
Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303
U.S.A. 650-960-1300

Part No. 806-7967-10
October 2001, Revision A

Customizing Guide

Solstice Enterprise Manager ™ 4.1

Please

Recycle

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Solstice, Solstice Enterprise Manager, SunDocs, SunExpress,SunOS, and Solaris are trademarks,

registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license

and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks

are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Solstice, Solstice Enterprise Manager, SunDocs, SunExpress, SunOS, et Solaris sont des marques de

fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques

SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans

d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents

Preface xxv

Part I Overview

1. Introducing Solstice Enterprise Manager 1-1

1.1 What is Solstice EM? 1-1

1.1.1 What Can You Manage With Solstice EM? 1-2

1.1.2 Who Uses Solstice EM? 1-3

1.2 Solstice EM Features 1-3

1.3 Solstice EM Components 1-4

1.3.1 Solstice EM Architecture 1-4

1.3.2 Solstice EM Network Management Tools 1-7

1.4 Basic Solstice EM Concepts 1-9

1.4.1 Network Management Software 1-9

1.4.2 Agents and Stations 1-9

1.4.3 Management Information Servers 1-11

1.4.3.1 More About MIS Databases 1-12

1.4.3.2 More About the MIS Nerve Center 1-13

1.4.3.3 More About PMI and MPAs 1-13

1.4.3.4 MIS Ancillary Services 1-14

1.4.3.5 More About MIS Data Access 1-15

1.4.3.6 More About Object Orientation 1-15
Contents iii

1.4.4 Network Management Protocols 1-16

1.4.4.1 More About RPC 1-17

1.4.4.2 About MIBs 1-17

1.5 Solstice EM APIs 1-17

1.5.1 API Modules 1-18

1.5.2 Application Development Support Tools 1-19

1.6 Related Reading 1-20

1.7 Solstice EM Tools—Complete Listings 1-20

2. Network Management and the Solstice EM Architecture 2-1

2.1 The Agent/Manager Model 2-1

2.2 Client/Server Architecture 2-2

2.3 Distributed Management 2-4

2.4 Network Management Protocol Support 2-7

2.4.1 RPC Support 2-8

2.5 Simple Requests 2-11

2.5.1 SNMP Support 2-11

2.5.2 CMIP Support 2-15

2.5.2.1 Telecommunications Management Network 2-16

2.5.3 Other Network Management Protocols 2-17

2.5.4 Java Dynamic Management Kit Agents 2-17

2.6 Object Classes and Event Notification Types 2-18

Part II Customizing Solstice EM Tools

3. Using Solstice EM for Fault Management 3-1

3.1 Fault Management Summary 3-1

3.1.1 Before Starting Fault Management 3-2

3.2 Using Fault Management 3-3

3.3 Viewing Fault Status 3-3

3.3.1 Changing the Color Associated with a Severity 3-4
Contents iv

3.3.2 Alarm Severity Propagation 3-5

3.3.3 Access to Tools, Features, and Database Objects 3-5

3.4 Reporting Faults as Alarms 3-5

3.5 The Event Logs Tool and Alarm Logging 3-6

3.5.1 Receiving Network Information 3-7

3.5.1.1 Polling 3-8

3.5.1.2 Monitoring Device Availability 3-8

3.5.2 Event Notifications 3-11

3.5.2.1 Example: Monitoring Event Notifications from CMIP

Agents 3-11

3.5.3 Using SNMP Traps 3-12

3.5.3.1 Monitoring SNMP Traps with Nerve Center Requests

3-14

3.5.3.2 Creating a Separate Log for Enterprise-Specific Trap

Notifications 3-15

3.5.3.3 Forwarding Events from SunNet Manager Consoles 3-

21

4. Using the Alarm Service 4-1

4.1 Network View Nodes 4-1

4.2 Alarm Management 4-3

4.3 The Alarm Service 4-4

4.4 Configuring the Alarm Service 4-6

4.4.1 Adding Logs to emAlarmLogList 4-7

4.4.2 Deleting Logs from the Event Logs Window 4-7

4.4.3 Turning Off the Alarm Service 4-8

4.5 Alarm Information Display in Solstice EM Tools 4-8

4.5.1 Alarm Information Display in Alarms Window 4-8

4.5.2 Alarm Information Display in Network Views 4-9

4.6 User-configurable Alarm Log Record Filter for Alarm Service 4-10

5. Using the Event Logs Tool 5-1
Contents v

5.1 Log Process Overview 5-1

5.1.1 Attributes of a Log 5-2

5.1.2 Log Records Generated by Nerve Center Request Actions 5-3

5.2 Starting the Event Logs Tool 5-4

5.3 Using the Event Logs Tool 5-5

5.3.1 Accessing Logs on a Remote MIS 5-5

5.3.2 Importing Logs from a File into the Event Logs Tool 5-11

5.3.3 Configuring Display of Log Properties 5-11

5.3.4 Adding Tools to the Event Logs Menu 5-12

5.4 Defining the CMIS Filter 5-13

5.4.1 A CMIS Filter That Accepts Notifications of a Specific Type 5-15

5.4.2 CMIS Filter with Multiple ANDs 5-17

5.4.3 A CMIS Filter That Accepts All Notifications 5-18

5.4.4 A CMIS Filter That Accepts No Notifications 5-18

5.5 Sample CMIS Filters 5-18

5.5.1 Creation of an Object Instance 5-19

5.5.2 Deletion of an Object Instance 5-19

5.5.3 Attribute Value Change of an Object Instance 5-20

5.5.4 State Changes Received From Agent 5-20

5.6 Event Logs Tool Configuration File 5-21

Part III Network Management Protocol Support

6. Managing Devices Using RPC Agents 6-1

6.1 Types of RPC Agent Management 6-1

6.2 Preparing for Device Management with RPC Agents 6-5

6.3 RPC Management Protocol Adapter 6-11

6.4 RPC MPA Configuration Parameters 6-12

7. Using Cooperative Consoles with Solstice EM 7-1

7.1 Cooperative Console Forwarding 7-1
Contents vi

7.2 Filtering Criteria for Information Forwarding 7-3

7.3 Cooperative Consoles Configuration and Operation 7-4

7.4 Receiving SunNet Manager Alarms 7-7

8. SunNet Manager Application Support 8-1

8.1 Solstice EM Compatibility with SunNet Manager 8-1

8.2 Access to Solstice EM Features from SNM Applications 8-4

8.3 Adding an SNM Application to Solstice EM 8-5

8.3.1 Forwarding Event and Topology Information from SunNet

Manager to Solstice EM 8-9

8.3.2 SunNet Manager Application Support 8-10

8.4 Information for Configuring Specific SNM Applications 8-11

8.4.1 Running Solstice EM and Applications on Hosts With a New IP

Address or Name 8-11

8.4.2 Configuring Remedy’s Action Request System (ARS) to Work with

Solstice EM 8-13

8.4.3 Configuring Konfig 2.4 to Work with Solstice EM 8-14

8.4.4 Configuring Optivity 7.0 to Work with Solstice EM 8-16

8.4.5 Configuring Landmark’s Performance Works to Work with Solstice

EM 8-22

8.5 Importing an SNM Database into Solstice EM 8-25

8.6 Access to SNM Agents by SNM Applications 8-25

8.7 Access to SNM Agents by Solstice EM Applications 8-28

8.7.1 Configuration 8-29

8.7.2 Agent Support 8-29

8.7.3 Support for SNM Proxy Agents 8-29

9. SNMP Management 9-1

9.1 SNMP Managed Components 9-1

9.2 SNMP Management Protocol Adapter 9-3

9.3 SNMP MPA Configuration 9-3

9.4 Specifying the Version of SNMP Used 9-4
Contents vii

9.4.1 Calling the set_management_protocol Function of the

EMSnmpAgent Class 9-4

9.4.2 Using the PMI to Set the managementProtocol Attribute 9-5

10. SunNet Manager SNMP Proxy Agents 10-1

10.1 Proxy Agents 10-1

10.2 SNMP Proxy Agent Operation 10-4

10.3 SNMP Trap Daemon (em_snmp-trap) Operation 10-7

10.4 Schema Files 10-7

10.5 SNMP Version 2 Support 10-9

10.5.1 SNMPv2 Enhancements 10-10

10.5.1.1 Structure of Management Information 10-10

10.5.1.2 Protocol Operations 10-10

10.5.2 SNMPv2 Files 10-11

10.5.3 Using the v2mib2schema Program 10-11

11. Mapping SNMP Traps to CMIP Event Notifications 11-1

11.1 SNMP Support 11-1

11.2 Trap Daemon Operation 11-2

11.2.1 Starting the Trap Daemon 11-4

11.2.2 Stopping the Trap Daemon 11-4

11.3 The Structure of SNMP Traps 11-5

11.3.1 SNMPv1 11-5

11.3.2 SNMPv2c 11-7

11.4 Default Trap Mapping 11-8

11.4.1 Default Method for Specifying the Source of an Alarm 11-9

11.4.1.1 SNMPv1 11-9

11.4.1.2 SNMPv2c 11-9

11.4.2 Default perceivedSeverity Values 11-10

11.4.3 Default probableCause Values 11-11

11.4.4 Default additionalText Information 11-12
Contents viii

11.4.5 Default Event Notification Type 11-12

11.4.6 Default Location of Information from Trap Variable Bindings 11-

13

11.5 Trap Daemon Behavior When No Mapping is Provided 11-13

11.6 Format of trap_maps File 11-14

11.6.1 Enterprise Mapping Blocks 11-14

11.6.1.1 SNMPv1 11-15

11.6.1.2 SNMPv2c 11-15

11.6.2 Mapping Records 11-16

11.6.2.1 SNMPv1 11-18

11.6.2.2 SNMPv2c 11-19

11.6.3 <attr-value> Definitions 11-20

11.6.3.1 Constant 11-21

11.6.3.2 Trap Variable Binding Value 11-21

11.6.3.3 Trap Variable Binding Name 11-21

11.6.3.4 Trap Variable Binding Index 11-22

11.6.3.5 Embedding Strings in varbind Expressions 11-22

11.6.3.6 Defining and Using varbind-to-substring Tables 11-23

11.7 Customizing the Mapping of SNMP Traps 11-25

11.7.1 Overview 11-25

11.7.2 How to Customize SNMP Trap Mapping 11-25

11.7.3 Configuring CMIP notification managedObjectClass 11-27

11.7.3.1 The keyword $ALLVARS 11-28

11.7.3.2 The Keyword $NORFC2089 11-29

11.7.4 Attribute Type Mapping 11-30

11.7.5 Wild Cards for trap_mapping 11-32

11.7.6 Using FDN Templates to Specify the Source of a Trap 11-33

11.7.6.1 Understanding FDNs and RDNs 11-34

11.7.6.2 Building FDN Templates 11-36

11.8 Distributed Trap Handling 11-37

11.8.1 Filtering SNMP Traps for Other Managers 11-38
Contents ix

12. Configuring Communication With CMIP Agents 12-1

12.1 Tasks for Setting Up Your System to Manage CMIP Agents 12-1

12.2 Preparing the System for CMIP Configuration 12-4

12.2.1 Determining the Distribution Model 12-4

12.2.2 Installing the Required SunLink Products 12-5

12.2.3 Gathering Your Configuration Information 12-6

12.3 Compile and Load CMIP Agent Object Types into MIS 12-6

12.4 Starting and Configuring SunLink OSI 12-7

12.5 Access Control 12-8

12.6 Starting and Configuring SunLink CMIP 9.0 12-8

12.7 Starting and Configuring the CMIP MPA 12-10

12.8 Runtime Parameters 12-13

12.8.1 Auxiliary Server Container 12-13

12.8.2 CMIP MPA Object 12-14

12.8.3 em_cmip Parameters 12-14

12.8.4 Sample Program to Retrieve Runtime Parameters 12-18

12.9 Configuring Multiple MPAs on One System 12-19

13. Configuring CMIP MPA Overload 13-1

13.1 Understanding CMIP MPA Overload 13-1

13.2 Configuration Parameters 13-2

13.2.1 Overload Control Parameter 13-3

13.2.2 Overload Notification Parameter 13-3

13.2.3 Overload Threshold Parameter 13-3

13.2.4 Minimum Threshold Parameter 13-4

13.2.5 Overload Instruction Parameter 13-4

13.2.6 Poll Interval Parameter 13-4

13.3 Management Information Tree of Overload Control Objects 13-5

13.4 GDMO Classes 13-6

13.4.1 Mapping Between Attributes of the GDMO Classes and

Configuration Parameters 13-6
Contents x

13.4.2 emOverloadControlContainer Class 13-6

13.4.3 emOverloadController Class 13-7

13.4.4 mpaOverloadController Class 13-7

13.4.5 Overload Sample Programs 13-8

13.4.5.1 get_agent_admin_state 13-9

13.4.5.2 overload_action 13-15

13.4.5.3 overload_alarm 13-21

13.4.5.4 overload_get 13-34

13.4.5.5 overload_set 13-42

13.4.5.6 set_agent_admin_state 13-50

Part IV Nerve Center

14. Nerve Center Overview 14-1

14.1 Nerve Center Components 14-1

14.2 Nerve Center Documentation 14-2

14.3 Nerve Center Operation 14-3

14.3.1 How a Request Gets Information 14-3

14.3.1.1 Where and When a Request’s Notifications Arise 14-3

14.3.1.2 When Information From Managed Objects can Arrive

14-4

14.3.2 Variables and Attributes in a Request 14-5

14.3.2.1 Attributes 14-5

14.3.2.2 System Variables 14-6

14.3.2.3 User Variables 14-6

14.3.2.4 How Notifications and Poll Responses are Delivered

14-6

14.3.3 Where and When a Condition is Evaluated 14-7

14.3.4 Action at a Transition 14-7

14.3.4.1 Supported Actions 14-7

14.3.4.2 Logging an Event 14-8

14.3.4.3 Forwarding an SNMP Trap 14-8
Contents xi

14.3.5 Specifying the Objects to be Polled 14-8

14.3.6 Alarm Logging and the Alarm Service 14-10

15. Requesting Data in Solstice EM 15-1

15.1 Polling for Data in Solstice EM 15-1

15.1.1 Direct Polling 15-2

15.1.2 Indirect Polling 15-2

15.1.3 Event Request Polling 15-2

15.2 Subscribing for Events 15-3

15.2.1 Combining Polling and Event-Subscription 15-3

15.3 Using Solstice EM Tools for Polling 15-4

15.4 Working with Basic Requests 15-5

15.4.1 Viewing Basic Request Information 15-5

15.4.2 Creating, Modifying, and Initiating Basic Requests 15-10

15.5 Working with Advanced Requests 15-12

15.5.1 Creating, Modifying, and Initiating Advanced Requests 15-13

15.6 Building Blocks: States, Transitions, and Conditions 15-15

15.6.1 State Machine Diagrams 15-16

15.6.2 Sample Request Template 15-19

15.6.2.1 Setting the Target Managed Object 15-21

15.6.2.2 Polling for an SNMP Attribute 15-23

15.6.3 Controlling Fault Status Color 15-23

15.6.3.1 Using alarmOi() to Clear Previous Alarms 15-25

15.6.3.2 Alarm-logging Tips 15-25

15.7 Designing Request Templates 15-26

15.8 Requests Based on Polling 15-28

15.8.1 Adding States 15-30

15.8.2 Adding Conditions 15-31

15.8.3 Adding Transitions 15-32

15.9 Polling RPC Agents 15-35

15.9.1 Targeting the RPC ping-reach Group 15-37
Contents xii

15.9.2 Correlating Information from Multiple Polls 15-38

15.10 Requests Based on Event Subscription 15-41

15.10.1 Event Logging and Alarm Service Monitoring of Alarm Logs 15-

41

15.10.2 Mapping of SNMP Traps to CMIP Event Notifications 15-41

15.11 Subscribing for Enterprise-Specific SNMP Traps 15-42

15.11.1 Initiating the Event Subscription 15-43

15.11.2 Listening for Incoming Events 15-44

15.12 Requests that Combine Subscription and Polling 15-47

15.12.1 Checking for a Correct Target 15-49

15.13 Building Request Definitions 15-51

16. Debugging Request Templates 16-1

16.1 Nerve Center Debugging Agents 16-1

16.2 Activating RCL Print Statements 16-2

16.3 Turning Off Debug Agents 16-3

17. Building Templates for SunNet Manager Event Requests 17-1

17.1 RPC Agents 17-1

17.2 Nerve Center’s SNM Event Request Capability 17-3

17.3 SNM Alarms 17-4

17.4 Building SNM Event Request Templates 17-6

17.4.1 Subscribing for SNM Events 17-9

17.4.2 Sending an SNM ping Event Request 17-10

17.4.3 Waiting for a Response to the Event Request 17-11

18. Building Advanced Requests 18-1

18.1 Components of Request Templates 18-1

18.1.1 State Machine Diagrams 18-2

18.2 Using the Design Advanced Requests Tool to Build Nerve Center

Templates 18-4

18.2.1 Starting Request Designer 18-5
Contents xiii

18.2.2 Creating a New Nerve Center Template 18-6

18.2.3 Modifying an Existing Nerve Center Template 18-6

18.2.4 Deleting Nerve Center Templates 18-7

18.2.5 Exporting Nerve Center Templates to an ASCII File 18-7

18.2.6 Importing Nerve Center Templates from an ASCII File 18-8

18.3 Conditions 18-9

18.4 States 18-11

18.4.1 Adding States to a Nerve Center Template 18-11

18.4.2 Modifying States in a Nerve Center Template 18-12

18.5 Transitions 18-12

18.5.1 Creating New State-to-State Transitions in a Template 18-13

18.5.2 Deleting Transitions from a Template 18-13

18.5.3 Reordering Transitions 18-14

18.6 Actions 18-16

18.6.1 Adding Actions at a Transition 18-17

18.6.2 Deleting Actions at a Transition 18-18

18.6.3 Reordering the Actions at a Transition 18-19

18.7 Poll Rates 18-20

18.7.1 Creating New Poll Rates 18-21

18.7.2 Modifying a Poll Rate 18-22

18.8 Modifying the Mapping of Colors to Severities 18-23

18.9 Graphical State Diagram Display 18-24

18.9.1 Creating a Template Through the State Diagram Display 18-25

18.9.2 Other Tasks in the Graphical Display 18-26

19. Nerve Center Utilities 19-1

19.1 em_ncimport and em_ncexport 19-1

19.1.1 Options 19-1

19.1.2 Examples 19-3

20. Request Condition Language 20-1
Contents xiv

20.1 Conditions 20-1

20.2 Types of Operands 20-2

20.3 Constants 20-3

20.4 Variables in a Condition 20-3

20.4.1 Variable Names 20-4

20.4.2 Scope of Variables 20-4

20.5 Data Types 20-5

20.6 System Variables 20-5

20.7 Attributes 20-6

20.7.1 Syntax of Attribute Names 20-7

20.8 Operators 20-8

20.8.1 Logical Operators 20-9

20.8.2 Bitwise Operators 20-10

20.8.3 Precedence and Associativity 20-10

20.9 Control Structures 20-11

20.9.1 IF Constructs 20-11

20.9.2 IF ELSE Constructs 20-12

20.9.3 WHILE Constructs 20-13

20.9.4 FOREACH Constructs 20-13

20.9.5 Nested Constructs 20-14

20.10 Timestamp Arithmetic 20-16

20.11 Error Checking 20-16

21. Using RCL System Variables 21-1

21.1 System Variables 21-1

21.1.1 $eventInfo 21-2

21.1.2 $eventOI 21-4

21.1.3 $eventTime 21-4

21.1.4 $eventType 21-4

21.1.5 $messType 21-6
Contents xv

21.1.6 $pollfdn 21-7

21.1.7 $pollFdnSet 21-8

22. RCL Functions 22-1

22.1 Summary of RCL Built-in Functions 22-1

22.1.1 AlarmLog Functions 22-1

22.1.2 String-Handling Functions 22-2

22.1.3 Value Check Functions 22-2

22.1.4 Name Conversion Functions 22-2

22.1.5 Action Functions 22-2

22.1.6 ASN.1 Conversion Functions 22-2

22.1.7 SunNet Manager RPC Request Functions 22-2

22.1.8 Debugging Function 22-3

22.1.9 Constructed-Type Handling Functions 22-3

22.1.10 Time Functions 22-3

22.1.11 Event-Handling Functions 22-3

22.1.12 Request Control Functions 22-3

22.2 The RCL Functions 22-4

22.2.1 AddressStrToAddress 22-4

22.2.2 Alarm 22-4

22.2.2.1 Alarm Logging and Viewer Fault Status 22-5

22.2.3 AlarmOi 22-6

22.2.4 AlarmStr 22-8

22.2.5 AnyStr 22-9

22.2.6 AppendRdn 22-10

22.2.7 AsnToStr 22-12

22.2.8 CompareLists 22-13

22.2.9 Defined 22-13

22.2.10 Exit 22-14

22.2.11 Exclude 22-15
Contents xvi

22.2.12 Extract 22-15

22.2.13 FinalStr 22-16

22.2.14 FirstStr 22-16

22.2.15 GetTimeStamp 22-17

22.2.16 Include 22-17

22.2.17 InitialStr 22-18

22.2.18 IsChoice 22-18

22.2.19 IsList 22-19

22.2.20 IsMember 22-19

22.2.21 Mail 22-20

22.2.22 NameToAddress 22-20

22.2.23 NameToOid 22-20

22.2.24 NumElements 22-21

22.2.25 OiNameToOi 22-21

22.2.26 OiToOiName 22-22

22.2.27 Print 22-22

22.2.28 ReplaceMember 22-23

22.2.29 SendAction 22-23

22.2.30 SendEvent 22-24

22.2.31 SendTrap 22-25

22.2.32 Set 22-25

22.2.33 SnmEventRequest 22-27

22.2.34 SnmKillRequest 22-32

22.2.35 StrToAsn 22-32

22.2.36 StrCat 22-33

22.2.37 Strstr 22-33

22.2.38 StrStrPlus 22-34

22.2.39 Subscribe 22-34

22.2.40 SubscribeFilter 22-35

22.2.40.1 Considerations 22-36
Contents xvii

22.2.40.2 Examples 22-36

22.2.41 SubscribeOi 22-37

22.2.42 TrapGenericType 22-38

22.2.43 TrapSpecificType 22-39

22.2.44 Undefine 22-40

22.2.45 Unixcmd 22-41

22.2.46 UnSubscribe 22-41
Contents xviii

Figures

FIGURE 1-1 Solstice EM Architecture Overview 1-6

FIGURE 1-2 Agent Communications Overview 1-10

FIGURE 1-3 Overview of Management Information Servers 1-12

FIGURE 2-1 Agent/Manager Communication in Solstice EM Environment 2-2

FIGURE 2-2 Solstice EM Network Tools 2-3

FIGURE 2-3 A Sample Configuration Using MIS-to-MIS Communication 2-5

FIGURE 2-4 Topology Tree as Seen by Network Views Window Connected to MIS A 2-6

FIGURE 2-5 Topology Tree as Seen by Network Views Window Connected to MIS Net_B 2-6

FIGURE 2-6 Topology as Seen in Network Views Window Connected to MIS Net_D 2-7

FIGURE 2-7 MIS-to-MIS Connection From MIS A to MIS Net B 2-7

FIGURE 2-8 Polling RPC Agents 2-9

FIGURE 2-9 Using SNM Event Requests With Solstice EM 2-10

FIGURE 2-10 MIS Communication With SNMP Agents 2-11

FIGURE 2-11 SNMP Trap Daemon Operation 2-13

FIGURE 2-12 Viewing Trap Notifications 2-14

FIGURE 2-13 SNMP Proxy Agent Operation 2-15

FIGURE 2-14 CMIP MPAs in Distributed Configuration 2-16

FIGURE 2-15 TMN Q3 Connection to Solstice EM 2-17

FIGURE 3-1 Selecting a Severity for communicationsAlarm Generated by Monitor 3-10
Figures xix

FIGURE 3-2 CMIP Management of a Cellular Network 3-12

FIGURE 3-3 Viewing Trap Notifications in the Alarms Window 3-13

FIGURE 3-4 Solstice EM Processing of SNMP Traps 3-14

FIGURE 3-5 Example of SNMP Trap Handling Using SnmpLinkUp/DownTrap Request 3-15

FIGURE 3-6 Viewing AlarmLog Properties in the Event Logs Properties Dialog 3-17

FIGURE 3-7 CMIS Filter Window 3-18

FIGURE 3-8 CMIS Filter Item Dialog Box 3-18

FIGURE 3-9 Adding an Item to the Default AlarmLog Discriminator 3-19

FIGURE 3-10 AlarmLog Discriminator Construct With enterpriseSpecificTraps Excluded 3-19

FIGURE 3-11 Creating a New Log for enterpriseSpecificTraps (will be displayed Filer pane) 3-20

FIGURE 3-12 Specifying a CMIS Filter for enterpriseSpecificTraps 3-21

FIGURE 4-1 Network View Nodes 4-2

FIGURE 4-2 Logging of Alarms to the AlarmLog 4-4

FIGURE 5-1 Customize Tools Menu 5-6

FIGURE 5-2 Creating a New Log 5-8

FIGURE 5-3 Defining a Discriminator to Log SNM Events 5-9

FIGURE 5-4 Modifying a Log’s log filter 5-10

FIGURE 5-5 Viewing Log Objects in the Column Headings Window 5-12

FIGURE 5-6 Customize Tools Menu Window 5-13

FIGURE 6-1 Communication With RPC Agents in Direct Polling Requests 6-2

FIGURE 6-2 Using SNM Event Requests with Solstice EM 6-4

FIGURE 6-3 Selecting RPC Agents to be Configured During Network Discovery 6-7

FIGURE 7-1 Forwarding of Information to Central Management Station 7-2

FIGURE 7-2 Information Forwarding From SNM Console to Solstice EM MIS 7-6

FIGURE 8-1 SNM-Solstice EM Compatibility 8-3

FIGURE 8-2 SNM Application Accessing Solstice EM Features 8-4

FIGURE 8-3 Forwarding of Information to Central Management Station 8-10

FIGURE 8-4 SNM Application Accessing SNM Agents Over Solstice EM 8-26
xx Customizing Guide • October 2001

FIGURE 8-5 Solstice EM Applications Accessing SNM Agents 8-28

FIGURE 9-1 Components of Solstice EM’s SNMP Management Support 9-2

FIGURE 10-1 MIB, GDMO, and Schema Definitions 10-2

FIGURE 10-2 SNMP Proxy Agent Operation 10-4

FIGURE 11-1 em_snmp-trap Operation 11-3

FIGURE 11-2 SNMPv1 Trap PDU Structure 11-5

FIGURE 11-3 SNMPv2c Trap PDU Structure 11-8

FIGURE 11-4 SNMPv1 Trap Mapping Record Format 11-18

FIGURE 11-5 Sample FDN for internetSystem Group Object Instance 11-35

FIGURE 11-6 Sample ifTable FDN 11-35

FIGURE 11-7 Sample FDN Template 11-37

FIGURE 12-1 Configuring Solstice EM for Communication with CMIP Agents 12-3

FIGURE 12-2 Auxiliary Server Container 12-14

FIGURE 13-1 Management Information Tree of Overload Control Objects 13-5

FIGURE 15-1 Viewing Request Information in the Basic Requests Main Window 15-5

FIGURE 15-2 Viewing Requests in the Basic Requests Available Window 15-6

FIGURE 15-3 Viewing Request Groups in the Basic Requests Groups Window 15-7

FIGURE 15-4 Basic Requests Properties Conditions Window 15-8

FIGURE 15-5 Basic Requests Properties General Window 15-9

FIGURE 15-6 Basic Requests Group Properties Window 15-10

FIGURE 15-7 Viewing Available Requests in the Advanced Request Dialog 15-12

FIGURE 15-8 Advanced Request Examine Window 15-13

FIGURE 15-9 Request Example with Poll Rates 15-17

FIGURE 15-10 Request Example with Poll Rates and Severities 15-18

FIGURE 15-11 Request Example with Conditions 15-19

FIGURE 15-12 IsSnmpSystemUp Sample Request Template 15-20

FIGURE 15-13 State Diagram of IsSnmpSystemEverDown Template 15-30

FIGURE 15-14 Entering Condition Code in the Design Advanced Requests 15-32
Figures xxi

FIGURE 15-15 IsSnmpSystemEverDown Template 15-34

FIGURE 15-16 State Diagram of SnmpPingBackoffReachable Request 15-36

FIGURE 15-17 State Diagram for IsEnterpriseSpecificTrap Template 15-45

FIGURE 15-18 SNMP Trap Subscription Template 15-47

FIGURE 15-19 SnmpLinkUpDownTrap Template State Diagram 15-48

FIGURE 17-1 Using SNM Event Requests with Solstice EM 17-2

FIGURE 17-2 State Machine Diagram for DeviceReachablePing Template 17-7

FIGURE 18-1 Request Example with Poll Rates and Severities 18-3

FIGURE 18-2 Example of Export to ASCII File 18-8

FIGURE 18-3 Viewing RCL Conditions in the Conditions Window 18-10

FIGURE 18-4 Order of Transitions in a Template 18-12

FIGURE 18-5 Reordering State Transition - Move Up 18-14

FIGURE 18-6 Reordering State Transition - Move Down 18-15

FIGURE 18-7 Use of RCL Variables in Mail Action 18-16

FIGURE 18-8 Adding a Condition as an Action at a Transition 18-18

FIGURE 18-9 Creating a New Poll Rate 18-22

FIGURE 18-10 Nerve Centre’s Mapping of Colours to Severities 18-23

FIGURE 18-11 Graphical State Diagram Display 18-24
xxii Customizing Guide • October 2001

Tables

TABLE 1-1 Common Solstice EM Tools 1-7

TABLE 1-2 Solstice EM API Modules 1-18

TABLE 1-3 Solstice EM Tools – Complete List, Sorted by Binary Name 1-21

TABLE 3-1 Default Color-Coding of Severities 3-4

TABLE 3-2 Default SNMP Trap Notifications and Severities 3-13

TABLE 3-3 Mapping of SNM Console Fault Indications to perceivedSeverity Values 3-22

TABLE 4-1 Alarm Log Record Processing Options 4-10

TABLE 5-1 Log Object Attributes 5-2

TABLE 5-2 Command-Line Options for the em_logmgr Command 5-4

TABLE 5-3 Format Specifier Definitions 5-14

TABLE 5-4 Operator Definitions 5-14

TABLE 5-5 Notification Types and Numbers 5-16

TABLE 6-1 Ready-to-Use RPC Request Templates 6-8

TABLE 7-1 Mapping of SNM Console Fault Indications to perceivedSeverity Values 7-7

TABLE 11-1 SNMPV1 Field Descriptions 11-6

TABLE 11-2 Standard SNMP Trap Types 11-6

TABLE 11-3 SNMPV2c Field Descriptions 11-8

TABLE 11-4 Default Color-Coding of Severities 11-10

TABLE 11-5 Default IP Management Trap Event Types 11-12
Tables xxiii

TABLE 11-6 Standard Event Notifications 11-16

TABLE 11-7 Attribute Value Type Conversions 11-30

TABLE 11-8 Wild Cards for trap_mapping 11-32

TABLE 12-1 Object Properties/Create Object Fields 12-12

TABLE 12-2 em_cmip Parameters 12-15

TABLE 12-3 em_oct Parameters 12-17

TABLE 13-1 GDMO Mapping 13-6

TABLE 13-2 Sample Programs Description 13-8

TABLE 14-1 Action Menu Items 14-7

TABLE 15-1 Solstice EM Request Tools 15-4

TABLE 15-2 Enterprise Specific Traps Example 15-42

TABLE 17-1 Mapping of SNM Event Severities 17-5

TABLE 18-1 Action Menu Items 18-16

TABLE 18-2 Poll Rates 18-20

TABLE 20-1 RCL Syntax Restraints 20-3

TABLE 20-2 System Variables Available to a Condition 20-5

TABLE 20-3 RCL Operator Symbols 20-8

TABLE 20-4 Precedence of Operators 20-10

TABLE 21-1 System Variables Available to a Condition 21-1

TABLE 21-2 perceivedSeverity Values 21-3

TABLE 21-3 Values of $messType 21-6

TABLE 22-1 Valid Alarm Severities 22-5

TABLE 22-2 Arguments in <EventRequest> 22-27

TABLE 22-3 Relational Operators in SNM Request Thresholds 22-29

TABLE 22-4 Data Types for Threshold Operands 22-30

TABLE 22-5 Mapping of SNM Event Severities 22-31

TABLE 22-6 Standard SNMP Trap Types 22-39
xxiv Customizing Guide • October 2001

Preface

This Guide provides procedures, guidelines, and examples for setting up,

customizing, and using Solstice Enterprise Manager™, hereafter referred to as

Solstice EM, to accomplish your network management objectives. This guide also

provides reference information on the Solstice EM SNMP trap daemon, Nerve

Center, Request Designer, and Log Manager tools.

Our goal in writing this document was to anticipate what you, our customers,

would want to customize using Solstice EM. Inevitably, we will not have thought of

everything. Our hope is that we have described enough tasks, of enough variety,

that you can extrapolate from what we have provided to figure out how to perform

those tasks that we had not covered.

Who Should Use This Book

This document is intended for network administrators who are responsible for

customizing, setting up, and maintaining a Solstice EM network management

installation. Users who want information on using Solstice EM tools (other than

Request Designer and Log Manager) should refer to Managing Your Network.

Before You Read This Book

If you have just acquired the Solstice EM product, you should read Chapter 2

"Network Management and the Solstice EM Architecture" for an overview of the

Solstice EM architecture and possible scenarios for deploying Solstice EM. The

Management Information Server Guide also contains an overview of the Solstice EM

product functions, features, and components. Read the Release Notes for information
Preface xxv

on installing and starting, compatibility and minimum machine and software

requirements, known problems, an inventory of the product components, and late

breaking information about the Solstice EM product.

How This Book Is Organized

This document is organized as follows:

Part 1 — Overview

Chapter 1 "Introducing Solstice Enterprise Manager" gives a complete overview of

Solstice Enterprise Manager.

Chapter 2 "Network Management and the Solstice EM Architecture" describes the

basic structure or architecture of Solstice Enterprise Manager and how that structure

works to meet your network management needs.

Part 2 — Customizing Fault Management

Chapter 3 "Using Solstice EM for Fault Management" provides procedures and

examples for using Solstice EM to perform fault and performance management

tasks.

Chapter 4 "Using the Alarm Service" describes the Solstice EM MIS Alarm Service,

which controls fault status indication in the Viewer.

Chapter 5 "Using the Event Logs Tool" provides guidance on using the Log

Manager to create and modify event logs.

Part 3 — Network Management Protocol Support

Chapter 6 "Managing Devices Using RPC Agents" provides procedures and

examples for using SunNet Manager Remote Procedure Call (RPC) agents with

Solstice EM.

Chapter 7 "Using Cooperative Consoles with Solstice EM" describes the use of

Cooperative Consoles to forward management information from Site/SunNet/

Domain Manager Consoles to the Solstice EM MIS.

Chapter 8 "SunNet Manager Application Support" describes Solstice EM support

for Site/SunNet/Domain Manager applications.
xxvi Customizing Guide • October 2001

Chapter 9 "SNMP Management" provides an overview of the Solstice EM

components that support Simple Network Management Protocol, and information

on configuring the SNMP Management Protocol Adapter.

Chapter 10 "SunNet Manager SNMP Proxy Agents" describes the configuration and

operation of Solstice Site/SunNet/Domain Manager SNMP proxy agents for

managing SNMP devices with Solstice EM.

Chapter 11 "Mapping SNMP Traps to CMIP Event Notifications" describes the

SNMP trap handling capabilities of the Solstice EM SNMP trap daemon, em_snmp-
trap , and the procedure for customizing conversion of SNMP traps to CMIP event

notifications.

Chapter 12 "Configuring Communication With CMIP Agents" provides

information on setting up communication between Solstice EM and CMIP Agents. It

includes examples on how to configure a CMIP MPA, SunLink OSI, and SunLink

CMIP.

Part 4 — Nerve Center

Chapter 14 "Nerve Center Overview" provides an overview of the operation of

Solstice EM Nerve Center.

Chapter 15 "Requesting Data in Solstice EM" provides guidance and examples for

using the Request Designer tool and Request Condition Language to build Nerve

Center request templates.

Chapter 16 "Debugging Request Templates" describes the Solstice EM facilities for

debugging Nerve Center request templates.

Chapter 17 "Building Templates for SunNet Manager Event Requests" provides

information and examples for using the Nerve Center’s SunNet Manager event

request capability.

Chapter 18 "Building Advanced Requests" provides information on using the

Request Designer tool to create and modify Nerve Center request templates.

Chapter 19 "Nerve Center Utilities" describes the command-line utilities for

importing and exporting Nerve Center request templates.

Chapter 20 "Request Condition Language" provides information on the Request

Condition Language (RCL) used in building conditions used in Nerve Center

request templates.

Chapter 21 "Using RCL System Variables" describes the Nerve Center system

variables for building Nerve Center request templates.

Chapter 22 "RCL Functions" describes the built-in functions for using construct

conditions as components in Nerve Center request templates.
xxvii

Conventions Used in This Book

This section describes the conventions used in this book.

What Typographic Changes and Symbols Mean

The following table describes the type changes and symbols used in this book:

Shell Prompts in Command Examples

All command line examples in this guide use the C-shell environment. If you use

either the Bourne or Korn shells, refer to sh (1) and ksh (1) man pages for command

equivalents to the C-shell.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted with

on-screen computer output

machine_name% su
Password:

<AaBbCc123> Command-line placeholder:

replace with a real name or value

To delete a file, type rm <filename>

AaBbCc123 Book titles, new words or terms,

or words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be root to do this.
xxviii Customizing Guide • October 2001

The following table shows the default system prompt and superuser prompt for the

C shell, Bourne shell, and Korn shell.

User Interface Conventions

The following subsections discuss conventions that apply to the descriptions of the

Solstice EM tools.

Mouse/Menu Interactions

We have pursued a minimalist approach in describing a user’s interactions with the

graphical-based tools in Solstice EM. That is, rather than write:

To exit, press the right mouse button on the File icon. In the pull-down menu that

you receive, move the mouse pointer down to Exit and release the right mouse

button.

We write:

To exit, select File ➔ Exit.

The symbol ➔ indicates moving down a level, from a button or icon to a menu, or

from one menu to another.

The interface to the Solstice EM tools is, with the exception of the Object Editor,

standard Motif. Selections are made in the identical way they are made for Motif

applications that run on Sun and non-Sun machines.

TABLE P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell

prompt

$

Bourne shell and Korn shell

superuser prompt

#

xxix

The following table compares the exhaustive description of a user interaction with

the way we have chosen to describe that interaction in this manual:

Tear-off Menus

The top-level menus in the Solstice EM tools—those tools accessible through the

Application Launcher, plus others—have a type of menu known as a “tear-off”

menu. When you select a button, you receive a menu with a dotted line at the top. If

you click left on that dotted line, the menu “tears off,” like a sheet of paper from a

tablet, and positions itself in a separate window. If you are running the tool in a

Motif environment, the title displays as “<menu title>—Tear-off.” If you are not in a

Motif environment, the title displays as “No Name.”

To dismiss a tear-off menu, select the menu title bar to obtain a menu of options. In

that menu, select Dismiss. Alternatively, you can press Esc while your mouse

pointer is in the tear-off menu window.

Accessing Sun Documentation Online

The docs.sun.com sm web site enables you to access Sun technical documentation

on the Web. You can browse the docs.sun.com archive or search for a specific book

title or subject at http://docs.sun.com

TABLE P-3 User Interaction Equivalents

Complete Description As Described in this Document

Select an item by clicking once with the left

mouse button.

Select an item.

Activate an item by double-clicking with the

left mouse button.

Activate an item.

Press left on the slider in the scrollbar move

the slider so that the item comes into view.

Scroll until the item comes into view.

Press right on the icon to obtain the icon

pulldown menu. Move the mouse pointer over

the item in the menu and release the mouse

button.

Select icon ➔ item.

or
Invoke icon ➔ item.

Press and hold middle mouse button on the

icon. Move the mouse pointer to the target

location and release the mouse button.

Drag and drop.
xxx Customizing Guide • October 2001

Also, you can view the online documentation by pointing your browser to the

following URL, file:/opt/SUNWconn/em/docs/SEMDOCHP/index.html

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. You can send your comments by email to docfeedback@sun.com .

Please include the part number of your document in the subject line of your email.
xxxi

xxxii Customizing Guide • October 2001

PART I Overview

CHAPTER 1

Introducing Solstice Enterprise
Manager

This chapter provides introductory information designed to help you get going with

Solstice Enterprise Manager (Solstice EM) software and your day-to-day network

management tasks.

This chapter describes the following topics:

■ Section 1.1 “What is Solstice EM?” on page 1-1

■ Section 1.2 “Solstice EM Features” on page 1-3

■ Section 1.3 “Solstice EM Components” on page 1-4

■ Section 1.4 “Basic Solstice EM Concepts” on page 1-9

■ Section 1.5 “Solstice EM APIs” on page 1-17

■ Section 1.6 “Related Reading” on page 1-20

■ Section 1.7 “Solstice EM Tools—Complete Listings” on page 1-20

1.1 What is Solstice EM?
Solstice EM software is a distributed, standards-based, hierarchical, object-oriented

suite of enterprise-grade network management tools, and a rich set of application

programming interfaces (APIs) for developing custom network management

applications. That means Solstice EM is a highly flexible, totally customizable

network management solution that can be scaled and configured to fit your needs.

You can use any or all of the Solstice EM tools “as is,” or you can combine them with

your own custom applications written to the

Solstice EM API.
1-1

1.1.1 What Can You Manage With Solstice EM?

Solstice EM provides tools for monitoring, evaluating, and refining your network.

The management functions you can perform with Solstice EM include:

■ Discovering components on your network

Automated tools let you keep track of components as they are added or removed

from your network. Support for CMIP, SNMP, and RPC agents allow you to

gather information about a wide variety of network components. Component

details are stored in industry-standard relational databases on one or more

management information servers.

■ Visualizing your network

A powerful Network Views tool serves as the graphical command center of

Solstice EM, from which you can organize and manage your network components

as groups of icons in logical, hierarchical, and geographical views. You can create

as many different views of your network components as you want, using

whatever view is most appropriate for the task at hand. For example, you can

view your network components on a cartographically accurate geographical map

background—a map of the world, perhaps, or a blueprint of one of your

buildings—which lets you see at a glance not only what component is reporting a

fault but where that component is physically located. You can then initiate actions

to correct the fault directly from the Network Views tool.

■ Configuring network components

Solstice EM object properties editors in combination with CMIP, SNMP, and RPC

agents let you configure all aspects of your network components, from general

network properties to detailed component data, such as individual router

interfaces. Schema- and MIB-to-GDMO compilers let you customize specific

object attributes.

■ Detecting, tracking, and correcting network problem

A sophisticated alarm manager and request template designer, in combination

with data viewers, and logging, reporting, and graphing tools, let you gather

detailed information about your network, configure and respond to alarms, and

design dynamic request templates to automatically gather and respond to

network and component conditions.

■ Managing user access to objects and applications

The Solstice EM Security tool lets you control user access to individual Solstice

EM and custom tools, as well as to specific sets of network components.

■ Customizing the Solstice EM interface

You can tailor Solstice EM tools in a wide number of ways, from pull-down and

pop-up menus, to tool palettes, to default parameters and automatic monitoring

methods. You can run almost every Solstice EM component from the UNIX
1-2 Customizing Guide • October 2001

command line, if you want, to create script-based maintenance routines. You can

even modify MIB, ASN.1, and GDMO definitions to customize settings for the

types of objects you can work with in Solstice EM.

■ Developing custom network management applications

Solstice EM is a standards-based, object-oriented environment that supports the

Portable Management Interface (PMI) API over Simple Network Management

(SNMP), Common Management Information (CMIP), and SunNet Manager

Remote Procedure Call (RPC) protocols, as well as full conformance with

Telecommunications Management Networks (TMN) standards.

1.1.2 Who Uses Solstice EM?

Large companies, for example, the telecommunications industry use Solstice EM to

manage hundreds of thousands of network nodes, with network components

ranging from mainframes, subnetworks, gateways, servers, routers, and hubs, to

workstations, personal computers, and agent-enabled mobile devices. Such

companies use the standard suite of Solstice EM tools alongside their own custom

tools developed with the Solstice EM APIs and toolkit.

Smaller companies use Solstice EM “out of the box” to manage all their network

components, knowing that Solstice EM can be scaled to meet whatever needs they

have as their company grows.

Any company interested in secure, high-performance management of distributed

network resources, from portable handheld devices to deskbound graphical

workstations, can use Solstice EM’s distributed agent-oriented technology to manage

virtually any type of network component.

1.2 Solstice EM Features
Solstice EM provides the following network management features:

■ Comprehensive suite of network management tools, from objects to enterprises,

infrastructure to interfaces.

■ Manage virtually any network-aware component, from UNIX workstations to

Windows-based PCs, printers to routers, subnetworks to network interfaces.

■ Graphical “point and click” CDE (Common Desktop Environment) tools and

UNIX command-line interfaces allow real-time ease-of-use and script-based

automation.
Chapter 1 Introducing Solstice Enterprise Manager 1-3

■ Multiple concurrent users run anywhere, anytime with UNIX-based security and

scalability.

■ Distributed, hierarchical, ASN.1 object-oriented architecture utilizing an industry-

standard SQL-compatible relational database (Informix™ by default).

■ Customizable interfaces and support for custom third-party applications by

means of the PMI API over SNMP, CMIP, RPC, and TMN protocols.

■ Development support tools are a set of API modules, object development tools,

compilers, and debuggers; for developing your own custom network

management applications.

■ Backward-compatibility with SunNet™ Manager and Solstice Site/Domain

Manager data and applications.

1.3 Solstice EM Components
Solstice EM components can be divided into two categories:

■ Architecture—the structural components underlying the Solstice EM

environment.

■ Network Management Tools—a way to access and manipulate the Solstice EM

environment and the components on your network.

These components are described in the following sections.

1.3.1 Solstice EM Architecture

The network management in the Solstice EM environment is based on the exchange

of information between managers and agents. It is client/server-based, hierarchical

and object-oriented environment comprising following components:

■ Motif Applications—The manager applications run on the Motif enviroment. The

applications can either be custom applications or Solstice EM Tools.

■ JMA Server—The Java Management Adapter (JMA) provides the framework for

the thin client/fat server model. JMA is not exposed to end users or developers. It

is a transparent component lying between services such as the JMI and the MIS.

JMA provides the infrastructure for services such as JMI API, Topology API, and

Alarm API to communicate seamlessly with the MIS. It is responsible for the

scheduling and synchronization of all PMI calls made by each Java API. It

provides an event handling mechanism, which allows clients to register their own

events and servers to forward the events to the clients.
1-4 Customizing Guide • October 2001

■ SEM CORBA Gateway—SEM CORBA Gateway translates CORBA manager

requests in Interface Description Language (IDL) to Solstice EM Portable

Management Interface (PMI) or equivalent requests. Also translates Solstice EM

PMI responses to IDL or Internet Inter-ORB Protocol (IIOP) responses, and PMI

events to CORBA events. The SEM CORBA Gateway is designed to work with

standard management reference models (such as SNMP/IP and CMIP/OSI). The

interfaces defined and implemented by the SEM CORBA Gateway define the

interaction between it and applications.

■ Managed objects—Solstice EM is centered around the concept of managed objects.

A managed object is a set of programmatic services and attributes that describes a

type of managed resource. In practical terms, it means that each physical

component on your network is represented by one or more objects in an MIS

database (see below). When you perform an action in Solstice EM on a network

component—for example, setting a configuration parameter or retrieving status

information, you are actually performing that action on the managed object

representing the network component.

Every managed object has a set of characteristics, referred to as attributes, that

define the kind of information the object can accept or provide, and a set of

programmatic behaviors, called methods, that define what an object can do with

that information. Specific values assigned to a given set of attributes are referred

to as the object’s properties. For example, an object attribute called IPaddress
might have a value of 129.148.20.114 . See Managing Your Network for more

information about gathering managed object attribute data.

■ Agent software—provides object-level communication methods between your

network components and the rest of Solstice EM—that is, the means by which

you can use Solstice EM to get and set properties on managed objects. Solstice EM

supports SNMP, CMIP, and RPC agents, and includes a set of CMIP- and RPC-

based Solstice™ Enterprise Agents (SEA) that support a wide variety of managed

objects, including legacy objects created in SunNet Manager and Solstice Site/

Domain Manager. See Section 1.4.2, “Agents and Stations” for more information.

■ Management Information Server (MIS)—a machine hosting an SQL database

containing a Metadata Repository (MDR) and a Management Information Tree

(MIT), which are used by Solstice EM to maintain information about the

properties and relationships, respectively, of all managed objects on your

network. An MIS daemon and a set of ancillary MIS service daemons provide

MIS services on the MIS host. For data security or organizational convenience,

you can use multiple MIS hosts, with one MIS database on each host. Multiple

MISs can be linked so that all appear as one MIS to a given user. See Section 1.4.3,

“Management Information Servers” for more information.

■ Application programming interfaces—support communication and protocol

translation between one or more MISs and Solstice EM and/or custom network

management tools. See Section 1.5, “Solstice EM APIs” for more information.
Chapter 1 Introducing Solstice Enterprise Manager 1-5

■ Solstice EM and/or custom network management tools—the tools you use to

access and manipulate the Solstice EM environment and managed objects. These

tools are described in Section 1.3.2, “Solstice EM Network Management Tools” .

The relationships between Solstice EM architectural components are illustrated in

the following figure. Explanations of basic Solstice EM network management

concepts are provided in Section 1.4, “Basic Solstice EM Concepts” .”

FIGURE 1-1 Solstice EM Architecture Overview

RPCRPC

RPCRPC

LegacyLegacy

LegacyLegacy

CMIPCMIP

CMIPCMIP

SNMPSNMP

SNMPSNMP

MISMIS

ServicesServices

MISMIS

ServicesServices

MISMIS

ServicesServices

Managed
Network Components

Agent Software

Management
Protocol Adapters

MIS Components

Solstice EM Applications

PMI APIs

PMI APIs

X Servers

JMA Server CORBA Gateway
1-6 Customizing Guide • October 2001

1.3.2 Solstice EM Network Management Tools

Solstice EM network management tools can be divided into three general categories:

■ General management—tools for day-to-day network management tasks—these

are the tools you will use most often.

■ MIS—tools and services for running and managing MIS servers and databases;

once MIS services have been started on one or more MIS hosts, you will use these

tools for occasional MIS database maintenance chores.

■ Application customization and development—tools for customizing the Solstice

EM environment and creating custom management applications.

The following table briefly describes the common Solstice EM tools you are likely to

use most often. The tools in the table are divided into two categories: general

network management tools, those you will use on a day-to-day basis, and

administration. A quick-reference table describing all of the Solstice EM tools is

provided in Section 1.7, “Solstice EM Tools—Complete Listings”

TABLE 1-1 Common Solstice EM Tools

Tool Description More Information

General Management Tools

Alarms Configure, view, and respond to alarms posted against

managed objects.

Managing Your
Network

Data

Collections

Create data requests to collect performance data about

selected managed objects.

Managing Your
Network

Grapher Graph data from several Solstice EM tools. Managing Your
Network

Event Logs View and manage logs and log objects. Managing Your
Network

Network

Discovery

Automatically detect components on your network

and populate the MIS with managed objects

representing those components; a monitor function

dynamically updates the MIS as components are added

and removed from your network.

Managing Your
Network

Network Tools Customizable window providing access to Solstice EM

and other tools; you can add and remove Solstice EM

tools, third-party tools, or your own tools to this

window; provides a handy starting point for Solstice

EM.

Managing Your
Network
Chapter 1 Introducing Solstice Enterprise Manager 1-7

Network Views Graphical tool for visualizing, organizing, and

managing your network; most other Solstice EM tools

can be run directly from Network Views; provides a

convenient, customizable, point-and-click way to view

and respond to alarms, and configure object properties.

Views of your network can be superimposed over

cartographically accurate map backgrounds, making it

easy to determine the physical location of network

components and faults.

Managing Your
Network

Object

Properties

View, create, and modify managed objects and object

properties; commonly invoked from Network Views.

Managing Your
Network

RPC/CMIP

Data

Get, set, view, and modify properties for CMIP- and

RPC-managed objects.

Managing Your
Network

Administration Tools

Administration Customizable window providing access to Solstice EM

administration tools.

This Guide

Advanced

Requests

Create Nerve Center request templates; used by

Solstice EM to poll for object properties or receive

notifications from managed object agents, and then

generate responses based on the data received.

This Guide

Automatic

Management

Configure the MIS to launch and stop event requests

automatically.

Managing Your
Network

DB Backup/

Restore

Back up and restore MIS databases. This Guide

MIS Manager Configure MIS communications and parameters. This Guide

Object Editor View, create, and delete managed object attributes

directly in the MIS.

This Guide

Security Manage user access to network management tools and

managed objects.

Managing Your
Network

SNMP MIB

Browser

View attributes and modify SNMP attribute values for

SNMP MIBs.

Managing Your
Network

Topology

Import/Export

Import or export an ASCII version of all or part of a

MIS database; useful for recreating or transferring an

MIS topology on another host.

This Guide

TABLE 1-1 Common Solstice EM Tools (Continued)

Tool Description More Information
1-8 Customizing Guide • October 2001

1.4 Basic Solstice EM Concepts
Before you start using Solstice EM to manage the components on your network, it is

useful to review some basic network management concepts as they relate to Solstice

EM.

The concepts explained in this section are:

■ Network Management Software—page 1-9

■ Agents and Stations—page 1-9

■ Management Information Servers—page 1-11

■ Network Management Protocols—page 1-16

1.4.1 Network Management Software

In the context of Solstice EM, network management software refers to one or more

software tools, like the Solstice EM suite, that:

■ Provide user interfaces through which network management tasks can be

performed.

■ Issue requests to network devices—to ask a given device to take some action,

typically to provide some specific information to the manager.

■ Receive responses to requests.

■ Receive unsolicited information (notifications) from network components

concerning component status, such as problems, abnormalities, and changes in

the environment.

The Solstice EM tools function as network management software for various

network management functions. For example, the Solstice EM Alarms tool lets you

create and manage alarms for monitoring component status.

1.4.2 Agents and Stations

Rather than communicating directly with network components, Solstice EM

communicates through software agents (middlemen) that are specifically configured

to understand the particular kinds of information and settings a given network

component can receive or provide.

In network management jargon, a station is a network management software

component that communicates with one or more agents. In the case of Solstice EM,

the station component is the MIS (see Section 1.4.3, “Management Information
Chapter 1 Introducing Solstice Enterprise Manager 1-9

Servers”). Consider the example, as illustrated in FIGURE 1-1 on page 1-6, a Solstice

EM tool sends a request to an agent via the MIS and a Management Protocol

Adapter (MPA). The agent, in turn, passes that request to the network component.

On the return trip, the component’s response is passed first to the agent, then to the

MIS by means of the MPA, and then finally back to the Solstice EM tool. Solstice EM

handles the translation between various agent protocols transparently; for most

management tasks, users do not need to know what type of agent is associated with

a given network component.

FIGURE 1-2 Agent Communications Overview

Every network component managed by Solstice EM has an associated software

agent. In some cases, the agent software is embedded in the component; for

example, burned into a component’s ROM. In most cases, however, the agent

software resides on a host machine to which the component is connected, and

provides services for a related set of components.

Solstice EM is based on the ISO-standard agent/station network management

model. The strength of this model is that your network management software does

not need to maintain configuration information for every network component

available on the market. As new types of components are added or upgraded on

your network, the agent software that travels with a given component is able to

communicate the new configuration information to the management software.

Solstice EM supports the following common agent protocols:

■ CMIP—Common Management Information Protocol

■ SNMP—Simple Network Management Protocol

■ RPC—SunNet Manager Remote Procedure Call

Solstice EM also provides full conformance with Telecommunications Management

Networks (TMN) standards. See Section 1.4.4, “Network Management Protocols”

for more information about network protocols supported by Solstice EM.

Network
Component

Agent
Software

Management
Protocol Adapter

MIS
Database EM Tools
1-10 Customizing Guide • October 2001

Note – Solstice EM installation includes by default a set of Solstice Enterprise

Agents (SEA), which allow you to communicate with components configured for

legacy SunNet/Site/Domain Manager environments. Other agents may be installed

as well, depending on your package options. Refer to the Installation Guide for

complete information.

1.4.3 Management Information Servers

In the Solstice EM environment, a Management Information Server (MIS) is a

machine hosting an object-oriented SQL database containing information about

every component on your network that is managed by Solstice EM. In this model,

physical network components are represented as managed objects in an MIS

database (see FIGURE 1-3 on page 1-12).

In general terms, the MIS provides the following services:

■ Access control

■ Requests

■ Connections

■ Events and alarms

■ Logging

■ Object management

Functionally, the resources on an MIS can be divided into four general categories:

1. An MIS database containing information about the components on your network.

2. An MIS Nerve Center that provides the logic and methods to actually do

something with the information in the MIS; the Nerve Center is the source of

requests and responses based on network conditions.

3. Portable Management Interface (PMI) APIs and Management Protocol Adapters

(MPAs).

4. A set of ancillary MIS services that make the information in the MIS database

available to network management applications and software agents.

For data security or logical convenience, you can use multiple MIS databases, with

one MIS database on each host. Multiple MIS databases can be linked so that all

appear as one database to a given user.
Chapter 1 Introducing Solstice Enterprise Manager 1-11

FIGURE 1-3 Overview of Management Information Servers

1.4.3.1 More About MIS Databases

A Solstice EM MIS database comprises two primary components:

1. Metadata Repository (MDR)—maintains information about managed object

attributes and properties; the specific configuration settings used by network

components. This data encompasses everything from the syntax required to refer

to an attribute to the composition of an object package. The language used to

describe network components is the Guidelines for the Definition of Managed

Objects (GDMO), outlined in the ITU X.722 ISO/IEC 10165-4 standard. The MIS

allows for dynamic updates to the MDR.

RPCRPC

RPCRPC

LegacyLegacy

LegacyLegacy

CMIPCMIP

CMIPCMIP

SNMPSNMP

SNMPSNMPAgent Software

Management
Protocol Adapters

Management Applications

MIS

PMI APIs

PMI APIs

Nerve
Center
Nerve
Center

MITMIT

MDRMDR
MIS

Services
1-12 Customizing Guide • October 2001

2. Management Information Tree (MIT)—a tree-like, hierarchical representation of

the relationships between network components. For example, a network might

have subnetwork branches, from which routers, switches, and hubs are parents to

gateways, workstations, and printers. The MIS supports dynamic creation,

maintenance, and deletion of objects in the MIT.

1.4.3.2 More About the MIS Nerve Center

The MIS Nerve Center provides the logic and methods to interrogate agent software

for information about network components, receive notifications from agents, and

initiate actions based on network conditions.

Nerve Center activities are based upon user-defined request templates, which are

rules-based configuration files that tell Solstice EM how to interrogate for network

component information, and how to respond to the information received. In this

context, the term request should not be confused with the common object-oriented

use of the term as it relates to GETand SET methods; a Nerve Center request is a set

of programmatic rules, whereas an object-oriented request refers to a specific set of

methods for manipulating object properties.

The Solstice EM Advanced Requests tool, and the Simple Requests function in

Network Views, provide advanced and simple tools, respectively, for viewing,

creating, and managing Nerve Center Request templates. The Advanced Requests

tool is described in this Guide; Simple Requests are described in Chapter 3 of

Managing Your Network.

1.4.3.3 More About PMI and MPAs

Although there are potentially many interfaces to Solstice EM, only one is required

by the Solstice EM architecture. This primary interfaces is the high-level Portable

Management Interface (PMI). The PMI defines the management protocol, services,

and transport mechanisms for all Solstice EM components. Specifically, the PMI

provides the following features:

■ Protocol-independent management applications—management applications can

communicate with managed objects via the PMI regardless of the protocol used

by the managed object.

■ Distributed, multi-user access—multiple users can access and modify objects and

object definitions in the MIS.

■ Proxy agent support—proxy agents can use the Management Protocol Adapter

(MPA) library to access managed objects over protocols other than CMIP or

SNMP.
Chapter 1 Introducing Solstice Enterprise Manager 1-13

MPAs translate information between managed objects and the MIS. For example, if

you have a network component that uses SNMP, then the SNMP MPA receives data

from an SNMP agent, translates the data into the PMI, and sends the data to the

MIS.

Solstice EM includes the following three MPAs:

■ CMIP—Common Management Information Protocol

■ SNMP—Simple Network Management Protocol

■ RPC—SunNet/Site/Domain Manager Remote Procedure Call

Solstice EM also supports other MPAs; see Chapter 11 in Developing C++ Applications
for information about adding MPAs to your Solstice EM environment.

1.4.3.4 MIS Ancillary Services

In addition to the MIS database and Nerve Center, an MIS provides ancillary

services that make information about managed objects available and modifiable by

network management applications and agent software. These services are invoked at

MIS startup with the em_services command.

Note – Solstice EM MIS services are usually run on one or more of the network’s

workstations. It is not necessary to dedicate a machine to running MIS services,

although Solstice EM requires at least one MIS to be running somewhere on the

network. As mentioned previously, you can run multiple MISs on a network

Specifically, the Solstice EM MIS provides the following ancillary services:

■ Protocol and location transparency—a network management tool provides a

managed object name, and the Solstice EM services determine what protocol to

use to access the object, and what address to use within that protocol. This means

that management clients do not need to know where an object is physically

located or what protocol to use to communicate with it.

■ Coordinate requests from multiple tools—Solstice EM supports concurrent access

to MIS data from multiple network management clients.

■ Persistent storage—data in the MIS database is not lost when an MIS host is shut

down.

■ SNMP traps and events—event handling for SNMP traps and events, and a

registry mechanism that allows applications and objects to register interest in an

event.

■ Log management services—keep track of what is happening where on the

network. Solstice EM provides detailed logging services, which are maintainable

through Solstice EM’s Event Logs tool.
1-14 Customizing Guide • October 2001

1.4.3.5 More About MIS Data Access

One of the primary functions of an MIS is to make managed object data available to

network management tools and agent software. A related function is to make this

data transparently available across multiple MIS machines on multiple subnetworks.

In Solstice EM, all managed objects are accessed through the MIT. There is one

global tree, with a single naming scheme for all data. The MIT is constructed

according to the rules provided by OMNIPoint™, and has a single root branch. The

shape of the tree descended from this root branch is arbitrary, and may vary widely

from one MIS to another. The tree’s structure is hierarchical and based on parent/

child containment relationships; below any given object are one or more related

subordinate objects.

A Solstice EM MIS makes MIT data accessible both through the naming conventions

that come from the managed resources it describes, and from a resource-

independent naming convention, in which identifiers are specified using Fully

Distinguished Names (FDNs). FDNs enable Solstice EM MIS to provide transparent

access to managed objects.

Managed objects in the Solstice EM environment may be stored locally, in an MIS

database. However, Solstice EM also supports access to remote objects that are stored

outside a given MIS. When representing a remote object, a Solstice EM MIS stores

information about that object’s physical location, along with a description of the

address and protocol required to access that object. When getting or setting

properties for a given object, Solstice EM handles the address and protocol

resolution transparently, without user intervention, whether the object is local or

remote to the MIS.

1.4.3.6 More About Object Orientation

As mentioned previously, Solstice EM MIS services are based on an ISO-standard

ASN.1 (Abstract Syntax Notation One) object-oriented architecture. Specifically,

Solstice EM:

■ Describes managed objects in terms of OMNIPoint and ISO terminology

■ Uses C++ objects for internal storage and manipulation of network data

The following list describes some object-oriented terms as they relate to Solstice EM.

■ Class—C++ classes, as described in the Annotated C++ Reference Manual (Margaret

Ellis and Bjarne Stroustrop; Addison-Wesley Publishing Co., Reading, MA;

copyright 1990 by AT&T Bell Laboratories).

■ Instance—memory that is allocated for a C++ class according to its definition. A

variable name is usually associated with a particular instance of a class.
Chapter 1 Introducing Solstice Enterprise Manager 1-15

■ Managed resource—an actual physical device or entity that exists in a network or

system. This is consistent with the OSI/Network Management Forum (NMF)

definition of the term.

■ Managed Object (MO)—is a set of services and attributes that describes a type of

managed resource. This is also consistent with the OSI/NMF definition of the

term.

■ Managed Object Class (MOC)—within the Solstice EM development environment,

this term refers to the internal representation of a managed object, as described by

the OSI/NMF. An MOC is based on the GDMO description, which could itself be

a translation of an SNMP MIB or SunNet Manager schema description—that is,

the MOC represents the attributes and behaviors for particular types of

manageable objects. The MOC defines the type of data stored and the behaviors

that can be taken, but does not represent the actual data for any managed object.

The MOC is the internal representation used by the Solstice EM MIS.

■ Managed Object Instance (MOI)—relates to a managed object class in the same

way as an instance relates to a class, where the MOC determines the type of

attributes and behaviors available to operate on an object of this type, and MOI

refers to actual data that represents an object being managed by the MIS. An MOI

is also an internal representation used by the Solstice EM MIS.

1.4.4 Network Management Protocols

In order to be able to pass management data from component to agent to MIS to

management tool and back again, all components in the environment must agree on

and understand how and what data is being exchanged. The rules defining such

exchanges are referred to as protocols.

As mentioned previously, Solstice EM is based on the ISO-standard agent/station

network management model, and supports the following common protocols:

■ CMIP—Common Management Information Protocol

■ SNMP—Simple Network Management Protocol

■ RPC—SunNet/Site/Domain Manager Remote Procedure Call

Solstice EM also provides full conformance with Telecommunications Management

Networks (TMN) standards.

SNMP and RPC are network management protocols used to manage resources in a

TCP/IP network environment. CMIP is the protocol used in ISO networks. Both

protocols specify ASN.1 as the language used to encode and decode object request

and response messages.
1-16 Customizing Guide • October 2001

Note – When you install Solstice EM, you are asked if you want support for IP

management, CMIP management, or both. The choice you make depends on the

types of devices on your network, and the network management protocols they

support.

1.4.4.1 More About RPC

Solstice EM includes a suite of agents developed for the SunNet/Site/Domain

Manager (SNM) platform. These agents communicate with Solstice EM using RPC

protocols, and are included primarily to provide a migration path from SNM

installations to Solstice EM.

In addition to migrating to Solstice EM, however, SNM agents communicating over

RPC can be a useful part of your network management strategy. Specifically, SNM

agents can act as proxies for communicating via older protocols.

1.4.4.2 About MIBs

Part of the SNMP protocol includes attribute definition files called MIBs

(Management Information Base). MIBs define:

■ Attributes or types of data that can be supplied by an agent to a manager

■ Actions performed by an agent that can be requested by a manager

■ Behavior exhibited by the agent

■ Notifications—unsolicited information the agent can send to a manager

The ISO standards organization defines a MIB in ISO/IEC 7948-4 as follows: “The

conceptual repository of management information within an open system.” A

network management package normally contains management information

describing each type of agent the manager is capable of managing. This information

typically includes Internet MIB definitions and ISO GDMP definitions for managed

objects and agents. An agent typically presents or contains management information

for one type of device, although this information can include descriptions and data

for several types of devices.

1.5 Solstice EM APIs
In addition to the network management tools shipped with Solstice EM, you can

define your own tools and applications to work with Solstice EM through the

Application Programming Interfaces (APIs) included with Solstice EM.
Chapter 1 Introducing Solstice Enterprise Manager 1-17

If an application developer also provides access to a managed object type not

previously known to the MIS, the MIS must be informed of the Managed Object

Class through the use of GDMO ASN.1 documents.

The Solstice EM APIs provide a rich set of functions for the application programmer.

The libraries, written in C++, contain the objects and methods necessary to

communicate with the MIS and obtain information about the managed resources it

controls. The APIs provide the following services:

■ Initialization, including establishment of a distributed message passing interface

to the MIS

■ Event subscription

■ Remote caching and cache control

■ Local object cache management for applications

■ Encoding and decoding of parameters into ASN.1

■ Encoding and encapsulation of data into a format (message class) passed to the

MIS

1.5.1 API Modules

The Solstice EM APIs consist of several different groupings or modules, as

summarized in the following table. Refer to the Developing C++ Applications and

Developing Java Applications for detailed information about developing applications

that interact with Solstice EM.

TABLE 1-2 Solstice EM API Modules

API Module Description

High-level PMI

(Programming

Management

Interface)

For most applications, all interaction with the MIS can be handled

through the high-level protocol-independent functions of the PMI.

These functions hide the encoding/decoding of ASN.1 values, and

provide CMIS-like messages used in communication with the MIS

and managed objects (through the MIS). It also provides for

initialization and for event subscription and propagation.

Low-level PMI Used to exchange messages between the Solstice EM MIS and client

services using CMIS-like messages (M-GET, M-SET, M-CREATE, M-
DELETE, M-EVENT-REPORT, M-CANCEL-GET, and M-ACTION).

Application-to-

Application API

Allows applications to send messages to other Solstice EM

applications through an emApplicationInstance object.

Grapher API Allows developers to create graphical representations of data.
1-18 Customizing Guide • October 2001

1.5.2 Application Development Support Tools

In addition to the API classes and methods described in the preceding table, Solstice

EM includes the following application development support tools:

■ Object Development Tools (ODT)—provide a simple and automated framework

developers can use to add and write behaviors for managed objects that reside in

the MIS. Refer Chapter 10 in Developing C++ Applications for detailed information.

■ Compilers—Solstice EM includes several compilers that developers and, in some

cases, system administrators need to use. The compilers provide a means by

which you can add new managed object definitions to the MIS. Solstice EM

includes the following compilers:

■ ASN.1 (em_asn1)—Compile descriptions of managed objects into the MDR.

These descriptions are provided as ASN.1 documents.

■ GDMO (em_gdmo)—Compile new GDMO object descriptions and then add

them to the MDR.

■ Concise MIB (em_cmib2gdmo)—Convert object descriptions written in Concise

MIB format to GDMO for use in Solstice EM.

■ Schema (em_snm2gdmo)—Convert object descriptions written in SunNet

Manager schema format to GDMO for use in Solstice EM.

■ em_debug—Solstice EM includes a dynamic debugging function that helps

you track information going in to and out of the MIS.

Nerve Center

Interface (NCI)

Library

A programmatic interface for controlling Nerve Center operation.

The NCI library enables applications to create, edit, and launch

Nerve Center requests.

Object Services API Allows developers to access services provided by the Solstice EM

MIS to implement intra-object behaviors or specialized behaviors.

Topology API Allows developers to create applications for the Solstice EM

environment without learning the details of the MIT topology

naming tree.

Viewer API Allows applications to communicate with the Solstice EM Network

Views tool to control specific Network Views features. This allows

developers to leverage Network Views functionality and integrate

their applications with Network Views.

TABLE 1-2 Solstice EM API Modules (Continued)

API Module Description
Chapter 1 Introducing Solstice Enterprise Manager 1-19

1.6 Related Reading
Depending on what you want to do in Solstice EM, one or more of the following

Solstice EM manuals may interest you:

■ Installation Guide—complete instructions on installing all Solstice EM components

and utilities, including agent software.

■ Managing Your Network—information about using the Solstice EM tools to perform

day-to-day management tasks.

■ Customizing Guide—detailed information about advanced Solstice EM

configuration and customization.

■ Management Information Server (MIS) Guide—advanced information about MIS

servers.

■ Developing C++ Applications—information for developers who want to write

custom applications that can be integrated with Solstice EM.

■ Troubleshooting Guide—solutions to problems you encounter with Solstice EM.

■ CORBA Gateway Administration Guide—provides information on installing,

configuring, and using SEM CORBA ToolKit to build and package the SEM

CORBA Gateways.

■ Glossary—a glossary of network management terms as they relate to Solstice EM.

1.7 Solstice EM Tools—Complete Listings
The remainder of this chapter provides a quick-reference table that briefly describe

all of the Solstice EM network management tools, along with pointers to the books

in which you can find more detailed information.

Refer to the preceding sections in this chapter for information about general Solstice

EM network management concepts, and explanations of how the major Solstice EM

tools work together.
1-20 Customizing Guide • October 2001

The following table lists the Solstice EM tools, sorted by binary name. All tools listed

here are located by default in /opt/SUNWconn/em/bin ($EMHOME/bin).

TABLE 1-3 Solstice EM Tools – Complete List, Sorted by Binary Name

Binary Name Tool Name Description More Information

build_oid Build Object IDs SunNet Manager (SNM) SNMP

utility; creates an Object ID

Database (/var/usr/SUNWconn/
snm/oid.dbase .

This Guide

build_tt Build Textual

Convention Types

Builds the textual convention types

database; used by the

mib2schema utility to look for

new IMPORT definitions local to a

MIB.

Developing C++
Applications

create_admin *** *** ***

db_services Initialize Database

Services

Initializes MIS database services;

usually run as part of the

em_services command.

Management
Information Server
(MIS) Guide

em Network Tools Primary Solstice EM tools window;

Solstice EM and custom network

tools can be started, added, and

removed from this window.

Managing Your
Network

em_accesscmd Access Control –

command line

interface

Command-line Access Control

tool; lets you manage user access

to Solstice EM tools and objects.

Managing Your
Network

em_accessmgr Access Control –

graphical interface

Graphical Access Control tool. Managing Your
Network

em_add_db_server Add Database Server Lets you specify an MIS database

server to use instead of or in

addition to the default.

Management
Information Server
(MIS) Guide

em_admintool Administration Access advanced administration

functions; for example, MIS

connections and parameters,

database backup and restore,

request template designer, etc.

This Guide

em_alarmmgr Alarms View and manage object alarms. Managing Your
Network

em_asn1 ASN.1 Compiler ASN.1 object compiler. Management
Information Server
(MIS) Guide
Chapter 1 Introducing Solstice Enterprise Manager 1-21

em_autod Automatic

Management

Daemon

Automatic management daemon;

monitors creation and deletion of

MIS objects; starts and stops

requests when objects are added

and deleted.

Management
Information Server
(MIS) Guide

em_autoexd Database Table

Extender

MIS daemon that automatically

extends database tables when they

get full.

Management
Information Server
(MIS) Guide

em_automgr Request Controllers Automatic management

configuration tool; used in

conjunction with em_autod .

Management
Information Server
(MIS) Guide

em_auxdb *** *** This Guide

em_clear_alarms Clear Alarms –

command line

interface

Command-line utility for clearing

alarms against a specified range of

toponodes.

Managing Your
Network

em_cmib2gdmo Concise MIB

Compiler

Converts MIB files in Concise MIB

format to GDMO and ASN.1

formats.

Management
Information Server
(MIS) Guide

em_cmip CMIP Management

Protocol Adapter

Implements CMIP MPA functions;

starts during product installation.

Management
Information Server
(MIS) Guide

em_cmipautoreg CMIP

Autoregistration

Automatically registers CMIP

agents in the MIS.

Management
Information Server
(MIS) Guide

em_compose_all Compose/Load

GDMO Bindings

Compose and load all name

bindings from a GDMO file.

Management
Information Server
(MIS) Guide

em_compose_oc Instantiate Volatile

Class

Instantiates a new MIS object class

with volatile data storage.

Management
Information Server
(MIS) Guide

em_compose_poc Instantiate Persistent

Class

Instantiate a new MIS object class

with persistent data storage.

Management
Information Server
(MIS) Guide

em_datacollector Data Collections Create and manage data collection

entry objects, and display data

gathered from requests.

Managing Your
Network

em_datad Data Collection

Daemon

Daemon used in conjunction with

em_datacollector .

Managing Your
Network

TABLE 1-3 Solstice EM Tools – Complete List, Sorted by Binary Name (Continued)

Binary Name Tool Name Description More Information
1-22 Customizing Guide • October 2001

em_dataviewer RPC/CMIP Data View and manage RPC, CMIP, and

SNM managed objects.

Management
Information Server
(MIS) Guide

em_db_abort Abort Database Script to abort an Informix

database on the specified MIS.

Management
Information Server
(MIS) Guide

em_db_create Create Database Script to create a new Informix

database on the specified MIS

Management
Information Server
(MIS) Guide

em_db_drop Drop Database Tables Script to drop log or non-log tables

from an Informix database on the

specified MIS.

Management
Information Server
(MIS) Guide

em_db_start Start Database Server Script to start a database server on

the specified MIS.

Management
Information Server
(MIS) Guide

em_db_stop Stop Database Server Script to stop the database server

on the specified MIS.

Management
Information Server
(MIS) Guide

em_dbarchive Database Backup/

Restore

Graphical administration tool for

backing up and restoring MIS

databases.

Management
Information Server
(MIS) Guide

em_dbbackup Database Backup –

command-line

interface

Command-line interface for MIS

database backup.

Management
Information Server
(MIS) Guide

em_dbrestore Database Restore –

command-line

interface

Command-line interface for MIS

database restore.

Management
Information Server
(MIS) Guide

em_debug Solstice EM

Debugging Tool

Command-line debugging tool

that supports the Solstice EM

remote dynamic debugging

feature.

Cooperative Consoles
Administration Guide

em_discover Network Discovery Discover components on your

network and update the MIS

database.

This Guide

em_eds Event Distribution

System

Distributes events from event

sources to event listeners.

Management
Information Server
(MIS) Guide

em_gdmo GDMO Compiler GDMO compiler; lets you extend

Solstice EM capabilities with new

GDMO object class descriptions.

This Guide

TABLE 1-3 Solstice EM Tools – Complete List, Sorted by Binary Name (Continued)

Binary Name Tool Name Description More Information
Chapter 1 Introducing Solstice Enterprise Manager 1-23

em_grapher Grapher Create graphs from alarm and

agent data.

Managing Your
Network

em_help Help Solstice EM help system. Online Help

em_imex Log File Import/

Export

Import and export log objects from

and to ASCII files.

Managing Your
Network

em_java2gdmo Java GDMO

Compiler

Compile Java classes in GDMO

format.

This Guide and
Developing Java
Applications

em_jdmk_config Configure Java

Agents

Configure Solstice EM to work

with Java-based agents.

This Guide and
Developing Java
Applications

em_jdmkfwd Forward Java Events Forwards Java events to the

Solstice EM MIS for processing.

Management
Information Server
(MIS) Guide

em_layout Network Views

Layout

Define how object views are laid

out in Network Views; commonly

invoked from Network Views.

Managing Your
Network

em_load_name_bindings Load Name Bindings Loads object name bindings;

allows the MIS to resolve MIT

object names.

Management
Information Server
(MIS) Guide

em_load_nc_templates Load Nerve Center

Templates

Script that invokes the

em_ncimport -file command;

loads Solstice EM Nerve Center

templates.

Management
Information Server
(MIS) Guide

em_loaddefs Load Object

Definitions

Load MIB, GDMO, and SunNet

Manager schema files into the MIS.

Management
Information Server
(MIS) Guide

em_log Initialize Log Server Initializes log server MPA

functions.

This Guide

em_log2hist Save Log Entries Saves logs in history files. Managing Your
Network

em_log2rdb.ifmx Transfer Log

Histories Daemon –

Informix

Daemon that reads and transfers

log histories to an Informix

database.

Managing Your
Network

em_log2rdb.orcl Transfer Log

Histories Daemon –

Oracle

Daemon that reads and transfers

log histories to an Oracle database.

Managing Your
Network

TABLE 1-3 Solstice EM Tools – Complete List, Sorted by Binary Name (Continued)

Binary Name Tool Name Description More Information
1-24 Customizing Guide • October 2001

em_log2rdb.sybs Transfer Log

Histories Daemon –

Sybase

Daemon that reads and transfers

log histories to an Sybase database.

Managing Your
Network

em_login Login Daemon Listens for Solstice EM connection

requests for password

authentication.

Management
Information Server
(MIS) Guide

em_logmgr Event Logs Create, modify, and delete log

objects.

Managing Your
Network

em_logview View Logs View logs and log objects. Managing Your
Network

em_mis MIS Services Core Primary Solstice EM services;

commonly invoked from the

em_services command.

Management
Information Server
(MIS) Guide

em_mismgr MIS Manager Manage MIS parameters and

connections.

Management
Information Server
(MIS) Guide

em_mpa_jdmk Initialize JDMK MPA

functions.

Initializes JDMK MPA functions on

the MIS.

Management
Information Server
(MIS) Guide

em_mpa_rpc Initialize RPC MPA

functions.

Initializes RPC MPA functions on

the MIS.

Management
Information Server
(MIS) Guide

em_mpa_snmp Initialize SNMP MPA

functions.

Initializes SNMP MPA functions

on the MIS.

Management
Information Server
(MIS) Guide

em_ncam Nerve Center

Daemon

Daemon that handles nerve center

actions, such as sending email or

executing UNIX commands.

This Guide

em_ncexport Nerve Center Export Export Nerve Center templates to

an ASCII file.

This Guide

em_ncimport Nerve Center Import Import Nerve Center templates

that have been previously

exported with em_ncexport .

This Guide

em_nnadd Global Nickname

Service Addition

Enable a global nickname server

on the MIS; generally started with

em_services .

Developing C++
Applications

em_nnconfig Global Nickname

Configuration

Populate the global nickname

translation server.

Developing C++
Applications

TABLE 1-3 Solstice EM Tools – Complete List, Sorted by Binary Name (Continued)

Binary Name Tool Name Description More Information
Chapter 1 Introducing Solstice Enterprise Manager 1-25

em_nnmpa Global Nickname

Service Daemon

Starts the global nickname

translation server.

Developing C++
Applications

em_ns_server Debug Nickname

Services

Debug global nickname translation

services.

Developing C++
Applications

em_obcodegen Object Code

Generator

Used to generate object behavior

code from GDMO and ASN.1

definitions.

Developing C++
Applications

em_obed Object Editor View and edit objects in the MIT;

see also em_oct .

This Guide

em_objop Object Operations

Utility

Command-line utility for sending

CREATE, SET, DERIVE, and

DELETErequests; primarily used

by init_platform to create and

modify MIS objects at MIS startup.

Management
Information Server
(MIS) Guide

em_oct Network Views

Object Configuration

Tool

View, modify, and create managed

objects; commonly run from a

Network Views window; see also

em_obed.

Managing Your
Network

em_panel Network Tools Starting point for Solstice EM

general network management

applications; usually invoked with

the emcommand and em -host

Managing Your
Network

em_purged Alarm Deletion

Daemon

Periodically deletes alarms based

on severity, stat, time, etc.

Managing Your
Network

em_purgemgr Alarm Deletion

Controller

Sets up conditions for em_purged
to delete alarms.

Managing Your
Network

em_reqedit Request Template

Designer

View, modify, create, and delete

Nerve Center request templates.

This Guide

em_restart Restart MIS Services Restart MIS services. Management
Information Server
(MIS) Guide

em_services Initiate MIS Services Initiate MIS services; starts the MIS

server and several related

daemons.

Management
Information Server
(MIS) Guide

em_simplerequests Network Views

Simple Requests

View, modify, and create simple

MIS request templates; generally

invoked from Network Views.

Managing Your
Network

em_snm2gdmo SNM Schema to

GDMO Compiler

Convert SNM schema files to

GDMO descriptions.

This Guide

TABLE 1-3 Solstice EM Tools – Complete List, Sorted by Binary Name (Continued)

Binary Name Tool Name Description More Information
1-26 Customizing Guide • October 2001

em_snm_type_import Import SNM Object

Types

Import SNM object types into the

Solstice EM environment.

This Guide

em_snmdb_import Import SNM

Topology

Imports SNM topology databases

into an Solstice EM MIS.

Management
Information Server
(MIS) Guide

em_snmfwd Forward SNM Events Forwards SNM events to the

Solstice EM MIS for processing.

Management
Information Server
(MIS) Guide

em_snmp-trap Listen for SNMP

Traps Daemon

Daemon that listens on port 162

for SNMP traps.

Management
Information Server
(MIS) Guide

em_snmpbrowser SNMP Data Get, set, view, and modify SNMP

agent attributes.

Managing Your
Network

em_sql Log In to SQL

Database

Login process for SQL databases. This Guide

em_srm *** *** ***

em_startup Start MIS Server Start the MIS server; usually

invoked as part the em_services
command.

Management
Information Server
(MIS) Guide

em_topo_args Modify Toponodes Command-line interface for

modifying topoNode objects.

This Guide

em_topoimex Topology Import/

Export

Import or export MIT topology

information.

Management
Information Server
(MIS) Guide

em_topoimex_BC Convert Legacy

Topology Information

Converts topology information

from prior versions of Solstice EM.

This Guide

em_trapd Initialize Topology

Services

Initializes topology services on the

MIS; commonly invoked as part of

em_services .

This Guide

em_viewer Network Views View, organize, modify, and create

managed objects.

Managing Your
Network

emenv.csh Environment

Configuration – C

Shell

Source this file to configure

Solstice EM environment variables,

such as $EMHOME, license server,

etc.; C Shell environment only.

Managing Your
Network

emenv.sh Environment

Configuration –

Korn/Bourne Shell

Source this file to configure

Solstice EM environment variables,

such as $EMHOME, license server,

etc.; Korn or Bourne shell.

Managing Your
Network

TABLE 1-3 Solstice EM Tools – Complete List, Sorted by Binary Name (Continued)

Binary Name Tool Name Description More Information
Chapter 1 Introducing Solstice Enterprise Manager 1-27

get_local_host Find Local MIS Host Display the name of the current

local MIS host.

This Guide

hyperhelp Help Viewer Bristol HyperHelp™ Viewer;

Solstice EM online help isin

HyperHelp format.

Managing Your
Network

jme_jre JME Services helper

script

Helper script for jme_services ;

do not invoke directly.

Management
Information Server
(MIS) Guide

jme_services JME Services Start and stop Solstice EM Java

daemons

Management
Information Server
(MIS) Guide

mib2schema SNMP MIB to SNM

Schema compiler

Convert SNMP MIB files to SNM

scheme format.

This Guide

snm_br Results Browser List RPC, CMIP, or SNMP data

collected with the Data Collections

tool.

This Guide

snm_cmd Manage SNM Agents

– command-line

interface

Command- line manager for Site/

SunNet/Domain Manager agents.

This Guide

snm_cmdtool Run Command from

SNM Session

Run a UNIX command from an

SNM session.

This Guide

snm_exec Execute command via

EVAL from SNM

Uses the Bourne shell's eval to

execute a UNIX command from an

SNM session.

This Guide

snm_gr Grapher Display and graph SNM data. This Guide

snm_kill Stop SNM Agent

Requests

Stop one or more SNM agent

requests.

This Guide

snm_version SNM Version

Information

Displays information about the

current version of SunNet Site/

Domain Manager software.

v2mib2schema SNMP2 MIB to

Schema Compiler

Convert SNMP2 MIBs to SNM

schema format.

This Guide

var-install Install Solstice EM

Packages on Remote

Install Solstice EM packages on

another machine.

Installation Guide

var-obj-install Install Solstice EM

object Definitions

Install Solstice EM object

definitions.

This Guide

TABLE 1-3 Solstice EM Tools – Complete List, Sorted by Binary Name (Continued)

Binary Name Tool Name Description More Information
1-28 Customizing Guide • October 2001

CHAPTER 2

Network Management and the
Solstice EM Architecture

Network management is the ability to monitor and control network resources. A

network management system should allow you to do the following:

■ Detect and correct network problems

■ Monitor and evaluate network activity

■ Monitor, analyze, and change network configurations.

Solstice Enterprise Manager (Solstice EM) is a distributed, multi-user management

platform, with a set of user tools, that allows you to accomplish the network

management goals. This chapter describes the key aspects of the Enterprise Manager

architecture.

This chapter describes the following topics:

■ Section 2.1 “The Agent/Manager Model” on page 2-1

■ Section 2.2 “Client/Server Architecture” on page 2-2

■ Section 2.3 “Distributed Management” on page 2-4

■ Section 2.4 “Network Management Protocol Support” on page 2-7

■ Section 2.5 “Simple Requests” on page 2-11

■ Section 2.6 “Object Classes and Event Notification Types” on page 2-18

2.1 The Agent/Manager Model
Solstice EM is based on the agent/manager model described in the International

Organization for Standardization (ISO) network management standards. Solstice EM

can exchange monitoring and control information about network resources with

software processes called “agents.” Any network resource that is manageable

through this exchange of information is a “managed resource” which could be an
2-1

NFS server such as a hub, a cellular base station, or a WAN link; or components such

as a circuit, or a router interface, or software entities such as tool or a printer queue.

Agents access the managed resource and collect data on behalf of managers.

Agents provide information in response to requests from managers. In addition,

agents typically have the ability to issue reports, called event notifications, to

managers by their initiative when they detect predefined thresholds or events on a

managed resource. Agent/manager communication is illustrated in the following

figure.

FIGURE 2-1 Agent/Manager Communication in Solstice EM Environment

A manager relies on a database of definitions and information about the properties

of managed resources and the services that the agents support. In Solstice EM this

information resides in the Management Information Server (MIS).

2.2 Client/Server Architecture
The management functionality of Solstice EM is based on the client/server

architecture. Solstice EM is shipped with a set of tools to carry out network

management tasks. For example, the Solstice EM Network Views window provides a

graphical, dynamically updated display of your network topology. Colored icons

indicate the fault status of devices displayed in the Network Views window. The

Network Views Request window allows users to launch Nerve Center requests one-

at-a-time to monitor devices for the occurrence of critical events.

Agent

Solstice EM

Solstice EM
Application

Management
Information
Server (MIS)

request

response

event notification
2-2 Customizing Guide • October 2001

In addition, Solstice EM includes an Auto Manager daemon, which you can activate

to automatically launch requests to manage routers, links, or to check hosts for

reachability. The Auto Manager is the most efficient method for checking thresholds

on numerous devices.

Another key tool, Alarms window, allows you to view and sort incoming alarms and

acknowledge or clear them. (The Alarms window, Auto Manager, and other Solstice

EM core tools are documented in Managing Your Network.)

These and other user tools may be installed on machines remote from the machine

that runs the MIS. Multiple users, running Solstice EM tools on one or more

workstations, may be connected to the same MIS. You have access to most of the

Solstice EM tools from the Solstice EM Network Tools, shown in the following

figure. The launcher can be configured to include other tools in addition to those

shipped with Solstice EM.

FIGURE 2-2 Solstice EM Network Tools

Solstice EM tools that are installed on the same machine as the MIS can be displayed

remotely by means of an X windows session. Same machine installation differs from

the installation of Solstice EM tools on a remote machine. In the latter case, Solstice

EM tools connect to the MIS using a PMI connection. In general, tools running on a

remote machine consume far less network bandwidth than tools that are run on the

MIS machine and displayed remotely.

The multi-user capabilities of Solstice EM are based on Solstice EM’s ability to

provide consistent management information to components of the network

management solution—operators, tools, and other management stations. Solstice EM

enables management tasks to be divided across geography and organization with
Chapter 2 Network Management and the Solstice EM Architecture 2-3

confidence that all users will see the same view of management data. This universal

view is particularly useful in fault management scenarios where cooperation among

staff members leads to prompt resolution of problems.

2.3 Distributed Management
The powerful Solstice EM platforms the ability to distribute the management

information base to multiple Management Information Servers while allowing

transparent access management data to users irrespective of the MIS on which the

data is located. The data may reside in the local MIS to which the tools are connected

or in a remote MIS in another geographical locale.

The Solstice EM MIS Connection Tool is used to set up and take down such

connections. Setting up a connection from one MIS to another is analogous to using

NFS to mount a file system from one workstation to another.

Access to all objects is achieved through the Management Information Tree (MIT).

The MIT is the globally defined object naming or containment tree as defined in the

ITU-T X.700 series standards. Every object has a name that distinguishes it from

every other object in any MIS. The globally unique name of any object is its full path

name from global root (the top of the naming hierarchy) to its position in the tree—

analogous to the absolute path to a file in a UNIX file system.

When a connection is initiated from MIS A to MIS B, the local MIT of MIS B is

“mounted” into MIS A—and becomes visible in the Navigator of a Network Views

window connected to MIS A.

The user running the Network Views window connected to MIS A then has access to

the views and devices represented in MIS B. These devices become manageable from

the local MIS A. For example, the user could launch Nerve Center requests targeted

at a device in the topology “tree” of the remote MIS, and this request will execute on

the remote MIS B. Whether the request is running on the local MIS or a remote MIS

is transparent to the MIS A user.

Many of the tools shipped with Solstice EM have this ability to access managed

resources via MIS-to-MIS connections. However, there are some tools (such as

Design Advanced Request window, Security window, and Network Discovery

window) that only access data in the local MIS.

The example in the following figure illustrates a possible configuration using MIS-

to-MIS communication. In this example, MIS A is a central office “manager of

managers” connected to three regional MISs on Net_B, Net_C, and Net_D. The

arrow direction from MIS A to MIS Net_B indicates that the MIS-to-MIS connection

was initiated from MIS A.
2-4 Customizing Guide • October 2001

The Network Views window connected to MIS A will see a topology like that shown

in FIGURE 2-4. The topology tree for the Network Views window connected to MIS

Net_B is shown in FIGURE 2-5. The Network Views window connected to the MIS on

Net_D, however, sees only the local MIS, as illustrated in the FIGURE 2-5. If the user

running the Network Views window on MIS A were to select the Bldg_1_Subnet

view, under the MIS Net_B local root, the Network Views window accesses the data

on MIS Net_B and the user sees the same view of this subnet as a user running the

Network Views window connected to MIS Net_B.

FIGURE 2-3 A Sample Configuration Using MIS-to-MIS Communication

MIS Net_B

MIS A

MIS Net_C MIS Net_D

Network Views

Manager of

Network Views window on
machine sledge

Network Views window on
machine mgr_1

Network Views window on
machine neva

window on machine

Managers
Chapter 2 Network Management and the Solstice EM Architecture 2-5

FIGURE 2-4 Topology Tree as Seen by Network Views Window Connected to MIS A

FIGURE 2-5 Topology Tree as Seen by Network Views Window Connected to MIS Net_B

Root [A]

Root [Net_B]

Root [Net_C]

Root [Net_D]

Bldg_1_Subnet

Bldg_2_Subnet

New_York_Subnet

New_England_Subnet

Root [Net_B]

Root [Net_C]

Root [Net_D]

Bldg_1_Subnet

Bldg_2_Subnet

New_York_Subnet

New_England_Subnet
2-6 Customizing Guide • October 2001

FIGURE 2-6 Topology as Seen in Network Views Window Connected to MIS Net_D

When MIS A initiates a request for data from MIS Net B, MIS A takes on the “manager

role” in a MIS-to-MIS communication. As illustrated in the following figure, MIS Net

B plays the agent role, responding to requests initiated by MIS A. For information

about setting up MIS-to-MIS connections, refer to the Management Information Server
Guide.

FIGURE 2-7 MIS-to-MIS Connection From MIS A to MIS Net B

2.4 Network Management Protocol Support
A network management protocol defines the types of messages, encoding rules, and

how messages are exchanged in communication between a manager and agent. The

Solstice EM shipped to you offers support for four network management protocols:

■ Simple Network Management Protocol (SNMP)

■ Common Management Information Protocol (CMIP)

■ Remote Procedure Call (RPC) protocol (as used by Site/SunNet/Domain

Manager)

■ Access to JDMK agents via Java PMI

New_York_Subnet

New_England_Subnet

Root

request

response

MIS A MIS Net B
in manager
role

in agent
role
Chapter 2 Network Management and the Solstice EM Architecture 2-7

SNMP and RPC are network management protocols used to manage resources in the

context of an Internet (IP) network environment. When you install Solstice EM, you

are asked whether you want support for IP management, CMIP management, or

both. Your choice will be dictated by the types of devices used in your network, and

the network management protocols that they support.

2.4.1 RPC Support

Solstice EM is shipped with a suite of agents developed for the SunNet Manager

network management platform. These agents communicate with a network manager,

such as Solstice EM, using Remote Procedure Call (RPC) protocol. When deployed

on systems in your network, these RPC agents can be used by Solstice EM as part of

your strategy for managing network resources. The resource may be a machine, a

component in a machine (such as a router interface card), or some other resource.

The RPC agent may be local to or remote from that resource.

As illustrated in the following figure, SNM agents use Remote Procedure Call (RPC)

protocol to communicate with the MIS. However, an SNM agent may act as a

“proxy” for the management station, using a different management protocol for

gathering information from other agents. The RPC Management Protocol Adapter

(MPA) translates requests from management tools, such as Nerve Center requests,

into appropriate SNM RPC messages, which it forwards to the RPC proxy agent.

RPC responses from the agent are in turn translated from SNM RPC format into the

PMI format used for messages internal to the MIS. The RPC MPA may be installed

on the MIS machine or it may be distributed elsewhere in your network.
2-8 Customizing Guide • October 2001

FIGURE 2-8 Polling RPC Agents

Step-by-step guidance in using RPC agents as part of your network management

solution is provided in Chapter 6.

An important aspect of Solstice EM’s RPC support is the ability of the Solstice EM

MIS to offload threshold-checking activity to RPC proxy agents, which may be

distributed to various sites around your network.

SunNet Manager RPC agents have the ability to poll managed resources to check for

user-configurable thresholds and send an event notification, called an SNM event, to

a specified management station. This polling activity is initiated by a one-shot

message from a management station, called an SNM event request. The SNM event

request defines the threshold and polling interval for the agent’s polling activity. The

flow of information using Solstice EM’s SNM event request capability is illustrated

in the following figure. It illustrates a configuration where the RPC proxy agent is

distributed to a machine other than the MIS. The RPC proxy agent may also be

located on the MIS machine.

Poll
(via RPC
protocol)

Response
(via RPC protocol)

Poll

Response

RPC
Proxy
Agent

Managed Resource

Solstice EM MIS

RPC MPA
Chapter 2 Network Management and the Solstice EM Architecture 2-9

FIGURE 2-9 Using SNM Event Requests With Solstice EM

The RPC proxy agents, SunNet Manager Event Dispatcher and SNM Event

Forwarder are installed on the MIS machine if you select the IP management option

(or both CMIP and IP management) during installation. Solstice EM’s Request

Condition Language (RCL)—a script language used in building Nerve Center

request templates—has built-in support for SNM event requests. This capability is

described in Chapter 17.

Solstice EM MIS

SNM Event

SNM
events

registers

snmAlarmEvents
SNM Event
Forwarder

Nerve

 SNM Event Request
 initiated

 SNM event request

Dispatcher

Center

via CMIP
 over TCP/IP

MIS Host

SNM
events
(via RPC Protocol)

 (via RPC protocol)

RPC MPA

Polling

Response

RPC Proxy Host Managed
Resource
2-10 Customizing Guide • October 2001

2.5 Simple Requests
Simple Requests lets you create event requests. You can pick specific attributes and

set threshold requests. When the threshold is exceeded, an event is generated. The

Simple Request tool accepts one or more topology node IDs from the command line.

Simple request templates are used for monitoring:

■ disk usage

■ cpu usage

■ router interface status

A Real Time Graphing capability is used to view data collected via the Data

Collection system. The Data Collector can be invoked from the SNMP Browser and

the Data Viewer.

2.5.1 SNMP Support

A key component of Solstice EM’s Simple Network Management Protocol (SNMP)

support is the SNMP Management Protocol Adapter (MPA). The SNMP MPA

translates management requests into an appropriate SNMP message and translates

messages from SNMP agents into the internal CMIP format used by the MIS. This is

illustrated in the following figure.

FIGURE 2-10 MIS Communication With SNMP Agents

response

SNMP
Agent

MIS

SNMP MPA

(via SNMP protocol)
response
(via SNMP
protocol)
Chapter 2 Network Management and the Solstice EM Architecture 2-11

For example, if you select a device in the Network Views window that is

manageable via SNMP, and invoke Solstice EM’s SNMP Data window, you can

retrieve the current values of SNMP attributes or poll for selected attributes. The

SNMP Data window, which connects to the MIS, sends requests for data which are

translated by the MIS into SNMP requests via the SNMP MPA. The MPA may be

installed on the MIS machine or distributed elsewhere in your network.

A second important aspect of Solstice EM’s SNMP support is the Solstice EM SNMP

trap daemon, which can be distributed to various sites in your network. SNMP

agents have the ability to generate event notifications on their own initiative when

certain conditions are detected; these notifications are called traps. The Solstice EM

trap daemon listens for incoming SNMP traps and converts them to CMIP event

notifications for forwarding to one or more MIS. Like other Solstice EM tools, the

trap daemon uses a PMI connection to the MIS.

The trap daemon also has the ability to forward SNMP traps to Site/SunNet/

Domain Manager Consoles or other managers. Trap daemon operation is illustrated

in the following figure.
2-12 Customizing Guide • October 2001

FIGURE 2-11 SNMP Trap Daemon Operation

The trap daemon has a flexible, user-configurable trap-mapping capability which

allows you to customize the conversion of incoming SNMP traps to event

notifications to create more meaningful alarms tailored to your network

management needs. How to customize the trap daemon’s mapping of SNMP traps is

described in Chapter 11.

A default mapping is provided when you install the trap daemon. With this default

mapping, a user who invokes the Alarms window to examine the alarm log can tell

at a glance the types of traps that have been logged against devices in their network,

as shown in the following figure.

SNMP Trap

Daemon

Alarm
Log

CMIP event
notifications

Solstice EM MIS

Alarm
Service

Sets device
 fault status

Monitors

Solstice EM Network Views window

 Runtime
 data

Determines
icon color

SNMP
Traps

SNM
Traps

SNM Event
Dispatcher

SunNet Manager
tools

SNM
Traps

SNMP Agent or Proxy

Solstice EM Alarm
Manager

 SNMP
 traps

Other Managers
Chapter 2 Network Management and the Solstice EM Architecture 2-13

FIGURE 2-12 Viewing Trap Notifications

The SunNet Manager SNMP proxy agent, shipped with Solstice EM, provides an

additional element of SNMP support. Polling of SNMP devices can be offloaded

from the MIS to the SNMP proxy agent, using the Solstice EM Nerve Center’s SNM

event request capability. Using the RPC MPA, the MIS communicates with the

SNMP proxy agent via RPC protocol (over UDP/IP), and the proxy agent talks to

SNMP devices. The following figure illustrates the use of the SNMP proxy agent for

offloaded polling of SNMP devices.
2-14 Customizing Guide • October 2001

FIGURE 2-13 SNMP Proxy Agent Operation

2.5.2 CMIP Support

The Solstice EM CMIP Management Protocol Adapter (MPA) supports

communication between the Solstice EM MIS and CMIP agents. The CMIP MPA is

installed if you select the CMIP management option (or mixed IP and CMIP

management) during installation. The CMIP MPA may be installed on the same

machine as the MIS or it can be distributed to multiple sites. This distributed

scenario is illustrated in the following figure. Alternatively, if the MIS is installed on

SNMP

Proxy Agent

SNM Event
Dispatcher

SNM
Tools

SNM
Event
Forwarder

snmAlarmEvents

S
N

M
 E

ve
nt

s

 SNM
 Events

Nerve
Center

MIS

MIS System

SNM Request

SNMP

Agent

 Poll Response

Proxy System

SNM events (via SNMP
protocol)
Chapter 2 Network Management and the Solstice EM Architecture 2-15

a more powerful server machine, multiple MPAs could be installed on the MIS

machine to “fan out” the message-handling load in communications with large

numbers of CMIP agents.

The machine on which the MPA is installed must be running SunLink CMIP 8.2.1

patch 6. The MPA can be used with SunLink CMIP 9.0using RFC 1006 (over TCP/IP)

or SunLink CMIP 9.0 over SunLink OSI 9.0. This enables communication with

conformant CMIP management entities. SunLink CMIP and SunLink OSI are not

shipped with Solstice EM.

FIGURE 2-14 CMIP MPAs in Distributed Configuration

For information about configuring CMIP support, see Chapter 12.

2.5.2.1 Telecommunications Management Network

Solstice EM complies with the Telecommunications Management Network (TMN)

standard, an extension of the Open Systems Interconnection (OSI) standards

developed through the International Telecommunications Union-

Telecommunications Standardization Sector (ITU-T, formerly the CCITT). A

Telecommunications Management Network is a network providing surveillance and

MIS

MIS Host

CMIP
MPA A

CMIP
MPA B

CMIP
MPA C

CMIP
over
TCP/IP

Host X

Host Y

Host Z

CMIP
Agent

CMIP
Agent

CMIP
Agent

SunLink
CMIP 9.0

SunLink
CMIP 9.0

SunLink
CMIP 9.0
2-16 Customizing Guide • October 2001

control over another network. As illustrated in the following figure, Solstice EM’s

CMIP Management Protocol Adapter (MPA), installed on the MIS machine, can

support a TMN Q3 connection to a CMIP agent, which provides access to the

managed resources.

FIGURE 2-15 TMN Q3 Connection to Solstice EM

2.5.3 Other Network Management Protocols

Legacy or proprietary network management protocols can be supported by Solstice

EM through the development of a custom Management Protocol Adapter (MPA).

Third-party developers interested in creating such custom MPAs should refer to

Chapter 11 in Developing C++ Applications.

2.5.4 Java Dynamic Management Kit Agents

Java Dynamic Management Kit (JDMK) is a set of Java classes, Java interfaces, and

tools that simplifies the development of management services.

MIS CMIP
 MPACMIP over TCP/IP

MIS Host

CMIP Agent

TMN Q3 Stack

Q3 Connection
Chapter 2 Network Management and the Solstice EM Architecture 2-17

Writing object or agent behavior using JDMK allows you to add object behavior

without being an expert in the fore mentioned areas. It will also allow dynamic

updating of these behaviors, remote access, and a separation from the MIS process

on either NT or Solaris boxes. The components necessary to allow this within

Solstice EM are:

■ JavaBean to Guidelines for the Definition of Managed Objects tool

A tool that takes as input a package or set of JavaBean classes and outputs a

corresponding Guidelines for the Definition of Managed Objects (GDMO)

document which is then loaded into Solstice EM.

■ JDMK MPA

An MPA that maps GDMO CMIS requests into JavaBean JDMK calls. This will

allow any PMI application to access JavaBeans through JDMK as GDMO objects.

This will not allow Java objects to make CMIS requests back to the MIS. This may

be achieved via the JMI or the PMI. A JDMK agent will be able to send M-Events

to the MIS through the JDMK to CMIS Event listener.

■ JDMK to CMIS Event Listener

A daemon process that converts JDMK JavaBean events to Solstice EM CMIS

notifications. JDMK agents will be able to send events through the JDMK event

mechanism which will be translated into Solstice EM CMIS notifications. The type

of notification generated will be transparently handled as part of the JavaBean to

GDMO tool. Any JavaBean which implements the addXXXListener and

removeXXXListener will cause the JavaBean to GDMO tool to generate an XXX
notification type.

There are three types of users for JDMK agent behavior in Solstice EM.

■ End users managing Java agents developed using JDMK.

■ Solstice EM application developers using JDMK JavaBean objects to implement

agent behavior.

■ Solstice EM application developers using remote JDMK JavaBean objects to

implement remote object behavior within Solstice EM.

2.6 Object Classes and Event Notification
Types
The definition language used to represent management information internally in the

MIS is the GDMO, outlined in the ITU ISO/IEC 10165-4 standard. This provides the

Solstice EM management platform with an integrated, standards-based view of all

managed resources.
2-18 Customizing Guide • October 2001

Solstice EM is shipped with a variety of GDMO-defined object classes and event

notification types that allow you to perform OSI, SNMP, and RPC JDMK network

management for most common network elements and topologies. However, the

system can be easily extended through the addition of new object classes and event

types. All object classes and event types are defined in GDMO documents that are

loaded into the MIS. Solstice EM allows you to create your own GDMO definitions,

or to add new GDMO definitions that you have obtained from third-party vendors.

Also, Solstice EM is shipped with tools that enable you to convert third-party SNMP

MIBs and SNM schemas to GDMO documents.

For more information on adding new event types, adding new GDMO object class

definitions, converting an SNMP Concise MIB to a GDMO document, or converting

an SNM schema to a GDMO document, refer to Chapter 8 in Management Information
Server (MIS) Guide.
Chapter 2 Network Management and the Solstice EM Architecture 2-19

2-20 Customizing Guide • October 2001

PART II Customizing Solstice EM Tools

CHAPTER 3

Using Solstice EM for Fault
Management

Fault management is the tracking and managing of critical events on your network.

For example, if one of your critical network resources such as a server, link, or key

application becomes inoperative or unavailable to users, you will want to be notified

of this immediately.

This chapter provides you with some ideas on how to use Solstice Enterprise Manager
(Solstice EM) to meet your network management goals. These methods and

scenarios are not the only ways to meet your goals. The approach best suited for a

given situation will depend on the particular network configuration, available

network management tools, and network management priorities.

This chapter describes the following topics:

■ Section 3.1 “Fault Management Summary” on page 3-1

■ Section 3.2 “Using Fault Management” on page 3-3

■ Section 3.3 “Viewing Fault Status” on page 3-3

■ Section 3.4 “Reporting Faults as Alarms” on page 3-5

■ Section 3.5 “The Event Logs Tool and Alarm Logging” on page 3-6

3.1 Fault Management Summary
Looking at the use of Solstice EM, the steps in preparing for fault management can

be summarized as follows:

1. Decide on the information you need to manage your network.
3-1

2. Create request templates, if needed. To create Basic request templates, use the
Design Simple Request. To create Advanced request templates, use the Design
Advanced Request.

Solstice EM is shipped with a number of sample request templates. These may be

sufficient for your needs. A request template is a set of commands used to obtain

information about network devices, either by direct polling, initiation of a SunNet

Manager event request, or by subscribing to receive incoming event notifications, or

a combination of these methods. For information on using the Design Advanced

Requests tool, see Chapter 18. For information on designing Nerve Center request

templates, see Chapter 15 and Chapter 20. For information on using Simple

Requests, see Chapter 9.

3. Use the Event Logs tool to create logs, to store those events for which you want to
have a historical record and to define which events are logged to which logs.

For information on creating and modifying alarm logs, see Chapter 5.

4. Choose the logs that you want the Alarm Service to monitor.

The event notifications that are logged to these logs are the events that will

automatically determine fault indication in the Network Views window. For

information on configuring the Alarm Service, see Chapter 4.

5. Edit the SNMP trap daemon’s trap_maps file to customize the mapping of SNMP
traps to event notifications.

For information on customizing the SNMP trap daemon mapping of SNMP traps to

event notification, see Chapter 11.

6. If you want to implement forwarding of information from SNM Consoles to
Solstice EM, use the Cooperative Consoles Configuration tool to configure the
Sender daemons on the SNM machines and the Receiver tool on the Solstice EM
MIS machine.

For more information, see Chapter 7.

3.1.1 Before Starting Fault Management

Before customizing Solstice EM to perform fault management tasks, you should

complete the following:

■ Populate your MIS to add multiple managed objects.

Managed objects can be added automatically or one-by-one using Network

Discovery. Refer to Chapter 4 in the Managing Your Network for how you can add

managed objects to your MIS.
3-2 Customizing Guide • October 2001

■ Configure objects representing your network according to the network

management protocol and agents they support (CMIP, SNMP, or SunNet Manager

(SNM) RPC).

This is done either via the Network Discovery process, CMIP agent registration,

or one-at-a-time using the Network Views-Object Properties.

3.2 Using Fault Management
Three key tools provided by Solstice EM for tracking fault status are as follows:

■ Network Views

■ Alarms

■ Event Logs

Three important Solstice EM components that can provide you with information

about critical network events are as follows:

■ Nerve Center requests, which are launched from the Network Views window.

■ SNMP trap daemon, which listens for traps generated by SNMP agents.

■ Simple Requests, which are launched from the Viewer.

The various options available to you to set up Solstice EM for tracking fault status of

devices on your network are described in this section.

The steps involved in monitoring the fault status of devices are described in

Managing Your Network.

3.3 Viewing Fault Status
The Network Views window provides a window into your network that is

continuously updated with the latest fault status information. Fault status is

indicated by an icon changing color. The fault status of an object reflects the

incoming alarms posted against that object.

Alarms differ in their severity. The severity of an event is a rating used to represent

the importance or impact of the event. For example, you might regard an event

indicating high memory usage of a router network being rated as less severe than an

event indicating that the router not working at all.
Chapter 3 Using Solstice EM for Fault Management 3-3

Solstice EM provides six severities; by default, these are color-coded as indicated in

the following table.

The same color-coding of severities is used in the Alarms window—a Solstice EM

tool that enables you to selectively view, acknowledge, and clear alarms.

3.3.1 Changing the Color Associated with a Severity

▼ To Change the Color Associated with a Severity

1. In the Network Tools window click Network Views.

2. Click File ➔ Customize ➔ Display Settings ➔ Colors to open the Severities
window.

3. Select Alarm Severity.

4. Select the color you want to use for that severity in the field.

5. Click Modify.

Note – You cannot change the name or the numeric value of the severities, nor can

you add or delete severities. Only integer values in the range 0 to 5 are valid severity

values.

TABLE 3-1 Default Color-Coding of Severities

Integer Value Severity Default Color

1 Critical Red

2 Major Orange

3 Minor Cyan

4 Warning Yellow

5 Cleared No color

0 Indeterminate Blue
3-4 Customizing Guide • October 2001

3.3.2 Alarm Severity Propagation

For container objects the propagated severity is the most severe outstanding alarm

posted against the container and all its children—for example, if a container contains

devices such as a host with a major alarm and also a router with critical alarm, the

severity of the container will be critical, as critical is more severe than a major alarm.

This severity is evaluated recursively for all containers within containers.

3.3.3 Access to Tools, Features, and Database Objects

Network Views window displays the Solstice EM tools to which you have access.

Solstice EM has four levels of security:

■ Tool Access

■ Tool Feature Access

■ Object Access

■ Database Access

Tool access enables administrators to set up the environment so that certain users or

groups can use or run a Solstice EM tool that has been registered with the

Management Information Server (MIS).

Tool feature access enables administrators to provide or restrict access to certain

features within a tool to specific users or groups. Tool and feature level access is

enforced by the tool; the MIS is used only to store the list of features for each tool.

Object class or instance access enables administrators to permit or restrict access to

specific managed object classes or managed object instances.

Database access enables administrators to provide or restrict access to information

found in the MIS. Prompting database access allows the respective users to view

summaries of log information, while users or groups with complete access can view

detailed log information.

For more information about security and access levels, refer to Chapter 6 in

Managing Your Network.

3.4 Reporting Faults as Alarms
The fault status of objects displayed in the Network Views window and Alarms

window is controlled by the Alarm Service, which is in the topology server. The

Alarm Service monitors incoming alarms posted to the AlarmLog and updates the

fault status of objects to match the highest severity amongst the outstanding
Chapter 3 Using Solstice EM for Fault Management 3-5

(uncleared) alarms posted against that object. If the Solstice EM receives four minor

alarms and one critical alarm against router sledge, sledge’s icon is changed to red to

reflect the critical alarm. If the critical alarm is cleared, the icon changes to cyan

reflecting the uncleared minor alarms. If all the alarms are cleared or purged, the

icon has no status coloring—indicating that the state of the device is “normal.”

The Alarm Services monitors a log called AlarmLog . When alarms are logged to this

log, they automatically affect the icon color in the Network Views window.

For more information about using the Alarms window, refer to Chapter 5 in

Managing Your Network. Configuration of the Alarm Service is described in

Chapter 4.

3.5 The Event Logs Tool and Alarm Logging
The Event Logs tool is the tool used to create logs to store incoming event

notifications, and to define which events are stored in which logs.

The particular event types that are selected for logging to the AlarmLog and to all

logs is determined by a Common Management Information Service (CMIS) filter,

called a discriminator construct. You use the Event Logs tool to add or subtract event

types to the AlarmLog by editing the AlarmLog ’s discriminator construct. (An

example that illustrates how to do this is described in “Creating a Separate Log for

Enterprise-Specific Trap Notifications” on page 15.”)

Actions of the Alarms window also affect fault indication in the Network Views

window. If a network administrator uses the Alarms window to clear all the

outstanding alarms against router sledge , the Alarm Service changes sledge ’s

fault status to cleared , and the Network Views window icon changes color

accordingly. Thus, the Alarm Service ensures that the Network Views window and

Alarms window have the same picture of the fault status of the network resources

you are managing.

The types of events that you will want the Alarm Service to monitor (thus updating

the color of Network Views window icons automatically) depends upon the types of

network events you want to track and the management protocols you are using.

For example, SunNet Manager RPC agents (shipped with Solstice EM) have the

ability to poll managed resources to check for predefined thresholds and send an

event notification—called an SNM event—to the management station. This polling

activity can be initiated by a one-shot message—called an SNM event request. SNM

event requests can be initiated from the MIS by Nerve Center requests. (Using Nerve

Center requests to initiate threshold-checking by RPC agents, is described in
3-6 Customizing Guide • October 2001

Chapter 17.) When an RPC agent generates an SNM event in response to threshold-

checking initiated by the MIS, this arrives at the MIS as an snmAlarmEvent . There

are two ways in which you might use these events:

■ The Nerve Center request that initiated the RPC agent threshold-checking could

subscribe for incoming snmAlarmEvents from the target device and take

appropriate action in response, such as logging nerveCenterAlarms .

nerveCenterAlarms are alarms created by Nerve Center requests using alarm-

generating functions that can be inserted in request templates. The SNM event

request templates shipped with Solstice EM, such as AdminOperStatusUp ,

CheckCPU, and DeviceReachablePing , use this method of handling

snmAlarmEvents .

■ Alternatively, the AlarmLog could be configured to automatically log incoming

snmAlarmEvents . If you want to implement this, you can use the Event Logs

tool to remove the entry for snmAlarmEvents from the default discriminator

construct for the AlarmLog . The default log discriminator only specifies the types

of events that are to be excluded from the AlarmLog . Any incoming event not

explicitly excluded is logged automatically.

Even if you do not want snmAlarmEvents posted to the AlarmLog , you might

create a special log, SNMLog, to retain an historical record of incoming

snmAlarmEvents . You can use the Log Network Views window to examine the

contents of event logs.

For more information …
■ Managing Your Network describes the use of the Network Views window, Alarms

window, and Log Network Views window in accomplishing network

management tasks.

■ The Alarm Service is described in this guide in Chapter 4.

■ The Event Logs tool is described in Chapter 5.

3.5.1 Receiving Network Information

Information about changes in network resources are reported by agents. There are

two types of event information that agents provide:

■ Responses to polls—Managers can request attributes of managed objects at

periodic intervals; this is called polling.

■ Event notifications—Agents also typically have the ability to generate messages

on their own initiative when they detect events on a resource the agent is

responsible for; these messages are called event notifications.
Chapter 3 Using Solstice EM for Fault Management 3-7

3.5.1.1 Polling

There are two types of polling. Polling can be done directly by the Nerve Center

module in the MIS, or SunNet Manager event requests can be used to offload polling

to Remote Procedure Call (RPC) proxy agents. For managing large numbers of

devices, fault management strategies that rely on event notifications and indirect

polling by proxy agents are more efficient than direct polling because such strategies

minimize network traffic and MIS processing load. (Offloading of polling to RPC

agents is described in Chapter 17.)

You can deploy fault management strategies based on logging of incoming event

notifications, direct polling by the Nerve Center, or threshold-checking by RPC

proxy agents; or you can develop strategies that use a combination of these. Fault

management scenarios that illustrate some of the possibilities are described in the

following sections.

Solstice EM is shipped with a number of Nerve Center request templates which you

may find helpful in developing your fault management strategy. You may find these

templates useful as is, or you might modify them to better fit your network

management needs.

Note – If you want to monitor large numbers of devices (for example, more than

500) for reachability, the most efficient way to do this is to activate the Solstice EM

Auto Manager. For information on Solstice EM’s automatic management capability,

refer to Chapter 7 in Managing Your Network.

3.5.1.2 Monitoring Device Availability

Solstice EM’s Network Discovery tool provides a form of polling for device status

that does not require the use of Nerve Center requests.

The main purpose of Network Discovery’s Monitor function is to update the

representation of your network view in the MIS. Monitor uses Internet protocols,

such as SNMP and Internet Control Message Protocol (ICMP), to probe for devices

that have been added to the network since Network Discovery was last run. Monitor

compares the existing network view in the MIS to the results of its searches and adds

objects to the MIS if new devices are uncovered.

Monitor can also be configured to query all links and interfaces represented in the

MIS and generate CMIP communicationsAlarms if these network resources are

not available. You can also select the severity that you want to attach to the alarms

that would be generated. CMIP communicationsAlarms are logged to the

AlarmLog by default when they arrive.
3-8 Customizing Guide • October 2001

If the Monitor finds that a previously downed interface or link has become available,

it posts a communicationsAlarm with a severity of cleared against the object. The

Alarm Service changes fault status indication to reflect this, and icon color in the

Network Views window changes accordingly.

By default, Monitor’s “No Response” event generation capability is turned off.

▼ To Activate the Event Generation Capability

1. Invoke Network Discovery from the Network Tools window, if it is not currently
running.

Select the Actions menu ➔ Monitor Network option to invoke the Monitor Network

window.

2. Select On for the Generate Event if Object is Down option and select a severity
from the pulldown menu (shown in FIGURE 3-1 on page 3-10).
Chapter 3 Using Solstice EM for Fault Management 3-9

FIGURE 3-1 Selecting a Severity for communicationsAlarm Generated by Monitor

3. Click Schedule tab, select the time of day and days of the week when you want
the Monitor to be active. Click Start for your choices to be reflected.

Using Network Discovery is described in more detail in Chapter 3 of Managing Your
Network.
3-10 Customizing Guide • October 2001

3.5.2 Event Notifications

There are two ways event notifications can be used in fault management:

■ Automatic monitoring of incoming events by the Alarm Service

■ Event correlation and processing by Nerve Center requests

Several types of event notifications are, by default, automatically logged to the

AlarmLog when they arrive at the MIS. When these events arrive, Alarm Service

monitoring of alarm logs ensure that icon color in the Network Views window is

dynamically changed to reflect the severity of the alarms.

3.5.2.1 Example: Monitoring Event Notifications from CMIP Agents

In this scenario XYZ Communications Corp. is using Solstice EM to manage a

cellular network. The vendor for their network components has provided

AwesomeCell CMIP agents to manage switches and other network elements. The

agents can be configured to generate OSI alarms, such as environmental Alarms
and communicationsAlarms , when specified thresholds are crossed. This

configuration is illustrated in the following figure.

When, for example, a failure occurs in a relay, the agent generates an

environmentalAlarm with a severity critical. The alarm is logged to the

AlarmLog and the icon for the device is colored red automatically. There is no need

for a Nerve Center request or polling of the agent.
Chapter 3 Using Solstice EM for Fault Management 3-11

FIGURE 3-2 CMIP Management of a Cellular Network

3.5.3 Using SNMP Traps

Simple Network Management Protocol (SNMP) agents also have the ability to

initiate the generation of event notifications; these messages are called traps. The

CMIP protocol is used by Solstice EM internally to represent all network

management event information. Accordingly, Solstice EM’s SNMP trap daemon

(em_snmp-trap) converts incoming SNMPv1 and SNMPv2c traps to CMIP event

notifications and sends them to the MIS.

Cellular Network Elements

Alarm
Log

Monitors

Events are viewed and cleared
 in Alarms window.

Icons change color in the
Network Views window as events arrive
or are cleared.

Third-Party
Application

CMIP Agent
(Q3 adaptor)

Sets
 thresholds

CMIP
MPA

Event notifications
(via CMIP Q3 connection)

 CMIP event
 notifications

MIS

Alarm
Service

Topo
Server
3-12 Customizing Guide • October 2001

By default, the trap daemon converts SNMP traps into event notifications as

indicated in the following table.

These notifications are, by default, sent to the AlarmLog when they arrive. When

you open the Alarms window, you can tell at a glance the types of traps that have

been logged against devices in your network, as shown in the following figure.

FIGURE 3-3 Viewing Trap Notifications in the Alarms Window

SNMP trap daemon operation is illustrated in FIGURE 3-4. The SNMP trap daemon’s

mapping of SNMP traps into event notifications can be customized to create alarms

that are tailored to your particular network management needs. For example, you

can customize the severities that attach to trap notifications or create custom

mappings for enterprise-specific traps based on the enterprise identifier and the

specific trap type.

TABLE 3-2 Default SNMP Trap Notifications and Severities

SNMP Trap Notification Name Default Severity

coldStart coldStartTrap warning

warmStart warmStartTrap major

linkDown linkDownTrap major

linkUp linkUpTrap clear

authenticationFailure authenticationFailureTrap warning

egpNeighborLoss egpNeighborLossTrap minor

enterpriseSpecific enterpriseSpecificTrap indeterminate
Chapter 3 Using Solstice EM for Fault Management 3-13

The trap mapping capability also allows you to more finely pinpoint the element

that is the source of the alarm. You might want to represent the interface cards in a

router with separate icons. You could configure the trap daemon to convert router

linkDown and linkUp traps to communicationsAlarms targeted to the

responsible interface. The interface icons would change color to pinpoint problems

to the level of the individual interface. (Customizing the trap daemon’s trap-to-event

notification mapping is described in Chapter 11.)

FIGURE 3-4 Solstice EM Processing of SNMP Traps

3.5.3.1 Monitoring SNMP Traps with Nerve Center Requests

Nerve Center requests can be designed to receive a specified type of event

notification, or events from a selected object; this is called event subscription. The

request enters a subscription with the MIS to receive the specified events as they

arrive. A request can subscribe for any type of event notification that has been

defined in the MIS.

Event subscription requests can be used to customize your handling of incoming

SNMP traps. The sample template SnmpLinkUpDownTrap , shipped with Solstice

EM, illustrates this possibility. If you launch the SnmpLinkUpDownTrap request at a

target router in the Network Views window, the request subscribes for incoming

linkDown traps from the target device. If a linkDownTrap notification arrives, the

SNMP
Agent

 SNMP
 Traps

 Solstice EM SNMP Trap Daemon

Request with
Appropriate
Subscription

Trap notifications

Log with
Appropriate
Discriminator

MIS

CMIP-over-PMI
connection

 (em_snmp-trap)
3-14 Customizing Guide • October 2001

request terminates the subscription for linkDown traps and initiates a subscription

for linkUp traps. If a matching linkUp trap does not arrive from the target device

within a specified polling interval, the request transitions to the Down state and logs

a nerveCenterAlarm with a severity of critical. Since the critical alarm is of higher

severity than the major severity of the linkDown trap, the Alarm Service sets the

fault status of the device to “critical” and the device icon turns red.

The following figure shows the flow of information from traps to logs using the

SnmpLinkUpDownTrap request.

FIGURE 3-5 Example of SNMP Trap Handling Using SnmpLinkUp/DownTrap Request

3.5.3.2 Creating a Separate Log for Enterprise-Specific Trap
Notifications

As enterprise-specific traps may have a variety of possible causes, the default

severity of enterpriseSpecificTrap notifications is indeterminate. You may

want to create more meaningful alarms by customizing the SNMP trap daemon’s

mapping of enterprise-specific traps, or by using a Nerve Center request that

subscribes for enterpriseSpecificTraps and logs nerveCenterAlarms with

severities that match the cause, as indicated by the specific trap type. (An example of

a Nerve Center request that subscribes for enterprise-specific traps is described in

Chapter 15.)

SNMP Trap Daemon

SNMP
 Traps

trap
subscription
request

trap

nerveCenterAlarms

MIS

notifications

linkDown Trap
and

linkUp Trap
notifications

All trap
notifications

Target
Router

Incoming traps
affect icon color
in Network Views

Alarm
Service

Alarm
 Log

Alarms can be
examined and
cleared in
Alarm
Manager

window
Chapter 3 Using Solstice EM for Fault Management 3-15

If you do not want enterpriseSpecificTrap notifications to automatically affect

the icon color in the Network Views window, edit the discriminator construct for the

default AlarmLog to add enterpriseSpecificTraps to the list of excluded

event types.

However, you may also want to create a separate log to store the

enterpriseSpecificTraps for historical record.

Creating a separate Enterprise-specific trap event log includes two separate tasks:

1. Modifying the Alarm Log to exclude Enterprise-specific traps.

2. Creating a separate log and setting the discriminator to log Enterprise-specific
traps.

▼ To Modify the AlarmLog

1. Invoke the Event Logs tool from Network Tools.

2. Select the AlarmLog .

3. Select Actions ➔ Properties.

This invokes the Event Logs properties dialog box, as shown in the following figure.
3-16 Customizing Guide • October 2001

FIGURE 3-6 Viewing AlarmLog Properties in the Event Logs Properties Dialog

4. To add a new CMIS filter entry for enterpriseSpecificTraps :

a. Click Edit to add a new item entry for enterpriseSpecificTraps.

Solstice EM displays the CMIS Filter dialog box as shown in the following figure.
Chapter 3 Using Solstice EM for Fault Management 3-17

FIGURE 3-7 CMIS Filter Window

b. Select OR to highlight the editing buttons on the left (item, and, or, and not).

c. Click the item button to display a new item window for the CMIS Filter, as
shown in the following figure.

FIGURE 3-8 CMIS Filter Item Dialog Box

d. Enter the Attribute ID and Attribute Value.

e. Click OK in the CMIS Filter Item box to add the new entry to the CMIS filter.
3-18 Customizing Guide • October 2001

FIGURE 3-9 Adding an Item to the Default AlarmLog Discriminator

f. Click OK in the CMIS Filter window to modify the log discriminator.

5. Click OK in the Event Logs properties dialog box to have the changes you made to
the AlarmLog to be reflected.

FIGURE 3-10 AlarmLog Discriminator Construct With enterpriseSpecificTraps
Excluded
Chapter 3 Using Solstice EM for Fault Management 3-19

▼ To Create a Separate Log

1. To create a new log for enterpriseSpecificTraps , select Action ➔ Create Log.

This invokes the Create Log window, shown in the following figure.

FIGURE 3-11 Creating a New Log for enterpriseSpecificTraps (will be displayed
Filer pane)

2. Enter the name of the new log in the Log Name field.

If you leave the Maximum Size field as 0 (the default), there is no limit on the size. If

you enter an integer value in this field, this becomes the maximum log size in bytes.

3. Select Create to build the discriminator construct for the new log.

This invokes the CMIS Filter window.
3-20 Customizing Guide • October 2001

FIGURE 3-12 Specifying a CMIS Filter for enterpriseSpecificTraps

4. Select Item to create a discriminator that selects enterpriseSpecificTraps (as
shown in FIGURE 3-9).

5. Enter the Attribute ID and Attribute Value.

6. Click OK in the CMIS Filter Item box to add the new entry to the CMIS filter.

7. Click OK in the CMIS Filter Item window to add the item to the CMIS filter.

8. Click OK.

The new discriminator construct appears in the Create Log window (as shown in

FIGURE 3-11 on page 3-20).

9. Click OK in the Create Log window to create the new log.

3.5.3.3 Forwarding Events from SunNet Manager Consoles

If you have Site/SunNet/Domain Manager Consoles installed in various sites on

your network, this can provide an additional source of fault status information for

Solstice EM. When RPC agents generate event notifications about critical events, in

response to threshold-checking initiated from SNM Consoles, Cooperative Consoles

can be used to forward these event notifications to the Solstice EM MIS. When SNM

event notifications are forwarded to Solstice EM by Cooperative Consoles, these

arrive at the SNM Event Forwarder (em_snmfwd) on the MIS machine. The SNM
Chapter 3 Using Solstice EM for Fault Management 3-21

Event Forwarder translates SNM’s fault status indications into Solstice EM alarm

severities in the manner indicated in the following table. The SNM event

notifications are then logged to the AlarmLog as snmAlarmTraps .

The Alarm Service, which controls the fault status color of icons in the Network

Views window, monitors the perceivedSeverity of alarms posted against a

device, and sets fault status to reflect the highest severity of outstanding (uncleared)

alarms against a device. (For information on changing the icon colors for the

perceivedSeverity of alarms, see Section 3.3.1, “Changing the Color Associated

with a Severity .) Incoming snmAlarmTraps will thus affect fault status color of

icons in the Network Views window. (For more information on forwarding of

information from SNM Consoles to Solstice EM, see Chapter 7.)

TABLE 3-3 Mapping of SNM Console Fault Indications to perceivedSeverity Values

SNM Event Priority SNM Fault Status Indicator

snmAlarmTrap
perceivedSeverity
Value

Default
Solstice
EM
Icon Color

Low color by priority Minor Cyan

Medium color by priority Major Orange

High color by priority Critical Red

blinking Warning Yellow

dim Indeterminate Blue

glyph reset Cleared No color
3-22 Customizing Guide • October 2001

CHAPTER 4

Using the Alarm Service

The Alarm Service is the module in the Log Server responsible for updating and

storing the state of managed object instances (MOI) in the MIS. The state of an MOI

is reflected in the color of its corresponding Network View node in the Network

Views.

This chapter describes the following topics:

■ Section 4.1 “Network View Nodes” on page 4-1

■ Section 4.2 “Alarm Management” on page 4-3

■ Section 4.3 “The Alarm Service” on page 4-4

■ Section 4.4 “Configuring the Alarm Service” on page 4-6

■ Section 4.5 “Alarm Information Display in Solstice EM Tools” on page 4-8

■ Section 4.6 “User-configurable Alarm Log Record Filter for Alarm Service” on

page 4-10

4.1 Network View Nodes
Network View nodes are created by users to logically model managed objects in

their network environment. This is the object seen by the Network Views. Each

Network View node has an attribute topoNodeMOSet which points to the managed

object instances (MOI) the Network View node represents. Thus, the Network View

node represents the state of the managed objects or MOI. When an alarm comes into

the platform, it is against the MOI, not the Network View node.

When an alarm is received by MIS, the log server logs the alarm and the

discriminatorConstruct determines whether to log the alarm or not.
4-1

FIGURE 4-1 Network View Nodes

The Alarm Service is notified with the creation of each alarm log record. It maps the

MOI value to the corresponding Network View node and updates the alarm

counters based on severity. This triggers the severity propagation of topoNode in

two ways:

■ Propagates to parents, according to the attribute topoNodeParents (you can

have multiple parents). This applies if topoNodePropagateUp is set to “true.”

■ Propagates to peers, according to the attribute topoNodePropagatePeers . This

applies if topoNodePropagateUp is set to “true.”

In addition, the Alarm Service keeps the topoNodeSeverity synchronized so that

it represents the highest (most critical) uncleared alarm log record that is posted

against the Network View node. When there are no open alarms posted against a

Network View node, the topoNodeSeverity returns to its “normal” value of

cleared.

MIS
Event

Notifications

Log
Server

Alarm
Service

Semantic Mapping
Layer DB
4-2 Customizing Guide • October 2001

4.2 Alarm Management
Alarms arrive at the MIS as event notifications. A log is a software entity that

collects records (called log records) of event notifications. As many logs as you want

can be created using the Event Logs. (For more information about the Event Logs,

see Chapter 3. For more information on logs, refer to Chapter 6 in the Management
Information Server (MIS) Guide.)

Alarms have a default log object called AlarmLog , to subscribe alarm notifications.

This is the default log shipped with Solstice EM. By default, the Alarm Service

monitors the AlarmLog , which includes all alarm types except for the following:

■ attributeValueChange
■ objectCreation
■ objectDeletion
■ stateChange
■ Any alarm type without a perceivedSeverity

It is possible to modify the AlarmLog discriminator construct to:

■ Log various other types of alarms to the AlarmLog
■ Point the Alarm Service to another log or multiple logs.

For information on how to do this, see the Section 5.4 “Defining the CMIS Filter .”

The following figure illustrates how internetAlarms and other trap notifications,

CMIP notifications, and nerveCenterAlarms get logged to the AlarmLog .
Chapter 4 Using the Alarm Service 4-3

FIGURE 4-2 Logging of Alarms to the AlarmLog

4.3 The Alarm Service
The scenario in this section is designed to show you how the Alarm Service works.

You must perform this scenario on a machine where the MIS is running locally, and

the machine must be SNMP-manageable. If it is not, you must create an SNMP agent

object by using the Network Views-Object Properties window. For information on

the tools used in this scenario, refer to Chapter 4 in Managing Your Network.

Solstice EM MIS

Nerve
Center

nerveCenterAlarm
response

Alarm
Log

poll

trap notifications

CMIP Notification

response

poll

response

poll

em_snmp-trap

Agents
SNMP

SNMP
 RPC

 Agents

CMIP
Agents
4-4 Customizing Guide • October 2001

▼ To Populate the MIS

1. Populate the MIS by running Network Discovery, if a runtime database does not
yet exist:

Note – When using command line options, you must first source emenv.csh . At

the command line, type source /opt/SUNWconn/em/bin/emenv.csh

2. Start the Alarms Window:

3. Start the Network Views:

4. Find your device in the viewer canvas.

In the viewer canvas, you should see a Network View node that has the name of

your machine. The topoNodeMOSet attribute of this Network View node might

contain:

where <host> is the name of your machine. This MOI represents the SNMP agent

running on your machine. The Network View node in the Network Views, then,

represents the state of this agent running on your machine.

Alarms in the system get posted against MOI. The Alarm Service maps the MOI to

the Network View node representing it.

5. To see how this works, login as root, then kill the SNMP daemon on your machine
with the following command:

hostname% em_discover -device < hostname>

hostname% em_alarmmgr &

hostname% em_viewer &

/systemId=name:”< host>”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2 4
1 0}
/cmipsnmpProxyAgentId=”< host>”

/etc/init.d/init.snmpd stop
Chapter 4 Using the Alarm Service 4-5

6. Restart the SNMP daemon:

When the SNMP daemon is restarted, a Cold Start trap is sent by default to the local

host. This causes a critical alarm to be posted against the MOI representing the

SNMP agent. The Alarm Service maps this to zero or more Network View nodes

(zero or more because there may be no Network View nodes with this MOI as a

member of their topoNodeMOSet , or there may be many that contain this MOI in

their topoNodeMOSet).

When the alarm is posted, the icon color in the Network Views changes according to

the severity of the alarm. The color of the alarm in the Alarms Window matches the

color of the Network View node in the Network Views.

7. Delete the Alarm using the Alarms Window.

Click once on the alarm in the table, then select Actions ➔ Delete From Log.

If there are several alarms of varying degrees against one node, the icon will appear

in the color of the highest severity registered against that node.

The key to understanding the Alarm Service is to understand that a managed object

has a state. The Network Views uses icons to represent the state of the managed

objects, while the Alarms Window shows the actual managed object. For example,

suppose your machine has only one managed object: an SNMP agent, as in this

scenario, and that there are already five critical alarms posted against this agent. If a

sixth alarm of a severity lower than critical (minor, for example) were posted against

this managed object, the Network Views would not reflect this alarm, because of its

lower severity. The Alarms Window, however, would show all six alarms.

Both the Network Views and the Alarms Window use the same severity mapping so

that the colors are consistent.

4.4 Configuring the Alarm Service
By default, the Alarm Service monitors the AlarmLog . However, suppose you want

to log some non-default alarms to the AlarmLog , or want to monitor only a specific

set of alarms, and have created some additional logs in addition to AlarmLog . (You

can create additional logs by using the Event Logs.) You can use the MIS Objects

Object Editor (OBED) to tell the Alarm Service which log(s) to monitor.

The emAlarmServiceList object has the attribute emAlarmLogList . This

attribute, by default, contains the value AlarmLog . The Alarm Service automatically

monitors any log that is added to emAlarmLogList .

/etc/init.d/init.snmpd start
4-6 Customizing Guide • October 2001

4.4.1 Adding Logs to emAlarmLogList

To add a logs to emAlarmLogList , you must use OBED to modify the

emAlarmServiceList object.

▼ To Add a Log using OBED

1. Click the folder next to subsystemId=”EM_MIS” the selected object’s
subordinates are displayed.

2. Double-click the listname=”emAlarmServiceList” subordinate object.

The Network Views-Object Properties window is displayed.

3. Add the logs you want the Alarm Service to monitor in the emAlarmLogList
field.

By default, the emAlarmLogList contains the following:

Suppose you have created a log called WarningLog . To add this log to

emAlarmLogList , change the emAlarmLogList field as follows:

As many logs as you want may be added in this fashion. Just be sure to separate

each log with a comma.

4. Click Set when you are finished.

4.4.2 Deleting Logs from the Event Logs Window

If you do not want the Alarm Service to monitor a specific log, the log must be

removed from emAlarmLogList . You can remove a log by using the Event Logs or

OBED.

▼ To Remove a Log Using Event Logs

1. Select the log(s) you want to delete in the Event Logs main window.

{ string : " AlarmLog " }

{ string : " AlarmLog ", string : ” WarningLog ” }
Chapter 4 Using the Alarm Service 4-7

2. Select Actions ➔ Delete from the menu bar to delete the selected log(s).

▼ To Remove a Log Using OBED

1. Select the log(s) you want to delete in the OBED main window.

Logs appear as a subordinate objects beneath the systemId object.

2. Select Object ➔ Delete from the menu bar to delete the selected log(s).

When you remove a log from the MIS, it is automatically removed from

emAlarmLogList , thus eliminating the necessity to manually edit this field in the

Network Views-Object Properties window.

4.4.3 Turning Off the Alarm Service

Removing all logs from emAlarmLoglist in effect turns off the Alarm Service

because it will not change the topoNodeSeverity for a Network View node.

However, the Alarm Service still keeps track of the MOI-to-topoNode ID mapping,

in the hopes that when a log is re-added to emAlarmLoglist , there is no catching-

up penalty.

4.5 Alarm Information Display in Solstice
EM Tools
The following subsections explain how the Alarm Service controls the color

mapping for alarms displayed in Solstice EM tools.

4.5.1 Alarm Information Display in Alarms Window

The Alarms Window does not display the alarm notifications directly. Instead, it

displays the alarm log records contained in the alarm logs (for example,

“AlarmLog ”) in a tabular format. You can specify filters to ignore unwanted alarms,

association groups to summarize alarms, and sorting to prioritize alarms. The

Alarms Window also monitors the alarm log for objectCreation ,

objectDeletion , attributeValueChange , and other events for alarm log

records, updating the display as necessary.
4-8 Customizing Guide • October 2001

The Alarms Window displays each row in the table in colors, based on the severity

of the alarm log record. The standard attribute used to denote severity is the

perceivedSeverity attribute, which is defined in ASN.1 as one of the following

enumerated types: indeterminate, critical, major, minor, warning, and cleared.

The alarm record managed object classes with perceivedSeverity attributes are

as follows:

■ emAlarmRecord
■ emInternetAlarmRecord
■ nerveCenterAlarmRecord

Severity of the alarm log record is translated to a color by the user-configurable color

mapping defined by the Nerve Center. The default color mapping is shown in the

following table.

If you want to change the default color mapping, you must use the Severities

window in the Design Advanced Requests by selecting Edit ➔ Severities from the

menu bar. This change, however, is not dynamic, meaning that you need to restart

the Network Views and Alarms windows to see this change in color. For more

information about changing the color mapping, see Chapter 18.

4.5.2 Alarm Information Display in Network Views

The Network Views also displays alarm information, but in a more indirect and

limited way. The Network Views does not read the alarm log or wait for events for

alarm log records, such as objectCreation or objectDeletion . The alarm

information displayed by the Network Views are updates by the Alarm Service.

Normal no color

Warning yellow

Minor cyan

Major orange

Critical red

Indeterminate blue

Cleared grey
Chapter 4 Using the Alarm Service 4-9

4.6 User-configurable Alarm Log Record
Filter for Alarm Service
The following table compares the user options available in the Alarms Window and

Network Views for processing alarm log record information.

TABLE 4-1 Alarm Log Record Processing Options

Alarm Log Processing
Option Alarms Window Network Views

Sorting By any attribute. By severity.

Association By object instance, event type, probable

cause, specific problem, additional text,

additional info identifier, and additional

information.

By object instance

(Network View node).

Filtering All open, cleared, or acknowledged

alarms; all within a certain time period,

only certain alarms, only alarms on

certain objects, only certain severities,

only certain event types, and more.

Only uncleared alarms.
4-10 Customizing Guide • October 2001

CHAPTER 5

Using the Event Logs Tool

The Event Logs tool enables you to create, modify, and delete log objects.

This chapter describes the following topics:

■ Section 5.1 “Log Process Overview” on page 5-1

■ Section 5.2 “Starting the Event Logs Tool” on page 5-4

■ Section 5.3 “Using the Event Logs Tool” on page 5-5

■ Section 5.4 “Defining the CMIS Filter” on page 5-13

■ Section 5.5 “Sample CMIS Filters” on page 5-18

■ Section 5.6 “Event Logs Tool Configuration File” on page 5-21

5.1 Log Process Overview
A log object is a software entity that collects records of event notifications. Agents

create event notifications when they detect a change in the state of a managed

resource. When a notification arrives at the Solstice Enterprise Manager (Solstice EM)

Management Information Server (MIS), a record of the notification is appended to a

log object if the notification passes a log filter (called a discriminator construct), or is

discarded.

Note – Log objects are also called “logs” and the terms “log” and “log object” are

used interchangeably in this chapter.

You can browse log records at any time using the Log Entries tool. (The Log Entries

can be invoked by selecting Actions ➔ Log Entries, or by double-clicking on Event

Logs.)

An MIS can have any number of log objects. As shipped with Solstice EM, the MIS

has a single log object, AlarmLog , which is visible when you invoke the Event Logs

tool. The default discriminator for AlarmLog ensures that records are logged for
5-1

SNMP trap notifications (alarms forwarded from remote SNM managers by

Cooperative Consoles), Nerve Center alarms, and OSI standard alarms. By default

all event notifications are logged to AlarmLog other than the following notifications,

which are explicitly excluded:

■ attributeValueChange
■ objectCreation
■ objectDeletion
■ stateChange

This default log object may be sufficient for your needs. However, Event Logs tool

makes it easy to create new log objects as and when required.

A discriminator construct is a CMIS filter that determines whether a log record is

created under a log object. A log record is defined for each event notification. This

mapping from event notification to log record is stored in the MIS at

subsystemID=”EM-MIS”/listname=”event2ObjectClass” in attribute

evr2oclist .

Each notification has an attribute describing its notification type. Common

notification types are shown in TABLE 5-5, but the set is open-ended, requiring only

that each new type have a registered OID. For information on adding new, user-

defined event types to the MIS is discussed in the Chapter 6 of Management
Information Server (MIS) Guide.

See Section 5.4, "Defining the CMIS Filter,” for detailed information about log filters.

Every notification the MIS receives is passed to each log object that has been created.

Each log object then applies its own log filter to decide whether to keep a record of

the notification or ignore it.

5.1.1 Attributes of a Log

Each log object has the attributes shown in the following table. Some attributes can

be modified. All of these attributes are accessible through the Event Logs tool.

TABLE 5-1 Log Object Attributes

Fields Modifiable? Description

Log Name No Each log object is identified by its FDN (Fully Distinguished Name)

in the MIS’ Management Information Tree (MIT).

Entries No The number of log records under the log object.

Admin State Yes When set to locked, the log object cannot be written to. When set to

unlocked, allows the log object to be written to.
5-2 Customizing Guide • October 2001

A notification record is logged only if all the following criteria are met:

■ The notification is acceptable to the log object’s discriminator.

■ The log object has the capacity to receive the record or permits overwriting.

■ The log object is unlocked.

If a notification is acceptable to the log filters of several log objects, it is recorded in

each of them.

Note – Creating multiple logs with overlapping criteria has the potential for storing

duplicate copies of notifications. For example, if you create a log, SNMPLog, to

record enterpriseSpecificTrap notifications, you would be storing duplicate

copies of enterprise-specific traps since these are, by default, logged to AlarmLog .

You could avoid this duplication, in this case, if you were to add

enterpriseSpecificTrap to the event types excluded from the AlarmLog .

5.1.2 Log Records Generated by Nerve Center Request

Actions

Nerve Center requests are based on templates that are written in Request Condition

Language (RCL). Among the functions available in RCL are alarm() , alarmStr() ,

and alarmOi() , which generate a Nerve Center alarm. When a running Nerve

Center request invokes any of those functions, the default AlarmLog log object

creates log records to record the alarms. The RCL alarm-logging functions are

described in Chapter 22. In the Event Logs tool, you can modify the log filter for the

default log object to filter out these alarms. Alternatively, you can, for example,

create a new log object that accepts only Nerve Center alarms.

Size (Bytes) No Number of octets the log object and its records now occupy in the

MIS (reportable but cannot be modified).

Max Size (Bytes) No Each log object has a maximum size and an attribute that indicates

whether its maximum size has been reached. A maximum size set to

zero indicates no limit. Size is expressed in bytes.

Full Actions Yes When the log object is full, it either starts to overwrite the oldest

records or stops accepting new records, according to the value of this

attribute.

TABLE 5-1 Log Object Attributes (Continued)

Fields Modifiable? Description
Chapter 5 Using the Event Logs Tool 5-3

5.2 Starting the Event Logs Tool
The Event Logs tool may be started by:

■ Selecting the Event Logs tool icon in the Network Tools window

■ Selecting Tools ➔ Event Logs in other Solstice EM tools (for example, the

Network Views or Log Entries)

■ Entering the following command from the command line:

Note – You must source /opt/SUNWconn/bin/emenv.csh before running the

command.

If you start the Event Logs tool from the command line, and you are a non-root user,

you might receive a Login window, depending upon whether or not password

authentication is turned on. To proceed, enter your password and click OK. Your

access to the Event Logs tool functions depends on the permissions granted to you

through Access Control. For more information about password authentication and

granting permissions, refer to Chapter 6 of Management Information Server (MIS)
Guide.

The optional parameters of the em_logmgr command are described in the following

table.

hostname% em_logmgr [-host < hostname>] [-logobj < fdn>]

TABLE 5-2 Command-Line Options for the em_logmgr Command

Option Description

-help Print list of options (with descriptions) for the em_logmgr
command.

-host < hostname> Specify the <hostname> of a remote MIS. You can specify an IP

address as the <hostname>.

-c < filename> Specify the <filename> of the configuration file.

-logobj < fdn> Display the log objects of the MIS specified in <fdn> in the main

window summary table.
5-4 Customizing Guide • October 2001

Before starting, the Event Logs tool looks for the.em_logmgr.cf configuration file

in your home directory. If this file is not found, the default Event Logs tool

properties are used. The format of the configuration file is described in “Event Logs

Tool Configuration File” on page 21.”

5.3 Using the Event Logs Tool
Before using Event Logs tool, decide on the types of event notifications you want to

log. To create a new log object, use the Event Logs tool to name the log object and fill

in the modifiable attributes described in TABLE 5-1.

All of the log attributes are simple, except for the log filter. Specify the log filter

using the ASN.1 syntax for a CMIS Filter. The easiest way to create a log filter is to

copy a construct from an existing log and paste it into the log filter field in the Event

Logs tool’s Log Creation window, where you can modify the construct to suit your

needs.

Log filters are discussed in detail, with examples presented, in Section 5.4, "Defining

the CMIS Filter.”

5.3.1 Accessing Logs on a Remote MIS

The Event Logs tool can be used to create or modify logs on the local MIS or a

remote MIS.

▼ To Display Logs on a Specified Remote MIS

● Select File ➔ Customize Tools menu to retrieve the Properties window, shown in
the following figure, which is used to choose the locations from which the log
objects are to be read.
Chapter 5 Using the Event Logs Tool 5-5

FIGURE 5-1 Customize Tools Menu

From this window, you can:

■ Specify the name of a remote MIS, which will be shown as an additional FDN in

the Available FDNs list. The logs from the specified MIS will also be available for

you to see.

■ Specify the location(s) from which the Event Logs tool will read the log objects by

selecting it in the Available FDNs list and clicking on the display.

Once you specify the location(s), click either OK or Apply at the bottom of the

window, and the log object information will be displayed in the Event Logs tool

table.
5-6 Customizing Guide • October 2001

▼ To Create a New Log

1. Select Actions ➔ Create Log from the Event Logs window.

2. Click Create.

Fields in this window allow you to select the following log attributes:

■ Enter the name of the MIS on which you are creating the log object in the MIS

field. To create a log object on a remote MIS, you must first connect to that MIS by

using the MIS Connections. For more information, refer to Chapter 6 of

Management Information Server (MIS) Guide.

■ Enter the name of the log object in the Log Name field.

■ Enter the maximum log size (in octets) in the Maximum Size field. An entry of 0
indicates no limit to the log size. Such an entry poses the obvious danger of

overwhelming your storage space.

■ Select either On or Off for the Event Capture parameter. This parameter

determines whether the log object can be written to (on) or not (off). Most often,

you leave this parameter in its default, on state. Select locked to prevent writing

to the log object.

■ Select either On or Off for the WrapWhenFull parameter. This parameter

determines what the Event Logs tool does when the log object reaches the

maximum (maxLogSize) size. In the on state, the log object wraps around to the

beginning of the file and overwrites existing log records. When turned off, no new

records will be created for this log object.

In the example in the following figure, a new log called SNMLog is being created to

log SunNet Manager event notifications (snmAlarmEvents).
Chapter 5 Using the Event Logs Tool 5-7

FIGURE 5-2 Creating a New Log

3. To define the log filter, click Create to invoke the CMIS Filter window.

A log filter is a Common Management Information Service (CMIS) filter. A

notification is appended to a log object only if it passes the log’s CMIS filter. A CMIS

filter defines a test that evaluates to either true or false for each notification tested.

(Refer to Section 5.4, "Defining the CMIS Filter,” for detailed information about

creating log filters.) The ‘item’, ‘and’, ‘not’, and ‘or’ buttons are used to add

components to the CMIS filter. In the following figure, the Item button has been

selected. This invokes the CMIS Filter Item window, as shown. In this example, a

simple discriminator that selects all and only SNM events is the goal. Thus, the

equality operator has been selected and snmAlarmEvent is entered as the target

attribute value. Clicking OK adds the item to the CMIS Filter window.
5-8 Customizing Guide • October 2001

FIGURE 5-3 Defining a Discriminator to Log SNM Events

4. Click OK in the CMIS Filter window to add the log filter to the Create Log
window.

5. Enter the Log Name and click OK or Apply in the Create Log window to add the
new log to the MIS.

▼ To Delete a Log

1. To delete a log, select the log object (one or more) from the main window.

2. Select Actions ➔ Delete to remove the selected log object(s) from the MIS.

Deleting a log object also deletes its corresponding log record. You will be prompted

to confirm your action before the log object and its corresponding log record are

deleted.

▼ To Modify a Log’s Properties

1. To modify the properties of a log (such as the maximum size), select the log object
from the main window.
Chapter 5 Using the Event Logs Tool 5-9

2. Select Actions ➔ Properties to modify or view the properties information about
the selected log object(s).

This will bring up the Event Logs-Properties window, for that particular Log Object,

allowing you to modify the selected log object as necessary. If multiple log objects

are selected, then the Log Object window will display only the properties for the

first log object selected.

● To modify the log filter for the selected log, click Edit.

The CMIS Filter window will be displayed. In the example in the following figure,

the default AlarmLog discriminator is being modified to exclude

enterpriseSpecificTrap notifications.

FIGURE 5-4 Modifying a Log’s log filter
5-10 Customizing Guide • October 2001

▼ To Export Logs to a File

● Select File ➔ Export to a File to save the log records to a file. This brings up a file
selection window from which you can do one of the following:

■ Select the path and file name to which you want to save the log records.

■ Enter the path and file name of the file in the Selection field.

The records are stored in the historical log format specified in Chapter 6 of

Management Information Server (MIS) Guide.

This option is grayed out unless one or more of the log objects in the main window

is selected.

5.3.2 Importing Logs from a File into the Event Logs

Tool

You can import log records from other log files, such as the Alarm Log, into the

Event Logs tool.

▼ To Import Logs

1. Select File ➔ Import from the Event Logs window to read exported log records.

The log records in the file you want to import into the Event Logs window must be

in the MIS.

2. Select the desired file from the list or enter the name of the file in the Selection
field.

The log record will be imported into the Event Logs window.

The file must be in the historical log format specified in Chapter 6 of Management
Information Server (MIS) Guide.

Note – em_imex does not create a deleted Log.

5.3.3 Configuring Display of Log Properties

The View Properties window is used to configure the way in which log objects are

displayed in the Event Logs tool main window.
Chapter 5 Using the Event Logs Tool 5-11

● Select View ➔ Column Headings in the Event Logs window to open the Event
Logs - Column Headings window, shown in the following figure.

FIGURE 5-5 Viewing Log Objects in the Column Headings Window

5.3.4 Adding Tools to the Event Logs Menu

You can add other tools to the Event Logs window’s Tools menu.

1. To add another tool, select File ➔ Customize Tools Menu from the Event Logs
window’s Tools menu.

This displays the Customize Tools window.

2. Select the Tool you would like to add to the Event Logs menu.

3. Click Add, then OK or Apply to complete your addition.

If you click OK, you dismiss the window. If you click Apply, the window remains

and you can add more tools by repeating Step 2 and Step 3.

The Tool Name field is the name that is added to the Tools menu.

In the example in the following figure, clicking Add and then OK or Apply will add

the Network Views to the Event Logs window’s Tools menu.
5-12 Customizing Guide • October 2001

FIGURE 5-6 Customize Tools Menu Window

5.4 Defining the CMIS Filter
A log filter is an expression used to decide which notification types will be accepted

by a particular log object. The general rules for such an expression are contained in

the ASN.1 definition of a CMIS filter, in ISO 9595.1

1. ISO/IEC 9595. Information technology – Open systems interconnection – Common Management information
Service definition. 1991.
Chapter 5 Using the Event Logs Tool 5-13

Within a log filter, a single test is called an item. Within an item, a relationship is

written with the comparison operator preceding a pair of curly braces, which

enclose an operand. The following is the general form:

The term item is one of four keywords that can be used to specify the format of a

CMIS filter. These format specifiers can be item , and , or , or not . The following

table defines these terms.

The <operator> in the preceding example is the word in a given filter item. The

following table defines the operators.

The <operand> is an attribute, which, in GDMO terms, is a name-value pair. So, we

can further refine the general form as:

item : <operator> : { <operand> }

TABLE 5-3 Format Specifier Definitions

Name Descriptions

item A single FilterItem that is a choice of a test for equality, less than or

equal, greater than or equal, substring matching, or presence in. These

filter words are described in TABLE 5-4.

and The logical AND of a set of CMIS filters.

or The logical OR of a set of CMIS filters.

not The negation of the sense of one CMIS filter.

TABLE 5-4 Operator Definitions

Name Description

equality Is the item we are filtering equal to this operand?

substrings Is the string under consideration match the beginning, end, or any

part of the string in the operand? This breaks down to the operators

initialstring , anystring , and finalstring .

greaterOrEqual Is the item we are filtering greater than or equal to this operand?

lessOrEqual Is the item we are filtering less than or equal to this operand?

present Is the item we are filtering present in the operand?

item : <operator> : { <name_string>, <value_string> }
5-14 Customizing Guide • October 2001

Using the and or format specifier, you can build nested filters. These are of the form:

As an example of a filter used as a log filter, to test whether the subject of an event

notification is a test , the expression might be:

In the preceding example, objectClass (the attribute name) and test (the

attribute value) combine to form a single attribute, against which an event

notification will be tested for equality.

Use the format specifier and , defined in TABLE 5-3, to perform a logical AND on two

filter items. For example, to test whether the subject of notification is a test and the

severity of the notification is minor, specify the following:

Multiple items are separated by a comma (last character in first line above).

5.4.1 A CMIS Filter That Accepts Notifications of a

Specific Type

The following example tests the notification type in an incoming event notification.

The OID { 2 9 3 2 7 14 } specifies an event notification. The notification type is

identified by the OID { 2 9 3 2 10 <x> }:

and : (or or)
{
item : <operator> : { <name_stringA>, <value_stringA> },
item : <operator> : { <name_stringB>, <value_stringB> }
}

item : equality : { objectClass , test }

and : { item : equality : { objectClass , test },
 item : equality : {perceivedSeverity, minor }}

item : equality : { globalForm : {2 9 3 2 7 14 }, { 2 9 3 2 10 x}}
Chapter 5 Using the Event Logs Tool 5-15

In this expression, substitute one of the values 1 through 15 for <x> from the list of

notification types shown in the following table.

Note – Within a log filter, you can express OIDs in text, rather than numeric form.

In addition to the OSI-standard notifications shown in the above table, the

alarmLog object accepts alarms of type nerveCenterAlarm , the OID for which is:

1.3.6.1.4.1.42.2.2.2.8.3.111.

TABLE 5-5 Notification Types and Numbers

Number Notification type

1 attributeValueChange

2 communicationsAlarm

3 environmentalAlarm

4 equipmentAlarm

5 integrityViolation

6 objectCreation

7 objectDeletion

8 operationalViolation

9 physicalViolation

10 processingErrorAlarm

11 qualityofServiceAlarm

12 relationshipChange

13 securityServiceOrMechanismViolation

14 stateChange

15 timeDomainViolation
5-16 Customizing Guide • October 2001

5.4.2 CMIS Filter with Multiple ANDs

The following example is a sample log filter that uses the and format specifier to

combine three filter items.

The effect of the preceding construct is as follows: If there is an event of the log

object type attributeValueChange to minerva , log that event.

CODE EXAMPLE 5-1 Sample Log Filter

and :
{
 item : equality :
 {
 attributeId globalForm : "Rec. X.721 | ISO/IEC 10165-2 :
1992":managed ObjectClass ,
 attributeValue globalForm : "Rec. X.721 | ISO/IEC 10165-2 : 1992":log
 },

 item : equality :
 {
 attributeId globalForm : "Rec. X.721 | ISO/IEC 10165-2 :
1992":managedObjectInstance,
 attributeValue distinguishedName :
 {
 {

attributeId "Rec. X.721 | ISO/IEC 10165-2 : 1992":systemId,
 attributeValue name : "minerva"
 }
 },
 },
 item : equality :
 {

attributeId globalForm : "Rec. X.721 | ISO/IEC 10165-2 : 1992":eventType,
 attributeValue globalForm : "Rec. X.721 | ISO/IEC 10165-2 :
1992": attributeValueChange
 }
}

Chapter 5 Using the Event Logs Tool 5-17

5.4.3 A CMIS Filter That Accepts All Notifications

The following exploits the fact that and over an empty set is the identity element for

and , namely 1. This produces a log filter that accepts all notifications:

This example should never be used in actual practice, because you will likely

overwhelm your machine resources in logging data.

5.4.4 A CMIS Filter That Accepts No Notifications

The corresponding identity element for or yields a log filter that accepts nothing:

As with the and example, this construct is shown for tutorial purposes only, and is

not intended for use in actual practice.

5.5 Sample CMIS Filters
The following subsections present the log filters you can enter in the Event Logs

tool’s Log Creation to create log objects that collect log records for given event

notifications.

To complete the creation of a log object, in addition to the log filter, you must fill in

values for maxLogSize , logFullAction , administrativeState , and

operationalState . The choices of these values depend on your specific needs.

The value for maxLogSize depends on your logging requirements and your storage

resources.

and : { }

or : { }
5-18 Customizing Guide • October 2001

5.5.1 Creation of an Object Instance

To create a log object that logs notifications reporting the creation of object instances,

use the following log filter:

5.5.2 Deletion of an Object Instance

To create a log object that logs notifications reporting the deletion of object instances,

use the following log filter:

item : equality:
 {

attributeId globalForm : ”Rec. X.721 | ISO/IEC 10165-2 :
1992” :

eventType,
attributeValue globalForm : ”Rec. X.721 | ISO/IEC 10165-2

: 1992” :
objectCreation

}

item : equality:
 {

attributeId globalForm : ”Rec. X.721 | ISO/IEC 10165-2 :
1992” :

eventType,
attributeValue globalForm : ”Rec. X.721 | ISO/IEC 10165-2

: 1992” :
objectDeletion

}

Chapter 5 Using the Event Logs Tool 5-19

5.5.3 Attribute Value Change of an Object Instance

To create a log object that logs notifications reporting attribute value changes of

object instances, use the following log filter:

5.5.4 State Changes Received From Agent

To create a log object that logs notifications reporting the state changes received from

agents, use the following log filter:

 item : equality:
 {

attributeId globalForm : ”Rec. X.721 | ISO/IEC 10165-2 : 1992” :
 eventType,
 attributeValue globalForm : ”Rec. X.721 | ISO/IEC 10165-2 :
1992” :

attributeValueChange
 }

and:
 {
 not:
 {
 item : equality:
 {
 eventType,
 objectCreation
 }
 },
 not:
 {
 item : equality:
 {
 eventType,
 objectDeletion
 }
 },
 not:
 {
 item : equality:
 {
 eventType,
 attributeValueChange
5-20 Customizing Guide • October 2001

5.6 Event Logs Tool Configuration File
Upon starting, the Event Logs tool looks for the.em_logmgr.cf configuration file

in your home directory; otherwise, it looks for it in the $EM_HOME/config directory.

(The file names are the same in the config directory except for the absence of the

initial dot.) If the configuration file is not found, the Event Logs tool uses the default

properties.

The alphanumeric characters in each line of the configuration file must begin at the

left edge. Each statement must be on a separate line.

The configuration file has the following format:

 }
 }
}

CODE EXAMPLE 5-2 Event Logs Tool Configuration File

display_name=nickname
label_name=default_name
show_doc_names=show
show_oids=oid
attr_name= logId
logId .name=Log Name
logId .position=1
logId .displayed=true
logId .sort_pos=-1
logId .width=10
attr_name= numberOfRecords
numberOfRecords .name=Records
numberOfRecords .position=2
numberOfRecords .displayed=true
numberOfRecords .sort_pos=-1
numberOfRecords .width=10
attr_name= administrativeState
administrativeState .name=Admin State
administrativeState .position=3
administrativeState .displayed=true
administrativeState .sort_pos=-1
administrativeState .width=12
attr_name= currentLogSize
currentLogSize .name=Current Size
currentLogSize .position=4
currentLogSize .displayed=true
Chapter 5 Using the Event Logs Tool 5-21

The information in this file corresponds to the Properties and View Properties

windows. Although this file shouldn’t be modified manually, you might want to

change the width field, which determines the width of the cells in the table.

currentLogSize .sort_pos=-1
currentLogSize .width=9
attr_name= maxLogSize
maxLogSize .name=Max Size
maxLogSize .position=5
maxLogSize .displayed=true
maxLogSize .sort_pos=-1
maxLogSize .width=9
attr_name= logFullAction
logFullAction .name=Full Action
logFullAction .position=6
logFullAction .displayed=true
logFullAction .sort_pos=-1
logFullAction .width=8
attr_name= discriminatorConstruct
discriminatorConstruct .name=Discriminator
discriminatorConstruct .position=7
discriminatorConstruct .displayed=true
discriminatorConstruct .sort_pos=-1
discriminatorConstruct .width=75

CODE EXAMPLE 5-2 Event Logs Tool Configuration File (Continued)
5-22 Customizing Guide • October 2001

PART III Network Management Protocol Support

CHAPTER 6

Managing Devices Using RPC
Agents

Solstice Enterprise Manager (Solstice EM) is shipped with a suite of agents developed

for the Site/SunNet/Domain Manager (SNM) network management system. These

agents communicate with a network manager, such as Solstice EM, using Remote

Procedure Call (RPC) protocol within an Internet (TCP/IP) network environment.

When deployed on systems in your network, these RPC agents and proxy agents can

be used by Solstice EM as part of your strategy for managing network resources. The

resource may be a machine, a component in a machine (such as a router interface

card), or some other resource. The RPC agent may be local to or remote from that

resource.

This chapter describes the following topics:

■ Section 6.1 “Types of RPC Agent Management” on page 6-1

■ Section 6.2 “Preparing for Device Management with RPC Agents” on page 6-5

■ Section 6.3 “RPC Management Protocol Adapter” on page 6-11

■ Section 6.4 “RPC MPA Configuration Parameters” on page 6-12

6.1 Types of RPC Agent Management
There are two types of SunNet Manager RPC agents: those that directly access

managed resources and those that indirectly access managed resources. Most of the

RPC agents provided with Solstice EM manage resources on the Sun workstations

(or PCs running Solaris for x86) where they are installed. For example, the

diskinfo agent provides file system usage data.

The second type of agent provides the ability to manage resources that reside in

other Sun workstations or in other vendors’ devices. Such agents are called proxy
agents. Proxy agents run on machines running Solaris, called proxy systems, and use
6-1

protocol translation mechanisms to provide the necessary access to the managed

resources. The proxy system can also be a workstation in a different subnet or

domain from where the Solstice EM MIS is running.

As illustrated in the following figure, SNM agents and proxies use Remote

Procedure Call (RPC) protocol to communicate with the Solstice EM MIS (via the

RPC Management Protocol Adapter). However, an SNM proxy agent may use a

different management protocol in gathering information from other agents.

FIGURE 6-1 Communication With RPC Agents in Direct Polling Requests

 Poll Response

Poll

Response

RPC
Proxy
Agent

Managed Resource

Solstice EM MIS

Nerve

Center

 GET
Request

 Response

 RPC MPA

via
RPC

via CMIP over PMI
6-2 Customizing Guide • October 2001

Solstice EM Nerve Center requests can obtain information from RPC agents in two

ways:

■ Direct polling by the Nerve Center—A request running in the Nerve Center can

directly poll the agent, at intervals specified in the request template. The goal of

such a request is to obtain the values of the specified attributes directly from the

agent. Building request templates that do direct polling of RPC agents is

described in Chapter 15. Communication between manager and managed

resource in a direct polling request is illustrated in FIGURE 6-1.

■ Offload polling activity to the RPC proxy agent—A Nerve Center request can

send a one-shot message, called an SNM event request, to a RPC proxy agent. The

event request causes the RPC proxy agent to begin polling for a threshold

specified in the event request. The event request also specifies the polling interval.

Polling of the managed resource is thus handled by the RPC agent rather than the

Nerve Center. This minimizes the polling work required by the MIS and allows

the polling to be distributed to a site closer to the resource being polled. If the

event defined in the event request occurs, the RPC agent sends event information

to the SNM Event Dispatcher (na.event) running on a specified management

station (by default, this is the station that initiated the request). When a SNM

event notification arrives at an MIS machine, this information is forwarded to the

Solstice EM MIS by Solstice EM’s SNM Event Forwarder (em_snmfwd).

Communication between manager and agents in SNM event requests is

illustrated in the following figure.

Building templates that use the Nerve Center’s SNM event request capability is

described in Chapter 17.

Note – If you are using SNM Consoles to manage segments of your network, these

SNM Consoles will be initiating SNM event requests and tracking network view

changes. Event and network view information received by these SNM management

stations can be forwarded to an Solstice EM MIS using Cooperative Consoles. This

type of distributed management scenario is described in Chapter 7.
Chapter 6 Managing Devices Using RPC Agents 6-3

FIGURE 6-2 Using SNM Event Requests with Solstice EM

responseresponse

 Solstice EM MIS

registers

(em_snmfwd)

Nerve

 SNM request
 initiated

polling polling

UNIX host

 (via snmEventRequest())

Center

via SNMP
SNMP Proxy

via rstat
protocolHostperf proxy

SNM event requests
(via RPC protocol)

RPC MPA

SNM Event
Dispatcher
(na.event)

SNM
Events

SNMP Device

snmAlarmEvents
SNM Event

Forwarder

PMI
6-4 Customizing Guide • October 2001

6.2 Preparing for Device Management with
RPC Agents
The first thing you must do is prepare your device management with RPC agents.

▼ To Prepare the Device Management with RPC

Agents

1. Install and configure the RPC agents.

Proxy agents may be installed on either the machine to be managed or on a remote

system, called a proxy system. RPC agents can be installed on three types of machine:

■ SPARC machines running Solaris 1.x (SunOS 4.x)

■ SPARC machines running Solaris 2.x (SunOS 5.x)

■ PCs running Solaris 2.x for x86

SUNWsnmagis installed by default during installation of Solstice EM 4.1. Use

pkgadd on other machines to install the RPC agents package (machines to be

managed or proxy systems).

To install agents on a machine running Solaris 1.x, use the getagents script.

For information on installation of RPC agents on the three types of system listed

above, refer to Chapter 6 in Installation Guide.

If you have written your own SNM agent or have a third-party SNM agent, copy the

file for that agent, with its accompanying configuration files, to the target machine.

(You will also need to load a GDMO translation of the SNM schema file into the MIS;

this is discussed in Step 2 below.)

For information on configuring the SNMP proxy agent (na.snmp), or the SNMP

Version 2 proxy agent (na.snmpv2), see Chapter 10.

2. Add Object Classes to the MIS based on SNM Schemas. If you are using only
those SNM agents shipped with Solstice EM, you can skip to Step 4.

The definition language used internally in the Solstice EM MIS to describe object

classes is the Guidelines for the Definition of Managed Objects (GDMO), outlined in

the ISO/IEC 10165-4 standard. An object class defines the structure of the

management information of a managed resource.

Schema files are the corresponding method for object type definition native to SNM.

Schema files are used for loading information about the management capabilities of

RPC agents into the SunNet Manager Console. Solstice EM includes a schema-to-
Chapter 6 Managing Devices Using RPC Agents 6-5

GDMO compiler for translating native SNM schema files into GDMO documents. If

you want Solstice EM to acquire knowledge of the capabilities of an SNM-

compatible RPC agent that you have written, or which you have acquired from a

product vender, you must convert the agent’s schema file to pertinent GDMO and

ASN.1 files, and these must be loaded into the MIS. The procedure for

accomplishing these tasks is described in Chapter 8 of Management Information Server
(MIS) Guide.

However, you will only need to do a schema-to-GDMO conversion if you have SNM

schemas not provided with Solstice EM. For all SNM schemas shipped with Solstice

EM, corresponding GDMO documents are already provided with the product, and

these are loaded into the MIS at startup.

Note – If you are using an RPC-based SNMP proxy agent (na.snmp or

na.snmpv2), SNM schema files must also be provided on the proxy system to

enable the proxy agent to map Management Information Bases (MIBs) for SNMP

devices that are to be managed. For more information, see Chapter 10.

3. Install and configure the RPC MPA.

The RPC Management Protocol Adapter (MPA) is a protocol translator that enables

communications between the MIS SunNet Manager proxy agents using Remote

Procedure Call (RPC) protocol. By default, the RPC MPA is installed on the same

machine as the MIS. However, to improve performance you may want to distribute

the RPC MPA to another machine. For information on installation of the RPC MPA,

refer to Chapter 6 in Installation Guide. For more information on the RPC MPA, refer

to Section 6.3 “RPC Management Protocol Adapter .”

4. Configure the managed object in the MIS.

Note – This is applicable only for proxy agents.

The object in the MIS that represents the target managed resource must be

configured to indicate support for appropriate SNM agents. There are two ways to

accomplish this task:

■ If you use Network Discovery to populate your MIS, you can configure Network

Discovery to query hosts for RPC agents and automatically configure objects to

indicate RPC agent support when it adds them to the database. The RPC agent

selection sheet in the Network Discovery Properties window is shown in

FIGURE 6-3. You can also select the host that will be configured as the proxy system

for RPC-manageable devices that are added to the MIS by Network Discovery.

When SNM event requests are targeted at these devices, the RPC proxy agents on

the “default proxy” are used to conduct the threshold-checking of the target

device. If localhost (the default) was selected during discovery, the RPC proxy

agents on the MIS machine are used to carry out threshold-checking. In the

example in the following figure, the machine localhost is selected to be the
6-6 Customizing Guide • October 2001

proxy host for all devices added to the MIS through this use of Network

Discovery. For more information on using the Network Discovery tool, refer to

Managing Your Network.

■ You can also manually configure RPC agent support for objects in the MIS using

the Network Views Object Properties/Create Object. It is invoked from the

Solstice EM Network Views. For more information, refer to Chapter 3 in Managing
Your Network.

FIGURE 6-3 Selecting RPC Agents to be Configured During Network Discovery

5. Build request templates for RPC agents.

The Nerve Center module in the MIS contains the request-handling capabilities of

Solstice EM. Nerve Center requests are based on request templates, which are built

using the Design Advanced Requests tool. A key building block in request templates

are request conditions—sets of instructions defined using the Solstice EM Request
Chapter 6 Managing Devices Using RPC Agents 6-7

Condition Language (RCL). RCL supports both direct polling of RPC agents as well

as setting thresholds for polling by proxy agents. A number of predefined request

templates for use with RPC agents are shipped with Solstice EM; these are described

in the following table. If you wish to build additional request templates for RPC

agents, you may want to consult the following sources of information:

■ For guidance on building direct polling request templates, consult Chapter 15.

■ For information on the Design Advanced Requests, see Chapter 18.

■ For information on Request Condition Language, see Chapter 20.

■ RCL provides two built-in functions, snmEventRequest() and

snmKillRequest() , for starting and stopping SNM event requests. Building

templates for SNM event requests is described in Chapter 17.

■ For additional information on RCL functions that can be used in building request

templates, see Chapter 22.

TABLE 6-1 Ready-to-Use RPC Request Templates

Template Name Description

AdminOperStatusUp AdminOperStatusUp sends SNM event requests that

use the RPC SNMP proxy agent (na.snmp) to poll the

interfaces on the target router. When ifOperStatus
is down (indicating the interface is not operational)

and ifAdminStatus is up (has not been intentionally

downed by an administrator), the request posts a

critical alarm. If a subsequent SNM event indicates

that ifOperStatus is up or ifAdminStatus is

down, a warning alarm is posted to indicate the

interface is up after having been down.

CheckCPU CheckCPUsends an SNM event request that uses the

RPC hostperf proxy agent (na.hostperf) to check

for CPU usage greater than 50%. If an SNM event

arrives, a minor alarm is posted and another SNM

event request is started to check the target host for

CPU usage greater than 80%. If no SNM event arrives

within 3 minutes, the second event request is killed. If

a greater-than-80%-usage event arrives within the

three minute interval, a major alarm is posted and the

request continues to check for CPU usage greater than

80%.

DeviceReachablePing DeviceReachablePing initiates SNM event request

to check for device reachability and subscribes for

incoming snmAlarmEvents . Posts a major alarm if the

device is not reachable and a warning alarm when

device is available after having been unreachable.
6-8 Customizing Guide • October 2001

DiskPartitionsFull DiskPartitionsFull directly polls the RPC
diskinfo agent (na.diskinfo) to obtain the

diskSpace table for the target host. The request checks

the capacity attribute for locally-mounted disk

partitions (other than /proc , /tmp , and /fd) and

posts a critical alarm for each disk partition that has

greater than 95% of its capacity in use.

PingUpOrDown PingUpOrDown directly polls for reachability of device

using the RPC ping proxy agent (na.ping). It sends a

critical alarm if the device is not reachable. If the

device becomes reachable after not being reachable, a

clear alarm is sent to clear the previous critical alarm.

RPC_Diskinfo_
DiskPartitionsFull

RPC_Diskinfo_DiskPartitionsFull sends

multiple SNM event requests to the SNM Diskinfo
agent. A capacity request is sent for each partition that

is contained in the following disk_list of RCL

attributes. Each partition in the list may have two

threshold values—one for a minor alarm, and one for a

critical alarm. (Note: Each partition may have different

threshold values for the minor and critical alarms. In

order to change the alarm severities and alarm

messages, the user must modify the condition

process_capacityEvents).

RPC_Diskinfo_
WatchAllPartitions

This template reads the entire disk table from the

target agent by polling the diskinfo agent. An SNM

event request is then sent to each partition checking

for a capacity of greater than 90%.

RPC_Hostperf_VerifyProxyA
gent
RPC_Ping_VerifyProxy
Agent
RPC_SNMP_VerifyProxy
Agent

These three templates are used to verify that the

remote proxy agents are servicing requests. These

templates should be launched against the devices

which are running the SNM proxy agents. Every poll

period the template will send an SNM event request

which forces an event. If the proxy does not respond or

if an event is never returned, a NerveCenter alarm is

posted. The template will continue to check for a

response and will post an alarm if the proxy starts

servicing again.

RPC_Hostperf_WatchCPU This template sends an SNM event request to the SNM

Hostperf proxy agent. The proxy agent polls the

target for cpu percentage and posts an alarm when it

exceeds 70%. (Note: This template will also inform

Solstice EM via an event when the target agent is

down.)

TABLE 6-1 Ready-to-Use RPC Request Templates (Continued)

Template Name Description
Chapter 6 Managing Devices Using RPC Agents 6-9

RPC_MibII_Interface
CollisionDetection

This template polls the RPC SNM SNMP proxy agent

for the ifOutput table every poll period. When the

collision percentage is calculated, an alarm may be

posted if the collisions exceed the minor or critical

rate.

RPC_MibII_InterfacePing
Triptime

This template polls the target and reads in the interface

and IP tables. One RPC event request is sent to each IP

address, checking for an ICMP round trip time of

greater than 300ms. If the round trip time exceeds

300ms a NerveCenter alarm is posted. When the round

trip time drops back below 300ms a NerveCenter

alarm of warning is posted.

RPC_MibII_InterfaceStatus RPC_MibII_InterfaceStatus sends SNM event

requests that use the RPC SNMP proxy agent

(na.snmp) to poll the interfaces on the target router.

This template has some user-configurable parameters

which are found in the condition

mibII_interface_watch_variables .

RPC_MibII_sysUpTime_Agent
Up

This template sends a SNM event request to the SNM

SNMP proxy agent. The proxy agent will poll the

target to make sure that the SNMP agent is responding

and to check whether the sysUpTime has not

increased, indicating that the system has rebooted. The

parameters below are configurable for the template

and may be found in the condition

MIBII_SNMP_AgentUp_variables .

TABLE 6-1 Ready-to-Use RPC Request Templates (Continued)

Template Name Description
6-10 Customizing Guide • October 2001

6.3 RPC Management Protocol Adapter
The Remote Procedure Call (RPC) Management Protocol Adapter (MPA) provides

the mechanism to get data and set attribute values for devices that are managed via

RPC-based agents. The RPC MPA works as a proxy agent between the Solstice EM

MIS and any device on the network having RPC agents installed.

RPC_PingReachableRetry This template sends a SNM event request to SNM Ping

proxy agent. The proxy agent will check the target

agent for ping reachability every poll period.

RPC_SunMIB_Process
Watch

This template uses the Sun process table extensions to

MIBII. The template reads in the process table from the

remote agent using the SNMP proxy agent. One SNM

event request is then sent for each process found in the

process_list RCL variable. When that process is no

longer found on the remote agent, the template will

post a NerveCenter alarm and execute the action in the

action_list RCL variable associated to the process

name. Note that $hostname and $process_name
may be substituted in the action. This allows a process

to be restarted if desirable.

SnmpPingBackoffReachable SnmpPingBackoffReachable directly polls the

SNMP daemon for the sysUpTime attribute to

determine if the SNMP daemon is running. If there is

no response to the initial poll, the request polls at a

longer interval. If there is still no response, the request

directly polls for reachability, using the RPC ping

proxy agent (na.ping), to determine if the

nonresponse is due to the SNMP agent being down or

the unavailability of the host machine. The request

generates a major alarm if the device will respond to a

ping but there is no response from the SNMP agent.

The request generates an “SNMP daemon back up”

warning alarm if the SNMP agent responds after being

down. The request generates a critical alarm if the

target device does not respond to either the SNMP or

ping polls. If the device becomes reachable after a

period of unreachability, the request posts a “device

back up” warning alarm.

TABLE 6-1 Ready-to-Use RPC Request Templates (Continued)

Template Name Description
Chapter 6 Managing Devices Using RPC Agents 6-11

The RPC MPA serves a major role in providing compatibility with SunNet Manager

2.2 or later products. Agents that were written for SNM 2.2 or later can be registered

with the Solstice EM MIS, so that when a request is made, the RPC MPA will be

called by the MIS to route the request via RPC calls to the appropriate SNM 2.2 or

later agent on the appropriate host.

Note – SNM 2.2 or later schema files get compiled by the Schema compiler

(em_snm2gdmo) into GDMO descriptions which then get loaded into the Solstice EM

MIS. This is described in Chapter 8 of Management Information Server (MIS) Guide.

When an RPC request is received by the Solstice EM MIS, the MIS will route the

request to the RPC MPA. When the new request arrives from an MIS, the RPC MPA

translates the CMIS-like message it received into a corresponding RPC request. It

then sends the request to the specified SNM agent on the specified device and waits

for a response. Upon receiving a response from the SNM agent, the RPC MPA

translates the RPC message into a CMIS-like message, and sends it on to the MIS.

All communication between the MIS and the RPC MPA are CMIS-like. All

communication between the RPC MPA and the manageable SNM agents are via

RPC.

6.4 RPC MPA Configuration Parameters
The following configuration parameters for the RPC MPA are set during installation:

■ Default MIS host—The name of the machine running the MIS that the MPA is to

connect to.

■ Default MIS port—The port used in communicating with the MIS (by default this

is port 5555).

■ Default RPC MPA port—The port on which the RPC MPA listens for incoming

messages (by default this is port 5577).

■ RPC request timeout—The length of time the RPC MPA waits for a response to a

request sent to an RPC agent (by default, this is 15 seconds).

■ RPC retries—The number of times the RPC MPA retries a request to an RPC

agent if there is no response (by default this is zero).

The request and retry parameters determine when the RPC MPA determines that an

RPC agent is unavailable.
6-12 Customizing Guide • October 2001

CHAPTER 7

Using Cooperative Consoles with
Solstice EM

Cooperative Consoles provides the ability to forward information about critical

network events from management stations running Site/SunNet/Domain Manager

(SNM) to one or more Solstice Enterprise Manager (Solstice EM) managers.

This chapter describes the following topics:

■ Section 7.1 “Cooperative Console Forwarding” on page 7-1

■ Section 7.2 “Filtering Criteria for Information Forwarding” on page 7-3

■ Section 7.3 “Cooperative Consoles Configuration and Operation” on page 7-4

■ Section 7.4 “Receiving SunNet Manager Alarms” on page 7-7

7.1 Cooperative Console Forwarding
The supported configuration of Cooperative Consoles information forwarding

between SNM and Solstice EM management stations is periphery-to-center. This is a

distributed management scenario in which management of particular network

segments is conducted by SNM Consoles at various sites and there is a one-way

forwarding of selected information from the SNM stations to a central Solstice EM

MIS. The Solstice EM MIS thus functions as a central office “manager of managers.”

A periphery-to-center configuration is illustrated in the following figure.
7-1

FIGURE 7-1 Forwarding of Information to Central Management Station

There are several types of information that Cooperative Consoles can forward from

SNM Console stations to Solstice EM:

■ SNM Events—These are generated by SNM agents or proxy agents when they

detect that a specified threshold has been crossed while polling a target network

resource. The polling activity is initiated by an SNM event request issued by the

SNM Console. The SNM event request defines the threshold (such as network

memory usage greater than 80%) that triggers the generation of the SNM event.

The SNM agent or proxy agent uses Remote Procedure Call (RPC) protocol to

communicate with the management station.

SNM
Console

SNM
Console

SNM
Console

Solstice EM MIS

Event/Trap
Forwarding

Sun EM
Network

Event/Trap
Forwarding

Solstice EM Alarm
Manager

Forwarded events

Event/Trap
Forwarding

Views
7-2 Customizing Guide • October 2001

■ Topology Traps—The SNM Console generates traps when changes are made to

the SNM database, such as addition of a new element or loading of a background

image for a view.

■ Glyph State Traps—The SNM Console generates glyph traps when the user

changes the glyph state—for example, if a user resets the glyph state after receipt

of an alarm.

■ SNMP Traps—Cooperative Consoles can forward SNMP traps received by SNM’s

SNMP trap daemon (na.snmp-trap). However, you may prefer to use Solstice

EM’s SNMP trap daemon (em_snmp-trap) for distributed SNMP trap

forwarding and configurable event type conversion. The Solstice EM SNMP trap

daemon can forward SNMP traps to SNM Consoles as well as Solstice EM.

7.2 Filtering Criteria for Information
Forwarding
The flexible filtering capabilities of Cooperative Consoles allow you to select event

and topology information to be forwarded on the basis of the following criteria:

■ Type of the managed resource—you can choose to forward events by element

type, such as routers.

■ Hostname—you can select events by the name of the originating device.

■ Priority—for example, you might choose to forward only SNM events with High

priority.

■ Viewname—for example, if certain key objects are in an SNM Console view called

“CriticalElements”, you could specify forwarding of events for the objects in that

view.

■ View type—you can select events on the basis of the type of view that the object

is in. For example, events from objects in views of type building could be selected

for forwarding.

■ Event type—you can select the type of event or trap to be forwarded. For

example, you might want to forward only SNM events. If you want to forward

SNMP traps, you can choose to forward only standard SNMP traps, or traps can

be selected on the basis of the enterprise MIB. For example, 3Com or Cisco traps

could be selected for forwarding, and ranges of traps can be selected for the

enterprise-specific traps.
Chapter 7 Using Cooperative Consoles with Solstice EM 7-3

7.3 Cooperative Consoles Configuration
and Operation
The executable software modules required in setting up a Cooperative Consoles

connection between an SNM Console and a Solstice EM MIS are as follows:

■ Receiver Application—A Receiver is installed on the Solstice EM MIS machine.

The Receiver initiates the forwarding of information from remote SNM Consoles

to the local MIS. The Receiver maintains a Registration List of the remote SNM

stations that it attempts to register with for receipt of event and topology

information. Use the Cooperative Consoles Configuration Tool to set up the local

Receiver’s Registration List. When a connection to a remote SNM is running, the

Receiver uses the SNM database API functionality in the Solstice EM MIS to

update the Solstice EM MIS to reflect changes in the views on the remote SNM

Consoles. Solstice EM’s support for the SunNet Manager database API is

described in Chapter 8. If Cooperative Consoles forwarding of information has

been set up to create a “mirror” on the Solstice EM MIS of a particular SNM

Console view, then moving or deleting an element in that view on the SNM

Console is reflected in the “mirror” in the Solstice EM Network Views.

■ Sender Daemon—A Sender daemon is installed on each SunNet Manager host

that forwards event and topology information to the Solstice EM MIS.

Cooperative Consoles’ event and topology filters are used by the Sender daemon.

The Cooperative Consoles Configuration Tool is used for sending SNM stations to

configure these filters. The periphery-to-center configuration is the only

configuration currently supported for Solstice EM. In this configuration, no

Sender daemon is installed on the Solstice EM MIS machine.

■ Configuration Tool—This is the user interface for configuring operation of the

Sender and Receiver processes. Configuring the Receiver on the Solstice EM MIS

machine also requires installation of the Cooperative Consoles Configuration

Tool.

▼ To Set Up Cooperative Consoles on the Solstice

EM MIS Machine

1. Install the Cooperative Consoles Configuration Tool and Receiver packages.

See the Installation Guide for detailed information.
7-4 Customizing Guide • October 2001

2. Set your LD_LIBRARY_PATHto support the Receiver application.

Enter a command such as the following, to set the environment variable correctly:

Since the Cooperative Consoles Receiver is an SNM application, you should refer the

general instructions for use of SNM applications, see Chapter 8.

3. Add the Cooperative Consoles Configuration Tool and the Cooperative Consoles
Receiver to the Solstice EM Network Tools.

This is described in Managing Your Network. You will need to tell the Launcher the

path to the Cooperative Consoles executables. The default path to the Cooperative

Consoles Receiver is as follows:

4. Use the Cooperative Consoles Configuration Tool on the remote SNM Console
machines to configure the appropriate Sender daemon filters for event and
topology forwarding to the Solstice EM MIS.

5. Use the Cooperative Consoles Configuration Tool to set up the Receiver’s
Registration List on the Solstice EM MIS machine.

For information on configuring the Cooperative Consoles Sender daemon and the

Cooperative Consoles Receiver application, refer to the Cooperative Consoles
Administration Guide.

host% setenv LD_LIBRARY_PATH /opt/SUNWconn/em/lib:/opt/SUNWconn/
lib:${LD_LIBRARY_PATH}

/opt/SUNWconn/snm/bin/cc_receiver
Chapter 7 Using Cooperative Consoles with Solstice EM 7-5

FIGURE 7-2 Information Forwarding From SNM Console to Solstice EM MIS

Runtime
MDB

SNM
Console

Event
Dispatcher

Event
Dispatcher

Daemon Application

Sender Receiver

Authorization List and
 Filter Files

Sending Station Receiving Station

Register/

SNM Non-database

Processed
Database
Traps

SNM Events
and TrapsDB

Read
Access

Unregister

DB
Read/Write

Access

Traps

Registration List

Forwarded SNM Traps

Alarm
Log

Solstice EM
Application
Launcher

Startup

SNM Event
Forwarder

Solstice EM MIS

snmAlarmTraps
7-6 Customizing Guide • October 2001

7.4 Receiving SunNet Manager Alarms
The Cooperative Consoles Sender daemon on a remote SNM Console can be

configured to send SNM events and notification of user actions clearing these alarms

(glyph reset), to the MIS machine. The Sender daemon reformats these SNM events

(and glyph reset events) as SNM traps and sends them to the SNM Event Dispatcher

(na.event) on the MIS host. The SNM Event Forwarder (em_snmfwd) on the MIS

machine registers with the Event Dispatcher to receive all SNM events and traps.

The Event Forwarder converts the SNM traps into snmAlarmTraps and sends these

to the MIS. By default, these event notifications are logged to the AlarmLog.

SNM Console users can configure SNM event requests to indicate fault status of the

target device in several ways:

■ Dimming of a glyph

■ Blinking of a glyph

■ Color by priority

Priority is the attribute of an SNM event that represents the severity of an event on

the managed resource. If the user has selected color by priority, the SNM Event

Forwarder maps SNM priorities to perceivedSeverity values as indicated in the

following table. The SNM Event Forwarder also translates dimming or blinking of

glyphs into perceivedSeverity values, as indicated in the following table.

TABLE 7-1 Mapping of SNM Console Fault Indications to perceivedSeverity
Values

SNM Event Priority SNM Fault Status Indicator

snmAlarmTrap
perceivedSeverity
Value

Default Solstice
EM
Icon Color

Low color by priority Minor Cyan

Medium color by priority Major Orange

High color by priority Critical Red

blinking Indeterminate Blue

dim Warning Yellow

glyph reset Indeterminate Blue

pending Warning Yellow
Chapter 7 Using Cooperative Consoles with Solstice EM 7-7

The Alarm Service, which controls the fault status color of icons in the Network

Views, monitors the perceivedSeverity of alarms posted against a device, and

sets fault status to reflect the highest severity of outstanding (uncleared) alarms

against a device. Incoming snmAlarmTraps will thus affect fault status color of

icons in the Network Views.

If a user resets a glyph to clear an alarm on the SNM Console, a glyph state reset

trap is sent to em_snmfwd on the MIS machine which generates an snmAlarmTrap

with a perceivedSeverity of “Indeterminate.”

When glyph fault status indications are propagated to higher-level views in the

SNM Console, a glyph reset is also propagated to those views. Glyph reset traps are

thus forwarded for the views that contain the element. These are translated into

separate “clear” snmAlarmTraps for the corresponding views in the Solstice EM

MIS.

Note – If SNM event requests are initiated by the MIS, incoming SNM events from

the RPC proxy agents are received by the SNM Event Dispatcher on the MIS host as

SNM events (not SNM traps). These are also forwarded to the SNM Event Forwarder

(em_snmfwd); however, these event notifications are posted to the MIS as

snmAlarmEvents. By default, snmAlarmEvents are not logged to the AlarmLog. For

more information, see Chapter 17.
7-8 Customizing Guide • October 2001

CHAPTER 8

SunNet Manager
Application Support

This chapter describes the areas in which SunNet Manager (SNM) applications can

interoperate with Solstice Enterprise Manager (Solstice EM) as part of an overall

network management solution.

This chapter describes the following topics:

■ Section 8.1 “Solstice EM Compatibility with SunNet Manager” on page 8-1

■ Section 8.2 “Access to Solstice EM Features from SNM Applications” on page 8-4

■ Section 8.3 “Adding an SNM Application to Solstice EM” on page 8-5

■ Section 8.4 “Information for Configuring Specific SNM Applications” on

page 8-11

■ Section 8.5 “Importing an SNM Database into Solstice EM” on page 8-25

■ Section 8.6 “Access to SNM Agents by SNM Applications” on page 8-25

■ Section 8.7 “Access to SNM Agents by Solstice EM Applications” on page 8-28

Note – For purposes of this guide, SunNet Manager (SNM) refers to the 2.2 or later

releases of SunNet Manager, and releases of Solstice Site Manager and Solstice

Domain Manager. SunSoft makes no claims of compatibility of Solstice EM with

versions of SNM prior to 2.2.

8.1 Solstice EM Compatibility with SunNet
Manager
For the purpose of describing SNM/Solstice EM interoperability, we define an SNM
application as an application that uses the SNM Application Programming Interface

(API) to access the SNM database or to access SNM agents. We define a Solstice EM
8-1

application as one that uses the native Solstice EM API (called the Portable

Management Interface, or PMI) to access objects in the Solstice EM Management

Information Tree (MIT).

Solstice EM and SNM are compatible with each other in the following ways:

■ Dynamically-linked SNM applications that use the SNM API to access database

elements can run without modification over Solstice EM, to access objects in the

Solstice EM MIT. SNM database-access functions, such as snmdb_open() ,

snmdb_add() , and snmdb_delete_from_view() are translated by the

compatibility library, libnetmgt_db.so , into the Solstice EM PMI. You must

prepend the LD_LIBRARY_PATHenvironment variable to include the location of

the compatibility library, which, by default, is /opt/SUNWconn/em/lib .

Note – If you have previously installed SunNet Manager, make sure that /opt/
SUNWconn/snm/lib does not occur prior to /opt/SUNWconn/em/lib in your

LD_LIBRARY_PATH.

■ Dynamically-linked SNM applications that use the SNM API to access SNM

agents can run without modification over Solstice EM. These applications use the

native SNM libnetmgt.so library, which is shipped with Solstice EM. The

libnetmgt.so library is stored, by default, in /opt/SUNWconn/snm/lib .

Accessing this library requires that you set LD_LIBRARY_PATHto include its

location.

■ Solstice EM applications can access SNM agents—which are shipped with Solstice

EM—through the RPC Management Protocol Adapter (MPA) (see FIGURE 8-1).

This capability allows you to take advantage of the power of Solstice EM while

retaining the ability to manage SNM agents. Support for Solstice EM applications

accessing SNM agents requires no action on the part of the application

programmer and user.

In addition to SNM agents shipped with Solstice EM, Solstice EM supports RPC

agents that have been written for SNM but were not shipped with that product.

Support for SNM applications and agents requires some minor configuration steps,

which are discussed in Section 8.3,“Adding an SNM Application to Solstice EM .”
8-2 Customizing Guide • October 2001

FIGURE 8-1 SNM-Solstice EM Compatibility

The areas of SNM-Solstice EM compatibility are illustrated in the above figure. This

figure is the basis of the discussion that follows.

The areas of compatibility described in the bullets on page 8-2 are illustrated in

FIGURE 8-1 as follows:

■ SNM applications accessing Solstice EM features: Path A to D to E to G to H.

■ Solstice EM applications accessing SNM agents: Path B to F to G to H to I.

MIS

Solstice EM

Application

SNM

Application

PMI

Persistent
Storage

SNM Schema
to GDMO
Compiler

CMIP
MPA

SNM
Agents

 libnetmgt libnetmgt_db

 em_snm2gdmo

A B

C
D F

G

Legend

MIS

RPC
PMI

SNMP
SNM

Management Info Server

Portable Management Interface
Remote Procedure Call
SunNet Manager
Simple Network Mgmt Protocol

RPC

E

GDMO Guidelines for Definition of MOs

PMI

PMI

CMIP
Agents

Part of SNM, shipped with EM

Not part of EM or SNM

Part of EM

CMIP Common Mgmt Info Protocol

MPA Mgmt Protocol Adapter

PMI

H

SNMP
MPA

RPC
MPA

SNMP

SNMP
Agents

RPC

I

Capital letters and shaded lines

used to mark data paths, which

are described in following pages.
Chapter 8 SunNet Manager Application Support 8-3

■ SNM application accessing SNM agents: Path A to C to I.

In FIGURE 8-1, for path A to C to I, note that SNM applications access SNM agents

through the library libnetmgt , just as they do while running the SNM Console.

The following subsections discuss each area of compatibility in some detail.

8.2 Access to Solstice EM Features from
SNM Applications
Solstice EM support for SNM applications accessing Solstice EM features is

illustrated in the following figure.

FIGURE 8-2 SNM Application Accessing Solstice EM Features

SNM

Application

 libnetmgt libnetmgt_db

PMI

MIS

PMI

Legend

MIS
PMI
SNM

Management Information Server
Portable Management Interface
SunNet Manager

Part of SNM, shipped with Sun EM

Not part of Solstice EM or SNM

Part of Solstice EM

Persistent
Storage
8-4 Customizing Guide • October 2001

An SNM application can access Solstice EM features if and only if the application

uses the SNM API only as specified in the Solstice Site/SunNet/Domain Manager
Appliation and Agent Development Guide. Such applications can access Solstice EM

features without any modification to code, without any recompilation or relinking.

Note – Applications that access the SNM management database directly, bypassing

the published API, do not run correctly.

Part of the requirement for SNM API conformance is the requirement, spelled out in

the Site/SunNet/Domain Manager Applications and Agent Development Guide, that

applications be dynamically linked for compatibility with future releases. The

current release of Solstice EM is such a future release.

8.3 Adding an SNM Application to Solstice
EM

Note – This section describes the general procedure to be followed for setting up an

SNM application to work with Solstice EM. However, specific third-party SNM

applications may require additional steps or modifications to this procedure. Before

carrying out the steps outlined below, see Section 8.4,“Information for Configuring

Specific SNM Applications ” to determine what modifications or additions to this

procedure are necessary for the particular SNM application you wish to use with

Solstice EM. If the SNM application is the Solstice Cooperative Consoles Receiver,

for additional information see Chapter 7.

▼ To Run Your SNM Application with Solstice EM

1. Install the SNM API and RPC agents packages (SUNWembcand SUNWsnmag) on the
MIS machine, if you have not already done so.

Installation of these packages is described in the Chapter 6 of Installation Guide.

2. Convert third-party SNM icons to Solstice EM glyph format.

Element types shipped with Site/SunNet/Domain Manager have already been

mapped to Solstice EM icons by default. This step is only necessary if you have

added third-party icons, not shipped with SNM, that you wish to use with an SNM

application accessing Solstice EM features. These icons must be converted from SNM

Xview format to Solstice EM X-pixmap (pm) format.
Chapter 8 SunNet Manager Application Support 8-5

▼ To make this conversion

a. Convert the SNM glyph to pbm format.

You can use the Open Windows icontopbm utility to make this conversion:

Note – Typically <element-type> is the same as the SNM element type name. For

example, component.bridge would have an icon named bridge.icon. However, not

all third-party SNM icons follow this rule. Note that the Solstice EM icon file name

must be of the form <element-type>.pm where <element-type> is the name of the

element type.

b. Convert the icon from pbm format to pm format.

There are various graphic utilities available that you could use to convert an icon

from pbm to pm format. Both the ImageMagick convert utility and netpbm are

shareware packages that you can use to convert the icons from pbm format to X

pixmap format. Both packages can be downloaded, using ftp , from the X

consortium’s ftp server. Check their website (www.x.org) for information on

obtaining netpbm and convert from their ftp site.

Place the converted pm icon file <icon>.pm in the $EM_HOME/glyphs directory.

3. Convert third-party SNM schemas to GDMO documents.

The default elements.schema , cooptools.schema , and

netware_elements.schema files, shipped with SNM, have already been

converted to GDMO documents for you, and these are incorporated into the Solstice

EM MIS by default. However, if you have customized the elements.schema file

with new entries, or added third-party schema files, these schemas must be

converted to GDMO documents and loaded into the MIS. The em_snm2gdmo
compiler is provided for accomplishing this task. For step-by-step guidance, refer to

Chapter 8 in Management Information Server (MIS) Guide.

% /usr/openwin/bin/icontopbm <element-type>.icon > <element-type>.pbm
8-6 Customizing Guide • October 2001

4. Use the em_snm_type_import utility (as root) to incorporate new SNM element
types, defined in SNM schema files, into the Solstice EM environment.

You only need to do this step if you have custom or third-party SNM element types

that you want to incorporate into Solstice EM. When Solstice EM is shipped to you,

the default element types included with Site/SunNet/Domain Manager are already

mapped to Solstice EM topology types. The syntax for this utility is:

For example:

This utility updates entries in $EM_HOME/config/SNM2EM_type_mappin g,

which maintains the mapping of SNM element types to Solstice EM element types.

By default, this file contains the mappings for elements defined in the default SNM

elements.schema , cooptools.schema , and netware_elements.schema files.

The following files are also updated:

■ $EM_HOME/install/em_platform/bc_map
■ $EM_HOME/config/em_viewer.cf

However, if a user has already run the Network Views, it is possible that a

personalized copy of the Network Views configuration file has been created in their

home directory. In that case, their Network Views configuration file will not have

been updated with the new topology information generated by

em_snm_type_import . To update their individual topology type information, a

user can copy the master Network Views configuration file ($EM_HOME/config/
em_viewer.cf) to ~/.em_viewer.cf

When em_snm_type_import is run, new entries are added only for types that are

not already present. When you run em_snm_type_import , a log is generated in the

current directory of the shell where you invoked the command. This log is written to

the file em_snm_type_import.log . Warnings are generated in the log if matching

pixmap format icons have not yet been provided for the imported types. An

example of log output would be the following:

$EM_HOME/bin/em_snm_type_import -file <schema-file>

#./em_snm_type_import -file /opt/CSCOcw/snm/struct/cisco.record

Warning: Need synfleet-router.pm file in $EM_HOME/glpyhs directory
Warning: Need syn-novell-server.pm file in $EM_HOME/glpyhs directory
Warning: Need baystack-100-conc.pm file in $EM_HOME/glpyhs directory
Warning: Need syn-fddi-segment.pm file in $EM_HOME/glyphs directory
Chapter 8 SunNet Manager Application Support 8-7

5. Run em_services -reload to re-initialize the MIS.

You need to do this step only if you have done Step 2, Step 3, or Step 4.

Note – Running em_services -reload recompiles the GDMO and ASN.1

documents. Any existing topology data in the MIS is lost. If you have existing

topology data in the MIS that you want to save, you can use the Network View

Import/Export tool to export the data prior to running em_services . You can then

use this same tool to import the data into the MIS after re-initialization.

6. Add the path to the Solstice EM version of libnetmgmt_db to your
LD_LIBRARY_PATHenvironment variable.

Assuming you installed Solstice EM in /opt/SUNWconn/em enter a command such

as the following to set this environment variable correctly:

Following this command, you can successfully run your SNM application. You will

also want to add this command to your .cshrc file.

7. Set the EM_SERVERenvironment variable if you want to run the SNM application
remote from the MIS machine.

With regard to applications, Solstice EM has a special feature not available in SNM:

Solstice EM allows you to run applications remote from the MIS. This capability is

supported through CMIP-over-TCP/IP connections, allowing you to avoid the high

bandwidth use and inconvenience of remote X window sessions. In SNM terms, this

feature is the equivalent of running SNM applications on a machine remote from the

Console machine (which is not possible in SNM, where Console, database, and

applications reside on the same machine).

Solstice EM extends support for remote applications to SNM applications, thereby

providing to those applications a feature not available to them in their native SNM

environment. To allow your SNM application to connect to an MIS on a remote

machine, you must set the $EM_SERVERenvironment variable. This environment

variable is available to Solstice EM applications as well. To set this variable, enter a

command such as the following:

host% setenv LD_LIBRARY_PATH /opt/SUNWconn/em/lib:/opt/SUNWconn/
lib:${LD_LIBRARY_PATH}

host% setenv EM_SERVER <remote_MIS_machine>
8-8 Customizing Guide • October 2001

With $EM_SERVERthus set, subsequent invocations of an SNM (or Solstice EM)

application automatically connect to <remote_MIS_machine>.

For SNM applications, Solstice EM supports:

■ multiple remote applications connecting to (and thereby sharing the data in) a

single MIS.

■ multiple remote applications connecting to MISs running on multiple machines.

8. Add an icon for the SNM application to the Solstice EM Launcher.

Invoke the Configure Applications window in the Network Tools to add the SNM

application to the launcher. For information on adding applications to the Solstice

EM Network Tools, refer to Chapter 2 in Managing Your Network. If you select “Yes”

in the Solstice EM Application field in the Configure Applications window, the icon

will be grayed out whenever the MIS is disconnected.

8.3.1 Forwarding Event and Topology Information

from SunNet Manager to Solstice EM

Solstice EM’s distributed management support provides the ability to implement

forwarding of event and topology information about the state of critical network

resources or aspects of network topology from SunNet Manager or Solstice Domain

Manager Consoles to one or more Solstice EM Management Information Servers.

If you are already using Site/SunNet/Domain Manager (SNM) to manage segments

of your network, the Cooperative Consoles Receiver application can be used on an

MIS machine to implement one-way forwarding of topology and event information

from the SNM Consoles to the MIS. This creates a periphery-to-center configuration

in which the MIS functions as a central “manager of managers.” This configuration

is illustrated in the following figure. For a more detailed discussion of Cooperative

Consoles, see Chapter 7.
Chapter 8 SunNet Manager Application Support 8-9

FIGURE 8-3 Forwarding of Information to Central Management Station

8.3.2 SunNet Manager Application Support

Solstice EM’s ability to interoperate with Cooperative Consoles is an illustration of

Solstice EM’s support for applications that have been developed for use with Site/

SunNet/Domain Manager. There are numerous third-party applications developed

for SNM that can also be used with Solstice EM. For more information, see

Chapter 8.

SNM
Console

SNM
Console SNM

Console

 EM MIS

Event/Trap
 Forwarding

Solstice EM
Network Views tool

Event/Trap
Forwarding

EM
Alarms Tool

Event/Trap
 Forwarding
8-10 Customizing Guide • October 2001

8.4 Information for Configuring Specific
SNM Applications
This section provides information needed to set up specific SNM applications to

work with Solstice EM. The specific SNM applications are discussed in alphabetical

order.

8.4.1 Running Solstice EM and Applications on Hosts

With a New IP Address or Name

Applications may be installed where the hostname or IP address has been changed.

This section provides procedures for getting Solstice EM and any third party

applications you plan to use with Solstice EM working properly.

▼ To Set up Solstice EM to be Used on a Host With

a New Name

1. Change <oldname>_emdb to <newname>_emdb in the directory: /opt/SUNWemrdb/
etc/onconfig.em

2. Change all occurrences of <oldname> to <newname> in the directory: /opt/
SUNWemrdb/etc/sqlhosts

3. Change all occurrences of <oldname> to <newname> in the directory: /opt/
SUNWconn/em/build/acct/onconfig.em

4. Replace the old name with the new name in LM_LICENSE_FILE path of the
following license files:

/etc/opt/SUNWconn/em/conf/rpc_mpa_config

/etc/opt/SUNWconn/em/conf/snmp_mpa_config

/etc/opt/SUNWconn/em/conf/trap_forward

Note – To find other files that use the <oldname>, execute the grep command at the

prompt (oldname is the old name used for the host): grep <oldname> *

5. Type em_services -reload at the prompt to run Solstice EM.
Chapter 8 SunNet Manager Application Support 8-11

▼ To Set up CiscoWorks to be Used on a Host With

a New IP Address or Name

1. Replace the hexadecimal representation of the old IP address with the
hexadecimal representation of the new IP address in the file /opt/CSCOsyb/
interfaces.

The IP address is embedded in a string that begins with \x000208ae... You must add

skip the first eight characters after the ‘\x’ , then add the new hexadecimal address

after the ‘\x’.

For example, the hexadecimal form of the IP address 129.146.183.19 is 8192b713.

Locate the old hexadecimal string and replace it with the new one.

Note – You can calculate hexadecimal representations using /usr/openwin/bin/
calctool .

2. Replace the old name with the new name in the file /opt/CSCOsyb/interfaces .

3. Replace the hexadecimal representation of the old IP address with the a
hexadecimal representation of the new IP address in the file /opt/CSCOsyb/
interfaces.001 if it exists. (See Step 1 for more information)

4. Replace the old name with the new name in the file /opt/CSCOsyb/
interfaces.001 if it exists.

▼ To Set up Remedy ARS to be Used on a Host

With a New IP Address or Name

● Replace all occurrences of the old name with the new name in the following files:

/etc/ar
/arHome/arcmds/emxdemo.arq
/arHome/arcmds/emxsearc.arq
/arHome/arcmds/emupdat.arq

▼ To Set up Landmark Performance Works to be

Used on a Host With a New IP Address or Name

1. Replace all occurrences of the old name with the new name in the following files:

/usr/landmark/landmark/license.dat
/arHome/landmark/data/pcws*/device.ini
8-12 Customizing Guide • October 2001

2. Replace the old IP address in the file /usr/landmark/data/pwcs*/ns.ini .

3. Replace all occurrences of the old name with the new name in the file /usr/
landmark/data/pwcs*/trapgen/PWcore*.ini.

▼ To Complete Application Set up on Hosts With

New IP Addresses or Names

● After completing the steps to set up Solstice EM, CiscoWorks, Remedy ARS, and
Landmark Performance applications, reboot the machine.

8.4.2 Configuring Remedy’s Action Request System

(ARS) to Work with Solstice EM

The instructions in this section cover any third-party SunNet Manager application

that alters the default SNM elements.schema file during installation. In particular,

this applies to Remedy’s Action Request System (ARS). The default SNM

elements.schema file has already been converted to GDMO and ASN.1 files for

loading into the Solstice EM MIS as shipped to you. Also, Solstice EM is shipped to

you with mappings of SNM element types to Solstice EM topology types. However,

if the installation of a third-party SNM application alters the elements.schema ,

then you will need to do the following:

1. After installing the third-party SNM application, run em_snm_type_import on
the modified elements.schema file.

Use the following command:

For more information on the em_snm_type_import utility, refer to

Section 8.3,“Adding an SNM Application to Solstice EM .”

2. Run the em_snm2gdmocompiler on the elements.schema file to convert it to
GDMO documents.

Refer to the Management Information Server (MIS) Guide for more detailed

information.

#$EM_HOME/bin/em_snm_type_import -file elements.schema

#$EM_HOME/bin/em_snm2gdmo /opt/SUNWconn/snm/struct/
elements.schema 1
Chapter 8 SunNet Manager Application Support 8-13

3. Remove the extra menu entries from the Network Views configuration file.

The elements.schema shipped with Remedy ARS has various menu entries that do

not apply to Solstice EM. Edit the Network Views configuration file ($EM_HOME/
config/em_viewer.cf) to remove these extra entries. The extra entries are the

following for the Network Views menu:

■ Browser

■ Graphs

■ Snapshot

■ Network Discovery

■ IPX Discover

An extra entry for Network Discovery is also created in the element icon menu.

4. Copy the updated global Solstice EM Network Views configuration file to your
home directory.

The em_snm_type_import utility updates the global Solstice EM Network Views

configuration file. To copy the changes to your home directory, enter:

5. Exit and restart the Network Views.

The ARS commands should be incorporated into the Network Views menu.

8.4.3 Configuring Konfig 2.4 to Work with Solstice EM

▼ To Use Konfig 2.4 With Solstice EM

1. As root, install Solstice EM.

Refer to the Installation Guide for instructions.

%cp $EM_HOME/config/em_viewer.cf ~/.em_viewer.cf
8-14 Customizing Guide • October 2001

2. Each user needs to set the SNMHOME environment variable.

For example:

Also add the same line to the user’s .cshrc file:

3. Create a link from $SNMHOME/bin to $EM_HOME/bin.

Remove the $SNMHOME/bindirectory and create a link pointing $SNMHOME/bin to

$EM_HOME/bin:

4. Add $SNMHOME/bin to the user’s path.

For example:

Also, add the same line to the user’s .cshrc file; for example:

5. Convert the config SNM schemas to GDMO and ASN.1 files.

Refer to Step 3 under Section 8.3,“Adding an SNM Application to Solstice EM .”

6. Convert the config types and menus into Solstice EM topology types.

Use the em_snm_type_import utility to convert the types and menus in the

konfig_snm.schema file following the instructions in Step 4 and Step 5 under

Section 8.3,“Adding an SNM Application to Solstice EM .”

7. For objects added using Solstice EM Network Discovery, use Network Views-
Object Properties window to set the usrType field.

Go to each object icon and choose Object Properties from the icon menu to invoke

the Network Views-Object Properties window. Fill in the attribute corresponding to

usrType[1] with the SNM component type name—for example, component.router

% setenv SNMHOME /opt/SUNWconn/snm

setenv SNMHOME /opt/SUNWconn/snm

#rmdir $SNMHOME/bin
#ln -s $EM_HOME/bin $SNMHOME/bin

% setenv PATH $SNMHOME/bin:${PATH}

setenv PATH $SNMHOME/bin:${PATH}
Chapter 8 SunNet Manager Application Support 8-15

Note – It is not necessary to carry out Step 7 for objects imported to Solstice EM

from an SNM database using em_snmdb_import or added to the Solstice EM

database by running snm_discover .

8.4.4 Configuring Optivity 7.0 to Work with Solstice

EM

▼ To Use Optivity 7.0 With Solstice EM as Root

1. Install Solstice EM.

Refer to the Installation Guide for installation instructions.

2. Create a link for the snm.conf file.

Optivity expects to find the snm.conf file. Create the appropriate link as follows:

3. Create an snm_version file that contains the following line:

This file needs to be located in /opt/SUNWconn/em/bin and needs to have

executable file permissions.

4. Each user needs to set the SNMHOME environment variable.

For example:

Also add the same line to the user’s .cshrc file:

ln -s /etc/opt/SUNWconn/snm/snm.conf /opt/SUNWconn/snm/snm.conf

echo “/opt/SUNWconn/snm/bin/snm:Release 2.3 FCS - Solaris X86 Patch
Level 0”

% setenv SNMHOME /opt/SUNWconn/snm

setenv SNMHOME /opt/SUNWconn/snm
8-16 Customizing Guide • October 2001

5. Move executables from $SNMHOME/bin directory to $EM_HOME/bin .

For example:

6. Create a link from $SNMHOME/bin to $EM_HOME/bin.

Remove the $SNMHOME/bindirectory and create a link pointing $SNMHOME/bin to

$EM_HOME/bin :

7. Each user needs to set the SNMDBDIR environment variable.

For example:

Also, add the same line to the user’s .cshrc file; for example:

8. Add $SNMHOME/bin to the user’s path.

For example:

Also, add the same line to the user’s .cshrc file; for example:

9. Install Optivity.

■ Follow the instructions steps documented in Getting Started with Optivity LAN 7.0
for UNIX by Bay Networks.

■ After installation, run /opt/lnms/bin/LNMS_ENABLE as instructed by the

Optivity documentation but do not do any of the other post-installation steps

described in the Optivity manual. In particular, do not invoke /opt/lnms/
optivity_snm , as instructed by the Optivity manual.

#mv $SNMHOME/bin/* $EM_HOME/bin

#rmdir $SNMHOME/bin
#ln -s $EM_HOME/bin $SNMHOME/bin

% setenv SNMDBDIR /var/opt/SUNWconn/snm

setenv SNMDBDIR /var/opt/SUNWconn/snm

% setenv PATH $SNMHOME/bin:${PATH}

setenv PATH $SNMHOME/bin:${PATH}
Chapter 8 SunNet Manager Application Support 8-17

■ Source your .cshrc file. For example:

10. Create an SNM database directory and files.

Optivity looks for certain SNM database files when it starts up. Create these

directories and files if they do not already exist.

a. Create the directory $SNMDBDIR/db. <user-id>.

b. Create the required database files using the following commands:

where <user-id> is the user’s login name.

11. Follow the steps outlined above in Section 8.3,“Adding an SNM Application to
Solstice EM ,” modified as follows:

a. Copy the Solstice EM Optivity icons (the .pm files) into $EM_HOME/glyphs .

The Optivity icons have already been converted into Solstice EM icons for you.

They are installed in $EM_HOME/glyphs/optivity . Substitute the following

step for Step 2 in Section 8.3,“Adding an SNM Application to Solstice EM ”.

Copy the .pm files from $EM_HOME/glyphs/optivity to $EM_HOME/
glyphs .

b. Edit the $LNMSHOME/snm/struct/synoptics-menus.schema file to
correct formatting errors.

Before running the schema-to-GDMO compiler or em_snm_type_import utility on

the synoptics-menus.schema file, it is necessary to correct certain formatting

errors in that file. The following four application entries in the schema file are

incorrect in that they have component entries broken into two lines by a carriage

return:

% source ~/.cshrc

% touch $SNMDBDIR/db. <user-id>/nc.rec
% touch $SNMDBDIR/db. <user-id>/snm+lock

(component.2810conc “Box Status” “boxstatus -H %Name -I %IP_Address
-R %SNMP_RdCommunity”)
(component.2810conc “Nmm Status” “nmmstatus -R %Name -I %IP_Address
-R %SNMP_RdCommunity”)
(component.2810conc “Activity” “boxactivity -H %Name -I %IP_Address
-R %SNMP_RdCommunity”)
(component.2810conc “Diagnostics” “boxdiags -H %Name -I %IP_Address
-R %SNMP_RdCommunity”)
8-18 Customizing Guide • October 2001

You will need to remove the carriage return so that each entry is a single line. The

following is an example of a correct entry:

c. Convert the Optivity SNM schema files to GDMO documents.

Optivity ships two directories that contain SNM schema files that need to be

converted into GDMO and ASN.1 files. The directory $LNMSHOME/snm/struct-
base contains three schemas:

■ switch-elements.schema
■ synoptics-elements.schema
■ synoptics-stackprobes.schema

The schema file, synoptics-lcell.schema in $LNMSHOME/snm/struct
directory needs to be converted to GDMO.

Note – There are a number of schemas in the $LNMSHOME/snm/struct directory

but only the snyoptics-lcell.schema file needs to be converted to GDMO. The

record definitions in the other schema files in this directory are already known to

Solstice EM and do not need to be converted to GDMO.

Use the schema-to-GDMO compiler shipped with Solstice EM to create ASN.1

and GDMO files from these schemas. The syntax for using the compiler is:

where <schema-file> is the name of the SNM schema file to be converted and <oid>
is a number that is unique within the Solstice EM MIS for each schema compiled.

For example:

For more information, refer to Chapter 8 in Management Information Server (MIS)
Guide.

(component.2810conc “Box Profile” “boxprofile -H %Name -I
%IP_Address -R %SNMP_RdCommunity”)

#em_snm2gdmo <schema-file> <oid>

#$EM_HOME/bin/em_snm2gdmo /opt/lnms/snm/struct-base/synoptics-
elements.schema 200
Chapter 8 SunNet Manager Application Support 8-19

d. Move the GDMO and ASN.1 files.

For example:

e. Import the Optivity types into the Solstice EM MIS.

Each schema file within $LNMSHOME/snm/struct-base and $LNMSHOME/snm/
struct needs to have its SNM element types and menus converted into Solstice

EM topology types. The em_snm_type_import utility is used for this purpose;

this utility updates all the relevant Solstice EM configuration files. The syntax for

this utility is:

For example:

em_snm_type_import updates the global Network Views configuration file

(em_viewer.cf) located in $EM_HOME/config . This utility also creates a file

bc_map in $EM_HOME/install/em_platform to create the appropriate

topology type mappings for the Optivity devices.

Note – You must run em_snm_type_import on the $LNMSHOME/snm/struct-
base schema files before importing the types from the $LNMSHOME/snm/struct
schemas.

f. Add $EM_HOME/lib to your LD_LIBRARY_PATH.

For example:

Add the same line to your .cschrc file:

mv synoptics-elementsschema.gdmo /opt/SUNWconn/em/etc/gdmo/.
mv synoptics-elementsschema.asn1 /opt/SUNWconn/em/etc/asn1/.

em_snm_type_import -file <schema-file>

#em_snm_type_import -file /opt/lnms/snm/struct/baynet-rtop.schema

% setenv LD_LIBRARY_PATH $EM_HOME/lib:${LD_LIBRARY_PATH}

setenv LD_LIBRARY_PATH $EM_HOME/lib:${LD_LIBRARY_PATH }
8-20 Customizing Guide • October 2001

If you have also installed SNM, make sure that $EM_HOME/lib occurs before

$SNMHOME/lib in your LD_LIBRARY_PATH.

g. Create a $SNMHOME/bin/snm shell script, with execute permissions, containing
the following:

h. Modify the /opt/lnms/bin/trap_server.sh file as follows:

■ Replace occurrences of $SNMHOME/agents/na.snmp-trap with

$SNMHOME/bin/em_snmp-trap .

■ Replace occurrences of /opt/SUNWconn/snm/agents/na.snmp-trap with /
opt/SUNWconn/snm/bin/em_snmp-trap .

■ Replace all other occurrences of na.snmp-trap with em_snmp-trap .

i. Reboot the system.

j. Run em_services -r to compile and load the new GDMO and ASN.1
documents.

k. Start em_snmp-trap on port 412.

For example:

l. Start Optivity with the following command:

m. Optivity types can now be created either by using Network Views-Object
Properties window to change a device to an Optivity type, or by using the
Solstice EM Network Views menu to create a new object with an Optivity type.

Filling in the Object Description fields for a device in Network Views-Object

Properties window is similar to entering object descriptions in the SNM

properties sheet for the new element, as described in Chapter 3 of the Optivity

manual, on Post-Installation Tasks. However, there is one field in the Network

#!/bin/sh
/opt/SUNWconn/em/bin/em_viewer

#$EM_HOME/bin/em_snmp-trap -p 412 &

% $LNMSHOME/bin/optivity_snm
Chapter 8 SunNet Manager Application Support 8-21

Views-Object Properties window Object Description window that is not present in

the SNM Properties sheet. You must fill in the usrType field, in Network Views-

Object Properties window, with the SunNet Manager type name.

For example, the Optivity type that has the Solstice EM type name syn-
internet has the following SNM type name:

Note – When creating objects using Network Views-Object Properties window,

Optivity device types rely on the Object Descriptions that you fill in.

You should now be able to invoke Optivity tools and commands from the Solstice

EM Network Views menu or from an icon popup menu just as in SunNet Manager.

Note – To populate the database by running discovery from the Optivity tools, it is

necessary to run the Optivity tools as root.

8.4.5 Configuring Landmark’s Performance Works to

Work with Solstice EM

This section describes procedures for setting up Performance Works for UNIX 4.0,

Performance Works for Sybase 2.0, and Performance Works Monitor 1.3.

Note – The default SNMP daemon supplied with Solstice EM (snmp) must be

replaced with Landmark’s SNMP agent (xsnmpd). xsnmpd is placed in the /etc
directory along with snmpd.conf , snmpd.defs , and snmpd.peers . These four

files need to be downloaded from Landmark’s anonymous ftp site.

view.syn-internet
8-22 Customizing Guide • October 2001

▼ To Set Up Performance Works for UNIX 4.0

1. Each user needs to set the SNMHOME environment variable.

For example:

Also add the same line to the user’s .cshrc file:

2. Move executables from $SNMHOME/bindirectory to $EM_HOME/bin.

For example:

3. Create a link from $SNMHOME/bin to $EM_HOME/bin.

Remove the $SNMHOME/bindirectory and create a link pointing $SNMHOME/bin to

$EM_HOME/bin :

4. Add $SNMHOME/bin to the user’s path.

For example:

Also, add the same line to the user’s .cshrc file; for example:

5. Each user needs to set the SNMDBDIR environment variable.

For example:

% setenv SNMHOME /opt/SUNWconn/snm

setenv SNMHOME /opt/SUNWconn/snm

#mv $SNMHOME/bin/* $EM_HOME/bin

#rmdir $SNMHOME/bin
#ln -s $EM_HOME/bin $SNMHOME/bin

% setenv PATH $SNMHOME/bin:${PATH}

setenv PATH $SNMHOME/bin:${PATH}

% setenv SNMDBDIR /var/opt/SUNWconn/snm
Chapter 8 SunNet Manager Application Support 8-23

Also, add the same line to the user’s .cshrc file; for example:

6. Install the Landmark products—Performance Works, UNIX agent, and SNMP
polling agent.

7. Use the MIB-to-GDMO compiler shipped with Solstice EM to create ASN.1 and
GDMO files from the Landmark MIBs.

For example:

Refer to Chapter 8 in Management Information Server (MIS) Guide for information on

running the MIB to GDMO compiler.

8. Move the GDMO and ASN.1 files.

The GDMO and ASN.1 files created by the compiler must be moved to the

appropriate directory under $EM_HOME/etc. For example:

9. Convert the Landmark SNM element types and menus to Solstice EM topology
types.

The schema file lsc_snmintegration.schema needs to have its SNM element types

and menus converted into Solstice EM topology types. Follow the instructions in

Step 4 and Step 5 under Section 8.3,“Adding an SNM Application to Solstice EM .”

After running the SNM type import utility, you will need to copy the updated global

Solstice EM Network Views configuration file to Landmark’s home direction. For

example:

10. Run Solstice EM Network Discovery to populate the MIS.

You can display the values of attributes for objects configured with Landmark agents

by selecting the object in the Network Views and then invoking the SNMP Data

from the object icon menu. The pwadmin utility can be used to set the thresholds for

traps generated by the Landmark agents. The Alarms can be used to view trap

notifications generated by the agents.

setenv SNMDBDIR /var/opt/SUNWconn/snm

#em_cmib2gdmo pwunix.mib

#mv pw*.gdmo /opt/SUNWconn/em/etc/gdmo
#mv pw*.asn1 /opt/SUNWconn/em/etc/asn1

%cp $EM_HOME/config/em_viewer.cf ~landmark/.em_viewer.cf
8-24 Customizing Guide • October 2001

8.5 Importing an SNM Database into
Solstice EM
The em_snmdb_import utility enables you to import a SunNet Manager topology

database into the runtime database of a Solstice EM MIS. The SNM database must

have been previously saved to an ASCII file, using the SNM Console’s File ➔ Save

Management Database… option to save the SNM database to an ASCII-format file.

The command to import the ASCII-format SNM database file is as follows:

Note – The em_snmdb_import utility retains the layout of elements within views.

However, SunNet Manager predefined event requests or event request templates in

the SNM database are not loaded into the Solstice EM MIS. This means that SNM

event request templates that have been defined for use in link or router

management, for example, are not imported into the Solstice EM MIS.

8.6 Access to SNM Agents by SNM
Applications
Solstice EM support for SNM applications to access SNM agents over Solstice EM is

illustrated in the following figure.

em_snmdb_import -import <filename>
Chapter 8 SunNet Manager Application Support 8-25

FIGURE 8-4 SNM Application Accessing SNM Agents Over Solstice EM

Under Solstice EM, an SNM application accesses an SNM agent just as it would

under SNM, through the libnetmgmt library, which is shipped with Solstice EM.

The advantage to using Solstice EM rather than SNM is that, as with using Solstice

EM applications to access SNM agents, data obtained from agents can be stored in

the MIS, which provides a number of user- and programmer-level features that are

not present in SNM.

As shipped with Solstice EM, SNM configuration files, such as snm.conf ,

snmpd.conf , snmp.hosts , and snmp.traps , are stored in their normal, SNM 2.x

locations and are used in the same way as in SNM 2.x. The default locations of these

files are as follows:

The default SNM elements.schema , netware_elements.schema , and

cooptools.schema files , required by SNM applications, are incorporated in the

Solstice EM environment by default. If you have customized the

/etc/opt/SUNWconn/snm/snm.conf
/etc/opt/SUNWconn/snm/snmpd.conf
/var/opt/SUNWconn/snm/snmp.hosts
/var/opt/SUNWconn/snm/snmp.traps

SNM

Application

 libnetmgt libnetmgt_db

PMI

SNM

Agents

RPC Legend

PMI

SNM
RPC

Portable Management Interface
Remote Procedure Call
SunNet Manager

Part of SNM, shipped with Solstice EM

Not part of Solstice EM or SNM

Part of Solstice EM
8-26 Customizing Guide • October 2001

elements.schema file, or have added third-party element definitions, then you

must follow the steps outlined in Section 8.3,“Adding an SNM Application to

Solstice EM .”

The SNM agent and schema files reside, by default, in /opt/SUNWconn/snm/
agents . Third-party agents and schemas are integrated in the Solstice EM

environment just as they were in the SNM environment. As with SNM, in Solstice

EM you would add an entry for na.snmp.schemas to snm.conf for the location of

additional third-party SNMP schemas.

The requirement for $LD_LIBRARY_PATHfor SNM applications accessing SNM

agents is identical to the requirement SNM applications accessing Solstice EM

features, as described in Section 8.3,“Adding an SNM Application to Solstice EM .”

That is, you append the location of the Solstice EM library file to LD_LIBRARY_PATH
with a command such as the following:

SNM applications also have available the $EM_SERVERenvironment variable, for

connecting to a remote MIS, as described in Section 8.3,“Adding an SNM

Application to Solstice EM .”

host% setenv LD_LIBRARY_PATH /opt/SUNWconn/em/lib:/opt/SUNWconn/
lib:${LD_LIBRARY_PATH}
Chapter 8 SunNet Manager Application Support 8-27

8.7 Access to SNM Agents by Solstice EM
Applications
Solstice EM support for Solstice EM applications accessing SNM agents is illustrated

in the following figure.

FIGURE 8-5 Solstice EM Applications Accessing SNM Agents

MIS

PMI

Persistent

Storage

Solstice EM

Application

PMI

RPC

MPA

SNM
Agents

RPC

SNM Schema

to GDMO

Compiler

 snm2gdmo

Legend

MIS

PMI
MPA

SNM
RPC

Management Info Server
Management Protocol Adapter
Portable Management Interface
Remote Procedure Call
SunNet Manager

GDMO Guidelines for Description of MOs

Part of SNM, shipped with Solstice EM

Part of Solstice EM
8-28 Customizing Guide • October 2001

If you install Solstice EM in a network in which you use SNM, you can use Solstice

EM applications to access SNM agents, just as you would access those agents with

an SNM application. In fact, a number of the applications shipped with Solstice EM,

including the RPC/CMIP Data window, Network Views-Object Properties, Event

Logs window, and Alarms window have built-in access to or support for SNM

agents.

The advantage of using Solstice EM applications to access SNM agents, instead of

running SNM, is that the data obtained from the agents becomes part of the MIS.

The MIS has a wealth of tools and functions available, in applications such as the

Event Logs and the Alarms, and Nerve Center request capability, for manipulating

data in ways not possible in SNM.

8.7.1 Configuration

Solstice EM’s application support for SNM agents is seamless. It requires no

configuration or any other action on your part. The complete set of SNM agents is

shipped with Solstice EM, so you can immediately access SNM agents, such as ping ,

rstat , or lpstat .

8.7.2 Agent Support

All of the agents shipped with SNM are also shipped with Solstice EM. This means

that Solstice EM applications have access to all of the RPC agent functions available

to SNM applications.

In addition for agents shipped with SNM, Solstice EM provides support for Remote

Procedure Call (RPC) agents that you might have written for SNM, or acquired from

a third-party vendor. The product has an snm2gdmo compiler that allows you to

convert SNM schema files to GDMO documents, which can be loaded as objects into

the MIS. This is described in Chapter 8 of Management Information Server (MIS) Guide.

8.7.3 Support for SNM Proxy Agents

The complete nature of Solstice EM’s support for SNM agents means that Solstice

EM supports proxy agents that you might have or might choose to write. Proxy

agents are protocol translators, communicating to MIS with the SNM RPC protocol

and communicate to managed objects using a different protocol, which might be a

proprietary protocol, or a standard protocol such as SNA or X.25. For information on

how to write an RPC agent for Solstice EM, refer to Chapter 17 in Developing C++
Applications.
Chapter 8 SunNet Manager Application Support 8-29

8-30 Customizing Guide • October 2001

CHAPTER 9

SNMP Management

Simple Network Management Protocol (SNMP) is a protocol for exchanging

information between network managers and agents processes within various

managed objects that are able to report their status on request. It is a connection-less

protocol, with the view of continuing to receive information from managed objects

even when network performance is degraded and a connection-based reliable

transport may fail.

This chapter describes the following topics:

■ Section 9.1 “SNMP Managed Components” on page 9-1

■ Section 9.2 “SNMP Management Protocol Adapter” on page 9-3

■ Section 9.3 “SNMP MPA Configuration” on page 9-3

■ Section 9.4 “Specifying the Version of SNMP Used” on page 9-4

9.1 SNMP Managed Components
Solstice Enterprise Manager (Solstice EM) provides the following components for

management of network resources that are manageable using SNMPv1 and

SNMPv2c:

■ An SNMP daemon (snmpd) which can be installed on Sun workstations.

For information about the SNMP daemon refer to the Site/SunNet/Domain Manager
Reference Manual. Procedures for installing the SNMP daemon is available in

Chapter 6 of Installation Guide.

■ Distributable SNMP proxy agents (na.snmp and na.snmpv2) that use Remote

Procedure Call (RPC) protocol to handle communication (such as threshold-

checking) between the Solstice EM management station (where the MIS resides)

and SNMP agents.

The RPC-based SNMP proxy agents are described in Chapter 10.
9-1

■ A distributable SNMP trap daemon (em_snmp-trap) which listens for SNMP

event notifications (traps) and translates these into CMIP event notifications for

forwarding to the Solstice EM MIS. The trap daemon can also be configured to

forward unprocessed SNMP traps to other managers.

The SNMP trap daemon is discussed in Chapter 11.

FIGURE 9-1 Components of Solstice EM’s SNMP Management Support

■ A distributable SNMP Management Protocol Adaptor (MPA), which handles

communication of management requests and agent responses between the

Solstice EM MIS and SNMP agents.

MIS

Request

Response
(PMI)

SNMP
MPA

Request

Response
via SNMP

 SNMP Agent

 SNMP
 traps

SNMP
Trap Daemon

(em_snmp-trap)

CMIP event
notifications

SNM event
request (PMI)

RPC
MPA

SNM
event request
(via RPC)

Poll

Response (via SNMP)

SunNet Manager
SNMP
Proxy Agent
(na.snmp)

SNM
Event
Forwarder

S
N

M
 event notifications

Nerve
Center

snmAlarmEvents
9-2 Customizing Guide • October 2001

9.2 SNMP Management Protocol Adapter
The Simple Network Management Protocol (SNMP) Management Protocol Adapter

(MPA) allows for the retrieval of data and the setting of attribute values for SNMP

managed devices. The SNMP MPA works as a proxy agent between the Solstice EM

MIS and any device on the network which is SNMP-manageable. The proxy agent

allows you to manage any number of Management Information Bases (MIBs), where

either standard SNMP MIB objects or enterprise-specific objects can be defined.

SNMP MIBs get compiled by the Concise MIB compiler (em_cmib2gdmo) into

GDMO and ASN.1 descriptions which then get loaded into the Solstice EM MIS.

The SNMP MPA processes Common Management Information Service (CMIS)-like

requests received from the MIS, translates them into SNMP requests, and sends the

requests out to the intended device. The translation is based on the OMNIPoint I

Internet-ISO Management Coexistence (IIMC) standard. The SNMP MPA then

receives the response from the SNMP device and forwards it back to the MIS.

9.3 SNMP MPA Configuration
The following configuration parameters for the SNMP MPA are set during

installation:

■ Default MIS host—The name of the machine running the MIS that the MPA is to

connect to.

■ Default MIS port—The port used in communicating with the MIS (by default this

is port 5555).

■ Default SNMP MPA port—The port on which the SNMP MPA listens for

incoming messages (by default this is port 5575).

■ SNMP request timeout—The length of time the SNMP MPA waits for a response

to a request sent to an SNMP agent (by default, this is 20 seconds).

■ SNMP retries—The number of times the SNMP MPA retries a request to an SNMP

agent if there is no response (by default this is three).

The request and retry parameters determine when the SNMP MPA determines that

an SNMP agent is unavailable.
Chapter 9 SNMP Management 9-3

9.4 Specifying the Version of SNMP Used
Solstice EM supports the SNMPv1 and SNMPv2c protocols. When you are

performing management operations on objects in an SNMP agent, you have to

specify the version of SNMP used for communications between the SNMP agent and

your application.

Specify the version of SNMP used in either of the following ways:

■ Calling the set_management_protocol function of the EMSnmpAgent class

■ Using the PMI to set the managementProtocol attribute

9.4.1 Calling the set_management_protocol
Function of the EMSnmpAgent Class

Call the set_management_protocol function if you are using the EMSnmpAgent
class to represent your SNMP agent. In the call to the set_management_protocol
function, set the argument as follows depending on the version of SNMP:

■ SNMPv1: EMSnmpAgent::snmp_v1
■ SNMPv2c: EMSnmpAgent::snmp_v2

A call to the set_management_protocol function is shown in CODE EXAMPLE 9-1.

In this example, SNMPv2c is used for communications between the SNMP agent and

the application.

CODE EXAMPLE 9-1 Calling the set_management_protocol Function

...
EMSnmpAgent::set_management_protocol (EMSnmpAgent::snmp_v2);
...
9-4 Customizing Guide • October 2001

9.4.2 Using the PMI to Set the managementProtocol
Attribute

If you are using the Image class to represent your SNMP agent, set the

managementProtocol attribute when you initialize the instance of Image . To set

the managementProtocol attribute, call the set_str function. You must set the

managementProtocol attribute to the object identifier (OID) of the version of

SNMP that you are using.

The versions of SNMP are identified by the following OIDs:

■ SNMPv1: 1.3.6.1.4.1.42.2.2.2.9.2.4.3.1
■ SNMPv2c: 1.3.6.1.4.1.42.2.2.2.9.2.4.3.2

CODE EXAMPLE 9-2 shows code for setting the managementProtocol attribute.

In this example, SNMPv1 is used for communications between the SNMP agent and

the application.

CODE EXAMPLE 9-2 Setting the managementProtocol Attribute Directly

...
Image im;
...
im.set_str ("managementProtocol","{1 3 6 1 4 1 42 2 2 2 9 2 4 3 1}");
...
Chapter 9 SNMP Management 9-5

9-6 Customizing Guide • October 2001

CHAPTER 10

SunNet Manager SNMP
Proxy Agents

This chapter describes the configuration and operation of the SunNet Manager

SNMP proxy agents. For information on installing the SNM agents and proxies, refer

to Chapter 6 in Installation Guide.

Note – For purposes of this guide, SunNet Manager (SNM) refers to the 2.2 or later

releases of SunNet Manager, and releases of Solstice Site Manager and Solstice

Domain Manager. SunSoft makes no claims of compatibility of Solstice Enterprise
Manager (Solstice EM) with versions of SNM prior to 2.2.

This chapter describes the following topics:

■ Section 10.1 “Proxy Agents” on page 10-1

■ Section 10.2 “SNMP Proxy Agent Operation” on page 10-4

■ Section 10.3 “SNMP Trap Daemon (em_snmp-trap) Operation” on page 10-7

■ Section 10.4 “Schema Files” on page 10-7

■ Section 10.5 “SNMP Version 2 Support” on page 10-9

10.1 Proxy Agents
The SunNet Manager (SNM) agents provided with Solstice EM include proxy agents

to support Simple Network Management Protocol (SNMP) and SNMP Version 2.

Proxy agents allow for distribution of polling of SNMP devices to multiple locations

in the network.
10-1

SunNet Manager requests can be launched from the Solstice EM MIS using the

request-handling capabilities of the Solstice EM Nerve Center (as described in

Chapter 17). Polling of the managed resource at the specified intervals is handled by

the SNM proxy agent rather than the Nerve Center, minimizing network traffic and

the polling work required of the MIS.

Proxy agents run on one of the following platforms:

■ Sun workstations running SunOS 4.x

■ Sun workstations running Solaris 2.x

■ PCs running Solaris 2.x/x86.

The Solstice EM MIS communicates with the SNMP proxy agents using the same

Remote Procedure Call (RPC) protocol as other SNM agents. The SNMP Version 1

proxy agent (na.snmp) communicates with other network devices using the SNMP

protocol defined in RFC 1157. The SNMP Version 2 proxy agent (na.snmpv2) is

discussed below in Section 10.5, “SNMP Version 2 Support .”

The SNMP proxy agent allows you to manage any number of management

information bases (MIBs) in which you can define either standard SNMP MIB objects

or enterprise-specific objects. The proxy agent uses a SunNet Manager schema file to

map objects described in a MIB and in SunNet Manager attributes. A schema file is

the representation of a MIB used by SunNet Manager.

Communication between the Solstice EM MIS and SNMP devices, using the RPC-

based SNMP proxy agents, thus requires three representations of the MIB structure:

■ The SNMP MIB on the agent system containing the managed resource

■ The SNM schema mapping of the MIB, which resides on the proxy system

■ The GDMO and ASN.1 documents, defining the managed object class, which is

loaded into the MIS

FIGURE 10-1 MIB, GDMO, and Schema Definitions

 MIS SNMP

Proxy Agent

SNMP

Agent

GDMO

Object Classes

SNM

Schemas

MIB

Uses na.snmp.schemas
in snm.conf file

SNMP
Protocol

RPC
Protocol

(na.snmp)
10-2 Customizing Guide • October 2001

Generating GDMO object classes from SNMP MIBs is described in Chapter 8 of

Management Information Server (MIS) Guide. How to generate SNM schema files from

MIBs is discussed later in this chapter. To ensure successful operation, there must be

an identical mapping of object definitions between the SNMP MIBs, the GDMO

documents and the SNM schema files, as shown in the above figure.

The following SunNet Manager SNMP schemas are supplied with Solstice EM:

■ snmp.schema describes MIB I, as defined by RFC 1156.

■ snmp-mibII.schema describes MIB II, as defined by RFC 1213.

■ snmpv2-mibII.schema describes MIB II, as used by SNMP version 2. See the

“SNMP Version 2 Support” section for a description of SNMPv2 support. This

schema is used only by the na.snmpv2 agent.

■ sun-snmp.schema describes the MIB associated with the SNMP agent (snmpd)

for Sun workstations. This schema file provides MIB II support with Sun

enterprise-specific extensions. For more information about the

sun-snmp.schema , refer to the Site/SunNet/Domain Manager Reference Manual.

Except for the two MIB II files (which differ only in the RPC number specified), each

of the schema files listed above is a subset of the file that follows it. That is,

snmp.schema is a subset of the two MIB II files, which, in turn, are a subset of sun-
snmp.schema.

The SNMP proxy agent can simultaneously access any of the above-mentioned

schemas, as well as other enterprise-specific schemas that you might create. The

SNMP proxy agent uses the keyword na.snmp.schemas in the snm.conf file to

locate the directories where the SNMP schema files reside.

The following section describes in detail how the SNMP proxy agent works. Note

that many of the operations of the proxy agent are defined by arguments passed in

the SNM request or with keywords in the snm.conf file on the proxy system. Refer

to the snm.conf entry in the Site/SunNet/Domain Manager Reference Manual for

information on the keywords that are related to the SNMP proxy agent.
Chapter 10 SunNet Manager SNMP Proxy Agents 10-3

10.2 SNMP Proxy Agent Operation
The default operation of the SNMP proxy agent is configured by values specified in

the snm.conf file. These parameters are identified by various keywords. The affect

of these settings is described below. The SNMP proxy agent operation is illustrated

in the following figure.

FIGURE 10-2 SNMP Proxy Agent Operation

SNMP

Proxy Agent

(na.snmp)

SNM Event
Dispatcher
(na.event)

SNM
Applications

SNM
Event
Forwarder
(em_snmfwd)

snmAlarmEvents

SNM
Events

Alarm
Log

Nerve
Center

MIS

snm.conf

schema files

reads

Proxy SystemSolstice EM System

 SNM
 Events

SNMP

Agent

 Poll Response

SNM
RequestS

N
M

 E
ve

nt
s

10-4 Customizing Guide • October 2001

When the SNMP proxy agent starts up (normally via inetd) it loads all the SNMP

schemas located in the directories specified by the keyword na.snmp.schemas in

the snm.conf file on its host system. Only SNMP-related schemas (schemas that

contain an rpcid keyword value of ‘100122’) are loaded.

When the SunNet Manager SNMP proxy agent receives a request for an SNMP agent

on a particular device, it performs the following sequence of operations:

1. It checks whether there are any new or modified SNMP related schema files since

the last request. If the proxy agent finds a new or modified schema in any of the

directories specified by the na.snmp.schemas keyword in the snm.conf file on

the proxy’s system, it loads the schema file.

2. It passes the request to an existing agent subprocess or forks a new subprocess, if

needed, to handle the request. A single subprocess can handle multiple SNMP

requests from an instance of a management application. The maximum number of

subprocesses that the SNMP proxy agent can fork is set by the keyword

na.snmp.max-subprocs in the snm.conf file. At installation, this value is set

to 20. The maximum number of requests that a subprocess can handle is set by

the keyword na.snmp.max-requests in the snm.conf file. At installation, this

value is set to 50.

3. It checks whether the request contained any optional arguments. Requests sent by

the Solstice EM Nerve Center may include arguments in an SNMP request. These

arguments can include:

a. The name of the schema to be used with the request. If, for some reason, the

specified schema does not contain the attribute group specified in the request,

the proxy agent attempts to use the schema specified by the keyword

na.snmp.default-schema in the snm.conf file on its host system. At

installation, the default schema is set to be:

■ /usr/snm/agents/snmp-mibII.schema for Solaris 1.x installations

■ /opt/SUNWconn/snm/agent/snmp-mibII.schema for Solaris 2.x

installations

This schema supports the MIB II definition.

b. A community name that specifies the SNMP community name the proxy agent

is to use when reading or writing attribute values. If no community name is

specified, public is used for both Get and Set requests.

c. A request timeout that specifies the number of seconds the proxy agent is to

wait for a response to a request sent to the target system. If no request timeout

is specified, the proxy agent uses the value specified by the keyword

na.snmp.request_timeout in the snm.conf file on its system. At

installation, the value is set to 5 (seconds).

4. The proxy agent then sends an SNMP message to the device and waits for a

response.
Chapter 10 SunNet Manager SNMP Proxy Agents 10-5

If the proxy agent is sending a Get request, the proxy sends up to three SNMP

requests per reporting interval. (The maximum number of SNMP requests sent is

specified by the keyword na.snmp.max_attempts in the snm.conf file, by

default the value is set to 3.) For each SNMP PDU sent, the proxy waits for the

specified request timeout for a response from the device. As mentioned

previously, the request timeout can be an optional argument in the request. If it is

not specified in the request, request timeout is either the request timeout value

specified in the SNMP host file for the device or the value of the keyword

na.snmp.request_timeout in the snm.conf file.

If the proxy agent does not receive a response after sending three SNMP requests,

it sends a “No response from system” report to the Event Dispatcher (na.event)

(The keyword na.snmp.trap-if-no-response in the snm.conf on the proxy

system determines whether the proxy agent sends a trap or an error report. At

installation, the keyword’s value is true —send a trap report.) The proxy agent

then waits until the next reporting interval to send out another set of SNMP

requests. If no reporting interval has been specified in the request, the proxy

agent sends out SNMP requests every 30 seconds. If the proxy agent does not

receive a response when the last report is due, it sends both an error report and a

trap report to na.event if na.snmp.trap-if-no-response is true .

If the proxy agent is sending a Set request, the proxy waits for the specified

request timeout for a response before timing out. There is no attempt to re-send

the request. The reason for this is as follows: Because UDP is the transport

mechanism, there is no guarantee of message delivery, thus there is no way to

determine whether the request or the response to the request was lost. If you do

not receive a response from your initial Set request, you should perform a Get

request to see whether or not the Set operation was successful.

5. When the proxy agent receives a response from the target device, it sends a report

to the Event Dispatcher (na.event) on the management machine that initiated

the request.

If the proxy agent does not receive an acknowledgment from the event dispatcher

within a specified time, the proxy agent terminates the request. The specified time

that the proxy waits for the event dispatcher to acknowledge the report is

specified by the na.snmp.report_timeout keyword in the snm.conf file. At

installation, the keyword’s value is set to 5 (seconds).

Normally, if the SNMP proxy agent is not performing any requests, it will exit.

The keyword na.snmp.exit-if-no-requests in the snm.conf file allows

you to specify otherwise.
10-6 Customizing Guide • October 2001

10.3 SNMP Trap Daemon (em_snmp-trap)
Operation
Asynchronous or unexpected event notifications (traps) from SNMP agents are

handled by the SNMP trap daemon (em_snmp-trap) , which may run on one or

more machines on the network. The daemon listens for incoming traps on the SNMP

trap port (port 162). The trap daemon does the following with incoming traps:

■ SNMP traps are converted to CMIP event notifications, as specified by the trap

daemon’s trap_maps configuration file, and sent to the MIS.

■ SNMP traps are also translated into SunNet Manager traps for use by SNM

applications. SNM applications that register with the event dispatcher receive the

incoming SNM traps forwarded by the trap daemon. The trap daemon uses a

SunNet Manager SNMP trap file, which contains information on enterprise-

specific traps.

■ You may also specify forwarding of raw SNMP traps to other managers.

Configuration of the Solstice EM SNMP trap daemon is described in Chapter 11.

10.4 Schema Files
If you do not already have an SNM schema file for the device you want to manage

via the RPC-based SNMP proxy agent (na.snmp), use the mib2schema utility to

convert an existing MIB file for the device. The mib2schema utility supports

conversion of MIBs adhering to the following Internet standards:

■ RFC 1156—MIB-I

■ RFC 1213—MIB-II

■ RFC 1155—SMI

■ RFC 1212—Concise MIB definition

■ RFC 1215—Defining traps

To create a schema file for managing devices via the SNMP Version 2 proxy agent

(na.snmpv2), use the v2mib2schema utility to convert the MIB to a V2-compatible

schema. The v2mib2schema utility is described below in Section 10.5.3, “Using the

v2mib2schema Program .”

Note – Nested groups or tables are not supported in SNM schema files.
Chapter 10 SunNet Manager SNMP Proxy Agents 10-7

You may need to manually edit the resulting schema file produced by mib2schema .

The areas that are likely to require changes are as follows:

■ When mib2schema encounters an OCTET STRING, it inserts -C ??? in place of a

format string. If you want to format octet strings in a particular way, search the

schema file for occurrences of -C ??? to replace ??? with the required format

string. If a format string is specified, the SNMP proxy agent formats each octet of

the attribute value it receives from an SNMP agent before sending the attribute

value to a SunNet Manager rendezvous. You may, however, choose not to enter

any format string. In this case, the contents of the OCTET STRING will be printed

as is.

The format string is the same as the sprintf(3S) format argument. Up to 16 octets

can be formatted; each byte is sent to sprintf as a separate, unsigned character. For

example, the format string:

causes an OCTET STRING containing a 48-bit Ethernet address to be formatted in

standard colon notation (for example, 08:00:20:07:8F:93).

Note – The format string and the length of the OCTET STRING to be formatted

must match. All bytes specified in the format string are displayed. If the OCTET

STRING is smaller than the format string, unexpected characters may be displayed

in the formatted output.

Note that the -C format parameter is only used if the parameter -T STRING is

specified for the attribute. If the parameter -T STRING is specified and

-C format is not specified, the attribute is displayed as either octets or as a string,

depending upon whether the attribute is an octet or display string.

An example of the characteristics string for the ifPhysAddress attribute in the

ifStatus table is shown below:

This results in the display:

ifPhysAddress =08:00:20:09:A0:D5

■ Some SNMP devices cannot return groups or tables with a large number of

attributes; this is due to local space limitations. When this happens, the SNMP

proxy agent returns an error message that the response is “too big”. This means

that very large groups or tables need to be split into smaller groups or tables to be

%02.2X:%02.2X:%02.2X:%02.2X:%02.2X:%02.2X

"-N ifPhysAddress -O 1.3.6.1.2.1.2.2.1.6 -T STRING -A RO
-C %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X -X equal -F 0"
10-8 Customizing Guide • October 2001

received by the SNMP proxy. mib2schema does not automatically split groups or

tables. Generally, if a group has more than 15 fields, it is a good idea to split the

fields up into smaller groups. You can choose your own name for subgroups.

In addition to the schema file, the mib2schema utility produces an object identifier

file (with the .oid suffix) that contains a table of object identifiers and names. The

object identifier file is required only if you want SNMP traps forwarded as SNM

traps to SunNet Manager Consoles. For SNM Console support, the contents of the

.oid file need to be added to the SNM Object Identifier Database, using the SNM

build_oid utility. For more information, refer to the build_oid entry in the Site/
SunNet/Domain Manager Reference Manual.

mib2schema may also produce a trap definition file (with the.traps suffix),

depending upon whether traps were specified in the MIB. This file is used for

mapping enterprise-specific traps into SunNet Manager trap format for use by the

SNM Console. Refer to the Solstice Site/SunNet/Domain Manager Administration Guide
for more information.

If mib2schema cannot determine the key for a table characteristics field in the

schema file, it inserts -K ??? into the schema file.

10.5 SNMP Version 2 Support
Solstice EM provides support for SNMP Version 2 through the SunNet Manager

SNMP Version 2 proxy agent (na.snmpv2). This section assumes you are familiar

with SNMPv2 concepts. Instructions for installing and de-installing SNMPv2 are in

the Installation Guide.

SunNet Manager provides a proxy agent that supports SNMPv2. This proxy agent

allow you to get data and event information from and set attribute values for

devices managed through SNMPv2.

There is also an SNMP agent for Sun workstations called the snmpv2d daemon. The

MIS communicates with this daemon through the SNMP proxy agent. The snmpv2d
daemon also allows Sun workstations to be managed by other SNMPv2 and SNMP

stations. For more information about the snmpv2d daemon, see the snmpv2d entry in

the Site/SunNet/Domain Manager Reference Manual.

The following sections discuss the differences between SNMP and SNMPv2. For

information about the SNMPv2 configuration files, see the following man pages:

v2install (1), acl.pty (5), agt.pty (5), context.pty (5), mgr.cnf (5),
mgr.pty (5), snmpv2d.conf (5), and view.pty (5).
Chapter 10 SunNet Manager SNMP Proxy Agents 10-9

These man page entries are also provided in hardcopy and AnswerBook form in the

Solstice Site/SunNet/Domain Manager Reference Manual.

Note – When the Discover tool locates SNMP devices on your network, it cannot

determine whether the devices support functionality specific to SNMPv2.

10.5.1 SNMPv2 Enhancements

The key enhancements from SNMP to SNMPv2 are in the following categories:

■ Structure of Management Information (SMI)

■ Protocol operations

■ Manager-to-manager capability

■ Security

10.5.1.1 Structure of Management Information

The SMI for SNMPv2 is based on the SMI for SNMP. The SNMPv2s SMI provides

more extensive specification and documentation of managed objects and MIBs.

Several new data types were created for SNMPv2. These include a 64 bit-counter

(Counter 64) and the UInteger32 type which allows representation of integers in

the range 0 to 232 - 1.

The SNMPv2 OBJECT-TYPEmacro includes an optional UNITS clause, which

contains a textual definition of the units associated with an object. This clause is

useful for any object that represents a measurement in units (ex. “seconds”). The

OBJECT-TYPEmacro for SNMPv2 also incudes a MAX-ACCESSclause which allows

you to specify the maximum level of access.

10.5.1.2 Protocol Operations

SNMPv2 has three new protocol data units (PDU). The SNMPv2 trap PDU works in

a way similar to that of the SNMPv1 trap PDU, but it uses a different format from

the SNMPv1 trap PDU. Its format is changed to be the same as most other SNMPv2

PDUs. This eases the receiver processing task.

A major enhancement for SNMPv2 is the GetBulkRequest PDU. This PDU can

significantly minimize the number of protocol exchanges required to retrieve a large

amount of management information. This PDU is presently not used by Solstice EM

for its operation.
10-10 Customizing Guide • October 2001

The third additional PDU is the InformRequest PDU. This is sent by an SNMPv2

manager, on behalf of an application, to another SNMPv2 manager. The Protocol

Data Unit (PDU) provides management information to an application using the

second SNMPv2 manager.

10.5.2 SNMPv2 Files

You can install SNMPv2 as an agent (snmpv2d), a manager (na.snmpv2), or both.

The required files are installed as part of the current product. Installation steps are

the same for both agents and managers. Before running the v2install script, you

will need to create the three configuration files required by the v2instal l script.

The files are as follows:

■ agents —contains names of hosts on which the snmpv2d agent will be installed

■ mgrs.v1 —contains names of hosts that will be running SNMPv1 managers

(na.snmp)

■ mgrs.v2 —contains names of hosts that will be running SNMPv2 managers

(na.snmpv2)

See the v2install (1) man page, or the v2install entry in the Site/SunNet/Domain
Manager Reference Manual, for detailed information about these files.

10.5.3 Using the v2mib2schema Program

A program, v2mib2schema , has been included with the current product to allow

you to translate your own SNMPv2 MIBs to SNM schema files.

Be aware that SunNet Manager schemas do not have the flexibility of SNMPv2 MIBs,

so changes to the MIB may be necessary before v2mib2schema can successfully

parse it.

Although v2mib2schema parses TEXTUAL-CONVENTIONS clauses, it currently

ignores them, so later references to the new types will cause syntax errors. See the

v2mib2schema (5) man page (or v2mib2schema entry in the Site/SunNet/Domain
Manager Reference Manual) for more details.
Chapter 10 SunNet Manager SNMP Proxy Agents 10-11

10-12 Customizing Guide • October 2001

CHAPTER 11

Mapping SNMP Traps to CMIP
Event Notifications

Simple Network Management Protocol (SNMP) agents have the ability to generate

event notifications on their own initiative when certain conditions are detected;

these notifications are called traps. A Solstice Enterprise Manager (Solstice EM)

daemon—em_snmp-trap —listens for incoming SNMP traps for forwarding to

management stations. The em_snmp-trap daemon can be distributed to multiple

machines in the network.

Solstice EM supports both SNMPv1 and SNMPv2c. For more information, see

Section 11.1 “SNMP Support” on page 11-1.

This chapter describes the following topics:

■ Section 11.1 “SNMP Support” on page 11-1

■ Section 11.2 “Trap Daemon Operation” on page 11-2

■ Section 11.3 “The Structure of SNMP Traps” on page 11-5

■ Section 11.4 “Default Trap Mapping” on page 11-8

■ Section 11.5 “Trap Daemon Behavior When No Mapping is Provided” on

page 11-13

■ Section 11.6 “Format of trap_maps File” on page 11-14

■ Section 11.7 “Customizing the Mapping of SNMP Traps” on page 11-25

■ Section 11.8 “Distributed Trap Handling” on page 11-37

11.1 SNMP Support
Solstice EM supports both SNMP version 1 (SNMPv1) and SNMP version 2c

(SNMPv2c). The SNMPv2c standard is based on the community string model.

Solstice EM does not support SNMPv2 InformRequest (confirmed traps).
11-1

Supporting both SNMPv1 and SNMPv2c protocol offers you the flexibility to interact

with SNMPv1 and SNMPv2c agents on your network. Configuration and operation

of the SNMP versions differ in some areas, and they are explained in detail in the

remaining sections of this chapter.

11.2 Trap Daemon Operation
The Solstice EM trap daemon (em_snmp-trap) supports both SNMPv1 and

SNMPv2c.

The trap daemon for SNMPv1 and SNMPv2c does the following with incoming

SNMP traps:

■ SNMP traps are converted to Common Management Information Protocol (CMIP)

event notifications and sent to the MIS. Like other Solstice EM applications,

em_snmp-trap uses the Portable Management Interface (PMI) to communicate

with the MIS. The trap daemon’s mapping of SNMP traps into CMIP notifications

can be customized via entries in the daemon’s trap mapping file (trap_maps).

Procedures for customizing the trap daemon are described in Section 11.7,

“Customizing the Mapping of SNMP Traps”.

■ SNMP traps are also translated into SunNet Manager traps for use by SunNet

Manager (SNM) applications. Any SNM application (such as the SNM Console)

that registers with the SNM Event Dispatcher (na.event) on a manager system

receives the incoming SNM traps forwarded by the trap daemon. The trap

daemon uses a SunNet Manager SNMP trap file (snmp.traps), which contains

information for interpretation of enterprise-specific traps. To configure the SNMP

trap daemon for use with SunNet Manager, follow the Solstice Site/SunNet/Domain
Manager Administration Guide guidelines for the SNM trap daemon (na.snmp-
trap). (The SNM trap conversion functionality of na.snmp-trap is a subset of

the functionality of the Solstice EM SNMP trap daemon.)

■ You can also filter raw SNMP traps to be forwarded to other managers or

discarded. Configuring this capability is described in Section 11.8.1, “Filtering

SNMP Traps for Other Managers.” The SNMP manager(s) is configured when you

install the Solstice EM trap daemon. The installation script prompts you for the

host name and port number of the manager that is to receive the forwarded

SNMP traps. If you want to discard raw SNMP traps for other managers, add

DISCARD to the trap-filtering-record in the trap_forward file.

Note – It is unnecessary to run both the Solstice EM SNMP trap daemon and the

SunNet Manager SNMP trap daemon (na.snmp-trap) on the same system because

they listen at the same port (port 162) and the SNM trap-daemon handling is a

subset of the functionality of em_snmp-trap .
11-2 Customizing Guide • October 2001

SNMP trap daemon operation is illustrated in the following figure.

For information on how to install em_snmp-trap , refer to Chapter 6 in Installation
Guide.

Note – In the current release, em_snmp-trap is supported only on Sun

workstations running Solaris 2.6 through 2.8 software.

FIGURE 11-1 em_snmp-trap Operation

SNMP Trap
Daemon
(em_snmp-trap)

 SNMP

Alarm
Log

CMIP event

trap_maps

reads at
startup

Solstice EM MIS

Alarm
Service

Sets device
 fault status

Monitors

EM Network

traps

 Runtime
 data

Determines
icon color

Other Managers

SNMP
Traps

SNM
Traps

Event
Dispatcher

SunNet Manager

Applications

SNM
Traps(na.event)

trap_forward
snm.conf
snmp.traps

SNMP Agent
Solstice EM

notifications

Views

(SNMPv1 only)

Alarm Manager
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-3

There are two ways the SNMP trap daemon can be started or stopped:

■ The em_services command is used to start and stop all of the Solstice EM

daemons at once, including the trap daemon and the MIS. (For information on the

em_services command, refer to Chapter 2 in Management Information Server
Guide.)

■ If you want to start or stop the trap daemon by itself, you can use the em_trapd
script.

11.2.1 Starting the Trap Daemon

▼ To Start the Trap daemon

Type the following:

Port number is optional. You can use this option to start em_snmp-trap on a

non-default port. By default, em_snmp-trap listens for incoming traps on port

162. For example, to start the trap daemon on port 412, enter the following

command:

11.2.2 Stopping the Trap Daemon

▼ To Stop the Trap Daemon

The following command stops the trap daemon:

You should use these commands if you want to stop the trap daemon on an MIS

machine without starting or stopping the MIS.

em_trapd start [<port_number>]

em_trapd start 412

em_trapd stop
11-4 Customizing Guide • October 2001

At startup the SNMP trap daemon spawns at least two child processes. One process

is responsible for translation of traps to SunNet Manager format and forwarding to

the SunNet Manager event dispatcher (na.event). In addition, one additional child

process is spawned for each of the MIS hosts the trap daemon connects to. (You

specify the target MIS machines during installation of the trap daemon.) Each of

these processes sets up a CMIP over TCP/IP connection to the MIS on a particular

host, and is responsible for conversion of SNMP traps to CMIP event notifications.

The trap daemon’s mapping of incoming SNMP traps into CMIP event notifications

is determined by user-configurable mapping records in the trap daemon’s

trap_maps file. The trap_maps file is an ASCII text file that resides in the

/etc/opt/SUNWconn/em/conf directory; the trap daemon reads this file whenever

it starts.

11.3 The Structure of SNMP Traps
Throughout this chapter we will be making reference to the various fields that

comprise the SNMP trap Protocol Data Unit (PDU). The structure of the SNMP traps

for SNMPv1 and SNMPv2c differ. See the following sections for information specific

to each SNMP version.

11.3.1 SNMPv1

The SNMP trap PDU for SNMPv1 has the fields indicated in the following figure.

FIGURE 11-2 SNMPv1 Trap PDU Structure

<type> <enterprise> <agent-addr> <generic-trap> <specific-trap> <timestamp> <variable-bindings>

SNMPv1 Trap PDU

 Variable Bindings

<varbindname1> <varbindvalue1> … … <varbindnameN> <varbindvalueN>
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-5

The fields are as follows:

The <generic-trap> and <specific-trap> fields contain values that indicate the nature of

the trap. The possible values for <generic-trap> are described in the following table.

TABLE 11-1 SNMPV1 Field Descriptions

Field Description

<type> Indicates the type of SNMP message. (In this case, it indicates that

this is a trap PDU.)

<enterprise> Indicates the subsystem that generated the trap, as indicated
by the sysObjectID attribute.

<agent-addr> This is the IP address of the source of the trap.

<generic-trap> This is an integer value in the range of 0 to 6 indicating the
standard trap type. The standard trap types are listed in
TABLE 11-2.

<specific-trap> A device-specific value providing more information
concerning to the nature of the event.

<timestamp> Time between the last reinitialization of the agent system
and the time when the trap was generated.

<variable-bindings> Information that varies depending upon the particular
implementation by the product vendor. The format consists
of attribute/value pairs. Each attribute name is followed by
its value.

TABLE 11-2 Standard SNMP Trap Types

Value of <generic-
trap> Trap Type Description

0 coldStart The originating SNMP device is

reinitializing itself, typically due to

unexpected reboot.

1 warmStart The originating SNMP device is

reinitializing itself, typically due to

normal restart.

2 linkDown One of the agent’s communication links is

down. The first name/value pair in the

variable bindings is the ifIndex for the

interface.
11-6 Customizing Guide • October 2001

11.3.2 SNMPv2c

The SNMPv2c trap PDU differs substantially from the SNMPv1. The SNMPv2c PDU

does not contain the following information:

■ <enterprise>

■ <agent-addr>

■ <generic-trap>

■ <specific-trap>

■ <timestamp>

For SNMPv2c traps, some of this information is contained in the variable bindings.

The <error-status> and the <error-index> fields are always set to 0 for SNMPv2c, as

shown in the following figure.

3 linkUp One of the agent’s communication links

has come up. The first name/value pair in

the variable bindings is the ifIndex for the

interface.

4 authenticationFailure The originating system has received a

protocol message that has failed

authentication.

5 egpNeighborLoss An External Gateway Protocol peer has

been marked down.

6 enterpriseSpecific Further information about the event is

indicated in the <specific-trap> field.

TABLE 11-2 Standard SNMP Trap Types

Value of <generic-
trap> Trap Type Description
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-7

FIGURE 11-3 SNMPv2c Trap PDU Structure

The fields are as follows:

SNMPv2c requires the first two variable bindings to be sysUpTime and

TrapOid . If present, the enterprise Oid must be the last variable binding.

11.4 Default Trap Mapping
A default trap-mapping is configured automatically when you install the Solstice

EM trap daemon. When an SNMP trap arrives, Solstice EM uses this default

mapping for converting the SNMP trap into a CMIP event notification. For

information on customizing the Solstice EM trap daemon, see Section 11.7

“Customizing the Mapping of SNMP Traps” on page 11-25. The default method for

TABLE 11-3 SNMPV2c Field Descriptions

Field Description

<type> Indicates the type of SNMP message. (In this case, it indicates that

this is a trap PDU.)

<request_id> The sequential number of the trap.

<error_status> This field is always set to 0 for SNMPv2c traps.

<error-index> This field is always set to 0 for SNMPv2c traps.

<variable-
bindings>

Information that varies depending upon the particular

implementation by the product vender. The format consists of

attribute/value pairs. Each attribute name is followed by its value.

<type> <request_id> < 0 > < 0 > <variable-bindings>

SNMPv2c Trap PDU

 Variable Bindings

<varbindname1> <varbindvalue1> … … <varbindnameN> <varbindvalueN>
11-8 Customizing Guide • October 2001

specifying the source of the alarm is different for SNMPv1 and SNMPv2c. See the

following sections for information specific to each version. The following default

information is the same for both SNMPv1 and SNMPv2c:

■ default perceivedSeverity values

■ default probableCause values

■ default additionalText information

■ default event notification type

11.4.1 Default Method for Specifying the Source of an

Alarm

11.4.1.1 SNMPv1

When an SNMP trap arrives, em_snmp-trap extracts the IP address from the

<agent-addr> field in the SNMP trap and uses this information to determine if there

is an object configured in the MIS to represent that agent system. By default, a

cmipsnmpProxyAgent object instance in the MIS is used to represent SNMP agent

systems. The following methods specify the alarm source for SNMPv1.

■ If there is a cmipsnmpProxyAgent object in the MIS corresponding to the IP

address in <agent-addr>, em_snmp-trap ’s default method of operation is to set

the originating system’s cmipsnmpProxyAgent as the source object instance for

this alarm.

■ If there is no managed object instance in the MIS corresponding to the IP address

of the SNMP trap, the trap daemon attempts to retrieve the hostname of the

source agent, but if this is not possible, the trap daemon sets the value of

cmipsnmpProxyAgentId to “<IP-address>”.

■ If there are multiple objects in the MIS that have network addresses that match

the IP address of the trap, em_snmp-trap seeks a match on the SNMP

Community String values included in the trap header. For example, an SNMP

agent may be a proxy for legacy devices, and the Community String provides

information that is used to identify the source device for the alarm.

11.4.1.2 SNMPv2c

When an SNMPv2c trap arrives, em_snmp-trap extracts the source IP address from

the UDP header information in the SNMP trap and uses this information to

determine if there is an object configured in the MIS to represent that agent system.

By default, a cmipsnmpProxyAgent object instance in the MIS is used to represent

SNMP agent systems. The following methods specify the alarm source for SNMPv2c.
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-9

■ If there is a cmipsnmpProxyAgent object in the MIS corresponding to the source

IP address in UDP header information, em_snmp-trap daemon’s default

operation is to set the originating system’s cmipsnmpProxyAgent as the source

object instance for this alarm.

■ If there is no managed object instance in the MIS corresponding to the IP address

of the SNMP trap, the trap daemon attempts to retrieve the hostname of the

source agent, but if this is not possible, the trap daemon sets the value of

cmipsnmpProxyAgentId to “<IP-address>”.

■ If there are multiple objects in the MIS that have network addresses that match

the IP address of the trap, em_snmp-trap seeks a match on the SNMP

Community String values included in the trap header. For example, an SNMP

agent may be a proxy for legacy devices, and the Community String provides

information that is used to identify the source device for the alarm.

11.4.2 Default perceivedSeverity Values

Severity is the presumed importance or impact of an event. Following the ITU X.721

standard, Solstice EM uses an attribute in event notifications called

perceivedSeverity to represent severity of events. The Alarm Service, which

monitors the alarm log, uses the perceivedSeverity value in event notifications

to determine the fault status indication for devices. The Alarm Service sets the fault

status of a device to the highest perceivedSeverity of outstanding (uncleared)

alarms for that device. The fault status of a device, as determined by the Alarm

Service, is represented in the Network Views by icon color. The default mapping of

severities to colors is described in the following figure. If event notifications are to

affect fault status indication, they need to have a perceivedSeverity value.

SNMP, however, lacks a systematic concept of the severity of a trap. A function of

the trap-mapping is to assign a severity to event notifications based on information

in the SNMP trap.

TABLE 11-4 Default Color-Coding of Severities

Integer Value Severity Default Color

1 Critical Red

2 Major Orange

3 Minor Cyan

4 Warning Yellow

5 Cleared No color

0 Indeterminate Blue
11-10 Customizing Guide • October 2001

For SNMPv1, the default trap-mapping uses the <generic-trap> value to make

severity assignments as follows:

■ coldStart traps—warning

■ warmStart traps—major

■ linkDown traps—major

■ linkUp traps—cleared

■ authenticationFailure traps—major

■ egpNeighborLoss traps—warning

■ enterpriseSpecific traps—indeterminate

Note – LinkUp traps automatically clears previous linkDown traps from the same

router.

For SNMPv2c, the default severity is indeterminate.

You can easily change these severity assignments if you wish. For example, the

mapping record for linkDown traps in the default trap_maps file contains the

following line:

If you want linkDown traps to have a severity of critical, simply edit the trap_maps

file to replace “major” with “critical”. This change takes effect when the trap daemon

is restarted. Customizing the trap mapping is discussed in detail in Section 11.7,

“Customizing the Mapping of SNMP Traps.” For information on the Alarm Service,

see Chapter 4.

11.4.3 Default probableCause Values

For SNMPv1, the default trap-mapping assigns integer values to the

probableCause attribute in event notifications as follows:

■ coldStart traps—100

■ warmStart traps—200

■ linkDown traps—The value from the first variable binding attribute/value pair.

By convention, this is the ifIndex , indicating the number of the interface.

■ linkUp traps—The value from the first variable binding attribute/value pair.

■ authenticationFailure traps—500

■ egpNeighborLoss traps—600

■ enterpriseSpecific traps—Set to the specific trap type, in localForm (integer).

perceivedSeverity=major;
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-11

For example, if an enterpriseSpecific trap has a trap specific type of 99, this

will be the value of probableCause for the enterpriseSpecificTrap
notification generated by the trap daemon.

For SNMPv2c, the default probablyCause value is set to TrapOid .

11.4.4 Default additionalText Information

For SNMPv1 and SNMPv2c, the default trap-mapping uses the additionalText
field in the event notification to contain the following information:

■ The enterprise identifier from the trap <enterprise> field

■ The <specific-trap> value (typically 0 for traps other than enterpriseSpecific traps)

- This is used for SNMPv1 only

■ The <trapoid> value - This is used for SNMPv2c only

■ The attribute/value pairs from the trap variable bindings

For an SNMPv2c trap, the trap mapping mechanism tries to derive the enterprise

and specific trap field values by using methods defined in RFC 2089.

An SNMPv2c trap may also contain the TrapOid value.

11.4.5 Default Event Notification Type

By default, the trap daemon converts SNMP traps into Solstice EM-specific event

notifications as indicated in the following table.

TABLE 11-5 Default IP Management Trap Event Types

Generic Trap Type Event Notification

coldStart coldStartTrap

warmStart warmStartTrap

linkDown linkDownTrap

linkUp linkUpTrap

authentication Failure authenticationFailureTrap

EGP Neighbor Loss egpNeighborLossTrap

Enterprise specific enterpriseSpecificTrap
11-12 Customizing Guide • October 2001

The default trap-mapping options ensures that every incoming SNMP trap matches

some trap-mapping record in the trap_maps file. This is done by including in the

trap_maps file a mapping block that specifies a mapping for each <generic-trap>
type. The default mapping block is of the following form:

The identifier “1.3.6.1.4.1” acts like a wildcard in that it matches the <identifier> field

of every trap.

Mapping blocks can also be added to the trap_maps file that use other enterprise

identifiers to map SNMP traps generated by agents supplied by particular venders.

How to do this is discussed below in Section 11.7, “Customizing the Mapping of

SNMP Traps.”

11.4.6 Default Location of Information from Trap

Variable Bindings

The default mapping scheme loads the attribute/value pairs from the trap variable

bindings into the additionalText field of the event notification. This behavior is

the same for both SNMPv1 and SNMPv2c.

11.5 Trap Daemon Behavior When No
Mapping is Provided
This section describes how the trap daemon handles incoming SNMP traps in any

situation where no explicit mapping is provided by the trap_maps file. This

situation could happen, for example, if you delete the default mapping block, or if

some of the records within it are deleted.

Solstice EM handles SNMPv1 and SNMPv2c traps that have no explicit mapping in

the same manner.

enterprise 1.3.6.1.4.1
{
<mapping-record-1>
...
<mapping-record-N>
}

Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-13

If an incoming SNMP trap fails to match any entry in the trap_maps file, the trap

daemon converts the SNMP trap into an internetAlarm , in accordance with the

ISO-Internet Management Co-existence (IIMC) standard. The IIMC standard defines

the use of the ISO/ITU Common Management Information Protocol (CMIP) for

integrated management of TCP/IP networks that are managed using SNMP. The

IIMC standard prescribes the following:

■ Event notification type is internetAlarm .

■ The perceivedSeverity value of internetAlarms is set to indeterminate.

■ The alarm is posted against the cmipsnmpProxyAgent that represents the agent

system.

■ The attribute/value pairs that comprise the trap variable bindings are loaded into

the additionalText field of the internetAlarm .

The user-configurable trap-mapping capability of the Solstice EM trap daemon is

designed to address these limitations of SNMP and the IIMC standard. This

capability allows you to configure the trap daemon to extract information from

SNMP traps to create more meaningful alarms, tailored to your particular network

management needs.

11.6 Format of trap_maps File
The trap_maps file is a daemon that listens for incoming SNMP traps for

forwarding to management stations. This file contains different parts including:

■ Enterprise mapping blocks

■ Mapping records

■ <attr-value> definitions

11.6.1 Enterprise Mapping Blocks

The trap mapping file consists of blocks of records, with each block identified by the

keyword enterprise. The form of these blocks of records is different for SNMPv1 and

SNMPV2c. See the following sections for SNMPv1 and SNMPV2c enterprise

mapping block information.
11-14 Customizing Guide • October 2001

11.6.1.1 SNMPv1

Each block is in the following form:

The mapping records (one or more) for a given enterprise are grouped within a pair

of curly braces. Enterprise object identifiers are specified in dot-dot notation.

Enterprise blocks in the trap_maps file select incoming traps for mapping if the

<enterprise-object-identifier> in the block heading matches the <enterprise> field in the

trap. Three important aspects of the enterprise heading:

■ enterprise block <enterprise-object-identifier> does not need to be identical with the

<enterprise> field of the trap. For example, if the trap <enterprise> identifier is

“1.3.6.1.4.1.42.1.2”, this will match an enterprise block with “1.3.6.1.4.1” in the

heading. So long as the enterprise block identifier is contained in the <enterprise>
field, starting at the left, a match will occur.

■ A trap is mapped by the enterprise block in the trap_maps file whose enterprise

heading is most specific to the trap.

Traps are checked against the enterprise blocks in the trap_maps file. The more

specific enterprise values are matched first.

11.6.1.2 SNMPv2c

Each block is in the following form:

The mapping records (one or more) for a given enterprise are grouped within a pair

of curly braces. Enterprise object identifiers are specified in dot-dot notation.

enterprise <enterprise-object-identifier>
{
<trap-mapping-record1>

<trap-mapping-recordN>
}

enterprise <enterprise-oid> | NO-ENTERPRISE
{
<trap-mapping-record1>

<trap-mapping-recordN>
}

Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-15

Enterprise blocks in the trap_maps file select incoming traps for mapping if the

<enterprise-object-identifier> in the block heading matches the <enterprise> field in the

trap. Three important aspects of the enterprise heading:

■ enterprise block <enterprise-object-identifier> does not need to be identical with the

<enterprise> field of the trap. For example, if the trap <enterprise> identifier is

“1.3.6.1.4.1.42.1.2” this will match an enterprise block with “1.3.6.1.4.1” in the

heading. So long as the enterprise block identifier is contained in the <enterprise>
field, starting at the left, a match will occur.

■ NO-ENTERPRISE - If no enterprise information is found in the trap variable

binding for an SNMPv2c trap, the block specified with NO-ENTERPRISE will be

mapped.

■ A trap is mapped by the enterprise block in the trap_maps file whose enterprise

heading is most specific to the trap.

Traps are checked against the enterprise blocks in the trap_maps file. The more

specific enterprise values are matched first.

11.6.2 Mapping Records

The trap-mapping records are defined by the event notification. You can use either

standard notifications (see TABLE 11-6) or create your own custom event types. For

more information, refer to the Management Information Server (MIS) Guide.

TABLE 11-6 Standard Event Notifications

Standard Event Notification

ISO X.722 objectCreation

objectDeletion

attributeValueChange

relationshipChange

stateChange

communicationsAlarm

environmentalAlarm

equipmentAlarm

integrityViolation

operationalViolation

physicalViolation

processingErrorAlarm
11-16 Customizing Guide • October 2001

The trap-mapping records are different for SNMPv1 and SNMPV2c. Both versions of

SNMP use:

■ <attr-value> Definitions

■ CMIP notification managedObjectClass
■ Attribute value types

■ Wild cards for trap_mapping
■ FDN templates

When selecting an event type for trap mapping, you will also want to ensure that the

selected event type is logged to the alarm log. Logging the event type to the alarm

log will ensure that the incoming traps cause appropriate changes in Network Views

icon color. By default, only the following event types are excluded from the

AlarmLog :

■ objectCreation
■ objectDeletion
■ attributeValueChange
■ stateChange

See the following sections for SNMPv1 and SNMPV2c enterprise mapping block

information.

qualityofServiceAlarm

securityServiceOrMechanismViolation

timeDomainViolation

IIMC internetAlarm

Solstice EM-specific snmAlarmEvent

snmAlarmTrap

nerveCenterAlarm

coldStartTrap

warmStartTrap

linkDownTrap

linkUpTrap

authenticationFailureTrap

egpNeighborLossTrap

enterpriseSpecificTrap

TABLE 11-6 Standard Event Notifications (Continued)

Standard Event Notification
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-17

11.6.2.1 SNMPv1

If the trap daemon determines that an incoming trap matches a mapping block on its

<enterprise> identifier, the trap daemon then uses the first mapping record within the

selected block that matches the trap on the following two fields:

■ <generic-trap>

■ <specific-trap>

If the trap fails to match any record in the enterprise mapping block on trap type,

the trap daemon checks the following enterprise blocks in the file for a possible

match. If the trap matches no mapping record in any matching enterprise block, it is

mapped into an internetAlarm , in the manner described in Section 11.5, “Trap

Daemon Behavior When No Mapping is Provided.”

Mapping blocks can be used to provide a mapping for enterprise-specific traps—for

example, if the agent software provided with a server generates an enterprise-

specific trap (indicated by a <generic-trap> value of 6) with a <specific-trap> value of

5 when the machine’s internal temperature exceeds an acceptable threshold, this

could be mapped to a CMIP environmentalAlarm with probableCause and

perceivedSeverity set to appropriate values. The type of value appropriate to an

alarm attribute depends upon the GDMO definition of that event type.

SNMP traps can be mapped to any type of CMIP event notification the MIS knows

about.

Each SNMPv1 record in an enterprise block in the trap_maps file has the format

shown below:

FIGURE 11-4 SNMPv1 Trap Mapping Record Format

Where

■ <generic-trap> is an integer in the range of 0–6.

■ <specific-trap> is an optional entry. Typically, <specific-trap> will be specified

only when <generic-trap> is 6, indicating an enterprise-specific trap.

■ <alarm-type> is any defined notification in the platform; a keyword DISCARD

can be used to discard this trap.

■ <attr-name> is a form [CONVERT] attribute=value;

See Section 11.6.3 “<attr-value> Definitions” on page 11-20 for more information.

 GENERIC-TRAP <generic-trap>
[SPECIFIC-TRAP <specific-trap>]
 NOTIFICATION <alarm-type> | DISCARD
[ATTRIBUTE-MAP <attr-name>=<attr-value>;]
[<attr-nameN>=<attr-valueN>;]
 FDN-MAP[<FDN-template>];;
11-18 Customizing Guide • October 2001

SNMP traps are selected for mapping to specified CMIP event notifications only if

they match a mapping record on enterprise object identifier and generic and specific

trap type. If there is a match on these three values, the trap is converted to the CMIP

event notification type indicated by the keyword NOTIFICATION. For example, you

might choose to map an SNMP linkDown trap to a CMIP communicationsAlarm, as

in the following example.

The type of event notification specified by NOTIFICATION in a mapping record can

be any CMIP event notification which the MIS knows about. Alternatively, you can

use the keyword DISCARD to indicate that a matching trap is to be discarded by the

trap daemon.

A mapping for one or more event attributes can be entered after the keyword

ATTRIBUTE-MAP. <attr-name> must be a valid attribute for the event type specified

by <alarm-type>.

11.6.2.2 SNMPv2c

The SNMMPv2c trap map record is similar to SNMPv1, except that trapOid is

matched instead of generic and specific trap values. Once the match is found, that

mapping record is applied.

Each SNMPv2c record in an enterprise block in the trap_maps file has the format

shown in the following example.

enterprise 1.3.6.1.4.1.42
{GENERIC-TRAP 2
NOTIFICATION communicationsAlarm
ATTRIBUTE-MAP
 perceivedSeverity=varbindvalue3;
 probableCause=varbindvalue2;
FDN-MAP
 interfacesId=NULL/ifTableId=NULL/ifEntryId={varbindvalue1};;}

TRAPOID <trapoid_list>
NOTIFICATION <alarm-type> | DISCARD
[ATTRIBUTE-MAP <attr-name>=<attr-value>;]
[<attr-nameN>=<attr-valueN>;]
 FDN-MAP[<FDN-template>];;
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-19

Where:

■ <trapoid_list> is a list of object identifiers, expressed in dot notation, which

should match the snmpTrapOID.0 varbind in SNMPv2c traps. A list of comma-

separated trapoids can be used, and each trapoid can contain wildcards. See

Section 11.7.5 “Wild Cards for trap_mapping” on page 11-32 for more

information.

■ notification is any defined notification in the platform; a keyword DISCARD

can be used to discard this trap.

■ attribute-map is a form [CONVERT] attribute=value;

See Section 11.6.3 “<attr-value> Definitions” on page 11-20 for more information.

This field is optional.

■ managed_object_class is optional. See Section 11.7.3 “Configuring CMIP

notification managedObjectClass” on page 11-27 for more information.

For example:

11.6.3 <attr-value> Definitions

The <attr-value> definitions are used by both SNMPv1 and SNMPv2c.

<attr-value> can be defined as one of the following:

■ a constant

■ a trap variable binding value

■ the keyword $ALLVARS

<attr-value> definitions are the same for SNMPv1 and SNMPv2c.

enterprise 1.3.6.1.4.1.42
TRAPOID <trapoid_list>
NOTIFICATION communicationsAlarm
ATTRIBUTE-MAP
 perceivedSeverity=varbindvalue3;
 probableCause=varbindvalue2;
FDN-MAP

interfacesId=NULL/ifTableId=NULL/ifEntryId={varbindvalue1};;}
11-20 Customizing Guide • October 2001

11.6.3.1 Constant

In the following example, the severity of the alarm is set to critical and a string

constant is passed as additionalText .

If a constant is used for <attr-value>, it must be of a type appropriate for the

particular event notification attribute in proper ASN.1 string format.

11.6.3.2 Trap Variable Binding Value

In the following example, varbindvalue2 indicates the value of the second

variable binding name/value pair in the SNMP trap.

11.6.3.3 Trap Variable Binding Name

Varbind names can be referenced in the trap_maps file using a varbindNameN
variable analogous to a varbindValueN variable, where N is the varbind number.

In the following example, varbindname2 indicates the value of the second variable

binding name/value pair in the SNMP trap.

ATTRIBUTE-MAP
 perceivedSeverity=critical;
 probableCause=localValue : 100;
 additionalText=”Network memory usage greater than 80%”;

probableCause=varbindvalue2;

GENERIC-TRAP 6
SPECIFIC-TRAP 13-25, 27, 29, 31-40
NOTIFICATION enterpriseSpecificTrap
ATTRIBUTE-MAP

probableCause=varbindName2;
perceivedSeverity=indeterminate;
additionalText=$ALLVARS;

FDN-MAP;;
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-21

11.6.3.4 Trap Variable Binding Index

Varbind names can be referenced in the trap_maps file using a varbindIndexN
using variable analogous to a varbind varbindValueN variable. In the following

example, varbindindex2 indicates the value of the second variable binding name/

value pair in the SNMP trap.

11.6.3.5 Embedding Strings in varbind Expressions

Solstice EM supports mapping of notification attributes to strings embedded in

SNMP trap varbind variables (for example, $varbindNameN , $varbindValueN ,

and $varbindIndexN). Solstice EM also allow you to embed simple arithmetic

expressions in varbind variables. These simple arithmetic expressions contain basic

arithmetic operations on integer varbind values and integer constants. The

arithmetic expressions are embedded by enclosing them between backquotes (’).

The following operations are supported in the arithmetic expressions.

■ Addition, for example, “ ...’$varbindValue1 + 10’...”

■ Subtraction, for example,

“...’$varbindValue2 - $varbindValue1’...”

■ Multiplication, for example, “...’$varbindValue3 * 16’...”

■ Division, for example, “...’$varbindValue2 / $varbindValue1’...”

■ Unary minus, for example, “...’-$varbindValue1’...”

GENERIC-TRAP 6
SPECIFIC-TRAP 13-25, 27, 29, 31-40
NOTIFICATION enterpriseSpecificTrap
ATTRIBUTE-MAP

probableCause=varbindIndex2;
perceivedSeverity=indeterminate;
additionalText=$ALLVARS;

FDN-MAP;;
11-22 Customizing Guide • October 2001

The following is an example of an embedded arithmetic expression.

11.6.3.6 Defining and Using varbind-to-substring Tables

Tables that map integer SNMP trap varbind values to substrings can be defined by

a table construct in the trap_maps configuration file. Such substrings can be

embedded in strings that map CMIP notification attributes (in an enterprise
ATTRIBUTE-MAPclause) by indexing the corresponding varbind-to-substring table

with an integer varbind value or an integer constant. The syntax of the table
construct is as follows:

where

■ <table-id > is the table identifier comprised of a case-sensitive sequence of

alphanumeric characters beginning with a letter (for example,

ProblemDescription , NetworkCardType , contacts). The table identifiers

must be unique in the scope of its trap_maps file. All subsequent duplicate

identifier tables found are discarded. A proper message is logged to indicate this

parsing error.

■ <indexN > is the table entry index, a 32-bit signed integer constant in decimal

notation, e.g., 0, 64 , -900 . This table entry index must be unique within the scope

of the table where it is defined.

■ <substringN > is the table entry substring, a sequence of printable characters

enclosed by a pair of double quotes (“), which cannot be part of the string.

enterprise 1.3.6.1.4.1 {
GENERIC-TRAP 6
SPECIFIC-TRAP 50-55
NOTIFICATION enterpriseSpecificTrap
ATTRIBUTE-MAP

probableCaus=varbindValue3;
perceivedSeverity=minor;
additionalText=”Board number ’ $varbindValue1 * 10 +

$varbindValue2’ has a problem of type $varbindValue3”;
FDN-MAP ;;

}

table < table-id > {
<index1 >: < substring1 >
[< indexN >: < substringN >]

}

Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-23

After being defined, a table can then be indexed by integer varbind values—for

example, $varbinValueN , or integer constants (32-bit signed integer constants in

decimal notation) from within a CMIP notification attribute mapping entry (in the

enterprise ATTRIBUTE-MAP clause). Such table references have the following

syntax:

where <index > is one of the following:

■ An integer varbind value (for example, $varbindValueN whose type is

SNMP INTEGER, Counter , Gauge, or TimeTicks , converted to 32-bit signed

integer)

■ A 32-bit signed integer constant in decimal notation (for example, 0, 16 , -120)

For example:

ATTRIBUTE-MAP
...
<attr-name > = “ ...$< table-id >[< index >]...”;
...

table BoardType {
10: “14.4K modem”,
20: “28.8K modem”,
30: “56K modem”
}

table ProblemDescription {
1: “data overrun”,
3: “power fluctuation”,
7: “CRC error”

}
enterprise 1.3.6.1.4.1 {

GENERIC-TRAP 6
SPECIFIC-TRAP 8-10
NOTIFICATION enterpriseSpecificTrap
ATTRIBUTE-MAP

probableCause=varbindValue1;
perceivedSeverity=major;
additionalText=”Board $Boardtype[30] of modem pool has a

problem of type $ProblemDescription[$varbindValue1].”;
FDN-MAP ;;

}

11-24 Customizing Guide • October 2001

11.7 Customizing the Mapping of SNMP
Traps
The Solstice EM trap-mapping capability is designed to enable you to customize the

mapping of SNMP traps to CMIP event notifications.

11.7.1 Overview

SNMP lacks a systematic notion of the severity of an alarm. Also, the IIMC standard

lacks a systematic method for determining the source component for a trap within

the agent system. The user-configurable trap-mapping capability of the Solstice EM

trap daemon is designed to address these limitations of SNMP. This capability

allows you to configure the trap daemon to extract information from SNMP traps to

create more meaningful alarms, tailored to your particular network management

needs.

The trap-mapping activity of the SNMP trap daemon can be customized by editing

the trap_maps file. Your modifications take effect after the trap daemon is restarted.

11.7.2 How to Customize SNMP Trap Mapping

This section provides the steps to configure em_snmp-trap for SNMPv1 and

SNMPv2c trap mapping.

▼ To Customize SNMP Trap Mapping

1. Collect information on enterprise-specific traps.

If you want to add mapping blocks to map enterprise-specific traps, consult the

vendor documentation for SNMP devices deployed in your network to determine

which variable bindings and specific trap values to use for mapping into event

notification attributes and to identify components that are sources of events.

2. Devise your mapping scheme.

There are four aspects to the mapping:

■ Creating enterprise blocks, if desired.

These should be entered above the default enterprise block in the trap_maps file.
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-25

■ Creating records within a block that map traps to event notification type based on

generic and specific trap value for SNMPv1 and trapoid for SNMPv2c.

This is discussed in Section 11.5, “Trap Daemon Behavior When No Mapping is

Provided.” You can also create mapping records that instruct the trap daemon to

discard matching traps.

■ Creating a mapping for event notification attribute values within mapping

records.

This is discussed below in Section 11.7, “Customizing the Mapping of SNMP

Traps.”

■ Adding an FDN map to mapping records, if desired.

An FDN map is a template that is used by the trap daemon to identify the

component element that is the source of the event. This is discussed below in

Section 11.7.6, “Using FDN Templates to Specify the Source of a Trap.”

3. Verify that the event types selected for mapping are logged to the alarm log.

Use the Event Logs to check the discriminator that selects events for logging to the

alarm log. If your selected event type is excluded, you may want to change the log

discriminator.

4. Edit the trap_maps file.

Using your favorite text editor (such as vi), add your mapping elements to the file,

with each record conforming to the format shown in the above example.

5. Save the file.

/etc/opt/SUNWconn/em/conf/trap_maps is the file location.

6. Restart the trap daemon.

a. To stop the trap daemon, enter the following command (as root):

b. Restart the trap daemon by entering the following command (as root):

Note – During this operation, any traps that arrive on the system are lost.

#em_trapd stop

#em_trapd start
11-26 Customizing Guide • October 2001

7. Verify that there are no error messages at startup.

When em_snmp-trap reads the trap_maps file at startup, it prints error messages if

it encounters any parsing errors in the trap mapping table. Verify that no errors

occur when em_snmp-trap is restarted.

Note – Startup of em_snmp-trap is terminated if errors are detected in the

trap_maps file.

11.7.3 Configuring CMIP notification

managedObjectClass

The managedObjectclass of a notification of an SNMP trap-to-CMIP notification

mapping defaults to one of the following:

■ If the FDN is defined in the FDN-MAP clause of the trap mapping entry, it

defaults to actualClass , for example, globalForm :{2 9 3 4 3 42 }

■ If the FDN is not defined in the FDN-Map clause, it defaults to

"iimcManagementProxyMIB ":cmipsnmpProxyAgent class

You can override the managedObjectclass default if the FDN is defined in the

FDN-MAP clause of the trap mapping entry. To override the default value

(actualClass), specify the managed object class of the notification from within a

trap mapping entry in the trap_maps file. The syntax of the CLASS-MAPclause is:

where

■ <managed-object-class> is the GDMO managed object class to be mapped

to the notification managedObjectClass, for example, “IIMCCISCO-
MIB”:lsystem , or circuit

■ In case CLASS-MAPclause is present, a FDN is expected in the <FDN-template>

of the corresponding FDN-MAP clause

enterprise < enterprise-object-id > {
...
[CLASS-MAP < managed-object-class >]
FDN-MAP <FDN-template > ;;

}

Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-27

The following illustrates the usage of CLASS-MAPclause:

11.7.3.1 The keyword $ALLVARS
This keyword is used only with a text field. The $ALLVARSkeyword specifies that

the text field is to receive the following information:

■ The <enterprise> identifier of the trap

■ The <specific-trap> value for SNMPv1 or <trapoid> for SNMPv2c

■ All of the attribute/value pairs comprising the trap variable bindings

Note – The SNMPv2c trap does not usually have the enterprise and specific trap

fields. When $ALLVARS is used for an SNMPv2c trap, the trap mapping mechanism

tries to derive these values by using methods defined in RFC 2089. If the

snmpTrapEnterprise.0 variable binding is in the list of variable bindings, it is

ignored because it would be a duplicate of the enterprise field.

In this example,

Sample output from this mapping would be an additionalText field that looks

like the following:

Each mapping of an attribute to a value must end in a semicolon.

enterprise 1.3.6.1.4.1 {
GENERIC-TRAP 6
SPECIFIC-TRAP 100
NOTIFICATION enterpriseSpecificTrap
ATTRIBUTE-MAP

probableCause=varbindValue1;
perceivedSeverity=critical;
additionalText=”$ALLVARS;

CLASS-MAP “OP1 Library Vol. 1”:computerSystem
FDN-MAP /systemId=name:”mars”/computerSystemId=”paris” ;;

}

additionalText = $ALLVARS;

enterprise = 1.3.6.1.4.1.42 , specificTrap = 1 , ifNumber = 5 ,
ifType = other , ifIndex = 3 , ifDescr = THIS IS A STRING
11-28 Customizing Guide • October 2001

The Solstice EM Alarm Service requires that an alarm have a perceivedSeverity

value (an integer value in the range of 0 to 5) in order to map to Network Views icon

colors that represent the importance of a network event. The valid severities and

their default associated icon colors are listed in TABLE 11-4.

The mapping of severity to displayed color is controlled by the Solstice EM Nerve

Center; this mapping is user-configurable via the Design Advanced Requests

application. See Chapter 18 for more information.

The interpretation of <specific-trap> values for enterprise-specific traps depends

upon the particular implementation by the product vendor. You will need to consult

the product documentation for SNMP devices in your network to determine an

appropriate mapping to CMIP event notifications.

SNMP traps that do not match any record in the mapping file on <enterprise>,
<generic-trap>, and <specific-trap> are mapped to default IIMC internetAlarms as

described in Section 11.5, “Trap Daemon Behavior When No Mapping is Provided.”

Some useful considerations in customizing the trap_maps file:

■ ATTRIBUTE-MAP is an optional entry. However, you will want to include a

mapping for at least the attributes defined as REQUIRED attributes in the GDMO

definition of the alarm type specified as NOTIFICATION.

■ Two semicolons are required to mark the end of each record.

■ Case is ignored for all keywords in the trap_maps file.

■ Comments can be interspersed in the file. Any line that begins with a pound sign

(#) as the first character in the line at the left is treated as a comment.

Note – If you specify a mapping of attributes for internetAlarms, the only attributes

that will be included in the alarm are the required attributes and any optional

attributes whose mapping you have specified.

11.7.3.2 The Keyword $NORFC2089
This keyword is used only with a text field and used only for SNMPv2c. The

$NORFC2089keyword is similar to the $ALLVARS keyword in that it specifies that

the text field is to receive the attribute/value pairs comprising the trap variable

bindings.

When the $NORFC2089 keyword is used, the varbinds are printed out in the order

received instead of printing out in a format similar to that of SNMPv1.

In this example,

additionalText = $NORFC2089;
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-29

Sample output from this mapping would be an additionalText field that looks

like the following

Consider the example in case of $ALLVARS,

Sample output from this mapping would be an additionalText field that looks

like the following:

Each mapping of an attribute to a value must end in a semicolon.

11.7.4 Attribute Type Mapping

Attribute type mapping specifies how attribute types in a trap are mapped to

attribute types in a notification. The permitted mapping between types is provided

in the following table.

additionalText = sysUpTime = 142100, snmpTrapOID = {1 3 6 1 6 3 1
1 5 3 }, ifIndex = 1

additionalText = $ALLVARS;

additionalText = “enterprise = 1.3.6.1.6.3.1.1.5,
specificTrap = 0, sysUpTime = 128100, snmpTrapOID = { 1 3 6 1 6 3 1
1 5 3}, ifIndex = 1”

TABLE 11-7 Attribute Value Type Conversions

Varbind Type Permitted Event-Report Attribute Types

INTEGER(+ Counter , Gauge,

TimeTicks
OCTET STRING, DisplayString , Opaque

OCTET STRINGand

DisplayString
INTEGER, OBJECT IDENTIFIER , NetworkAddress ,

DisplayString

OBJECT IDENTIFIER OCTET STRING, Opaque, DisplayString

NetworkAddress OCTET STRING , Opaque, DisplayString

Opaque Opaque , OCTET STRING
11-30 Customizing Guide • October 2001

Note – If you want to convert an OCTET STRING to an INTEGER, the OCTET

STRING must not contain text.

To specify the attribute type mappings use the following:

where:

■ <attribute> is any valid attribute type for the corresponding notification

■ <value> is one of the following:

■ a varbind variable, which can be one of the following:

i. varbindvalue - yields the value of a varbind

ii. varbindindex - yields the index of the SNMP object the varbind refers to

iii. varbindname - is the OID of the object the varbind refers to

■ ASN.1 string format constant. If value is an ASN.1 string format constant, the

value must be the same as the attribute.

Specify the CONVERTkeyword only if:

■ <value> is a varbind

■ the <value> and <attribute> types are different

If you want value and attribute types to be the same, you must omit the CONVERT
keyword. Otherwise, the translation will fail.

The following illustrates the usage of attribute type conversion:

[CONVERT] < attribute> = <value>

 GENERIC-TRAP 6
 SPECIFIC-TRAP 101
 NOTIFICATION internetTrapINTEGERV1Alarm
 ATTRIBUTE-MAP
 probableCause = localValue : 101;
 CONVERT

objINTEGERV1 = varbindvalue1;
 FDN-MAP ;;
}

Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-31

11.7.5 Wild Cards for trap_mapping

The trap_mapping wild cards are similar for SNMPv1 and SNMPv2c. See the

following table for version specific information.

TABLE 11-8 Wild Cards for trap_mapping

Examples

Wild Card Description SNMPv1 SNMPv2c

Match All An asterisk wildcard can used to

match all traps with a specific

enterprise OID.

GENERIC-TRAP * TRAPOID *

Ranges A dash between two numbers can

be used to match a range of values.

For example, a numeric range can

be listed which assigns different

severities based on a trap’s value.

SPECIFIC-TRAP 0 - 12 TRAPOI D 0 - 12

Open-Ended

Ranges

An asterisk can be used to match a

specific number and higher.

SPECIFIC-TRAP 26 - * TRAPOID 26 - *

Sets A comma-separated set of values

can be given to match a non-

continuous set of values. The set

may contain sub-ranges.

SPECIFIC-TRAP 13 -
25, 27, 29, 31 - 40

TRAPOID 13 - 25, 27,
29, 31 - 40
11-32 Customizing Guide • October 2001

11.7.6 Using FDN Templates to Specify the Source of a

Trap

For SNMPv1, when SNMP traps, em_snmp-trap extracts the IP address from the

<agent-addr> field in the SNMP trap and uses this information to determine if there

is an object configured in the MIS to represent that agent system. For SNMPV2c,

when SNMP traps arrive, em_snmp_trap extracts the source IP address from the

UPD header information in the SNMP trap and uses this information to determine if

there is an object configured in the MIS to present the agent system.

By default, a cmipsnmpProxyAgent object instance in the MIS is used to represent

the agent system. If there is a cmipsnmpProxyAgent object in the MIS corresponding

to the IP address, em_snmp-trap ’s default method of operation is to convert the

trap to an internetAlarm and set the originating system’s cmipsnmpProxyAgent

Varbind Names Varbind names refer to the part of a

varbind instance OID that names

the object being referenced, minus

index information.

Varbind names can be referenced in

the trap_maps file using a

varbindName N variable analogues

to a valueValue variable, where N
is the varbind number.

1.3.6.1.2.1.2.2.1 1.3.6.1.2.1.2.2.1

Varbind Indexes Varbind indexes are the index value

of varbind instances. They are 0 for

scalar instances and index numbers

for table entries. Varbind names can

be referenced in the trap_maps file

using a varbindIndex N using

variable analogues to a varbind

valueValue variable.

Strings

Containing

Varbind Values

A varbind value, name, or index is

placed within a string by preceding

its name with a dollar sign.

Varbind values are converted into

DisplayString representation for

inclusion in a string.

causeText = “The
varbind value is
$varbindValue”;

causeText = “The
varbind value is
$varbindValue”;

TABLE 11-8 Wild Cards for trap_mapping (Continued)

Examples

Wild Card Description SNMPv1 SNMPv2c
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-33

as the source object instance for this alarm. For example, if a linkDown trap arrives

from router bigguy with IP address 129.144.55.67, em_snmp-trap sets the

following as the fully distinguished name (FDN) for the alarm:

This might not be the object instance that represents the specific component on

which the event occurred. To point the event notification at the particular component

object, you can specify a template to build an FDN that points to the specific

component that is the source of the event, such as an interface on a router or a circuit

in a switch. This template is indicated in the trap mapping record by the FDN-MAP

keyword.

11.7.6.1 Understanding FDNs and RDNs

An FDN specifies an absolute path through the Management Information Tree (MIT)

to an object instance. The FDN specifies the path to an object instance by indicating

its “containment” relationships. Just as an object instance is a software entity that

represents a particular network resource, the containment relationship between

objects is used to model physical containment relationships, such as that between a

router and its interface cards.

The format of an FDN is as follows:

You can think of an FDN as analogous to an absolute path to a file in a UNIX file

system. Each <naming-attribute>=<value> pair is a relative distinguished name

(RDN) that specifies an object instance relative to the object specified by the portion

of the FDN to its left.

An FDN consists of a concatenation of RDNs, with a slash (/) separating the RDNs.

An RDN specifies an object instance only relative to the object which contains it. For

example, the following RDN specifies the internetSystem group within our

cmipsnmpProxyAgent for bigguy :

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2 4 1 0}/
cmipsnmpProxyAgentId=”bigguy”

/ <naming-attribute1>=<value1>/ <naming-attribute2>=<value2>/ <naming-attribute3>=<value3>

internetSystemId=NULL
11-34 Customizing Guide • October 2001

Thus, if this RDN is appended to the FDN for bigguy’s cmipsnmpProxyAgent in

FIGURE 11-5, the result is an FDN that points to the internetSystem object instance for

this SNMP agent:

FIGURE 11-5 Sample FDN for internetSystem Group Object Instance

In this example the particular MIS system where this cmipsnmpProxyAgent object

instance resides is indicated by systemId=name:”gatoloco” .

systemId, cmipsnmpProxyAgentId, and internetSystemId are examples of naming
attributes. A naming attribute is an attribute whose value is an identification that is

unique within the object that contains it (for example, a unique interface index

within a router or a unique hostname within a subnet).

FIGURE 11-6 Sample ifTable FDN

The value of a naming attribute depends on whether the object is a scalar object or a

columnar object. (i.e., whether the object can have only one instance or multiple

instances in an SNMP agent). For scalar objects, the value of the naming attribute is

NULL. For columnar objects, the value is a sequence of the values of the indices for

that entry. For example, there can be only one ifTable in an SNMP agent, hence

ifTableId=NULL, but ifEntryId={ifIndex2}, ifIndex being the index for ifTable.

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2 4 1 0}/
cmipsnmpProxyAgentId=”bigguy”/internetSystemId=NULL

internetSystem Object Instance
 RDN

cmipsnmpProxyAgent Object
 RDN

object
contained in

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2 4 1 0}/
cmipsnmpProxyAgentId=”bigguy”/internetSystemId=NULL

internetSystem Object Instance
 RDN

cmipsnmpProxyAgent Object
 RDN

object
contained in
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-35

11.7.6.2 Building FDN Templates

The function of an FDN template is to enable em_snmp-trap to compose an FDN

that represents the target component within the agent system.

The FDN template is preceded by the keyword FDN-MAP. FDN templates can

follow one of two formats:

Standard Format:

Absolute Format:

where <value> is either a constant or specifies a variable binding value. A variable

binding value is specified by expressions of the form varbindvalue1 ,

varbindvalue2 , and so on.

■ The standard RDN template lacks an initial slash at the far left. This indicates that

the FDN built from the template is to be appended to the FDN that specifies the

cmipsnmpProxyAgent object instance FDN. The object instance representing the

target component is thus contained under the cmipsnmpProxyAgent object. The

standard format enables em_snmp-trap to more finely specify the component

within the agent system represented by the default cmipsnmpProxyAgent
object. The example in FIGURE 11-7 shows an FDN template with the standard

format. Instance indices are used in specifying attribute values.

■ The absolute format FDN template specifies the full FDN path to the target

component from root. The absolute format FDN template is distinguished by the

presence of an initial slash at the left. The initial slash indicates to em_snmp-trap
that it is not to append the FDN built from the template to the default

cmipsnmpProxyAgent FDN. Class names cannot be used in specifying attribute

values. Constants or variable binding values are used to indicate attribute values.

For example:

The example in Table 10-4 has the following FDN template:

<naming-attribute>=NULL/< naming-attribute>=NULL/ <naming-attribute>={ <instance-indices>}

/<naming-attribute>=<value>/ <naming-attribute>=<value>

/systemId=name:”bigguy”/myClassId=varbindvalue3
11-36 Customizing Guide • October 2001

FIGURE 11-7 Sample FDN Template

An SNMP trap variable binding field used in a template is specified in the following

form:

varbindvalue N

where N is the number of the variable binding you want to use.

11.8 Distributed Trap Handling
The SNMP trap daemon can be distributed to machines in your network other than

workstations running the MIS. The names of MIS machines for forwarding of event

notifications are specified when the trap daemon is installed.

However, if the trap daemon is to connect to the MIS on another machine, you will

need to do the following.

interfacesId=NULL

interfaces group object
 RDN template

/ ifTable=NULL / ifEntryId={varbindvalue1}

 ifTable object
RDN template

object
contained in

 ifEntry object
 RDN template

object
contained in

Instance index
from variable
 bindings
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-37

▼ To Connect the Trap daemon to the MIS

1. Edit the /var/opt/SUNWconn/em/conf/EM-config file on the MIS machine.

Add the name of the trap daemon machine to the entry

EM_ACCESS_TRUSTED_HOSTS. For example, if you have installed the trap

daemon on the machine empress, the EM-config file on each MIS machine it is to

connect to should have the following line:

2. Restart the MIS, if necessary.

If the MIS is already running on the target MIS machine, use the em_services
command to restart the MIS.

11.8.1 Filtering SNMP Traps for Other Managers

The Solstice EM SNMP trap daemon has the ability to filter raw (unprocessed)

SNMP traps to other managers. The trap daemon can forward or exclude/discard

the raw SNMP traps (both SNMPv1 and SNMPv2c). When you install the SNMP

trap daemon, you are prompted for the hostname and port for each SNMP manager

that is to receive forwarded SNMP trap PDUs. This information is stored in the

trap_forward file in the /etc/opt/SUNWconn/em/conf directory; an ASCII text

file that the em_snmp-trap daemon reads whenever it starts.

The trap_forward file has the following format. The keyword is different for

SNMPv1 and SNMPv2c.

The MIS_HOSTS line contains the names of the machines where an MIS is running

that the trap daemon is to connect to. Each MIS machine name is separated by

commas.

The SNMP_HOSTS/SNMPV2_HOSTS line contains the hostname and port number

for each SNMP manager that is to receive the raw SNMPv1/SNMPV2c traps. Entries

for multiple managers are separated by commas.

EM_ACCESS_TRUSTED_HOSTS: empress

MIS_HOSTS: <MIS-host1>,<MIS-host2>
SNMP_HOSTS:<mgr_hostname1>: <port1>, <mgr_hostname2>:<port2>
or
SNMPV2_HOSTS: <mgr_Host >:< port1 >,< mbr_hostname2 >:< port2 >
11-38 Customizing Guide • October 2001

To exclude/discard the filtered raw SNMP traps, enter DISCARD in the trap-

filtering-record in the trap_forward file. The trap-filtering-record for SNMPv1 has

the following format:

The trap-filtering-record for SNMPv2c has the following format:

GENERIC-TRAP gen_trap_range
SPECIFIC-TRAP spec_trap_range OPTIONAL
DISCARD: <mgr_hostname1>: <port1>, <mgr_hostname2>:<port2>

TRAPOID trapoid_list
DISCARD
Chapter 11 Mapping SNMP Traps to CMIP Event Notifications 11-39

11-40 Customizing Guide • October 2001

CHAPTER 12

Configuring Communication With
CMIP Agents

This chapter provides detailed instructions for installation and configuration of the

components required to manage Common Management Information Protocol

(CMIP) agents.

This chapter describes the following topics:

■ Section 12.1 “Tasks for Setting Up Your System to Manage CMIP Agents” on

page 12-1

■ Section 12.2 “Preparing the System for CMIP Configuration” on page 12-4

■ Section 12.3 “Compile and Load CMIP Agent Object Types into MIS” on page 12-6

■ Section 12.4 “Starting and Configuring SunLink OSI” on page 12-7

■ Section 12.5 “Access Control” on page 12-8

■ Section 12.6 “Starting and Configuring SunLink CMIP 9.0” on page 12-8

■ Section 12.7 “Starting and Configuring the CMIP MPA” on page 12-10

■ Section 12.8 “Runtime Parameters” on page 12-13

■ Section 12.9 “Configuring Multiple MPAs on One System” on page 12-19

12.1 Tasks for Setting Up Your System to
Manage CMIP Agents
The following list summarizes the activities that you must complete before your

system can manage a CMIP Agent. These procedures must be performed as root .
12-1

▼ To Prepare Your System to Manage a CMIP

Agent

1. Prepare your system for CMIP configuration.

a. Define the distribution model.

b. Install all the required products and patches.

c. Gather the configuration information that you will use later.

2. Load the CMIP Agent Object Classes into the MIS.

The MIS needs to understand the kinds of objects that your CMIP Agent supports.

Many standard object classes are delivered with Solstice Enterprise Manager (Solstice

EM). For those not shipped with Solstice EM, you must compile the definitions and

load them into the MIS.

3. Start up and configure SunLink OSI 8.1 /9.0.

SunLink OSI provides access to the lower layers of the OSI stack. This handles the

data transportation and presentation aspects of communication with a CMIP Agent.

This is required if you are using LLC or CONS/X.25.

4. Start up and configure SunLink CMIP 9.0.

Sunlink CMIP provides the upper layers of the OSI stack and uses the services

provided by SunLink OSI to communicate with a CMIP Agent.

5. Start up and configure the Solstice EM CMIP MPA.

The Solstice EM CMIP MPA translates CMIP requests and responses to and from

Solstice EM. It uses the services provided by SunLink CMIP. Before Solstice EM can

access the objects in the CMIP Agent, the CMIP agent must be configured in the MIS.

You can use the Solstice EM Object Properties/Create Object to configure CMIP

objects. Refer to Managing Your Network for detailed instructions on OCT.

Note – Perform all procedures in this chapter as root . All commands assume a

PATHenvironment variable that includes /opt/SUNWconn/cmip/sbin and /opt/
SUNWconn/sbin/ See Chapter 4 in Installation Guide for instructions on setting your

PATHenvironment variable.

The following figure illustrates the configuration procedure.
12-2 Customizing Guide • October 2001

FIGURE 12-1 Configuring Solstice EM for Communication with CMIP Agents

The following sections provide detailed instructions to configure Solstice EM for

CMIP Agent communication.

Step 3: Start and configure
 SunLink OSI 8.1/9.0.

Step 2: Compile and load the
 CMIP Agent Object
 Types into the MIS.

Step 5: Start and configure the
Solstice EM CMIP MPA.

Step 4: Start and configure
 SunLink CMIP 9.0.

MIS

Step 1: Prepare the system.

SunLink CMIP 9.0

SunLink OSI 8.1/9.0
(optional)

Solstice EM
CMIP MPA
Chapter 12 Configuring Communication With CMIP Agents 12-3

12.2 Preparing the System for CMIP
Configuration
Before you begin, there are several steps you must undertake before you can

configure the system for communication with CMIP agents.

▼ To Prepare Your System for Configuration

1. Determine the distribution model.

See Chapter 11 for complete instructions. Before you begin, you must determine the

distribution model you will use for CMIP communications.

2. Install the required SunLink products.

See Chapter 12 for instructions. Install the following products, as required for your

environment:

a. SunLink CMIP 9.0 RT or SunLink CMIP 9.0 SDE

b. SunLink OSI 8.1/9.0 (optional)

c. SunLink X25 9.0 or above (optional)

Note – You can also use CMIP 8.1.2 and CMIP 8.2.2.

3. Gather your configuration information.

See Chapter 12 for instructions. Before proceeding, you should gather all the

information that you will need to complete the configuration process.

12.2.1 Determining the Distribution Model

Before you begin, you must determine the overall distribution model you are to use

for CMIP communications. For this you must be aware of which MPAs and MISs

will be communicating, how many there are, and how they are configured. You will

need the following information:

■ Which MISs will the MPA be communicating with

■ How many agents are there and how are they configured

■ Address of the MPA

■ Address of the agents
12-4 Customizing Guide • October 2001

12.2.2 Installing the Required SunLink Products

You can use one of the following configurations of SunLink products for CMIP

communications, depending on your target environment:

■ SunLink CMIP 9.0, if using RFC1006.

■ SunLink CMIP 9.0 & SunLink OSI 9.0, if using CLNP/LLC.

■ SunLink OSI 9.0 & SunLink CMIP 9.0 SDE & SunLink X25 9.0, if using CONS/

X.25.

You should have the appropriate patches for your installation before proceeding.

Patches can be obtained from your normal source or Sun point of contact. Refer to

your installation documentation for these products for patch information.

▼ To install the lowest layer of the protocol stack

1. SunLink OSI 9.0 (Optional)

First, install SunLink OSI 9.0. See the provided documentation for details on

installation. A typical installation for OSI 9.0 will include the following product

packages:

■ SUNWcorpc
■ SUNWcosia
■ SUNWcosib
■ SUNWcosic
■ SUNWcosid
■ SUNWlicsw
■ SUNWlit

2. SunLink CMIP 9.0 (Required)

Install either SunLink CMIP 9.0 RT or SunLink CMIP 9.0 SDE. See the provided

documentation for details on installation. A typical installation for SunLink CMIP

9.0 RT will include the following product packages:

■ SUNWomgta
■ SUNWomgtb
■ SUNWomgtc
■ SUNWrk6(if RFC1006 is used)

■ SUNWlicsw
■ SUNWlit

The License Installation Tool package, SUNWlit, must be installed even though you

have already installed a version for SunLink OSI 9.0.
Chapter 12 Configuring Communication With CMIP Agents 12-5

3. SunLink X.25 9.0. (Optional)

You will be required to install SunLink X.25 if you are communicating with a CMIP

Agent over X.25. See the provided documentation for details on installation. Once

you have installed SunLink X.25 you should also install any required SunLink X.25

9.x patches.

12.2.3 Gathering Your Configuration Information

You will need the following information to configure Solstice EM for communication

with CMIP agents:

■ Presentation Selector for CMIP Agent

■ Session Selector for CMIP Agent

■ Transport Selector for CMIP Agent

■ Whether underlying communication with CMIP Agents is via TCP/IP(RFC1006),

CLNP/LLC or X.25 (CONS)

■ The Network Service Access Point Address: IP Address of CMIP Agent (RFC1006)

or OSI Network Address (CLNP/CONS)

■ Name of object directly contained by Root in the Management Information Tree

(MIT) of the CMIP Agent

■ ASN.1 and GDMO descriptions of the objects supported by the CMIP Agent

12.3 Compile and Load CMIP Agent Object
Types into MIS
The MIS must understand the kinds of objects that your CMIP Agent supports

before it can access the objects maintained in the CMIP Agent. Many standard object

types are delivered with Solstice EM. For those of which the MIS is unaware, you

must compile and load the appropriate CMIP Agent ASN.1 and GDMO definitions

into the Solstice EM MIS. You can do this by using the compilers em_asn1 and

em_gdmo, supplied with Solstice EM. Refer to the Management Information Server
(MIS) Guide for instructions on using these compilers.
12-6 Customizing Guide • October 2001

12.4 Starting and Configuring SunLink OSI
To configure SunLink OSI 9.0 to communicate with CMIP agents, do the following.

Note – If you will be using RFC1006, you need not set up the Network Layer

Address.

▼ To Configure SunLink OSI 9.0 to Communicate

with CMIP Agents

1. Halt the CMIP MPA.

Halt the Solstice EM CMIP MPA by entering the following command:

2. Halt the CMIP stack.

Halt the CMIP stack by entering the following command:

3. Start the SunLink OSI stack.

If SunLink OSI is not running, start the SunLink OSI stack by entering the following

command:

host# /etc/rc2.d/S98cmipmpa stop

host# osistop osimcs

host# /etc/rc2.d/S90osinet start
Chapter 12 Configuring Communication With CMIP Agents 12-7

4. Run ositool

Your distribution of SunLink OSI 9.0 provides a tool for configuring SunLink OSI,

called ositool . Use this tool to configure the Network Layer Address, OSI routing,

and Application Selectors to successfully communicate with the Agent.

You can run ositool by entering the following command:

For detailed instructions on using this tool, consult the SunLink OSI 9.0
Communication Platform Administrator’s Guide.

5. Restart osinetd

After you have entered all of your configuration information, use ositool to restart

osinetd .

12.5 Access Control
Access control for associations, requests, and notifications processed by the CMIP

MPA is enforced by using a username that is made available at start-up. If a

username is specified at the command line, it is used as a fallback value.

12.6 Starting and Configuring SunLink CMIP
9.0
To configure SunLink CMIP 9.0 to communicate with CMIP agents, do the following.

▼ To Configure SunLink CMIP 9.0 to

Communicate with CMIP Agents

1. Ensure the OSI stack and CMIP stack are running.

If the OSI stack and CMIP are not running, start them.

host# ositool &
12-8 Customizing Guide • October 2001

2. Run cmiptool

Issue the cmiptool command at the operating system prompt:

The cmiptool main screen displays.

3. Enter the type of Subnetwork.

Go to the section entitled “Default XMP Address.” Select the subnetwork that you

are using. Depending on the protocol used to communicate with the CMIP Agents,

click one of the buttons as follows:

■ CONS(X.25), if you are using X.25

■ TCP-IP(RFC1006), if you are using TCP/IP

■ CLNP(LLC1), if you are using Ethernet

4. Enter the value for the Request Timer (optional).

The Request Timer in the CMIP/MCS Parameters section specifies the maximum

time allowed for requests to extract information from agents. By default, SunLink

CMIP has a timeout parameter value of 5. The parameter value is then multiplied

times 10 to calculate the actual length of the timeout in seconds. The SunLink CMIP

timeout is 50 seconds.

If you intend to issue requests to CMIP Agents, which require a longer timeout, you

should increase the value of this parameter. The maximum allowable Timeout value

is 127, which equals 1270 seconds.

If you do not want to see the communication alarm, you can set the inactivity timer

on the cmiptool to 0 on the agent side. In this case, the agent does not issue CMI-

RELEASE-Rq if it idles for a specified time.

When the communication between manager and agent idles for an amount of time,

which is specified on the inactivity timer from cmiptool on the agent side, the CMIP

stack of the agent will issue CMI-RELEASE_Rq to the CMIP MPA. When the CMIP

MPA receives this request, it sends MCS-RELT-Rs response to the request to the

agent and at the same time the CMIP MPA needs to notify the user that the

association is down between manager and agent. That’s why the CMIP MPA reports

a communication alarm.

5. Select Apply.

6. Exit cmiptool

host# cmiptool &
Chapter 12 Configuring Communication With CMIP Agents 12-9

12.7 Starting and Configuring the CMIP MPA
A CMIP MPA is a Solstice EM component that provides access to CMIP Agents and

Managers. The CMIP MPA receives management directives from the MIS and

translates the directives into proper CMIP messages. The CMIP MPA is the CMIP

Proxy Agent for the MIS. The CMIP MPA can also act as a CMIP Agent allowing the

objects in the MIS to be managed by a CMIP Manager.

When a CMIP MPA is started, a unique transient CMIP MPA object (containing the

CMIP MPA runtime parameters) is created in the Auxiliary Server Container. The

object is named by the auxServerId attribute. The value of the name is a

concatenation of the MIS host and the CMIP MPA port number.

/systemId=name:"<hostname>"/auxServerType="cmip_mpa"/
auxServerId="<host-name>":<port-number>

Note – When the CMIP MPA is externally terminated, it does not delete its objects

and terminate its connections as it usually does when it terminates in an orderly

manner. If you restart the CMIP MPA after an external termination and reconfigure

it to start at a different port, a new CMIP MPA object is created in the Auxiliary

Server Container. This action invalidates (but does not delete) the older object that

was created when the CMIP MPA was first started. In this case, if you perform a

scoped get request operation that includes the container’s objects, the get request

returns two objects rather than one.

The Solstice EM CMIP MPA performs association management. You can choose what

Solstice EM will do when a previously established association goes down. The two

choices are the default CMIP MPA association recovery algorithm and an agent

silent recovery-free algorithm.

■ The default recovery algorithm generates a communicationsAlarm notification

indicating an association is found broken only after all attempts to re-establish the

association fail. If a failing agent/association recovers fast enough for the

association to be re-established before or by the last retry, no

communicationsAlarm is emitted.

■ The agent silent recovery-free algorithm makes the CMIP MPA generate a

communicationsAlarm when an association is found broken and before

retrying to re-establish the association.

/systemId=name:"<hostname>"/auxServerType="cmip_mpa"/
auxServerId="<host-name>":<port-number>
12-10 Customizing Guide • October 2001

In both cases, if a communicationsAlarm is sent to the MIS, it is cleared by the

MPA when the connection is re-established.

To choose the agent silent recovery-free management algorithm, set the

EM_CMIP_MPA_SEND_ALARM_EARLYvariable to YES in the shell from which the

CMIP MPA daemon will be started.

A CMIP MPA must be configured prior to attempting to access managed objects

over CMIP. A CMIP MPA can be located on the same machine where the MIS is

located (the default) or on a remote machine.

▼ To Configure a CMIP MPA for Communication

Over CMIP

1. Start the CMIP MPA by entering the following command at the operating system
prompt:

2. Start the Object Properties/Create Object (em_oct) by typing the following
command at the command line:

The Object Properties/Create Object enables you to configure objects managed

under Solstice EM. For detailed instructions on using OCT, refer to Managing Your
Network.

EM_CMIP_MPA_SEND_ALARM_EARLY <YES/NO>

host# /etc/rc2.d/S98cmipmpa start

hostname% em_oct -cmip [options] &
Chapter 12 Configuring Communication With CMIP Agents 12-11

3. Enter the appropriate information into the appropriate fields (see the following
table).

Following are sample Presentation Address values when using CLNS(LLC1)/

CONS(X.25):

TABLE 12-1 Object Properties/Create Object Fields

Entity Name Specify the name of the remote agent with which you want to

communicate. The value can be a string, object identifier (OID), or

distinguished name (DN). Click the down arrow to see a list of

known agents. To delete an agent, click Delete, select an agent from

the resulting list, then click OK. After specifying an agent, all the

other fields in this window for which information exists in the agent

are filled.

Agents DNs This field displays the list of distinguished names (DN) of objects

that the agent manages. When configuring a CMIP agent for a

particular topology node, you must select an Agent DN (from the

list) by which that topology node is managed.

MO DN Specify the DN (top-most node) of the MIT to be managed by the

remote agent. For example, if the remote agent is located on a

machine called poignant , enter /systemId=name:”poignant”
in the MO DN field and click Add./systemId=name:”poignant”
will appear in the Agents DNs field. To delete a DN, select the one

you want to delete and click Delete.

MPA Addresses Select the Default toggle button to apply the default values for the

MPA Host and MPA Port. The default host is <localhost>, and the

default port number is 5557. To customize these values, select the

Custom toggle button and enter the MPA host and port number.

Presentation Address You must enter the appropriate Presentation Selector, Session

Selector, Transport Selector, and Network SAP for the agent you are

configuring. Click Apply to create the object, or click OK to create

the object and dismiss the CMIP Configuration window.

Presentation Selector: 4444
Session Selector: 3333
Transport Selector: 3007
Network SAP: 4700040006000108002011e7f001
12-12 Customizing Guide • October 2001

Following are sample Presentation Address values when using TCP-IP (RFC1006):

Note that the Network SAP in this case is the value of the IP address of the CMIP

Agent represented in hexadecimal.

12.8 Runtime Parameters
Access control for associations, requests, and notification processed by the CMIP

MPA is enforced by using a username that is made available at start-up. If a

username is specified at the command line, it is used as a fallback value.

12.8.1 Auxiliary Server Container

The Auxiliary Server Container is a persistent object created with cmip_mpa as its

naming attribute value. It enables you to access the CMIP MPA runtime parameters

programmatically.

The containment of the Auxiliary Server defined under its name binding is as

follows:

/systemId=name:"<hostname>"/auxServerType="cmip_mpa"

Every time a CMIP MPA is started, a unique CMIP MPA object is created in the

Auxiliary Server Container (which is a subtree of the MIT) as illustrated in the

figure.

Presentation Selector: dflt
Session Selector: Prs
Transport Selector:CMIP
Network SAP: 81924b94
Chapter 12 Configuring Communication With CMIP Agents 12-13

FIGURE 12-2 Auxiliary Server Container

12.8.2 CMIP MPA Object

When a CMIP MPA is started a unique transient CMIP MPA object (containing the

CMIP MPA runtime parameters) is created in the Auxiliary Server Container. The

object is named by the auxServerId attribute. The value of the name is a

concatenation of the MIS host and the CMIP MPA port number.

/systemId=name:"<hostname>"/auxServerType="cmip_mpa"/
auxServerId="<host-name>":<port-number>

Note – When the CMIP MPA is externally terminated, it does not delete its objects

and terminate its connections as it usually does when it terminates in an orderly

manner. If you restart the CMIP MPA after an external termination and reconfigure

it to start at a different port, a new CMIP MPA object is created in the Auxiliary

Server Container. This invalidates (but does not delete) the older object that was

created when the CMIP MPA was first started. In this case, if you perform a scoped

get operation that includes the container’s objects, the get function returns two

objects rather than one.

12.8.3 em_cmip Parameters

Each of the parameters of the CMIP MPA has a corresponding environment variable.

Some parameters can be set by both command line parameters and environment

variables. In this case, the command line value takes precedence. For example, if the

environment variable is set to NO and the command line is set to YES, em_cmip will

run with the YES value for the option.

Because useful names are used in all cases, you must match the CMIP MPA

command line parameters to the CMIP MPA environment variables.

CMIP MPACMIP MPA Object

Auxiliary Server Container
12-14 Customizing Guide • October 2001

The optional parameters are shown in the following table:

TABLE 12-2 em_cmip Parameters

Command Line Parameter Corresponding Environment Variable Description

-access_on EM_CMIP_MPA_ACCESS_ON An access control flag whose presence

enables access control (turns on agent-

role access control) in the CMIP MPA

-apcnt <dotted-OID-string> EM_CMIP_MPA_APCNT <dotted-
OID-string>

Identifies the set of application service

elements required by the distributed

application initiating the

communication.

-apname <AETitle
inOID:AeQualifier:APInvoke
Id:AEInvokeId>

EM_CMIP_MPA_APNAME <AETitle
in
OID:AeQualifier:APInvokeId:A
EInvokeId>

Requires the specification of a

presentation address, in addition to the

application entity title (AE title).

-debug EM_CMIP_MPA_DEBUG This is a backward compatibility

option which turns on the cmip mpa

debug output.

-debug mpa_access EM_CMIP_MPA_DEBUG_ACCESS_CON
TROL

Turns on access control functionality

debug information. This provides

information on whether or not cmip

messages pass access control rules,

how the response will be processed,

and whether or not fallback users are

being used.

-debug mpa_debug EM_CMIP_MPA_DEBUG Turns on em_cmip debug output. This

information shows incoming and

outgoing cmip messages, association

establishment and control, and error

conditions.

-fallback_user <user-name) EM_CMIP_MPA_FALLBACK_USER An access control identifier string

assigned to an association and placed

into PDUs sent to the MIS. It is a

fallback value to be used only if a

designated user name cannot be found

in the UAM.

-help N/A Prints list of options and

environmental variables for the

em_cmip mpa command.

-host <mis-host-name> EM_MIS_DEFAULT_HOST <host-
name>
EM_SERVER <host-name>

Specifies the host name of the system

on which the MIS is running.
Chapter 12 Configuring Communication With CMIP Agents 12-15

-i <idle_timeout> EM_CMIP_MPA_IDLE_TIMEOUT
<milliseconds>

-log_file <log-file> EM_CMIP_MPA_LOG_FILE <log-
file>

Allows the user to specify a log file to

output debug information to. The

default location is /var/opt/
SUNWconn/em/debug/em_cmip.log

-max_retrys <max-retrys> EM_CMIP_MPA_ASSOC_MAX_RETRIE
S <retrycount>

The number of times the cmip mpa

will attempt to resend a request to a

remote object.

-mis Configures an MIS object.

-n <nsap> EM_CMIP_MPA_NSAP <nsap> Allows the network address to be

specified when the cmip mpa binds to

the cmip stack. The default is specified

by using the cmiptool in /opt/
SUNWconn/cmip/sbin/cmiptool
and is installed as hex value of host ip

address where Solstice EM is installed.

-p <psel> EM_CMIP_MPA_PSEL <psel> Allows the presentation selector

address to be specified when the cmip

mpa binds to the cmip stack. The

default is specified by using the

cmiptool in /opt/SUNWconn/cmip/
sbin/cmiptool and is installed by

Solstice EM as dflt.

-port <port-number> EM_CMIP_MPA_DEFAULT_PORT
<portnum>

The cmip mpa connects to the MIS via

a TCP connection. The default value of

this connection is on part 5557 for the

cmip mpa side.

-r <req_timeout> EM_CMIP_MPA_REQUEST_TIMEOUT
<milliseconds>

The length of time the cmip mpa will

wait after sending a request to a

remote object for a response to return.

-retry_delay<milliseconds> EM_CMIP_MPA_ASSOC_RETRY_DELA
Y <retrydelay>

The time the cmip mpa will wait

before resending a request.

-rpc Configures an RPC object.

-s <ssel> EM_CMIP_MPA_SSEL <ssel> Allows the session selector address to

be specified when the cmip mpa binds

to the cmip stack. The default is

specified by using the cmiptool in

/opt/SUNWconn/cmip/sbin/
cmiptool and is installed by Solstice

EM as Prs.

TABLE 12-2 em_cmip Parameters (Continued)

Command Line Parameter Corresponding Environment Variable Description
12-16 Customizing Guide • October 2001

-t <tsel> EM_CMIP_MPA_TSEL <tsel> Allows the transport selector address

to be specified when the cmip mpa

binds to the cmip stack. The default is

specified by using the cmiptool in

/opt/SUNWconn/cmip/sbin/
cmiptool and is installed by Solstice

EM as CMIP.

N/A EM_CMIP_MPA_PLATFORM_CONNECT
_TIMEOUT

The timeout setting for CMIP attempts

to connect to the MIS. The default is 20

seconds.

N/A EM_CMIP_MPA_RECONNECT_POLL_I
NTERVAL

The poll interval setting for CMIP

MPA attempts to reconnect to the MIS

after it disconnects. This is typically

used when the CMIP MPA is installed

on a remote machine. The default is 15

seconds.

N/A EM_CMIP_MPA_APPLICATION_CONT
EXT

The application context in OID format.

TABLE 12-3 em_oct Parameters

Command Line Parameter Corresponding Environment Variable Description

-cmip Configures a CMIP object. Replaces

em_cmipconfig .

-id < id>... Specifies topology IDs. Multiple IDs

are delimited by a space.

-link < id1> <id2> Create a link between <id1> and <id2>.

-name < name>... Specifies the name of an object.

Multiple names are delimited by a

space.

-parent < parent_id> Specifies the parent of the object you

want to create.

-snmp Configures an SNMP object.

-type < type> Specifies the topology type of the

object you want to create.

TABLE 12-2 em_cmip Parameters (Continued)

Command Line Parameter Corresponding Environment Variable Description
Chapter 12 Configuring Communication With CMIP Agents 12-17

12.8.4 Sample Program to Retrieve Runtime Parameters

The sample program get.cc is an example of how to retrieve the CMIP MPA’s

runtime parameters from the MIT. The get.cc program is provided with Solstice

EM and is located in the $(EM_HOME)/src/pmi_hi/ directory. The following code

example shows the usage and output of the get.cc sample program.

CODE EXAMPLE 12-1 Usage and Output of get.cc sample program

tekgrrl:josie(173) ./get -dn ’/systemId=name:"tekgrrl"/
auxServerType="cmip_mpa"/auxServerId="tekgrrl:5557"’ -
object_class
’cmipMpaServer’
The object name is
 /systemId=name:"tekgrrl"/auxServerType="cmip_mpa"/
auxServerId="tekgrrl:5557"
Attribute Value
--------- -----
agentRoleAccessControl off

Sun Proprietary/Confidential: Internal Use Only CMIPMPASDD
applicationContext 2.9.0.0.2
applicationEntityTitle objectIdentifier : { 1 1 1 1 }
applicationProcessName 1.1.1.1:-1:-1:-1
associationTimeout 300
auxServerId tekgrrl:5557
debugOptionsList { }
destinationProtocol cmip
fallbackUserId
idleTimeout 300
logFile em_cmip.log
maximumRetryCount 1
misHost tekgrrl
mpaPort 5557
networkSAP 81924bed
presentationSelector dflt
requestTimeout 120
retryDelay 30
sessionSelector Prs
sourceProtocol lpp
transportSelector CMIP
administrativeState unlocked
nameBinding "EM AUXILIARY SERVER":cmipMpaServer-
auxServerConfigContainer
objectClass globalForm : "EM AUXILIARY SERVER":cmipMpaServer
operationalState enabled
tekgrrl:josie(174)
12-18 Customizing Guide • October 2001

12.9 Configuring Multiple MPAs on One
System
The following is an example of configuring multiple MPAs on a single system.

1. Set the PSEL, SSEL, TSEL, and NSAP environment variables using the setenv
command:

If you want to specify the AE-TITLE for the MPA, set the APNAME environment

variable as well:

2. Start MPA #1 for communication with agent #1.

Enter the start command at the command line, as shown in this example:

This MPA is bound to PAddr(rfc0,Prs,CMIP, 0xIPlocalhostinHex) and uses the

default MPA port 5557.

3. Set up MPA #2 for communication with Agent #2:

host# setenv EM_CMIP_MPA_PSEL <rfc1>
host# setenv EM_CMIP_MPA_SSEL Prs
host# setenv EM_CMIP_MPA_TSEL CMIP
host# setenv EM_CMIP_MPA_NSAP 0x8192b92b
host# setenv EM_CMIP_MPA_PLATFORM_CONNECT_TIMEOUT30
host# setenv EM_CMIP_MPA_RECONNECT_POLL_INTERVAL20
host# setenv EM_CMIP_MPA_APPLICATION_CONTEXT 0.0.13.3100.1.0.1
host# setenv EM_CMIP_MPA_SEND_ALARM_EARLYYes

host# setenv APNAME “ <AE-title-OID >: <AE-qualifier >: \
 < AP-invoke-id >:< AE-invoke-id >”

host# /etc/rc2.d/S98cmipmpa start

host# setenv EM_CMIP_MPA_PSEL rfc1
host# setenv EM_CMIP_MPA_SSEL Prs
host# setenv EM_CMIP_MPA_TSEL CMIP
host# setenv EM_CMIP_MPA_NSAP 0x8192b92b
host# setenv EM_CMIP_MPA_DEFAULT_PORT 5558
Chapter 12 Configuring Communication With CMIP Agents 12-19

4. Start MPA #2:

In this example, MPA #2 uses the non-default port of 5558 and is bound to:

5. Configure Agent(1) and (2) using em_oct -cmip .

Whereas Agent(1) uses the default MPA to talk to Agent #1, Agent #2 will use the

custom MPA port to talk to Agent #2.

The configuration for Agent #1 would therefore be as follows:

The configuration for Agent #2 would be as follows:

As seen in above examples, both MPAs are running on same system and MIS

forwards requests to Agent1 and Agent2 using MPA1 and MPA2 respectively.

host# /etc/rc2.d/S98cmipmpa start

PAddr(rfc1,Prs,CMIP,< 0xIPlocalhostinHex>)

Psel=dflt
Ssel = Prs
Tsel= CMIP
NSAP=<0xIPAgent1addinHex>
 'MDN=/systemId=name:"< system_name >"'

Psel=gom
Ssel = ses
Tsel=
NSAP=<0xIPAgent2addinHex>
Custom MPA hostname="< hostname >"
MPA Port=5558,
 'MDN=/networkId=pString:"network"'
12-20 Customizing Guide • October 2001

CHAPTER 13

Configuring CMIP MPA Overload

This chapter describes how to detect overload conditions for Common Management

Information Protocol (CMIP) Management Protocol Adapter (MPA), and what

action(s) must be taken when overload conditions exist.

This chapter describes the following topics:

■ Section 13.1 “Understanding CMIP MPA Overload” on page 13-1

■ Section 13.2 “Configuration Parameters” on page 13-2

■ Section 13.3 “Management Information Tree of Overload Control Objects” on

page 13-5

■ Section 13.4 “GDMO Classes” on page 13-6

13.1 Understanding CMIP MPA Overload
Occasionally the Solstice Enterprise Manager (Solstice EM) network management

system may experience network overload conditions caused by event storming.

Under such conditions, the process size grows very fast and the CPU usage would

be very high eventually causing the system to hang or crash. It is very important to

ensure that Solstice EM handles this condition and that no Solstice EM platform

component crashes.

In Solstice EM releases 3.0 and above, the CMIP MPA implements the overload

control mechanism to handle this situation. The CMIP is configured in the following

way:

■ If the threshold of a particular severity level for the CMIP agent is crossed, the

mpaOverloadAlarm notification will be emitted.

■ If the overload instruction is configured to abortAssociations , the CMIP MPA

automatically sets the administrative state of all the CMIP agents, whose

threshold is crossed, to locked.
13-1

■ Upon receiving the the attributeValueChange event of the administrative

state of the CMIP agent, the CMIP MPA issues an ABORT_ASSOCIATIONrequest

to these agents.

The threshold levels are used to indicate the level of the overload. Following are the

threshold levels used:

■ Critical

■ Major

■ Minor

■ Warning

■ Cleared

13.2 Configuration Parameters
The overload control feature in the CMIP MPA requires configuration parameters to

be stored in the EM-config file in /var/opt/SUNWconn/em/conf and GDMO

objects (overload.gdmo and overload.asn1). These parameters in EM-config
file are used for the initial value if the mpaOverloadController object does not

exist in the MIS. The parameters in EM-config can be dynamically changed

through PMI or em_obed.

Once the mpaOverloadController object is created, any modification to the EM-
config file will have no effect unless you delete the existing overload object and

bring up the em_cmip again.

The CMIP MPA will implement this overload control mechanism through the

following parameters:

■ Overload Control Parameter

■ Overload Notification Parameter

■ Overload Threshold Parameter

■ Minimum Threshold Parameter

■ Overload Instruction Parameter

■ Poll Interval Parameter

Note – The CMIP agents must be configured in the MIS before enabling the

overload control feature.
13-2 Customizing Guide • October 2001

13.2.1 Overload Control Parameter

This parameter determines whether the overload control feature is enabled or

needful disabled. The valid values are ENABLEDand DISABLED. The default is

DISABLED.

EM_MPA_OVERLOAD_CONTROL: DISABLED

13.2.2 Overload Notification Parameter

The following parameters determine whether or not the notification is emitted when

the threshold is crossed. In addition, whether or not the notification is emitted also

depends on the overload state. Notification will not be emitted if the previous and

current overload states are same. This will minimize the traffic between the CMIP

MPA and the EDS. The valid values are ENABLEDand DISABLED. The default is

DISABLED.

■ EM_MPA_CRITICAL_NOTIFICATION: DISABLED
■ EM_MPA_MAJOR_NOTIFICATION: DISABLED
■ EM_MPA_MINOR_NOTIFICATION: DISABLED
■ EM_MPA_WARNING_NOTIFICATION: DISABLED
■ EM_MPA_CLEAR_NOTIFICATION: DISABLED

13.2.3 Overload Threshold Parameter

The following parameters indicate the threshold value of overload conditions in the

units of events per second. The valid value is a positive integer. The default value for

these parameters is 0. The threshold parameter will not be checked if its value is

equal to 0.

PER_MPA

■ EM_MPA_CRITICAL_THRESHOLD_RATE_PER_MPA: 0
■ EM_MPA_MAJOR_THRESHOLD_RATE_PER_MPA: 0
■ EM_MPA_MINOR_THRESHOLD_RATE_PER_MPA: 0
■ EM_MPA_WARNING_THRESHOLD_RATE_PER_MPA: 0

PER_AGENT

■ EM_MPA_CRITICAL_THRESHOLD_RATE_PER_AGENT: 0
■ EM_MPA_MAJOR_THRESHOLD_RATE_PER_AGENT: 0
■ EM_MPA_MINOR_THRESHOLD_RATE_PER_AGENT: 0
■ EM_MPA_WARNING_THRESHOLD_RATE_PER_AGENT: 0
Chapter 13 Configuring CMIP MPA Overload 13-3

13.2.4 Minimum Threshold Parameter

The minimum threshold parameter is a low water mark set up for each threshold to

avoid ping-pong between threshold levels. The default and the minimum value

is 5.

13.2.5 Overload Instruction Parameter

This parameter indicates what kind of action is taken in case the level of a particular

threshold is crossed. The supported actions are, do nothing or abort associations of

the agent. The valid values are DO_NOTHINGand ABORT_ASSOCIATIONS. The

default value is DO_NOTHING.

When the CMIP MPA reaches a particular threshold level and the action is

ABORT_ASSOCIATIONS, the CMIP MPA will abort all the open associations to the

CMIP agents.

■ EM_MPA_CRITICAL_OVERLOAD_INSTRUCTION: DO_NOTHING
■ EM_MPA_MAJOR_OVERLOAD_INSTRUCTION: DO_NOTHING
■ EM_MPA_MINOR_OVERLOAD_INSTRUCTION: DO_NOTHING
■ EM_MPA_WARNING_OVERLOAD_INSTRUCTION: DO_NOTHING

13.2.6 Poll Interval Parameter

The poll interval parameter EM_MPA_OVERLOAD_POLL_INTERVAL:30indicates how

frequently the CMIP MPA checks overload conditions (in seconds). The minimum

value is 30 seconds. If the value is less than 30 seconds, it defaults to 30 seconds.
13-4 Customizing Guide • October 2001

13.3 Management Information Tree of
Overload Control Objects
The following figure illustrates the Management InformationTree (MIT) of Overload

Control Objects.

FIGURE 13-1 Management Information Tree of Overload Control Objects

system Id=system_name

emOverloadControlContainer Name=

emController Name="CMIP MPA: mpa_host:mpa_port "

mpa_host is the CMIP MPA
hostname, wheras mpa_port
is the port number of the CMIP
MPA—for example, CMIP
MPA:miami:5557.

"OVERLOAD_CONTROL"

/

Note: All attributes of mpaOverloadController named by emController Name
are maintained by the MIS.

Root of MIT

MIS System Objects

emController Object

emOverloadControlContainer
Chapter 13 Configuring CMIP MPA Overload 13-5

13.4 GDMO Classes

13.4.1 Mapping Between Attributes of the GDMO

Classes and Configuration Parameters

13.4.2 emOverloadControlContainer Class

This GDMO class serves as a container for objects used to implement the overload

control feature. The attribute value of overloadControlContainerName is set to

OVERLOAD_CONTROLwhen the object is created during Solstice EM installation.

TABLE 13-1 GDMO Mapping

Configuration Parameters GDMO attributes

EM_MPA_OVERLOAD_CONTROL administrativeState

EM_MPA_OVERLOAD_POLL_INTERVAL pollInterval

EM_MPA_MINIMUM_THRESHOLD minimumThreshold

EM_MPA_CRITICAL_NOTIFICATION,
EM_MPA_MAJOR_NOTIFICATION,
EM_MPA_MINOR_NOTIFICATION,
EM_MPA_WARNING_NOTIFICATION

notificationEnabledStatus

EM_MPA_CRITICAL_THRESHOLD_RATE_PER_MPA,
EM_MPA_MAJOR_THRESHOLD_RATE_PER_MPA,
EM_MPA_MINOR_THRESHOLD_RATE_PER_MPA,
EM_MPA_WARNING_THRESHOLD_RATE_PER_MPA

thresholdRatePerMPA

EM_MPA_CRITICAL_THRESHOLD_RATE_PER_AGENT,
EM_MPA_MAJOR_THRESHOLD_RATE_PER_AGENT,
EM_MPA_MINOR_THRESHOLD_RATE_PER_AGENT,
EM_MPA_WARNING_THRESHOLD_RATE_PER_AGENT

thresholdRatePerAgent

EM_MPA_CRITICAL_OVERLOAD_INSTRUCTION,
EM_MPA_MAJOR_OVERLOAD_INSTRUCTION,
EM_MPA_MINOR_OVERLOAD_INSTRUCTION,
EM_MPA_WARNING_OVERLOAD_INSTRUCTION

overloadInstruction
13-6 Customizing Guide • October 2001

13.4.3 emOverloadController Class

This GDMO class is used to represent the Solstice EM server process which has

defined the overload control objects. The CMIP MPA will be able to listen for the

events of the creation/deletion/attribute value change of this class.

13.4.4 mpaOverloadController Class

This GDMO class is derived from emOverloadController GDMO class, used to

represent the MPA. This defines the threshold rate per agent attribute managed by

the MIS. The class also generates notifications called agentOverloadAlarm ,

mpaOverloadAlarm , and abortAssocNotification . Each CMIP MPA will have

its own instance of mpaOverloadController object class named by “CMIP

MPA:mpa_host :mpa_port”. This class defines mpaStateInfo action used to query

CMIP MPA to retrieve the overload state information for the CMIP MPA as well as

for the CMIP agents. This action is designed for performance since the CMIP MPA

keeps track of the overload state information in C++ class and the CMIP MPA does

not maintain the mpaOverloadController objects.

mpaOverloadAlarm Notification

This alarm notification is sent by the instance of mpaOverloadController object

class. It is used to report an alarm of overload condition when the threshold of the

CMIP MPA is crossed. The alarm information consists of the alarm information of

the CMIP MPA as well as of each CMIP agent. This notification is mapped to

mpaOverloadAlarmRecord log record.

agentOverloadAlarm Notification

This alarm notification is sent by the instance of mpaOverloadController object

class. It is used to report an alarm of overload condition when the threshold of the

individual agent is crossed. The alarm information consists of the alarm information

of each CMIP agent. This notification is mapped to agentOverloadAlarmRecord
log record.

abortAssocNotification Notification

This notification is sent when the associations of the CMIP agent have been aborted

due to the threshold of the CMIP MPA, or of the CMIP agent is crossed and whose

overload instruction is ABORT_ASSOCIATIONS. The modification information

includes the CMIP agent’s MOI and text stating what action has been taken.
Chapter 13 Configuring CMIP MPA Overload 13-7

13.4.5 Overload Sample Programs

This section contains the sample programs for the overload control mechanism

implemented in the CMIP MPA. See the following table.

TABLE 13-2 Sample Programs Description

overload_get.cc This program will get all or a single attribute of

mpaOverloadController object.

overload_set.cc This program will set the attribute value of

mpaOverloadController object.

overload_action.cc This program will send action request

(mpaStateInfo) to the CMIP MPA to retrieve the

overload state of the CMIP MPA as well as the remote

CMIP agent.

overload_alarm.cc This program will listen for the mpaOverloadAlarm
and agentOverloadAlarmaction event generated

by the CMIP MPA when the threshold is crossed. If the

action parameter of the threshold level is specified, it

will set the administrative state of the CMIP agent to

locked. The CMIP MPA will receive this attribute

change event and trigger the RELEASE

ASSOCIATIONS to be sent to the CMIP agent.

get_agent_admin_state.cc This program will get the administrative state of the

specified CMIP agent.

set_agent_admin_state.cc This program will set the administrative state of the

specified CMIP agent.
13-8 Customizing Guide • October 2001

13.4.5.1 get_agent_admin_state

Purpose: Get the administrative state of the CMIP agent Id and print it.

Syntax: get_agent_admin_state -agen t <CMIP agent Id> -o <object class>\

[-host <host>] [-help]

where <CMIP agent Id> is the CMIP agent Id.

<object class> is the object class of the CMIP agent.

<host> is the MIS host

CODE EXAMPLE 13-1 Sample Syntax for get_agent_admin_state

// ./get_agent_admin_state -a ’thomaseng’ -o cmipAgent
// ./get_agent_admin_state -agent ’thomaseng’ -o cmipAgent -host emperf
//
//

#include <limits.h> // LINE_MAX
#include <netdb.h>
#include <sys/systeminfo.h>
#include <rw/cstring.h>
#include <hi.hh>
#include <installation.hh> // GETENV

const char *agent_rdn = "agentTableType='CMIP'/agentId=id:";

void usage()
{
 cout << "\nUsage:" ;
 cout << "./get_agent_admin_state -agent <cmip agent id> " ;
 cout << " -o <object class>" << endl;
 cout << " [-host <host>] [-help]" << endl;

cout << " -agent <cmip agent id> : CMIP agent Id (e.g.'emperf') " << endl ;
cout << " -o <object class> : object class of the cmip agent" << endl;

 cout << " -host <host> : host to connect to" << endl;
cout << " -help : print this message and exit" << endl;

}

Chapter 13 Configuring CMIP MPA Overload 13-9

CODE EXAMPLE 13-2 Main Program for get_agent_admin_state

int
main(int argc, char **argv)
{

 Platform plat(duEM);

 RWCString dn;
 RWCString agent_name;
 RWCString class_name;
 RWCString attribute_name = "administrativeState";
 RWCString host;

 // Get the host name.

 char * env_host = GETENV("EM_SERVER");

 if (!env_host)
 {

 char system_host[MAXHOSTNAMELEN + 1];

 sysinfo(SI_HOSTNAME, system_host, MAXHOSTNAMELEN);

 host = system_host;
 }
 else
 host = env_host;

 // Parse the cmd line for options.

 Boolean o_specified = FALSE;
 Boolean a_specified = FALSE;

 argv++;
 argc--;

 // get command line inputs
 void get_command_line_options(int,char **,Boolean *,Boolean
*,RWCString&,RWCString&,RWCString&);
get_command_line_options(argc,argv,&a_specified,&o_specified,host,agent_name,
class_name);

 // Check if all params have been properly provided
13-10 Customizing Guide • October 2001

 if (!a_specified || !o_specified) {
 usage();
 exit(1);
 }

 // construct dn
 dn = agent_rdn +
 RWCString ("'") + agent_name + RWCString("'");

 cout << "\n" << endl;
 cout << "===" <<
endl;
 cout << "The object name is " << endl;
 cout << dn << endl;
 cout << "===" <<
endl;

 // Connect to platform.
 cout << "Connecting to ... " << host << endl;
 if (!plat.connect((char *) (const char *) host,
 "em_sample"))
 {

 cout << "Failed to Connect to " << host << endl;
 cout << plat.get_error_string() << endl;

 exit(2);
 }
 cout << "Connected." << endl;

 // Declare cmipAgent/cmipAgentEntity image.
 Image im = Image((char *) (const char *) dn,
 (char *) (const char *) class_name);

 // Could not boot image
 if (!im.boot())
 {
 cout << "Failed to boot " << dn << endl;
 cout << im.get_error_string() << endl;
 exit(3);
 }

 // print the header

CODE EXAMPLE 13-2 Main Program for get_agent_admin_state (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-11

 cout << "\nAttribute Value";
 cout << "\n--------- -----" << endl;

 // Get attribute value and print it.

 cout << attribute_name;
 cout << ""
 << im.get_str((char *) (const char *) attribute_name).chp()
 << endl;
 exit(0);

}

/**

Method:substring

General Description:
Returns true if all of sub_string matches the main_string from the
beginning of main_string.

e.g. there is a match if
 main_string is "help"
 substring is "he"

No match when:
 main_string is "he"
 sub_string is "help"
or
 main_string is "host"
 sub_string is "he"

Arguments:

Return Value:

Algorithm:

Usage:

WARNING: An empty sub_string ("") will return TRUE.

Exceptions:

***/

CODE EXAMPLE 13-2 Main Program for get_agent_admin_state (Continued)

int
13-12 Customizing Guide • October 2001

Boolean substring(const char * main_string, const char * sub_string)
{
 while (*sub_string != 0)
 {
 if (*sub_string++ != *main_string++)
 return FALSE;
 }

 return TRUE;
}

//
// Get command line inputs.
//
void
get_command_line_options(int argc, char **argv,
 Boolean *a_specified, Boolean *o_specified,
 RWCString &host,
 RWCString &agent_name, RWCString &class_name)
{
 while (argc > 0 && argv[0][0] == ’-’)
 {
 switch (argv[0][1])

{
 case ’a’:

 {
 if (!substring("agent", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

 agent_name = argv[0];

 *a_specified = TRUE;
 }
 break;
 case ’o’:

CODE EXAMPLE 13-2 Main Program for get_agent_admin_state (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-13

 if (!substring("object_class", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

 class_name = argv[0];

 *o_specified = TRUE;

 break;

 case ’h’:
 if (strlen(&(argv[0][1])) < 2)
 {
 // can not distinguish between -help and -host
 usage();
 exit(1);
 }
 if (substring("help", &(argv[0][1])))
 {
 usage();
 exit(0);
 }

 if (!substring("host", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;
 host = argv[0];

CODE EXAMPLE 13-2 Main Program for get_agent_admin_state (Continued)

int
13-14 Customizing Guide • October 2001

13.4.5.2 overload_action

Purpose: This program demonstrates how to invoke mpaOverloadController
object action mpaStateInfo . GDMO class mpaOverloadController supports

action mpaStateInfo which retrieves the overload state of the CMIP MPA and the

remote agents.

Action: mpaStateInfo

Usage: overload_action -n <emControllerName> -l <action parameter> [-host
<host>] [-help]

where <emControllerName> is the emControllerName in the form of "CMIP

MPA:mpa_host:mpa_port " <action parameter> is the MpaStateInfoRequest asn1

syntax of mpaStateInfo action <host> is the host connect to (see overload.asn1).

 break;

 case ’?’:
 usage();

 exit(1);
 }

argv++;
argc--;

 }
}

CODE EXAMPLE 13-3 Sample for overload_action

// EXAmple:
//
// %overload_action -n ’CMIP MPA:thomaseng:5557’ -l ’default : NULL’
// %overload_action -n ’CMIP MPA:thomaseng:5557’ -l ’agentId : { { { systemId,
"thomaseng" } }, { { agentTableType, "CMIP" } }, { { agentId, "miami" } } }’
// %overload_action -n ’CMIP MPA:thomaseng:5557’ -l ’agentId :
localDistinguishedName : { { { agentId, "miami" } } }’
//
//

#include <netdb.h>
#include <sys/systeminfo.h>

#include <hi.hh>

CODE EXAMPLE 13-2 Main Program for get_agent_admin_state (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-15

#include <iostream.h>
#include <rw/cstring.h>
#include <unistd.h>

const char *overload_container_name =
"overloadControlContainerName='OVERLOAD_CONTROL'/emControllerName=";

void usage();

CODE EXAMPLE 13-4 Main Program for overload_action

int
main(int argc, char **argv)
{
 RWCString dn;
 RWCString action_name = "mpaStateInfo";
 RWCString action_para;
 RWCString mpa_name;

 // Get the host name
 char *host = getenv("EM_SERVER");
 if (!host) {
 host = new char[MAXHOSTNAMELEN+1];
 sysinfo(SI_HOSTNAME, host, MAXHOSTNAMELEN-1);
 }

 // Parse the cmd line for options.

 Boolean n_specified = FALSE;
 Boolean l_specified = FALSE;

 argv++;
 argc--;

 // get command line inputs
 void get_command_line_options(int,char**,Boolean*,Boolean*,char
*,RWCString&,RWCString&);
 get_command_line_options(argc, argv, &n_specified,&l_specified,
 host, mpa_name, action_para);

 // Check if all params have been properly provided

 if (!n_specified || !l_specified) {

CODE EXAMPLE 13-3 Sample for overload_action (Continued)

// EXAmple:
13-16 Customizing Guide • October 2001

 usage();
 exit(1);
 }

 cout << endl;
 cout << "hostname = " << host << endl;
 cout << "mpaname = " << mpa_name << endl;
 cout << "action name = " << action_name << endl;
 cout << "action parameter = " << action_para << endl;
 cout << endl << endl;

 // Set up connect to MIS
 Platform plat = Platform(duEM);
 if (plat.get_error_type() != PMI_SUCCESS) {
 cout << plat.get_error_string() << endl;
 exit(2);
 }

 cout << "Connecting to ... " << host << endl;

 if (!plat.connect(host, "em_sample")) {
 cout << "Failed to connect to " << host << endl;
 cout << plat.get_error_string() << endl;
 exit(4);
 }
 cout << "Connected." << host << endl;

 // Construct dn
 dn = overload_container_name +
 RWCString ("'") + mpa_name + RWCString("'");

 Image ov_image = Image((char *)(const char *)dn);
 if (ov_image.get_error_type() != PMI_SUCCESS) {
 cout << ov_image.get_error_string() << endl;
 exit(2);
 }

 // Boot mpaOverloadController object.
 if (!ov_image.boot()) {
 cout << ov_image.get_error_string() << endl;
 exit(2);
 }

 // Use action name to get input syntax.
 Syntax syn_input = ov_image.get_param_syntax((char *)(const char
*)action_name);

CODE EXAMPLE 13-4 Main Program for overload_action (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-17

 if (syn_input.get_error_type() != PMI_SUCCESS) {
 cout << syn_input.get_error_string() << endl;
 exit(2);
 }

 // Use action name to get result syntax.
 Syntax syn_result = ov_image.get_result_syntax((char *)(const char
*)action_name);
 if (syn_result.get_error_type() != PMI_SUCCESS) {
 cout << syn_result.get_error_string() << endl;
 exit(2);
 }

 // Print the syntaxes.
 cout << "Input Syntax is " << syn_input.get().chp();
 cout << endl;
 cout << "Result Syntax is " << syn_result.get().chp();
 cout << endl;

 // Invoke the action and get the result data.
 DU action_data = ov_image.call((char *)(const char *)action_name, (char
*)(const char *)action_para);

 // Use input syntax and action parameter to get input morf.
 Morf morf_input(syn_input, (char *)(const char *)action_para);
 if (morf_input.get_error_type() != PMI_SUCCESS) {
 cout << morf_input.get_error_string() << endl;
 exit(2);
 }

 cout << "Input Morf--> " << morf_input.get().chp() << endl;

 // User input morf and action name to get the result.
 Morf morf_result = ov_image.call_raw((char *)(const char *)action_name,
morf_input);
 if (morf_result.get_error_type() != PMI_SUCCESS) {
 cout << morf_result.get_error_string() << endl;
 exit(2);
 }

 // Print the result.
 cout << "Result --> " << morf_result.get().chp() << endl;

 return 0;
}

CODE EXAMPLE 13-4 Main Program for overload_action (Continued)

int
13-18 Customizing Guide • October 2001

void
usage()
{
 cout << "\nUsage: ";

cout << "overload_action -n <emControllerName> -l <action parameter> [-host
<host>] [-help]" << endl;

cout << " -n <emControllerName> : emControllerName in the form of"<<endl ;
cout << " 'CMIP MPA:mpa_host:mpa_port'"<< endl;
cout << " -l <action parameter> : MpaStateInfoRequest asn1 syntax of "

<< endl;
 cout << " mpaStateInfo action" << endl;
 cout << " -host <host> : host to connect to " << endl;

cout << " -help : print this message and exit" << endl;
}

CODE EXAMPLE 13-5 Exceptions

Boolean substring(
 const char * main_string,
 const char * sub_string
)
{
 while (*sub_string != 0)
 {
 if (*sub_string++ != *main_string++)
 return FALSE;
 }

 return TRUE;
}

//
// Get command line inputs
//
void
get_command_line_options(int argc, char **argv,
 Boolean *n_specified, Boolean *l_specified,
 char *host,
 RWCString &mpa_name, RWCString &action_para)
{
 while (argc > 0 && argv[0][0] == ’-’)
 {
 switch (argv[0][1])
 {
 case ’n’:

CODE EXAMPLE 13-4 Main Program for overload_action (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-19

 {
 if (!substring("n", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

 mpa_name = argv[0];

 *n_specified = TRUE;
 }
 break;
 case ’l’:

 if (!substring("l", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

 action_para = argv[0];

 *l_specified = TRUE;
 break;
 case ’h’:
 if (strlen(&(argv[0][1])) < 2)
 {
 // can not distinguish between -help and -host
 usage();
 exit(1);
 }
 if (substring("help", &(argv[0][1])))

CODE EXAMPLE 13-5 Exceptions (Continued)

Boolean substring(
13-20 Customizing Guide • October 2001

13.4.5.3 overload_alarm

Purpose: Listen for mpaOverloadAlarm and agentOverloadAlarm events which

are generated from the CMIP MPA if the overload control mechanism is enabled and

the threshold is crossed. If the overload instruction of particular threshold level is

releaseAssociations , update the administrativeState of the CMIP agent to

 {
 usage();
 exit(0);
 }

 if (!substring("host", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;
 strcpy(host,argv[0]);

 break;

 case ’?’:
 usage();

 exit(1);
 }
 argv++;
 argc--;
 }
}

CODE EXAMPLE 13-5 Exceptions (Continued)

Boolean substring(
Chapter 13 Configuring CMIP MPA Overload 13-21

locked. The CMIP MPA will listen for this attribute change event and sends the

RELEASE_ASSOCIATION REQUESTto the agent. If the overload instruction of

particular threshold level is doNothing , no action will be taken.

CODE EXAMPLE 13-6 Syntax for overload_alarm

overload_alarm [-cr_action <action>] [-mj_action <action>]
// [-mn_action <action>] [-wn_action <action>]
// [-host <MIS host>] [-help]
//
// where xx_action - the threshold level and
// action - the overload instruction. The valid values
// are doNothing/releaseAssociations.
// host - MIS host
// help - print command line options and exit
// (refer to overload.gdmo/overload.asn1)
//
// Notes: 1. This program never exits; it enters an infinite listening loop.
// Use Control-C to terminate it.
// 2. If no argument is supplied, no overload action will be taken.
//
// Examples:
// %overload_alarm -cr_action releaseAssociations -wn_action doNothing
// %overload_alarm -mj_action releaseAssociations -mn_action doNothing
// %overload_alarm
//

#include <netdb.h>
#include <sys/systeminfo.h>

#include <hi.hh>
#include <message.hh>

const Oid mpaOverloadAlarmOid = Oid("1.3.6.1.4.1.42.2.2.2.11.10.1");
const Oid agentOverloadAlarmOid = Oid("1.3.6.1.4.1.42.2.2.2.11.10.2");

void raw_cb(Ptr, Ptr calldata);

enum AGENT_TYPE {mpa, cmip_agent};
enum SEVERITY {critical, major, minor, warning, cleared};
enum ADMIN_STATE {unlocked, locked};

const char *sev_str[] = {"Critical", "Major", "Minor", "Warning", "Cleared",
"Unknown"};
const DU mpaOverloadAlarmDU = "mpaOverloadAlarm";
const DU agentOverloadAlarmDU = "agentOverloadAlarm";
const DU AgentTableDU = "agentCmip";
13-22 Customizing Guide • October 2001

const DU ExtAgentTableDU = "agentCmipEntity";

char *cr_action="doNothing";
char *mj_action="doNothing";
char *mn_action="doNothing";
char *wn_action="doNothing";
Boolean cr_action_specified=FALSE, mj_action_specified=FALSE;
Boolean mn_action_specified=FALSE, wn_action_specified=FALSE;

void usage()
{
 cout << "\nUsage: " ;
 cout << "./overload_alarm [-cr_action <action>] [-mj_action <action>]
[mn_action <action>] [wn_action <action>] [-host <host>] [-help] " << endl;

cout << " -cr_action <action> : overload instruction for critical threshold
" << endl;

cout << " (doNothing/releaseAssociations)" << endl;
cout << " -mj_action <action> : overload instruction for major threshold

" << endl;
cout << " (doNothing/releaseAssociations)" << endl;
cout << " -mn_action <action> : overload instruction for minor threshold

" << endl;
cout << " (doNothing/releaseAssociations)" << endl;

cout << " -wn_action <action> : overload instruction for warning threshold
" << endl;

cout << " (doNothing/releaseAssociations)" << endl;
 cout << " -help : print this message and exit" << endl;
 cout << " -host <host> : host to connect to" << endl;

CODE EXAMPLE 13-7 Main Program for overload_alarm

}
int
main(int argc, char **argv)
{
 // Setup the connection to the MIS.

 Platform plat = Platform(duEM);
 if (plat.get_error_type()!=PMI_SUCCESS) {
 cout << plat.get_error_string() << endl;
 exit(1);
 }

 // Get the host name.

CODE EXAMPLE 13-6 Syntax for overload_alarm (Continued)

overload_alarm [-cr_action <action>] [-mj_action <action>]
Chapter 13 Configuring CMIP MPA Overload 13-23

 char *host = getenv("EM_SERVER");
 if (!host) {
 host = new char[MAXHOSTNAMELEN+1];
 sysinfo(SI_HOSTNAME, host, MAXHOSTNAMELEN-1);
 }

 argv++;
 argc--;

 // get command line inputs
 void get_command_line_options(int, char**, char *);
 get_command_line_options(argc,argv,host);

/*
 if (argc > 0 && (!cr_action_specified || !mj_action_specified ||
 !mn_action_specified || !wn_action_specified)) {
 usage();
 exit(1);
 }
*/
 cout << "Connecting to ... " << host << endl;
 if (!plat.connect(host, "em_sample")) {
 cout << "Failed to connect to " << host << endl;
 cout << plat.get_error_string() << endl;
 exit(2);
 }
 cout << "Connected." << endl << endl;

 // Only interested in this specified object class.
 Array(DU)classes(1);
 classes[0] = "mpaOverloadController";

 Array(DU)events(2);
 events[0] = mpaOverloadAlarmDU;
 events[1] = agentOverloadAlarmDU;

 if(!plat.replace_discriminator_classes(classes, events)) {
 cout << plat.get_error_string();
 exit(4);
 }

 if (!plat.when("RAW_EVENT", Callback(raw_cb, 0))) { // Say when to call
raw_cb().
 cout << plat.get_error_string() << endl;
 exit(5);

CODE EXAMPLE 13-7 Main Program for overload_alarm (Continued)

}

13-24 Customizing Guide • October 2001

 }

 cout << "Waiting for events...... " << endl << endl;

while(1) { // Enter the infinite listen loop.
 dispatch_recursive(TRUE);
 }

 exit(0);
}

//
// Check the overload instruction:
// Return true if the action is releaseAssociations, otherwise, return false.
//
Boolean need_change_state(I32 sev)
{
 switch (sev-1) {
 case critical:
 if (cr_action_specified && !strcmp(cr_action, "releaseAssociations"))
 return TRUE;
 break;
 case major:
 if (mj_action_specified && !strcmp(mj_action, "releaseAssociations"))
 return TRUE;
 break;
 case minor:
 if (mn_action_specified && !strcmp(mn_action, "releaseAssociations"))
 return TRUE;
 break;
 case warning:
 if (wn_action_specified && !strcmp(wn_action, "releaseAssociations"))
 return TRUE;
 break;
 default:
 return FALSE;
 }
 return FALSE;
}

//
// Change administrativeState of cmip agent.
//
void change_admin_state_of_agent(const Asn1Value oi, ADMIN_STATE state)
{

CODE EXAMPLE 13-7 Main Program for overload_alarm (Continued)

}

Chapter 13 Configuring CMIP MPA Overload 13-25

 DU fdn = oi2fdn(oi);
 Image agent_im = Image(fdn);
 if (!agent_im.boot()) {
 cout << "Can’t boot agent image" << endl;
 exit(3);
 }
 if (!agent_im.exists()) {
 cout << "Agent image does not exist" << endl;
 exit(3);
 }
 char *state_str;
 if (state == unlocked)
 state_str = "unlocked";
 else if (state == locked)
 state_str = "locked";
 if (!agent_im.set_str("administrativeState", state_str)) {
 cout << "Failed to set administrative state of the agent ("
 << fdn.chp() << ") " << endl;
 exit(3);
 }
 if (!agent_im.store()) {
 cout << "Failed to store administrative state of the agent ("
 << fdn.chp() << ") " << endl;
 exit(3);
 }
 else {

cout << "\n\n==="
<< endl;

cout << "SET the administrative state to locked for agent: "<<endl;
cout << "<" << fdn.chp() << "> " << endl;

cout << "===\n\n"
<< endl;
 }

}

//
// Decode alarm information of each cmip agent.
//
void decode_agent_info(const Asn1Value &agent_info)
{
 Asn1Value ava, ava2, agent_moi;
 U32 num = agent_info.num_comps();
 for (int i=0; i < num; i++) {
 if (i == 0) {

CODE EXAMPLE 13-7 Main Program for overload_alarm (Continued)

}

13-26 Customizing Guide • October 2001

 VTRYINV(agent_info.first_component(ava));
 VTRYINV(ava.first_component(agent_moi)); // moi of agent Id
 change_admin_state_of_agent(agent_moi, locked);
 }
 else if (i != 0) {
 VTRYINV(agent_info.next_component(ava, ava2));
 VTRYINV(ava2.first_component(agent_moi)); // moi of agent Id
 change_admin_state_of_agent(agent_moi, locked);
 }
 }
}

//
// Print out the useful alarm information such as what severity of
// alarm received, where does it come from, and the action to be taken.
//
void
print_alarm_info(SEVERITY sev, AGENT_TYPE type, Asn1Value agent_oi)
{
 // convert oi to fdn
 DU fdn = oi2fdn(agent_oi);

 // check unknown severity
 if (sev < critical || sev > cleared)
 sev = SEVERITY(5);

cout << "\n\n===" <<
endl;
 if (type == mpa) {

cout << "Received <" << sev_str[sev] << "> alarm from CMIP MPA " << endl;
 }
 else { // type == cmip_agent

cout << "Received <" << sev_str[sev] << "> alarm from CMIP Agent " << endl;
 }
 cout << " <" << fdn.chp() << ">" << endl;

 switch (sev) {
 case critical:
 cout << "Action taken: <" << cr_action << ">" << endl;
 break;
 case major:
 cout << "Action taken: <" << mj_action << ">" << endl;
 break;
 case minor:
 cout << "Action taken: <" << mn_action << ">" << endl;
 break;

CODE EXAMPLE 13-7 Main Program for overload_alarm (Continued)

}

Chapter 13 Configuring CMIP MPA Overload 13-27

 case warning:
 cout << "Action taken: <" << wn_action << ">" << endl;
 break;
 default:
 cout << "Action taken: <" << sev_str[sev] << ">" << endl;
 break;
 }

cout << "===\n\n" <<
endl;
}

//
// Decode mpaOverloadAlarm and agentOverloadAlarm.
/* Here’s the asn1 syntax for these alarms.

--
-- mpa overload alarm information including all agents overload alarm
-- information. The moi of the mpa is in the event message.

MpaOverloadAlarmInfo ::= SEQUENCE {
 threshold Threshold,
 probableCause ProbableCause,
 perceivedSeverity EMPerceivedSeverity,
 additionalText AdditionalText,
 agentsOverloadAlarmInfo AgentsOverloadAlarmInfo
}
AgentsOverloadAlarmInfo ::= SET OF SEQUENCE {
 agentMOI AgentMOI,
 threshold Threshold,
 probableCause ProbableCause,
 perceivedSeverity EMPerceivedSeverity,
 additionalText AdditionalText
}

AgentMOI ::= ObjectInstance

--
-- agent overload alarm information; The agent moi is in the event message
--
AgentOverloadAlarmInfo ::= SEQUENCE {
 threshold Threshold,
 probableCause ProbableCause,
 perceivedSeverity EMPerceivedSeverity,
 additionalText AdditionalText
}

CODE EXAMPLE 13-7 Main Program for overload_alarm (Continued)

}

13-28 Customizing Guide • October 2001

Threshold ::= INTEGER

*/

void decode_message(CurrentEvent ce)
{
 ObjReqMess *req = (ObjReqMess *)ce.get_message();
 EventReq *evt_req = (EventReq *)req;
 Asn1Value ava;
 Oid evt_oid;
 if (evt_req->event_type.decode_oid(evt_oid) != OK) {
 cout << "Can’t decode event oid" << endl;
 }
 else {
 I32 sev;

 // Decode threshold
 VTRYINV(evt_req->event_info.first_component(ava));

 // Decode probableCause
 VTRYINV(evt_req->event_info.next_component(ava,ava));

 // Decode perceivedSeverity
 VTRYINV(evt_req->event_info.next_component(ava,ava));

 // mpaOverloadAlarm
 if (evt_oid == mpaOverloadAlarmOid) {

 Asn1Value agent_info;
 Boolean found = FALSE;

 VTRYINV(ava.decode_int(sev));
 if (need_change_state(sev)) {
 print_alarm_info(SEVERITY(sev-1), mpa, req->oi);
 while (!found) {
 VTRYINV(evt_req->event_info.next_component(ava,ava));
 if (ava.tag() == TAG_SET)
 found = TRUE;
 }
 if (found) {
 agent_info = ava;
 decode_agent_info(agent_info);
 }
 }
 }
 // agentOverloadAlarm

CODE EXAMPLE 13-7 Main Program for overload_alarm (Continued)

}

Chapter 13 Configuring CMIP MPA Overload 13-29

 else if (evt_oid == agentOverloadAlarmOid) {
 VTRYINV(ava.decode_int(sev));
 if (need_change_state(sev)) {
 print_alarm_info(SEVERITY(sev-1), cmip_agent, req->oi);
 change_admin_state_of_agent(req->oi, locked);
 }
 }
 }
}

//
// Define a function to do something with an event notification.
//
void
raw_cb(Ptr, Ptr calldata)
{

//
// Print interesting things about the event.
//
CurrentEvent ce(calldata);
DU tmp;

cout << "****** RAW_EVENT received ******" << endl;

tmp=ce.get_event();
if (ce.get_error_type() != PMI_SUCCESS) {
cout << ce.get_error_string() << endl;
return;
} else {
cout << "EVENT = " << tmp.chp() << endl << endl;
}

 // Decode event message if action specified
 if (cr_action_specified || mj_action_specified ||
 mn_action_specified || wn_action_specified)
 decode_message(ce);

return;
}

/**
Method:substring

General Description:
Returns true if all of sub_string matches the main_string from the
beginning of main_string.

CODE EXAMPLE 13-7 Main Program for overload_alarm (Continued)

}

13-30 Customizing Guide • October 2001

e.g. there is a match if
 main_string is "help"
 substring is "he"

No match when:
 main_string is "he"
 sub_string is "help"
or
 main_string is "host"
 sub_string is "he"

Arguments:

Return Value:

Algorithm:

Usage:

WARNING: An empty sub_string ("") will return TRUE.

Exceptions:

***/

Boolean substring(
 const char * main_string,
 const char * sub_string
)
{
 while (*sub_string != 0)
 {
 if (*sub_string++ != *main_string++)
 return FALSE;
 }

 return TRUE;
}

//
// Get command line inputs.
//
void
get_command_line_options(int argc, char **argv, char *host)
{

CODE EXAMPLE 13-7 Main Program for overload_alarm (Continued)

}

Chapter 13 Configuring CMIP MPA Overload 13-31

 while (argc > 0 && argv[0][0] == ’-’)
 {
 switch (argv[0][1])
 {
 case ’c’:
 {
 if (!substring("cr_action", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

 cr_action = argv[0];

 cr_action_specified = TRUE;
 }
 break;
 case ’w’:

 if (!substring("wn_action", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

 wn_action = argv[0];

 wn_action_specified = TRUE;

 break;

 case ’m’:

CODE EXAMPLE 13-7 Main Program for overload_alarm (Continued)

}

13-32 Customizing Guide • October 2001

 if (strlen(&(argv[0][1])) < 2)
 {
 // can not distinguish between -mj_action and -mn_action
 usage();
 exit(1);
 }
 if (substring("mj_action", &(argv[0][1])))
 {
 mj_action_specified = TRUE;
 }

 else if (!substring("mn_action", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 else
 mn_action_specified = TRUE;

 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;
 if (mj_action_specified)
 mj_action = argv[0];
 else if (mn_action_specified)
 mn_action = argv[0];

 break;
 case ’h’:
 if (strlen(&(argv[0][1])) < 2)
 {
 // can not distinguish between -help and -host
 usage();
 exit(1);
 }
 if (substring("help", &(argv[0][1])))
 {
 usage();
 exit(0);
 }

 if (!substring("host", &(argv[0][1])))

CODE EXAMPLE 13-7 Main Program for overload_alarm (Continued)

}

Chapter 13 Configuring CMIP MPA Overload 13-33

13.4.5.4 overload_get

Purpose: Get and print attributes of the mpaOverloadController object.

 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;
 strcpy(host,argv[0]);

 break;

 case ’?’:
 usage();
 exit(1);
 default :
 usage();
 exit(1);
 }
 argv++;
 argc--;
 }
}

CODE EXAMPLE 13-8 Syntax for overload_get

overload_get -n <emControllerName> [-attribute <attribute>] \
// [-host <hostname>] [-help]
//
// where <n> is emControllerName of the CMIP MPA.
// <attribute> is the attribute of the object
// <host> is the MIS host
// <help> is to print the command line options
//
// Note:
// User MUST specify emControllerName in the form of
// "CMIP MPA:mpa_host:mpa_port".
// If no attribute is specified, get and print all attributes of

CODE EXAMPLE 13-7 Main Program for overload_alarm (Continued)

}

13-34 Customizing Guide • October 2001

// mpaOverloadController object of specified emControllerName.
//
// Example 1: Get and print all attributes of the mpaOverloadController
// object named.
//
// ./overload_get -n ’CMIP MPA:thomaseng:5557’ -a ’emControllerName’
// ./overload_get -n ’CMIP MPA:thomaseng:5557’ -a ’minimumThreshold’
// ./overload_get -n ’CMIP MPA:thomaseng:5557’ -a
’notificationEnabledStatus’
// ./overload_get -n ’CMIP MPA:thomaseng:5557’ -a ’overloadInstruction’
// ./overload_get -n ’CMIP MPA:thomaseng:5557’ -a ’overloadPollInterval’
// ./overload_get -n ’CMIP MPA:thomaseng:5557’ -a ’thresholdRatePerAgent’
// ./overload_get -n ’CMIP MPA:thomaseng:5557’ -a ’thresholdRatePerMPA’
// ./overload_get -n ’CMIP MPA:thomaseng:5557’ -a ’administrativeState’
// ./overload_get -n ’CMIP MPA:thomaseng:5557’ -a ’nameBinding’
// ./overload_get -n ’CMIP MPA:thomaseng:5557’ -a ’objectClass’
//
// Example 2: Get and print all attributes.
//
// ./overload_get -n ’CMIP MPA:thomaseng:5557’
//

#include <limits.h> // LINE_MAX
#include <netdb.h>
#include <sys/systeminfo.h>
#include <rw/cstring.h>
#include <hi.hh>
#include <installation.hh> // GETENV

const char *overload_container_name =
"overloadControlContainerName='OVERLOAD_CONTROL'/emControllerName=";

void usage()
{
 cout << "./overload_get -n <emControllerName in 'CMIP
MPA:mpa_host:mpa_port'> ";
 cout << "[-attribute <attribute>] [-host <host>] [-help]" << endl;

cout << " -n <emControllerName> : emControllerName in the form of " <<
endl;

cout << " 'CMIP MPA:mpa_host:mpa_port' " << endl;
 cout << " -attribute <attribute> : attribute name" << endl;
 cout << " -host <host> : host to connect to" << endl;

cout << " -help : print this message and exit" << endl;

}

CODE EXAMPLE 13-8 Syntax for overload_get (Continued)

overload_get -n <emControllerName> [-attribute <attribute>] \
Chapter 13 Configuring CMIP MPA Overload 13-35

CODE EXAMPLE 13-9 Main Program for overload_get

int
main(int argc, char **argv)
{

 Platform plat(duEM);

 RWCString dn;
 RWCString mpa_name;
 RWCString class_name = "mpaOverloadController";
 RWCString attribute_name;
 RWCString host;

 // Get the host name.

 char * env_host = GETENV("EM_SERVER");

 if (!env_host)
 {

 char system_host[MAXHOSTNAMELEN + 1];

 sysinfo(SI_HOSTNAME, system_host, MAXHOSTNAMELEN);

 host = system_host;
 }
 else
 host = env_host;

 // Parse the cmd line for options.

 Boolean n_specified = FALSE;
 Boolean a_specified = FALSE;

 argv++;
 argc--;

 // Get command line inputs
 void get_command_line_options(int argc,char **argv, Boolean *,Boolean *,
 RWCString &, RWCString &, RWCString &);
 get_command_line_options(argc, argv, &n_specified,&a_specified, host,
 mpa_name, attribute_name);

 // Check if all params have been properly provided

 if (!n_specified) {
 usage();
13-36 Customizing Guide • October 2001

 exit(1);
 }

 // construct dn
 dn = overload_container_name +
 RWCString ("'") + mpa_name + RWCString("'");

 cout << "\n" << endl;
cout << "===" << endl;

 cout << "The object name is " << endl;
 cout << dn << endl;

cout << "===" << endl;

 // Connect to platform.
 cout << "Connecting to ... " << host << endl;
 if (!plat.connect((char *) (const char *) host,
 "em_sample"))
 {

 cout << "Failed to Connect to " << host << endl;
 cout << plat.get_error_string() << endl;

 exit(2);
 }
 cout << "Connected." << endl;

 // Declare mpaOverloadController image.
 Image im = Image((char *) (const char *) dn,
 (char *) (const char *) class_name);

 // Could not boot image
 if (!im.boot())
 {
 cout << "Failed to boot " << dn << endl;
 cout << im.get_error_string() << endl;
 exit(3);
 }

 // Perform a get on each attribute to get its value
 // Note we have stripped off the document name to make
 // the attribute value pairs more readable
 // the chp() method of the DataUnit is necessary to null
 // terminate the DataUnit.

 // print the header

CODE EXAMPLE 13-9 Main Program for overload_get (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-37

 cout << "\nAttribute Value";
 cout << "\n--------- -----" << endl;

 // If an attribute is specified, get it, print it.

 if (strlen(attribute_name))
 {
 cout << attribute_name;
 cout << ""
 << im.get_str((char *) (const char *) attribute_name).chp()
 << endl;
 }
 else
 {

 // Create array attr_names of DataUnits; get attribute names, copy to
array.

 Array(DU) attr_names = im.get_attr_names();

 for (int i = 0; i < attr_names.size; i++)
{

DU& name = attr_names[i]; // Get name as DataUnit.

char *short_name = strrchr(attr_names[i].chp(),’:’); // Name as str

 // Print attribute
 cout << ++short_name << "";

 // Print value.
cout << im.get_str(name, USE_EXPLICIT_CHOICE | OMIT_NEWLINES).chp();

 cout << endl;
 }
 }
 exit(0);

}

/**

Method:substring

General Description:
Returns true if all of sub_string matches the main_string from the
beginning of main_string.

CODE EXAMPLE 13-9 Main Program for overload_get (Continued)

int
13-38 Customizing Guide • October 2001

e.g. there is a match if
 main_string is "help"
 substring is "he"

No match when:
 main_string is "he"
 sub_string is "help"
or
 main_string is "host"
 sub_string is "he"

Arguments:

Return Value:

Algorithm:

Usage:

WARNING: An empty sub_string ("") will return TRUE.

Exceptions:

***/

Boolean substring(const char * main_string, const char * sub_string)
{
 while (*sub_string != 0)
 {
 if (*sub_string++ != *main_string++)
 return FALSE;
 }

 return TRUE;
}

//
// Get command line inputs
//
void
get_command_line_options(int argc, char **argv,
 Boolean *n_specified, Boolean *a_specified,
 RWCString &host,
 RWCString &mpa_name, RWCString &attribute_name)
{

CODE EXAMPLE 13-9 Main Program for overload_get (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-39

 while (argc > 0 && argv[0][0] == ’-’)
 {
 switch (argv[0][1])

{
 case ’n’:

 {
 if (!substring("n", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

 mpa_name = argv[0];

 *n_specified = TRUE;
 }
 break;
 case ’a’:

 if (!substring("attribute", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

 attribute_name = argv[0];

 *a_specified = TRUE;

 break;

 case ’h’:

CODE EXAMPLE 13-9 Main Program for overload_get (Continued)

int
13-40 Customizing Guide • October 2001

 if (strlen(&(argv[0][1])) < 2)
 {
 // can not distinguish between -help and -host
 usage();
 exit(1);
 }
 if (substring("help", &(argv[0][1])))
 {
 usage();
 exit(0);
 }

 if (!substring("host", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;
 host = argv[0];

 break;

 case ’?’:
 usage();

 exit(1);
 }

argv++;
argc--;

 }
}

CODE EXAMPLE 13-9 Main Program for overload_get (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-41

13.4.5.5 overload_set

Purpose: Set and print attributes of the mpaOverloadController object.

CODE EXAMPLE 13-10 Syntax for overload_set

overload_set -n <emControllerName> -attribute <attribute>\
// -value <attributeValue [-host <hostname>] [-help]
//
// where <n> is emControllerName of the CMIP MPA.
// <attribute> specifies the attribute of the object
// <attributeValue> specifies the attribute value of the object
// <host> specifies the MIS host
// <help> indicate to print the command line options
//
// Note:
// User MUST specify emControllerName in the form of
// "CMIP MPA:mpa_host:mpa_port".
// User MUST specify the attribute value to change to.
//
// Example 1:
//
// ./overload_set -n ’CMIP MPA:thomaseng:5557’ -a ’minimumThreshold’
// -v 20
// ./overload_set -n ’CMIP MPA:thomaseng:5557’ -a
’notificationEnabledStatus’
// -v ’{ { critical, disabled }, { major, disabled }, { minor, disabled
}, { warning, disabled }, { cleared, disabled } }’
// ./overload_set -n ’CMIP MPA:thomaseng:5557’ -a ’overloadInstruction’
// -v ’{ { critical, doNothing }, { major, doNothing }, { minor, doNothing
}, { warning, doNothing } }’
// ./overload_set -n ’CMIP MPA:thomaseng:5557’ -a ’overloadPollInterval’
// -v 60
// ./overload_set -n ’CMIP MPA:thomaseng:5557’ -a ’thresholdRatePerAgent’
// -v ’{ { critical, 100 }, { major, 80 }, { minor, 60 }, { warning, 40 } }’
// ./overload_set -n ’CMIP MPA:thomaseng:5557’ -a ’thresholdRatePerMPA’
// -v ’{ { critical, 100 }, { major, 80 }, { minor, 60 }, { warning, 40 } }’
// ./overload_set -n ’CMIP MPA:thomaseng:5557’ -a ’administrativeState’
// -v locked
//

#include <limits.h> // LINE_MAX
#include <netdb.h>
#include <sys/systeminfo.h>
#include <rw/cstring.h>
#include <hi.hh>
#include <installation.hh> // GETENV
13-42 Customizing Guide • October 2001

const char *overload_container_name =
"overloadControlContainerName='OVERLOAD_CONTROL'/emControllerName=";

void usage()
{
 cout << "./overload_set -n <emControllerName in 'CMIP
MPA:mpa_host:mpa_port'> ";

cout << " -attribute <attribute> -value <attributeValue> [-host <host>] [-
help]" << endl;
 cout << " -n <emControllerName> : emControllerName in 'CMIP
MPA:mpa_host:mpa_port'" << endl;
 cout << " -attribute <attribute> : attribute name" << endl;
 cout << " -value <attributeValue>: attribute value" << endl;
 cout << " -host <host> : host to connect to" << endl;

cout << " -help : print this message and exit" << endl;

}

CODE EXAMPLE 13-11 Main Program for overload_set

int
main(int argc, char **argv)
{

 Platform plat(duEM);

 RWCString dn;
 RWCString mpa_name;
 RWCString class_name = "mpaOverloadController";
 RWCString attribute_name;
 RWCString attribute_value;
 RWCString host;

 // Get the host name.

 char * env_host = GETENV("EM_SERVER");

 if (!env_host)
 {

 char system_host[MAXHOSTNAMELEN + 1];

 sysinfo(SI_HOSTNAME, system_host, MAXHOSTNAMELEN);

 host = system_host;
 }

CODE EXAMPLE 13-10 Syntax for overload_set (Continued)

overload_set -n <emControllerName> -attribute <attribute>\
Chapter 13 Configuring CMIP MPA Overload 13-43

 else
 host = env_host;

 // Parse the cmd line for options.

 Boolean n_specified = FALSE;
 Boolean a_specified = FALSE;
 Boolean v_specified = FALSE;

 argv++;
 argc--;

 // Get command line inputs
 void get_command_line_options(int,char **,Boolean*, Boolean *, Boolean *,

RWCString &, RWCString &, RWCString &, RWCString &);
get_command_line_options(argc,argv,&n_specified,&a_specified,&v_specified,

 host,mpa_name,attribute_name,attribute_value);

 // Check if all params have been properly provided

 if (!n_specified || !a_specified || !v_specified) {
 usage();
 exit(3);
 }

 // Construct dn
 dn = overload_container_name +
 RWCString ("'") + mpa_name + RWCString("'");

 cout << "\n" << endl;
 cout << "===" <<
endl;
 cout << "The object name is " << endl;
 cout << dn << endl;
 cout << "===" <<
endl;

 // Connect to platform.
 cout << "Connecting to ... " << host << endl;
 if (!plat.connect((char *) (const char *) host,
 "em_sample"))
 {

 cout << "Failed to Connect to " << host << endl;

CODE EXAMPLE 13-11 Main Program for overload_set (Continued)

int
13-44 Customizing Guide • October 2001

 cout << plat.get_error_string() << endl;

 exit(4);
 }
 cout << "Connected. " << endl;

 // Declare mpaOverloadController image.
 Image im = Image((char *) (const char *) dn,
 (char *) (const char *) class_name);

 // Could not boot image
 if (!im.boot())
 {
 cout << "Failed to boot " << dn << endl;
 cout << im.get_error_string() << endl;
 exit(5);
 }

 // Now set the attribute.
 // Set the attribute value to the object image at application side.
 // The attribute value does not actually get changed in the MIS
 // until the store function is successfully completed.

 cout << "Set attribute " << attribute_name;
 cout << " to " << attribute_value << endl;

 DU prev_val = im.get_str((char *) (const char *)attribute_name);
 if (!prev_val) {
 cout << "Failed to get the attribute value ";
 cout << im.get_error_string() << endl;
 exit(5);
 }
 cout << "Before the set operation the attribute ";
 cout << attribute_name << " value is ";
 cout << prev_val.chp() << endl;

 // Set attribute value for the object image.

 if(!im.set_str((char *)(const char *)attribute_name, (char *)(const char
*)attribute_value)) {
 cout << "Failed to set. ";
 cout << im.get_error_string() << endl;
 exit(6);
 }

 cout << "Store the attribute value to the MIS..." << endl;

CODE EXAMPLE 13-11 Main Program for overload_set (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-45

 // Store the object image back to the MIS.

 if(!im.store()) {
 cout << "Failed to store. ";
 cout << im.get_error_string() << endl;
 exit(7);
 }

 // Get and print the new attribute value.

 cout << "After the set operation the attribute ";
 cout << attribute_name << " value is ";
 cout << (im.get_str(attribute_name.data())).chp() << endl;

 exit(0);

}

/**

Method:substring

General Description:
Returns true if all of sub_string matches the main_string from the
beginning of main_string.

e.g. there is a match if
 main_string is "help"
 substring is "he"

No match when:
 main_string is "he"
 sub_string is "help"
or
 main_string is "host"
 sub_string is "he"

Arguments:

Return Value:

Algorithm:

Usage:

CODE EXAMPLE 13-11 Main Program for overload_set (Continued)

int
13-46 Customizing Guide • October 2001

WARNING: An empty sub_string ("") will return TRUE.

Exceptions:

***/

Boolean substring(const char * main_string, const char * sub_string)
{
 while (*sub_string != 0)
 {
 if (*sub_string++ != *main_string++)
 return FALSE;
 }

 return TRUE;
}

//
// Get command line input
//
void
get_command_line_options(int argc, char **argv,
 Boolean *n_specified, Boolean *a_specified,
 Boolean *v_specified, RWCString &host,
 RWCString &mpa_name, RWCString &attribute_name,
 RWCString &attribute_value)
{
 while (argc > 0 && argv[0][0] == ’-’)
 {
 switch (argv[0][1])

{
 case ’n’:

 {
 if (!substring("n", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

CODE EXAMPLE 13-11 Main Program for overload_set (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-47

 mpa_name = argv[0];

 *n_specified = TRUE;
 }
 break;
 case ’a’:

 if (!substring("attribute", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

 attribute_name = argv[0];

 *a_specified = TRUE;

 break;

 case ’v’:

 if (!substring("value", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

 attribute_value = argv[0];

 *v_specified = TRUE;

 break;

CODE EXAMPLE 13-11 Main Program for overload_set (Continued)

int
13-48 Customizing Guide • October 2001

 case ’h’:
 if (strlen(&(argv[0][1])) < 2)
 {
 // can not distinguish between -help and -host
 usage();
 exit(1);
 }
 if (substring("help", &(argv[0][1])))
 {
 usage();
 exit(0);
 }

 if (!substring("host", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;
 host = argv[0];

 break;

 case ’?’:
 usage();

 exit(1);
 }

argv++;
argc--;

 }
}

CODE EXAMPLE 13-11 Main Program for overload_set (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-49

13.4.5.6 set_agent_admin_state

Purpose: Set the administrative state of the CMIP agent id and print it.

CODE EXAMPLE 13-12 Syntax for set_agent_admin_state

set_agent_admin_state -agent <cmip agent id> -o <object class>
// -value <value of admin. state> [-host <host>] [-help]
//
// where <agentId> is cmip agent id.
// <object class> specifies the object class of the cmip agent,
// either cmipAgent or cmipAgentEntity
// <attributeValue> specifies the administrative state
// attribute value of the agent
// <host> specifies the MIS host
// <help> indicate to print the command line options
//
// User MUST specify the attribute value to change to.
//
// Example 1:
//
// ./set_agent_admin_state -agent ’emperf’ -v locked
// ./set_agent_admin_state -agent ’emperf’ -v unlocked
//

#include <limits.h> // LINE_MAX
#include <netdb.h>
#include <sys/systeminfo.h>
#include <rw/cstring.h>
#include <hi.hh>
#include <installation.hh> // GETENV

const char *agent_rdn = "agentTableType='CMIP'/agentId=id:";

void usage()
{
 cout << "\nUsage:" ;
 cout << "./set_agent_admin_state -agent <cmip agent id> " ;
 cout << "-o <object class>" ;
 cout << " -value <attributeValue> [-host <host>] [-help]" << endl;

cout << " -agent <cmip agent id> : CMIP agent Id (e.g.'emperf') " << endl;
cout << " -o <object class> : object class of CMIP agent Id " << endl;

 cout << " -value <attributeValue> : attribute value of administrative
state " << endl;
 cout << " -host <host> : host to connect to" << endl;

cout << " -help : print this message and exit" << endl;

}

13-50 Customizing Guide • October 2001

CODE EXAMPLE 13-13 Main Program for set_agent_admin_state

int
main(int argc, char **argv)
{

 Platform plat(duEM);

 RWCString dn;
 RWCString agent_name;
 RWCString class_name;
 RWCString attribute_name = "administrativeState";
 RWCString attribute_value;
 RWCString host;

 // Get the host name.

 char * env_host = GETENV("EM_SERVER");

 if (!env_host)
 {

 char system_host[MAXHOSTNAMELEN + 1];

 sysinfo(SI_HOSTNAME, system_host, MAXHOSTNAMELEN);

 host = system_host;
 }
 else
 host = env_host;

 // Parse the cmd line for options.

 Boolean a_specified = FALSE;
 Boolean o_specified = FALSE;
 Boolean v_specified = FALSE;

 argv++;
 argc--;

 // get command line inputs
 void get_command_line_options(int,char **,Boolean*,Boolean*,Boolean *,

RWCString &, RWCString&,RWCString&, RWCString&);
get_command_line_options(argc,argv,&a_specified,&o_specified,&v_specified,

 host,class_name,agent_name,attribute_value);

 // Check if all params have been properly provided
Chapter 13 Configuring CMIP MPA Overload 13-51

 if (!a_specified || !o_specified || !v_specified) {
 usage();
 exit(1);
 }

 // Construct dn
 dn = agent_rdn +
 RWCString ("'") + agent_name + RWCString("'");

 cout << "\n" << endl;
 cout << "===" <<
endl;
 cout << "The object name is " << endl;
 cout << dn << endl;
 cout << "===" <<
endl;

 // Connect to platform.
 cout << "Connecting to ... " << host << endl;
 if (!plat.connect((char *) (const char *) host,
 "em_sample"))
 {

 cout << "Failed to Connect to " << host << endl;
 cout << plat.get_error_string() << endl;

 exit(4);
 }
 cout << "Connected. " << endl;

 // Declare cmip agent image.
 Image im = Image((char *) (const char *) dn,
 (char *) (const char *) class_name);

 // Could not boot image
 if (!im.boot())
 {
 cout << "Failed to boot " << dn << endl;
 cout << im.get_error_string() << endl;
 exit(5);
 }

 // Now set the attribute.
 // Set the attribute value to the object image at application side.
 // The attribute value does not actually get changed in the MIS

CODE EXAMPLE 13-13 Main Program for set_agent_admin_state (Continued)

int
13-52 Customizing Guide • October 2001

 // until the store function is successfully completed.

 cout << "Set attribute " << attribute_name;
 cout << " to " << attribute_value << endl;

 DU prev_val = im.get_str((char *) (const char *)attribute_name);
 if (!prev_val) {
 cout << "Failed to get the attribute value ";
 cout << im.get_error_string() << endl;
 exit(5);
 }
 cout << "Before the set operation the attribute ";
 cout << attribute_name << " value is ";
 cout << prev_val.chp() << endl;

 // Set attribute value for the object image.

 if(!im.set_str((char *)(const char *)attribute_name, (char *)(const char
*)attribute_value)) {
 cout << "Failed to set. ";
 cout << im.get_error_string() << endl;
 exit(6);
 }

 cout << "Store the attribute value to the MIS..." << endl;

 // Store the object image back to the MIS.

 if(!im.store()) {
 cout << "Failed to store. ";
 cout << im.get_error_string() << endl;
 exit(7);
 }

 // Get and print the new attribute value.

 cout << "After the set operation the attribute ";
 cout << attribute_name << " value is ";
 cout << (im.get_str(attribute_name.data())).chp() << endl;

 exit(0);

}

/**

CODE EXAMPLE 13-13 Main Program for set_agent_admin_state (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-53

Method:substring

General Description:
Returns true if all of sub_string matches the main_string from the
beginning of main_string.

e.g. there is a match if
 main_string is "help"
 substring is "he"

No match when:
 main_string is "he"
 sub_string is "help"
or
 main_string is "host"
 sub_string is "he"

Arguments:

Return Value:

Algorithm:

Usage:

WARNING: An empty sub_string ("") will return TRUE.

Exceptions:

***/

Boolean substring(const char * main_string, const char * sub_string)
{
 while (*sub_string != 0)
 {
 if (*sub_string++ != *main_string++)
 return FALSE;
 }

 return TRUE;
}

void
get_command_line_options(int argc, char **argv,
 Boolean *a_specified, Boolean *o_specified,
 Boolean *v_specified, RWCString &host,

CODE EXAMPLE 13-13 Main Program for set_agent_admin_state (Continued)

int
13-54 Customizing Guide • October 2001

 RWCString &class_name, RWCString &agent_name,
 RWCString &attribute_value)
{
 while (argc > 0 && argv[0][0] == ’-’)
 {
 switch (argv[0][1])

{
 case ’a’:

 {
 if (!substring("agent", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

 agent_name = argv[0];

 *a_specified = TRUE;
 }
 break;
 case ’o’:

 if (!substring("object_class", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

 class_name = argv[0];

 *o_specified = TRUE;

CODE EXAMPLE 13-13 Main Program for set_agent_admin_state (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-55

 break;

 case ’v’:

 if (!substring("value", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }
 argv ++;

 attribute_value = argv[0];

 *v_specified = TRUE;

 break;
 case ’h’:

 if (strlen(&(argv[0][1])) < 2)
 {
 // can not distinguish between -help and -host
 usage();
 exit(1);
 }
 if (substring("help", &(argv[0][1])))
 {
 usage();
 exit(0);
 }

 if (!substring("host", &(argv[0][1])))
 {
 usage();
 exit(1);
 }
 argc --;
 if (!argc)
 {
 usage();
 exit(1);
 }

CODE EXAMPLE 13-13 Main Program for set_agent_admin_state (Continued)

int
13-56 Customizing Guide • October 2001

 argv ++;
 host = argv[0];

 break;

 case ’?’:
 usage();

 exit(1);
 }

argv++;
argc--;

 }
}

CODE EXAMPLE 13-13 Main Program for set_agent_admin_state (Continued)

int
Chapter 13 Configuring CMIP MPA Overload 13-57

13-58 Customizing Guide • October 2001

PART IV Nerve Center

CHAPTER 14

Nerve Center Overview

Solstice Enterprise Manager (Solstice EM) provides the MIS support and applications

that enable you to detect conditions in a network and take action in response.

Collectively, the MIS functionality and related tools are referred to as Solstice EM’s

Nerve Center.

This chapter describes the following topics:

■ Section 14.1 “Nerve Center Components” on page 14-1

■ Section 14.2 “Nerve Center Documentation” on page 14-2

■ Section 14.3 “Nerve Center Operation” on page 14-3

14.1 Nerve Center Components
The Nerve Center is comprised of the following parts:

■ Request facilities in the Solstice EM MIS that handle the sending and receiving of

requests and generate request-driven polling.

■ Request Condition Language (RCL)—A script language that allows you to

express what you want to do to monitor and perform threshold-checking in your

network. You use this language in the Design Advanced Requests to build sets of

instructions called “conditions.” Conditions are the building blocks of request

templates.

■ A set of applications that allows you to create, save, and debug request templates,

and launch and monitor requests. This includes:

■ The Design Advanced Requests, which allows you to create request templates

that are the basis of requests.

■ The Requests tool, which allows you to launch requests against specific

network elements. Requests tool also lists running requests and allows you to

stop or examine them.
14-1

■ Facilities in the Design Advanced Requests (and via the em_ncimport and

em_ncexport command-line utilities) that allow you to export request

templates and their components to ASCII file for easy replication of request

components from one MIS to another.

■ The em_debug utility, which provides facilities for debugging of request

templates.

■ A Nerve Center Interface Library that provides programmers the means to

write applications to create, launch, and retrieve information from requests.

Some of the Nerve Center functions can be done using Simple Requests (see

Chapter 15). The Nerve Center Interface Library is described in the “Nerve

Center Interface Library” chapter in the API Syntax.

14.2 Nerve Center Documentation
Information on Nerve Center components can be found in the following places in

the Solstice EM documentation:

■ This chapter describes the Nerve Center request terminology and operation.

■ Chapter 15, "Requesting Data in Solstice EM,” provides step-by-step guidance on

building and debugging request templates using the Design Advanced Requests,

RCL, em_debug, and Simple Request.

■ Chapter 17, "Building Templates for SunNet Manager Event Requests,” describes

building and using request templates with SunNet Manager RPC agents.

■ Chapter 18, "Building Advanced Requests,” describes the features and usage of

the Design Advanced Requests application.

■ Chapter 20, "Request Condition Language,” describes the components of the

Request Condition Language used to build Nerve Center request templates.

■ Chapter 22, "RCL Functions,” describes the built-in functions that can be used in

building RCL conditions.

■ The Requests tool is described in Chapter 4 of Managing Your Network.

■ The Nerve Center interface library is described in the API Syntax.

■ The request templates shipped with Solstice EM are described in Chapter 4 of

Managing Your Network.
14-2 Customizing Guide • October 2001

14.3 Nerve Center Operation

14.3.1 How a Request Gets Information

A request can get information in the following ways:

■ It can poll for the attributes referred to in the conditions to be tested from its

current state. The Nerve Center sets the values of the attributes before it

“awakens” a request.

■ It can subscribe for event notifications. The Nerve Center sets the values of

variables related to the notification before it “awakens” the request.

■ It can use a combination of (1) and (2). If a state uses both subscription and

polling, its conditions can tell which of them “woke” the request by checking the

value of $messType , described in Chapter 20.

14.3.1.1 Where and When a Request’s Notifications Arise

An event that “awakens” a request can arise in either of two ways:

■ A notification initiated by an agent

Agents originate notifications on their own. A request can subscribe to particular

notifications. That is, it can ask the Nerve Center to pass it certain notifications.

For example, a request might ask to receive all authentication-failure SNMP traps.

A request for a specific managed object might ask to receive notifications that

concern that object. After it has subscribed, the request has nothing to do but wait

until a notification arrives. The subscription specifies whether the request will

receive:

■ All notifications of a particular type, or

■ All notifications that refer to a particular object

After a request subscribes to a notification, it receives all such notifications,

whenever they arrive, regardless of the request’s current state.

Requests can also use CMIS filters to select which notifications they want to

receive.

■ A response to a poll

Some information is provided by agents only on request from management

stations, that is, when polled.
Chapter 14 Nerve Center Overview 14-3

A condition can refer to attributes of a managed object. Every reference to an

attribute in a condition is interpreted as an implicit request to poll for that

attribute. When a request goes through a transition and arrives at a state, it

initiates periodic polls for the values of all the attributes it needs.

For each state, the template specifies a periodic poll rate. The poll rate specifies

the delay until the first poll and the interval between successive polls.

When a request goes through a transition, in effect it sends the following request

to the Nerve Center:

“Cancel any previous poll requests I made. Set a timer to go off every <n>
seconds from now and every <n> seconds thereafter. (The number of seconds is

the poll rate for the request’s current state.) Whenever that much time has

elapsed, poll to get me the values of the following attributes. When you have

obtained values for all these attributes, wake me.”

The list of conditions for a poll contains all attributes mentioned in any of the

conditions leading from the current state and also all attributes mentioned in any of

the ‘actions’ that accompany transitions from the current state. Actions are

operations performed after the transition occurs from one state to another. Every

poll of an attribute results in a CMIS GET request internally. RCL provides a system

variable call poll. This variable must be set to the right object FDN before the polling

occurs. This variable value is used by the FDR for the CMIS GET request. Then

several attributes can be specified in a condition for a state or a set of conditions for

a state. All of the attributes must refer to the same object to get the valid poll results

for all of the attributes.

A state must be awakened by retrieving information from the MIS. Otherwise, a

request sleeps in that state indefinitely. A condition as simple as the “jump”

condition ($x=map; true;), supplied with Solstice EM, is sufficient to awaken a

state. In this case, the value of the map attribute is accessed.

14.3.1.2 When Information From Managed Objects can Arrive

Event-related information from managed objects are of two types:

■ Messages in response to a poll arrive according to the schedule set by the current

state’s poll rate.

The Nerve Center notifies the request when it has assembled the values for all the

requested attributes. A message in response to a poll arrives no sooner than the

number of seconds specified in the poll rate, but possibly later.

■ Notifications that come from an agent arrive at unpredictable times.
14-4 Customizing Guide • October 2001

After a request has subscribed for certain types of event, it receives notification of

all events that match its subscription. They are forwarded at once, regardless of

the state the request is in. What the request does with them, or whether it even

looks at them, depends on the conditions the request tests in its current state. The

RCL offers the following functions that allow you to subscribe to events.

■ subscribe()
■ subscribeOi()
■ subscribeFilter()

14.3.2 Variables and Attributes in a Request

All requests built from the same template use the same names for variables and

attributes. Values associated with these names are specific to an individual request.

Any of the conditions that the template uses can refer to those names.

When a template is created, the Design Advanced Requests tool automatically scans

the definitions of all the conditions mentioned in the template for references to

variables and attributes. A template represents the definition, and a request is a

running instance of a template.

14.3.2.1 Attributes

When a condition contains the name of an attribute, the Nerve Center automatically

looks up the name in the Solstice EM MIS’s MetaData Repository (MDR). Provided

the attribute occurs only once in the MDR, using its name is sufficient to identify it.

If the same attribute name occurs in different places in the MDR, the name can be

qualified by including the name of the GDMO document in which it is declared.

Refer to Section 14.3.5 “Specifying the Objects to be Polled” on page 14-8“ for more

information.

An ampersand precedes an attribute (or variable) name if you need to pass the

address (rather than the value) of the attribute to an RCL function, such as

defined() or extract() , as shown in the following code example.

CODE EXAMPLE 14-1 Attributes

NOT (defined(&sysUpTime);
Chapter 14 Nerve Center Overview 14-5

14.3.2.2 System Variables

Certain names have standard meanings. If a condition refers to one of those names,

the Nerve Center supplies the appropriate information. For example, if a condition

needs to retrieve the time that a notification arrived, it can use the system variable

$eventTime . If it needs to retrieve the message type of the current notification, it

can use $messType . See Chapter 20 for a list of system variables and a list of the

possible values of the $messType variable.

14.3.2.3 User Variables

Any condition can create a variable by using the name of the variable to the left of

an equal (=) sign. The name of a variable must begin with the dollar sign ($). (The

dollar sign distinguishes the names of variables from the names of attributes,

because attribute names do not start with $.) For example, if you want the variable

$count to be the number of consecutive times that confirmation of object X has been

missing, some initial condition should contain a statement such as $count = 0;
And some other condition should contain $count = $count+1; Using the name

$count is sufficient to declare it.

A variable must first be assigned a value before it can be compared to another

variable or attribute. For example, a condition that has the statement sysUpTime <$
last_sys_up_time; should not be called if the variable $last_sys_up_time has

not yet been assigned a value.

All the variables mentioned in a request template share a common name space. That

is, any condition used in a request can see or set any of the request’s variables.

However, no request has access to variables in another request.

14.3.2.4 How Notifications and Poll Responses are Delivered

When a notification arrives, the Nerve Center sets the values of all the system

variables involved in a request. Similarly, when a poll response arrives, the Nerve

Center sets the values of all the relevant system variables and attributes.

At the point when a request starts testing its conditions, the Nerve Center has

already set the values of variables or attributes it needs. However, if the request uses

both subscription and polling, it should check the $messType system variable to

determine which type of event “woke” it. Following a notification or poll response,

the values of attributes are those from the previous notification or poll response, if

there was one.
14-6 Customizing Guide • October 2001

14.3.3 Where and When a Condition is Evaluated

A condition is evaluated independently for each managed object that is the target of

a request when the request is in a state that tests the condition, and when

■ A poll response arrives, or

■ An event notification arrives.

A notification to which the request subscribes can arrive at any time. A response

from a poll cannot arrive until:

■ The state’s poll interval has expired, and

■ The Nerve Center has returned the response from the poll.

14.3.4 Action at a Transition

The following subsections describe actions you can specify in your request

templates.

14.3.4.1 Supported Actions

To invoke actions at a transition, you must select one or more of the actions from the

Solstice EM list of supported actions. The types of supported actions are

summarized in the following table.

You can specify any combination of the supported actions to occur in a transition.

TABLE 14-1 Action Menu Items

Action Description

<none> No action taken.

UNIXCMD The name of command with any required parameters. For example, for

netstat -rn , you enter netstat in the Command field and -rn in

the Arguments field.

MAIL An electronic mail address and message. For example,

verma@halcyon in the Address field and CPU usage exceeded
90% in the Message field. By default, the mail that results from an

action has a subject “Problem with Node.”

CONDITION The name of a condition as you created and saved it in the Design

Advanced Requests (which saves it into the MIS).
Chapter 14 Nerve Center Overview 14-7

Note – A condition can be invoked as an action. Indeed, conditions are a much

more powerful way of defining actions than the use of UNIX commands or mail.

This permits the power of RCL, together with its access to the variables defined

within an individual request, to be combined in writing individualized actions.

14.3.4.2 Logging an Event

A log object (described in Chapter 5) stores selected event records. Each log object

has a discriminator construct: a proposition that the MIS uses to decide whether to

send a notification to the log or ignore it. In effect, each log object can adopt its own

criteria for receiving notifications.

The Request Condition Language (RCL) (see Chapter 20) provides alarm logging

functions (alarm() , alarmOi() , alarmStr() , and sendEvent()) to send

notifications that can be logged to the log object alarmLog or a user defined Log

Object. Log records written as a result of the alarm logging functions meet the

criteria of the default discriminator construct. The alarm() , alarmOi() , and

alarmStr() functions generate only nerveCenterAlarms . The sendEvent()
function can be used to send other kinds of notifications (such as internetAlarms or

communicationsAlarms). The events that are logged to a particular log depend upon

the discriminator construct for that log. By default, Nerve Center Alarms are

automatically logged into the Alarm Log.

14.3.4.3 Forwarding an SNMP Trap

The predefined condition called InternetTrap invokes the SendTrap function to

send a trap notification to the host identified by the user-defined variable $Host .

The condition uses the system variables $eventType and $eventInfo , which are

set automatically upon receipt of an incoming trap. The definition assumes that

$Host has previously been assigned the appropriate value, for example during the

transition from the ground state.

14.3.5 Specifying the Objects to be Polled

You can write templates that specify a particular managed device as the target of the

request. That request template would only be useful for managing that particular

device. In most cases you will not want to write a new template for each target

object. Typically, you define a template that can be used to manage objects of the

same type — for example, a certain type of router manageable via SNMP. The same

template can then be launched against all the devices that share the same

management characteristics (for example, routers that support the same SNMP MIB).
14-8 Customizing Guide • October 2001

Using the $pollfdn system variable in templates helps you to define templates that

can be targeted at different objects of the same type. In the following example the

objective is to create a template that can extract the attributes under the snmp-
mibII system group, such as sysDescr .

When a user launches a request template against a device selected in the Network

Views, Nerve Center places all of the managed objects configured for the device into

the system variable $pollFdnSet . “Managed objects” are internal representations

in the MIS of the agent capabilities supported by the device. If Network Discovery

was configured to search for RPC-based SunNet Manager agents when populating

the MIS, devices that have both SNMP and RPC agents are configured in the MIS to

indicate this. Fully distinguished names (FDNs) pointing to these managed objects

in the MIS are thus loaded into the $pollFdnSet variable when a user launches

requests against such a device.

Nerve Center uses another system variable ($pollfdn) to hold the target of the

request. When a request is launched, Nerve Center initially sets $pollfdn to the

first FDN in $pollFdnSet . However, the first agent name in $pollFdnSet may

not be the appropriate agent to support this particular request. In designing a Nerve

Center template, a typical task that should be performed in the template’s

initialization is to check $pollFdnSet to determine if the device is configured with

the agent capability appropriate for the request, and, if so, to set $pollfdn to the

appropriate object from those contained in $pollFdnSet .

The IsSnmpSystemUp template shipped with Solstice EM, for example, must be

targeted at a device that supports SNMP, and $pollfdn needs to be set to point to

the cmipsnmpProxyAgent object, which represents the SNMP agent system. Thus,

the SetInternetSystem condition searches through the FDNs contained in the

$pollFdnSet for the target device to find a match on “cmipsnmp”. If no match is

found, then the request knows the device is not configured appropriately for this

template.

If SetInternetSystem does find a match on “cmipsnmp”, it uses the RCL

AppendRdn() function to set the target for the poll to the SNMP RFC 1213

internetSystem group object “contained” under the default

cmipsnmpProxyAgent , which represents the agent system: $pollfdn =
appendRdn($dn,”/ internetSystem Id=NULL”); .

For example, the router bigguy is an SNMP agent system. A request launched

against the bigguy has its $pollfdn set to the cmipsnmpProxyAgent /
systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2
4]/cmipsnmpProxyAgentId=”bigguy” .

The cmipsnmpProxyAgent is the object in the MIS that represents the agent on the

system being managed. The various attribute groups or tables accessible via the

SNMP agent are represented by objects “contained” in the cmipsnmpProxyAgent
Chapter 14 Nerve Center Overview 14-9

object. Before it can establish polls for the object of interest, the request needs to

append to the ObjectInstance a further specification of the object it wishes to

poll.

In a Fully Distinguished Name (FDN) of the form /< naming-attribute>=<value>/
<naming-attribute>=<value>/< naming-attribute>=<value> each <naming-
attribute>=<value> designation is called a Relative Distinguished Name (RDN), and

each RDN designates an object, which is said to be “contained in” the object

designated by the RDN to its left in the path. The initial slash at the left represents

the local root of the Management Information Tree (MIT). In the example above, the

cmipsnmpProxyAgent for bigguy is contained in the MIS on the system

gatoloco . Containment relationships are reflected in the path to the object specified

in the FDN.

To set the $pollfdn to point to the snmp-mibII system group, the template must

concatenate the Relative Distinguished Name (RDN) for the object of interest, which

in this case is system. The SetInternetSystem sample condition, for example,

resets the value of $pollfdn to point to the snmp-mibII system group object as

shown in the following code example.

The appended RDN is a string that specifies the <naming-attribute>=<value> pair for

the system group. The affect of this appendRdn operation on our request launched

against the router bigguy is to change the value of $pollfdn to the following:

14.3.6 Alarm Logging and the Alarm Service

The RCL alarm-logging functions (alarm() , alarmStr() , and alarmOi()) allow

you to generate a nerveCenterAlarm which is, by default, logged to the

AlarmLog . Alarms logged to the alarm log can be viewed and cleared in the Alarms

application.

The AlarmLog is also, by default, monitored by the Alarm Service. The Alarm

Service is a module in the MIS that controls the fault status color in the Network

Views. Fault status is an attribute of topology nodes, which are represented by icons

$tmp = “/InternetSystemId=NULL”;
$pollfdn = appendRdn($pollfdn,$tmp);
true;

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2 4]/
cmipsnmpProxyAgentId=”bigguy”/InternetSystemId=NULL
14-10 Customizing Guide • October 2001

in the Network Views. Each topology node has an attribute topoNodeMOSet , which

points to a set of managed object instances (MOIs), representing the agents

configured for the particular device.

The Alarm Service associates an alarm posted to the AlarmLog with a topology

node if and only if that alarm is posted against one of the managed objects in the

topoNodeMOSet for that topology node. The Alarm Service tracks the

perceivedSeverity values of the alarms that are posted against each topology

node. The highest perceivedSeverity value of uncleared alarms determines the

fault status of the device. Thus, if a critical alarm is logged against router bigguy ,

the router icon, by default, turns red. If several minor alarms are then posted against

bigguy , these do not cause the router icon to turn cyan unless the critical alarm has

been cleared. Requests can clear previous alarms they have posted against a device

by posting an alarm with a severity of cleared. For example:

Note that, in the above example, the probableCause value (the first value in the set

of ASN.1 values making up the alarm) has been set to 1 in the clear alarm — the

same probableCause value used in the critical alarm. For an alarm to clear a

previous alarm, it is necessary that the probableCause value of the clear alarm

match the probableCause value of the alarm being cleared. If the alarm() or

alarmStr() functions were used to log nerveCenterAlarms , the

probableCause is automatically set to a value that matches the severity of the

alarm. For this reason, only the alarmOi() function can be used to log alarms that

clear previous alarms.

The alarm() and alarmStr() functions posts a nerveCenterAlarm against the

managed object that the $pollfdn variable points to at the time when the alarm-

logging function is called. If you have reset the $pollfdn variable to point to an

object other than one of those comprised in $pollFdnSet in your request, you can

use the alarmOi() function, which enables you to specify the managed object

against which the alarm is to be posted.

For example, if you reset $pollfdn to point to the internetSystem group under

the cmipsnmpProxyAgent object, you can retain the original pointer to the

cmipsnmpProxyAgent in a variable $snmpfdn , and then post an alarm using that

variable:

$info = StrToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”,”{1,5,\”Device
is up\”,3,1}”);
alarmOi($save_pollfdn,$info);

alarmOi($snmpfdn,1);
Chapter 14 Nerve Center Overview 14-11

14-12 Customizing Guide • October 2001

CHAPTER 15

Requesting Data in Solstice EM

Solstice Enterprise Manager (Solstice EM) enables you to request data from agents to

monitor the status of network components and to take action in response. This

proactive management of network conditions enables you to quickly find and

remedy faults and enhance the performance of your network.

This chapter describes the following topics:

■ Section 15.1 “Polling for Data in Solstice EM” on page 15-1

■ Section 15.2 “Subscribing for Events” on page 15-3

■ Section 15.3 “Using Solstice EM Tools for Polling” on page 15-4

■ Section 15.4 “Working with Basic Requests” on page 15-5

■ Section 15.5 “Working with Advanced Requests” on page 15-12

■ Section 15.6 “Building Blocks: States, Transitions, and Conditions” on page 15-15

■ Section 15.7 “Designing Request Templates” on page 15-26

■ Section 15.8 “Requests Based on Polling” on page 15-28

■ Section 15.9 “Polling RPC Agents” on page 15-35

■ Section 15.10 “Requests Based on Event Subscription” on page 15-41

■ Section 15.11 “Subscribing for Enterprise-Specific SNMP Traps” on page 15-42

■ Section 15.12 “Requests that Combine Subscription and Polling” on page 15-47

■ Section 15.13 “Building Request Definitions” on page 15-51

15.1 Polling for Data in Solstice EM
The architecture of Solstice EM enables you to keep informed of changes in status of

network components and overall network conditions. Through multiple Solstice EM

tools, you can design and customize request templates, scripts that enable a variety

of different actions to be completed, each of which causes a specific event to occur.

Request templates are used to poll or subscribe to an agent for data about a network

component.
15-1

Polling is a means to obtain data from an agent configured for a network

component. Attribute data, such as the percentage of disk capacity used, can be

useful for fine-tuning the performance of your network or for locating system faults.

Solstice EM supports three ways to poll for data:

■ Direct polling

■ Indirect polling

■ Event Request polling

15.1.1 Direct Polling

Direct polling supports Simple Network Management Protocol (SNMP) agents. The

term, direct polling, refers to the ability to directly request information from an

SNMP agent configured for a network component. The request is initiated from an

application and is translated into an SNMP request by the SNMP Management

Protocol Adapter (MPA). Direct polling is advantageous for direct communication

between the SNMP MPA and the MIS. However, as the request must travel through

the SNMP MPA and the MIS, the MIS can support only a limited amount of direct

polls. For more information about Solstice EM architecture, including the MIS and

MPAs, see the Management Information Server (MIS) Guide.

15.1.2 Indirect Polling

Indirect polling enables an SNMP agent configured for a network component to

obtain attribute data from a SunNet Manager (SNM) RPC agent or proxy agent via

the MIS. Indirect polling is initiated when a request generates a certain type of

action, a SunNet Manager (SNM) event request, targeted at an RPC agent or proxy.

Indirect polling is more efficient than direct polling for checking thresholds on large

numbers of devices because it minimizes the polling burden on the MIS and

distributes the polling activity to an RPC proxy agent closer to the device being

polled. (Building request templates that initiate SNM event requests is discussed in

Chapter 17.)

15.1.3 Event Request Polling

Event request polling refers to setting up a Nerve Center request template to poll an

agent for states and conditions of a network component. The agent configured for

the network component sends the requested data to the Nerve Center of the MIS.

The Nerve Center then issues instructions to the agent to complete an action

depending on the data returned.
15-2 Customizing Guide • October 2001

Event request polling is highly scalable because the polling is completed by remote

agents. An unlimited number of remote agents may be distributed around the

network.

15.2 Subscribing for Events
A message generated by an agent on its own initiative when a specified event is

detected on a managed resource is an event notification. For example, a CMIP agent

may generate a communicationsAlarm when a remote connection goes down.

A request template can listen for specified event notifications; this is called an event

subscription. The RCL subscription functions are used to specify the type of event

notification the request is to receive. The desired events can be specified by managed

object, event type, or through the use of a CMIS filter. The subscribed event

notifications are forwarded to the request by the MIS when they arrive. For example,

if you are using the Solstice EM SNMP trap mapping capability to convert router

SNMP linkDown traps to CMIP communicationsAlarms , you might design a

template that subscribes for communicationsAlarms and then takes appropriate

action when communicationsAlarms are received.

The MIS also generates event notifications; and, thus, a request could be defined that

listens for specified event notifications from the MIS. For example, a request could

subscribe for objectCreation event notifications generated when client

applications connect to the MIS.

15.2.1 Combining Polling and Event-Subscription

These different ways of obtaining information about managed resources can be

combined in the same request. For example, a request might subscribe for incoming

linkDown traps and then use polling to count the elapsed time before the arrival of

a linkUp trap for the downed router interface. If the elapsed time exceeds a certain

threshold, the request might then emit a Nerve Center alarm. A sample template

that illustrates this scenario is described in Section 15.12, “Requests that Combine

Subscription and Polling .”
Chapter 15 Requesting Data in Solstice EM 15-3

15.3 Using Solstice EM Tools for Polling
Solstice EM provides several tools for creating requests. The following table

describes each tool.

TABLE 15-1 Solstice EM Request Tools

Tool Description For More Information . . .

Basic Requests Enables you to set up individual

or groups of requests to be sent to

an SNMP agent. This tool is

accessible from the Network

Views Tool menu or by typing

em_simplerequests at the

command line.

For introductory information

about Basic Requests, refer to

Chapter 4 in Managing Your
Network.

For more complete information,

refer Section 15.4 “Working with

Basic Requests” on page 15-5 of

this book.

Simple Requests Same as Basic Requests Same as Basic Requests.

Advanced Requests Enables you to create, modify, and

start Nerve Center request

templates

For introductory information

about Advanced Requests, refer to

Chapter 4 in Managing Your
Network.

For more complete information,

see Section 15.7 “Designing

Request Templates” on page 15-26

of this book.

Design Advanced Requests Enables you to create requests to

be launched against SNMP or

SNM RPC agents, including

specifications of states, conditions,

transitions, and the poll rate.

For complete information, see

Section 15.7 “Designing Request

Templates” on page 15-26.

Request Controllers Enables you to automate Nerve

Center requests to issue many

requests at a time. Involves

correlating a Nerve Center request

template to a type of object. Each

time that type of object is created,

the autoManagement daemon is

launched against the object to

obtain its status. Accessible from

the Administration tool in

Network Tools.

Refer to Chapter 7 in Managing
Your Network.
15-4 Customizing Guide • October 2001

15.4 Working with Basic Requests

15.4.1 Viewing Basic Request Information

You can view information about basic agent-oriented SNMP, RPC, and CMIP

requests by clicking Tools ➔ Basic Requests from the Network Views main window.

▼ To View Basic Agent Request Information

1. In the Network Views main window, select an object associated with the agent for
which you want to display request information, and then click Tools ➔ Basic
Requests to open the Basic Requests tool, as illustrated in the following figure.

FIGURE 15-1 Viewing Request Information in the Basic Requests Main Window
Chapter 15 Requesting Data in Solstice EM 15-5

2. Click View ➔ Requests ➔ Available or View ➔ Request Groups to view available
or active requests, or request groups, as desired.

A list of active requests, available requests (see FIGURE 15-2), or request groups (see

FIGURE 15-3) is displayed, according to your choice.

FIGURE 15-2 Viewing Requests in the Basic Requests Available Window
15-6 Customizing Guide • October 2001

FIGURE 15-3 Viewing Request Groups in the Basic Requests Groups Window

3. Select the request or request group for which you want more information, and
then click Actions ➔ Properties to display detailed information.

In the following figure, see request for Avail Bytes < 1Mbytes as well as see

FIGURE 15-5 and FIGURE 15-6.
Chapter 15 Requesting Data in Solstice EM 15-7

FIGURE 15-4 Basic Requests Properties Conditions Window
15-8 Customizing Guide • October 2001

FIGURE 15-5 Basic Requests Properties General Window
Chapter 15 Requesting Data in Solstice EM 15-9

FIGURE 15-6 Basic Requests Group Properties Window

15.4.2 Creating, Modifying, and Initiating Basic Requests

You can use the Basic Requests tool to start, stop, create, and modify basic requests

and request groups based on agent conditions. Complete instructions for using the

Basic Requests tool are provided in the Managing Your Network.

▼ To Initiate a Basic Request

1. In the Network Views main window, select an object associated with the agent for
which you want to initiate a request, and then click Tools ➔ Basic Requests to
open the Basic Requests tool.

2. Click View ➔ Requests ➔ Active Requests, or View ➔ Request Groups to view
active requests or request groups, as desired.

3. Select the request you want to initiate, and then click Actions ➔ Start.
15-10 Customizing Guide • October 2001

▼ To Halt a Basic Request

1. In the Network Views main window, select an object associated with the agent for
which you want to halt a request, and then click Tools ➔ Basic Requests to open
the Basic Requests tool.

2. Click View ➔ Requests ➔ Active Requests, or View ➔ Request Groups to view
active requests or request groups, as desired.

3. Select the request you want to halt, and then click Actions ➔ Stop.

▼ To Create a Basic Request or Request Group

1. In the Network Views main window, select an object associated with the agent for
which you want to create a request, and then click Tools ➔ Basic Requests to open
the Basic Requests tool.

2. Click Actions ➔ Create ➔ Request or Actions ➔ Create ➔ Request Group, as
desired, to open the Create Request or Create Group dialog.

3. Specify Request or Request Group options as needed.

Refer to Managing Your Network for complete information about the Create Request

and Create Request Group options.

▼ To Modify a Basic Request or Request Group

1. In the Network Views main window, select an object associated with the agent for
which you want to modify a request, and then click Tools ➔ Basic Requests to
open the Basic Requests tool.

2. Click View ➔ Requests or View ➔ Request Groups to view available or active
requests, or request groups, as desired.

A list of active requests, available requests, or request groups is displayed, according

to your choice.

3. Select the request or request group you want to modify, and then click Actions ➔

Properties to display detailed information.

4. Specify Request or Request Group options as needed.
Chapter 15 Requesting Data in Solstice EM 15-11

15.5 Working with Advanced Requests

▼ To View Advanced Request Information

1. In the Network Views main window, click Tools ➔ Advanced Requests to display
the Requests dialog.

All available and active requests are displayed in two lists at the top and bottom of

the dialog, as shown in the following figure.

FIGURE 15-7 Viewing Available Requests in the Advanced Request Dialog
15-12 Customizing Guide • October 2001

2. Click Start to display the selected Available Requests in the Active Requests list.

3. In the Active Requests list, select the request that you want to view detailed
information for.

4. Click Examine to open the Request Examine dialog, as illustrated in the following
figure.

FIGURE 15-8 Advanced Request Examine Window

15.5.1 Creating, Modifying, and Initiating Advanced

Requests

You can use the Network Views Requests dialog to start and stop requests based on

existing request templates. You can also use the Requests dialog to open the Request

Designer tool, from which you can perform a full range of request management

tasks.
Chapter 15 Requesting Data in Solstice EM 15-13

▼ To Initiate an Advanced Request

1. In the Network Views main window, click Tools ➔ Advanced Requests to display
the Requests dialog.

2. Select the request you want to start from the Available Requests list.

3. Select the target object(s) in the current view, and then click Start.

Alternatively, you can use the middle mouse button to drag a request from the

Available Requests list and drop it on an object in the Network Views window.

4. Repeat Steps 2 and 3 for each request you want to initiate, or click Close to exit
the Requests dialog.

▼ To Halt an Advanced Request

1. In the Network Views main window, click Tools ➔ Advanced Requests to display
the Requests dialog.

2. Select the request you want to halt from the Active Requests list.

3. Click Delete.

The request template itself is not deleted from the MIS; only the particular request

object instance based on the request template is deleted.

4. Repeat Steps 2 and 3 for each request you want to halt, or click Close to exit the
Requests dialog.

▼ To Create or Modify an Advanced Request

1. In the Network Views main window, click Tools ➔ Advanced Requests to display
the Requests dialog.

2. In the Requests dialog, do either of the following:

■ If you want to modify a request, select the request from the Available Requests

lists, and then click Modify.

■ If you want to create a request, click Create.

In both cases, the Request Designer (em_reqedit) is opened.

3. In the Request Designer, modify or create requests or request templates as
desired.
15-14 Customizing Guide • October 2001

15.6 Building Blocks: States, Transitions, and
Conditions
A request template is comprised of a finite number of states and transitions between

states. States in a request are used to represent the presumed state of a managed

resource, as indicated by information available to the request. For example, if a

request is polling to determine if a device is up or down, then, clearly, two states you

would want in such a request would be Up and Down, to represent these possible

states of the device. If the request is in the Up state when the device fails to respond

to a poll, then you will want the request to move to the Down state to indicate this

change in the state of the device. A move from one state to another in a request is

called a “transition”.

A state can also loop back to the same state in a transition. For example, if a request

is in the Up state and a poll indicates the target device is still up, passing this test

may cause the request to loop back to the Up state.

Note – The “severities” that attach to template states in the Design Advanced

Requests do not control the fault status indication (icon color) of devices in the

Network Views; severities of states only affect the color attached to states in the

Design Advanced Requests’s graphical display. Fault status color of devices in the

Network Views is determined by the alarms logged against those devices. If you

want the fault status color of icons to change when a request transitions from one

state to another, you can control this using RCL alarm-emitting functions. This is

discussed below in “Controlling Fault Status Color” on page 23.”

In designing a template you will need to specify when each transition should take

place; this is done by selecting a condition that defines when the transition is to occur.

A condition is made up of instructions written in Request Condition Language

(RCL). You assign a name to a condition when you save it in the Design Advanced

Requests. Saving a condition stores it in the MIS for use in templates. A condition

can be used to define when a transition from state A to state B is to occur. If you

want a request to move from Up to Down, for example, when a target system is not

reachable, you will need to use a condition that tests for that circumstance to define

the transition.

Nerve Center checks conditions in the order they occur in the template. To use a

condition to define when a transition is to occur, the condition must evaluate to true

or false when checked by the Nerve Center.
Chapter 15 Requesting Data in Solstice EM 15-15

A condition that defines a transition is evaluated only if the current state is “awake.”

The current state is awake only if one of the following occur:

■ The request has received an incoming event notification.

■ The condition attempts to access an attribute.

For example, if a request subscribes for coldStartTraps and the condition defining a

transition tests for the arrival of an event, an incoming coldStartTrap will “wake up”

the state and the condition is then evaluated.

15.6.1 State Machine Diagrams

A representation of a finite set of states, and the possible paths between those states,

is a finite state machine. Before you start building a request template, you may wish to

draw a state machine diagram in which you show the various device states you

want to represent, the paths between them, the types of information that the request

is to make use of to determine when to make each transition, and the actions that you

want the request to take when it makes a transition (for example, emitting an alarm

or sending an email message).

A state diagram shows how a request template works. The following figure shows a

simple example that illustrates request-related concepts.
15-16 Customizing Guide • October 2001

FIGURE 15-9 Request Example with Poll Rates

The following figure is a state diagram for an example request template that adds

the “Missed” and “InitComplete” states to the template in FIGURE 15-9.

rINIT

Down

Poll Rate: 20

Poll Rate: 20

If NC has new confirmation
that host is reachable, go to Up

Perform housekeeping

If NC has new confirmation
that host is reachable, stay at Up

If NC has no new confirmation
that host is reachable, go to Down

If NC has new confirmation
that host is reachable, go to Up

NC = Nerve Center

Up

Down
Chapter 15 Requesting Data in Solstice EM 15-17

FIGURE 15-10 Request Example with Poll Rates and Severities

The following figure shows the same template as shown in FIGURE 15-10 with the

conditions associated with each transition.

INIT

IniINIT

Up Missed

Down

Poll Rate: 40

Poll Rate: 20

Note that a request can cause a

Poll Rate: 40

change in the fault status colors
for the device icon in the Network Views only
if an alarm-emitting function (such as
alarmOi()) is used in a condition.

Poll Rate: 40
Down

Up

Complete
15-18 Customizing Guide • October 2001

FIGURE 15-11 Request Example with Conditions

In FIGURE 15-11, the conditions are described in English. In an actual request

template, you define conditions in the Request Condition Language.

15.6.2 Sample Request Template

FIGURE 15-12 illustrates the workings of a sample request template

IsSnmpSystemUp , which is shipped with Solstice EM. This template does what its

name suggests: It tells you whether the SNMP daemon is running on a target

machine. You can use this template as the basis for additional templates. For

example, you might add a “Missed” state, as illustrated in FIGURE 15-11.

Condition names are user-created; they are not pre-defined in RCL. Conditions are

saved in the MIS under separate names to make it possible for you to use the same

condition in multiple requests. The AlarmCriticalOi condition, for example, logs

a nerveCenterAlarm with a severity of critical. This is a condition that you may want

to use in a wide variety of request templates.

INIT

Up

NC = Nerve Center

.

Up Missed

INIT

Complete

Down

Conditions are tested at the interval
specified by the poll rate for a given
state. If there are multiple conditions,
they are tested in the order you entered
them in the Design Advanced Requests.

Perform housekeeping and
move to InitComplete.

If NC has no new confirmation
that host is reachable, go to
Missed.

If NC has no new confirmation that
host is reachable, go to Missed.

If NC has no new confirmation that
host is reachable, go to UP.

If NC has no new confirmation that
host is reachable, but has not
missed many checks, increase
count of times missed and stay at
Missed.

If NC has no new confirmation that host
is reachable and has now missed many
checks, go to Down.

If NC has no new confirmation that
host is reachable, go to UP.

If NC has no new confirmation that
host is reachable, go to UP.

If NC has no new confirma-
tion that host is reachable,
stay at UP.
Chapter 15 Requesting Data in Solstice EM 15-19

FIGURE 15-12 IsSnmpSystemUp Sample Request Template

In the Design Advanced Requests’ graphical display, the “IsSnmpSystemUp” request

template is displayed much as it appears in FIGURE 15-12, without the condition code.

You can infer much of the essential work in building a template from the figure:

■ create states

■ define transitions between states

■ specify a condition for each transition

■ specify actions to take place for each transition, if needed

The IsSnmpSystemUp template (FIGURE 15-12) has five states: Ground, Error, Poll,

Up, and Down.

Up

Down

Poll

Ground
Condition name: “SetInternetSystem”

 Condition: “IsNotSystemDescr”
 True if no response to poll for system description.

 Condition: “IsSystemDescr”
True if response to poll for system

Action: “UndefineSystemDescr”

 Action: Critical alarm.

Condition: “IsSystemDescr”
True if response to poll.
Action: CONDITION
“UndefineSystemDescr”

Sets the cmipsnmpProxyAgent as the target object.

Condition: “IsNotSystemDescr”
True if no response to poll.
Action: Critical alarm.

Condition:
“check_not_ok”
True if incorrect

Dummy transition (value set to false).
Condition: “check_ok”
True if correct result
from “SetInternetSystem”

result from
“SetInternetSystem”
condition.

Error

 condition.

Action: Warning that
target not configured
 for this template.

Condition: “IsSystemDescr”
True if response to poll for
system description.

Condition names are in quotes.

Action: “UndefineSystemDescr”

Description.

Action: Post a “cleared” alarm to
clear previous critical alarm.

Ground

Error

Poll Up

Down
15-20 Customizing Guide • October 2001

15.6.2.1 Setting the Target Managed Object

The initialization of the template takes place in the transition from Ground to Poll.

The first step in initializing the request is to set the target of the poll.

When you launch a request against a device selected in the Network Views, Nerve

Center places all of the managed objects configured for the device into the system

variable $pollFdnSet . “Managed objects” are internal representations in the MIS of

the agent capabilities supported by the device. If you configured Network Discovery

to search for RPC-based SunNet Manager agents when you populated your MIS,

devices that have both SNMP and RPC agents are configured in the MIS to indicate

this. Fully distinguished names (FDNs) pointing to these managed objects in the MIS

are thus loaded into the $pollFdnSet variable when you launch requests against

such a device.

Nerve Center uses another system variable — $pollfdn — to hold the target of the

request. When a request is launched, Nerve Center initially sets $pollfdn to the

first FDN in $pollFdnSet . However, the first agent name in $pollFdnSet may

not be the appropriate agent to support this particular request.

The task performed in the template’s initialization is thus to check $pollFdnSet to

determine if the device is configured with the agent capability appropriate for the

request, and, if so, to set $pollfdn to the appropriate object from those contained in

$pollFdnSet . The IsSnmpSystemUp template, for example, must be targeted at a

device that supports SNMP, and $pollfdn needs to be set to point to the

cmipsnmpProxyAgent object, which represents the SNMP agent system. Thus, the

SetInternetSystem condition searches through the FDNs contained in the

$pollFdnSet for the target device to find a match on “cmipsnmp ”. If no match is

found, then the request knows the device is not configured appropriately for this

template.

The SetInternetSystem condition uses an RCL WHILE loop to accomplish this.

The WHILE loop needs to loop for as many times as there are objects in

$pollFdnSet . The RCL numElements() function is used to discover how many

objects there is:

$num = numElements(&$pollFdnSet);
Chapter 15 Requesting Data in Solstice EM 15-21

If SetInternetSystem does find a match on “cmipsnmp ”, it uses the RCL

AppendRdn() function to set the target for the poll to the SNMP RFC 1213

internetSystem group object “contained” under the default

cmipsnmpProxyAgent , which represents the agent system:

Note that the condition ends with the statement “false;”. This guarantees that this

condition will not cause a transition to another state. This is to ensure that the next

transition out of the Ground state in the template is not passed over but is evaluated.

If the Boolean variable $res is false at the end of the SetInternetSystem
condition, we know that the request has been targeted at a device that is not

configured with a cmipsnmpProxyAgent .

You may want to warn the user when this happens. In the IsSnmpSystemUp
template, the check_not_ok condition checks for $res having a value of false, and

causes a transition to the Error state if this occurs. A warning alarm is posted,

indicating that the target device is not configured properly for this template.

Thus, we see that there are three phases to initialization in the IsSnmpSystemUp
template:

■ Determining if the target device is configured with the appropriate agent support

for this template

■ Setting $pollfdn to point to the appropriate managed object

■ Transitioning to an Error state (and sending an appropriate warning) if the search

of $pollFdnSet indicates the device is not configured with the appropriate

agent support

$num = numElements(&$pollFdnSEt);
$save_pollfdn = $pollfdn;
$res = FALSE;
$count = 1;
WHILE ($count <= $num)
{
 $numstr = AsnToStr($count,TRUE);
 $dn = extract(&$pollFdnSet,$numstr);
 $dn1 = extract(&$dn,”distinguishedName”);
 $dnstr = AsnToStr($dn1,TRUE);
 $res = anyStr($dnstr,”cmipsnmp”);
 if ($res = TRUE)
 {
 $pollfdn = appendRdn($dn,”/internetSystemId=NULL”);
 $count = $num + 1;
 }
 $count = $count + 1;
}
false;
15-22 Customizing Guide • October 2001

15.6.2.2 Polling for an SNMP Attribute

The internetSystem group contains the system description (sysDescr) attribute.

If the Nerve Center can obtain the value of this attribute from the agent, the

IsSnmpSystemUp request knows that the agent is running. The IsSysDescr
condition, which checks for the value of the sysDescr attribute, is therefore used to

define the transition to the Up state. This condition contains the following code:

The defined() function can be used to poll for any attribute that has been defined

in the GDMO document for the target managed object. If you try to add a condition

that refers to an attribute that is not defined in a GDMO document that has been

loaded into the MIS, the Design Advanced Requests displays an error message and

the condition is not saved to the MIS. (You can use the SNMP Data application to

examine the attributes and groups supported by GDMO documents that the MIS

knows about.)

If the target object’s sysDescr attribute value does not already exist in the memory

space allocated for the running request, the Nerve Center retrieves the attribute from

the agent. But the Nerve Center does not attempt to retrieve the attribute if a value

for sysDescr already exists. This is why the UndefineSysDescr condition is

invoked as an action after each transition. UndefineSysDescr contains the

following RCL statement:

This removes the attribute sysDescr from the memory allocated to the running

request, forcing the Nerve Center to access the remote agent each time a new

defined(&sysDescr) is called.

15.6.3 Controlling Fault Status Color

Your network topology is represented in the Network Views by icons once you have

populated the MIS. The objects you are viewing are called topology nodes. Each

topology node has an attribute, topoNodeSeverity , that represents the fault status

of the device. When the value of this attribute changes, the icon changes color to

represent a change in the fault status of the device. The setting of the fault status of

topology nodes is controlled by the Alarm Service — a module in the MIS that tracks

incoming alarms posted to the alarm log. The Alarm Service keeps a tally of the

perceivedSeverity values of all outstanding (uncleared) alarms logged against

defined(&sysDescr);

undefine(&sysDescr);
Chapter 15 Requesting Data in Solstice EM 15-23

each topology node. The Alarm Service sets the fault status indication of a topology

node to match the highest perceivedSeverity value amongst the outstanding

alarms against the device.

Corresponding to each device represented in the Network Views are objects in the

MIS—called managed objects (MOs)—that represent the agent capabilities supported

by the device. For example, a cmipsnmpProxyAgent object in the MIS represents a

remote SNMP agent. There may be multiple managed objects that correspond to a

single topology node. For example, host bigiron may be configured in the MIS to

indicate that it can support both SNMP and RPC management.

Incoming alarms are logged against the managed objects, not the topology node.

However, each topology node has an attribute, topoNodeMOSet , which contains a

set of fully distinguished names (FDNs) that point to the managed objects

configured for that device. The Alarm Service uses this list of managed objects to

match incoming alarms to devices represented in the Network Views.

When a request is launched against a selected device in the Network Views, the

topology node’s list of managed objects (topoNodeMOSet) is loaded into the RCL

system variable $pollFdnSet . Thus, if you want to use the RCL alarm-logging

functions to change the fault status color for the device in the Network Views, you

need to ensure that alarms are logged against one of the objects in $pollFdnSet .

When the request is initially launched, the RCL variable $pollfdn is set to point to

the first object in $pollFdnSet . Therefore, the easiest way to post alarms against

the target device is to log alarms against $pollfdn . The RCL alarm() and

alarmStr() functions automatically post alarms against $pollfdn .

However, this approach will work only if you do not reset $pollfdn in the template

to point to some other object. Notice, for example, that the SetInternetSystem
sample condition resets $pollfdn to point to the RFC 1213 internetSystem
group under the SNMP agent. And the internetSystem group object is not a

member of $pollFdnSet . Therefore, if alarmStr() were then used to post alarms,

they would not affect icon color because the Alarm Service would not be able to

match that object to a topology node.

However, RCL provides another alarm-logging function, alarmOi() , which allows

you to specify the managed object the alarm is to be posted against. Also, note that

the SetInternetSystem condition saves the original value of $pollfdn in the

variable $save_pollfdn . Thus, an alarm can be posted against the device by

passing $save_pollfdn to alarmOi() . For example, we could post a minor alarm

with the condition:

$info = StrToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”,”{3,minor,\”Device is up
after being down\”,3,1}”);
alarmOi($save_pollfdn,$info);
15-24 Customizing Guide • October 2001

In this example the ASN.1 alarm type (a Nerve Center alarm), and the ASN.1 values

of the alarm attributes, are derived from their text equivalents using the

strToAsn() function. The ASN.1 values are then passed to alarmOi(). The

curley braces (“{“,”}”) indicate the set of attributes that are to make up the Nerve

Center alarm that is posted by alarmOi() . The first value (3 in this case) is the

probableCause , the second value (minor) is the perceivedSeverity of the

alarm, the fourth value is additionalText (which is an optional attribute). The

last two values (mosiState and mosiSeverity) are not significant.

15.6.3.1 Using alarmOi() to Clear Previous Alarms

Also, note that if a critical alarm had been logged by our request before logging a

minor alarm, using the condition in FIGURE 15-14, this minor alarm will not cause the

icon to change to cyan unless we first log a “cleared” alarm to clear the previous

critical alarm. The Alarm Service always sets the fault status color to the highest

severity of uncleared alarms. No matter how many minor or warning alarms are

logged, the icon remains red if there is a single uncleared critical alarm against the

device. We could clear the previous critical alarm with the following condition:

Note that, in the above example, the probableCause value (the first value in the set

of ASN.1 values making up the alarm) has been set to 1 in the clear alarm—the same

probableCause value used in the critical alarm. For an alarm to clear a previous

alarm, it is necessary that the probableCause value of the clear alarm match the

probableCause value of the alarm being cleared. If the alarm() or alarmStr()
functions were used to log nerveCenterAlarms , the probableCause is

automatically set to a value that matches the severity of the alarm. For this reason,

only the alarmOi() function can be used to log alarms that clear previous alarms.

For templates that subscribe for incoming event notifications, alarms can be targeted

to the appropriate device by using the RCL $eventOi variable. $eventOi points to

the managed object that is the source of the event. Before calling the alarm() or

alarmStr() functions, you could set $pollfdn to point to the managed object that

is the source of the event:

15.6.3.2 Alarm-logging Tips

We can summarize the alarm-logging considerations discussed here as follows:

$info = StrToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”,
”{1,5,\”Device is up\”,3,1}”);
alarmOi($save_pollfdn,$info);

$pollfdn = $eventOi;
Chapter 15 Requesting Data in Solstice EM 15-25

■ Event notifications must have a perceivedSeverity value to affect fault status

color. Alarm Service uses the highest outstanding severity to determine fault

status. If you want an icon to change to indicate a lower severity after your

request has posted a higher severity alarm, your request should first clear the

higher severity alarm.

■ To affect fault status color, alarms must be logged to the alarm log monitored by

the Alarm Service (by default, this is the log called AlarmLog). The RCL alarm-

logging functions (alarm() , alarmStr() , and alarmOi()) can be used to log

nerveCenterAlarms to the alarm log.

■ If your request template resets $pollfdn to point to a different object, you may

want to save the initial value of $pollfdn in another variable for use in alarm-

logging. The functions alarm() and alarmStr() automatically post alarms

against $pollfdn . If you have reset the value of $pollfdn , you can use

alarmOi() to post alarms against a particular managed object.

■ If you want to log an alarm to clear a previous alarm, you must use alarmOi()
and set the probableCause value of the clear alarm to match the

probableCause of the alarm it is clearing. If the previous alarm was logged

using alarm() or alarmStr() , its probableCause value is the same as its

severity.

■ The managed object that is the source of an incoming event can be obtained using

the RCL $eventOi variable. This can then be passed to alarmOi() to log a

nerveCenterAlarm against that object.

For more information…

You may want to consult the following chapters in this guide:

■ Chapter 4, "Using the Alarm Service ”

■ Chapter 14, "Nerve Center Overview ”

■ Chapter 18, "Building Advanced Requests ”

■ Chapter 20, "Request Condition Language ”

■ Chapter 22, "RCL Functions ”

15.7 Designing Request Templates
Before embarking on building a request template from scratch, use the Design

Advanced Requests to examine the sample request templates supplied with the

product. You may be able to use a template as is, modify a template, or use one or

more of the conditions that are used in the sample templates. See the following

subsection for a procedure for creating a template from an existing template.
15-26 Customizing Guide • October 2001

▼ To Create a Request Template

1. Design a state machine: draw a picture for yourself showing the states you want to
monitor and the paths between those states.

Make note of conditions that would cause movement from one state to another.

2. Invoke the Design Advanced Requests, as described below.

All the following steps involve the use of the Design Advanced Requests.

3. Create the states you need.

States are specific to each template, that is, you have to create new states for each

template.

4. Create the conditions you need.

You are supplied with a number of conditions. Conditions are reusable across all

request templates. You may wish to develop a library of conditions that can be used

in multiple templates.

5. Create the transitions from one state to another.

Transitions are specific to each template and are executed in the order in which they

appear in the template.

6. Name the request template and enter a brief description of it.

7. Save the template.

Note – You can save an incomplete template, to continue work on it at a later date,

through the Design Advanced Requests’ Template ➔ File ➔ Export Current option.

Use the Template ➔ import option when you want to reload that template into the

Design Advanced Requests.

With a template created, you can invoke the Advanced Requests window from the

Network Views’s Tools menu and start requests using that template against target

managed objects.

The bulk of the work in building a new request template is in the design of the

template and in the coding of the conditions for the template. You should design

your template before you invoke the Design Advanced Requests, although you can

use the application’s graphical display as your drawing board. We recommend

composing your conditions in the Design Advanced Requests, because the

application tests the syntax of your condition code when you attempt to save it.

With your design and a set of conditions in place, the putting together of a request

template is a simple matter of moving through menu selections. The Design

Advanced Requests gives you a choice of a text-based or a graphical method of

creating templates.
Chapter 15 Requesting Data in Solstice EM 15-27

15.8 Requests Based on Polling
The IsSnmpSystemUp template, discussed earlier, is an example of a request based

on polling — periodically checking a managed resource for the current value of one

of its attributes. A limitation of the IsSnmpSystemUp template is that it can only

determine if an SNMP agent system is available on the occasions that it polls the

system. But you may want to be notified if an SNMP device has been down

momentarily and then become available. Another attribute in the SNMP RFC 1213

internetSystem group — sysUpTime — can be used to design a request template

that does this. Building such a template will illustrate the process of creating

templates based on polling.

sysUpTime measures the time, in hundredths of a second, since the last system

restart. If this value has decreased since the last poll, we know that the system went

down between polls. We can create a state in the template called “EverDown” to

represent the situation where the device is currently up but was previously down. To

make this visible in the Network Views, we can log an alarm with a

perceivedSeverity of minor when a transition to the EverDown state occurs.

However, this will only cause the Network Views icon color to “decay to cyan” if we

first log a “cleared” alarm to clear the previous critical alarm. Fault status color is

determined by the highest severity of uncleared alarms against a device.

The states for our template, and the corresponding Network Views color, might be

the following:

■ Ground—no color

■ Poll—no color

■ Up—no color

■ Down—Red (critical alarm)

■ EverDown—Cyan (minor alarm)

To ensure that the Network Views icon for the target object displays an appropriate

color in response to a change in request state, we can add, as an action at each

transition, a condition that calls an RCL alarm-logging function. For example, to

cause icons to turn cyan when the request enters the EverDown state, we can add a

condition, AlarmMinorOiEverDow n, consisting of the following statement:

IF ($everdown_alarm = FALSE)
{
$info = StrToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”,
”{3,minor,\”Device is up after being down\”,3,1}”);
alarmOi($save_pollfdn,$info);
}
$everdown_alarm = TRUE;
15-28 Customizing Guide • October 2001

Because the SetInternetSystem condition resets $pollfdn to point to the

internetSystem group, we need to use $save_pollfdn to log the alarm against the

target device. The Boolean variable $everdown_alarm is used as a latch, to ensure

that the request does not flood the alarm log with duplicate alarms.

As in the IsSnmpSystemUp template, we can set the target of the poll to the SNMP

RFC 1213 internetSystem group by using the SetInternetSystem condition to

define a transition from Ground to Poll.

We want the request to transition from Poll or Up to EverDown if the value of

sysUpTime decreases. This means we will need a variable to store the previous

value of sysUpTime , to compare with the results of the next poll. This variable

should be initialized to zero in the transition from the Ground to Poll state. For

example, we might add a condition, InitLastSysUpTime , as an action at the

transition from Ground to Poll; this condition might consist of this statements:

To define the transition from Up (or Poll) to EverDown, we might compose a

condition, sysUpTimeDecrease , as follows:

We will also need to re-initialize the variable $last_sys_up_time with the current

value of sysUpTime after each successful poll. For example, we might compose a

condition, getSysUpTime , to do this:

We might call our template “IsSnmpSystemEverDown”; a possible state diagram for

our template is pictured in FIGURE 15-13.

$last_sys_up_time = 0;
$everdown_alarm = FALSE;
$down_alarm = FALSE;

$last_sys_up_time>sysUpTime;

$last_sys_up_time = sysUpTime;
Chapter 15 Requesting Data in Solstice EM 15-29

FIGURE 15-13 State Diagram of IsSnmpSystemEverDown Template

15.8.1 Adding States

If you want to add a state, for example EverDown, to the template use the following

procedure.

▼ To Add a State

1. Click States.

2. Type in the name (“EverDown”) in the State field.

Ground

Poll

Down

Up

Remain Down as longIf no response to NC

Everdown

If no response

Remain in EverDown as

If there is a response to

NC = Nerve Center

If sysUpTime

Error

Set $pollfdn
 and initialize

$last_sys_uptime
 to zero.

poll for sysUpTime ,
go to Down.

as there is no response to
poll for sysUpTime .

 the poll for sysUpTime ,
 go to EverDown.

to NC poll for
sysUpTime , go
Down.

 Remain up
 as long as
 there is a
 response to
the NC poll for
sysUpTime and
sysUpTime did
not increase.

 If no response
 to NC poll for

 sysUpTime , go
 to Down.

decreases,
go to Everdown

long as there is a response
to NC poll for sysUpTime .

 If NC can obtain
 sysUpTime, go to Up
 and set
$last_sys_up_time

 to sysUpTime .

Down

Up

If SetInternetSystem indi-
cates target is not configured
for SNMP agent, go to Error
state and post a warning.

If sysUpTime is less than
$last_sys_uptime , this indi-
cates that sysUpTime has de-
crease then go to EverDown.
15-30 Customizing Guide • October 2001

3. Describe what the state represents in the Description field.

For example, “Agent system is up but has been down.”

4. Select a poll rate from the Poll Rate menu.

Note – The polling interval for poll rates (in seconds) can be changed, or new poll

rates added in the Poll Rates window (invoked by selecting the Edit ➔ Poll Rates

menu option).

5. Select a severity from the Severity menu.

Note that severity here is a value that is internal to the request. This does not cause

an alarm to be logged, nor does it automatically cause a change in icon color in the

Network Views when the request enters the state. Icon color is determined by alarms

that are logged against a managed object. Control of icon color is discussed above in

Section 15.6.3, “Controlling Fault Status Color .”

6. Click Add to add the new state to the template.

Repeat this procedure for the other states to be added.

15.8.2 Adding Conditions

To add a condition, invoke the Conditions window by clicking Conditions in the

Design Advanced Requests main window. You create the condition code by simply

typing in the text window. For example, a condition we will want to use in the

IsSnmpSystemEverDown template tests whether sysUpTime has not decreased.

Refer to the following figure.
Chapter 15 Requesting Data in Solstice EM 15-31

FIGURE 15-14 Entering Condition Code in the Design Advanced Requests

This RCL statement returns a value of true when (and only when) the current value

of the sysUpTime attribute is less than the value currently stored in the

$last_sys_up_time variable.

▼ To Add the New Condition to the MIS

1. Enter a name (“sysUpTimeNotDecrease”) for the condition in the Name field.

2. Describe what the condition does in the Description field.

3. Click Add to store the new condition in the MIS.

Repeat this procedure for the other conditions to be added.

15.8.3 Adding Transitions

After you have created the states and conditions that you need for the template, you

can begin to create transitions.
15-32 Customizing Guide • October 2001

After you have created the Poll state, do the following steps to create the first

transition from the Ground to Poll state.

▼ To Create the Transition

1. Invoke the Transitions window in the Design Advanced Requests main window.

2. Select the Ground state as the From state.

3. Select the Poll state as the To state.

4. Select SetInternetSystem as the Condition to define this transition.

5. To select an Action to be taken at the transition, select either CONDITION, MAIL,
or UNIXCMD.

Because SetInternetSystem is a “dummy” transition that never occurs, we do not

select an action for this transition. Select <none>.

6. Click Add to add this transition.

▼ To Add Additional Actions at a Transition

1. Set the From, To, and Condition field settings so that they match the transition to
which you wish to add an additional action.

If you are adding an action after creating the transition, the settings will be already

set properly, for adding an additional action.

2. Select the type of action from the Action menu.

a. If you selected MAIL as the type of action, fill in the Message and Address
fields

b. If you selected UNIXCMD as the type of action, fill in the Command and
Arguments fields as required by the UNIX command.

c. If you selected CONDITION as the type of action, select the condition from the
condition Name menu.

3. Click Add to add the new action to the list of actions that will be performed at
that transition.

Note that actions at a transition are executed in the order they appear in the

template textual display (which is the order you entered them in the template). If

you want to delete one of the actions at a transition, you can only delete the last

action listed in the transition. By deleting the actions from the bottom up, as needed,

you can re-enter them to arrange them in the desired order.
Chapter 15 Requesting Data in Solstice EM 15-33

Repeat this procedure for each of the transitions in the template. For example, we

need to do error-checking to determine whether SetInternetSystem indicates a

configuration error. If an error occurs, we transition to the Error state; if no error

occurs, we transition to the Poll state. The InitLastSysUpTime condition can be

called as an action in the transition from Ground to Poll, thus completing the

request’s initialization.

After we have completed the initialization phase, we might create the two

transitions out of the Poll state shown in the following figure.

FIGURE 15-15 IsSnmpSystemEverDown Template
15-34 Customizing Guide • October 2001

The transition to the Down state is the first transition out of Poll because we want

IsNotSysUpTime to be checked first, to determine if the request will be able to

retrieve the sysUpTime value. If this condition evaluates to false, the request knows

that sysUpTime has been retrieved, and it then transitions to the Up state. Polling in

the Up state checks to determine if sysUpTime has decreased. If it has not

decreased, the request loops in the Up state. If it has decreased, the request

transitions to the EverDown state.

If you enter the transitions out of a certain state in the wrong order in a template,

you can change the order by invoking the Order Transitions window. The Order

Transitions window is accessed by clicking Order Transitions in the Transitions

window.

The condition undefine_sysUpTime contains the following RCL statement:

This condition needs to be called after each successful poll to remove the last

sysUpTime value from the memory space where the request is running. This forces

the Nerve Center to retrieve the current sysUpTime value from the agent system at

the next poll. But before removing sysUpTime from memory, we call the

getSysUpTime condition, which stores the retrieved sysUpTime value in the

variable $last_sys_up_time for comparison with the value of sysUpTime at the

next poll.

FIGURE 15-15 shows the completed IsSnmpSystemEverDown template as it appears

in the Design Advanced Requests textual display. Select the Template ➔ Save As

option to save the completed template.

15.9 Polling RPC Agents
A limitation of our IsSnmpSystemEverDown template is that it cannot distinguish

between a situation where the lack of response to a poll for sysUpTime is due to the

SNMP daemon being down and a situation where the lack of response is due to the

unavailability of the machine on which the daemon is installed. The

SnmpPingBackoffReachable sample template overcomes this limitation by using

the ping RPC proxy agent to poll for reachability. Discussing this template will

illustrate the design of request templates that do direct polling of RPC agents.

The SnmpPingBackoffReachable request begins by polling every 30 seconds for

the SNMP system for the sysUpTime attribute. If there is no response to the poll, the

request backs off the poll rate to 60 seconds. If there is still no response to the poll,

undefine(&sysUpTime);
Chapter 15 Requesting Data in Solstice EM 15-35

the request attempts to poll the device for reachability using the RPC ping proxy

agent. If there is a response to the ping, the request knows that the machine is up but

the SNMP daemon is down, and a major alarm indicating this is logged.

However, if there is no response to the poll for reachability, the request knows that

the machine is unavailable and logs a major alarm indicating this. The request

continues to poll for reachability. When a response is received, a warning alarm is

logged, indicating that the device is up after having been down. The request then

transitions back to polling for the SNMP sysUpTime attribute. A state machine

diagram for this request is shown in the following figure.

FIGURE 15-16 State Diagram of SnmpPingBackoffReachable Request

Ground

 Error

snmp1

snmp2
Loops as long

Down

ping1

If there is no response to the
poll for sysUpTime, go to
snmp2.

as agent
responds to poll
for sysUpTime.

.

Set polling targets to
appropriate SNMP
and RPC attribute
groups.Go to snmp1
if no error.

If device is not properly
configured for this re-
quest, go to Error and log
a warning alarm.

Poll rate:
30 seconds Go to snmp1 if agent

responds to poll for
sysUpTime.

If there is no response
to a ping, go to Down
and log a critical “De-
vice down” alarm.

Loops as long as
there is no response
to ping.

If device is reach-
able, go to snmp2
and post “SNMP
daemon down”
major alarm.

If the device responds
to a ping after being un-
available, go to snmp2
and log a warning
alarm.

If no response
to poll, go to
ping1 and
start polling for
reachability.

Poll rate:
90 seconds

Poll rate:
30 seconds

Poll rate:
60 seconds
15-36 Customizing Guide • October 2001

15.9.1 Targeting the RPC ping-reach Group

The SnmpPingBackoffReachable template polls for both the SNMP sysUpTime
attribute and the reachable attribute supported by the RPC ping proxy agent. To

do this, the request must extract both the cmipsnmpProxyAgent object and the RPC

proxy table object from $pollFdnSet for the device against which the user has

launched the request. Just as SNMP attribute groups are “contained” under the

cmipsnmpProxyAgent object, all RPC agent attribute groups configured for a

device are “contained” under the RPC proxy table object for that device. The request

should check to ensure that the target device is configured to support both SNMP

and RPC. In this case, the SnmpPingBackoffReachable request transitions to an

Error state if it determines that the device is not configured to support the request.

The first transition in the template uses the following condition to obtain the RPC

proxy table object from $pollFdnSet :

The initial setting of $pollfdn is saved in $save_pollfdn . $save_pollfdn can

then be used to target alarms against this device. Alarms must be targeted at one of

the objects in $pollFdnSet in order for the Alarm Service to match it to a device

icon in the Network Views.

A WHILE loop is used to locate the RPC proxy table object by finding a match for

“RPC” on one of the FDNs in $pollFdnSet . An appendRdn() operation is used to

set $rpc_mo to point to the ping-reach attribute group “contained” under the

RPC proxy table. This is accomplished by appending /agentId=”ping-reach” to

the RPC proxy table FDN.

$save_pollfdn = $pollfdn;
$num = numElements(&$pollFdnSet);
$count = 1;
while($count <= $num)
{
 $numstr = AsnToStr($count,TRUE);
 $dn = Extract(&$pollFdnSet,$numstr);
 $dn1 = Extract(&$dn,”distinguisedName”);
 $dnstr = AsnToStr($dn1,TRUE);
 $res = AnyStr($dnstr,”RPC”);
 if ($res == TRUE);
 {
 $rpc_mo = appendRdn($dn,”/agentId=\”ping-reach\””);
 $count = $num + 1;
 print($rpc_mo);
 }
 $count = $count+1;
}
false;
Chapter 15 Requesting Data in Solstice EM 15-37

The condition ends with “false;” to ensure that the transition defined by this

condition is not actually executed, and the request then proceeds to evaluate the

next condition, get_snmp_mo , which is similar to the SetInternetSystem
condition discussed in Section 15.6.2.1, “Setting the Target Managed Object .” This

condition sets $snmp_mo to point to the internetSystem group object under the

cmipsnmpProxyAgent object (which represents the SNMP agent).

The third transition out of the Ground state checks for errors:

This condition will evaluate to true if $pollFdnSet had one or fewer objects (i.e.,

not both SNMP and RPC) or the internetSystem group or RPC ping-reach group are

not defined for the target device. If so, the request transitions to the Error state and

an appropriate warning alarm is posted. If there is no error, the request transitions to

the snmp1 state in the transition defined by the initialize_variables condition:

The $pollfdn is set to the SNMP internetSystem group to poll for the

sysUpTime attribute. “true;” ensures that this transition will occur when it is

evaluated.

15.9.2 Correlating Information from Multiple Polls

The SnmpPingBackoffReachable uses polls for the sysUpTime attribute in the

snmp_up condition:

As long as this condition evaluates to true, the request loops in the snmp1 state.

After each poll, the UndefineSysUpTime condition is called to force the next

defined() call to access the remote agent. If there is no response to the 30 second

poll for sysUpTime , the request transitions to the snmp2 state which backs off the

$num < 2 OR NOT defined(&$snmp_mo) OR NOT defined(&$rpc_mo);

$ping_alarm = FALSE;
$snmp_alarm = FALSE;
$pollfdn = $snmp_mo;
true;

defined(&sysUpTime);
15-38 Customizing Guide • October 2001

poll rate to 60 seconds, in case a longer timeout is needed in waiting for a response

from the agent. If there is now a response from the agent, the request transitions

back to snmp1 and in the transition executes the is_snmp_backup condition:

The IF construct here is used to distinguish between the situation where the machine

has previously failed to respond to a ping and the situation where it has not failed a

poll for reachability. This warning alarm will be logged only in the situation where it

has not previously failed a response to a poll for reachability; that is, the request had

previously determined that failure of response to a sysUpTime poll was due to a

failure of the SNMP daemon and not due to the unreachability of the machine.

If there is still no response to the poll for sysUpTime , the request transitions to the

ping1 state to begin polling for reachability, using the RPC ping proxy agent. In this

transition the $pollfdn is set to point to the ping-reach attribute group with the

set_ping_pollfdn condition:

The request tests for reachability with the ping_up condition:

if ($ping_alarm == TRUE)
{
$info = StrToAsn(“EM-NC-
ASN1.NerveCenterAlarmInfo”,”{4,warning,\”SNMP Daemon is now
responding\”,3,1}”);
alarmOi($save_pollfdn,$info);
}
$ping_alarm = FALSE;
$snmp_alarm = FALSE;

$pollfdn = $rpc_mo;

reachable == 1;
Chapter 15 Requesting Data in Solstice EM 15-39

If this condition evaluates to true, the request knows that the previous absence of a

response to the previous poll for sysUpTime was not due to the unavailability of the

machine, but indicates a failure of the SNMP daemon. The request thus transitions

back to snmp1 and executes the is_ping_alarm condition as an action in the

transition:

This condition logs a nerveCenterAlarm with a severity of major against the

device the request was launched against (indicated by $save_pollfdn), but only if

an “SNMP daemon is not responding” alarm has not already been logged. Setting

the $ping_alarm variable to true ensures that if the SNMP device does start

responding to a sysUpTime poll, an alarm will be logged indicating that the SNMP

daemon is up after having been down.

If the device does not respond to the ping, the ping_down condition will evaluate to

true:

If so, the request knows that the absence of a response to the original sysUpTime
poll was due to the unavailability of the machine, and thus the request transitions to

the Down state. The request executes the deviceDownCriticalAlarm condition as

an action at this transition:

The request loops in the Down state as long as the device does not respond to polls,

which are generated at two-minute intervals. If the device responds to a ping, the

request transitions back to the snmp2 state and issues a warning alarm in the

ping_back_up condition.

if ($ping_alarm != TRUE)
{
$info = StrToAsn(“EM-NC-
ASN1.NerveCenterAlarmInfo”,”{2,major,\”SNMP daemon is not
responding\”,3,1}”);
alarmOi($save_pollfdn,$info);
}
$ping_alarm = TRUE;

reachable == 0;

alarmStr(1,”Device Not Responding to Ping”);
15-40 Customizing Guide • October 2001

15.10 Requests Based on Event Subscription
In addition to responding to requests from managers, agents typically have the

ability to detect conditions and generate messages called event notifications on their

own initiative. Event subscription is a facility that forwards specified event

notifications to a request as soon as they arrive at the MIS. Rather than actively

polling devices in the network, the request waits for the arrival of specified event

notifications, and then takes appropriate action when this happens.

A request can “subscribe” to receive any type of event notification that is known to

the MIS. Subscriptions can request all events of a certain type, events generated by a

specified object, or all events that satisfy a CMIS filter. (For information on CMIS

filters and the types of event notifications that are defined in Solstice EM by default,

refer to the appendix on CMIS filters in Developing C++ Applications.)

When designing requests based on event subscription, you will want to correlate this

with your use of the following Solstice EM event-handling features.

15.10.1 Event Logging and Alarm Service Monitoring of

Alarm Logs

Most types of incoming event notification are, by default, logged to the AlarmLog ;

this log is, by default, used by the Alarm Service to determine the fault status of

devices. The fault status of the device, indicated by icon color in the Network Views,

is set to the highest severity of outstanding (uncleared) alarms against that device.

However, if you are, for example, using requests to determine when alarms are

posted in response to the arrival of enterpriseSpecificTraps , you might not

want enterpriseSpecificTraps to be automatically logged to the AlarmLog . The Event

Logs is used to define which events are logged to specified logs. The Event Logs is

discussed in Chapter 5.

15.10.2 Mapping of SNMP Traps to CMIP Event

Notifications

The Solstice EM SNMP trap daemon (em_snmp-trap) converts incoming SNMP

traps into CMIP event notifications for forwarding to the MIS. The type of event the

trap is mapped to depends upon the way you have configured the trap daemon’s

mapping capability. (SNMP trap-mapping is described in Chapter 11.) If you are
Chapter 15 Requesting Data in Solstice EM 15-41

designing a subscription template to listen for SNMP traps, the event types your

request should subscribe for will depend upon the trap-to-event mapping

implemented by the trap daemon.

15.11 Subscribing for Enterprise-Specific
SNMP Traps
An example of an event subscription request would be a request that subscribes to

receive all enterprise-specific SNMP traps. By default, the Solstice EM SNMP trap

daemon converts all incoming enterprise-specific SNMP traps into

enterpriseSpecificTraps with severity set to indeterminate.

You could design an event-subscription request that uses the Nerve Center alarm-

logging function to generate more meaningful alarms. For example, suppose that

you are interested in the status of certain devices on your network that emit traps

with the enterprise identifier of 1.3.6.1.4.1.46. These enterprise-specific traps have

specific trap values that are to be interpreted as indicated in the following table.

Your request could subscribe for enterpriseSpecificTrap notifications and then

use the RCL alarm-logging functions to log nerveCenterAlarms with the

appropriate severities in response to incoming traps. We would thus be using

nerveCenterAlarms to drive fault status indication in the Network Views for

incoming enterprise-specific alarms. This means that we want to route incoming

enterprise-specific traps to our subscription request before they become alarms that

affect Network Views icon color.

TABLE 15-2 Enterprise Specific Traps Example

Specific Trap Number Description Desired action

1 CPU Failure Critical alarm

2 Power Supply Failure Critical alarm

3 Fan Failure Critical alarm

4 Overheating Minor alarm

5 Realtime Clock Failure Ignore

6 Network Connection Failure Warning alarm
15-42 Customizing Guide • October 2001

By default, enterpriseSpecificTraps are logged to the Alarm Log and thus

affect icon status color in the Network Views. However, in this example we are

assuming that you want to control fault status indication for enterprise-specific traps

with a request template that logs nerveCenterAlarms with a severity that is

appropriate to the problem indicated by the trap.

Thus, we want to remove enterpriseSpecificTraps from the AlarmLog to eliminate

duplication of alarms. To do this, you can use the Event Logs to alter the log

discriminator for the AlarmLog to filter out enterpriseSpecificTraps. (An example is

described in Chapter 3. Also, you may to refer to Chapter 5.)

15.11.1 Initiating the Event Subscription

In this example, the trap daemon is mapping incoming enterprise-specific traps to

enterpriseSpecificTrap event notifications, we will want our request template

to listen for incoming enterpriseSpecificTraps .

A subscription request typically initiates the subscription in the transition out of the

Ground state. For example, we might define a condition, called

“SnmpTrapSubscription ” that has the following condition code:

The variable $esindx receives a value of -1 if an error occurred which prevented

the subscription from being implemented. Accordingly, you could define a condition

to check if such an error occurs, and then transition to a “Dead” state if it does. The

following is an example:

If a request does transition to the Dead state, you may also want to use the Exit()
function to cause the request to delete itself. We could define a condition

SelfDestruct that is called as an action when the transition to the Dead state

occurs:

$esindx=Subscribe(“enterpriseSpecificTrap”);
$abccorp_id = “enterprise = 1.3.6.1.4.1.46”;
false;

$esindx < 0;

Exit();
Chapter 15 Requesting Data in Solstice EM 15-43

The variable $abccorp_id is set to contain the enterprise-identifier of the devices

whose enterprise-specific traps this request is to listen for. This will be checked

against the additionalText field of incoming enterpriseSpecificTrap notifications since

the additionalText field contains the enterprise identifier of the device that generated

the trap.

The IsSubscriptionError condition is used to define the transition from Ground

to Dead. The use of “false” in the last line of SnmpTrapSubscription conditions

ensures that this error-checking transition will be evaluated. A third transition out of

the Ground state is defined by the IsNotSubscriptionError condition:

After subscribing for enterpriseSpecificTraps and checking for subscription error, the

request transitions from Ground to a state where it listens for incoming

enterpriseSpecificTraps, if no error has occurred. Accordingly, you might want to

create a state in the template called “Waiting,” to represent this situation.

15.11.2 Listening for Incoming Events

In the Waiting state the request checks for the arrival of incoming

enterpriseSpecificTraps by testing the following condition:

$messType is a system variable that indicates the type of message that “woke” the

current state of the request. A value of 0 indicates an incoming event that

corresponds to a type that the request has subscribed for. If this condition evaluates

to true, an enterpriseSpecificTrap has arrived and we will want this to cause a

transition to another state, that we might call the “Problem” state, where the request

examines the enterpriseSpecificTrap in detail and takes appropriate action,

depending on the nature of the trap. A possible state diagram for our SNMP trap

subscription template is pictured in FIGURE 15-17.

The examineTrap condition illustrated in the following figure is an example of how

the request could interpret enterprise-specific traps in the way suggested by the

example in TABLE 15-2. The extract() function is used to pull out the

additionalText field of the event. This is then checked against the enterprise

identifier in $abccorp_id . If anystr() detects a match, extract() is then used

to retrieve the specific trap number, which is in the probableCause field.

Alarms are posted with the appropriate severity and the cause of the trap is passed

in the additionalText field of the nerveCenterAlarm .

NOT ($esindx < 0);

$messType == 0;
15-44 Customizing Guide • October 2001

FIGURE 15-17 State Diagram for IsEnterpriseSpecificTrap Template

Ground

Waiting

Problem

Subscribe for all enterpriseSpecific SNMP traps

If an enterpriseSpecifi c
arrives, go to
Problem state and take

After taking action
on a trap,
return to
Waiting
state.

appropriate action.

Check for subscription
error and
go to Dead
state if
an error
occurred.

Dead

Calling the Exit()
function will cause
the request to
delete itself.
Chapter 15 Requesting Data in Solstice EM 15-45

When using the alarmOi() function to log Nerve Center alarms, $eventOi is a

system variable that indicates the managed object that is the source of the event.

$info contains five values that are used to build the Nerve Center alarm. The first

$abc_device = FALSE;
$textinfo = extract(&$eventInfo,”additionalText”);
$abc_device = anyStr($textinfo,$abccorp_id);
IF ($abc_device == TRUE)
{
$snum = extract(&$eventInfo,”probableCause”);
IF ($snum == 1)
 {$info = strToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”,”{1,critical,\”CPU
Failure\”, 3, 1}”);
 alarmOi($eventOi,$info);
 }
ELSE
 { IF ($snum == 2)

{$info = strToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”,”{1,critical,\”Power
Supply Failure\”, 3, 1}”);
 alarmOi($eventOi,$info);
 }
 ELSE
 { IF ($snum == 3)

{$info = strToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”,”{1,critical,\”Fan
Failure\”, 3, 1}”);
 alarmOi($eventOi,$info);
 }
 ELSE
 { IF ($snum == 4)
 {$info = strToAsn(“EM-NC-
ASN1.NerveCenterAlarmInfo”,”{3,minor,\”Overheating\”, 3, 1}”);
 alarmOi($eventOi,$info);
 }
 ELSE
 {IF ($snum == 6)
 {$info = strToAsn(“EM-NC-
ASN1.NerveCenterAlarmInfo”,”{4,warning,\”Network Connection Failure\”, 3,
1}”);
 alarmOi($eventOi,$info);
 }
 }
 }
 }
 }
}

15-46 Customizing Guide • October 2001

value is the probableCause of the alarm. This is used by the Alarm Service to match

clear alarms with the previous alarm that is to be cleared. The second value is the

severity of the alarm. The text string, such as “CPU Failure,” becomes the

additionalText field of the alarm, which can be viewed in the Alarms. (The last

two values are not significant.)

Our completed IsEnterpriseSpecificTrap template is shown in the following

figure.

FIGURE 15-18 SNMP Trap Subscription Template

15.12 Requests that Combine Subscription and
Polling
Event subscription and polling can be combined in a single template. An example of

a template that does this is the SnmpLinkUpDownTrap sample template. This

template subscribes for incoming linkDownTrap notifications. When a

linkDownTrap is received, the request transitions to the LinkDown state which

initiates polling in order to count the elapsed time until a linkUp trap is received for

the downed interface. If a linkUpTrap notification is not received within the polling

interval (20 seconds), a critical Nerve Center alarm is posted against the target

SNMP device. If a linkUpTrap notification is received within the polling interval, no

alarm is logged. A state diagram for the SnmpLinkUpDownTrap template is shown

in the following figure.
Chapter 15 Requesting Data in Solstice EM 15-47

FIGURE 15-19 SnmpLinkUpDownTrap Template State Diagram

Since a request is being used to control logging of alarms for linkDown traps in this

example, you would not want linkDownTrap notifications to automatically lead to a

change in Network Views status color. However, by default, the linkDownTrap

notifications are logged to the Alarm Log. Since, by default, the Alarm Log is

monitored by the Alarm Service, which controls fault status indication in the

Network Views, these trap notifications thus affect the fault status color of icons in

the Network Views. For this template, then, you would probably want to use the

Event Logs to add linkDownTrap and linkUpTrap notifications to the list of events

excluded from the Alarm Log. You might create a separate log, such as LinkLog, to

maintain an historical record of incoming linkDownTrap and linkUpTrap

notifications. For information on accomplishing this task, see Chapter 5.

 Ground

Wait

LinkDown

Down

 Error

Check that the target supports SNMP.

If the target device
does not support SNMP,
go to the Error state and
post a warning alarm.

If the target supports
SNMP, subscribe for
 linkDownTraps.

If a linkDown trap arrives,
subscribe for linkUp traps and
 go to the LinkDown

 state.

If a linkUp trap does not
arrive within the polling
interval, go to the Down
state and post a critical
alarm.

If a
linkUp
trap arrives
within the
poll interval,
go to the Wait
state.

If a linkUp
trap arrives, go
to the Wait state
and re-subscribe for
 linkDownTraps.
15-48 Customizing Guide • October 2001

15.12.1 Checking for a Correct Target

The first transition out of the Ground state uses the get_snmp_agent_dn condition to

ensure that this request has been launched at a device that is configured as

supporting SNMP. The request will log a warning alarm if this condition is not

satisfied.

To test for SNMP support, the get_snmp_agent_dn condition examines the

contents of the RCL system variable $pollFdnSet .

When a request is launched against a target device selected in the Network Views,

distinguished names (DNs) for the set of managed objects configured for that device,

representing the manageable attributes of the device, are loaded into $pollfdnSet .

The first member of $pollFdnSet is loaded into $pollfdn . The

get_snmp_agent_dn condition stores the value of $pollfdn into

$save_pollfdn . This provides a pointer to a managed object for the target device

which can be used as the target for alarms logged against this device. Alarms must

be logged against one of the managed objects in the target’s $pollFdnSet for the

Alarm Service to know which topology node is the target of the alarm.

The get_snmp_agent_dn condition also searches the DNs in $pollFdnSet for a

match on “cmipsnmp .” If there is a match, the target has been configured with a

cmipsnmpProxyAgent , representing the SNMP agent on the device.

If a match was found, $res is TRUE, otherwise it is FALSE.

$save_pollfdn = $pollfdn;
$num = numElements(&$pollFdnSet);
$res = FALSE;
$count = 1;
while($count <= $num)
{
 $numstr = AsnToStr($count,TRUE);
 $dn = extract(&$pollFdnSet,$numstr);
 $dn1 = extract(&$dn,"distinguishedName");
 $dnstr = asntostr($dn1,TRUE);
 $res = anystr($dnstr,"cmipsnmp");
 if ($res == TRUE)
 {
 $pollfdn = $dn;
 $count = $num +1;
 }
 $count = $count +1;
}
false;
Chapter 15 Requesting Data in Solstice EM 15-49

This condition ends with the statement “false;” to ensure that the transition from the

Ground state to the Wait state does not yet occur. The request then falls through to

the next transition. If the device was configured for SNMP support, the check_ok
condition evaluates to true:

The request then subscribes for linkDownTrap notifications and transitions to the

Wait state; otherwise, it transitions to the Error state and posts a warning alarm to

indicate the request was launched against a device that is not configured to support

it. The subscription for linkDownTrap notifications occurs in the

subscribe_to_linkdown condition:

subscribe_to_linkdown Condition

The subscribeOi() function here limits the subscription to events generated by

the device associated with $pollfdn . The type of event subscribed for is indicated

by “linkDownTrap”. The condition is_event will be true if a subscribed event

arrives:

This condition thus defines the transition to the LinkDown state. Since we want to

now test for the arrival of follow-on linkUp traps, we terminate the subscription for

linkDown traps by passing $handle to the unsubscribe function:

In the transition to the Wait state the request also now subscribes for linkUp traps:

$res == TRUE;

$handle =
subscribeOi("linkDownTrap","cmipsnmpProxyAgent",$pollfdn);

$messType == 0;

unsubscribe($handle);

$handle =
subscribeOi("linkUpTrap","cmipsnmpProxyAgent",$pollfdn);
15-50 Customizing Guide • October 2001

The Wait state has a polling interval of 20 seconds. Polling is activated by the test for

an attribute value (the value of the map attribute) in the is_poll_timeout
condition:

This condition is used to define the transition from the Wait state to the Down state.

If the Wait state is woken up by the arrival of a linkUpTrap notification, $messType
!= 0 evaluates to false and this transition does not occur. ($messType is 0 only if the

message that woke up the state is subscribed-for event notification.) If the polling

interval elapses and no linkUpTrap event has arrived, then $messType !=0

evaluates to true and the transition to the Down state does take place.

If is_poll_timeout evaluates to false, the request then evaluates the next transition

out of the Wait state, which is defined by the is_event condition. If a linkUpTrap

notification has arrived, this condition evaluates to true and the request transitions

back to the Wait state. In the transition back to the Wait state, the request drops the

subscription for linkUpTraps (by executing the unsubscribe condition) and re-

subscribes for linkDownTrap notifications (by executing the

subscribe_to_linkdown condition).

On the other hand, if the request transitions to the Down state, indicates that the

polling interval expired before the arrival of a linkUp trap. In this case, a critical

alarm is posted against $save_pollfdn (a managed object corresponding to the

target device) and the request continues to wait for the arrival of a linkUp trap.

15.13 Building Request Definitions
The meta data browser presents data in a three level hierarchy:

■ document

■ class

■ attributes in each class

You can create multiple thresholds for multiple attributes provided the attributes are

within the same document and class. When any one of the thresholds is crossed a

notification is sent.

You can name the request definition, enter a description of the request definition

based on a list of the following threshold operators:

■ equal to threshold

■ not equal to threshold

$x = map;
$messType != 0;
Chapter 15 Requesting Data in Solstice EM 15-51

■ less than threshold

■ less than or equal to threshold

■ greater than threshold

■ greater than or equal to threshold

■ value changed

■ value increased by threshold

■ value decreased by threshold

■ value increased by more than threshold

■ value increased by less than threshold

In order for you to organize the requests, each Request Definition can belong to a

group that you define by the following methods:

■ Create request groups and add request definitions to the group (a Request

Definition defaults to the root group if none is specified)

■ Modify groups

■ Delete groups

■ Provide a default name for the request

■ Create a new request from an existing request (similar to a “save as” option)

■ Delete request definitions

■ Modify request definitions
15-52 Customizing Guide • October 2001

CHAPTER 16

Debugging Request Templates

There are several facilities available to you in debugging Nerve Center request

templates:

■ The Design Advanced Requests tool does RCL syntax checking when you attempt

to save a newly created, or modified, condition. However, the Design Advanced

Requests tool will not catch possible runtime errors.

■ The Basic Requests tool (accessible from the Network Views menu) lists the

requests currently executing in the Nerve Center. If you select a request and click

Examine, the Request Examine window is invoked. This window displays the

values of variables in the request as it is executing. (Refer to Chapter 4 in

Managing Your Network for information on the Basic Requests tool.)

The Solstice Enterprise Manager (Solstice EM) em_debug utility also provides facilities

that are useful in debugging templates.

This chapter describes the following topics:

■ Section 16.1 “Nerve Center Debugging Agents” on page 16-1

■ Section 16.2 “Activating RCL Print Statements” on page 16-2

■ Section 16.3 “Turning Off Debug Agents” on page 16-3

16.1 Nerve Center Debugging Agents
As a part of em_debug, there are a number of Nerve Center debugging “agents”

which track aspects of Nerve Center operation and display messages in the shell

where they are invoked.

■ nc_state —Traces transitions from state to state, indicating the current state and

the condition used to transition out of a state.

■ nc_poll —Traces the enabling and disabling of polling in states.
16-1

■ nc_event —Provides information on all event notifications that have been

received.

■ nc_error —Provides information on Nerve Center runtime errors.

For example, you can activate the nc_state agent by entering the following

command:

In reporting on state transitions in a running request, nc_state refers to states by

number. States are numbered by order of appearance in the left-most column in the

Design Advanced Requests textual display.

You should invoke the debugging agents before launching the request in the

Network Views.

The Nerve Center debugging agents report on the activities of any request running

in the MIS. If you have multiple requests running, it may be difficult to isolate which

request is the cause of a message that is displayed. For this reason, it is

recommended that you only have the request running which you are trying to debug

when using the NC debugging agents.

16.2 Activating RCL Print Statements
Request Condition Language provides a print() function which you can use in

conditions to help you in debugging templates—by printing current values of

variables, for example. You can use the following em_debug command to activate

RCL print() statements:

The RCL print() statements will be displayed in the shell where this command

was invoked.

As with the NC debugging agents, the misc_stdout agent turns on print

statements for all requests running in the MIS that contain the print() function. If

you follow a practice of removing print() statements from templates after new

conditions have been debugged, you can use print() statements to debug new

templates even while other requests are running in the MIS. Only messages from the

request being debugged are then displayed.

hostname% em_debug -c “on nc_state”

hostname% em_debug -c “on misc_stdout”
16-2 Customizing Guide • October 2001

Keep in mind that the RCL print() function always returns a value of true. If a

print() statement is the last statement in a condition that defines a transition, that

transition will always occur. Accordingly, when debugging a template, you may

want to avoid print() statements in conditions that define transitions, and restrict

them to conditions that are used as actions after a transition.

Note – An RCL print() statement will only be executed if it is in a condition that

is evaluated. If a state is never “woken up” by either a poll for an attribute value or

the arrival of an incoming event, the conditions defining the transitions out of that

state will never be evaluated. Also, the conditions that define transitions out of a

state are evaluated in the order they appear in the template. If a prior condition has

evaluated to true, and the request transitions out of the state, the subsequent

transitions in that state are not evaluated.

16.3 Turning Off Debug Agents
You can turn off a particular debugging agent by entering the following commend:

If you want to turn off all debugging, you can use the em_debug wildcard feature,

as follows:

% em_debug -c “off <agent-name>”

% em_debug -c “off *”
Chapter 16 Debugging Request Templates 16-3

16-4 Customizing Guide • October 2001

CHAPTER 17

Building Templates for SunNet
Manager Event Requests

Solstice Enterprise Manager (Solstice EM) is shipped with a suite of agents developed

for the Site/SunNet/Domain Manager (SNM) network management system. These

agents communicate with a network manager, such as Solstice EM, using Remote

Procedure Call (RPC) protocol within an Internet (TCP/IP) network environment.

This chapter describes the following topics:

■ Section 17.1 “RPC Agents” on page 17-1

■ Section 17.2 “Nerve Center’s SNM Event Request Capability” on page 17-3

■ Section 17.3 “SNM Alarms” on page 17-4

■ Section 17.4 “Building SNM Event Request Templates” on page 17-6

17.1 RPC Agents
These RPC agents have the ability to poll managed resources to check for predefined

thresholds and send an event notification, called an SNM event, to a specified

management station. This polling activity is initiated by a one-shot message from a

management station, called an SNM event request. The SNM event request defines the

threshold and polling interval for the agent’s polling activity. The agent thus acts as

a proxy for the manager. Polling activity is offloaded from the management station to

the RPC proxy agents, which may be distributed to various sites around your

network. For example, a certain machine (either a PC running Solaris for x86 or a

SPARC workstation running SunOs 4.x or Solaris 2.x), called a proxy host, may

contain the proxy agents for polling of resources in a particular subnet.

The Solstice EM Nerve Center has the ability to initiate SNM event requests. This

enables Solstice EM to offload the polling of the managed resource from the MIS. If

the threshold defined in the event request obtains on the managed resource, the RPC

agent sends an SNM event to the SNM Event Dispatcher (na.event) (by default,
17-1

this is sent to the management station that initiated the request). This information is

forwarded to the Solstice EM MIS by Solstice EM’s SNM Event Forwarder

(em_snmfwd).

As illustrated in the following figure, RPC proxy agents use Remote Procedure Call

(RPC) protocol (over IP) to communicate with the Solstice EM MIS. However, an

RPC proxy agent may use a different management protocol in gathering information

from other agents. In the example in the following figure, SNM’s Simple Network

Management Protocol (SNMP) proxy agent (na.snmp) is used to manage devices

that support the SNMP protocol.

FIGURE 17-1 Using SNM Event Requests with Solstice EM

For information on the installation of RPC proxy agents, refer to Chapter 6 in

Installation Guide.

response response

Solstice EM MIS

Event

SNM registers

 snmAlarmEventsSNM Event

Nerve

SNM request

polling polling

UNIX host

Center

via SNMP
protocol SNMP Proxy

via rstat
protocol Hostperf

SNM event requests

RPC MPA

Forwarder
(em_snmfwd)

events

Dispatcher
(na.event)

initiated (via
 snmEventRequest())

(via RPC protocol)

(via RPC protocol)

SNMP Device
 proxy
17-2 Customizing Guide • October 2001

Note – SNM events that are received by SunNet Manager Consoles managing

segments of your network can also be forwarded to the Solstice EM MIS using

Cooperative Consoles. This type of distributed management scenario is described in

Chapter 7.

For general information on using SunNet Manager RPC agents with Solstice EM, see

Chapter 6.

17.2 Nerve Center’s SNM Event Request
Capability
The Nerve Center module in the MIS contains the request-handling capabilities of

Solstice EM. Nerve Center requests are based on request templates, which are built

using the Design Advanced Requests application. A key building block in request

templates are request conditions — sets of instructions defined using the Solstice EM

Request Condition Language (RCL). RCL provides two built-in functions,

snmEventRequest() and snmKillRequest() , for starting and stopping SNM

event requests. For general guidance in building request templates, read Chapter 15.

For information on the RCL functions, see Chapter 22.

SNM event requests can be launched from the Solstice EM management station

using the request-handling capabilities of the Solstice EM Nerve Center. Request

templates built using the Solstice EM Request Condition Language (RCL) can initiate

SNM event requests via the RCL snmEventRequest() function. When SNM event

requests are launched at target managed objects, the Nerve Center communicates the

request to the appropriate SNM agent or proxy through the RPC Protocol Driver

Module (PDM) in the MIS.

When the snmEventRequest() function initiates a request, the following

information is passed to the target SNM agent or proxy:

■ The agent attribute—for example, the mempct attribute, supported by the

hostmem agent, reports the percentage of network memory in use on a machine

running SunOS 4.x. A request might use this attribute to generate an SNM event

if the network memory usage on a router is greater than 80%.

■ The agent attribute group—for example, the load_stats group, supported by

the cpustat agent, reports load statistics for a particular CPU in a multi-

processor machine.

■ The relation is used to define the threshold—relations such as Equal To, Greater

Than, Not Equal To, can be used to define situations that generate SNM events if

they occur.
Chapter 17 Building Templates for SunNet Manager Event Requests 17-3

■ The threshold value to test for—for example, if the threshold value is 1 and the

relation is Not Equal To, then Not Equal To 1 is the threshold that will generate an

SNM event if it occurs for the specified attribute.

■ The SNM priority of an alarm generated if the threshold obtains—the possible

priorities for SNM events are High, Medium, or Low. These correspond to

perceivedSeverity values of Solstice EM alarms as indicated in TABLE 17-1.

■ Polling interval (in seconds)—the delay between polls of the target object by the

SNM agent or proxy.

■ The number of times the device is polled before terminating the request—this can

be unlimited, or a finite number of polls can be specified. (The number 0 is used

to indicate that polling should continue indefinitely.)

■ A specific resource to target within the agent system—for example, a specific file

system can be checked for its percent of capacity in use via the diskInfo agent.

A request could be defined to generate an SNM event if the capacity attribute

value is greater than 90% on the target file system.

Once the Nerve Center has initiated the SNM request, polling of the managed

resource at the specified intervals is handled by the SNM proxy rather than the

Solstice EM Nerve Center, thus minimizing network traffic and the polling work

required of the Nerve Center.

When a SNM agent or proxy receives a request, two agent processes are started: one

is a parent process and one is a child process to handle the request. Subsequent

requests sent to the same agent will cause the agent to start additional child

processes.

Information on the attributes and attribute groups supported by SNM agents and

proxy agents can be found in the Site/SunNet/Domain Manager Reference Manual.

17.3 SNM Alarms
When a critical threshold defined in an SNM request is detected by the SNM agent,

a response—called an event in SNM terminology—is sent via RPC protocol to the

SNM Event Dispatcher (na.event). The SNM Event Forwarder daemon

(em_snmfwd) registers with the SNM Event Dispatcher to receive incoming SNM

events. SNM events received by em_snmfwd contain the following information:

■ Name of the target system where the managed resource resides

■ Name of the system which sent the event

■ The pertinent agent attribute, and the threshold which obtained, thus causing the

event

■ Priority of the event
17-4 Customizing Guide • October 2001

■ RPC number of the agent

If the sending agent is a proxy agent, the target system name and the agent system

name will be distinct.

The SNM Event Forwarder uses the SNM event to build a snmAlarmEvent , which

will be sent to the Solstice EM MIS. The Event Forwarder maps SNM event severities

to the perceivedSeverity values used by the Alarm Service in the manner

indicated in the following table.

The attributes in the snmAlarmEvent include the following:

■ perceivedSeverity —This is mapped to SNM priorities as indicated in the

table.

■ managedObjectInstance —This represents the target element within the agent

system.

■ probableCause —This indicates the threshold that was defined in the SNM

request; the event was generated because this threshold obtained.

■ additionalText —This contains the name of the RPC agent and the threshold

that generated the event.

■ notificationIdentifier —This a timestamp of the moment when the MIS

sent the SNM event request; this enables the MIS to identify the request that is

responsible for the event.

For the structure of snmAlarmEvents , refer to the “Standard Event Notifications”

appendix in the Management Information Server (MIS) Guide.

As snmAlarmEvents are, by default, not logged to the AlarmLog, they are not

monitored by the Alarm Service and therefore do not affect fault status indication

(icon color) in the Network Views. By default, only alarms logged to the AlarmLog

affect fault status color in the Network Views. The Alarm Service is a module in the

Log Server that monitors the alarm log and uses the highest severity of outstanding

(uncleared) alarms to determine the fault status color for the device. For information

about the Alarm Service, see Chapter 4.

TABLE 17-1 Mapping of SNM Event Severities

SNM Event Severity perceivedSeverity Value Default Icon Color

Low Minor Cyan

Medium Major Orange

High Critical Red
Chapter 17 Building Templates for SunNet Manager Event Requests 17-5

However, a request that listens for incoming snmAlarmEvents can use the RCL

alarm-logging functions to post appropriate nerveCenterAlarms to the Alarms

Log. The RCL subscription functions enable a request to listen for specified types of

events. Thus, you will want to design your SNM event request templates to listen for

incoming snmAlarmEvents from SNM agents and take appropriate action.

17.4 Building SNM Event Request Templates
An example of a Nerve Center request template that initiates a SNM event request is

the DeviceReachablePing template, shipped with Solstice EM. Examining this

template may give you some ideas for building other SNM event request templates.

When a DeviceReachablePing request is launched against a target host, a SNM

event request is sent to the ping proxy agent with a polling interval of 30 seconds

and a threshold of reachable Not Equal To true. A high priority SNM event is

generated by the ping proxy agent if it finds the target device not reachable when it

polls. As indicated in TABLE 17-1, the SNM Event Forwarder translates the high

priority SNM event into an snmAlarmEvent with a perceivedSeverity of

critical. The DeviceReachablePing request listens for incoming snmAlarmEvents
from the target device and posts a nerveCenterAlarm with a

perceivedSeverity of critical if an SNM event is received.

While it is listening for incoming SNM events, the DeviceReachablePing request

counts the elapsed time since any previous “Device Down” event, and if the elapsed

time is greater than the timeout used by the ping proxy agent in polling the device,

the DeviceReachablePing request assumes the device is up and posts a minor

alarm to indicate the device is up after having been down. See the following figure.
17-6 Customizing Guide • October 2001

FIGURE 17-2 State Machine Diagram for DeviceReachablePing Template

The transition from the Ground state to the Waiting state is where the request’s

initialization is accomplished:

■ The target device is checked to determine if it is correctly configured for a ping

request. If the target device does not support the request, the request transitions

to the Error state and an appropriate warning alarm is logged.

■ The RCL subscribeOI() function is used to subscribe for incoming

snmAlarmEvents from the target device.

■ The RCL snmEventRequest() function is used to send the SNM event request

to the ping proxy agent.

 Ground

Check that the request has been launched at a

If an SNM “not

Waiting

Down

 Error

Go to the Error state

If no new event arrives,

if the target device is not
correctly configured for
this request.

device that is correctly configured in the MIS and, if
so, send an SNM ping event request testing for
reachability. Subscribe for snmAlarmEvents from the
the target device.

If the elapsed time
count exceeds the
proxy’s polling
interval, go to
Waiting and
log a warning
alarm that
the device is
up after being
down.

reachable” event
arrives, go to Down
state, initialize the
elapsed time count
to zero, and send a
critical alarm.

increment the elapsed time
counter.
Reinitialize the elapsed time
counter to zero if a new SNM
event arrives.
Chapter 17 Building Templates for SunNet Manager Event Requests 17-7

Each of these tasks is carried out by a separate condition defining a transition from

the Ground state to the Waiting state. The first of these transitions is defined by the

get_rpcAgent_name condition:

Using the RCL numElements() function, the first statement in the condition

determines how many managed objects are configured for this device. This

information is passed to the request in the $pollFdnSet variable when the request

is launched against a target device in the Network Views. The condition then uses a

WHILE loop to examine the distinguished name (FDN) pointing to each such object

to determine if the device is manageable via RPC. If the device is manageable by

RPC, the RPC proxy table for the device (which “contains” under it the various RPC

agent attribute groups supported by that device) will be represented in the

$pollFdnSet.

The Boolean variable $res is set to true if the device does support RPC, false

otherwise. This condition is followed in the template by a transition defined by the

check_for_rpc condition. If $res is false, that condition causes a transition to the

Error state.

The get_rpcAgent_name condition also extracts from the RPC FDN the hostname of

the device, which will be used in building the SNM event request. The RCL

appendRdn() function is used to point $rpc_dn to the ping agent reach group

contained under the RPC proxy table which will, then, be passed to the RCL

snmEventRequest() function when initiating the SNM event request.

$num = numElements(&$pollFdnSet);
$count = 1;
while($count <= $num))
{
 $numstr = AsnToStr($count,TRUE);
 $dn = Extract(&$pollFdnSet,$numstr);
 $dn1 = Extract(&$dn,”distinguishedName”);
 $dnstr = AsnToStr($dn1,TRUE);
 $res = AnyStr($dnstr,”RPC”);
 if ($res = TRUE)
 {
 $dn2 = Extract(&$dn1,”3”);
 $dn3 = Extract(&$dn2,”1”);
 $hostname = Extract(&$dn3,”attributeValue”);
 $rpc_dn = appendRdn($dn,”/agentId=\”ping-reach\”{}”);
 $count = $num+1;
 }
 $count = $count+1;
}
false;
17-8 Customizing Guide • October 2001

Note that the get_rpcAgent_name condition ends with a line that says “false; ”.

This is to ensure that this condition does not cause a transition to the Waiting state.

If this condition did cause a transition to the Waiting state, the conditions initiating

the SNM event request and subscribing for incoming SNM events would never be

executed. The conditions defining transitions are executed by Nerve Center in the

order they occur in the template. The conditions in the later transitions out of the

Ground state would not be executed by Nerve Center if any of the earlier conditions

evaluate to true. If a condition defining one of these transitions evaluates to true, the

request transitions to the Waiting state. Thus, if check_for_rpc evaluates to true,

the request transitions to the Error state and the conditions initiating the SNM event

request and subscribing for SNM alarms are never evaluated.

17.4.1 Subscribing for SNM Events

The subscription for snmAlarmEvents occurs in the following condition:

The subscribeOi() function is used to subscribe for events from a specified object.

Note that $dn—the RPC proxy table for the target device, not the FDN pointing to

the ping reach group ($rpc_dn) , is the object that is the target of the subscription.

For RPC requests, the RPC proxy table FDN contained in $pollFdnSet must be

used for both event subscriptions and logging of alarms against the device.

As with the get_rpcAgent_name condition, the subscribe_snmAlarmEvent
condition ends with “false;” to ensure that the request does not leave the Ground

state after evaluating this condition but proceeds to the next transition in the Ground

state.

subscribeOi(“snmAlarmEvent”,”{}”,$dn);
false;
Chapter 17 Building Templates for SunNet Manager Event Requests 17-9

17.4.2 Sending an SNM ping Event Request

After subscribing for snmAlarmEvents from the target device, the

DeviceReachablePing request sends the SNM event request to the ping proxy

agent. This is accomplished in the send_ping_reach condition:

The SNM event request parameters are passed to the snmEventRequest() function

as the string $tmp . The hostname, which was extracted in the get_rpcAgent_name
condition, is concatenated with the other parameters. If the RPC proxyhost setting

for $hostname is configured as localhost , the request is sent to the ping proxy

agent on the MIS system. However, polling by SNM agents can be offloaded to other

machines if the managed resource is configured with a proxyhost other than

localhost. (This can be configured in the Discover Properties window, when doing

discovery of RPC-manageable devices on TCP/IP networks, or it can be configured

manually using OCT.)

The event request passes the address of $handle to Nerve Center. This variable can

be passed to snmKillRequest() function to kill the request. Note that handle must

be initialized before calling snmEventRequest() .

The parameters passed in the event request string are as follows:

■ agentHost <hostname>—<hostname> was obtained from $pollFdnSet in the

get_rpcAgent_name condition. This is the target device for the SNM event

request.

■ agentProgram 100115 —The RPC number of the ping proxy agent.

■ agentVersion 10 —This is the software version number. This is contained in

the entry for the agent in the /etc/initd.conf file. For example, 10 is the

version number for na.snmp in the following inetd.conf entry:

■ timeout 30 —This is the length of time the ping proxy agent will wait for a

response from the device before sending an alarm.

$tmp = “{agentHost \”{}”;
$request_timeout = 30;
$tmp = StrCat($tmp,$hostname);
$s1 = “\”,agentProgram 100115, agentVersion 10, timeout 30,interval 10,group
\”reach\”,threshold {\”reachable\”,21,1,\”0\”,high}}”;
$tmp = StrCat($tmp,$s1);
$handle = 0;
print($tmp);
snmEventRequest($rpc_dn,$tmp,&$handle);
true;

na.snmp/10 tli rpc/udp wait root /opt/SUNWconn/snm/agents/na.snmp na.snmp
17-10 Customizing Guide • October 2001

■ interval 10 —The ping proxy agent polls the target device every 10 seconds.

■ \”reach\” —The name of the attribute group used in this request.

■ threshold { <threshold> }—The name “threshold” introduces a set of values that

define the threshold that the agent is to check for:

■ \”reachable\” —The name of the attribute whose value is checked.

■ 21—The data type of the operands of the relational operator.

■ 1—The relational operator. A value of 1 indicates the operator is Equal To.

■ \”0\”—“0” indicates false in this case.

■ high —The priority to assign to the SNM event generated if the threshold

obtains.

Thus, the ping proxy agent is instructed to check for reachability Equal To false and

generate an SNM event notification if this should occur.

17.4.3 Waiting for a Response to the Event Request

After the DeviceReachablePing request subscribes for snmAlarmEvents from

the target device and sends the SNM event request to the ping proxy agent, the

request transitions to the Waiting state. The request “sleeps” until it is “woken up”

by the arrival of an snmAlarmEvent. This happens when the is_snmAlarmEvent
condition evaluates to true:

A $messType of 0 indicates that the request was woken up by the arrival of an

event. The arrival of an snmAlarmEvent indicates that the target device is not

reachable. The request then transitions to the Down state and executes two

conditions as actions in the transition. One of these actions logs a

nerveCenterAlarm :

This alarm is logged against the device indicated by the request’s $pollfdn value.

When the request is first launched, this is set by Nerve Center to point to the first

object in $pollFdnSet . This critical alarm will cause the icon of the target device to

turn red in the Network Views. The string passed to the alarmStr() function

appears in the additionalText field for that alarm in the Alarms tool.

$messType == 0;

alarmStr(1,”Device Not Responding to Ping”);
Chapter 17 Building Templates for SunNet Manager Event Requests 17-11

The other action in the transition from the Waiting to the Down state initializes a

counter:

At this point the request knows that the device is down. But it would also be useful

to be notified if the device comes back up. The request can assume that the device is

back up if it stops receiving “Device Down” events from the ping proxy agent for a

length of time that is longer than the timeout that the ping agent is using in waiting

for responses from the target device. The request has set this timeout value to 30

seconds in the SNM event request. Therefore, the DeviceReachablePing request

counts the time elapsed after each incoming “Device unreachable” event, and when

it stops receiving such events for a period longer than the request timeout being

used by the ping agent, the request assumes the device is back up.

After the request transitions to the Down state, it loops back to that state so long as

the following condition evaluates to true:

Each time the request loops back from the Down to Down state due to the arrival of

a new SNM event notification from the ping proxy agent, the time counter is

reinitialized to zero.

Note that the polling interval is every 20 seconds in the Down state. If no new SNM

event arrives after 20 seconds, the another_event condition will evaluate to false

and the request will then evaluate the following condition:

The purpose of the first statement “$fake = topoNode; ” is to retrieve some

attribute (it may be irrelevant to the purposes of the request, as in this example) in

order to force the request to be “woken up.” If the request is not woken up, this

condition would not be evaluated.

The wakeup_count condition increments the time counter and then checks to

determine if the time elapsed since the last SNM event is greater than the ping proxy

request timeout. If it is not, this condition will evaluate to false and will not cause a

transition back to the Waiting state; the request then continues to loop in the Down

state. If this condition does evaluate to true, the request assumes that the ping proxy

$time_counter = 0;

$messType == 0;

$fake = topoNode;
$time_counter = $time_counter + 10;
$time_counter > $request_timeout;
17-12 Customizing Guide • October 2001

agent is no longer sending “Not reachable” event notifications because the device is

back up. This causes the request to transition back to the Waiting state, and in the

transition a minor alarm is logged by the deviceBackUpWarningAlarm condition:

This is a minor alarm. This will only turn the icon cyan, however, after a user clears

the previous critical alarm in the Alarms tool. If you wanted to implement an

automatic “decay to cyan” feature, to automatically change the icon to cyan when a

device becomes available after being unreachable, you could modify the

DeviceReachablePing template to issue a “cleared” alarm before logging to the

minor alarm. The following condition would send a “cleared” alarm to clear the

previous critical alarm:

If the request did not clear the previous critical alarm, the icon would remain red

because the Alarm Service sets fault status color to the highest severity of uncleared

alarms. An outstanding critical alarm always takes precedence over alarms of lesser

severity. The minor alarm only causes the icon to “decay to cyan” if the previous

critical alarm has been cleared.

alarmStr(4,”Device is up after being down”);

alarm(5)
Chapter 17 Building Templates for SunNet Manager Event Requests 17-13

17-14 Customizing Guide • October 2001

CHAPTER 18

Building Advanced Requests

Requests are the series of activities through which the Solstice Enterprise Manager
(Solstice EM) Nerve Center polls for the attributes of managed objects or receives

notifications from the agents of managed objects, or both. A request is typically

initiated when a request template is launched at a target object. Design Advanced

Requests is a tool that allows you to create request templates.

This chapter describes the following topics:

■ Section 18.1 “Components of Request Templates” on page 18-1

■ Section 18.2 “Using the Design Advanced Requests Tool to Build Nerve Center

Templates” on page 18-4

■ Section 18.3 “Conditions” on page 18-9

■ Section 18.4 “States” on page 18-11

■ Section 18.5 “Transitions” on page 18-12

■ Section 18.6 “Actions” on page 18-16

■ Section 18.7 “Poll Rates” on page 18-20

■ Section 18.8 “Modifying the Mapping of Colors to Severities” on page 18-23

■ Section 18.9 “Graphical State Diagram Display” on page 18-24

18.1 Components of Request Templates
States, conditions, and poll rates are the building blocks of request templates. Each

template is made up of multiple states, with potentially multiple transitions between

those states. A request state may be thought of as a request’s representation of a

state (such as Up or Down) of a network resource.

A condition is a set of instructions written in the Request Condition Language (RCL).

Conditions can play two roles in requests:

■ A single condition can be used to define when a request will undergo a transition
from one state to another (or loop back to the same state). You must have exactly

one condition associated with each transition. Where more than one transition out
18-1

of a given state exists in a template, each defined by a distinct condition, the Nerve
Center evaluates the conditions in the order they are entered in the request
template.

■ A second role of a condition is an action, taken in response to a transition. A

condition is one of three types of action, the others being the sending of mail and

the invocation of a Unix command. Multiple conditions can be invoked as actions

resulting from a single transition. When multiple actions result from a given

transition, Nerve Center executes them in the order entered in the request

template.

As part of a request template, you can enter RCL statements that cause an event to

be treated as an alarm and to be logged to an alarm log. The Request Condition

Language is described in Chapter 20.

The alarm logging activity of Nerve Center affects the Alarm Manager and Log

Manager, which displays a summary of alarms in one or more logs, and the Log

Entries, which displays log records for events you have chosen to log. Both the

Alarms and Log Entries are described in Chapter 11 of Managing Your Network.

Nerve Center alarm logging also has an impact upon the color of icons in the

Network Views. The MIS Alarm Service module monitors the alarm logs and

updates the color of icons in the Network Views to reflect the severity of alarms

logged against the managed objects represented by those icons. The default mapping

of color to severity is described in Chapter 3. Nerve Center controls this mapping

and you can change it through the Request Designer Edit ➔ Severities option,

described in Chapter 3.

18.1.1 State Machine Diagrams

A representation of a finite set of states, and the possible paths between those states,

is a finite state machine. Before you start building a request template, you may wish to

draw a state machine diagram in which you show the various device states you

want to represent, the paths between them, the types of information that the request

is to make use of to determine when to make each transition, and the actions that you

want the request to take when it makes a transition (for example, logging an alarm

or sending an e-mail message).

A state diagram shows how a request template works. The following figure shows a

very simple, yet valid, example that illustrates request-related concepts.
18-2 Customizing Guide • October 2001

Note – The “severities” that attach to template states in the Design Advanced

Requests tool do not control the fault status indication (icon color) of devices in the

Network Views. The severities of request states only affect the color attached to

states in the Request Designer graphical display. Fault status color of devices in the

Network Views is determined by the alarms logged against those devices. If you

want the fault status color of icons to change when a request transitions from one

state to another, you can control this using RCL alarm-logging functions. This is

discussed in Chapter 22.

FIGURE 18-1 Request Example with Poll Rates and Severities

Ground

Up

Down

Poll Rate: 20

Poll Rate: 20

If NC has new confirmation
that host is reachable, go to Up.

Perform housekeeping.

If NC has new confirmation
that host is reachable, stay at Up.

If NC has no new confirmation
that host is reachable, go to Down.

If NC has new confirmation
that host is reachable, go to Up.

NC = Nerve Center

State

State

State
Chapter 18 Building Advanced Requests 18-3

18.2 Using the Design Advanced Requests
Tool to Build Nerve Center Templates
Before embarking on building a request template from scratch, use the Design

Advanced Requests tool to examine the sample request templates supplied with

Solstice EM. You may be able to use a template as is, modify a template, or, short of

these labor-savers, use one or more of the conditions that are used in the sample

templates. See the following subsection for a procedure for creating a template from

an existing template.

If you find you need to create a request template, the essential steps are as follows.

▼ To Create a Request Template

1. Design a state machine: draw a picture for yourself showing the states you want to
monitor and the paths between those states.

Make note of conditions that would cause movement from one state to another.

2. Invoke the Design Advanced Requests tool, as described below in Section 18.2.1,
“Starting Request Designer.”

The following steps all involve the use of the Request Designer.

3. Create the conditions you need.

You are supplied with a number of conditions. Conditions are reusable across all

request templates. You may wish to develop a library of conditions that can be used

in multiple templates.

4. Create the states you need.

States are specific to each template, that is, you have to create new states for each

template.

5. Create the transitions from one state to another.

Transitions are specific to each template and are executed in the order in which they

appear in the template. A condition is used to define when the transition is to take

place.

6. Add actions, if any, that you want to occur when a transition takes place.

7. Name the request template and enter a brief description of it.

8. Save the template.
18-4 Customizing Guide • October 2001

Note – You can save an incomplete template, to continue work on it at a later date,

through the Request Designer Template ➔ Export Current option. Use the Template

➔ Import option when you want to reload that template into the Request Designer.

With a template created, you can invoke the Advanced Requests window from the

Network Views menu and start requests using that template against target managed

objects.

The bulk of the work in building a new request template is in the design of the

template and in the coding of the conditions for the template. You should design

your template before you invoke the Request Designer tool.

18.2.1 Starting Request Designer

To use the Request Designer tool, a Solstice EM MIS must be running and the

Request Designer must be able to communicate with it.

You can start the Request Designer tool by selecting Administration ➔ Request

Designer. Also, the tool is brought up if you click Create or Modify in the Advanced

Requests tool. (The Advanced Requests tool is described in Chapter 4 of Managing
Your Network.)

You can also invoke the Request Designer tool, and have it connected to an MIS, by

using the following command line format:

The <hostname> option is used to specify the name of the machine where the MIS is

running. If you start the Request Designer from the command line, and you are

logged on as a non-root user, you receive a Login window if password

authentication has been activated for Solstice EM. To proceed, enter your password

and click OK. Your access to Request Designer functions depends upon the

permissions granted to you through the Solstice EM Security tool.

The Request Designer offers two modes of interaction—through a text-based

window or through a graphical display, called a “State Diagram” window. Upon

invoking the Request Designer, the tool comes up in its text mode. See Section 18.9,

“Graphical State Diagram Display” for instructions on the using the graphical

display.

host% em_reqedit [-host <hostname>]
Chapter 18 Building Advanced Requests 18-5

18.2.2 Creating a New Nerve Center Template

The Request Designer tool provides two ways for creating a new Nerve Center

template:

■ You can create one from scratch, or

■ You can use an existing template as a starting point, make modifications, and then

save it under a new name.

Selecting File ➔ New sets up the main Request Designer tool canvas for building a

new template from scratch. The canvas is blank except for the presence of the

Ground state. Do not delete the Ground state as every request must start from the

Ground state.

Until you save the template, “NoName” is displayed as the template name in the

footer.

Adding states, writing conditions, and defining transitions between states are the

main work in the building of a Nerve Center template. These tasks are described

below under Section 18.4, “States, ” Section 18.5, “Transitions,” and Section 18.3,

“Conditions.”

After adding states, and transitions between states, you can save your work by

selecting the File ➔ Save option. Saving the completed template loads it into the

MIS. The name and description you enter when saving the template are displayed in

the list of templates available to users in the Advanced Requests tool.

If you have not completed the template but want to save it to continue work on it

later, you can use the File ➔ Export Current option to save the unfinished template

to an ASCII text file. To load this template back into the Request Designer workspace

later, use the File ➔ Import option. When prompted for a filename, specify the

filename of the ASCII file to which the template was previously exported.

18.2.3 Modifying an Existing Nerve Center Template

Use the File ➔ Open option to select the template you want to modify.

Note – You cannot save changes to a template under the same name if there are any

running requests in the MIS based on that template. Invoke the Advanced Requests

tool from the Network Views menu to determine if there are any requests running

based on the template you wish to modify.

After making changes in the template, those changes are saved to the original

template in the MIS if you select the File ➔ Save option.
18-6 Customizing Guide • October 2001

Existing templates are a convenient starting point for the creation of new templates.

In this case you do not have to worry about the existence of requests based on the

original template running in the MIS. You can save the template under a new name

even if there are running requests based on the template you opened to start your

template creation. Use the File ➔ Save As option, after you have completed your

modifications, to create a new template in the MIS.

18.2.4 Deleting Nerve Center Templates

Use the File ➔ Delete option to delete a Nerve Center template from the MIS.

Note – You cannot delete a template if there are any requests running in the MIS

that are based on that template. Invoke the Advanced Requests tool from the

Network Views menu to determine if there are any running requests based on the

template you wish to delete.

18.2.5 Exporting Nerve Center Templates to an ASCII

File

Nerve Center templates, conditions, and poll rates can be exported to an ASCII file.

If you export a request template to an ASCII file and print it out, you may find this

helpful in analyzing the overall structure of the template. Also, if you want to copy

a template from one MIS to another, one way to do this is to export the template to

ASCII file from one MIS and then import that file into the other MIS.

There are three ways to export Nerve Center templates, conditions, and poll rates:

■ You can export Nerve Center templates (and their components) using the Request

Designer’ File ➔ Export option, the imported components are loaded into the

MIS.

■ You can export Nerve Center templates (and their components) using the

em_ncexport command-line utility. The use of this utility is described in

Chapter 19.

■ You can export Nerve Center templates (and their components) using the Request

Designer’ File ➔ Export Current option, the template is loaded into Design

Advanced Requests but not into the MIS.

If you select the File ➔ Export option, the Export Customized window is displayed

(FIGURE 18-2). By clicking the appropriate button at the top of the window, you

receive scrolling lists of Templates, Conditions, or Poll Rates which you can select for
Chapter 18 Building Advanced Requests 18-7

inclusion in the export to a specified ASCII file. In the following figure the

SetInternetSystem condition has been selected for export to a file named

myconditions .

FIGURE 18-2 Example of Export to ASCII File

18.2.6 Importing Nerve Center Templates from an ASCII

File

Use the File Import option to import Nerve Center templates and their components

from an ASCII file to which they were previously saved. The action of the Import

option depends upon how the imported file was previously saved:

■ If the imported file was previously saved using the Export option, the imported

components are loaded into the MIS.

■ If the imported file was previously saved using the Export Current option, the

template is loaded into the Design Advanced Requests but not into the MIS.

Select File
Chooser here.
18-8 Customizing Guide • October 2001

18.3 Conditions
A condition is a script that contains one or more statements written in Request

Condition Language (RCL). Conditions are used for two different functions in Nerve

Center templates:

■ To define when state-to-state transitions take place—this is described below in

Section 18.5, “Transitions.”

■ As actions to execute when a request transition takes place—this is described in

Section 18.6, “Actions.”

Each RCL statement ends with a semicolon. For example, the following RCL

statement logs a nerveCenterAlarm with a severity of critical:

RCL conditions may also contain control structures, using expressions such as IF, IF

ELSE, WHILE, or FOREACH, with statements contained within them. For example,

the following control structure counts the number of events from a specified device:

Conditions cannot be modified or deleted once they are included in Nerve Center

templates that have been stored in the MIS. A condition can be modified or deleted

only if no existing request template has a reference to it. If a condition that is

referenced by any other request templates must be modified or deleted, it must first

be unreferenced or excluded from all other request templates.

Information on RCL can be found in the following locations:

■ Components of the RCL language are described in Chapter 20.

■ RCL system variables that can be used in building conditions are described in

Chapter 21.

■ RCL also includes built-in functions that can be used to build RCL conditions.

The RCL functions are described in Chapter 22.

■ Conditions for several sample request templates are described in Chapter 15.

■ Conditions used in request templates that initiate SunNetManager event requests

are discussed in Chapter 17.

alarmStr(1,”Device is down”);

IF ($eventOi = $pingFdn)
{$ping_response_count = ping_response_count+1;}
Chapter 18 Building Advanced Requests 18-9

The Request Designer Conditions window provides a text canvas in which RCL

conditions can be composed. You can invoke the Conditions window (shown in

FIGURE 18-3) from the main Request Designer window by clicking Conditions, or by

selecting the Edit ➔ Conditions menu option.

FIGURE 18-3 Viewing RCL Conditions in the Conditions Window

You can use the Conditions window to do the following:

■ Add a new condition to the MIS

You create a new condition by saving your condition under a name that is not

already in use for templates stored in the MIS.

■ Modify an existing condition

Double-click on a condition name in the scrolling list in the Conditions window

to open an existing condition.

■ Delete an existing condition from the MIS
18-10 Customizing Guide • October 2001

Note – Conditions cannot be modified or deleted once they are included in Nerve

Center templates. If you want to modify a condition that is used in an existing Nerve

Center template, you will need to remove the action or transition in which that

condition occurs before you can save your modifications to the MIS.

18.4 States
States are used to represent the request’s current knowledge of the state of a device,

such as a Waiting state if the request is waiting for incoming events from the device,

or a Down state to represent the situation where information has been received

indicating that the device is unavailable. A request template is a finite state machine,

consisting of multiple states and transitions between states. Every request begins in

the Ground state; but Ground is the only state required for every request template.

18.4.1 Adding States to a Nerve Center Template

▼ To Add a State to a Request Template

1. From the Request Designer main window invoke the States window by clicking
States or selecting the Edit ➔ State menu option.

2. Type in the name and description for the new state and select a poll rate.

You can attach a different poll rate to each state, if desired.

3. Select a severity.

This does not affect logging of alarms. This “severity” only selects the color used to

represent the state in the Request Designer graphical display.

4. Clicking Add inserts this state into your template.
Chapter 18 Building Advanced Requests 18-11

18.4.2 Modifying States in a Nerve Center Template

▼ To Change an Existing State in a Request

Template

1. From the Request Designer main window invoke the States window by clicking
States or selecting the Edit ➔ State menu option.

2. Select the state that you wish to change by typing its name in the name field or
selecting the state in the tabular display.

3. Make your proposed changes to the fields other than the name field. And then
click Modify to make the changes take effect.

18.5 Transitions
A transition occurs when a request moves from one state to another. A condition is

used to define when a transition is to take place. The transition occurs if and only if

the condition evaluates to true. A transition may cause a request to loop back from a

state to that same state, or move to a different state. You may define multiple

transitions out of a given state. There can be more than one transition defined from

state A to state B. See the following figure.

FIGURE 18-4 Order of Transitions in a Template
18-12 Customizing Guide • October 2001

Transitions out of a given state are evaluated by Nerve Center in the order they

occur in the Request Designer tabular display. In the example in FIGURE 18-4, the

transition from Ground to Waiting defined by the SnmpTrapSubscription
condition is evaluated before the Ground to Dead transition defined by

IsSubscriptionError .

Transitions out of a state are only evaluated if the state is “awake.” An “awake” state

can occur if:

■ The request has previously subscribed for specified events and an event of the

specified sort has arrived.

■ Conditions defining transitions out of that state poll for the current value of

attributes known to the MIS.

18.5.1 Creating New State-to-State Transitions in a

Template

▼ To Add a Transition to the Template

1. Invoke the Transitions window by clicking Transitions or selecting the
Edit ➔ Transition menu option.

2. Define the state the transition is from, and the state the transition is to.

3. Select a condition to test to determine if the transition is to occur.

4. You may also specify one or more actions to be executed if the transition occurs.
(This is optional.)

18.5.2 Deleting Transitions from a Template

▼ To Delete a Transition From a Template

1. Invoke the Transitions window by clicking Transitions or selecting the
Edit ➔ Transitions menu option.

2. Define the state the transition is from, and the state the transition is to.

3. Select the condition that defines when the transition is to occur.
Chapter 18 Building Advanced Requests 18-13

4. Select <none> for the Action field.

5. Click Delete to delete the transition.

18.5.3 Reordering Transitions

▼ To Change the Order in Which the Transitions

Out of a Given State are Evaluated

1. Invoke the Transitions window by clicking Transition or by selecting the Edit ➔

Transitions menu option.

2. Select the state whose transitions you wish to reorder on the From field.

3. Click Order Transitions to invoke the Order Transitions window.

4. You can change the order of the transitions out of that state by selecting a
transition in the list and then clicking Move Up or Move Down, as shown in the
following figures.

FIGURE 18-5 Reordering State Transition - Move Up
18-14 Customizing Guide • October 2001

FIGURE 18-6 Reordering State Transition - Move Down
Chapter 18 Building Advanced Requests 18-15

18.6 Actions
Actions are executed when a request moves from one state to another state (or loops

back to the same state) in a state transition. The Action menu in the Transitions

window is used to select which sort of action you want the request to execute when

the transition occurs. The Action menu options are described in the following table.

RCL system variables or variables that you define can be used to define data that is

to be passed in an email message (see the following figure). RCL variables can also

be used as parameters in a UNIX command.

FIGURE 18-7 Use of RCL Variables in Mail Action

TABLE 18-1 Action Menu Items

Action Description

<none> No action taken.

UNIXCMD The name of command with any required parameters.

For example, for netstat -rn , you enter netstat in the Command

field and -rn in the Arguments field.

MAIL An electronic mail address and message.

For example, verma@halcyon in the Address field and CPU usage
exceeded 90% in the Message field. By default, the mail that results

from an action has a subject “Problem with Node.”

CONDITION The name of a condition as you created and saved it in the Request

Designer (which saves it into the MIS).
18-16 Customizing Guide • October 2001

18.6.1 Adding Actions at a Transition

The Transitions window allows you to add or delete actions at a transition.

▼ To Add an Action at a Transition

1. If the Transitions window is not already displayed, invoke it by clicking
Transitions or by selecting the Edit ➔ Transitions menu option.

2. Select the transition to which the action is to be added by setting the From, To,
and Condition fields to match the target transition.

3. Select the appropriate action type from the Action menu.

a. If you selected MAIL, type in the email address in the Address field and the
message in the Message field.

User-defined or system RCL variables may be used in the message field.

b. If you selected UNIXCMD, fill in the Command field and enter the required
arguments for the command in the Arguments field.

User-defined or system RCL variables may be used in the Arguments field.

c. If you selected CONDITION, select the name of the condition to be executed
from the scrolling list of conditions that are available in the MIS.

This is inserted into the Name field after you have selected it. In the following

figure, the alarm_warning_string_OI condition has been selected for adding

as an action to the transition from the Ground to Dead state defined by the

result_equal_false condition.
Chapter 18 Building Advanced Requests 18-17

FIGURE 18-8 Adding a Condition as an Action at a Transition

4. Clicking Add inserts this action into the transition.

You can continue to add additional actions at the same transition by repeating this

procedure. Actions are added to the transition in the order they are created.

18.6.2 Deleting Actions at a Transition

If there is more than one action at a transition, you can only delete the last action in

the transition in a single step. If there are multiple actions at a transition and you

want to delete an action other than the last one, you must first delete all of the

actions that are listed after the target action in that transition.
18-18 Customizing Guide • October 2001

▼ To Delete the Action That is the Last Action in

the List of Actions at a Transition

1. If the Transitions window is not already displayed, invoke it by clicking
Transitions or by selecting the Edit ➔ Transitions menu option.

2. Select the transition from which the action is to be deleted by setting the From,
To, and Condition fields to match the target transition.

3. Select the appropriate action type from the Action menu.

4. If the action to be deleted is a condition, select the target condition from the
scrolling list.

5. Click Delete.

Note – If you select <none> as the action type, clicking Delete removes the entire

transition.

18.6.3 Reordering the Actions at a Transition

Reordering actions in a transition is done by deleting actions from the bottom of the

list of actions, and then adding them back in the desired order. If action B follows

action A in a transition but you want action B to be first and action A to follow, you

will need to delete both action B and action A, and then add them both in the proper

order.
Chapter 18 Building Advanced Requests 18-19

18.7 Poll Rates
The poll rate is the length of delay before the first poll and interval between polls

thereafter. Poll rates attach to states. Different states can thus have different poll

rates. If the transitions out of a state require polling for attribute values, Nerve

Center schedules required polls when a request first enters that state. Poll rates

supplied with the product are listed in the following table.

TABLE 18-2 Poll Rates

Name Interval (secs.)

Poll 20

poll30 60

Fast 60

Moderate 300

Medium 900

Slow 3600

VerySlow 21600

default_rate 300

1secs 1

5secs 5

10secs 10

20secs 20

30secs 30

40secs 40

1min 60

2min 120

3min 180

4min 240

5min 300

10min 600

15min 900

20min 1200
18-20 Customizing Guide • October 2001

18.7.1 Creating New Poll Rates

▼ To Create a New Poll Rate

1. Select the Edit ➔ Poll Rates menu option to invoke the Poll Rates window.

2. Enter a name for your new poll rate and the polling interval (in seconds).

In the following example, a poll rate of 90 seconds is created and given the name

“90secs.”

3. Click Add to load the new poll rate into the MIS.

30min 1800

40min 2400

1hour 3600

2hour 7200

6hour 36000

12hour 72000

VeryFast 60

DefaultRate 300

TABLE 18-2 Poll Rates (Continued)

Name Interval (secs.)
Chapter 18 Building Advanced Requests 18-21

FIGURE 18-9 Creating a New Poll Rate

18.7.2 Modifying a Poll Rate

Note – Poll rates cannot be modified if they are in use in a template stored in the

MIS.

▼ To Modify a Poll Rate

1. Select the Edit ➔ Poll Rates menu option to invoke the Poll Rates window.

2. Select the poll rate you wish to modify from the tabular display of poll rates.

3. Enter the new rate (in seconds) in the Rate field.

4. Click Modify.
18-22 Customizing Guide • October 2001

18.8 Modifying the Mapping of Colors to
Severities
A severity describes the degree of importance you attach to a network resource

entering a state. A severity is made up of three items: a name, a number, and a color.

For example, “Warning 4 yellow” is one of the supplied severities. The Nerve

Center’s mapping of colors to severities (as shown in the following figure) controls

the use of color in the Network Views and Alarms to represent the severity of alarms

logged against managed resources.

FIGURE 18-10 Nerve Centre’s Mapping of Colours to Severities

For information on changing the color associated with a severity, see Section 3.3.1,

“Changing the Color Associated with a Severity.”
Chapter 18 Building Advanced Requests 18-23

18.9 Graphical State Diagram Display
In the Request Designer main window, select View ➔ Graphical (or View ➔ Both) to

receive the State Diagram window shown in the following figure. In this figure, you

start with the single state, “Ground,” which is the required starting point for all

request templates.

FIGURE 18-11 Graphical State Diagram Display

The menus at the top of this window are identical to those in the text-based display.

Down

States button

Transitions button

Conditions button

Transitions
 popup menu

Numbers in boxes
indicate the number of
transitions between the two
states.
18-24 Customizing Guide • October 2001

18.9.1 Creating a Template Through the State Diagram

Display

The graphical display icons are pointed out in the above figure. These icons

correspond to (from left to right) the States, Transitions, and Conditions buttons in

the text-based display.

▼ To Use the Graphical Display to Create a

Request Template

1. Select the States (leftmost) icon.

A new, unconfigured state displays in the graphical display. This state has a name of

“NoName.” At the same time, the Configure States window is displayed. This

allows you to enter the same data as is accepted by the States window invoked from

the text-based display. Refer to Section 18.4, “States.”

2. Enter a name and description and select a poll rate and severity for the new state.
Select Add.

The name just entered appears in the circle for the new state; the color specified in

the state’s severity is also displayed.

Note – At this point, you have the option of creating additional states—first adding

a state (circle), then configuring that state—or making a transition from the Ground

state to your new state. In these instructions, we proceed as if you are making a

transition before making additional states.

3. Select the circle for the Ground state (the “from” state), use the middle mouse
button to extend your selection to the circle for the new state (the “to” state), and
then select the Transitions (center) icon.

A line appears between the two states with a small box containing “0” on the line.

We call this box the “transition-count box”. At the same time, you receive the

Transitions window, which is identical to the Transitions window invoked from the

text-based display. See the explanation of how to use that window in Section 18.5,

“Transitions.” When you bring up the Transitions window from the graphics display,

the names of the two states connected by the transition are displayed in the From

and To fields.

You can also obtain the Transitions window by pressing right in the transition-count

box in the newly made transition line and selecting Configure in the new transition’s

menu.
Chapter 18 Building Advanced Requests 18-25

Note – When configuring states and transitions, do your work in indivisible pairs:

create a state, configure that state; create a transition, configure that transition.

4. To make additional states and transitions, repeat Step 1 through Step 3.

5. Invoke File ➔ Save As to save the new template.

You can create any number of states for a given template. However, you can display

a maximum of nine (including Ground) in the Request Designer graphical display.

The graphical display has a message area at the bottom of the window that is

analogous to the text-display message area.

The numbers in boxes indicate the number of transitions that have been created

between a pair of states.

18.9.2 Other Tasks in the Graphical Display

To delete a state, select Configure from the menu for the state icon to be deleted. In

the Configure States window, select Delete, then select OK in the dialog box that

subsequently appears.

To delete a transition, press right in the transition-count box for that transition.

Select Configure. You receive the Transitions window. In this window, select Delete,

then select OK in the dialog box that subsequently appears.

To delete the action for a transition (not the entire transition), press right in the

transition-count box for that transition. Select Configure. You receive the Transitions

window. In this window, select the action you want to delete, enter any arguments

(such as Command or Address), and select Delete. If you specify an action of

<none>, all actions are deleted.

To obtain a description of a state or transition, press right in the state icon or in the

transition-count box for the transition. Select Description. You receive a read-only

State or Transition Information window.
18-26 Customizing Guide • October 2001

CHAPTER 19

Nerve Center Utilities

Nerve Center templates, conditions, poll rates, and severities can be saved to an

ASCII text file using the em_ncexport command-line utility. Templates, conditions,

poll rates, and severities previously saved to an ASCII text file can be loaded into an

MIS using the em_ncimport command-line utility

This chapter describes the following topic:

■ Section 19.1 “em_ncimport and em_ncexport” on page 19-1

19.1 em_ncimport and em_ncexport
The em_ncimport and em_ncexport facilities are useful for:

■ Replicating templates, or selected template components, from one MIS to another

■ Storing several versions of the same template, or an entire Nerve Center template

data

Syntax:

em_ncexport [-host <hostname>] [-file <filename>] [-help]
[-template <template_name>] [-condition <condition_name>]
[-pollrate <poll_rate_name>] [-severity <severity_name>]
[-minimize] [-help]

em_ncimport [-host <hostname>] [-file <filename>] [-template]
[-help]
[-pollrate] [-severity] [-condition] [-v]

19.1.1 Options
■ -help— Displays help text.
19-1

■ -host <hostname>—<hostname> is the name of machine with the target MIS for

import or export. Default is localhost .

■ -file <filename>—<filename> is name of file to export to or import from. Default

is stdin for import, stdout for export.

■ -template [<template_name>]—<template_name> is the name of the template to

export. By default, all poll rates, severities, and conditions that are associated

with the template are exported. Multiple template names can be listed if the list of

names is surrounded by double quotes. If no name is specified, all templates are

exported. For example:

Individual templates cannot be selected for import. The -template option

imports all templates in the selected file.

■ -condition [<condition_name>]—<condition_name> is the name of the condition

to export. Multiple condition names can be listed if the list of names is

surrounded by double quotes. If no name is specified, all conditions are exported.

Individual conditions cannot be selected for import. The -condition option

imports all conditions in the selected file.

■ -pollrate [<poll_rate_name>]—<poll_rate_name> is the name of the poll rate to

export. Multiple poll names can be listed if the list of names is surrounded by

double quotes. If no name is specified, all polls are exported.

Individual polls cannot be selected for import. The -pollrate option imports all

poll rates from the selected file.

■ -severity [<severity_name>]—<severity_name> is the name of the severity to

export. Multiple severity names can be listed if the list of names is surrounded by

double quotes. If no name is specified, all severities are exported.

Individual severities cannot be selected for import. The - severity option imports

all severities from the specified file.

■ -verbose[-v]— Turns on verbose mode. Warnings are printed in addition to

errors. For example, if a condition is a duplicate of one already in the MIS, this

generates a warning. This option is not supported for export.

■ -minimize—i f specified, only the template is exported, and not the conditions,

poll rates, or severities associated with it. This option is supported only for

em_ncexport .

em_ncexport -t “IsSnmpSystemUp PingUpOrDown RouterIfStatus”
19-2 Customizing Guide • October 2001

Note – For em_ncexport , at least one of the following options must be specified: -
template , -condition , -p ollrate, -severity . em_ncimport can be used without

any options being specified. If no options are specified, em_ncimport imports all

components in the specified file.

19.1.2 Examples

Templates can also be piped to a printer. In the following example, the template

IfUP from the remote MIS on machine bar is sent to the printer:

Export all conditions from the default MIS to file myconditions :

Import all contents of the file mytemplates to the default MIS:

%Import only templates from the file templatelib :

%Export all conditions from the machine bighost to the machine host2 :

% em_ncexport -host bar -t IfUp -minimize | lp

% em_ncexport -f myconditions -c

em_ncimport -f mytemplates -t -c -p -s

em_ncimport -f templatelib -t

% em_ncexport -host bighost -c | em_ncexport -host host2 -c
Chapter 19 Nerve Center Utilities 19-3

19-4 Customizing Guide • October 2001

CHAPTER 20

Request Condition Language

Request Condition Language (RCL) is a script language used to build conditions.

Using RCL you can build up a library of conditions that can be deployed as building

blocks in the construction of request templates in the Design Advanced Requests.

This chapter describes the following topics:

■ Section 20.1 “Conditions” on page 20-1

■ Section 20.2 “Types of Operands” on page 20-2

■ Section 20.3 “Constants” on page 20-3

■ Section 20.4 “Variables in a Condition” on page 20-3

■ Section 20.5 “Data Types” on page 20-5

■ Section 20.6 “System Variables” on page 20-5

■ Section 20.7 “Attributes” on page 20-6

■ Section 20.8 “Operators” on page 20-8

■ Section 20.9 “Control Structures” on page 20-11

■ Section 20.10 “Timestamp Arithmetic” on page 20-16

■ Section 20.11 “Error Checking” on page 20-16

20.1 Conditions
A condition is a sequence of one or more statements written in the Solstice Enterprise
Manager (Solstice EM) RCL. With the exception of compound expressions built using

IF, IF ELSE, FOR EACH, and WHILE constructs, each RCL statement must end with

a semicolon.

There are two possible roles that a condition can play in a template:

■ A single condition is used to define when a transition from one state to another in

a template will occur.
20-1

■ Conditions can also function as actions that are executed as the result of a

transition. Multiple conditions can be specified as actions for the same transition

and they will be executed in the order listed in the transition.

When a condition is used to define when a transition will occur, the sequence of

statements must evaluate as true or false. That is, the last statement must return a

result that can be treated as false (null) or true (not null). If the condition returns a

value of true, this causes the transition to occur.

However, when a condition is used to define an action that occurs as the result of a

transition, the condition’s return value is ignored.

This chapter covers the operands, variables, attributes, and other components that

make up RCL. RCL also provides a library of built-in functions that can be used in

building templates. The built-in functions are described, in alphabetical order, in

Chapter 22.

20.2 Types of Operands
The operators or built-in named operators that are currently implemented support

primitive data types.

The RCL has three basic types of operands:

■ Constants

■ Variables

■ Attributes

Each operand has a type and a value. The type is represented internally as an

Asn1Type . For example, an integer operand has the type INTEGER. The value of an

operand is represented internally as an Asn1Value . A built-in operator assigns

types and values to variables dynamically. Type declarations are not required for

variables. For example, the variable $counter is initially defined as an integer type

when the following assignment is encountered in a condition:

$counter = 0;
20-2 Customizing Guide • October 2001

20.3 Constants
The following table shows the list of constants represented in the RCL syntax.

20.4 Variables in a Condition
Variables can be used to store temporary information. For example:

In this RCL statement, $last_sys_up_time is a user variable to store the value

obtained from the SNMP sysUpTime attribute.

Variables have the scope of the request template. Every request that uses a template

thereby has all the variables named in the template. Each request has its own storage

area, the StackFrame . All variables are assigned to storage locations in the

StackFrame . Thus, when a variable is defined once in the request template,

instances of it are created in each request’s StackFrame . Values are retained

throughout the life of the request.

TABLE 20-1 RCL Syntax Restraints

Constant Type Values (examples)

BOOLEAN true false

INTEGER 10 0 57 0x3e 0X580

REAL 10.73

OCTET STRING “Hello”

“How are you?”

“Embedded\\’Quote”

OBJECT

IDENTIFIER

{1 2 3 1 }

GeneralizedTime "19931106210627.3"

(YYYYMMDDHHMMSS.S)

$last_sys_up_time = sysUpTime;
Chapter 20 Request Condition Language 20-3

A condition expression can make use of two classes of variables:

■ System Variables—These are always present in each request. Their values are set

by the Solstice EM MIS. System variables are listed in TABLE 20-2. For examples

illustrating the use of RCL system variables, see Chapter 21.

■ User-defined Variables—These comprise all user-deployed variables other than

system variables. They cannot duplicate the name of a system variable. They are

not declared. Whenever a variable is assigned, it is automatically assigned a type

corresponding to the result of the expression assigned to it. If a variable has never

been assigned, it is said to be undefined. There is a function, defined() ,

(described in Section 22.2.9, “Defined”) to test whether a variable has been

defined.

20.4.1 Variable Names

The name of a variable begins with $ (dollar sign) followed by one or more

alphanumeric characters or _ (underbar).

Note – Case is significant in variable names.

20.4.2 Scope of Variables

Each request that implements a request template has a complete set of the variables

defined in all of the conditions used anywhere in that template. The values of those

variables are local to the request. That is, in each request, variables have values that

are independent of their values in any other request. The values of variables within

a request persist as long as the request lives.

The scope of a variable name is the template in which it occurs. That is, a variable

that is set by one condition within a template can be used by any other condition in

the same template. However, variables are defined when a condition in which it

occurs is evaluated. A variable defined in a condition that has not yet been

evaluated in a request, is not available for conditions that occur earlier in that

request template.
20-4 Customizing Guide • October 2001

20.5 Data Types
Because the Design Advanced Requests functions in a CMIP and an SNMP

framework, Asn1Values and Asn1Types are used throughout the RCL. Any

variable, attribute, or constant carries the Asn1Type along with it. For example, in

the expression:

$int_val is a variable and is assigned the value 10. It is automatically assigned the

Asn1Type INTEGER. Also, attributes have type information associated with them.

Because typing is dynamic, a variable’s type is defined as the currently assigned

type. Thus $int_val can be changed to type REALas follows:

Variables can be assigned arbitrary Asn1Values of arbitrary Asn1Type . Thus it is

possible to add new operators to the language that deal with any type other than

those listed in TABLE 20-1 with which most operators deal. An example of such an

operator is TrapSpecificType , which takes as input an operand of type

InternetActionInfo .

20.6 System Variables
The names and types of the available system variables are shown in the following

table.

$int_val = 10;

$int_val = 10.0;

TABLE 20-2 System Variables Available to a Condition

Name Type Description

$eventOC OID Object class of last/current event

$eventOI ObjectInstance Object instance of event

$eventInfo eventInfo eventInfo of eventType

$eventTime GeneralizedTime Actual time the event was generated
Chapter 20 Request Condition Language 20-5

Chapter 21 contains examples illustrating the use of system variables.

20.7 Attributes
In addition to constants, variables, operators, and built-in functions, an expression in

the RCL can refer to an attribute of a managed object. An attribute has both a name

(determined in the GDMO description of the object in which it occurs) and a value.

When an attribute is used in a condition, it is assigned storage in the same way that

storage is allocated for a variable. The scope of an attribute is the request template in

which it occurs. Each request has its own copy of the attribute, independent of any

other request.

Each attribute has a type. The type is determined by the object’s description, as

recorded in the MetaData Repository (MDR). When a condition refers to an attribute,

the Nerve Center queries the MDR and assigns the attribute’s type accordingly.

$eventType OID OID of the event type of the last event

$messType INTEGER Type of current message (refer to

TABLE 21-3 for $messType values)

$multipleInstan
ce

BOOLEAN For SNMP polls only. True if the polled

object has multiple instances, False

otherwise.

$pollOC ObjectClass Object class last polled or being

currently polled

$pollfdn ObjectInstance Object instance being polled

$pollFdnSet SET OF ObjectInsance Set of distinguished names pointing to

the managed object instances

configured for the target device.

Assigned when request launched

against a selected element in the

Network Views.

$pollTime GeneralizedTime Delay until the first poll is sent and the

time between successive polls, in

seconds

$severity INTEGER Severity level of current state

TABLE 20-2 System Variables Available to a Condition (Continued)

Name Type Description
20-6 Customizing Guide • October 2001

An attribute within a request reflects the current condition of some attribute of a

managed object. To obtain current information, the Nerve Center schedules polls for

all attributes that are referred to in the conditions that must be tested for the current

state of each request. The Nerve Center also schedules polls for the attributes

referred to in the actions for transitions leading from the current state. That is, for

every request, the Nerve Center tracks its current state, and for that state, schedules

a poll for every attribute that must be tested to determine whether there will be a

transition from that state. When the response to a poll arrives, the attribute’s value

in the request is updated before the conditions are evaluated.

The value of an attribute within a request is set only by the mechanism just

described; you cannot use the = operator to assign a value to an attribute. Therefore

an attribute name cannot appear on the left side of an assignment.

Like a variable, an attribute is “declared” automatically when used in a condition. It

becomes “defined” when a notification assigns a value to it.

20.7.1 Syntax of Attribute Names

The name of an attribute can be written in either of two forms:

■ &<label_name>—<label_name> is the name as it occurs in the relevant GDMO

description of a managed object class. & is to be used if an attribute or variable is

passed as an argument in such functions as extract(), define(), and undefine(). The

ampersand is used to pass the address of the variable or attribute in the Stack

Frame.

■ “<doc_name>”:<label_name>—A label <label_name> may be preceded by the name

of the GDMO document in which the label occurs. The document name is

enclosed in double quotes. The document name and the label name are separated

by a colon.

Note – It is recommended that the second format be used for attribute names to

avoid any potential name collisions that occur when the same label name is defined

in multiple documents.

For example, the attribute sysContact specified in the document IIMCRFC1213-

MIB, is written:

“IIMCRFC1213-MIB”:sysContact
Chapter 20 Request Condition Language 20-7

20.8 Operators
The RCL uses the same operators as C (for example, = for assignment, == for a test

of equality, * for multiply, and so on). In addition, there are built-in named operators

whose syntax resembles the syntax of functions in the C programming language.

Operators are arithmetical, logical, and relational. Each operator or built-in named

operator specifies the input argument and types that it can handle.

The following operator symbols are supported by the RCL. See the following table.

The assignment operator can be used to assign values or types to variables.

TABLE 20-3 RCL Operator Symbols

Operation Type Operator Description

Assignment = Assigns the value or attribute to the right of the

operator to the name to the left

Arithmetic +
–

-
*
/
%

|
^
~

plus

minus (preceded and followed by blanks)

negative (no blanks following)

multiply

divide

modulus

Bitwise inclusive OR

Bitwise exclusive OR

Bitwise NOT

Relational <
<=
>
>=

less than

less than or equal

greater than

greater than or equal

Equality ==
!=

equal

not equal

Logical AND
OR
NOT

and

or

not

Address & “Address of” is used in the argument of defined
or undefine to permit inquiry about the status of

a variable name without referring to its value.

Addresses are basically indices into the StackFrame

— the location where the variable or attribute is

stored.
20-8 Customizing Guide • October 2001

Note – You cannot use = to assign or set values of attributes.

The arithmetic operators are defined for INTEGERS and REAL data types. Modulus

is defined only for INTEGERS.

Note – Because the hyphen within an attribute name could be confused with a

minus sign, a minus sign must be surrounded by blanks. For example:

■ There are no implicit type conversions. That is, 5/2 yields an integer result, so if

you expect the result to be 2.5, you need 5.0/2.0 (as in C).

■ The relational and equality operators accept not only integer or real arguments,

but can also be used to compare arbitrary Asn1Values (in the same way as the

CMIS Filter constructs).

■ Statements built up using the logical operators are completely evaluated. That is,

each operand of a complex expression, built using the AND, OR, and NOT
operators, is evaluated. Thus, “short circuiting” is not implemented, that is,

evaluation of the component expressions does not stop even if the value of the

complex expression is already known from the evaluation of initial components.

Logical operators operate only on Boolean values, Integers, and Reals. The names

of the logical operators are not case sensitive.

20.8.1 Logical Operators

The following example illustrates the use of an ORstatement to define a condition

for a transition. First, the user variables $ncType and $itType are defined as

nerveCenterAlarm and internetAlarm (respectively) in the following condition,

which also subscribes to receive SNMP traps. This condition might be used to

initialize the template in the Ground state.

10 - 5; This is correct
10-5; This is a syntax error

$ncindx=Subscribe(“nerveCenterAlarm”);
$itindx=subscribeOi(“internetAlarm”,”{}”,$pollfdn);
$ncType=NameToOid(“nerveCenterAlarm”);
$itType=NameToOid(“internetAlarm”); true;
Chapter 20 Request Condition Language 20-9

In the following example, the ORoperator is used in a condition that forces a

transition if the system variable $eventType indicates that either an

internetAlarm or a nerveCenterAlarm has been received:

20.8.2 Bitwise Operators

The bitwise operators numeric AND, inclusive OR, and exclusive OR perform binary

operations on numeric operands and generate numeric results. For example,

compares the binary numbers

and generates a binary number with a 1 bit wherever either (or both) of the

operands has a 1 bit. The resulting value is:

20.8.3 Precedence and Associativity

The precedence and associativity of operators are summarized in the following table.

$eventType == $ncType OR $eventType == $itType;

20|24

20 = 00010100
24 = 00011000

28 = 00011100

TABLE 20-4 Precedence of Operators

Operator Name Associativity

High

= Assign right

OR Or left

AND And left
20-10 Customizing Guide • October 2001

Parentheses force precedence in the usual way.

20.9 Control Structures
RCL supports four constructs that can be used to build control structures within a

condition: IF , IF ELSE , WHILE, and FOREACH. These four constructs are used to

control the conditions under which a block of RCL statements are to be executed. An

RCL statement block consists of zero or more RCL statements, each terminated with

a semicolon. Also, a statement block must be preceded by a left curly brace and

followed by a right curly brace.

20.9.1 IF Constructs

Syntax:
IF (<boolean_expression>)
{ <statement_block>}

|

^

&

Bitwise numeric OR

Bitwise numeric XOR

Bitwise numeric AND

left

==
!=

Equal

Not equal

left

<
<=
>
>=

Less than

Less than or equal

Greater than

Greater than or equal

left

+
-

Plus

Minus

left

*
/
%

Multiply

Divide

Modulus

left

& Address right

~
-
NOT

Bitwise NOT (numeric)

Negative (numeric)

Negation (logical)

right

Low

TABLE 20-4 Precedence of Operators (Continued)

Operator Name Associativity
Chapter 20 Request Condition Language 20-11

<boolean expression> must be an RCL expression that evaluates as either true or false.

<statement_block> consists of zero or more RCL statements, each terminated with a

semicolon. The block of statements must be surrounded by curly braces, as shown

above. The RCL statements contained in <statement_block> are executed if

<boolean_expression> evaluates to true. For example:

20.9.2 IF ELSE Constructs

Syntax:
IF (<boolean_expression>)
{ <statement_block1>}
ELSE
{ <statement_block2>}

<boolean expression> must be an RCL expression that evaluates as either true or false.

<statement_block1> and <statement_block2> each consists of zero or more RCL

statements, each terminated with a semicolon. Each block of statements must be

surrounded by curly braces, as shown above. The RCL statements contained in

<statement_block1> are executed if and only if <boolean_expression> evaluates to true.

The block of statements comprised in <statement_block2>, the ELSE construct, are

executed if and only if <boolean_expression> in the preceding IF statement evaluated

to false. For example:

IF ($eventOi == $pingFdn)
{$ping_response_count = ping_response_count+1;}

$FdnStr = AsnToStr($dn,TRUE);
$result = AnyStr($FdnStr,”RPC”);
IF ($result == TRUE)
{
 print($FdnStr);
 $count = $num + 1;
}
ELSE
{
$count = $count+1;
}

20-12 Customizing Guide • October 2001

20.9.3 WHILE Constructs

Syntax:

WHILE (<boolean_expression>)
{ <statement_block>}

<boolean_expression> must be an RCL expression that evaluates to either true or false.

<statement_block> consists of zero or more RCL statements, each terminated with a

semicolon. The statements comprised in <statement_block> are executed if

<boolean_expression> evaluates to true. After the statements in <statement_block> have

been executed, <boolean_expression> is evaluated once again. So long as

<boolean_expression> remains true, the statements in <statement_block> continue to be

executed in a repetitive cycle.

The following is an example of a condition that uses a WHILE loop to extract the

RPC proxy table FDN from $pollFdnSet in order to set the $pollfdn to ping-reach ,

the reach attribute group of the RPC ping agent.

20.9.4 FOREACH Constructs

Syntax:
Foreach name in (<list_expression>)
{ <statement_block>}

$num = NumElements(&$pollFdnSet);
$count = 1;
WHILE ($count <= $num)
{
 $numstr = AsnToStr($count,TRUE);
 $dn = Extract(&$pollFdnSet,$numstr);
 $dn1 = Extract(&$dn,”distinguishedName”);
 $dnstr = AsnToStr($dn1,TRUE);
 $result = AnyStr($dnStr,”RPC”);
 IF ($result == TRUE)
 {
 $dn2 = Extract(&$dn1,”3”);
 $dn3 = Extract(&$dn2,”1”);
 $Hostname = Extract(&$dn3,”attributeValue”);
 $count = $num + 1;
 }
 $count = count+1;
}
$pollfdn = appendRdn($dn,”/agentId=\”ping-reach\”{}”);
Chapter 20 Request Condition Language 20-13

<list_expression> must be of type SEQUENCE OFor SET OF. The block of statements

comprised in <statement_block> is executed once for each element of the set or

sequence, using name as a variable to represent the current element in each cycle.

The variable name is automatically assigned the appropriate type for each element

that it represents. If <list_expression> is not of type SEQUENCE OF or SET OF,

<statement_block> is executed exactly once with name assigned the entire value of

<list_expression>. The end of the block of statements in <statement_block> is marked

by the final curly brace. For example:

The RCL FOREACHconstruct is similar to the UNIX Shell Foreach construct.

20.9.5 Nested Constructs

A statement block in an IF , IF ELSE , WHILE, or FOREACHconstruct can contain

additional constructs. For example, an ELSE construct could contain another IF
ELSE construct, such as the following:

Similarly, a WHILE or FOREACHconstruct might contain an IF ELSE construct

within its statement block.

foreach $var in (collectionInfoList)
{
 print($var);
}

IF (<boolean_expr1>) { <RCL_statement1>}
ELSE
{IF (<boolean_expr2>) { <RCL_statement2>} ELSE { <RCL_statement3>}}
20-14 Customizing Guide • October 2001

The following is an example of an IF ELSE construct used to log nerveCenterAlarms

in response to enterprise-specific traps:

$snum = TrapSpecificType($eventInfo);
$pollfdn = $eventOi;
IF ($snum == 1)
{
 $tmp = “CPU Failure”;
 alarmStr(1,$tmp);
}
ELSE
{
 IF ($snum == 2)
 {
 $tmp = “Fan Failure”;
 alarmStr(1,$tmp);
 }
 ELSE
 {
 IF ($snum == 3)
 {
 $tmp = “Power Supply Failure”;
 alarmStr(1,$tmp);
 }
 ELSE
 {
 IF ($snum == 4)
 {
 $tmp = “Excessive Temperature”;
 alarmStr(3,$tmp);
 }
 }
 }
}

Chapter 20 Request Condition Language 20-15

20.10 Timestamp Arithmetic
Timestamps are of the type GeneralizedTime . The system variables $eventTime
and $pollTime are of that type.

The following operators can accept Timestamp arguments or return Timestamp

results:

■ <Timestamp1> = <Timestamp2> + <integer>
■ <Timestamp1> = <Timestamp2> + <real>
■ <real> = <Timestamp1> - <Timestamp2> (result in milliseconds)

■ <Timestamp1> = <Timestamp2> - <integer>
■ <boolean> = <Timestamp1> > <Timestamp2>
■ <boolean> = <Timestamp1> >= <Timestamp2>
■ <boolean> = <Timestamp1> <= <Timestamp2>
■ <boolean> = <Timestamp1> < <Timestamp2>
■ <boolean> = <Timestamp1> == <Timestamp2>
■ <boolean> = <Timestamp1> != <Timestamp2>

In the following example, a difference greater than six seconds between the current

system time on the MIS machine and the time when an event was generated on a

remote machine is used to define a condition for a transition.

In this case the transition would occur if the statement evaluates to True.

20.11 Error Checking
The Design Advanced Requests Tool checks and catches lexical and syntactic errors

at the time you try to save the condition’s definition. If it finds an error, the Design

Advanced Requests displays an error dialog, and the offending condition is not

saved. If there are any references to attributes in conditions, the Design Advanced

Requests checks to determine if the attribute is known to the MIS. An attribute is not

known to the MIS if it is not referred to in a GDMO document that has been loaded

into the MIS. If an attribute is not known to the MIS, Design Advanced Requests

displays an error dialog if you try to save the condition, and the condition is not

saved.

$curtime = getTimeStamp();
($eventTime - $curtime) > 600;
20-16 Customizing Guide • October 2001

If the condition survives the lexical and syntactic check, the Design Advanced

Requests engine compiles the condition’s definition. No further checking occurs at

compile time. Only runtime type checking is implemented.

When a condition is executed within a particular request, each function or operator

checks the type of each argument it receives. (The RCL does not provide type

casting, so you cannot coerce types.) If the type is invalid, the operator returns an

error. For example, if a built-in function expects an OCTET STRINGand it is passed

an INTEGER, it causes the condition to return FALSE.

Note – A condition that is syntactically valid but contains an error detected only at

runtime acts in the same way as a valid condition that returns FALSE.

The em_debug utility provides facilities for debugging request templates. For

information on template debugging, see Chapter 16.
Chapter 20 Request Condition Language 20-17

20-18 Customizing Guide • October 2001

CHAPTER 21

Using RCL System Variables

This chapter describes the Request Condition Language (RCL) system variables that

you can use in building Nerve Center request templates. The individual system

variables along with examples illustrating their use are discussed in alphabetical

order.

This chapter describes the following topics:

■ Section 21.1.1 “$eventInfo” on page 21-2

■ Section 21.1.2 “$eventOI” on page 21-4

■ Section 21.1.3 “$eventTime” on page 21-4

■ Section 21.1.4 “$eventType” on page 21-4

■ Section 21.1.5 “$messType” on page 21-6

■ Section 21.1.6 “$pollfdn” on page 21-7

■ Section 21.1.7 “$pollFdnSet” on page 21-8

21.1 System Variables
The names and types of the available system variables are summarized in the

following table.

TABLE 21-1 System Variables Available to a Condition

Name Type Description

$eventOC OID Object class of last/current event.

$eventOI ObjectInstance Object instance of event.

$eventInfo eventInfo eventInfo of eventType.

$eventTime GeneralizedTime Actual time the event was generated.

$eventType OID OID of the event type of the last event.
21-1

21.1.1 $eventInfo

$eventInfo is the current event notification. This will be a sequence of ASN.1

values of the attributes comprising the event. The attributes that comprise

$eventInfo depend upon its event type (the value of $eventType). The definition

of the event type specifies the required attributes for that type and optional attributes,

if any. The required attributes for a communicationsAlarm , for example, are

probableCause and perceivedSeverity . If the attribute has an assigned name,

this tag can be used to extract the ASN.1 value of that attribute from $eventInfo ,

as in the following example:

The attributes that comprise a given event notification depend upon the definition of

its event type. The definitions used by the MIS are contained in the pertinent ASN.1

and GDMO documents. The event types known to the MIS by default are described

in Chapter 8 of Management Information Server Guide.

$messType INTEGER Type of current message (refer to

TABLE 21-3 for $messType values).

$pollOC ObjectClass Object class last polled or being

currently polled.

$pollfdn ObjectInstance Object instance being polled.

$pollFdnSet SET OF ObjectInsance Set of distinguished names pointing to

the managed object instances

configured for the target device.

Assigned when request launched

against a selected element in the

Network Views.

$pollTime GeneralizedTime Delay until the first poll is sent and the

time between successive polls, in

seconds.

$severity INTEGER Severity level of current state.

$cause = Extract(&$eventInfo,”probableCause”);

TABLE 21-1 System Variables Available to a Condition (Continued)

Name Type Description
21-2 Customizing Guide • October 2001

In the following example, the value of $eventInfo is set to contain a

nerveCenterAlarm :

The first argument passed to strToAsn1() is text that refers to the event type—

NerveCenterAlarmInfo . This type is defined in the ASN.1 document /opt/
SUNWconn/em/etc/asn1/nc.asn1 . The definition specifies that an event of type

NerveCenterAlarmInfo is a sequence of ASN.1 attributes. A nerveCenterAlarm
is defined as including four required attributes—probableCause ,

perceivedSeverity , mosiSeverity , mosiStateID —and an optional fifth

attribute, additionalText . The permissible values and standard interpretation of

perceivedSeverity values is provided in the following table.

Thus, in the example above, $eventInfo is defined as a nerveCenterAlarm with

a perceivedSeverity of critical, a mosiSeverity value of 3, a probableCause
value of 1, and a mosiStateID value of 1. The strToAsn() function is used to

convert the string constant to the sequence of ASN.1 values required by the event

type definition.

In the request template, mosiSeverity represents the severity of the state (this

could be the state in which the event originated). The number of the state is

mosiStateID , the same as the above referenced state (as ordered in the request

designer).

$eventInfo = strToAsn(“EM-NC-
ASN1:NerveCenterAlarmInfo”,”{1,critical,\”Device Down\”,3,1}”;

TABLE 21-2 perceivedSeverity Values

Severity Name Value Default Color

Indeterminate 0 Blue

Critical 1 Red

Major 2 Orange

Minor 3 Cyan

Warning 4 Yellow

Clear 5 No color
Chapter 21 Using RCL System Variables 21-3

21.1.2 $eventOI

$eventOI indicates the managed object instance that was the source of an event

notification that “woke up” the request. In the following example, the

OiToOiName() function is used to convert the $eventOI to a string.

21.1.3 $eventTime

$eventTime provides the time when the event notification was generated. In the

EventSample request template, a request is listening for startup of Solstice
Enterprise Manager (Solstice EM) tools. After subscribing for objectCreation
events, the time of connection of the application to the MIS is calculated from the

$eventTime value of the objectCreation event:

When the application instance is terminated, the EventSample request receives an

objectDelection event. The timestamp saved in $connect_time is then used to

calculate the length of time the application was connected to the MIS:

21.1.4 $eventType

$eventType is the Object Identifier for the type of the event that “woke up” the

request. The following example shows a condition used to define a transition from

one state to another. The transition will take place if communicationsAlarm is the

event type.

$name = OiToOiName($eventOI);

$connect_time = $eventTime;

$delete_time = getTimeStamp();
$time_connected = $delete_time - $connect_time;
$time_connected = $time_connected / 1000.00;

$comm = NameToOid(“communicationsAlarm”);
$eventType == $comm;
21-4 Customizing Guide • October 2001

In the next example, an IF statement tests whether an event is an internetAlarm
and, if it is, calls sendEvent() to post the event to the alarm log.

The event types known to the MIS by default are the following:

■ objectCreation
■ objectDeletion
■ attributeValueChange
■ relationshipChange
■ stateChange
■ communicationsAlarm
■ environmentalAlarm
■ equipmentAlarm
■ integrityViolation
■ operationalViolation
■ physicalViolation
■ processingErrorAlarm
■ qualityofServiceAlarm
■ securityServiceOrMechanismViolation
■ timeDomainViolation
■ internetAlarm
■ snmAlarmEvent
■ snmAlarmTrap
■ nerveCenterAlarm
■ coldStartTrap
■ warmStartTrap
■ linkDownTrap
■ linkUpTrap
■ linkDownTrap
■ egpNeighborLossTrap
■ authenticationFailureTrap
■ enterpriseSpecificTrap

For more information on these event types refer to Chapter 8 in Management
Information Server (MIS) Guide.

$itType=NameToOid(“internetAlarm”);
IF ($eventType == $itType)
{sendEvent(“internetClass”,$pollfdn,”internetAlarm”,$eventInfo);
}

Chapter 21 Using RCL System Variables 21-5

21.1.5 $messType

When an event or poll response is received, the variable $messType is set in the

request. A condition can check the value of $messType . In a state machine that is

both poll- and event-based, $messType will indicate the current message received,

either an EVENT_REPORT_REQ, GET_RES, or errors. As an example of the use of

$messType , the following is a condition that defines a transition. The

probableCause value is extracted from an equipmentAlarm and a transition

occurs if an event notification has been received ($messType == 0) and it has a

probableCause value indicating equipmentMalFunction .

A CMIP event notification has a $messType value of 0 (EVENT_REPORT_REQ)

because it is generated by the agent on its own initiative; it is not a response to a

request generated by a management station.

Another use of $messType is to check for errors in the request. If errors occur

during polls, the state machine can be designed to transition to a “dead” state.

The possible values of $messType are specified in the following table.

$cause = Extract($eventInfo,”probableCause”);
$messType == 0 AND $cause == 15;

TABLE 21-3 Values of $messType

Message No. Description

EVENT_REPORT_REQ 0 Request

EVENT_REPORT_RES 7 Response

GET_RES 8 Get Response obtained

SET_RES 9 Set Response obtained

ACTION_RESPONSE 10 A response to an M-ACTION has been received.

NO_SUCH_OC 14 Object class being polled does not exist

NO_SUCH_OI 15 Object instance being polled does not exist

ACCESS_DENIED 16 Operation not performed due to security problem

SYNC_NOT_SUPP 17 Synchronization not supported

INVALID_FILTER 18 Filter parameter invalid

GET_LIST_ERR 21 One or more attribute values not read because access

was denied or attribute was not recognized

PROCESS_FAILURE 24 General failure in processing

INVALID_SCOPE 32 Value of scope parameter invalid
21-6 Customizing Guide • October 2001

21.1.6 $pollfdn

The $pollfdn variable represents the object that is the target of the request. In the

following example, $pollfdn is used to pass the request’s target managed object

instance to the subscribeOi() function to subscribe for SNMP event notifications

generated by that object.

The $pollfdn is based on the object’s Fully Distinguished Name, the absolute path

to the object through the Management Information Tree (MIT). When a request is

launched in the Network Views, the $pollfdn is initially set to the first managed

object in $pollFdnSet . In the following example, a request launched against the

router bigguy has its $pollfdn set to the cmipsnmpProxyAgent :

However, this $pollfdn could be changed to point to particular MIBs “contained”

under the SNMP agent. In the following example, the appendRdn() function is

used to change the $pollfdn to point to the snmp-mibII object:.

INVALID_OI 33 Invalid OI specified

CLASS_INST_CONFL 35 Specified OI not of specified class

COMPLEX_LIMIT 36 Operation not performed due to complex parameter

supplied

MISTYPED_OP 37 One of the parameters supplied has not been agreed

for use on association

INVALID_OPERATION 38 Invalid operation requested

OP_CANCELLED 41 Operation cancelled by M-Cancel-Get

$itindx=subscribeOi(“internetAlarm”,”{}”,$pollfdn);

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 4 2 2 2 2 9 2 4]/
cmipsnmpProxyAgentId=”bigguy”

$tmp = “/InternetSystemId=NULL”;
$pollfdn = appendRdn($pollfdn,$tmp);

TABLE 21-3 Values of $messType (Continued)

Message No. Description
Chapter 21 Using RCL System Variables 21-7

After the append operation, the $pollfdn is the following:

Chapter 15 describes sample templates that change the target of polling during

execution.

21.1.7 $pollFdnSet

When a request is launched against a device selected in the Network Views,

$pollFdnSet is assigned a set of fully distinguished names (FDNs) which denote

the managed objects that have been configured for the device (for example, when

Network Discovery is run to populate the MIS). A “managed object” is the internal

representation in the MIS of the agent, for example, a cmipsnmpProxyAgent object,

which represents an SNMP agent system. The order of the FDNs in $pollFdnSet
depends upon the order in which they were added to the MIS. Individual FDNs can

be extracted from $pollFdnSet using the RCL extract() function. The following

is an example of a condition that extracts the RPC proxy table FDN from

$pollFdnSet in order to set the $pollfd n to ping-reach , the reach attribute

group of the RPC ping agent.

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2 4]/
cmipsnmpProxyAgentId=”bigguy”/InternetSystemId={1 3 6 1 4 1 42 2 2 2 9 1 1 3 6
1 2 1 1 0}

$num = NumElements(&$pollFdnSet);
$count = 1;
WHILE ($count <= $num)
{
 $numstr = AsnToStr($count,TRUE);
 $dn = Extract(&$pollFdnSet,$numstr);
 $dn1 = Extract(&$dn,”distinguishedName”);
 $dnstr = AsnToStr($dn1,TRUE);
 $result = AnyStr($dnStr,”RPC”);
 IF ($result == TRUE)
 {
 $dn2 = Extract(&$dn1,”3”);
 $dn3 = Extract(&$dn2,”1”);
 $Hostname = Extract(&$dn3,”attributeValue”);
 $count = $num + 1;
 }
 $count = count+1;
}
$pollfdn = appendRdn($dn,”/agentId=\”ping-reach\”{}”);
21-8 Customizing Guide • October 2001

CHAPTER 22

RCL Functions

The RCL Built-in functions are described in this chapter.

This chapter describes the following topics:

■ Section 22.1 “Summary of RCL Built-in Functions” on page 22-1

■ Section 22.2 “The RCL Functions” on page 22-4

Built-in functions take the form of a function call with a set of arguments. The RCL
Functions list denotes an Asn1Value whose type is SET, SEQUENCE, SET OF,

or SEQUENCE OF. <Var> indicates a variable name. <Attr> indicates an attribute

name.

Note – The names of RCL functions are not case-sensitive.

22.1 Summary of RCL Built-in Functions

22.1.1 AlarmLog Functions
■ Alarm —Generates a nerveCenterAlarm with indicated severity.

■ AlarmOi —Takes severity, object instance, and event arguments.

■ AlarmStr —Generates a nerveCenterAlarm with indicated severity and

additionalText.

■ SendEvent —Logs an event notification. Allows you to log event notifications of

types other than nerveCenterAlarm .
22-1

22.1.2 String-Handling Functions
■ InitialStr —True if string matches initial portion of a string.

■ FinalStr —True if string matches end portion of a string.

■ AnyStr —True if string appears anywhere in a string.

■ StrCat —Builds string by concatenation.

22.1.3 Value Check Functions
■ Defined —True if variable or attribute has a value.

■ Undefine —Sets variable or attribute to have no value.

22.1.4 Name Conversion Functions
■ NameToOid—Returns an Object IDentifier from a name string.

■ OiNameToOi —Object instance from quoted name string.

■ OiToOiName —Returns the name of an object instance.

■ AddressStrToAddress —Dot address string to Internet address string.

■ NameToAddress —IP address from a host name string.

■ AppendRdn—Constructs an object instance from an object instance and RDN

string.

22.1.5 Action Functions
■ Unixcmd—Executes a specified UNIX command.

■ Mail—Sends an e-mail message.

22.1.6 ASN.1 Conversion Functions
■ AsnToStr —Builds string representation of an ASN.1 value.

■ StrToAsn —Builds ASN.1 values from strings.

22.1.7 SunNet Manager RPC Request Functions
■ SnmEventRequest —Issues request to an SNM RPC agent.

■ SnmKillRequest —Kills a previously issued SNM request.
22-2 Customizing Guide • October 2001

22.1.8 Debugging Function

Print—Prints values if em_debug misc_stdout option is turned on.

22.1.9 Constructed-Type Handling Functions

Parameters may be passed to constructed-type handling functions. Each parameter

is an expression which in turn may contain function calls.

■ CompareLists —True if the two ASN.1 lists being compared match.

■ Exclude —Deletes a component from an ASN.1 list.

■ Extract —Returns value of a component in a list.

■ Include —Used to construct an ASN.1 value of types SET or SEQUENCE.

■ IsChoice —True if a variable or attribute is a choice.

■ IsList —True if variable or attribute is a list.

■ IsMember —True if a given component is part of a specified ASN.1 list.

■ NumElements —Returns the number of elements in a list.

■ ReplaceMember —Replaces a component with another component in an ASN.1

list.

22.1.10 Time Functions

GetTimeStamp —Retrieves the current time of the MIS machine.

22.1.11 Event-Handling Functions
■ Set —Performs an M-SET on a specified object.

■ Subscribe —Subscribes to event type specified in string.

■ SubscribeOi —Subscribes to events for specified object.

■ SubscribeFilter —Subscribes for events that match a specified CMIS filter.

■ TrapSpecificType —Returns number of SpecificType of a trap.

■ TrapGenericType —Returns number of GenericType of a trap.

■ SendAction —Sends an M-ACTION to a specified object.

■ SendTrap —Sends a trap to destination IP address.

■ UnSubscribe —Can be used to terminate a previously invoked event

subscription.

22.1.12 Request Control Functions

Exit —Causes a request to delete itself.
Chapter 22 RCL Functions 22-3

22.2 The RCL Functions
The Request Condition Language (RCL) built-in functions are listed here in

alphabetical order.

22.2.1 AddressStrToAddress

Syntax:

AdressStrToAdress(<addrStr>);

where <addrStr> is of type OCTET STRING.

Return Value:
unsigned long. Returns the value of the inet_addr() system call.

Takes a string containing an address in dot format and returns an unsigned long

integer containing an internet address. For example:.

22.2.2 Alarm

Syntax:
Alarm(<perceivedSeverity>);

where <perceivedSeverity> is of type INTEGER(in the range 0–5).

Return Value:
None.

The MIS Alarm Service (which monitors the alarm logs) causes the Viewer to change

the color of the icon for the object instance associated with the alarm (the object

indicated by the $pollfdn system variable), based on the value of

<perceivedSeverity>. The value must be in the range 0–5. For example, the

AlarmCritical sample condition provided with Solstice Enterprise Manager
(Solstice EM) contains the following:

$saddr=AddressStrToAddress(“129.144.44.36”);

alarm(1);
22-4 Customizing Guide • October 2001

This statement will post a nerveCenterAlarm with severity critical . The valid

severities and their associated icon colors are listed in the following table.

22.2.2.1 Alarm Logging and Viewer Fault Status

The alarm() function allows you to generate a nerveCenterAlarm which is, by

default, logged to the AlarmLog . Alarms logged to the AlarmLog can be viewed

and cleared in the Alarms.

The AlarmLog is also, by default, monitored by the Alarm Service. The Alarm

Service is a module in the MIS that controls the fault status color in the Viewer. Fault

status is an attribute of topology nodes, which are represented by icons in the

Viewer. Each topology node has an attribute topoNodeMOSet , which points to a set

of managed object instances (MOIs), representing the agents configured for the

particular device.

The Alarm Service associates an alarm posted to the AlarmLog with a topology

node if and only if that alarm is posted against one of the managed objects in the

topoNodeMOSet for that topology node. The Alarm Service tracks the

perceivedSeverity values of the alarms that are posted against each topology

node. The highest perceivedSeverity value of uncleared alarms determines the

fault status of the device. Thus, if a critical alarm is logged against router bigguy ,

the router icon, by default, turns red. If several minor alarms are then posted against

bigguy , these do not cause the router icon to turn cyan unless the critical alarm has

been cleared. Once the critical alarm is cleared, the presence of uncleared minor

alarms causes a change in color to cyan.

When a request is launched at a target device in the Viewer, the $pollFdnSet RCL

system variable for that request points to the managed objects that are comprised in

the topoNodeMOSet for the selected topology node. The $pollfdn system variable

is also initially set to point to the first managed object listed in $pollFdnSet .

TABLE 22-1 Valid Alarm Severities

Severity
Value Severity Name

Default Icon Status
Color

0 Indeterminate Blue

1 Critical Red

2 Major Orange

3 Minor Cyan

4 Warning Yellow

5 Cleared No color
Chapter 22 RCL Functions 22-5

The alarm() function posts a nerveCenterAlarm against the managed object that

the $pollfdn variable points to at the time when the alarm() function is called. If

you have reset the $pollfdn variable to point to an object other than one of those

comprised in $pollFdnSet in your request, you should either reset $pollfdn to

an appropriate managed object before calling alarm() or else use the alarmOi()
function, which enables you to specify the managed object against which the alarm

is to be posted.

The alarm() and alarmStr() functions post nerveCenterAlarm s that have a

probableCause value equal to the perceivedSeverity value. For example, if

your request uses alarm() to post a minor alarm, probableCause is set to 3.

Alarm Service uses the probableCause value of nerveCenterAlarm s to match a

“clear” alarm to the previous nerveCenterAlarm it is clearing. For example, if

your request has used

to post a critical alarm, your request must post a nerveCenterAlarm with a

probableCause of 1 and a perceivedSeverity of 5 (clear) to clear this alarm.

Because alarm() and alarmStr() set probableCause to equal

perceivedSeverity , requests cannot use alarm() or alarmStr() to clear a

previous nerveCenterAlarm . To post an alarm that clears a previous

nerveCenterAlarm , your request must use the alarmOi() function.

For more information on the Alarm Service, see Chapter 4.

22.2.3 AlarmOi

Syntax:
AlarmOi(<oi>, <perceivedSeverity> | <event-notification>);

where <oi> is of type Object Instance . The second argument is either

<perceivedSeverity> or <event-notification>. <perceivedSeverity> is of type INTEGER(in

the range 0–5).

Return Value:
None.

The Viewer icon will change color based on the severity value passed in

<perceivedSeverity> (as indicated in TABLE 22-1). For example, the statement

alarm(1);

alarmOi($pollfdn, 1);
22-6 Customizing Guide • October 2001

will cause the icon representing the target of the current request to turn red.

Note – For an alarm posted against $pollfdn to cause a change in icon color in the

Viewer, $pollfdn must point to one of the managed objects configured for the

device. The $pollFdnSet variable is initially set to point to these objects when the

request is launched against a selected device in the Viewer, and $pollfdn is

initially set to point to the first object in $pollFdnSet . If your request template

changes the value of $pollfdn to point to an object other than those in

$pollFdnSet , the alarm may not affect icon color. For the <oi> parameter, you must

use a variable that points to one of the objects in $pollFdnset if the alarm is to

affect the Viewer fault status of the target device. For more information, see

Section 22.2.2.1, “Alarm Logging and Viewer Fault Status” or Chapter 4.

If <event-notification> is passed as an argument to alarmOi() , the event notification

attribute values are used to build a nerveCenterAlarm . For example:

If the system variable $eventInfo is passed as the second argument, $eventInfo
will have been defined only if the request has subscribed for events. In that case,

$eventInfo is set to the current event notification.

The alarmOi() function can be used to clear previous nerveCenterAlarm s posted

by a request. To post a “clear” alarm, alarmOi() must set the probableCause
value to equal the probableCause of the nerveCenterAlarm it is clearing. The

alarm() and alarmStr() functions automatically set the probableCause value

of a nerveCenterAlarm to equal the perceivedSeverity value. Thus, to use

alarmOi() to clear a previous critical alarm, you could use the following:

In this example, probableCause is set to 1 to match the probableCause of the

previous critical alarm.

$event=strToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”,
“{3,minor, 3, 1}”;
alarmOi($pollfdn, $event);

$event=strToAsn(“EM-NC-ASN1.NerveCenterAlarmInfo”,
“{1,cleared, 3, 1}”;
alarmOi($pollfdn, $event);
Chapter 22 RCL Functions 22-7

The value of probableCause can also be assigned using the possible values defined

in an ASN.1 document such as dmi.asn1 . For example, the following statement

clears a previous nerveCenterAlarm that had used thresholdCrossed as its

probableCause value:

22.2.4 AlarmStr

Syntax:
AlarmStr(<perceivedSeverity>, <additionalText>);

where <perceivedSeverity> is of type INTEGER(in the range 0–5) and <additionalText>
is a text string, or an RCL variable of any type.

Return Value:
None.

The Viewer icon will change color based on the severity value passed in

<perceivedSeverity> (as indicated in TABLE 22-1).

When this function is called, a nerveCenterAlarm will be generated with severity

set to <perceivedSeverity> and objectInstance set to $pollfdn . The

<additionalText> string will be passed as the additionalText attribute, which can

be viewed in the Alarms tool. For example:

In the following example the <additionalText> argument is used to pass the FDN of

the managed object in an alarm with a severity of critical:

$info = strToAsn("EM-NC-ASN1.NerveCenterAlarmInfo","{Attribute-
ASN1Module.thresholdCrossed,cleared,\"SNMP is not
responding\",3,1}");
alarmOi($save_pollfdn,$info);

alarmStr(1,”Over 80% of network memory capacity in use”);

alarmStr(1,$pollfdn);
22-8 Customizing Guide • October 2001

Note – An alarm posted using the alarmStr() function uses the value of

$pollfdn to determine the managed object that is the target of the alarm. If the

alarm is to affect Viewer icon color, $pollfdn must point to one of the managed

objects that have been configured for that device. The $pollFdnSet variable is

initially set to point to the managed objects configured for a device when the request

is launched against a target device in the Viewer. $pollfdn is initially set to refer to

the first of these objects. If your template resets the value of $pollfdn , you will

need to either reset it to point to one of the objects in $pollFdnSet before calling

alarmStr() or use the alarmOi() function, which allows you to specify the

managed object that is the target of the alarm. Refer to Section 22.2.2.1, “Alarm

Logging and Viewer Fault Status.”

The alarmStr() function cannot be used to post nerveCenterAlarm s that clear

previous nerveCenterAlarm s. For an explanation of how to clear previous alarms,

refer to the entries for the alarm() and alarmOi() functions.

When a text string is passed as <additionalText>, variables can be interspersed

within the text string. For example:

The textual representation of the value of $host and $timestamp will be inserted

into the text, which becomes the additionalText attribute in the

nerveCenterAlarm .

22.2.5 AnyStr

Syntax:
AnyStr(<firststr>, <secondstr>);
where <firststr> and <secondstr> are of type OCTET STRING.

Return Value:
BOOLEAN

Checks whether <secondstr > appears anywhere in <firststr>. (A string constant is

enclosed in double quotes.) In the following example $anywhere is a Boolean

variable that will be assigned the value true if “Agent” occurs anywhere in the string

that is the value of $hostdescr.

alarmStr(3,”Machine $host went down at $timestamp”);

$anywhere=anystr($hostdescr,”Agent”);
Chapter 22 RCL Functions 22-9

22.2.6 AppendRdn

Syntax:
AppendRdn(<oi>, <stringRdn>);
where <oi> is of type Object Instance and <stringRdn> is of type OCTET
STRING.

Return Value:
Object Instance.

Used to specify a new object instance (OI) from a supplied OI and a relative

distinguished name (RDN) string. An RDN consists of a naming attribute and a

value connected by the identity sign (=). Examples of naming attributes are

systemId , networkId , internetClassId , and agentId . An RDN identifies an

object uniquely relative to a superior object that “contains” it.

This built-in function can be used to set $pollfdn (the object that is the current

target of the poll), which is of type Object Instance .

The following example illustrates this use. Let us suppose that you want to design a

template that retrieves SNMP attribute values from an SNMP agent. The

IsSnmpSystemUp template, shipped with Solstice EM, is an example of such a

template. IsSnmpSystemUp polls the agent system for its system description in

order to verify that the SNMP daemon is running. This requires that the template set

the $pollfdn to point to the internetSystem group of the SNMP agent. To set

the $pollfdn to point to the internetSystem group, the SetInternetSystem

condition must first locate the cmipsnmpProxyAgent distinguished name (FDN).

The cmipsnmpProxyAgent is the object in the MIS that represents the agent on the

system being managed. The various groups in the SNMP agent are represented by

objects “contained” in the cmipsnmpProxyAgent object. These “containment”

relationships are reflected in the path to the object specified in the FDN. In the

IsSnmpSystemUp template, the appendRdn() function is used to construct an FDN

that points to the internetSystem group object.

When a template is launched against a device selected in the Viewer, $pollfdn is

initially set to the first FDN in $pollFdnSet , which is the set of FDNs identifying

the managed objects that have been configured for the target device. However, if you

have instructed Discover to search for RPC agents when populating the runtime

database in the MIS, the $pollFdnSet for a target device may contain FDNs for

RPC agents as well as the SNMP agent. Depending upon the order in which

Discover found the agents on the devices in your network, the

cmipsnmpProxyAgent FDN may or may not be the first FDN in $pollFdnSet .
22-10 Customizing Guide • October 2001

The SetInternetSystem sample condition checks the initial $pollfdn to

determine if it is an RPC agent FDN, and, if it is, the condition then searches the

FDNs in the $pollFdnSet to find the FDN for the cmipsnmpProxyAgent object.

Once the SetInternetSystem condition has located the cmipsnmpProxyAgent , it

then uses the appendRdn() function to form an FDN that points to the

internetSystem group contained in that SNMP agent. For example, let us suppose

that an IsSnmpSystemUp request launched against the SNMP host bigguy has its

$pollfdn set to the following cmipsnmpProxyAgent FDN:

$dnstr = AsnToStr($pollfdn,true);
$check = AnyStr($dnstr,”RPC”);
if ($check == TRUE)
{
 $num = NumElements(&$pollFdnSet);
 $count = 1;
 while ($count <= $num)
 {
 $numstr = AsnToStr($count,TRUE);
 $dn = Extract(&$pollFdnSet,$numstr);
 $dn1 = Extract(&$dn,”distinguishedName”);
 $dnstr = AsnToStr($dn1,TRUE);
 $res = AnyStr($dnstr,”cmipsnmpProxyAgentId”);
 if ($res == TRUE)
 {
 $tmp = “/internetSystemId=NULL;
 $pollfdn = AppendRdn($dn,$tmp);
 $count = $num+1;
 }
 else
 {
 $count = $count+1;
 }
 }
}
else
{
 $tmp = “/internetSystemId=NULL”;
 $pollfdn = AppendRdn($dn,$tmp);
}
true;

/systemId=name:”gatoloco”/internetSystemId=NULL/cmipsnmpProxyAgentId=”bigguy”
Chapter 22 RCL Functions 22-11

The SetInternetSystem sample condition then resets the value of $pollfdn to

point to the RFC 1213 internetSystem group object via an appendRdn statement:.

The affect of this appendRdn operation on our request launched against the host

bigguy is to change the value of $pollfdn to the following:

This function only appends a single RDN. Although in some contexts a string may

contain several names separated by a slash (/), if such a string is given as the second

argument to appendRdn , only the first RDN is appended

Another use for the extract() function is to pull out attribute values from events.

For example, if $eventInfo is an enterpriseSpecificTrap , extract() can be

used to get the specific type of the trap as follows:

22.2.7 AsnToStr

Syntax:
AsnToStr(<asn1_value>, <fTranslate>);
where <asn1_value> is of type Asn1Value and <fTranslate> is of type BOOLEAN.

Return Value:
OCTET STRING.

This function can be used to build an equivalent string representation of an

ASN1value . It takes two arguments:

<asn1_value> is the value whose string representation you want.

$tmp = “/internetSystemId=NULL;
$pollfdn = AppendRdn($dn,$tmp);

/systemId=name:”gatoloco”/internetClassId={1 3 6 1 4 1 42 2 2 2 9 2 4 1 0}/
cmipsnmpProxyAgentId=”bigguy”/InternetClassId={1 3 6 1 4 1 42 2 2 2 9 1 1 3 6
1 2 1 1 0}

$spec_trap_type = Extract(&$eventInfo,”probableCause”);
22-12 Customizing Guide • October 2001

<fTranslate> controls the choice of format for an object name. If <fTranslate> is TRUE,
the resulting string OIDs are represented by equivalent string names. Otherwise, the

resulting string OIDs are represented in curly brace form rather than its equivalent

string form. For example, the textual representation of the systemId attribute

would be the following:

The curly brace representation of the systemId attribute would be as follows:

The textual option is available only if <asn1_value> has been defined in an ASN.1 or

GDMO document that the MIS knows about. If <asn1_value> is not so defined, only

the curly brace representation is available.

The SetInternetSystem sample condition uses the following statement to convert

an FDN to its textual representation in order to do a string compare on its contents:

22.2.8 CompareLists

Syntax:
CompareLists(& <list1>, <list2>);

Return Value:
BOOLEAN.

This function compares two ASN.1 lists and returns TRUE if they match; the

function returns FALSE otherwise. For example:

22.2.9 Defined

Syntax:
Defined(& <Var>);
where <Var> is a variable; or

 attributeId "Rec. X.721 | ISO/IEC 10165-2 : 1992":systemId

 attributeId { 2 9 3 2 7 4 }

$dnstr=asnToStr($dn1,TRUE);

$match = CompareLists(&$eventInfo,$myevent);
Chapter 22 RCL Functions 22-13

Defined(& <Attr>);
where <Attr> is an attribute.

Return Value:
BOOLEAN.

Checks whether the variable <Var> or the attribute <Attr> has a value. Returns TRUE
if so, FALSE if the name or attribute has not been assigned a value or is not a valid

name. A valid name is any of the assigned names of system variables (refer to

TABLE 21-1), a user-defined variable local to the request, or any of the names or

attributes occurring in the request template. For example, the IsSystemDesc
sample condition, shown below, will return true if the device has responded to a get

request for its SNMP sysDescr attribute value.

However, if this condition is used to test repetitively for availability of the SNMP

device, an undefine should be executed before each subsequent test. This is

necessary since the attribute value will remain defined in the request if a previous

defined returned successful.

22.2.10 Exit

Syntax:
Exit();

Return Value:
None.

When this function is called, this causes the deletion of the request in which it is

called. This is useful for deleting a request if it has reached a dead or error state.

Doing so reduces the system overhead caused by requests that have been launched

against devices that are not configured to support that request. For example, the

following condition might be executed as an action after transition to an Error state

in a template that polls for SNMP attributes:

defined(&sysDescr);

alarmStr(3,”Template was launched at a non-SNMP device.”);
exit();
22-14 Customizing Guide • October 2001

22.2.11 Exclude

Syntax:
Exclude(&<list_variable>,<component>);

Return Value:
None.

This function deletes the component specified by <component> from the ASN.1 list

specified by <list_variable>. For example:

22.2.12 Extract

Syntax:
Extract(& <listvalue>, <subName>);
where <listvalue> is of type LIST and <subName> is of type OCTET STRING.

Return Value:
Asn1Value.

From <listvalue>, returns the value of the subcomponent identified by the string

<subName>. <subName> specifies the name of the type of the component. Returns a

null Asn1Value if the first parameter <listvalue> is not a LIST whose type is a

SEQUENCEor SET. In the following example,

$ele1 will assign the first set from collectionInfoList , which is a SET OF

SEQUENCE.

In the following example, the ASN.1 value for one attribute in the sequence of

attributes in a communicationsAlarm is extracted using the tag probableCause
that identifies that attribute:

However, a single extract() call will only extract from the first layer of

components. For example, suppose that you want to extract oldAttributeValue from

an attributeValueChange event notification in the system variable $eventInfo.

The event contains an ASN.1 attributeValueChangeDefinition , which is itself

Exclude(&$list, $pollfdn);

$ele1=Extract(&collectionInfoList,”1”);

$cause = Extract(&$eventInfo, “probableCause”);
Chapter 22 RCL Functions 22-15

a construct containing both the old and new attribute values. (The structure of

attributeValueChange events is described in Chapter 6 of Management
Information Server Guide.) To get the oldAttributeValue, you could first assign

attributeValueChangeDefinition to a variable $attrChange and then call

Extract() again to pull oldAttributeValue from that variable:

22.2.13 FinalStr

Syntax:
FinalStr(<firststr>, <secondstr>);
where <firststr> and <secondstr> are of type OCTET STRING.

Return Value:
BOOLEAN.

Checks whether secondstr appears in the end of <firststr>. (A string constant is

enclosed in double quotes. In the following example $at_end_of_str is a Boolean

variable that will be assigned the value true if “IPX” occurs at the end of the string

that is the value of $hostdescr .)

22.2.14 FirstStr

Syntax:
FirstStr(<first-string>, <delimiter-string>);
where <string1> and <string2> are of type OCTET STRING.

Return Value:
OCTET STRING.

$attrChange = extract(&$eventInfo,”attrValueChangeDefinition”);

$oldAttrVal = extract(&$attrChange,”oldAttrValue”);

$at_end_of_str = finalstr($hostdescr,”IPX”);
22-16 Customizing Guide • October 2001

Returns the first string delimited by <delimiter-string>. For example:

$machine1 will have “gatoloco ” as its value.

22.2.15 GetTimeStamp

Syntax:
GetTimeStamp ;

Return Value:
GeneralizedTime. Current time in the format YYYYMMDDHHMMSS

Retrieves the current time of the host where the MIS is running. For example:

22.2.16 Include

Syntax:
Include(& <list-var>, <value>);
where <list-var> is a list variable of ASN.1 type SET or SEQUENCE. <value> contains

the value to be included in the list.

Return Value:
Boolean. True if the include operation was successful; false if not successful.

To add values to a list using include() , the list variable should be initialized first.

For example:

$x = “gatoloco dokusan columbine”;
$machine1 = firststr($x, “ ”);

$curtime = getTimeStamp();
if (($curtime - $eventTime) > 600) { print($curtime);}
else {print($eventTime);}

$mylist = StrToAsn(“SET”,”{}”);
$ifint = 1;
$ifStr = “ifIndex”;
include(&$mylist,$pollfdn);
include(&$mylist,$ifint);
include(&$mylist,$ifStr);
Chapter 22 RCL Functions 22-17

The second parameter <value> must be defined for include() to succeed. This is

particularly important if the <value> is a variable that has been assigned an

attribute’s value. For example, consider:

If the defined() function is not called, then include() will fail.

22.2.17 InitialStr

Syntax:
InitialStr(<firststr>, <secondstr>);
where <firststr> and <secondstr> are of type OCTET STRING.

Return Value:
BOOLEAN.

Returns True if <secondstr > appears initially in <firststr >. (A string constant is

enclosed in double quotes.)Returns FALSE otherwise. In the following example,

$at_start_of_str is a Boolean variable that will be assigned the value true if

“Sun” occurs at the beginning of the string that is the value of $hostdescr .

22.2.18 IsChoice

Syntax:

IsChoice(& <Var>);
where <Var> is a variable; or

IsChoice(& <Attr>);
where <Attr> is an attribute.

Return Value:
BOOLEAN.

defined(&”IIMCRFC1213-MIB”:sysDescr);
$element = &”IIMCRFC1213-MIB”:sysDescr;
$list = strToAsn(“SET”,”{}”);
include(&$list,$element);

$at_start_of_str = initialstr($hostdescr,”Sun”);
22-18 Customizing Guide • October 2001

Returns TRUE if the variable or attribute is a choice . Returns FALSE otherwise. For

example:

22.2.19 IsList

Syntax:
IsList(& <Var>);
where <Var> is a variable; or

IsList(& <Attr>);
where <Attr> is an attribute.

Return Value:
BOOLEAN.

Returns TRUE if the variable or attribute is a LIST. Returns FALSE otherwise. For

example:

22.2.20 IsMember

Syntax:
IsMember(& <list_variable>, <component_variable>);

Return Value:
BOOLEAN.

Returns TRUE if the component specified by <component_variable> is included in the

ASN.1 list specified by <list_variable>. Returns FALSE otherwise. For example:

$choice = IsChoice(&accessControlInfo);

$listVar = IsList(&collectionInfoList);

$match = IsMember(&$eventInfo,$myattribute);
Chapter 22 RCL Functions 22-19

22.2.21 Mail

Syntax:
Mail(<addr>, <message-text>);
where <addr> and <message-text> are both of type OCTET STRING.

Return Value:
None.

Sends an e-mail message. This is the equivalent of the MAIL action. <addr> is a

string containing the e-mail address. <message-text> is a string containing the

message text. RCL variables can be interspersed in the string; for example:

22.2.22 NameToAddress

Syntax:
NameToAddress(<hostname>);
where <hostname> is of type OCTET STRING.

Return Value:
OCTET STRING.

Returns the IP address of the host whose name is <HostName>. In the following

example, the NameToAddress function is used to set up an IP address for a

SendTrap operation.

22.2.23 NameToOid

Syntax:

NameToOid(<Name>);
where <Name> is of type OCTET STRING.

Return Value:
OBJECT IDENTIFIER.

Mail(“netMgr@Eng”,”linkDown trap from $pollfdn”);

$destIpAddr = NameToAddress($host);
SendTrap($destIpAddr,$eventType,$eventInfo);
22-20 Customizing Guide • October 2001

Returns the OID (Object IDentifier) of the object whose name is <Name>. This may

be any name in the MIT that has been assigned an OID, such as an attribute, a name

binding, and so on. In the following example, the OID corresponding to

internetAlarm is assigned to a user variable $ncType .

22.2.24 NumElements

Syntax:

NumElements(& <Var>);
where <Var> is a variable that is a LIST ; or

NumElements(& <Attr>);
where <Attr> is an attribute that is a LIST .

Return Value:
INTEGER.

Returns the number of elements contained in a variable or an attribute that is a

LIST . Returns 0 if the variable or attribute is not a LIST . This function can be used,

for example, to check how many managed objects are listed in the $pollFdnSet —

the set of FDNs pointing to the managed objects that have been configured for the

device that the request has been launched against. This following statement

illustrates this use:

22.2.25 OiNameToOi

Syntax:
OiNameToOi(<name>);
where <name> is of type OCTET STRING.

Return Value:
Object Instance.

$ncType=NameToOid(“internetAlarm”);

$numFdns = NumElements(&$pollFdnSet);
Chapter 22 RCL Functions 22-21

Returns the object instance for the object whose name is supplied as quoted string

<Name>. In the following example, an ObjectInstance will be returned from the

distinguished name string constant.

22.2.26 OiToOiName

Syntax:
OiToOiName(<instValue>);
where <instValue> is of type ObjectInstance.

Return Value: OCTET STRING.

Returns the name of the object instance <inst> in the format the server uses. This is

the inverse of the OiNameToOi function.

22.2.27 Print

Syntax:
Print(<Var>);

Print(<AttrName>);

Print(<Constant>);

Return Value: BOOLEAN. Returns TRUE.

This function is used to print the value of the supplied variable, attribute, or

constant. This function will print messages only if the following em_debug
command has been invoked in a shell:

For more information on running the em_debug utility, see Chapter 16.”

$oi = OiNameToOi(“/systemId=name:\”bigguy\”/topNodeDBId=NULL/topoNodeId=5”);

$nm = OiToOiName($oi);

%em_debug -c “on misc_stdout”
22-22 Customizing Guide • October 2001

22.2.28 ReplaceMember

Syntax:

ReplaceMember(& <list_variable>, <old_component>, <new_component>);

Return Value: None.

This function replaces the a component in the ASN.1 list specified by <list_variable>
with a new component. The component being replaced is specified by

<old_component> and the component that is to replace it is specified by

<new_component>. For example:

22.2.29 SendAction

Syntax:
<Var> = SendAction(<dest_oi>, <ActionInfo>, &<result>);
where <dest_oi> is of type ObjectInstance (an ASN.1 value) and <ActionInfo> is

an OCTET STRINGconstant. The address of <result> is also passed. The variable

<result> needs to be initialized before being passed to SendAction() . <Var> is a

BOOLEAN variable.

Return Value: BOOLEAN.

The return value <Var> will be true if the action request is issued, otherwise false.

However, even if <Var> is true, this does not mean the action request was successful.

To determine whether the action request was successful, you will need to check the

$messType system variable.

Sends an M-ACTION to the destination object instance <dest_oi>, using <ActionInfo>.

The second argument is a string in the following form:.

For example, suppose there is an object

/systemId=titleist/counterObject=4

ReplaceMember(&$mylist,$oldval,$newval);

“{ <actionName> , <actionArgs>}”
Chapter 22 RCL Functions 22-23

which has an action incrementCounter defined in the appropriate GDMO

document. This action takes as its argument a name of a counter—for example,

“alarm_counter” might be such a name. The following condition sends a CMIS M-

ACTION to counterObject=4 with the parameter “alarm_counter”:

You may then wish to transition to another state to check for a response; for

example:

Another example:

After issuing this SendAction request, you can then check for a $messType of 10 in

a separate condition:

RCL functions can also be used to extract information from <result>.

22.2.30 SendEvent

Syntax:
SendEvent(<oc_name>, <oi>, <eventTypeName>, <event-notification>);

where <oc> is of type OCTET STRING, <oi> is of type objectInstance , and

<eventTypeName> is of type OCTET STRING.

<event-notification> is the event to be logged, comprised of ASN.1 attributes. The

attributes must be those that would be appropriate for the type of event notification

specified by <eventTypeName>. (The structure of the default Solstice EM event types

is described in Chapter 8 of Management Information Server Guide.)

<oc_name> is a string that specifies the object class of which <oi> is an instance.

$dn=OiNameToOi(”/systemId=name:\”titleist\”/counterObject=4”);
$result=0;
$ret = SendAction($dn,”{incrementCounter,”alarm_counter”}”,&$result);

if ($ret AND ($messType == 10)) {print($result);}

$dn=OiNameToOi(“/systemId=name:\”bigguy\”/topoNodeDBId=NULL”);
$result = 0;
$ret = SendAction($dn,”{topoNodeGetByType,\”Host\”},&$result);

if ($ret AND ($messType == 10)) {print($result);}
22-24 Customizing Guide • October 2001

Return Value: None.

sendEvent() has a function similar to the other alarm logging functions, such as

alarm() and alarmOi() , but sendEvent() can be used to log events other than

nerveCenterAlarms . For example, internetAlarms or CMIP event notifications

defined by the ISO/ITU X.733 standard, such as a communicationsAlarm , can be

sent to the AlarmLog using the sendEvent() function. In the following example a

communicationsAlarm is logged using the sendEvent() function.

This example generates a communicationsAlarm with a probableCause value of

4 and a perceivedSeverity of major.

22.2.31 SendTrap

Syntax:

SendTrap(<dest>, <type>, <info>);
where <dest> is an OCTET STRINGconstant, <type> is an event type, and <info> is of

type InternetAlarmInfo .

Return Value: BOOLEAN.

Sends a trap to the destination IP address <dest>, using <type> and <info>.

The appropriate <type> can be obtained from $eventType .

The appropriate <info> can be obtained from $eventInfo .

Returns TRUEis successful, FALSEotherwise. For example:

22.2.32 Set

Syntax:

<Var> = Set(<oi>, <modList>);
where <oi> is of type ObjectInstance . The argument <modList> is a modification

list whose structure is defined in nc.asn1 as EM-NC-ASN1.ModificationList .

<Var> is a BOOLEAN variable.

Return Value: BOOLEAN.

$event=strToAsn(“Notification-ASN1Module.AlarmInfo”, “{4, major}”;
sendEvent(“system”,$pollfdn,”communicationsAlarm”,$event);

$IpAddr = NameToAddress($host);
SendTrap($IpAddr,$eventType,$eventInfo);
Chapter 22 RCL Functions 22-25

Performs an M-SET on the object instance specified by <oi>. Set returns TRUE if the

SET request has been issued.

Because RCL doesn’t support callbacks, it’s not possible for RCL templates to always

check for the arrival of responses. If the response comes back almost instantaneously,

the NC template can check for messType value (==9) within the same state as the

Set() was invoked. A value of 9 means that the Set() response has arrived. If the

messType is not 9, it doesn’t imply anything.

The following example is a condition that does an M-SET on the topoNodeState
attribute of a topology node.

After invoking Set, you can check for success of the operation by checking the

$messType system variable. If $messType has a value equal to 9, the set was

successful. Otherwise, $messType will be set to a different value if the Set was

unsuccessful. For example, if the set was directed at an invalid object instance,

$messType would be set to 15, indicating no such object instance. The statement

that checks for $messType value should be evaluated in a different condition from

the one that issues the Set.

Note – Poll attributes after setting them in order to check if SET succeeded.

Another example:

After the M-SET is executed, you may want to transition to another state to check for

a response in another condition, such as the following:

$dn=strToAsn(“CMIP-
1.ObjectInstance”,”distinguishedName:{{{systemID,\”titleist\”}},{{topoNodeDBI
d,NULL}},
{{topoNodeId,0}}}”);
$arg = strToAsn(“[12] IMPLICIT SET OF SEQUENCE { modifyOperator [2] IMPLICIT
ModifyOperator DEFAULT replace, attributeId AttributeId, attributeValue ANY
DEFINED BY attributeId }”,
“{{replace,topoNodeState,5}}”);
Set($dn,$arg);

$dn = OiNameToOi(“systemId=name:\”solpuppy\”/topoNodeDBId=NULL”);
$mlist = strToAsn(“EM-NC-ASN1.ModificationList”,”{{attributeId
topoNodeDisplayStatus, {\”Down\”,5}}}”);
$ret = set($dn,$mlist);

if ($ret AND ($messType == 9)) {print($ret);}
22-26 Customizing Guide • October 2001

22.2.33 SnmEventRequest

Syntax:
SnmEventRequest(<oi>, <EventRequest>, &<snmRequestHandle>);
where <oi> is of type ObjectInstance, <EventRequest> is of either of type OCTET
STRING or of type Asn1Value. <snmRequestHandle> is a variable that has already

been initialized.

Return Value: BOOLEAN. The return value is true if the action equest was issued,

otherwise false.

This function is used to issue a SunNet Manager event request to an SNM agent or

proxy via RPC protocol.

To identify this SNM event request, the function returns a unique handle in

<snmRequestHandle>. This handle can be used to kill or stop the SNM event request

that was started via the function snmKillRequest() . The $messType system

variable should be checked to determine if a response to the action has been

received. If $messType is 10, this indicates a response has been received to the

action request.

<EventRequest> is a sequence of ASN.1 attributes as described in the following table.

The order of occurrence in the table is the order within <EventRequest>.

TABLE 22-2 Arguments in <EventRequest>

Argument Data Type Description
Required/
Optional

agentHost OCTET STRING Name of target agent system Required

agentProgram INTEGER RPC number of agent Required

agentVersion INTEGER Agent’s RPC version number Required

timeout INTEGER Maximum time (in seconds) to

wait for response from agent

before request fails

Required

interval INTEGER Polling interval.(in seconds) Required

group OCTET STRING Name of attribute group Required
Chapter 22 RCL Functions 22-27

threshold SEQUENCE of

• attrName — OCTET STRING

• attrType — INTEGER

• relop — INTEGER

• threshValue — OCTET STRING

• priority — ENUMERATED

— low (1)

— medium (2)

— high (3)

•Name of the attribute used to

define the threshold

•Data type of the operands for

relop. See TABLE 22-4.

•Relational operator used in

defining the threshold. See

TABLE 22-3.

•Threshold value to check for

•Priority assigned to an SNM

event generated if the threshold is

crossed

Required

proxyHost OCTET STRING Name of a proxy system if a proxy

agent is being used to access the

agent system

Optional

count INTEGER Specifies the number of polls

before terminating. If count is set

to 0, this indicates that polling is

to continue until request is killed.

Optional

optionalArgs SEQUENCE

• name — OCTET STRING

• value — OCTET STRING

Optional arguments are agent-

specifc. For example, requests to

na.ping use these to set packet

size, time to wait for echo replies,

etc.

Optional

key OCTET STRING Row in a table. Entire table is used

if no key is specified.

Interpretation is agent-specific.

For example, for the na.diskinfo

agent this is the name of a

filesystem partition.

Optional

flags INTEGER Request option flags. Currently

defined is NETMGT_RESTART.

Optional

TABLE 22-2 Arguments in <EventRequest> (Continued)

Argument Data Type Description
Required/
Optional
22-28 Customizing Guide • October 2001

The agentVersion number can be found in the listing for the agent in /etc/
inetd.conf . For example, 10 is the version number for na.snmp in the following

inetd.conf entry:

The relational operators that can be used to define thresholds are described in the

following table.

rendezHost OCTET STRING Name of host where

rendezProgram (typically

na.event) is running

Optional

rendezProgram INTEGER RPC number of the program that

is to receive the events (typically

the Event Dispatcher — na.event)

Optional

rendezVersion INTEGER rendezProgram’s RPC version

number

Optional

na.snmp/10 tli rpc/udp wait root /opt/SUNWconn/snm/agents/na.snmp na.snmp

TABLE 22-3 Relational Operators in SNM Request Thresholds

Integer Value Relational Operator

0 No operation

1 Equal To

2 Not Equal To

3 Less Than

4 Less Than or Equal To

5 Greater Than

6 Greater Than or Equal To

7 Value has changed

8 Value Increased By

9 Value Decreased By

10 Value Increased By More Than

TABLE 22-2 Arguments in <EventRequest> (Continued)

Argument Data Type Description
Required/
Optional
Chapter 22 RCL Functions 22-29

The data types for operands of relational operators (attrType) are defined in the

following table.

11 Value Increased By Less Than

12 Value Decreased By More Than

13 Value Decreased By Less Than

TABLE 22-4 Data Types for Threshold Operands

Integer Value Data Type

1 short

2 unsigned short

3 int

4 unsigned int

5 long

6 unsigned long

7 float

8 double

9 null-terminated ASCII string

10 opaque octet stream

11 Internet address

12 struct timeval

13 seconds since 1/1/70

14 enumerated type

15 RFC 1065 integer

16 RFC 1065 octet string

17 RFC 1065 object identifier

18 RFC 1065 network address

19 RFC 1065 IP address

20 RFC 1065 counter

TABLE 22-3 Relational Operators in SNM Request Thresholds (Continued)

Integer Value Relational Operator
22-30 Customizing Guide • October 2001

When an SNM agent or proxy detects that a specified threshold has been crossed, an

event is sent to the SNM Event Dispatcher (na.event), which is called the rendezvous.

rendezHost is the name of the machine whose Event Dispatcher is to receive the

SNM event. By default, rendezHost is the name of the MIS machine that initiated

the event request. The SNM Event Forwarder (em_snmfwd) on the MIS machine

receives the event from the Event Dispatcher and converts it to an snmAlarmEvent
(a type of CMIP event notification). The Event Forwarder maps SNM event priorities

to the perceivedSeverity values used by the Alarm Service in the manner

indicated in the following table. The SNM Event Forwarder sends snmAlarmEvents

to the MIS.

The following condition builds and sends an SNM event request targeted at the

ping-reach managed object, which represents the reach attribute group

supported by the na.ping proxy agent.

In this example, 100115 is the RPC number of the na.ping agent and 10 is the

version number of this agent. The polling interval is set to 12 seconds. The threshold

is triptime not equal to 1. If the threshold is crossed, the ping agent is to generate an

SNM event with a medium priority. The variable $hostname holds the hostname of

the target of the request; this information could be extracted from the $pollFdnSet .

21 RFC 1065 gauge

22 RFC 1065 timeticks

23 RFC 1065 opaque

TABLE 22-5 Mapping of SNM Event Severities

SNM Event Priority perceivedSeverity Value Default Icon Color

Low Minor Cyan

Medium Major Orange

High Critical Red

$eventRequestStr = “{agentHost \”{}”;
$eventRequestStr = StrCat($eventRequestStr,$Hostname);
$agentStr = “\”,agentProgram 100115, agentVersion 10, timeout 10,
interval 12, group \”reach\”, threshold {\”triptime\”,21,2,\”1\”,
medium}}”;
$eventRequestStr = StrCat($eventRequestStr,$agentStr);
$request_handle = 0;
snmEventRequest($pollfdn,$eventRequestStr,$request_handle);

TABLE 22-4 Data Types for Threshold Operands (Continued)

Integer Value Data Type
Chapter 22 RCL Functions 22-31

(An example that extracts the hostname from $pollFdnSet can be found in

Section 20.9.3, “WHILE Constructs.”) $pollFdnSet is a system variable that

contains the set of distinguished names (FDNs) pointing to managed objects

configured for the target device.

To receive SNM event notifications (snmAlarmEvents) generated by the proxy agent

in response to a crossed threshold, the request that initiates the SNM event request

can also use the event subscription functions, such as subscribeOi() , to subscribe

for snmAlarmEvents. For more information on using RCL templates to launch SNM

event requests, see Chapter 17.

22.2.34 SnmKillRequest

Syntax:
SnmKillRequest(<oi>,<EventReply>);
where <EventReply> is the result returned in the <result> variable passed to

snmEventRequest().

Return Value: BOOLEAN. Returns true if a correct argument is passed.

Issues a request to kill a SunNet Manager event request that had been issued by a

call to the snmEventRequest function.

22.2.35 StrToAsn

Syntax:
StrToAsn(<strAsn1Type>, <strAsn1Value>);
where <strAsn1Type> and <strAsn1Value> are of type OCTET STRING.

Return Value:
Asn1Value

This function takes two arguments:

<strAsn1Type> is the canonical text representation of the Asn1Type .

<strAsn1Value> is the text representation of the Asn1Value . For example:

$asn1_int = StrToAsn(“INTEGER”,”1000”);
$asn1_bool = StrToAsn(“BOOLEAN”,”FALSE”);
22-32 Customizing Guide • October 2001

returns the ASN1 encoding of <strAsn1Value>, but returns FALSE if the arguments

are invalid. In the following example, strToAsn is used to build an

internetAlarmInfo value for a SendTrap operation:

22.2.36 StrCat

Syntax:
StrCat(<string1>, <string2>);
where <string1> and <string2> are of type OCTET STRING.

Return Value:
OCTET STRING.

Returns a string built by concatenating <string1> and <string2>. For example:

22.2.37 Strstr

Syntax:
StrStr(<string1>, <string2>);
where <string1> and <string2> are of type OCTET STRING.

Return Value:
OCTET STRING.

$alarminfo = “{ “;
$alarminfo = strcat($alarminfo,$cause);
$alarminfo = strcat($alarminfo,$trans_domain);
$alarminfo = strcat($alarminfo,$traddr);
$alarminfo = strcat($alarminfo,$access);
$alarminfo = strcat($alarminfo,$ainfo);
$alarminfo = strcat($alarminfo,” }”);
$internetAlarmInfo = strToAsn(“IimcCommonDef.InternetAlarmInfo”,$alarminfo);
$eventInfo = $internetAlarmInfo;
SendTrap($destIp,$itType,$eventInfo);

$probCOid = “{1 3 6 1 4 1 42 2 2 2 9 1 9 1 999 1 1 1}”;
$cause = “probableCause globalValue: “;
$cause = Strcat($cause,$probCOid);
Chapter 22 RCL Functions 22-33

Returns a string with the first occurrence of <string2> in <string1>. For example:

$s will contain “my dentist .”

22.2.38 StrStrPlus

Syntax:
StrStrPlus(<string1>, <string2>);
where <string1> and <string2> are of type OCTET STRING.

Return Value:
OCTET STRING

Returns the remainder of a string after the first occurrence of <string2> in <string1>.
For example:

$s will contain “entist .”

22.2.39 Subscribe

Syntax:
Subscribe(<event_name_str>);
where <event_name_str> is of type OCTET STRING.

Return Value:
INTEGER

Used to subscribe to events of the type identified in <event_name_str>. The

<event_name_str> must be one of the event names that appears as a NOTIFICATION
in a GDMO document that the MIS knows about. The following condition subscribes

to receive SNMP traps. This condition could be used to define an initial transition

out of the Ground state.

$s = “How tall is my dentist”;
$res = strstr($s, “my d”);

$s = “How tall is my dentist”;
$res = strstrplus($s, “my d”);

$itindx=Subscribe(“internetAlarm”);
$itType=NameToOid(“internetAlarm”); true;
22-34 Customizing Guide • October 2001

The OID retrieved using NameToOid() can be tested against the system variable

$eventType to determine if an event of the subscribed type has arrived, as, for

example, in the following condition:

Note – In composing a condition that tests for object creation, use subscribeOi() ,

rather than subscribe() , and subscribe to the creation of only a specific type of

object. Do not listen for all object creations, as this can result in a deadlock (infinite

loop) situation.

If a problem prevents the subscription from being implemented, a -1 is returned.

Otherwise, this function returns a handle index; that is, a unique index for a

subscription in a request. This handle can be passed in a call to the unsubscribe()
function to terminate the event subscription.

22.2.40 SubscribeFilter

Syntax:
<result> = SubscribeFilter(<cmis_filter_string>);
where <cmis_filter_string> is a CMIS filter construct of type OCTET STRING.

<result> = SubscribeFilter(<asn1_cmis_filter>);
where <asn1_cmis_filter> is a CMIS filter construct of type Asn1Value .

Return Value:
INTEGER. <result> is a a handle of type INTEGER. If there is a failure that prevents

implementation of the subscription, -1 is returned. Otherwise, a handle index is

returned; this handle can be passed to the unsubscribe() function to terminate the

subscription.

It is recommended that you check for a return value of -1 to determine if errors

have been encountered. For example, if the syntax of the CMIS filter passed as

<cmis_filter_string> is incorrect, -1 will be returned.

This command subscribes for events that match the specified CMIS filter. If an event

passes the filter, it will be forwarded to the request. The CMIS filter can be passed to

the function either as a string or as an ASN.1 value. For information on the format of

a CMIS filter, refer to Chapter 6 in Developing C++ Applications.

$eventType == itType;
Chapter 22 RCL Functions 22-35

22.2.40.1 Considerations

■ If you invoke two subscriptions using CMIS filters and one filter selects a subset

of the other, your request will receive duplicate events for the overlapping subset.

An example of this would be the following two subscriptions:

If these two subscriptions are invoked, each incoming internetAlarm is forwarded

twice to the request. You should tailor your event subscriptions so as to avoid this

duplication of events.

■ When a subscription is created using a CMIS filter, every event in the system is

checked against that filter. Additional filter subscriptions thus place an increasing

load on the MIS. To avoid an adverse impact on performance, it is recommended

that you exercise care in the use of filter subscriptions.

22.2.40.2 Examples

■ The following is an example of a subscription that passes a CMIS filter that

forwards all events to a request:

This same CMIS filter could be passed as an ASN.1 value:

$myFilter = strToAsn(“CMIP-1.CMISFilter”,”or: {item: equality:
{objectClass,mosi}, item: equality: {eventType,
internetAlarm}}”);
$index = subscribeFilter($myFilter);

$myFilter = strToAsn(“CMIP-1.CMISFilter”, “item: equality:
{eventType, internetAlarm}”);
$index = subscribeFilter($myFilter);

$index = subscribeFilter(“and : { }”);

$filter = strToAsn(“CMIP-1.CMISFilter”,”and : { }”);
$index = subscribeFilter($filter);
22-36 Customizing Guide • October 2001

■ A CMIS filter could be used to forward all events of a specified managed object

class to the request. For example, all nerveCenterAlarm , generated using the

RCL alarm-logging functions (alarm() , alarmOi() , alarmStr())s are

instances of a managed object class called mosi . The following filter forwards to

the request all events whose managed object class is mosi.

This same CMIS filter could be passed as a string:

■ The following example uses a CMIS filter that selects all events whose managed

object class is system and whose eventType is communicationsAlarm:

22.2.41 SubscribeOi

Syntax:
SubscribeOi(<event_name_str>, <oc_str >, <event_oi>);
where <event_name_str> and <oc_str> are of type OCTET STRINGand <event_oi> is

of type ObjectInstance .

Return Value:
INTEGER

For example:

$filter = strToAsn(“CMIP-1.CMISFilter”, “item: equality
{managedObjectClass, mosi}”);
$index = subscribeFilter($filter);

$index = subscribeFilter(“item: equality {managedObjectClass,
mosi}”);

$filter = strToAsn(“CMIP-1.CMISFilter”, “and: {item: equality:
{managedObjectClass, system}, item: equality: {eventType,
communicationsAlarm}}”);
$index = subscribeFilter($filter);

$lkidx = subscribeOi(“linkDownTrap”,”cmipsnmpProxyAgent”,$pollfdn);
$lkType=NameToOid(“linkDownTrap”);
true;
Chapter 22 RCL Functions 22-37

subscribeOi() is used to subscribe to events of a specific type that concern objects

of a specific type, a specific object class, or a specific object instance. The

<event_name_str> must be one of the event names that appears as a NOTIFICATION
in a GDMO document that the MIS knows about.

The <event_oi> argument is an ObjectInstance specifying the instance of interest.

The <oc_str> argument specifies the object class of interest. The function will accept

an empty string "{}" as the value of <oc_str>, and in that case supplies the class to

which <event_oi> belongs. However, for performance reasons it is preferable to

supply the object class explicitly.

If a failure occurs that prevents implementation of the subscription, -1 is returned.

Otherwise, this function returns a handle index; that is, a unique index for a

subscription in a request. This handle can be passed in a call to the unsubscribe()
function to terminate the event subscription.

Currently when a request is disabled or deleted, its subscription(s) are automatically

deleted also.

Note – In composing a condition that tests for object creation, use subscribeOi() ,

rather than subscribe() , and subscribe to the creation of only a specific type of

object. Do not listen for all object creations, as this can result in an infinite loop.

22.2.42 TrapGenericType

Syntax:
TrapGenericType(<info>);
where <info> is an event of type InternetAlarmInfo .

Return Value:
INTEGER

Returns the number of the GenericType of the received trap (for example, from

$eventInfo). For example:

Note – $eventInfo in this example must be an internetAlarm.

$gnum=TrapGenericType($eventInfo);
22-38 Customizing Guide • October 2001

The possible return values are described in the following table.

22.2.43 TrapSpecificType

Syntax:
TrapSpecificType(<info>);
where <info> is an event of type InternetAlarmInfo.

Return Value:
INTEGER

Returns the number of the SpecificType of the received trap (for example, from

$eventInfo). For example:

TABLE 22-6 Standard SNMP Trap Types

Value of <generic-
trap> Trap Type Description

0 coldStart The originating SNMP device is

reinitializing itself, typically due to

unexpected reboot.

1 warmStart The originating SNMP device is

reinitializing itself, typically due to

normal restart.

2 linkDown One of the agent’s communication links

is down. The first name/value pair in

the variable bindings is the ifIndex for

the interface.

3 linkUp One of the agent’s communication links

has come up. The first name/value pair

in the variable bindings is the ifIndex for

the interface.

4 authenticationFailure The originating system has received a

protocol message that has failed

authentication.

5 egpNeighborLoss An External Gateway Protocol peer has

been marked down.

6 enterpriseSpecific Further information about the event is

indicated in the <specific-trap> field.

$snum=TrapSpecificType($eventInfo);
Chapter 22 RCL Functions 22-39

Note – $eventInfo in this example must be an internetAlarm . This function

does not apply to the enterpriseSpecificTrap event notifications to which

Solstice EM maps SNMP enterprise-specific traps by default. To obtain the specific

trap number from enterpriseSpecificTrap notifications, use the Extract()
function to obtain the value of the probableCause attribute. Refer to

Section 22.2.12, “Extract.”

22.2.44 Undefine

Syntax:
Undefine(&<Var>);

where <Var> is a variable; or

undefine(&<Attr>);

where <Attr> is an attribute.

Return Value:
BOOLEAN. Always returns TRUE.

Sets the variable <Var> or the attribute <Attr> to have no value.

The IsSnmpSystemUp sample template illustrates the use of the undefine
function. The availability of the target device is tested using a call to define in the

IsSystemDescr sample condition.

Once this condition returns true, however, the value will always remain true unless

the undefine function is called, as in the UndefineSystemDescr sample

condition.

Once the value of sysDescr has been undefined, the IsSystemDescr sample condition

can once again invoke the define the function to test for system availability.

define(&sysDescr);

undefine(&sysDescr);
22-40 Customizing Guide • October 2001

22.2.45 Unixcmd

Syntax:
Unixcmd(<command>, <arguments>);
where <command> and <arguments> are both of type OCTET STRING.

Return Value:
None.

Executes the indicated UNIX command. This is the equivalent of the UNIXCMD

action. The <arguments> parameter can contain RCL variables, either alone or

embedded inside a quoted string. For example:

22.2.46 UnSubscribe

Syntax:
UnSubscribe(<subscription_handle>);

where <subscription_handle> is an INTEGER value returned from a previous call of

one of the subscription functions, such as subscribe() or subscribeOi() . This

function can be used to turn off a previous event subscription.

UnixCmd(“echo”,”$pollfdn > /tmp/mydata”);
Chapter 22 RCL Functions 22-41

22-42 Customizing Guide • October 2001

Index
SYMBOLS
$eventInfo , 21-2

$eventOI
definition of, 21-4

$eventType variable , 21-4

$eventTypes
that MIS knows by default, 21-5

$messType
checking after MSet, 22-26

checking after SendAction , 22-24

possible values of, 21-6

$pollfdn
use of Append_rdn to set, 22-10

$pollfdn system variable in RCL, 14-10

$pollfdn variable, 21-7

$pollFdnSet , 21-8

A
access

application, 3-5

application feature, 3-5

database, 3-5

object, 3-5

access to

managed resources via CMIP, 12-10

SNM agents, 8-29

access, data, 1-15

action

at a transition, 18-16

three types in request templates, 18-2

types of, 18-16

Action Request System

using with EM, 8-13

additionalText
specifying in alarmStr function, 22-8

additionalText
Information, 11-12

additionalText information, 11-12

AdminOperStatusUp , 6-8

advanced requests

See also Nerve Center Requests, 3-7

agent

agentVersion number

how to find, 22-29

definition, 2-1

agent/station model, 1-9

agentOverloadAlarm , 13-7

agents

communications, 1-10

description, 1-5, 1-9

legacy support, 1-17

MPAs, 1-10, 1-13

protocol descriptions, 1-16

alarm colors, 3-3

assigning to icons, 3-5

changing, 3-4

process for changing, 3-6

updated in Network Views, 3-6

Alarm Manager

how it displays alarm notifications, 4-8

Alarm Service

in action, a scenario, 4-4

logging non-default alarms to the AlarmLog , 4-6

Overview, 4-1

perceived severity

SNMP traps, 11-10
Index-1

perceived severity , 7-8

turning off, 4-8

what it does, 3-5

what it is, 4-1

which alarm logs to monitor, 4-6

AlarmLog , 3-7, 4-3

discriminator construct, 4-3

non-default types, 4-3

alarms

counters, 4-2

function, 22-4

logging via RCL SendEvent function, 22-24

SNM, 7-7

ampersand

use of in RCL, 20-7

ancillary services, MIS, 1-14

APIs, 1-5

appendRdn
syntax of function, 22-10

use of, 21-8

architecture, EM, 1-6

ASN.1, 9-3

values, converting to strings in RCL, 22-12

Asn1Type
use in RCL, 20-5

associativity

of operators in RCL, 20-10

asynchronous event reports (traps), 10-7

attribute

referenced in RCL conditions, 20-6

B
basic concepts, EM, 1-9

bc_map file

updated by em_snm_type_import , 8-7

bitwise operators

use of in RCL, 20-10

browse log records

how to, 5-1

C
CheckCPU, 6-8

clear alarms

generated by glyph reset on SNM Console, 7-3

cleared CMIP MPA threshold, 13-2

CMIP

agents

use in device management, 3-11

changing timeout values, 12-9

configuring, 12-8

messages, 12-10

MPA, 12-11

Notifications,Logging to AlarmLog , 4-3

Proxy Agent, 12-10

support,in Solstice EM, 2-15

CMIP MPA

configurations, 2-16

starting, 12-11

versions of, 12-10

CMIP MPA Overload, 13-1

CMIP MPA, configuration parameters, 13-2

CMIP protocol

supported, 1-16

CMIS Filter, 3-6

accepting all notifications, 5-18

accepting notifications, 5-15

defining, 5-13

not accepting notification, 5-18

sample filters, 5-18

with multiple ANDs, 5-17

CMIS filters

use in RCL event subscriptions, 22-35

CMIS-like, 6-12

colors

mapping

to severity,how to change, 18-23

mapping,changing the default, 4-9

mapping,default, 4-9

Common Management Information Service (CMIS)

requests, 9-3

compilers, 1-19

components, EM, 1-4

Concise MIB compiler (em_cmibp) , 9-3

condition

definition of, 18-1, 20-1

role as an action, 18-2

role in defining transition, 18-1

Condition Language, 20-1

assignment operators, 20-8

Constants, 20-3

operator

assignment, 20-8

operator symbols, 20-8

Operators, 20-8
Index-2 Customizing Guide • October 2001

System variables, 20-5

value check functions

defined, 22-13

Variables, 20-3

Condition language

See Request Condition Language (RCL), 20-1

conditions

evaluating in request, 14-7

two roles of, 20-1

configuration parameters, CMIP MPA, 13-2

Configuration Tool, 7-4

configuring

SunLink CMIP, 12-8

containment relationship, 22-10

converting SNM schema files, 8-29

Cooperative Consoles

event types, 7-3

filtering capabilities, 7-3

glyph traps, 7-3

installing packages, 7-4

operation, 7-7

periphery-to-center configuration, 7-1

Receiver application, 7-4

receiving station, definition, 7-4

Sender daemon, 7-4

remote, 7-7

sending station, 7-4

setting up for EM, 7-4

SNM database traps, 7-3

SNM events, 7-2

SNM glyph traps, 7-3

SNMP Traps, 7-3

using with EM, 7-1

Cooperative Consoles and SNM, 7-1

critical, CMIP MPA threshold, 13-2

custom mangement applications, 1-18

custom mapping of SNMP traps, 11-25

D
data access, in MIS, 1-15

data types

in SNM event requests, 22-30

database, MIS, 1-12

database, SNM

loading into EM, 8-25

debugging

request templates

RCL Print function, 22-22

via RCL Print() function, 22-22

device

availability, 3-8

status, 3-8

DeviceReachablePing , 6-8

Discriminator Construct

defining, 5-13

discriminator construct

define event logging, 3-6

See also Log Filters, 3-6

discriminator contruct, 5-1

DiskPartitionsFull , 6-9

Domain Manager

See SunNet Manager, 7-1

E
element.schemas , 8-6

EM architecture

client/server, 2-2

em_cmibp compiler, 9-3

em_cmipconfig
replaced by -cmip option of em_oct , 12-17

em_debug

utility, 22-22

em_debug
use with RCL print() function, 22-22

EM_HOME environment variable, 5-21

em_ncexport utility

options, 19-1

em_ncimport utility
options, 19-1

em_schema2gdmo compiler, 6-12

em_snm_type_import utility

syntax of, 8-7

em_snmdb_import utility, 8-25

em_snmp-trap , 11-9

See also trap daemon, 11-4

em_trapd , 11-4

emAlarmLogList , 4-6

enterprise field, SNMP trap, 11-6

enterprise mapping blocks, 11-14

enterpriseSpecific trap, 11-12

environment variable

EM_SERVER, 8-8, 8-9, 8-27

LD_LIBRARY_PATH, 8-2, 8-8, 8-27

Event Dispatcher (na.event)
Index-3

role in Cooperative Consoles, 7-6

event information

two types, 3-7

event logging, 14-8

Event Logs, 3-6

configuration files, 5-21

sample filters, 5-18

Event Notification

definition, 2-2

SNMP Traps, 3-12

event notification, 3-7

event notifications

as handled by requests, 14-3

default type, 11-12

use in fault management, 3-11

event subscription

RCL statements for, 14-5

via RCL functions, 22-34

what it is, 3-14

event types

Cooperative Consoles, 7-3

for trap mapping, 11-17

known to MIS by default, 21-5

events

extracting attributes of in RCL, 22-15

logging via RCL SendEvent function, 22-24

F
fault management

definition of, 3-1

fault status

indication, in SunNet Manager, 7-7

monitoring, 3-3

procedure for monitoring, 3-1

viewing, 3-3

features, EM, 1-3

filtering, Cooperative Consoles, 7-3

forwarding

SNMP traps

in a request template, 14-8

forwarding SNMP traps, 11-2

fully distinguished name (FDN), 22-10

G
GDMO, 6-12, 9-3

description, determines names of attributes, 20-6

document, 22-38

generic trap

values, 11-10

graphical display

for Request Designer, 18-25

maximum number of states displayed for Request

Designer, 18-26

Guidelines for the Definition of Managed Objects

(GDMO), 2-18

H
Hosts

set up CiscoWorks on host with new name or IP

address, 8-12

set up EM on host with new name or IP adress, 8-11

set up Landmark on host with new name or IP

address, 8-12

set up Remedy on host with new name or IP

address, 8-12

I
icons

converting SNM glyphs to EM format, 8-5

identifier field, traps, 11-13

IF construct

example of in condition, 22-26

IF constructs

use in RCL conditions, 22-24

use of in RCL, 20-11

IF ELSE constructs

nesting of in RCL, 20-14

use of in RCL, 20-12

IIMC standard for event notification, 11-14

incoming SNMP traps, 11-13

installing Cooperative Consoles, 7-4

InternetActionInfo , 20-5

internetAlarms
logging to AlarmLog , 4-3

introduction, EM, 1-1 to ??

K
Konfig
Index-4 Customizing Guide • October 2001

working with Em, 8-14

Konfig 2.4

using with EM, 8-14

L
Landmark

set up on host with new name or IP address, 8-12

working with EM, 8-22

Landmark’s Performance Works

using with EM, 8-22

LD_LIBRARY_PATH
setting for SNM API access, 8-5

legacy support, 1-17

libnetmgmt library, 8-26

libnetmgt.so library, 8-2

libnetmgt_db.so compatibility library, 8-2

libnetmgt_db.so library, 8-2

log

notification type, 5-2

log discriminator, 5-3

Log Manager

Deleting selected log objects, 5-9

discriminator construct, 5-5

optional command line parameters, 5-4

starting, 5-4

verify event types, 11-26

what it is, 5-1

log objects

adding to the AlarmLog , 4-7

attributes, 5-2

name, 5-2

creation of, 4-3

deleting, 4-7

number in MIS, 5-1

removing from emAlarmLogList using Log

Manager, 4-7

removing from emAlarmLogList using OBED, 4-

8

what is it, 5-1

log records

creation, notifying the Alarm Service, 4-2

Event Logs tool, 5-1

from event mapping

location of, 5-2

Log Viewer

configuration files, 5-5

logging

discriminator construct

object identifiers, 5-16

notification records, 5-3

notification types, 5-15

Logs

accessing on a remote MIS, 5-5

creating, 5-7

creating for enterprise-specific traps, 3-16

logs, creating

example of, 3-15

M
M-ACTION

sent by RCL SendAction function, 22-23

major, CMIP MPA threshold, 13-2

managed objects

description, 1-5

Management Information Base, 1-17

Management Information Bases (MIBs), 9-3

management overview, 1-2

Management Protocol Adapter (MPAs), 6-11, 9-3

Management Protocol Adaptors (MPAs), 2-17

Management Tree of Overload Control Objects, 13-5

manager-to-manager capability, 10-10

managing

devices,using RPC agents, 6-5

objects,attributes of,accessing in RCL, 22-15

mapping

blocks, 11-18

records, 11-18

SNM for perceived severity, 7-7

MetaData Repository (MDR), 20-6

MIBs, 1-17, 9-3

adding to MIS, 2-19

Minimum Threshold Parameter, 13-4

minor, CMIP MPA threshold, 13-2

MIS

ancillary services, 1-14

data access, 1-15

description, 1-5

Nerve Center, 1-13

object orientation, 1-15

overview, 1-11

MIS requests

advanced, 15-13

MIT, 22-21

modules, EM API, 1-18
Index-5

Monitor

ability to generate alarms, 3-8

use in tracking device availability, 3-8

MPA, 1-10, 1-13, 6-11, 9-3

mpaOverloadController , 13-7

N
na.event

role in SNM event requests, 6-3

na.snmp.schemas , 8-27

na.snmp-trap , 11-2

Nerve Center, 1-13

definition of, 14-1

Message types, 20-6

Request Condition Language, 20-1

Nerve Center Requests, 3-7

nerveCenterAlarms

logged by RCL functions, 22-7

Logging to AlarmLog, 4-3

structure of, 21-3

network management

role of requests in, 3-2

steps in performing, 3-1

network management applications, custom, 1-18

network management software, description, 1-9

network management, protocols, 1-16

O
object creation events

subscribing for in RCL, 22-38

object instance

changing attribute values, 5-20

creating, 5-19

deleting, 5-19

object orientation, 1-15

Optivity

working with EM, 8-16

Optivity 7.0

using with EM, 8-16

OR

use of in RCL conditions, 20-10

OSI stack

use with CMIP MPA, 2-16

overload control parameter, 13-3

Overload Notification Parameter, 13-3

Overload Threshold Parameter, 13-3

overloadControlContainerName , 13-6

Overview, EM, 1-1

overview, EM

application development support tools, 1-19

components, 1-4

concepts, 1-9

data access, 1-15

description, 1-1

features, 1-3

MIS, 1-11

MIS services, 1-14

MPAs, 1-13

Nerve Center, 1-13

object orientation, 1-15

PMI, 1-13

protocols, 1-16

task overview, 1-2

P
perceivedSeverity

permissible values of, 21-3

values, SNMP trap, 11-10

perceivedSeverity
in snmAlarmTraps , 7-7

Performance Works

using with EM, 8-22

working with EM, 8-22

periphery-to-center configuration

using Cooperative Consoles, 7-1

PingUpOrDown , 6-9

PMI, 1-13

poll

device, 3-8

poll interval parameter, 13-4

poll rate

definition of, 18-20

polling, 3-8

offloading to RPC agents, 6-3

responses to a request, 14-4

polls, 3-7

Portable Management Interface, 1-13

precedence

of operators in RCL, 20-11

print

as RCL function, 22-22

priority
Index-6 Customizing Guide • October 2001

in SNM, 7-7

probable cause values, 11-11

protocol

adapter (MPA)

for CMIP, 2-17

network management

support for, 2-7

operations, 10-10

protocol adapter (MPA)

for CMIP, 2-15

for legacy or proprietary protocols, 2-17

for RPC, 2-8

for SNMP, 2-11

protocols

network management, 1-16

proxy agents, 6-11, 8-29

Q
Q3 connection, 2-17

R
RCL

Exit function, 22-14

Receiver application, 7-4

receiving SNM alarms, 7-7

receiving station

definition, 7-4

relational operators

in SNM event requests, 22-29

Remedy

configuring to work with EM, 8-13

set up on host with new name or IP address, 8-12

Remedy’s Action Request System

using with EM, 8-13

Remote Procedure Call (RPC), 6-11

support in Solstice EM, 2-8

Remote Procedure Call (RPC) protocol

See RPC, 6-2

request

definition of (for Nerve Center), 18-1

evaluating conditions in, 14-7

poll responses to, 14-4

polling and event subscription, 14-3

scope of variables in, 14-6

use of variables and attributes in, 14-5

Request Condition Language (RCL)

AddressStrToAddress function, 22-4

alarm function, 22-4

alarm logging functions

Send_Event , 22-24

alarmOi function, 22-6

alarmStr function, 22-8

anystr function, 22-9

appendRdn function, 22-10

arithmetic operators, 20-9

ASN.1 conversion functions

sasnToStr , 22-12

StrToAsn , 22-32

asnToStr function, 22-12

attributes in, 20-9

bitwise operators, 20-10

built-in functions, 22-4

components of, 20-1

debugging function

print, 22-22

defined function, 22-13

event handling functions

SendAction , 22-23

SendTrap , 22-25

Subscribe , 22-34

SubscribeFilter , 22-35

SubscribeOi , 22-37

TrapGenericType , 22-38

TrapSpecificType , 22-39

Unsubscribe , 22-41

Extract function, 22-15

FinalStr function, 22-16

FOREACH constructs, 20-13

GetTimeStamp function, 22-17

IF constructs, 20-11

IF ELSE in, 20-12

include function, 22-17

InitialStr function, 22-18

IsChoice function, 22-18

IsList function, 22-19

logical operators, 20-9

examples, 20-9

Mail function, 22-20

minus sign, use of, 20-9

MSet function, 22-25

name conversion functions

Append_rdn , 22-10

NameToAddress , 22-20

NameToOid, 22-20
Index-7

NameToAddress function, 22-20

NameToOid function, 22-20

nesting of constructs, 20-14

NumElements function, 22-21

OiNameToOi function, 22-21

OiToOiName function, 22-22

operators

and timestamp arithmetic, 20-16

arithmetic, 20-9

equality, 20-9

logical, 20-9

relational, 20-9

operators in, 20-8

precedence of operators, 20-10

Print function, 22-22

relational operators, 20-9

SendAction function, 22-23

SendEvent function, 22-24

SendTrap function, 22-25

SnmEventRequest function, 22-27

SnmKillRequest function, 22-32

statement blocks, 20-11, 20-12

StrCat function, 22-33

string handling functions

AnyStr , 22-9

FinalStr , 22-16

InitialStr , 22-18

StrCat , 22-33

StrToAsn function, 22-32

Subscribe function, 22-34

SubscribeFilter function, 22-35

SubscribeOi function, 22-37

summary of functions, 22-1

syntax checking, 20-16

syntax of attribute names in, 20-7

system variables, 20-5

timestamp arithmetic operators, 20-16

TrapGenericType function, 22-38

TrapSpecificType function, 22-39

type checking, 20-17

types of operands in, 20-2

Undefine function, 22-40

Unixcmd function, 22-41

Unsubscribe function, 22-41

use of ampersand in, 20-8

variables, dynamic typing of, 20-5

WHILE constructs in, 20-13

Request Condition Language(RCL)

attributes, 20-2

capabilities of, 14-1

constants, 20-2

operators

precedence of, 20-10

valid severities, 22-5

variables, 20-2

Request Designer, 18-1

attribute names, 14-6

graphical display, 18-24

performing tasks using, 18-26

how to start, 18-5

log object, 14-8

logging an event, 14-8

notification, 14-4

notification arrival, 14-7

poll

conditions, 14-4

rate, 14-4

request

attribute name, 14-5

notification arrival, 14-6

poll response arrival, 14-6

Request Condition Language, 20-1

request notification

response to a poll, 14-3

request template, 14-5

starting, 18-5

variable name, 14-6

request template

forwarding a trap in, 14-8

high-level procedure for creation of, 15-27, 18-4

logging an event, 14-8

procedure for creating in graphical display, 18-25

sample explained, 15-19

system and user variables, 14-6

request templates

exporting to ASCII file, 19-1

for RPC agents, 6-7

importing from ASCII file, 19-1

request-related applications, 14-1

Requests

use of Exit function to terminate, 22-14

requests

advanced, 15-13

retry-interval for SNMP proxy, 10-6

RPC, 6-12

based agents, 6-11

calls, 6-12

legacy support, 1-17
Index-8 Customizing Guide • October 2001

MPA, 6-11

PDM, 6-12

PDM and manageable SNM agent

communication, 6-12

Protocol Driver Module, 8-2

request, 6-12

supported, 1-16

RPC agents

building request templates for, 6-7

direct polling of, 6-2

type of machine supported on, 6-5

using, 6-1

using Discover to configure support for, 6-7

RPC request, 6-12

RPC_Diskinfo_ DiskPartitionsFull , 6-9

RPC_Diskinfo_ WatchAllPartitions , 6-9

RPC_Hostperf_VerifyProxyAgent , 6-9

RPC_Hostperf_WatchCPU , 6-9

RPC_MibII_Interface
CollisionDetection , 6-10

RPC_MibII_InterfacePing Triptime , 6-10

RPC_MibII_InterfaceStatus , 6-10

RPC_MibII_sysUpTime_AgentUp , 6-10

RPC_Ping_VerifyProxy Agent , 6-9

RPC_SNMP_VerifyProxy Agent , 6-9

S
schema compiler (em_schema2gdmo) , 6-12

schema files

relationship among .. shipped with SNM, 10-3

schemas

See SNM schemas, 6-5

SNMP, 10-3

security, 3-5, 10-10

Sender daemon, 7-4

filters for information forwarding, 7-3

sending station

definition, 7-4

severity

alarm, 3-3

assigning to icons, 3-5

assignments, changing, 11-11

changing colors, 3-4

color-coding of, 3-4, 11-10

defined, 3-3

in alarm logging functions, 22-5

in Request Designer, definition of, 18-23

mapping, 4-6

propagation, 4-2

topoNodeParents attribute, 4-2

topoNodePropagatePeers attribute, 4-2

See perceivedSeverity , 7-7

short-circuiting

not implemented in RCL, 20-9

Simple Network Management Protocol (SNMP), 9-1,

9-3

SNM

agent, 6-12

API, use by Cooperative Consoles, 7-4

application, definition of, 8-1

applications, compatibility with EM, 8-3

configuration files, 8-26

default locations, 8-26

console fault indications, table, 7-7

database, importing into EM, 8-25

elements, converting schemas for third-party

elements, 8-6

event requests, 6-3

events, 7-2

fault status

mapping to perceivedSeverity , 3-22

fault status, mapping to perceivedSeverity, 7-8

glyph reset

generates clear alarm via Cooperative

Consoles, 7-3

generating clear alarms on EM, 7-8

schemas, adding new object classes based on, 6-5

See also SunNet Manager, 22-27

SNM agent and schema files, 8-27

SNM and SNMP traps, 11-2

SNM application

requirement for EM compatibility, 8-5

setting LD_LIBRARY_PATH for, 8-8

SNM applications

adding to EM, 8-5

SNM database

traps, 7-3

SNM elements

types, adding third-party SNM types to EM, 8-7

SNM events, 7-2

SNM glyphs

converting third-party glyphs to EM format, 8-5

traps, 7-3

snm.conf file, 10-3, 10-6

snm.conf file, 10-3, 10-5, 10-6

snm2gdmo compiler, 8-29
Index-9

snmAlarmTraps
how perceivedSeverity is determined, 7-7

SNMP, 9-1, 9-3

daemon, killing, 4-5

daemon, starting, 4-6

MIBs, 1-17

MIBs, compiling, 9-3

MPA, proxy agent, 9-3

proxy

receiving responses, 10-6

retry-interval, 10-6

requests, 9-3

schemas, 10-3

SendTrap condition, 14-8

support, in Solstice EM, 2-11

supported, 1-16

trap

additional text information, 11-12

changing severity, 11-11

default event notification, 11-12

default trap-mapping, 11-8

enterprise field, 11-6

enterprise mapping blocks, 11-14

generic values, 11-10

incoming, 11-13

mapping blocks, 11-18

mapping file location, 11-26

mapping records, 11-18

mapping records format, 11-19

probable cause values, 11-11

severity values, 11-10

specifying source of alarm, 11-9

user-configurable capability, 11-14

variable bindings, 11-6

trap daemon

starting, 11-4

trap daemon translation, 11-2

trap_maps file, 11-5

SNMP MPA, 9-3

SNMP Trap

daemon, 3-13

mapping, 3-13

severity, 3-13

SNMP trap

and Cooperative Consoles, 7-3

custom mapping, 11-25

extracting generic type in RCL, 22-38

extracting specific type in RCL, 22-39

forwarding, 11-2

generic types of, 22-39

monitoring with Nerve Center requests, 3-14

operationem_snmp-trap
daemon, 11-1

structure, 11-5

use in device management, 3-12

SNMP trap types, table, 11-6

SNMP Traps, 3-12

enterprise-specific logs, creating, 3-16

snmp.schema , 10-3

snmp-mibII.schema , 10-3

SnmpPingBackoffReachable , 6-11

SNMPv2

files, 10-11

SMI, 10-10

translation program, 10-11

Solaris x86

RPC agents for, 6-5

specifying source of alarm, 11-9

starting/stopping the trap daemon, 11-4

statement blocks

in Request Condition Language, 20-12

states

definition of, 18-11

subscription

use in requests, 3-14

SunLink

CMIP 8.2, 2-16

configuring CMIP, 12-8

SunNet Manager

2.2 compatibility, 6-12

alarms, receiving via Cooperative Consoles, 7-7

event priorities, mapping to

perceivedSeverity , 22-31

event requests, data types for thresholds, 22-30

glyph reset traps, 7-3

topology traps, 7-3

SunNet Manager event requests

initiating via RCL, 22-27

relations for thresholds, 22-29

specifying thresholds in, 22-28

structure of, 22-27

support tools, for application development, 1-19

system variable

$count , 14-6

$eventInfo , 14-8

$eventTime , 14-6

$eventType , 14-8

$messageType , 14-6
Index-10 Customizing Guide • October 2001

T
TCP/IP network

use of RPC agents within, 6-1

Telecommunications Management Network

(TMN), 2-16

Telecommunications Management Networks, 1-16

Third Party Applications

Konfig, 8-14

Landmark Performance Works, 8-22

Optivity, 8-16

Remedy, 8-13

set up on hosts with new IP address or name, 8-11

threshold

cleared, 13-2

critical, 13-2

major, 13-2

minor, 13-2

warning, 13-2

time

on MIS host, retrieving in RCL, 22-17

timeout values

changing, 12-9

TMN, 1-16

tools, custom application development, 1-19

Topology Nodes, 4-1

topoNodeMOSet attribute, 4-1

topoNodeSeverity
synchronization with highest uncleared alarm, 4-2

transition

definition of, 18-12

trap daemon

how to start/stop, 11-4

trap mapping

event types, 11-17

file location, 11-26

formats, 11-19

trap variable bindings, 11-6

trap_maps file, 11-13

trap_maps file , 11-5, 11-13

trap-mapping

default, 11-8

traps, SNMP

See SNMP traps, 3-12

TrapSpecificType , 20-5

U
uptime, 3-8

user variables, 14-6

user-configurable trap-mapping, 11-14

V
Viewer configuration file

udpating for SNM types, 8-7

W
warning, CMIP MPA threshold, 13-2

WHILE loops in RCL

example of, 20-13
Index-11

Index-12 Customizing Guide • October 2001

	Customizing Guide
	Solstice Enterprise Manager™ 4.1
	Contents
	1. Introducing Solstice Enterprise Manager�1-1
	2. Network Management and the Solstice EM Architecture�2-1
	3. Using Solstice EM for Fault Management�3-1
	4. Using the Alarm Service�4-1
	5. Using the Event Logs Tool�5-1
	6. Managing Devices Using RPC Agents�6-1
	7. Using Cooperative Consoles with Solstice EM�7-1
	8. SunNet Manager Application�Support�8-1
	9. SNMP Management�9-1
	10. SunNet Manager SNMP Proxy�Agents�10-1
	11. Mapping SNMP Traps to CMIP Event Notifications�11-1
	12. Configuring Communication With CMIP Agents�12-1
	13. Configuring CMIP MPA Overload�13-1
	14. Nerve Center Overview�14-1
	15. Requesting Data in Solstice EM�15-1
	16. Debugging Request Templates�16-1
	17. Building Templates for SunNet Manager Event Requests�17-1
	18. Building Advanced Requests�18-1
	19. Nerve Center Utilities�19-1
	20. Request Condition Language�20-1
	21. Using RCL System Variables�21-1
	22. RCL Functions�22-1

	Figures
	Tables
	Preface

	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Part 1 — Overview
	Part 2 — Customizing Fault Management
	Part 3 — Network Management Protocol Support
	Part 4 — Nerve Center

	Conventions Used in This Book
	What Typographic Changes and Symbols Mean
	TABLE�P�1 Typographic Conventions

	Shell Prompts in Command Examples
	TABLE�P�2 Shell Prompts

	User Interface Conventions
	Mouse/Menu Interactions
	TABLE�P�3 User Interaction Equivalents

	Tear-off Menus

	Accessing Sun Documentation Online
	Sun Welcomes Your Comments
	I Overview
	1
	Introducing Solstice Enterprise Manager

	1.1 What is Solstice EM?
	1.1.1 What Can You Manage With Solstice EM?
	1.1.2 Who Uses Solstice EM?

	1.2 Solstice EM Features
	1.3 Solstice EM Components
	1.3.1 Solstice EM Architecture
	FIGURE�1�1 Solstice EM Architecture Overview

	1.3.2 Solstice EM Network Management Tools
	TABLE�1�1 Common Solstice EM Tools�

	1.4 Basic Solstice EM Concepts
	1.4.1 Network Management Software
	1.4.2 Agents and Stations
	FIGURE�1�2 Agent Communications Overview

	1.4.3 Management Information Servers
	1. An MIS database containing information about the components on your network.
	2. An MIS Nerve Center that provides the logic and methods to actually do something with the info...
	3. Portable Management Interface (PMI) APIs and Management Protocol Adapters (MPAs).
	4. A set of ancillary MIS services that make the information in the MIS database available to net...
	FIGURE�1�3 Overview of Management Information Servers

	1.4.3.1 More About MIS Databases
	1. Metadata Repository (MDR)—maintains information about managed object attributes and properties...
	2. Management Information Tree (MIT)—a tree-like, hierarchical representation of the relationship...

	1.4.3.2 More About the MIS Nerve Center
	1.4.3.3 More About PMI and MPAs
	1.4.3.4 MIS Ancillary Services
	1.4.3.5 More About MIS Data Access
	1.4.3.6 More About Object Orientation

	1.4.4 Network Management Protocols
	1.4.4.1 More About RPC
	1.4.4.2 About MIBs

	1.5 Solstice EM APIs
	1.5.1 API Modules
	TABLE�1�2 Solstice EM API Modules �

	1.5.2 Application Development Support Tools

	1.6 Related Reading
	1.7 Solstice EM Tools—Complete Listings
	TABLE�1�3 Solstice EM Tools – Complete List, Sorted by Binary Name�
	2
	Network Management and the Solstice EM Architecture

	2.1 The Agent/Manager Model
	FIGURE�2�1 Agent/Manager Communication in Solstice EM Environment

	2.2 Client/Server Architecture
	FIGURE�2�2 Solstice EM Network Tools

	2.3 Distributed Management
	FIGURE�2�3 A Sample Configuration Using MIS-to-MIS Communication
	FIGURE�2�4 Topology Tree as Seen by Network Views Window Connected to MIS A
	FIGURE�2�5 Topology Tree as Seen by Network Views Window Connected to MIS Net_B
	FIGURE�2�6 Topology as Seen in Network Views Window Connected to MIS Net_D
	When MIS A initiates a request for data from MIS Net B, MIS A takes on the “manager role” in a MI...
	FIGURE�2�7 MIS-to-MIS Connection From MIS A to MIS Net B

	2.4 Network Management Protocol Support
	2.4.1 RPC Support
	FIGURE�2�8 Polling RPC Agents
	FIGURE�2�9 Using SNM Event Requests With Solstice EM

	2.5 Simple Requests
	2.5.1 SNMP Support
	FIGURE�2�10 MIS Communication With SNMP Agents
	FIGURE�2�11 SNMP Trap Daemon Operation
	FIGURE�2�12 Viewing Trap Notifications
	FIGURE�2�13 SNMP Proxy Agent Operation

	2.5.2 CMIP Support
	FIGURE�2�14 CMIP MPAs in Distributed Configuration
	2.5.2.1 Telecommunications Management Network
	FIGURE�2�15 TMN Q3 Connection to Solstice EM

	2.5.3 Other Network Management Protocols
	2.5.4 Java Dynamic Management Kit Agents

	2.6 Object Classes and Event Notification Types
	II Customizing Solstice EM Tools
	3
	Using Solstice EM for Fault Management

	3.1 Fault Management Summary
	1. Decide on the information you need to manage your network.
	2. Create request templates, if needed. To create Basic request templates, use the Design Simple ...
	3. Use the Event Logs tool to create logs, to store those events for which you want to have a his...
	4. Choose the logs that you want the Alarm Service to monitor.
	5. Edit the SNMP trap daemon’s trap_maps file to customize the mapping of SNMP traps to event not...
	6. If you want to implement forwarding of information from SNM Consoles to Solstice EM, use the C...
	3.1.1 Before Starting Fault Management

	3.2 Using Fault Management
	3.3 Viewing Fault Status
	TABLE�3�1 Default Color-Coding of Severities �
	3.3.1 Changing the Color Associated with a Severity
	To Change the Color Associated with a Severity
	1. In the Network Tools window click Network Views.
	2. Click File ‘ Customize ‘ Display Settings ‘ Colors to open the Severities window.
	3. Select Alarm Severity.
	4. Select the color you want to use for that severity in the field.
	5. Click Modify.

	3.3.2 Alarm Severity Propagation
	3.3.3 Access to Tools, Features, and Database Objects

	3.4 Reporting Faults as Alarms
	3.5 The Event Logs Tool and Alarm Logging
	For more information …
	3.5.1 Receiving Network Information
	3.5.1.1 Polling
	3.5.1.2 Monitoring Device Availability
	To Activate the Event Generation Capability
	1. Invoke Network Discovery from the Network Tools window, if it is not currently running.
	2. Select On for the Generate Event if Object is Down option and select a severity from the pulld...
	FIGURE�3�1 Selecting a Severity for communicationsAlarm Generated by Monitor

	3. Click Schedule tab, select the time of day and days of the week when you want the Monitor to b...

	3.5.2 Event Notifications
	3.5.2.1 Example: Monitoring Event Notifications from CMIP Agents
	FIGURE�3�2 CMIP Management of a Cellular Network

	3.5.3 Using SNMP Traps
	TABLE�3�2 Default SNMP Trap Notifications and Severities
	FIGURE�3�3 Viewing Trap Notifications in the Alarms Window
	FIGURE�3�4 Solstice EM Processing of SNMP Traps
	3.5.3.1 Monitoring SNMP Traps with Nerve Center Requests
	FIGURE�3�5 Example of SNMP Trap Handling Using SnmpLinkUp/DownTrap Request

	3.5.3.2 Creating a Separate Log for Enterprise-Specific Trap Notifications
	1. Modifying the Alarm Log to exclude Enterprise-specific traps.
	2. Creating a separate log and setting the discriminator to log Enterprise-specific traps.

	To Modify the AlarmLog
	1. Invoke the Event Logs tool from Network Tools.
	2. Select the AlarmLog.
	3. Select Actions ‘ Properties.
	FIGURE�3�6 Viewing AlarmLog Properties in the Event Logs Properties Dialog

	4. To add a new CMIS filter entry for enterpriseSpecificTraps:
	a. Click Edit to add a new item entry for enterpriseSpecificTraps.
	FIGURE�3�7 CMIS Filter Window

	b. Select OR to highlight the editing buttons on the left (item, and, or, and not).
	c. Click the item button to display a new item window for the CMIS Filter, as shown in the follow...
	FIGURE�3�8 CMIS Filter Item Dialog Box

	d. Enter the Attribute ID and Attribute Value.
	e. Click OK in the CMIS Filter Item box to add the new entry to the CMIS filter.
	FIGURE�3�9 Adding an Item to the Default AlarmLog Discriminator

	f. Click OK in the CMIS Filter window to modify the log discriminator.

	5. Click OK in the Event Logs properties dialog box to have the changes you made to the AlarmLog ...
	FIGURE�3�10 AlarmLog Discriminator Construct With enterpriseSpecificTraps Excluded

	To Create a Separate Log
	1. To create a new log for enterpriseSpecificTraps, select Action ‘ Create Log.
	FIGURE�3�11 Creating a New Log for enterpriseSpecificTraps (will be displayed Filer pane)

	2. Enter the name of the new log in the Log Name field.
	3. Select Create to build the discriminator construct for the new log.
	FIGURE�3�12 Specifying a CMIS Filter for enterpriseSpecificTraps

	4. Select Item to create a discriminator that selects enterpriseSpecificTraps (as shown in FIGURE...
	5. Enter the Attribute ID and Attribute Value.
	6. Click OK in the CMIS Filter Item box to add the new entry to the CMIS filter.
	7. Click OK in the CMIS Filter Item window to add the item to the CMIS filter.
	8. Click OK.
	9. Click OK in the Create Log window to create the new log.
	3.5.3.3 Forwarding Events from SunNet Manager Consoles
	TABLE�3�3 Mapping of SNM Console Fault Indications to perceivedSeverity Values �
	4
	Using the Alarm Service

	4.1 Network View Nodes
	FIGURE�4�1 Network View Nodes

	4.2 Alarm Management
	FIGURE�4�2 Logging of Alarms to the AlarmLog

	4.3 The Alarm Service
	To Populate the MIS
	1. Populate the MIS by running Network Discovery, if a runtime database does not yet exist:
	2. Start the Alarms Window:
	3. Start the Network Views:
	4. Find your device in the viewer canvas.
	5. To see how this works, login as root, then kill the SNMP daemon on your machine with the follo...
	6. Restart the SNMP daemon:
	7. Delete the Alarm using the Alarms Window.

	4.4 Configuring the Alarm Service
	4.4.1 Adding Logs to emAlarmLogList
	To Add a Log using OBED
	1. Click the folder next to subsystemId=”EM_MIS” the selected object’s subordinates are displayed.
	2. Double-click the listname=”emAlarmServiceList” subordinate object.
	3. Add the logs you want the Alarm Service to monitor in the emAlarmLogList field.
	4. Click Set when you are finished.

	4.4.2 Deleting Logs from the Event Logs Window
	To Remove a Log Using Event Logs
	1. Select the log(s) you want to delete in the Event Logs main window.
	2. Select Actions ‘ Delete from the menu bar to delete the selected log(s).

	To Remove a Log Using OBED
	1. Select the log(s) you want to delete in the OBED main window.
	2. Select Object ‘ Delete from the menu bar to delete the selected log(s).

	4.4.3 Turning Off the Alarm Service

	4.5 Alarm Information Display in Solstice EM Tools
	4.5.1 Alarm Information Display in Alarms Window
	4.5.2 Alarm Information Display in Network Views

	4.6 User-configurable Alarm Log Record Filter for Alarm Service
	TABLE�4�1 Alarm Log Record Processing Options
	5
	Using the Event Logs Tool

	5.1 Log Process Overview
	5.1.1 Attributes of a Log
	TABLE�5�1 Log Object Attributes�

	5.1.2 Log Records Generated by Nerve Center Request Actions

	5.2 Starting the Event Logs Tool
	TABLE�5�2 Command-Line Options for the em_logmgr Command

	5.3 Using the Event Logs Tool
	5.3.1 Accessing Logs on a Remote MIS
	To Display Logs on a Specified Remote MIS
	FIGURE�5�1 Customize Tools Menu

	To Create a New Log
	1. Select Actions ‘ Create Log from the Event Logs window.
	2. Click Create.
	FIGURE�5�2 Creating a New Log

	3. To define the log filter, click Create to invoke the CMIS Filter window.
	FIGURE�5�3 Defining a Discriminator to Log SNM Events

	4. Click OK in the CMIS Filter window to add the log filter to the Create Log window.
	5. Enter the Log Name and click OK or Apply in the Create Log window to add the new log to the MIS.

	To Delete a Log
	1. To delete a log, select the log object (one or more) from the main window.
	2. Select Actions ‘ Delete to remove the selected log object(s) from the MIS.

	To Modify a Log’s Properties
	1. To modify the properties of a log (such as the maximum size), select the log object from the m...
	2. Select Actions ‘ Properties to modify or view the properties information about the selected lo...
	FIGURE�5�4 Modifying a Log’s log filter

	To Export Logs to a File

	5.3.2 Importing Logs from a File into the Event Logs Tool
	To Import Logs
	1. Select File ‘ Import from the Event Logs window to read exported log records.
	2. Select the desired file from the list or enter the name of the file in the Selection field.

	5.3.3 Configuring Display of Log Properties
	FIGURE�5�5 Viewing Log Objects in the Column Headings Window

	5.3.4 Adding Tools to the Event Logs Menu
	1. To add another tool, select File ‘ Customize Tools Menu from the Event Logs window’s Tools menu.
	2. Select the Tool you would like to add to the Event Logs menu.
	3. Click Add, then OK or Apply to complete your addition.
	FIGURE�5�6 Customize Tools Menu Window

	5.4 Defining the CMIS Filter
	TABLE�5�3 Format Specifier Definitions
	TABLE�5�4 Operator Definitions
	5.4.1 A CMIS Filter That Accepts Notifications of a Specific Type
	TABLE�5�5 Notification Types and Numbers

	5.4.2 CMIS Filter with Multiple ANDs
	CODE�EXAMPLE�5�1 Sample Log Filter

	5.4.3 A CMIS Filter That Accepts All Notifications
	5.4.4 A CMIS Filter That Accepts No Notifications

	5.5 Sample CMIS Filters
	5.5.1 Creation of an Object Instance
	5.5.2 Deletion of an Object Instance
	5.5.3 Attribute Value Change of an Object Instance
	5.5.4 State Changes Received From Agent

	5.6 Event Logs Tool Configuration File
	CODE�EXAMPLE�5�2 Event Logs Tool Configuration File�

	III Network Management Protocol Support
	6
	Managing Devices Using RPC Agents

	6.1 Types of RPC Agent Management
	FIGURE�6�1 Communication With RPC Agents in Direct Polling Requests
	FIGURE�6�2 Using SNM Event Requests with Solstice EM

	6.2 Preparing for Device Management with RPC Agents
	To Prepare the Device Management with RPC Agents
	1. Install and configure the RPC agents.
	2. Add Object Classes to the MIS based on SNM Schemas. If you are using only those SNM agents shi...
	3. Install and configure the RPC MPA.
	4. Configure the managed object in the MIS.
	FIGURE�6�3 Selecting RPC Agents to be Configured During Network Discovery

	5. Build request templates for RPC agents.
	TABLE�6�1 Ready-to-Use RPC Request Templates �

	6.3 RPC Management Protocol Adapter
	6.4 RPC MPA Configuration Parameters
	7
	Using Cooperative Consoles with Solstice EM

	7.1 Cooperative Console Forwarding
	FIGURE�7�1 Forwarding of Information to Central Management Station

	7.2 Filtering Criteria for Information Forwarding
	7.3 Cooperative Consoles Configuration and Operation
	To Set Up Cooperative Consoles on the Solstice EM MIS Machine
	1. Install the Cooperative Consoles Configuration Tool and Receiver packages.
	2. Set your LD_LIBRARY_PATH to support the Receiver application.
	3. Add the Cooperative Consoles Configuration Tool and the Cooperative Consoles Receiver to the S...
	4. Use the Cooperative Consoles Configuration Tool on the remote SNM Console machines to configur...
	5. Use the Cooperative Consoles Configuration Tool to set up the Receiver’s Registration List on ...
	FIGURE�7�2 Information Forwarding From SNM Console to Solstice EM MIS

	7.4 Receiving SunNet Manager Alarms
	TABLE�7�1 Mapping of SNM Console Fault Indications to perceivedSeverity Values
	8
	SunNet Manager Application�Support

	8.1 Solstice EM Compatibility with SunNet Manager
	FIGURE�8�1 SNM-Solstice EM Compatibility

	8.2 Access to Solstice EM Features from SNM Applications
	FIGURE�8�2 SNM Application Accessing Solstice EM Features

	8.3 Adding an SNM Application to Solstice EM
	To Run Your SNM Application with Solstice EM
	1. Install the SNM API and RPC agents packages (SUNWembc and SUNWsnmag) on the MIS machine, if yo...
	2. Convert third-party SNM icons to Solstice EM glyph format.
	To make this conversion
	a. Convert the SNM glyph to pbm format.
	b. Convert the icon from pbm format to pm format.
	3. Convert third-party SNM schemas to GDMO documents.
	4. Use the em_snm_type_import utility (as root) to incorporate new SNM element types, defined in ...
	5. Run em_services -reload to re-initialize the MIS.
	6. Add the path to the Solstice EM version of libnetmgmt_db to your LD_LIBRARY_PATH environment v...
	7. Set the EM_SERVER environment variable if you want to run the SNM application remote from the ...
	8. Add an icon for the SNM application to the Solstice EM Launcher.

	8.3.1 Forwarding Event and Topology Information from SunNet Manager to Solstice EM
	FIGURE�8�3 Forwarding of Information to Central Management Station

	8.3.2 SunNet Manager Application Support

	8.4 Information for Configuring Specific SNM Applications
	8.4.1 Running Solstice EM and Applications on Hosts With a New IP Address or Name
	To Set up Solstice EM to be Used on a Host With a New Name
	1. Change <oldname>_emdb to <newname>_emdb in the directory: /opt/SUNWemrdb/ etc/onconfig.em
	2. Change all occurrences of <oldname> to <newname> in the directory: /opt/ SUNWemrdb/etc/sqlhosts
	3. Change all occurrences of <oldname> to <newname> in the directory: /opt/ SUNWconn/em/build/acc...
	4. Replace the old name with the new name in LM_LICENSE_FILE path of the following license files:
	5. Type em_services -reload at the prompt to run Solstice EM.

	To Set up CiscoWorks to be Used on a Host With a New IP Address or Name
	1. Replace the hexadecimal representation of the old IP address with the hexadecimal representati...
	2. Replace the old name with the new name in the file /opt/CSCOsyb/interfaces.
	3. Replace the hexadecimal representation of the old IP address with the a hexadecimal representa...
	4. Replace the old name with the new name in the file /opt/CSCOsyb/ interfaces.001 if it exists.

	To Set up Remedy ARS to be Used on a Host With a New IP Address or Name
	To Set up Landmark Performance Works to be Used on a Host With a New IP Address or Name
	1. Replace all occurrences of the old name with the new name in the following files:
	2. Replace the old IP address in the file /usr/landmark/data/pwcs*/ns.ini.
	3. Replace all occurrences of the old name with the new name in the file /usr/ landmark/data/pwcs...

	To Complete Application Set up on Hosts With New IP Addresses or Names

	8.4.2 Configuring Remedy’s Action Request System (ARS) to Work with Solstice EM
	1. After installing the third-party SNM application, run em_snm_type_import on the modified eleme...
	2. Run the em_snm2gdmo compiler on the elements.schema file to convert it to GDMO documents.
	3. Remove the extra menu entries from the Network Views configuration file.
	4. Copy the updated global Solstice EM Network Views configuration file to your home directory.
	5. Exit and restart the Network Views.

	8.4.3 Configuring Konfig 2.4 to Work with Solstice EM
	To Use Konfig 2.4 With Solstice EM
	1. As root, install Solstice EM.
	2. Each user needs to set the SNMHOME environment variable.
	3. Create a link from $SNMHOME/bin to $EM_HOME/bin.
	4. Add $SNMHOME/bin to the user’s path.
	5. Convert the config SNM schemas to GDMO and ASN.1 files.
	6. Convert the config types and menus into Solstice EM topology types.
	7. For objects added using Solstice EM Network Discovery, use Network Views- Object Properties wi...

	8.4.4 Configuring Optivity 7.0 to Work with Solstice EM
	To Use Optivity 7.0 With Solstice EM as Root
	1. Install Solstice EM.
	2. Create a link for the snm.conf file.
	3. Create an snm_version file that contains the following line:
	4. Each user needs to set the SNMHOME environment variable.
	5. Move executables from $SNMHOME/bin directory to $EM_HOME/bin.
	6. Create a link from $SNMHOME/bin to $EM_HOME/bin.
	7. Each user needs to set the SNMDBDIR environment variable.
	8. Add $SNMHOME/bin to the user’s path.
	9. Install Optivity.
	10. Create an SNM database directory and files.
	a. Create the directory $SNMDBDIR/db.<user-id>.
	b. Create the required database files using the following commands:

	11. Follow the steps outlined above in Section�8.3,“Adding an SNM Application to Solstice EM�,” m...
	a. Copy the Solstice EM Optivity icons (the .pm files) into $EM_HOME/glyphs.
	b. Edit the $LNMSHOME/snm/struct/synoptics-menus.schema file to correct formatting errors.
	c. Convert the Optivity SNM schema files to GDMO documents.
	d. Move the GDMO and ASN.1 files.
	e. Import the Optivity types into the Solstice EM MIS.
	f. Add $EM_HOME/lib to your LD_LIBRARY_PATH.
	g. Create a $SNMHOME/bin/snm shell script, with execute permissions, containing the following:
	h. Modify the /opt/lnms/bin/trap_server.sh file as follows:
	i. Reboot the system.
	j. Run em_services -r to compile and load the new GDMO and ASN.1 documents.
	k. Start em_snmp-trap on port 412.
	l. Start Optivity with the following command:
	m. Optivity types can now be created either by using Network Views-Object Properties window to ch...

	8.4.5 Configuring Landmark’s Performance Works to Work with Solstice EM
	To Set Up Performance Works for UNIX 4.0
	1. Each user needs to set the SNMHOME environment variable.
	2. Move executables from $SNMHOME/bin directory to $EM_HOME/bin.
	3. Create a link from $SNMHOME/bin to $EM_HOME/bin.
	4. Add $SNMHOME/bin to the user’s path.
	5. Each user needs to set the SNMDBDIR environment variable.
	6. Install the Landmark products—Performance Works, UNIX agent, and SNMP polling agent.
	7. Use the MIB-to-GDMO compiler shipped with Solstice EM to create ASN.1 and GDMO files from the ...
	8. Move the GDMO and ASN.1 files.
	9. Convert the Landmark SNM element types and menus to Solstice EM topology types.
	10. Run Solstice EM Network Discovery to populate the MIS.

	8.5 Importing an SNM Database into Solstice EM
	8.6 Access to SNM Agents by SNM Applications
	FIGURE�8�4 SNM Application Accessing SNM Agents Over Solstice EM

	8.7 Access to SNM Agents by Solstice EM Applications
	FIGURE�8�5 Solstice EM Applications Accessing SNM Agents
	8.7.1 Configuration
	8.7.2 Agent Support
	8.7.3 Support for SNM Proxy Agents
	9
	SNMP Management

	9.1 SNMP Managed Components
	FIGURE�9�1 Components of Solstice EM’s SNMP Management Support

	9.2 SNMP Management Protocol Adapter
	9.3 SNMP MPA Configuration
	9.4 Specifying the Version of SNMP Used
	9.4.1 Calling the set_management_protocol Function of the EMSnmpAgent Class
	CODE�EXAMPLE�9�1 Calling the set_management_protocol Function

	9.4.2 Using the PMI to Set the managementProtocol Attribute
	CODE�EXAMPLE�9�2 Setting the managementProtocol Attribute Directly�
	10
	SunNet Manager SNMP Proxy�Agents

	10.1 Proxy Agents
	FIGURE�10�1 MIB, GDMO, and Schema Definitions

	10.2 SNMP Proxy Agent Operation
	FIGURE�10�2 SNMP Proxy Agent Operation
	1. It checks whether there are any new or modified SNMP related schema files since the last reque...
	2. It passes the request to an existing agent subprocess or forks a new subprocess, if needed, to...
	3. It checks whether the request contained any optional arguments. Requests sent by the Solstice ...
	a. The name of the schema to be used with the request. If, for some reason, the specified schema ...
	b. A community name that specifies the SNMP community name the proxy agent is to use when reading...
	c. A request timeout that specifies the number of seconds the proxy agent is to wait for a respon...

	4. The proxy agent then sends an SNMP message to the device and waits for a response.
	5. When the proxy agent receives a response from the target device, it sends a report to the Even...

	10.3 SNMP Trap Daemon (em_snmp-trap) Operation
	10.4 Schema Files
	10.5 SNMP Version 2 Support
	10.5.1 SNMPv2 Enhancements
	10.5.1.1 Structure of Management Information
	10.5.1.2 Protocol Operations

	10.5.2 SNMPv2 Files
	10.5.3 Using the v2mib2schema Program
	11
	Mapping SNMP Traps to CMIP Event Notifications

	11.1 SNMP Support
	11.2 Trap Daemon Operation
	FIGURE�11�1 em_snmp-trap Operation
	11.2.1 Starting the Trap Daemon
	To Start the Trap daemon

	11.2.2 Stopping the Trap Daemon
	To Stop the Trap Daemon

	11.3 The Structure of SNMP Traps
	11.3.1 SNMPv1
	FIGURE�11�2 SNMPv1 Trap PDU Structure
	TABLE�11�1 SNMPV1 Field Descriptions
	TABLE�11�2 Standard SNMP Trap Types

	11.3.2 SNMPv2c
	FIGURE�11�3 SNMPv2c Trap PDU Structure
	TABLE�11�3 SNMPV2c Field Descriptions

	11.4 Default Trap Mapping
	11.4.1 Default Method for Specifying the Source of an Alarm
	11.4.1.1 SNMPv1
	11.4.1.2 SNMPv2c

	11.4.2 Default perceivedSeverity Values
	TABLE�11�4 Default Color-Coding of Severities

	11.4.3 Default probableCause Values
	11.4.4 Default additionalText Information
	11.4.5 Default Event Notification Type
	TABLE�11�5 Default IP Management Trap Event Types �

	11.4.6 Default Location of Information from Trap Variable Bindings

	11.5 Trap Daemon Behavior When No Mapping is Provided
	11.6 Format of trap_maps File
	11.6.1 Enterprise Mapping Blocks
	11.6.1.1 SNMPv1
	11.6.1.2 SNMPv2c

	11.6.2 Mapping Records
	TABLE�11�6 Standard Event Notifications�
	11.6.2.1 SNMPv1
	FIGURE�11�4 SNMPv1 Trap Mapping Record Format

	11.6.2.2 SNMPv2c

	11.6.3 <attr-value> Definitions
	11.6.3.1 Constant
	11.6.3.2 Trap Variable Binding Value
	11.6.3.3 Trap Variable Binding Name
	11.6.3.4 Trap Variable Binding Index
	11.6.3.5 Embedding Strings in varbind Expressions
	11.6.3.6 Defining and Using varbind-to-substring Tables

	11.7 Customizing the Mapping of SNMP Traps
	11.7.1 Overview
	11.7.2 How to Customize SNMP Trap Mapping
	To Customize SNMP Trap Mapping
	1. Collect information on enterprise-specific traps.
	2. Devise your mapping scheme.
	3. Verify that the event types selected for mapping are logged to the alarm log.
	4. Edit the trap_maps file.
	5. Save the file.
	6. Restart the trap daemon.
	a. To stop the trap daemon, enter the following command (as root):
	b. Restart the trap daemon by entering the following command (as root):

	7. Verify that there are no error messages at startup.

	11.7.3 Configuring CMIP notification managedObjectClass
	11.7.3.1 The keyword $ALLVARS
	11.7.3.2 The Keyword $NORFC2089

	11.7.4 Attribute Type Mapping
	TABLE�11�7 Attribute Value Type Conversions
	i. varbindvalue - yields the value of a varbind
	ii. varbindindex - yields the index of the SNMP object the varbind refers to
	iii. varbindname - is the OID of the object the varbind refers to

	11.7.5 Wild Cards for trap_mapping
	TABLE�11�8 Wild Cards for trap_mapping �

	11.7.6 Using FDN Templates to Specify the Source of a Trap
	11.7.6.1 Understanding FDNs and RDNs
	FIGURE�11�5 Sample FDN for internetSystem Group Object Instance
	FIGURE�11�6 Sample ifTable FDN

	11.7.6.2 Building FDN Templates
	Standard Format:
	FIGURE�11�7 Sample FDN Template

	11.8 Distributed Trap Handling
	To Connect the Trap daemon to the MIS
	1. Edit the /var/opt/SUNWconn/em/conf/EM-config file on the MIS machine.
	2. Restart the MIS, if necessary.

	11.8.1 Filtering SNMP Traps for Other Managers
	12
	Configuring Communication With CMIP Agents

	12.1 Tasks for Setting Up Your System to Manage CMIP Agents
	To Prepare Your System to Manage a CMIP Agent
	1. Prepare your system for CMIP configuration.
	a. Define the distribution model.
	b. Install all the required products and patches.
	c. Gather the configuration information that you will use later.

	2. Load the CMIP Agent Object Classes into the MIS.
	3. Start up and configure SunLink OSI 8.1 /9.0.
	4. Start up and configure SunLink CMIP 9.0.
	5. Start up and configure the Solstice EM CMIP MPA.
	FIGURE�12�1 Configuring Solstice EM for Communication with CMIP Agents

	12.2 Preparing the System for CMIP Configuration
	To Prepare Your System for Configuration
	1. Determine the distribution model.
	2. Install the required SunLink products.
	a. SunLink CMIP 9.0 RT or SunLink CMIP 9.0 SDE
	b. SunLink OSI 8.1/9.0 (optional)
	c. SunLink X25 9.0 or above (optional)

	3. Gather your configuration information.

	12.2.1 Determining the Distribution Model
	12.2.2 Installing the Required SunLink Products
	To install the lowest layer of the protocol stack
	1. SunLink OSI 9.0 (Optional)
	2. SunLink CMIP 9.0 (Required)
	3. SunLink X.25 9.0. (Optional)

	12.2.3 Gathering Your Configuration Information

	12.3 Compile and Load CMIP Agent Object Types into MIS
	12.4 Starting and Configuring SunLink OSI
	To Configure SunLink OSI 9.0 to Communicate with CMIP Agents
	1. Halt the CMIP MPA.
	2. Halt the CMIP stack.
	3. Start the SunLink OSI stack.
	4. Run ositool
	5. Restart osinetd

	12.5 Access Control
	12.6 Starting and Configuring SunLink CMIP 9.0
	To Configure SunLink CMIP 9.0 to Communicate with CMIP Agents
	1. Ensure the OSI stack and CMIP stack are running.
	2. Run cmiptool
	3. Enter the type of Subnetwork.
	4. Enter the value for the Request Timer (optional).
	5. Select Apply.
	6. Exit cmiptool

	12.7 Starting and Configuring the CMIP MPA
	To Configure a CMIP MPA for Communication Over CMIP
	1. Start the CMIP MPA by entering the following command at the operating system prompt:
	2. Start the Object Properties/Create Object (em_oct) by typing the following command at the comm...
	3. Enter the appropriate information into the appropriate fields (see the following table).
	TABLE�12�1 Object Properties/Create Object Fields

	12.8 Runtime Parameters
	12.8.1 Auxiliary Server Container
	FIGURE�12�2 Auxiliary Server Container

	12.8.2 CMIP MPA Object
	12.8.3 em_cmip Parameters
	TABLE�12�2 em_cmip Parameters �
	TABLE�12�3 em_oct Parameters �

	12.8.4 Sample Program to Retrieve Runtime Parameters
	CODE�EXAMPLE�12�1 Usage and Output of get.cc sample program�

	12.9 Configuring Multiple MPAs on One System
	1. Set the PSEL, SSEL, TSEL, and NSAP environment variables using the setenv command:
	2. Start MPA #1 for communication with agent #1.
	3. Set up MPA #2 for communication with Agent #2:
	4. Start MPA #2:
	5. Configure Agent(1) and (2) using em_oct -cmip.
	13
	Configuring CMIP MPA Overload

	13.1 Understanding CMIP MPA Overload
	13.2 Configuration Parameters
	13.2.1 Overload Control Parameter
	13.2.2 Overload Notification Parameter
	13.2.3 Overload Threshold Parameter
	13.2.4 Minimum Threshold Parameter
	13.2.5 Overload Instruction Parameter
	13.2.6 Poll Interval Parameter

	13.3 Management Information Tree of Overload Control Objects
	FIGURE�13�1 Management Information Tree of Overload Control Objects

	13.4 GDMO Classes
	13.4.1 Mapping Between Attributes of the GDMO Classes and Configuration Parameters
	TABLE�13�1 GDMO Mapping

	13.4.2 emOverloadControlContainer Class
	13.4.3 emOverloadController Class
	13.4.4 mpaOverloadController Class
	mpaOverloadAlarm Notification
	agentOverloadAlarm Notification
	abortAssocNotification Notification

	13.4.5 Overload Sample Programs
	TABLE�13�2 Sample Programs Description
	13.4.5.1 get_agent_admin_state
	CODE�EXAMPLE�13�1 Sample Syntax for get_agent_admin_state
	CODE�EXAMPLE�13�2 Main Program for get_agent_admin_state�

	13.4.5.2 overload_action
	CODE�EXAMPLE�13�3 Sample for overload_action �
	CODE�EXAMPLE�13�4 Main Program for overload_action �
	CODE�EXAMPLE�13�5 Exceptions �

	13.4.5.3 overload_alarm
	CODE�EXAMPLE�13�6 Syntax for overload_alarm �
	CODE�EXAMPLE�13�7 Main Program for overload_alarm �

	13.4.5.4 overload_get
	CODE�EXAMPLE�13�8 Syntax for overload_get �
	CODE�EXAMPLE�13�9 Main Program for overload_get �

	13.4.5.5 overload_set
	CODE�EXAMPLE�13�10 Syntax for overload_set�
	CODE�EXAMPLE�13�11 Main Program for overload_set �

	13.4.5.6 set_agent_admin_state
	CODE�EXAMPLE�13�12 Syntax for set_agent_admin_state �
	CODE�EXAMPLE�13�13 Main Program for set_agent_admin_state �

	IV Nerve Center
	14
	Nerve Center Overview

	14.1 Nerve Center Components
	14.2 Nerve Center Documentation
	14.3 Nerve Center Operation
	14.3.1 How a Request Gets Information
	14.3.1.1 Where and When a Request’s Notifications Arise
	14.3.1.2 When Information From Managed Objects can Arrive

	14.3.2 Variables and Attributes in a Request
	14.3.2.1 Attributes
	CODE�EXAMPLE�14�1 Attributes

	14.3.2.2 System Variables
	14.3.2.3 User Variables
	14.3.2.4 How Notifications and Poll Responses are Delivered

	14.3.3 Where and When a Condition is Evaluated
	14.3.4 Action at a Transition
	14.3.4.1 Supported Actions
	TABLE�14�1 Action Menu Items

	14.3.4.2 Logging an Event
	14.3.4.3 Forwarding an SNMP Trap

	14.3.5 Specifying the Objects to be Polled
	14.3.6 Alarm Logging and the Alarm Service
	15
	Requesting Data in Solstice EM

	15.1 Polling for Data in Solstice EM
	15.1.1 Direct Polling
	15.1.2 Indirect Polling
	15.1.3 Event Request Polling

	15.2 Subscribing for Events
	15.2.1 Combining Polling and Event-Subscription

	15.3 Using Solstice EM Tools for Polling
	TABLE�15�1 Solstice EM Request Tools

	15.4 Working with Basic Requests
	15.4.1 Viewing Basic Request Information
	To View Basic Agent Request Information
	1. In the Network Views main window, select an object associated with the agent for which you wan...
	FIGURE�15�1 Viewing Request Information in the Basic Requests Main Window

	2. Click View ‘ Requests ‘ Available or View ‘ Request Groups to view available or active request...
	FIGURE�15�2 Viewing Requests in the Basic Requests Available Window
	FIGURE�15�3 Viewing Request Groups in the Basic Requests Groups Window

	3. Select the request or request group for which you want more information, and then click Action...
	FIGURE�15�4 Basic Requests Properties Conditions Window
	FIGURE�15�5 Basic Requests Properties General Window
	FIGURE�15�6 Basic Requests Group Properties Window

	15.4.2 Creating, Modifying, and Initiating Basic Requests
	To Initiate a Basic Request
	1. In the Network Views main window, select an object associated with the agent for which you wan...
	2. Click View ‘ Requests ‘ Active Requests, or View ‘ Request Groups to view active requests or r...
	3. Select the request you want to initiate, and then click Actions ‘ Start.

	To Halt a Basic Request
	1. In the Network Views main window, select an object associated with the agent for which you wan...
	2. Click View ‘ Requests ‘ Active Requests, or View ‘ Request Groups to view active requests or r...
	3. Select the request you want to halt, and then click Actions ‘ Stop.

	To Create a Basic Request or Request Group
	1. In the Network Views main window, select an object associated with the agent for which you wan...
	2. Click Actions ‘ Create ‘ Request or Actions ‘ Create ‘ Request Group, as desired, to open the ...
	3. Specify Request or Request Group options as needed.

	To Modify a Basic Request or Request Group
	1. In the Network Views main window, select an object associated with the agent for which you wan...
	2. Click View ‘ Requests or View ‘ Request Groups to view available or active requests, or reques...
	3. Select the request or request group you want to modify, and then click Actions ‘ Properties to...
	4. Specify Request or Request Group options as needed.

	15.5 Working with Advanced Requests
	To View Advanced Request Information
	1. In the Network Views main window, click Tools ‘ Advanced Requests to display the Requests dialog.
	FIGURE�15�7 Viewing Available Requests in the Advanced Request Dialog

	2. Click Start to display the selected Available Requests in the Active Requests list.
	3. In the Active Requests list, select the request that you want to view detailed information for.
	4. Click Examine to open the Request Examine dialog, as illustrated in the following figure.
	FIGURE�15�8 Advanced Request Examine Window

	15.5.1 Creating, Modifying, and Initiating Advanced Requests
	To Initiate an Advanced Request
	1. In the Network Views main window, click Tools ‘ Advanced Requests to display the Requests dialog.
	2. Select the request you want to start from the Available Requests list.
	3. Select the target object(s) in the current view, and then click Start.
	4. Repeat Steps 2 and 3 for each request you want to initiate, or click Close to exit the Request...

	To Halt an Advanced Request
	1. In the Network Views main window, click Tools ‘ Advanced Requests to display the Requests dialog.
	2. Select the request you want to halt from the Active Requests list.
	3. Click Delete.
	4. Repeat Steps 2 and 3 for each request you want to halt, or click Close to exit the Requests di...

	To Create or Modify an Advanced Request
	1. In the Network Views main window, click Tools ‘ Advanced Requests to display the Requests dialog.
	2. In the Requests dialog, do either of the following:
	3. In the Request Designer, modify or create requests or request templates as desired.

	15.6 Building Blocks: States, Transitions, and Conditions
	15.6.1 State Machine Diagrams
	FIGURE�15�9 Request Example with Poll Rates
	FIGURE�15�10 Request Example with Poll Rates and Severities
	FIGURE�15�11 Request Example with Conditions

	15.6.2 Sample Request Template
	FIGURE�15�12 IsSnmpSystemUp Sample Request Template
	15.6.2.1 Setting the Target Managed Object
	15.6.2.2 Polling for an SNMP Attribute

	15.6.3 Controlling Fault Status Color
	15.6.3.1 Using alarmOi() to Clear Previous Alarms
	15.6.3.2 Alarm-logging Tips
	For more information…

	15.7 Designing Request Templates
	To Create a Request Template
	1. Design a state machine: draw a picture for yourself showing the states you want to monitor and...
	2. Invoke the Design Advanced Requests, as described below.
	3. Create the states you need.
	4. Create the conditions you need.
	5. Create the transitions from one state to another.
	6. Name the request template and enter a brief description of it.
	7. Save the template.

	15.8 Requests Based on Polling
	FIGURE�15�13 State Diagram of IsSnmpSystemEverDown Template
	15.8.1 Adding States
	To Add a State
	1. Click States.
	2. Type in the name (“EverDown”) in the State field.
	3. Describe what the state represents in the Description field.
	4. Select a poll rate from the Poll Rate menu.
	5. Select a severity from the Severity menu.
	6. Click Add to add the new state to the template.

	15.8.2 Adding Conditions
	FIGURE�15�14 Entering Condition Code in the Design Advanced Requests
	To Add the New Condition to the MIS
	1. Enter a name (“sysUpTimeNotDecrease”) for the condition in the Name field.
	2. Describe what the condition does in the Description field.
	3. Click Add to store the new condition in the MIS.

	15.8.3 Adding Transitions
	To Create the Transition
	1. Invoke the Transitions window in the Design Advanced Requests main window.
	2. Select the Ground state as the From state.
	3. Select the Poll state as the To state.
	4. Select SetInternetSystem as the Condition to define this transition.
	5. To select an Action to be taken at the transition, select either CONDITION, MAIL, or UNIXCMD.
	6. Click Add to add this transition.
	To Add Additional Actions at a Transition
	1. Set the From, To, and Condition field settings so that they match the transition to which you ...
	2. Select the type of action from the Action menu.
	a. If you selected MAIL as the type of action, fill in the Message and Address fields
	b. If you selected UNIXCMD as the type of action, fill in the Command and Arguments fields as req...
	c. If you selected CONDITION as the type of action, select the condition from the condition Name ...

	3. Click Add to add the new action to the list of actions that will be performed at that transition.
	FIGURE�15�15 IsSnmpSystemEverDown Template

	15.9 Polling RPC Agents
	FIGURE�15�16 State Diagram of SnmpPingBackoffReachable Request
	15.9.1 Targeting the RPC ping-reach Group
	15.9.2 Correlating Information from Multiple Polls

	15.10 Requests Based on Event Subscription
	15.10.1 Event Logging and Alarm Service Monitoring of Alarm Logs
	15.10.2 Mapping of SNMP Traps to CMIP Event Notifications

	15.11 Subscribing for Enterprise-Specific SNMP Traps
	TABLE�15�2 Enterprise Specific Traps Example
	15.11.1 Initiating the Event Subscription
	15.11.2 Listening for Incoming Events
	FIGURE�15�17 State Diagram for IsEnterpriseSpecificTrap Template
	FIGURE�15�18 SNMP Trap Subscription Template

	15.12 Requests that Combine Subscription and Polling
	FIGURE�15�19 SnmpLinkUpDownTrap Template State Diagram
	15.12.1 Checking for a Correct Target

	15.13 Building Request Definitions
	16
	Debugging Request Templates

	16.1 Nerve Center Debugging Agents
	16.2 Activating RCL Print Statements
	16.3 Turning Off Debug Agents
	17
	Building Templates for SunNet Manager Event Requests

	17.1 RPC Agents
	FIGURE�17�1 Using SNM Event Requests with Solstice EM

	17.2 Nerve Center’s SNM Event Request Capability
	17.3 SNM Alarms
	TABLE�17�1 Mapping of SNM Event Severities

	17.4 Building SNM Event Request Templates
	FIGURE�17�2 State Machine Diagram for DeviceReachablePing Template
	17.4.1 Subscribing for SNM Events
	17.4.2 Sending an SNM ping Event Request
	17.4.3 Waiting for a Response to the Event Request
	18
	Building Advanced Requests

	18.1 Components of Request Templates
	18.1.1 State Machine Diagrams
	FIGURE�18�1 Request Example with Poll Rates and Severities

	18.2 Using the Design Advanced Requests Tool to Build Nerve Center Templates
	To Create a Request Template
	1. Design a state machine: draw a picture for yourself showing the states you want to monitor and...
	2. Invoke the Design Advanced Requests tool, as described below in Section�18.2.1, “Starting Requ...
	3. Create the conditions you need.
	4. Create the states you need.
	5. Create the transitions from one state to another.
	6. Add actions, if any, that you want to occur when a transition takes place.
	7. Name the request template and enter a brief description of it.
	8. Save the template.

	18.2.1 Starting Request Designer
	18.2.2 Creating a New Nerve Center Template
	18.2.3 Modifying an Existing Nerve Center Template
	18.2.4 Deleting Nerve Center Templates
	18.2.5 Exporting Nerve Center Templates to an ASCII File
	FIGURE�18�2 Example of Export to ASCII File

	18.2.6 Importing Nerve Center Templates from an ASCII File

	18.3 Conditions
	FIGURE�18�3 Viewing RCL Conditions in the Conditions Window

	18.4 States
	18.4.1 Adding States to a Nerve Center Template
	To Add a State to a Request Template
	1. From the Request Designer main window invoke the States window by clicking States or selecting...
	2. Type in the name and description for the new state and select a poll rate.
	3. Select a severity.
	4. Clicking Add inserts this state into your template.

	18.4.2 Modifying States in a Nerve Center Template
	To Change an Existing State in a Request Template
	1. From the Request Designer main window invoke the States window by clicking States or selecting...
	2. Select the state that you wish to change by typing its name in the name field or selecting the...
	3. Make your proposed changes to the fields other than the name field. And then click Modify to m...

	18.5 Transitions
	FIGURE�18�4 Order of Transitions in a Template
	18.5.1 Creating New State-to-State Transitions in a Template
	To Add a Transition to the Template
	1. Invoke the Transitions window by clicking Transitions or selecting the Edit ‘ Transition menu ...
	2. Define the state the transition is from, and the state the transition is to.
	3. Select a condition to test to determine if the transition is to occur.
	4. You may also specify one or more actions to be executed if the transition occurs. (This is opt...

	18.5.2 Deleting Transitions from a Template
	To Delete a Transition From a Template
	1. Invoke the Transitions window by clicking Transitions or selecting the Edit ‘ Transitions menu...
	2. Define the state the transition is from, and the state the transition is to.
	3. Select the condition that defines when the transition is to occur.
	4. Select <none> for the Action field.
	5. Click Delete to delete the transition.

	18.5.3 Reordering Transitions
	To Change the Order in Which the Transitions Out of a Given State are Evaluated
	1. Invoke the Transitions window by clicking Transition or by selecting the Edit ‘ Transitions me...
	2. Select the state whose transitions you wish to reorder on the From field.
	3. Click Order Transitions to invoke the Order Transitions window.
	4. You can change the order of the transitions out of that state by selecting a transition in the...
	FIGURE�18�5 Reordering State Transition - Move Up
	FIGURE�18�6 Reordering State Transition - Move Down

	18.6 Actions
	TABLE�18�1 Action Menu Items
	FIGURE�18�7 Use of RCL Variables in Mail Action
	18.6.1 Adding Actions at a Transition
	To Add an Action at a Transition
	1. If the Transitions window is not already displayed, invoke it by clicking Transitions or by se...
	2. Select the transition to which the action is to be added by setting the From, To, and Conditio...
	3. Select the appropriate action type from the Action menu.
	a. If you selected MAIL, type in the email address in the Address field and the message in the Me...
	b. If you selected UNIXCMD, fill in the Command field and enter the required arguments for the co...
	c. If you selected CONDITION, select the name of the condition to be executed from the scrolling ...
	FIGURE�18�8 Adding a Condition as an Action at a Transition

	4. Clicking Add inserts this action into the transition.

	18.6.2 Deleting Actions at a Transition
	To Delete the Action That is the Last Action in the List of Actions at a Transition
	1. If the Transitions window is not already displayed, invoke it by clicking Transitions or by se...
	2. Select the transition from which the action is to be deleted by setting the From, To, and Cond...
	3. Select the appropriate action type from the Action menu.
	4. If the action to be deleted is a condition, select the target condition from the scrolling list.
	5. Click Delete.

	18.6.3 Reordering the Actions at a Transition

	18.7 Poll Rates
	TABLE�18�2 Poll Rates �
	18.7.1 Creating New Poll Rates
	To Create a New Poll Rate
	1. Select the Edit ‘ Poll Rates menu option to invoke the Poll Rates window.
	2. Enter a name for your new poll rate and the polling interval (in seconds).
	3. Click Add to load the new poll rate into the MIS.
	FIGURE�18�9 Creating a New Poll Rate

	18.7.2 Modifying a Poll Rate
	To Modify a Poll Rate
	1. Select the Edit ‘ Poll Rates menu option to invoke the Poll Rates window.
	2. Select the poll rate you wish to modify from the tabular display of poll rates.
	3. Enter the new rate (in seconds) in the Rate field.
	4. Click Modify.

	18.8 Modifying the Mapping of Colors to Severities
	FIGURE�18�10 Nerve Centre’s Mapping of Colours to Severities

	18.9 Graphical State Diagram Display
	FIGURE�18�11 Graphical State Diagram Display
	18.9.1 Creating a Template Through the State Diagram Display
	To Use the Graphical Display to Create a Request Template
	1. Select the States (leftmost) icon.
	2. Enter a name and description and select a poll rate and severity for the new state. Select Add.
	3. Select the circle for the Ground state (the “from” state), use the middle mouse button to exte...
	4. To make additional states and transitions, repeat Step�1 through Step�3.
	5. Invoke File ‘ Save As to save the new template.

	18.9.2 Other Tasks in the Graphical Display
	19
	Nerve Center Utilities

	19.1 em_ncimport and em_ncexport
	19.1.1 Options
	19.1.2 Examples
	20
	Request Condition Language

	20.1 Conditions
	20.2 Types of Operands
	20.3 Constants
	TABLE�20�1 RCL Syntax Restraints

	20.4 Variables in a Condition
	20.4.1 Variable Names
	20.4.2 Scope of Variables

	20.5 Data Types
	20.6 System Variables
	TABLE�20�2 System Variables Available to a Condition �

	20.7 Attributes
	20.7.1 Syntax of Attribute Names

	20.8 Operators
	TABLE�20�3 RCL Operator Symbols �
	20.8.1 Logical Operators
	20.8.2 Bitwise Operators
	20.8.3 Precedence and Associativity
	TABLE�20�4 Precedence of Operators �

	20.9 Control Structures
	20.9.1 IF Constructs
	20.9.2 IF ELSE Constructs
	20.9.3 WHILE Constructs
	20.9.4 FOREACH Constructs
	20.9.5 Nested Constructs

	20.10 Timestamp Arithmetic
	20.11 Error Checking
	21
	Using RCL System Variables

	21.1 System Variables
	TABLE�21�1 System Variables Available to a Condition �
	21.1.1 $eventInfo
	TABLE�21�2 perceivedSeverity Values

	21.1.2 $eventOI
	21.1.3 $eventTime
	21.1.4 $eventType
	21.1.5 $messType
	TABLE�21�3 Values of $messType �

	21.1.6 $pollfdn
	21.1.7 $pollFdnSet
	22
	RCL Functions

	22.1 Summary of RCL Built-in Functions
	22.1.1 AlarmLog Functions
	22.1.2 String-Handling Functions
	22.1.3 Value Check Functions
	22.1.4 Name Conversion Functions
	22.1.5 Action Functions
	22.1.6 ASN.1 Conversion Functions
	22.1.7 SunNet Manager RPC Request Functions
	22.1.8 Debugging Function
	22.1.9 Constructed-Type Handling Functions
	22.1.10 Time Functions
	22.1.11 Event-Handling Functions
	22.1.12 Request Control Functions

	22.2 The RCL Functions
	22.2.1 AddressStrToAddress
	22.2.2 Alarm
	TABLE�22�1 Valid Alarm Severities
	22.2.2.1 Alarm Logging and Viewer Fault Status

	22.2.3 AlarmOi
	22.2.4 AlarmStr
	22.2.5 AnyStr
	22.2.6 AppendRdn
	22.2.7 AsnToStr
	22.2.8 CompareLists
	22.2.9 Defined
	22.2.10 Exit
	22.2.11 Exclude
	22.2.12 Extract
	22.2.13 FinalStr
	22.2.14 FirstStr
	22.2.15 GetTimeStamp
	22.2.16 Include
	22.2.17 InitialStr
	22.2.18 IsChoice
	22.2.19 IsList
	22.2.20 IsMember
	22.2.21 Mail
	22.2.22 NameToAddress
	22.2.23 NameToOid
	22.2.24 NumElements
	22.2.25 OiNameToOi
	22.2.26 OiToOiName
	22.2.27 Print
	22.2.28 ReplaceMember
	22.2.29 SendAction
	22.2.30 SendEvent
	22.2.31 SendTrap
	22.2.32 Set
	22.2.33 SnmEventRequest
	TABLE�22�2 Arguments in <EventRequest> �
	TABLE�22�3 Relational Operators in SNM Request Thresholds �
	TABLE�22�4 Data Types for Threshold Operands �
	TABLE�22�5 Mapping of SNM Event Severities �

	22.2.34 SnmKillRequest
	22.2.35 StrToAsn
	22.2.36 StrCat
	22.2.37 Strstr
	22.2.38 StrStrPlus
	22.2.39 Subscribe
	22.2.40 SubscribeFilter
	22.2.40.1 Considerations
	22.2.40.2 Examples

	22.2.41 SubscribeOi
	22.2.42 TrapGenericType
	TABLE�22�6 Standard SNMP Trap Types �

	22.2.43 TrapSpecificType
	22.2.44 Undefine
	22.2.45 Unixcmd
	22.2.46 UnSubscribe
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

