer to

Section 4.69.7 “MessType” on page 4-84.”

4.31.2 Message Member Functions

This section describes the member functions of the Message class.

basetype

This function call returns the message’s base type.

delete_message

This function call deletes the Message instance to which mp points. Use this

function as a destructor for messages.

dup

This function call creates a duplicate of the message and returns a pointer to the

duplicate. Note that the embedded Asn1Values are copied by reference.

Message(MessType type)

MessType basetype() const

static void delete_message(MessagePtr mp)

virtual MessagePtr dup() = 0
Chapter 4 Low-Level PMI 4-37

Message Class
is_error

This function call returns TRUEif this is an error message and FALSE if it is not. The

message is determined to be an error based on its t member variable.

is_request

This function call returns TRUEif this is a request message and FALSE if it is not.

The message is determined to be a request based on its t member variable.

is_response

This function call returns TRUEif this is a response message and FALSE if it is not.

The message is determined to be a response based on its t member variable.

new_message

This function call creates a new Message type.

type

This function call returns the type of this message. For the possible values of the

returned enumeration, refer to Section 4.69.7 “MessType” on page 4-84.”

Boolean is_error() const;

Boolean is_request() const;

Boolean is_response() const;

static Message* new_message(MessType type)

MessType type() const
4-38 C++ API Reference • October 2001

MessageSAP Class
4.32 MessageSAP Class
Inheritance: class MessageSAP

#include <pmi/message.hh>

A key class for the low-level use of the PMI is the MessageSAP class. The

KernelMessageSAP , is a subclass of the MessageSAP class. The classes listed in

TABLE 4-24 are subclasses of MessageSAP.

The MessageSAP object class is used as the endpoint of a communications link

between two Solstice EM modules. A MessageSAP is created on each end of a

communications path by a routine called to register a module or application with the

MRM. This routine creates both MessageSap s and then notifies both parties of the

MessageSAP that they are to use for communication to the other end.

The MessageSAP maintains a message ID so that request messages issued from this

MessageSAP can be uniquely identified. In addition, it contains two instances of the

Event object class. These two instances are the receive_request event and the

detach event. These are used to notify the owner of the MessageSAP that a request

message has been received and also to notify the owner of the MessageSAP that the

other side (the MessageSAP to which this one is attached) has been deleted.

The MessageSAP object class defines a number of member functions which are used

to either send or receive messages. In addition, member functions are provided that

return a unique message ID and cancel a callback for a message or an event.

The MessageSAP class defines queues of pointers to messages. The messages

pointed to are all subclasses of the Message class defined in the /opt/SUNWconn/
em/include/pmi/message.hh file.

TABLE 4-24 MessageSAP Subclasses

Subclass Names Description

ApplMessageSAP A transport independent SAP used by applications

TDApplMessageSAP A transport dependent SAP used by applications

TIMessageSAP A transport independent SAP used by the MIS

TDMessageSAP A transport dependent SAP used by the MIS
Chapter 4 Low-Level PMI 4-39

MessageSAP Class
FIGURE 4-3 shows the inheritance hierarchy for the classes based on MessageSAP.

FIGURE 4-3 Inheritance Tree of the MessageSAP Class

TABLE 4-25 lists the MessageSAP public data members.

TABLE 4-26 lists the MessageSAP method types.

TABLE 4-25 MessageSAP Public Data Members

Type Variables Description

Callback receive_request_cb The event to be posted when an incoming

request arrives.

Callback detach_cb The event to be posted when the message

sap detaches.

TABLE 4-26 MessageSAP Method Types

Method Name Method Type

send Send a message (with or without blocking).

receive_request
receive_response

Respond to a received request.

cancel_callback Cancel the callback for a pending response.

new_id Generate an ID for a message.

ApplMessageSAP

TDApplMessageSAP

MessageSAP

KernelMessageSAP

TDMessageSAP

TIMessageSAP
4-40 C++ API Reference • October 2001

MessageSAP Class
4.32.1 Constructor

This example is the constructor for the MessageSAP.

4.32.2 MessageSAP Member Functions

This section describes the member functions of the MessageSAP class.

cancel_callback

This function call cancels the pending response callback for a particular message ID.

This form of the cancel_callback member function cancels the callback that

was attached to a request sent via the non-blocking form of the send member

function. This function takes a message id m_id as input and searches for any

callback routine which might have been specified for the response identified by

m_id. The callback is removed from the list of callbacks so that when the response

message arrives, it is dropped. It returns OKif the callback is successfully cancelled.

Alternatively,

This function call cancels the pending response callback for any matching message.

This form of the cancel_callback member function cancels the callback that was

attached to a request sent via the non-blocking form of the send member function.

This function takes an event reference e as input and searches references to this event

in the callback list. If any are found, they are deleted from the list. Later, when the

response message arrives, it is dropped.

MessageSAP ()

virtual void cancel_callback(MessId m_id) = 0;

virtual void cancel_callback(Callback & cb) = 0;
Chapter 4 Low-Level PMI 4-41

MessageSAP Class
new_id

This function call generates a new message identifier (one greater than the last ID

this MessageSAP supplied), stores it privately in the MessId instance, and returns

its value.

receive_request

This function call receives the next pending request message. This function is called

after a notification has arrived via the receive_request_callback mechanism.

The receive_request_callback receives a notification that a request message

has been queued up for this MessageSAP and then this routine should be called to

actually access the message. The function takes a reference to a Message pointer and

this pointer is set to point to the message received.

This function call receives the next response for a given message. The message

whose response is sought is identified either by its message ID (m_id) or by a

response handle (rh). This function is called after the owner of the MessageSAP has

been notified that a response message has been queued to this MessageSAP. The

notification takes place by having the blocking form of the MessageSAP::send
return successful for a confirmed request message. This notification can also occur if

the event for the non-blocking form of the send member function is notified. The

function sets mp with a pointer to the response message. It returns OKif the first

argument successfully identifies a response and the message pointer is successfully

set to the response message.

MessId new_id()

virtual Result receive_request(MessagePtr & mp) = 0;

virtual Result receive_response(MessId m_id,
MessagePtr & mp) = 0;

virtual Result receive_response(ResponseHandle rh,
MessagePtr & mp) = 0;
4-42 C++ API Reference • October 2001

MessageSAP Class
send

This function call is the blocking form of the send member function. This version of

send takes a pointer to an instance of the Message object class and a block_time
parameter. The message pointer points to the message that is to be sent via this

MessageSAP. The block_time parameter specifies how long the caller of this function

is willing to wait for the message to be sent. If the message cannot be sent within the

time specified, an error is returned.

Messages might not be sent because of resource limitations or a host of other

problems.

The above function call returns an error code that specifies why a message could not

be sent. The possible values of SendResult are shown below.

If this is a request message and the function returns SENT, the request message has

been successfully sent and the response to this request has been queued to this

MessageSAP. If this was a non-confirmed request, SENTindicates only that the

request has been sent successfully.

If this is a response message, SENTindicates that the response has been sent.

The following function call is the non-blocking form of the send member function.

This version of send takes a pointer to an instance of the Message object class, an

instance of the Event object class, and a block_time parameter. This version of send
should only be used to send confirmed request messages. It should not be used to

send unconfirmed requests or responses.

virtual SendResult send(MessagePtr mp,
MTime block_time = INFINITY) = 0;

typedef enum SendResult { SENT,
BAD_MESSAGE,
WOULD_BLOCK,
NO_MEM };
Chapter 4 Low-Level PMI 4-43

MessageSAP Class
The message pointer mp points to the message that is to be sent via this

MessageSAP. The callback cb specifies a procedure that is to be called whenever the

response for this request message has been queued to this MessageSAP. The

block_time parameter specifies how long the caller of this function is willing to wait

for the message to be sent. If the message cannot be sent within the time specified,

an error is returned.

It might not be possible to send a message because of resource limitations or a host

of other problems. This routine returns an error code that indicates why a message

could not be sent.

4.32.3 MessageSAP Initialization

Following is a sample on how to initialize a MessageSAP.

The parameter, sap_p_p, is initialized as a result of the call to

init_kernel_msg_sap . It is the MessageSAP your driver module should use to

send and receive messages from the Solstice EM MRM. After

init_kernel_msg_sap has been called, the MessageSAP parameter should be

initialized to point to the callback handlers that are used by the MRM.

The function returns a value whose type is Result : that is, a boolean value defined

as either OKor NOT_OK. Result is defined in the /opt/SUNWconn/em/include/
pmi/sys_type.hh file.

virtual SendResult send(MessagePtr mp,
const Callback & cb,
MTime block_time = INFINITY) = 0;

result init_kernel_msg_sap(Address source_module,
 MessageSAP ** sap_p_p);
4-44 C++ API Reference • October 2001

MessQOSClass
4.33 MessQOSClass
Inheritance: class MessQOS

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

The MessQOSclass represents the Quality of Service indicator included in all

messages. This class is currently a null class (that is, it has no member functions or

variables). Its purpose is to store data that affects the type of service to be given to a

message. This data might include such things as the allowable lifetime of the

message and the type of behavior associated with the transportation of this message.

Some examples are:

■ request time-out parameters

■ security parameters

■ reliability/retry parameters

4.34 MessScope Class
Inheritance: class MessScope

#include <pmi/message.hh>

Method Types: No method types are declared in this class.

The MessScope class defines a message’s scope (that is, the range of objects to

which the message is to be applied). An instance of MessScope contains a

MessScopeType variable and an optional level. The enumeration defines five types

of scoping.

TABLE 4-27 Types of MessScope Scoping

Scope Description

BASE_OBJECT A request message containing a scope parameter equal

to BASE_OBJECTshould be sent only to the object

specified in the request.
Chapter 4 Low-Level PMI 4-45

MessScope Class
TABLE 4-28 lists the MessScope public data members.

4.34.1 Constructors

This section specifies the constructors of the MessScope class.

NTH_LEVEL The request message should be sent to those objects

which exist N levels below the base object in the

Management Information Tree (MIT). The base object is

not part of the message, only those objects which are

Nth level descendents of the base object. The level
variable in the MessScope class is set to the level

desired.

BASE_TO_NTH_LEVEL The request message is sent to the base object and all

descendents of the base object down to the Nth level.

Again, the level variable is used to indicate the final

level of objects that the request is to be routed to.

ALL_LEVELS The request message to be sent to the base object and

all of its descendents in the MIT. The level variable in

the MessScope class is only used for NTH_LEVELand

BASE_TO_NTH_LEVELscoping.

ALL_LEVELS_EXCEPT_BASE Used internally by the Solstice EM MIS.

TABLE 4-28 MessScope Public Data Members

Type Variables Description

MessScopeType type {BASE_OBJECT,
NTH_LEVEL,
BASE_TO_NTH_LEVEL,
ALL_LEVELS}

U32 level

MessScope()
MessScope(MessScopeType type, U32 level)

TABLE 4-27 Types of MessScope Scoping (Continued)

Scope Description
4-46 C++ API Reference • October 2001

MissingAttrVal Class
4.35 MissingAttrVal Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined in this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the MissingAttrVal class adds

an attribute ID list parameter.

TABLE 4-29 lists the MissingAttrVal public variable

4.35.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-29 MissingAttrVal Public Variable

Type Variable Description

Asn1Value attr_id_list A list of attribute IDs is specified in the

Create request. If an attribute is required to

be in an object when the object is created

and that attribute is not present in this list,

then this error message is generated. This

variable contains the list of attributes whose

values are missing.

MissingAttrVal()
Chapter 4 Low-Level PMI 4-47

MistypedArg Class
4.36 MistypedArg Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined in this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

The MistypedArg object class contains all of the member variables and member

functions that are present in the classes that it has derived from, either directly or

indirectly. This class defines no functions or variables beyond those it inherits. The

error message that this class represents is patterned after the ROSE error message

mistyped-argument. The usage of this message is described in detail in the

documentation covering the ROSE protocol. It is used within the Solstice EM MIS to

indicate that one of the arguments supplied with a request message was not

supposed to be present.

4.36.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

MistypedArg()
4-48 C++ API Reference • October 2001

MistypedError Class
4.37 MistypedError Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined in this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

The MistypedError object class contains all of the member data members and

member functions that are present in the classes that it has derived from, either

directly or indirectly. This class defines no functions or variables beyond those it

inherits. The error message that this class represents is patterned after the ROSE

error message mistyped-parameter. It is used within the Solstice EM MIS to indicate

that an error message, generated in response to a particular request, contained a

parameter which either was not expected as part of the error message or which was

not formed properly.

4.37.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

MistypedError()
Chapter 4 Low-Level PMI 4-49

MistypedOp Class
4.38 MistypedOp Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

The MistypedOp object class contains all of the member variables and member

functions that are present in the classes that it has derived from, either directly or

indirectly. This class does not add any additional parameters.

4.38.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

MistypedOp()
4-50 C++ API Reference • October 2001

MistypedRes Class
4.39 MistypedRes Class
Inheritance: public ResMess, public ResMess, public Message, public
QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

The MistypedRes object class contains all of the member variables and member

functions that are present in the classes that it has derived from, either directly or

indirectly. This class defines no functions or variables beyond those it inherits. The

error message that this class represents is patterned after the ROSE error message

mistyped-result. It is used within the Solstice EM MIS to indicate that a result

message, generated for a particular request, contained a parameter that was either

not expected or was not formed properly.

4.39.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

MistypedRes()
Chapter 4 Low-Level PMI 4-51

NoSuchAction Class
4.40 NoSuchAction Class
Inheritance: public ObjResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the NoSuchAction class adds

two Asn1Value parameters to store a current time and an action type.

The action_type and curr_time members are only defined when returning an error

from a scoped ACTION_REQ.

TABLE 4-30 lists the NoSuchAction public data members.

4.40.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-30 NoSuchAction Public Data Members

Type Variables Description

Asn1Value action_type The invalid action type as extracted from

the request message.

Asn1Value curr_time An optional parameter specifying the time

that this response message was generated.

NoSuchAction()
4-52 C++ API Reference • October 2001

NoSuchActionArg Class
4.41 NoSuchActionArg Class
Inheritance: public ObjResMess, public ResMess, public Message,
public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the NoSuchActionArg class

adds two Asn1Value parameters to store a current time and an action type. There

are two choices defined for the noSuchArgument error message and this class

defines the actionId choice (first of the two).

The action_type and curr_time members are only defined when returning an error

from a scoped ACTION_REQ.

TABLE 4-31 lists the NoSuchActionArg public data members.

4.41.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-31 NoSuchActionArg Public Data Members

Type Variables Description

Asn1Value action_type The invalid action type as extracted from

the request message.

Asn1Value curr_time An optional parameter specifying the time

that this response message was generated.

NoSuchActionArg()
Chapter 4 Low-Level PMI 4-53

NoSuchAttr Class
4.42 NoSuchAttr Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the NoSuchAttr class adds an

attribute ID parameter.

TABLE 4-32 lists the NoSuchAttr public variable.

4.42.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-32 NoSuchAttr Public Variable

Type Variable Description

Asn1Value attr_id This is the invalid attribute ID that caused

the generation of this error message.

NoSuchAttr()
4-54 C++ API Reference • October 2001

NoSuchEvent Class
4.43 NoSuchEvent Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the NoSuchEvent class adds two

Asn1Value parameters to store an object class and an event type.

TABLE 4-33 lists the NoSuchEvent public data members.

4.43.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-33 NoSuchEvent Public Data Members

Type Variables Description

Asn1Value oc The object class for which the event report

request was generated.

Asn1Value event_type The invalid event type that caused the

generation of this error message.

NoSuchEvent()
Chapter 4 Low-Level PMI 4-55

NoSuchEventArg Class
4.44 NoSuchEventArg Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the NoSuchEventArg class adds

two Asn1Value parameters to store an object class and an event type. There are two

choices defined for the noSuchArgument error message and this class defines the

eventId choice (second of the two).

TABLE 4-34 lists the NoSuchEventArg public data members.

4.44.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-34 NoSuchEventArg Public Data Members

Type Variables Description

Asn1Value oc The object class for which the event report

request was generated.

Asn1Value event_type The invalid event type that caused the

generation of this error message.

NoSuchEventArg())
4-56 C++ API Reference • October 2001

NoSuchMessageId Class
4.45 NoSuchMessageId Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the NoSuchMessageId class

adds a get ID parameter.

TABLE 4-35 lists the NoSuchMessageId public variable.

4.45.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-35 NoSuchMessageId Public Variable

Type Variable Description

Asn1Value get_id This is the invalid message ID that caused

generation of this error message.

NoSuchMessageId()
Chapter 4 Low-Level PMI 4-57

NoSuchOCClass
4.46 NoSuchOCClass
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the NoSuchOCclass adds an

Asn1Value parameter to store an object class.

TABLE 4-36 lists the NoSuchOCpublic variable.

4.46.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-36 NoSuchOCPublic Variable

Type Variable Description

Asn1Value oc The invalid object class that caused the

generation of this error message.

NoSuchOC()
4-58 C++ API Reference • October 2001

NoSuchOI Class
4.47 NoSuchOI Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the NoSuchOI class adds an

Asn1Value parameter to store an object instance.

TABLE 4-37 lists the NoSuchOI public variable.

4.47.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-37 NoSuchOI Public Variable

Type Variable Description

Asn1Value oi The invalid object instance that caused the

generation of this error message.

NoSuchOI()
Chapter 4 Low-Level PMI 4-59

NoSuchRefOI Class
4.48 NoSuchRefOI Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the NoSuchRefOI class adds an

object instance parameter.

TABLE 4-38 lists the NoSuchRefOI public variable.

4.48.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-38 NoSuchRefOI Public Variable

Type Variable Description

Asn1Value oi The invalid object instance that caused the

generation of this error message.

NoSuchRefOI()
4-60 C++ API Reference • October 2001

ObjReqMess Class
4.49 ObjReqMess Class
Inheritance: public ReqMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the ObjReqMess class adds two

Asn1Value parameters for an object class and an object instance.

TABLE 4-39 lists the ObjReqMess public data members.

4.49.1 Constructor

TABLE 4-39 ObjReqMess Public Data Members

Type Variables Description

Asn1Value oc This is either a base or managed object class

as defined for the type of message being

created.

Asn1Value oi This is either a base or managed object

instance as defined for the type of message

being created.

ObjReqMess(MessType type)
Chapter 4 Low-Level PMI 4-61

ObjResMess Class
4.50 ObjResMess Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the ObjResMess class adds two

Asn1Values to store an object class and an object instance. Any response (also

linked request, error, and linked error) messages which include object class and

object instance parameters in the message would be derived from this class.

TABLE 4-40 lists the ObjResMess public data members.

4.50.1 Constructor

This constructor takes a MessType variable as input and passes this variable on to

the constructor(s) for the classes from which this class is derived.

TABLE 4-40 ObjResMess Public Data Members

Type Variables Description

Asn1Value oc The object class for this response message. .

Asn1Value oi The object instance for this response

message.

ObjResMess (MessType type)
4-62 C++ API Reference • October 2001

OpCancelled Class
4.51 OpCancelled Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Data Members: No public data members are declared in this class.

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

The OpCancelled object class contains all of the member variables and member

functions that are present in the classes that it has derived from, either directly or

indirectly. This class defines no functions or variables beyond those it inherits.

4.51.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

OpCancelled()
Chapter 4 Low-Level PMI 4-63

ProcessFailure Class
4.52 ProcessFailure Class
Inheritance: public ObjResMess, public ResMess, public Message,
public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the ProcessFailure class adds

a specific error information parameter.

TABLE 4-41 lists the ProcessFailure public variable.

4.52.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-41 ProcessFailure Public Variable

Type Function Description

Asn1Value spec_err_info Error information which gives additional

information about why this error message

was generated. The format of this

parameter is variable and depends upon

the object class specified in this error

message.

ProcessFailure()
4-64 C++ API Reference • October 2001

ReqMess Class
4.53 ReqMess Class
Inheritance: public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the ReqMess class adds a

MessMode parameter to a message. The usage of MessMode variables are described

in Section 4.69.2 “MessMode” on page 4-82.”

TABLE 4-42 lists the ReqMess public data members.

4.53.1 Constructor

This constructor takes a MessType variable as input and sets the member variable

mode equal to the variable passed in.

TABLE 4-42 ReqMess Public Data Members

Type Variables Description

MessMode mode The mode in which a request message is sent:

{CONFIRMED,
UNCONFIRMED}

Oid app_context The application context name for this request

message. This is used to establish an association

within the protocol driver.

U32 flags enum

ReqFlags {OVERRIDE_NAME_BINDING = 1,
OVERRIDE_ATTR_CHECKS = 2,
INTERNAL_RELATIONSHIP_CHANGE = 4};

 ReqMess(MessType type)
Chapter 4 Low-Level PMI 4-65

ResMess Class
4.54 ResMess Class
Inheritance: public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the ResMess class adds a

Boolean variable called linked that indicates whether this is a linked response

message. In all cases, a linked response contains the same data as would be found in

an unlinked response so that (applied to the same message) linked_get_result
returns the same data as get_result . Error messages are considered to be response

messages, but can also be linked requests.

TABLE 4-43 lists the ResMess public variable.

4.54.1 Constructor

This constructor takes a MessType variable as input and passes this variable on to

the constructor(s) for the classes from which this class is derived.

TABLE 4-43 ResMess Public Variable

Type Variable Description

Boolean linked When this variable is set to TRUE, this is a

linked request message. When FALSE, this

is a response message.

ResMess(MessType type)
4-66 C++ API Reference • October 2001

ResourceLimit Class
4.55 ResourceLimit Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

The ResourceLimit object class contains all of the member variables and member

functions that are present in the classes that it has derived from, either directly or

indirectly. This class defines no functions or variables beyond those it inherits. The

error message that this class represents is patterned after the ROSE error message

resource-limitation. It is used within the Solstice EM MIS to indicate that the receiver

of a request message was unable to service the request due to a lack of resources.

4.55.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

protected ResourceLimit()
Chapter 4 Low-Level PMI 4-67

ScopedReqMess Class
4.56 ScopedReqMess Class
Inheritance: public ObjReqMess, public ReqMess, public Message,
public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the ScopedReqMess class adds a

MessScope variable, two Asn1Value parameters specifying a filter and access

control, and a MessSync parameter. These parameters are present in all request

messages for which scoping can be specified. Each of these parameters is optional.

TABLE 4-44 lists the ScopedReqMess public data members.

4.56.1 Constructor

This constructor takes a MessType variable as input and passes this variable on to

the constructor(s) for the classes from which this class derived.

TABLE 4-44 ScopedReqMess Public Data Members

Type Variables Description

MessScope scope The type of scoping to be used for this request

message. The possible scoping types are listed in

Section 4.69.4 “MessScopeType” on page 4-82.”

Asn1Value filter This defines a filter that all objects selected via

scoping must pass. The message is not sent to any

object that does not pass the filter.

Asn1Value access This defines the access control that objects selected

via scoping must be pass. The message is not sent to

any object that does not pass the access control.

MessSync sync The type of synchronization for this scoped message;

{ATOMIC, BEST_EFFORT}

 ScopedReqMess(MessType type)
4-68 C++ API Reference • October 2001

SetListErr Class
4.57 SetListErr Class
Inheritance: public ObjResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the SetListErr class adds two

Asn1Value parameters to store a current time and a set information list. TABLE 4-45

lists the SetListErr public data members.

4.57.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-45 SetListErr Public Data Members

Type Variables Description

Asn1Value set_info_list The list of attributes slated for modification

by the Set request. This list contains any

attributes which could be modified as well

as any attributes which were in error and

thus caused the generation of this error

message.

Asn1Value curr_time An optional parameter specifying the time

that this response message was generated.

 SetListErr()
Chapter 4 Low-Level PMI 4-69

SetReq Class
4.58 SetReq Class
Inheritance: public ScopedReqMess, public ReqMess, public Message,
public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

The SetReq object class contains all of the member variables and member functions

that are present in the classes that it has derived from, either directly or indirectly. In

addition to the functions or variables it inherits, the SetReq class adds an attribute

list parameter.

TABLE 4-46 lists the SetReq public variable.

4.58.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-46 SetReq Public Variable

Type Variable Description

Asn1Value modify_list Each element of this list contains an attribute ID, an

attribute value, and a modify operator.

 SetReq()
4-70 C++ API Reference • October 2001

SetRes Class
4.59 SetRes Class
Inheritance: public ObjResMess, public ResMess, public Message,
public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the SetRes class adds two

Asn1Value parameters to store a current time and an attribute list. TABLE 4-47 lists

the SetRes public data members.

4.59.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-47 SetRes Public Data Members

Type Variables Description

Asn1Value curr_time An optional parameter specifying the time

that this response message was generated.

Asn1Value attr_list A list of attributes was specified in the Set

request message for which this response is

being generated. This parameter basically

echoes back to the requester the list of

attributes that were modified and their new

values.

 SetRes()
Chapter 4 Low-Level PMI 4-71

SyncNotSupp Class
4.60 SyncNotSupp Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

In addition to the functions or variables it inherits, the SyncNotSupp class adds a

sync parameter.

Each of the classes derived from Message relies on the ISO specifications of the

CMIP protocol and ASN.1 data encoding. TABLE 4-48 lists the SyncNotSupp public

variable.

4.60.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

TABLE 4-48 SyncNotSupp Public Variable

Type Variable Description

MessSync sync Specifies the type of synchronization which was not

able to be performed and caused the generation of

this error message.

 SyncNotSupp()
4-72 C++ API Reference • October 2001

TimedOut Class
4.61 TimedOut Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

This class defines no functions or variables beyond those it inherits. The error

message that this class represents is generated whenever the life-span of a message

has been exceeded. Future functionality envisioned for the Solstice EM MIS would

be to include in the MessQOS(quality of service) class some indication of how long

the requester is willing to wait for a response to a given request message (a message

lifetime). A TimedOut message would be generated whenever the lifetime for a

given request message had been exceeded (that is, whenever the request has not

been responded to within its lifetime).

4.61.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

 TimedOut()
Chapter 4 Low-Level PMI 4-73

UnexpChildOp Class
4.62 UnexpChildOp Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

The UnexpChildOp object class contains all of the member variables and member

functions that are present in the classes that it has derived from, either directly or

indirectly. This class defines no functions or variables beyond those it inherits. The

error message that this class represents is patterned after the ROSE error message

unexpected-child-operation. It is used within the Solstice EM MIS to indicate that a

linked request was received and that the linked ID specified did not refer to a

request for which this type of linked reply is valid.

4.62.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

 UnexpChildOp()
4-74 C++ API Reference • October 2001

UnexpError Class
4.63 UnexpError Class
Inheritance: class UnexpError : public ResMess, public Message,
public QueueElem

#include <pmi/message.hh>

Data Members: No public data members are declared in this class.

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

The UnexpError class defines no functions or variables beyond those it inherits.

The error message that this class represents is patterned after the ROSE error

message unexpected-error. It is used to indicate that an error message, generated in

response to a particular request, is not one of the set of error messages that can be

sent in response to that request.

4.63.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

 UnexpError()
Chapter 4 Low-Level PMI 4-75

UnexpRes Class
4.64 UnexpRes Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Data Members: No public data members are declared in this class.

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

The UnexpRes object class defines no functions or variables beyond those it inherits.

The error message that this class represents is patterned after the ROSE error

message “result-response-unexpected”. It is used to indicate that a result message

was generated for as non-confirmed request.

4.64.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

 UnexpRes()
4-76 C++ API Reference • October 2001

UnrecError Class
4.65 UnrecError Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: No public member functions are declared in this class.

The UnrecError class defines no functions or variables beyond those it inherits.

The error message that this class represents is patterned after the ROSE error

message “unrecognized-error”. It is used to indicate that an error message,

generated in response to a particular request, is not one of the set of error messages

known within Solstice EM.

4.65.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

 UnrecError()
Chapter 4 Low-Level PMI 4-77

UnrecLinkedId Class
4.66 UnrecLinkedId Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

The UnrecLinkedId class defines no functions or variables beyond those it inherits.

The error message that this class represents is patterned after the ROSE error

message “unrecognized-linked-id.” It is used to indicate that a linked request could

not be serviced because the linked ID specified in the request did not refer to any

known outstanding request.

4.66.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

 UnrecLinkedId()
4-78 C++ API Reference • October 2001

UnrecMessageId Class
4.67 UnrecMessageId Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

The UnrecMessageId class defines no functions or variables beyond those it

inherits. The error message that this class represents is patterned after the ROSE

error message”unrecognized-invocation”. It is used to indicate that a result or error

message was generated where the message ID specified did not refer to any

outstanding request.

4.67.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

 UnrecMessageId()
Chapter 4 Low-Level PMI 4-79

UnrecOp Class
4.68 UnrecOp Class
Inheritance: public ResMess, public Message, public QueueElem

#include <pmi/message.hh>

Method Types: The public methods Message::new_message ,

Message::delete_message , and MessagePtr dup() are defined for this class.

These classes are described in Section 4.31 “Message Class” on page 4-36.”

The UnrecOp object class defines no functions or variables beyond those it inherits.

The error message that this class represents is patterned after the ROSE error

message “unrecognized operation.” The usage of this message is described in detail

in the documentation covering the ROSE protocol. It is used to indicate that the

operation requested is not known to the receiver of the request.

4.68.1 Constructor

This constructor takes no parameters. It only initializes its parent classes.

 UnrecOp()
4-80 C++ API Reference • October 2001

Constants and Defined Types
4.69 Constants and Defined Types
The following subsections describe the constants and defined types for the low-level

usage of the PMI.

■ “MessId” on page 81

■ “MessMode” on page 82

■ “MessagePtr” on page 82

■ “MessScopeType” on page 82

■ “MessSync” on page 83

■ “MessBaseType” on page 83

■ “MessType” on page 84

■ “MESSTYPE_MAX” on page 86

■ “ResponseHandle” on page 86

■ “SendResult” on page 86

4.69.1 MessId

A MessId variable is included in each message passed by way of a MessageSAP.

The MessId variable is used to uniquely identify outstanding request messages for a

Solstice EM module or application. Each Solstice EM module is responsible for

generating new request messages that have unique message IDs. Unique means that

the message can not have the same ID as another request (that is, still outstanding

from this module or applicatio). The MessId variable is declared in the /opt/
SUNWconn/em/include/pmi/message.hh file.

typedef I32 MessId;
Chapter 4 Low-Level PMI 4-81

Constants and Defined Types
4.69.2 MessMode

The MessMode variable is declared in the /opt/SUNWconn/em/include/pmi/
message.hh file.

4.69.3 MessagePtr

The MessagePtr variable is declared in the /opt/SUNWconn/em/include/pmi/
message.hh file.

4.69.4 MessScopeType

The MessScopeType variable is declared in the /opt/SUNWconn/em/include/
pmi/message.hh file.

enum MessMode
 {CONFIRMED,
 UNCONFIRMED };

typedef class Message *MessagePtr;

enum MessScopeType
 {BASE_OBJECT,
 NTH_LEVEL,
 BASE_TO_NTH_LEVEL,
 ALL_LEVELS,
 ALL_LEVELS_EXCEPT_BASE };
4-82 C++ API Reference • October 2001

Constants and Defined Types
4.69.5 MessSync

This enumeration defines the types of message synchronization that can be

requested: ATOMICor BEST_EFFORT. Currently only BEST_EFFORTis supported,

since the requirements for ATOMICsynchronization are not fully defined by the

standards organizations.

The MessSync variable is declared in the /opt/SUNWconn/em/include/pmi/
message.hh file.

4.69.6 MessBaseType

The MessBaseType variable is declared in the /opt/SUNWconn/em/include/
pmi/message.hh file.

Type of Synchronization Description

BEST_EFFORT Scoped requests are to be processed in a best-effort fashion; if one

part of a scoped request fails, the other parts of the scoped request

are still attempted.

ATOMIC If it were operational, would indicate that if any portion of a

scoped request failed, subsequent parts of the request should not

be attempted and already completed parts should be reversed.

enum MessSync
 {BEST_EFFORT,
 ATOMIC };

enum MessBaseType
 {MESSAGE,
 REQ_MESS,
 OBJ_REQ_MESS,
 SCOPED_REQ_MESS,
 RES_MESS,
 OBJ_RES_MESS };
Chapter 4 Low-Level PMI 4-83

Constants and Defined Types
4.69.7 MessType

The MessType enumeration defines a unique ID for each type of message that can

be sent within Solstice EM. This includes all the CMIS request messages, CMIS

response messages, CMIS error messages, ROSE user-reject responses, SNMP

requests, SNMP responses, and Solstice EM error responses. CODE EXAMPLE 4-1

provides an exhaustive list of the messages it is possible to send via the

MessageSAP interface. Each of these messages derives from one of the base message

classes defined in the /opt/SUNWconn/em/include/pmi/message.hh file.

CODE EXAMPLE 4-1 MessageSAP Messages

enum MessType
 {

// requests
 EVENT_REPORT_REQ
 GET_REQ
 SET_REQ
 ACTION_REQ
 CREATE_REQ
 DELETE_REQ
 CANCEL_GET_REQ

// normal responses
 EVENT_REPORT_RES
 GET_RES
 SET_RES
 ACTION_RES
 CREATE_RES
 DELETE_RES
 CANCEL_GET_RES

// Errors
 NO_SUCH_OC
 NO_SUCH_OI
 ACCESS_DENIED
 SYNC_NOT_SUPP
 INVALID_FILTER
 NO_SUCH_ATTR
 INVALID_ATTR_VAL
 GET_LIST_ERR
 SET_LIST_ERR
 NO_SUCH_ACTION
 PROCESS_FAILURE
 DUPLICATE_OI
 NO_SUCH_REF_OI
4-84 C++ API Reference • October 2001

Constants and Defined Types
 NO_SUCH_EVENT
 NO_SUCH_ACTION_REQ
 NO_SUCH_EVENT_ARG
 INVALID_ACTION_ARG
 INVALID_SCOPE
 INVALID_OI
 MISSING_ATTR_VAL
 CLASS_INST_CONFL
 COMPLEX_LIMIT
 MISTYPED_OP
 INVALID_OPERATION
 INVALID_OPERATOR
 NO_SUCH_MESSAGE_ID
 OP_CANCELLED

// ROSE level user-reject responses
 DUP_MESSAGE_ID
 UNREC_OP
 MISTYPED_ARG
 RESOURCE_LIMIT
 ASSOC_RELEASED
 UNREC_LINKED_ID
 LINKED_RES_UNEXP
 UNEXP_CHILD_OP
 UNREC_MESSAGE_ID
 UNEXP_RES
 MISTYPED_RES
 ERROR_RES_UNEXP
 UNREC_ERROR
 UNEXP_ERROR
 MISTYPED_ERROR

// Solstice EM error responses
 TIMED_OUT
 DEST_UNREACH
 NO_SUCH_DEST
 };

CODE EXAMPLE 4-1 MessageSAP Messages (Continued)
Chapter 4 Low-Level PMI 4-85

Constants and Defined Types
4.69.8 MESSTYPE_MAX

The MESSTYPE_MAXvariable is declared in the /opt/SUNWconn/em/include/
pmi/message.hh file.

4.69.9 ResponseHandle

The ResponseHandle variable is declared in the /opt/SUNWconn/em/include/
pmi/message.hh file.

4.69.10 SendResult

The SendResult variable is declared in the /opt/SUNWconn/em/include/pmi/
message.hh file.

const MessType MESSTYPE_MAX = NO_SUCH_DEST;

typedef void *ResponseHandle;

typedef enum SendResult
 {SENT,
 BAD_MESSAGE,
 WOULD_BLOCK,
 NO_MEM };

// Used by the MessageSAP class.

#define SENT TRUE
4-86 C++ API Reference • October 2001

CHAPTER 5

Access Control API

To access to Solstice EM tools and managed objects, users must belong to a group. In

addition, users’ access privileges are determined based on the group to which they

belong. The Access Control API provides a solid C++ interface to GDMO object

classes.

The Access Control API enables you to:

■ Assign rules that define access for groups of users

■ Define the access rules at a group level

■ Control access to Solstice EM applications and managed objects

This chapter comprises the following topics:

■ Section 5.1 “Design Objectives” on page 5-1

■ Section 5.2 “Access Control Types” on page 5-2

■ Section 5.3 “Class Hierarchy” on page 5-2

■ Section 5.4 “Symbolic Constants and Defined Types” on page 5-4

■ Section 5.5 “Access Control API Classes” on page 5-11

5.1 Design Objectives
The Access Control API was developed with the following design objectives:

■ Uniform treatment of all the access control objects to maximize reusability of

design and code

■ Compatibility with the X.741 standard

■ Ease of use, especially for users familiar with PMI

■ Object-oriented design of the API, so that it is consistent with the other Solstice

EM APIs
5-1

Access Control Types
5.2 Access Control Types
The Access Control API defines two types of access control:

■ Object-level access control. Controls the level of access to managed objects. For

example, users belonging to the operator group are denied access to the log

object, but they get back a response.

■ Feature-level access control. Controls the level of access to application features.

For example, users belonging to the operator group are denied access to the

destroy feature of the em_viewer application, but allowed to access the view

feature.

5.3 Class Hierarchy
FIGURE 5-1 illustrates the hierarchy of the Access Control API container classes.

FIGURE 5-1 C++ Container Classes and Their Inheritance

ACContainer

ACApplicationContainer

ACAppFeatureContainer

ACRuleContainer

ACGroupContainer

ACTargetsContainer

ACDbObjectContainer
5-2 C++ API Reference • October 2001

Class Hierarchy
FIGURE 5-2 Illustrates the hierarchy of the Access Control API.

FIGURE 5-2 Access Control C++ Classes and Their Inheritance

TABLE 5-1 describes the Access Control API classes.

TABLE 5-1 Access Control API Classes

Class Description

ACAccessControlRules Class Represents the emAccessControlRules GDMO

object class.

ACAccessUserList Class Represents the accessUserList GDMO object

class.

ACAppFeatureContainer Class Contains all features of an application.

ACApplication Class Represents the application GDMO object class.

ACApplicationContainer Class Contains all applications.

ACApplicationFeature Class Represents the applicationFeature GDMO

object class.

ACCallback Class Extension of the PMI Callback class.

ACContainer Class Abstract base class for C++ container objects.

ACObject

ACApplication

ACApplicationFeature

ACEMNotificationEmitter

ACAccessControlRules

ACAcessUserList

ACDbObject

ACGroup

ACRule

ACTargets ACEMTargets
Chapter 5 Access Control API 5-3

Symbolic Constants and Defined Types
5.4 Symbolic Constants and Defined Types

5.4.1 Constants

ACAuxOwnerType

ACDbObject Class Represents the emDbObject GDMO object class.

ACDbObjectContainer Class Represents the emDbInfo GDMO object class.

ACEMNotificationEmitter Class Represents the emNotificationEmitter GDMO

object class.

ACEMTargets Class Represents the emTargets GDMO object class.

ACGroup Class Represents the group GDMO object class.

ACGroupContainer Class Represents the groupContainer object class.

ACInterface Class Contains all container objects. Main single point

interface to Access Control API.

ACObject Class Represents the accessControl GDMO object

class.

ACRule Class Represents the rule GDMO object class.

ACRuleContainer Class Contains C++ Access Control Rule objects.

ACScope Class Holds scope information. Convenience class.

ACTargets Class Represents the targets GDMO object class.

ACTargetsContainer Class Represents the targetContainer GDMO object

class.

ACUser Class Stores user information. Convenience class.

enum ACAuxOwnerType {

USER,

GROUP,

INVALID_OWNER_TYPE = -1

}

TABLE 5-1 Access Control API Classes (Continued)

Class Description
5-4 C++ API Reference • October 2001

Symbolic Constants and Defined Types
ACAccessControlSwitch

ACCallbackType

ACDenialGranularity

ACEMAuditLevel

enum ACAccessControlSwitch {
 emAccessControlOff,
 emAccessControlOn
}

enum ACCallbackType {
 OBJECT_CREATION_CALLBACK,
 OBJECT_DELETION_CALLBACK,
 ATTRIBUTE_VALUE_CHANGED_CALLBACK,
 IMAGE_INCLUDED_CALLBACK,
 IMAGE_EXCLUDED_CALLBACK,
 RAW_EVENT_CALLBACK
}

enum ACDenialGranularity {
 request,
 object,
 attribute
}

enum ACEMAuditLevel
{
 AUDIT_OFF,
 AUDIT_LEVEL1,
 AUDIT_LEVEL2
}

Chapter 5 Access Control API 5-5

Symbolic Constants and Defined Types
ACEMSecurityLevel

ACErrorType

enum ACEMSecurityLevel
{
 SECURITY_OFF,
 SECURITY_LEVEL1,
 SECURITY_LEVEL2
}

enum ACErrorType {
 ACC_OK,
 ACC_FAILED,
 ACC_USER_EXISTS,
 ACC_USER_NOT_EXISTS,
 ACC_INVALID_USER_NAME,
 ACC_GROUP_EXISTS,
 ACC_GROUP_NOT_EXISTS,
 ACC_APPLICATION_EXISTS,
 ACC_APPLICATION_NOT_EXISTS,
 ACC_TARGETS_EXISTS,
 ACC_TARGETS_NOT_EXISTS,
 ACC_RULE_EXISTS,
 ACC_RULE_NOT_EXISTS,
 ACC_FEATURE_EXISTS,
 ACC_FEATURE_NOT_EXISTS,
 ACC_MOI_EXISTS,
 ACC_MOI_NOT_EXISTS,
 ACC_MOC_EXISTS,
 ACC_MOC_NOT_EXISTS,
 ACC_DB_OBJECT_TABLE_EXISTS,
 ACC_DB_OBJECT_TABLE_NOT_EXISTS,
 ACC_DB_OBJECT_ACCESS_EXISTS,
 ACC_DB_OBJECT_ACCESS_NOT_EXISTS,
 ACC_NO_MEMORY
}

5-6 C++ API Reference • October 2001

Symbolic Constants and Defined Types
ACObjectType

ACTargetsType

EnforcementAction

enum ACObjectType {
 AC_TARGETS_OBJECT,
 AC_RULE_OBJECT,
 AC_APPLICATION_OBJECT,
 AC_GROUP_OBJECT,
 AC_DB_OBJECT,
 AC_EM_NOTIFICATION_EMITTER
}

enum ACTargetsType {
 X741_TARGETS,
 EM_TARGETS
}

enum EnforcementAction {
 denyWithResponse,
 denyWithoutResponse,
 abortAssociation,
 denyWithFalseResponse,
 allow
}

Chapter 5 Access Control API 5-7

Symbolic Constants and Defined Types
5.4.2 Defined Types

This section lists the defined types.

ACAccessUserListSet

ACApplicationAndFeatureList

ACApplicationFeatureList

ACApplicationList

ACDbObjectAccessList

ACDbObjectList

typedef RWTValSlist<ACUser> ACAccessUserListSet

typedef RWTValSlist<RWCString> ACApplicationAndFeatureList

typedef RWTValSlist<RWCString> ACApplicationFeatureList

typedef RWTValSlist<RWCString> ACApplicationList

typedef RWTValSlist<RWCString> ACDbObjectAccessList

typedef RWTValSlist<RWCString> ACDbObjectList
5-8 C++ API Reference • October 2001

Symbolic Constants and Defined Types
ACDbObjectTableList

ACDefaultAccess

ACDefaultEventAccess

ACDenialResponse

ACDomainIdentity

ACEventsDiscriminator

ACFilter

typedef RWTValSlist<RWCString> ACDbObjectTableList

typedef RWTValSlist<RWCString> ACDefaultAccess

typedef EnforcementAction ACDefaultEventAccess

typedef EnforcementAction ACDenialResponse

typedef RWCString ACDomainIdentity

typedef RWCString ACEventsDiscriminator

typedef RWCString ACFilter
Chapter 5 Access Control API 5-9

Symbolic Constants and Defined Types
ACGroupDescription

ACGroupList

ACGroupMemberList

ACMOCList

ACMOIList

ACOperationsList

ACRuleList

typedef RWCString ACGroupDescription

typedef RWTValSlist<RWCString> ACGroupList

typedef RWTValSlist<RWCString> ACGroupMemberList

typedef RWTValSlist<RWCString> ACMOCList

typedef RWTValSlist<RWCString> ACMOIList

typedef RWTValSlist<RWCString> ACOperationsList

typedef RWTValSlist<RWCString> ACRuleList
5-10 C++ API Reference • October 2001

Access Control API Classes
ACTargetsList

ACSuperUserList

ACTrustedHostList

5.5 Access Control API Classes
This section describes the following Access Control API classes:

typedef RWTValSlist<RWCString> ACTargetsList

typedef RWTValHashSet<RWCString> ACSuperUserList

typedef RWTValHashSet <RWCString> ACTrusedHostList

• ACAccessControlRules • ACEMTargets

• ACAccessUserList • ACGroup

• ACAppFeatureContainer • ACGroupContainer

• ACApplication • ACInterface

• ACApplicationContainer • ACObject

• ACApplicationFeature • ACRule

• ACCallback • ACRuleContainer

• ACContainer • ACScope

• ACDbObject • ACTargets

• ACDbObjectContainer • ACTargetsContainer

• ACEMNotificationEmitter • ACUser
Chapter 5 Access Control API 5-11

ACAccessControlRules Class
5.6 ACAccessControlRules Class
Inheritance: class ACObject

Data Members: No public data members are declared in this class.

The ACAccessControlRules class represents the emAccessControlRules
GDMO object class, which is defined in the Solstice EM Access Control module and

is derived from X.741’s accessControlRules GDMO object class.

The emAccessControlRules GDMO object class extends the

accessControlRules GDMO object class by adding the following attributes:

■ accessControlSwitch

■ trustedHostList

■ defaultEventAccess

The ACAccessControlRules class provides methods for accessing and modifying

the default attribute values of the access control service. This class acts as a container

for all the rules in the system.

5.6.1 Constructor

The default constructor initializes the object that it represents, and prepares itself to

register callbacks.

Note – It is possible to construct more than one ACAccessControlRules object.

The additional objects, however, are references to the same object, because there can

only be one instance of the emAccessControlRules GDMO object.

#include <acapi/accesscontrolrules.hh>

ACAccessControlRules()
5-12 C++ API Reference • October 2001

ACAccessControlRules Class
5.6.2 Destructor

5.6.3 ACAccessControlRules Member Functions

add_trusted_hosts

Adds add_trusted_host_list to the list of trusted hosts. If a host is already included in

the trusted hosts list, it is not added again.

get_access_control_switch

Gets the access control status of the currently running Solstice EM. This function

returns one of the following two values:

■ emAccessControlOff

Indicates that any user can freely view, modify, or delete objects in the platform.

Access control is not enforced.

■ emAccessControlOn

Indicates that users need to be added to the platform and given appropriate

privileges to view, modify, or delete objects. Access control is enforced.

~ACAccessControlRules()

Result add_trusted_hosts(ACTrustedHostList& add_trusted_host_list)

ACAccessControlSwitch get_access_control_switch()
Chapter 5 Access Control API 5-13

ACAccessControlRules Class
get_default_access

Gets the default access value for each operation (action, create, delete, and so on).

Returns a list of value pairs of the form {<operation> <access>, <operation>
<access>, ... }. For example:

The default access value for all operations is denyWithResponse .

get_default_event_access

Gets the default action for events. It returns one of the following values:

■ denyWithResponse (default)

■ denyWithoutResponse

■ abortAssociation

■ denyWithFalseResponse

■ allow

ACDefaultAccess get_default_access()

{action denyWithResponse, create denyWithResponse, delete
denyWithResponse, get denyWithResponse, replace denyWithResponse,
addMember denyWithResponse, removeMember denyWithResponse,
replaceWithDefault denyWithResponse, multipleObjectSelection
denyWithResponse, filter denyWithResponse}

ACDefaultEventAccess get_default_event_access()
5-14 C++ API Reference • October 2001

ACAccessControlRules Class
get_denial_granularity

Returns one of the following three values that represent the level at which denial of

access is exhibited:

■ request

Access is denied at the request level. An entire request to access one or more

managed objects in the MIS is denied if access to one of the managed objects in

the request is denied. The request is allowed only when all managed objects in the

request are accessible.

■ object

Access is denied at the object level. Access is denied only to the request’s managed

objects that are not accessible. Access to the remaining managed objects in the

request is allowed.

■ attribute

Access is denied at the attribute level. Request to access a managed object is

denied if access to one or more of its attributes is denied. Access to the managed

object is allowed only when all the attributes of the managed object are accessible.

get_denial_response

Returns the denial response that access control sends out when denial is made

because the default rule was satisfied.

The return values are as follows:

■ denyWithResponse (default)

■ denyWithoutResponse

■ abortAssociation

■ denyWithFalseResponse

■ allow

ACDenialGranularity get_denial_granularity()

ACDenialResponse get_denial_response()
Chapter 5 Access Control API 5-15

ACAccessControlRules Class
get_domain_identity

Returns the access control domain identity that is governed by the access control

rules. By default, the domain identity is EM.

get_trusted_host_list

Returns the list of trusted hosts. Trusted hosts are systems that can freely connect as

root to an MIS machine. The list of trusted hosts is maintained by the MIS server that

holds the security profiles.

is_trusted_host

Checks whether host_name is in the list of trusted hosts. If host_name is part of the

list, this function returns TRUE; otherwise, it returns FALSE.

remove_trusted_hosts

Removes the hosts in remove_trusted_host_list from the list of trusted hosts. If a host

in remove_trusted_host_list is not in the list of trusted hosts, it is ignored.

Returns TRUEon successful completion; otherwise, FALSE.

ACDomainIdentity get_domain_identity()

ACTrustedHostList get_trusted_host_list(Boolean real) const

RWBoolean is_trusted_host(const RWCString& host_name) const

Resultremove_trusted_hosts(ACTrustedHostList& remove_trusted_host_list)
5-16 C++ API Reference • October 2001

ACAccessControlRules Class
replace_trusted_host_list

Replaces the trusted host list with new_trusted_host_list.

Returns TRUEon successful completion; otherwise, FALSE.

set_access_control_switch

Sets the access control status in the MIS to one of the following values:

■ emAccessControlOff

Any user can freely view, modify, or delete objects in the platform. Access control

is not enforced.

■ emAccessControlOn

Users need to be added to the platform and given appropriate privileges to view,

modify, or delete objects. Access control is enforced.

Returns TRUEon successful completion; otherwise, FALSE.

set_default_access

Sets the default access for each operation (action, create, delete, and so on) as a list of

value pairs of the form {<operation> <access>, <operation> <access>,
... }.

Result replace_trusted_host_list(ACTrustedHostList&
new_trusted_host_list)

Result set_access_control_switch(ACAccessControlSwitch)

Result set_default_access(ACDefaultAccess&)
Chapter 5 Access Control API 5-17

ACAccessControlRules Class
For example:

Returns TRUEon successful completion; otherwise, FALSE.

set_default_event_access

Sets the access control status in the platform to one of the following values:

■ denyWithResponse (default)

■ denyWithoutResponse

■ abortAssociation

■ denyWithFalseResponse

■ allow

Returns TRUEon successful completion; otherwise, FALSE.

set_denial_granularity

Sets the access denial level to one of the following values (passed through the

ACDenialGranularity parameter):

■ request

Access is denied at the request level. An entire request to access one or more

managed objects in the MIS is denied if access to one of the managed objects in

the request is denied. The request is allowed only when all managed objects in the

request are accessible.

{action denyWithResponse, create denyWithResponse, delete
denyWithResponse, get denyWithResponse, replace denyWithResponse,
addMember denyWithResponse, removeMember denyWithResponse,
replaceWithDefault denyWithResponse, multipleObjectSelection
denyWithResponse, filter denyWithResponse}

Result set_default_event_access(ACDefaultEventAccess)

Result set_denial_granularity(ACDenialGranularity)
5-18 C++ API Reference • October 2001

ACAccessControlRules Class
■ object

Access is denied at the object level. Access is denied only to the request’s managed

objects that are not accessible. Access to the remaining managed objects in the

request is allowed.

■ attribute

Access is denied at the attribute level. Request to access a managed object is

denied if access to one or more of its attributes is denied. Access to the managed

object is allowed only when all the attributes of the managed object are accessible.

Note – Solstice EM only supports object-level access control.

Returns TRUEon successful completion; otherwise, FALSE.

set_denial_response

Sets the denial response to be returned by access control when the default rule is

satisfied to one of the following values:

■ denyWithResponse (default)

■ denyWithoutResponse

■ abortAssociation

■ denyWithFalseResponse

■ allow

Returns TRUEon successful completion; otherwise, FALSE.

Result set_denial_response(ACDenialResponse)
Chapter 5 Access Control API 5-19

ACAccessUserList Class
5.7 ACAccessUserList Class
Inheritance: public ACObject

Data Members: No public data members are declared in this class.

The ACAccessUserList class represents the accessUserList GDMO object in

the MIS. This class stores the list of users registered under access control, and

maintains a list of super users. Whenever any of the attribute values for this class

changes, it sends attributeValueChange notifications.

5.7.1 Constructor

The default constructor initializes the ACAccessUserList class, and prepares it to

register callbacks.

Note – It is possible to construct more than one ACAccessUserList object. The

additional objects, however, are references to the same object, because there can only

be one instance of the accessUserList GDMO object.

5.7.2 Destructor

#include <acapi/acaccessuserlist.hh>

ACAccessUserList()

~ACAccessUserList()
5-20 C++ API Reference • October 2001

ACAccessUserList Class
5.7.3 ACAccessUserList Member Functions

add_superusers

Adds add_superuser_list to the list of super users, unless a user in list is already a

super user.

Returns TRUEon successful completion; otherwise, FALSE.

add_user

Adds user as a user under access control. If user already exits, the error type is set

to ACC_USER_EXISTS, and the error string is set to “User exists in
accessUserList! ”.

Returns TRUEon successful completion; otherwise, FALSE.

get_access_user_list_set

Returns a list of the users registered under access control.

get_superuser_list

Returns a list of the super users under the access control domain.

Result add_superusers(ACSuperUserList& add_superuser_list)

Result add_user(ACUser& user)

ACAccessUserListSet get_access_user_list_set()

ACSuperUserList get_superuser_list(Boolean real = TRUE) const
Chapter 5 Access Control API 5-21

ACAccessUserList Class
is_superuser

Returns TRUEif user_name is a super user; otherwise, FALSE.

replace_superuser_list

Replaces the existing list of super users with new_superuser_list.

Returns TRUEon successful completion; otherwise, FALSE.

remove_superusers

Removes the super users that are specified in the remove_superuser_list list.

Returns TRUEon successful completion; otherwise, FALSE.

remove_user

Removes user from the list of users under access control.

Returns TRUEon successful completion; otherwise, FALSE.

RWBoolean is_superuser(const RWCString& user_name) const

Result replace_superuser_list(ACSuperUserList& new_superuser_list)

Result remove_superusers(ACSuperUserList& remove_superuser_list)

Result remove_user(ACUser& user)
5-22 C++ API Reference • October 2001

ACAppFeatureContainer Class
5.8 ACAppFeatureContainer Class
Inheritance: class ACContainer

Data Members: No public data members are declared in this class.

The ACAppFeatureContainer class is a container for all the features that can be

controlled through Solstice EM’s feature-level access control for a given application.

5.8.1 Constructor

The constructor creates a feature container object for appl_name. If an object has

already been created for appl_name, the object is not created again. Instead, the

object’s internal reference count is incremented by one.

5.8.2 Destructor

5.8.3 ACAppFeatureContainer Member Functions

get_all_features

Returns all the features that have been registered for feature-level access control for

the application that this class represents.

#include <acapi/acapplicationfeature.hh>

ACAppFeatureContainer(const RWCString& appl_name)

~ACAppFeatureContainer()

ACApplicationFeatureList get_all_features()
Chapter 5 Access Control API 5-23

ACApplication Class
get_container_name

Returns the container name, which is the application name.

get_feature

Returns the ACApplicationFeature object featurename.

5.9 ACApplication Class
Inheritance: class ACObject

Data Members: No public data members are declared in this class.

The ACApplication class represents the application GDMO object class defined

in the Solstice EM Access Control module. This object is a container for all the

features that are controlled through Solstice EM’s feature-level access control for a

given application.

5.9.1 Constructor

The constructor creates an application object whose name is the value of

appl_name. If an object has already been created for appl_name, the object is not

created again. Instead, the object’s internal reference count is incremented by one.

RWCString get_container_name()

ACApplicationFeature get_feature(const RWCString& featurename)

#include <acapi/acapplication.hh>

ACApplication(const RWCString& appl_name)
5-24 C++ API Reference • October 2001

ACApplication Class
5.9.2 Destructor

5.9.3 ACApplication Member Functions

destroy

Removes the application object that this class represents from all groups to which it

belongs. In addition, deletes the application object and its features from access

control. Upon the deletion, the application is no longer subject to access control.

Returns TRUEon successful completion; otherwise, FALSE.

get_application_description

Gets the application description information.

Returns TRUEon successful completion; otherwise, FALSE.

set_application_description

Sets desc as the application’s description information.

Returns TRUEon successful completion; otherwise, FALSE.

~ACApplication()

Result destroy()

RWCString get_application_description()

Result set_application_description(const RWCString& desc)
Chapter 5 Access Control API 5-25

ACApplicationContainer Class
5.10 ACApplicationContainer Class
Inheritance: public ACContainer

Data Members: No public data members are declared in this class.

The ACApplicationContainer class represents the applicationContainer
GDMO object class which is defined in the Solstice EM Access Control module. This

object is a container for all the applications that can be controlled through Solstice

EM’s feature-level access control.

5.10.1 Constructor

The constructor creates an application container object that contains all the

applications that are subject to access control. If such an object has already been

created, its internal reference count is incremented by one.

5.10.2 Destructor

5.10.3 ACApplicationContainer Member Functions

get_all_applications

#include <acapi/acapplication.hh>

ACApplicationContainer()

~ACApplicationContainer()

ACApplicationList get_all_applications()
5-26 C++ API Reference • October 2001

ACApplicationFeature Class
Returns a list of all the applications under the ACApplicationContainer object

which, by default, includes most of the Solstice EM applications.

get_application

Returns the ACApplication object whose name is stored in appname.

5.11 ACApplicationFeature Class
Inheritance: public ACObject

Data Members: No public data members are declared in this class.

The ACApplicationFeature class represents the applicationFeature GDMO

object class which is defined in the Solstice EM Access Control module.

ACApplicationFeature represents a feature that can be controlled through

Solstice EM’s feature-level access control for a given application.

5.11.1 Constructor

The constructor creates an applicationFeature object based on the values of

appname and featurename. If such an object already exists, the internal reference count

is incremented by one, and the object is returned.

ACApplication get_application(const RWCString& appname)

#include <acapi/acapplicationfeature.hh>

ACApplicationFeature(const RWCString& appname, const RWCString&
featurename)
Chapter 5 Access Control API 5-27

ACApplicationFeature Class
5.11.2 Destructor

5.11.3 ACApplicationFeature Member Functions

destroy

Removes an application’s feature object from all groups to which it belongs and

deletes the feature object from access control. Upon deletion, the application’s

feature is no longer subject to access control.

Returns TRUEon successful completion; otherwise, FALSE.

get_feature_description

Returns the feature’s description.

set_feature_description

Sets desc as the description for the feature.

Returns TRUEif successful; otherwise, FALSE.

~ACApplicationFeature()

Result destroy()

RWCString get_feature_description()

Result set_feature_description(const RWCString& desc)
5-28 C++ API Reference • October 2001

ACCallback Class
5.12 ACCallback Class
Inheritance: class Callback

This class is a simple extension of the PMI callback class.

5.12.1 Constructors

The default constructor initializes the Callback object.

In the preceding constructor:

■ hand, defined in pmi/callback.hh , is a pointer to the function that the

scheduler must call.

■ type can be one of the following:

■ OBJECT_CREATION_CALLBACK

■ OBJECT_DELETION_CALLBACK

■ ATTRIBUTE_VALUE_CHANGED_CALLBACK

■ IMAGE_INCLUDED_CALLBACK

■ IMAGE_EXCLUDED_CALLBACK

■ RAW_EVENT_CALLBACK

The preceding is a copy constructor.

#include <acapi/accallback.hh>

ACCallback()

ACCallback(CallbackHandler hand, Ptr userdata, ACCallbackType type)

ACCallback(const ACCallback& other)
Chapter 5 Access Control API 5-29

ACCallback Class
5.12.2 Destructor

5.12.3 ACCallback Operator Overloading

The assignment operator works like the copy constructor.

5.12.4 ACCallback Member Functions

exec_callback

Invokes the callback’s handler with the callback’s data, and exec ’s call_data as

arguments.

get_callback_type

Returns the callback’s type.

~ACCallback()

ACCallback& operator = (const ACCallback& other)

void exec_callback(Ptr call_data) const

ACCallbackType get_callback_type() const
5-30 C++ API Reference • October 2001

ACContainer Class
5.13 ACContainer Class
Inheritance: None

Data Members: No public data members are declared in this class.

The ACContainer class is an abstract base class that abstracts the concept of a

container for access control GDMO objects.

This class is subclassed to derive more specific classes that serve as an interface to

containers of various X.741 GDMO object classes. For example, the subclass

ACRuleContainer C++ provides the interface to the container of X.741 rule GDMO

objects.

Multiple ACContainer objects that represent the same container of X.741 GDMO

objects share the same object by maintaining a reference count. The ACContainer
class allows its subclasses to register any object inclusion and object exclusion events

from the container and any raw events from PMI, so that the container is updated

dynamically and automatically.

5.13.1 Constructor

This constructor is protected so that the user cannot instantiate this object.

5.13.2 Destructor

#include <acapi/accontainer.hh>

virtual ~ACContainer() = 0;
Chapter 5 Access Control API 5-31

ACContainer Class
5.13.3 ACContainer Operator Overloading

If the two compared container objects have the same object names, the preceding

comparison operator returns TRUE.

The preceding operator overloads the assignment operator.

5.13.4 ACContainer Member Functions

add_callback

Adds the given callback pointer to ACContainer ’s callback queue.

Note – You can add more than one callback for a given type of event. This allows

you to use multiple callbacks to process the same event.

The following six types of events are supported:

■ OBJECT_CREATION

■ OBJECT_DELETION

■ ATTRIBUTE_VALUE_CHANGED

■ IMAGE_INCLUDED

■ IMAGE_EXCLUDED

■ RAW_EVENT

Boolean operator == (const ACContainer& self, const ACContainer&
other)

ACContainer& operator=(const ACContainer&)

void add_callback(const ACCallback& cb)
5-32 C++ API Reference • October 2001

ACContainer Class
get_error_string

Returns the error string stored in the ACAccessControl object that pertains to the

object that this function represents.

get_error_type

Returns the error type stored in the ACAccessControl object that pertains to the

object that this function represents. The possible values of the error type are:

get_name_only

Returns the name of the ACAccessControl object that pertains to the

ACContainer .

RWCString get_error_string()

ACErrorType get_error_type()

• ACC_APPLICATION_EXISTS • ACC_MOC_EXISTS

• ACC_APPLICATION_NOT_EXISTS • ACC_MOC_NOT_EXISTS

• ACC_DB_OBJECT_ACCESS_EXISTS • ACC_MOI_EXISTS

• ACC_DB_OBJECT_ACCESS_NOT_EXISTS • ACC_MOI_NOT_EXISTS

• ACC_DB_OBJECT_TABLE_EXISTS • ACC_NO_MEMORY

• ACC_DB_OBJECT_TABLE_NOT_EXISTS • ACC_OK

• ACC_FAILED • ACC_RULE_EXISTS

• ACC_FEATURE_EXISTS • ACC_RULE_NOT_EXISTS

• ACC_FEATURE_NOT_EXISTS • ACC_TARGETS_EXISTS

• ACC_GROUP_EXISTS • ACC_TARGETS_NOT_EXISTS

• ACC_GROUP_NOT_EXISTS • ACC_USER_EXISTS

• ACC_INVALID_USER_NAME • ACC_USER_NOT_EXISTS

RWCString get_name_only()
Chapter 5 Access Control API 5-33

ACContainer Class
get_object_name

Returns the name of the ACAccessControl object stored in the distinguished name

(DN) format.

remove_callback

Removes the callback associated with its object.

reset_error

Resets the error state of the ACAccessControl object that pertains to the

ACContainer by setting both the error string and error type to ACC_OK.

set_error

Sets the error type to the type argument, and the error string to the err argument. If

type is ACC_OK, this method performs the same action as the reset_error method.

set_error_string

Sets the error string to the err.

RWCString get_object_name() const

void remove_callback(const ACCallback& cb)

void reset_error()

void set_error(ACErrorType type, const RWCString& err)

void set_error_string(const RWCString& err)
5-34 C++ API Reference • October 2001

ACDbObject Class
set_error_type

Sets the error type to the type argument. If type is ACC_OK, this method performs the

same action as the reset_error method.

5.14 ACDbObject Class
Inheritance: public ACObject

Data Members: No public data members are declared in this class.

The ACDbObject class represents the emDbObject GDMO object class from the

Solstice EM DB Info module. An emDbObject object represents a database object on

which access control can be specified.

5.14.1 Constructor

The constructor creates an emDbObject object whose name is specified by

objectname. If a Dbobject with the same name already exists, the internal reference

count is incremented by one and the object is returned.

5.14.2 Destructor

void set_error_type(ACErrorType type)

#include <acapi/acdbobject.hh>

ACDbObject(const RWCString& objectname)

~ACDbObject()
Chapter 5 Access Control API 5-35

ACDbObject Class
5.14.3 ACDbObject Member Functions

add_db_object_access

Adds the given argument to the emDbObject object’s access list.

Returns TRUEon successful completion. Otherwise, if access already exists in the

access list, this function sets the error type to ACC_DB_OBJECT_ACCESS_EXISTS
and the error string to “Access exists in emDbObjectAccessList! ”, and

returns FALSE.

add_db_object_table

Adds table to emDbObject ’s table list.

Returns TRUEon successful completion. Otherwise, if table already exists in the

table list, this function sets the error type to ACC_DB_OBJECT_ACCESS_EXISTSand

the error string to “Access exists in emDbObjectAccessList! ”, and returns

FALSE.

get_db_object_access_list

Returns the access list that contains the names of the groups that can access

DbObject .

get_db_object_table_list

Returns the list of tables that are under access control for the DbObject object.

Result add_db_object_access(const RWCString& access)

Result add_db_object_table(const RWCString& table)

ACDbObjectAccessList get_db_object_access_list()

ACDbObjectTableList get_db_object_table_list()
5-36 C++ API Reference • October 2001

ACDbObject Class
remove_db_object_access

Removes access from the DbObject object’s access list.

Returns TRUEon successful completion. Otherwise, if access does not exist, this

function sets the error type to ACC_DB_OBJECT_ACCESS_NOT_EXISTSand the error

string to “Access doesn’t exist in emDbObjectAccessList! ”, and returns

FALSE.

remove_db_object_table

Removes table from the DbObject object’s table list.

Returns TRUEon successful completion. Otherwise, if table does not exist, this

function sets the error type to ACC_DB_OBJECT_TABLE_NOT_EXISTSand the error

string to “Table doesn’t exist in emDbObjectTableList! ”, and returns

FALSE.

set_db_object_access_list

Replaces DbObject ’s current access with accesslist.

Returns TRUEon successful completion; otherwise, FALSE.

set_db_object_table_list

Replaces the current table list of the DbObject with tablelist.

Returns TRUEon successful completion; otherwise, FALSE.

Result remove_db_object_access(const RWCString& access)

Result remove_db_object_table(const RWCString& table)

Result set_db_object_access_list(ACDbObjectAccessList& accesslist)

Result set_db_object_table_list(ACDbObjectTableList& tablelist)
Chapter 5 Access Control API 5-37

ACDbObject Class
set_auxobject_owner

The above method sets the owner of the auxiliary object to ownid and the type of the

owner to owntype. Returns TRUEon successful completion; otherwise, FALSE.

get_auxobject_owner_type

The above method returns the type of owner, that is USERor GROUPof the auxiliary

object. If the owner type is not known or incorrect INVALID_OWNER_TYPEis
returned.

get_auxobject_owner_id

The above method returns the owner id of the auxiliary object, this is valid only

when the owner type of the auxiliary object is USERor GROUP.

5.14.4 Notes About the ACDbObject Class

The default owner of an auxiliary object is created as root. In order to change the

owner, you need to set the owner id using the set_auxobject_owner() method.

The owner type can be USERor GROUPand the owner id can be a the name of a user

or the name of a group.

Result set_auxobject_owner(ACAuxOwnerType owntype,
RWCString ownid)

ACAuxOwnerType get_auxobject_owner_type()

RWCString get_auxobject_owner_id()
5-38 C++ API Reference • October 2001

ACDbObject Class
After setting the auxiliary object’s owner, you must perform a create() or

store() operation so that the changes in the auxiliary object are pushed down to

the MIS. CODE EXAMPLE 5-1 illustrates the sequence for performing a create()
operation (M-CREATE).

Note – Two test programs that show how to create and set an ACDbObject object

are supplied in the /opt/SUNWconn/em/src/ac_api directory.

CODE EXAMPLE 5-1 Sequence for Performing a create() Operation

// Create the ACDbObject: Create an auxiliary object with root as
the
// default owner id

ACDbObject *acdbobj_ptr = new ACDbObject(logname, FALSE);
 // Set the auxiliary objects owner
 if (!acdbobj_ptr->set_auxobject_owner(USER,
owner_id_str.chp())) {
 cout << "Failed to set the owner id." << endl;
 exit(0);
 }
 // Create the acdbobject and its auxiliary object
 if (!acdbobj_ptr->create()) {
 cout << "Failed to create the acdbobject." << endl;
 exit(1);
 }
The sequence for changing the owner of a log is as follows: (M-SET)
 // Set the auxiliary objects owner
 //---------------------------------
 if (!acdbobj_ptr->set_auxobject_owner(USER,
owner_id_str.chp())) {
 cout << "Failed to set the owner id." << endl;
 exit(0);
 }

// Store the changes to the owner of the auxiliary object
 if (!acdbobj_ptr->store_auxobject()) {

cout << "Failed to change the auxiliary objects owner." <<
endl;
 exit(1);
 }
Chapter 5 Access Control API 5-39

ACDbObjectContainer Class
5.15 ACDbObjectContainer Class
Inheritance: public ACContainer

Data Members: No public data members are declared in this class.

The ACDbObjectContainer class represents the emDbInfo GDMO object class

from the Solstice EM DB Info module. ACDbObjectContainer is a container for all

ACDbObject objects. It stores database-specific access control information.

5.15.1 Constructor

The default constructor creates the container object. If the object has already been

created, the internal reference count for the object is incremented by one.

5.15.2 Destructor

5.15.3 ACDbObjectContainer Member Functions

get_access_db_objects

Returns all ACDbObject objects that contain the given group in the

ACDbObjectContainer object’s access list.

#include <acapi/acdbobject.hh>

ACDbObjectContainer()

~ACDbObjectContainer()

ACDbObjectList get_access_db_objects(const RWCString& group)
5-40 C++ API Reference • October 2001

ACDbObjectContainer Class
get_all_db_objects

Returns all ACDbObject objects that are stored in ACDbObjectContainer .

get_db_object

Returns the ACDbObject object whose name is specified by appname.

get_db_server_name

Returns the database server name.

get_db_server_type

Returns the database server type.

ACDbObjectList get_all_db_objects()

ACDbObject get_db_object(const RWCString& appname)

RWCString get_db_server_name()

RWCString get_db_server_type()
Chapter 5 Access Control API 5-41

ACEMNotificationEmitter Class
5.16 ACEMNotificationEmitter Class
Inheritance: public ACObject

Data Members: No public data members are declared in this class.

The ACEMNotificationEmitter class represents the emNotificationEmitter
GDMO object class from the Solstice EM Access Control module. The

emNotificationEmitter object represents a notification emitter for security alarm

and auditing.

5.16.1 Constructor

The constructor creates a notificationEmitter object. If such an object has

already been created, the internal reference count for the object is incremented by

one.

5.16.2 Destructor

#include <acapi/notificationemitter.hh>

ACEMNotificationEmitter()

~ACEMNotificationEmitter()
5-42 C++ API Reference • October 2001

ACEMNotificationEmitter Class
5.16.3 ACEMNotificationEmitter Member Functions

get_audit_level

Returns one of the following values that represent the audit level:

■ AUDIT_OFF

■ AUDIT_LEVEL1

■ AUDIT_LEVEL2

get_invalid_access_attempts

Returns a count of the number of times that access was denied.

get_security_level

Returns one of the following values that represent the security level:

■ SECURITY_OFF

■ SECURITY_LEVEL1

■ SECURITY_LEVEL2

get_valid_access_attempts

Returns a count of the number of times that an access control decision function

authorized access.

ACEMAuditLevel get_audit_level()

long get_invalid_access_attempts()

ACEMSecurityLevel get_security_level()

long get_valid_access_attempts()
Chapter 5 Access Control API 5-43

ACEMTargets Class
set_audit_level

Sets the audit level to one of the following values:

■ AUDIT_OFF

■ AUDIT_LEVEL1

■ AUDIT_LEVEL2

Returns TRUEon successful completion; otherwise, FALSE.

set_security_level

Sets the security level to one of the following values:

■ SECURITY_OFF

■ SECURITY_LEVEL1

■ SECURITY_LEVEL2

Returns TRUEon successful completion; otherwise, FALSE.

5.17 ACEMTargets Class
Inheritance: public ACTargets

Data Members: No public data members are declared in this class.

The ACEMTargets class represents the emTargets GDMO object class which is

defined in the Solstice EM Access Control module. emTargets is derived from

X.741’s targets GDMO object class. ACEMTargets class adds an

eventDiscriminator attribute to the targets class to be used for event access

control.

Result set_audit_level(ACEMAuditLevel)

Result set_security_level(ACEMSecurityLevel)

#include <acapi/acemtargets.hh>
5-44 C++ API Reference • October 2001

ACEMTargets Class
5.17.1 Constructor

The preceding constructor creates an ACEMTargets object whose name is specified

by objname. If an object has already been created with the same name, the internal

reference count for the object is incremented by one.

5.17.2 Destructor

5.17.3 ACEMTargets Member Functions

get_event_discriminator

Returns the ACEMTargets object’s event discriminator.

set_event_discriminator

Sets the ACEMTargets object’s event discriminator to ACEventsDiscriminator.

Returns TRUEon successful completion; otherwise, FALSE.

ACEMTargets(const RWCString& objname)

~ACEMTargets()

ACEventsDiscriminator get_event_discriminator()

Result set_event_discriminator(ACEventsDiscriminator)
Chapter 5 Access Control API 5-45

ACGroup Class
5.18 ACGroup Class
Inheritance: public ACObject

Data Members: No public data members are declared in this class.

The ACGroup class represents the group GDMO object class which is defined in the

Solstice EM Access Control module. group is derived from X.741’s aclInitiators
GDMO object class.

5.18.1 Constructor

The constructor creates an ACGroup object whose name is specified by objectname .

If an object with the same name has already been created, the internal reference

count for the object is incremented by one.

5.18.2 Destructor

#include <acapi/acgroup.hh>

ACGroup(const RWCString& objectname)

~ACGroup()
5-46 C++ API Reference • October 2001

ACGroup Class
5.18.3 ACGroup Member Functions

add_application

Adds app to the list of applications that can be accessed by its group.

Returns TRUEon successful completion; otherwise, FALSE.

add_application_feature

Adds feature to the feature list of app that can be accessed by its group.

Returns TRUEon successful completion; otherwise, FALSE.

add_group_member

Adds the given member to its group.

Returns TRUEon successful completion. Otherwise, if the given member already

exists in the group, this function sets the error type to ACC_USER_EXISTSand the

error string to “User exists in groupMemberList! ”, and returns FALSE.

destroy

Removes the instantiated group object from all containers that contains it, and then

removes the object itself.

Returns TRUEon successful completion; otherwise, FALSE.

Result add_application(const RWCString& app)

Resultadd_application_feature(constRWCString& app,constRWCString&
feature)

Result add_group_member(const RWCString& membername)

Result destroy()
Chapter 5 Access Control API 5-47

ACGroup Class
get_all_applications_full_access

Returns TRUEif the group it represents contains the DN of the application container

in its applicationAndFeatureList , which indicates that the group has full

access to all applications; otherwise, FALSE.

A group has full access to all applications in an application container if the group

contains the DN of the application container. This method returns TRUEif the

instantiated group contains the DN of an application container in the

applicationAndFeatureList of the group; otherwise, FALSE.

get_applications

Returns all the applications that are accessible by its group.

get_application_and_feature_list

If real is TRUE, this function returns a list of the DNs of all MIS applications and

features that are accessible by the instantiated group; otherwise, it returns a list of

the DNs of all applications and features in its own application space.

get_application_feature

Adds feature to the feature list of <app> that can be accessed by its group.

Boolean get_all_applications_full_access()

ACApplicationList get_applications()

ACApplicationAndFeatureList
get_application_and_feature_list(Boolean real)

Result add_application_feature(const RWCString& app, const
RWCString& feature)
5-48 C++ API Reference • October 2001

ACGroup Class
Returns TRUEon successful completion; otherwise, FALSE. For more information,

check the error type and string by calling the get_error_type function and the

get_error_string function. Verify that the application has full access by calling

get_application_full_access .

get_application_features

This function returns all the features of the given application that are accessible by

its group. If the given application has full access, this function returns an empty list.

Verify that the application has full access by calling

get_application_full_access .

get_application_full_access

Checks the applicationAndFeatureList of the instantiated group for the DN of

the given application, to determine whether the group has full access to the given

application.

Returns TRUEif its group has full access to the given application; otherwise, FALSE.

get_group_description

Returns the ACGroup object’s description information.

get_group_member_list

Returns a list of the group members (users).

ACApplicationFeatureList get_application_features(
const RWCString& appname)

Boolean get_application_full_access(const RWCString& appname)

ACGroupDescription get_group_description()

ACGroupMemberList get_group_member_list()
Chapter 5 Access Control API 5-49

ACGroup Class
remove_application

Removes the given application and all of its associated features from the

applicationAndFeatureList of the group.

Returns TRUEon successful completion; otherwise, FALSE.

remove_application_feature

Removes the given feature from the given application.

Returns TRUEon successful completion; otherwise, FALSE.

If the given feature does not exist, this function sets the error type to

ACC_FEATURE_NOT_EXISTSand the error string to “Application feature
doesn’t exist in applicationAndFeatureList! ”.

remove_group_member

Removes the given member (user) from its groupMemberList .

Returns TRUEon successful completion; otherwise, FALSE.

If the given member does not exist, this function sets the error type to

ACC_USER_NOT_EXISTSand the error string to “User doesn’t exist in
groupMemberList! ”.

set_all_applications_full_access

Result remove_application(const RWCString& app)

Result remove_application_feature(const RWCString& app, const
RWCString& feature)

Result remove_group_member(const RWCString& membername)

Result set_all_applications_full_access(Boolean fullacccess)
5-50 C++ API Reference • October 2001

ACGroup Class
A group has full access to all applications in an application container if the group

contains the DN of the application container.

If fullaccess is TRUE, this method adds the DN of an application container to the

applicationAndFeatureList of the instantiated group.

If fullaccess is FALSE, this method removes the DN from the

applicationAndFeatureList of the instantiated group.

Returns TRUEon successful completion; otherwise, FALSE.

set_application_and_feature_list

Sets the given list as the applicationAndFeatureList for the instantiated group.

Returns TRUEon successful completion; otherwise, FALSE.

set_application_full_access

Sets the DN of the given application in the applicationAndFeatureList of the

instantiated group so that the group has full access to the given application.

Returns TRUEon successful completion; otherwise, FALSE.

set_group_description

Sets the description of the instantiated group object to description.

Returns TRUEon successful completion; otherwise, FALSE.

Result set_application_and_feature_list(A
CApplicationAndFeatureList& list)

Result set_application_full_access(const RWCString& application)

Result set_group_description(const ACGroupDescription& description)
Chapter 5 Access Control API 5-51

ACGroupContainer Class
set_group_member_list

Sets the member (user) list of the instantiated group to list.

Returns TRUEon successful completion; otherwise, FALSE.

get_initiator_aci_mandated

Returns TUREif the initiator of the instantiated ACGroup object is authorized;

otherwise, FALSE.

set_initiator_aci_mandated

If mandated is TRUE, sets the initiator of the instantiated ACGroup object to

authorized; otherwise, sets the initiator to unauthorized.

Returns TRUEon successful completion; otherwise, FALSE.

5.19 ACGroupContainer Class
Inheritance: public ACContainer

Data Members: No public data members are declared in this class.

The ACGroupContainer class represents the groupContainer GDMO object class

which is defined in the Solstice EM Access Control module. groupContainer is a

container for all the groups that are defined under access control of Solstice EM.

Result set_group_member_list(ACGroupMemberList& list)

Boolean get_initiator_aci_mandated()

Result set_initiator_aci_mandated(Boolean mandated)

#include <acapi/acgroup.hh>
5-52 C++ API Reference • October 2001

ACGroupContainer Class
5.19.1 Constructor

The constructor creates a group container object that, when instantiated, contains all

the groups that are subject to access control. By default, the following groups are

available: full access, operator, and view-only. If such an object exists, the internal

reference count for the object is incremented by one.

5.19.2 Destructor

5.19.3 ACGroupContainer Member Functions

get_all_groups

Returns all the groups under the groupContainer object in the form of a group list.

get_group

Returns the group object with the given name.

ACGroupContainer()

~ACGroupContainer()

ACGroupList get_all_groups()

ACGroup get_group(const RWCString& groupname)
Chapter 5 Access Control API 5-53

ACInterface Class
get_user_group_list

Returns all the groups containing a user with the given name.

5.20 ACInterface Class
Inheritance: None

Data Members: No public data members are declared in this class.

The ACInterface class is a convenience class that you can use to get all the

container objects for access control and their contained objects.

5.20.1 Constructor

The default constructor does nothing because there are no data members to

initialize.

ACGroupList get_user_group_list(const RWCString& username)

#include <acapi/acinterface.hh>

ACInterface()
5-54 C++ API Reference • October 2001

ACInterface Class
5.20.2 Destructor

5.20.3 ACInterface Member Functions

get_access_user_list

Creates an ACAccessUserList object if it does not exist and returns it.

get_application_container

Creates an ACApplicationContainer object if it does not exist and returns it.

get_db_object_container

Creates an ACDbObjectContainer object if it does not exist and returns it.

get_em_notification_emitter

Creates an ACEMNotificationEmitter object if it does not exist and returns it. If

such an object exists, its internal reference count is incremented by one.

~ACInterface()

ACAccessUserList get_access_user_list();

ACApplicationContainer get_application_container()

ACDbObjectContainer get_db_object_container()

ACEMNotificationEmitter get_em_notification_emitter()
Chapter 5 Access Control API 5-55

ACInterface Class
get_feature_container

Creates an ACAppFeatureContainer object (for the given application) if it does not

exist and returns it.

get_group_container

Creates an ACGroupContainer object if it does not exist and returns it.

get_rule_container

Creates an ACRuleContainer object if it does not exist and returns it.

get_targets_container

Creates an ACTargetsContainer object if it does not exist and returns it.

ACAppFeatureContainer get_feature_container(const RWCString&appname)

ACGroupContainer get_group_container()

ACRuleContainer get_rule_container()

ACTargetsContainer get_targets_container()
5-56 C++ API Reference • October 2001

ACObject Class
5.21 ACObject Class
Inheritance: None

Data Members: No public data members are declared in this class.

The ACObject class represents the accessControl managed object class, an

abstract base class, as defined in X.741. ACObject is subclassed to derive more

specific classes that serve as an interface to X.741 GDMO object classes.

ACObject should be used as a base class for only those classes that represent a

concrete GDMO object class; that is, one that can be instantiated. For example, the

ACRule C++ class derives from the ACObject class and provides the interface to the

X.741 rule GDMO object class.

5.21.1 Constructor

There is no default public constructor available for this class.

A copy constructor is defined whose declaration is shown above.

5.21.2 Destructor

When the reference count for this object becomes 0, the object is deleted.

#include <acapi/acobject.hh>

ACObject(const ACObject&)

virtual ~ACObject() = 0
Chapter 5 Access Control API 5-57

ACObject Class
5.21.3 ACObject Operator Overloading

The preceding is the declaration of an assignment operator.

The preceding comparison operator returns TRUEif the objects on both sides are the

same; otherwise, FALSE.

5.21.4 ACObject Member Functions

add_callback

Adds the given callback to receive one of the following three events:

■ objectCreation

■ objectDeletion

It is your responsibility to delete the object name to free the allocated memory for

object name.

■ attributeValueChange

As part of the call data to the callback, the instantiated ACObject object is passed.

Note – It is possible to add more than one callback for the same event type.

ACObject& operator = (const ACObject&)

Boolean operator == (const ACObject& other)

void add_callback(const ACCallback& cb)
5-58 C++ API Reference • October 2001

ACObject Class
copy

Makes a copy of the given ACobject .

Returns TRUEon successful completion; otherwise, FALSE.

create

Creates an ACObject object that represents the accessControl GDMO object. This

is analogous to the Image::create() function in PMI.

Returns TRUEon successful completion; otherwise, FALSE. .

destroy

Destroys an ACObject that represents the accessControl GDMO object. This is

analogous to the Image::destroy() function in PMI.

Returns TRUEon successful completion; otherwise, FALSE.

exists

Checks whether the object exists. This is analogous to the Image::exists()
function in PMI.

Returns TRUEon successful completion; otherwise, FALSE.

Result copy(ACObject& source)

Result create()

virtual Result destroy()

Boolean exists()
Chapter 5 Access Control API 5-59

ACObject Class
get_error_string

Returns the error string stored in the ACAccessControl object that pertains to the

instantiated ACObject .

get_error_type

Returns the error type stored in the ACAccessControl object that pertains to the

instantiated ACObject . The error type can have one of the following values:

get_name_only

Returns the name of the instantiated ACObject .

RWCString get_error_string() const

ACErrorType get_error_type() const;

• ACC_APPLICATION_EXISTS • ACC_MOC_EXISTS

• ACC_APPLICATION_NOT_EXISTS • ACC_MOC_NOT_EXISTS

• ACC_DB_OBJECT_ACCESS_EXISTS • ACC_MOI_EXISTS

• ACC_DB_OBJECT_ACCESS_NOT_EXISTS • ACC_MOI_NOT_EXISTS

• ACC_DB_OBJECT_TABLE_EXISTS • ACC_NO_MEMORY

• ACC_DB_OBJECT_TABLE_NOT_EXISTS • ACC_OK

• ACC_FAILED • ACC_RULE_EXISTS

• ACC_FEATURE_EXISTS • ACC_RULE_NOT_EXISTS

• ACC_FEATURE_NOT_EXISTS • ACC_TARGETS_EXISTS

• ACC_GROUP_EXISTS • ACC_TARGETS_NOT_EXISTS

• ACC_GROUP_NOT_EXISTS • ACC_USER_EXISTS

• ACC_INVALID_USER_NAME • ACC_USER_NOT_EXISTS

RWCString get_name_only() const
5-60 C++ API Reference • October 2001

ACObject Class
get_object_name

Returns the name of the instantiated ACObject in the distinguished name (DN)

format.

remove_callback

Removes the given callback.

reset_error

Resets the error state of the object by setting the error string to “ACC_OK” and the

error type to ACC_OK.

revert

Reverts the state of the object by canceling any pending set operation that has not

yet been stored.

Returns TRUEon successful completion; otherwise, FALSE.

set_error

Sets the error type to the given type and error string to the given string. A type
value of ACC_OKperforms a reset_error on the object.

RWCString get_object_name() const

void remove_callback(const ACCallback& cb)

void reset_error()

Result revert()

void set_error(ACErrorType type, const RWCString& err)
Chapter 5 Access Control API 5-61

ACRule Class
set_error_string

Sets the error string to the given string.

set_error_type

Sets the error type to the given type. A type value of ACC_OKperforms a

reset_error on the object.

store

Stores the object that will be the representation of the GDMO object. This is

analogous to the Image::store() function in PMI.

Returns TRUEon successful completion; otherwise, FALSE.

5.22 ACRule Class
Inheritance: public ACObject

Data Members: No public data members are declared in this class.

The ACRule class represents X.741’s rule GDMO object class, which grants or

denies access. If the value of the enforcement action attribute is allow , access is

permitted. Otherwise, the enforcement action attribute defines the type of denial

response made to the initiator of the management operation.

void set_error_string(const RWCString& err)

void set_error_type(ACErrorType type)

Result store()

#include <acapi/acrule.hh>
5-62 C++ API Reference • October 2001

ACRule Class
5.22.1 Constructor

The constructor creates an ACRule object whose name is specified by objectname .

If such an object with this name has already been created, the internal reference

count for the object is incremented by one.

5.22.2 Destructor

5.22.3 ACRule Member Functions

add_group

Adds the given group to the rule’s initiator list.

Returns TRUEon successful completion; otherwise, FALSE.

If the given group already exists, this function sets the error type to

ACC_GROUP_EXISTSand the error string to “Group exists in
initiatorsList! ”.

ACRule(const RWCString& objectname);

~ACRule()

Result add_group(const RWCString& groupname)
Chapter 5 Access Control API 5-63

ACRule Class
add_targets

Adds the given target to the rule’s target list.

Returns TRUEon successful completion; otherwise, FALSE.

If the given target already exists, this function sets the error type to

ACC_TARGETS_EXISTSand the error string to “Targets exists in
initiatorsList! ”.

get_enforcement_action

Returns the enforcement action that is defined for this rule, which can be one of the

following:

■ denyWithResponse

■ denyWithoutResponse

■ abortAssociation

■ denyWithFalseResponse

■ allow

get_group_list

Returns a list of the groups that belong to the rule object.

get_targets_list

Returns a list of the targets that belong to the rule object.

Result add_targets(const RWCString& target)

EnforcementAction get_enforcement_action()

ACGroupList get_group_list()

ACTargetsList get_targets_list()
5-64 C++ API Reference • October 2001

ACRule Class
remove_group

Removes the given group from the rule’s initiator’s list.

Returns TRUEon successful completion; otherwise, FALSE.

If the given group already exists, this function sets the error type to

ACC_GROUP_NOT_EXISTSand the error string to “Group doesn’t exist in
initiatorsList! ”.

remove_targets

Removes the given target from the rule’s target list.

Returns TRUEon successful completion; otherwise, FALSE.

If the given target already exists, this function sets the error type to

ACC_TARGETS_NOT_EXISTSand the error string to “Targets doesn’t exist
in initiatorsList! ”.

set_enforcement_action

Sets the given action as the enforcement action for the rule. The given action can be

one of the following:

■ denyWithResponse

■ denyWithoutResponse

■ abortAssociation

■ denyWithFalseResponse

■ allow

Returns TRUEon successful completion; otherwise, FALSE.

Result remove_group(const RWCString& groupname)

Result remove_targets(const RWCString& target)

Result set_enforcement_action(EnforcementAction action)
Chapter 5 Access Control API 5-65

ACRuleContainer Class
set_group_list

Sets the given list as the rule’s initiator list.

Returns TRUEon successful completion; otherwise, FALSE.

set_targets_list

Sets the given list as the rule’s target list.

Returns TRUEon successful completion; otherwise, FALSE.

5.23 ACRuleContainer Class
Inheritance: public ACContainer

Data Members: No public data members are declared in this class.

The ACRuleContainer class is a container for all the rules defined in access control.

This class does not directly represent any GDMO object class.

5.23.1 Constructor

The constructor creates a rule container object, so that when it is instantiated it

contains all the rules that are subject to access control. If such an object has already

been created, the internal reference count for the object is incremented by one.

Result set_group_list(ACGroupList& grouplist)

Result set_targets_list(ACTargetsList& targetlist)

#include <acapi/acrule.hh>

ACRuleContainer()
5-66 C++ API Reference • October 2001

ACRuleContainer Class
5.23.2 Destructor

5.23.3 ACRuleContainer Member Functions

get_access_control_rules

Returns the ACAccessControlRules object that represents the

emAccessControlRules GDMO object class. This ACAccessControlRules
object can be used to get the various attributes of the emAccessControlRule .

get_all_rules

Returns all the rules available in the rule container object.

get_group_rule_list

Returns a list of all the rules that reference the given group.

get_rule

Returns the rule object whose name is specified by rulename .

~ACRuleContainer()

ACAccessControlRules get_access_control_rules()

ACRuleList get_all_rules()

ACRuleList get_group_rule_list(const RWCString& groupname)

ACRule get_rule(const RWCString& rulename)
Chapter 5 Access Control API 5-67

ACScope Class
get_targets_rule_list

Returns all the rules that reference the given target.

5.24 ACScope Class
Inheritance: None

Data Members: The following public data members are defined.

■ type can be:

■ BASE_OBJECT
■ NTH_LEVEL
■ BASE_TO_NTH_LEVEL
■ ALL_LEVELS
■ ALL_LEVELS_EXCEPT_BASE

■ level can be any positive integer.

The ACScope class contains the scope information.

5.24.1 Constructors

Default Constructor

The default constructor initializes type to BASE_OBJECTand level to 0.

The preceding constructor initializes type to t and level to l .

ACRuleList get_targets_rule_list(const RWCString& targetsname)

#include <acapi/actargets.hh>

ACScope()

ACScope(MessScopeType t, U32 l)
5-68 C++ API Reference • October 2001

ACTargets Class
■ type can be:

■ BASE_OBJECT
■ NTH_LEVEL
■ BASE_TO_NTH_LEVEL
■ ALL_LEVELS
■ ALL_LEVELS_EXCEPT_BASE

The preceding constructor is a copy constructor.

5.24.1.1 ACScope Operator Overloading

The preceding operator overloads the assignment operator and assigns the values of

right side to left side.

5.24.1.2 ACScope Member Functions

No public member functions.

5.25 ACTargets Class
Inheritance: public ACObject

Data Members: No public data members are declared in this class.

The ACTargets class represents X.741’s targets GDMO object class. Targets

identify managed objects within the security domain.

ACScope(const ACScope& other)

ACScope& operator=(const ACScope& other)

#include <acapi/actargets.hh>
Chapter 5 Access Control API 5-69

ACTargets Class
5.25.1 Constructor

The constructor creates an ACTargets object with the given name and type. The

default type is X741_TARGETS, which creates a targets GDMO object from X.741.

Any other type creates an emTargets GDMO object which is defined in the Solstice

EM Access Control module. If an object with the same name exists, the internal

reference count for the object is incremented by one.

The constructor creates an ACTargets object with the given name and type. The

type is either the targets GDMO object defined in X741.gdmo or the emTargets
GDMO object defined in the Solstice EM Access Control module. The default type is

the targets GDMO object if no type is specified.

5.25.2 Destructor

5.25.3 ACTargets Member Functions

add_moc

Adds the given managed object class (MOC) name to the MOC list that is defined for

the target.

Returns TRUEon successful completion; otherwise, FALSE.

If the given MOC already exists, the function sets the error type to

ACC_MOC_EXISTSand the error string to “MOC exists in targetsList! ”.

ACTargets(const RWCString& objectname, ACTargetsType type =
X741_TARGETS)

virtual ~ACTargets()

Result add_moc(const RWCString& mocname)
5-70 C++ API Reference • October 2001

ACTargets Class
add_moi

Adds the given managed object instance (MOI) to the list of MOIs that are defined

for the target.

Returns TRUEon successful completion; otherwise, FALSE.

If the given MOI already exists in the target list, this function sets the error type to

ACC_MOI_EXISTSand the error string to “MOI exists in targetsList! ”.

destroy

Removes the target from all the rules that reference it, and deletes the target.

Returns TRUEon successful completion; otherwise, FALSE.

get_filter

Returns the stored filter for the target.

get_moc_list

Returns the list of MOCs that are defined for the instantiated target object.

Result add_moi(const RWCString& moiname)

Result destroy()

ACFilter get_filter()

ACMOCList get_moc_list()
Chapter 5 Access Control API 5-71

ACTargets Class
get_moi_list

Returns a list of the MOIs that are defined for the target.

Check for the error type to get any error that occurred while performing this

function.

get_operations_list

Returns the list of operations that are defined for this target. For example, {action,
get, multipleObjectSelection, filter} .

Check for the error type to get any error that occurred while performing this

function.

get_scope

Returns the target’s scope.

remove_moc

Removes the given MOC from this target’s list of MOCs.

Returns TRUEon successful completion; otherwise, FALSE.

If the given MOC already exists, this function sets the error type to

ACC_MOC_NOT_EXISTSand the error string to “MOC doesn’t exist in
targetsList! ”.

ACMOIList get_moi_list()

ACOperationsList get_operations_list()

ACScope get_scope()

Result remove_moc(const RWCString& mocname)
5-72 C++ API Reference • October 2001

ACTargets Class
remove_moi

Removes the given MOI from this target’s list of MOIs.

Returns TRUEon successful completion; otherwise, FALSE.

If the given MOI already exists, this function sets the error type to

ACC_MOI_NOT_EXISTSand the error string to “MOI doesn’t exist in
targetsList! ”.

set_filter

Sets the given filter for the target object.

Returns TRUEon successful completion; otherwise, FALSE.

set_moc_list

Sets the given MOC list for the target object.

Returns TRUEon successful completion; otherwise, FALSE.

set_moi_list

Sets the given MOI list for the target object.

Returns TRUEon successful completion; otherwise, FALSE.

Result remove_moi(const RWCString& moiname)

Result set_filter(const ACFilter& filter)

Result set_moc_list(ACMOCList& moclist)

Result set_moi_list(ACMOIList& moilist)
Chapter 5 Access Control API 5-73

ACTargetsContainer Class
set_operations_list

Sets the given operations list for the target object.

Returns TRUEon successful completion; otherwise, FALSE.

set_scope

Sets the given scope for the target object.

Returns TRUEon successful completion; otherwise, FALSE.

5.26 ACTargetsContainer Class
Inheritance: public ACContainer

Data Members: No public data members are declared in this class.

The ACTargetsContainer class represents the targetContainer GDMO object

class which is defined in the Solstice EM Access Control module.

ACTargetsContainer is a container for all the Solstice EM access control targets.

5.26.1 Constructor

The constructor creates a targets container object to contain all the targets that are

subject to access control. If such an object exists, the internal reference count for the

object is incremented by one.

Result set_operations_list(ACOperationsList& operlist)

Result set_scope(const ACScope& scope)

#include <acapi/actargets.hh>

ACTargetsContainer()
5-74 C++ API Reference • October 2001

ACTargetsContainer Class
5.26.2 Destructor

5.26.3 ACTargetsContainer Member Functions

get_all_targets

Returns all the targets under the targetContainer object.

get_em_targets

Returns the ACEMTargets object with the given name.

get_targets

Returns the ACTargets object with the given name.

~ACTargetsContainer()

ACTargetsList get_all_targets()

ACEMTargets get_em_targets(const RWCString& targetsname)

ACTargets get_targets(const RWCString& targetsname)
Chapter 5 Access Control API 5-75

ACUser Class
5.27 ACUser Class
Inheritance: None

Data Members: No public data members are declared in this class.

The ACUser class stores a user’s login name and full name in memory. Access

control applications get a user’s login name and full name by accessing the

instantiated ACUser object.

5.27.1 Constructors

Default Constructor

The default constructor does not initialize the login name and full name.

The preceding constructor initializes the login name to loginname and the full

name to fullname .

The preceding constructor initializes the login name to loginname and the full

name to an empty string.

The above constructor is a copy constructor.

#include <acapi/acaccessuserlist.hh>

ACUser()

ACUser(const RWCString& loginname, const RWCString& fullname)

ACUser(const RWCString& loginname)

ACUser(const ACUser& other)
5-76 C++ API Reference • October 2001

ACUser Class
5.27.2 ACUser Operator Overloading

The preceding operator overloads the assignment operator, and assigns the values of

other to self .

The preceding operator overloads the equality operator, so that if both the self and

other objects have the same login name, the overload method returns TRUE;
otherwise, the method returns FALSE.

5.27.3 ACUser Member Functions

get_full_name

Returns the full name stored in the object.

get_login_name

Returns the login name stored in the object.

ACContainerData& operator = (const ACContainerData& other)

friend Boolean operator == (const ACContainerData& self, const
ACContainerData& other)

RWCString get_full_name() const

RWCString get_login_name() const
Chapter 5 Access Control API 5-77

ACUser Class
is_valid_user

Verifies the validity of the instantiated ACUser by contacting em_login daemon to

check whether the user is a valid user on the MIS host. Returns TRUEon successful

completion; otherwise, FALSE.

set_full_name

Sets the full name in the object to the given name.

set_login_name

Sets the login name in the object to the given name.

Boolean is_valid_user(unsigned int& error_code)

void set_full_name(const RWCString&)

void set_login_name(const RWCString&)
5-78 C++ API Reference • October 2001

CHAPTER 6

Access Control Engine API

The Access Control Engine (ACE) API functions enable you to invoke Access

Control Decision Function (ADF) and Access Control Enforcement Function (AEF)

operations. The ADF and AEF are implemented in the ACE module, which is in turn

implemented as a shared library.

The ACE API is designed using the low-level PMI and is independent of the MIS

architecture. This allows the API to be plugged into different Auxiliary Servers (such

as MIS and MPA), making it possible for the Auxiliary Servers to impose access

control on the objects they manage.

This chapter comprises the following topics:

■ Section 6.1 “Symbolic Constants” on page 6-2

■ Section 6.2 “ACE API Classes” on page 6-3

■ Section 6.3 “ACE Class” on page 6-3
6-1

Symbolic Constants
6.1 Symbolic Constants

6.1.1 ACEOperationType

The ACEMaxNumOperations element is a count of ACEOperationTypes and not
an ACEOperationType .

6.1.2 ACEEnforcementAction

The MaxNumEnforcementActions element is a count of the

ACEEnforcementActions and not an ACEEnforcementAction .

enum ACEOperationType {
ACEAction,
ACECreate,
ACEDelete,
ACEGet,
ACESet,
ACEReplace = 4,
ACEAddMember = 4,
ACERemoveMember = 4,
ACEReplaceWithDefault = 4,
ACEMultipleObjectSelection = 8,
ACEFilter,
ACEEventReport,
ACEMaxNumOperations

}

enum ACEEnforcementAction {
DenyWithResponse,
DenyWithoutResponse,
AbortAssociation,
DenyWithFalseResponse,
Allow,
Unknown,
MaxNumEnforcementActions

}

6-2 C++ API Reference • October 2001

ACE API Classes
6.2 ACE API Classes
This section describes the following ACE API classes:

■ ACE

■ ACEContext

■ ACEDecision

■ ACEDomain

■ ACEGlobals

■ ACEReqData

■ AuxServerUtils

6.3 ACEClass
Inheritance: None

Data members: No public data members are declared in this class.

This class abstracts the concept of ACE initialization and acts as a single point of

access to the services provided by the ACE library. There can only be one object

instance of this class for each security domain. This restriction helps in the

management of and clear separation between an auxiliary server (such as MIS or

MPA) and the Access Control Servers (ACS) to which it connects.

#include <ace/ace.hh>
Chapter 6 Access Control Engine API 6-3

ACEClass
6.3.1 Constructor

This constructor initializes the ACE library. It sets the security domain for which

access control is to be provided to domain. It also takes a reference to the class

derived from AuxServerUtils, which needs to be implemented as part of using

ACE API.

Note – You should either create the ACEobject on the heap or make sure it does not

go out of scope.

6.3.2 Destructor

6.3.3 ACEMember Functions

get_ace_instance

This function is a static method. It returns the currently instantiated ACEobject

instance.

check_access

ACE(const ACEDomain& domain, AuxServerUtils& aux_server_utils)

~ACE()

ACE& get_ace_instance()

ACEDecision check_access(
const ACEReqData& ace_req_data) const throw(ACEException)
6-4 C++ API Reference • October 2001

ACEClass
Checks access for the user found in the msg’s access field and returns the

ACEDecision object from which the enforcement action can be obtained. TABLE 6-1

describes this function’s parameters.

Note – The Message class is the base class used for messages passed between SAPs

and the PMI.

ACEDecision check_access(
const Message* msg,
const void* user_data = 0,
constRWTValSlist<Asn1Value>& in_oc_component_list=

ACEGlobals::null_oc_component_list,
const ACEContext& context =ACEGlobals::null_ace_context,
Boolean x740_supported = TRUE

) const throw(ACEException)

TABLE 6-1 check_access() Parameters

Parameter Description

ace_req_data Reference to a ACEReqData object.

msg Message for which access control needs to be applied.

user_data User data to be passed to AuxServerUtils methods. This is

analogous to the user_data parameter passed for typical

callbacks.

in_oc_component_list List of all possible object classes starting from the root of the above

oi . This list contains the following:

• Object class root for /

• Object class system for /systemId=name:"netareno

• Object class log for

/systemId=name:"netareno"/logId=string:"Alarmlog"

You can pass the default value

ACEGlobals::null_oc_component_list ao, while applying

the access control decisions, the ACE API calls

AuxServerUtils::determine_class() to get the object class

information for the message.

context A reference to an ACEContext object.
Chapter 6 Access Control Engine API 6-5

ACEContext Class
hi_process_ace_event

The ACE API callback that processes all access control-related events once the

application/auxiliary server is up and running. This method can be registered using

the Platform::when() method. While registering with Platform::when() , the

pointer to the ACEobject should be passed in the userdata of the

Platform::when() method, so that the hi_process_ace_event() receives a

pointer to the ACEobject in its user_data parameter.

This is a static method that processes high-level events. call_data must be a

CurrentEvent object pointer. For more information about the CurrentEvent
class.

lo_process_ace_event

The ACE API callback that processes all access control-related events once the

application or auxiliary server is up and running. This method is typically called

when there is an existing callback on the Platform . When the Platform callback is

called, you can call this method with user_data containing a pointer to the ACEobject

and call_data containing the message from CurrentEvent .

This method is a static method that processes low-level events. call_data must be

a Message object pointer.

6.4 ACEContext Class

The ACEContext class stores the context of an access check on a scoped and filtered

CMIP request that cannot be resolved deterministically.

void hi_process_ace_event(Ptr user_data , Ptr call_data)

void lo_process_ace_event(Ptr user_data , Ptr call_data)

#include <ace/ace_context.hh>
6-6 C++ API Reference • October 2001

ACEContext Class
6.4.1 Constructor

This constructor creates an ACEContext object with the original user request set to

p_orig_user_req. If p_orig_user_req is not provided, the original user request is set to 0.

6.4.2 Destructor

6.4.3 ACEContext Operator Overloading

6.4.4 ACEContext Member Functions

get_orig_user_req

Returns the original user request message that the instantiated ACEContext object

contains.

ACEContext(const Message* p_orig_user_req = 0)

~ACEContext()

operator void*() const

int operator !() const

Message* get_orig_user_req() const
Chapter 6 Access Control Engine API 6-7

ACEContext Class
get_scope

Returns the scope that the instantiated ACEContext object contains.

get_filte r

Returns the filter information that the instantiated ACEContext object contains.

set_scope

Sets the scope of the instantiated ACEContext object to scope.

set_filter

Set the filter of the instantiated ACEContext object to filter.

MessScope& get_scope() const

Asn1Value& get_filter() const

void set_scope(const MessScope& scope)

void set_filter(const Asn1Value& filter)
6-8 C++ API Reference • October 2001

ACEDecision Class
6.5 ACEDecision Class

The ACEDecision class abstracts the concept of ADF decision in response to an

access check request to ACE.

6.5.1 Constructor

The preceding constructor creates an ACEDecision object.

The preceding constructor is a copy constructor.

This constructor creates an ACEDecision object and initializes its “proposed

response” data member as follows:

■ If enforcement_action is DenyWithResponse , the proposed response is set to

ACCESS_DENIED.

■ If enforcement_action is DenyWithoutResponse or AbortAssociation , the

proposed response is set to PROCESS_FAILURE.

#include <ace/ace_decision.hh>

ACEDecision()

ACEDecision(const ACEDecision& rhs)

ACEDecision(
const Asn1Value& oc,
const Asn1Value& oi,
const ACEEnforcementAction& enforcement_action,
const Message* p_msg = 0

)

Chapter 6 Access Control Engine API 6-9

ACEDecision Class
6.5.2 Destructor

6.5.3 ACEDecision Member Functions

get_enforcement_action

Returns the enforcement action for the ACEdecision. Refer to Section 6.1 “Symbolic

Constants” on page 6-2,” for return values.

get_proposed_response

Returns the proposed response of the ACEDecision object. The return value is an

ObjResMess pointer to an ACCESS_DENIEDor PROCESS_FAILUREmessage.

get_proposed_response returns NULL if the decision was not denied.

get_original_request

Returns the original message given to ACE by the ACE client for which access

control is to be applied.

~ACEDecision()

ACEEnforcementAction get_enforcement_action() const

ObjResMess* get_proposed_response() const

Message* get_original_request() const
6-10 C++ API Reference • October 2001

ACEDomain Class
6.6 ACEDomain Class

The ACEDomain class abstracts the concept of a security domain and information

that is needed to identify and access the domain server ACS.

6.6.1 Constructor

The preceding constructor creates an ACEDomain object with the domain name set to

domain_name and the message SAP set to p_sap.

The preceding constructor is a copy constructor.

6.6.2 Destructor

6.6.3 ACEDomain Member Function

get_sap

Returns the message SAP of the ACEDomain object.

#include <ace/ace_domain.hh>

ACEDomain(const DataUnit& domain_name, MessageSAP* p_sap)

ACEDomain(const ACEDomain& that)

~ACEDomain()

MessageSAP* get_sap() const
Chapter 6 Access Control Engine API 6-11

ACEReqData Class
6.7 ACEReqData Class

The ACEReqData class stores operation request data.

6.7.1 Constructor

TABLE 6-2 describes the parameters of the preceding constructor.

#include <ace/ace_req_data.hh>

ACEReqData(
const Asn1Value& user_id =ACEGlobals::null_asn1_value,
const Asn1Value& oc = ACEGlobals::null_asn1_value,
const Asn1Value& oi = ACEGlobals::null_asn1_value,
const ACEOperationType& operation =

ACEGlobals::null_operation_type,
const MessScope& scope = ACEGlobals::null_scope,
const Asn1Value& filter = ACEGlobals::null_asn1_value,
const void* user_data = 0,
const RWTValSlist<Asn1Value>& in_oc_component_list =

ACEGlobals::null_oc_component_list,
const Message* opt_original_msg = 0,
ACEContext context = ACEGlobals::null_ace_context,
Boolean x740_supported = TRUE

)

TABLE 6-2 ACEReqData() Constructor Parameters

Parameter Description

user_id An encoded GraphicString whose access needs to be checked

against a request.

oc Object class of the message.

oi Object instance of the message.

operation Type of the message. Values are obtained from

ACEOperationType .
6-12 C++ API Reference • October 2001

ACEReqData Class
6.7.2 Destructor

scope Scope of the message.

filter Filter of the message.

user_data User data to be passed to AuxServerUtils methods. This is

analogous to the user_data parameter passed for typical

callbacks.

in_oc_component_list List of all possible object classes for the message that is being

passed to check_access .

For example, if the message being passed is a get request whose

oi = /systemId=name:"netareno"/
logId=string:"Alarmlog" ,

in_oc_component_list contains all possible object classes starting

from the root of the above oi . The list contains the following:

• Object class root for /

• Object class system for /systemId=name:"netareno

• Object class log for /systemId=name:"netareno"/
logId=string:"Alarmlog"

The default value for this parameter is

ACEGlobals::null_oc_component_list . If the default

value is used, ACE API calls the

AuxServerUtils::determine_class() to get the object

class information for the message.

opt_original_msg Message for which access control needs to be applied.

context A reference to an ACEContext object.

~ACEReqData();

TABLE 6-2 ACEReqData() Constructor Parameters (Continued)

Parameter Description
Chapter 6 Access Control Engine API 6-13

AuxServerUtils Class
6.8 AuxServerUtils Class
Inheritance: None

Data members: No public data members are declared in this class.

The C++ class, AuxServerUtils , is an abstract base class that provides auxiliary

services to ACE objects.

6.8.1 Constructor

The AuxServerUtils class is an abstract base class, and cannot be instantiated.

6.8.2 Destructor

#include <ace/ace_aux_server_utils.hh>

AuxServerUtils()

~AuxServerUtils()
6-14 C++ API Reference • October 2001

AuxServerUtils Class
6.8.3 AuxServerUtils Virtual Functions

check_filter

This method is a hook into the application or auxiliary server's code called by the

ACE. This method is called whenever the ACE is evaluating a target that has a filter

specified in it. This method is expected to check whether oi satisfies the filter. userdata
has a valid pointer if ACE::check_access() was called with userdata in it.

The possible return values are NO_MATCH, MATCH, INVALID , RESOURCELIM, and

PROCESSFAILas defined in pmi/filter.hh . If the filter field of the targets is not

being used, this method returns MATCH.

determine_class

This method is a hook into the application or auxiliary server’s code called by the

ACE. This method is called whenever the ACE does not find the managed object

class of the request in the target’s object classes list. This method evaluates the object

class of the given oi and returns it. userdata has a valid pointer if

ACE::check_access() was called with userdata in it.

FilterResult check_filter(
const Asn1Value& oi,
const Asn1Value& filter,
const void* userdata = 0)

Asn1Value determine_class(
const Asn1Value& oi,
const void* userdata = 0)
Chapter 6 Access Control Engine API 6-15

AuxServerUtils Class
aux_get_req

This method is called by ACE internals to send a GET_REQto the MIS to load access

control information inside the ACE.

extract_message

This method is called by ACE internals to receive the response to a GET_REQsent in

by aux_get_req .

aux_check_create_filter

This method is a hook into the application or auxiliary server’s code called by the

ACE. This method is called whenever the ACE is evaluating a create request against

a target that has a filter specified in it. This method checks whether msg satisfies the

filter. The possible return values are NO_MATCH, MATCH, INVALID , RESOURCELIM,
and PROCESSFAILas defined in pmi/filter.hh .

Result aux_get_req(
MessageSAP* sap ,
const Asn1Value& oi ,
const MessScope& scope ,
const Callback& cb,
const Asn1Value& oc = ACEGlobals::actual_class_oc
const Asn1Value&

attrs = ACEGlobals:: null_asn1_value,
const Asn1Value&

filter = ACEGlobals::null_asn1_value,
const Asn1Value&

access = ACEGlobals::null_asn1_value,
const MessSync& sync = BEST_EFFORT,
MessId& op_id = ACEGlobals::null_msg_id,
const U32 flags = 0,
const Boolean& sub_trans = FALSE)

Message* extract_message(Ptr call_data)

FilterResult aux_check_create_filter(
const Message* msg,
const Asn1Value& filter)
6-16 C++ API Reference • October 2001

AuxServerUtils Class
aux_check_event_filter

This method is a hook into the application or auxiliary server’s code called by the

ACE. This method is called whenever the ACE is evaluating an event request. This

method checks whether the event msg satisfies filter. The possible return values are

NO_MATCH, MATCH, INVALID , RESOURCELIM, and PROCESSFAILas defined in pmi/
filter.hh .

FilterResult aux_check_event_filter(
const Message* msg,
const Asn1Value& filter)
Chapter 6 Access Control Engine API 6-17

AuxServerUtils Class
6-18 C++ API Reference • October 2001

CHAPTER 7

Nerve Center Interface

The Nerve Center Interface (NCI) library is built on top of the Portable Management

Interface (PMI). The NCI library allows applications to create template requests,

launch the request against Management Information Server (MIS) objects, and

retrieve information about objects.

This chapter comprises the following topics:

■ Section 7.1 “Requests” on page 7-1

■ Section 7.2 “Class and Function Summary” on page 7-2

■ Section 7.3 “NC Requests” on page 7-3

■ Section 7.4, “NCI Library Classes

■ Section 7.8 “NCI Library Functions” on page 7-11

■ Section 7.10.31.2 “Event Request Example” on page 7-30

7.1 Requests
A Nerve Center (NC) template is a type of management request; it is used to manage

a set of selected objects in the MIS. A NC template is comprised of state, condition,

transition, and action requests. NC template definitions reside in the MIS.

When a request is launched, the Nerve Center polls remote objects and retrieves the

requested information. If the application transitions to a new state, the managed

object’s severity and state attributes are changed in the MIS and appropriate

applications are informed of that object’s state change.

Note – When compiling NCI clients, do not disable C++ exceptions (-noex option

with Sun C++ compilers) and do link NCI clients with the RogueWave library.
7-1

Class and Function Summary
7.2 Class and Function Summary
TABLE 7-1 summarizes the classes and functions included this chapter.

TABLE 7-1 Nerve Center Classes and Functions

Class/Function Return Value Description

TABLE 7-2 lists the
library classes
included in the NCI.

Allows iteration through the responses

received for an asynchronous launch

NCParsedReqHandle Class Parses request handles returned by

NCI functions

NCTopoInfoList Class Builds a list of toponode information

nci_action_add Result Adds the action to the transition

nci_action_delete Result Deletes the action from the list of

actions for transition

nci_async_request_start Waiter Launches NC requests asynchronously

nci_condition_add Result Creates a condition object that can be

used for building NC templates

nci_condition_delete Result Deletes an existing condition

nci_condition_get char* Returns an ASCII string containing

RCL statement(s)

nci_init Result Initializes the NCI library

nci_parse_handle Result Parses a given request handle and

returns data

nci_pollrate_add Result Creates a new pollrate object in the MIS

nci_pollrate_delete Result Deletes an existing pollrate object in the

MIS

nci_request_delete Result Deletes a running request

nci_request_dump Array(DU) Returns current state, severity, and

variable data

nci_request_info Result Returns state name, severity string, and

severity value

nci_request_list Array(DU) Returns an array of request handles

nci_request_start (DU) Starts a management request against an

object
7-2 C++ API Reference • October 2001

NC Requests
7.3 NC Requests

7.3.1 Synchronous Launches

Synchronous launches imply that associated functions do not return until after all

the parameter validation and communication with the MIS, regarding the start of the

request, is complete. These functions do not actually confirm whether the request

has started successfully or not. In that sense, it is asynchronous.

nci_severity_add Result Creates a new security level in the MIS

nci_severity_delete Result Deletes an existing severity in the MIS

nci_state_add Result Adds the state to a NC template

nci_state_delete Result Deletes the state from a NC template

nci_state_get NC_State Gets the handle to identify the state in

a NC template

nci_template_add Result Edits a NC template

nci_template_copy Result Copies a NC template

nci_template_create Result Creates a handle for a NC template

nci_templete_delete Result Deletes an existing NC template from

the MIS

nci_template_find NC_Defn Gets the handle for an existing request

for editing

nci_template_revert NC_Defn Undoes changes done to the NC

template

nci_template_store Result Stores the NC template

nci_transition_add Result Adds a transition to an existing NC

template

nci_transition_delete Result Deletes a transition between two states

nci_transition_find NC_Transition Gets the transition in a NC template

nci_transition_get NC_Transition Gets the handle on transition from the

state

TABLE 7-1 Nerve Center Classes and Functions (Continued)

Class/Function Return Value Description
Chapter 7 Nerve Center Interface 7-3

NC Requests
In comparison, functions in an asynchronous launch return even before any

communication with the MIS, regarding the start of the request, takes place.

The functions that are specifically synchronous are:

■ nci_request_delete

■ nci_request_dump

■ nci_request_info

■ nci_request_list

■ nci_request_start

Many of the request functions use the variable, handle. handle is an optional user-

defined string. When it is used, the NCI uses it to build the request handle that the

NCI returns.

The purpose of using handle is to allow an application, like the auto daemon, to get a

list of running requests from the NCI and know which ones it has started. Such a list

is useful when an application restarts. An application does not have to use handle; it

can keep a list of the requests it has started instead. If handle is not passed, the

request handle is formed by the NCI without it

7.3.2 Asynchronous Launches

In asynchronous launches, associated functions return before communication with

the MIS, regarding the start of the request, takes place. In comparison, synchronous

launches imply that associated functions do not return until after all the parameter

validation and communication with the MIS, regarding the start of the request, is

complete.

The classes/functions associated with asynchronous launches are:

■ TABLE 7-2 lists the library classes included in the NCI.

■ nci_async_request_start

■ NCTopoInfoList Class
7-4 C++ API Reference • October 2001

NCI Library Classes
7.4 NCI Library Classes
TABLE 7-2 lists the library classes included in the NCI.

7.5 NCAsyncResIterator Class
The NCAsyncResIterator class allows you to iterate through the responses

received for an asynchronous launch of possible multiple requests. Each iteration

allows you to extract response information about one request.

7.5.1 Constructor

This constructor takes call_data as an argument. call_data is the data supplied by

nci_async_request_start() , when nci_async_request_start() calls the

user-installed callback.

TABLE 7-2 NCI Library Classes

NCI Classes

TABLE 7-2 lists the library classes included in the NCI.

NCParsedReqHandle Class

NCTopoInfoList Class

NCAsyncResIterator(Ptr call_data);
Chapter 7 Nerve Center Interface 7-5

NCAsyncResIterator Class
7.5.2 Destructor

7.5.3 Operator Overloading for Prefix Operator++

The prefix increment operator advances the iterator one position in the response list.

Returns FALSE, if it advances past the end of the response list. Otherwise, it returns

TRUE.

Note – The postfix operator++(int) is not supported.

7.5.4 Member Functions

get_req_handle

Returns the request handle for the request determined by the current position of the

iterator in the response list. The results are undefined if the iterator is no longer

valid or if operator++() has previously returned FALSE.

get_req_status

Returns the status of the request determined by the current position of the iterator in

the response list. The results are undefined if the iterator is no longer valid or if

operator++() has previously returned FALSE.

~NCAsyncResIterator();

RWBoolean operator++();

const DataUnit& get_req_handle() const;

NCAsyncReqStatus get_req_status() const;
7-6 C++ API Reference • October 2001

NCParsedReqHandle Class
NCAsyncReqStatus represents the status of the request that is launched

asynchronously.

NOT_INITIALIZED : Indicates the NC request was never launched.

AWAITING_RESPONSE: Indicates that a request (internal CMIP request) has been

made to the MIS to launch the NC request, and is waiting for a response from the

MIS.

LAUNCH_SUCCESS: The NC request was successfully launched.

LAUNCH_FAILURE: The NC request launch failed.

get_error_reason

Returns the reason for failure to launch a given request, determined by the current

position of the iterator in the response list. You should use this member function

only when get_req_status() returns LAUNCH_FAILURE.

The results are undefined if the iterator is no longer valid or if operator++() has

previously returned FALSE.

7.6 NCParsedReqHandle Class
NCParsedReqHandle class is responsible for parsing request handles returned by

NCI functions. For backward compatibility, nci_parse_handle() is retained.

However, it is recommended that NCParsedReqHandle be used wherever possible.

This provides better insulation against any changes to the request handle

implementation and more information can be extracted from the request handle.

enum NCAsyncReqStatus
{

NOT_INITIALIZED,
AWAITING_RESPONSE,
LAUNCH_SUCCESS,
LAUNCH_FAILURE

};

const RWCString& get_error_reason() const;
Chapter 7 Nerve Center Interface 7-7

NCParsedReqHandle Class
7.6.1 Constructors

This constructor parses the req_handle_du which is received by NCI functions that

launch requests, either synchronously or asynchronously.

If the request handle passed is invalid, the NCParsedReqHandle constructor throws

an NCException to the user. To determine the cause of the exception, use

NCException::why() which returns char* .

7.6.2 Default Destructor

7.6.3 Member Functions

get_topo_id

This function returns the topo_id from the request_handle .

get_mis_name

This function returns the name of the MIS against which the request was launched.

NCParsedReqHandle(const DataUnit& req_handle_du);

~NCParsedReqHandle();

u_long get_topo_id() const;

const RWCString& get_mis_name() const;
7-8 C++ API Reference • October 2001

NCTopoInfoList Class
get_template_name

This function returns the name of the NC template that was used to launch the

request.

get_invoke_id

This function returns the invoked id of the asynchronous launch. Invoke ID is per

process and per invocation of nci_async_request_launch() . For synchronous

launches, invoke_id is always zero.

get_user_stub

This function returns the user_stub that was used in the construction of the request

handle. This user_stub is passed to the invocation of synchronous versions of request

launches.

7.7 NCTopoInfoList Class
NCTopoInfoList class is used to build a list of toponode information. Information

about individual toponodes is shared using the copy constructor and assignment

operator.

const RWCString& get_template_name() const;

u_long get_invoke_id() const;

const RWCString& get_user_stub() const;
Chapter 7 Nerve Center Interface 7-9

NCTopoInfoList Class
7.7.1 Default Constructor

This function is the default constructor that constructs an empty topology

information list.

7.7.2 Copy Constructor

This is the copy constructor that increments the reference count on the internal

implementation object contained within that object.

7.7.3 Destructor

This destructor decrements the reference count on the internal implementation object

and deletes the internal implementation object when the reference count goes to

zero.

7.7.4 Operator Overloading for Operator=

The assignment operator increments the reference count on the internal

implementation object contained within that object.

NCTopoInfoList();

NCTopoInfoList (const NCTopoInfoList& that);

~NCTopoInfoList();

NCTopoInfoList& operator=(const NCTopoInfoList& that);
7-10 C++ API Reference • October 2001

NCI Library Functions
7.7.5 Member Functions

add_topo_info

Alternately,

This member function adds information about one toponode to the

NCTopoInfoList object. This overloaded member function is provided for the sake

of efficiency and performance. Some applications might already cache the fdns of the

toponodes (the value of the topoNodeMOSet GDMO attribute).

Such applications can pass in the fdn_set (optional). Each fdn in the fdn_set should be

either in the slash or brace format. Because nci_async_request_start() does

not issue any requests to the MIS to get information about the toponodes,

performance gains are achieved.

If mis_name is not specified, it is assumed to be the local MIS (the MIS to which

nci_init() initially connected). Returns OKif successful. Otherwise, it returns

NOT_OK.

7.8 NCI Library Functions

Note – All functions that return Result are either OKor NOT_OK. All functions that

return Boolean are either TRUEor FALSE.

Several NCI functions use an argument mis_name, as the NCI supports MIS to MIS

awareness. NCI accepts mis_name in the following formats:

Result add_topo_info(
u_long topo_id,
Array(DU)& fdn_set,
CDU mis_name = null_du

);

Result add_topo_info(
u_long topo_id,
CDU mis_name = null_du

);
Chapter 7 Nerve Center Interface 7-11

NCI Library Functions
■ slash format (/systemId=name:”sol”)

■ string name (“sol”)

The mis_name is the name of the MIS on which the given NCI function is effective.

Unless otherwise specified, mis_name automatically maps to the local MIS that the

NCI application is connected to. null_du is the default value, and represents the

empty DataUnit .

TABLE 7-3 lists the NCI library functions.

TABLE 7-3 Nerve Center Library Functions

Function Function

nci_action_add nci_severity_delete

nci_action_delete nci_state_add

nci_async_request_start nci_state_delete

nci_condition_add nci_state_get

nci_condition_delete nci_template_add

nci_condition_get nci_template_copy

nci_init nci_template_create

nci_parse_handle nci_templete_delete

nci_pollrate_add nci_template_find

nci_pollrate_delete nci_template_revert

nci_request_delete nci_template_store

nci_request_dump nci_transition_add

nci_request_info nci_transition_delete

nci_request_list nci_transition_find

nci_request_start nci_transition_get

nci_severity_add
7-12 C++ API Reference • October 2001

NCI Global Variables
7.9 NCI Global Variables

7.9.1 nci_error_reason

NCI has a facility that allows you to diagnose errors using nci_error_reason. This

global variable, of the DataUnit type, can be used to know the reason for any failures

of any NCI function. This variable contains a meaningful reason only immediately

after any NCI function returns an error. This variable is not re-initialized by NCI

every time an NCI function is invoked. It is set only when NCI encounters an error.

7.9.2 topoNodeId Argument

Several of the NCI functions include the argument topoNodeId. NCI accepts

topoNodeId in the form of a DataUnit and supports either of the following formats:

The topoNodeId should be constructed as shown in the above syntax before

passing to NCI any of the functions that require topoNodeId. You can use sscanf()
or sprintf() to simulate a comparable effect.

■ mis_name:topoId

■ topoId

extern DataUnit nci_error_reason;

u_long topoNodeId;

DataUnit duTopoNodeId = DataUnit::printf(“%u”, topoNodeId);
Chapter 7 Nerve Center Interface 7-13

NCI Functions
7.10 NCI Functions

7.10.1 nci_action_add

The function nci_action_add() adds the action action to the transition transq. The

action can be either a condition, or mail, or unixcmd. For condition, arg0 is the name

of the condition and arg1 is null. For mail, arg0 is the address and arg1 is the

message. For unixcmd, arg0 is the UNIX command name and arg1 is the argument.

transq is the handle on transition as returned by the nci_transition_find()
function. The function returns TRUEif the action is added, FALSE if there is an error.

7.10.2 nci_action_delete

The function nci_action_delete() deletes the action action from the list of

actions for transition transq. The action can be either a condition, or mail, or

unixcmd. For condition, arg0 is the name of the condition and arg1 is null. For mail,

arg0 is the address and arg1 is the message. For unixcmd, arg1 is the list of

arguments specified by arg0. arg1 is in string format. transq is the handle on

transition as returned by the function nci_transition_find() . The function

returns TRUEif the action is deleted, FALSE if there is an error.

Result
nci_action_add(

NC_Transition & transq,
const char * action,
const char * arg0,
const char * arg1,
CDU mis_name= null_du

);

Result
nci_action_delete(

NC_Transition & transq,
const char * action,
const char * arg0,
const char * arg1

);
7-14 C++ API Reference • October 2001

NCI Functions
7.10.3 nci_async_request_start

nci_async_request_start() returns a waiter that represents the asynchronous

launch.

template_name is the name of the NC template that is used to launch the request.

topo_info_list is information about the toponodes against each of which the request is

to be launched asynchronously.

user_cb is the callback, if installed by the user, that is called when the asynchronous

launch completes, either successfully or not. user_cb is called by NCI. The call_data
parameter of the callback is a pointer that must be used to construct

NCAsyncResIterator object. If the call_data pointer is not used to construct the

NCAsyncResIterator object, a memory leak may occur.

timeout_time is the timeout interval after which nci_async_request_start()
times out and returns. Currently, it is recommended that you use the default

timeout. Timeout for lower timer intervals is not supported in this release.

Note – Waiter cancellation or waiter clobbering is not supported.

Waiter
nci_async_request_start(

const char* template_name,
NCTopoInfoList topo_info_list,
Callback user_cb,
Timeout timeout_time = 3600.0 seconds

);
Chapter 7 Nerve Center Interface 7-15

NCI Functions
7.10.4 nci_condition_add

The function nci_condition_add () creates a condition object that can then be used

for building NC templates. The condition itself is one or more lines separated by

new lines specified in the Request Condition Language (RCL).

7.10.5 nci_condition_delete

The function nci_condition_delete() deletes an existing condition. If a

condition is associated with a transition it cannot be deleted until the transitions are

deleted.

7.10.6 nci_condition_get

The function nci_condition_get() returns an ASCII string containing a Request

Condition Language statement or statements.

Result
nci_condition_add(

const char * condition_name,
const char * condition_desc,
const char * condition,
CDU mis_name = null_du

);

Result
nci_condition_delete(

const char * condition_name,
CDU mis_name = null_du

);

char*
nci_condition_get(

const char * condition_name,
char * conditionDesc,
CDU mis_name = null_du

);
7-16 C++ API Reference • October 2001

NCI Functions
7.10.7 nci_init

The function nci_init() is an NCI library initialization routine and takes either a

hostname (location) or a platform object (platform).

The function that takes location as the argument connects to the MIS on the host

specified by location and keeps the platform object internal. Of course, one could

retrieve such a platform object using the static method

Platform::default_platform() . The function returns NOT_OK if it could not

connect to the MIS on the host specified by location. Otherwise, it returns OK.

The funtion that takes platform as the argument assumes the platform object is

connected to some MIS and uses that platform object to talk to that MIS. If the

platform object is valid and if the platform object is connected to a valid MIS, then

the function returns OK. Otherwise, it returns NOT_OK.

Result
nci_init(

const char * location,
DU& errorMsg

);

Result
nci_init

Platform & platform,
DU& errorMsg

);
Chapter 7 Nerve Center Interface 7-17

NCI Functions
7.10.8 nci_parse_handle

Note – NCParsedReqHandle class is responsible for parsing request handles

returned by NCI functions. For backward compatibility, nci_parse_handle() is

retained. However, it is recommended that NCParsedReqHandle be used wherever

possible. This provides better insulation against any changes to the request handle

implementation and more information can be extracted from the request handle.

The function nci_parse_handle() parses a given request handle and returns the

template_name and the information about topoNodeId against which the request was

launched. The request_handle must be a valid one returned by a previous relevant

NCI function. It returns OKif parsing succeeds. Otherwise, it returns NOT_OKand

template_name and topoNodeId are undefined.

7.10.9 nci_pollrate_add

The function nci_pollrate_add() creates a new pollrate object in the MIS. This

pollrate can be used in creating NC templates. The pollrate is in seconds.

Result
nci_parse_handle(

const DataUnit & request_handle,
DataUnit & template_name,
DataUnit & topoNodeId

);

Result
nci_pollrate_add(

const char * pollrate_name,
int rate,
CDU mis_name = null_du

);
7-18 C++ API Reference • October 2001

NCI Functions
7.10.10 nci_pollrate_delete

The function nci_pollrate_delete() deletes an existing pollrate object in the

MIS.

7.10.11 nci_request_delete

The function nci_request_delete() deletes a running request. The handle for

the request must be passed. The handle can be obtained from either

nci_request_start() or by nci_request_list() . These request calls are

unconfirmed and asynchronous.

7.10.12 nci_request_dump

For the request identified by request_handle, the function nci_request_dump()
returns the information about the current state, severity, and each variable’s name,

type, and value. For example, for three variables, eleven pieces of information are

returned: current state, severity, and name, type, and value of each variable. The

information is returned as the value of the function. If there is an error, an empty

array is returned.

Result
nci_pollrate_delete(

const char * pollrate_name,
CDU mis_name = null_du

);

Result
nci_request_delete(

CDU request_handle
);

Array(DU)
nci_request_dump(

CDU request_handle
);
Chapter 7 Nerve Center Interface 7-19

NCI Functions
7.10.13 nci_request_info

For the request identified by request_handle, the function nci_request_info()
returns the name of state in statename, severity string in severity_name, and severity

value in the integer pointed to by severity. The function returns TRUEif the request

exists, FALSE otherwise.

7.10.14 nci_request_list

The function nci_request_list() returns an array of request handles.

nci_parse_handle() can be used to return the NC template name and

topoNodeId .

Result
nci_request_info(

CDU request_handle,
DU& statename,
DU& severity_name,
int * severity

);

Array(DU)
nci_request_list(

CDU mis_name = null_du
);
7-20 C++ API Reference • October 2001

NCI Functions
7.10.15 nci_request_start

The function nci_request_start() starts a management request with

template_name against the managed object associated with topoNodeId in the topology

part of the MIT. If the request starts successfully, the request handle is returned. This

handle can be used, in the nci_request_delete , to stop and thereby delete the

running request. If the request fails to start, a null_du is returned.

7.10.15.1 Alternative Syntax #1

This function call performs the same job as the one above, except that multiple

requests using the same NC template can be started against multiple topoNodes .

One request is launched for each topoNode ID in the array. An array of handles is

returned. Each handle in the array corresponds to a topoNode in the same index in

the toponode_id_array.

DU
nci_request_start(

const char * template_name,
CDU topoNodeId,
const char * handle

);

Array(DU)
nci_request_start(

const char * name,
const Array(DU) & toponode_id_array,
const char * handle

);
Chapter 7 Nerve Center Interface 7-21

NCI Functions
7.10.15.2 Alternative Syntax #2

This function call increases performance by specifying a Fully Distinguished Name

with oi. The function does not have to query the MIS for the FDN.

7.10.15.3 Alternative Syntax #3

Performs the same job as the preceding function, except this function can take

multiple FDNs and returns an array of handles.

7.10.15.4 Alternative Syntax #4

These function calls are analogous to the two preceding calls, except that they start

requests against any managed object (or objects, for the second call), even if no

TopoNode corresponds to that object. Returned values are as described for their

TopoNode counterparts.

DU
nci_request_start(

const char * template_name,
CDU oi,
CDU topoNodeId,
const char * handle

);

DU
nci_request_start(

const char * template_name,
const Array(DU) & oiSet,
CDU topoNodeId,
const char * handle

);

Array(DU)
nci_request_start(

const char * template_name,
const Array(DU) & oi_array,
const Array (DU) & toponode_id_array,
const char * handle

);
7-22 C++ API Reference • October 2001

NCI Functions
The DU is the ObjectInstance in either absolute-pathname or FDN-name format. The

DU is the value of $pollfdn when the request is created. The second version,

above, differs from the first in that it allows you to launch one request for each DU

in the array.

An array of handles is returned. Each handle in the array corresponds to a topoNode

in the same index in the toponode_id_array. If a given request failed to start, the

handle in the returned array is a null_du .

7.10.15.5 Alternative Syntax #5

Performs the same job as the preceding function, except this function can take

multiple FDNs.

7.10.16 nci_severity_add

The function nci_severity_add() creates a new severity level in the MIS. The

severity level can be from 1 to 32000 and the color is any X11 color, such as red,

purple, or yellow.

Array(DU)
nci_request_start(

const char * template_name,
const Array(Array(DU)) & oiSetArray,
const Array(DU) & toponode_id_array,
const char * handle

);

Result
nci_severity_add(

const char * severity_name,
int severity,
const char * color,
CDU mis_name = null_du

);
Chapter 7 Nerve Center Interface 7-23

NCI Functions
7.10.17 nci_severity_delete

The function nci_severity_delete() deletes an existing severity in the MIS. The

severity is deleted by name.

7.10.18 nci_state_add

The function nci_state_add() adds a state with name state_name, poll rate

pollrate_name, severity severity_name, and description state_desc to the NC template

identified by def. The function returns TRUEif the state is added, FALSE otherwise.

7.10.19 nci_state_delete

The function nci_state_delete() deletes the state with name state_name from the

NC template identified by def. The function returns TRUEif the state is deleted,

FALSE otherwise.

Result
nci_severity_delete(

char * severity_name,
CDU mis_name = null_du

);

Result
nci_state_add(

NC_Defn & def,
const char * state_name,
const char * pollrate_name,
const char * severity_name,
const char * state_desc

);

Result
nci_state_delete(

NC_Defn & def,
const char * state_name

);
7-24 C++ API Reference • October 2001

NCI Functions
7.10.20 nci_state_get

The function nci_state_get() gets the handle to identify the state with name

state_name in the NC template identified by def. The function returns a valid

NC_State , which is a handle on the Nerve Center state, and returns a

default(invalid) NC_State if there is an error.

7.10.21 nci_template_add

The function nci_template_add () is used when you have updated an existing NC

template. The first time a NC template is created you use nci_template_store() .

Subsequent edits require nci_template_add() . This function cannot be used to

modify a NC template’s name. An alternative is to use the function

nci_template_copy() to copy the NC template using a different name, then

delete the original NC template.

NC_State
nci_state_get(

NC_Defn & def,
const char * state_name

);

Result
nci_template_add(

NC_Defn & def,
const char * name,
const char * descr
CDU mis_name = null_du

);
Chapter 7 Nerve Center Interface 7-25

NCI Functions
7.10.22 nci_template_copy

The function nci_template_copy() returns a handle for a new copy of NC

template name. The handle of the original NC template must be passed in.

7.10.23 nci_template_create

The function nci_template_create() creates a handle for a NC template. After

creation, the NC template can be built with other NCI library calls passing NC_Defn
as the handle for the NC template.

7.10.24 nci_templete_delete

The function nci_template_delete() deletes an existing NC template from the

MIS. This call fails if any requests are currently using this NC template.

NC_Defn
nci_template_copy(

NC_Defn & source_defn,
const char * newname,
const char * descr,
CDU mis_name = null_du

);

NC_Defn
nci_template_create(

const char * template_name,
const char * template_desc,
CDU mis_name = null_du

);

Result
nci_template_delete(

NC_Defn & def
);
7-26 C++ API Reference • October 2001

NCI Functions
7.10.25 nci_template_find

The function nci_template_find() is used to get the handle for an existing

request for editing.

7.10.26 nci_template_revert

The nci_template_revert() function allows you to undo changes you have

made to the NC template. This function is effective only if you have not invoked

nci_template_store() on the NC template you are changing.

Typical usage is to get the NC template definition by invoking

nci_template_find() , and make changes to the NC template definition (such as

adding states, conditions, and transitions). If you need to undo any changes to the

NC template, invoke nci_template_revert() before any call to

nci_template_store() is made.

NC_Defn
nci_template_find(

const char * template_name,
CDU mis_name = null_du

);

NC_Defn
nci_template_revert(

const char * template_name,
CDU mis_name = null_du

);
Chapter 7 Nerve Center Interface 7-27

NCI Functions
7.10.27 nci_template_store

The function nci_template_store() is called after the NC template has been

completely built. If nci_template_store() returns TRUE, the NC template is

ready for event management.

7.10.28 nci_transition_add

The function nci_transition_add() adds a transition to an existing NC

template. The transition must have “from” and “to” states and the condition must

exist or the call fails. Three possible actions are supported: unixcmd , condition ,

and mail . If UNIX command or mail actions are passed, there must be a double-

quoted arg1.

Result
nci_template_store(

NC_Defn & def,
const char * template_name,
const char * descr,
CDU mis_name = null_du

);

Result
nci_transition_add(

NC_Defn & def,
const char * from,
const char * to,
const char * condition,
const char * action,
const char * arg0,
const char * arg1

);
7-28 C++ API Reference • October 2001

NCI Functions
7.10.29 nci_transition_delete

The function nci_transition_delete() deletes a transition between two states.

7.10.30 nci_transition_find

The function nci_transition_find() gets the transition in NC template

identified by def going from the state from_state to to_state on the condition condition.

The function returns a valid NC_Transition , which is a handle on the Nerve

Center state-transition, and returns a default (invalid) NC_Transition if there is an

error.

Result
nci_transition_delete(

NC_Defn & def,
const char * from_state,
const char * to_state,
const char * condition,
const char * action,
const char * arg0,
const char * arg1

);

NC_Transition
nci_transition_find(

NC_Defn & def,
const char * from_state,
const char * to_state,
const char * condition

);
Chapter 7 Nerve Center Interface 7-29

NCI Functions
7.10.31 nci_transition_get

7.10.31.1 Description

The function nci_transition_get() gets the handle on transition from the state

identified by from_state to the state identified by to_state on the condition condition.

The function returns a valid NC_Transition , which is a handle on the Nerve

Center state-transition, and returns a default (invalid) NC_Transition if there is an

error.

7.10.31.2 Event Request Example

This program creates pollrates, severities, and conditions, then uses them to define a

NC template for managing an SNMP host.

NC_Transition
nci_transition_get(

NC_State & from_state,
NC_State & to_state,
const char * condition

);

CODE EXAMPLE 7-1 Sample Event Request

#include hi.hh
#include stdlib.h
#include sys/types.h
#include “error.hh”
#include “nci/nc_api.hh”
#include “nci/nc_def.hh”
#include “nci/nc_coll.hh”

Error error;

void create_pollrates();
void create_severities();
void create_conditions();
void create_template(char*);
void fail(const char*);

NC_Defn nc_handle;
7-30 C++ API Reference • October 2001

NCI Functions
main(int argc, char**argv)
{

if (argc != 2) {
printf(“Usage: create_template template_name\n”);
exit(1);
}
DU error_msg;
if (!nci_init(“localhost”, error_msg)) {
printf(“libnci initialization failed:%s/n”, error_msg.chp());
exit(1);
}
create_pollrates();
create_severities();
create_conditions();
create_template(argv[1]);

}

void
create_pollrates()
{

if (!nci_pollrate_add(“FastPoll”,20))
fail(“nci_pollrate_add”);
if (!nci_pollrate_add(“SlowPoll”,60))
fail(“nci_pollrate_add”);

}

void
create_severities()
{

if (!nci_severity_add(“down”, 18, “red”))
fail(“nci_severity_add”);
if (!nci_severity_add(“ok”, 16, “green”))
fail(“nci_severity_add”);

}

void
create_conditions()
{

const char *SYS = “$tmp = \”/internetClassId=\
{1 3 6 1 4 1 42 3 2 3 1 1 3 6 1 2 1 1 0}\”;\n$pollfdn =
append_rdn($pollfdn,$tmp);\nTRUE;”;

if (!nci_condition_add(“SetSystem”, “Set the polling
fdn”,SYS))

fail(“nci_condition_add”);

CODE EXAMPLE 7-1 Sample Event Request (Continued)
Chapter 7 Nerve Center Interface 7-31

NCI Functions
if (!nci_condition_add(“IsSystemDescr”, “Poll for System
Description”,

“defined(&sysDescr);”))
fail(“nci_condition_add”);

 if (!nci_condition_add(“IsNotSystemDescr”,
“If Can’t Reach the System”,
“NOT defined(&sysDescr);”))

fail(“nci_condition_add”);
 if (!nci_condition_add(“UndefineSystemDescr”,

 “Undefine the System
 Description”,”undefine(&sysDescr);”))

fail(“nci_condition_add”);
}

void
create_template(

char *name
)
{

NC_Defn nc = nci_template_create(name,”Test Template”);
if (!nc)
fail(“nci_template_create”);

// Adding States
if (!nci_state_add(nc,”Init”,”Poll”,”Normal”,

”Initialization State”))
fail(“nci_state_add”);
if (!nci_state_add(nc,”Poll”,”Poll”,”Normal”,

”Polling State”))
fail(“nci_state_add”);
if (!nci_state_add(nc,”Up”,”Poll”,”ok”,”System Up”)))
fail(“nci_state_add”);
if (!nci_state_add(nc,”Down”,”Poll”,”down”,”System Down”))
fail(“nci_state_add”);

// Add Transitions
if (!nci_transition_add(nc,”Init”,”Poll”,”SetSystem”,

NULL,NULL,NULL))
fail(“nci_transition_add”);
if (!nci_transition_add(nc,”Poll”,”Up”,”IsSystemDescr”,

“CONDITION”,”UndefineSystemDescr”,NULL))
fail(“nci_transition_add”);
if (!nci_transition_add(nc,”Poll”,”Down”,

“IsNotSystemDescr”,NULL,NULL,NULL))
fail(“nci_transition_add”);

CODE EXAMPLE 7-1 Sample Event Request (Continued)
7-32 C++ API Reference • October 2001

NCI Functions
if
(!nci_transition_add(nc,”Up”,”Down”,”IsNotSystemDescr”,NULL,NULL
,NULL))

fail(“nci_transition_add”);
if (!nci_transition_add(nc,”Up”,”Up”,”IsSystemDescr”,

“CONDITION”,”UndefineSystemDescr”,NULL))
fail(“nci_transition_add”);
if (!nci_transition_add(nc,”Down”,”Up”,”IsSystemDescr”,

“CONDITION”,”UndefineSystemDescr”,NULL))
fail(“nci_transition_add”);

 if (!nci_template_store(nc, name, “Def”))
fail(“nci_template_store”);

}

void
fail(const char *s)
{

printf(“%s: Failed exiting.\”, s);
exit(1);

}

CODE EXAMPLE 7-1 Sample Event Request (Continued)
Chapter 7 Nerve Center Interface 7-33

NCI Functions
7-34 C++ API Reference • October 2001

CHAPTER 8

Topology API

The Topology API is designed for use by Solstice Enterprise Manager (Solstice EM)

application developers. This interface hides the topology implementation from

application developers, allows applications to be more easily ported, and allows for

faster development of topology-based applications.

This chapter comprises the following topics:

■ Section 8.1 “Topology Classes” on page 8-2

■ Section 8.2 “Class Overview” on page 8-5

■ Section 8.4 “Persistent Object Classes” on page 8-10

■ Section 8.5 “Utility Classes” on page 8-13

■ Section 8.6 “Topology API Concepts” on page 8-14

■ Section 8.7 “Examples” on page 8-15

■ Section 8.8 “Class Reference” on page 8-29

Note – Some understanding of GDMO/ASN.1 and network management principles

is required to effectively use the Topology API. For example, it is necessary to

understand object identifiers (OID) and distinguished names (DN) and how these

relate to the object registration tree and management information tree (MIT). In

addition, a high-level understanding of the Solstice EM architecture and topology

model is necessary.
8-1

Topology Classes
8.1 Topology Classes
The Topology API consists of the following classes:

TABLE 8-1 Topology API Classes

Class Description

EMStatus Class Reports status, including error

EMIntegerSet Class Implements a general purpose integer set

EMIntegerSetIterator
Class

Provides a convenient method to visit each member of the

integer set

EMTopoPlatform Class Represents the Topology API as a whole

EMObject Class Specifies the interface supported by all the persistent object

classes

EMTopoNodeDnClass Uniquely Identifies a topology node out of a set of topology

node objects

EMTopoTypeDn Class Uniquely Identifies a topology type out of the set of

topology types

EMTopoNode Class Represents a topology node

EMTopoType Class Represents a topology type

EMAgent Class Contains the agent interface common between

EMCmipAgent, EMRpcAgent, and EMSnmpAgent

EMCmipAgentDn Class Identifies one cmip agent object out of the set of cmip agent

objects

EMCmipAgent Class Represents the MIS object which contains configuration

information

EMRpcAgentDn Class Identifies one rpc agent object out of the set of rpc agent

objects

EMRpcAgent Class Represents the MIS object which contains configuration

information

EMSnmpAgentDnClass Identifies one snmp agent object out of the set of snmp

agent objects

EMSnmpAgent Class Represents the MIS object which contains configuration

information
8-2 C++ API Reference • October 2001

Topology Classes
Application developers must work within the hierarchical model with containers

and objects, but they do not need to understand the multiple objects within the MIS

that represent individual topology elements.

The Topology API is not intended to provide access into non-topology related

features provided by the PMI or Nerve Center Interface. Applications such as the

Topology Import/Export Tool, Discover, and large parts of the Viewer should be

achievable with this interface.

8.1.1 General Comments
■ Standard RogueWave Tools.h++ classes and templates are used instead of the

PMI’s DataUnit , Morf , Array , and Queue classes. The RogueWave Tools.h++

classes are simple and easier to understand. Solstice EM 4.1 comes with Rouge

Wave tools with standard IO Stream supplied with Forte Update 2 compiler. The

Furthermore, many developers just starting to work with Solstice EM are already

familiar with the Tools.h++ library.

■ Fundamental concepts, such as accessing topology objects distributed across

multiple MISs, and handling duplicate topology node names, have been factored

into the design of the Topology API to help deal with these issues.

■ In general, the number of lines of code needed to perform some operation on

topology objects are fewer (sometimes many times fewer) with the Topology API

versus the PMI. In addition, the code is readable and easy to maintain. This

should allow for faster development of topology-based applications.

8.1.2 General Description

Using the Topology API, developers can create applications for the Solstice EM

platform without learning the details of the MIT naming tree. The following figure

gives an idea of how the Topology API is positioned in Solstice EM.
Chapter 8 Topology API 8-3

Topology Classes
FIGURE 8-1 Position of the Topology API

EM Application

Topology API

PMI
8-4 C++ API Reference • October 2001

Class Overview
8.2 Class Overview
Topology classes are related to the GDMO, the PMI, and persistent objects.

8.2.1 Relationship to the GDMO

In terms of the GDMO, the Topology API provides a concrete C++ interface to the

MIT objects described in the table below.

Through the C++ interface, the Topology API provides services that are equivalent

to the following GDMO services:

■ Create, delete, set attributes of, and get attributes of the object classes topoNode ,

topoView , topoViewNode , topoType , cmipsnmpProxyAgent , cmipAgent ,

and rpcAgent .

■ Provide support for the actions topoGetNodeMODataByNodeList ,

topoNodeChildAttrsByView , topoNodeGetByMOSet , topoNodeGetByName ,

topoNodeGetByType , topoNodeGetByMO , topoGetViewGraph,
getTopoNodesAttributes, and setTopoNodesAttributes supported by the

topoNodeDB object class.

■ Provide support for the processes of objectCreation , objectDeletion , and

attributeValueChange notifications for the topology object classes topoNode ,

topoView , topoViewNode .

TABLE 8-2 Topology API and GDMO Object Relationship

Topology API C++
Class Objects in MIT

EMTopoNode
Class

topoNode objects contained under topoNodeDBId=NULL

topoView objects contained under topoViewDBId=NULL

topoViewNode objects contained under topoViewDBId=NULL/

topoNodeId=XX

EMTopoType
Class

topoType objects contained under topoTypeDBId=NULL

EMCmipAgent
Class

cmipAgent objects contained under agentTableType=”CMIP”

EMRpcAgent
Class

rpcAgent objects contained under agentTableType=”RPC”

EMSnmpAgent
Class

cmipsnmpProxyAgent objects contained under internetClassId={ 1 3 6 1

4 1 42 2 2 2 9 2 4 1 0}
Chapter 8 Topology API 8-5

Class Overview
8.2.2 Relationship to PMI

The Topology API is built on top of the PMI. If your client application only needs to

manipulate topology nodes, topology types, cmip agents, rpc agents, and snmp

agents, then the only places where the PMI must still be used are the following:

■ A connection to an MIS, established using the PMI Platform class. After the

platform instance has been successfully initialized, the Topology API is initialized

by calling the EMTopoPlatform::initialize method with the Platform

instance as a parameter.

■ If the application supports access control application features, then

Platform::get_authorized_features() must be used to find out which

features a particular user is authorized to use.

■ When the Morf class is used for setting or getting the EMTopoNode::user_data
attribute. There is no way around this, since the user_data attribute can contain

data defined by any ASN.1 syntax.

Of course, if the application needs to access additional objects in the MIT beyond

those outlined in TABLE 8-2 on page 5, then the PMI Image class must be used. As an

example, the Solstice EM Network Viewer makes use of the Topology API to access

topology nodes and topology types, the NCI API to manipulate requests, and the

PMI for connection, access control features, and a few miscellaneous operations.

The following restrictions on usage of the PMI are necessary in order for the

Topology API to function correctly:

■ If Platform::replace_discriminator() , or

Platform::replace_discriminator_classes eliminate the sending of

unwanted events from the MIS, the discriminator must allow all events for the

following object classes: topoNode , topoView , topoViewNode , topoType ,

cmipAgent , rpcAgent , and cmipsnmpProxyAgent .

For example, an application that doesn’t subscribe to any events itself, that is,

doesn’t use Album::when() , Image::when() , or Platform::when() , and

calls Platform::replace_discriminator() with the argument “or : {}, “

which instructs the MIS not to send any events to the application, eliminates

unnecessary event traffic and processing time.
8-6 C++ API Reference • October 2001

EMTopoPlatform Class
However, that same application using the Topology API, would require the

following syntax.

■ Platform::set_attr_coder() should not be called to change the encoder/

decoder for any of the GDMO attributes of the GDMO object classes topoNode,

topoView, topoViewNode, topoType, cmipAgent, rpcAgent, or

cmipsnmpProxyAgent.

8.3 EMTopoPlatform Class
The EMTopoPlatform class represents the Topology API as a whole. Only one

instance of the EMTopoPlatform class is allowed. This instance is initialized by

calling EMTopoPlatform::initialize() , and is accessed through the

EMTopoPlatform::instance() method1. The EMTopoPlatform class provides

various methods, or member functions including:

■ Get all MIS systems reachable from the connected MIS

■ Find topology nodes by name, type, or managed object

■ Find CMIP, RPC, and SNMP agents by managed object.

■ Get the topology pathname(s) by topology node DN.

#include pmi/hi.hh

Array(DU) object_clases;
object_classes.alloc(7);
object_classes[0] = "topoNode";
object_classes[1] = "topoView";
object_classes[2] = "topoViewNode";
object_classes[3] = "topoType";
object_classes[4] = "cmipAgent";
object_classes[5] = "rpcAgent";
object_classes[6] = "cmipsnmpProxyAgent";

Platform::replace_discriminator_classes(object_classes)

1. For those familiar with C++/OO design, the EMTopoPlatform class uses the Singleton pattern.
Chapter 8 Topology API 8-7

EMTopoPlatform Class
The above code shows how the Topology API is initialized.

8.3.1 get_attributes_by_mo()

This method enables you to get attribute values of topology nodes that represent the

given managed objects. To use this method, you must specify the following

parameters:

■ managed_objects

A list of the managed objects.

■ attributes

A list of attributes whose values you want to get. If you provide an empty list of

attributes, this method gets all the attribute values of the topology nodes. In

either case, attributes should be created with EMTopoNode::num_attributes .

#include pmi/hi.hh
#include topo_api/topo_api.hh

Platform platform;

if (!platform.connect(“mishost”,”em_client”)) {
cerr << “Failed to connect to “ << “mishost” << endl;
exit(-1);
}
EMTopoPlatform::initialize(platform);

EMStatus get_attributes_by_mo(
const RWTValSlistRWCString& managed_objects,
const EMIntegerSet& attributes,
RWTValSlistEMTopoNode& nodes,
const RWTValSlistRWCString&

system_names = RWTValSlistRWCString()
)

8-8 C++ API Reference • October 2001

EMTopoPlatform Class
If this method completes successfully, it returns a list of topology nodes nodes . Each

node in the returned list contains at least one of the given managed_objects in the

node’s topoNodeMOSet attribute. Each node in the list contains the values of the

given attributes.

Because a topology node can contain more than one managed object, it is possible

that the returned list of topology nodes contains a number of nodes that is less than

the number of the given managed objects. Because a managed object can be

contained by multiple topology nodes, it is possible that the returned list of topology

nodes contains a number of nodes that is greater than the number of the given

managed objects.

Note – For topology view-related attributes, it is the user’s responsibility to check

whether a node is a topology view before getting its attribute values.

8.3.2 set_attributes_by_mo()

This method enables you to set attribute values of topology nodes that represent the

given managed objects. To use this method, you must specify the following

parameters:

■ managed_obejcts

A list of the managed objects.

■ attributes

A list of attributes whose value you want to set.

■ reference_node

EMTopoNode object filled with the values for attributes.

EMStatus set_attributes_by_mo(
const RWTValSlistRWCString& managed_objects,
const EMIntegerSet& attributes,
const EMTopoNode & reference_node,
RWTValSlistEMTopoNode& nodes,
const RWTValSlistRWCString&

system_names = RWTValSlistRWCString()
)

Chapter 8 Topology API 8-9

Persistent Object Classes
If this method completes successfully, it returns a list of topology nodes nodes. Each

node in the returned list contains, at least, one of the given managed_objects in the

node’s topoNodeMOSet attribute. Each node in the list contains the values of the

given attributes as specified in the reference node.

Because a topology node can contain more than one managed object, it is possible

that the returned list of topology nodes contains a number of nodes that is less than

the number of the given managed objects. Because a managed object can be

contained by multiple topology nodes, it is possible that the returned list of topology

nodes contains a number of nodes that is greater than the number of the given

managed objects.

Note – For topology view-related attributes, it is the user’s responsibility to check

whether a node is a topology view before getting its attribute values.

8.4 Persistent Object Classes
The Topology API provides an interface to five Persistent Object Class (POC) objects

in the MIS: topology nodes, topology types, SNMP agents, CMIP agents, and RPC

agents. Unlike the PMI, where the Image class provides a generic interface to any

persistent object in the MIS, the Topology API provides a concrete, type-safe C++

class for each of these five classes.

8.4.1 EMObject Class

The EMObject class is an abstract base class from which the concrete POC classes

are derived. This class declares the common methods that all POC classes support.

The common methods include:

■ Creation and deletion in the MIS’s persistent store

■ Loading/storing attributes from/to the MIS

Other methods common among POC classes are not declared in the EMObject class

because the signature of the method isn’t exactly the same. For example, all the POC

classes support the compare_all_attributes() and

compare_some_attributes() methods.
8-10 C++ API Reference • October 2001

Persistent Object Classes
8.4.2 EMObject Member Functions

The following are member functions of the EMObject Class.

compare_all_attributes

compare_some_attributes

Because the type of the peer parameter differs for each POC, the methods cannot be

included in the EMObject base class. Each POC class also provides additional

methods specific to the POC; in particular, access methods to the attributes of the

POC are provided.

8.4.3 EMTopoType Class

An instance of the EMTopoType class represents a topology type. Every topology

node is classified as a particular topology type. The topology types form a hierarchy

with the seven base types “Array,” “Bus,” “Container,” “Device,” “Monitor,” “Link,”

and “Sun” with other subtypes derived from them.

Beyond the standard POC methods, which allow you to create, delete, and compare

topology types, the EMTopoType class provides the static methods is_array() ,

is_bus() , is_container() , is_device() , is_monitor() , is_link() , and

is_view() which can be used to categorize topology types.

RWBoolean
EMTopoNode::compare_all_attributes(const EMTopoNode& peer)

RWBoolean
EMTopoNode::compare_some_attributes(const EMTopoNode& peer)
Chapter 8 Topology API 8-11

Persistent Object Classes
8.4.4 EMTopoNode Class

The EMTopoNodeclass represents a topology node, which is the unit of management

in Solstice EM. Using the standard POC methods, you can create, delete, and

compare topology nodes. Using the EMTopoNode access methods, you can get and

set the name, topology pathname, logical and geographical location, topology type,

and associated managed objects and their corresponding CMIP, RPC, and/or SNMP

agent objects among others attributes. The EMTopoNode class also provides a

callback mechanism to notify clients when a topology node has been created,

deleted, or has had one or more attributes changed.

8.4.5 EMSnmpAgent Class

An instance of the EMSnmpAgent class represents the MIS object that contains

configuration information for an SNMP agent. The configuration information

includes such information as the read and write community strings, supported

MIBs, and transport address.

Note – This class does not provide an interface to the agent’s managed objects, only

to Solstice EM’s configuration information for the agent.

8.4.6 EMCmipAgent Class

An instance of the EMCmipAgent class represents the MIS object that contains

configuration information for a CMIP agent. The configuration information includes

the CMIP MPA hostname and port number, list of managed objects DNs, network

SAP, transport selector, presentation selector, session selector, and application entity

title (AET).

Note – This class does not provide an interface to the agent’s managed objects, only

to Solstice EM’s configuration information for the agent.
8-12 C++ API Reference • October 2001

Utility Classes
8.4.7 EMRpcAgent Class

An instance of the EMRpcAgent class represents the MIS object that contains

configuration information for an RPC agent. The configuration information includes

the read and write community strings, and supported schemas.

Note – This class does not provide an interface to the agent’s managed objects, only

to Solstice EM’s configuration information for the agent.

8.5 Utility Classes

8.5.1 EMIntegerSet Class

The EMIntegerSet class implements a general-purpose integer set over the numbers

0 to n. It is used in the Topology API to communicate which attributes of a POC an

API method should operate on.

8.5.2 EMStatus Class

Instances of class EMStatus are returned by almost every API method to report

status, including errors. A conversion operator to RWBoolean is provided so that

EMStatus can be evaluated in boolean expressions. A value of FALSE means there

was an error, otherwise success.
Chapter 8 Topology API 8-13

Topology API Concepts
8.6 Topology API Concepts

8.6.1 Element Naming

Applications must be able to access individual topology elements without traversing

the entire topology hierarchy. The mapping of topology element names to that of a

file system model for unique naming is supported. In the event that a file system

style reference is ambiguous within the underlying MIT, the method invoked fails

and reports the appropriate error. As an example of this naming, an element named

“Parrothead,” located under the “Internet” view, located under the “Root” view,

would be referenced as /Root/Internet/Parrothead . There can be only one

root, and as such, the root is represented as / within this model.

8.6.2 Duplicate Topology Node Names

The administrative names of the EMTopoType, EMCmipAgent, EMSnmpAgent, and

EMRpcAgent persistent objects are guaranteed to be unique. In contrast, the

administrative name of the EMTopoNode is not guaranteed to be unique.

To address this, the EMTopoPlatform class provides several methods to return a

list of EMTopoNodeDn instances that:

■ Have the same administrative name

■ Have the same type

■ Share the same proxy agent object

■ Share the same managed object Dn’s
8-14 C++ API Reference • October 2001

Examples
8.6.3 MIS-MIS Awareness

Each persistent object class supports access to any object instance visible from the

connected MIS. For example, if MIS A and MIS B have a 2-way MIS-MIS connection

setup, you can connect to MIS A, then modify EMTopoNodes, EMTopoTypes, and so

forth, on MIS B.

The EMTopoPlatform find methods, such as find_nodes_by_name() , and

find_nodes_by_type() , perform the search on the entire set of objects visible

from the connected MIS. Using the above example of MIS A and MIS B, if you

connect to MIS A, and find_nodes_by_type() , you see a list of all

EMTopoNodeDn’s on MIS A and/or MIS B of the indicated type.

8.6.4 Performance Considerations

Because the Topo API is built on top of the PMI, most operations take slightly longer

when using the Topo API versus writing the code directly with PMI.

In terms of memory usage, however, the persistent object classes require much less

memory cache information about an object than if an Image class had been used

instead. This is because the Topo API classes can optimize the data storage; they

know exactly what attributes each managed object contains.

8.7 Examples
This section presents several examples showing how to use the Topology API for

common tasks.

8.7.1 Makefile

The following Makefile was used to compile all of the programs in this section.

The version of the SUN C++ SparcCompiler used is “SC4.0 18 Oct 1995 C++ 4.1”.

(This is the output from “CC -V”). This Makefile and the following sample

programs can be found in $EM_HOME/src/topo_api directory.
Chapter 8 Topology API 8-15

Examples
8.7.2 Finding Topology Nodes

This program accepts as input the name of a topology node. The program then uses

EMTopoPlatform::find_nodes_by_name() to find all topology nodes with the

given name. Then some information for each node is displayed. This program

highlights the fact that more than one topology node can have the same name, so a

Solstice EM client should never assume that the topology node names are unique.

That is why the Topology API uses instances of EMTopoNodeDnto uniquely identify

a single topology node.

CCFLAGS = +w -g -noex -I${EM_HOME}/include
-I${EM_HOME}/include/pmi
LDFLAGS = -L${EM_HOME}/lib -ltopo_api -lpmi -lrwtool -lsched
-lnsl -lsocket -lgen -R/opt/SUNWconn/em/lib

EXES =print_topo topo_events traverse
OBJS =$(EXES:%=%.o)

all: $(EXES)

print_topo: print_topo.o
$(LINK.C) -o $@ $@.o

topo_events: topo_events.o
$(LINK.C) -o $@ $@.o

traverse: traverse.o
$(LINK.C) -o $@ $@.o

clean:
rm -rf $(EXES) $(OBJS) Templates.DB;
8-16 C++ API Reference • October 2001

Examples
.

#include stdio.h
#include topo_api/topo_api.hh

int
main(int argc, char**argv)
{
if (argc < 2) {

cerr << “Usage: “ << argv[0] << “ node-name” << endl;
exit(-1);

}
RWCString node_name = argv[1];

Platform platform(duEM);

if (!platform.connect(““,”em_sample”)) {
cerr << “Couldn’t connect!” << endl;
exit (-2);

}

EMTopoPlatform::initialize(platform);

RWTValSlistEMTopoNodeDn nodes;
 EMTopoPlatform::instance()-
>find_nodes_by_name(node_name,nodes);

if (nodes.isEmpty()) {
cerr << “No Topology Node Named “ << node_name << endl;
exit(-3);

}

for (RWTValSlistIteratorEMTopoNodeDn i(nodes); i();) {
EMTopoNode node(i.key());
EMStatus status;

if (!(status = node.load_all_attributes())) {
cerr << “Error: “ << status << endl;
exit(-4);

}

Chapter 8 Topology API 8-17

Examples
//
// The stream output operator << is defined for
// EMTopoNode, EMTopoType, EMCmipAgent, EMSnmpAgent,
// EMRpcAgent, providing an easy way to print out
// the values of an objects while debugging.
cout << “---------debug output--------” << endl;
cout << node << endl;
cout << “---------debug output--------” << endl;

//
// Normally, you want to do more with the values than
// print them out.
//
EMTopoNode::Severity severity;
node.get_severity(severity);

RWCString name;

node.get_name(name); // named the same as node_name

RWCString type_name;
node.get_type_name(type_name);

EMTopoNode::GeoLocation geographical_location;
RWBoolean is_geographical_location_null;
node.get_geographical_location(geographical_location,

 is_geographical_location_null);

RWTValSlistEMCmipAgentDn cmip_agents;
RWTValSlistEMSnmpAgentDn snmp_agents;
RWTValSlistEMRpcAgentDn rpc_agents;
node.get_cmip_agents(cmip_agents);
node.get_snmp_agents(snmp_agents);

node.get_rpc_agents(rpc_agents);

cout << “Node named “ << name << “ is of type “
<< type_name << endl

<< “The most severe outstanding alarm is “ << severity
<< “.” << endl
8-18 C++ API Reference • October 2001

Examples
<< “The node is located at “;
if (is_geographical_location_null)

cout << “unknown”;
else

cout << geographical_location;
cout << “ in the world” << endl;

cout << “CMIP agents: “;
if (cmip_agents.isEmpty()) {

cout << “none” << endl;
} else {

cout << endl;
for

(RWTValSlistIteratorEMCmipAgentDn j(cmip_agents); j();) {
cout << “\t” << j.key() << endl;

}
}

cout << “RPC agents: “;
if (rpc_agents.isEmpty()) {

cout << “none” << endl;
} else {

cout << endl;
for

(RWTValSlistIteratorEMRpcAgentDn j(rpc_agents); j();) {
cout << “\t” << j.key() << endl;

}
}

cout << “SNMP agents: “;
if (snmp_agents.isEmpty()) {

cout << “none” << endl;
} else {

cout << endl;
for

(RWTValSlistIteratorEMSnmpAgentDn j(snmp_agents); j();) {
cout << “\t” << j.key() << endl;

}
}

 }
return 0;
}

Chapter 8 Topology API 8-19

Examples
8.7.3 Registering Events for EMTopoNode

The EMTopoNode class provides an event subscription service to notify clients when

a topology node is created, deleted, or modified. This service is not offered by the

other persistent object classes.

The following program registers for all three types of events, then proceeds to create,

modify, and destroy a single topology node in order to cause some events to be sent

to the registered callback. A description of each event is printed to stdout .
8-20 C++ API Reference • October 2001

Examples
#include stdio.h
#include topo_api/topo_api.hh

void topo_event_cb(
 const EMTopoNodeCallbackData& cbd
);

int
main(int /*argc*/, char** /*argv*/)
{
 Platform platform(duEM);

 if (!platform.connect(““,”em_sample”)) {
cerr << “Couldn’t connect!” << endl;
exit (-2);

 }

 EMTopoPlatform::initialize(platform);

 //
 // Register for create, delete, and attribute change events
 // on EMTopoNode objects.
 //

EMTopoNode::register_callback(em_any_event,topo_event_cb,NULL);

 //
// Now we will create, modify, and then delete an EMTopoNode

 // to trigger some events.
 //
 //
 // Find the root node(s) (there will one for each MIS)
 // so we have a parent view to create a topology node in.
 //
 RWTValSlistEMTopoNodeDn roots;
 EMTopoPlatform::instance()->find_root_nodes(roots);
}

Chapter 8 Topology API 8-21

Examples
 // Okay, now we have to set the three mandatory attributes
// for creating a topology node: name, type_name, and parents.

 //
 EMTopoNode node;

 node.set_name(“first-name”);

 node.set_type_name(EMTopoTypeDn::host);
 //
 // Arbitrarily use the first root node in the list as the
 // parent of the new topology node.
 //
 node.add_parent(roots.first());

 //
 // Create the node
 //

 EMStatus status;
 if (!(status = node.create_with_all_attributes())) {

cerr << “Error: “ << status << endl;
exit(-1);

 }

 //
 // After the create has completed, the EMTopoNode::dn
 // attribute, the unique identifier, is set.
 //
 EMTopoNodeDn node_dn;
 node.get_dn(node_dn);
 cout << “Created Topology Node Id=” << node_dn
<< “ with parent Id=” << roots.first() << endl;

 //
 // Modify some attributes
 //

// We don’t want to store the parents and type_name attributes
 // again, so we need to reset the EMTopoNode object.
 node.clear_all_attributes();
8-22 C++ API Reference • October 2001

Examples
 //
// EMTopoNode::dn is the only mandatory attribute when doing

 // a store or load.
 //
 node.set_dn(node_dn);
 node.set_name(“second-name”);
 node.set_logical_location(roots.first(),Location(/*x=*/12,/
y=/34,/*z=*/56));
 node.set_geographical_location(GeoLocation(/*longitude=*/-
112.0,/*latitude=*/45.0));

 //
 // store_all_attributes() only stores attributes that
 // have been set.
 //
 if (!(status = node.store_all_attributes())) {

cerr << “Error: “ << status << endl;
exit(-2);

 }

 //
 // destroy the node
 //
 if (!(status = node.destroy())) {

cerr << “Error: “ << status << endl;
exit(-3);

 }
}

void topo_event_cb(
 const EMTopoNodeCallbackData& cbd
)
{
 switch(cbd.event_type) {
 case em_create_event:

cout << “topo_event_cb: node “ << cbd.node_dn << “ created”
<< endl;

break;
 case em_delete_event:
Chapter 8 Topology API 8-23

Examples
cout << “topo_event_cb: node “ << cbd.node_dn
<< “ deleted” << endl;

break;
 case em_change_event:

cout << “topo_event_cb: node “ << cbd.node_dn
<< “ modifed” << endl;

//
// cbd.changes is an instance of EMTopoNode contains all
// the changes.
//
EMIntegerSet attributes(EMTopoNode::num_attributes);
cbd.changes.get_active_attributes(attributes);
cout << “\tAttributes changed: “;
for (EMIntegerSetIterator i(attributes); i.next();) {

cout << EMTopoNode::get_attribute_name(i.member());
}
cout << endl;

for (i.reset(); i.next();) {
switch (i.member()) {

case EMTopoNode::name:
{

RWCString name;
cbd.changes.get_name(name);
cout << “\tname changed to “ << name << endl;

}
break;
case EMTopoNode::logical_locations:
{

RWTValSlistLocationInParent locations;
cbd.changes.get_logical_locations(locations);
cout << “\tlogical_location in parent view “ <<

locations.first().parent <<
“ is “ << locations.first().location

<< endl;
case EMTopoNode::children:
8-24 C++ API Reference • October 2001

Examples
8.7.4 Printing the Topology Hierarchy

The topology hierarchy forms a directed acyclic graph. It is a graph, rather than a

tree, because each topology node except the root node can have more than one

parent. It is acyclic because the parent-child relationship should not have any loops.

The following program traverses the topology depth-first, starting at the root

node(s). As each node is visited, the EMTopoNode:topology_pathnames attribute

is printed to stdout .

Note that the cache_view_graph option of EMTopoPlatform::initialize()
is set to TRUE this time since the program accesses the

EMTopoNode::topology_pathnames attribute of every node.

{
RWTValSlistEMTopoNodeDn children;
cbd.changes.get_children(children);

cout << “\tchildren changed to {“;
for

(RWTValSlistIteratorEMTopoNodeDn j(children); j();) {
cout << j.key() << “ “;
}
cout << “}” << endl;

}
break;

}
}
}

}

Chapter 8 Topology API 8-25

Examples
#include stdio.h
#include iostream.h
#include topo_api/topo_api.hh

void traverse(
 const EMTopoNodeDn& dn
);

long num_traversed = 0;

int
main(int /*argc*/, char** /*argv*/)
{
 Platform platform(duEM);

 if (!platform.connect(“localhost”,”em_sample”)) {
cerr << “Couldn’t connect!” << endl;
exit (-1);

 }

 EMTopoPlatform::initialize(platform,TRUE);

 EMStatus status;

 //
 // Find the root node(s) (there will one for each MIS)
 // so we have a parent view to create a topology node in.
 //
 RWTValSlistEMTopoNodeDn roots;
 if (!(status = EMTopoPlatform::instance()->
find_root_nodes(roots))) {

cerr << status << endl;
exit(-2);

 }
8-26 C++ API Reference • October 2001

Examples
 // Traverse the topology of each MIS
 //
 for (RWTValSlistIteratorEMTopoNodeDn i(roots); i();) {

traverse(i.key());
 }

 //
// Note, the number of nodes traversed is most likely not equal
// to the number of nodes since a node with n parents would be

 // traversed n times with the simple algorithm used.
 //
 cout << “Num Nodes Traversed = “ << num_traversed << endl;
}

void
traverse(
 const EMTopoNodeDn& dn
)
{
 EMStatus status;

 EMTopoNode node(dn);

 num_traversed++;

 //
// Load the topology pathnames of the topology node, and also
// the children if the topology node is a view (container or

 // monitor type)
 //
 EMIntegerSet attributes(EMTopoNode::num_attributes);
 attributes.add(EMTopoNode::topology_pathnames);

 // We need the children attribute so that we can continue
 // or depth-first traversal.
 if (EMTopoPlatform::instance()->is_view(dn)) {

attributes.add(EMTopoNode::children);
 }
Chapter 8 Topology API 8-27

Examples
 if (!(status = node.load_some_attributes(attributes))) {
cerr << “Error: “ << status << endl;
exit(-3);

 }

 //
// Print out all the possible topology pathnames for the node.
// A node may have more than one valid pathname from the root
// node because this is a directed acyclic graph not a tree.

 //

 RWTValSlistRWCString topology_pathnames;
 if (!(status =
node.get_topology_pathnames(topology_pathnames))) {

cerr << “Error: “ << status << endl;
exit(-3);

 }

 cout << “{ “;
 for (int i = 0; i < topology_pathnames.entries(); i++) {

cout << topology_pathnames[i];
if (i != topology_pathnames.entries() - 1)

cout << “, “;
 }
 cout << “}”<< endl;

 //
 // Recur on the node’s children (if it has any)
 //
 if (EMTopoPlatform::instance()->is_view(dn)) {

RWTValSlistEMTopoNodeDn children;
if (!(status = node.get_children(children))) {

cerr << “Error: “ << status << endl;
}
for (RWTValSlistIteratorEMTopoNodeDn j(children); j();) {

traverse(j.key());
}

 }
}

8-28 C++ API Reference • October 2001

Class Reference
8.8 Class Reference
This section includes the following classes:

■ EMStatus Class

■ EMIntegerSet Class

■ EMIntegerSetIterator Class

■ EMTopoPlatform Class

■ EMObject Class

■ EMTopoNodeDnClass

■ EMTopoTypeDn Class

■ EMTopoType Class

■ EMAgent Class

■ EMCmipAgentDn Class

■ EMCmipAgent Class

■ EMSnmpAgentDnClass

■ EMRpcAgent Class

■ EMSnmpAgentDnClass

■ EMSnmpAgent Class

8.9 EMStatus Class
Inheritance: none

Instances of class EMStatus are returned by almost every API method to report

status, including errors. A conversion operator to RWBoolean is provided so that

EMStatus can be evaluated in Boolean expressions. A value of FALSE means there

was an error, otherwise success. The following sample code shows the basic usage.

#include topo_api/topo_api.hh
Chapter 8 Topology API 8-29

EMStatus Class
Static Variables

This static public member can be used to compare to instances of EMStatus. If they

are equal, then the operation succeeded. For example:

Enum

This is a list of all the possible statuses that can be returned by the API.

static EMStatus EMStatus::success;

if (EMStatus::success == node.load_all_attributes()) {
cout << “succeeded” << endl;

}

enum EMStatus::Code {
 successful,
 pmi_error,
 object_doesnt_exist,
 attribute_is_not_creatable,
 attribute_is_not_storeable,
 attribute_not_set,
 key_not_found,
 missing_mandatory_attribute,
 cannot_set_attribute,
 decode_error,
 encode_error,
 attribute_not_registered,
 does_not_exist,
 already_exists,
 invalid_arg,
 not_implemented,
 not_supported,
 view_graph_not_cached,
 duplicate_cmip_managed_fdns,
 unknown_error, /* this means an internal error*/
 num_status
 };
8-30 C++ API Reference • October 2001

EMStatus Class
8.9.1 Constructors and Destructor

Normally, only the default constructor is used by clients.

8.9.2 Operators

The following operator overloads are used for equality and logical equivalence.

And, the not-operator

The RWBoolean conversion operator equates EMStatus::successful with TRUE,
otherwise FALSE.

EMStatus();

EMStatus(Code error_code,
 const RWCString& text);

EMStatus(const EMStatus& status);

~EMStatus();

 operator RWBoolean () const;

EMStatus& operator =(const EMStatus& status);

RWBoolean operator ==(
 const EMStatus& status
) const;

 RWBoolean operator !=(
 const EMStatus& status
) const;
Chapter 8 Topology API 8-31

EMIntegerSet Class
Here is an example of how this can be used to test the return status of a method:

Finally, it returns the status code.

8.9.3 Global Operators

The stream output operator << is defined to provide an easy way to print out the

value of EMStatus.

8.10 EMIntegerSet Class
Inheritance: none

The EMIntegerSet class implements a general-purpose integer set over the

numbers 0 to n. It is used in the Topology API to communicate which attributes of a

POC an API method should operate on. The example below shows how to load the

name, topology type, and parents of a topology node.

EMStatus status;
if (!(status = node.load_all_attributes())) {

cerr << “Error: “ << status << endl;
}

EMStatus::Code code() const;

ostream& operator<<(
 ostream& s,
 const EMStatus& status
);

#include topo_api/topo_api.hh
8-32 C++ API Reference • October 2001

EMIntegerSet Class
8.10.1 Example

Instances of EMIntegerSet are used when you only want to load, store, or compare

a subset of the attributes of one of the persistent object classes.

8.10.2 Constructors and Destructor

EMIntegerSet (n) constructs a set of integers drawn from the universe numbered

from 0 to n-1. By default, no numbers in the universe belong to the set.

EMIntegerSet (n,TRUE) is the same except that every integer is a member of the set.

EMIntegerSet attrs(EMTopoNode::num_attributes);
attrs.add(EMTopoNode::name);
attrs.add(EMTopoNode::type_name);
attrs.add(EMTopoNode::parents);

node.load_some_attributes(attrs);

EMIntegerSet ();

EMIntegerSet(
 long n
);

EMIntegerSet(
 long n,
 RWBoolean initVal

);
~EMIntegerSet ();
Chapter 8 Topology API 8-33

EMIntegerSet Class
8.10.3 Operators

The following operator overloads are used for equality and logical equivalence.

And, the not-operator,

Two EMIntegerSet instances are considered equal if they are both of the same

dimension and have the exact same members.

Returns TRUEif the integer number is a member of the set.

EMIntegerSet& operator = (
 RWBoolean b
);

RWBoolean operator == (
 const EMIntegerSet& set
) const;

 RWBoolean operator != (
 const EMIntegerSet& set
) const;

RWBoolean operator [] (
 long number
) const;
8-34 C++ API Reference • October 2001

EMIntegerSet Class
The following performs a member-wise-and, exclusive-or, or Boolean operation on

the specified set in comparison with another set of integers that must be of the same

dimension.

8.10.4 Member Functions

add

Adds integers to the set.

remove

Removes integers from the set.

EMIntegerSet& operator&=(
 const EMIntegerSet& set
);

 EMIntegerSet& operator^=(
 const EMIntegerSet& set
);

 EMIntegerSet& operator|=(
 const EMIntegerSet& set
);

void add(long number);

void remove(long number);
Chapter 8 Topology API 8-35

EMIntegerSet Class
is_member

Returns TRUEif number is a member of the set.

num_members

Returns the number of integers in the set.

max_members

Returns the number of integers in the universe of potential members.

resize

Resizes the integer set to the universe of integers 0 to n-1.

void RWBoolean is_member(long number)const;

void num_members(long num_number);

long max_members() const;

void resize(long n);
8-36 C++ API Reference • October 2001

EMIntegerSetIterator Class
8.10.5 Global Operators

The operator! returns the member-wise negation of the input set. The other

operator functions return the member-wise-and, exclusive-or, and-or, of two sets.

Note that for the binary operations, the two sets must be of the same dimensions.

8.11 EMIntegerSetIterator Class
Inheritance: none

The EMIntegerSetIterator class provides a convenient method to visit each

member of the integer set.

EMIntegerSet operator!(
 const EMIntegerSet& set
);

EMIntegerSet operator&(
 const EMIntegerSet& set1,
 const EMIntegerSet& set2
);

EMIntegerSet operator^(
 const EMIntegerSet& set1,
 const EMIntegerSet& set2
);

 EMIntegerSet operator|(
 const EMIntegerSet& set1,
 const EMIntegerSet& set2
);

#include topo_api/topo_api.hh
Chapter 8 Topology API 8-37

EMIntegerSetIterator Class
8.11.1 Example

8.11.2 Constructors and Destructor

The Iterator will visit the members of set in numerical order.

And the corresponding destructor:

EMTopoNode node;
EMItegerSet(EMTopoNode::num_attributes);
node.get_active_attributes(attrs);
for (EMIntegerSetIterator i(atrrs); i();) {

switch (i.key()) {
case EMTopoNode::name:

break;
case EMTopoNode::type_name:

break;
case EMTopoNode::managed_objects:

break;
default:

cout << “Some other attribute” << endl;
break;

}
}

EMIntegerSetIterator(const EMIntegerSet& set);

~EMIntegerSetIterator(const EMIntegerSet& set);
8-38 C++ API Reference • October 2001

EMTopoPlatform Class
8.11.3 Member Functions

next

next() advances the iterator one position and returns TRUE if the new position is

valid, FALSE otherwise.

member

member() returns the integer member currently being visited.

reset

reset() resets the iterator to the first integer member in the set.

8.12 EMTopoPlatform Class
Inheritance: none

The EMTopoPlatform class represents the Topology API as a whole. Only one

instance of the EMTopoPlatform class is allowed. This instance is initialized by

calling EMTopoPlatform::initialize() , and is accessed through the

EMTopoPlatform::instance() method.

RWBoolean next();

long member() const;

void reset();

#include topo_api/topo_api.hh
Chapter 8 Topology API 8-39

EMTopoPlatform Class
The EMTopoPlatform class provides various methods, including:

■ Get all MIS systems reachable from the connected MIS

■ Find topology nodes by name, type, or managed object

■ Find CMIP, RPC, and SNMP agents by managed object

■ Get the topology pathname(s) by topology node DN

8.12.1 Example

The above code shows how the Topology API is initialized, and how the root nodes

of the network topology are retrieved.

#include pmi/hi.hh
#include topo_api/topo_api.hh

Platform platform;
if (!platform.connect(“mishost”,”em_client”)) {
cerr << “Failed to connect to “ << “mishost” << endl;
exit(-1);
}
EMTopoPlatform::initialize(platform);

EMStatus status;
RWTValSlistEMTopoNodeDn root_nodes;
if (!(status = EMTopoPlatform::instance()->

find_root_nodes(root_nodes))) {
cerr << “Error: “ << status << endl;
exit(-1);

}

8-40 C++ API Reference • October 2001

EMTopoPlatform Class
8.12.2 Static Member Functions

initialize

initialize () must be called before using any of the Topology API classes. This

method should only be called after the platform has been successfully initialized. It

returns TRUEon success, FALSE otherwise. The optional parameter

cache_view_graph specifies whether you should optimize methods that operate

over the topology view hierarchy.

If cache_view_graph is TRUE, then the topology view hierarchy will be cached

into memory from the MIS using a special GDMO action topoGetViewGraph on

the topoNodeDBId=NULL object. This optimization greatly increases the speed of

loading EMTopoNode::view_children and

EMTopoNode::topology_pathnames and executing

EMTopoPlatform::is_view() . However, the view cache can require a significant

amount of time and memory for large topology view hierarchy (> 5000 nodes).

instance

After initialize() succeeds, the static method instance() returns a pointer to

the EMTopoPlatform instance from which the non-static EMTopoPlatform
methods can be invoked.

static RWBoolean initialize(
 Platform& platform,
 RWBoolean cache_view_graph = FALSE
);

static EMTopoPlatform* instance();
Chapter 8 Topology API 8-41

EMTopoPlatform Class
TABLE 8-3 summarizes when the cache_view_graph option should be turned on

and off.

8.12.3 Access Member Functions

system_names

system_names() returns a list of all MIS names visible through the connection to

the local MIS, including the local MIS name.

local_system_name

local_system_name() returns the name of the MIS that the client application is

connected to.

Note – For a remote MIS to be visible to client application, MMC (MIS-MIS

Communication) must be set up between the local MIS and each remote MIS. This

can be accomplished using the em_mismgr application.

TABLE 8-3 cache_view_graph Option

cache_view_graph application type

TRUE Frequently calls EMTopoPlatform::is_view() ,

EMTopoPlatform::view_topology_pathnames(),

EMTopoPlatform::topology_pathnames() ,

and/or loads EMTopoNode::view_children ,

EMTopoNode::topology_pathnames attributes .

FALSE Does not use the above features or uses them infrequently. Client

application should be as lightweight as possible and start up fast.

 RWTValSlistRWCString system_names() const;
 Platform& platform();

const RWCString& local_system_name() const;
Platform& platform();
8-42 C++ API Reference • October 2001

EMTopoPlatform Class
8.12.4 General Member Functions

find_root_nodes

Returns a list of all nodes named “Root” visible through the connection to the local

MIS. The optional parameter system_names specifies the list of MISs to restrict the

query. The MIS names in system_names should all appear in system_names() ,

otherwise EMStatus::invalid_arg will result. If system_names is empty (the default),

then the list returned by system_names() is used.

find_nodes_by_name

Same as find_root_nodes() except that all nodes named name are returned

instead of all nodes named “Root.”

find_nodes_by_type

Same as find_root_nodes() except that all nodes of type type_name are returned

instead of all nodes named “Root.”

EMStatus find_root_nodes(
 RWTValSlistEMTopoNodeDn& root_nodes,

const RWTValSlistRWCString& system_names =
RWTValSlist RWCString()

) const;

EMStatus find_nodes_by_name(
 const RWCString& name,
 RWTValSlistEMTopoNodeDn& nodes,

const RWTValSlistRWCString& system_names =
RWTValSlist RWCString()

) const;

EMStatus find_nodes_by_type(
 const RWCString& type_name,
 RWTValSlistEMTopoNodeDn& nodes,

const RWTValSlistRWCString& system_names =
RWTValSlist RWCString()

) const;
Chapter 8 Topology API 8-43

EMTopoPlatform Class
find_nodes_by_managed_object

Same as find_root_nodes() except that all nodes that have managed_object listed

in their EMTopoNode::managed_objects attribute are returned instead of all

nodes named “Root”.

is_view

Returns TRUEif the topology type of node node_dn is a ‘view’ type, that is, a subtype

of EMTopoTypeDn::container or EMTopoTypeDn::monitor .

view_topology_pathnames

Returns in pathnames a list of all topology pathnames for the node view. The node

view should be a ‘view’, that is, a subtype of EMTopoType::container or

EMTopoTypeDn::monitor . If cache_view_graph optimization is turned on, then this

method is relatively inexpensive since no information needs to be retrieved from the

MIS. At a minimum, pathnames will contain one pathname for each parent. However,

since each parent can also have more than one parent, and so on, the actual number

of pathnames can be higher.

EMStatus find_nodes_by_managed_object(
 const RWCString& managed_object,
 RWTValSlistEMTopoNodeDn& nodes,

const RWTValSlistRWCString& system_names =
RWTValSlist RWCString()

) const;

RWBoolean is_view(
 const EMTopoNodeDn& node_dn
) const;

EMStatus view_topology_pathnames(
 const EMTopoNodeDn& view_dn,

RWTValSlistRWCString& pathnames
) const;
8-44 C++ API Reference • October 2001

EMTopoPlatform Class
topology_pathnames

The type topology_pathnames is similar to view_topology_pathnames()
except that this version works for any type of node. This method will also not send

any data requests to the MIS if the cache_view_graph optimization is turned on. The

reason that the parameters parent_dn and name are required rather than just the

EMTopoNodeDn of the node is because these two pieces of information are not

cached by the Topology API — the topology view cache has this information but

only for view nodes. By having the client application pass this information in, the

Topology API can take advantage of the cases where the client already has this

information in memory.

find_root_types

Returns in types a list of all root types, that is. types with no

EMTopoType::base_type . In the default installation of Solstice EM, the root types

are EMTopoTypeDn::container , EMTopoTypeDn::device ,

EMTopoTypeDn::monitor , and EMTopoTypeDn::link .

Note – Unlike the find_root_nodes() method, this method will only return the

root types on the local MIS.

EMStatus topology_pathnames(
 const EMTopoNodeDn& parent_dn,
 const RWCString& name,
 RWTValSlistRWCString& pathnames
) const;

EMStatus find_root_types(
 RWTValSlistEMTopoTypeDn& types
) const;
Chapter 8 Topology API 8-45

EMTopoPlatform Class
find_all_types

Similar to find_root_types() except that types will contain all topology types on

the local MIS.

The following methods provide a way to find the agent which is responsible for a

particular managed_object. If a match is not found, then

EMStatus::key_not_found error will result. These methods are used internally

by the EMTopoNode class to calculate the EMTopoNode::snmp_agents ,

EMTopoNode::rpc_agents , and EMTopoNode::cmip_agents attributes from the

EMTopoNode::managed_objects attribute.

managed_object_to_cmip_agent

If the object represented by the parameter managed_object is contained under a

branch of the MIT which is managed by a cmip agent, the unique identifier of the

cmip configuration object will be returned in cmip_agent and an

EMStatus::Success is returned by the function. Otherwise,

EMStatus::Key_not_found is returned.

managed_object_to_snmp_agent

If the object represented by the parameter managed_object is contained under a

branch of the MIT which is managed by a snmp agent, the unique identifier of the

snmp configuration object will be returned in snmp_agent and an

EMStatus::Success is returned by the function. Otherwise,

EMStatus::Key_not_found is returned.

EMStatus find_all_types(
 RWTValSlistEMTopoTypeDn& types
) const;

EMStatus managed_object_to_cmip_agent(
 const RWCString& managed_object,
 EMCmipAgentDn& cmip_agent
) const;

EMStatus managed_object_to_snmp_agent(
 const RWCString& managed_object,
 EMSnmpAgentDn& snmp_agent
) const;
8-46 C++ API Reference • October 2001

EMObject Class
managed_object_to_rpc_agent

If the object represented by the parameter managed_object is contained under a

branch of the MIT which is managed by a rpc agent, the unique identifier of the rpc

configuration object will be returned in rpc_agent and an EMStatus::Success is

returned by the function. Otherwise, EMStatus::Key_not_found is returned.

8.13 EMObject Class
Inheritance: none

The EMObject class is an abstract base class that specifies the interface supported by

all the persistent object classes (POC): EMTopoNode, EMTopoType, EMCmipAgent ,

EMRpcAgent , and EMSnmpAgent.

Each POC instance is an interface to a particular set of objects in the MIT. For more

information on which MIT objects the five POCs map to, refer to Section 8.2.1,

“Relationship to the GDMO.” Each unit of persistent state is called an attribute, and

an object is made up of a set of these attributes. Note that each POC attribute can

translate to one, several, or no GDMO attribute(s) in the corresponding object(s) in

the MIT.

To create a new object in the MIS, first set the mandatory attributes required for

creation, must be set either by loading values from another object or setting the

values explicitly, using the POC’s access methods.

EMStatus managed_object_to_rpc_agent(
 const RWCString& managed_object,
 EMRpcAgentDn& rpc_agent
) const;

#include topo_api/topo_api.hh
Chapter 8 Topology API 8-47

EMObject Class
Either create_with_all_attributes() , or

create_with_some_attributes() is called to create the object in the MIS. Note

that create_with_all_attributes() only uses attributes that have been given a

value. If the create method succeeds, then the POC::dn attribute will be set with the

unique identifier of the new object.

To destroy an object, first the POC::dn identifier must be set, then the destroy()
method may be called to delete the object from the MIS. This is a permanent, non-

reversible operation; some care when using this method.

In order to get the attribute values of a particular object, first set the POC::dn
identifier, then call either load_all_attributes() or

load_some_attributes() . Once the attribute values are loaded, they stay cached

within the POC and remain constant even if the values change in the MIS.

In order to set the attribute values persistently in the MIS, first set the POC::dn

attribute, then call either store_all_attributes() or

store_some_attributes() . Note that store_all_attributes() only stores

those attributes that have been given a value.

As a point of reference, the persistence model used is a simplified version of the

PMI’s Image class.

Enum

8.13.1 Constructors and Destructor

Because this is an abstract base class, no instances of EMObject can be created.

enum EMObjectOperation {
 em_load,
 em_create,
 em_store,
 em_num_object_operations
};

virtual ~EMObject();
8-48 C++ API Reference • October 2001

EMObject Class
8.13.2 EMObject Member Functions Supported By POC

Classes

exists

Returns TRUEif the object represented by the persistent object class instance exists in

the MIT.

Note – You must have the unique identifier (EMTopoNode::dn , EMTopoType::dn ,

etc.) set for this method to work properly. Otherwise, FALSE will be returned.

The following two methods create a new object in the MIS. In order for the create to

succeed, the mandatory attributes required by the particular POC must be set. The

new object has its attribute values determined as follows:

■ If create_with_all_attributes() was used, then any attribute that was

given a value will be stored in the new object.

■ If the function create_with_some_attributes() is used, then only the

specified attributes are stored in the new object.

In either case, any attributes that are not given a value will take on a default value

defined by the GDMO for that object.

The possible error conditions are EMStatus::missing_mandatory_attribute ,

EMStatus::attribute_is_not_creatable , EMStatus::encode_error , and

EMStatus::pmi_error .

 virtual RWBoolean exists() const;
Chapter 8 Topology API 8-49

EMObject Class
create_with_all_attributes

create_with_some_attributes

destroy

This method deletes the object identified by POC::dn from the MIS. This is a

permanent, non-reversible operation; some care should be taken when using this

method.

The possible error conditions are EMStatus::missing_mandatory_attribute ,

EMStatus::object_doesnt_exist , and EMStatus::pmi_error .

load_all_attributes

This method loads attributes of the object identified by POC::dn from the MIS into

the POC internal cache. load_all_attributes() loads all attributes whereas

load_some_attributes() only loads the specified attributes.

The possible error conditions are EMStatus::missing_mandatory_attribute ,

EMStatus::object_doesnt_exist , EMStatus::not_supported , and

EMStatus::pmi_error .

The following methods will store attributes of the object identified by POC::dn to

the MIS from the POC internal cache.

virtual EMStatus create_with_all_attributes();

 virtual EMStatus create_with_some_attributes(
 const EMIntegerSet& attributes
);

virtual EMStatus destroy();

virtual EMStatus load_all_attributes();
 virtual EMStatus load_some_attributes(
 const EMIntegerSet& attributes
);
8-50 C++ API Reference • October 2001

EMObject Class
store_all_attributes

store_all_attributes() stores all attributes that have been given a value.

store_some_attributes

store_some_attributes() stores only the specified attributes, without regard to

whether the attributes have been given a value. Care must be taken only to specify

attributes that have values; otherwise an arbitrary (usually NULL or empty) value is

stored.

The possible error conditions are EMStatus::missing_mandatory_attribute ,

EMStatus::object_doesnt_exist ,

EMStatus::attribute_is_not_storable , EMStatus::encode_error and

EMStatus::pmi_error .

get_active_attributes

This method returns the set of attributes that have been given a value characteristic

of set.

The following two methods clear the internal memory of all or some attributes. This

is useful when you want to reuse a POC instance to access a different object and do

not want the previous values to remain in effect.

After clear_all_attributes() is called, all attributes no longer have a value in

the internal memory, including the POC::dn attribute.

virtual EMStatus store_all_attributes();

 virtual EMStatus store_some_attributes(
 const EMIntegerSet& attributes);

virtual void get_active_attributes(
 EMIntegerSet& set
) const;
Chapter 8 Topology API 8-51

EMObject Class
clear_all_attributes

clear_some_attributes

8.13.3 Operators Supported by all POC classes

Two instances of EMPOC are considered to be equal if they each have the same

attributes with a value and those values are the same for both. If one instance has a

value for an attribute for which the other instance does not have a value, then the

instances are not equal to one another. To compare a subset of the attributes, use

compare_some_attributes() .

And the not-operator,

virtual void clear_all_attributes();

 virtual void clear_some_attributes(
 const EMIntegerSet& set
);

RWBoolean operator ==(
 const EMPOC&
);

 RWBoolean operator !=(
 const EMPOC&
);
8-52 C++ API Reference • October 2001

EMObject Class
8.13.4 Other Member Functions Supported by POC

Classes.

compare_all_attributes

The method compare_all_attributes() is equivalent to operator== ().

compare_some_attributes

The method compare_some_attributes() compares only the specified subset of

attributes. For each attribute in attributes, either both EMPOC instances must have

no value set for the attribute or if both of them have a value set for the attribute then

the values must be equal. If one EMPOC instance has a value for the attribute while

the other does not, then the instances are not equal.

The following functions are used to compare set attributes and are equivalent to the

various set operations provided by other functions.

RWBoolean compare_all_attributes(
 const EMPOC& other_poc
) const;

 RWBoolean compare_some_attributes(
const EMPOC& other_poc,

 const EMIntegerSet& attributes
) const;
Chapter 8 Topology API 8-53

EMObject Class
diff_all_attributes

diff_some_attributes

The diff_all_attributes(), and diff_some_attributes() methods both

have a return value equal to compare_all_attributes() and

compare_some_attributes() , respectively, and in addition, return the set of

attributes where the two instances differed, if any. The class

EMIntegerSetIterator can then be used to iterate over the differences.

8.13.5 Static Member Functions Supported by POC

Classes

These static methods provide information about the EMPOC’s attributes.

get_valid_attributes

The method get_valid_attributes() returns the set of attributes that are valid

for the specified operation op.

 RWBoolean diff_all_attributes(
 const EMPOC& other_agent,
 EMIntegerSet& differences
) const;

 RWBoolean diff_some_attributes(
 const EMPOC& other_agent,
 const EMIntegerSet& attributes,
 EMIntegerSet& differences
) const;

static const EMIntegerSet& get_valid_attributes(
 EMObjectOperation op = em_load
);
8-54 C++ API Reference • October 2001

EMTopoNodeDnClass
get_mandatory_attributes

The method get_mandatory_attributes() returns the set of attributes that are

mandatory for the specified operation op. If a mandatory attribute is not set when

the particular operation is called, an EMStatus::missing_mandatory_atribute
error will result.

get_attribute_name

This method returns an attribute name in string form.

8.14 EMTopoNodeDnClass
Inheritance: none

An instance of the EMTopoNodeDnclass uniquely identifies one topology node out

of the set of topology node objects interfaced by the EMTopoNode class.

static const EMIntegerSet& get_mandatory_attributes(
 EMObjectOperation op = em_load
);

 static const RWCString& get_attribute_name(
 EMPOC::Attribute attribute
);

#include topo_api/topo_api.hh
Chapter 8 Topology API 8-55

EMTopoNodeDnClass
Enum

8.14.1 Constructors and Destructor

The following are constructors for EMTopoNodeDn:

The default constructor creates a EMTopoNodeDninstance that is null. The

is_null() method returns TRUEfor this instance.

Creates an EMTopoNodeDninstance that is uniquely identified by system_name and

unique_id.

And the default destructor,

enum NullId {
null_id = -1

};

EMTopoNodeDn();

EMTopoNodeDn(
const RWCString& system_name,
long unique_id

);

~EMTopoNodeDn();
8-56 C++ API Reference • October 2001

EMTopoNodeDnClass
8.14.2 Operators

Two instances are equal if they have both the same system name and the same

unique name or if they are both null.

And the not-operator,

8.14.3 Access Member Functions

The following are access methods for the EMTopoNodeDn class.

system_name

This method returns the name of the MIS where the topology node is stored.

RWBoolean operator ==(
const EMTopoNodeDn& dn
) const;

RWBoolean operator !=(
const EMTopoNodeDn& dn
) const;

const RWCString& system_name() const;

void system_name(
const RWCString& system_name

);
Chapter 8 Topology API 8-57

EMTopoNodeDnClass
unique_id

The topology node identifier is unique within a single MIS.

8.14.4 General Member Functions

make_null

Set to null value. A null value means that the EMTopoNodeDn does not refer to any

topology node.

is_null

Test for null value. A null value means that the EMTopoNodeDndoes not refer to any

topology node.

8.14.5 Related Global Operators

The stream output operator << is defined to provide an easy way to print out the

value of EMTopoNodeDn.

long unique_id() const;

void unique_id(
long unique_id

);

void make_null();

RWBoolean is_null() const;

ostream& operator<<(ostream& s, const EMTopoNodeDn& dn);
8-58 C++ API Reference • October 2001

EMTopoNode Class
8.15 EMTopoNodeClass
Inheritance: EMObject

The EMTopoNodeclass represents a topology node, which is the unit of management

in Solstice EM. Using the standard POC methods, you can create, delete, and

compare topology nodes. Using the EMTopoNode’s access methods you can get and

set the name, topology pathname, logical and geographical location, topology type,

and associated managed objects and their corresponding CMIP, RPC, and/or SNMP

agent objects among other attributes. The EMTopoNodeclass also provides a callback

mechanism to notify clients when a topology node has been created, deleted, or has

had one or more attributes changed.

In TABLE 8-4, the attribute key is:

■ C – Attribute can be set at creation time.

■ S – Attribute can be set after creation time.

■ M – Mandatory; attribute must be set for operation to succeed.

■ X – Allowed; attribute can be set as an option.

#include topo_api/topo_api.hh

TABLE 8-4 EMTopoNode Attributes Table

Attribute Enum C S Description

dn M Unique identifier.

name M X Name of this node (need not be unique).

topology_pathnames List of all topology pathnames for the node. At a

minimum, there will be one pathname for each

parent. However, since each parent can also have

more than one parent, and so on, the actual

number of pathnames may be higher. Example list:

“/Root/Internet/129.146.74.0/host-45”,

“/Root/hosts/host-45”.

type_name M X Type name of this node.

managed_objects X X List of DNs (in ASCII slash format) of the managed

objects in the MIT associated with this node.

cmip_agents X X List of CMIP agents which have managed objects

listed as part of managed_objects attribute.
Chapter 8 Topology API 8-59

EMTopoNode Class
snmp_agents X X List of SNMP agents which have managed objects

listed as part of managed_objects attribute.

rpc_agents X X List of RPC agents which have managed objects

listed as part of managed_objects attribute.

parents M X List of topology nodes that contain this node in the

topology directed acyclic graph (DAG).

children List of topology nodes that are contained by this

node.

view_children Subset of children whose type_name is a view; that

is, EMTopoType::is_view(type_name) returns

TRUE.

links X X List of Link topology nodes connected to this node.

propagate_peers X X List of topology nodes for this node’s severity

propagation if is_severity_attribute is

TRUE.

is_severity_propagated X X If TRUE, then the node’s propagated_severity
will be propagated to each of the nodes in its

parent and propagated peers hierarchy, where it

will factor in the calculation of their

propagated_severity.

state X X Can be used to store an integer value.

severity If the Alarm Service is running, the severity

indicates the highest severity alarm posted against

any of the managed_objects .

Note: Normally, an application never sets the

severity attribute; this attribute is automatically

updated from the Alarm Service.

propagated_severity If the Alarm Service is running, the

propagated_severity indicates the highest

severity among this node’s severity and the

propagated_severity of any children of this

node who have their is_severity_propagated
flag set to TRUE.

display_statuses X X A user-defined list of tags, value pairs, such as

{ { “CPUUsage”, 45 } , { “DiskLoad” , 2345 } }.

geographical_location X X The latitude and longitude in degrees floating-

point of the location of this node.

layer_name X X The layer to which this node belongs.

TABLE 8-4 EMTopoNode Attributes Table (Continued)

Attribute Enum C S Description
8-60 C++ API Reference • October 2001

EMTopoNode Class
user_data X X User-defined data that should contain values for

each attribute name listed in

EMTopoType::user_data_attribute_names
for the type_name of this node.

logical_locations X X A list of locations where the node appears in each

of its parent views.

view_background_image_filename X X Absolute pathname of Sun raster file image to be

displayed when the viewer canvas is in logical

view mode.

view_map_config_filename X X Absolute pathname of geographical map

configuration (GMC) file to be displayed when the

Viewer canvas is in geographical view mode.

view_default_geo_area X X Default geographical area (specified as a center

and view width in km) to be displayed when the

view_map_config_filename is first displayed.

monitor_rotation X X Number of degrees to rotate the monitor node.

monitor_visible_children X Subset of the children list of nodes that should

appear in the monitor sections.

monitor_hidden_children List of children nodes remaining when

monitor_visible_children list of nodes are

subtracted from the children list of nodes. These

nodes do not appear in a monitor section, even if

there are empty sections.

monitor_max_visible_children Maximum number of visible children supported

by the particular type of monitor.

array_visible_children X List of topology nodes which are displayed in an

array. This list is a subset of the preexisting

children attribute supported by all containers.

array_hidden_children List of topology nodes which are not displayed in

an array. This list is a subset of the preexisting

children attribute supported by all containers.

array_orientation X X The orientation of an array, either horizontal or

vertical. This indicates whether the topology nodes

grouped by the array should be laid down row by

row or column by column.

TABLE 8-4 EMTopoNode Attributes Table (Continued)

Attribute Enum C S Description
Chapter 8 Topology API 8-61

EMTopoNode Class
8.15.1 Example

array_num_columns X X The number of columns in an array with

horizontal orientation, or the number of rows in an

array with vertical orientation.

array_cell_width X X The width (in characters) of each cell in an array. If

the value is 0, then the cell width will be set to the

minimum width necessary to display the label of

the widest cell.

bus_logical_locations X X List of x,y points which define the bus’s shape.

Note that the points are constrained so that all line

segments are alternatingly horizontal or vertical.

#include topo_api/topo_api.hh

// this assumes the snmp_agent was created
// elsewhere
RWBoolean
create_host(

const EMTopoNodeDn& parent_dn,
const EMSnmpAgentDn& snmp_agent_dn

)
{

EMTopoNode node;

node.set_name(snmp_agent_dn.unique_name());
node.set_type_name(EMTopoTypeDn::host);
node.add_parent(parent_dn);
// for hosts, we use the DN of the snmp agent
// object as the managed object.
node.add_managed_object(snmp_agent_dn.slash_form());

EMStatus status;
if (!(status = node.create_with_all_attributes())) {

cerr << “Error: “ << status << endl;
return FALSE;

}
return TRUE;

}

TABLE 8-4 EMTopoNode Attributes Table (Continued)

Attribute Enum C S Description
8-62 C++ API Reference • October 2001

EMTopoNode Class
Enum

enum EMTopoNode::AttributeType {
all_attributes,
common_attributes,
view_only_attributes,
monitor_only_attributes,
link_only_attributes,
device_only_attributes,
array_only_attributes,
bus_only_attributes,
num_attribute_types

};
Chapter 8 Topology API 8-63

EMTopoNode Class
enum EMTopoNode::Attribute {
 dn=0,
 name,
 type_name,
 managed_objects,
 cmip_agent,
 snmp_agent,
 rpc_agent,
 parents,
 children,
 children_containers_only,
 links,
 propagate_peers,
 is_severity_propagated,
 state,
 severity,
 propagated_severity,
 display_statuses,
 geographical_location,
 layer_name,

user_data,
logical_locations,
view_background_image_filename,

 view_map_config_filename,
 view_default_geo_area,

monitor_rotation,
 monitor_visible_children,
 monitor_hidden_children,
 monitor_max_visible_children,

array_visible_children,
array_hidden_children,
array_orientation,
array_num_columns,
array_cell_width,
bus_logical_locations,

 num_attributes
};
8-64 C++ API Reference • October 2001

EMTopoNode Class
Structs

 enum EMTopoNode::Severity {
indeterminate = 0,
critical = 1,
major = 2,
minor = 3,
warning = 4,
cleared = 5,
min_severity = indeterminate,
max_severity = cleared,
num_severity = max_severity - min_severity + 1

};

struct EMTopoNode::Location
{

long x;
long y;
long z;

Location();
Location(long p_x,long p_y,long p_z=0);
RWBoolean operator == (const Location& l) const;
RWBoolean operator != (const Location& l) const;

ostream& operator<<(ostream& s, const Location& l);
};
Chapter 8 Topology API 8-65

EMTopoNode Class
struct EMTopoNode::LocationInParent
{

EMTopoNodeDn parent;
Location location;

LocationInParent();

LocationInParent(
const EMTopoNodeDn& p_parent,
const Location& p_location
);

RWBoolean operator == (
const LocationInParent& l
) const;
RWBoolean operator != (
const LocationInParent& l
) const;

ostream& operator<<(
ostream& s,
const LocationInParent& l
);

};

struct EMTopoNode::GeoLocation
{

double longitude;
double latitude;

GeoLocation();
GeoLocation(double p_longitude,double p_latitude);
RWBoolean operator == (const GeoLocation& l) const;
RWBoolean operator != (const GeoLocation& l) const;

ostream& operator<<(ostream& s, const GeoLocation& l);
};
8-66 C++ API Reference • October 2001

EMTopoNode Class
struct EMTopoNode::DisplayStatus
{

RWCString label;
long value;

DisplayStatus();
DisplayStatus(const RWCString& p_label,long p_value);
RWBoolean operator == (const DisplayStatus& d) const;
RWBoolean operator != (const DisplayStatus& d) const;

ostream& operator<<(ostream& s, const DisplayStatus& d);
};

struct EMTopoNode::UserDatum
{

RWCString attribute_name;
Morf value;

UserDatum();
UserDatum(
const RWCString& p_attribute_name,
const Morf& p_value);
RWBoolean operator == (
const UserDatum& d
) const;
RWBoolean operator != (
const UserDatum& d) const;
ostream& operator<<(ostream& s,
const UserDatum& d);

};
Chapter 8 Topology API 8-67

EMTopoNode Class
8.15.2 Constructors and Destructor

The default destructor,

8.15.3 Access Member Functions

The member function methods of the EMTopoNodeclass refer to the attributes listed

in the table at the beginning of this section, table 6-4. See the table for a description

of each of the attributes.

get_dn

This function gets the distinguished name, dn, associated with a node.

EMTopoNode();

EMTopoNode(
const EMTopoNodeDn& dn
);

EMTopoNode(
const EMTopoNode& node
);

~EMTopoNode();

EMStatus get_dn(
EMTopoNodeDn& dn
) const;
8-68 C++ API Reference • October 2001

EMTopoNode Class
set_dn

This function sets the distinguished name, dn, associated with a node.

get_name

This function gets the name of a node.

set_name

This function sets the name of a node.

get_topology_pathnames

This function gets a list of all the pathnames for a specific node.

EMStatus set_dn(
const EMTopoNodeDn& dn
);

EMStatus get_name(
RWCString& name
) const;

EMStatus set_name(
const RWCString& name
);

EMStatus get_topology_pathnames(
RWTValSlistRWCString& topology_pathnames
) const;
Chapter 8 Topology API 8-69

EMTopoNode Class
get_type_name

This function gets the type name of a specific node.

set_type_name

This function sets the type name of a specific node.

get_severity

This function gets the severity associated with a node.

set_severity

This function sets the severity associated with a node, but now has no effect. Only

the Alarm Service will update this attribute.

EMStatus get_type_name(
RWCString& type_name
) const;

EMStatus set_type_name(
const RWCString& type_name
);

EMStatus get_severity(
EMTopoNode::Severity& severity
) const;

EMStatus set_severity(
EMTopoNode::Severity severity
);
8-70 C++ API Reference • October 2001

EMTopoNode Class
get_propagated_severity

This function gets the propagated severity associated with a node.

get_is_severity_propagated

This function gets a node’s is_severity_propagated and determines whether the

property of propagated_severity should be propagated to each of the parent

and peer nodes, where it is a factor in the calculation of their severity.

set_is_severity_propagated

This function sets a node’s is_severity_propagated and determines whether the

property of propagated_severity should be propagated to each of the parent

and peer nodes, where it is a factor in the calculation of their severity.

get_propagate_peers

This function gets a list of propagate_peer nodes in the topology.

EMStatus get_propagated_severity(
EMTopoNode::Severity& severity
) const;

EMStatus get_is_severity_propagated(
RWBoolean& is_severity_propagated
) const;

EMStatus set_is_severity_propagated(
const RWBoolean& is_severity_propagated
);

EMStatus get_propagate_peers(
RWTValSlistEMTopoNodeDn& peers
) const;
Chapter 8 Topology API 8-71

EMTopoNode Class
set_propagate_peers

This function sets a list of propagate_peer nodes in the topology.

add_propagate_peer

This function adds a topology node to the propagate_peers list.

remove_propagate_peer

This function removes a topology node from the propagate_peers list.

get_state

This function is used to get the state associated with a node.

EMStatus set_propagate_peers(
const RWTValSlistEMTopoNodeDn& peers
);

EMStatus add_propagate_peer(
const EMTopoNodeDn& peer
);

EMStatus remove_propagate_peer(
const EMTopoNodeDn& peer
);

EMStatus get_state(
long& state
) const;
8-72 C++ API Reference • October 2001

EMTopoNode Class
set_state

This function is used to set the state associated with a node.

get_display_statuses

This function gets the user-defined list of tag-value pairs for a number of display

statuses.

set_display_statuses

This function sets the user-defined list of tag-value pairs for a number of display

statuses.

get_display_status

This function will get a value for the specified tag, if it exists. If not,

EMStatus:key_not_found will be returned.

EMStatus set_state(
long state
);

EMStatus get_display_statuses(
RWTValSlistEMTopoNode::DisplayStatus& statuses
) const;

EMStatus set_display_statuses(
const RWTValSlistEMTopoNode::DisplayStatus& statuses
);

EMStatus get_display_status(
const RWCString& tag,
long& value
) const;
Chapter 8 Topology API 8-73

EMTopoNode Class
add_display_status

This function will add a tag-value pair to the display_status attribute. If the tag
already exists, the value will be replaced by value.

remove_display_status

This function will remove the specified tag-value pair from the display_status
attribute.

get_children

This function will get a list of topology nodes that are contained by this node.

get_children_containers_only

This function gets the subset of topology nodes contained by this node which are

views, that is, the function EMTopoPlatform::instance()->is_view returns

TRUEfor each of the applicable topology nodes.

EMStatus add_display_status(
const RWCString& tag,
long value
);

EMStatus remove_display_status(
const RWCString& tag
);

EMStatus get_children(
RWTValSlistEMTopoNodeDn& children
) const;

EMStatus get_children_containers_only(
RWTValSlistEMTopoNodeDn& children
) const;
8-74 C++ API Reference • October 2001

EMTopoNode Class
get_parents

This function gets a list of topology nodes that are parents.

set_parents

This function sets the parents of a particular node.

add_parent

This function adds a node parent to the parent’s list.

remove_parent

This function removes the node parent from the parents list.

EMStatus get_parents(
RWTValSlistEMTopoNodeDn& parents
) const;

EMStatus set_parents(
const RWTValSlistEMTopoNodeDn& parents
);

EMStatus add_parent(
const EMTopoNodeDn& parent
);

EMStatus remove_parent(
const EMTopoNodeDn& parent
);
Chapter 8 Topology API 8-75

EMTopoNode Class
get_links

This function gets a list of links to topology nodes connected to this node.

set_links

This function sets a list of links to topology nodes connected to this node.

add_link

This function adds a topology node link to nodes connected to this node.

remove_link

This function removes a topology node link from the list of nodes connected to this

node.

EMStatus get_links(
RWTValSlistEMTopoNodeDn& links
) const;

EMStatus set_links(
const RWTValSlistEMTopoNodeDn& links
);

EMStatus add_link(
const EMTopoNodeDn& link
);

EMStatus remove_link(
const EMTopoNodeDn& link
);
8-76 C++ API Reference • October 2001

EMTopoNode Class
get_logical_location

This function gets the logical location of the node in its parent view parent. If the

node is not contained in parent, the EMStatus::key_not_found status string is

returned.

set_logical_location

This function sets the logical location of the node in its parent view parent. If the

node is not contained in parent, the EMStatus::key_not_found status string is

returned.

get_logical_locations

This function gets a list of logical locations where the node appears in each of its

parent views.

EMStatus get_logical_location(
const EMTopoNodeDn& parent,
EMTopoNode::Location& location
) const;

EMStatus set_logical_location(
const EMTopoNodeDn& parent,
const EMTopoNode::Location& location
);

EMStatus get_logical_locations(
RWTValSlistEMTopoNode::LocationInParent& locations
) const;
Chapter 8 Topology API 8-77

EMTopoNode Class
set_logical_locations

This function sets a list of logical locations where the node appears in each of its

parent views. The node must already be contained within each parent specified in

EMTopoNode::LocationInParent struct.

get_geographical_location

This function gets the latitude and longitude in degrees floating-point of the location

of this node. If is_null is TRUE, then the node has no geographical position, and

location is undefined.

set_geographical_location

This function sets the latitude and longitude in degrees floating-point of the location

of this node. Passing is_null as TRUE, will result in the node having no geographical

position, and location is undefined.

EMStatus set_logical_locations(
 const RWTValSlistEMTopoNode::LocationInParent& locations
);

EMStatus get_geographical_location(
EMTopoNode::GeoLocation& location,
RWBoolean& is_null
) const;

EMStatus set_geographical_location(
const EMTopoNode::GeoLocation& location,
RWBoolean is_null = FALSE
);
8-78 C++ API Reference • October 2001

EMTopoNode Class
get_layer_name

This function gets the layer that a specific node belongs to.

set_layer_name

This function sets the layer that a specific node belongs to.

get_managed_objects

This function gets a list of DNs (in ASCII slash format) of the managed objects in the

MIT associated with this node.

set_managed_objects

This function sets a list of DNs (in ASCII slash format) of the managed objects in the

MIT associated with this node.

EMStatus get_layer_name(
RWCString& name
) const;

EMStatus set_layer_name(
const RWCString& name
);

EMStatus get_managed_objects(
RWTValSlistRWCString& managed_objects
) const;

EMStatus set_managed_objects(
const RWTValSlistRWCString& managed_objects
);
Chapter 8 Topology API 8-79

EMTopoNode Class
add_managed_object

This function adds a DN (in ASCII slash format) to the list of managed objects in the

MIT associated with this node.

remove_managed_object

This function removes a DN (in ASCII slash format) from the list of managed objects

in the MIT associated with this node. If managed_object is not in the list, then

EMStatus::does_not_exist will be returned.

get_cmip_agents

This function gets a list of CMIP agents which have managed objects listed as part of

managed_objects attribute.

get_snmp_agents

This function gets a list of SNMP agents which have managed objects listed as part

of managed_objects attribute.

EMStatus add_managed_object(
const RWCString& managed_object
);

EMStatus remove_managed_object(
const RWCString& managed_object
);

EMStatus get_cmip_agents(
RWTValSlistEMCmipAgentDn& agents

) const;

EMStatus get_snmp_agents(
RWTValSlistEMSnmpAgentDn& agents
) const;
8-80 C++ API Reference • October 2001

EMTopoNode Class
get_rpc_agents

This function gets a list of RPC agents which have managed objects listed as part of

managed_objects attribute.

get_user_data

This function gets user-defined data that should contain values for each attribute

name listed in EMTopoType::user_data_attribute_names for the type_name of

this node.

set_user_data

This function sets user-defined data that should contain values for each attribute

name listed in EMTopoType::user_data_attribute_names for the type_name of

this node.

EMStatus get_rpc_agents(
RWTValSlistEMRpcAgentDn& agents
) const;

EMStatus get_user_data(
RWTValSlistEMTopoNode::UserDatum& user_data
) const;

EMStatus set_user_data(
const RWTValSlistEMTopoNode::UserDatum& user_data
);
Chapter 8 Topology API 8-81

EMTopoNode Class
get_user_datum

This function gets a user-defined datum corresponding to one of the attribute names

listed in EMTopoType::user_data_attribute_names for the type_name of this

node.

add_user_datum

This function adds a user-defined datum for one of the attribute names listed in

EMTopoType::user_data_attribute_names for the type_name of this node. If

attrib_name is not valid, then EMStatus::Key_not_found is returned.

remove_user_datum

This function removes a user-defined datum for one of the attribute names listed in

EMTopoType::user_data_attribute_names for the type_name of this node. If

attrib_name is not valid, then EMStatus::Key_not_found is returned.

EMStatus get_user_datum(
const RWCString& attribute_name,

Morf& morf
) const;

EMStatus add_user_datum(
const RWCString& attribute_name,const Morf& morf
);

EMStatus remove_user_datum(
const RWCString& attribute_name
);
8-82 C++ API Reference • October 2001

EMTopoNode Class
get_view_background_image_filename

This function gets the absolute pathname of the Sun raster file image to be displayed

when the viewer canvas is in logical view mode.

set_view_background_image_filename

This function set the absolute pathname of the Sun raster file image to be displayed

when the viewer canvas is in logical view mode.

get_view_map_config_filename

This function gets the absolute pathname of the geographical map configuration

(GMC) file to be displayed when the Viewer canvas is in geographical view mode.

set_view_map_config_filename

This function sets the absolute pathname of the geographical map configuration

(GMC) file to be displayed when the Viewer canvas is in geographical view mode.

EMStatus get_view_background_image_filename(
RWCString& filename
) const;

EMStatus set_view_background_image_filename(
const RWCString& filename
);

EMStatus get_view_map_config_filename(
RWCString& filename
) const;

EMStatus set_view_map_config_filename(
const RWCString& filename
);
Chapter 8 Topology API 8-83

EMTopoNode Class
get_view_default_geo_area

This function gets the default geographical area (specified as a center and view

width in km) to be displayed when the view_map_config_filename is first

displayed.

set_view_default_geo_area

This function sets the default geographical area (specified as a center and view

width in km) to be displayed when the view_map_config_filename is first

displayed.

get_monitor_rotation

This function gets the number of degrees to rotate the monitor node.

EMStatus get_view_default_geo_area(
EMTopoNode::GeoLocation& center,
double& width_in_km,
RWBoolean& is_null
) const;

EMStatus set_view_default_geo_area(
const EMTopoNode::GeoLocation& center,
double width_in_km,
RWBoolean is_null = FALSE
);

EMStatus get_monitor_rotation(
long& rotation,
RWBoolean& is_null
) const;
8-84 C++ API Reference • October 2001

EMTopoNode Class
set_monitor_rotation

This function sets the number of degrees to rotate the monitor node.

get_monitor_visible_children

This function gets the subset of the children list of nodes that should appear in the

monitor sections.

set_monitor_visible_children

This function sets the subset of the children list of nodes that should appear in the

monitor sections.

add_monitor_visible_child

This function adds child to the subset of the children list of nodes that should appear

in the monitor sections.

EMStatus set_monitor_rotation(
long rotation,
RWBoolean is_null = FALSE
);

EMStatus get_monitor_visible_children(
RWTValSlistEMTopoNodeDn& children
) const;

EMStatus set_monitor_visible_children(
const RWTValSlistEMTopoNodeDn& children
);

EMStatus add_monitor_visible_child(
const EMTopoNodeDn& child
);
Chapter 8 Topology API 8-85

EMTopoNode Class
remove_monitor_visible_child

This function removes child from the subset of the children list of nodes that should

appear in the monitor sections.

get_monitor_hidden_children

This function gets the list of children nodes remaining when

monitor_visible_children list of nodes are subtracted from the children list of nodes.

These nodes do not appear in a monitor section, even if there are empty sections.

get_monitor_max_visible_children

This function gets the maximum number of visible children supported by the

particular type of monitor.

get_array_orientation

The get_arrray_orientation function returns the array_orientation
attribute in orientation. It returns EMStatus::attribute_not_set if the

array_orientation attribute has not been initialized.

EMStatus remove_monitor_visible_child(
const EMTopoNodeDn& child
);

EMStatus get_monitor_hidden_children(
RWTValSlistEMTopoNodeDn& children
) const;

EMStatus get_monitor_max_visible_children(
long& max_children
) const;

EMStatus get_array_orientation(
ArrayOrientation& orientation
) const;
8-86 C++ API Reference • October 2001

EMTopoNode Class
set_array_orientation

The set_arrray_orientation function sets the array_orientation attribute

to orientation.

get_array_num_columns

The get_arrray_num_columns function returns the array_num_columns
attribute in num_columns. It returns EMStatus::attribute_not_set if the

array_num_columns attribute has not been initialized.

set_array_num_columns

The set_arrray_num_columns function sets the array_num_columns attribute

to num_columns. If num_columns equals array_num_columns_autosize , then the

num_columns is dynamically selected in order to make the array cells layout as

close as possible to a square.

EMStatus set_array_orientation(
ArrayOrientation orientation
);

EMStatus get_array_num_columns(
unsigned long& num_columns
) const;

EMStatus set_array_num_columns(
unsigned long num_columns
);
Chapter 8 Topology API 8-87

EMTopoNode Class
get_array_cell_width

The get_arrray_cell_width function returns the array_cell_width attribute

in cell_width. It returns EMStatus::attribute_not_set if the

array_cell_width attribute has not been initialized.

set_array_cell_width

The set_arrray_cell_width function sets the array_cell_width attribute to

cell_width. If cell_width is equal to array_cell_width_autosize , then the

cell_width is dynamically adjusted to fit the cell of the cell with the longest label.

get_array_visible_children

The get_arrray_visible_children function returns the

array_visible_children attribute in children. It returns

EMStatus::attribute_not_set if the array_visible_children attribute has

not been initialized.

EMStatus get_array_cell_width(
unsigned long& cell_width
) const;

EMStatus set_array_cell_width(
unsigned long cell_width
);

EMStatus get_array_visible_children(
RWTValSlistEMTopoNodeDn& children
) const;
8-88 C++ API Reference • October 2001

EMTopoNode Class
set_array_visible_children

The set_arrray_visible_children function sets the

array_visible_children attribute to children.

add_array_visible_child

The add_arrray_visible_child function adds a node, child, to the

array_visible_children attribute. It returns

EMStatus::attribute_not_set if the array_visible_children attribute has

not been initialized, and EMStatus::already_exists if child is already a member

of array_visible_children .

remove_array_visible_child

The remove_arrray_visible_child function removes a node, child, from the

array_visible_children attribute. It returns

EMStatus::attribute_not_set if the array_visible_children attribute has

not been initialized, and EMStatus::does_not_exist if child is not a member of

array_visible_children .

EMStatus set_array_visible_children(
const RWTValSlistEMTopoNodeDn& children
);

EMStatus add_array_visible_child(
const EMTopoNodeDn& child
);

EMStatus remove_array_visible_child(
const EMTopoNodeDn& child
);
Chapter 8 Topology API 8-89

EMTopoNode Class
get_array_hidden_children

The get_arrray_hidden_children function returns the

array_hidden_children attribute in children. It returns

EMStatus::attribute_not_set if the array_hidden_children attribute has

not been initialized.

get_bus_logical_locations

The get_bus_logical_locations function returns the

bus_logical_locations attribute in logical_locations. It returns

EMStatus::attribute_not_set if the array_visible_children attribute has

not been initialized.

set_bus_logical_locations

The set_bus_logical_locations function sets the bus_logical_locations
attribute to logical_locations.

EMStatus get_array_hidden_children(
RWTValSlistEMTopoNodeDn& children
) const;

EMStatus get_bus_logical_locations(
RWTValSlistLocation& logical_locations
) const;

EMStatus get_bus_logical_locations(
const RWTValSlistLocation& logical_locations
);
8-90 C++ API Reference • October 2001

EMTopoNode Class
8.15.4 Static Member Functions for Event Subscription

The EMTopoNode class provides an event subscription service so that clients can be

notified when a topology node is created, deleted, or modified.

To register for events, the client must provide a callback function with of type

EMTopoNode::Callback. When the client’s callback is called, the cbd parameter will

be filled in with information about the event. The event_type field indicates the type

of event: em_create_event, em_delete_event, or em_change_event. The node_dn

parameter uniquely identifies the topology node that was created, deleted, or

modified. For em_change_event only, the changes parameter will contain the new

values for all attributes which changed. To get a list of the changed attributes, call

EMTopoNode::get_active_attributes(). The normal EMTopoNode access methods

may be used to get the new attribute values. Finally, the client_data field is the same

as the client_data parameter of EMTopoNode::register_callback(). An EMTopoNode

events example is $EM_HOME/src/topo_api/topo_events.cc .

Registers callback to be called when event occurs on any topology node. If event
equals em_any_event, then callback will be called for any of em_create_event,

em_delete_event, or em_change_event. The parameter client_data will be used to

initiaze the client_data field in the EMTopoNodeCallbackData struct.

struct EMTopoNodeCallbackData
{
 EMEventType event_type;
 EMTopoNodeDn node_dn;
 EMTopoNode changes;
 void* client_data;
};

typedef void (*Callback)(
const EMTopoNodeCallbackData& cbd

);

void register_callback(
EMEventType event,
Callback callback,
void* client_data

);
Chapter 8 Topology API 8-91

EMTopoNode Class
Note – If the same callback has already been registered for the same event, then the

callback will not be added a second time. However, the client_data will replace the

previous client_data.

Removes callback that was previously registered.

8.15.5 Related Global Operators

The stream output operator << is defined to provide an easy way to print out the

attribute values of EMTopoNode.

And the Assignment Operator,

static void unregister_callback(
EMTopoNode::Callback callback,
void* user_callback_data

);

ostream& operator<<(
ostream& s,
const EMTopoNode& node

);

ostream& operator<<(
ostream& s,
const EMTopoTypeDn& dn

);

EMTopoNode& operator =(
const EMTopoNode&
);
8-92 C++ API Reference • October 2001

EMTopoTypeDn Class
8.16 EMTopoTypeDn Class
Inheritance: none

An instance of the EMTopoTypeDn class uniquely identifies one topology type out of

the set of topology types interfaced by the EMTopoType.

8.16.1 Constants

Convenience constants for the default base types.

8.16.2 Constructors and Destructor

The default constructor creates a null object.

#include topo_api/topo_api.hh

 static const RWCString
EMTopoTypeDn::container,
EMTopoTypeDn::device,
EMTopoTypeDn::link,
EMTopoTypeDn::monitor,
EMTopoTypeDn::array,
EMTopoTypeDn::bus,
EMTopoTypeDn::sun;

EMTopoTypeDn();
Chapter 8 Topology API 8-93

EMTopoTypeDn Class
The following constructor takes the MIS name where the object is stored, and the

topology type name.

The default destructor,.

8.16.3 Operators

The following is the logical equivalence operator:

Two instances are equal if they have both the same system name and the same

unique name or if they are both null.

And the not-operator,

EMTopoTypeDn(
const RWCString& system_name,
const RWCString& unique_name
);

~EMTopoTypeDn();

RWBoolean operator ==(
 const EMTopoTypeDn& dn
) const;

 RWBoolean operator !=(
 const EMTopoTypeDn& dn
) const;
8-94 C++ API Reference • October 2001

EMTopoTypeDn Class
8.16.4 Access Member Functions

The following are access methods for the EMTopoTypeDn class.

system_name

The name of the MIS where the topology type is stored.

unique_name

The name of the topology type. This identifier is unique within a single MIS.

8.16.5 General Member Functions

make_null

Sets to null value. A null value means that the EMTopoTypeDn does not refer to any

topology type.

const RWCString& system_name() const;

void system_name(
const RWCString& system_name
);

const RWCString& unique_name() const;

void unique_name(
const RWCString& unique_name

);

void make_null();
Chapter 8 Topology API 8-95

EMTopoType Class
is_null

And, test for null value. A null value means that the EMTopoTypeDn does not refer

to any topology type.

8.17 EMTopoType Class
Inheritance: EMObject

An instance of the EMTopoType class represents a topology type. Every topology

node is classified as a particular topology type. The topology types form a hierarchy

with the six base types “Container”, “Device”, “Monitor”, “Link”, “Array” and

“Bus” with other subtypes derived from them. Beyond the standard POC methods

which allow you to create, delete, compare, etc. topology types, the EMTopoType

class provides the following additional services:

■ static methods is_container() , is_device() , is_monitor() , is_link() ,

is_view() , is_array , and is_bus can be used to categorize topology types.

The EM topo type attributes are described in TABLE 8-5.

The attribute key is:

■ C – Attribute can be set at creation time.

■ S – Attribute can be set after creation time.

■ M – Mandatory; attribute must be set for operation to succeed.

■ X – Allowed; attribute can be set as an option.

RWBoolean is_null() const;

#include topo_api/topo_api.hh

TABLE 8-5 EM TopoType Attributes

Attribute Enum C S Description

dn M M Unique identifier.

base_type M The parent topology type of this type.

all_base_types All ancestors of this type.

sub_types All topology types contained by this type.
8-96 C++ API Reference • October 2001

EMTopoType Class
8.17.1 Example

legal_children X X List of legal topology types of topology nodes that can be

contained by a topology node of this type within the

topology hierarchy.

layer_name M X Name of the layer that includes topology nodes of this type.

user_data_attribute_names X X A list of GDMO attribute names that define the contents of

the EMTopoNode::user_data attribute for EMTopoNodes of

this type.

RWBoolean
create_topo_type(
 const RWCString& system_name,
 const RWCString& type_name
)
{
 EMTopoType type(EMTopoTypeDn(system_name,type_name));

 type.set_base_type(EMTopoTypeDn::device);
 type.set_layer_name(type_name);

EMStatus status;
 if (!(status = type.create_with_all_attributes())) {

cerr << “Error: “ << status << endl;
return FALSE;

 }
 return TRUE;
}

TABLE 8-5 EM TopoType Attributes (Continued)

Attribute Enum C S Description
Chapter 8 Topology API 8-97

EMTopoType Class
Enum

8.17.2 Constructors and Destructor

The destructor is,

enum EMTopoType::Attribute {
 dn=0,
 base_type,
 sub_types,
 legal_children,
 layer_name,

user_data_attribute_names,
 num_attributes
 };

EMTopoType(
 const EMTopoTypeDn& dn
);

EMTopoType(
 const EMTopoType& topo_type
);

 ~EMTopoType();
8-98 C++ API Reference • October 2001

EMTopoType Class
8.17.3 Operators

8.17.4 Access Member Functions

The member function methods of the EMTopoType class refer to the attributes listed

in TABLE 8-5. See the table for a description of each of the attributes.

get_dn

This function gets the distinguished name, dn, associated with a node.

set_dn

This function sets the distinguished name, dn, associated with a node.

get_base_type

This function gets the parent topology type of this type.

 EMTopoType& operator =(
 const EMTopoType& topo_type
);

EMStatus get_dn(
 EMTopoTypeDn& dn
) const;

 EMStatus set_dn(
 const EMTopoTypeDn& dn
);

EMStatus get_base_type(
 RWCString& type_name
) const;
Chapter 8 Topology API 8-99

EMTopoType Class
set_base_type

This function sets the parent topology type of this type.

get_all_base_types

This function gets all the ancestors of this type.

get_sub_types

This function gets all the topology types contained by this type.

get_legal_children

This function gets a list of legal topology types of topology nodes that can be

contained by a topology node of this type within the topology hierarchy.

 EMStatus set_base_type(
const RWCString& type_name

);

EMStatus get_all_base_types(
RWTValSlistRWCString& base_types

) const;

EMStatus get_sub_types(
 RWTValSlistRWCString& sub_types
) const;

EMStatus get_legal_children(
 RWTValSlistRWCString& children
) const;
8-100 C++ API Reference • October 2001

EMTopoType Class
add_legal_child

This function adds child to the list of legal topology types of topology nodes that can

be contained by a topology node of this type within the topology hierarchy.

get_layer_name

This function gets the name of the layer that includes topology nodes of this type.

set_layer_name

This function sets the name of the layer that includes topology nodes of this type.

get_user_data_attribute_names

This function gets a list of GDMO attribute names that define the contents of the

EMTopoNode::user_data attribute for EMTopoNodes of this type.

 EMStatus add_legal_child(
 const RWCString& child
);

EMStatus get_layer_name(
 RWCString& layer_name
) const;

 EMStatus set_layer_name(
 const RWCString& layer_name
);

EMStatus get_user_data_attribute_names(
 RWTValSlistRWCString& names

) const;
Chapter 8 Topology API 8-101

EMTopoType Class
set_user_data_attribute_names

This function sets a list of GDMO attribute names that define the contents of the

EMTopoNode::user_data attribute for EMTopoNodes of this type.

add_user_data_attribute_name

This function adds name to the list of GDMO attribute names that define the contents

of the EMTopoNode::user_data attribute for EMTopoNodes of this type.

remove_user_data_attribute_name

This function removes name from the list of GDMO attribute names that define the

contents of the EMTopoNode::user_data attribute for EMTopoNodes of this type.

 EMStatus set_user_data_attribute_names(
 const RWTValSlistRWCString& names
);

 EMStatus add_user_data_attribute_name(
 const RWCString& name
);

 EMStatus remove_user_data_attribute_name(
 const RWCString& name
);
8-102 C++ API Reference • October 2001

EMTopoType Class
8.17.5 Static Member Functions

These methods return TRUE, if type_name is a subtype of the indicated base type.

is_container

This function returns TRUE, if type_name is a subtype of the container type.

is_monitor

This function returns TRUE, if type_name is a subtype of the monitor type.

is_view

This function returns TRUE, if type_name is a view . A type is a view if nodes of the

type can contain other nodes, and all the view attributes are supported. For

example, all containers and monitors are considered views.

The method is_view() is special because there is no base type named ‘View’;

is_view() is equivalent to is_container() or is_monitor() .

static RWBoolean is_container(
 const RWCString& type_name
);

static RWBoolean is_monitor(
 const RWCString& type_name
);

 static RWBoolean is_view(
 const RWCString& type_name
);
Chapter 8 Topology API 8-103

EMTopoType Class
is_device

This function returns TRUE, if type_name is a subtype of the device type.

is_link

This function returns TRUE, if type_name is a subtype of the link type.

is_array

This function returns TRUE, if type_name is a subtype of the link type.

is_bus

This function returns TRUE, if type_name is a subtype of the link type.

 static RWBoolean is_device(
 const RWCString& type_name
);

 static RWBoolean is_link(
 const RWCString& type_name
);

 static RWBoolean is_array(
 const RWCString& type_name
);

 static RWBoolean is_bus(
 const RWCString& type_name
);
8-104 C++ API Reference • October 2001

EMTopoType Class
8.17.6 Static Member Functions for Event Subscription

The EMTopoType class provides an event subscription service so that clients can be

notified when a topology type is created, deleted, or modified.

To register for events, the client must provide a callback function with of type

EMTopoType::Callback. When the client’s callback is called, the cbd parameter will

be filled in with information about the event. The event_type field indicates the type

of event: em_create_event, or em_delete_event.

The node_dn parameter uniquely identifies the topology type that was created,

deleted, or modified. For em_change_event only, the changes parameter will contain

the new values for all attributes which changed. To get a list of the changed

attributes, call EMTopoType::get_active_attributes(). The normal EMTopoType access

methods may be used to get the new attribute values. Finally, the client_data field is

the same as the client_data parameter of EMTopoType::register_callback().

struct EMTopoTypeCallbackData
{
//
// Note: em_change_event is not supported at this time.
//
 EMEventType event_type;
 EMTopoTypeDn node_dn
 EMTopoNode changes;
 void* client_data;
};

typedef void (*Callback)(
const EMTopoTypeCallbackData& cbd

);

void register_callback(
EMEventType event,
Callback callback,
void* client_data

);
Chapter 8 Topology API 8-105

EMTopoType Class
Registers callback to be called when event occurs on any topology type. If event equals

em_any_event, then callback will be called for any of em_create_event,

em_delete_event, or em_change_event. The parameter client_data will be used to

initiaze the client_data field in the EMTopoTypeCallbackData struct.

Note – If the same callback has already been registered for the same event, then the

callback will not be added a second time. However, the client_data will replace the

previous client_data.

Removes callback that was previously registered for event events.

Note – If callback was registered multiple times with different event parameters, the

callback will only be removed for this event.

8.17.7 Global Operators

The stream output operator << is defined to provide an easy way to print out the

attribute values of EMTopoType.

void unregister_callback(
EMEventType event,
EMTopoType::Callback callback

);

ostream& operator<<(
ostream& s,
const EMTopoType& type
);
8-106 C++ API Reference • October 2001

EMAgent Class
8.18 EMAgent Class
Inheritance: EMObject

The EMAgent class is an abstract class that contains the agent interface, common

between EMCmipAgent , EMRpcAgent , and EMSnmpAgent.

Enum

Used to suspend and resume the proxy activity relative to the Internet Agent. The

EMAgent::unlocked state means that the proxy must continue to perform, or

resume performing, proxy activities on behalf of the Internet agent. The

EMAgent::locked state means that the proxy must not perform, or suspend

performing, proxy activities on behalf of the Internet agent.

#include topo_api/topo_api.hh

enum EMAgent::Attribute {
operational_state,
administrative_state,
num_attributes

};

enum EMAgent::AdministrativeState {
 locked,
 unlocked,
 shuttingdown,
 num_administrative_states

};

enum EMAgent::OperationalState {
 disabled,
 enabled,
 num_operational_states

};
Chapter 8 Topology API 8-107

EMAgent Class
Indicates the perceived state of the Internet agent. The EMAgent::enabled state

means that the Internet agent is operational, as perceived by the proxy: it can be

reached. The EMAgent::disabled state means that the Internet agent is not

operational, as perceived by the proxy; it cannot be reached.

8.18.1 Access Member Functions

get_operational_state

This function gets the operational state of a component of an equipment from among

the managed objects on a network; the possible values are EMAgent::disabled or

EMAgent::enabled .

Note – The operational_state is read-only.

get_administrative_state

This function gets the administrative state of a component of an equipment from

among the managed objects on a network; the possible values are

EMAgent::locked , unlocked , or shuttingdown.

EMStatus get_operational_state(
 OperationalState& operational_state
) const;

EMStatus get_administrative_state(
 AdministrativeState& administrative_state
) const;
8-108 C++ API Reference • October 2001

EMCmipAgentDn Class
set_administrative_state

This function sets the administrative state of a component of an equipment from

among the managed objects on a network; the possible values are

EMAgent::locked , unlocked , or shuttingdown .

8.19 EMCmipAgentDn Class
Inheritance: none

An instance of the EMCmipAgentDn class uniquely identifies one rpc agent object

out of the set of rpc agent objects interfaced by the EMCmipAgent persistent object

class.

8.19.1 Constructors and Destructor

The default constructor creates a null object.

The above constructor takes the MIS name where the object is stored and the CMIP

agent name.

EMStatus set_administrative_state(
 const AdministrativeState& administrative_state
);

#include topo_api/topo_api.hh

EMCmipAgentDn();

 EMCmipAgentDn(
 const RWCString& system_name,
 const RWCString& unique_name
);
Chapter 8 Topology API 8-109

EMCmipAgentDn Class
And the default destructor,

8.19.2 Operators

Two instances are equal if they have both the same system name and the same

unique name, or if they are both Null.

And the not-operator,

8.19.3 Access Member Functions

system_name

The name of the MIS where the CMIP agent object is stored.

~EMCmipAgentDn();

RWBoolean operator ==(
 const EMCmipAgentDn& dn
) const;

RWBoolean operator !=(
const EMTopoNodeDn& dn
) const;

const RWCString& system_name() const;

void system_name(
 const RWCString& system_name
);
8-110 C++ API Reference • October 2001

EMCmipAgentDn Class
unique_name

The name of the CMIP agent object. This name is unique within a single MIS.

8.19.4 General Member Functions

make_null

Sets to null value and tests for null value. A null value means that the

EMCmipAgentDn does not refer to any cmip agent object.

8.19.5 Related Global Operators

The stream output operator << is defined to provide an easy was to print out the

value of EMTopoNodeDn.

const RWCString& unique_name() const;

 void unique_name(
 const RWCString& unique_name
);

void make_null();
 RWBoolean is_null() const;

ostream& operator<<(ostream& s, const EMTopoNodeDn& dn);
Chapter 8 Topology API 8-111

EMCmipAgent Class
8.20 EMCmipAgent Class
Inheritance: EMAgent <- EMObject

An instance of the EMCmipAgent class represents the MIS object which contains

configuration information for a CMIP agent. The configuration information includes

the CMIP MPA hostname and port number, list of managed objects DNs, network

SAP, transport selector, presentation selector, session selector, and application entity

title (AET).

Note – This class does not provide an interface to the agent’s managed objects, but

only to Solstice EM’s configuration information for the agent.

TABLE 8-6 gives the CmipAgent attributes.

The attribute key is:

■ C – Attribute can be set at creation time.

■ S – Attribute can be set after creation time.

■ M – Mandatory; attribute must be set for operation to succeed.

■ X – Allowed; attribute can be set as an option.

#include topo_api/topo_api.hh

TABLE 8-6 EMCmipAgent Attributes

Attribute Enum C S Description

dn M M Unique identifier

operational_state EMAgent::disabled or enabled

administrative_state M X EMAgent::locked, unlocked, or shuttingdown

mpa_address_info X X MPA hostname and port number

agent_address_tag X X Defines format of agent_address_info

agent_address_info M X Agent address information in format defined

by agent_address_tag.
8-112 C++ API Reference • October 2001

EMCmipAgent Class
managed_objects M X List of DNs in ASCII slash format of managed

objects located on agent. Note that the

multiple cmip agent configurations can be

created for the same cmip MPA but with a

different set of managed objects for each.

application_entity_title M X Application Entity Title (AET).

presentation_selector M X OSI presentation selector.

session_selector M X OSI session selector.

transport_selector M X OSI transport selector.

network_sap M X OSI network sap.

name_translation X X Specifies the format of the managed object

instance when sending a request to the CMIP

agent. It can be LDN, FDN, or NONE. NONE

means FDN. The default value is "NONE".

application_entity_qualifier X X The Application Entity Qualifier. The default

value is -1.

application_entity_invoke_id X X The Application Entity Invocation Identifier.

The default value is -1.

application_process_invoke_id X X The Application Process Invocation Identifier.

The default value is -1.

TABLE 8-6 EMCmipAgent Attributes (Continued)

Attribute Enum C S Description
Chapter 8 Topology API 8-113

EMCmipAgent Class
8.20.1 Example

setup_mis_mis_connection(
 const RWCString& manager_hostname,
 const RWCString& agent_hostname
)
{
 EMCmipAgent cmip_agent(EMCmipAgentDn(manager_hostname,
 agent_hostname));
 cmip_agent.set_administrative_state(EMAgent::unlocked);
 cmip_agent.set_mpa_address_info(agent_hostname,5555);

 RWCString managed_object(“/systemId=name:\””);
 managed_object.append(agent_hostname).append(“\””);
 cmip_agent.add_managed_object(managed_object);

cmip_agent.set_application_entity_title(“objectIdentifier :
{ 1 2 3 4 }”);
 cmip_agent.set_presentation_selector(““);
 cmip_agent.set_session_selector(““);
 cmip_agent.set_transport_selector(““);
 char buffer[128];
 sprintf(buffer,”%s:%d”,agent_hostname,5555);
 cmip_agent.set_network_sap(buffer);

// String: {psel,ssel,tsel,nsap}
 cmip_agent.set_agent_address_tag(8);

sprintf(buffer,”{,,,%s:%d”,agent_hostname,5555);
 cmip_agent.set_agent_address_info(buffer);

 EMStatus status;
 if (!(status = cmip_agent.create_with_all_attributes())) {
 cerr << “Error: “ << status << endl;
 }
}

8-114 C++ API Reference • October 2001

EMCmipAgent Class
Enum

8.20.2 Access Member Functions

This function gets the distinguished name, dn, associated with a node.

The member function methods of the EMCmipAgent class refer to the attributes

listed in TABLE 8-6. See the table for a description of each of the attributes.

get_dn

This function gets the distinguished name, dn, associated with an agent.

set_dn

This function sets the distinguished name, dn, associated with an agent.

enum EMCmipAgent::Attribute {
dn = EMAgent::num_attributes,
mpa_address_info,
agent_address_info,
agent_address_tag,
managed_objects,
application_entity_title,
presentation_selector,
session_selector,
transport_selector,
network_sap,
num_attributes

 };

 EMStatus get_dn(
 EMCmipAgentDn& dn
) const;

 EMStatus set_dn(
 const EMCmipAgentDn& dn
);
Chapter 8 Topology API 8-115

EMCmipAgent Class
get_mpa_address_info

This function gets the MPA hostname and port number.

set_mpa_address_info

This function sets the MPA hostname and port number.

get_managed_objects

This function gets a list of DNs in slash format of managed objects located on agent.

Note that the multiple cmip agent configurations can be created for the same cmip

MPA but with a different set of managed objects for each.

 EMStatus get_mpa_address_info(
RWCString& hostname,
int& port_number,
RWBoolean& is_null

) const;

 EMStatus set_mpa_address_info(
const RWCString& hostname,
int port_number,
RWBoolean is_null = FALSE

);

 EMStatus get_managed_objects(
RWTValSlistRWCString& dns

) const;
8-116 C++ API Reference • October 2001

EMCmipAgent Class
set_managed_objects

This function sets a list of DNs in slash format of managed objects located on agent.

Note that the multiple cmip agent configurations can be created for the same cmip

MPA but with a different set of managed objects for each.

add_managed_object

This function adds dn to the list of DNs in slash format of managed objects located

on agent. Note that the multiple cmip agent configurations can be created for the

same cmip MPA but with a different set of managed objects for each.

remove_managed_object

This function removes dn from the list of DNs in slash format of managed objects

located on agent. Note that the multiple cmip agent configurations can be created for

the same cmip MPA but with a different set of managed objects for each.

get_network_sap

This function gets the OSI network sap.

 EMStatus set_managed_objects(
const RWTValSlistRWCString& dns

);

 EMStatus add_managed_object(
const RWCString& dn

);

 EMStatus remove_managed_object(
const RWCString& dn

);

EMStatus get_network_sap(
RWCString& network_sap

) const;
Chapter 8 Topology API 8-117

EMCmipAgent Class
set_network_sap

This function sets the OSI network sap.

get_agent_address_info

This function gets the agent address information in a format defined by

agent_address_tag .

set_agent_address_info

This function sets the agent address information in a format defined by

agent_address_tag .

get_agent_address_tag

This function gets the defined format of agent_address_info .

EMStatus set_network_sap(
const RWCString& network_sap

);

 EMStatus get_agent_address_info(
RWCString& agent_address_info

) const;

 EMStatus set_agent_address_info(
const RWCString& agent_address_info

);

 EMStatus get_agent_address_tag(
int& agent_address_tag

) const;
8-118 C++ API Reference • October 2001

EMCmipAgent Class
set_agent_address_tag

This function sets the defined format of agent_address_info .

get_presentation_selector

This function gets the OSI presentation selector.

set_presentation_selector

This function sets the OSI presentation selector.

get_session_selector

This function gets the OSI session selector.

 EMStatus set_agent_address_tag(
int agent_address_tag

);

 EMStatus get_presentation_selector(
RWCString& presentation_selector

) const;

EMStatus set_presentation_selector(
const RWCString& presentation_selector

);

 EMStatus get_session_selector(
RWCString& session_selector

) const;
Chapter 8 Topology API 8-119

EMCmipAgent Class
set_session_selector

This function sets the OSI session selector.

get_transport_selector

This function gets the OSI transport selector.

set_transport_selector

This function sets the OSI transport selector.

get_application_entity_title

This function gets the application entity title (AET).

EMStatus set_session_selector(
const RWCString& session_selector

);

 EMStatus get_transport_selector(
RWCString& transport_selector

) const;

EMStatus set_transport_selector(
const RWCString& transport_selector

);

EMStatus get_application_entity_title(
RWCString& application_entity_title

) const;
8-120 C++ API Reference • October 2001

EMCmipAgent Class
set_application_entity_title

This function sets the application entity title (AET).

get_name_translation

This function gets the format of the managed object instance in a request to the

CMIP agent.

set_name_translation

This function sets the format of the managed object instance in a request to the CMIP

agent.

get_application_entity_qualifier

This function gets the Application Entity Qualifier.

EMStatus set_application_entity_title(
const RWCString& application_entity_title

);

EMStatus get_name_translation(
RWCString& name_translation

) const;

EMStatus set_name_translation(
const RWCString& name_translation

);

EMStatus get_application_entity_qualifier(
RWCString& application_entity_qualifier

) const;
Chapter 8 Topology API 8-121

EMCmipAgent Class
set_application_entity_qualifier

This function sets the Application Entity Qualifier.

get_application_entity_invoke_id

This function gets the Application Entity Invocation Identifier.

set_application_entity_invoke_id

This function sets the Application Entity Invocation Identifier.

get_application_process_invoke_id

This function gets the Application Process Invocation Identifier.

EMStatus set_application_entity_qualifier(
const RWCString& application_entity_qualifier

);

EMStatus get_application_entity_invoke_id(
int& application_entity_invoke_id

) const;

EMStatus set_application_entity_invoke_id(
int application_entity_invoke_id

);

EMStatus get_application_process_invoke_id(
int& application_process_invoke_id

) const;
8-122 C++ API Reference • October 2001

EMRpcAgentDn Class
set_application_process_invoke_id

This function sets the Application Process Invocation Identifier.

8.20.3 Global Operators

The stream output operator << is defined to provide an easy way to print out the

attribute values of EMCmipAgent .

8.21 EMRpcAgentDn Class
Inheritance: none

An instance of the EMRpcAgentDn class uniquely identifies one rpc agent object out

of the set of rpc agent objects interfaced by the EMRpcAgent persistent object class.

8.21.1 Constructors and Destructor

The following are constructors:

EMStatus set_application_process_invoke_id(
int application_process_invoke_id

);

ostream& operator<<(ostream& s, const EMCmipAgent& agent);

#include topo_api/topo_api.hh

EMRpcAgentDn();
Chapter 8 Topology API 8-123

EMRpcAgentDn Class
The default constructor creates a null object.

The above constructor takes the MIS name where the object is stored and the rpc

agent name.

And the default destructor,

8.21.2 Operators

Two instances are equal if they have both the same system name and the same

unique name or if they are both Null.

And the not-operator,

 EMRpcAgentDn(
 const RWCString& system_name,
 const RWCString& unique_name
);

~EMRpcAgentDn();

RWBoolean operator ==(
 const EMRpcAgentDn& dn
) const;

 RWBoolean operator !=(
 const EMRpcAgentDn& dn
) const;
8-124 C++ API Reference • October 2001

EMRpcAgentDn Class
8.21.3 Access Member Functions

system_name

The name of the MIS where the rpc agent object is stored.

unique_name

The name of the rpc agent object. This name is unique within a single MIS.

8.21.4 General Member Functions

make_null

Sets to null value. A null value means that the EMRpcAgentDn does not refer to any

rpc agent object.

const RWCString& system_name() const;

 void system_name(
 const RWCString& system_name
);

const RWCString& unique_name() const;

 void unique_name(
 const RWCString& unique_name
);

void make_null();
Chapter 8 Topology API 8-125

EMRpcAgent Class
is_null

And tests for null value.

8.21.5 Global Operators

The stream output operator << is defined to provide an easy was to print out the

value of EMRpcAgentDn.

8.22 EMRpcAgent Class
Inheritance: EMAgent <- EMObject

An instance of the EMRpcAgent class represents the MIS object which contains

configuration information for an RPC agent. The configuration information includes

the read and write community strings, and supported schemas.

This class does not provide an interface to the agent’s managed objects, but only to

Solstice EM’s configuration information for the agent.

TABLE 8-7 gives the EMRpcAgent attributes. The attribute key is:

■ C – Attribute can be set at creation time.

■ S – Attribute can be set after creation time.

■ M – Mandatory; attribute must be set for operation to succeed.

■ X – Allowed; attribute can be set as an option

 RWBoolean is_null() const;

ostream& operator<<(ostream& s, const EMRpcAgentDn& dn);

#include topo_api/topo_api.hh
8-126 C++ API Reference • October 2001

EMRpcAgent Class
8.22.1 Example

TABLE 8-7 EMRpcAgent Attributes

Attribute Enum C S Description

dn M M Unique identifier

operational_state EMAgent::disabled or enabled

administrative_state M X EMAgent::locked, unlocked, or shuttingdown

get_community_string X X e.g. “public”, “private”

set_community_string X X e.g. “public”, “private”

schemas M X list of rpc_proxy_hostname and rpc_name pairs, e.g. “ultra-

server”, “RPC Proxy -ping”

RWBoolean
create_rpc_agent(
 const RWCString& system_name,
 const RWCString& rpc_agent_name
)
{
 EMRpcAgent rpc_agent(EMRpcAgentDn(system_name,

rpc_agent_name));
 rpc_agent.set_administrative_state(EMAgent::unlocked);
 EMRpcAgent::Schema schema(“proxy-hostname”,

”RPC Proxy -ping”);
 rpc_agent.add_schema(schema);

 EMStatus status;
 if (!(status = rpc_agent.create_with_all_attributes())) {

cerr << “Error: “ << status << endl;
return FALSE;

 }
return TRUE;

}

Chapter 8 Topology API 8-127

EMRpcAgent Class
Enum

These are the attributes specific to EMRpcAgent , in addition to the attributes defined

in EMAgent which are common to EMCmipAgent , EMRpcAgent , and EMSnmpAgent.

Struct

The struct EMRpcAgent::Schema is used to store a RPC proxy hostname and RPC

method pairing. Each EMRpcAgent can be configured to support any number of

schemas.

enum EMRpcAgent::Attribute {
 dn = EMAgent::num_attributes,
 get_community_string,
 set_community_string,
 schemas,
 num_attributes
 };

struct EMRpcAgent::Schema
 {
 RWCString name;
 RWCString proxy_hostname;

 Schema();

 Schema(const RWCString& p_name,
 const RWCString& p_proxy_hostname);

RWBoolean operator ==(const Schema& schema) const;

RWBoolean operator !=(const Schema& schema) const;
}

ostream& operator<<(ostream& s, const Schema& schema);
8-128 C++ API Reference • October 2001

EMRpcAgent Class
8.22.2 Constructors and Destructor

The default destructor,

8.22.3 Access Member Functions

The member function methods of the EMRpcAgent class refer to the attributes listed

in the table at the beginning of this section, table 6-7. See the table for a description

of each attribute.

get_dn

This function gets the distinguished name, dn, associated with an agent.

EMRpcAgent(
 const EMRpcAgentDn& rpc_agent_dn
);

 EMRpcAgent(
 const EMRpcAgent& rpc_agent
);

~EMRpcAgent();

EMStatus get_dn(
 EMRpcAgentDn& dn
) const;
Chapter 8 Topology API 8-129

EMRpcAgent Class
set_dn

This function sets the distinguished name, dn, associated with an agent.

get_get_community_string

This function gets the current get_community_string codeword to a component of an

equipment from the managed objects on a network, e.g. “public” or “private”.

set_get_community_string

This function sets the current get_community_string codeword to a component

of an equipment from the managed objects on a network, e.g. “public” or “private”.

get_set_community_string

This function gets the current set_community_string codeword to a component of an

equipment from the managed objects on a network, e.g. “public” or “private”.

EMStatus set_dn(
 const EMRpcAgentDn& dn
);

EMStatus get_get_community_string(
 RWCString& get_communitry_string
) const;

EMStatus set_get_community_string(
 const RWCString& get_community_string
);

EMStatus get_set_community_string(
 RWCString& set_community_string
) const;
8-130 C++ API Reference • October 2001

EMRpcAgent Class
set_set_community_string

This function sets the current set_community_string codeword to a component of an

equipment from the managed objects on a network, e.g. “public” or “private”.

get_schemas

This function gets the list of rpc_proxy_hostname and rpc_name pairs, e.g.

“ultra-server”, “RPC Proxy -ping”.

set_schemas

This function sets the list of rpc_proxy_hostname and rpc_name pairs, e.g.

“ultra-server”, “RPC Proxy -ping”.

add_schema

This function adds schema to the list of rpc_proxy_hostname and rpc_name pairs,

e.g. “ultra-server”, “RPC Proxy -ping”.

EMStatus set_set_community_string(
 const RWCString& set_community_string
);

EMStatus get_schemas(
 RWTValSlistEMRpcAgent::Schema& schemas
) const;

EMStatus set_schemas(
 const RWTValSlistEMRpcAgent::Schema& schemas
);

EMStatus add_schema(
 const EMRpcAgent::Schema& schema

);
Chapter 8 Topology API 8-131

EMSnmpAgentDnClass
remove_schema

This function removes schema from the list of rpc_proxy_hostname and rpc_name
pairs, e.g. “ultra-server”, “RPC Proxy -ping”.

8.22.4 Global Operators

The stream output operator << is defined to provide an easy way to print out the

attribute values of EMRpcAgent .

The Assignment Operator

8.23 EMSnmpAgentDnClass
Inheritance: none

An instance of the EMSnmpAgentDnclass uniquely identifies one snmp agent object

out of the set of snmp agent objects interfaced by the EMSnmpAgent persistent object

class.

EMStatus remove_schema(
 const EMRpcAgent::Schema& schema
);

ostream& operator<<(
ostream& s,
const EMRpcAgent& agent
);

 EMRpcAgent& operator =(
 const EMRpcAgent&
);

#include topo_api/topo_api.hh
8-132 C++ API Reference • October 2001

EMSnmpAgentDnClass
8.23.1 Constructors, and Destructor

The following are constructors for EMSnmpAgentDn

The default constructor creates a null object.

The above constructor takes the MIS name where the object is stored and the SNMP

agent name.

8.23.2 Operators

Two instances are equal if they have both the same system name and the same

unique name or if they are both null.

EMSnmpAgentDn();

 EMSnmpAgentDn(
 const RWCString& system_name,
 const RWCString& unique_name
);

RWBoolean operator ==(
 const EMSnmpAgentDn& dn
) const;

 RWBoolean operator !=(
 const EMSnmpAgentDn& dn
) const;
Chapter 8 Topology API 8-133

EMSnmpAgentDnClass
8.23.3 Access Member Functions

system_name

The name of the MIS where the snmp agent object is stored.

unique_name

The name of the SNMP agent object which is unique on one MIS. Combined with the

system_name, the pair form a globally unique identifier.

8.23.4 General Member Functions

make_null

Sets to null value. A null value means that the EMSnmpAgentDndoes not refer to

any SNMP agent object.

const RWCString& system_name() const;

 void system_name(
 const RWCString& system_name
);

const RWCString& unique_name() const;

 void unique_name(
 const RWCString& unique_name
);

void make_null();
8-134 C++ API Reference • October 2001

EMSnmpAgent Class
is_null

And tests for the null value.

8.23.5 Global Operators

The stream output operator<< is defined to provide an easy way to print out the

value of EMSnmpAgentDn.

8.24 EMSnmpAgentClass
Inheritance: EMAgent <- EMObject

An instance of the EMSnmpAgent class represents the MIS object that contains

configuration information for an SNMP agent. The configuration information

includes the read and write community strings, supported MIBs, and transport

address.

Note – This class does not provide an interface to the agent’s managed objects, only

to Solstice EM’s configuration information for the agent.

 RWBoolean is_null() const;

ostream& operator<<(
ostream& s,
const EMSnmpAgentDn& dn
);

#include topo_api/topo_api.hh
Chapter 8 Topology API 8-135

EMSnmpAgent Class
TABLE 8-8 gives the EMSnmpAgent attributes.

The attribute key is:

■ C – Attribute can be set at creation time.

■ S – Attribute can be set after creation time.

■ M – Mandatory; attribute must be set for operation to succeed.

■ X – Allowed; attribute can be set as an option.

TABLE 8-8 EMSnmpAgent Attributes

Attribute Enum C S Description

dn M M Unique identifier, which includes the administrative

name.

operational_state X Possible values are EMAgent::disabled and

EMAgent::enabled.

administrative_state M X Possible values are EMAgent::locked,

EMAgent::unlocked, or EMAgent::shuttingdown.

system_title M OID of system title, e.g. “1.2.3.4”.

get_community_string M X e.g. “public” or “private”.

set_community_string M X e.g. “public” or “private”.

transport_address M X IP address of the system associated with the Internet

agent, specified as a string, such as “34.254.129.23”.

An optional port number may be appended, such as

“34.254.129.23:5723”.

management_protocol M Internet management protocol used by the proxy to

manage devices. Possible values are:

EMSnmpAgent::snmp_v1 and

EMSnmpAgent::snmp_v2 .

supported_mibs M X The names of the MIBs that the SNMP agent supports.

access_control_enforcement M Indicates where access control is applied: at the

Internet agent, the ISO/Internet proxy, or both.

Possible values are EMSnmpAgent::agent,

EMSnmpAgent::proxy, or EMSnmpAgent::both.

access_control_mechanism X Indicates whether no access control, Internet access

control as specified in [SNMPv2SEC], or ISO/CCITT

access control as specified in [ISO10164-9] is to be

used. Possible values are

EMSnmpAgent::no_access_control,

EMSnmpAgent::internet, or EMSnmpAgent::iso.
8-136 C++ API Reference • October 2001

EMSnmpAgent Class
8.24.1 Example

Enum

RWBoolean
create_snmp_agent(
 const RWCString& system_name,
 const RWCString& snmp_agent_name
)
{
 EMSnmpAgent snmp_agent(

EMSnmpAgentDn(system_name,snmp_agent_name));
 snmp_agent.set_administrative_state(EMAgent::unlocked);
 snmp_agent.add_supported_mib(“IIMCRFC1213-MIB”);
 snmp_agent.add_supported_mib(“IIMCSUN-MIB”);
 snmp_agent.set_get_community_string(“public”);
 snmp_agent.set_set_community_string(“private”);
 snmp_agent.set_transport_address(“123.234.34.23:2354”);
 snmp_agent.set_management_protocol(EMSnmpAgent::snmp_v1);

snmp_agent.set_access_control_enforcement(
EMSnmpAgent::agent);

snmp_agent.set_access_control_mechanism(
EMSnmpAgent::internet);

snmp_agent.set_system_title(“1.2.3.4”);
 EMStatus status;
 if (!(status = snmp_agent.create_with_all_attributes())) {

cerr << “Error: “ << status << endl;
return FALSE;

 }
return TRUE;

}

enum EMSnmpAgent::Attribute {
 dn = EMAgent::num_attributes,
 system_title,
 get_community_string,
 set_community_string,
 transport_address,
 supported_mibs,
 management_protocol,
 access_control_enforcement,
 access_control_mechanism,
 num_attributes
 };
Chapter 8 Topology API 8-137

EMSnmpAgent Class
These are the attributes specific to EMSnmpAgent, in addition to the attribute defined

in EMAgent which are common to EMCmipAgent , EMRpcAgent , and EMSnmpAgent.

enum EMSnmpAgent::AccessControlEnforcement {
 agent=1,
 proxy=2,

both=3,
 min_access_control_enforcement = agent,
 max_access_control_enforcement = both,
 num_access_control_enforcements
 };

ostream& operator<<(
ostream& s,
const EMSnmpAgent::AccessControlEnforcement& enforcement
);

enum EMSnmpAgent::AccessControlMechanism {
 no_access_control=0,
 internet=1,
 iso=2,
 min_access_control_mechanism = no_access_control,
 max_access_control_mechanism = iso,
 num_access_control_mechanisms
 };

ostream& operator<<(
ostream& s,
const EMSnmpAgent::AccessControlMechanism& mechanism
);
8-138 C++ API Reference • October 2001

EMSnmpAgent Class
8.24.2 Constructors and Destructor

And the destructor,

enum EMSnmpAgent::ManagementProtocol {
 snmp_v1,
 snmp_v2,
 num_management_protocols
 };

ostream& operator<<(
ostream& s,
const EMSnmpAgent::ManagementProtocol& protocol
);

EMSnmpAgent(
 const EMSnmpAgentDn& snmp_agent_id
);

 EMSnmpAgent(
 const EMSnmpAgent& snmp_agent
);

 ~EMSnmpAgent();
 EMSnmpAgent& operator =(
 const EMSnmpAgent& other_agent
);
Chapter 8 Topology API 8-139

EMSnmpAgent Class
8.24.3 Access Member Functions

The member function methods of the EMSnmpAgent class all refer to the attributes

listed in the table at the beginning of this section, TABLE 8-8. See the table for a

description of each attribute.

get_dn

This function gets a unique identifier, the distinguished name dn, which includes the

administrative name.

set_dn

This function sets a unique identifier, the distinguished name dn, which includes the

administrative name.

get_system_title

This function gets the OID of the system, or system title, for example, “1.2.3.4”.

EMStatus get_dn(
 EMSnmpAgentDn& dn
) const;

EMStatus set_dn(
 const EMSnmpAgentDn& dn
);

EMStatus get_system_title(
 RWCString& system_title
) const;
8-140 C++ API Reference • October 2001

EMSnmpAgent Class
set_system_title

This function sets the OID of the system, or system title, for example, “1.2.3.4”.

get_get_community_string

This function gets the current get_community_string to a component of an equipment

from the managed objects on a network, e.g. “public” or “private”.

set_get_community_string

This function sets the current get_community_string to a component of an equipment

from the managed objects on a network, e.g. “public” or “private”.

get_set_community_string

This function gets the current set_community_string to a component of an equipment

from the managed objects on a network, e.g. “public” or “private”.

EMStatus set_system_title(
 const RWCString& system_title
);

EMStatus get_get_community_string(
 RWCString& get_communitry_string
) const;

EMStatus set_get_community_string(
 const RWCString& get_community_string
);

EMStatus get_set_community_string(
 RWCString& set_community_string
) const;
Chapter 8 Topology API 8-141

EMSnmpAgent Class
set_set_community_string

This function sets the current set_community_string to a component of an equipment

from the managed objects on a network, e.g. “public” or “private”.

get_transport_address

This function gets the IP address of the system associated with the Internet agent,

specified as a string, such as “34.254.129.23”. An optional port number may be

appended, such as “34.254.129.23:5723”.

set_transport_address

This function sets the IP address of the system associated with the Internet agent,

specified as a string, such as “34.254.129.23”. An optional port number may be

appended, such as “34.254.129.23:5723”.

get_supported_mibs

This function gets the names of the MIBs that the SNMP agent supports.

EMStatus set_set_community_string(
 const RWCString& set_community_string
);

EMStatus get_transport_address(
 RWCString& transport_address
) const;

EMStatus set_transport_address(
 const RWCString& transport_address
);

EMStatus get_supported_mibs(
 RWTValSlistRWCString& supported_mibs
) const;
8-142 C++ API Reference • October 2001

EMSnmpAgent Class
set_supported_mibs

This function sets the names of the MIBs that the SNMP agent supports.

add_supported_mib

This function adds supported_mib to the names of the MIBs that the SNMP agent

supports.

remove_supported_mib

This function removes supported_mib from the names of the MIBs that the SNMP

agent supports.

get_management_protocol

This function gets the Internet management protocol used by the proxy to manage

devices. Possible values are EMSnmpAgent::snmp_v1 and EMSnmpAgent::snmp_v2.

EMStatus set_supported_mibs(
 const RWTValSlistRWCString& supported_mibs
);

EMStatus add_supported_mib(
 const RWCString& supported_mib
);

EMStatus remove_supported_mib(
 const RWCString& supported_mib
);

EMStatus get_management_protocol(
 EMSnmpAgent::ManagementProtocol& management_protocol
) const;
Chapter 8 Topology API 8-143

EMSnmpAgent Class
set_management_protocol

This function sets the Internet management protocol used by the proxy to manage

devices. Possible values are EMSnmpAgent::snmp_v1 and

EMSnmpAgent::snmp_v2 .

get_access_control_enforcement

This function gets and indicates where access control is applied: at the Internet

agent, the ISO/Internet proxy, or both. Possible values are EMSnmpAgent::agent ,

EMSnmpAgent::proxy , or EMSnmpAgent::both .

set_access_control_enforcement

This function sets and indicates where access control is applied: at the Internet

agent, the ISO/Internet proxy, or both. Possible values are EMSnmpAgent::agent ,

EMSnmpAgent::proxy , or EMSnmpAgent::both .

EMStatus set_management_protocol(
EMSnmpAgent::ManagementProtocol management_protocol

);

EMStatus get_access_control_enforcement(
EMSnmpAgent::AccessControlEnforcement&

access_control_enforcement
) const;

EMStatus set_access_control_enforcement(
EMSnmpAgent::AccessControlEnforcement

access_control_enforcement
);
8-144 C++ API Reference • October 2001

EMSnmpAgent Class
get_access_control_mechanism

This function gets and indicates whether no access control, Internet access control as

specified in [SNMPv2SEC], or ISO/CCITT access control as specified in [ISO10164-9]

is to be used. Possible values are EMSnmpAgent::no_access_control ,

EMSnmpAgent::internet , or EMSnmpAgent::iso .

set_access_control_mechanism

This function sets and Indicates whether no access control, Internet access control as

specified in [SNMPv2SEC], or ISO/CCITT access control as specified in [ISO10164-9]

is to be used. Possible values are EMSnmpAgent::no_access_control ,

EMSnmpAgent::internet , or EMSnmpAgent::iso .

8.24.4 Related Global Operators

The stream output operator << is defined to provide an easy way to print out the

value of EMSnmpAgent.

EMStatus get_access_control_mechanism(
EMSnmpAgent::AccessControlMechanism&

access_control_mechanism
) const;

EMStatus set_access_control_mechanism(
EMSnmpAgent::AccessControlMechanism

access_control_mechanism
);

ostream& operator<<(
ostream& s,
const EMSnmpAgent& agent
);
Chapter 8 Topology API 8-145

EMSnmpAgent Class
8-146 C++ API Reference • October 2001

CHAPTER 9

Object Services API

The Object Services API, or object development tools (ODT), allow developers who

implement object classes to send CMIS requests in an ODT application. This API is

useful for developing manager and agent network management applications.

Developers can use it to customize behaviors for the GDMO classes, rather than

accept the default behaviors.

The ODT do not allow users to extend or override any existing services or object

behavior within the MIS, such as the NerveCenter or Event Service.

This chapter comprises the following topics:

■ Section 9.1 “Operational Flow” on page 9-2

■ Section 9.2 “Service Request Function Parameters” on page 9-3

■ Section 9.3 “Service Response Callback Function Parameters” on page 9-7

■ Section 9.4 “Services Interface Descriptions and Examples” on page 9-7

■ Section 9.5 “Supporting Functions for Example Code” on page 9-57
9-1

Operational Flow
9.1 Operational Flow
The Object Services API provides a set of programming interfaces for use by an

application developer when writing object behavior software. An application

developer is not required to use the services functions. However, these functions

make it easier to perform some common tasks related to inter-object communication

from within.

The operational flow of a request issued using the Object Services API is based on

the PMI Message and MessageSAP C++ classes on object behavior. The Message
and MessageSAP C++ classes are used throughout the MIS and are also the basis for

the low level PMI interface. The Object Services API hides the Message classes and

the MessageSAP classes used by the low level PMI. The classes are hidden primarily

to simplify this API and also for the following reasons:

■ Most messages sent through this API can use a number of default values. The

Object Services API function calls provide default values for all parameters not

specifically required for a particular operation.

■ Only a single well defined MessageSAP is required for these functions. The

services function calls involve communication between the object access module

(OAM) and the message routing module (MRM). The OAM contains both user-

developed object behavior code and the generated object behavior code. The

MRM handles routing for all message requests and responses.
9-2 C++ API Reference • October 2001

Service Request Function Parameters
9.2 Service Request Function Parameters
TABLE 9-1 provides detailed descriptions of the Service Request Function parameters

defined for the Object Services API.

TABLE 9-1 Service Request Function Parameters

Parameter Description

const Asn1Value oc Instance of the Asn1Value C++ class that contains an Object

Identifier (OID) for a managed object class. For each of the Object

Service API request functions, except the send_event_req
function, this parameter can be the OID for Actual Class. Actual

Class is an ISO defined OID that matches the class of any

managed object on which an operation is performed. The oc
parameter is used as follows:

• Single Object Selection (Base Object Only Scoping):
The OID specifies the object class of the managed object from

which attribute values are retrieved, using the Get operation.

• Multiple Object Selection Using Scoping and Filtering:
The OID parameter specifies the object class of the managed

object used as the starting point for the selection of managed

objects from which attribute values are retrieved using the Get

operation.

The CMIS and CMIP specifications refer to this parameter as

either the base object class or managed object class, depending

on the type of operation being performed.

const Asn1Value oi Instance of the Asn1Value C++ class that contains either a

distinguished name (context specific 2) or a local distinguished

name (context specific 4) for a managed object instance. The oi
parameter is used as follows:

• Single Object Selection (Base Object Only Scoping):
The oi parameter specifies the name of the managed object

instance from which the request operation is performed.

• Multiple Object Selection Using Scoping and Filtering:
The oi parameter specifies the name of the managed object

instance to be used as the starting point for the selection of

managed objects on which the request operation is performed.

The CMIS and CMIP specifications refer to this parameter as

either the base object class or managed object instance,

depending on the type of operation being performed. Specify

this parameter as a null Asn1Value (Asn1Value()) if a managed

object instance name is specified by the superior_oi parameter.
Chapter 9 Object Services API 9-3

Service Request Function Parameters
const Callback cb Instance of the Callback C++ class, which can contain two

pointers. The first is a pointer of a callback function to be

invoked when a response to an operation is received. The second

is a pointer to application developer-specified data (commonly

referred to as user data) to be passed to the callback function

when it is invoked. The user data pointer is always optional. The

cb parameter is required, or optional for service request

functions that support it. If specified, a confirmed service request

is issued. If not specified, an unconfirmed service request is

issued.

const Asn1Value
attr_list

Instance of the Asn1Value C++ class that contains a set of OIDs

for attributes. Attributes are normally members of the object

class specified by the oc parameter or members of the class of an

object instance identified within a scoped operation.

const Asn1Value
modify_list

A set of attribute ID and attribute value pairs that specify for a

send_set_req service request operation which attributes are to

be modified and new values for those attributes. The modify_list
parameter is an instance of the Ans1Value C++ class and is

typically a sequence of an OID that identifies an attribute,

followed by a value for the attribute.

const Asn1Value
action_type

Instance of the Asn1Value C++ class that contains an object

identifier (OID) that specifies the type of action generated by the

send_action_req function.

const Asn1Value
action_info

Instance of the Asn1Value C++ class that contains any event

information associated with the type of action specified by the

action_type parameter. The action_info parameter typically

contains a sequence or set of ASN.1-defined values. The

action_info parameter is optional for the send_action_req
service function but must be present if a WITH INFORMATION
SYNTAXconstruct is specified as part of the GDMO definition for

the action type specified by the action_type parameter.

TABLE 9-1 Service Request Function Parameters (Continued)

Parameter Description
9-4 C++ API Reference • October 2001

Service Request Function Parameters
const Asn1Value
attr_value_list

A set of attribute ID and attribute value pairs that specify the

attributes assigned new values by a send_create_req service

request operation. The values specified in the

send_create_req service function override the corresponding

attributes from the reference object (if specified using the

reference_oi parameter) or from the default value specified in the

GDMO definition for the managed object class. The

attr_value_list parameter is an instance of the Asn1Value C++

class and is typically a sequence of an OID that identifies an

attribute, followed by a value for the attribute. The

attr_value_list parameter is an optional parameter for the

send_create_req service request, although values must be

specified for all mandatory attributes defined in the GDMO

managed object class definition for which an instance is being

created. In other words, the mandatory attribute values must be

specified in the GDMO definition in a default value clause,

supplied from a reference object, or else specified in the

attr_value_list .

const Asn1Value
superior_oi

An instance of the Asn1Value C++ class, this parameter is used

only with the send_create_req function. The parameter

contains either a distinguished name (context specific 2) or a

local distinguished name (context specific 4) for an existing

managed object instance that is to be the superior—in the MIT—

of the managed object instance created. This parameter should

not be specified, or should be specified as a null Asn1Value, if a

managed object instance name is specified by the oi parameter.

const Asn1Value
reference_oi

An instance of the Asn1Value C++ class, this parameter is used

only with the send_create_req function. It contains either a

distinguished name (context specific 2) or a local distinguished

name (context specific 4) for an existing managed object instance

that is of the same class as the managed object instance created.

Attribute values associated with the managed object specified by

the reference_oi parameter become default values for those

attributes not specified by the attr_value_list parameter of the

send_create_req function.

const Asn1Value
event_type

Instance of the Asn1Value C++ class that contains an OID

specifying the type of notification to be generated by the

send_event_req function.

TABLE 9-1 Service Request Function Parameters (Continued)

Parameter Description
Chapter 9 Object Services API 9-5

Service Request Function Parameters
const Asn1Value
event_info

An Asn1Value C++ class that contains any event information

associated with the type of notification specified by the

event_type parameter. This parameter typically contains a

sequence or set of ASN.1-defined values and is optional for the

send_event_req service function. It must be present if a WITH
INFORMATION SYNTAXconstruct is specified as part of the

GDMO definition for the notification type specified by the

event_type parameter.

const Asn1Value
event_time

Instance of the Asn1Value C++ class containing a value for the

time at which a notification is generated.

MessId id Identifier that uniquely identifies a service request operation. If

specified, the value for this parameter is generated and set by the

service request function.

const MessScope scope Specifies the type of scoping used for a service request operation.

The possible types of scoping are BASE_OBJECT,
NTH_LEVEL,BASE-TO-NTH_Level, and ALL_LEVELS. It is

optional for all service request functions that support it. If not

specified, it defaults to BASE_OBJECT.

const Asn1Value filter Instance of the Asn1Value C++ class that contains a CMISFilter

(refer to the ISO DMI for a definition of the CMIS filter). All

objects selected by the scoping parameter are tested against a

filter. The service request operation is performed only on those

objects that pass the filter test. It is an optional parameter for all

service request functions that support it. If not specified, it

defaults to a filter that matches all managed objects selected by

the scope parameter.

const MessSync sync Specifies the type of synchronization used for a service request

operation. It is an enumerated type and can take on the value

ATOMICor BEST_EFFORT. It is an optional parameter for all

service request functions that support it. If not specified, it

defaults to BEST_EFFORT. The use of ATOMICis rarely supported

by remote objects.

const Asn1Value
access

A reserved parameter not normally specified. The access
parameter defines the access control that objects selected for a

service request operation must pass. The service request

operation is not performed by any managed object that does not

pass the access control.

TABLE 9-1 Service Request Function Parameters (Continued)

Parameter Description
9-6 C++ API Reference • October 2001

Service Response Callback Function Parameters
9.3 Service Response Callback Function
Parameters
TABLE 9-2 describes the Service Response Callback Function Parameters.

9.4 Services Interface Descriptions and
Examples
The following service request functions and service indication functions are

supported by the Object Services API. In general, the services interfaces specified

here contain both mandatory and optional parameters. Mandatory parameters are

typically passed by reference. Optional parameters are typically passed either by

value or by a pointer to a value. Mandatory parameters are ordered prior to the

optional parameters for each function. Optional parameters for each function are

ordered by placing the most-likely-to-be-specified optional parameters first.

This section includes the following functions:

■ Get Request Service

■ Get Response Callback

■ Set Request Service

■ Set Response Callback

■ Action Request Service

■ Action Response Callback

■ Create Request Service

TABLE 9-2 Service Response Callback Function Parameters

Parameter Description

Ptr userdata Optional parameter intended for all service response callback

functions. It is a void * pointer to data specified by the

application developer in the callback parameter of a service

request function.

Ptr message Mandatory parameter for all service response callback

functions. It is a void * pointer to the message generated in

response to a service request function.
Chapter 9 Object Services API 9-7

Services Interface Descriptions and Examples
■ Create Response Callback

■ Delete Request Service

■ Delete Response Callback

■ Delete Response Callback Parameter Description

■ Event Report Request Service (Unconfirmed)

■ Event Report Response Callback

9.4.1 Get Request Service

Enables you to override GDMO restrictions that are related to managed object (MO)

attribute getting.

The following subsections describe and provide examples of the Get Request

Service.

9.4.1.1 Get Request Service

The rules for getting an MO’s attributes are defined in the MO class definition in a

GDMO document. The rules impose restrictions on getting attributes, and it is

possible to override some of these restrictions when requesting the getting of an

MO’s attributes through the send_get_req() function. Specifically, the absence of

a GETor GET-REPLACEmodifier for an attribute is intended to have the effect of

restricting the getting of an attribute by a management application.

To allow behavior internal to the MIS to override this restriction, this function is

defined with a flags parameter. The relevant flag value is

ReqMess::OVERRIDE_ATTR_CHECKS, which is defined in message.hh .

Note – In the case where a scope and filter are specified, the override capability

only applies to the base object, and not to the scoped and filtered objects.
9-8 C++ API Reference • October 2001

Services Interface Descriptions and Examples
9.4.1.2 Interface Signature

9.4.1.3 send_get_request Parameter Descriptions

TABLE 9-3 describes the send_get_request parameters.

Result send_get_req (
const Asn1Value &oc,
const Asn1Value &oi,
const Callback &cb, // Always confirmed
const Asn1Value attr_list = Asn1Value(),

// Default: Get all attributes
MessId *id =0,
const MessScope scope = MessScope(),

//Default: Base object only
const Asn1Value filter = Asn1Value(), //Default: Matches all
const MessSync sync = BEST_EFFORT,
const Asn1Value access = Asn1Value(),
Boolean sub_trans

); //Default: No access cntrl

TABLE 9-3 send_get_request Parameters

Parameter Description
Required/
Optional

const Asn1Value oc Specifies the class of the base managed object. Required

const Asn1Value oi Distinguished name of local distinguished name

for the base managed object.

Required

const Callback cb Specifies the name of a callback function invoked

when a response to the get request is received

and can be used to specify user data that is

passed to the callback function when it is

invoked.

Required

const Asn1Value
attr_list

List of attribute OIDs whose attribute values are

to be returned in response to the get request

operation. If not specified, all attributes defined

for the managed object class are returned in the

response.

Optional

MessId id Provides a unique identifier for a particular Get

request operation. If specified, the value for this

parameter is generated and set by the

send_get_req function.

Optional
Chapter 9 Object Services API 9-9

Services Interface Descriptions and Examples
const MessScope scope Defines the type of scoping used for this request

operation. If not specified, it defaults to

BASE_OBJECT_ONLY.

Optional

const Asn1Value filter Defines a filter to be passed by all objects selected

by the scoping parameter. If not specified, it

defaults to a filter that matches all managed

objects selected by the scope parameter.

Optional

const MessSync sync Defines the type of synchronization used for this

request operation. If not specified, it defaults to

BEST_EFFORT.

Optional

Boolean sub_trans Spawn subtransactions instead of creating new

transactions. If sub_trans is not specified, the

default behavior is to create a new transaction for

the operation.

Optional

const Asn1Value
access

Reserved parameter that should not be used at

this time.

Not

available

TABLE 9-3 send_get_request Parameters (Continued)

Parameter Description
Required/
Optional
9-10 C++ API Reference • October 2001

Services Interface Descriptions and Examples
9.4.1.4 send_get_request Examples

Get Request: Base Object Only

CODE EXAMPLE 9-1 Get Request: Base Object Only Example

Result
get_system_object_attributes(char *system_name)
{

Asn1Value actual_oc;
Asn1Value system_oi;

//**
// (Confirmed) Get request
//**
// Send a get request to an instance of the
// system managed object class. The system
// the request is sent to is identified by
// the system_name parameter.

VTRY {

// Encode oc OID. In this example, actualClass is used
// instead of the OID for the system managed object
// class.
// Note: CMIP requires a TAG_CONT(0) encoding for the
// object class rather than TAG_OID (refer to x711.asn1
// for encoding spec).

TTRYRES(actual_oc.encode_oid(TAG_CONT(0),
Oid("2.9.3.4.3.42")));

// Encode the distinguished name for an instance of the
// system managed object class. Either the distinguished
// name form (TAG_CONT(2)) or the local distinguished name
// form (TAG_CONT(4)) can be used with the get operation.
// The distinguished name form is used in this example.
// The get_sys_dn function is included in Section 9.5.

TTRYRES(get_sys_dn(system_name, system_oi));

// In this example, all attributes from the system object
class

// are retrieved. No attribute ID list is required.

// Send the get request (Always Confirmed). No user data is
Chapter 9 Object Services API 9-11

Services Interface Descriptions and Examples
Get Request: Scoped Operation

// specified for the callback parameter. The get_req_cb
function

// is included as part of the Object Services API examples.

 objsvc_test.print("About to issue Get Request\n");
 if (send_get_req(actual_oc, system_oi,
 Callback(get_req_cb, 0)) != OK) {
 objsvc_test.print("Error issuing Get Request\n");

return NOT_OK;
}
else

objsvc_test.print("Issued Get Request\n");
}
VBEGHANDLERS
VCATCHALL {
objsvc_test.print("\nError encoding Get Request\n");
return NOT_OK;
}
VENDHANDLERS
return OK;

}

CODE EXAMPLE 9-2 Get Request: Scoped Operation Example

Result
get_application_attributes(char *system_name)
{

Asn1Value actual_oc;
Asn1Value system_oi;
Asn1Value em_mis_rdn;

//************************************
// (Confirmed) Scoped get request
//************************************
// Get the emApplicationID, emApplicationType, and the
// emUserID attribute values for each application instance
// object under an emKernel object. The emKernel object
// is located under the system object in the MIT.

VTRY {

// Encode oc OID. In this example, actualClass is used

CODE EXAMPLE 9-1 Get Request: Base Object Only Example (Continued)
9-12 C++ API Reference • October 2001

Services Interface Descriptions and Examples
// instead of the OID for the system managed object
// class.
// Note: CMIP requires a TAG_CONT(0) encoding for the
// object class rather than TAG_OID (refer to x711.asn1
// for encoding spec).

TTRYRES(actual_oc.encode_oid(TAG_CONT(0),
Oid("2.9.3.4.3.42")));

// Encode the distinguished name for an instance of the
// emKernel managed object class. Either the distinguished
// name form (TAG_CONT(2)) or the local distinguished name
// form (TAG_CONT(4)) can be used with the get operation.
// The distinguished name form is used in this example.
// The get_sys_dn and get_graphstr_rdn functions are included
// in Section 9.5.

TTRYRES(get_sys_dn(system_name, system_oi));
TTRYRES(get_graphstr_rdn(

"2.9.3.5.7.11","EM-MIS", em_mis_rdn));
TTRYRES(system_oi.add_component(em_mis_rdn));

// Encode the attribute list. The CMIP spec specifies
// TAG_CONT(12) as the tag for the attribute list.

Asn1Value attrlist;
Asn1Value enc_oid1, enc_oid2, enc_oid6;
Oid oid1("1.3.6.1.4.1.42.2.2.2.1.7.1"); // emApplicationID
Oid oid2("1.3.6.1.4.1.42.2.2.2.1.7.2"); // emApplicationType
Oid oid6("1.3.6.1.4.1.42.2.2.2.1.7.6"); // emUserID
TTRYRES(attrlist.start_construct(TAG_CONT(12)));
TTRYRES(enc_oid1.encode_oid(TAG_CONT(0), oid1));
TTRYRES(enc_oid2.encode_oid(TAG_CONT(0), oid2));
TTRYRES(enc_oid6.encode_oid(TAG_CONT(0), oid6));
TTRYRES(attrlist.add_component(enc_oid1));
TTRYRES(attrlist.add_component(enc_oid2));
TTRYRES(attrlist.add_component(enc_oid6));

// Send the scoped get request (Always Confirmed). No user
data

// is specified for the callback parameter. The
// scoped_get_req_cb function is included as part of the
// Object Services API examples.

objsvc_test.print("About to issue Scoped Get Request\n");
 if (send_get_req(actual_oc, system_oi,

CODE EXAMPLE 9-2 Get Request: Scoped Operation Example (Continued)
Chapter 9 Object Services API 9-13

Services Interface Descriptions and Examples
 Callback(scoped_get_req_cb, 0), attrlist,
0, MessScope(NTH_LEVEL, 1)) != OK) {

 objsvc_test.print("Error issuing Scoped Get
Request\n");

return NOT_OK;
}
else

objsvc_test.print("Issued Scoped Get Request\n");
}
VBEGHANDLERS
VCATCHALL {
objsvc_test.print("\nError encoding Get Request\n");
return NOT_OK;
}
VENDHANDLERS
return OK;

}

CODE EXAMPLE 9-2 Get Request: Scoped Operation Example (Continued)
9-14 C++ API Reference • October 2001

Services Interface Descriptions and Examples
9.4.2 Get Response Callback

The send_get_req service function requires a callback function. The name of the

callback function provided by the application developer must match the name of the

callback function specified in the Callback parameter of the send_get_req
function.

9.4.2.1 Interface Signature

9.4.2.2 Get Response Callback Parameter Descriptions

TABLE 9-4 shows the Get response callback parameters.

void user-provided-get-response-callback(
Ptr userdata, // Pointer to user supplied data
Ptr message); // Pointer to GetRes message

TABLE 9-4 Get Response Callback Parameters

Parameter Description

userdata A void * pointer to data specified by the application developer

in the callback parameter of the send_get_req function.

message A void * pointer to the GetRes message generated in response

to the send_get_req function.
Chapter 9 Object Services API 9-15

Services Interface Descriptions and Examples
9.4.2.3 Get Response Callback Examples

Callback Function: Single Response (Base Object Only)

CODE EXAMPLE 9-3 Callback Function: Single Response

void
get_req_cb(Ptr, Ptr get_response_msg)
{

objsvc_test.print("Get Request callback\n");
Message *resp = (Message *)get_response_msg;

VTRY {
if (resp->type() == GET_RES) {

GetRes *g_resp = (GetRes *)resp;
g_resp->print(objsvc_test);

// The Asn1Value decoding functions, including the
// member functions get_first_component and
// get_next_component can be used to examine the member data
// included in the response message at this point

// ...

}
else if (resp->is_error()) {

objsvc_test.print("Get response error received\n");
objsvc_test.print("message type = %s\n",

MessType_fmt(resp->type()));
resp->print(objsvc_error);

}
else {

objsvc_test.print(
"Unexpected or invalid response received\n");

objsvc_test.print("message type = %s\n",
MessType_fmt(resp->type()));

resp->print(objsvc_error);
}
}
VBEGHANDLERS
VCATCHALL {
objsvc_test.print("Error processing response for Get\n");
resp->print(objsvc_error);
}
VENDHANDLERS
9-16 C++ API Reference • October 2001

Services Interface Descriptions and Examples
Callback Function: Multiple Responses (Scoped Operation)

if (resp)
Message:: delete_message(resp);

}

CODE EXAMPLE 9-4 Callback Function: Multiple Responses

static int resp_count = 0;
static int err_count = 0;
static int unknown_count = 0;
void
scoped_get_req_cb(Ptr userdata, Ptr calldata)
{

objsvc_test.print("Scoped Get Request callback:");
Message *resp = (Message *)calldata;

VTRY {
if (resp->type() == GET_RES) {

GetRes *sg_resp = (GetRes *)resp;
if (sg_resp->linked) {

objsvc_test.print("*** LINKED Response ***\n");
resp_count++;
sg_resp->print(objsvc_test);

// The Asn1Value decoding functions, including the
// member functions get_first_component and
// get_next_component can be used to examine the member
// data included in the response message here.

// ...

} else {
objsvc_test.print("**** Final Response ****\n");
sg_resp->print(objsvc_test);
objsvc_test.print("Valid: %d, Error: %d,Invalid: %d\n",

resp_count, err_count, unknown_count);

// Final response processing can be performed here. The
// final response message does not contain any attribute
// value data

// ...

CODE EXAMPLE 9-3 Callback Function: Single Response (Continued)
Chapter 9 Object Services API 9-17

Services Interface Descriptions and Examples
}
}
else if (resp->is_error()) {

objsvc_test.print("Error Response\n");
objsvc_test.print("message type = %s\n",

MessType_fmt(resp->type()));
resp->print(objsvc_error);
err_count++;

}
else {

objsvc_test.print("Invalid Message\n");
objsvc_test.print("message type = %s\n",

MessType_fmt(resp->type()));
resp->print(objsvc_error);
unknown_count++;

}
}
VBEGHANDLERS
VCATCHALL {
objsvc_test.print("\nError processing response for Scoped

Get\n");
}
VENDHANDLERS

if (resp)
Message:: delete_message(resp);

}

CODE EXAMPLE 9-4 Callback Function: Multiple Responses (Continued)
9-18 C++ API Reference • October 2001

Services Interface Descriptions and Examples
9.4.3 Set Request Service

Enables you to override GDMO restrictions that are related to MO attribute setting.

This section describes the interface signature, send_set_request parameters, and

provides an example of its use.

9.4.3.1 Set Request Service

The rules for setting an MO's attributes are defined in the MO class definition in a

GDMO document. The rules impose restrictions on the setting of attributes, but it is

possible to override some of these restrictions when requesting the setting of an

MO's attributes through the send_set_req() function. Specifically, the absence of

a REPLACE, GET-REPLACE, or ADD-REMOVEmodifier for an attribute is intended to

have the effect of restricting the setting of an attribute by a management application.

To allow behavior internal to the MIS to override this restriction, this function is

defined with a flags parameter. The relevant flag value is

ReqMess::OVERRIDE_ATTR_CHECKS, which is defined in message.hh .

Note – In the case where a scope and filter are specified the override capability only

applies to the base object, and not to the scoped and filtered objects.
Chapter 9 Object Services API 9-19

Services Interface Descriptions and Examples
9.4.3.2 Interface Signature

9.4.3.3 send_set_request Parameter Descriptions

TABLE 9-5 provides descriptions of the send_set_request parameters.

CODE EXAMPLE 9-5 Set Request Interface Signature

Result send_set_req (
const Asn1Value & oc,
const Asn1Value & oi,
const Asn1Value & modify_list,
const Callback cb = 0, // Default: Unconfirmed
MessId *id = 0,
const MessScope scope = MessScope(),

// Default: Is base object only
const Asn1Value filter = Asn1Value(), // Default: Matches all
const MessSync sync = BEST_EFFORT,
const Asn1Value access = Asn1Value(),
Boolean sub_trans); // Default: No access cntrl

TABLE 9-5 send_set_request Parameters

Parameter Description
Required/
Optional

const
Asn1Value oc

OID that specifies the class of the base managed object. Required

const
Asn1Value oi

Distinguished name or local distinguished name for the

base managed object.

Required

const
Ans1Value
modify_list

List of attribute ID and attribute value pairs that specify

which attributes are to be modified by the set request

operation and what the new values are for the attributes.

Required

const
Callback cb

Specifies the name of a callback function invoked when a

response to the set request operation is received. Can also

be used to specify user data passed to the callback function

when it is invoked. If specified, a confirmed set request

operation is issued and the callback function is invoked

when the response is received. If not specified, an

unconfirmed set request operation is issued and no

response is generated.

Optional

MessId id Provides a unique identifier for a particular set request

operation. If specified, the value for this parameter is

generated and set by the send_set_req function.

Optional
9-20 C++ API Reference • October 2001

Services Interface Descriptions and Examples
const
MessScope
scope

Defines the type of scoping used for this request operation.

If not specified, it defaults to BASE_OBJECT_ONLY.
Optional

const
Asn1Value
filter

Defines a filter to be passed by all objects selected by the

scoping parameter. If not specified, it defaults to a filter

that matches all managed objects selected by the scope
parameter.

Optional

const
MessSync sync

Defines the type of synchronization used for this request

operation. If not specified, it defaults to BEST_EFFORT.
Optional

Boolean
sub_trans

Spawn subtransactions instead of creating new

transactions. If sub_trans is not specified, the default

behavior is to create a new transaction for the operation.

Optional

const
Asn1Value
access

This parameter is reserved at this time. Not

available

TABLE 9-5 send_set_request Parameters (Continued)

Parameter Description
Required/
Optional
Chapter 9 Object Services API 9-21

Services Interface Descriptions and Examples
9.4.3.4 send_set_request Example

CODE EXAMPLE 9-6 send_set_request

Result
set_log_adminState(char *system_name)
{

Asn1Value actual_oc;
Asn1Value log_fdn;
Asn1Value log_rdn;
Asn1Value mod_list;

//**
// Confirmed Set request
//**
// Send a confirmed set request to an instance of the
// log managed object class. The log that
// the request is sent to is
// contained under the system identified by
// the system_name parameter.

VTRY {

// Encode oc OID. In this example, actualClass is used
// instead of the OID for the log managed object
// class.
// Note: CMIP requires a TAG_CONT(0) encoding for the
// object class rather than TAG_OID (refer to x711.asn1
// for encoding spec).

TTRYRES(actual_oc.encode_oid(TAG_CONT(0),
Oid("2.9.3.4.3.42")));

// Encode the distinguished name for an instance of the
// log managed object class. The instance logId="AlarmLog"
// is used here. Either the distinguished name form
// (TAG_CONT(2)) or the local distinguished name form
// (TAG_CONT(4)) can be used with the set operation. The
// distinguished name form is used in this example.
// The get_sys_dn and get_graphstr_rdn functions are included
// in Section 9.5.

TTRYRES(get_sys_dn(system_name, log_fdn));
TTRYRES(get_graphstr_rdn(Oid("2.9.3.2.7.2"), "AlarmLog",

log_rdn));
TTRYRES(log_fdn.add_component(log_rdn));
9-22 C++ API Reference • October 2001

Services Interface Descriptions and Examples
// Encode the modification list for the set operation.
// The administrativeState of the log object is set to
// locked in this example.
// The CMIP spec specifies TAG_CONT(12) as the tag for
// the attribute modification list.

TTRYRES(modlist.start_construct(TAG_CONT(12)));
Asn1Value av;
TTRYRES(av.encode_enum(TAG_ENUM, 0)); // Set to LOCKED
Asn1Value set;//1 is unlocked
Asn1Value comp;//set the sequence of attr. ID and value pair
Oid oid("2.9.3.2.7.31"); // Set administrativeState
TTRYRES(set.start_construct(TAG_SEQ));
TTRYRES(comp.encode_oid(TAG_CONT(0), oid));
TTRYRES(set.add_component(comp));
TTRYRES(set.add_component(av));
TTRYRES(modlist.add_component(set));

// Send the confirmed set request. No user data is
// specified for the callback parameter. The set_req_cb

function
// is included as part of the Object Services API examples.

oamsvc_test.print("About to issue Confirmed Set Request\n");
if (send_set_req(actual_oc, log_fdn, modlist,

Callback(set_req_cb, userdata)) != OK)
 objsvc_test.print("Error issuing Confirmed Set
Request\n");

return NOT_OK;
}
else

objsvc_test.print("Issued Confirmed Set Request\n");
}
VBEGHANDLERS
VCATCHALL {
objsvc_test.print("\nError encoding Set Request\n");
return NOT_OK;
}
VENDHANDLERS
return OK;

}

CODE EXAMPLE 9-6 send_set_request (Continued)
Chapter 9 Object Services API 9-23

Services Interface Descriptions and Examples
9.4.4 Set Response Callback

This callback function is used only in conjunction with confirmed Set requests. The

name of the callback function must match the name of the callback function

specified in the callback parameter of the send_set_req function.

9.4.4.1 Interface Signature

9.4.4.2 Set Response Callback Parameter Description

TABLE 9-6 describes the Set Response Callback parameters.

void user-provided-set-response-callback(
Ptr userdata, // Pointer to user supplied data
Ptr message); // Pointer to SetRes message

TABLE 9-6 Set Response Callback Parameters

Parameter Description

Ptr userdata A void * pointer to data specified by the application

developer in the callback parameter of the send_set_req

function.

Ptr message A void * pointer to the SetRes message generated in

response to the send_set_req function.
9-24 C++ API Reference • October 2001

Services Interface Descriptions and Examples
9.4.4.3 Set Response Callback Example

CODE EXAMPLE 9-7 Set Response Example

void
set_req_cb(Ptr, Ptr set_response_msg)
{

objsvc_test.print("Set Request callback\n");
Message *resp = (Message *)set_response_msg;

VTRY {
if (resp->type() == SET_RES) {

SetRes *s_resp = (SetRes *)resp;
s_resp->print(objsvc_test);

// The Asn1Value decoding functions, including the
// member functions get_first_component and
// get_next_component can be used to examine the member data
// included in the response message at this point

// ...

}
else if (resp->is_error()) {

objsvc_test.print("Set response error received\n");
objsvc_test.print("message type = %s\n",

MessType_fmt(resp->type()));
resp->print(objsvc_error);

}
else {

objsvc_test.print(
"Unexpected or invalid response received\n");

objsvc_test.print("message type = %s\n",
MessType_fmt(resp->type()));

resp->print(objsvc_error);
}
}
VBEGHANDLERS
VCATCHALL {
oamsvc_test.print("Error processing response for Set\n");
}
VENDHANDLERS

if (resp)
Message:: delete_message(resp);

}

Chapter 9 Object Services API 9-25

Services Interface Descriptions and Examples
9.4.5 Action Request Service

9.4.5.1 Interface Signature

9.4.5.2 send_action_req Parameter Descriptions

TABLE 9-7 describes the send_action_req parameters.

CODE EXAMPLE 9-8 Interface Signature for Action Request Service

Result send_action_req (
const Asn1Value & oc,
const Asn1Value & oi,
const Asn1Value & action_type,
const Asn1Value action_info = Asn1Value(), //Default:Noaction Info
const Callback cb = 0, // Default: Unconfirmed
MessId *id = 0,
const MessScope scope = MessScope(), // Default: Base object Only
const Asn1Value filter = Asn1Value(), // Default: Matches all
const MessSync sync = BEST_EFFORT,
const Asn1Value access = Asn1Value()); // Default: No access Cntrl

TABLE 9-7 send_action_req Parameters

Parameter Description
Required/
Optional

const Asn1Value oc OID that specifies the class of the base managed

object.

Required

const Asn1Value oi Distinguished name or local distinguished name

for the base managed object.

Required

const Asn1Value
action_type

OID that specifies the type of action to be

performed by the send_action_req function.

Required

const Asn1Value
action_info

Contains information associated with the type of

action specified by the action_type parameter. This

option must be specified if a WITH INFORMATION
SYNTAXconstruct is part of the GDMO definition

for the action type specified by the action_type
parameter.

Optional
9-26 C++ API Reference • October 2001

Services Interface Descriptions and Examples
const Callback cb Specifies the name of a callback function invoked

when a response to the action request operation is

received and can be used to specify user data that

is passed to the callback function when it is

invoked. The callback parameter is optional for the

send_action_req function. If specified, a

confirmed action request operation is issued and

the callback function is invoked when the response

is received. If not specified, an unconfirmed action

request operation is issued and no response is

generated.

Optional

MessId id Provides a unique identifier for a particular action

request operation. If specified, the value for this

parameter is generated and set by the

send_action_req function.

Optional

const MessScope
scope

Defines the type of scoping used for this request

operation. If not specified, it defaults to

BASE_OBJECT_ONLY.

Optional

const Asn1Value
filter

Defines a filter to be passed by all objects selected

by the scoping parameter. If not specified, it

defaults to a filter that matches all managed objects

selected by the scope parameter.

Optional

const MessSync sync Defines the type of synchronization used for this

request operation. If not specified, it defaults to

BEST_EFFORT.

Optional

const Asn1Value
access

Reserved parameter that should not be used at this

time.

Not

available

TABLE 9-7 send_action_req Parameters (Continued)

Parameter Description
Required/
Optional
Chapter 9 Object Services API 9-27

Services Interface Descriptions and Examples
9.4.5.3 send_action_req Example

CODE EXAMPLE 9-9 send_action_req

Result
send_registerLocal_action(char *local_sys, char *remote_sys)
{

Asn1Value actual_oc;
Asn1Value dalarm_fdn;
Asn1Value em_mis_rdn;
Asn1Value dalarm_rdn;
Asn1Value act_type;
Asn1Value act_info;
char local_sys_id[100];
char remote_sys_id[100];
Asn1Value local_id;
Asn1Value remote_id;
Asn1Value log_id;

//**
// Confirmed Action request
//**
// Send a confirmed registerLocal action request to an
// instance of the distributed alarm manager object class.
// The distributed alarm log manager that the request
// is sent to is contained under the system identified
// by the remote_sys parameter. The local_sys parameter
// is the name of the system that contains the distributed
// alarm log manager issuing this request.

VTRY {

// Encode oc OID. In this example, actualClass is used
// instead of the OID for the log managed object
// class.
// Note: CMIP requires a TAG_CONT(0) encoding for the
// object class rather than TAG_OID (refer to x711.asn1
// for encoding spec).

TTRYRES(actual_oc.encode_oid(TAG_CONT(0),
Oid("2.9.3.4.3.42")));

// Encode the distinguished name for an instance of the
// distributed alarm log manager managed object class. The
// distributed alarm log manager is always named
// “Distrib_AlarmLog”
// Either the distinguished name form (TAG_CONT(2))
9-28 C++ API Reference • October 2001

Services Interface Descriptions and Examples
// or the local distinguished name form (TAG_CONT(4)) can be
// used with the action operation. The distinguished name form
// is used in this example.
// The get_sys_dn and get_graphstr_rdn functions are included
// in Section 9.5.

TTRYRES(get_sys_dn(remote_sys, dalarm_fdn));
TTRYRES(get_graphstr_rdn("2.9.3.5.7.11",

"EM-MIS", em_mis_rdn));
TTRYRES(get_graphstr_rdn(

Oid("1.3.6.1.4.1.42.2.2.2.300.7.1", "Distrib-AlarmLog",
dalarm_rdn));

TTRYRES(dalarm_fdn.add_component(em_mis_rdn));
TTRYRES(dalarm_fdn.add_component(dalarm_rdn));

// Encode the action type and action info parameters
// for the action operation. The ASN.1 for the registerLocal
// action_info is:
// LocalRegistrar ::= SEQUENCE
// {
// receiverMIS SystemId,
// senderMIS SystemId,
// logId SimpleNameType
// }
// The SystemIds for each of the systems also include
// a port number -- 5555 in this example. Port 5555
// is the default CMIP/LPP port used by the MIS.
// The CMIP spec specifies TAG_CONT(2) as the Tag for
// the action type.
TTRYRES(act_type.encode_oid(TAG_CONT(2),

Oid("1.3.6.1.4.1.42.2.2.2.300.9.4")));

sprintf(local_sys_id, "%s:%s", local_sys, "5555");
TTRYRES(local_id.encode_octets(TAG_GRAPHSTR,

DataUnit((char *)&local_sys_id)));
sprintf(remote_sys_id,"%s:%s", remote_sys, "5555");
TTRYRES(remote_id.encode_octets(TAG_GRAPHSTR,

DataUnit((char *)&remote_sys_id)));
TTRYRES(log_id.encode_octets(TAG_GRAPHSTR, "AlarmLog"));

TTRYRES(act_info.start_construct(TAG_SEQ));
TTRYRES(act_info.add_component(remote_id));
TTRYRES(act_info.add_component(local_id));
TTRYRES(act_info.add_component(log_id));

// Send the confirmed action request. No user data is

CODE EXAMPLE 9-9 send_action_req (Continued)
Chapter 9 Object Services API 9-29

Services Interface Descriptions and Examples
9.4.6 Action Response Callback

This callback function is used only in conjunction with confirmed action requests.

The name of the callback function must match the name of the callback function

specified in the callback parameter of the send_action_req function.

// specified for the callback parameter. The action_req_cb
// function is included as part of the services
// API examples.

oamsvc_test.print("About to issue Confirmed Action
Request\n");

if (send_action_req(actual_oc, dalarm_fdn, act_type,
act_info, Callback(action_req_cb, 0)) != OK)

 objsvc_test.print("Error issuing Confirmed Action
Request\n");

return NOT_OK;
}
else

objsvc_test.print("Issued Confirmed Action Request\n");
}
VBEGHANDLERS
VCATCHALL {
objsvc_test.print("\nError encoding Action Request\n");
return NOT_OK;
}
VENDHANDLERS
return OK;

}

CODE EXAMPLE 9-9 send_action_req (Continued)
9-30 C++ API Reference • October 2001

Services Interface Descriptions and Examples
9.4.6.1 Interface Signature

9.4.6.2 Action Response Callback Parameter Description

TABLE 9-8 describes the action response callback parameters.

9.4.6.3 Action Response Callback Example

The header file dalarm.hh is needed to successfully compile and link this example.

The header file is needed to obtain the type definition for the RegState data type.

void user-provided-action-response-callback(
Ptr userdata, // Pointer to user supplied data
Ptr message); // Pointer to ActionRes message

TABLE 9-8 Action Response Callback Parameters

Parameter Description

Ptr userdata A void * pointer to data specified by the application

developer in the callback parameter of the send_action_req

function.

Ptr message A void * pointer to the ActionRes message generated in

response to the send_action_req function.

CODE EXAMPLE 9-10 Action Response Callback

void
action_req_cb(Ptr, Ptr action_response_msg)
{

objsvc_test.print("Action Request callback\n");
Message *resp = (Message *)action_response_msg;

VTRY {
if (resp->type() == Action_RES) {

ActionRes *a_resp = (ActionRes *)resp;
a_resp->print(objsvc_test);

// Decode the action reply field
// LocalRegistrarReply ::= SEQUENCE
// {
Chapter 9 Object Services API 9-31

Services Interface Descriptions and Examples
// senderMIS SystemId,
// logId SimpleNameType,
// regStatus RegistrationState
// }

Asn1Value remote_id, log_id, reg_state;
DataUnit sndr_du, log_du;
I32 reg_val;
RegState reg;

TTRYRES(a_resp->action_reply.
first_component(remote_id));

TTRYRES(remote_id.decode_octets(sndr_du));
TTRYRES(a_resp->action_reply.next_component(

remote_id, log_id));
TTRYRES(log.decode_octets(log_du));
TTRYRES(a_resp->action_reply.next_component(

log_id, reg_state));
TTRYRES(reg_state.decode_enum(reg_val));
reg = (RegState)reg_val;

// Now do any other action response processing.
// ...

}
else if (resp->is_error()) {

objsvc_test.print("Action response error received\n");
objsvc_test.print("message type = %s\n",

MessType_fmt(resp->type()));
resp->print(objsvc_error);

}
else {

objsvc_test.print(
"Unexpected or invalid response received\n");

objsvc_test.print("message type = %s\n",
MessType_fmt(resp->type()));

resp->print(objsvc_error);
}
}
VBEGHANDLERS
VCATCHALL {
oamsvc_test.print("Error processing response for Action\n");
}
VENDHANDLERS

CODE EXAMPLE 9-10 Action Response Callback (Continued)
9-32 C++ API Reference • October 2001

Services Interface Descriptions and Examples
9.4.7 Create Request Service

Enables you to override GDMO restrictions that are related to MO creation.

9.4.7.1 Create Request Service

The rules for creating an MO are defined in the MO class definition and the name

bindings in a GDMO document. The rules which are defined in the name bindings

impose restrictions on the creation of MOs, but it is possible to override some of

these restrictions when requesting creation of an MO through the function

send_create_req() . Specifically, the absence of a CREATEconstruct in the name

binding is intended to have the effect of restricting the creation of an MO by a

management application.

To allow behavior internal to the MIS to override this restriction, this function is

defined with a flags parameter. The relevant flag value is

ReqMess::OVERRIDE_NAME_BINDING, which is defined in message.hh .

if (resp)
Message:: delete_message(resp);

}

CODE EXAMPLE 9-10 Action Response Callback (Continued)
Chapter 9 Object Services API 9-33

Services Interface Descriptions and Examples
9.4.7.2 Interface Signature

9.4.7.3 send_create_req Parameter Descriptions

TABLE 9-9 describes the send_create_req parameters.

Result send_create_req (
const Asn1Value & oc,
const Asn1Value & oi,
const Asn1Value attr_value_list = Asn1Value(),
const Callback cb = 0,// Default: Unconfirmed
MessId * id = 0,
const Asn1Value superior_oi = Asn1Value(),
const Asn1Value reference_oi = Asn1Value(),
const Asn1Value access = Asn1Value(),
Boolean sub_trans

); / Default: No access ctrl

TABLE 9-9 send_create_req Parameters

Parameter Description
Required/
Optional

const Asn1Value oc OID that specifies the class of the managed

object.

Required

const Asn1Value oi Distinguished name or local distinguished

name for the managed object.

Required

const Asn1Value
attr_value_list

Set of attribute ID and attribute value pairs that

specify the attributes assigned new values by a

send_create_req service request operation.

The values specified in the send_create_req
service function override the corresponding

attributes from the reference object (if specified)

or from the default value specified in the

GDMO definition for the managed object class.

Although this is an optional parameter,

attribute values must be specified for all

mandatory attributes defined for a GDMO

managed object class, specified by a default

value, by a reference object, or by this

parameter.

Optional
9-34 C++ API Reference • October 2001

Services Interface Descriptions and Examples
9.4.7.4 send_create_req Example

CODE EXAMPLE 9-11 shows how to override restrictions on creating an MO.

const Callback cb Specifies the name of a callback function

invoked when a response to the create request

operation is received. Can be used to specify

user data passed to the callback function when

it is invoked. Callback parameter is optional for

the send_create_req function. If specified, a

confirmed create request operation is issued

and the callback function is invoked when the

response is received. If not specified, an

unconfirmed create request operation is issued

and no response is generated.

Optional

MessId id Provides a unique identifier for a particular

create request operation. If specified, the value

for this parameter is generated and set by the

send_create_req function.

Optional

const Asn1Value
superior_oi

Distinguished name or local distinguished

name for an existing superior object under

which a managed object is to be created. This

optional parameter should not be specified if a

value is specified for the oi parameter. The

managed object created is contained under the

superior object in the MIT.

Optional

const Asn1Value
reference_oi

Distinguished name or local distinguished

name for a reference object. If this parameter is

specified, it must specify the name of a

managed object of the same class as the

managed object to be created. The attribute

values of the reference object become default

values for the new managed object for any

attributes not specified in the value for the

attr_value_list parameter.

Optional

Boolean sub_trans Spawn subtransactions instead of creating new

transactions. If sub_trans is not specified, the

default behavior is to create a new transaction

for the operation.

Optional

const Asn1Value access Reserved parameter, not to be used at this time. Not

available

TABLE 9-9 send_create_req Parameters (Continued)

Parameter Description
Required/
Optional
Chapter 9 Object Services API 9-35

Services Interface Descriptions and Examples
The mysystem.gdmo and mysystem.asn1 files must be loaded into the MDR for this

example to work properly. The mysystem files are located at /opt/SUNWconn/em/
src/scenario/example1 . The READMEfile in this directory also describes how to

load the mysystem files.

CODE EXAMPLE 9-11 send_create_req

Result
create_mySystem_object(char *system_name, char *mySystem_name)
{

Asn1Value mySystem_oc;
Asn1Value mySystem_fdn;
Asn1Value mySystem_rdn;

//**
// Confirmed create request
//**
// Send a confirmed create request for an
// instance of the mySystem manager object class.
// Instances of the mySystem class are contained by
// instances of the System class. The system_name
// parameter specifies the name of the system to contain
// the new instance. The mySystem_name parameter is used
// to specify the name of the instance to be created.

VTRY {

// Encode oc OID. In this example, the OID for the
// mySystem class is used.
// Note: CMIP requires a TAG_CONT(0) encoding for the
// object class rather than TAG_OID (refer to x711.asn1
// for encoding spec).

TTRYRES(mySystem_oc.encode_oid(
TAG_CONT(0),Oid("1.2.3.4.5.6.3.10")));

// Encode the distinguished name for an instance of the
// mySystem managed object class. Instances of the mySystem
// class are named using the systemId attribute in the class.
// Either the distinguished name form (TAG_CONT(2))
// or the local distinguished name form (TAG_CONT(4)) can be
// used with the create operation. The distinguished name form
// is used in this example.
// The get_sys_dn and get_graphstr_rdn functions are included
// in Section 9.5. The definition for the sys_id (systemId)

OID
// is included in Section 9.5.
9-36 C++ API Reference • October 2001

Services Interface Descriptions and Examples
TTRYRES(get_sys_dn(system_name, mySystem_fdn));
TTRYRES(get_graphstr_rdn(sys_id, // systemId OID

mySystem_name, mySystem_rdn));
TTRYRES(mySystem_fdn.add_component(mySystem_rdn));

// Encode the attribute list for the create request
// All mandatory attributes must be specified as part
// of the create request (unless the GDMO defines a
// initial value sub-clause for the attribute, or
// specifies a reference object that contains the
// attribute).
// Note: CMIP requires a TAG_CONT(7) encoding for the
// attribute list rather than TAG_SEQ (refer to x711.asn1
// for encoding spec).

Asn1Value attrlist;

Asn1Value opState;
Asn1Value usState;
Asn1Value sysTitle;
Asn1Value wInt;
Asn1Value rString;

Asn1Value sysIdO;
Asn1Value opStateO;
Asn1Value usStateO;
Asn1Value sysTitleO;
Asn1Value wIntO;
Asn1Value rStringO;

Asn1Value opStateV;
Asn1Value usStateV;
Asn1Value sysTitleV;
Asn1Value wIntV;
Asn1Value rStringV;

// Initialize the OIDs.

Oid sysIdOid("2.9.3.2.7.4"); // systemId
Oid opStateOid("2.9.3.2.7.35"); // operationalState
Oid usStateOid("2.9.3.2.7.39"); // usageState
Oid sysTitleOid("2.9.3.2.7.5"); // systemTitle
Oid wIntOid("1.2.3.4.5.6.7.10"); // writeableInteger
Oid rStringOid("1.2.3.4.5.6.7.11"); // readableString

CODE EXAMPLE 9-11 send_create_req (Continued)
Chapter 9 Object Services API 9-37

Services Interface Descriptions and Examples
// Initialize the five mandatory attributes
// in the mySystem class.

TTRYRES(opStateO.encode_oid(TAG_CONT(0), opStateOid));
TTRYRES(opStateV.encode_enum(TAG_ENUM, 1)); // enabled
TTRYRES(opState.start_construct(TAG_SEQ));
TTRYRES(opState.add_component(opStateO));
TTRYRES(opState.add_component(opStateV));

TTRYRES(usStateO.encode_oid(TAG_CONT(0), usStateOid));
TTRYRES(usStateV.encode_enum(TAG_ENUM, 1)); // active
TTRYRES(usState.start_construct(TAG_SEQ));
TTRYRES(usState.add_component(usStateO));
TTRYRES(usState.add_component(usStateV));

TTRYRES(sysTitleO.encode_oid(TAG_CONT(0), sysTitleOid));
TTRYRES(sysTitleV.encode_null(TAG_NULL));
TTRYRES(sysTitle.start_construct(TAG_SEQ));
TTRYRES(sysTitle.add_component(sysTitleO));
TTRYRES(sysTitle.add_component(sysTitleV));

TTRYRES(wIntO.encode_oid(TAG_CONT(0), wIntOid));
TTRYRES(wIntV.encode_int(TAG_INT, 5));
TTRYRES(wInt.start_construct(TAG_SEQ));
TTRYRES(wInt.add_component(wIntO));
TTRYRES(wInt.add_component(wIntV));

TTRYRES(rStringO.encode_oid(TAG_CONT(0), rStringOid));
TTRYRES(rStringV.encode_octets(TAG_GRAPHSTR,DataUnit

("test1")));
TTRYRES(rString.start_construct(TAG_SEQ));
TTRYRES(rString.add_component(rStringO));
TTRYRES(rString.add_component(rStringV));

// Create the attribute list.

TTRYRES(attrlist.start_construct(TAG_CONT(7)));//Implicit
set of

TTRYRES(attrlist.add_component(opState));
TTRYRES(attrlist.add_component(usState));
TTRYRES(attrlist.add_component(sysTitle));
TTRYRES(attrlist.add_component(wInt));
TTRYRES(attrlist.add_component(rString));

// Send the confirmed create request. No user data is
// specified for the callback parameter. The create_req_cb

CODE EXAMPLE 9-11 send_create_req (Continued)
9-38 C++ API Reference • October 2001

Services Interface Descriptions and Examples
9.4.8 Create Response Callback

This function is used only in conjunction with confirmed create requests. The name

of the callback function must match the name of the callback function specified in

the callback parameter of the send_create_req function.

// function is included as part of the Object Services
// API examples.

oamsvc_test.print("About to issue Confirmed Create
Request\n");

if (send_action_req(mySystem_oc, mySystem_fdn, attrlist,
Callback(create_req_cb, 0)) != OK)

 objsvc_test.print("Error issuing Confirmed Create
Request\n");

return NOT_OK;
}
else

objsvc_test.print("Issued Confirmed Create Request\n");
}
VBEGHANDLERS
VCATCHALL {
objsvc_test.print("\nError encoding Create Request\n");
return NOT_OK;
}
VENDHANDLERS
return OK;

}

CODE EXAMPLE 9-11 send_create_req (Continued)
Chapter 9 Object Services API 9-39

Services Interface Descriptions and Examples
9.4.8.1 Interface Signature

9.4.8.2 Create Response Callback Parameter Descriptions

TABLE 9-10 describes the Create Response Callback parameters.

9.4.8.3 Create Response Callback Example

The mysystem.gdmo and mysystem.asn1 files must be loaded into the MDR for this

example to work properly. The mysystem files can be found in /opt/SUNWconn/em/
src/scenario/example1 . The READMEfile in this directory also describes how to

load the mysystem files.

void user-provided-create-response-callback(
Ptr userdata, // Pointer to user supplied data
Ptr message); // Pointer to CreateRes message

TABLE 9-10 Create Response Callback Parameters

Parameter Description

Ptr userdata A void * pointer to data specified by the application developer in the

callback parameter of the send_create_req function.

Ptr message A void * pointer to the CreateRes message generated in response to

the send_create_req function.

CODE EXAMPLE 9-12 Create Response Callback

void
create_req_cb(Ptr, Ptr create_response_msg)
{

objsvc_test.print("Create Request callback\n");
Message *resp = (Message *)create_response_msg;

VTRY {
if (resp->type() == CREATE_RES) {

CreateRes *cr_resp = (CreateRes *)resp;
cr_resp->print(objsvc_test);

// The Asn1Value decoding functions, including the
// member functions get_first_component and
// get_next_component can be used to examine the member data
9-40 C++ API Reference • October 2001

Services Interface Descriptions and Examples
// included in the response message at this point

// ...

}
else if (resp->is_error()) {

objsvc_test.print("Action response error received\n");
objsvc_test.print("message type = %s\n",

MessType_fmt(resp->type()));
resp->print(objsvc_error);

}
else {

objsvc_test.print(
"Unexpected or invalid response received\n");

objsvc_test.print("message type = %s\n",
MessType_fmt(resp->type()));

resp->print(objsvc_error);
}
}
VBEGHANDLERS
VCATCHALL {
oamsvc_test.print("Error processing response for Action\n");
}
VENDHANDLERS

if (resp)
Message:: delete_message(resp);

}

CODE EXAMPLE 9-12 Create Response Callback (Continued)
Chapter 9 Object Services API 9-41

Services Interface Descriptions and Examples
9.4.9 Delete Request Service

send_delete_req enables you to override GDMO restrictions that are related to

MO deletion operations.

This section includes the interface signature, send_delete_req parameters, and

examples.

9.4.9.1 Delete Request Service

The rules for deleting an MO are defined in the MO class definition and the name

bindings in a GDMO document. The rules which are defined in the name bindings

impose restrictions on the deletion of MOs, but it is possible to override some of

these restrictions when requesting deletion of an MO through the function

send_delete_req() . Specifically, the absence of a DELETEconstruct in the name

binding is intended to have the effect of restricting the deletion of an MO by a

management application.

To allow behavior internal to the MIS to override this restriction, this function is

defined with a flags parameter. The relevant flag value is

ReqMess::OVERRIDE_NAME_BINDING, which is defined in message.hh .

Note that:

■ The ONLY-IF-NO-CONTAINED-OBJECTS construct cannot be overridden.

■ The MIS imposes a restriction on object deletion if an object contains other objects,

irrespective of whether the ONLY-IF-NO-CONTAINED-OBJECTS construct

appears in the name binding.

■ If the DELETES-CONTAINED-OBJECTSconstruct appears in the name binding,

the override capability only applies to the base object, and not to contained

objects.

■ If a delete request specifies a scope and a filter, the override capability only

applies to the base object, and not to the scoped and filtered objects.

9.4.9.2 Interface Signature

CODE EXAMPLE 9-13 Delete Request Service: Interface Signature

Result send_delete_req (
const Asn1Value & oc,
const Asn1Value & oi,
const Callback cb = 0,// Default: Unconfirmed
MessId * id = 0,
9-42 C++ API Reference • October 2001

Services Interface Descriptions and Examples
const MessScope scope = MessScope(),
// Default: Base object only

const Asn1Value filter = Asn1Value(),
// Default: Matches all

const MessSync sync = BEST_EFFORT,
const Asn1Value access = Asn1Value(),
Boolean sub_trans

); // Default: No access cntrl

CODE EXAMPLE 9-13 Delete Request Service: Interface Signature

Result send_delete_req (
Chapter 9 Object Services API 9-43

Services Interface Descriptions and Examples
9.4.9.3 send_delete_req Parameter Descriptions

TABLE 9-11 describes the send_delete_req parameters.

TABLE 9-11 send_delete_req Parameters

Parameter Description
Required/
Optional

const
Asn1Value oc

OID that specifies the class of the managed object. Required

const
Asn1Value oi

Distinguished name or local distinguished name for the

managed object.

Required

const Callback
cb

Specifies the name of a callback function invoked when a

response to the delete request operation is received. Can

also be used to specify user data passed to the callback

function when it is invoked. The callback parameter is

optional for the send_delete_req function. If

specified, a confirmed delete request operation is issued

and the callback function is invoked when the response is

received. If not specified, an unconfirmed delete request

operation is issued and no response is generated.

Optional

MessId id Provides a unique identifier for a particular delete

request operation. If specified, the value for this

parameter is generated and set by the

send_delete_req function.

Optional

const
MessScope scope

Defines the type of scoping used for this request

operation. If not specified, it defaults to

BASE_OBJECT_ONLY.

Optional

const
Asn1Value filter

Defines a filter to be passed by all objects selected by the

scoping parameter. If not specified, it defaults to a filter

that matches all managed objects selected by the scope

parameter.

Optional

const MessSync
sync

Defines the type of synchronization used for this request

operation. If not specified, it defaults to BEST_EFFORT.
Optional

Boolean
sub_trans

Spawn subtransactions instead of creating new

transactions. If sub_trans is not specified, the default

behavior is to create a new transaction for the operation.

Optional

const
Asn1Value
access

Reserved parameter. Do not use now. Not

available
9-44 C++ API Reference • October 2001

Services Interface Descriptions and Examples
9.4.9.4 send_delete_req Examples

CODE EXAMPLE 9-14 shows how to override restrictions on deleting an MO.

The mysystem.gdmo and mysystem.asn1 files must be loaded into the MDR for

this example to work properly. The mysystem files are located at /opt/SUNWconn/
em/src/scenario/example1 . The READMEfile in this directory also describes how

to load the mysystem files.

Delete Request: Base Object Only

CODE EXAMPLE 9-14 Delete Request: Base Object Only

Result
delete_mySystem_object(char *system_name, char *mySystem_name)
{

Asn1Value mySystem_oc;
Asn1Value mySystem_fdn;
Asn1Value mySystem_rdn;

//**
// Confirmed delete request
//**
// Send a delete request to an instance of the
// mySystem managed object class. The mySystem
// instance to be deleted is contained by the system
// object specified by system_name. The name of the
// instance of the mySystem class to delete is specified
// by the mySystem_name parameter.

VTRY {

// Encode oc OID. In this example, the OID for the
// mySystem class is used.
// Note: CMIP requires a TAG_CONT(0) encoding for the
// object class rather than TAG_OID (refer to x711.asn1
// for encoding spec).

TTRYRES(mySystem_oc.encode_oid(
TAG_CONT(0),Oid("1.2.3.4.5.6.3.10")));

// Encode the distinguished name for an instance of the
// mySystem managed object class. Instances of the mySystem
// class are named using the systemId attribute in the class.
Chapter 9 Object Services API 9-45

Services Interface Descriptions and Examples
// Either the distinguished name form (TAG_CONT(2))
// or the local distinguished name form (TAG_CONT(4)) can be
// used with the action operation. The distinguished name form
// is used in this example.
// The get_sys_dn and get_graphstr_rdn functions are included
// in Section 9.5. The definition for the sys_id (systemId)

OID
// is included in Section 9.5.

TTRYRES(get_sys_dn(system_name, mySystem_fdn));
TTRYRES(get_graphstr_rdn(sys_id, // systemId OID

mySystem_name, mySystem_rdn));
TTRYRES(mySystem_fdn.add_component(mySystem_rdn));

// Send the confirmed Delete Request. No user data is
// specified for the callback parameter. The delete_req_cb
// function is included as part of the Object Services API

examples.

 objsvc_test.print("About to issue confirmed Delete
Request\n");

 if (send_delete_req(mySystem_oc, mySystem_fdn,
 Callback(delete_req_cb, 0)) != OK) {
 objsvc_test.print("Error issuing confirmed Delete
Request\n");

return NOT_OK;
}
else

objsvc_test.print("Issued confirmed Delete Request\n");
}
VBEGHANDLERS
VCATCHALL {
objsvc_test.print("\nError encoding Delete Request\n");
return NOT_OK;
}
VENDHANDLERS
return OK;

}

CODE EXAMPLE 9-14 Delete Request: Base Object Only (Continued)
9-46 C++ API Reference • October 2001

Services Interface Descriptions and Examples
Delete Request: Scoped Operation

CODE EXAMPLE 9-15 Delete Request: Scoped Operation

Result
delete_mySystem_object(char *system_name)
{

Asn1Value actual_oc;
Asn1Value system_fdn;

//**
// Confirmed delete request
//**
// Send a delete request to delete all instances
// of the mySystem managed object class below a
// system object. The system "base" object is
// specified by the system_name parameter.
// A CMIS filter is used to select only instances
// of the mySystem class.

VTRY {

// Encode oc OID. In this example, actualClass is used
// instead of the OID for the log managed object class.
// Note: CMIP requires a TAG_CONT(0) encoding for the
// object class rather than TAG_OID (refer to x711.asn1
// for encoding spec).

TTRYRES(actual_oc.encode_oid(TAG_CONT(0),
Oid("2.9.3.4.3.42")));

// Encode the distinguished name for the instance of the
// system managed object class that is the base object for
// the scoped operation.
// Either the distinguished name form (TAG_CONT(2))
// or the local distinguished name form (TAG_CONT(4)) can be
// used with the delete operation. The distinguished name form
// is used in this example.
// The get_sys_dn and get_graphstr_rdn functions are included
// in Section 9.5. The definition for the sys_id (systemId)

OID
// is included in Section 9.5.

TTRYRES(get_sys_dn(system_name, system_fdn));

// Encode the CMIS Filter. This filter checks for
// "managedObjectClass == mySystem"
Chapter 9 Object Services API 9-47

Services Interface Descriptions and Examples
Asn1Value cmis_filter;
Asn1Value filter_item;
Asn1Value mOC_OID;
Asn1Value mySystem_oc_OID;

TTRYRES(cmis_filter.start_construct(TAG_CONT(8));
TTRYRES(filter_item.start_construct(TAG_CONT(0));
TTRYRES(mOC_OID.encode_oid(// ISO DMI

TAG_CONT(0),Oid("2.9.3.2.7.60")));// managedObjectClass
TTRYRES(mySystem_oc_OID.encode_oid(

TAG_CONT(0),Oid("1.2.3.4.5.6.3.10")));
TTRYRES(filter_item.add_component(mOC_OID));
TTRYRES(filter_item.add_component(mySystem_oc_OID));
TTRYRES(cmis_filter.add_component(filter_item));

// Send the confirmed scoped Delete Request. No user data is
// specified for the callback parameter. The delete_req_cb
// function is included as part of the Object Services API

examples.

 objsvc_test.print(
"About to issue confirmed scoped Delete Request\n");

 if (send_delete_req(mySystem_oc, mySystem_fdn,
 Callback(scoped_del_req_cb, 0),

MessScope(NTH_LEVEL, 1), cmis_filter) != OK) {
 objsvc_test.print(

"Error issuing confirmed scoped Delete Request\n");
return NOT_OK;

}
else

objsvc_test.print("Issued confirmed scoped Delete
Request\n");

}
VBEGHANDLERS
VCATCHALL {
objsvc_test.print("\nError encoding scoped Delete

Request\n");
return NOT_OK;
}
VENDHANDLERS
return OK;

}

CODE EXAMPLE 9-15 Delete Request: Scoped Operation (Continued)
9-48 C++ API Reference • October 2001

Services Interface Descriptions and Examples
9.4.10 Delete Response Callback

This callback function is used only in conjunction with the confirmed delete request

service. The name of the callback function must match the name of the callback

function specified in the callback parameter of the send_delete_req function.

9.4.10.1 Interface Signature

9.4.11 Delete Response Callback Parameter Description

TABLE 9-12 describes the Delete Response Callback parameters.

9.4.11.1 Delete Response Callback Examples

The mySystem.gdmo and mySystem.asn1 files must be loaded into the MDR for

these examples to work properly. The mySystem files are located at / opt/
SUNWconn/em/src/scenario/example1 . The READMEfile in this directory also

describes how to load the mySystem files.

void user-provided-delete-response-callback(
Ptr userdata, // Pointer to user supplied data
Ptr message); // Pointer to DeleteRes message

TABLE 9-12 Delete Response Callback Parameters

Parameter Description

Ptr userdata A void * pointer to data specified by the application developer in the

callback parameter of the send_delete_req function.

Ptr message A void * pointer to the DeleteRes message generated in response to

the send_delete_req function.
Chapter 9 Object Services API 9-49

Services Interface Descriptions and Examples
Delete Response Callback Function: Single Response (Base Object Only)

CODE EXAMPLE 9-16 Delete Response Callback Function: Single Response

void
del_req_cb(Ptr, Ptr delete_response_msg)
{

objsvc_test.print("Get Request callback\n");
Message *resp = (Message *)delete_response_msg;

VTRY {
if (resp->type() == DELETE_RES) {

DeleteRes *d_resp = (DeleteRes *)resp;
d_resp->print(objsvc_test);

// The Asn1Value decoding functions, including the
// member functions get_first_component and
// get_next_component can be used to examine the member data
// included in the response message at this point

// ...

}
else if (resp->is_error()) {

objsvc_test.print("Delete response error received\n");
objsvc_test.print("message type = %s\n",

MessType_fmt(resp->type()));
resp->print(objsvc_error);

}
else {

objsvc_test.print(
"Unexpected or invalid response received\n");

objsvc_test.print("message type = %s\n",
MessType_fmt(resp->type()));

resp->print(objsvc_error);
}
}
VBEGHANDLERS
VCATCHALL {
objsvc_test.print("Error processing response for Delete\n");
resp->print(objsvc_error);
}
VENDHANDLERS

if (resp)
Message:: delete_message(resp);

}

9-50 C++ API Reference • October 2001

Services Interface Descriptions and Examples
Delete Response Callback Function: Multiple Responses (Scoped
Operation)

CODE EXAMPLE 9-17 Delete Response Callback Function: Multiple Responses

static int d_resp_count = 0;
static int d_err_count = 0;
static int d_unknown_count = 0;
void
scoped_del_req_cb(Ptr userdata, Ptr delete_response_msg)
{

objsvc_test.print("Scoped Delete Request callback:");
Message *resp = (Message *)delete_response_msg;

VTRY {
if (resp->type() == DELETE_RES) {

DeleteRes *sd_resp = (DeleteRes *)resp;
if (sd_resp->linked) {

objsvc_test.print("*** LINKED Response ***\n");
resp_count++;
sd_resp->print(objsvc_test);

// The Asn1Value decoding functions, including the
// member functions get_first_component and
// get_next_component can be used to examine the member
// data included in the response message at this point

// ...

} else {
objsvc_test.print("**** Final Response ****\n");
sd_resp->print(objsvc_test);
objsvc_test.print("Valid: %d, Error: %d, Invalid:
%d\n",
resp_count, err_count, unknown_count);

// Final response processing can be performed here. The
// final response message does not contain any attribute
// value data.

// ...

}
}
else if (resp->is_error()) {

objsvc_test.print("Error Response\n");
objsvc_test.print("message type = %s\n",
Chapter 9 Object Services API 9-51

Services Interface Descriptions and Examples
MessType_fmt(resp->type()));
resp->print(objsvc_error);
err_count++;

}
else {

objsvc_test.print("Invalid Message\n");
objsvc_test.print("message type = %s\n",

MessType_fmt(resp->type()));
resp->print(objsvc_error);
unknown_count++;

}
}
VBEGHANDLERS
VCATCHALL {
objsvc_test.print(

"\nError processing response for Scoped Delete\n");
}
VENDHANDLERS

if (resp)
Message:: delete_message(resp);

}

CODE EXAMPLE 9-17 Delete Response Callback Function: Multiple Responses (Continued)
9-52 C++ API Reference • October 2001

Services Interface Descriptions and Examples
9.4.12 Event Report Request Service (Unconfirmed)

This section includes the interface signature, send_event_req parameters, and

examples.

9.4.12.1 Interface Signature

Note – The send_event_req service supports only unconfirmed operations.

Specifying a callback generates a runtime error.

9.4.12.2 send_event_req Parameter Descriptions

TABLE 9-13 describes the send_event_req parameters.

CODE EXAMPLE 9-18 Event Report Request: Interface Signature

Result send_event_req (
const Asn1Value & oc,
const Asn1Value & oi,
const Asn1Value & event_type,
const Asn1Value event_info = ACEGlobals::null_asn1_value,

// Default: No event info
const Asn1Value event_time = ACEGlobals::null_asn1_value,

 // Default: No value
const Callback cb = null_callback,// Default: Unconfirmed
MessId * id = 0);

TABLE 9-13 send_event_req Parameters

Parameter Description
Required/
Optional

const Asn1Value oc OID that specifies the class of the base

managed object.

Required

const Asn1Value oi Distinguished name or local

distinguished name for the base managed

object.

Required

const Asn1Value event_type OID that specifies the type of notification

generated by the send_event_req
function.

Required
Chapter 9 Object Services API 9-53

Services Interface Descriptions and Examples
9.4.12.3 send_event_req Example

The GDMO and definition for the notification generated by this example is as

follows:

const Asn1Value event_info Specifies any event information

associated with the type of notification

generated. This is an optional parameter

but must be present if a WITH
INFORMATION SYNTAXconstruct is

specified as part of the GDMO definition

for the notification type.

Optional

const Asn1Value event_time The time at which the notification is

generated.

Optional

const Callback cb An optional reserved parameter for the

event report request operation and should

not be specified. Only unconfirmed (no

callback function) event request

operations are currently supported using

this function call. If a value for this

parameter is specified (in order to specify

an id parameter, the cb parameter needs

to be specified), it must either be set to

Callback() or Callback(0,0) . Any

other value generates an error when the

send_event_req function is invoked.

Optional

reserved

MessId id Message identifier that uniquely identifies

this request operation. If specified, the

value for this parameter is generated and

set by the send_event_req function.

Optional

CODE EXAMPLE 9-19 send_event_req

connectivityChange NOTIFICATION
 BEHAVIOUR connectivityChangeBehaviour BEHAVIOUR DEFINED AS
 !Generated by an instance of the connectMgr object
 when the state of a connection between two MISs
 changes.!;
 ;
 WITH INFORMATION SYNTAX ConnectMgr-
ASN1.ConnectivityChangeInfo

TABLE 9-13 send_event_req Parameters (Continued)

Parameter Description
Required/
Optional
9-54 C++ API Reference • October 2001

Services Interface Descriptions and Examples
REGISTERED AS { connectivityMgmt 10 1 };

The corresponding ASN.1 definitions are as follows:
ConnectMgr-ASN1 { 6 2 3 4 5 6 7 2 1 }

...
ConnectState ::= ENUMERATED

{
 notConnected(0),
 connected(1),
 errorDisconnect(2),
 resyncDisconnect(3),
 badapplicationId(4)
}

...
ConnectivityChangeDefinition ::= SEQUENCE
{
 remoteMIS SystemId,
 previousState ConnectState,
 currentState ConnectState
}
ConnectivityChangeInfo ::= ConnectivityChangeDefinition

Example code to generate notification using send_event_req
function is:
Result
send_conn_change_event(char *from_sys, char *remote_sys)
{

Asn1Value conn_oc;
Asn1Value conn_oi;
Asn1Value em_mis_rdn;
Asn1Value conn_rdn;
Asn1Value conn_evt_type;
Asn1Value conn_evt_info;
Asn1Value rmt_id;
Asn1Value rmt_prev;
Asn1Value rmt_curr;

//**
// Unconfirmed event report request
//**
// Issue a connectivity change notification
// This notification is defined by the connection
// manager object (refer to connmgr.gdmo/connmgr.asn1)
// and is issued when the connectivity state between
// two MISs changes. In this example, the two MISs
// are from_sys (which generates the notification) and

CODE EXAMPLE 9-19 send_event_req (Continued)
Chapter 9 Object Services API 9-55

Services Interface Descriptions and Examples
// remote_sys.

VTRY {

// Encode oc OID for connection manager object class
// which is defined in connmgr.gdmo. Note: CMIP requires
// a TAG_CONT(0) encoding for the object class rather
// than TAG_OID (refer to x711.asn1 for encoding spec).

TTRYRES(conn_oc.encode_oid(
TAG_CONT(0),Oid("1.3.6.1.4.1.42.2.2.2.201.3.1")));

// Encode the distinguished name for the connection manager
// managed object that generates the notification.
// The send_event_req function requires the distinguished
// name form (TAG_CONT(2)) for the object instance.

TTRYRES(get_sys_dn(from_sys, conn_oi));
TTRYRES(get_graphstr_rdn(

"2.9.3.5.7.11","EM-MIS", em_mis_rdn));
TTRYRES(get_graphstr_rdn(

"1.3.6.1.4.1.42.2.2.2.201.7.3","ConnectMgr",
conn_rdn));

TTRYRES(conn_oi.add_component(em_mis_rdn));
TTRYRES(conn_oi.add_component(conn_rdn));

// Encode the connectivityChange event type and event info
// The connectivityChange OID is defined in connmgr.gdmo.
// The format of the corresponding event info is defined
// in connmgr.asn1.
// Note: CMIP requires a TAG_CONT(6) for the event type OID
// rather than a TAG_OID and also requires a TAG_CONT(8)
// encoding for the event info rather than a TAG_SEQ.
TTRYRES(conn_evt_type.encode_oid(

TAG_CONT(6),Oid("1.3.6.1.4.1.42.2.2.2.201.10.1")));
TTRYRES(conn_evt_info.start_construct(TAG_CONT(8)));
TTRYRES(rmt_id.encode_octets(

TAG_GRAPHSTR, DataUnit(remote_sys)));
TTRYRES(rmt_prev.encode_enum(TAG_ENUM, 0)); // notConnected
TTRYRES(rmt_curr.encode_enum(TAG_ENUM, 1)); // connected
TTRYRES(conn_evt_info.add_component(rmt_id));
TTRYRES(conn_evt_info.add_component(rmt_prev));
TTRYRES(conn_evt_info.add_component(rmt_curr));

// Send the Event Report Request

CODE EXAMPLE 9-19 send_event_req (Continued)
9-56 C++ API Reference • October 2001

Supporting Functions for Example Code
9.4.13 Event Report Response Callback

This callback function is not supported for the Solstice EM services interface.

9.5 Supporting Functions for Example Code
This section includes the following information:

■ Debugging flags

■ get_sys_dn function

■ get_graphstr_rdn function

objsvc_test.print(
"About to issue Unconfirmed EVENT REPORT Request\n");

if (send_event_req(conn_oc, conn_oi, conn_evt_type,
conn_evt_info) != OK) {
objsvc_test.print(

"Error issuing Unconfirmed EVENT REPORT Request\n");
return NOT_OK;

}
else

objsvc_test.print("Issued Unconfirmed EVENT REPORT
Request\n");

}
VBEGHANDLERS
VCATCHALL {
objsvc_test.print("\nError encoding EVENT REPORT

Request\n");
return NOT_OK;
}
VENDHANDLERS
return OK;

}

CODE EXAMPLE 9-19 send_event_req (Continued)
Chapter 9 Object Services API 9-57

Supporting Functions for Example Code
9.5.1 Debugging Flags

The following code lines must be included in the file that contains the example

functions.

If the example functions are spread across multiple files, the above definitions must

only be included in one file. The other files need to contain the following code lines:

The debug flags can be enabled using the following commands:

or alternatively using the following command:

9.5.2 get_sys_dn Function

The get_sys_dn function encodes a distinguished name for an instance of the

system managed object class.

Debug_on(objsvc_test)
Debug_on(objsvc_error)
// Note: Do not include a semicolon after these two lines.

extern Debug objsvc_test;
extern Debug objsvc_error;

/opt/SUNWconn/em/bin/em_debug "on objsvc_test"
/opt/SUNWconn/em/bin/em_debug "on objsvc_error"

/opt/SUNWconn/em/bin/em_debug "on objsvc_*"

CODE EXAMPLE 9-20 get_sys_dn Function

// Function to encode a distinguished name (TAG_CONT(2) for
// an instance of the system managed object class. The encoding
// assumes that the instance is contained directly under root
Oid sys_id((char *)"2.9.3.2.7.4"); // ISO DMI systemId OID

Result
get_sys_dn(const char *sys_nm, Asn1Value &sys_fdn)
{
 Asn1Value sys_rdn;
9-58 C++ API Reference • October 2001

Supporting Functions for Example Code
9.5.3 get_graphstr_rdn Function

The get_graphstr_rdn function are described in CODE EXAMPLE 9-21.

 Asn1Value sys_ava;
 Asn1Value sys_name;
 Asn1Value sys_oid;

 if (!sys_nm)
 return NOT_OK;

 VTRY{
 TTRYRES(sys_fdn.start_construct(TAG_CONT(2)));
 TTRYRES(sys_rdn.start_construct(TAG_SET));
 TTRYRES(sys_ava.start_construct(TAG_SEQ));
 TTRYRES(sys_oid.encode_oid(TAG_OID, sys_id));
 TTRYRES(sys_name.encode_octets(TAG_GRAPHSTR, sys_nm));
 TTRYRES(sys_ava.add_component(sys_oid));
 TTRYRES(sys_ava.add_component(sys_name));
 TTRYRES(sys_rdn.add_component(sys_ava));
 TTRYRES(sys_fdn.add_component(sys_rdn));
 }
 VBEGHANDLERS
 VCATCHALL
 objsvc_test.print("get_sys_dn: error encoding DN\n");
 return NOT_OK;
 VENDHANDLERS

 return OK;
}

CODE EXAMPLE 9-21 get_graphstr_rdn Function

// Function to encode an RDN consisting of an
// object identifier (OID) and an ASN.1 GraphicString
Result
get_graphstr_rdn(const char *a_oidstr, const char *a_str,
Asn1Value &a_rdn)
{

Asn1Value a_ava;
Asn1Value a_oid;
Asn1Value a_val;

if (!a_oidstr || !a_str)

CODE EXAMPLE 9-20 get_sys_dn Function (Continued)

// Function to encode a distinguished name (TAG_CONT(2) for
Chapter 9 Object Services API 9-59

Supporting Functions for Example Code
return NOT_OK;

TRY {
TTRYRES(a_rdn.start_construct(TAG_SET));
TTRYRES(a_ava.start_construct(TAG_SEQ));
TTRYRES(a_oid.encode_oid(TAG_OID, Oid(a_oidstr)));
TTRYRES(a_val.encode_octets(TAG_GRAPHSTR,

DataUnit(a_str)));
TTRYRES(a_ava.add_component(a_oid));
TTRYRES(a_ava.add_component(a_val));
TTRYRES(a_rdn.add_component(a_ava));
}
VBEGHANDLERS
VCATCHALL {
objsvc_test.print("\nError encoding RDN for %s\n", a_val);
return NOT_OK;
}
VENDHANDLERS

return OK;
}

// Function to encode an RDN consisting of an object identifier
(OID)
// and an ASN.1 GraphicString
Result
get_graphstr_rdn(const Oid &a_oidval, const char *a_str,
Asn1Value

&a_rdn)
{

Asn1Value a_ava;
Asn1Value a_oid;
Asn1Value a_val;

if (!a_str)
return NOT_OK;

TRY {
TTRYRES(a_rdn.start_construct(TAG_SET));
TTRYRES(a_ava.start_construct(TAG_SEQ));
TTRYRES(a_oid.encode_oid(TAG_OID, a_oidval));
TTRYRES(a_val.encode_octets(TAG_GRAPHSTR,

DataUnit(a_str)));
TTRYRES(a_ava.add_component(a_oid));
TTRYRES(a_ava.add_component(a_val));
TTRYRES(a_rdn.add_component(a_ava));
}

CODE EXAMPLE 9-21 get_graphstr_rdn Function (Continued)
9-60 C++ API Reference • October 2001

Supporting Functions for Example Code
VBEGHANDLERS
VCATCHALL {
objsvc_test.print("\nError encoding RDN for %s\n", a_val);
return NOT_OK;
}
VENDHANDLERS

return OK;
}

CODE EXAMPLE 9-21 get_graphstr_rdn Function (Continued)
Chapter 9 Object Services API 9-61

Supporting Functions for Example Code
9-62 C++ API Reference • October 2001

Index
A
ACAccessControlRules class, 5-12

attributes

accessControlSwitch , 5-12

trustedHostList , 5-12

constructor, 5-12

description, 5-3

destructor, 5-13

member functions

add_trusted_hosts , 5-13

get_access_control_switch , 5-13

get_default_access , 5-14

get_default_event_access , 5-14

get_denial_granularity , 5-15

get_denial_response , 5-15

get_domain_identity , 5-16

get_trusted_host_list , 5-16

is_trusted_host , 5-16

remove_trusted_hosts , 5-16

replace_trusted_host_list , 5-17

set_access_control_switch , 5-17

set_default_access , 5-17

set_default_event_access , 5-18

set_denial_granularity , 5-18

set_denial_response , 5-19

ACAccessUserList class, 5-20

constructor, 5-20

description, 5-3

destructor, 5-20

member functions

add_superusers , 5-21

add_user , 5-21

get_access_user_list_set , 5-21

get_superuser_list , 5-21

is_superuser , 5-22

remove_superusers , 5-22

remove_user , 5-22

replace_superuser_list , 5-22

ACAppFeatureContainer class, 5-23

constructor, 5-23

description, 5-3

destructor, 5-23

member functions

get_all_features , 5-23

get_container_name , 5-24

get_feature , 5-24

ACApplication class, 5-24

constructor, 5-24

description, 5-3

member functions

destroy , 5-25

get_application_description , 5-25

ACApplicationContainer class, 5-26

constructor, 5-26

description, 5-3

destructor, 5-26

member functions

get_all_applications , 5-26

get_application , 5-27

ACApplicationFeature class, 5-27

constructor, 5-27

description, 5-3

destructor, 5-28

member functions

destroy , 5-28

get_feautre_description , 5-28

set_feature_description , 5-28
Index-1

ACCallback class, 5-29

constructors, 5-29

description, 5-3

destructor, 5-30

member functions

exec_callback , 5-30

get_callback_type , 5-30

operator overloading, 5-30

access control

types

feature-level, 5-2

object-level, 5-2

access control API, 5-1

class hierarchy, 5-2

constants

ACAccessControlSwitch , 5-5

ACAuxOwnerType , 5-4

ACCallbackType , 5-5

ACDenialGranularity , 5-5

ACEMAuditLevel , 5-5

ACEMSecurityLevel , 5-6

ACErrorType , 5-6

ACObjectType , 5-7

ACTargetsType , 5-7

EnforcementAction , 5-7

defined types

ACAccessUserListSet , 5-8

ACApplicationAndFeatureList , 5-8

ACApplicationFeatureList , 5-8

ACDomainIdentity , 5-9

ACEventsDiscriminator , 5-9

ACFilter , 5-9

ACGroupDescription , 5-10

ACGroupList , 5-10

ACGroupMemberList , 5-10

ACMOCList , 5-10

ACMOIList , 5-10

ACOperationsList , 5-10

ACRuleList , 5-10

ACSuperUserList , 5-11

ACTargetsList , 5-11

ACTrustedHostList , 5-11

design objectives, 5-1

access control API classes, list of, 5-11

access control engine API

symbolic constants

ACEEnforcementAction , 6-2

ACEOperationType , 6-2

AccessDenied class, 4-9

ACContainer class, 5-31

constructor, 5-31

description, 5-3

destructor, 5-31

member functions

add_callback , 5-32

get_error_string , 5-33

get_error_type , 5-33

get_name_only , 5-33

get_object_name , 5-34

remove_callback , 5-34

reset_error , 5-34

set_error , 5-34

set_error_string , 5-34

set_error_type , 5-35

operator overloading, 5-32

ACDbObject class, 5-35, 5-38

constructor, 5-35

description, 5-4

destructor, 5-35

member functions

add_db_object_access , 5-36

add_db_object_table , 5-36

det_db_oject_access_list , 5-36

get_auxobject_owner_id , 5-38

get_auxobject_owner_type , 5-38

get_db_object_table_list , 5-36

remove_db_object_access , 5-37

remove_db_object_table , 5-37

set_auxobject_owner , 5-38

set_db_object_access_list , 5-37

set_db_object_table_list , 5-37

ACDbObjectContainer class, 5-40

constructor, 5-40

description, 5-4

destructor, 5-40

member functions

get_access_db_objects , 5-40

get_all_db_objects , 5-41

get_db_object , 5-41

get_db_server_name , 5-41

get_db_server_type , 5-41

ACE API (Access Control Engine API)

uses, 6-1

ACE API classes, list of, 6-3

ACE class, 6-3

constructor, 6-4

destructor, 6-4

member functions
Index-2 C++ API Reference • October 2001

check_access , 6-4

get_ace_instance function , 6-4

hi_process_ace_event , 6-6

lo_process_ace_event , 6-6

ACEContext class, 6-6

constructor, 6-7

destructor, 6-7

member functions

get_filter , 6-8

get_orig_user_req , 6-7

get_scope , 6-8

set_filter , 6-8

set_scope , 6-8

ACEDecision class, 6-9

constructor, 6-9

destructor, 6-10

ACEDomain class, 6-11

constructor, 6-11

destructor, 6-11

ACEMNotificationEmitter class, 5-42

constructor, 5-42

description, 5-4

destructor, 5-42

member functions

get_audit_level , 5-43

get_invalid_access_attempts , 5-43

get_security_level , 5-43

get_valid_access_attempts , 5-43

set_audit_level , 5-44

set_security_level , 5-44

ACEMTargets class, 5-44

constructor, 5-45

description, 5-4

destructor, 5-45

member functions

get_event_discriminator , 5-45

set_event_discriminator , 5-45

ACEResData class, 6-12

destructor, 6-12, 6-13

ACGroup Class

member functions

add_application_feature, 5-48

ACGroup class, 5-46

constructor, 5-46

description, 5-4

destructor, 5-46

member functions

add_application , 5-47

add_application_feature , 5-47

add_group_member , 5-47

destroy , 5-47

get_all_applications_full_access ,

5-48

get_application_and_feature_list ,

5-48

get_application_features , 5-49

get_application_full_access , 5-49

get_applications , 5-48

get_group_description , 5-49

get_group_member_list , 5-49

get_initiator_aci_mandated , 5-52

remove_application , 5-50

remove_application_feature , 5-50

remove_group_member , 5-50

set_all_applications_full_access ,

5-50

set_application_and_feature_list ,

5-51

set_application_full_access , 5-51

set_group_description , 5-51

set_group_member_list , 5-52

set_initiator_aci_mandated , 5-52

ACGroupContainer class, 5-52

constructor, 5-53

description, 5-4

destructor, 5-53

member functions

get_all_groups , 5-53

get_group , 5-53

get_user_group_list , 5-54

ACInterface class, 5-54

constructor, 5-54

description, 5-4

destructor, 5-55

member functions

get_access_user_list , 5-55

get_application_container , 5-55

get_db_object_container , 5-55

get_em_notification_emitter , 5-55

get_feature_container , 5-56

get_group_container , 5-56

get_rule_container , 5-56

get_targets_container , 5-56

ACObject class, 5-57

description, 5-4

destructor, 5-57

member functions

add_callback, 5-58
Index-3

copy , 5-59

create , 5-59

destroy , 5-59

exists , 5-59

get_error_string, 5-60

get_error_type , 5-60

get_name_only , 5-60

get_object_name , 5-61

remove_callback , 5-61

revert , 5-61

set_error , 5-61

set_error_string , 5-62

set_error_type , 5-62

store , 5-62

operator overloading, 5-58

ACObject cClass

constructor, 5-57

ACRule Class, 5-62

ACRule class

constructor, 5-63

description, 5-4

destructor, 5-63

member functions

add_group, 5-63

add_targets, 5-64

get_enforcement_action, 5-64

get_group_list , 5-64

get_target_list , 5-64

remove_group , 5-65

remove_targets , 5-65

set_enforcement_action , 5-65

set_group_list , 5-66

set_targets_list , 5-66

ACRuleContainer class, 5-66

constructor, 5-66

description, 5-4

destructor, 5-67

member functions

get_access_control_rules, 5-67

get_all_rules, 5-67

get_group_rule_list , 5-67

get_rule , 5-67

get_targets_rule_list , 5-68

ACScope class, 5-68

constructors, 5-68

description, 5-4

operator overloading, 5-69

ACTargets class, 5-69

constructor, 5-70

description, 5-4

destructor, 5-70

member functions

add_moc , 5-70

add_moi , 5-71

destroy , 5-71

get_filter , 5-71

get_moc_list , 5-71

get_moi_list , 5-72

get_operations_list , 5-72

get_scope , 5-72

remove_moc , 5-72

remove_moi , 5-73

set_filter , 5-73

set_moc_list , 5-73

set_moi_list , 5-73

set_operations_list , 5-74

set_scope , 5-74

ACTargetsContainer class, 5-74

constructor, 5-74

description, 5-4

destructor, 5-75

member functions

get_all_targets , 5-75

get_em_targets , 5-75

get_targets , 5-75

ActionReq class, 4-10

ActionRes class, 4-11

ACUser class, 5-76

constructors, 5-76

description, 5-4

member functions

get_full_name, 5-77

get_login_name , 5-77

is_valid_user , 5-78

set_full_name , 5-78

set_login_name , 5-78

Address class, 2-5

address tag, 2-5

address value, 2-5

public variables, 2-6

ADF (Access Control Decision Function) operation, 6-1

AEF (Access Control Enforcement) operation, 6-1

Album class, 3-27

constructors

Album , 3-29

copy , 3-29

default , 3-29

events
Index-4 C++ API Reference • October 2001

IMAGE_EXCLUDED, 3-52

IMAGE_INCLUDED, 3-52

OBJECT_CREATED, 3-52

OBJECT_DESTROYED, 3-52

RAW_EVENT, 3-52

filtering derivation, 3-7

member functions

all , 3-30

all_boot , 3-31

all_call , 3-32

all_create , 3-32

all_create_within , 3-33

all_destroy , 3-33

all_revert , 3-34

all_set , 3-34

all_set_attr_prop , 3-34

all_set_dbl , 3-35

all_set_from_ref , 3-35

all_set_gint , 3-35

all_set_long , 3-35

all_set_prop , 3-36

all_set_raw , 3-36

all_set_str , 3-36

all_shutdown , 3-37

all_start , 3-37

all_start_boot , 3-37

all_start_create , 3-38

all_start_create_within , 3-38

all_start_destroy , 3-38

all_start_raw , 3-39

all_start_shutdown , 3-39

all_start_store , 3-39

all_store , 3-39

all_when , 3-40

clear , 2-83, 3-40

derive , 3-40

destroy , 2-83

example, 3-47

exclude , 3-41

fetch , 2-84

find_by_nickname , 3-41

first_image , 3-41

get_derivation , 3-42

get_prop , 3-42

get_userdata , 3-43

get_when_syntax , 3-43

include , 3-43

iterate , 2-84

num_images , 3-44

set_derivation , 3-44

set_prop , 3-44

set_userdata , 3-44

start_m_action , 3-46

start_m_action_raw , 3-46

start_m_delete , 3-46

start_m_get , 3-45

start_m_set , 3-45

statr_derive , 3-45

strhash , 2-85

when, 3-51

method types, 3-27

operators

assignment operator, 3-30

cast operator, 3-30

not operator, 3-30

properties, 3-4

ACCESS, 3-43

AUTOIMAGE, 3-43

BEST_EFFORT, 3-43

DERIVATION, 3-42

NICKNAME, 3-42

STATE, 3-42

TRACKMODE, 3-42

properties supported, 3-42

album synchronization, 3-27

AlbumImage class, 3-52

constructors, 3-53

member functions

next_album , 3-55

next_image , 3-55

operators

Album operator, 3-55

assignment operator, 3-54

cast operator, 3-54

Image , 3-55

Not operator, 3-54

AppEventHandler
set_indication_handler(), 1-10

AppInstComm class, 1-21

member functions, 1-21

build_target , 1-22

DataFormatter , 1-22

send_request , 1-24

send_request_unconfirmed , 1-23

set_indication_handler , 1-25

start_send_request , 1-24

AppInstObj class, 1-26

constructors, 1-26
Index-5

member functions

get_objname , 1-27

get_oi , 1-27

AppRequest class, 1-28

emSendApplicationMessage action, 1-29

member functions

begin , 1-28

get_action , 1-29

get_receiver , 1-29

get_reply_data , 1-28

is_complete , 1-29

notifications, 1-30

AppTarget class, 1-35, 3-56

Arraydeclare macro, 2-8

ASN.1 textual data, 3-3

Asn1Kind declaration, 2-96

Asn1ParsedValue class, 2-9

member functions

format_value , 2-10

get_parsed_val , 2-10

get_real_val , 2-11

operators, 2-10

Asn1SubTypeKind declaration, 2-95

Asn1SubTypeSize declaration, 2-95

Asn1Tag class, 2-11

constructors, 2-12

member functions, 2-13

operator overloading, 2-12

public functions, 2-12

public variables, 2-12

Asn1TagClass declaration, 2-97

Asn1Tagging declaration, 2-97

Asn1Type class, 2-13

code example

get_range() , 2-22

constructors, 2-15

destructor, 2-16

member functions

add_tags , 2-17

base_kind , 2-17

base_type , 2-18

cmp, 2-18

determine_real_val , 2-18

encode , 2-18

equivalent , 2-19

find_component , 2-19

find_subcomponent , 2-20

format_type , 2-20

format_value , 2-20

get_enum_identifiers , 2-21

get_range , 2-21

kind , 2-22

lookup_type , 2-23, 2-24, 2-26

needs_explicit , 2-24

parse_value , 2-24

register_any_handler , 2-24

remove_tags , 2-24

set_add_members , 2-25

set_intersects_with , 2-25

set_is_subset , 2-25

set_remove_dup_members , 2-26

set_remove_members , 2-26

unregister_any_handler , 2-26

validate , 2-27

validate_tag , 2-27

operator overloading, 2-16

public functions, 2-14

Asn1TypeDefinedType declarations, 2-94

Asn1TypeE declaration, 2-96

Asn1TypeEL declaration, 2-96

Asn1TypeNN declaration, 2-97

Asn1Value class, 2-27

constructors, 2-31

decoding constructed Asn1Values, 2-30

decoding functions, 2-30

decoding simple Asn1Values, 2-30

delete operator, 2-28

destructor, 2-32

encoding a distinguished name, 2-29

encoding functions, 2-28

global functions, related, 2-48

instance assignment, 2-28

member functions

add_component , 2-34

compute_total_size , 2-34

constructed , 2-34

contents_size , 2-35

decode_bits , 2-35

decode_boolean , 2-35

decode_enum , 2-36

decode_ext , 2-36

decode_int , 2-37

decode_octets , 2-37

decode_oid , 2-37

decode_real , 2-38

decode_unsigned , 2-38

delete_component , 2-38

encode_boolean , 2-39
Index-6 C++ API Reference • October 2001

encode_enum , 2-40

encode_ext , 2-40

encode_int , 2-41

encode_minus_infinity , 2-41

encode_null , 2-42

encode_octets , 2-42

encode_oid , 2-43

encode_oidstr , 2-43

encode_plus_infinity , 2-43

encode_real , 2-44

encode_unsigned , 2-44

first_component , 2-44

get_component , 2-45

indefinite_length , 2-45

make_explicit_tagged , 2-45

next_component , 2-46

num_comps, 2-46

print , 2-46

retag , 2-47

size , 2-47

start_construct , 2-47

Tag , 2-47

tagged_component , 2-48

new operator, 2-28, 2-31

operator overloading, 2-28, 2-33

type conversion, 2-28

AssocReleased class, 4-12

AuthApps class, 3-56

AuthFeatures class, 3-58

AuthPriv class, 3-56

Auxiliary Servers, 6-1

AuxServerUtils class, 6-14

constructor, 6-14

destructor, 6-14

virtual functions

aux_check_create_filter , 6-16

aux_check_event_filter , 6-17

aux_get_red , 6-16

check_filter , 6-15

determine _class , 6-15

extract_message , 6-16

AVData class, 2-28

AVData instance, 2-28, 2-31, 2-32, 2-33

B
basic variable types, 2-3

basic variables, types of, 2-3

BER (Basic Encoding Rules), 2-28

BER encoding, 2-28

Blockage class, 2-49

global functions, related

flush_events_callbacks , 2-54

post_callback , 2-52

post_fd_except_callback , 2-53

post_fd_read_callback , 2-53

post_fd_write_callback , 2-53

purge_callback , 2-52

purge_callback_cdata , 2-52

purge_callback_data , 2-52

purge_callback_handler , 2-53

purge_fd_callbacks , 2-54

purge_fd_except_callback , 2-54

purge_fd_read_callback , 2-54

purge_fd_write_callback , 2-54

member functions

purge_call , 2-50

size , 2-50

sleep , 2-50

wakeup , 2-51

wakeup_call , 2-51

wakeup_now , 2-51

C
caching, 3-1

Callback class, 2-55

CancelGetReq class, 4-13

CancelGetRes class, 4-14

class destructors, 3-26

example, 3-26

ClassInstConfl class, 4-15

client, notifications, 8-91

CmipAgent

attributes, 8-112

CMIS, 3-2

CMIS message type

error response, 4-4

request, 4-4

response, 4-4

CMIS-like protocol, 4-1

Coder class, 3-60

decoding, 3-60

encoding, 3-60

CoderData class, 3-60

common API class, 2-1
Index-7

categories, 2-2

descriptions, 2-4

CreateReq class, 4-16

CreateRes class, 4-17

CurrentEvent class, 3-62

constructors

calldata constructor, 3-64

copy constructor, 3-64

default constructor, 3-64

member functions

do_nothing , 3-65

do_something , 3-66

get_album , 3-66

get_event , 3-66

get_eventtype , 3-67

get_image , 3-67

get_info , 3-67

get_info_raw , 3-67

get_message , 3-67

get_name , 3-68

get_objclass , 3-68

get_objname , 3-68

get_oid , 3-68

get_platform , 3-69

get_raw_event , 3-66

get_time , 3-69

handled , 3-69

set_album , 3-69

set_event_raw , 3-70

set_eventtype , 3-70

set_image , 3-70

set_info_raw , 3-70

set_message , 3-70

set_name , 3-71

set_objclass , 3-71

set_objname , 3-71

set_oid , 3-71

set_time , 3-71

something_to_do , 3-72

method types, 3-63

operator overloading, 3-73

D
DataUnit , 2-31, 2-32, 2-33, 2-42

DataUnit class, 2-28, 2-59

constructors, 2-60 to 2-62

destructor, 2-62

member functions

catenate , 2-65

chp , 2-65

cmp, 2-65

copy , 2-66

copyin , 2-66

copyout , 2-67

equiv , 2-67

fragment , 2-67

hash , 2-68

size , 2-68

unshare , 2-68

memory management, 2-59

operators, 2-62

defined types

AsniInt , 3-22

CCB, 3-22

CDU, 3-22

DU, 3-22

FBits , 3-22

DeleteReq class, 4-18

DeleteRes class, 4-19

design objectives, high-level PMI, 3-1

Dictionary class, 2-69

member functions

lookup , 2-70

num_elems , 2-70

position , 2-70

table , 2-71

dispatch_recursive function, 3-24

Distinguished Name (DN), encoding of, 2-29

DuplicateOI class, 4-20

DupMessageId class, 4-21

E
element naming, 8-14

EMAgent class, 8-107

access member functions

get_administrative_state , 8-108

get_operational_state , 8-108

set_administrative_state , 8-109

EMCmipAgent class, 8-12, 8-112

access member functions

add_managed_object , 8-117

get_agent_address_info , 8-118

get_agent_address_tag , 8-118

get_application_entity_invoke_id ,
Index-8 C++ API Reference • October 2001

8-122

get_application_entity_qualifier ,

8-121

get_application_entity_title , 8-120

get_application_process_invoke_id ,

8-122

get_dn , 8-115

get_managed_objects , 8-116

get_mpa_address_info , 8-116

get_name_translation , 8-121

get_network_sap , 8-117

get_presentation_selector , 8-119

get_session_selector , 8-119

get_transport_selector , 8-120

remove_managed_object , 8-117

set_agent_address_info , 8-118

set_agent_address_tag , 8-119

set_application_entity_invoke_id ,

8-122

set_application_entity_qualifier ,

8-122

set_application_entity_title , 8-121

set_application_process_invoke_id ,

8-123

set_dn , 8-115

set_managed_objects , 8-117

set_mpa_address_info , 8-116

set_name_translation , 8-121

set_network_sap , 8-118

set_presentation_selector , 8-119

set_session_selector , 8-120

set_transport_selector , 8-120

EMCmipAgentDn class, 8-109

access member functions

system_name , 8-110

unique_name , 8-111

EMdataset class, 1-16

EMdynamicDataset class, 1-16

EMgraph class, 1-18

EMIntegerSet class, 8-13, 8-32

EMObject class, 8-10, 8-47

member functions, 8-11

EMRpcAgent class, 8-13, 8-126

access member functions

add_schema , 8-131

get_dn , 8-129

get_get_community_string , 8-130

get_schemas , 8-131

get_set_community_string , 8-130

remove_schema , 8-132

set_dn , 8-130

set_get_community_string , 8-130

set_schemas , 8-131

set_set_community_string , 8-131

EMRpcAgent attributes, 8-127

EMRpcAgentDn class, 8-123

access member functions

system_name , 8-125

unique_name , 8-125

EMSnmpAgent class, 8-12, 8-135

access member functions

add_supported_mib , 8-143

get_access_control_enforcement , 8-144

get_access_control_mechanism , 8-145

get_dn , 8-140

get_get_community_string , 8-141

get_management_protocol , 8-143

get_set_community_string , 8-141

get_supported_mibs , 8-142

get_system_title , 8-140

get_transport_address , 8-142

remove_supported_mib , 8-143

set_access_control_enforcement , 8-144

set_access_control_mechanism , 8-145

set_dn , 8-140

set_get_community_string , 8-141

set_management_protocol , 8-144

set_set_community_string , 8-142

set_supported_mibs , 8-143

set_system_title , 8-141

set_transport_address , 8-142

EMSnmpAgentDn class, 8-132

EMStaticDataset class, 1-17

EMStatus class, 8-13, 8-29

EMTopoNode class, 8-12, 8-59

access methods

add_array_visible_child , 8-89

add_display_status , 8-74

add_link , 8-76

add_managed_object , 8-80

add_monitor_visible_child , 8-85

add_parent , 8-75

add_propagate_peer , 8-72

add_user_datum , 8-82

get_array_cell_width , 8-88

get_array_hidden_children , 8-90

get_array_num_columns , 8-87

get_array_orientation , 8-86
Index-9

get_array_visible_children , 8-88

get_bus_logical_locations , 8-90

get_children , 8-74

get_children_containers_only , 8-74

get_cmip_agents , 8-80

get_display_status , 8-73

get_display_statuses , 8-73

get_dn , 8-68

get_geographical_location , 8-78

get_is_severity_propagated , 8-71

get_layer_name , 8-79

get_links , 8-76

get_logical_location , 8-77

get_logical_locations , 8-77

get_managed_objects , 8-79

get_monitor_hidden_children , 8-86

get_monitor_max_visible_children , 8-86

get_monitor_rotation , 8-84

get_monitor_visible_children , 8-85

get_name , 8-69

get_parents , 8-75

get_propagate_peers , 8-71

get_propagated_severity , 8-71

get_rpc_agents , 8-81

get_severity , 8-70

get_snmp_agents , 8-80

get_state , 8-72

get_topology_pathnames , 8-69

get_type_name , 8-70

get_user_data , 8-81

get_user_datum , 8-82

get_view_background_image_filename ,

8-83

get_view_default_geo_area , 8-84

get_view_map_config_filename , 8-83

remove_array_visible_child , 8-89

remove_display_status , 8-74

remove_link , 8-76

remove_managed_object , 8-80

remove_monitor_visible_child , 8-86

remove_parent , 8-75

remove_propagate_peer , 8-72

remove_user_datum , 8-82

set_array_cell_width , 8-88

set_array_num_columns , 8-87

set_array_orientation , 8-87

set_array_visible_children , 8-89

set_bus_logical_locations , 8-90

set_display_statuses , 8-73

set_dn , 8-69

set_geographical_location , 8-78

set_is_severity_propagated , 8-71

set_layer_name , 8-79

set_links , 8-76

set_logical_location , 8-77

set_logical_locations , 8-78

set_managed_objects , 8-79

set_monitor_rotation , 8-85

set_monitor_visible_children , 8-85

set_name , 8-69

set_parents , 8-75

set_propagate_peers , 8-72

set_severity , 8-70

set_state , 8-73

set_type_name , 8-70

set_user_data , 8-81

set_view_background_image_filename ,

8-83

set_view_default_geo_area , 8-84

set_view_map_config_filename , 8-83

event subscription, 8-91

EMTopoNodeDn class, 8-55

EMTopoPlatform class, 8-7, 8-39

methods

get_attributes_by_mo () , 8-8

set_attributes_by_mo () , 8-9

EMTopoType class, 8-11, 8-96

access member functions

add_legal_child , 8-101

add_user_data_attribute_name , 8-102

get_all_base_types , 8-100

get_base_type , 8-99

get_dn , 8-99

get_layer_name , 8-101

get_legal_children , 8-100

get_sub_types , 8-100

get_user_data_attribute_names , 8-101

remove_user_data_attribute_name , 8-102

set_base_type , 8-100

set_dn , 8-99

set_layer_name , 8-101

set_user_data_attribute_names , 8-102

callback function, 8-105

static member functions

event subscription, 8-105

is_array , 8-104

is_bus , 8-104

is_container , 8-103
Index-10 C++ API Reference • October 2001

is_device , 8-104

is_link , 8-104

is_monitor , 8-103

is_view , 8-103

EMTopoTypeDn class, 8-93

encoded data, 3-3

Error class, 3-24, 3-72

Error types and strings, 3-76

member functions

error_to_string , 3-74

get_error_string , 3-74

get_error_type , 3-75

reset_error , 3-75

set_error , 3-75

set_error_entry_callback , 3-76

set_error_string , 3-75

set_error_type , 3-75

error handling, 3-24

ErrorResUnexp class, 4-22

event dispatching, 3-24

functions, 3-25

event handling

Viewer API, 1-9

event registration, 8-105

event report response callback, 9-57

event sieves, 3-1

EventReq class, 4-23

F
filter, 3-6

filtering derivation, 3-7

G
GenInt class, 2-71

member functions

&operator %= , 2-76

&operator &= , 2-77

&operator *= , 2-75

&operator += , 2-74

&operator /= , 2-76

&operator -= , 2-75

&operator ^= , 2-78

&operator |= , 2-78

bits , 2-72

div , 2-73

encode , 2-73

format , 2-73

operator , 2-76 , 2-77
operator - , 2-74

operator ! , 2-75

operator != , 2-79

operator % , 2-76

operator & , 2-77

operator * , 2-75

operator + , 2-74

operator / , 2-75

operator == , 2-78

operator > , 2-76

operator ^ , 2-78

operator | , 2-77

operator ~ , 2-78

operator I32 , 2-73

operator U32 , 2-74

sign , 2-72

size , 2-72

get_error_string(), 3-74

get_error_type(), 3-75

get_sys_dn function, 9-58

GetListErr class, 4-24

getPackage Action

code examples

output, 3-11

getPackagesByOC Action

code examples

input and output syntax, 3-15

output, 3-15

GetReq class, 4-25

GetRes class, 4-26

grapher API, 1-15

H
Hash Class, 2-79

Hashdeclare macro, 2-81

HashImpl class, 2-81

member functions, 2-83

Hdict class, 2-85

member functions

lookup , 2-86

num_elems , 2-86

position , 2-87

set , 2-87

table , 2-87
Index-11

high level usage, 3-2

Hrefdict class, 2-87

member functions

lookup , 2-89

num_elems , 2-89

position , 2-89

set , 2-90

table , 2-89

I
Image class, 3-4, 3-77

constructors

copy, 3-80

default, 3-80

general, 3-80

events, 3-115

global functions, related

fdn2formal , 3-115

fdn2oi , 3-115

name2oc , 3-116

oc2name , 3-116

oi2fdn , 3-116

member functions

attr_changed , 3-81

attr_exists , 3-82

boot , 3-83

call , 3-84

create , 3-85

create_within , 3-85

destroy , 3-86

exists , 3-87

find_by_nickname , 3-88

find_by_objname , 3-89

find_by_oi , 3-88

first_album , 3-89

get , 3-89

get_attr_last_error , 3-93

get_attr_names , 3-90

get_attr_numerrors , 3-93

get_attr_prop , 3-91

get_attr_trackmode , 3-93

get_dbl , 3-94

get_encoded_oi , 3-97

get_long , 3-95

get_nickname , 3-95

get_objclass , 3-96

get_objname , 3-96

get_oc , 3-97

get_oi , 3-97

get_param_syntax , 3-97

get_prop , 3-98

get_raw , 3-99

get_result_syntax , 3-100

get_set , 3-100

get_set_dbl , 3-100

get_set_gint , 3-101

get_set_long , 3-101

get_set_raw , 3-102

get_set_str , 3-102

get_str , 3-103

get_userdata , 3-104

get_when_syntax , 3-104

get-gint , 3-94

is_in_album , 3-104

revert , 3-105

send_event , 3-106

set , 3-107

set_attr_prop , 3-107

set_dbl , 3-107

set_from_ref , 3-108

set_gint , 3-108

set_long , 3-109

set_nickname , 3-109

set_objclass , 3-109

set_prop , 3-110

set_raw , 3-110

set_str , 3-110

set_userdata , 3-111

shutdown , 3-112

start , 3-112

start_boot , 3-112

start_create , 3-112

start_create_within , 3-113

start_destroy , 3-113

start_raw , 3-113

start_shutdown , 3-113

start_store , 3-113

store , 3-114

U32 num_albums , 3-105

when, 3-114

method types, 3-78

operators, 3-81

properties, 3-4, 3-92, 3-98

InexpError class, 4-75

InvalidActionArg class, 4-27

InvalidAttrVal class, 4-28
Index-12 C++ API Reference • October 2001

InvalidEventArg class, 4-29

InvalidFilter class, 4-30

InvalidOI class, 4-31

InvalidOperation class, 4-32

InvalidOperator class, 4-33

InvalidScope class, 4-34

K
KernelMessageSAP class, 4-39

L
LinkedResUnexp class, 4-35

locational flexibility and transparency, 3-1

low level primitives, 3-2

LPP (Lightweight Presentation Protocol), 4-1

M
makefile, 8-15

managed object, creation rules, 9-33

manipulating objects, 3-2

MDR (Meta Data Repository), 3-7

actions

getAllDocuments
getAsn1Module
getAttribute
getDocument
getObjectClass
getOidName

actions sample program, 3-17

description, 3-7

symbolic constants, 3-18

Message class, 4-36

messages

viewer to application, 1-10

MessageSAP class, 4-39

member functions

cancel_callback , 4-41

new_id , 4-42

receive_request , 4-42

send , 4-43

MessQOS Class, 4-45

MessScope Class, 4-45

MIS independence, 3-1

MIS-MIS awareness, 8-15

MissingAttrVal class, 4-47

MistypedArg class, 4-48

MistypedError class, 4-49

MistypedOp class, 4-50

MistypedRes class, 4-51

Morf class, 3-3, 3-116

constructors, 3-118 to 3-120

copy constructor, 3-119

virtual constructor, 3-119

destructor, 3-120

member functions

extract , 3-121

get , 3-123

get, code example, 3-124, 3-127

get_dbl , 3-125

get_gint , 3-126

get_long , 3-126

get_member_names , 3-126

get_memname, 3-126

get_platform , 3-127

get_syntax , 3-129

get_type , 3-130

get_type(), code example, 3-130

get-str , 3-129

has_value , 3-130

is_any , 3-131

is_choice , 3-131

is_list , 3-131

is_sequence , 3-131

is_set , 3-132

num_elements , 3-132

ref , 3-132

set , 3-132

set_any , 3-133

set_dbl , 3-133

set_gint , 3-133

set_long , 3-133

set_memname, 3-134

set_str , 3-134

set_value , 3-134

split_array , 3-135

split_queue , 3-135

operators

assignment operator, 3-120

cast operator, 3-121

comparison operator, 3-121

Morf method types, 3-117

Morf::get_type(), code example, 3-124
Index-13

MorfBuilder class, 3-135

member functions

get_error_string , 3-146

get_error_type , 3-145

get_prop , 3-144

get_raw , 3-138

select_choice , 3-140

set , 3-142

set_prop , 3-147

set_raw , 3-141

set_syntax , 3-141

validate , 3-143

MRM (Message Routing Module), 4-1

N
NCAsyncResIterator class, 7-5

NCI (Nerve Center Interface), 7-1

NC requests, 7-3

asynchronous launches, 7-4

synchronous launches, 7-3

NCI functions, 7-14

nci_action_add , 7-14

nci_action_delete , 7-14

nci_async_request_start , 7-15

nci_condition_add , 7-16

nci_condition_delete , 7-16

nci_condition_get , 7-16

nci_init , 7-17

nci_parse_handle , 7-18

nci_pollrate_add , 7-18

nci_pollrate_delete , 7-19

nci_request_delete , 7-19

nci_request_dump , 7-19

nci_request_info , 7-20

nci_request_list , 7-20

nci_request_start , 7-21

alternative syntax, 7-21 to 7-23

nci_severity_add , 7-23

nci_severity_delete , 7-24

nci_state_add , 7-24

nci_state_delete , 7-24

nci_state_get , 7-25

nci_template_add , 7-25

nci_template_copy , 7-26

nci_template_create , 7-26

nci_template_delete , 7-26

nci_template_find , 7-27

nci_template_revert , 7-27

nci_template_store , 7-28

nci_transition_add , 7-28

nci_transition_delete , 7-29

nci_transition_find , 7-29

nci_transition_get , 7-30

NCI global variables, 7-13

nci_error_reason , 7-13

topoNodeId argument, 7-13

NCI library

functions, 7-11

initialization routines, 7-17

NCI library classes, list of, 7-5

request templates, 7-1 to 7-30

sample program, 7-30 to 7-33

NCParsedReqHandle class, 7-7

NCTopoInfoList class, 7-9

Nerve Center request template, 7-1

NoSuchAction class, 4-52

NoSuchActionArg class, 4-53

NoSuchAttr class, 4-54

NoSuchEvent class, 4-55

NoSuchEventArg class, 4-56

NoSuchMessageId class, 4-57

NoSuchOC class, 4-58

NoSuchOI class, 4-59

NoSuchRefOI class, 4-60

notifications, clients, 8-105

O
object

absolute name, 3-2

nickname, 3-2

relationships, 3-3

directed nature, 3-3

set membership, 3-3

object services API enhancements

create request service, 9-33

delete request service, 9-42

get request service, 9-8

set request service, 9-19

objects

manipulating, 3-2

naming, 3-2, 3-5

ObjReqMess class, 4-61

ObjResMess class, 4-62

ODT (object development tools) See OS API, 9-1
Index-14 C++ API Reference • October 2001

OID (Object IDentifier), 2-37

Oid class, 2-90

constructors, 2-91

member functions

add_in , 2-92

add_last_in , 2-92

append , 2-92

copy_oid , 2-93

format , 2-93

get_id , 2-93

is_same_prefix , 2-93

num_ids , 2-94

print , 2-68, 2-94

object identifier, 2-90

operators, 2-91

OpCancelled class, 4-63

OS API (object services API), 9-1

action request service, 9-26

action response example, 9-31

create request service, 9-33

create response callback, 9-39

debugging flags, 9-58

delete request service, 9-42

delete response callback, 9-49

event report request service, 9-53

get request service, 9-8

get response callback, 9-15

get_graphstr_rdn functions, 9-59

get_sys_dn function, 9-58

interface descriptions and examples, 9-7

operational flow, 9-2

send_event_req example, 9-54

service request function parameters, 9-3

service response callback function parameters, 9-7

set request service, 9-19

set respone callback, 9-24

supporting functions for example code, 9-57

P
PasswordTty class, 3-148

Platform class, 3-149

constructors, 3-151

DEFAULT_TIMEOUTconstant, 3-18

events, 3-167

GETENVmacro, 3-168

member functions

cleanup_def_platform , 3-152

connect , 3-155

default_platform , 3-155

disconnect , 3-156

find_album_by_nickname , 3-159

find_image_by_nickname , 3-159

find_image_by_objname , 3-159

find_image_by_oi , 3-159

get_attr_coder , 3-160

get_authorized_applications , 3-160

get_authorized_features , 3-161

get_connection , 3-162

get_fdn , 3-162

get_fullname , 3-163

get_plat_id , 3-163

get_prop , 3-163

get_raw_sap , 3-165

get_shortname , 3-165

get_when_syntax , 3-165

replace_discriminator , 3-164

set_attr_coder , 3-166

set_default_platform , 3-166

set_prop , 3-166

start_connect , 3-166

start_disconnect , 3-167

when, 3-167

operators, 3-151

properties, 3-4, 3-163

TIME_OUT property , 3-18

platform method types, 3-150

PMI (Portable Management Interface), 3-1, 4-1

POC (persistent object classes), 8-10

primary CMIS message types, 4-4

ProcessFailure class, 4-64

Q
Queue class, 2-97

Queuedeclare macro, 2-100

R
RCL (Request Condition Language), 7-16

ReqMess class, 4-65

reset_error(), 3-75

ResMess class, 4-66

ResourceLimit class, 4-67
Index-15

S
SAPs (Service Access Points)

transport-Dependent, 4-1

transport-Independent, 4-1

ScopedReqMess class, 4-68

scoping, 3-3

scoping parameters, 3-6

send_event_req example, 9-54

send_get_req() function, 9-8

send_set_req() function, 9-19

service request function parameters, 9-3

set request service, 9-19

set_error(), 3-75

set_error_string(), 3-75

set_error_type(), 3-75

set_indication_handler(), 1-10

SetListErr class, 4-69

SetReq class, 4-70

SetRes class, 4-71

string constants, 3-19

SyncNotSupp class, 4-72

Syntax class, 3-168

member functions

expansion , 3-171

get , 3-171

get_coder , 3-171

get_member_names , 3-171

get_members , 3-172

get_memname, 3-172

get_platform , 3-172

get_raw , 3-172

get_type , 3-173

is_any , 3-173

is_choice , 3-173

is_list , 3-174

is_sequence , 3-174

is_set , 3-174

member, 3-174

set_coder , 3-175

Syntax method types, 3-169

Syntax::get_type(), code example, 3-173

T
TimedOut class, 4-73

Timer class, 2-101

global functions, related

getGeneralizedTime , 2-103

post_timer , 2-102

post_timer_handler , 2-102

purge_timer , 2-103

purge_timer_data , 2-103

purge_timer_handler , 2-103

topology API, 8-1

class overview, 8-5

class reference, 8-29

concepts, 8-14

examples, 8-15 to 8-25

GDMO relationship, 8-5

general description, 8-3

relationship to PMI, 8-6

topology node names

duplicates, 8-14

U
UnexpChildOp class, 4-74

UnexpRes class, 4-76

UnrecError class, 4-77

UnrecLinkedId class, 4-78

UnrecMessageId class, 4-79

UnrecOp class, 4-80

variables

MessagePtr , 4-82

MessBaseType , 4-83

MessId , 4-81

MessMode, 4-82

MessScopeType , 4-82

MessSync enumerator, 4-83

MessType enumerator, 4-84

MESSTYPE_MAX, 4-86

ResponseHandle , 4-86

SendResult , 4-86

utility classes, 8-13

V
Viewer API

communication protocol, 1-6

overview, 1-2

viewer event messages, 1-10

viewerAPI class, 1-2

actions, 1-6

viewerPopupMessage dialog, 1-8

viewerPopupQuestion dialog, 1-8
Index-16 C++ API Reference • October 2001

member functions

set_indication_handler , 1-5

viewerapi_build_target , 1-4

viewerapi_send_request , 1-3, 1-4

viewerapi_send_request_unconfirmed ,

1-4, 1-5

viewerapi_start_send_request , 1-3, 1-5

sample programs, 1-15

viewer event handling, 1-9

ViewRegisterEvents , 1-11

viewer event messages

duLayerChangeEvent , 1-13

duObjectCreationEvent , 1-14

duObjectDeletionEvent , 1-14

duObjectDeselectedEvent , 1-12

duObjectSelectedEvent , 1-11

duPopupMenuEvent , 1-12

duRegisterForEvents , 1-15

duToolsMenuEvent , 1-13

duViewChangeEvent , 1-14

W
Waiter class, 3-175

constructors, 3-176

member functions

cancel , 3-179

clobber , 3-180

complete , 3-180

dec , 3-180

get_current_event , 3-181

get_data , 3-181

get_except , 3-181

inc , 3-181

num_clobbered , 3-182

ref , 3-182

send_resp , 3-182

time_remaining , 3-183

wait , 3-183

waitmore , 3-183

was_completed , 3-183

when_canceled , 3-184

when_done , 3-184

when_resp , 3-184

when_tick , 3-186

method types, 3-175

operators, 3-179
Index-17

Index-18 C++ API Reference • October 2001

	1
	Application Programming Interface
	1.1 API Classes
	1.2 Viewer API
	1.3 ViewerApi Class
	1.3.1 ViewerApi Member Functions
	1.3.2 Communication Protocol
	1.3.3 ViewerApi Actions
	1.3.3.1 Inputs

	1.3.4 Event Handling
	1.3.5 Network Views Messages
	1.3.6 Sample Programs

	1.4 Grapher API
	1.5 EMdataset Class
	1.6 EMdynamicDataset Class
	1.6.1 Constructor
	1.6.2 Destructor

	1.7 EMstaticDataset Class
	1.7.1 Constructor
	1.7.2 Destructor

	1.8 EMgraph Class
	1.8.1 Constructor
	1.8.2 Destructor
	1.8.3 EMgraph Member Functions

	1.9 Err Class
	1.9.1 Member Functions

	1.10 Application-to-Application API
	1.11 AppInstComm Class
	1.11.1 Constructors
	1.11.2 Destructor
	1.11.3 AppInstComm Member Functions

	1.12 AppInstObj Class
	1.12.1 Constructors
	1.12.2 Destructor
	1.12.3 AppInstObj Member Functions

	1.13 AppRequest Class
	1.13.1 Constructor
	1.13.2 AppRequest Member Functions

	1.14 Actions
	1.15 Notifications
	1.16 Example
	1.17 AppTarget Class
	1.17.1 Constructor
	1.17.2 AppTarget Member Functions

	2
	Common API
	2.1 Common API Classes
	2.2 Class Categories
	2.3 Variable Types
	2.4 Class Descriptions
	2.5 Address Class
	2.5.1 Constructor
	2.5.2 Operator
	2.5.3 Address Member Functions

	2.6 Arraydeclare Macro
	2.7 Asn1ParsedValue Class
	2.7.1 Constructors
	2.7.2 Asn1ParsedValue Operator Overloading
	2.7.3 Asn1ParsedValue Member Functions

	2.8 Asn1Tag Class
	2.8.1 Constructors
	2.8.2 Asn1Tag Operator Overloading
	2.8.3 Asn1Tag Member Functions

	2.9 Asn1Type Class
	2.9.1 Constructors
	2.9.2 Destructor
	2.9.3 Asn1Type Operator Overloading
	2.9.4 Asn1Type Member Functions
	2.9.5 Related Types

	2.10 Asn1Value Class
	2.10.1 Assignment and Data Sharing
	2.10.2 Type Conversion
	2.10.3 Encoding Functions
	2.10.4 Encoding of a Distinguished Name
	2.10.5 Decoding Simple and Constructed Asn1Values
	2.10.6 Constructors
	2.10.7 Destructor
	2.10.8 Asn1Value Operator Overloading
	2.10.9 Asn1Value Member Functions
	2.10.10 Related Global Functions

	2.11 Blockage Class
	2.11.1 Constructor
	2.11.2 Blockage Member Functions
	2.11.3 Related Global Functions

	2.12 Callback Class
	2.12.1 Constructor
	2.12.2 Callback Operator Overloading
	2.12.3 Callback Member Functions

	2.13 Command Class
	2.13.1 Constructor
	2.13.2 Operator

	2.14 Config Class
	2.14.1 Constructors
	2.14.2 Config Member Functions

	2.15 DataUnit Class
	2.15.1 Constructors
	2.15.2 Destructor
	2.15.3 DataUnit Operator Overloading
	2.15.4 DataUnit Member Functions

	2.16 Dictionary Class
	2.16.1 Constructor
	2.16.2 Dictionary Operator Overloading
	2.16.3 Dictionary Member Functions

	2.17 GenInt Class
	2.17.1 Constructors
	2.17.2 Copy Constructor
	2.17.3 GenInt Member Functions

	2.18 Hash Class
	2.18.1 Hash Member Functions

	2.19 Hashdeclare Macro
	2.20 HashImpl Class
	2.20.1 Constructor
	2.20.2 Destructor
	2.20.3 HashImpl Member Functions

	2.21 Hdict Class
	2.21.1 Constructors
	2.21.2 Hdict (K,T) Operator Overloading
	2.21.3 Hdict Member Functions

	2.22 Hrefdict Class
	2.22.1 Constructors
	2.22.2 Hrefdict (K, T) Operator Overloading
	2.22.3 Hrefdict Member Functions

	2.23 Oid Class
	2.23.1 Constructors
	2.23.2 Oid Operator Overloading
	2.23.3 Oid Member Functions

	2.24 Asn1TypeDefinedType Declarations
	2.24.1 Asn1SubTypeKind
	2.24.2 Asn1SubTypeSize
	2.24.3 Asn1Kind
	2.24.4 Asn1TypeE
	2.24.5 Asn1TypeEL
	2.24.6 Asn1TypeNN
	2.24.7 Asn1TagClass
	2.24.8 Asn1Tagging

	2.25 Queue Class
	2.25.1 Queue Member Functions

	2.26 Queuedeclare Macro
	2.27 Timer Class
	2.27.1 Default Constructor
	2.27.2 Constructor
	2.27.3 Operator
	2.27.4 Related Global Functions

	3
	High-Level PMI
	3.1 Design Objectives
	3.2 Object Management Model
	3.2.1 Naming Objects
	3.2.2 Relationships Between Objects
	3.2.3 Managing Notifications
	3.2.4 Managing Data Types
	3.2.5 Object Schema Management
	3.2.6 Filtering as an Aspect of Album Derivation
	3.2.6.1 Object Name
	3.2.6.2 Scope
	3.2.6.3 Filter
	3.2.6.4 Operation of a Filtering Derivation

	3.3 Meta Data Repository
	3.3.1 getAttribute Action
	3.3.2 getAllDocuments Action
	3.3.3 getAsn1Module Action
	3.3.4 getObjectClass Action
	3.3.5 getDocument Action
	3.3.6 getPackage Action
	3.3.7 getPackagesByOC Action
	3.3.8 getOidName Action
	3.3.9 Sample MDR Action Program

	3.4 Symbolic Constants
	3.5 Defined Types
	3.5.1 Asn1Int
	3.5.2 CCB
	3.5.3 CDU
	3.5.4 DU
	3.5.5 FBits
	3.5.5.1 FormatBits
	3.5.5.2 Timeout

	3.6 Error Handling and Event Dispatching
	3.6.1 Event Dispatching Functions

	3.7 pmi_sched_get_fds Function
	3.8 High-Level PMI Classes
	3.9 Album Class
	3.9.1 Constructors
	3.9.2 Album Operator Overloading
	3.9.3 Album Member Functions

	3.10 AlbumImage Class
	3.10.1 Constructors
	3.10.2 Destructors
	3.10.3 AlbumImage Operator Overloading
	3.10.4 AlbumImage Member Functions

	3.11 AppTarget Class
	3.11.1 Constructors
	3.11.2 AppTarget Operator Overloading

	3.12 AuthApps Class
	3.12.1 Constructors
	3.12.2 AuthApps Operator Overloading
	3.12.3 AuthApps Member Functions

	3.13 AuthFeatures Class
	3.13.1 Constructor
	3.13.2 AuthFeatures Operator Overloading
	3.13.3 AuthFeatures Member Functions

	3.14 Coder Class
	3.14.1 Constructors
	3.14.2 Coder Operator Overloading
	3.14.3 Coder Member Functions

	3.15 CurrentEvent Class
	3.15.1 Constructors
	3.15.2 CurrentEvent Operator Overloading
	3.15.3 CurrentEvent Member Functions

	3.16 Error Class
	3.16.1 Constructor
	3.16.2 Error Operator Overloading
	3.16.3 Error Public Data Member
	3.16.4 Error Member Functions
	3.16.5 Error Types and Strings

	3.17 Image Class
	3.17.1 Image Constructor
	3.17.2 Image Operator Overloading
	3.17.3 Image Member Functions
	3.17.4 Related Global Functions

	3.18 Morf Class
	3.18.1 Constructors
	3.18.2 Destructor
	3.18.3 Morf Operator Overloading
	3.18.4 Morf Member Functions

	3.19 MorfBuilder Class
	3.19.1 Constructors
	3.19.2 Destructor
	3.19.3 MorfBuilder Operator Overloading
	3.19.4 MorfBuilder Member Functions

	3.20 PasswordTty Class
	3.20.1 Constructors
	3.20.2 PasswordTty Operator Overloading
	3.20.3 PasswordTty Member function

	3.21 Platform Class
	3.21.1 Constructors
	3.21.2 Destructor
	3.21.3 Platform Operator Overloading
	3.21.4 Platform Member Functions
	3.21.5 GETENV Macro

	3.22 Syntax Class
	3.22.1 Constructors
	3.22.2 Syntax Operator Overloading
	3.22.3 Syntax Member Functions

	3.23 Waiter Class
	3.23.1 Constructors
	3.23.2 Waiter Operator Overloading
	3.23.3 Waiter Member Functions

	4
	Low-Level PMI
	4.1 Communication Path
	4.2 Root Classes for the Low-Level PMI
	4.3 Low-Level PMI Classes
	4.3.1 Class Inheritance
	4.3.2 Class Summary

	4.4 AccessDenied Class
	4.4.1 Constructor

	4.5 ActionReq Class
	4.5.1 Constructor

	4.6 ActionRes Class
	4.6.1 Constructor

	4.7 AssocReleased Class
	4.7.1 Constructor

	4.8 CancelGetReq Class
	4.8.1 Constructor

	4.9 CancelGetRes Class
	4.9.1 Constructor

	4.10 ClassInstConfl Class
	4.10.1 Constructor

	4.11 CreateReq Class
	4.11.1 Constructor

	4.12 CreateRes Class
	4.12.1 Constructor

	4.13 DeleteReq Class
	4.13.1 Constructor

	4.14 DeleteRes Class
	4.14.1 Constructor

	4.15 DuplicateOI Class
	4.15.1 Constructor

	4.16 DupMessageId Class
	4.16.1 Constructor

	4.17 ErrorResUnexp Class
	4.17.1 Constructor

	4.18 EventReq Class
	4.18.1 Constructor

	4.19 GetListErr Class
	4.19.1 Constructor

	4.20 GetReq Class
	4.20.1 Constructor

	4.21 GetRes Class
	4.21.1 Constructor

	4.22 InvalidActionArg Class
	4.22.1 Constructor

	4.23 InvalidAttrVal Class
	4.23.1 Constructor

	4.24 InvalidEventArg Class
	4.24.1 Constructor

	4.25 InvalidFilter Class
	4.25.1 Constructor

	4.26 InvalidOI Class
	4.26.1 Constructor

	4.27 InvalidOperation Class
	4.27.1 Constructor

	4.28 InvalidOperator Class
	4.28.1 Constructor

	4.29 InvalidScope Class
	4.29.1 Constructor

	4.30 LinkedResUnexp Class
	4.30.1 Constructor

	4.31 Message Class
	4.31.1 Constructor
	4.31.2 Message Member Functions

	4.32 MessageSAP Class
	4.32.1 Constructor
	4.32.2 MessageSAP Member Functions
	4.32.3 MessageSAP Initialization

	4.33 MessQOS Class
	4.34 MessScope Class
	4.34.1 Constructors

	4.35 MissingAttrVal Class
	4.35.1 Constructor

	4.36 MistypedArg Class
	4.36.1 Constructor

	4.37 MistypedError Class
	4.37.1 Constructor

	4.38 MistypedOp Class
	4.38.1 Constructor

	4.39 MistypedRes Class
	4.39.1 Constructor

	4.40 NoSuchAction Class
	4.40.1 Constructor

	4.41 NoSuchActionArg Class
	4.41.1 Constructor

	4.42 NoSuchAttr Class
	4.42.1 Constructor

	4.43 NoSuchEvent Class
	4.43.1 Constructor

	4.44 NoSuchEventArg Class
	4.44.1 Constructor

	4.45 NoSuchMessageId Class
	4.45.1 Constructor

	4.46 NoSuchOC Class
	4.46.1 Constructor

	4.47 NoSuchOI Class
	4.47.1 Constructor

	4.48 NoSuchRefOI Class
	4.48.1 Constructor

	4.49 ObjReqMess Class
	4.49.1 Constructor

	4.50 ObjResMess Class
	4.50.1 Constructor

	4.51 OpCancelled Class
	4.51.1 Constructor

	4.52 ProcessFailure Class
	4.52.1 Constructor

	4.53 ReqMess Class
	4.53.1 Constructor

	4.54 ResMess Class
	4.54.1 Constructor

	4.55 ResourceLimit Class
	4.55.1 Constructor

	4.56 ScopedReqMess Class
	4.56.1 Constructor

	4.57 SetListErr Class
	4.57.1 Constructor

	4.58 SetReq Class
	4.58.1 Constructor

	4.59 SetRes Class
	4.59.1 Constructor

	4.60 SyncNotSupp Class
	4.60.1 Constructor

	4.61 TimedOut Class
	4.61.1 Constructor

	4.62 UnexpChildOp Class
	4.62.1 Constructor

	4.63 UnexpError Class
	4.63.1 Constructor

	4.64 UnexpRes Class
	4.64.1 Constructor

	4.65 UnrecError Class
	4.65.1 Constructor

	4.66 UnrecLinkedId Class
	4.66.1 Constructor

	4.67 UnrecMessageId Class
	4.67.1 Constructor

	4.68 UnrecOp Class
	4.68.1 Constructor

	4.69 Constants and Defined Types
	4.69.1 MessId
	4.69.2 MessMode
	4.69.3 MessagePtr
	4.69.4 MessScopeType
	4.69.5 MessSync
	4.69.6 MessBaseType
	4.69.7 MessType
	4.69.8 MESSTYPE_MAX
	4.69.9 ResponseHandle
	4.69.10 SendResult

	5
	Access Control API
	5.1 Design Objectives
	5.2 Access Control Types
	5.3 Class Hierarchy
	5.4 Symbolic Constants and Defined Types
	5.4.1 Constants
	5.4.2 Defined Types

	5.5 Access Control API Classes
	5.6 ACAccessControlRules Class
	5.6.1 Constructor
	5.6.2 Destructor
	5.6.3 ACAccessControlRules Member Functions

	5.7 ACAccessUserList Class
	5.7.1 Constructor
	5.7.2 Destructor
	5.7.3 ACAccessUserList Member Functions

	5.8 ACAppFeatureContainer Class
	5.8.1 Constructor
	5.8.2 Destructor
	5.8.3 ACAppFeatureContainer Member Functions

	5.9 ACApplication Class
	5.9.1 Constructor
	5.9.2 Destructor
	5.9.3 ACApplication Member Functions

	5.10 ACApplicationContainer Class
	5.10.1 Constructor
	5.10.2 Destructor
	5.10.3 ACApplicationContainer Member Functions

	5.11 ACApplicationFeature Class
	5.11.1 Constructor
	5.11.2 Destructor
	5.11.3 ACApplicationFeature Member Functions

	5.12 ACCallback Class
	5.12.1 Constructors
	5.12.2 Destructor
	5.12.3 ACCallback Operator Overloading
	5.12.4 ACCallback Member Functions

	5.13 ACContainer Class
	5.13.1 Constructor
	5.13.2 Destructor
	5.13.3 ACContainer Operator Overloading
	5.13.4 ACContainer Member Functions

	5.14 ACDbObject Class
	5.14.1 Constructor
	5.14.2 Destructor
	5.14.3 ACDbObject Member Functions
	5.14.4 Notes About the ACDbObject Class

	5.15 ACDbObjectContainer Class
	5.15.1 Constructor
	5.15.2 Destructor
	5.15.3 ACDbObjectContainer Member Functions

	5.16 ACEMNotificationEmitter Class
	5.16.1 Constructor
	5.16.2 Destructor
	5.16.3 ACEMNotificationEmitter Member Functions

	5.17 ACEMTargets Class
	5.17.1 Constructor
	5.17.2 Destructor
	5.17.3 ACEMTargets Member Functions

	5.18 ACGroup Class
	5.18.1 Constructor
	5.18.2 Destructor
	5.18.3 ACGroup Member Functions

	5.19 ACGroupContainer Class
	5.19.1 Constructor
	5.19.2 Destructor
	5.19.3 ACGroupContainer Member Functions

	5.20 ACInterface Class
	5.20.1 Constructor
	5.20.2 Destructor
	5.20.3 ACInterface Member Functions

	5.21 ACObject Class
	5.21.1 Constructor
	5.21.2 Destructor
	5.21.3 ACObject Operator Overloading
	5.21.4 ACObject Member Functions

	5.22 ACRule Class
	5.22.1 Constructor
	5.22.2 Destructor
	5.22.3 ACRule Member Functions

	5.23 ACRuleContainer Class
	5.23.1 Constructor
	5.23.2 Destructor
	5.23.3 ACRuleContainer Member Functions

	5.24 ACScope Class
	5.24.1 Constructors
	5.24.1.1 ACScope Operator Overloading
	5.24.1.2 ACScope Member Functions

	5.25 ACTargets Class
	5.25.1 Constructor
	5.25.2 Destructor
	5.25.3 ACTargets Member Functions

	5.26 ACTargetsContainer Class
	5.26.1 Constructor
	5.26.2 Destructor
	5.26.3 ACTargetsContainer Member Functions

	5.27 ACUser Class
	5.27.1 Constructors
	5.27.2 ACUser Operator Overloading
	5.27.3 ACUser Member Functions

	6
	Access Control Engine API
	6.1 Symbolic Constants
	6.1.1 ACEOperationType
	6.1.2 ACEEnforcementAction

	6.2 ACE API Classes
	6.3 ACE Class
	6.3.1 Constructor
	6.3.2 Destructor
	6.3.3 ACE Member Functions

	6.4 ACEContext Class
	6.4.1 Constructor
	6.4.2 Destructor
	6.4.3 ACEContext Operator Overloading
	6.4.4 ACEContext Member Functions

	6.5 ACEDecision Class
	6.5.1 Constructor
	6.5.2 Destructor
	6.5.3 ACEDecision Member Functions

	6.6 ACEDomain Class
	6.6.1 Constructor
	6.6.2 Destructor
	6.6.3 ACEDomain Member Function

	6.7 ACEReqData Class
	6.7.1 Constructor
	6.7.2 Destructor

	6.8 AuxServerUtils Class
	6.8.1 Constructor
	6.8.2 Destructor
	6.8.3 AuxServerUtils Virtual Functions

	7
	Nerve Center Interface
	7.1 Requests
	7.2 Class and Function Summary
	7.3 NC Requests
	7.3.1 Synchronous Launches
	7.3.2 Asynchronous Launches

	7.4 NCI Library Classes
	7.5 NCAsyncResIterator Class
	7.5.1 Constructor
	7.5.2 Destructor
	7.5.3 Operator Overloading for Prefix Operator++
	7.5.4 Member Functions

	7.6 NCParsedReqHandle Class
	7.6.1 Constructors
	7.6.2 Default Destructor
	7.6.3 Member Functions

	7.7 NCTopoInfoList Class
	7.7.1 Default Constructor
	7.7.2 Copy Constructor
	7.7.3 Destructor
	7.7.4 Operator Overloading for Operator=
	7.7.5 Member Functions

	7.8 NCI Library Functions
	7.9 NCI Global Variables
	7.9.1 nci_error_reason
	7.9.2 topoNodeId Argument

	7.10 NCI Functions
	7.10.1 nci_action_add
	7.10.2 nci_action_delete
	7.10.3 nci_async_request_start
	7.10.4 nci_condition_add
	7.10.5 nci_condition_delete
	7.10.6 nci_condition_get
	7.10.7 nci_init
	7.10.8 nci_parse_handle
	7.10.9 nci_pollrate_add
	7.10.10 nci_pollrate_delete
	7.10.11 nci_request_delete
	7.10.12 nci_request_dump
	7.10.13 nci_request_info
	7.10.14 nci_request_list
	7.10.15 nci_request_start
	7.10.15.1 Alternative Syntax #1
	7.10.15.2 Alternative Syntax #2
	7.10.15.3 Alternative Syntax #3
	7.10.15.4 Alternative Syntax #4
	7.10.15.5 Alternative Syntax #5

	7.10.16 nci_severity_add
	7.10.17 nci_severity_delete
	7.10.18 nci_state_add
	7.10.19 nci_state_delete
	7.10.20 nci_state_get
	7.10.21 nci_template_add
	7.10.22 nci_template_copy
	7.10.23 nci_template_create
	7.10.24 nci_templete_delete
	7.10.25 nci_template_find
	7.10.26 nci_template_revert
	7.10.27 nci_template_store
	7.10.28 nci_transition_add
	7.10.29 nci_transition_delete
	7.10.30 nci_transition_find
	7.10.31 nci_transition_get
	7.10.31.1 Description
	7.10.31.2 Event Request Example

	8
	Topology API
	8.1 Topology Classes
	8.1.1 General Comments
	8.1.2 General Description

	8.2 Class Overview
	8.2.1 Relationship to the GDMO
	8.2.2 Relationship to PMI

	8.3 EMTopoPlatform Class
	8.3.1 get_attributes_by_mo()
	8.3.2 set_attributes_by_mo()

	8.4 Persistent Object Classes
	8.4.1 EMObject Class
	8.4.2 EMObject Member Functions
	8.4.3 EMTopoType Class
	8.4.4 EMTopoNode Class
	8.4.5 EMSnmpAgent Class
	8.4.6 EMCmipAgent Class
	8.4.7 EMRpcAgent Class

	8.5 Utility Classes
	8.5.1 EMIntegerSet Class
	8.5.2 EMStatus Class

	8.6 Topology API Concepts
	8.6.1 Element Naming
	8.6.2 Duplicate Topology Node Names
	8.6.3 MIS-MIS Awareness
	8.6.4 Performance Considerations

	8.7 Examples
	8.7.1 Makefile
	8.7.2 Finding Topology Nodes
	8.7.3 Registering Events for EMTopoNode
	8.7.4 Printing the Topology Hierarchy

	8.8 Class Reference
	8.9 EMStatus Class
	8.9.1 Constructors and Destructor
	8.9.2 Operators
	8.9.3 Global Operators

	8.10 EMIntegerSet Class
	8.10.1 Example
	8.10.2 Constructors and Destructor
	8.10.3 Operators
	8.10.4 Member Functions
	8.10.5 Global Operators

	8.11 EMIntegerSetIterator Class
	8.11.1 Example
	8.11.2 Constructors and Destructor
	8.11.3 Member Functions

	8.12 EMTopoPlatform Class
	8.12.1 Example
	8.12.2 Static Member Functions
	8.12.3 Access Member Functions
	8.12.4 General Member Functions

	8.13 EMObject Class
	8.13.1 Constructors and Destructor
	8.13.2 EMObject Member Functions Supported By POC Classes
	8.13.3 Operators Supported by all POC classes
	8.13.4 Other Member Functions Supported by POC Classes.
	8.13.5 Static Member Functions Supported by POC Classes

	8.14 EMTopoNodeDn Class
	8.14.1 Constructors and Destructor
	8.14.2 Operators
	8.14.3 Access Member Functions
	8.14.4 General Member Functions
	8.14.5 Related Global Operators

	8.15 EMTopoNode Class
	8.15.1 Example
	8.15.2 Constructors and Destructor
	8.15.3 Access Member Functions
	8.15.4 Static Member Functions for Event Subscription
	8.15.5 Related Global Operators

	8.16 EMTopoTypeDn Class
	8.16.1 Constants
	8.16.2 Constructors and Destructor
	8.16.3 Operators
	8.16.4 Access Member Functions
	8.16.5 General Member Functions

	8.17 EMTopoType Class
	8.17.1 Example
	8.17.2 Constructors and Destructor
	8.17.3 Operators
	8.17.4 Access Member Functions
	8.17.5 Static Member Functions
	8.17.6 Static Member Functions for Event Subscription
	8.17.7 Global Operators

	8.18 EMAgent Class
	8.18.1 Access Member Functions

	8.19 EMCmipAgentDn Class
	8.19.1 Constructors and Destructor
	8.19.2 Operators
	8.19.3 Access Member Functions
	8.19.4 General Member Functions
	8.19.5 Related Global Operators

	8.20 EMCmipAgent Class
	8.20.1 Example
	8.20.2 Access Member Functions
	8.20.3 Global Operators

	8.21 EMRpcAgentDn Class
	8.21.1 Constructors and Destructor
	8.21.2 Operators
	8.21.3 Access Member Functions
	8.21.4 General Member Functions
	8.21.5 Global Operators

	8.22 EMRpcAgent Class
	8.22.1 Example
	8.22.2 Constructors and Destructor
	8.22.3 Access Member Functions
	8.22.4 Global Operators

	8.23 EMSnmpAgentDn Class
	8.23.1 Constructors, and Destructor
	8.23.2 Operators
	8.23.3 Access Member Functions
	8.23.4 General Member Functions
	8.23.5 Global Operators

	8.24 EMSnmpAgent Class
	8.24.1 Example
	8.24.2 Constructors and Destructor
	8.24.3 Access Member Functions
	8.24.4 Related Global Operators

	9
	Object Services API
	9.1 Operational Flow
	9.2 Service Request Function Parameters
	9.3 Service Response Callback Function Parameters
	9.4 Services Interface Descriptions and Examples
	9.4.1 Get Request Service
	9.4.1.1 Get Request Service
	9.4.1.2 Interface Signature
	9.4.1.3 send_get_request Parameter Descriptions
	9.4.1.4 send_get_request Examples

	9.4.2 Get Response Callback
	9.4.2.1 Interface Signature
	9.4.2.2 Get Response Callback Parameter Descriptions
	9.4.2.3 Get Response Callback Examples

	9.4.3 Set Request Service
	9.4.3.1 Set Request Service
	9.4.3.2 Interface Signature
	9.4.3.3 send_set_request Parameter Descriptions
	9.4.3.4 send_set_request Example

	9.4.4 Set Response Callback
	9.4.4.1 Interface Signature
	9.4.4.2 Set Response Callback Parameter Description
	9.4.4.3 Set Response Callback Example

	9.4.5 Action Request Service
	9.4.5.1 Interface Signature
	9.4.5.2 send_action_req Parameter Descriptions
	9.4.5.3 send_action_req Example

	9.4.6 Action Response Callback
	9.4.6.1 Interface Signature
	9.4.6.2 Action Response Callback Parameter Description
	9.4.6.3 Action Response Callback Example

	9.4.7 Create Request Service
	9.4.7.1 Create Request Service
	9.4.7.2 Interface Signature
	9.4.7.3 send_create_req Parameter Descriptions
	9.4.7.4 send_create_req Example

	9.4.8 Create Response Callback
	9.4.8.1 Interface Signature
	9.4.8.2 Create Response Callback Parameter Descriptions
	9.4.8.3 Create Response Callback Example

	9.4.9 Delete Request Service
	9.4.9.1 Delete Request Service
	9.4.9.2 Interface Signature
	9.4.9.3 send_delete_req Parameter Descriptions
	9.4.9.4 send_delete_req Examples

	9.4.10 Delete Response Callback
	9.4.10.1 Interface Signature

	9.4.11 Delete Response Callback Parameter Description
	9.4.11.1 Delete Response Callback Examples

	9.4.12 Event Report Request Service (Unconfirmed)
	9.4.12.1 Interface Signature
	9.4.12.2 send_event_req Parameter Descriptions
	9.4.12.3 send_event_req Example

	9.4.13 Event Report Response Callback

	9.5 Supporting Functions for Example Code
	9.5.1 Debugging Flags
	9.5.2 get_sys_dn Function
	9.5.3 get_graphstr_rdn Function

