
Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303
U.S.A. 650-960-1300

Part No. 806-7970-10
October 2001, Revision A

Developing C++ Applications

Solstice Enterprise Manager ™

4.1

Please

Recycle

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Solstice, Solstice Enterprise Manager, Forte, and Solaris are trademarks, registered trademarks, or service

marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered

trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture

developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Solstice, Solstice Enterprise Manager, Forte, et Solaris sont des marques de fabrique ou des marques

déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous

licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les

produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents

Preface xxxi

1. Introduction to the Solstice EM C++ Development Environment 1-1

1.1 What You Can Develop in the Solstice EM C++ Development

Environment 1-1

1.2 Solstice EM Network Management Model 1-2

1.3 Solstice EM Programming Model 1-2

1.3.1 Solstice EM Application Program Interface (API) Component 1-2

1.3.2 Data Component 1-3

1.3.3 Graphical User Interface (GUI) Component 1-3

1.4 Overview of the Application Development Process 1-4

1.4.1 Requirements Analysis and High-Level Design 1-4

1.4.2 Low-Level Design 1-13

1.4.3 Implementation 1-19

1.4.4 Unit Testing and Debugging 1-22

1.4.5 Integration 1-22

1.4.6 System Testing 1-22

2. Modeling Managed Objects 2-1

2.1 ISO Management Model 2-1

2.1.1 Managers 2-2
Contents iii

2.1.2 Agents 2-3

2.1.3 Managed Resources 2-3

2.1.4 Managed Objects 2-3

2.1.5 Management Protocols 2-3

2.1.6 Manager-Agent Hierarchy 2-4

2.2 Designing the Object Model 2-5

2.2.1 Defining the Task 2-6

2.2.2 Identifying Managed Object Classes 2-7

2.2.3 Identifying Inheritance Relationships 2-8

2.2.4 Identifying the Characteristics of a Managed Object Class 2-8

2.2.5 Describing the Behavior of Items in the Object Model 2-13

2.2.6 Identifying Containment Relationships 2-14

2.2.7 Grouping Information Into Packages 2-20

2.2.8 Grouping GDMO Definitions Into Documents 2-22

2.3 Abstract Syntax Notation #1 (ASN.1) 2-23

2.3.1 Grouping ASN.1 Syntax Definitions Into Modules 2-23

2.3.2 Defining ASN.1 Types 2-24

2.3.3 Defining ASN.1Values 2-27

2.3.4 Reusing Definitions From Other ASN.1 Modules 2-28

2.4 Assigning Unique Identifiers 2-30

2.4.1 Registering an OID 2-30

2.4.2 Guidelines for Allocating Your Own OIDs 2-32

2.4.3 Notation for OIDs 2-33

2.5 Obtaining GDMO and ASN.1 Specifications for Objects 2-35

2.5.1 Existing GDMO Definitions 2-35

2.5.2 SNMP MIBs 2-36

2.6 Making Your Object Model Available to Solstice EM 2-36

2.6.1 Loading Your Object Model Into the MDR 2-36

2.6.2 Setting Agent Role Behavior of Solstice EM 2-37
iv Developing C++ Applications • October 2001

3. Enabling Applications to Access Managed Objects 3-1

3.1 Connecting to an MIS 3-1

3.1.1 Creating and Initializing an Instance of the Platform Class 3-2

3.1.2 Calling the connect Function of the Platform Class 3-3

3.2 Disconnecting From an MIS 3-4

3.3 Bypassing the MIS to Access Solstice EM Databases 3-5

3.3.1 Getting Information Required for a Database Connection 3-5

3.3.2 Passing Database Information to a Database Application

Development Tool 3-7

3.3.3 Example Database Connection Program 3-8

4. Handling Errors 4-1

4.1 Testing for the Success a Function Call 4-1

4.1.1 Using the Overloaded NOT Operator 4-2

4.1.2 Using the get_error_type Function 4-2

4.2 Providing Error Information to Users 4-3

5. Performing Operations on Managed Objects 5-1

5.1 Management Operations 5-2

5.2 Creating a Managed Object 5-2

5.2.1 Creating and Initializing an Instance of Image 5-3

5.2.2 Activating the Instance of Image 5-4

5.2.3 Verifying if the Managed Object Exists 5-5

5.2.4 Initializing Attributes of the Managed Object 5-5

5.2.5 Adding the Managed Object to the MIS 5-6

5.2.6 Example Object Creation Function 5-7

5.3 Selecting a Managed Object 5-8

5.3.1 Selecting a Managed Object by Specifying its FDN or LDN 5-9

5.3.2 Selecting a Managed Object by Specifying its Nickname 5-10

5.4 Updating an Image Instance 5-14

5.5 Deleting a Managed Object 5-15
Contents v

5.5.1 Removing the Managed Object From the MIS 5-15

5.5.2 Example Object Deletion Function 5-16

5.6 Getting Attribute Values From an Object 5-17

5.7 Setting Attribute Values of an Object 5-19

5.7.1 Setting Attribute Values in the Image Instance 5-19

5.7.2 Updating the MIS With the Changed Values 5-21

5.7.3 Checking If the MIS Has Been Updated 5-21

5.7.4 Real and Imaginary Values in an Image Instance 5-22

5.7.5 Example 5-23

5.8 Performing an Action on an Object 5-23

5.9 Tracking Changes to an Object 5-26

5.9.1 Automatically Tracking Changes to an Object 5-26

5.9.2 Manually Tracking Changes to an Object 5-27

5.10 Retrieving Data From the Metadata Repository 5-27

5.10.1 Selecting the MDR Managed Object 5-28

5.10.2 Updating the Image Instance That Represents the MDR Managed

Object 5-28

5.10.3 Sending the Action Request 5-29

5.11 Simulating an Agent Object 5-30

5.11.1 Containing Managed Objects in the Solstice EM MIS 5-31

5.11.2 Making Read-Only Attributes Modifiable 5-31

5.11.3 Loading GDMO Descriptions Into the MIS 5-32

5.11.4 Creating and Modifying Objects in the MIS 5-32

5.12 Representing MIS Instances Locally in an Application 5-35

6. Performing Management Operations on Object Collections 6-1

6.1 Grouping Managed Objects 6-1

6.2 Creating a Container for an Object Collection 6-2

6.3 Defining the Membership of an Object Collection 6-3

6.3.1 Defining the Membership by Derivation 6-3

6.3.2 Format of a Derivation String 6-5
vi Developing C++ Applications • October 2001

6.3.3 Defining the Membership by Enumeration 6-12

6.4 Tracking Changes to an Object Collection 6-13

6.4.1 Maintaining the Membership of an Object Collection 6-13

6.4.2 Setting the Mode of an Object Collection 6-16

6.5 Accessing All Objects in an Object Collection 6-17

6.5.1 Adding All Objects in an Object Collection to the MIS 6-18

6.5.2 Deleting All Objects in an Object Collection 6-18

6.5.3 Setting Attribute Values of All Objects in an Object Collection

6-19

6.5.4 Performing an Action on an All Objects in an Object Collection

6-20

6.5.5 Setting the Synchronization of an Object Collection 6-21

6.6 Accessing Individual Objects in an Object Collection 6-21

6.7 Obtaining All Object Collections for an Object 6-23

7. Handling Events 7-1

7.1 Event Notifications 7-1

7.2 Processing Information in Event Notifications 7-4

7.2.1 Registering Callback Functions for Event Handling 7-4

7.2.2 Writing Callback Functions for Event Handling 7-6

7.2.3 Controlling Event-Related Updates 7-9

7.3 Scheduling Event Handling 7-11

7.3.1 Scheduling for Applications Without a Graphical User Interface

7-11

7.3.2 Scheduling for Applications With a Graphical User Interface 7-13

7.3.3 Guidelines for Developing Your Own Scheduler 7-15

7.4 Filtering Events 7-16

7.4.1 Selecting Managed Object Classes and Event Types 7-16

7.4.2 Selecting a Subtree of the MIT 7-17

7.4.3 Specifying a Discriminator Construct 7-19

7.5 Simulating an Event 7-20
Contents vii

7.5.1 Simulating an Event Without Using the Solstice EM APIs 7-21

7.5.2 Simulating an Event Programatically 7-21

7.6 Subscribing to Log Record Events 7-23

8. Performing Asynchronous Management Operations 8-1

8.1 Asynchronous and Synchronous Operation 8-1

8.2 Specifying Asynchronous Operations 8-2

8.2.1 Interactions With the MIS 8-3

8.2.2 Asynchronous Operations on Managed Objects 8-3

8.2.3 Asynchronous Operations on Object Collections 8-4

8.2.4 Asynchronous CMIS Operations on Object Collections 8-5

8.3 Handling Responses From an Asynchronous Operation 8-11

8.3.1 Registering a Callback Function for the Completion of an

Asynchronous Operation 8-11

8.3.2 Registering a Callback Function for Handling Responses From

Managed Objects 8-12

8.3.3 Writing Callback Functions for Asynchronous Operations 8-13

8.3.4 Scheduling Response Handling 8-20

8.3.5 Adding a Callback to the Scheduler Queue 8-22

8.4 Verifying and Changing the Status of an Asynchronous Operation 8-23

8.4.1 Verifying the Result of an Asynchronous Operation 8-23

8.4.2 Cancelling an Asynchronous Operation 8-24

8.4.3 Changing the Timeout of an Asynchronous Operation 8-25

9. Encoding and Decoding Complex ASN.1 Values 9-1

9.1 Introduction to the Morf Class 9-1

9.2 Creating Complex ASN.1 Values 9-2

9.2.1 Creating a Morf Instance From String Data 9-2

9.2.2 Creating Simple Morf Instances 9-5

9.2.3 Selecting the Type for a CHOICE Value 9-6

9.2.4 Creating a Morf Instance for ASN.1 ANY Values 9-7
viii Developing C++ Applications • October 2001

9.2.5 Creating Complex Morf Instances From Other Morf Instances 9-8

9.3 Parsing Complex ASN.1 Values 9-9

9.3.1 Structure of Morf Instances 9-10

9.3.2 Overview of Functions for Parsing Morf Instances 9-11

9.3.3 Parsing CHOICE Values 9-12

9.3.4 Parsing List Values 9-13

9.3.5 Getting Objects Associated With a Morf Instance 9-15

9.3.6 Getting Metainformation About the ASN.1 Type of a Morf
Instance 9-16

9.3.7 Example of Parsing a Morf Instance 9-23

9.4 Decoding Complex ASN.1 Values 9-24

9.4.1 Getting a String Representation of a Morf Instance 9-25

9.4.2 Extracting a Value in a Morf Instance as a New Morf Instance

9-27

9.4.3 Getting the Value Assigned to a Morf Instance 9-28

9.4.4 Getting Scalar Values Assigned to a Morf Instance 9-29

9.5 Using the MorfBuilder Class 9-32

9.5.1 Constructing a MorfBuilder Instance 9-33

9.5.2 Adding Data to a MorfBuilder Instance 9-33

9.5.3 Selecting a Syntax for CHOICE Values 9-35

9.5.4 Setting a Navigation Type for SEQUENCE Values 9-37

9.5.5 Validating the Data in a MorfBuilder Instance 9-38

9.5.6 Assembling MorfBuilder Data Into a Single Morf Instance 9-39

10. Developing Object Behaviors 10-1

10.1 ODT Overview 10-2

10.1.1 Supporting Functions 10-2

10.1.2 Object Development Components 10-3

10.2 Object Interfaces 10-3

10.2.1 Object Behavior Interface 10-4

10.2.2 Object Services API 10-4
Contents ix

10.3 Object Development Overview 10-5

10.3.1 Possible Errors 10-6

10.3.2 Sanity Check Procedure 10-6

10.4 Object Code Generator Utility 10-8

10.4.1 Generated Code Interfaces 10-9

10.4.2 Code Generation Components 10-10

10.4.3 Using the Object Code Generator Utility 10-12

10.4.4 Configuring the Object Code Generator Utility 10-13

10.4.5 How Filter Attributes Affect Code Generation 10-13

10.5 Implementing GDMO Specified Object Behavior 10-14

10.5.1 MIS Object Modeling Concepts 10-14

10.5.2 Asynchronous Interface Behavior 10-15

10.5.3 Sub Operations: subfetch , subread , subwrite , substore
10-21

10.5.4 Propagation of Errors 10-22

10.5.5 Serialization of Object Requests 10-25

10.6 Debugging Objects 10-26

10.6.1 Process 10-26

10.6.2 Dynamic Loading in Solstice EM 10-27

10.6.3 ASN.1 and GDMO Debugging 10-28

10.6.4 Printing ASN.1 Values in Human-Readable Form 10-28

10.6.5 Debugging Flags 10-29

10.7 Generated Files 10-29

10.7.1 Makefile (Makefile. className) 10-30

10.7.2 Readme File (README.className) 10-30

10.7.3 User Header File (className_user.odt.hh) 10-30

10.7.4 PMI Client Create Program for Object Instantiation

(pmi_ className.cc) 10-31

10.7.5 User Code File (className_user.odt.cc) 10-31

10.7.6 Dynamic Loading File (className.load) 10-32

10.7.7 Dynamic Unloading File (className.unload) 10-32
x Developing C++ Applications • October 2001

10.8 TRY Exception Macros 10-32

10.8.1 Overview 10-32

10.8.2 Code Structure 10-33

10.8.3 Code Examples 10-33

10.9 Object Development Examples 10-34

10.9.1 Compiling All Examples 10-34

10.9.2 cellSample 10-35

10.9.3 demoPing 10-36

10.9.4 demoregistry 10-42

10.9.5 demoServer 10-47

10.9.6 diskInfo 10-48

10.10 Object Development Scenario Using Chai Object 10-49

10.10.1 Creating Your Own Object Class 10-49

10.10.2 Debugging Flags 10-52

10.10.3 Sample Behavior Implementation 10-52

10.10.4 chai Object Class Definitions 10-54

10.10.5 Sample PMI Program to Create a New chai Object Instance 10-58

10.10.6 Example Generated Code in .cc File 10-62

10.10.7 Example Generated Code in .hh File 10-82

11. Writing Management Protocol Adaptors (MPAs) 11-1

11.1 Review of MIS Architecture 11-2

11.2 Initializing Management Protocol Adaptors and Protocol Driver

Modules 11-4

11.2.1 Services Access Points (SAPs) 11-4

11.2.2 Initializing a Management Protocol Adaptor 11-6

11.2.3 Initializing a Protocol Driver Module 11-9

11.3 Routing Messages 11-12

11.3.1 How Messages are Routed to the Adaptors 11-12

11.3.2 MPA and PDM Addresses 11-14

11.3.3 FDN Table Configuration Options 11-17
Contents xi

11.3.4 Source and Destination Fields in the Message 11-18

11.4 MPA/PDM Request Management 11-19

11.4.1 Asynchronous Request Code Specifics 11-20

11.4.2 Validating Requests 11-22

11.4.3 Matching Requests to Responses 11-22

11.5 Timer Management 11-23

11.5.1 Timer Management Interface 11-23

11.5.2 Stopping a Timer 11-26

11.6 File Descriptor Management 11-26

11.6.1 Asynchronous File I/O 11-26

11.6.2 Example of a Read Callback Implementation 11-27

11.7 Notifications 11-30

11.7.1 Creating a Notification 11-31

11.8 Sample MPA/PDM Source Code 11-33

11.8.1 Files and Configuration 11-33

11.9 Developing an Adaptor 11-35

11.9.1 Defining the Management Information Model 11-35

11.9.2 The Request Management Interface 11-36

11.9.3 The Protocol Code 11-36

12. Controlling Access to Applications and Data 12-1

12.1 Access Control Levels 12-1

12.1.1 Application-Level Access Control 12-2

12.1.2 Application-Feature-Level Access Control 12-2

12.1.3 Managed-Object-Level Access Control 12-3

12.1.4 Event Notification Access Control 12-3

12.1.5 Management Protocol Adapter (MPA) Access Control 12-3

12.2 Enforcing Predefined Access Control Rules 12-4

12.2.1 Defining Access Control Rules 12-4

12.2.2 Enforcing Application-Level and Application-Feature-Level

Access Control 12-6
xii Developing C++ Applications • October 2001

12.2.3 Handling Denial of Access to Managed Objects 12-8

12.3 Modifying Access Control Information 12-8

12.3.1 Activating Access Control for the Solstice EM Platform 12-9

12.3.2 Adding a User to a Privilege Group 12-10

12.3.3 Listing All Application Features Under Access Control 12-16

12.3.4 Adding Applications and Application Features to a Privilege

Group 12-18

12.3.5 Defining a Target 12-18

12.3.6 Defining a Security Rule 12-26

12.3.7 Handling Access Control Errors 12-31

12.4 Getting Access Control Defaults 12-32

12.4.1 Getting the Default Enforcement Action for All Management

Operations 12-33

12.4.2 Getting the Default Enforcement Action for All Events 12-33

12.4.3 Getting a List of Trusted Hosts 12-34

12.4.4 Getting the Access Control Denial Granularity 12-35

12.4.5 Getting the Access Control Domain 12-36

12.5 Keeping Event Notifications Private 12-36

12.5.1 Assigning an Owner to a Log 12-36

12.5.2 Enabling Access Control for the Log Server 12-39

12.6 Making MPAs Secure 12-40

12.6.1 Subscribing to Access Control Events 12-40

12.6.2 Creating and Initializing an Instance of the ACE Class 12-42

12.6.3 Processing Information in Access Control Events 12-43

12.6.4 Implementing a Class Derived From AuxServerUtils 12-44

12.6.5 Calling Access Control Decision and Enforcement Functions

12-44

13. Optimizing Performance 13-1

13.1 General Guidelines for Optimizing Performance 13-1

13.2 Selectively Activating Image Instances 13-2
Contents xiii

13.3 Filtering Events 13-3

13.4 Writing Your Own Classes to Represent Managed Objects 13-3

13.5 Using the Low-Level PMI 13-3

14. Guidelines for Compiling and Linking Applications 14-1

14.1 Compiler Version Requirements 14-1

14.2 Header Files and Libraries 14-1

14.3 Options for Locating Header Files and Libraries 14-7

14.4 Compilation Flags 14-8

15. Troubleshooting 15-1

15.1 Testing and Debugging Programs 15-1

15.1.1 Verifying GDMO and ASN.1 Syntax and Logic 15-2

15.1.2 Trapping Errors in PMI Function Calls 15-2

15.1.3 Trapping Programming Logic Errors 15-2

15.1.4 Monitoring Protocol Translation by an MPA 15-3

15.1.5 Reloading GDMO Documents 15-4

15.2 Monitoring Communications With the MIS 15-7

15.2.1 Starting em_debug 15-7

15.2.2 Interpreting em_debug Messages 15-8

15.2.3 Full List of em_debug Message Types 15-15

15.3 Avoiding Common Problems 15-19

15.3.1 Verifying Attribute and Class Names 15-19

15.3.2 Creating Automatically Named Managed Object Instances

Appropriately 15-20

15.3.3 Testing That Scopes and Filters are Supported 15-20

15.4 Example Troubleshooting Scenarios 15-23

15.4.1 Failure to Set an Attribute Value 15-23

15.4.2 Failure to Process Notifications 15-25

16. Integrating Applications With Solstice EM 16-1
xiv Developing C++ Applications • October 2001

16.1 Adding an Application to a Tools Window 16-1

16.2 Extending the Tools Menu of a Solstice EM Tool 16-4

16.3 Customizing the Network Views Tool 16-6

16.3.1 Extending the Actions Menu of the Network Views Tool 16-6

16.3.2 Setting the Activation of a Topology Type 16-9

17. Writing RPC Agents for Solstice EM 17-1

17.1 Manager-Agent Model 17-1

17.2 Types of Agents 17-2

17.3 Steps for Writing an Agent 17-3

17.4 Solstice EM Integration 17-4

17.4.1 Installing the Agent 17-4

17.4.2 Updating the Solstice EM MIS Database 17-5

A. Solstice EM C++ Source Code Examples A-1

A.1 Guidelines for Compiling the Examples A-1

A.2 Satellite Example A-2

A.3 High-Level PMI Examples A-3

A.3.1 Managed Object Examples A-3

A.3.2 Object Collection Examples A-5

A.3.3 Event Handling Examples A-5

A.3.4 Log Record Handling Examples A-6

A.3.5 Network Topology Examples A-7

A.3.6 FDN Translation Examples A-7

A.3.7 Graphical Application Examples A-7

A.3.8 MDR Action Examples A-8

A.3.9 Encoding and Decoding Examples A-8

A.4 Scenario Examples A-8

A.5 Security Examples A-9

A.5.1 Access Control API Examples A-9

A.5.2 Access Control Engine API Examples A-9
Contents xv

A.5.3 Password Request Example A-10

A.5.4 Application-Feature-Level Example A-10

A.6 Low-Level PMI Examples A-10

A.7 Object Modeling Example A-11

A.8 Object Development Examples A-11

A.9 Miscellaneous Examples A-12

B. Standards Reference and Further Reading B-1

B.1 Standards Reference B-1

B.2 Terminology References B-3

B.3 Further Reading B-5

C. GDMO Templates C-1

C.1 Conventions Used in the Definitions C-1

C.2 Managed Object Class Template C-2

C.2.1 Managed Object Class Template Format C-2

C.2.2 Managed Object Class Template Constructs C-3

C.3 Name Binding Template C-4

C.3.1 Name Binding Template Format C-4

C.3.2 Name Binding Template Constructs C-5

C.4 Package Template C-7

C.4.1 Package Template Format C-7

C.4.2 Package Template Constructs C-8

C.4.3 PropertyList Supporting Production C-9

C.5 Attribute Template C-11

C.5.1 Attribute Template Format C-12

C.5.2 Attribute Template Constructs C-12

C.6 Action Template C-13

C.6.1 Action Template Format C-14

C.6.2 Action Template Constructs C-14

C.7 Notification Template C-15
xvi Developing C++ Applications • October 2001

C.7.1 Notification Template Format C-16

C.7.2 Notification Template Constructs C-16

C.8 Parameter Template C-18

C.8.1 Parameter Template Format C-18

C.8.2 Parameter Template Constructs C-19

C.9 Attribute Group Template C-20

C.9.1 Attribute Group Template Format C-20

C.9.2 Attribute Group Template Constructs C-21

C.10 Behaviour Template C-22

C.10.1 Behaviour Template Format C-22

C.10.2 Behaviour Template Constructs C-22

Index Index-1
Contents xvii

xviii Developing C++ Applications • October 2001

Tables

TABLE 2-1 Attributes for the satellite Managed Object Class 2-9

TABLE 2-2 Attributes for the channel Managed Object Class 2-10

TABLE 2-3 Attributes for the dish Managed Object Class 2-10

TABLE 2-4 Notifications for the Satellite Example 2-12

TABLE 2-5 ASN.1 Universal Types 2-26

TABLE 3-1 Functions for Getting Information About a Database 3-7

TABLE 5-1 Functions for Getting Attribute Values From an Image Instance 5-17

TABLE 5-2 Functions for Setting Attribute Values in an Image Instance 5-19

TABLE 5-3 Operations for Setting Attributes 5-21

TABLE 5-4 Functions for Getting the Value Last Set by an Application 5-22

TABLE 5-5 Functions for Sending an Action Request to a Managed Object 5-24

TABLE 5-6 Actions for Retrieving Metadata From the MDR 5-29

TABLE 5-7 Variable Parts of the Format of an em_objop Script 5-33

TABLE 6-1 Scope Values in a Derivation String 6-6

TABLE 6-2 Filter Operator Keywords 6-9

TABLE 6-3 Comparison Keywords in a Filter Without Substrings 6-10

TABLE 6-4 Part Keywords in a Substring 6-11

TABLE 6-5 Functions for Setting Attribute Values in an Object Collection 6-19

TABLE 7-1 Event Types Defined in Recommendation ITU-T X.721/ISO-10165-2 7-3
xix

TABLE 7-2 Event Types Recognized by the when Function 7-5

TABLE 7-3 Functions for Extracting Information from Event Notifications 7-7

TABLE 7-4 Scope Values in a Subtree for the replace_discriminator Function 7-18

TABLE 8-1 Synchronous and Asynchronous Functions of the Platform Class 8-3

TABLE 8-2 Synchronous and Asynchronous Functions of the Image Class 8-3

TABLE 8-3 Synchronous and Asynchronous Functions of the Album Class 8-4

TABLE 8-4 CMIS Operations Supported by the Album Class 8-5

TABLE 8-5 Functions of the Album Class for Requesting CMIS Operations 8-7

TABLE 8-6 Operations for the set_operator Function 8-9

TABLE 8-7 Information Available From All Responses 8-17

TABLE 8-8 Information Available Only From Action Replies 8-17

TABLE 9-1 Functions for Assigning Scalar Values to a Morf Instance 9-5

TABLE 9-2 Functions for Parsing Morf Instances 9-11

TABLE 9-3 Functions of the Asn1Type Class For Parsing Morf Instances 9-12

TABLE 9-4 Functions for Retrieving Information About the Type Instance 9-15

TABLE 9-5 Default String Representation of Values by Type in a Morf Instance 9-25

TABLE 9-6 Identifiers for Format Bits Arguments 9-27

TABLE 9-7 Functions for Extracting Numeric Scalars Into Numeric Types 9-29

TABLE 9-8 Functions of the Asn1Value Class For Decoding Data 9-30

TABLE 9-9 Constructors of the MorfBuilder Class 9-33

TABLE 10-1 OCG Command Line Options 10-12

TABLE 10-2 Object Development Tool Configuration File Parameters 10-13

TABLE 10-3 Behavior Abstractions 10-14

TABLE 10-4 Interfaces for CMIS Requests 10-16

TABLE 10-5 Order of CMIS Request Interfaces 10-16

TABLE 10-6 Attribute Class Helper Methods 10-30

TABLE 10-7 Action Class Helper Methods 10-31

TABLE 10-8 Object Development Examples 10-34
xx Developing C++ Applications • October 2001

TABLE 11-1 Message Services 11-5

TABLE 11-2 MIS and MPA/PDM Connections 11-20

TABLE 11-3 MPA Example Files 11-33

TABLE 12-1 Predefined Privilege Groups 12-10

TABLE 12-2 Predefined Targets 12-19

TABLE 12-3 Operations for a Target 12-21

TABLE 12-4 Scope Values in the Constructor of ACScope 12-24

TABLE 12-5 Predefined Security Rules 12-26

TABLE 12-6 Enforcement Actions 12-30

TABLE 12-7 Access Control Denial Granularity Levels 12-35

TABLE 14-1 Header Files and Libraries for the Solstice EM Schedulers 14-2

TABLE 14-2 Header Files and Libraries for the Solstice EM API Classes 14-2

TABLE 14-3 Compilation Flags for Applications Developed With the Solstice EM C++ APIs 14-8

TABLE 15-1 Commonly Used em_debug Message Types 15-8

TABLE 15-2 ASN.1 Data Types and Tag Numbers 15-10

TABLE 15-3 em_debug Message Types 15-15

TABLE 16-1 Configuration Files for Solstice EM Tools Windows 16-2

TABLE 16-2 Variable Parts in a Configuration File Entry for a Tools Window 16-2

TABLE 16-3 Configuration Files for Solstice EM Tools 16-4

TABLE 16-4 Variable Parts in a Configuration File Entry for a Solstice EM Tool 16-5

TABLE 16-5 Variable Parts in a Configuration File Entry for the Actions Menu 16-7

TABLE 16-6 Variable Parts of the Configuration File Entry That Sets Activations 16-9

TABLE A-1 Subdirectories of the Satellite Example Directory A-2

TABLE A-2 Managed Object Examples for the High-Level PMI A-3

TABLE A-3 Object Collection Examples for the High-Level PMI A-5

TABLE A-4 Event Handling Examples for the High-Level PMI A-5

TABLE A-5 Log Record Handling Examples for the High-Level PMI A-6

TABLE A-6 Network Topology Examples for the High-Level PMI A-7

TABLE A-7 FDN Translation Examples for the High-Level PMI A-7
Tables xxi

TABLE A-8 Scenario Examples A-8

TABLE A-9 Access Control API Examples A-9

TABLE 17-1 Access Control Engine API Examples A-9

TABLE A-10 Low-Level PMI Example Programs A-10

TABLE A-11 Object Development Examples A-11

TABLE A-12 Miscellaneous API Examples A-12

TABLE B-1 ISO Specifications for Terminology Definitions B-3

TABLE C-1 Managed Object Class Template Constructs C-3

TABLE C-2 Name Binding Template Constructs C-5

TABLE C-3 Package Template Constructs C-8

TABLE C-4 propertyList Supporting Production Definitions C-10

TABLE C-5 Attribute Template Constructs C-12

TABLE C-6 Action Template Constructs C-14

TABLE C-7 Notification Template Constructs C-16

TABLE C-8 Parameter Template Constructs C-19

TABLE C-9 Attribute Group Template Constructs C-21

TABLE C-10 Behaviour Template Constructs C-22
xxii Developing C++ Applications • October 2001

Code Samples

CODE EXAMPLE 2-1 GDMO Definition of the dish Managed Object Class 2-7

CODE EXAMPLE 2-2 GDMO Definition of the censureButton Attribute 2-11

CODE EXAMPLE 2-3 ASN.1 Syntax Definition of the ButtonPress Data Type 2-11

CODE EXAMPLE 2-4 GDMO Specification of the objectCreation Event 2-12

CODE EXAMPLE 2-5 Behavior of the packetRetries Attribute 2-13

CODE EXAMPLE 2-6 GDMO Definition of the satellite-system Name Binding 2-16

CODE EXAMPLE 2-7 GDMO Definition of the Example MIT 2-17

CODE EXAMPLE 2-8 GDMO Definition of the dishPackage Package 2-21

CODE EXAMPLE 2-9 Naming a GDMO Document 2-22

CODE EXAMPLE 2-10 Beginning and End of an ASN.1 Module 2-24

CODE EXAMPLE 2-11 Definition of the CurrentLogSize ASN.1 Type 2-25

CODE EXAMPLE 2-12 Definition of the SatelliteData ASN.1 Type 2-25

CODE EXAMPLE 2-13 Definition of the SatelliteSeq ASN.1 Type 2-25

CODE EXAMPLE 2-14 Specifying a Range of Allowed Values for an ASN.1 Type 2-27

CODE EXAMPLE 2-15 Defining an ASN.1 Value 2-27

CODE EXAMPLE 2-16 Importing ASN.1 Definitions 2-29

CODE EXAMPLE 2-17 Exporting ASN.1 Definitions 2-29

CODE EXAMPLE 2-18 OIDs for Branches of the Subtree in the Satellite Example 2-32

CODE EXAMPLE 2-19 OIDs for the Satellite Example 2-32
xxiii

CODE EXAMPLE 2-20 Labelling an OID 2-34

CODE EXAMPLE 2-21 Using an OID Label in an OID Assignment 2-34

CODE EXAMPLE 3-1 Creating and Initializing a Platform Instance 3-2

CODE EXAMPLE 3-2 Calling the connect Function 3-3

CODE EXAMPLE 3-3 Calling the disconnect Function 3-4

CODE EXAMPLE 3-4 Creating and Initializing an Instance of the EMDBConnectInfo Class 3-6

CODE EXAMPLE 3-5 Connecting to a Solstice EM Database 3-8

CODE EXAMPLE 3-6 Getting Information Directly From a Solstice EM Database 3-8

CODE EXAMPLE 4-1 Using the Overloaded NOT Operator for Error Checking 4-2

CODE EXAMPLE 4-2 Using the get_error_type Function for Error Checking 4-3

CODE EXAMPLE 5-1 Creating and Initializing an Image Instance 5-3

CODE EXAMPLE 5-2 Activating an Image Instance 5-4

CODE EXAMPLE 5-3 Verifying if a Managed Object Exists 5-5

CODE EXAMPLE 5-4 Initializing Managed Object Attributes 5-6

CODE EXAMPLE 5-5 Adding a Managed Object to an MIS 5-7

CODE EXAMPLE 5-6 Example Object Creation Function 5-7

CODE EXAMPLE 5-7 Selecting a Managed Object by Specifying its FDN 5-9

CODE EXAMPLE 5-8 Mappings Between FDNs and Nicknames 5-12

CODE EXAMPLE 5-9 Getting the Image Instance Associated With a Nickname 5-13

CODE EXAMPLE 5-10 Updating an Image Instance 5-14

CODE EXAMPLE 5-11 Removing a Managed Object from the MIS 5-15

CODE EXAMPLE 5-12 Example Object Deletion Function 5-16

CODE EXAMPLE 5-13 Getting Attribute Values 5-18

CODE EXAMPLE 5-14 Setting an Attribute Value 5-23

CODE EXAMPLE 5-15 Sending an Action Request 5-24

CODE EXAMPLE 5-16 GDMO Specification of the topoNodeGetByName Action 5-25

CODE EXAMPLE 5-17 ASN.1 Definitions of Data Types Used by topoNodeGetByName 5-25

CODE EXAMPLE 5-18 Setting the TACKMODE Property of an Image Instance 5-26
xxiv Developing C++ Applications • October 2001

CODE EXAMPLE 5-19 Selecting the MDR Managed Object 5-28

CODE EXAMPLE 5-20 Updating the Image Instance that Represents the MDR 5-29

CODE EXAMPLE 5-21 Sending an Action Request 5-30

CODE EXAMPLE 5-22 Name Binding Clause for Instantiation Under system 5-31

CODE EXAMPLE 5-23 em_objop Script for Creating an Object 5-34

CODE EXAMPLE 5-24 em_objop Script for Setting an Attribute Value 5-34

CODE EXAMPLE 5-25 em_objop Script for Deleting an Object 5-35

CODE EXAMPLE 5-26 em_objop Script for Deriving an Album Instance 5-35

CODE EXAMPLE 5-27 C++ Representation of Managed Object Classes 5-36

CODE EXAMPLE 6-1 Creating and Initializing an Album Instance 6-2

CODE EXAMPLE 6-2 Setting a Derivation String 6-4

CODE EXAMPLE 6-3 Starting a Derivation 6-5

CODE EXAMPLE 6-4 Selecting All log Objects 6-11

CODE EXAMPLE 6-5 Selecting All Enabled Instances of log 6-11

CODE EXAMPLE 6-6 Selecting all Objects That are not Instances of log 6-12

CODE EXAMPLE 6-7 Equivalent Derivation Strings 6-12

CODE EXAMPLE 6-8 Setting the TACKMODE Property of an Album Instance 6-14

CODE EXAMPLE 6-9 Using Callback Functions With an Object Collection 6-15

CODE EXAMPLE 6-10 Setting the Mode of an Object Collection 6-17

CODE EXAMPLE 6-11 Retrieving Objects From an Object Collection 6-22

CODE EXAMPLE 6-12 Obtaining all Object Collections for an Object 6-23

CODE EXAMPLE 7-1 Specification of Event Types Supported by a Managed Object Class 7-2

CODE EXAMPLE 7-2 GDMO Specification of the objectCreation Event 7-2

CODE EXAMPLE 7-3 Registering Callback Functions 7-6

CODE EXAMPLE 7-4 Callback Function 7-8

CODE EXAMPLE 7-5 Tracking Changes From Within a Callback 7-10

CODE EXAMPLE 7-6 Calling the dispatch_recursive Function 7-12

CODE EXAMPLE 7-7 Calling the dispatch_main_loop Function 7-12
Code Samples xxv

CODE EXAMPLE 7-8 Contents of the dispatch_main_loop Function 7-13

CODE EXAMPLE 7-9 Initializing and Activating the xtsched Scheduler 7-14

CODE EXAMPLE 7-10 Disabling and Enabling the Processing of X Events 7-15

CODE EXAMPLE 7-11 Selecting Managed Object Classes and Event Types 7-16

CODE EXAMPLE 7-12 Selecting a Subtree of the MIT 7-18

CODE EXAMPLE 7-13 Specifying a Discriminator Construct 7-20

CODE EXAMPLE 7-14 Simulating an Event Programatically 7-22

CODE EXAMPLE 7-15 Subscribing to Log Record Events 7-23

CODE EXAMPLE 8-1 Selecting Managed Objects for a CMIS Operation 8-6

CODE EXAMPLE 8-2 Requesting an Asynchronous CMIS M-SET Operation 8-9

CODE EXAMPLE 8-3 Registering a Callback for an Asynchronous Operation 8-12

CODE EXAMPLE 8-4 Registering a Callback Function for Response Handling 8-13

CODE EXAMPLE 8-5 Callback for Completion of an Asynchronous Operation 8-14

CODE EXAMPLE 8-6 Correct Use of Data Passed by the Scheduler 8-16

CODE EXAMPLE 8-7 Incorrect Use of Data Passed by the Scheduler 8-16

CODE EXAMPLE 8-8 Callback for Handling Responses From Managed Objects 8-18

CODE EXAMPLE 8-9 Scheduling Nonblocking Asynchronous Response Handling 8-21

CODE EXAMPLE 8-10 Scheduling Blocking Asynchronous Response Handling 8-22

CODE EXAMPLE 8-11 Verifying the Result of an Asynchronous Operation 8-24

CODE EXAMPLE 8-12 Changing the Timeout of an Asynchronous Operation 8-25

CODE EXAMPLE 9-1 ASN.1 Syntax of DestructSet 9-3

CODE EXAMPLE 9-2 Constructing a Morf From a String 9-4

CODE EXAMPLE 9-3 Selecting the Type for a CHOICE Value 9-6

CODE EXAMPLE 9-4 ASN.1 Syntax of AttributeValueAssertion 9-7

CODE EXAMPLE 9-5 Assigning a Value to an Instance of the ASN.1 ANY Type 9-7

CODE EXAMPLE 9-6 Extracting Data From a CHOICE Value 9-12

CODE EXAMPLE 9-7 Using a Queue to Parse a List 9-14

CODE EXAMPLE 9-8 Obtaining BIT STRING and ENUMERATED Identifiers 9-17
xxvi Developing C++ Applications • October 2001

CODE EXAMPLE 9-9 Obtaining the Range Limits for a Value 9-19

CODE EXAMPLE 9-10 Obtaining the Size Constraints of a Value 9-22

CODE EXAMPLE 9-11 Sample Function for Parsing a Morf Instance 9-23

CODE EXAMPLE 9-12 ASN.1 Type Definition of the GeoLocation Type 9-25

CODE EXAMPLE 9-13 Default String Representation of a GeoLocation Value 9-26

CODE EXAMPLE 9-14 Using Navigation Strings With the extract Function 9-28

CODE EXAMPLE 9-15 Decoding a Morf Instance Directly Into an Oid Instance 9-31

CODE EXAMPLE 9-16 Using set to Update a MorfBuilder Instance 9-34

CODE EXAMPLE 9-17 Selecting a Syntax For a CHOICE Value 9-36

CODE EXAMPLE 9-18 Using get_prop and set_prop 9-37

CODE EXAMPLE 12-1 em_accesscmd Script 12-5

CODE EXAMPLE 12-2 Controlling Application- and Application-Feature-Level Access 12-7

CODE EXAMPLE 12-3 Activating Access Control for the Solstice EM Platform 12-9

CODE EXAMPLE 12-4 Creating a Privilege Group 12-12

CODE EXAMPLE 12-5 Creating a User 12-12

CODE EXAMPLE 12-6 Creating an Access Control List 12-13

CODE EXAMPLE 12-7 Adding a User and Storing an Access Control List 12-14

CODE EXAMPLE 12-8 Adding a User to a Privilege Group 12-15

CODE EXAMPLE 12-9 Listing Applications Under Application-Feature-Level Access Control 12-16

CODE EXAMPLE 12-10 Listing Application Features Under Access Control 12-17

CODE EXAMPLE 12-11 Creating a Target 12-20

CODE EXAMPLE 12-12 Defining the List of Operations for a Target 12-22

CODE EXAMPLE 12-13 Storing a Target Persistently in the MIS 12-25

CODE EXAMPLE 12-14 Creating a Security Rule 12-28

CODE EXAMPLE 12-15 Adding a Privilege Group to a Security Rule 12-28

CODE EXAMPLE 12-16 Adding a Target to a Security Rule 12-29

CODE EXAMPLE 12-17 Defining the Enforcement Action of a Security Rule 12-30

CODE EXAMPLE 12-18 Storing a Security Rule 12-31
Code Samples xxvii

CODE EXAMPLE 12-19 Error Handling Example 12-32

CODE EXAMPLE 12-20 Getting Default Access Control for All Operations 12-33

CODE EXAMPLE 12-21 Getting the Default Enforcement Action for All Events 12-34

CODE EXAMPLE 12-22 Getting a List of Trusted Hosts 12-34

CODE EXAMPLE 12-23 Getting the Access Control Denial Granularity 12-35

CODE EXAMPLE 12-24 Getting the Access Control Domain 12-36

CODE EXAMPLE 12-25 Assigning an Owner to a Log 12-38

CODE EXAMPLE 12-26 Subscribing to Access Control Events 12-41

CODE EXAMPLE 12-27 Creating and Initializing an Instance of the ACE Class 12-42

CODE EXAMPLE 12-28 Registering a Callback for Access Control Events 12-44

CODE EXAMPLE 13-1 Selectively Activating an Image Instance 13-2

CODE EXAMPLE 13-2 Getting Information From an Object Collection 13-4

CODE EXAMPLE 13-3 Callback for Handling Responses to a Get Request 13-5

CODE EXAMPLE 15-1 Sample em_debug Output 15-11

CODE EXAMPLE 15-2 Replacing a Scope and a Filter With Multiple Derivations 15-21

CODE EXAMPLE 16-1 Network Tools Window Configuration File Entry 16-3

CODE EXAMPLE 16-2 Configuration File Entry for Extending the Tools Menu 16-5

CODE EXAMPLE 16-3 Extending the Actions Menu of the Network Views Tool 16-8

CODE EXAMPLE 16-4 Setting the Activations of Topology Types 16-10
xxviii Developing C++ Applications • October 2001

Figures

FIGURE 1-1 Architecture of the Solstice EM C++ APIs 1-14

FIGURE 2-1 ISO Network Management Model 2-2

FIGURE 2-2 Manager-Agent Hierarchy 2-4

FIGURE 2-3 Example Inheritance Tree 2-8

FIGURE 2-4 Example MIT 2-14

FIGURE 2-5 Containment Tree and Object Naming 2-19

FIGURE 2-6 ISO Registration Tree 2-31

FIGURE 6-1 Scope Values 6-7

FIGURE 6-2 Combination of a Scope and a Filter 6-8

FIGURE 10-1 ODT components 10-3

FIGURE 10-2 ODT Framework, with Generated Code Interface Highlighted 10-9

FIGURE 10-3 Code Generation Components 10-10

FIGURE 10-4 Sequence Diagram for M_GET operation 10-18

FIGURE 10-5 Sequence Diagram for M_ACTION 10-19

FIGURE 10-6 Sequence Diagram for M_SET 10-20

FIGURE 11-1 MIS Architecture 11-3

FIGURE 11-2 Potential Real World Configuration 11-19
Figures xxix

xxx Developing C++ Applications • October 2001

Preface

Developing C++ Applications explains how to use the C++ APIs of Solstice™

Enterprise Manager™ (Solstice EM) to develop network management applications.

Use this book with the C++ API Reference.

Who Should Use This Book

This book is intended for software developers who are using Solstice EM to develop

network management applications. Knowledge of C++, object-oriented design, and

object-oriented programming are assumed.

This book assumes that you are familiar with the principles and concepts of network

management and that you have had some experience managing or developing

applications to manage a network.

Before You Read This Book

If you have just acquired the Solstice EM product, read the Customizing Guide for an

overview of the Solstice EM product functions, features, and components. Read the

Release Notes for information on installing and starting the product, compatibility

issues, minimum hardware and software requirements, known problems, an

inventory of the product components, and late breaking information.
xxxi

How This Book Is Organized

This book is organized as follows:

Chapter 1 “Introduction to the Solstice EM C++ Development Environment”
introduces the C++ APIs of Solstice EM. This chapter explains which types of

applications you can develop with the C++ APIs of Solstice EM. This chapter also

introduces the Solstice EM network management and programming models, and

provides an overview of the application development process.

Chapter 2 “Modeling Managed Objects” explains how to write an object model by

using Guidelines for the Definition of Managed Objects (GDMO) and Abstract

Syntax Notation One (ASN.1). This chapter introduces the ISO management model

on which Solstice EM is based. In addition, this chapter provides detailed

instructions on how to fill out GDMO templates and write ASN.1 module

specifications. This chapter also explains how to make your object model available to

Solstice EM.

Chapter 3 “Enabling Applications to Access Managed Objects” explains how to

connect an application to the management information server (MIS) to enable the

application to access managed objects. This chapter also explains how to bypass the

MIS to access Solstice EM databases directly.

Chapter 4 “Handling Errors” explains how to handle errors in function calls by

using the operators and functions that Solstice EM provides for error handling.

Chapter 5 “Performing Operations on Managed Objects” explains how to perform

management operations on individual managed objects to control and monitor

managed resources in a network. This chapter also explains how to simulate an

agent object.

Chapter 6 “Performing Management Operations on Object Collections” explains

how to perform bulk operations on managed objects by selecting multiple managed

objects to be the subject of a management operation.

Chapter 7 “Handling Events” explains how to enable an application to receive event

notifications that are emitted by managed objects and process the information

contained in event notifications.

Chapter 8 “Performing Asynchronous Management Operations” explains how to

perform asynchronous operations on managed objects and object collections. This

chapter also explains how to handle responses to asynchronous operations that an

application receives.
xxxii Developing C++ Applications • October 2001

Chapter 9 “Encoding and Decoding Complex ASN.1 Values” explains how to

enable an application to encode complex ASN.1 values for transmission in

management requests. This chapter also explains how to enable an application to

decode complex ASN.1 values received in responses and event notifications.

Chapter 10 “Developing Object Behaviors” explains how to use the Solstice EM

object development tools (ODT) to develop object behaviors.

Chapter 11 “Writing Management Protocol Adaptors (MPAs)” reviews some of the

important concepts behind the MPAs of Solstice EM. This chapter uses the sample

MPA implementation included with Solstice EM to illustrate the MPA interfaces and

environments.

Chapter 12 “Controlling Access to Applications and Data” explains how to make

applications and data secure by controlling access to applications, application

features, managed objects, event notifications, and management protocol adapters

(MPAs).

Chapter 13 “Optimizing Performance” explains how to tune an application to

obtain optimum performance.

Chapter 14 “Guidelines for Compiling and Linking Applications” states the

compiler version requirements for applications you develop by using the Solstice

EM C++ APIs. It lists, for each class in the Solstice EM C++ APIs, the header files

you need to include in your application code and the libraries you need to link your

applications with. This chapter also explains the flags you must set when you

compile applications developed by using the Solstice EM C++ APIs.

Chapter 15 “Troubleshooting” provides guidelines on how to troubleshoot errors

specific to applications developed by using the Solstice EM C++ APIs. This chapter

also explains how to obtain debug information from the Solstice EM platform.

Chapter 16 “Integrating Applications With Solstice EM” explains how to add new

applications to the Network Tools and Administration windows of Solstice EM. This

chapter also explains how to make new applications accessible by extending the

menus of existing Solstice EM tools.

Chapter 17 “Writing RPC Agents for Solstice EM” provides guidance on how to

write agents by using the Site/SunNet/Domain Manager (SNM) interfaces and

libraries.

Appendix A “Solstice EM C++ Source Code Examples introduces the C++ source

code examples supplied with Solstice EM and provides guidelines for compiling

these examples.

Appendix B “Standards Reference and Further Reading lists the standards on

which Solstice EM is based. In addition, this appendix provides a list of technical

terms used in the Solstice EM environment with a reference for each term to the

standard in which the term is defined. This appendix also provides a list of other

books that explain concepts on which Solstice EM is based.
xxxiii

Appendix C “GDMO Templates describes the templates defined by ITU-T X.722/

ISO-10165-4 Guidelines for the Definition of Managed Objects (GDMO).

Typographic Conventions

The following table describes the typographic conventions used in this book.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

prompt% You have mail.

AaBbCc123 What you type, contrasted with

on-screen computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:

replace with a real name or

value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,

or words to be emphasized

Read Chapter 6 in User’s Guide. These

are called class options.

You must be root to do this.
xxxiv Developing C++ Applications • October 2001

Shell Prompts

The following table shows the default system prompt and superuser prompt for the

C shell, Bourne shell, and Korn shell.

Accessing Sun Documentation Online
The docs.sun.com sm web site enables you to access Sun technical documentation

on the Web. You can browse the docs.sun.com archive or search for a specific book

title or subject at http://docs.sun.com .

Also, you can view the online documentation by pointing your browser to the

following URL, file:/opt/SUNWconn/em/docs/SEMDOCHP/index.html

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. You can send your comments by email to docfeedback@sun.com .

Please include the part number of your document in the subject line of your email.

TABLE P-2 Shell Prompts

Shell Prompt

C shell prompt prompt%

C shell superuser prompt prompt#

Bourne shell and Korn shell

prompt

$

Bourne shell and Korn shell

superuser prompt

#

xxxv

xxxvi Developing C++ Applications • October 2001

CHAPTER 1

Introduction to the Solstice EM C++
Development Environment

The Solstice Enterprise Manager (Solstice EM) C++ development environment

enables you to extend the functionality of Solstice EM by developing custom

applications to meet your particular network management needs.

This chapter introduces the Solstice EM C++ development environment.

■ Section 1.1 “What You Can Develop in the Solstice EM C++ Development

Environment” on page 1-1

■ Section 1.2 “Solstice EM Network Management Model” on page 1-2

■ Section 1.3 “Solstice EM Programming Model” on page 1-2

■ Section 1.4 “Overview of the Application Development Process” on page 1-4

1.1 What You Can Develop in the Solstice
EM C++ Development Environment
Solstice EM is a network and element management platform that simplifies the

management of large and complex networks. Solstice EM is suitable for many

management tasks, for example:

■ Element management

■ Subnetwork management

■ Network management

Use the Solstice EM development environment to develop client applications to

perform specific network management tasks when there is a need to:

■ Present information in a specialized fashion that cannot be achieved by using

existing Solstice EM components

■ Manipulate information in a manner that is not possible by using Solstice EM

subcomponents
1-1

1.2 Solstice EM Network Management
Model
Network management in the Solstice EM environment follows the International

Organization for Standardization (ISO) network management model. This model is

based around manager and agent applications that exchange network management

information. The ISO network management model is object oriented. According to

this model, a network resource that you want to manage is represented as a

managed object. A managed object is a software abstraction of a managed resource.

For more information, refer to Section 2.1 “ISO Management Model” on page 2-1.

1.3 Solstice EM Programming Model
To develop robust applications that are easy to maintain, adopt a component-based

programming model. Applications developed according to such a model are built

from a number of separate components. Building applications from separate

components simplifies the development and maintenance of applications,

particularly if the application is large and complicated, or if the network to be

managed is subject to change. Application development is simplified because

changes to one component do not require the entire application to be modified.

Building an application from a number of different components enables you to

isolate each component to deal with its own data. Isolating each component

minimizes the effects on your application of changes to the network that your

application will manage. If your application has to manipulate new data types (for

example, because a new device type has been added to the network) you need to

modify only the components that handle the new data types. The rest of your

application is unaffected.

1.3.1 Solstice EM Application Program Interface (API)

Component

The Solstice EM API component handles interactions between your application and

the Solstice EM platform. Changes to your network can affect the Solstice EM API

component. To minimize the effects of such changes, keep the Solstice EM API

component independent of your network management data whenever possible. In

particular, try to enable your code for this component to handle data in any format.
1-2 Developing C++ Applications • October 2001

To enable you to write code that can handle data in any format, the Solstice EM

development environment requires you to take account only of the operations

permitted on managed objects. You do not need to take account of the attributes of

managed objects, nor the data types of these attributes. The Solstice EM

development environment enables you to query managed object definitions to

obtain information about attributes of managed objects. For more information, refer

to Section 5.10 “Retrieving Data From the Metadata Repository” on page 5-27.

Another means of keeping this component independent of your network

management data is to decode your data and pass the decoded data to an

application-specific class that stores important attributes. Chapter 9 explains how to

decode complex data types.

1.3.2 Data Component

The data component provides a programmatic representation of your network

management data. The data component is only necessary when the amount of

network management data is large. If your application has to maintain only a subset

of the data, you can enhance the performance of your application by writing C++

classes to represent the data. By keeping this representation in separate C++ classes,

you minimize the effect of changes to your network management data on your

application.

1.3.3 Graphical User Interface (GUI) Component

The GUI component handles interaction between your application and its users. The

GUI component contains:

■ Code specific to the window manager for creating widgets

■ References to GUI callbacks

Isolate the code for this component from application specific code to minimize the

effects on your application of changes to the GUI.

Computer-aided software engineering (CASE) tools such as SPARCworks™ Visual™

GUI builder simplify the generation of code for this component. If you use such a

tool to generate code for the GUI component, isolate the generated code from code

you write.

Isolating generated code simplifies maintenance and future development of your

application. For example, if the look and feel of the GUI change, all you need to do

is make changes in the CASE tool, generate new code and implement new

functionality in the GUI component.
Chapter 1 Introduction to the Solstice EM C++ Development Environment 1-3

1.4 Overview of the Application
Development Process
The application development process in the Solstice EM development environment

is similar to the process that is followed on any serious software engineering project.

Such a process typically consists of the following phases:

■ Requirements analysis and high-level design

■ Low-level design

■ Implementation

■ Unit testing and debugging

■ Integration

■ System testing

1.4.1 Requirements Analysis and High-Level Design

The requirements analysis phase identifies the functional requirements of your

application. The requirements analysis phase consists of:

■ Writing a problem statement

■ Identifying the problem domain

■ Identifying candidate managed objects

■ Writing an initial version of the data dictionary

■ Writing a top level description of the required functionality (for example, by

using use cases)

■ Defining the functionality of the application

The high-level design phase adds to the requirements specification by identifying

nonfunctional requirements. The high-level design phase consists of:

■ Defining interaction with other systems

■ Identifying responsibilities for candidate managed objects

■ Identifying relationships between candidate managed objects

■ Writing the object model, for example, by using the unified modeling language

(UML), or directly by using the guidelines for the definition of managed objects

(GDMO)

■ Updating the data dictionary

Information on how to write an object model by using GDMO is given in Chapter 2.
1-4 Developing C++ Applications • October 2001

Special considerations in the requirements analysis and high-level design phases for

an application developed by using Solstice EM include:

■ Device type properties

■ Network properties

■ User interaction

■ Management information sharing

■ Access control for Solstice EM applications

■ Multiple management information server (MIS) management

1.4.1.1 Device Type Properties

If you are writing an application to manage a new class of device that has been

added to your network, consider which aspects of the device need to be managed.

Considering the aspects of the device that need to be managed involves identifying

the parameters of the device that you want to control and monitor. The parameters

you identify affect the object model you write for the device.

After you have identified the aspects of the device that you want to manage,

consider how your application will manage the device. Considerations for how your

application will manage a device include:

■ Polling a device

■ Handling unsolicited messages from a device

■ Setting configuration parameters of a device

■ Monitoring the performance of a device

■ Handling error conditions for a device

Polling a Device

If a device needs to be polled, decide whether it can use existing poll rates or new

poll rates. If a polling operation detects an error, consider what action should be

taken. When considering the action to take in response to an error, decide whether:

■ Actions other than the default actions are required.

■ The polling rate needs to be changed when an error is detected.

■ An alarm needs to be raised for each error detected.

Handling Unsolicited Messages From a Device

If a device sends notifications, traps, or other unsolicited messages, consider how

your application will handle such messages.

If the messages are of a type that the Solstice EM platform already recognizes, decide

if the messages need to be handled differently from how the Solstice EM platform is

currently configured to handle messages of that type.
Chapter 1 Introduction to the Solstice EM C++ Development Environment 1-5

If the messages are of a type unrecognized by the Solstice EM platform, decide if the

messages need to be handled or can be ignored. If the messages need to be handled,

decide whether they can be handled in a similar way to messages of a type that the

Solstice EM platform currently recognizes, or whether they need special handling.

Setting Configuration Parameters of a Device

When you add a new class of device to a network decide how the configuration

parameters of the device will be set. If a configuration parameter is set to a default

value for all instances of a device, consider specifying that value in the object model

of the device. If a configuration parameter is set to a different value for each instance

of a device, consider enabling users of your application to set the parameter.

Monitoring the Performance of a Device

To monitor the performance of a device you need to know what is the normal

performance of the device. To enable a device to report performance problems,

identify the attributes or behaviors that you can use to indicate normal and

abnormal performance. These attributes or behaviors are defined in the managed

object class that represents the class of the device. Also determine if existing

performance defaults can be used.

Handling Error Conditions for a Device

To handle error conditions for a device, identify the normal and error states of the

device. After you have identified these states, assign a severity to each state.

Assigning severities is a policy decision.

To enable a device to report an error condition, identify the attributes or behaviors

that you can use to indicate normal and error states. These attributes or behaviors

are defined in the managed object class that represents the class of the device.

To facilitate error recovery, decide to whom error conditions should be reported and

how they should be reported. For example, decide whether an indication of the

alarm in the Viewer tool by changing the color of an icon is sufficient. Also

determine whether any standardized process or commands exist to correct error

conditions associated with a device. If such processes do not exist already, consider

if you need to implement them in your application.
1-6 Developing C++ Applications • October 2001

1.4.1.2 Network Properties

The properties of the network your application will manage affect the design of your

application. Considerations arising from network properties include:

■ Importance of the device to the functioning of your network

■ Performance requirements for your network backbone

Importance of the Device to the Functioning of Your Network

If you are managing a device, the importance of the device to your network affects

how you choose to manage the device. A device that is part of your network

backbone, or is a dedicated file server or application server, is likely to play a key

role in your network.

If a device plays a key role in your network, consider whether you need to monitor

it more closely than less important devices. For example, if the device is polled,

consider whether the polling rate should be higher than for other less important

devices.

If the device is a server, consider how frequently is it accessed. Consider also the

effect on your network of a server failure.

Performance Requirements of Your Network Backbone

The smooth operation of a network requires that the network backbone performs

adequately. When you design a network management application, determine what

level of performance is required for the backbone of the network, what level of

performance should be considered marginal, and what level of performance should

generate alarms.

1.4.1.3 User Interaction

The needs of users who will interact with your application affect the design of your

application. Taking account of the needs of users involves:

■ Deciding how information is presented to users of your application

■ Identifying information that is presented to users of your application

■ Determining how users should start your application

■ Preventing users from introducing errors
Chapter 1 Introduction to the Solstice EM C++ Development Environment 1-7

Identifying Information That is Presented to Users of Your Application

To manage a network, users of your application need to be informed of the state of

network resources. Analyze the functional requirements of your application to

identify information that needs to be presented to users of your application.

When you have identified information that needs to be presented, analyze the

network that your application will manage to find out where the information will

come from. Find out, for example, if the information will be provided by a device or

by another application, such as the Nerve Center or event forwarding discriminators

(EFDs).

Determine if you need to gather, summarize, or process information in a manner

that is not possible by using Solstice EM subcomponents such as Nerve Center

requests, EFDs, or log objects. Where possible, use Solstice EM subcomponents to

obtain the information you want to present to users of your application. Using

Solstice EM subcomponents saves the costs of having to develop entire applications

from scratch.

Deciding How Information is Presented to Users of Your Application

To determine how best to present information to users of your application, analyze

how that information will be used. Determine whether the information needs to be

presented in a specialized manner that is not possible by using existing Solstice EM

tools, such as the Viewer or the Alarm Manager. Specialized presentation of

information includes special presentation windows, GUI-based device front ends, or

terminal output.

Even if you require specialized presentation of information, consider if it also makes

sense to display some information in standard Solstice EM tools such as the Viewer,

the Log Manager, or the Alarm Manager, or in another Solstice EM client application

you have developed.

Determining How Users Should Start Applications You Develop

Applications you develop will typically be used in conjunction with other Solstice

EM components to provide a complete network management solution. To enhance

the usability of your network management solution, determine which is the most

convenient means for users to start your applications. Depending on the purpose of

an application, you can enable users to start the application from:

■ The Network Tools window

■ The Administration window

■ A menu in another Solstice EM tool

■ A Nerve Center request.
1-8 Developing C++ Applications • October 2001

Identify the information that your application needs when it is started, for example

context information or initialization information. When you have identified this

information, determine where it comes from and whether it differs from the

information your application normally uses or displays.

Preventing Users From Introducing Errors

Design the user interface of your application to prevent users from introducing

errors. Where possible, prevent users from carrying out sequences of operations that

will introduce error conditions into your network.

Control access to critical data to ensure that such data is modified only by operators

who are qualified to do so. For more information, refer to Section 1.4.1.5 “Access

Control for Solstice EM Applications” on page 1-10.

1.4.1.4 Management Information Sharing

If your application needs to share management information, considerations for your

application include:

■ Access to information from multiple users

■ Information sharing and storage requirements

■ Distribution of information in unsolicited messages

■ Access control for shared information

Access to Information From Multiple Users

How multiple users access information affects the design of your application. If your

application is intended to be used by more than one user at a time, you need to

enable your application to support multiple concurrent users.

You also need to determine if several applications need to access to management

information simultaneously. If the information that needs to be shared exists in the

Solstice EM MIS, all you need to do is develop an application to access the

information.

Information Sharing and Storage Requirements

If your application will gather or summarize information, determine whether this

information needs to be stored permanently or temporarily. If the information needs

to be stored temporarily, determine if it needs to be stored only as long as your

application is running, or as long as a server that serves your application is running.
Chapter 1 Introduction to the Solstice EM C++ Development Environment 1-9

Identify the sources of the information your application will gather or summarize.

For example, the information may reside in the MIS, EFDs, or the Nerve Center.

If other applications require information gathered or summarized by your

application, determine how best to share this information.

Note – Applications normally share information by using the MIS. To enable

applications to share information directly (that is, without using the MIS), use the

application-to-application API. For an overview of the Solstice EM C++ APIs, see

Section 1.4.2.1 “API Choice” on page 1-14.

Distribution of Information in Unsolicited Messages

If several copies of your application will be running simultaneously, determine if all

copies need to receive notifications, traps, or other unsolicited information.

Access Control for Shared Information

If information is shared between several copies of your application, determine if the

information used by one copy of the application needs to be kept secure from other

copies of the same application. Similarly, if information is shared between

applications, determine if the information used by an application needs to be kept

secure from other applications.

Note – Solstice EM does not currently support this type of data partitioning for

security purposes.

1.4.1.5 Access Control for Solstice EM Applications

If you want to enforce access control for your application, you need to decide which

of the following levels of access control you require:

■ Application-level access control

■ Application-feature-level access control

■ Managed-object-level access control

■ Event notification access control

■ Management protocol adapter (MPA) access control

For more information about designing access control for your applications, refer to

Chapter 12.
1-10 Developing C++ Applications • October 2001

Application-Level Access Control

Implement application-level access control if you want your entire application to be

inaccessible to some users of the network management solution that your

application is a part of. For example, if your application is used for the

administration of your network management solution, make the application

accessible only to system administrators and inaccessible to network operators.

If you implement application-level access control, make sure that your application

gives proper feedback to a user that is denied access to your application.

Application-Feature-Level Access Control

Implement application-feature-level access control if you want some users to be able

to access some, but not all, the features of your application. For example, if your

application enables users to monitor, add, modify, and delete network resources,

implement application-feature-level access control to allow some users to monitor

network resources, but not to add, modify, or delete network resources.

If you implement application-feature-level access control, make sure that your

application gives proper feedback if a user is denied access to a feature. Where

possible, make sure that your application prevents users from performing operations

they do not have permission to perform. In a graphical application, make commands

for performing such operations inactive and grayed out.

If you implement application-feature-level access control, make the list of

application features available to your system administrator so that the system

administrator can grant users access rights to perform various operations.

Managed-Object-Level Access Control

Implement managed-object-level access control if you want some managed objects to

be inaccessible to some users of your network management solution.

Managed-object-level access control denies users access to managed objects

regardless of which application they use to try to access the managed objects. If you

use application-feature-level access control to deny access to these managed objects,

you do not prevent users from accessing the managed objects by using other features

of other applications.

If you implement managed-object-level access control, make sure that your

application gives proper feedback if a user is denied access to a managed object. In

addition, make sure that your application can handle any exceptions or errors

thrown if a user is denied access to a managed object.
Chapter 1 Introduction to the Solstice EM C++ Development Environment 1-11

Event Notification Access Control

Implement event notification access control if you want to ensure that a user’s event

logs contain only event notifications emitted by managed objects to which the user

has access. By default, all events that the Solstice EM platform receives are written to

a user’s event logs, including event notifications from managed objects that the user

is normally denied access to.

MPA Access Control

Implement MPA access control if you want some managed objects that are accessed

through an MPA to be inaccessible to some users of your application.

If you implement MPA access control, make sure that your application gives proper

feedback if a user is denied access to a managed object accessed through an MPA.

1.4.1.6 Multiple Management Information Server (MIS) Management

If more than one Solstice EM MIS will be used to hold your network management

information, you need to consider how multiple MISs will be managed. Managing

multiple MISs involves:

■ Determining the subordinate objects of the root of the MIT

■ Deciding if the fully distinguished name (FDN) table requires manual updating

■ Assigning managed objects to an MIS

■ Deciding which information is exchanged between MISs

Determining the Subordinate Objects of the Root of the MIT

In the Solstice EM environment, managed objects that represent your network

resources are arranged in a hierarchy known as the management information tree

(MIT). For more information on the MIT, refer to Section 2.2.6 “Identifying

Containment Relationships” on page 2-14.

If more than one EM MIS will be used to hold your network management

information, determine which managed objects will be located under the root of the

MIT. For each managed object that will located under the root of the MIT, you need

to determine its fully distinguished name (FDN). For more information on FDNs,

refer to Section 2.2.6.2 “Names of Managed Object Instances” on page 2-18.
1-12 Developing C++ Applications • October 2001

Deciding if the FDN Table Requires Manual Updating

Each managed object that resides outside the local MIS has an entry in the FDN

table. The FDN table maps the FDN of a remote managed object to the location of

the entity in which the managed object resides. The location of the remote entity is

given by its presentation selector.

If more than one EM MIS will be used to hold your network management

information, you need to determine if the FDNs of remote managed objects need to

be manually updated into the FDN table.

Assigning Managed Objects to an MIS

If more than one EM MIS will be used to hold your network management

information, you need to assign each managed object to an MIS.

Deciding Which Information is Exchanged Between MISs

If more than one EM MIS will be used to hold your network management

information, you need to decide on the types of information that will be

automatically passed from one MIS to another.

When information is shared between MISs, you need to decide how MISs will be

arranged hierarchically. The possible arrangements are as follows:

■ One MIS acts as a manager. In this arrangement, all other MISs pass information

to this manager, or within the MIT one MIS contain other MISs.

■ All MISs act as peers. In this arrangement, certain types of information are shared

with most or all other MISs.

■ One MIS acts as a manager and some or all of the remaining MISs act as peers.

1.4.2 Low-Level Design

The low-level design phase follows the high-level design phase. The low-level

design phase defines how your application will meet the requirements identified in

the requirements analysis and high-level design phases. The low-level design phase

consists of:

■ Introducing supporting elements that will enable your application to function

■ Adding design details to the object model

■ Performing systems design

■ Specifying interfaces

■ Specifying classes

■ Defining an implementation strategy for your system
Chapter 1 Introduction to the Solstice EM C++ Development Environment 1-13

Special considerations in the low-level design phase for an application developed by

using Solstice EM include:

■ API choice

■ Object location

■ Provision of behavior code for objects

■ Identification of managed objects

1.4.2.1 API Choice

The Solstice EM C++ development environment provides a number of APIs, each of

which has a specific purpose. You are free to use any combination of the APIs in a

single application. The choice of APIs to use in an application depends on a

combination of factors, such as:

■ The functional requirements of your application

■ The importance of keeping coding simple

■ The performance requirements of your application

The architecture of the C++ APIs supplied with Solstice EM is shown in FIGURE 1-1.

FIGURE 1-1 Architecture of the Solstice EM C++ APIs

Low-Level Portable Management Interface (PMI)

The low-level Portable Management Interface (PMI) provides a low-level abstraction

of management services. The management services provided by the low-level PMI

are equivalent to the services defined in ITU-T X.710/ISO-9595 Common Management
Information Services (CMISE). The interface provided by the low-level PMI is

distributed and independent of any transport-layer protocols.

Use the low-level PMI for applications that require high performance. Using the

low-level PMI requires you to write more code than using the high-level PMI.

Nerve
Topology

Application-

Viewer

Object
High-level PMI

Low-level PMI

to-application

services

Center

Access

Access

control

control
engine

interface

Grapher
1-14 Developing C++ Applications • October 2001

High-Level PMI

The high-level PMI is the primary API for management applications. This API

provides a high-level abstraction of the managed resources in a network. This

abstraction provides a means for manipulating objects that is independent of the

class description, supported protocol, or location of the managed objects. The

generic nature of the high-level PMI eases the development of network management

applications.

Use the high-level PMI to keep coding simple for applications that do not require

optimum performance.

The high-level PMI is built on the low-level PMI.

Object Services API

The object services API enables object behavior functions you develop to access

information and services provided by the MIS. The decision to use these services

depends on the behavior defined for an object. To develop object behavior functions,

use the Solstice EM object development tools (ODT).

The object services API is built on the low-level PMI.

Topology API

The topology API provides access for management applications to topology services

provided by Solstice EM. This API enables you to manipulate topology nodes, which

are displayed in the Network Views tool. For information on the Network Views

tool, refer to Managing Your Network.

The topology API hides the topology implementation, enabling you to port

topology-based applications easily to future releases of Solstice EM as the high-level

PMI evolves.

The topology API is built on the high-level PMI.

Nerve Center Interface

The Nerve Center interface enables provides an API to the Nerve Center. The Nerve

Center interface enables you to create request templates, launch requests against

objects in the MIS, and retrieve information about objects. For information on the

Nerve Center, refer to the Customizing Guide.

The Nerve Center interface is built on the high-level PMI.
Chapter 1 Introduction to the Solstice EM C++ Development Environment 1-15

Application-to-Application API

The application-to-application API enables applications to share information directly

(that is, without using the MIS). Applications normally share information by using

the MIS. The application-to-application API is built on the high-level PMI.

Viewer API

The viewer API enables you to integrate applications with the Network Views tool.

This API enables applications to communicate with and modify the Network Views

tool. For example, an application can get the current view, set the contents of the

Network Views footer, or change the Network Views zooming or magnification.

The viewer API also enables applications to register with the Network Views tool to

receive events generated by the tool. When an application registers with the

Network Views tool to receive events, the application also registers callbacks that are

executed when events are received from the Network Views tool.

For information on the Network Views tool, refer to Managing Your Network.

The viewer API is built on the application-to-application API.

Access Control Engine API

The access control engine API enables you to control user access to objects

supported via user-developed MPAs and auxiliary servers. In this way, the access

control engine API enables user-created MPAs and auxiliary servers to impose

access control on the objects they manage.

For more information about designing access control for your applications, refer to

Chapter 12.

The access control engine API is built on the low-level PMI.

Access Control API

The access control API enables you to control user access to your application,

features within your application, and managed objects manipulated by your

application. This API provides classes and member functions that enable you to

assign access control rules to groups of users. These classes and member functions

also enable you to define access control rules.

For more information about designing access control for your applications, refer to

Chapter 12.
1-16 Developing C++ Applications • October 2001

Grapher API

The grapher API enables your application to send data to the Grapher tool. If the

Grapher tool is not running, the grapher API starts it automatically. The grapher API

supports:

■ Static graphs. A static graph cannot be updated after it is created.

■ Dynamic graphs. A dynamic graph can be updated after it is created. Use a

dynamic graph to plot a variable that changes with time.

For information on the Grapher tool, refer to Managing Your Network.

1.4.2.2 Object Location

In the Solstice EM environment, managed objects that represent your network

resources are stored as objects. Objects are either local or remote.

■ A local object resides in the MIS. The operations supported by a local object are

carried out by the MIS processes. Attribute values of the local object are stored or

maintained in the MIS or its persistent store. The MIS maintains a reference to the

local object instance in the MIT.

■ A remote object resides outside the MIS. The MIS maintains a reference to a

remote object instance via the MIT. A remote object typically resides in an agent,

or in another MIS.

1.4.2.3 Provision of Behavior Code for Objects

All objects need behavior code. Behavior code enables an object to respond to

management requests.

The MIS provides behavior code only for local objects. The MIS does not provide

behavior code for remote objects. You must ensure that the entity within which a

remote object resides provides behavior code for the object.

The behavior code that the MIS provides enables an object in the MIS to exhibit

default behavior. If you want a local object to exhibit custom behavior, you can

develop custom behavior code by either of the following means:

■ Using ODT

■ Writing an MPA
Chapter 1 Introduction to the Solstice EM C++ Development Environment 1-17

Using ODT

Using ODT simplifies the development of custom behavior code by generating much

of the code for you. However, an object the behavior of which is developed by using

ODT must reside in the MIS. Use ODT with care because errors in the behavior code

of such an object may cause the MIS to fail.

For information on using ODT, refer to Chapter 10.

Writing an MPA

An MPA performs protocol translation required for communication between the

Solstice EM platform and an external entity, such as an agent. Writing an MPA

requires you to write more code than using ODT. However, an object the behavior of

which is implemented by an MPA can reside on a separate server from the MIS,

thereby enhancing the performance and reliability of your management solution.

For information on how to write an MPA, refer to Chapter 11.

1.4.2.4 Managed Object Identification

By default, a managed object in the Solstice EM environment is identified by its FDN

as explained in Section 2.2.6.2 “Names of Managed Object Instances” on page 2-18.

In an MIT with many levels of containment, FDNs become long and complicated.

The FDNs of managed objects that are many levels below the root of the MIT are

particularly long and complicated. To simplify the task of selecting managed objects

you can assign nicknames to managed objects and select managed objects by

specifying their nicknames.

For more information on setting up nicknames, see Section 5.3.2 “Selecting a

Managed Object by Specifying its Nickname” on page 5-10.
1-18 Developing C++ Applications • October 2001

1.4.3 Implementation

The implementation phase follows the low-level design phase. During the

implementation phase, code that implements the design of your application is

written, and the executable files of your application are generated.

In the Solstice EM C++ development environment, the implementation phase

consists of:

■ Enabling applications to access managed objects

■ Handling errors

■ Performing operations on managed objects

■ Performing management operations on object collections

■ Handling events

■ Performing asynchronous management operations

■ Encoding and decoding complex ASN.1 values

■ Controlling access to applications and data

■ Optimizing performance

■ Compiling and linking applications

1.4.3.1 Enabling Applications to Access Managed Objects

To manage a network, the applications you develop must have access to current data

about managed resources. In the Solstice EM environment, managed resources are

represented as managed objects. Your applications must be able to access managed

objects to obtain the data they require.

For information on how to enable applications to access managed objects, refer to

Chapter 3.

1.4.3.2 Handling Errors

Users need to know when an attempted network management operation has failed.

By providing accurate information on why the operation failed, your applications

can ease a user’s work by indicating the corrective action required when problems

occur.

For information on how to handle errors, refer to Chapter 4.
Chapter 1 Introduction to the Solstice EM C++ Development Environment 1-19

1.4.3.3 Performing Operations on Managed Objects

An application manages a network by monitoring and controlling managed

resources in the network. In the Solstice EM environment, managed resources are

represented as managed objects. An application monitors and controls managed

resources by performing operations on managed objects.

For information on how to perform operations on managed objects, refer to

Chapter 5.

1.4.3.4 Performing Management Operations on Object Collections

An object collection is a group of managed objects that your application can treat as

a single entity. An object collection simplifies bulk operations by enabling you to

select multiple managed objects to be the subject of a management operation. Any

management operation that your application performs on an object collection is

performed on every managed object in the object collection.

For information on how to perform management operations on object collections,

refer to Chapter 6.

1.4.3.5 Handling Events

Any network management application that monitors and controls managed

resources on a network needs to process information it receives from those managed

resources. Such information is contained in event notifications. An event notification

is an unsolicited message sent from a managed object that represents a managed

resource. Event notifications contain error information and other types of status

information.

For information on how to handle events, refer to Chapter 7.

1.4.3.6 Performing Asynchronous Management Operations

A management operation can take a significant length of time to finish, particularly

if the operation exchanges a large quantity of data between your application and the

network resources it is managing. If your application is blocked while waiting for an

operation to finish, the application may appear unresponsive to a user, or may fail to

respond quickly enough to important events on your network. Performing

asynchronous management operations enables an application to continue with other

processing without waiting for the operations to finish.

For information on how to perform asynchronous management operations, refer to

Chapter 8.
1-20 Developing C++ Applications • October 2001

1.4.3.7 Encoding and Decoding Complex ASN.1 Values

In the Solstice EM environment, attribute values in management requests, responses

and event notifications are represented in a machine-independent format for

transmission over a network. The format used is defined in ITU-T X.208/ISO-8824

Specification of Abstract Syntax Notation One (ASN.1). This standard defines several

complex data types and enables you to define your own custom data types. When an

application sends a request to set an attribute value represented by a complex data

type, the application must encode this value for transmission over a network. When

an application receives an attribute value represented by a complex data type (for

example in a response or an event notification) the application must decode this

value to extract the information the value contains.

For information on how to encode and decode complex ASN.1 values, refer to

Chapter 9.

1.4.3.8 Controlling Access to Applications and Data

Controlling access to applications and data prohibits unwanted access to critical

applications and network components. Without access control, any user of your

network management solution can read or modify all your network management

and configuration data. The risks of this approach can be devastating when users

without the proper authority or expertise modify your network management data or

the configuration data of your network management solution. By controlling user

access, users are allowed to access only those applications and data they need based

on their network management responsibilities and other relevant criteria.

For information on how to control access to applications and data, refer to

Chapter 12.

1.4.3.9 Optimizing Performance

The high-level PMI provides many features that simplify the coding of an

application. However, if you need fast response from an application, or if an

application is controlling and monitoring a large number of managed objects, you

need to tune the application to obtain optimum performance.

For information on how to optimize the performance of your applications, refer to

Chapter 13.
Chapter 1 Introduction to the Solstice EM C++ Development Environment 1-21

1.4.3.10 Compiling and Linking Applications

Applications you develop by using the Solstice EM C++ APIs require specific flags to

be set at compilation time. You also need to link your applications with the Solstice

EM C++ libraries.

For guidelines on compiling and linking applications developed by using the

Solstice EM C++ APIs, refer to Chapter 14.

1.4.4 Unit Testing and Debugging

The unit testing and debugging phase follows the implementation phase. The unit

testing and debugging phase assures the quality of the application by ensuring that

the application meets its stated requirements.

The Solstice EM C++ development environment provides tools to help you test and

debug your applications. For information on how use these tools, refer to

Chapter 15. This chapter also provides guidelines on how to avoid and correct errors

specific to applications developed by using the Solstice EM C++ APIs.

1.4.5 Integration

The integration phase follows the unit testing and debugging phase. The integration

phase integrates your custom applications with the Solstice EM platform to create a

complete network management solution.

For information on how to integrate applications with the Solstice EM platform,

refer to Chapter 16.

1.4.6 System Testing

The system testing phase follows the integration phase. The system testing phase

assures the quality of your complete network management solution.
1-22 Developing C++ Applications • October 2001

CHAPTER 2

Modeling Managed Objects

Network management in the Solstice EM environment follows the ISO network

management model. This model is object oriented. To manage your resources in the

Solstice EM environment, you need to write an object model of those resources. The

object model defines the characteristics of resources your application will manage.

Having written your object model you need to make it available to Solstice EM.

This chapter explains how to write an object model and make it available to Solstice

EM.

■ Section 2.1 “ISO Management Model” on page 2-1

■ Section 2.2 “Designing the Object Model” on page 2-5

■ Section 2.3 “Abstract Syntax Notation #1 (ASN.1)” on page 2-23

■ Section 2.4 “Assigning Unique Identifiers” on page 2-30

■ Section 2.5 “Obtaining GDMO and ASN.1 Specifications for Objects” on page 2-35

■ Section 2.6 “Making Your Object Model Available to Solstice EM” on page 2-36

2.1 ISO Management Model
Network management in the Solstice EM environment follows the ISO network

management model. This model is based around manager and agent applications

that exchange network management information. The ISO network management

model is illustrated in FIGURE 2-1.
2-1

FIGURE 2-1 ISO Network Management Model

The main parts of the ISO network management model are introduced in the

following subsections.

2.1.1 Managers

A manager issues management requests to one or more agents.

A manager receives information from agents in the form of:

■ Notifications. A notification is an unsolicited message sent to manager to indicate

that a change has occurred to a managed resource.

■ Responses. A response is a message sent in response to a management request. A

response contains the result of the management request, for example a

confirmation that the request was carried out, or the information the manager

requested.

A manager typically performs the following additional functions:

■ Collecting and filtering information from agents

■ Presenting information to operators of a managing system

A manager resides in a managing system.

Managing system

Managed
objects

Managed resources

GSM

Bridge/router

PBX

Notifications

Managed system

Agent

Management requests

Device-dependent
access methods

Manager

Responses

Management
protocol
2-2 Developing C++ Applications • October 2001

2.1.2 Agents

An agent acts as an intermediary between a manager and managed resources. An

agent receives requests from a manager. An agent sends responses to requests and

issues notifications. Each agent in a managed system is responsible for carrying out

management directives to control or return information from managed resources.

An agent can reside in a managed resource, or be located elsewhere and operate

remotely.

2.1.3 Managed Resources

A managed resource is any network resource that can be managed. The resource can

be a physical device such as a host, server, router, or subnet, or it can be a conceptual

entity such as a line, a queue, or some other aspect of network operation that needs

to be managed.

2.1.4 Managed Objects

The ISO management model on which Solstice EM is based is object oriented.

According to this model, a managed resource is represented as a managed object. A

managed object is a software abstraction of a managed resource. The managed object

presents information needed to manage the resource. A managed resource may be

represented by a single managed object, or by several managed objects. An agent

typically contains or provides views of many managed objects.

2.1.5 Management Protocols

A management protocol is a set of rules that specify how information shall be

exchanged between two entities that are communicating, such as a manager and an

agent. A management protocol provides the common language required to enable

managers and agents to exchange information.

A management protocol defines:

■ Types of messages that agents and managers are allowed to issue

■ The syntax and encoding of each type of message

Solstice EM supports the following management protocols:

■ Common Management Information Protocol (CMIP)

■ Simple Network Management Protocol (SNMP)

■ SunNet Manager™ remote procedure call (RPC)
Chapter 2 Modeling Managed Objects 2-3

If the agents you want to manage use management protocols that Solstice EM

supports, you do not need to take account of the management protocol when you

use Solstice EM to develop applications.

Management protocol adapters (MPAs) perform protocol translation required to

enable Solstice EM to support several management protocols. If you want to support

a management protocol for which Solstice EM does not provide an MPA, you can

extend Solstice EM by writing your own MPA for that protocol. For information on

how to write an MPA, refer to Chapter 11.

2.1.6 Manager-Agent Hierarchy

Managers and agents are designed to be deployed in a hierarchy. A manager can

also act as an agent to a higher-level system. This allows control of the network to be

distributed throughout the network, while maintaining overall control of those

aspects that are best managed centrally.

FIGURE 2-2 Manager-Agent Hierarchy

Managed
Resource

Manager

Manager
Agent/

Manager
Agent/

AgentAgent Agent

Managed
Resource

Manager
Agent/

Managed
Resource

Agent Agent

Managed
Resource

Managed
Resource
2-4 Developing C++ Applications • October 2001

2.2 Designing the Object Model
An object model defines the managed objects you want to control and monitor. It

identifies:

■ The features of managed objects that you want your application to control and

monitor

■ The control and monitoring operations you want to perform

■ The relationships between the managed objects that you want your application to

control and monitor

The object model is shared by the manger and any agents that the manager manages.

If you are writing a manager for an existing agent, use the object model developed

for the agent. In this case, do not write an object model specially for the manager.

To define managed objects in the Solstice EM environment, use the notation defined

in ITU-T X.722/ISO-10165-4 Guidelines for the Definition of Managed Objects (GDMO).

This recommendation defines templates for the definition of managed objects. These

templates specify the elements that should be included in the definition and the

notation used to express each element. For information on the format of each

template, refer to Appendix C.

To use GDMO notation to define managed objects, fill out the templates with

relevant information and by using the appropriate syntax. Filling out GDMO

templates involves:

■ Defining the task

■ Identifying managed object classes

■ Identifying inheritance relationships

■ Identifying the characteristics of a managed object class

■ Describing the behavior of items in the object model

■ Identifying containment relationships

■ Grouping information into packages

■ Identifying a GDMO definition

Solstice EM accepts GDMO specifications written by using a GDMO modeling tool

such as Solstice GDMO Builder. EM also accepts GDMO specifications generated

from Unified Modeling Language (UML) modeling tools.
Chapter 2 Modeling Managed Objects 2-5

2.2.1 Defining the Task

Defining the task identifies the management operations your application will

perform. Defining the task involves:

■ Identifying the monitoring and control operations you want your manager to

perform on the resource

■ Verifying the capabilities of the resource you want to manage

2.2.1.1 Identifying Monitoring and Control Operations - Example

The satellite example illustrates applications to manage satellites that broadcast

several television channels, with each channel being received by one or more

satellite dishes.

For a satellite, the following need to be monitored:

■ Which channels the satellite is broadcasting

■ The amount of data the satellite has to handle

■ The quality of the signal to the satellite

■ Whether the satellite is disabled or enabled

For a satellite, the following need to be controlled:

■ The position of the satellite

■ Whether the automatic navigation system for the satellite is engaged

■ What happens to the satellite if the company is subject to hostile takeover effort

■ Whether the satellite is locked, unlocked, or shutting down

For a channel, the following need to be monitored:

■ Which dishes are receiving the channel

■ The amount of data the channel has to handle

■ The quality of the signal broadcast on the channel

■ Whether the channel is disabled or enabled

For a channel, the following need to be controlled:

■ Whether the main or backup transmitter should be used to broadcast the channel

■ Which program is being broadcast on the channel

■ How long an operator has to censor inappropriate scenes in a program broadcast

on the channel

■ Whether the channel is locked, unlocked, or shutting down

For a dish, the system needs to control whether access to the current program is

blocked for the dish.
2-6 Developing C++ Applications • October 2001

2.2.1.2 Verifying the Capabilities of the Managed Resource

When you have identified what you want to do, find out if it is possible. For

example, check if you can find out the amount of data a satellite has to handle. To

check, refer to developer’s documentation, standards and other reference material

for the resource you want to manage. If some of the information you require is not

available, either modify your requirements accordingly, or put in place a way of

obtaining the information.

2.2.2 Identifying Managed Object Classes

Managed objects are defined in terms of managed object classes. A managed object

class is a definition of how all managed objects of a particular type should be

implemented. Individual managed objects are referred to as instances of a class. An

object class is defined once and reused thereafter for all objects of the same class.

Identify the managed object classes you need to represent your managed resources.

In general, there should be one managed object class for each physical device you

want to manage. You may also require a managed object class for each conceptual

entity that you want to manage.

The purpose of the applications in the satellite example is to manage satellites that

broadcast several television channels, with each channel being received by one or

more satellite dishes. From this analysis, the following physical devices and

conceptual entities can be identified:

■ Satellite physical device

■ Channel conceptual entity

■ Dish physical device

CODE EXAMPLE 2-1 shows the definition of the dish managed object class in the

satellite sample programs, expressed in GDMO notation.

This example shows that the dish managed object class:

■ Is derived from, or inherits the characteristics of, a class named top defined in

ITU-T X.721/ISO-10165-2 Definition of Management Information

CODE EXAMPLE 2-1 GDMO Definition of the dish Managed Object Class

...
dish MANAGED OBJECT CLASS

DERIVED FROM "Rec. X.721 | ISO/IEC 10165-2 : 1992" : top;
CHARACTERIZED BY

dishPackage;
...
Chapter 2 Modeling Managed Objects 2-7

■ Is characterized, or defined, by the packages it contains, in this case the

dishPackage package

2.2.3 Identifying Inheritance Relationships

New classes can be defined in terms of existing classes. The new class is a subclass of

the class from which it is derived and may in turn have subclasses of its own. The

class from which it is derived is called its superclass.

A subclass inherits all of the characteristics of its superclass. The inherited

characteristics of the subclass can then be extended by adding new attributes,

actions and notifications. In the ISO management model, it is not possible to delete

of any of the characteristics of the superclass.

The ultimate superclass is the top object class, from which all other object classes are

derived. This object class is specified by the OSI systems management model in ITU-

T X.721/ISO-10165-2 Definition of Management Information and contains definitions

for the attributes that are common to all object classes.

Whenever possible, derive the managed object classes you require from standard

managed object classes, or from managed object classes that have already been

generated for other purposes. In the satellite example, all three managed object

classes inherit characteristics from the top managed object class. The inheritance

tree for the satellite example is shown in FIGURE 2-3.

FIGURE 2-3 Example Inheritance Tree

2.2.4 Identifying the Characteristics of a Managed

Object Class

After you have identified the managed object classes you need, identify the

characteristics of each managed object class. To identify the characteristics of a

managed object class, think about how the information you want to retrieve, and the

operations you want to perform, relate to the managed object class.

top

satellite channel dish
2-8 Developing C++ Applications • October 2001

Identifying the characteristics of a managed object class involves creating, attributes,

notifications, and actions.

2.2.4.1 Attributes

An attribute is a data element that is encapsulated in a managed object. Attributes

reflect the state information that applies to a managed object. Each attribute

corresponds to one of the characteristics of the resource that the managed object

represents. An attribute has a name, a type, and one or more values that reflect the

current status of the associated resource.

Note – The management operations permitted for an attribute are defined in the

package definition of the managed object class that contains the attribute, not in the

definition of the attribute itself. For more information, see Section 2.2.7 “Grouping

Information Into Packages” on page 2-20.

In the satellite example, attributes are required for the satellite , channel and

dish managed object classes as follows:

■ satellite - TABLE 2-1

■ channel - TABLE 2-2

■ dish - TABLE 2-3

TABLE 2-1 Attributes for the satellite Managed Object Class

Name Purpose

satelliteId Represent the name of a satellite

activeChannels Monitor the channels that a satellite is broadcasting

packetsReceived Monitor the total number of packets that a satellite has received

packetRetries Monitor the quality of the signal to a satellite

packetsSent Monitor the number of packets sent to a satellite

operationalState Monitor the operational state (enabled or disabled) of a satellite

altitude Control the distance of a satellite from the earth

coordinates Control the position of a satellite

selfDestructCode Represent a code for instructing a satellite to be destroyed

spaceJunkAvoidance Control whether the automatic navigation system for a satellite is engaged

administrativeState Control whether a satellite is locked, unlocked, or shutting down
Chapter 2 Modeling Managed Objects 2-9

TABLE 2-2 Attributes for the channel Managed Object Class

Name Purpose

channelId Represent the name of a channel

activeDishes Monitor the dishes that are receiving a channel

packetsReceived Monitor the total number of packets a channel has received

packetRetries Monitor the quality of the signal to a channel

packetsSent Monitor the number of packets sent to a channel

operationalState Monitor the operational state (enabled or disabled) of a channel

coordinates Control the position of the satellite broadcasting a channel

backupCoordinates Control whether the main or backup transmitter should be used to broadcast a

channel

program Control the program that is being broadcast on a channel

transmitDelay Control how long an operator has to censor inappropriate scenes in a program

broadcast on a channel

administrativeState Control whether a channel is locked, unlocked, or shutting down

TABLE 2-3 Attributes for the dish Managed Object Class

Name Purpose

dishId Represent the name of the dish

vchipId Represent an identifier for controlling access to programs that the dish receives

censureButton Control whether access to the current program is blocked for the dish

coordinates Control the position of the satellite broadcasting to the dish
2-10 Developing C++ Applications • October 2001

CODE EXAMPLE 2-2 shows the definition of the censureButton attribute.

In this example, the attribute named censureButton indicates whether the

customer has activated the censure button. The type of this attribute is a custom-

defined ASN.1 type named ButtonPress . This ASN.1 type is defined in an ASN.1

module named SAT-MAN-ASN1.

The ASN.1 syntax definition of ButtonPress is given in CODE EXAMPLE 2-3.

In this example, the censureButton attribute is an enumerated type. Its valid

values are off (0), and on (1).

For information on ASN.1, refer to Section 2.3 “Abstract Syntax Notation #1

(ASN.1)” on page 2-23.

2.2.4.2 Actions

An action is an operation that cannot be modelled by a pre-defined operation such

as getting or setting an attribute. An action enables you to implement specialized

behavior, for example, changing attributes of one or many objects in a single

operation or providing the results of a query in a particular format.

No actions are defined for any of the managed object classes in the satellite example.

CODE EXAMPLE 2-2 GDMO Definition of the censureButton Attribute

...
censureButton ATTRIBUTE

WITH ATTRIBUTE SYNTAX SAT-MAN-ASN1.ButtonPress;
MATCHES FOR EQUALITY;
BEHAVIOUR censureButtonBehaviour BEHAVIOUR DEFINED AS

! This attribute indicates whether the customer
watching TV has activated the censure button.!;

;
REGISTERED AS { satman-attribute 16 };

...

CODE EXAMPLE 2-3 ASN.1 Syntax Definition of the ButtonPress Data Type

ButtonPress ::= ENUMERATED {
off (0),
on (1)

}

Chapter 2 Modeling Managed Objects 2-11

2.2.4.3 Notifications

A notification is an unsolicited message sent from a managed object that represents

a managed resource. A managed object generates a notification when the application

managing it needs to know that something has changed.

Managed objects can issue notifications in response to internal and external events.

For example, a managed object may issue a notification in response to a timer timing

out.

Notifications can be transmitted to manager applications in the form of event

notifications, or logged internally. The type of notifications issued by a managed

object and the conditions under which notifications are issued form part of its

definition.

In the satellite example, notifications are required as shown in TABLE 2-4.

These notifications are defined in ITU-T X.721/ISO-10165-2 Definition of Management
Information. For a complete list of notifications defined in ITU-T X.721/ISO-10165-2

Definition of Management Information, refer to TABLE 7-1.

CODE EXAMPLE 2-4 shows the GDMO specification of the objectCreation
notification.

TABLE 2-4 Notifications for the Satellite Example

Notification Purpose

objectCreation Signal when a new satellite, channel, or dish is added to the

network management environment

attributeValueChange Signal when an attribute of a satellite, channel, or dish

changes

objectDeletion Signal when a satellite, channel, or dish is removed from the

network management environment

CODE EXAMPLE 2-4 GDMO Specification of the objectCreation Event

objectCreation NOTIFICATION
BEHAVIOUR objectCreationBehaviour;
WITH INFORMATION SYNTAX Notification-ASN1Module.ObjectInfo

AND ATTRIBUTE IDS
sourceIndicator sourceIndicator,
attributeList attributeList,
notificationIdentifier notificationIdentifier,
correlatedNotifications correlatedNotifications,
additionalText additionalText,
2-12 Developing C++ Applications • October 2001

Note – The notifications supported by a managed object are defined in the package

definition of the managed object class. For more information, see Section 2.2.7

“Grouping Information Into Packages” on page 2-20.

2.2.5 Describing the Behavior of Items in the Object

Model

The behavior of an item in the object model describes how the item reacts to internal

and external events. It indicates the purpose of the item. The description of an item’s

behavior is similar to a comment in a programming language.

CODE EXAMPLE 2-5 shows the GDMO specification of the behavior of the

packetRetries attribute.

additionalInformation additionalInformation;

REGISTERED AS {joint-iso-ccitt ms(9) smi(3) part2(2) notification(10) 6};
-- changed by Technical Corrigendum 2

objectCreationBehaviour
BEHAVIOUR

DEFINED AS "This notification type is used to report the creation of a
managed object to another open system.";

CODE EXAMPLE 2-5 Behavior of the packetRetries Attribute

packetRetries ATTRIBUTE
...

BEHAVIOUR packetRetriesBehaviour BEHAVIOUR DEFINED AS
! Contains the total number of packet retries for
the day. This attribute is used by the satellite
to monitor the transmission quality to the
channel. If the number of retries increases
quickly, the satellite will automatically switch
transmissions to the channel’s back-up location!;

;
...

CODE EXAMPLE 2-4 GDMO Specification of the objectCreation Event (Continued)
Chapter 2 Modeling Managed Objects 2-13

2.2.6 Identifying Containment Relationships

To enable applications to locate managed objects, the ISO model arranges objects in

a hierarchical structure. This structure is called the management information tree

(MIT), or the containment tree. One object can contain another. A containing (or

superior) object may, in turn, be contained in another object. A superior object can

contain more than one object, but a contained (or subordinate) object can only be

contained in one superior object at a time. This restriction forces a tree structure on

the hierarchy.

The ISO model defines a containment relationship in which the object below the root

object is called the system object.

To design the containment tree for your object model, consider how managed objects

relate to one another. The containment tree for the satellite example is shown in

FIGURE 2-4.

FIGURE 2-4 Example MIT

The containment tree is enforced by the naming scheme for managed object

instances. The naming scheme uses name bindings to enable the relative and fully

distinguished names of managed object instances to be computed.

root

system

channel

dish1 dish2

satellite
2-14 Developing C++ Applications • October 2001

2.2.6.1 Name Bindings

In GDMO, the naming scheme for managed object instances is defined by a name

binding for a pair of managed object classes. A name binding defines the

containment relationship between instances of each class in the pair. A name binding

also provides additional definitions that govern the creation and deletion of

managed objects.

Definition of a Containment Relationship

A name binding defines the containment relationship between instances of each

class in a pair of by defining

■ The subordinate object class in the containment relationship

■ The superior object class in the containment relationship

■ The naming attribute of the subordinate object class

The naming attribute is chosen to ensure that its value is unique for each managed

object instance amongst objects that are subordinate to the same superior.

If a managed object class in a name binding is defined in a different GDMO

document than the name binding, you must specify in which document the

managed object class is defined.

To specify the document, prefix the managed object class name with the document

name specified in the MODULE construct of the managed object class’s GDMO

specification—for example: "Rec. X.721 | ISO/IEC 10165-2 : 1992":system.

For information on GDMO documents, see Section 2.2.8 “Grouping GDMO

Definitions Into Documents” on page 2-22

Additional Definitions in a Name Binding

In addition to a containment relationship, a name binding defines:

■ Whether instances of the subordinate object class are permitted to be created and

deleted by management operation

■ Rules for deleting instances of the subordinate object class that contain other

managed objects

A name binding can also optionally provide information for the creation of an object

under a superior object, such as:

■ The identity of a reference object from which attribute values for initializing the

new object are obtained

■ An instruction that the name of the new object is automatically assigned
Chapter 2 Modeling Managed Objects 2-15

Example Name Binding Definition

CODE EXAMPLE 2-6 shows the definition of the satellite-system name binding.

This example specifies that:

■ Instances of the satellite class can be contained by the class named system
defined in ITU-T X.721/ISO-10165-2 Definition of Management Information.

■ The naming attribute of satellite instances is satelliteId .

■ Instances of the satellite class can be created under an instance of system by

management operation.

■ An instance of the satellite class can be deleted only if it contains no other

objects.

Definition of Multiple Levels of Containment

A single name binding defines only one level of containment in the MIT. To define

multiple levels, multiple name bindings are required. For example, consider the

object model of the satellite example, which defines containment relationships

between managed objects as shown in FIGURE 2-4.

CODE EXAMPLE 2-6 GDMO Definition of the satellite-system Name Binding

...
satellite-system NAME BINDING

SUBORDINATE OBJECT CLASS satellite;
NAMED BY
SUPERIOR OBJECT CLASS "Rec. X.721 | ISO/IEC 10165-2 : 1992":

system;
WITH ATTRIBUTE satelliteId;
BEHAVIOUR satellite-systemBehaviour BEHAVIOUR DEFINED AS

!For the test agent, local instances of the satellites
will be created under the system branch of the tree

!;
;
CREATE;
DELETE ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS { satman-binding 1 };

...
2-16 Developing C++ Applications • October 2001

CODE EXAMPLE 2-7 shows how the example MIT given in FIGURE 2-4 is expressed in

GDMO notation. The root-system name binding is not shown here because it is

defined in an ITU-T standard GDMO definition.

CODE EXAMPLE 2-7 GDMO Definition of the Example MIT

...
satellite-system NAME BINDING

SUBORDINATE OBJECT CLASS satellite;
NAMED BY
SUPERIOR OBJECT CLASS "Rec. X.721 | ISO/IEC 10165-2 : 1992":

system;
WITH ATTRIBUTE satelliteId;
BEHAVIOUR satellite-systemBehaviour BEHAVIOUR DEFINED AS

!For the test agent, local instances of the satellites
will be created under the system branch of the tree
!;

;
CREATE;
DELETE ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS { satman-binding 1 };

channel-satellite NAME BINDING
SUBORDINATE OBJECT CLASS channel;
NAMED BY
SUPERIOR OBJECT CLASS satellite;
WITH ATTRIBUTE channelId;
BEHAVIOUR channel-satelliteBehaviour BEHAVIOUR DEFINED AS

! channel objects will always be contained in a
satellite object
!;

;
CREATE;
DELETE ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS { satman-binding 2 };

dish-channel NAME BINDING
SUBORDINATE OBJECT CLASS dish;
NAMED BY
SUPERIOR OBJECT CLASS channel;
WITH ATTRIBUTE dishId;
BEHAVIOUR dish-channelBehaviour BEHAVIOUR DEFINED AS

! dish objects will always be contained in a channel
 object!;

;

Chapter 2 Modeling Managed Objects 2-17

2.2.6.2 Names of Managed Object Instances

Managed object instances are identified by:

■ Relative distinguished names

■ Fully distinguished names

■ Local distinguished names

Relative Distinguished Names

The relative distinguished name (RDN) of a managed object instance represents the

location of the instance in the containment tree relative to its superior object

instance. The naming attribute and its value provide the RDN of an object instance.

The RDN is expressed in an attribute value assertion (AVA) as

namingAttribute = "value".

For example, if the naming attribute of a managed object class is satelliteId and

its value for an instance is NorthernLights , the RDN of the instance is

satelliteId="NorthernLights" .

Fully Distinguished Names

The fully distinguished name (FDN) of a managed object instance represents its

unique location in the containment tree. The FDN is a concatenation of the sequence

of RDNs from the root of the containment tree to the instance.

For example, consider a dish contained in a channel, which is in turn contained in a

satellite. The satellite is contained in an instance of the system object, which is

below the root of the containment tree.

The root of the containment tree is represented by a forward slash (/). The RDNs of

the managed object instances are as follows:

■ systemId="starless" (for the system object)

■ satelliteId="NorthernLights" (for the satellite)

■ channelId="HBO" (for the channel)

■ dishId="Tic" (for the dish)

CREATE;
DELETE ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS { satman-binding 3 };

...

CODE EXAMPLE 2-7 GDMO Definition of the Example MIT (Continued)
2-18 Developing C++ Applications • October 2001

The FDN of the dish is

/systemId="starless"/satelliteId="NorthernLights"/channelId="HBO"/dishId="Tic" .

The derivation of this FDN is shown in FIGURE 2-5.

FIGURE 2-5 Containment Tree and Object Naming

Local Distinguished Names

A local distinguished name (LDN) enables agents that cannot interpret FDNs to

locate managed objects. The LDN of a managed object instance represents the

location of the instance in the containment tree relative to a local root. A local root is

any instance in the containment tree other than the root of the containment tree.

Only one local root is allowed in a containment tree.

The LDN is concatenation of the sequence of RDNs from the local root to the

instance. An LDN does not begin with a forward slash (/), unlike an FDN, which

always begins with a forward slash.

For example, if the satellite named NorthernLights in the example in FIGURE 2-5 is

defined as a local root, the LDN of the dish named Tic is

channelId="HBO"/dishId="Tic" .

RDN is dishId="Pancho" RDN is dishId="Tic"

Satellite NorthernLights contains

Channel HBO contains

RDN is channelId="HBO"

RDN is satelliteId="NorthernLights"

FDN is /systemId="starless"/satelliteId="NorthernLights"/channelId="HBO"/dishId="Tic"

Satellite NorthernLights

Channel HBO

Dish Pancho Dish Tic

Channel HBO

dishes Pancho and Tic

System starless

RDN is systemId="starless"

System starless contains
Satellite NorthernLights

Root of the containment tree is represented by /

System starless is below
the root of the containment tree

Root of the containment tree
Chapter 2 Modeling Managed Objects 2-19

2.2.6.3 Brace Notation for Relative and Fully Distinguished Names

Some Solstice EM tools require you to specify the FDN of a managed object instance

by using brace notation instead of the slash notation described in Section 2.2.6.2

“Names of Managed Object Instances” on page 2-18. For example, the MIS Objects

tool and the nickname service require you to use brace notation to specify FDNs.

In brace notation, each RDN is expressed as {{ namingAttribute, value}} . A comma

separates namingAttribute and value. If value is a string type (for example, an octect

string) it must be enclosed in double quotes. The RDN is contained inside two pairs

of braces. For example, if the naming attribute of an object class is satelliteId
and its value for an instance is NorthernLights , the RDN of the instance in brace

notation is {{satelliteId, "NorthernLights"}} .

To form the FDN, the RDNs are concatenated in a list as follows:

Each RDN is separated by a comma from the RDN that follows it. The entire list is

enclosed in a pair of braces.

For example, the FDN of the dish named Tic in the example in FIGURE 2-5 is

expressed in brace notation as:

{ {{systemId, "starless" }}, {{satelliteId, "NorthernLights"}},
{{channelId, "HBO"}}, {{dishId, "Tic"}} } .

2.2.7 Grouping Information Into Packages

GDMO notation requires you to group the data for a managed object class into

packages. Each managed object class must have a minimum of one mandatory

package. A package defines which attributes, actions, notifications, and behaviors

characterize each instance of the managed object class. The attributes, actions, and

notifications themselves are defined separately.

However, the package definition does specify which management operations are

permitted for an attribute when it is present in the managed object class. Depending

on the operations permitted, attributes can be read to recover information about the

associated resource, modified to alter the current state of the associated resource, or

both.

It is also possible to define conditional packages, which are present or absent

depending on the characteristics of the resource being managed. The conditions

under which this package is present or absent form part of the managed object class

definition.

{ 1stRDN, 2ndRDN,... nthRDN}
2-20 Developing C++ Applications • October 2001

Using conditional packages makes managed object classes more flexible. Every

instance of a managed object class must contain all the mandatory packages, but by

adding or removing conditional packages you can allow for variations without

creating a new managed object class for every case.

CODE EXAMPLE 2-8 shows the specification of the dishPackage package, which is

contained in the dish managed object class.

This example specifies that:

■ The behavior of the dish managed object class is to contain attributes for

monitoring customers who are using dishes.

■ The following attributes are present in the dish managed object class:

■ dishId
■ censureButton
■ coordinates
■ vchipId

■ The the dish managed object class supports the following notifications defined in

ITU-T X.721/ISO-10165-2 Definition of Management Information:

CODE EXAMPLE 2-8 GDMO Definition of the dishPackage Package

...
dishPackage PACKAGE

BEHAVIOUR dishPackageDefinition BEHAVIOUR DEFINED AS
!This managed object contains the attributes for
monitoring the customers
!;

;
ATTRIBUTES

dishId GET,
censureButton

DEFAULT VALUE WATTA-DISH-ASN1.defaultButton
REPLACE,

coordinates GET-REPLACE,
vchipId GET
;

NOTIFICATIONS
"Rec. X.721 | ISO/IEC 10165-2 : 1992":

objectCreation,
"Rec. X.721 | ISO/IEC 10165-2 : 1992":

objectDeletion,
"Rec. X.721 | ISO/IEC 10165-2 : 1992":

attributeValueChange;
...
Chapter 2 Modeling Managed Objects 2-21

■ objectCreation
■ objectDeletion
■ attributeValueChange

2.2.8 Grouping GDMO Definitions Into Documents

A GDMO document is a grouping of GDMO definitions applicable to a particular

aspect of network management. Solstice EM requires that every GDMO definition is

grouped into a GDMO document. You cannot insert anything other than blank

characters and comments outside of a GDMO document.

The format of a GDMO document is as follows:

Where:

■ document is the name of the GDMO document. It is a text string, starting with an

upper-case letter. Every GDMO document must have a name. Assigning a name

to a GDMO document enables EM to differentiate between items of the same

name that are defined in more than one GDMO document.

■ definitions are the GDMO definitions grouped into the GDMO document.

The MODULEand ENDkeywords are mandatory. The MODULEkeyword marks the

start of the GDMO document. The ENDkeyword marks the end of the GDMO

document.

Note – The MODULEand ENDkeywords are specific to Solstice EM. They are not part

of the standard ITU-T X.722/ISO-10165-4 Guidelines for the Definition of Managed
Objects (GDMO).

CODE EXAMPLE 2-9 shows how the GDMO document of the satellite example is

named.

In this example, the GDMO document is named Satellite Manager .

MODULE "document"
definitions
END

CODE EXAMPLE 2-9 Naming a GDMO Document

MODULE "Satellite Manager"
...
END
2-22 Developing C++ Applications • October 2001

2.3 Abstract Syntax Notation #1 (ASN.1)
In the Solstice EM environment, all information in management requests must be

represented in a machine-independent format for transmission over a network. The

format used is defined in ITU-T X.208/ISO-8824 Specification of Abstract Syntax
Notation One (ASN.1). This standard defines a canonical form for representing all

open systems interconnection (OSI) application data.

When using Solstice EM to develop applications, you need to write ASN.1 syntax

definitions for all the custom data types in the GDMO definitions of your managed

objects.

2.3.1 Grouping ASN.1 Syntax Definitions Into Modules

All ASN.1 syntax definitions must be grouped together into modules. You cannot

insert anything other than blank characters and comments outside a module

definition. There are no rules about module length or content. You are free to group

definitions together in an appropriate way for your application.

The format of a module is as follows:

Where:

■ moduleRef is the module reference, or name, of the module. It is a text string,

starting with an upper-case letter. Every module must have a module reference.

■ oid is the object identifier (OID) of the module. The OID provides a universally

unique identifier for the module, allowing other modules to refer to it. For more

information on OIDs, refer to Section 2.4 “Assigning Unique Identifiers” on

page 2-30.

■ definitions are the ASN.1 definitions grouped into the module.

The DEFINTIONS and BEGIN keywords are mandatory, and mark the start of the

module. The ENDkeyword is mandatory and marks the end of the module.

moduleRef { oid }
DEFINITIONS ::=
BEGIN
definitions
END
Chapter 2 Modeling Managed Objects 2-23

The beginning and end of the satellite example ASN.1 module are shown in

CODE EXAMPLE 2-10.

In this example, the module reference is SAT-MAN-ASN1and the OID of the module

is { 1 3 6 1 4 1 42 2 55 } .

2.3.2 Defining ASN.1 Types

An ASN.1 Type is a data type defined using the ASN.1 notation.

The syntax of an ASN.1 type definition is as follows:

Where:

■ typeRef is the type reference, or name, of the type you want to define.

■ type is the type reference of an existing ASN.1 type.

2.3.2.1 Type Reference

Every type must have type reference. The type references of ASN.1 universal types

are always written in upper case, for example INTEGER, or BOOLEAN. For

information on ASN.1 universal types, refer to Section 2.3.2.3 “Universal Types” on

page 2-26.

The type references of all other ASN.1 types must start with an upper-case letter, for

example NewType.

CODE EXAMPLE 2-10 Beginning and End of an ASN.1 Module

SAT-MAN-ASN1 { iso(1) org(3) dod(6) internet(1) private(4)
enterprises(1) sun(42) products(2) satman(55) }

DEFINITIONS ::=
.
.
.
END

typeRef ::= type
2-24 Developing C++ Applications • October 2001

2.3.2.2 Type

A new type must always be defined using an existing type. The existing type can be

either an ASN.1 universal type, or another custom type. If the custom type is defined

in a different module, you have to import its definition. For more information, see

Section 2.3.4 “Reusing Definitions From Other ASN.1 Modules” on page 2-28.

Definition in Terms of an ASN.1 Universal Type

CODE EXAMPLE 2-11 shows the definition of an ASN.1 type in terms of an ASN.1

universal type.

In this example, the CurrentLogSize type is defined to be of the INTEGERASN.1

universal type.

Definition in Terms of Another Custom Type

A new type does not need to be defined using a universal type directly, but can be

defined using another custom type. CODE EXAMPLE 2-12 shows the definition of an

ASN.1 type in terms of another custom type.

In this example, the SatelliteData type from the satellite example has been

defined as a SET OFtype, containing instances of the SatelliteSeq type. The

definition of the SatelliteSeq type is shown in CODE EXAMPLE 2-13.

CODE EXAMPLE 2-11 Definition of the CurrentLogSize ASN.1 Type

CurrentLogSize ::= INTEGER

CODE EXAMPLE 2-12 Definition of the SatelliteData ASN.1 Type

SatelliteData ::= SET OF SatelliteSeq

CODE EXAMPLE 2-13 Definition of the SatelliteSeq ASN.1 Type

SatelliteSeq ::= SEQUENCE {
name GraphicString,
value Integer32,
checkSum CheckSum

}

Chapter 2 Modeling Managed Objects 2-25

In this example, the SatelliteSeq type is composed of the values of name, value ,

and checkSum in that order. The name, value , and checkSum types are defined in

other ASN.1 module specifications.

2.3.2.3 Universal Types

The ASN.1 types defined in ITU-T X.208/ISO-8824 Specification of Abstract Syntax
Notation One (ASN.1) are referred to as universal, or built-in types. These are the

building-blocks of ASN.1. All new ASN.1 types must be defined either directly or

indirectly in terms of these universal types. TABLE 2-5 lists ASN.1 universal types.

TABLE 2-5 ASN.1 Universal Types

Type Allowed Value

Simple Types

BOOLEAN One of TRUEor FALSE

INTEGER A positive or negative whole number, can include zero

ENUMERATED A defined set of values

REAL Members of the set of real numbers

BIT STRING An ordered sequence of zero or more bits.

OCTET STRING An ordered sequence of zero or more octets, where each octet is an

ordered sequence of eight bits

NULL A single value, also called null

OBJECT
IDENTIFIER

An OID

Structured Types

SEQUENCE A fixed, ordered list of types

SET A fixed list of types, where order is not significant

SEQUENCE OF An ordered list of zero or more values of the same type

SET OF A list of zero or more values of the same type, where order is not

significant

Other Types

CHOICE A fixed, unordered list of types, where the value of the new type is

the value of one of the component types

ANY A choice type whose component types are unspecified
2-26 Developing C++ Applications • October 2001

2.3.2.4 Ranges of Allowed Values

If you need to limit the values of an ASN.1 type, you can specify a range of allowed

values for the type. To specify a range, append the range in parentheses to the

ASN.1 type definition. The upper and lower ends of the range must be separated by

two periods (..).

CODE EXAMPLE 2-14 shows how a range of allowed values is specified for the

Integer8 ASN.1 type. The Integer8 ASN.1 type is defined in the OMNIPoint 1

Definitions module (/opt/SUNWconn/em/etc/asn1/vol4.asn1).

In this example the Integer8 type is defined as an INTEGERtype. Values of the

Integer8 type must be in the range 0 to 255.

2.3.3 Defining ASN.1Values

An ASN.1 value is an instance of an ASN.1 type to which a value has been assigned.

Define an ASN.1 value to simplify the assignment of OIDs or to specify a default

value for all instances of an ASN.1 type.

The syntax of an ASN.1 value definition is as follows:

Where:

■ valueRef is the value reference, or name, of the instance you want to define. To

distinguish it from a type reference, a value reference starts with a lower case

letter, for example, valueName .

■ type is the type reference of an existing ASN.1 type.

■ value is the value you want to assign to the instance.

CODE EXAMPLE 2-15 shows the definition of an ASN.1 value.

CODE EXAMPLE 2-14 Specifying a Range of Allowed Values for an ASN.1 Type

Integer8 ::= INTEGER (0..255)

valueRef type ::= value

CODE EXAMPLE 2-15 Defining an ASN.1 Value

satman OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 42 2 55}
Chapter 2 Modeling Managed Objects 2-27

In this example, an instance named satman of type OBJECT IDENTIFIER is

assigned the value { 1 3 6 1 4 1 42 2 55 } .

2.3.4 Reusing Definitions From Other ASN.1 Modules

You can define new types or values using definitions from other ASN.1 modules,

provided that these definitions have been imported. You can reuse definitions from

standard modules or modules you have written yourself.

To reuse a definition from another ASN.1 module, import it into your ASN.1

module. To make a definition available to other ASN.1 modules, export it.

Note – The sections for importing and exporting definitions must come before ASN.1

type and value definitions in an ASN.1 module.

2.3.4.1 Importing a Definition

To import a definition, use the IMPORTSkeyword immediately after the BEGIN
keyword. The syntax for importing a definition is as follows:

Where:

■ definitionRef is the type or value reference of the ASN.1 definition you want to

import.

■ moduleRef is the module reference of the module that contains the definition you

want to import.

■ oid is the OID of the module from which you want to import the definition.

To import more than definition from the same ASN.1 module, list the definitions,

separated by commas, before the FROMkeyword. You can mix type and value

definitions from the same module.

To import from several modules, repeat the FROMkeyword before each module

reference.

BEGIN

IMPORTS

definitionRef
FROMmoduleRef { oid };
2-28 Developing C++ Applications • October 2001

The IMPORTSsection of the satellite example ASN.1 is shown in CODE EXAMPLE 2-16.

In this example, the SimpleNameType definition is imported from the Attribute-
ASN1Module module and the Integer32 definition is imported from the SYNTAX-
1 module.

2.3.4.2 Exporting a Definition

Exporting a definition makes it available to other ASN.1 modules. You can import a

definition only if it has been exported from the module in which it is defined. By

default, all definitions are exported.

If you want to restrict the list of definitions you export, include the EXPORTS
keyword after BEGIN. If you include the EXPORTSkeyword, only the definitions you

list will be exported. To export no definitions from a module, include the EXPORTS
keyword without providing a list of definitions.

The ASN.1 module for the satellite example does not include the EXPORTSkeyword.

Therefore, all definitions are exported.

The ASN.1 module for the ITU-T X.227/ISO-8650 Connection-Oriented Protocol
Specification for the Association Control Service Element standard uses the EXPORTS
keyword to export definitions as shown in CODE EXAMPLE 2-17.

CODE EXAMPLE 2-16 Importing ASN.1 Definitions

IMPORTS
SimpleNameType FROM

Attribute-ASN1Module {
joint-iso-ccitt ms(9) smi(3) part2(2) asn1Module(2) 1}

Integer32 FROM SYNTAX-1 { iso 3 14 2 2 0 1 };

CODE EXAMPLE 2-17 Exporting ASN.1 Definitions

BEGIN
EXPORTS

acse-as-id, ACSE-apdu,
aCSE-id, Application-context-name,
AP-title, AE-qualifier,
AE-title, AP-invocation-identifier,
AE-invocation-identifier,
Mechanism-name, Authentication-value;
Chapter 2 Modeling Managed Objects 2-29

2.4 Assigning Unique Identifiers
When you are exchanging data between different components of a managed system,

you need a means of uniquely identifying items represented in the data. To identify

an item uniquely, assign it an object identifier (OID).

2.4.1 Registering an OID

To ensure that an OID is globally unique, register it. A registered OID provides a

globally unique identifier for each of the following:

■ Managed object classes

■ Attributes

■ Actions

■ Notifications

■ Packages

■ Name Bindings

■ Parameters

■ Attribute Groups

■ Behaviors

■ ASN.1 Modules

Registered OIDs are organized in a hierarchy known as the ISO registration tree. The

ISO registration tree contains nodes labeled using nonnegative integer values and a

text label. The top of this tree is called the root. There are three labeled nodes under

root which are administered by the ISO and CCITT standards organizations. There

are in turn sub-nodes under the three ISO and CCITT nodes. They are administered

by ISO, CCITT, and other organizations

The OID of a node in the tree is a unique label formed by concatenating the labels of

each node in the tree from root to the node. For example the OID for Solstice EM is

{1 3 6 1 4 1 42 2 2 2}. FIGURE 2-6 shows how this OID is arrived at.

To ensure that your OIDs are unique, apply to the relevant authority in your own

country, typically the national standards body, to be allocated your own subtree of

the ISO registration tree.
2-30 Developing C++ Applications • October 2001

FIGURE 2-6 ISO Registration Tree

ISO Identified Organization

0 ISO Standard

1 ISO Registration Authority

2 ISO Member Body

3

root

0 ccitt

1 iso

6 US Dept of Defense

1 Internet

1 Directory

2 Management

3 Experimental

4 Private

1 Enterprises

42 Sun Microsystems

2 Products

2 Management

1 SunNet Manager

2 Solstice EM

3 Solstice TMN products
Chapter 2 Modeling Managed Objects 2-31

2.4.2 Guidelines for Allocating Your Own OIDs

When you have been allocated a subtree of the ISO registration tree, define a

convention to ensure that every item in the subtree has a unique object identifier.

To simplify debugging, put items of the same type in their own branch of the

subtree. For example, allocate one branch to object classes, another to name bindings

and a third to attributes. When you use a debugging tool such as em_debug, which

identifies items only by their OIDs, it is easier to distinguish between object classes,

name bindings, and attributes if they are in separate subtrees.

The OIDs of branches of the subtree for the satellite example are shown in

CODE EXAMPLE 2-18. These OIDs are assigned in the ASN.1 module specification for

the satellite example.

In this example, OIDs are defined for branches of the subtree containing object

classes, packages, name bindings, and attributes. These OIDs are used as the roots of

OIDs for individual classes, name bindings and attributes as shown in

CODE EXAMPLE 2-19. These OIDs are assigned in the GDMO definition of the

managed objects for satellite example.

CODE EXAMPLE 2-18 OIDs for Branches of the Subtree in the Satellite Example

satman OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 42 2 55}
satman-objectClass OBJECT IDENTIFIER ::= {satman 3}
satman-package OBJECT IDENTIFIER ::= {satman 4}
satman-binding OBJECT IDENTIFIER ::= {satman 6}
satman-attribute OBJECT IDENTIFIER ::= {satman 7}

CODE EXAMPLE 2-19 OIDs for the Satellite Example

satellite MANAGED OBJECT CLASS
...

REGISTERED AS { satman-objectClass 1 };

channel MANAGED OBJECT CLASS
...

REGISTERED AS {satman-objectClass 2};
...
satellite-system NAME BINDING
...

REGISTERED AS { satman-binding 1 };
...
2-32 Developing C++ Applications • October 2001

2.4.3 Notation for OIDs

You must specify OIDs in your GDMO definitions and ASN.1 module specifications

by using one of the following notation types:

■ Dot notation

■ Brace notation

To simplify the assignment of OIDs for items under a common node, you can assign

a label to the OID of the node and use the label in assigning OIDs to items under the

node.

2.4.3.1 Dot Notation

Dot notation uses the integer label for each node in the ISO registration tree from

root to the node of interest, separated by periods. Dot notation has the advantage of

brevity, but it can be difficult to read because it contains only integers.

For example, the OID for Solstice EM is written as 1.3.6.1.4.1.42.2.2.2 in dot

notation.

2.4.3.2 Brace Notation

In brace notation, each node in the registration tree is identified by one of the

following:

■ The text label followed by the integer label in parentheses

■ The text label alone

■ The integer label alone

The OID is formed by concatenating the node identifiers, with each identifier

separated by white space. The OID is enclosed in braces.

satelliteId ATTRIBUTE
...

REGISTERED AS { satman-attribute 1 };

activeChannels ATTRIBUTE
...

REGISTERED AS { satman-attribute 2 };
...

CODE EXAMPLE 2-19 OIDs for the Satellite Example (Continued)
Chapter 2 Modeling Managed Objects 2-33

For example, the OID for Solstice EM can be written in brace notation as any of the

following:

■ {1 3 6 1 4 1 42 2 2 2}
■ {iso(1) org(3) dod(6) internet(1) private(4) enterprises(1)

sun(42) products(2) management(2) em(2)}
■ {iso org dod internet private enterprises sun products

management em}
■ {iso org dod internet private enterprises sun(42) 2 2 2}

2.4.3.3 OID Labels

An OID label is a text string that identifies an OID. Labelling an OID simplifies the

assignment of OIDs for items under a common node. After you label the OID of a

node, you can use the label in assigning OIDs to items under the node.

Note – OID labels are permitted only in brace notation.

CODE EXAMPLE 2-20 shows the assignment of a label to the OID of the satellite

example.

In this example, the label satman is assigned to the OID of the satellite example.

This OID is expressed in brace notation. CODE EXAMPLE 2-21 shows how the satman
label is used in the assignment of an OID to a node under the satman node.

CODE EXAMPLE 2-20 Labelling an OID

satman OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 42 2 55}

CODE EXAMPLE 2-21 Using an OID Label in an OID Assignment

satman-objectClass OBJECT IDENTIFIER ::= {satman 3}
2-34 Developing C++ Applications • October 2001

2.5 Obtaining GDMO and ASN.1
Specifications for Objects
To simplify the task of writing the object model, use existing specifications as the

basis of your object model whenever possible. Depending on the resources you want

to manage, consider using the following as the basis of your object model:

■ Existing GDMO definitions

■ SNMP MIBs

2.5.1 Existing GDMO Definitions

Standards bodies such as the International Telecommunication Union -

Telecommunication Standardization Sector (ITU-T) have written GDMO definitions

for managed objects common in network management. Before defining your own

managed objects, consult published network management standards to see if the

managed objects you require have already been defined.

If no suitable standard exists, but your object model is similar to an existing object

model, you can use the existing object model as the basis of your new object model.

Modify the GDMO definition of the existing object model by:

■ Replacing the name of the document in the MODULEconstruct with the name of

the new model

■ Changing the names of managed object classes and attributes to reflect those you

have identified for the new model

■ Adding identifiers of GDMO documents to the names of items defined in other

GDMO documents

■ Changing the name binding definitions to define the containment tree you require

■ Adding definitions of new attributes

■ Changing OIDs to those allocated for your project

Note – If you obtain GDMO definitions and ASN.1 module specifications in a single

file, put the GDMO definitions in a separate file from the ASN.1 specifications before

you make your object model available to Solstice EM. Solstice EM does not accept a

mixture of GDMO definitions and ASN.1 module in a single file.
Chapter 2 Modeling Managed Objects 2-35

2.5.2 SNMP MIBs

If you are managing SNMP agents, the object model of the agent will be expressed as

an SNMP management information base (MIB). To manage an SNMP agent in the

Solstice EM environment, the MIB of the agent must be represented as a GDMO

document and an ASN.1 module specification.

To generate a representation of an SNMP MIB as a GDMO document and an ASN.1

module specification, use either of the following:

■ Concise MIB compiler (em_cmib2gdmo)

■ Load Data Definitions tool

The concise MIB compiler and the Load Data Definitions tool take an SNMP MIB as

input and generates a GDMO document and an ASN.1 module specification suitable

for loading into Solstice EM.

For information on how to use the concise MIB compiler and the Load Data

Definitions tool, refer to the Management Information Server (MIS) Guide.

2.6 Making Your Object Model Available to
Solstice EM
Making your object model available to Solstice EM provides the Solstice EM

platform with information it requires to perform management operations on your

managed objects. Making your object model available to Solstice EM involves:

■ Loading your object model into the metadata repository (MDR)

■ (Optional) setting agent role behavior of Solstice EM

2.6.1 Loading Your Object Model Into the MDR

In the Solstice EM environment, definitions of managed objects are stored in a

metadata repository (MDR). To make your object model available to the Solstice EM

environment, you must load it into the MDR.

Loading your object model into the MDR involves:

■ Loading the GDMO specification by using the GDMO compiler (em_gdmo)
■ Loading the ASN.1 module specification by using the ASN.1 compiler (em_asn1)

For information on how to use the GDMO and ASN.1 compilers, refer to the

Management Information Server (MIS) Guide.
2-36 Developing C++ Applications • October 2001

2.6.2 Setting Agent Role Behavior of Solstice EM

Setting agent role behavior of Solstice EM specifies how Solstice EM maintains

managed objects. Managed objects are typically maintained by an agent. However, if

you do not have a dedicated agent, you can use Solstice EM in an agent role to

maintain managed objects. If you are using Solstice EM in an agent role, you must

set its agent role behavior.

If your managed objects are maintained by an agent, all you need to do is load your

object model into the MDR. You do not need to set agent role behavior.

Before you set agent role behavior of Solstice EM, make sure you have loaded your

object model into the MDR.

Depending on your requirements, you can set:

■ Default agent role behavior. The Solstice EM management information server

(MIS) provides default agent role behavior based on the definitions in your object

model. Setting default agent role behavior provides the MIS with information it

requires about your object model.

■ Custom agent role behavior. If you want define your own agent role behavior,

use object development tools (ODT).

Setting default agent role behavior of Solstice EM involves:

■ Loading managed object class definitions into the MIS

■ Loading name bindings

Solstice EM also enables you to set default agent role behavior of Solstice EM in a

single operation.

Note – The procedures in the following subsections explain how to set default agent

role behavior from the command line. If you want to set default agent role behavior

interactively, use the Load Data Definitions tool, as explained in the Management
Information Server (MIS) Guide.

2.6.2.1 Loading Managed Object Class Definitions Into the MIS

Loading managed object class definitions into the MIS provides the MIS with

information it requires to perform management operations on instances of the

managed object classes.

How to load managed object class definitions into the MIS depends on whether you

want your managed object class definitions to be volatile or persistent.

■ If you want your definitions to be volatile, use em_compose_oc
■ If you want your definitions to be persistent, use em_compose_poc
Chapter 2 Modeling Managed Objects 2-37

For information on how to use em_compose_oc and em_compose_poc , refer to the

Management Information Server (MIS) Guide.

2.6.2.2 Loading Name Bindings

Loading name bindings provides Solstice EM with the information it requires to

create and locate managed objects in the MIT. To load name bindings, use the

em_load_name_bindings command.

For information on how to use the em_load_name_bindings command, refer to

the Management Information Server (MIS) Guide.

2.6.2.3 Setting Default Agent Role Behavior in a Single Operation

If you want your managed object class definitions to be persistent, you can set

default agent role behavior of Solstice EM in a single operation. To set default agent

role behavior of Solstice EM in a single operation, use the em_compose_all script.

This script is a wrapper that executes em_compose_poc and

em_load_name_bindings .

For information on how to use the em_compose_all script, refer to the Management
Information Server (MIS) Guide.
2-38 Developing C++ Applications • October 2001

CHAPTER 3

Enabling Applications to Access
Managed Objects

To manage a network, the applications you develop must have access to current data

about managed resources. In the Solstice EM environment, managed resources are

represented as managed objects. Access to managed objects is provided by a

management information server (MIS). The MIS is a repository for all management

data and functions. It makes information about managed objects available to its

clients, both applications and services. Your applications access the MIS by

connecting to it through an application programming interface (API) called the

Portable Management Interface (PMI). The MIS then makes information about

managed objects available to your applications and their users. For more

information about the MIS, refer to the Management Information Server (MIS) Guide.

This chapter explains how to enable your management applications to access

managed objects stored in an MIS.

■ Section 3.1 “Connecting to an MIS” on page 3-1

■ Section 3.2 “Disconnecting From an MIS” on page 3-4

■ Section 3.3 “Bypassing the MIS to Access Solstice EM Databases” on page 3-5

3.1 Connecting to an MIS
In the Solstice EM environment, managed objects are accessed through an MIS. To

gain access to managed objects, an application must connect to the MIS.

To enable an application to connect to an MIS, use the Platform class of the

Portable Management Interface (PMI). An instance of the Platform class represents

a connection from an application to an MIS, and contains all the information about

the MIS that the application requires.
3-1

Enabling an application to connect to an MIS involves:

■ Creating and initializing an instance of the Platform class

■ Calling the connect function of the Platform class

3.1.1 Creating and Initializing an Instance of the

Platform Class

To connect to an MIS, an application must instantiate and initialize an instance of the

Platform class. When you call the constructor of the Platform class, you must

specify the platform type.

Note – The only supported platform type is duEM.

Code for creating and initializing an instance of the Platform class is shown in

CODE EXAMPLE 3-1.

Note – The constructor of the Platform class does not throw an exception if the

attempt to initialize the instance of Platform fails. If you want to check for errors

during initialization, use the get_error_type function as described in Section 4.1.2

“Using the get_error_type Function” on page 4-2.

CODE EXAMPLE 3-1 Creating and Initializing a Platform Instance

...
#include <pmi/hi.hh> // High Level PMI
...
Platform plat; // Create instance
...
plat = Platform(duEM); // Initialize instance
...
3-2 Developing C++ Applications • October 2001

3.1.2 Calling the connect Function of the Platform
Class

After creating and initializing an instance of the Platform class, you need to call

the connect function of the Platform class to establish a connection between your

application and an MIS. In the call to the connect function, you must specify:

■ The location of the MIS. This location is the host name of the machine on which

the MIS is running.

■ The name of your application. When a user runs your application, the Access

Control module verifies that the user has permission to access the MIS by using

that application. For more information on access control, refer to Chapter 12.

Code for connecting to an MIS and checking for connection errors is shown in

CODE EXAMPLE 3-2.

In this example, the location of the MIS is specified by the host name a101 . The

name of the application is simplemanager . If the connection fails, the error

message returned by get_error_string is displayed. For more details on error

handling, refer to Chapter 4.

CODE EXAMPLE 3-2 Calling the connect Function

...
#include <pmi/hi.hh> // High Level PMI
...
if (!plat.connect("a101", " simplemanager "))
{

cout << "Failed to connect to " << "a101" << endl;
cout << plat.get_error_string() << endl;

}
...
Chapter 3 Enabling Applications to Access Managed Objects 3-3

3.2 Disconnecting From an MIS
An application is automatically disconnected when it exits, or when the MIS that it

is connected to is shut down. Therefore, in most cases you do not need to provide

code for disconnecting your applications from an MIS.

If you want your application to continue running after disconnecting itself from the

MIS, include in the application a call to the disconnect function of the Platform
class. For example, if you are developing an application that monitors a piece of

equipment across a modem line and you want to make most efficient use of the

modem connection, you can enable the application to:

■ Connect to an MIS

■ Gather information from the MIS

■ Disconnect from the MIS

■ Process the information it has gathered from the MIS

■ Reconnect to the MIS when it needs to gather information again

If you want your application to perform a specific operation when it is disconnected

from the MIS, enable your application to handle events that indicate that the

application is disconnected. For information on how to enable an application to

handle events, refer to Chapter 7.

Code for disconnecting from the MIS and checking for disconnection errors is shown

in CODE EXAMPLE 3-3.

Caution – When your application calls the disconnect function, instances of all

PMI classes are destroyed. All metadata cached in your application is also destroyed.

Make sure that your application does not reference any of the PMI instances or

metadata after they have been destroyed. Any attempt to reference an instance or

metadata that has been destroyed will cause your application to fail.

CODE EXAMPLE 3-3 Calling the disconnect Function

...
#include <pmi/hi.hh> // High Level PMI
...
if (!plat.disconnect())
{

cout << “Failed to disconnect” << endl;
}
...
3-4 Developing C++ Applications • October 2001

3.3 Bypassing the MIS to Access Solstice EM
Databases
The MIS is a repository for all management data and functions. It makes data about

managed objects available to applications. Managed object data are stored in a

number of databases, which the MIS communicates with. Different services are

associated with different databases, depending on the type of managed objects

stored in a database. For example, the log service is associated with the database that

stores log objects.

Normally, applications access Solstice EM databases through the MIS. You can

bypass the MIS to access Solstice EM databases directly if you want to gain direct

access to log record data.

Bypassing the MIS involves:

■ Getting information required for a database connection

■ Passing database information to a database application development tool

3.3.1 Getting Information Required for a Database

Connection

To connect directly to a database, an application requires information on the

database. To get the information your application needs to connect to a database, use

the EMDBConnectInfo class. The EMDBConnectInfo class represents all the

information about the database that an application requires.

Getting information required for a database connection involves:

■ Creating and initializing an instance of the EMDBConnectInfo class

■ Calling functions of the EMDBConnectInfo class
Chapter 3 Enabling Applications to Access Managed Objects 3-5

3.3.1.1 Creating and Initializing an Instance of the
EMDBConnectInfo Class

To get the information it requires, an application must create and initialize an

instance of the EMDBConnectInfo class. When you call the constructor of the

EMDBConnectInfo class, you must specify:

■ The location of the database server. This location is the host name of the machine

on which the database server is running.

■ The service associated with log objects in the database. This service must be

specified as LOG_SVC.

Note – The only service supported is the log service.

Code for creating and initializing an instance of the EMDBConnectInfo class is

shown in CODE EXAMPLE 3-4.

In this example, the location of the database server is specified by the host name

indus . The service associated with log objects in the database is specified as

LOG_SVC.

3.3.1.2 Calling Functions of the EMDBConnectInfo Class

Once you have created and initialized an instance of the EMDBConnectInfo class,

call functions of the EMDBConnectInfo class to obtain information about the

database you want to connect to. Exactly which information is needed depends on

the function you call to connect to the database.

Use the functions of the EMDBConnectInfo class listed in TABLE 3-1 to get

information you need. By using these functions to get the required information, you

make your code for connecting to a database independent of the implementation of

the database.

CODE EXAMPLE 3-4 Creating and Initializing an Instance of the EMDBConnectInfo Class

...
#include <dbapi/dbcon.hh>
...

RWCString misname("indus");

//Create the database connection object
EMDBConnectInfo conn_info(misname,EMDBConnectInfo::LOG_SVC);

...
3-6 Developing C++ Applications • October 2001

For an example of how these functions are called, refer to CODE EXAMPLE 3-5.

3.3.2 Passing Database Information to a Database

Application Development Tool

When you have obtained the information you need, pass it to a database application

development tool (for example, Rogue Wave Software DBTools.h++) to connect your

application to the database.

TABLE 3-1 Functions for Getting Information About a Database

Information Function

The name of the dynamic library that Rogue Wave Software

DBTools.h++ uses for interacting with the database, for example

librwinf.so . This library depends on the database server that

Solstice EM uses internally. Use the get_server_type function

only with the Rogue Wave Software DBTools.h++ database

application development tool.

get_server_type

The host name of the database server. get_server_name

The database user name as defined by the database administrator.

This is not necessarily the user’s UNIX user name.

get_user_name

The database user’s password. get_user_password

The database name. get_database_name

The database user’s role as defined by the database

administrator.

get_role

The status of the EMDBConnectInfo object. It is 0 if the object is

valid and -1 if it is invalid.

get_status
Chapter 3 Enabling Applications to Access Managed Objects 3-7

CODE EXAMPLE 3-5 shows code for getting information about a Solstice EM database

and passing that information to a function for connecting to a database.

In this example, the static function database of the Rogue Wave Software

DBTools.h++ class RWDBManageris called to establish a connection between the

application and a database. The database function requires the following

information:

■ The database server type

■ The host name of the database server

■ The database user name

■ The database user’s password

■ The database name

3.3.3 Example Database Connection Program

An example program for getting information directly from the Solstice EM database

is shown in CODE EXAMPLE 3-6.

CODE EXAMPLE 3-5 Connecting to a Solstice EM Database

...
//Use the connection information to connect to database
RWDBDatabase aDB = RWDBManager::database (

conn_info.get_server_type(),
conn_info.get_server_name(),
conn_info.get_user_name(),
conn_info.get_user_password(),
conn_info.get_database_name()
);

...

CODE EXAMPLE 3-6 Getting Information Directly From a Solstice EM Database

// Copyright 18 Aug 1999 Sun Microsystems, Inc. All Rights Reserved.
#pragma ident "@(#)dbapi_example.cc 1.5 99/08/18 Sun Microsystems"
//
// Purpose: To get all the log names from the database.
//
// How: It uses DB Connection API to get connect information and
// DBTools.h++ to retreive the log names.
//
// Syntax: dbapi_example
//
3-8 Developing C++ Applications • October 2001

#include <rw/cstring.h>
#include <rw/db/dbmgr.h>
#include <rw/db/db.h>
#include <dbapi/dbcon.hh>
#include <pmi/hi.hh>

main() {

RWCString misname("indus");

//Create the database connection object
EMDBConnectInfo conn_info(misname,EMDBConnectInfo::LOG_SVC);

if(conn_info.get_status() == -1)
{

cout << "Could not get connection information" << endl;
exit(1);

}

//Use the connection information to connect to database
RWDBDatabase aDB = RWDBManager::database (

conn_info.get_server_type(),
conn_info.get_server_name(),
conn_info.get_user_name(),
conn_info.get_user_password(),
conn_info.get_database_name()
);

RWDBTable table = aDB.table("log");

// Create the selector to get log names.
//--------------------------------------
RWDBSelector anEmSelector = aDB.selector();
anEmSelector << table["logid"];
anEmSelector.where(table["logidtype"] == "string");
RWDBReader rdr = anEmSelector.reader();

RWCString logname;
while(rdr())
{

rdr >> logname;
cout << "Logid: " << logname << endl;

}

}

CODE EXAMPLE 3-6 Getting Information Directly From a Solstice EM Database (Continued)
Chapter 3 Enabling Applications to Access Managed Objects 3-9

In this example, the application connects directly to a database containing managed

objects associated with the log service. The application then extracts from the

database the identifier of each log object and displays it.
3-10 Developing C++ Applications • October 2001

CHAPTER 4

Handling Errors

Users need to know when an attempted network management operation has failed.

By providing accurate information on why the operation failed, your applications

can ease a user’s work by indicating the corrective action required when problems

occur.

This chapter explains how to handle errors in your applications.

■ Section 4.1 “Testing for the Success a Function Call” on page 4-1

■ Section 4.2 “Providing Error Information to Users” on page 4-3

4.1 Testing for the Success a Function Call
To provide accurate diagnostic information, test for the success of any function call

that may, in some circumstances, fail to return the desired result. Solstice EM enables

you to test for the success of a function call by:

■ Using the overloaded NOToperator. Use the overloaded NOToperator only when

the return value indicates if the function call achieved the desired result.

■ Using the get_error_type function. Use the get_error_type function when

the return value does not indicate if the function call achieved the desired result,

for example, with constructors.

Note – Use the get_error_type function only for synchronous operations. To test

for the success of an asynchronous operation, use the get_except function of the

Waiter class as explained in Section 8.4.1 “Verifying the Result of an Asynchronous

Operation” on page 8-23.
4-1

4.1.1 Using the Overloaded NOTOperator

Most PMI classes contain an overloaded NOT(!) operator to simplify error checking.

The overloaded NOToperator provides a shorthand means to verify that the result of

a function call is the desired one. Use the overloaded NOToperator only when the

return value indicates if the function call achieved the desired result. For example,

any function that returns a Result is suitable for use with the overloaded NOT
operator.

Code for checking for errors by using the overloaded NOToperator is shown in

CODE EXAMPLE 4-1.

In this example, the overloaded NOT(!) operator acts on the call to boot to verify

that the Image instance was activated. If it was not activated, the

get_error_string function is called and the error string returned is displayed.

The Image class inherits the get_error_string function from the Error class.

4.1.2 Using the get_error_type Function

For some function calls, it is not possible to use the overloaded NOToperator to

verify that the result of the function call is the desired one. For example, you cannot

use the overloaded NOToperator for constructors because their return values do not

indicate whether the attempt to instantiate an object was successful.

In such cases, use the get_error_type function of the Error class to verify that

the result of the function call is the desired one. Many of the classes of the Solstice

EM APIs are derived from the Error class, enabling you to use the

get_error_type function to test for the success of Solstice EM API function calls.

The get_error_type function returns an enumerated error type. The list of

possible error types is given in the /opt/SUNWconn/em/include/pmi/error.hh
file.

CODE EXAMPLE 4-1 Using the Overloaded NOTOperator for Error Checking

...
#include <pmi/hi.hh> // High Level PMI
...
Image image("/sytemId='test'");
...
if (!image.boot()) {

cout << image.get_error_string() << endl;
}
...
4-2 Developing C++ Applications • October 2001

Code for checking for errors by using the get_error_type function is shown in

CODE EXAMPLE 4-2.

In this example, the get_error_type function verifies that the attempt to

instantiate the Image class is successful. If the attempt is unsuccessful, the

get_error_string function is called and the error string returned is displayed.

The Image class inherits the get_error_type and get_error_string functions

from the Error class.

4.2 Providing Error Information to Users
When you check for errors, use the error-handling functions provided by Solstice

EM to obtain information on the error and present that information to the user.

The error-handling functions of Solstice EM are provided by the Error class of the

high-level PMI. Many of the classes of the Solstice EM APIs are derived from the

Error class, enabling you to use a set of common functions for handling errors

related to Solstice EM API calls. Using a common set of error-handling functions

enables your applications to provide error checking that is simple and consistent for

all Solstice EM API calls.

Note – Use the error-handling functions provided by the Error class only for

synchronous operations. To obtain information on why an asynchronous operation

failed, use functions of the ExceptionType class as explained in Section 8.4.1

“Verifying the Result of an Asynchronous Operation” on page 8-23.

CODE EXAMPLE 4-1 and CODE EXAMPLE 4-2 show how to use the get_error_string
function of the Error class to display the reason a function call did not succeed.

CODE EXAMPLE 4-2 Using the get_error_type Function for Error Checking

...
#include <pmi/hi.hh> // High Level PMI
...
Image im = Image("/systemId=\"test\"");
if (im.get_error_type() != PMI_SUCCESS) {

cout << im.get_error_string() << endl;
}
...
Chapter 4 Handling Errors 4-3

4-4 Developing C++ Applications • October 2001

CHAPTER 5

Performing Operations on Managed
Objects

An application manages a network by monitoring and controlling managed

resources in the network. In the EM environment, managed resources are

represented as managed objects. An application monitors and controls managed

resources by performing operations on managed objects. An application performs

operations to add managed objects to and remove them from the network

management environment; to get information about managed objects; and to change

the state of a managed object.

This chapter explains how to enable your applications to perform management

operations on managed objects.

■ Section 5.1 “Management Operations” on page 5-2

■ Section 5.2 “Creating a Managed Object” on page 5-2

■ Section 5.3 “Selecting a Managed Object” on page 5-8

■ Section 5.4 “Updating an Image Instance” on page 5-14

■ Section 5.5 “Deleting a Managed Object” on page 5-15

■ Section 5.6 “Getting Attribute Values From an Object” on page 5-17

■ Section 5.7 “Setting Attribute Values of an Object” on page 5-19

■ Section 5.8 “Performing an Action on an Object” on page 5-23

■ Section 5.9 “Tracking Changes to an Object” on page 5-26

■ Section 5.10 “Retrieving Data From the Metadata Repository” on page 5-27

■ Section 5.11 “Simulating an Agent Object” on page 5-30

■ Section 5.12 “Representing MIS Instances Locally in an Application” on page 5-35
5-1

5.1 Management Operations
The Solstice EM APIs are independent of any particular management protocol or

service. When you use them to develop management applications, you do not need

to take account of the protocol used for communications between the agent and the

manager.

The Solstice EM APIs support management operations common to most network

management environments, namely:

■ Creating a managed object

■ Deleting a managed object

■ Getting attribute values from an object

■ Setting attribute values of an object

■ Performing an action on an object

5.2 Creating a Managed Object
To enable users of your applications to add a managed resource to the network, an

application must create a managed object to represent the managed resource. The

managed resource can be a physical device such as a host, server, router, or subnet,

or it can be a conceptual entity such as a line, a queue, or some other aspect of

network operation that can be represented as a managed object.

An application can create an object only if the specification of the managed object

allows it to be created by a management operation. Specifically, the NAME BINDING
clause of the GDMO specification of the managed object class must contain the

CREATEconstruct. Otherwise, any request to create an instance of the class is denied.

To create a managed object, use the Image class. An instance of the Image class is a

local representation of a managed object. A local representation is cached within

your network management application.

An instance of Image gives you access to the methods and attributes of a managed

object. It provides attribute-like access to object and attribute schema information.

Although the actual managed object is in a management information server (MIS), or

in an agent in the network, you can treat an instance of Image as if it is the managed

object itself.

Creating a managed object involves:

■ Creating and initializing an instance of Image
■ Activating the instance of Image
5-2 Developing C++ Applications • October 2001

■ Verifying if the managed object exists

■ Initializing attributes of the managed object

■ Adding the managed object to the MIS

5.2.1 Creating and Initializing an Instance of Image

To create a managed object, an application must create and initialize an instance of

the Image class. When you call the constructor of the Image class, you must specify:

■ The fully distinguished name (FDN), local distinguished name (LDN), or

nickname of the managed object that the instance of Image represents

■ The managed object class that the managed object is an instance of

Code for creating and initializing an instance of the Image class is shown in

CODE EXAMPLE 5-1.

In this example, the constructor of the Image class is called in the body of a function

named create_channel . The Image object represents an instance of a managed

object class named channel . The FDN of the channel managed object instance is

constructed from information passed as parameters to the create_channel
function:

■ The FDN of the managed object that contains this instance of channel
■ The value of the naming attribute of this instance of channel

CODE EXAMPLE 5-1 Creating and Initializing an Image Instance

...
#include <pmi/hi.hh> // High Level PMI
#include <rw/cstring.h> // Rogue Wave RWCString
...
{
void create_channel(RWCString parent, RWCString channel_name)

// Construct the distinguished name of the channel object
RWCString fdn = parent + "/channelId=\"" + channel_name + "\"";

cout << "Creating: " << fdn.data() << endl;

Image channel_image(DU(fdn),DU("channel"));
if (channel_image.get_error_type() != PMI_SUCCESS) {

cout << channel_image.get_error_string() << endl;
return;

}
...
}
...
Chapter 5 Performing Operations on Managed Objects 5-3

5.2.2 Activating the Instance of Image

Activating an Image instance loads attribute information into the Image instance

from a managed object in an MIS or an agent. Until an Image instance is activated,

it represents a potential managed object. Once the Image instance has been

activated, it represents and contains information from an actual managed object.

To activate an Image instance, call the boot function of the Image class. The effect

of calling the boot function depends on whether the managed object that the Image
instance represents already exists:

■ If the managed object does not exist, calling the boot function retrieves the

GDMO description of the managed object from the MIS.

■ If the managed object already exists, calling the boot function retrieves the

GDMO description and the values of all the attributes of the managed object from

the MIS.

The boot function is an overloaded function of which there are two versions. One

version takes an attribute list as a parameter. The other version does not take an

attribute list as a parameter. To ensure that the boot function loads information on

all attributes defined for the managed object, call the version of boot that does not

take an attribute list.

Note – A call to boot will fail if the identity of the managed object is invalid for the

managed object class specified in the call to the Image constructor.

Code for activating an Image instance and checking for errors is shown in

CODE EXAMPLE 5-2.

In this example, the overloaded NOT(!) operator acts on the call to boot to verify

that the Image instance was activated. If it was not activated, an error message

explaining the reason for the failure is displayed. To ensure that information for all

attributes is loaded, the version of boot that does not take an attribute list is called.

CODE EXAMPLE 5-2 Activating an Image Instance

...
#include <pmi/hi.hh> // High Level PMI
...

if (!channel_image.boot()) {
cout << channel_image.get_error_string() << endl;
return;

}
...
5-4 Developing C++ Applications • October 2001

5.2.3 Verifying if the Managed Object Exists

Verify if the managed object that the Image instance represents exists before trying

to create it. If your application tries to create a managed object that already exists, an

exception will be thrown. To verify if the managed object exists, call the exists
function of the Image class.

Call the exists function only after you have activated the Image instance. If the

Image instance has not already been activated, the exists function returns FALSE
even if the managed object exists.

Code for verifying if a managed object exists is shown in CODE EXAMPLE 5-3.

In this example, the function that contains this code returns without taking any

further action if the managed object exists.

5.2.4 Initializing Attributes of the Managed Object

If the managed object does not already exist, initialize its attributes. Make sure that:

■ You initialize all mandatory attributes, that is all attributes that the GDMO

specification of the managed object class requires to be initialized.

■ The values you initialize the attributes to are allowed by the GDMO specification

of the managed object class.

■ You initialize only attributes that the GDMO specification of the managed object

class allows to be initialized.

To initialize the attributes of the managed object, call functions of the Image class

for setting attributes. The function you call depends on the type of the attribute as

defined in the GDMO specification of the managed object class. For full details, refer

to Section 5.7 “Setting Attribute Values of an Object” on page 5-19.

CODE EXAMPLE 5-3 Verifying if a Managed Object Exists

...
#include <pmi/hi.hh> // High Level PMI
...

if (channel_image.exists()) {
cout << "Channel already exists!" << endl;
return;

}
...
Chapter 5 Performing Operations on Managed Objects 5-5

Check for errors each time you initialize an attribute. If a single attribute fails to be

initialized, the creation of the managed object may fail. If you include error checking

in each PMI call to initialize an attribute, you will know immediately why an

attempt to create a managed object failed.

Code for initializing attributes of a managed object is shown in CODE EXAMPLE 5-4.

In this example, attributes of the managed object are initialized as follows:

■ The set_str function sets the administrativeState attribute to the text

unlocked .

■ The set_str function sets the operationalState attribute to the text

enabled .

■ The set_long function sets the transmitDelay attribute to the value 30.

If an attempt to set an attribute fails, an error message is displayed to indicate which

attribute was not set and why.

5.2.5 Adding the Managed Object to the MIS

After initializing attributes of the managed object, add the managed object to the

MIS that you have connected your application to. For information on how to connect

an application to an MIS, refer to Section 3.1 “Connecting to an MIS” on page 3-1. To

add a managed object to an MIS, call the create function of the Image class.

CODE EXAMPLE 5-4 Initializing Managed Object Attributes

...
#include <pmi/hi.hh> // High Level PMI
...

if (!channel_image.set_str("administrativeState","unlocked")) {
cout << "Can't set administrativeState - ";
cout << channel_image.get_error_string() << endl;
return;

}
if (!channel_image.set_str("operationalState","enabled")) {

cout << "Can't set operationalState - ";
cout << channel_image.get_error_string() << endl;
return;

}
if (!channel_image.set_long("transmitDelay",30)) {

cout << "Can't set transmitDelay - ";
cout << channel_image.get_error_string() << endl;
return;

}
...
5-6 Developing C++ Applications • October 2001

Code for adding a managed object to an MIS is shown in CODE EXAMPLE 5-5.

In this example, the overloaded NOT(!) operator acts on the call to create to verify

that the managed object was created. If it was not created, an error message

explaining the reason for the failure is displayed.

5.2.6 Example Object Creation Function

An example of a function that contains all the code for creating a managed object is

shown in CODE EXAMPLE 5-6.

CODE EXAMPLE 5-5 Adding a Managed Object to an MIS

...
#include <pmi/hi.hh> // High Level PMI
...

if (!channel_image.create()) {
cout << "Creation failed: ";
cout << channel_image.get_error_string() << endl;
return;

} else {
cout << "Creation succeeded!" << endl;

}
...

CODE EXAMPLE 5-6 Example Object Creation Function

...
#include <pmi/hi.hh> // High Level PMI
#include <rw/cstring.h> // Rogue Wave RWCString
...
void create_channel(RWCString parent, RWCString channel_name)
{

// Construct the distinguished name of the channel object
RWCString fdn = parent + "/channelId=\"" + channel_name + "\"";

cout << "Creating: " << fdn.data() << endl;

Image channel_image(DU(fdn),DU("channel"));
if (channel_image.get_error_type() != PMI_SUCCESS) {

cout << channel_image.get_error_string() << endl;
return;

}
if (!channel_image.boot()) {
Chapter 5 Performing Operations on Managed Objects 5-7

5.3 Selecting a Managed Object
When you perform a management operation on an existing managed object, you

have to select the managed object in one of the following ways:

■ Specifying the FDN or LDN of a managed object

■ Specifying the nickname of a managed object

cout << channel_image.get_error_string() << endl;
return;

}
if (channel_image.exists()) {

cout << "Channel already exists!" << endl;
return;

}
if (!channel_image.set_str("administrativeState","unlocked")) {

cout << "Can't set administrativeState - ";
cout << channel_image.get_error_string() << endl;
return;

}
if (!channel_image.set_str("operationalState","enabled")) {

cout << "Can't set operationalState - ";
cout << channel_image.get_error_string() << endl;
return;

}
if (!channel_image.set_long("transmitDelay",30)) {

cout << "Can't set transmitDelay - ";
cout << channel_image.get_error_string() << endl;
return;

}

if (!channel_image.create()) {
cout << "Creation failed: ";
cout << channel_image.get_error_string() << endl;
return;

} else {
cout << "Creation succeeded!" << endl;

}
}
...

CODE EXAMPLE 5-6 Example Object Creation Function (Continued)
5-8 Developing C++ Applications • October 2001

5.3.1 Selecting a Managed Object by Specifying its FDN

or LDN

To select a managed object by specifying its FDN or LDN, create and initialize an

instance of the Image class, specifying only the FDN or LDN. There is no need to

specify the managed object class.

By specifying only the FDN or LDN of the managed object, you can verify if the

managed object exists by testing if the attempt to instantiate the Image class was

successful. If the FDN or LDN does not identify an existing managed object, the call

to the constructor of the Image class fails.

Code for selecting a managed object by specifying its FDN is shown in

CODE EXAMPLE 5-7.

In this example, the constructor of the Image class is called in the body of a function

named delete_object . The FDN of the managed object is constructed from

information passed as a parameter to the delete_object function. If the FDN

passed to the constructor of the Image class does not identify an existing managed

object, the function that contains this code returns FALSE.

CODE EXAMPLE 5-7 Selecting a Managed Object by Specifying its FDN

...
#include <pmi/hi.hh> // High Level PMI
#include <rw/cstring.h> // Rogue Wave RWCString
...
Boolean delete_object(RWCString fdn)
{

Image del_image(fdn.data());
if (del_image.get_error_type() != PMI_SUCCESS) {

cout << del_image.get_error_string() << endl;
return FALSE;

}
...
}
...
Chapter 5 Performing Operations on Managed Objects 5-9

5.3.2 Selecting a Managed Object by Specifying its

Nickname

In an MIT with many levels of containment, FDNs become long and complicated,

particularly the FDNs of managed objects that are many levels below the root of the

MIT. To simplify the task of selecting managed objects, assign nicknames to

managed objects and select managed objects by specifying their nicknames.

You are free to choose the nickname you assign to a managed object. Assigning short

and memorable nicknames to managed objects reduces the possibility of coding

errors and makes your code easier to read.

Selecting a managed object by specifying its nickname involves:

■ Starting and configuring the nickname service

■ Getting the Image instance associated with a nickname

In addition, the Image class provides functions for getting and setting the nickname

of an Image instance.

5.3.2.1 Starting and Configuring the Nickname Service

The nickname service translates between nicknames and FDNs of managed objects.

To enable your application to locate a managed object specified by its nickname,

ensure that the nickname service has been started and configured before you run

your application.

Starting and configuring the nickname service involves:

■ Starting the nickname service daemon

■ Adding the nickname service to the MIS

■ Assigning nicknames to managed objects

■ Loading nickname assignments into the nickname service

Starting the Nickname Service Daemon

The nickname service daemon (em_nnmpa) is started automatically whenever the

MIS is started. To start the MIS, execute the em_services command. For more

information, refer to the MIS Guide.

Adding the Nickname Service to the MIS

To enable an application to communicate with the nickname service, the nickname

service must be added to the MIS. The MIS treats the nickname service as a

management protocol adapter (MPA).
5-10 Developing C++ Applications • October 2001

By default, the nickname service is added automatically to the MIS when Solstice

EM is started. When the nickname service is added automatically to the MIS, the

default MIS host and port number are assumed. If you want to specify a different

MIS host or port number, add the nickname service to the MIS manually.

Note – The MIS must be started before you add the nickname service to the MIS

manually.

To add the nickname service to the MIS manually, type:

Where:

■ -m MPAhost specifies that the nickname server is running on the host named

MPAhost.
■ -h MIShost specifies that the MIS host is the remote host named MIShost. The -h

flag is optional. The default host is the local host.

■ -n port specifies that the nickname service uses port number port on the MIS

host. The -n flag is optional. The default is port number 5555.

■ -help prints the usage message for the em_nnadd command.

Assigning Nicknames to Managed Objects

Assigning nicknames to managed objects defines the mapping between FDNs of

managed objects and nicknames you want to assign to the managed objects.

To define mappings between FDNs and nicknames, create a text file that contains the

mappings. In the text file, define each mapping by using a pair of lines in the

following format:

Where:

■ fdn is the FDN of the managed object. You must express the FDN in brace

notation. For more information, see Section 2.2.6.3 “Brace Notation for Relative

and Fully Distinguished Names” on page 2-20.

■ nickname is the nickname associated with the FDN. nickname must be a text string

without quotes.

Comment lines are allowed in the file. Start each comment line with the hash

character (#).

hostname% em_nnadd -m MPAhost [-h MIShost] [-n port] [-help]

fdn
nickname
Chapter 5 Performing Operations on Managed Objects 5-11

Solstice EM does not impose any restrictions on the number of mappings in a file.

An example of mappings between FDNs and nicknames is shown in

CODE EXAMPLE 5-8.

In this example, nicknames are assigned to managed objects as follows:

■ The managed object identified by the FDN /systemId="starless" is assigned

the nickname starless .

■ The managed object identified by the FDN

/systemId="starless" /satelliteId="NorthernLights" is assigned the

nickname NL-sat .

■ The managed object identified by the FDN

/systemId="starless"/subsystemId/="EM-MIS" is given the nickname

MIS-subsystem .

Loading Nickname Assignments Into the Nickname Service

Loading nickname assignments into the nickname service provides the nickname

service with the information it requires to translate between FDNs and nicknames.

To load nickname assignments into the nickname service, type:

Where file is the name of a file that contains the nickname assignments that you want

to load into the nickname service. The required format of this file is defined in

“Assigning Nicknames to Managed Objects” on page 11.

CODE EXAMPLE 5-8 Mappings Between FDNs and Nicknames

This is a sample em_nnconfig input file.
Comment lines can be included. This line is a comment line.
Entries are organized in pairs of lines.
The first line in a pair is the FDN.
The next line that is neither blank nor a comment is the nickname.

{ {{ systemId, "starless" }} }
starless

{ {{ systemId, "starless" }}, {{ satelliteId , " NorthernLights "}} }
NL-sat

{ {{ systemId, "starless" }}, {{ subsystemId, "EM-MIS"}}}
MIS-subsystem

hostname% em_nnconfig file
5-12 Developing C++ Applications • October 2001

5.3.2.2 Getting the Image Instance Associated With a Nickname

To get the Image instance associated with a nickname, call the static function

find_by_nickname of the Image class. In the call to find_by_nickname , specify

the nickname of the managed object you want to select. The find_by_nickname
function returns the Image instance that represents the managed object you want to

select. When you have obtained the Image instance, you can perform management

operations by calling functions on this Image instance.

Code for getting the Image instance associated with a nickname is shown in

CODE EXAMPLE 5-9.

In this example, the Image that represents the managed object with the nickname

NL-sat is returned by the call to find_by_nickname . The get_long function is

called on this instance to get the value of the packetsReceived attribute of the

managed object. For information on how to get the value of an attribute, refer to

Section 5.6 “Getting Attribute Values From an Object” on page 5-17.

5.3.2.3 Getting and Setting Nicknames

Before you get or set the nickname of an Image instance, ensure that the Image
instance is activated as explained in Section 5.2.2 “Activating the Instance of Image”

on page 5-4.

To get the nickname of an Image instance, call the get_nickname function on the

Image instance.

To set the nickname of an Image instance, call the set_nickname function on the

Image instance.

CODE EXAMPLE 5-9 Getting the Image Instance Associated With a Nickname

...
#include <pmi/hi.hh> // High Level PMI
...
CDU nicnam = "NL-sat" ;
Image sat_image = Image::find_by_nickname(nicnam) ;
if (!sat_image) {

cout << "object not found" << endl;
return 1 ;

}
int num_packets = sat_image.get_long("packetsReceived");
...
Chapter 5 Performing Operations on Managed Objects 5-13

5.4 Updating an Image Instance
Updating an Image instance loads attribute information from a managed object into

the Image instance that represents the managed object. Each time you get or set

attribute values of a managed object, or perform an action on a managed object,

update the Image instance that represents it. Update the Image instance after you

have initialized it.

To update an Image instance, call the boot function of the Image class. In the call to

the boot function, specify a list of the attributes you want to get or set the values of.

Note – You must pass the list of attributes to the boot function in an array, even if

you want to update only one attribute in the Image instance.

Code for loading attribute information into an Image instance is shown in

CODE EXAMPLE 5-10.

In this example, arrays are defined as follows:

■ An array named attrs contains the program attribute.

■ An array named dish_attrs contains the vchipId attribute.

CODE EXAMPLE 5-10 Updating an Image Instance

...
#include <pmi/hi.hh> // High Level PMI
...
Array(DU) attrs;
attrs = Array(DU)(1);
attrs[0] = strdup("program");
if (!channel_image.boot(attrs)) {

cout << channel_image.get_error_string() << endl;
return FALSE;

}
Array(DU) dish_attrs;
dish_attrs = Array(DU)(1);
dish_attrs[0] = strdup("vchipId");
if (!dish_image.boot(dish_attrs)) {

cout << dish_image.get_error_string() << endl;
return FALSE;

}
...
5-14 Developing C++ Applications • October 2001

5.5 Deleting a Managed Object
To enable users of your applications to remove a managed resource from the

network management environment, an application must delete the managed object

that represents the managed resource.

An application can delete a managed object only if the specification of the managed

object allows it to be deleted by a management operation. Specifically, the NAME
BINDING clause of the GDMO specification of the managed object must contain the

DELETEconstruct. Otherwise, any request to delete the managed object will be

denied.

When an application attempts to delete a managed object that contains other

managed objects, the result depends on how the DELETEconstruct is specified:

■ If the DELETES-CONTAINED-OBJECTSmodifier is applied to the DELETE
construct, the managed object and all the managed objects it contains are deleted.

■ Otherwise, the request to delete the managed object is denied. In that case, all the

managed objects contained must be deleted before trying to delete the containing

object.

Deleting a managed object involves:

■ Selecting the managed object as described in Section 5.3 “Selecting a Managed

Object” on page 5-8

■ Removing the managed object from the MIS

5.5.1 Removing the Managed Object From the MIS

After you have specified the managed object you want to delete, remove it from the

MIS by calling the destroy function of the Image class.

A call to the destroy function is shown in CODE EXAMPLE 5-11.

CODE EXAMPLE 5-11 Removing a Managed Object from the MIS

...
#include <pmi/hi.hh> // High Level PMI
...

if (!del_image.destroy())
cout << "Deletion failed" << endl;

else
cout << "Deletion succeeded" << endl;

...
Chapter 5 Performing Operations on Managed Objects 5-15

In this example, the overloaded NOT(!) operator acts on the call to destroy to

verify that the managed object was removed from the MIS. If it was not removed, an

error message explaining the reason for the failure is displayed.

5.5.2 Example Object Deletion Function

An example of a function that contains all the code for deleting a managed object is

shown in CODE EXAMPLE 5-12.

CODE EXAMPLE 5-12 Example Object Deletion Function

...
#include <pmi/hi.hh> // High Level PMI
#include <rw/cstring.h> // Rogue Wave RWCString
...
Boolean delete_object(RWCString fdn)
{

Image del_image(fdn.data());
if (del_image.get_error_type() != PMI_SUCCESS) {

cout << del_image.get_error_string() << endl;
return FALSE;

}

// No need to waste time activating the Image object. If the
// program reaches here, the Image object exists, so it can be
// removed.
if (!del_image.destroy())

cout << "Deletion failed" << endl;
else

cout << "Deletion succeeded" << endl;

}
...
5-16 Developing C++ Applications • October 2001

5.6 Getting Attribute Values From an Object
An application monitors managed resources by getting attribute values from

managed objects that represent those managed resources.

An application can get an attribute only if the specification of the attribute allows it

to be read by a management operation. Specifically, the property list in the

ATTRIBUTESconstruct of the attribute’s GDMO specification must include the GET
operation.

Getting attribute values from a managed object involves:

■ Selecting the managed object as described in Section 5.3 “Selecting a Managed

Object” on page 5-8

■ Loading attribute information into the Image instance as described in Section 5.4

“Updating an Image Instance” on page 5-14

■ Getting attribute values from the Image instance

To get an attribute value from the Image instance, call one of the functions of the

Image class listed in TABLE 5-1. The function to call depends on the data type of the

attribute as defined in its ASN.1 module specification.

The get_raw function returns an instance of the Morf class. To process the Morf
instance returned, call functions of the Morf class. For information on how to use the

Morf class, refer to Chapter 9.

Each of the functions listed in TABLE 5-1 takes the name of attribute you want to get

as a parameter. The attribute name must be specified exactly as it appears in the

GDMO specification of the managed object. Attribute names are case sensitive.

If an attribute with the same name is defined in more than one of the GDMO

documents loaded into the MIS, you must specify in which document the attribute

you are interested in is defined.

TABLE 5-1 Functions for Getting Attribute Values From an Image Instance

Data Type Function

String get_str

Integer get_long

Real get_dbl

Arbitrarily long integer get_gint

Any complex ASN.1 type get_raw
Chapter 5 Performing Operations on Managed Objects 5-17

To specify the document, prefix the attribute name with the document name

specified in the MODULEconstruct of the managed object’s GDMO specification, for

example: "My Document":reusedAttribute .

Code for getting attribute values is shown in CODE EXAMPLE 5-13.

In this example functions are called to get attributes as follows:

■ The get_long function is called to get the integer attribute vchipId .

■ The get_raw function is called to get the complex attribute program .

Functions of the Morf class are called to process the Morf object returned by the

get_raw function. For information on how to use the Morf class, refer to Chapter 9.

CODE EXAMPLE 5-13 Getting Attribute Values

...
#include <pmi/hi.hh> // High Level PMI
#include <rw/cstring.h> // Rogue Wave RWCString
...
int id_number = dish_image.get_long("vchipId");

Morf prog_info = channel_image.get_raw("program");
if (!prog_info.has_value()) {

return TRUE;
}

RWCString rating;

// The program attribute is a choice between
// NULL or { program_name, rating }
// is_choice() will always be true if the Morf object is
// constructed properly
if (prog_info.is_choice()) {

// Now extract the contents of the program
Morf newm = prog_info.extract(DU());
// If the program strings are in the attribute,
// there will be a list of two elements
if (newm.is_list()) {

// Now get the required element
Array(Morf) mm = newm.split_array();
rating = mm[1].get_str().chp();

} else
return TRUE;

} else
return TRUE;

...
5-18 Developing C++ Applications • October 2001

5.7 Setting Attribute Values of an Object
To control managed resources, an application sets attribute values for managed

objects that represent those managed resources.

An application can set an attribute only if the specification of the attribute allows it

to be set by a management operation. Specifically, the property list in the

ATTRIBUTESconstruct of the attribute’s GDMO specification must include the

operation you want to perform when setting the attribute. Otherwise, any request to

set the attribute will be denied. For more information on attribute-setting operations,

refer to Section 5.7.1.3 “Operation” on page 5-21.

Setting attribute values of an object involves:

■ Selecting the managed object as described in Section 5.3 “Selecting a Managed

Object” on page 5-8

■ Loading attribute information into the Image instance as described in Section 5.4

“Updating an Image Instance” on page 5-14

■ Setting attribute values in the Image instance

■ Updating the MIS with the changed values

5.7.1 Setting Attribute Values in the Image Instance

After you have selected the managed object and loaded attribute information from

the managed object into the Image instance, call functions of the Image class to set

attributes in the Image instance. The function to call depends on the data type of the

attribute as defined in its ASN.1 module specification. The functions for setting

attribute values in an Image instance are listed in TABLE 5-2.

TABLE 5-2 Functions for Setting Attribute Values in an Image Instance

Data Type Function

String set_str

Integer set_long

Real set_dbl

Arbitrarily long integer set_gint

Any complex ASN.1 type set_raw
Chapter 5 Performing Operations on Managed Objects 5-19

In the call to a function for setting an attribute value, you have to specify:

■ The name of the attribute you want to set

■ The value you want to set the attribute to

■ The operation that you want to be carried out to set the attribute

Note – Calling a function for setting an attribute value changes only the value

cached in your application. To change the value in the actual managed object, you

must propagate the change to the managed object as explained in Section 5.7.2

“Updating the MIS With the Changed Values” on page 5-21.

5.7.1.1 Attribute Name

The attribute name must be specified exactly as it appears in the GDMO

specification of the managed object. Attribute names are case sensitive.

If an attribute with the same name is defined in more than one of the GDMO

documents loaded into the MIS, you must specify in which document the attribute

you are interested in is defined. To specify the document, prefix the attribute name

with the document name specified in the MODULEconstruct of the managed object’s

GDMO specification, for example: "My Document":reusedAttribute .

5.7.1.2 Attribute Value

The value you specify must be consistent with any restrictions specified in the

property list in the ATTRIBUTESconstruct of the attribute’s GDMO specification.
5-20 Developing C++ Applications • October 2001

5.7.1.3 Operation

The operation specifies how the attribute value is to be modified. The operation you

want to perform must be in the property list in the ATTRIBUTESconstruct of the

attribute’s GDMO specification. It must be one of the operations listed in TABLE 5-3.

5.7.2 Updating the MIS With the Changed Values

After you have set attributes in the Image instance, update the MIS with the

changed values to propagate the changes to the managed object itself. To update the

MIS with the changed values, call the store function of the Image class.

5.7.3 Checking If the MIS Has Been Updated

Updating the MIS more frequently than necessary can impair the performance of

your application. To enhance the performance of your application, check if the MIS

has been updated before you update it with changed values.

TABLE 5-3 Operations for Setting Attributes

Operation Result

REPLACE Replaces the existing value with that specified in the function call. It

corresponds to the REPLACEoperation in a property list. REPLACEis the

default operation.

INCLUDE Adds the value specified in the function call to the current value of a multi-

valued attribute. It corresponds to the ADDoperation in a property list. Specify

the INCLUDEoperation for multi-valued attributes only. If you specify the

INCLUDEoperation for a single-valued attribute, an exception is thrown.

EXCLUDE Removes the value specified in the function call from the current value of a

multi-valued attribute. It corresponds to the REMOVEoperation in a property

list. Specify the EXCLUDEoperation for multi-valued attributes only. If you

specify the EXCLUDEoperation for a single-valued attribute, an exception is

thrown.

IGNORE Specifies that the value specified in the function call is the initial value of the

attribute. If the attribute has already been initialized, its value is not changed.

DEFAULT Replaces the existing value with the default value defined in the property list

in the ATTRIBUTESconstruct of the attribute’s GDMO specification.
Chapter 5 Performing Operations on Managed Objects 5-21

To check if the MIS has been updated, get the value last set by your application and

compare it to the value stored in the MIS. For information on how to get the value

stored in the MIS, refer to Section 5.6 “Getting Attribute Values From an Object” on

page 5-17.

To get the value last set by your application, call one of the functions of the Image
class listed in TABLE 5-4. The function to call depends on the data type of the attribute

as defined in its ASN.1 module specification.

The get_set_raw function returns an instance of the Morf class. To process the

Morf instance returned, call functions of the Morf class. For information on how to

use the Morf class, refer to Chapter 9.

Each of the functions listed in TABLE 5-4 takes the name of attribute you want to get

as a parameter. The restrictions on these attribute names are identical to those given

in Section 5.7.1.1 “Attribute Name” on page 5-20.

5.7.4 Real and Imaginary Values in an Image Instance

To enable you to compare the value last set by your application with the value

stored in the MIS, an Image instance stores the following values f or each attribute

of a managed object:

■ A real value. The real value represents the value in the MIS.

■ An imaginary value. The imaginary value represents the value set by a call to one

of the functions for setting attribute values listed in TABLE 5-2.

When the MIS is updated, the real value is set to the imaginary value. When an

Image instance is activated, the real value is updated, but the imaginary value is left

unchanged.

TABLE 5-4 Functions for Getting the Value Last Set by an Application

Data Type Function

String get_set_str

Integer get_set_long

Real get_set_dbl

Arbitrarily long integer get_set_gint

Any complex ASN.1 type get_set_raw
5-22 Developing C++ Applications • October 2001

When you get an attribute value as described in Section 5.6 “Getting Attribute

Values From an Object” on page 5-17, you retrieve the real value from the Image
instance. When you get the value last set by your application as described in

Section 5.7.3 “Checking If the MIS Has Been Updated” on page 5-21, you retrieve the

imaginary value from the Image instance.

5.7.5 Example

Code for setting an attribute value is shown in CODE EXAMPLE 5-14.

In this example the administrativeState attribute of the AlarmLog object is set

to the text locked .

5.8 Performing an Action on an Object
An action is an operation that cannot be modelled by a pre-defined operation such

as getting or setting an attribute. An action enables you to implement specialized

behavior, for example, changing attributes of one or many objects in a single

operation or providing the results of a query in a particular format.

Performing an action on an object involves:

■ Selecting the managed object as described in Section 5.3 “Selecting a Managed

Object” on page 5-8

■ Loading attribute information into the Image instance as described in Section 5.4

“Updating an Image Instance” on page 5-14

■ Sending the action request

CODE EXAMPLE 5-14 Setting an Attribute Value

...
#include <pmi/hi.hh> // High Level PMI
...
// Prevent any further alarms generated in the system
// from being logged.
Image test_image("systemId="myhost""logId=string:\"AlarmLog\"");

test_image.boot();
test_image.set_str("administrativeState", "locked");
test_image.store();

...
Chapter 5 Performing Operations on Managed Objects 5-23

To send an action request, call one of the functions of the Image class listed in

TABLE 5-5, depending on the format of the action parameter.

In the call to call or call_raw you have to specify:

■ The name of the action you want to perform. The action name must be specified

exactly as it appears in the GDMO specification of the managed object. Action

names are case sensitive.

■ The action parameter. The syntax of the action parameter must be specified

exactly as it appears in the GDMO specification of the managed object.

Code for sending an action request is shown in CODE EXAMPLE 5-15.

TABLE 5-5 Functions for Sending an Action Request to a Managed Object

Format Function Comment

Text call The call function returns the action reply in text form.

Encoded call_raw You have to construct an instance of the Morf class to represent

the action parameter. The call_raw function returns the

action reply in encoded form as an instance of the Morf class.

CODE EXAMPLE 5-15 Sending an Action Request

...
#include <pmi/hi.hh> // High Level PMI
...
char * topo_name2Id(char * host, char * nodename)
{

char dn[1024] = "";
char action_name[100] = "topoNodeGetByName";
char action_para[100];
sprintf(action_para,"'%s'", nodename);
sprintf(dn,"/systemId='%s'/topoNodeDBId=NULL", host);
Image topo = Image(dn);

...
Syntax syn_input = topo.get_param_syntax(action_name);
...
Morf morf_input(syn_input, DU(action_para));
...
Morf morf_result = topo.call_raw(DU(action_name), morf_input);

if (morf_result.get_error_type() != PMI_SUCCESS) {
cout << morf_result.get_error_string() << endl;
exit(2);

}
...
}

5-24 Developing C++ Applications • October 2001

In this example, the call_raw function of the Image class is called in the body of a

function named topo_name2Id . The name of the action to be performed is

topoNodeGetByName .

The action parameter is a Morf object constructed as follows:

■ The get_param_syntax function is called to obtain the syntax of the

topoNodeGetByName action parameter.

■ The following are passed to the constructor of the Morf class:

■ The Syntax object returned by get_param_syntax
■ The node name passed to the topo_name2Id function

If the call to call_raw is unsuccessful, the reason for the failure is printed.

For information on how to use the Morf class, see Chapter 9.

The GDMO specification of the topoNodeGetByName action is shown in

CODE EXAMPLE 5-16.

The ASN.1 definitions of the data types used by the topoNodeGetByName action

are shown in CODE EXAMPLE 5-17.

CODE EXAMPLE 5-16 GDMO Specification of the topoNodeGetByName Action

...
topoNodeGetByName ACTION

BEHAVIOUR topoNodeGetByNameBehaviour BEHAVIOUR DEFINED AS
!This action returns the topoNodeId of the
topoNode whose topoNodeName attribute matches the
input name!;

;
WITH INFORMATION SYNTAX EM-TOPO-ASN1.TopoNodeName;
WITH REPLY SYNTAX EM-TOPO-ASN1.TopoNodes;
REGISTERED AS { em-topo-action 1 };

...

CODE EXAMPLE 5-17 ASN.1 Definitions of Data Types Used by topoNodeGetByName

...
TopoNodeName ::= GraphicString(SIZE(0..255))
TopoNodeId ::= INTEGER (0..4294967295)
TopoNodes ::= SET OF TopoNodeId
...
Chapter 5 Performing Operations on Managed Objects 5-25

5.9 Tracking Changes to an Object
Tracking changes to an object updates an Image instance with changes to the

managed object that the instance represents. Tracking changes ensures that your

network management application has access to current data about your managed

resources.

Depending on your requirements, you can track changes to an object automatically

or manually. Automatically tracking changes requires you to write less code but

gives you less control than manually tracking changes.

5.9.1 Automatically Tracking Changes to an Object

Automatically tracking changes to an object causes the MIS to update the Image
instance whenever the MIS receives an attribute value change notification for that

instance.

Track changes to an object automatically if you want to simplify the application

development process (for example during the prototype phase) or if you do not

require control over when an Image instance is updated.

To track changes to an object automatically, set the TRACKMODEproperty of the

Image instance to TRACK. To set the TRACKMODEproperty of an Image instance, call

the set_prop function of the Image class before activating the instance.

Code for setting the TRACKMODEproperty to TRACKis shown in CODE EXAMPLE 5-18.

CODE EXAMPLE 5-18 Setting the TACKMODEProperty of an Image Instance

...
#include <pmi/hi.hh> // High Level PMI
...
im.set_prop(duTRACKMODE, duTRACK);
...
5-26 Developing C++ Applications • October 2001

5.9.2 Manually Tracking Changes to an Object

Track changes to an object manually if you need to control when an Image instance

is updated. For example, if you need all attributes in an Image instance to have

particular values before you perform an operation, manually track changes to the

object that the Image instance represents.

Tracking changes to an object manually involves:

■ Setting the TRACKMODEproperty of the Image instance to SNAP
■ Using callback functions to update an Image instance with changes to the

managed object that the instance represents

If you track changes to an object manually, you have to write code in your callbacks

for updating the Image instance. Having to write your own code makes coding your

application more complicated. But it gives you control over which changes you

update the Image instance with, and enhances the performance of your application.

For information on how to use callback functions to update an Image instance, refer

to Section 7.2 “Processing Information in Event Notifications” on page 7-4.

5.10 Retrieving Data From the Metadata
Repository
The metadata repository (MDR) stores information about managed objects that is

defined in your object model. Retrieve data from the metadata repository when:

■ You want to verify what is already loaded into the MDR before loading an

updated object model.

■ You want your application to process attributes differently depending on their

data types. For example, you want how an attribute is displayed to depend on its

ASN.1 type.

The MDR is represented as a managed object in the Solstice EM MIS. To retrieve

metadata from the MDR, an application must be able to perform an action on the

MDR managed object.

Performing an action on the MDR managed object involves:

■ Selecting the MDR managed object

■ Updating the Image instance that represents the MDR managed object

■ Sending the action request
Chapter 5 Performing Operations on Managed Objects 5-27

5.10.1 Selecting the MDR Managed Object

When you perform an action on the MDR managed object, you have to select it by

specifying its FDN. To select a managed object by specifying its FDN, create and

initialize an instance of the Image class, specifying only the FDN. For more

information, refer to Section 5.3.1 “Selecting a Managed Object by Specifying its

FDN or LDN” on page 5-9.

The MDR managed object is contained by the system object and is named by the

metaName attribute, which always has the value MDR. Therefore, the FDN of the

MDR managed object is as follows:

Where host is the host name of the MIS associated with the MDR.

Code for selecting the MDR managed object is shown in CODE EXAMPLE 5-19.

5.10.2 Updating the Image Instance That Represents the

MDR Managed Object

After you have selected the MDR managed object, update the Image instance that

represents it. To update an Image instance, call the boot function of the Image
class. For more information, refer to Section 5.4 “Updating an Image Instance” on

page 5-14.

/systemId=" host"/metaName="MDR"

CODE EXAMPLE 5-19 Selecting the MDR Managed Object

...
#include <hi.hh> // High Level PMI
...

sprintf(dn,"/systemId=\"%s\"/metaName=\"MDR\"", server);
Image mdr = Image(dn);

...
5-28 Developing C++ Applications • October 2001

Code for updating an Image instance that represents the MDR managed object is

shown in CODE EXAMPLE 5-20.

5.10.3 Sending the Action Request

To send an action request to retrieve metadata from the MDR, call the call function

of the Image class. For more information, refer to Section 5.8 “Performing an Action

on an Object” on page 5-23. In the call to the call function, specify:

■ The name of the action you want to perform. The action to use depends on the

metadata you want to retrieve.

■ The action parameter. The action parameter depends on the action you want to

send.

The actions for retrieving metadata from the MDR are shown in TABLE 5-6.

CODE EXAMPLE 5-20 Updating the Image Instance that Represents the MDR

...
#include <hi.hh> // High Level PMI
...
// Activate the mdr object.

if (!mdr.boot()) {
cout << mdr.get_error_string() << endl;
exit(2);

}
...

TABLE 5-6 Actions for Retrieving Metadata From the MDR

Metadata Action

The name of the ASN.1 module that an attribute is defined in getAttribute

The name of each GDMO document loaded into the MDR getAllDocuments

Complete information in text format about an ASN.1 module getAsn1Module

Complete information in text format about a class getObjectClass

A list of all items defined in a GDMO document and their OIDs getDocument

The name of an item identified by an OID getOidName
Chapter 5 Performing Operations on Managed Objects 5-29

Code for sending an action request is shown in CODE EXAMPLE 5-21.

In this example, the call function of the Image class is called to send an action

request. The variable action_name specifies the name of the action to be

performed. The variable action_para specifies the action parameter. The

initialization of the action_name and action_para variables is not shown in the

example.

5.11 Simulating an Agent Object
If the agent and manager applications are being developed simultaneously, you need

to test your manager application separately from the agents it will manage. If you

want to test your management application separately, you can use the MIS to

simulate an agent.

Using the MIS to simulate an agent involves:

■ Containing managed objects in the MIS

■ Making read-only attributes modifiable

■ Loading GDMO descriptions into the MIS

■ Creating and modifying objects in the MIS

A list of all packages that characterize a managed object class getPackagesByOC

Information on the attributes, actions, and notifications defined in a

package

getPackage

Information on the notifications and attributes, when OID for a

particular notification is given.

getNotification
AndAttributeIds

CODE EXAMPLE 5-21 Sending an Action Request

...
#include <hi.hh> // High Level PMI
#include <rw/cstring.h> // Rogue Wave RWCString
...

// Send the action and get the result data.
DU mdr_data = mdr.call(action_name, action_para);

...

TABLE 5-6 Actions for Retrieving Metadata From the MDR (Continued)

Metadata Action
5-30 Developing C++ Applications • October 2001

5.11.1 Containing Managed Objects in the Solstice EM

MIS

In a live network management system, managed objects are contained in an agent.

When the MIS is acting as an agent in a simulation, managed objects must be

contained in the MIS itself. To enable managed objects to be contained in the MIS,

managed object classes that would in a live system be instantiated directly under the

agent object must be instantiated under the system object.

To allow a managed object class to be instantiated under the system object, define a

name binding clause in which the superior object class is system . An example of

such a name binding clause is given in CODE EXAMPLE 5-22.

In this example, the satellite managed object class can be instantiated under the

system object.

5.11.2 Making Read-Only Attributes Modifiable

The GDMO specification of some attributes does not permit them to be modified by

a management operation. For example, an attribute that represents the status of a

device on the network is normally defined as a read-only attribute. However, if you

want to use Solstice EM tools to modify such attributes when you are simulating an

agent, you will need to make such attributes modifiable. To make a read-only

attribute modifiable, add one of the following operations to the property list in the

ATTRIBUTESconstruct of the attribute’s GDMO specification:

CODE EXAMPLE 5-22 Name Binding Clause for Instantiation Under system

...
satellite-system NAME BINDING

SUBORDINATE OBJECT CLASS satellite;
NAMED BY
SUPERIOR OBJECT CLASS "Rec. X.721 | ISO/IEC 10165-2 : 1992":system;
WITH ATTRIBUTE satelliteId;
BEHAVIOUR satellite-systemBehaviour BEHAVIOUR DEFINED AS

! For the test agent, create local instances of
satellite under the system branch of the tree

!;
;
CREATE;
DELETE ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS { satman-binding 1 };

...
Chapter 5 Performing Operations on Managed Objects 5-31

■ Replace
■ Add
■ Remove

5.11.3 Loading GDMO Descriptions Into the MIS

Load the GDMO descriptions of your managed object classes into the MIS to make

them available to Solstice EM. For information on how to load the GDMO

descriptions into the MIS, refer to Section 2.6 “Making Your Object Model Available

to Solstice EM” on page 2-36.

5.11.4 Creating and Modifying Objects in the MIS

In a live network, managed objects are created and modified as a result of activity on

the network. When you use the MIS to simulate an agent, use Solstice EM tools to

simulate such activity by creating and modifying objects in the MIS. You can create

and modify objects in the MIS interactively, or from the command line.

5.11.4.1 Creating and Modifying Objects Interactively

Creating and modifying objects interactively provides immediate verification of the

attribute values you specify, thereby making it simple to set the values of complex

ASN.1 types. To create and modify objects in the MIS interactively, use the MIS

Objects tool.

5.11.4.2 Creating and Modifying Objects From the Command Line

Creating and modifying objects from the command line saves time and effort when

you need to create and modify large numbers of objects, or when you need to repeat

the same operations several times during testing.

To create and modify objects from the command line, use the em_objop utility. The

em_objop utility creates and modifies objects in accordance with information

supplied in an em_objop script, which is a text file.
5-32 Developing C++ Applications • October 2001

Starting the em_objop Utility

To start the em_objop utility, type the following command:

where file is an em_objop script specifying how objects are to be created or

modified.

Format of an em_objop Script

An em_objop script contains one or more commands. Each command specifies an

operation to be carried out on an object. The format of a command is as follows:

The variable parts of this format are explained in TABLE 5-7.

prompt% em_objop -f file

operation
{
OPTION = ' encoding'
OC = moc
OI = moi
attr1 = val1
.
.
.
attrN = valN
}

TABLE 5-7 Variable Parts of the Format of an em_objop Script

operation The operation you want to be performed. It must be one of the following

keywords:

• CREATE- Create and initialize an object

• SET - Set one or more attribute values of an object

• DELETE- Delete an object

• DERIVE - Derive an instance of the Album class

encoding The encoding of the em_objop script. It must be one of the following

keywords:

• HEX- Hexadecimal encoding
Chapter 5 Performing Operations on Managed Objects 5-33

Example em_objop Scripts

Example em_objop scripts are given as follows:

■ Creating an object - CODE EXAMPLE 5-23

■ Setting an attribute value - CODE EXAMPLE 5-24

■ Deleting an object - CODE EXAMPLE 5-25

■ Deriving an Album instance - CODE EXAMPLE 5-26

• OCTAL- Octal encoding

moc The managed object class of the object that the operation is to be performed on.

moi The fully distinguished name of the object that the operation is to be performed

on. If operation is DERIVE, moi is a derivation string. For more information, refer

to Section 6.3.2 “Format of a Derivation String” on page 6-5.

attr1 The name of the first attribute you want to set. Omit if operation is DELETE.

val1 The value that you want to set attr1 to.

attrN The name of the Nth attribute you want to set. Omit if operation is DELETE.

valN The value that you want to set attrN to.

CODE EXAMPLE 5-23 em_objop Script for Creating an Object

CREATE
{
OC=satellite
OI='satelliteId="NorthernLights"'
administrativeState=locked
operationalState=enabled
selfDestructCode='{{{"T", 4, {{0 1}}}},{{"R",8,{{1 3}}}},{{"E",9,{{1 5}}}}}'
}

CODE EXAMPLE 5-24 em_objop Script for Setting an Attribute Value

SET
{
OC = 'autoManagementEntry'
OI = 'subsystemId="EM-MIS"/autoManagerId="TheAutoManager"/autoEntryId =

TABLE 5-7 Variable Parts of the Format of an em_objop Script (Continued)
5-34 Developing C++ Applications • October 2001

5.12 Representing MIS Instances Locally in an
Application
Using an instance of Image to store all the data in a managed object simplifies the

coding of your applications, but it does require a lot of memory. If memory is scarce,

you can save memory by defining your own C++ class to represent managed objects

locally in an application.

Defining your own classes is particularly helpful when you have a managed object

class that has many attributes and your application is controlling and monitoring

only a small subset of them. In such a situation, you can create a class that has only

the attributes that are relevant to your application.

"MIBII_IsSnmpSystemUp_Host"'
autoEntryTopoType = 'Ultra2'
}

CODE EXAMPLE 5-25 em_objop Script for Deleting an Object

DELETE
{
OC = 'autoManagementEntry'
OI = 'subsystemId="EM-MIS"/autoManagerId="TheAutoManager"/autoEntryId =
"MIBII_IsSnmpSystemUp_Host"'
}

CODE EXAMPLE 5-26 em_objop Script for Deriving an Album Instance

DERIVE
{
OC = 'autoManagementEntry'
OI = 'subsystemId="EM-MIS"/autoManagerId="TheAutoManager"/LV(1)'
}

CODE EXAMPLE 5-24 em_objop Script for Setting an Attribute Value (Continued)
Chapter 5 Performing Operations on Managed Objects 5-35

Defining your own class makes coding your application more complicated. You have

to write your own code for tracking changes, deletions, and creations. However, if

your application is managing a large number of objects, you may need to define

your own class to save memory.

If you are unsure if you need to define your own class, write a prototype application

that uses the Image class, and test the performance of the prototype. Coding an

application in this way is simple and rapidly provides useful performance data.

For example, the satellite , channel , and dish managed object classes in the

satellite example have several attributes. But many of the example applications need

only the identity, FDN, and position of a satellite , channel , or dish object. To

save memory, the Node class is defined to hold important data common to the

satellite , channel , and dish managed object classes.

For the dish managed object class, many of the example applications monitor only

the vchipId attribute. To save memory, the Dish class is defined to hold this

attribute.

CODE EXAMPLE 5-27 shows the definition of the Node and Dish C++ classes.

CODE EXAMPLE 5-27 C++ Representation of Managed Object Classes

class Node {

public:
Node();
Node(RWCString namestr, RWCString fdnstr);
~Node();

int operator == (const Node &other) const {
if (name == other.name)

return(1);
else

return(0);
}

RWCString get_name();
RWCString get_fdn();
void get_location(Geo &lat, Geo &longit);

void set_location(Geo lat, Geo longit);

RWCString name;
RWCString fdn;
Coordinates location;

};
5-36 Developing C++ Applications • October 2001

class Dish : public Node {
public:

Dish();
~Dish();

Dish(Node newnode);

int vchip;

};

CODE EXAMPLE 5-27 C++ Representation of Managed Object Classes (Continued)
Chapter 5 Performing Operations on Managed Objects 5-37

5-38 Developing C++ Applications • October 2001

CHAPTER 6

Performing Management
Operations on Object Collections

An object collection is a group of managed objects that your application can treat as

a single entity. An object collection simplifies bulk operations by enabling you to

select multiple managed objects to be the subject of a management operation. Any

management operation that your application performs on an object collection is

performed on every managed object in the object collection.

This chapter explains how to perform management operations on object collections.

■ Section 6.1 “Grouping Managed Objects” on page 6-1

■ Section 6.2 “Creating a Container for an Object Collection” on page 6-2

■ Section 6.3 “Defining the Membership of an Object Collection” on page 6-3

■ Section 6.4 “Tracking Changes to an Object Collection” on page 6-13

■ Section 6.5 “Accessing All Objects in an Object Collection” on page 6-17

■ Section 6.6 “Accessing Individual Objects in an Object Collection” on page 6-21

■ Section 6.7 “Obtaining All Object Collections for an Object” on page 6-23

6.1 Grouping Managed Objects
You are free to choose the managed objects you group into an object collection.

However, to ensure that an object collection you create is useful, group objects that

are related in a way that is meaningful to your application.

Identify which managed objects are suitable for grouping into an object collection

by:

■ Considering the management operations your application will perform

■ Analyzing your object model to find out which objects you want to perform the

same management operation on simultaneously

■ Identifying the management operations you want to perform on any object

collections you create
6-1

For example, to lock all unlocked channels from a satellite, create an object collection

that consists of all instances of the channel managed object class with the

administrativeState attribute set to unlocked that are contained in a particular

instance of satellite . After you have created the object collection, set the

administrativeState attribute of all satellites in the object collection to locked .

Note – Solstice EM allows you to define a managed object to be a member of any

number of object collections.

6.2 Creating a Container for an Object
Collection
To group objects into an object collection, an application must create a container for

the object collection. To create a container for an object collection, create and

initialize an instance of the Album class. An instance of the Album class is a

container for the managed objects in an object collection. It also provides functions

for performing management operations on an object collection.

Solstice EM allows a managed object to be a member of any number of object

collections.

Each managed object in an object collection is represented by an instance of the

Image class. For more information on the Image class, refer to Chapter 5.

When you call the constructor of the Album class, you must specify a nickname for

the Album instance. The nickname uniquely identifies the Album instance. It must be

a text string. Spaces are permitted in a nickname.

Code for creating and initializing an instance of the Album class is shown in

CODE EXAMPLE 6-1.

In this example, an Album instance is created and initialized with the nickname

collection of all satellites .

CODE EXAMPLE 6-1 Creating and Initializing an Album Instance

...
#include <pmi/hi.hh> // High Level PMI
...

satellites = Album("collection of all satellites");
...
6-2 Developing C++ Applications • October 2001

6.3 Defining the Membership of an Object
Collection
Defining the membership of an object collection selects managed objects to be

grouped into the object collection. Depending where the managed objects are located

in the management information tree (MIT), you can define the membership of an

object collection by:

■ Derivation to select managed objects in a subtree of the MIT

■ Enumeration to select individual managed objects or object collections

If you want an object collection to contain a subtree of the MIT and individual

objects or object collections, define the membership of the object collection by using

a combination of derivation and enumeration.

6.3.1 Defining the Membership by Derivation

If the managed objects in your object collection are in a subtree of the MIT, define the

membership of the object collection by derivation.

Defining the membership of an object collection by derivation involves:

■ Setting a derivation string

■ Starting the derivation

6.3.1.1 Setting a Derivation String

A derivation string selects one or more managed objects in a subtree of the MIT by

specifying a base managed object, a scope, and a filter. To set a derivation string, call

the set_derivation function of the Album class.

In the call to set_derivation you have to specify the derivation string. For details

of the format of a derivation string, refer to Section 6.3.2 “Format of a Derivation

String” on page 6-5.

Calling the set_derivation function does not cause your application to

communicate with the MIS. Consequently, the set_derivation returns

immediately after it is called, provided no errors occur.
Chapter 6 Performing Management Operations on Object Collections 6-3

Code for setting a derivation string is shown in CODE EXAMPLE 6-2.

In this example, a derivation string is set up to select all instances of the satellite
managed object class that are one level below the system object in the MIT. The

system object is identified by the value of the server variable.

To enable the server variable for the host name to be included, the derivation

string is constructed using a Rogue Wave RWCString object in this example. The

server variable has already been initialized to a text string that contains the host

name of the machine on which the MIS is running. The initialization of the server
variable is not shown in this example.

CODE EXAMPLE 6-2 Setting a Derivation String

...
#include <pmi/hi.hh> // High Level PMI
#include <rw/cstring.h> // Rogue Wave RWCString
...
// Set up the distinguished name to start the derivation

RWCString derive_str;
derive_str = "/systemId=\"";
derive_str += server;
derive_str += "\"/LV(1)";
derive_str += "/CMISFilter(item:equality:{objectClass,satellite})";

cout << "Deriving satellites: " << derive_str.data() << endl;

if (!satellites.set_derivation((char *) derive_str.data())) {
cout << "Failed to set derivation string." << endl;
cout << satellites.get_error_string() << endl;
return;

}
...
6-4 Developing C++ Applications • October 2001

6.3.1.2 Starting the Derivation

When you have set the derivation sting, start the derivation to define the

membership of the object collection. To start the derivation, call the derive function

of the Album class.

Calling the derive function causes your application to retrieve information from

the MIS. If a large number of managed objects is selected by the derivation string,

your application will become blocked for a long time while it waits for derive to

return. If you want your application to continue with other processing during a

lengthy derivation, start the derivation asynchronously as described in Chapter 8.

Code for starting a derivation is shown in CODE EXAMPLE 6-3.

6.3.2 Format of a Derivation String

A derivation string selects one or more managed objects in a subtree of the MIT by

specifying a base managed object, a scope, and a filter. The format of a derivation

string is as follows:

Where:

■ baseMO is the base managed object.

■ scope is the scope.

■ filter is the filter.

A forward slash(/) separates the base managed object from the scope, and the scope

from the filter.

CODE EXAMPLE 6-3 Starting a Derivation

...
#include <pmi/hi.hh> // High Level PMI
...

if (!satellites.derive()) {
cout << "Derive failed." << endl;
cout << satellites.get_error_string() << endl;
return;

}

...

baseMO/ scope/ filter
Chapter 6 Performing Management Operations on Object Collections 6-5

6.3.2.1 Base Managed Object

The base managed object is the root object of the subtree you want to select.

Depending on the scope and the filter, the base managed object may not be one of

the managed objects selected by the derivation string.

The base managed object is identified by one of the following:

■ Its fully distinguished name (FDN). The first character in an FDN must be a

forward slash.

■ Its local distinguished name (LDN). The first character in an LDN may be any

character except the forward slash.

The base managed object is optional. If you omit it, the system object is assumed. If

you omit the base managed object, also omit the slash required to separate the base

managed object from the scope.

6.3.2.2 Scope

The scope selects one or more managed objects in the subtree rooted at the base

managed object. The scope is defined with reference to the base managed object. Set

the scope in a derivation string to one of the values given in TABLE 6-1.

The scope is optional. If you omit the scope, only the base managed object is

selected.

If the subtree contains a large number of managed objects, setting the scope to ALL
could cause your application to be timed out while it retrieves information from the

MIS during a derivation. If possible, select fewer managed objects by changing the

scope or by specifying a filter to prevent your application from being timed out.

The effects of these scope values are illustrated in FIGURE 6-1. In FIGURE 6-1, selected

objects are shaded.

TABLE 6-1 Scope Values in a Derivation String

Value Selects

ALL The base managed object and its entire subtree.

LV(n) Only level n subordinates of the base managed object, where n is an integer.

TO(n) The base managed object and all its subordinates to level n, where n is an integer.

* Only first-level subordinates of the base managed object. Equivalent to LV(1) .

/ Only second-level subordinates of the base managed object. Equivalent to LV(2) .

//* Only third-level subordinates of the base managed object. Equivalent to LV(3) .
6-6 Developing C++ Applications • October 2001

FIGURE 6-1 Scope Values

6.3.2.3 Filter

The filter selects or rejects objects based on the presence and values of specific

attributes. The filter is a boolean expression, which may be a single test or a

combination of multiple tests.

The filter is optional. If you omit it, all managed objects identified by the base

managed object and scope are selected. If you omit the filter, also omit the slash

required to separate the scope from the filter.

When a scope and a filter are combined, the scope is applied first, then the filter. An

example of combining a scope and a filter is shown in FIGURE 6-2. In FIGURE 6-2,

selected objects are shaded.

Base managed object

1st-level

nth-level

2nd-level

Base managed object

1st-level

nth-level

2nd-level

Base managed object

1st-level

nth-level

2nd-level

Base managed object

1st-level

nth-level

2nd-level

Base managed object only Level n subordinates only (LV(n))

Base managed object and
subordinates to level n (TO(n))

Base managed object
and all subordinates (ALL)

(no scope specified)
Chapter 6 Performing Management Operations on Object Collections 6-7

FIGURE 6-2 Combination of a Scope and a Filter

A filter contains an optional filter operator and one or more filter items. A filter item

can in turn be a filter.

The format of a filter in a derivation string is as follows:

Where:

■ filterOperator is the filter operator. filterOperator is followed by a colon (:).

■ filterItemList is a list of filter items. filterItemList is enclosed in braces. Each filter

item in the list is separated by a comma.

The filter operator and the list of filter items are enclosed in parentheses.

Note – This format is the ASN.1 type CMISFilter that is defined in the ASN.1

module for ITU-T X.711/ISO-9596-1 Common Management Information Protocol
Specification (/opt/SUNWconn/em/etc/asn1/x711.asn1).

CMISFilter([filterOperator:] { filterItemList})

Base managed object

1st-level

nth-level

2nd-level

Same subtree, with a filter applied

Base managed object

1st-level

nth-level

2nd-level

Base managed object and
subordinates to level n
6-8 Developing C++ Applications • October 2001

Filter Operator

The filter operator is a logical operator for grouping elements in a filter that contains

multiple filter items. Set the filter operator to one of the keywords given in TABLE 6-2.

The filter operator is optional. If you omit it, only one filter item is allowed in the

filter. If you omit the filter operator, also omit the colon that follows it.

Filter Item

A filter item is a single test within a filter. The syntax of a filter item depends on

whether you want to filter on substrings.

The syntax of a filter item without substrings is as follows:

Where:

■ comparison is the comparison made when the filter is applied. Set it to one of the

keywords given in TABLE 6-3. comparison is followed by a colon (:).

■ attributeId is the attribute identifier of the attribute to be tested when the filter is

evaluated.

■ value is the value against which the attribute specified in attributeId is tested when

the filter is evaluated. It is not required when comparison is present . If you

specify a value, it must be separated from attributeId by a comma (,).

TABLE 6-2 Filter Operator Keywords

Keyword Meaning

and Apply boolean and to the filter items that follow it.

or Apply boolean or to the filter items that follow it.

not Apply boolean not to the filter items that follow it. It can be applied only to

one filter item.

item: comparison:{ attributeId[, value]}
Chapter 6 Performing Management Operations on Object Collections 6-9

The attribute identifier and the value are enclosed in braces.

The syntax of a filter item that includes substrings is as follows:

Where substringItemList is a list of substring items. substringItemList is enclosed in

braces. Each substring item in the list is separated by a comma.

The syntax of a substring item is as follows:

Where:

■ part is the part of the attribute value that must match the value specified in the

filter. Set it to one of the keywords given in TABLE 6-4. part is followed by a colon

(:).

■ attributeId is the attribute identifier of the attribute to be tested when the filter is

evaluated.

■ value is the value against which the attribute specified in attributeId is tested when

the filter is evaluated.

TABLE 6-3 Comparison Keywords in a Filter Without Substrings

Keyword Filter Item Evaluated to True if

equality The managed object contains an attribute of type attributeId that has a value

equal to value.

greaterOrEqual value is greater than or equal to the value of an attribute of type attributeId
that the managed object contains.

lessOrEqual value is less than or equal to the value of an attribute of type attributeId that

the managed object contains.

present The managed object contains an attribute of type attributeId.

subsetOf value is a subset of a set-valued attribute of type attributeId that the managed

object contains.

supersetOf value is a superset of a set-valued attribute of type attributeId that the

managed object contains.

nonNullSetIntersection The managed object contains a set-valued attribute of type attributeId and the

intersection of its value and value is not empty.

item:substrings:{ substringItemList}

part:{ attributeId, value}
6-10 Developing C++ Applications • October 2001

The attribute identifier and the value are separated by a comma and enclosed in

braces.

6.3.2.4 Example Derivation Strings

CODE EXAMPLE 6-4 shows the derivation string for selecting all log objects.

The object model defines that instances of log are contained in the system object.

Therefore, the base managed object is not specified in this example because it is the

system object, which is the default.

CODE EXAMPLE 6-5 shows the derivation string for selecting all enabled log objects.

In this example, two filter items are combined using the and filter operator. The first

filter item selects all log objects. The second filter item tests the value of the

operationalState attribute to select only log objects that are enabled.

TABLE 6-4 Part Keywords in a Substring

Keyword Filter-Item Evaluated to True if

initialString The managed object contains an attribute of type attributeId the start of

the value of which matches the string specified in value.

anyString The managed object contains an attribute of type attributeId any part of

the value of which matches the string specified in value.

finalString The managed object contains an attribute of type attributeId the end of

the value of which matches the string specified in value.

CODE EXAMPLE 6-4 Selecting All log Objects

LV(1)/CMISFilter(item: equality: {objectClass, log})

CODE EXAMPLE 6-5 Selecting All Enabled Instances of log

LV(1)/CMISFilter(
and: {
item: equality: {objectClass, log},
item: equality: {operationalState, enabled}
}

)

Chapter 6 Performing Management Operations on Object Collections 6-11

CODE EXAMPLE 6-6 shows the derivation string for selecting all objects that are not

instances of the log class.

The derivation strings shown in CODE EXAMPLE 6-7 are all equivalent.

In this example, each of the derivation strings selects all log objects that are one

level below the system object in the MIT.

6.3.3 Defining the Membership by Enumeration

If the managed objects in your object collection are distributed throughout the MIT,

or if you want to add an existing object collection, define the membership of the

object collection by enumeration.

Note – If you define the membership of an object collection by enumeration, you

have to maintain the membership of the object collection manually. For more

information, refer to Section 6.4.1 “Maintaining the Membership of an Object

Collection” on page 6-13.

To define the membership of the object collection by enumeration, call the include
function of the Album class. The include function adds a managed object or an

object collection to an object collection.

In the call to the include function you have to specify one of the following:

■ The Image instance that represents the managed object you want to add

■ The Album instance that contains the object collection you want to add

CODE EXAMPLE 6-6 Selecting all Objects That are not Instances of log

ALL/CMISFilter(not:{item:equality:{objectClass,log}})

CODE EXAMPLE 6-7 Equivalent Derivation Strings

/systemId="mako"/LV(1)/CMISFilter(item:equality:{objectClass,log})

LV(1)/CMISFilter(item:equality:{objectClass,log})

*/CMISFilter(item:equality:{objectClass,log})
6-12 Developing C++ Applications • October 2001

6.4 Tracking Changes to an Object Collection
Tracking changes to an object collection updates an Album instance with changes to

the object collection that the instance contains. Tracking changes ensures that:

■ Your network management application has access to current data about your

managed resources.

■ Any network management operations you perform on an object collection are

performed on the required group of managed objects.

Tracking changes to an object collection involves:

■ Maintaining the membership of an object collection

■ Setting the mode of an object collection

6.4.1 Maintaining the Membership of an Object

Collection

Maintaining the membership of an object collection ensures that the object collection

accurately reflects the current state of your network. In a live network, managed

objects are continually created and deleted as managed resources are added to and

removed from the network management environment. Attribute values change as a

result of activity on the network. All of these changes affect the membership of an

object collection.

Depending on your performance requirements, you can maintain the membership of

an object collection automatically or manually. Automatically maintaining the

membership requires you to write less code but is less efficient than manually

tracking changes. Furthermore, when you maintain the membership of an object

collection automatically, all historical information on the membership the object

collection is lost.

6.4.1.1 Automatically Maintaining the Membership of an Object
Collection

Automatically maintaining the membership of an object collection causes the Album
instance that contains the object collection to update the object collection by:

■ Adding an object that satisfies the selection criteria of the object collection

whenever such an object is created

■ Removing an object that has been deleted

■ Adding or removing an object if changes to its attribute values make it eligible or

ineligible to be a member of the object collection
Chapter 6 Performing Management Operations on Object Collections 6-13

Maintain the membership of an object collection automatically in any of the

following circumstances:

■ You want to simplify the application development process (for example during

the prototype phase).

■ The performance of your application is not critical.

■ You do not require historical information on the membership the object collection.

Note – If you want to maintain the membership of the object collection

automatically, you must define the membership of the object collection by

derivation. For more information, refer to Section 6.3.1 “Defining the Membership by

Derivation” on page 6-3.

To maintain the membership of an object collection automatically, set the

TRACKMODEproperty of the Album instance to TRACK. To set the TRACKMODE
property of an Album instance, call the set_prop function of the Album class before

defining the membership of the object collection that the instance contains.

Code for setting the TRACKMODEproperty to TRACKis shown in CODE EXAMPLE 6-8.

6.4.1.2 Manually Maintaining the Membership of an Object
Collection

Maintain the membership of an object collection manually if you need fast response

from your application, or if you need to preserve historical information on the

membership the object collection.

Maintaining the membership of an object collection manually involves:

■ Setting the TRACKMODEproperty of the Album instance to SNAP
■ Using callback functions to update the membership of the object collection

CODE EXAMPLE 6-8 Setting the TACKMODEProperty of an Album Instance

...
#include <pmi/hi.hh> // High Level PMI
...

// Automatically add Image objects to the Album object
// based on derivation rules
//
if (!satellites.set_prop(duTRACKMODE, duTRACK)) {

cout << satellites.get_error_string() << endl;
return;

}
...
6-14 Developing C++ Applications • October 2001

If you maintain the membership of an object collection manually, you have to write

in your callback functions code for adding objects to or removing objects from the

object collection. Having to write your own code makes coding your application

more complicated. But it gives you control over which changes you update the

object collection with, and enhances the performance of your application.

Use the following functions of the Album class in your callbacks to add objects to or

remove objects from an object collection:

■ include - To add an object or an object collection to an object collection

■ exclude - To remove an object or an object collection from an object collection

In the call to the include or exclude function you have to specify one of the

following:

■ The Image instance that represents the object you want to add or remove

■ The Album instance that contains the object collection you want to add or remove

Note – Every time you call the derive function you lose all information on the

membership of the previous version of the object collection. To avoid losing any

historical information, maintain the membership of the object collection by calling

only the include and exclude functions.

Code for using callback functions to update the membership of the object collection

is shown in CODE EXAMPLE 6-9.

CODE EXAMPLE 6-9 Using Callback Functions With an Object Collection

...
#include <pmi/hi.hh> // High Level PMI
#include <rw/cstring.h> // Rogue Wave RWCString
...

// Register for callbacks when a new Image object is deleted.
//
if (!satellites.when("OBJECT_DESTROYED", Callback(remove_cb,0))) {

cout << satellites.get_error_string() << endl;
return;

}
...
void remove_cb(Ptr, Ptr calldata)
{

CurrentEvent ce(calldata);
ce.do_something();
cout << "*****Removing from the Album ";
RWCString event_class(ce.get_objclass().chp());
Image tmpimage(ce.get_objname());
if (event_class.contains("dish")) {
Chapter 6 Performing Management Operations on Object Collections 6-15

In this example, the remove_cb callback is called whenever the application receives

a notification that a managed object has been deleted. When the remove_cb callback

is called, the application extracts from the event information required to determine if

the managed object is a member of an object collection maintained by the

application. If it is, the exclude function of the Album class is called to remove the

object from the object collection.

For more information on how to use callback functions, refer to Section 7.2

“Processing Information in Event Notifications” on page 7-4.

6.4.2 Setting the Mode of an Object Collection

The mode of an object collection specifies how Image instances are activated and

tracked when they are added to an object collection. The mode is one of the

following:

■ Automatic. When the mode is set to automatic:

■ The Image instance that represents the managed object is activated when the

object is added to the object collection.

■ Changes to the managed object are tracked automatically, even if the properties

of Image instance specify manual tracking.

■ Manual. When the mode is set to manual:

■ You must explicitly activate the Image instance that represents the object.

■ You must use the properties of the Image instance to specify whether changes

to the object are tracked automatically or manually.

For more information, refer to Section 5.2.2 “Activating the Instance of Image” on

page 5-4 and Section 5.9 “Tracking Changes to an Object” on page 5-26.

To set the mode of an object collection, set the AUTOIMAGEproperty of the Album
instance as follows:

■ YES to set the mode to automatic

■ NOto set the mode to manual

cout << "dishes*****" << endl;
dishes.exclude(tmpimage);

} else if (event_class.contains("channel")) {
cout << "channels*****" << endl;
channels.exclude(tmpimage);

}
...
}

CODE EXAMPLE 6-9 Using Callback Functions With an Object Collection (Continued)
6-16 Developing C++ Applications • October 2001

To set the AUTOIMAGEproperty of an Album instance, call the set_prop function of

the Album class before defining the membership of the object collection that the

instance contains.

Code for setting the mode of an object collection is shown in CODE EXAMPLE 6-10.

In this example, the overloaded NOT(!) operator acts on the call to set_prop to

verify that the mode of the object collection was set to automatic. If the mode was

not set, an error message explaining the reason for the failure is displayed.

6.5 Accessing All Objects in an Object
Collection
Accessing all objects in an object collection enables you to perform the same

management operation on several managed objects simultaneously. You access all

the objects in an object collection by performing management operations on the

object collection. Any management operation performed on an object collection is

performed on every managed object in the object collection.

The following management operations are permitted on an object collection:

■ Adding all objects in an object collection to the management information server

(MIS)

■ Deleting all objects in an object collection

■ Setting attribute values of all objects in an object collection

■ Performing an action on an all objects in an object collection

CODE EXAMPLE 6-10 Setting the Mode of an Object Collection

...
#include <pmi/hi.hh> // High Level PMI
...

// By default, an Image object is in the down state and
// read only.
// Specify automatic activation of new Image objects
// which are children of the derivation FDN
//
if (!satellites.set_prop(duAUTOIMAGE, duYES)) {

cout << satellites.get_error_string() << endl;
return;

}
...
Chapter 6 Performing Management Operations on Object Collections 6-17

These management operations are described in detail for individual managed

objects in Chapter 5.

When you perform a management operation on an object collection you have to set

the synchronization of the object collection. The synchronization specifies how the

collection reacts to a management operation that only some objects in the collection

are able to perform.

6.5.1 Adding All Objects in an Object Collection to the

MIS

Each object in an object collection is represented by an instance of the Image class.

An instance of the Image class is a local representation of an object. A local

representation is cached within your network management application. The actual

object is in the MIS. If the managed objects in a collection do not already exist in the

MIS, you can add them to the MIS in a single operation. To add all objects in an

object collection to the MIS, call the all_create function of the Album class.

In the call to the all_create function, you can set an optional timeout to specify

the maximum length of time allowed for adding an object in the object collection to

the MIS. The timer used for this timeout is reset each time an object in the object

collection is added to the MIS.

6.5.2 Deleting All Objects in an Object Collection

Deleting all objects in an object collection removes the managed resources

represented by the objects in the collection from the network management

environment. The conditions under which an object in an object collection is

permitted to be deleted are defined in the GDMO specification of the managed

object. For more information, refer to Section 5.5 “Deleting a Managed Object” on

page 5-15.

To delete all objects in an object collection, call the all_destroy function of the

Album class. The all_destroy function removes all objects in the object collection

from the MIS.

In the call to the all_destroy function, you can set an optional timeout to specify

the maximum length of time allowed for deleting an object in the object collection.

The timer used for this timeout is reset each time an object in the object collection is

deleted.
6-18 Developing C++ Applications • October 2001

Note – The Album instance that contains the object collection remains in existence

after all objects in the object collection have been deleted.

6.5.3 Setting Attribute Values of All Objects in an

Object Collection

To control the managed resources represented by the objects in an object collection,

an application sets attribute values of all objects in the collection. Setting attribute

values of all objects in an object collection applies the same control operation to all

objects in the collection.

The conditions under which an object attribute is permitted to be set are defined in

the GDMO specification of the managed object. For more information, refer to

Section 5.7 “Setting Attribute Values of an Object” on page 5-19.

Setting an attribute value of all objects in an object collection involves:

■ Setting an attribute value in the Image instances

■ Updating the MIS with the changed values

6.5.3.1 Setting an Attribute Value in the Image Instances

To set an attribute value in the Image instances that represent the objects in an object

collection, call one of the functions of the Album class listed in TABLE 6-5, depending

on the data type of the attribute.

TABLE 6-5 Functions for Setting Attribute Values in an Object Collection

Data Type Function

String all_set_str

Integer all_set_long

Real all_set_dbl

Arbitrarily long integer all_set_gint

Any complex ASN.1 type all_set_raw
Chapter 6 Performing Management Operations on Object Collections 6-19

In the call to a function for setting an attribute value, you have to specify:

■ The name of the attribute you want to set (see Section 5.7.1.1 “Attribute Name”

on page 5-20)

■ The value you want to set the attribute to (see Section 5.7.1.2 “Attribute Value” on

page 5-20)

■ The operation that you want to be carried out to set the attribute (see

Section 5.7.1.3 “Operation” on page 5-21)

6.5.3.2 Updating the MIS With the Changed Values

After you have set the attribute in the Image instances, update the MIS with the

changed values to propagate the changes to the managed objects themselves. To

update the MIS with the changed values, call the all_store function of the Album
class.

6.5.4 Performing an Action on an All Objects in an

Object Collection

An action is an operation that cannot be modelled by a pre-defined operation such

as getting or setting an attribute. An action enables you to implement specialized

behavior, for example, changing attributes of one or many objects in a single

operation or providing the results of a query in a particular format.

To send an action request to an object collection, call the all_call function of the

Album class.

In the call to all_call , specify:

■ The name of the action you want to perform. The action name must be specified

exactly as it appears in the GDMO specification of the managed object. Action

names are case sensitive.

■ The action parameter. The syntax of the action parameter must be as specified

exactly in the GDMO specification of the managed object.

■ An optional timeout. The timeout specifies the maximum length of time allowed

for performing the action on an object in the object collection. The timer used for

this timeout is reset each time the action is performed on an object in the object

collection.
6-20 Developing C++ Applications • October 2001

6.5.5 Setting the Synchronization of an Object

Collection

The synchronization of an object collection specifies whether a management

operation has to be successful for all the objects in the object collection if it is to be

performed. The synchronization is one of the following:

■ Best effort. The operation is performed even if it is successful only for some of

the objects in the object collection.

■ Atomic. The operation is performed only if all objects in the object collection can

perform it.

To set the synchronization of an object collection, set the BEST_EFFORTproperty of

the Album instance as follows:

■ YES to set the synchronization to best effort

■ NOto set the synchronization to atomic

To set the BEST_EFFORTproperty of an Album instance, call the set_prop function

of the Album class before defining the membership of the object collection that the

instance contains.

6.6 Accessing Individual Objects in an
Object Collection
Access individual objects in an object collection if you want to:

■ Perform a management operation on some, but not all, objects in an object

collection

■ Perform a management operation that must be performed separately on each

object in an object collection (for example incrementing the value of the same

attribute of all objects in an object collection)

Accessing individual objects in an object collection also provides information on the

membership of an object collection.

To access individual objects in an object collection, use the AlbumImage class to

retrieve each object from an object collection. An instance of the AlbumImage class

represents the current Image instance in a list of Image instances or the current

Album instance in a list of Album instances.
Chapter 6 Performing Management Operations on Object Collections 6-21

Retrieving each object from an object collection involves:

■ Creating and initializing an instance of the AlbumImage class

■ Calling the first_image function of the Album class to retrieve the first object in

the object collection

■ Calling the next_image function of the AlbumImage class to retrieve the second

and later objects in the object collection

Code for retrieving each object from an object collection is shown in

CODE EXAMPLE 6-11.

In this example, an instance of Image is created for each object in the object

collection as follows:

■ A for loop is initialized with the first object in an object collection.

■ The next_image function of the AlbumImage class is called in the for loop to

retrieve the second and later objects in the object collection.

■ Each of the AlbumImage instances returned by the first_image and

next_image functions is passed in turn to the copy constructor of Image .

The FDN of each Image instance created is obtained by calling the get_objname
function of the Image class. Each FDN obtained is printed.

When the final Image instance has been reached, the next_image function returns

NULL, thereby terminating the for loop.

CODE EXAMPLE 6-11 Retrieving Objects From an Object Collection

...
#include <pmi/hi.hh> // High Level PMI
...
Album dishes; // Collection of dish objects
...
// Get and print each object in the Album object.

AlbumImage ali;
for (ali = dishes.first_image(); ali; ali = ali.next_image()) {

Image im(ali);
if (im.get_error_type() != PMI_SUCCESS) {

cout << im.get_error_string() << endl;
exit(8);

}
DU objname = im.get_objname();

cout << endl;
cout << "Dish Name: ";
cout << objname.chp() << endl;

 }
...
6-22 Developing C++ Applications • October 2001

6.7 Obtaining All Object Collections for an
Object
Obtaining all object collections for an object keeps track of which object collections a

managed object is a member of. By keeping track of which object collections a

managed object is a member of, you can exclude a managed object from a collection

when you no longer want operations on the collection to be applied to the managed

object.

Obtaining all object collections for an object involves:

■ Creating and initializing an instance of the AlbumImage class

■ Calling the first_album function of the Image class to retrieve the first object

collection that the object is a member of

■ Calling the next_album function of the AlbumImage class to retrieve the second

and later object collections that the object is a member of

Code for obtaining all object collections for an object is shown in CODE EXAMPLE 6-12.

CODE EXAMPLE 6-12 Obtaining all Object Collections for an Object

...
#include <pmi/hi.hh> // High Level PMI
...

Image img (DU(fdn)); // Managed object already exists,so no MOC
...
// Get and print each Album instance that contains the object

AlbumImage albimg;
for (albimg = img.first_album(); albimg; albimg = albimg.next_album()) {

Album alb(albimg);
if (alb.get_error_type() != PMI_SUCCESS) {

cout << alb.get_error_string() << endl;
exit(8);

}

DU albname = alb.get_prop(duNICKNAME);

cout << endl;
cout << "Album Nickname: ";
cout << albname.chp() << endl;

 }
...
Chapter 6 Performing Management Operations on Object Collections 6-23

In this example, an instance of Album is created for each object collection that the

object is a member of as follows:

■ A for loop is initialized with the first object collection that the object is a member

of.

■ The next_image function of the AlbumImage class is called in the for loop to

retrieve the second and later object collections that the object is a member of.

■ Each of the AlbumImage instances returned by the first_album and

next_album functions is passed in turn to the copy constructor of Album .

The nickname of each Album instance created is obtained by calling the get_prop
function of the Album class. Each nickname obtained is printed.

When the final Album instance has been reached, the next_album function returns

NULL, thereby terminating the for loop.
6-24 Developing C++ Applications • October 2001

CHAPTER 7

Handling Events

Any network management application that monitors and controls managed

resources on a network needs to process information it receives from those managed

resources. Such information is contained in event notifications. An event notification

is an unsolicited message sent from a managed object that represents a managed

resource. Event notifications contain error information and other types of status

information.

This chapter explains how to enable applications to handle event notifications.

■ Section 7.1 “Event Notifications” on page 7-1

■ Section 7.2 “Processing Information in Event Notifications” on page 7-4

■ Section 7.3 “Scheduling Event Handling” on page 7-11

■ Section 7.4 “Filtering Events” on page 7-16

■ Section 7.5 “Simulating an Event” on page 7-20

■ Section 7.6 “Subscribing to Log Record Events” on page 7-23

7.1 Event Notifications
An event notification is an unsolicited message sent from a managed object which

represents a managed resource. The meaning of an event and the information

contained in it depend on the event type. The event types supported by a managed

object are defined in the GDMO specification of the managed object class. The event

types themselves are defined in the object model of the managed system.

The definition of the events supported by the satellite managed object class in

the sample programs is shown in CODE EXAMPLE 7-1.
7-1

The GDMO specification of the objectCreation event is shown in

CODE EXAMPLE 7-2.

Standards bodies such as the International Telecommunication Union -

Telecommunication Standardization Sector (ITU-T) have written GDMO

specifications for events that commonly occur in network management. Before

defining your own event types, consult published network management standards

to see if the event type you require has already been defined.

CODE EXAMPLE 7-1 Specification of Event Types Supported by a Managed Object Class

satellite MANAGED OBJECT CLASS
...
CHARACTERIZED BY satellitePackage;
...
satellitePackage PACKAGE
...
NOTIFICATIONS

"Rec. X. 721 | ISO/IEC 10165-2 : 1992":objectCreation,
"Rec. X. 721 | ISO/IEC 10165-2 : 1992":objectDeletion,
"Rec. X. 721 | ISO/IEC 10165-2 : 1992":attributeValueChange;

;

CODE EXAMPLE 7-2 GDMO Specification of the objectCreation Event

objectCreation NOTIFICATION
BEHAVIOUR objectCreationBehaviour;
WITH INFORMATION SYNTAX Notification-ASN1Module.ObjectInfo

AND ATTRIBUTE IDS
sourceIndicator sourceIndicator,
attributeList attributeList,
notificationIdentifier notificationIdentifier,
correlatedNotifications correlatedNotifications,
additionalText additionalText,
additionalInformation additionalInformation;

REGISTERED AS {joint-iso-ccitt ms(9) smi(3) part2(2) notification(10) 6};
-- changed by Technical Corrigendum 2

objectCreationBehaviour
BEHAVIOUR

DEFINED AS "This notification type is used to report the creation of a
managed object to another open system.";
7-2 Developing C++ Applications • October 2001

For example, recommendation ITU-T X.721/ISO-10165-2 Definition of Management
Information defines the event types given in TABLE 7-1.

TABLE 7-1 Event Types Defined in Recommendation ITU-T X.721/ISO-10165-2

Event Type Meaning

attributeValueChange Reports changes to an attribute such as:

• Addition or deletion of members to one or more

multivalued attributes

• Replacement of the value of one or more attributes

• Setting attribute values to their defaults

communicationsAlarm Reports when an object detects a communications error.

environmentalAlarm Reports a problem in the environment.

equipmentAlarm Reports a failure in the equipment.

integrityViolation Reports that a potential interruption in information flow has

occurred such that information may have been illegally

modified, inserted, or deleted.

objectCreation Reports the creation of a managed object to another open

system.

objectDeletion Reports the deletion of a managed object to another open

system.

operationalViolation Reports that the provision of the requested service was not

possible due to the unavailability, malfunction, or incorrect

invocation of the service.

physicalViolation Reports that a physical resource has been violated in a way

that indicates a potential security attack.

processingErrorAlarm Reports processing failure in a managed object.

qualityofServiceAlarm Reports a failure in the quality of service of the managed

object.

relationshipChange Reports a change in the value of one or more relationship

attributes of a managed object. The change results from either

internal operation of the managed object or via management

operation.

securityServiceOrMechanismViolation Reports that a security attack has been detected by a security

service or mechanism.

stateChange Reports a change in the value of one or more state attributes

of a managed object. The change results from either internal

operation of the managed object or via management

operation.

timeDomainViolation Reports that an event has occurred at an unexpected or

prohibited time.
Chapter 7 Handling Events 7-3

7.2 Processing Information in Event
Notifications
To monitor and control managed resources, a network management application

needs to process information it receives in event notifications. Processing the

information in event notifications involves:

■ Registering callback functions

■ Writing callback functions

■ Controlling event-related updates

7.2.1 Registering Callback Functions for Event

Handling

Registering a callback function associates the callback function with a particular

event type. Register a callback function for each event type you want to process. To

register a callback function, call the when function of one of the following classes:

■ Platform to handle events from all object instances in the management

information server (MIS)

■ Image to handle events from a single object instance

■ Album to handle events from an object collection

In the call to the when function you have to:

■ Specify the event type

■ Initialize an instance of the Callback class to represent the callback function

associated with the event type
7-4 Developing C++ Applications • October 2001

7.2.1.1 Specifying the Event Type

If the event type is recognized by the when function, specify the shorthand form

given in TABLE 7-2. If the event type is not recognized by the when function, specify

the fully qualified name defined in the GDMO document.

7.2.1.2 Initializing an Instance of the Callback Class

To initialize an instance of the Callback class, call its constructor in the call to the

when function. In the call to the constructor of the Callback class, you must

specify:

■ The name of the callback function.

■ A pointer to the data to be passed as an argument to the callback function. You

can specify a null pointer if you do not want to pass any data to the callback

function.

TABLE 7-2 Event Types Recognized by the when Function

Event Type Shorthand Form Class Meaning

All RAW_EVENT Album,
Image ,

Platform

An event has occurred. The callback is

called when an event of any type is

received.

"Rec. X.721 |
ISO/IEC 10165-2:1992":
attributeValueChange

ATTR_CHANGED Image,
Platform

An attribute value of an object has

changed.

"Rec. X.721 |
ISO/IEC 10165-2:1992":
objectCreation

OBJECT_CREATED Album,
Image ,

Platform

An object has been created.

"Rec. X.721 |
ISO/IEC 10165-2:1992":
objectDeletion

OBJECT_DESTROYED Album,
Image ,

Platform

An object has been destroyed.

Not defined in a GDMO

specification

DISCONNECTED Platform The MIS has become disconnected from

the application.

Not defined in a GDMO

specification

IMAGE_INCLUDED Album An Image instance was added to this

Album instance.

Not defined in a GDMO

specification

IMAGE_EXCLUDED Album An Image instance was deleted from the

Album instance. This is an internal event,

and has no MIS event information

associated with it.

Not defined in a GDMO

specification

WAIT Platform The PMI is entering a wait state. The

callback is called again when leaving the

wait state, but with a null name.
Chapter 7 Handling Events 7-5

7.2.1.3 Example

Code for registering callback functions is shown in CODE EXAMPLE 7-3.

In this example, the callback function raw_cb is registered so that it is called when

the application receives an event of type RAW_EVENT. The callback function

disc_cb is registered so that it is called when the application receives an event of

type DISCONNECTED. The raw_cb callback function is also called, because an event

of type DISCONNECTEDis also an event of type RAW_EVENT. No data are passed to

either callback function.

7.2.2 Writing Callback Functions for Event Handling

Write a callback function to handle each type of event you want to process. Each

callback function you write must contain the code needed to carry out the

processing you require. Writing a callback function involves:

■ Defining the signature of the callback function

■ Extracting information from an event notification

7.2.2.1 Defining the Signature of the Callback Function

The signature of any callback function you write must be in the following format:

Where:

■ callbackName is the name you assign to your callback function.

■ userdata is the data passed to the callback by your application.

■ calldata is the data passed to the callback by the scheduler that calls the

callback function.

CODE EXAMPLE 7-3 Registering Callback Functions

...
#include <pmi/hi.hh> //High Level PMI
...
plat.when("RAW_EVENT", Callback(raw_cb,0)); //Register event
plat.when("DISCONNECTED",Callback(disc_cb,0));//callback routines
...

void callbackName (Ptr userdata, Ptr calldata)
7-6 Developing C++ Applications • October 2001

7.2.2.2 Extracting Information From an Event Notification

Extract the information from event notifications that is useful to users of your

application. To extract information from an event notification, call functions of the

CurrentEvent class in the body of your callback function. An application

represents every event notification it receives as an instance of the CurrentEvent
class.

The functions for extracting information from an event are listed in TABLE 7-3. They

extract the following types of information:

■ Event information, which is information on what caused the event notification to

be generated

■ Contextual information, which is information on the event notification itself

TABLE 7-3 Functions for Extracting Information from Event Notifications

Information Function

Event information

The entire event as text. get_event

The entire event in encoded form. get_event_raw

The event information as text. get_info

The event information in encoded form. get_info_raw

The name of the event. This name is the human-readable form of the

event object identifier (OID). It indicates the event type as defined in

the GDMO specification of the event, for example:

"Rec. X.721 | ISO/IEC 10165-2 :1992":objectDeletion

get_name

The event OID defined in the GDMO specification of the event. get_oid

A pointer to the event. This pointer has no meaning outside the scope

of the CurrentEvent object that represents the event notification.

get_message

Contextual information

The Album instance associated with the event. get_album

The event type as specified in the call to the when function that registers

the callback for the event.

get_eventtype

The Image instance associated with the event. get_image

The class of the managed object represented by the Image instance

associated with the event.

get_objclass

The fully distinguished name (FDN) of the managed object represented

by the Image instance associated with the event.

get_objname

The location of the MIS associated with the event. get_platform

The time of the event. get_time
Chapter 7 Handling Events 7-7

A callback function is shown in CODE EXAMPLE 7-4.

When the raw_cb callback defined in this example is called, the application checks

the user’s permissions to watch the current channel based on the following

information extracted from the event:

■ The entire text of the event, from which the event type is extracted

■ The FDN of the managed object that generated the event

■ The class of the managed object that generated the event

CODE EXAMPLE 7-4 Callback Function

...
#include <pmi/hi.hh> // High Level PMI
#include <rw/cstring.h> // Rogue Wave RWCString
...
if (!plat.when("RAW_EVENT", Callback(raw_cb,0))) {
cout << "Could not set raw callback" << endl;
}
...
void raw_cb(Ptr, Ptr calldata)
{

// Extract information contained in the event
CurrentEvent ce(calldata);
RWCString event_type(ce.get_event().chp());
RWCString distinguished_name(ce.get_objname().chp());
RWCString event_class(ce.get_objclass().chp());
RWCString event_info(ce.get_info().chp());

//Process the information extracted
if (event_type.contains("objectCreation")) {

if (event_class.contains("dish")) {
// Check the vchipId of the dish object against the
// current channel. If the user isn't allowed
// to watch this program, delete the user.
//
cout << "Checking permission..." << endl;
if (!view_permission(distinguished_name)) {

cout << "Not authorized to view program!" << endl;
// Delete the dish object
delete_object(distinguished_name);

} else {
cout << "Enjoy the show!" << endl;

}
}

}
}

7-8 Developing C++ Applications • October 2001

7.2.3 Controlling Event-Related Updates

A managed object sends an event notification to inform a management application

of a change that has occurred to the managed object. The managed object itself is in

an MIS or an agent in the network. To ensure that your application has access to

current data about managed resources, the changes need to be propagated to Image
and Album instances cached in your application.

Depending on your requirements, you can choose how changes to managed objects

are propagated to Image and Album instances cached in your application.

7.2.3.1 Automatically Tracking Changes

Automatically tracking changes causes the MIS to update Image and Album
instances cached in your application whenever the MIS receives an event

notification.

To track changes automatically, set the TRACKMODEproperty for Image and Album
instances as described in:

■ Section 5.9.1 “Automatically Tracking Changes to an Object” on page 5-26 for

Image instances

■ Section 6.4.1.1 “Automatically Maintaining the Membership of an Object

Collection” on page 6-13 for Album instances

7.2.3.2 Overriding Automatic Updates for a Specific Event Type

Overriding automatic updates for a specific event type prevents the MIS from

updating Image and Album instances cached in your application whenever the MIS

receives an event notification of the specified type. By default, Image and Album
instances cached in your application are updated each time an event is received if

you track changes to managed objects automatically.

Override automatic updates for a specific event type if:

■ You want your application to process the previous values of attributes after an

event of the type has been received.

■ You want to improve the performance of your application by reducing the traffic

between your application and the MIS.

To override automatic updates for specific event types, call the do_nothing
function of the CurrentEvent class. Include the call to do_nothing in the callback

function for handling the type of event. When you override automatic updates,

include code in your callback to process the old values.
Chapter 7 Handling Events 7-9

7.2.3.3 Tracking Changes From Within a Callback

Tracking changes from within a callback updates Image and Album instances cached

in your application when the callback is executed. Track changes from within a

callback if:

■ You want to track changes manually. Manually tracking changes gives you

control over which changes you update Image and Album instances with, and

enhances the performance of your application.

■ You want to pre-empt automatic updates for a specific event type. Pre-empting

automatic updates enables you to access the updated values updates within the

callback. By default, automatically tracked Image and Album instances are

updated only after the callback has returned control to the application.

To track changes from within a callback, call the do_something function of the

CurrentEvent class. Include the call to do_something in the callback function for

handling the type of event. When you track changes from within a callback, include

code in your callback to process the new values.

Code for tracking changes from within a callback is shown in CODE EXAMPLE 7-5.

CODE EXAMPLE 7-5 Tracking Changes From Within a Callback

...
#include <pmi/hi.hh> // High Level PMI
...
Album channels; // Collection of channel objects
Album dishes; // Collection of dish objects
...
void remove_cb(Ptr, Ptr calldata){

CurrentEvent ce(calldata);
ce.do_something();
cout << "*****Removing from the Album ";
RWCString event_class(ce.get_objclass().chp());
Image tmpimage(ce.get_objname());
if (event_class.contains("dish")) {

cout << "dishes*****" << endl;
dishes.exclude(tmpimage);

} else if (event_class.contains("channel")) {
cout << "channels*****" << endl;
channels.exclude(tmpimage);

}
}
...
7-10 Developing C++ Applications • October 2001

In this example, Image and Album instances cached in the application are updated

before the exclude function of the Album class is called. Updating the instances

before calling exclude ensures that updated values are processed within the

remove_cb callback.

7.3 Scheduling Event Handling
An application cannot predict when it will receive an event notification from a

managed object. Therefore, to process an event notification, an application must be

able to interrupt whatever function is being performed and process the event

notification when it is received. To enable an application to interrupt the function it

is currently performing, you must add a scheduler to your application. A scheduler

retrieves each event from the event queue and calls the function required to process

the event correctly.

Solstice EM provides the following schedulers:

■ sched - For applications without a graphical user interface

■ xtsched - For applications with a graphical user interface

If you want to develop your own scheduler, follow the guidelines given in

Section 7.3.3 “Guidelines for Developing Your Own Scheduler” on page 7-15.

7.3.1 Scheduling for Applications Without a Graphical

User Interface

To schedule event handling for an application without a graphical user interface, use

the sched scheduler. To use the sched scheduler, call its dispatch_recursive
function after all initialization is finished.

When you call the dispatch_recursive function, you have to specify whether the

sched scheduler waits before processing an event. To specify this, set the boolean

parameter of dispatch_recursive to:

■ FALSE - Do not wait before processing events, then return

■ TRUE- Wait for an event to be received, process the event, then return

To ensure that your application is able to receive events when they arrive, call the

dispatch_recursive function in a loop. If you do not call dispatch_recursive
in a loop, it is called only once. Any incoming events that arrive after the call to

dispatch_recursive are not processed.
Chapter 7 Handling Events 7-11

Note – It is typically more efficient to call dispatch_recursive with the

parameter set to TRUE. Your application uses fewer CPU cycles while executing in

the loop if you set the parameter to TRUEthan if you set it to FALSE. If you set the

parameter to FALSE, your application loops continually.

CODE EXAMPLE 7-6 shows a call to the dispatch_recursive function.

In this example, the dispatch_recursive function is called while the application

remains connected to an MIS.

When the dispatch_recursive function is called, the sched scheduler performs

the following actions:

■ Checks the event queue for events

■ Retrieves each event from the queue

■ Identifies the correct callback function for each event retrieved

■ Calls the required callback function for each event, passing the event data to it as

an argument

To call the dispatch_recursive function in an infinite loop by using a single line

of code, use the dispatch_main_loop function. A call to dispatch_main_loop
is shown in CODE EXAMPLE 7-7.

CODE EXAMPLE 7-6 Calling the dispatch_recursive Function

...
#include <pmi/hi.hh> // High Level PMI
#include <pmi/sched.hh> // Scheduler for applications with no GUI
...
while(MIS_Connected) {

dispatch_recursive(TRUE);
}
...

CODE EXAMPLE 7-7 Calling the dispatch_main_loop Function

...
#include <pmi/sched.hh> // Scheduler for applications with no GUI
...
dispatch_main_loop();
...
7-12 Developing C++ Applications • October 2001

The dispatch_main_loop function contains the code in CODE EXAMPLE 7-8.

7.3.2 Scheduling for Applications With a Graphical

User Interface

A graphical application must be able to process two types of events:

■ Event notifications from managed objects

■ X events resulting from user interaction with the application

To schedule the handling of both types of events, you must use the xtsched
scheduler. The xtsched scheduler performs all the functions of the sched scheduler

and handles all X events. Using the xtsched scheduler involves:

■ Initializing and activating the xtsched scheduler

■ Preventing erroneous user input

7.3.2.1 Initializing and Activating the xtsched Scheduler

Initializing the xtsched scheduler sets the application context. Every graphical

application based on the X Window system requires an application context. After

initializing the xtsched scheduler, activate it.

To initialize the xtsched scheduler, call the xtsched function set_app_context .

The set_app_context routine passes the application context to the xtsched
scheduler to enable the PMI to control X events.

To activate the xtsched scheduler, call its XtAppMainLoop function after all

initialization is finished.

CODE EXAMPLE 7-8 Contents of the dispatch_main_loop Function

...
while(TRUE) {

dispatch_recursive(TRUE);
}
...
Chapter 7 Handling Events 7-13

Code for initializing and activating the xtsched scheduler is shown in

CODE EXAMPLE 7-9.

7.3.2.2 Preventing Erroneous User Input

An application that has to process data from incoming events may fail to respond to

user input. In such cases, users often repeat mouse clicks or keystrokes, resulting in

erroneous input. By designing your graphical applications to prevent erroneous user

input, you can improve their usability. Prevent erroneous user input while an

application is processing data by:

■ Giving feedback to the user. Indicate to the user that the application is busy by

changing the pointer to a watch or an hour glass.

■ Blocking user input to the application. Use the set_X_event_processing
function of the xtsched scheduler to disable the processing of X events. The

set_X_event_processing function accepts a boolean parameter:

■ FALSE - Disables the processing of X events, thereby blocking user input

■ TRUE- Enables processing of X events, thereby enabling the application to

accept user input

Note – If you disable the processing of X events, you must call

set_X_event_processing(TRUE) to enable your application to process them

again.

CODE EXAMPLE 7-9 Initializing and Activating the xtsched Scheduler

...
#include <pmi/xtsched.hh> // PMI GUI scheduler
...
// X-Windows scheduler initialization
XtToolkitInitialize();
app_context = XtCreateApplicationContext();
set_app_context(app_context); // For xtsched
...
XtAppMainLoop(app_context);
...
7-14 Developing C++ Applications • October 2001

Code for disabling and enabling the processing of X events is shown in

CODE EXAMPLE 7-10.

In this example, when the user selects an item and clicks the Delete button, all

further user input is blocked until the item is removed. By blocking user input until

the item is removed, the application prevents the user from attempting to delete an

object that does not exist, thereby avoiding undesirable effects (for example, an error

message or a failure of the application).

7.3.3 Guidelines for Developing Your Own Scheduler

The purpose of a scheduler is to enable an application to respond to events. A

scheduler transfers control from the function an application is currently performing

to the callback function registered to process the event.

Any scheduler that you develop must contain code that listens on all used file

descriptors. In Solstice EM, whenever a callback is registered internally by the PMI

or by an application, a file descriptor is used. When an event is received, the file

descriptor is set, which causes the PMI to transfer control to the specified callback

routine. The schedulers supplied with EM use the select() system call to check for

any activity on the open file descriptors.

CODE EXAMPLE 7-10 Disabling and Enabling the Processing of X Events

...
#include <pmi/hi.hh> // High Level PMI
#include <pmi/xtsched.hh> // PMI GUI scheduler
...
void delete_button_press_callback(Widget w, XtPointer, XtPointer)
{

// The button was pressed.
// Disable processing of events
set_X_event_processing(FALSE);
...
Image im;
...
im.delete();

// Remove item
...
// Now item is removed, permit the user to select the next item
set_X_event_processing(TRUE);

}...
Chapter 7 Handling Events 7-15

7.4 Filtering Events
Filtering events makes sure that the MIS only forwards to your application the

events that are relevant to the application. Filter events to reduce the amount of

network traffic between your application and the MIS it is connected to. By default,

the MIS forwards all events it receives to your application.

Depending on the sources of events you want your application to receive, you can

filter events by:

■ Selecting managed object classes and event types

■ Selecting a subtree of the management information tree (MIT)

■ Specifying a discriminator construct

7.4.1 Selecting Managed Object Classes and Event

Types

If you want your application to receive only events of particular types emitted by

instances of particular managed object classes, select those managed object classes

and event types. To filter events by selecting managed object classes and event types,

call the replace_discriminator_classes function of the Platform class.

In the call to replace_discriminator_classes you must specify:

■ A list of the managed object classes

■ A list of event types

You must pass the lists of managed object classes and event types to the

replace_discriminator_classes function in an array, even if there is only one

managed object class or event type in the list.

Code for filtering events by selecting managed object classes and event types is

shown in CODE EXAMPLE 7-11.

CODE EXAMPLE 7-11 Selecting Managed Object Classes and Event Types

...
#include <pmi/hi.hh> // High Level PMI
...
if (!plat.connect(server, "platform")) {

cout << "Could not connect to EM server: ";
cout << server << endl;
return NOT_OK;
7-16 Developing C++ Applications • October 2001

In this example, the MIS forwards only communicationsAlarm events emitted by

instances of the satellite , channel , and dish managed object classes. All other

events received by the MIS are not forwarded to the application.

Note – To be certain that your application receives all the events it is interested in,

specify only managed object classes in the call to

replace_discriminator_classes . If you specify no event types, all events

emitted by instances of the specified managed object classes are forwarded.

7.4.2 Selecting a Subtree of the MIT

If you want your application to receive events only from managed objects in a

particular subtree of the MIT, select the subtree. To filter events by selecting a

subtree of the MIT, call the replace_discriminator function of the Platform
class.

In the call to replace_discriminator , you have to specify the subtree by

specifying:

■ Base managed object. The base managed object specifies the FDN of the object

that is the root of the subtree you want to select.

■ Scope. The scope specifies which objects contained by the base managed object

are selected.

Note – The replace_discriminator function does not allow you to apply a filter

to a subtree.

}
...
Array(DU) oc(3);
Array(DU) event(1);
oc[0] = "satellite";
oc[1] = "channel";
oc[2] = "dish";
event[0] = "communicationsAlarm";
plat.replace_discriminator_classes(oc,event);
...

CODE EXAMPLE 7-11 Selecting Managed Object Classes and Event Types (Continued)
Chapter 7 Handling Events 7-17

Possible values of the scope in a subtree for the replace_discriminator function

are given in TABLE 7-4.

To specify a subtree, construct a filter that tests that the value of the

"DNFILTER" : emDnScope attribute equals the base managed object and the

scope. The ASN.1 type definition of the "DNFILTER" : emDnScope attribute

specifies that it is a SEQUENCEcontaining a base managed object and a scope.

Code for filtering events by selecting a subtree of the MIT is shown in

CODE EXAMPLE 7-12.

TABLE 7-4 Scope Values in a Subtree for the replace_discriminator Function

Value Meaning

0 Only events from the base managed object are received.

1 Only events from first-level subordinates of the base managed

object are received.

2 Events from the base managed object and its entire subtree are

received.

individualLevels : n Only events from level n subordinates of the base managed

object are received, where n is an integer.

baseToNthLevel : n Events from the base managed object and all its subordinates

to level n are received, where n is an integer.

CODE EXAMPLE 7-12 Selecting a Subtree of the MIT

...
#include <pmi/hi.hh> // High Level PMI
...
char discr[512];

strcpy(discr, "item : equality : {
attributeId globalForm : \"DNFILTER\":emDnScope, attributeValue {

base distinguishedName : {
{

{
attributeId \"Rec. X.721 | ISO/IEC 10165-2 :
1992\":systemId,
attributeValue name : \"wisconsin\"

}
}

} ,scope 2
}

}

7-18 Developing C++ Applications • October 2001

In this example, the MIS forwards only events emitted by the managed object

"/systemId=wisconsin " and all managed objects in its entire subtree.

7.4.3 Specifying a Discriminator Construct

If you want your application to receive events selected according to the values of

attributes in the events, specify a discriminator construct. Specifying a discriminator

construct enables you to select events according to the values of the following

attributes of an event:

■ Managed object class

■ Managed object instance

■ Event type

■ Any attribute specific to an event type, for example, for fault-related events:

■ Severity

■ Backed-up status

■ Probable cause

To filter events by specifying a discriminator construct, call the

replace_discriminator function of the Platform class.

In the call to replace_discriminator , you have to specify the discriminator

construct. The format of a discriminator construct is identical to the format of a filter

in a derivation string. This format is defined in Section 6.3.2.3 “Filter” on page 6-7.

Note – Section 6.3.2.3 “Filter” on page 6-7 states that a filter in a derivation string is

optional. This statement does not apply to a discriminator construct. Additionally, a

discriminator construct cannot be combined with a base managed object and a scope.

");
if (!plat.replace_discriminator(DU(discr))) {

cout << plat.get_error_string() << endl;
exit(3);

}
...

CODE EXAMPLE 7-12 Selecting a Subtree of the MIT
Chapter 7 Handling Events 7-19

Code for filtering events by specifying a discriminator construct is shown in

CODE EXAMPLE 7-13.

In this example, the MIS forwards only events that have the value corruptData for

probableCause and have the value critical for perceivedSeverity .

7.5 Simulating an Event
In a live network, events are generated as a result of activity on the network. If you

want to test event handling by your application before it manages a live network,

generate events for test purposes.

Depending on the type of event, and the rate at which you want to send events, you

can simulate events without using the Solstice EM APIs, or you can simulate them

programatically.

CODE EXAMPLE 7-13 Specifying a Discriminator Construct

...
#include <pmi/hi.hh> // High Level PMI
...
char discrim [512];

strcpy(discrim, "CMISFilter(
and: {
item: equality: {probableCause, corruptData},
item: equality: {perceivedSeverity, critical}
}

)
");

if (!plat.replace_discriminator(DU(discrim))) {
cout << plat.get_error_string() << endl;
exit(3);

}
...
7-20 Developing C++ Applications • October 2001

7.5.1 Simulating an Event Without Using the Solstice

EM APIs

You can generate events for test purposes by simulating an agent object, and

creating and modifying objects in the MIS to simulate activity on a network. For

more information, see Section 5.11 “Simulating an Agent Object” on page 5-30.

If you do not want to simulate an agent, use request templates to generate events.

For more information on how to use request templates, refer to the Customizing
Guide.

7.5.2 Simulating an Event Programatically

To simulate an event programatically, write an application that is acting in an agent

role. Simulating an event programmatically involves:

■ Creating and initializing an instance of the Image class to represent the managed

object that is emitting the event

■ Requesting the event to be sent

■ Sending the event to the MIS

For information on how to create and initialize an instance of Image , refer to

Section 5.2.1 “Creating and Initializing an Instance of Image” on page 5-3.

To request an event to be sent, call the send_event function of the Image class. In

the call to send_event , specify:

■ The event type. The event type is defined in the object model of the managed

system. It must be one of the event types supported by the managed object.

■ The event information. The event information consists of a list of attributes and

the values you want to set them to in the event. The list of attributes must be as

defined in the GDMO specification of the event type.

To send an event to the MIS, call one of the following schedulers as described in

Section 7.3 “Scheduling Event Handling” on page 7-11:

■ sched - For applications without a graphical user interface

■ xtsched - For applications with a graphical user interface

Note – The send_event function is a blocking function and does not send an event

to the MIS. To send the event, you must call a scheduler after calling the

send_event function. Otherwise, the event will be lost.
Chapter 7 Handling Events 7-21

Code for simulating an event programmatically is shown in CODE EXAMPLE 7-14.

In this code example, a communicationsAlarm event is sent to the MIS. The

probableCause attribute is set to a locally defined value of 85, and the

perceivedSeverity attribute is set to critical .

The variable fdn specifies the FDN of a managed object (for example

"/systemId=\"mozes\"/satelliteId=\"NorthernLights\""). The variable

object_class specifies the name of a managed object class (for example the

satellite class from the sample programs). The initialization of the fdn and

object_class variables is not shown in the example.

CODE EXAMPLE 7-14 Simulating an Event Programatically

...
#include <pmi/hi.hh> // High Level PMI
#include <pmi/xtsched.hh> // PMI GUI scheduler
#include <rw/cstring.h> // Rogue Wave RWCString
...
RWCString fdn, object_class;
...
Image im((char *)fdn.data(), (char*)object_class.data());
char event[30] = "communicationsAlarm";
char event_info[100] = "{ probableCause localValue : 85,"

"perceivedSeverity critical }";
if (im.get_error_type() != PMI_SUCCESS) {

cout << im.get_error_string() << endl;
exit(5);

}
// Request the event to be sent
if (!im.send_event(event, event_info)) {

cout << "Error sending event: ";
cout << im.get_error_string() << endl;
exit (6);

}
...
// Send the event to the MIS
dispatch_recursive(TRUE);
...
7-22 Developing C++ Applications • October 2001

7.6 Subscribing to Log Record Events
An application receives log record events only if it has subscribed to them. Log

record events are not sent to an application unless the application has subscribed to

them.

Subscribing to log record events involves:

■ Selecting the managed object that represents the application’s connection to the

MIS

■ Setting the emSpecialEvents attribute of the managed object to

logRecordEvent

For information on how to select a managed object, refer to Section 5.3 “Selecting a

Managed Object” on page 5-8. To obtain the FDN of the managed object that

represents the application’s connection to the MIS, call the get_prop function of the

Platform class. In the call to get_prop , specify the APPLICATION_OBJNAME
property.

For information on how to set an attribute of a managed object, refer to Section 5.7

“Setting Attribute Values of an Object” on page 5-19. You have to set the

emSpecialEvents attribute to the text string logRecordEvent . Therefore, call the

set_str function of the Image class to set this attribute in the Image instance.

Code for subscribing to log record events is shown in CODE EXAMPLE 7-15.

CODE EXAMPLE 7-15 Subscribing to Log Record Events

...
#include <pmi/hi.hh> // High Level PMI
...
Platform em(duEM);
...
// Get application instance
DU appinst = em.get_prop(duAPPLICATION_OBJNAME) ;

// Construct the Image object
Image app_image(appinst);
if(!app_image.boot()) {

cout << app_image.get_error_string() << endl;
}
...
Chapter 7 Handling Events 7-23

// Subscribe to log record events
if(!app_image.set_str("emSpecialEvents","{logRecordEvent}")){

strcpy(pmi_error_msg, app_image.get_error_string());
app_image.reset_error();

 }

// Store the changes
if(!app_image.store()){

strcpy(pmi_error_msg, app_image.get_error_string());
app_image.reset_error();

 }
 ...

CODE EXAMPLE 7-15 Subscribing to Log Record Events (Continued)
7-24 Developing C++ Applications • October 2001

CHAPTER 8

Performing Asynchronous
Management Operations

A management operation can take a significant length of time to finish, particularly

if the operation exchanges a large quantity of data between your application and the

network resources it is managing. If your application is blocked while waiting for an

operation to finish, the application may appear unresponsive to a user, or may fail to

respond quickly enough to important events on your network. Performing

asynchronous management operations enables an application to continue with other

processing without waiting for the operations to finish.

This chapter explains how to enable applications to perform asynchronous

management operations.

■ Section 8.1 “Asynchronous and Synchronous Operation” on page 8-1

■ Section 8.2 “Specifying Asynchronous Operations” on page 8-2

■ Section 8.3 “Handling Responses From an Asynchronous Operation” on page 8-11

■ Section 8.4 “Verifying and Changing the Status of an Asynchronous Operation”

on page 8-23

8.1 Asynchronous and Synchronous
Operation
Your application can perform a management operation in synchronous or

asynchronous mode.

In synchronous mode, all functions within the application wait until the operation is

complete before returning. In this way, the thread of control is blocked after a

function is called, and the application can make use of the result immediately after

the function returns.
8-1

In asynchronous mode an application can initiate several concurrent asynchronous

operations before receiving any of the results. The results are not guaranteed to be

returned in any particular order. Asynchronous mode enables an application to

continue with other processing without waiting for a function to return, but does not

enable the result to be used immediately.

Note – Despite the similarities in terminology, these modes are not related to

synchronization.

8.2 Specifying Asynchronous Operations
To enable an application to continue processing while the application is waiting for

the result of an operation, call the asynchronous function for the operation. Calling

an asynchronous function initiates an operation, but returns program control to your

application before the operation finishes.

In the call to an asynchronous function, you can optionally specify a callback

function to be run when the asynchronous operation finishes. For more information,

see Section 8.3 “Handling Responses From an Asynchronous Operation” on

page 8-11.

An asynchronous function returns an instance of the Waiter class. The function

does not return the result of the operation initiated. The Waiter class represents an

unfinished asynchronous operation. The instance of Waiter returned enables you

to:

■ Register a callback function for handling response from managed objects as

described in Section 8.3.2 “Registering a Callback Function for Handling

Responses From Managed Objects” on page 8-12

■ Verify or change the status of an asynchronous operation as described in

Section 8.4 “Verifying and Changing the Status of an Asynchronous Operation”

on page 8-23.

You can choose to perform the following types of operations asynchronously:

■ Interactions with the MIS

■ Operations on managed objects

■ Operations on object collections

In addition, the Album class provides functions for performing asynchronous CMIS

operations on object collections.
8-2 Developing C++ Applications • October 2001

8.2.1 Interactions With the MIS

The Platform class provides functions for synchronously or asynchronously

interacting with the MIS. The names of asynchronous functions are prefixed with

start . To specify whether your application interacts with the MIS synchronously or

asynchronously, call the appropriate version of the function as listed in TABLE 8-1.

8.2.2 Asynchronous Operations on Managed Objects

For each management operation that you can perform on a managed object, the

Image class provides a function for performing it synchronously or asynchronously.

The names of asynchronous functions are prefixed with start . To specify whether a

management operation is performed synchronously or asynchronously, call the

appropriate version of the function as listed in TABLE 8-2.

TABLE 8-1 Synchronous and Asynchronous Functions of the Platform Class

Operation Synchronous Asynchronous

Connect an application to the MIS connect start_connect

Disconnect an application from the MIS disconnect start_disconnect

TABLE 8-2 Synchronous and Asynchronous Functions of the Image Class

Operation Synchronous Asynchronous

Activate or update an instance of Image boot start_boot

Deactivate an instance of Image shutdown start_shutdown

Update attribute values in the MIS store start_store

Add a managed object to the MIS create start_create

Add, in containing object, a managed object to the MIS create_within start_create_within

Remove a managed object from the MIS destroy start_destroy

Send an action request with a text parameter call start

Send an action request with an encoded parameter call_raw start_raw
Chapter 8 Performing Asynchronous Management Operations 8-3

8.2.3 Asynchronous Operations on Object Collections

For each management operation that you can perform on an object collection, the

Album class provides a function for performing it synchronously or asynchronously.

The names of asynchronous functions contain the text start . To specify whether a

management operation is performed synchronously or asynchronously, call the

appropriate version of the function as listed in TABLE 8-3.

Note – The Album class does not provide a function for sending an encoded

synchronous action request to an object collection.

TABLE 8-3 Synchronous and Asynchronous Functions of the Album Class

Operation Synchronous Asynchronous

Define the membership of an object collection derive start_derive

Activate all Image instances in an object collection all_boot all_start_boot

Deactivate all Image instances in an object collection all_shutdown all_start_shutdown

Update attribute values in the MIS for all Image
instances in an object collection

all_store all_start_store

Add all managed objects in an object collection to the

MIS

all_create all_start_create

Add, in a containing object, all managed objects in an

object collection to the MIS

all_create_within all_start_create_within

Remove all managed objects in an object collection

from the MIS

all_destroy all_start_destroy

Send an action request with a text parameter to all

managed objects in an object collection

all_call all_start

Send an action request with an encoded parameter to

all managed objects in an object collection

- all_start_raw
8-4 Developing C++ Applications • October 2001

8.2.4 Asynchronous CMIS Operations on Object

Collections

The Album class provides functions for performing asynchronous management

operations defined by the common management information service (CMIS). CMIS

is specified in recommendation ITU-T X.710/ISO-9595 Common Management
Information Services (CMISE). Use these functions if you want to perform an

operation on a subset of the managed objects in an object collection.

You can perform asynchronous management operations on an object collection only

if all of the following conditions are met:

■ The membership of the object collection is defined by derivation (see Section 6.3.1

“Defining the Membership by Derivation” on page 6-3).

■ The managed objects that you want to perform the operation on are all contained

in a subtree of the MIT rooted in the base managed object of the object collection.

■ The managed objects in the object collection reside in an agent that supports the

common management information protocol (CMIP).

Note – The Album class also provides functions for performing management

operations that are independent of any particular management protocol or service.

However, these functions allow you to perform a management operation only on all

managed objects in an object collection, not a subset of them. For more information,

refer to Section 6.5 “Accessing All Objects in an Object Collection” on page 6-17.

The Album class provides functions for performing the CMIS operations listed in

TABLE 8-4. For a definition of all CMIS operations, refer to ITU-T X.710/ISO-9595

Common Management Information Services (CMISE).

Performing an asynchronous CMIS operation on an object collection involves:

■ Selecting the managed objects to be the subject of a CMIS operation

■ Requesting a CMIS operation

TABLE 8-4 CMIS Operations Supported by the Album Class

Operation Definition

M-DELETE Deletes a managed object

M-GET Obtains attribute values from a managed object

M-SET Modifies attribute values for a managed object

M-ACTION Performs an action on a managed object
Chapter 8 Performing Asynchronous Management Operations 8-5

8.2.4.1 Selecting the Managed Objects to be the Subject of a CMIS
Operation

The derivation string of the Album instance that contains an object collection selects

the managed objects that are the subject of a CMIS operation on the object collection.

If you want to select all managed objects in an object collection, leave the derivation

string unchanged after you call the derive function of the Album class.

If you want to select a subset of the managed objects in an object collection, reset the

derivation string but do not call the derive function of the Album class.

Code for selecting the managed objects to be the subject of a CMIS operation is

shown in CODE EXAMPLE 8-1.

CODE EXAMPLE 8-1 Selecting Managed Objects for a CMIS Operation

...
#include <pmi/hi.hh> // High Level PMI
...
Album nologs_album = Album("All objects except log objects");
...
// Set derivation string for populating the object collection
// and then start the derivation

DU ALL_OBJECTS_EXCEPT_LOG =
"ALL/CMISFilter(not:{item:equality:{objectClass,log}})";

if (!nologs_album.set_derivation(ALL_OBJECTS_EXCEPT_LOG)) {
cout << nologs_album.get_error_string() << endl;
exit(3);

}

if (!nologs_album.derive()) {
cout << nologs_album.get_error_string() << endl;
exit(4);

}
...
// Reset the derivation string to select objects for CMIS operation,
// but do not start a derivation
DU ALL_SECOND_LEVEL_OBJECTS_EXCEPT_LOG =

"LV(2)/CMISFilter(not:{item:equality:{objectClass,log}})";
if (!nologs_album.set_derivation(ALL_SECOND_LEVEL_OBJECTS_EXCEPT_LOG)) {

cout << nologs_album.get_error_string() << endl;
exit(5);

}
...
8-6 Developing C++ Applications • October 2001

In this example, an object collection containing all managed objects except instances

of the log class is created. After the membership of this object collection has been

defined by derivation, the derivation string is reset to select all second-level

subordinates of the system object except instances of the log class. To preserve the

membership of the object collection, the derive function of the Album class is not

called after the derivation string is reset.

8.2.4.2 Requesting a CMIS Operation

When you have selected the objects to be the subject of a CMIS operation, call one of

the functions listed in TABLE 8-5 to request the operation. Additional information on

how to call each function listed in TABLE 8-5 is given in the following subsections.

Requesting an Asynchronous CMIS M-GETOperation

To request an asynchronous CMIS M-GEToperation, call the start_m_get function

of the Album class.

In the call to start_m_get , specify:

■ A list of the attributes you want to get the values of. You must pass the list of

attributes to the start_m_get function in an array, even if you want to get only

one attribute.

■ A callback function to be called when the management operation is complete.

Requesting an Asynchronous CMIS M-SET Operation

To request an asynchronous CMIS M-SET operation, call the start_m_set function

of the Album class.

TABLE 8-5 Functions of the Album Class for Requesting CMIS Operations

Operation Function

M-GET start_m_get

M-SET start_m_set

M-ACTION with a text parameter start_m_action

M-ACTION with an encoded parameter start_m_action_raw

M-DELETE start_m_delete
Chapter 8 Performing Asynchronous Management Operations 8-7

In the call to start_m_set , specify:

■ A modification list. The modification lists specifies the attributes you want to set

and how you want to set them.

■ A callback function to be called when the management operation is complete.

Note – The start_m_set function supports only best effort synchronization.

To specify a modification list, create a queue of AttrModifier instances and pass

this queue to start_m_set . The AttrModifer class represents a single

modification to an attribute of a managed object.

Creating a queue of AttrModifier instances involves:

■ Initializing an instance of the Queue class

■ For each modification in the modification list:

■ Initializing an instance of the AttrModifier class

■ Calling functions of the AttrModifier to specify how you want to set the

attribute

■ Calling the enq function of the Queue class to add the modification to the

queue

In the call to the constructor of the AttrModifier class, specify the name of the

attribute you want to set.

To specify how you want to set the attribute, call functions of the AttrModifier
class as follows:

■ To specify the value that you want to set the attribute to, call the set_value
function. In the call to set_value , you have to specify an instance of the Morf
class that represents the value. For information on the Morf class, refer to

Chapter 9.

■ To specify how the attribute value is to be modified, call the set_operator
function. In the call to set_operator , you have to specify one of the operations

listed in TABLE 8-6.
8-8 Developing C++ Applications • October 2001

Code for requesting an asynchronous CMIS M-SET operation is shown in

CODE EXAMPLE 8-2.

TABLE 8-6 Operations for the set_operator Function

Operation Result

REPLACE Replaces the existing value with that specified in the function call. It

corresponds to the REPLACEoperation in a property list. This is the

default operation.

ADD Adds the value specified in the function call to the current value of a

multi-valued attribute. It corresponds to the ADDoperation in a

property list. Specify the ADDoperation for multi-valued attributes

only. If you specify the ADDoperation for a single-valued attribute, an

exception is thrown.

REMOVE Removes the value specified in the function call from the current

value of a multi-valued attribute. It corresponds to the REMOVE
operation in a property list. Specify the REMOVEoperation for multi-

valued attributes only. If you specify the REMOVEoperation for a

single-valued attribute, an exception is thrown.

SET_TO_DEFAULT Replaces the existing value with the default value defined in the

property list in the ATTRIBUTESconstruct of the attribute’s GDMO

specification.

CODE EXAMPLE 8-2 Requesting an Asynchronous CMIS M-SET Operation

...
#include <pmi/hi.hh> // High Level PMI
#include <queue.hh> // Queue class declaration
...
Album nologs_album = Album("All objects except log objects");
...
Queue (AttrModifier) amq;
Morf val;
AttrModifier * elt1 = new AttrModifier (CDU coordinates);
elt1->set_operator (REPLACE);
elt1->set_value (&val);
amq.enq (elt1);
AttrModifier * elt2 = new AttrModifier (CDU highWaterMark);
elt2->set_operator (SET_TO_DEFAULT);
amq.enq (elt2);
nologs_album.start_m_set (amq);
...
Chapter 8 Performing Asynchronous Management Operations 8-9

In this example, a queue named amq of AttrModifier instances is created. The

AttrModifier instances in the queue specify that:

■ Attribute coordinates is set to the value specified in the instance of Morf
named val .

■ Attribute highWaterMark is set to its default value.

Requesting an Asynchronous CMIS M-ACTION Operation With a Text
Parameter

To request an asynchronous CMIS M-ACTION operation with a text parameter, call

the start_m_action function of the Album class.

In the call to start_m_action , specify:

■ The name of the action

■ An instance of the DataUnit class that contains the parameter associated with

the action

■ A callback function to be called when the management operation is complete

Note – The start_m_action function supports only best effort synchronization.

Requesting an Asynchronous CMIS M-ACTION Operation With an
Encoded Parameter

To request an asynchronous CMIS M-ACTION operation with an encoded parameter,

call the start_m_action_raw function of the Album class.

In the call to start_m_action_raw , specify:

■ The name of the action

■ An instance of the Morf class that contains the parameter associated with the

action

■ A callback function to be called when the management operation is complete

Note – The start_m_action_raw function supports only best effort

synchronization.

Requesting an Asynchronous CMIS M-DELETEOperation

To request an asynchronous CMIS M-DELETEoperation, call the start_m_delete
function of the Album class. In the call to start_m_delete , specify a callback

function to be called when the management operation is complete.
8-10 Developing C++ Applications • October 2001

8.3 Handling Responses From an
Asynchronous Operation
An application receives the following types of responses from an asynchronous

operation:

■ A confirmation that the operation has finished. Some processes in your

application may depend on the completion of an asynchronous operation, and

must wait until the asynchronous operation has finished. For example, an

application that connects asynchronously to an MIS must wait until the

connection has been established before attempting to access managed objects in

the MIS. Use the confirmation to make your application wait until an

asynchronous operation has finished before it starts a process that depends on the

completion of the asynchronous operation.

■ Responses from managed objects. Each managed object that is the subject of an

asynchronous operation sends a response that contains the result of the operation.

Handle these responses to process the result of an asynchronous operation, for

example by displaying retrieved values or taking alternative courses of action

depending on whether the operation succeeds or fails.

Handling responses to asynchronous operations involves:

■ Registering a callback function for the completion of an asynchronous operation

■ Registering a callback function for handling responses from managed objects

■ Writing a callback function

■ Scheduling response handling

8.3.1 Registering a Callback Function for the

Completion of an Asynchronous Operation

Register a callback to specify the processing that is carried out when an

asynchronous operation finishes. Registering a callback associates the callback with

an asynchronous operation. The callback is run when your application receives a

confirmation that the asynchronous operation has finished.

Registering a callback function for the completion of an asynchronous operation is

optional. By default, no callback is registered when you call a function for

performing an asynchronous operation.

To register a callback, pass it as a parameter to the asynchronous function. In the

asynchronous function call, initialize an instance of the Callback class to represent

the callback function.
Chapter 8 Performing Asynchronous Management Operations 8-11

To initialize an instance of the Callback class, call its constructor in the

asynchronous function call. In the call to the constructor of the Callback class, you

must specify:

■ The name of the callback function.

■ A pointer to the data to be passed as an argument to the callback function. You

can specify a null pointer if you do not want to pass any data to the callback

function.

Code for registering a callback for an asynchronous operation is shown in

CODE EXAMPLE 8-3.

In this example, the start_derive function of the Album class is called to start the

derivation of an Album instance asynchronously. The callback function

alb_derived_cb is registered so that it is called when the derivation finishes. A

pointer to data contained in the cb_info object is passed to the callback function.

8.3.2 Registering a Callback Function for Handling

Responses From Managed Objects

The callback registered in the call to a function for an asynchronous operation is

called only once, when the operation is completed. To handle responses from

managed objects to an asynchronous function call, you must register a callback

specifically for that purpose.

To register a callback for handling responses from managed objects, call the

when_resp function on the Waiter instance returned by the asynchronous function

call.

In the call to when_resp , specify the callback function for handling responses from

managed objects. This callback function is called each time your application receives

a response to the asynchronous operation that returned the Waiter instance on

which when_resp is called.

CODE EXAMPLE 8-3 Registering a Callback for an Asynchronous Operation

...
#include <pmi/hi.hh> // High Level PMI
...
Waiter alb_waiter = myAlbum.start_derive(

Callback(alb_derived_cb, (Ptr)&cb_info));
...
8-12 Developing C++ Applications • October 2001

Code for registering a callback function to handle responses from managed objects is

shown in CODE EXAMPLE 8-4.

In this example, the all_start function of the Album class is called to send an

asynchronous action request with a text parameter to all managed objects in an

object collection. The when_resp function is called on the Waiter instance returned

by the call to all_start . The call to when_resp registers a callback function

named asyn_cb . The asyn_cb function is called each time the application receives

a response to the asynchronous action from a managed object.

8.3.3 Writing Callback Functions for Asynchronous

Operations

Write a callback function to handle each type of asynchronous operation and

response you want to process. Each callback function you write must contain the

code needed to carry out the processing you require. Writing a callback function

involves:

■ Defining the signature of the callback function

■ Writing code for handling either of the following:

■ A confirmation that an asynchronous operation has finished

■ Responses from managed objects

CODE EXAMPLE 8-4 Registering a Callback Function for Response Handling

...
#include <pmi/hi.hh> // High Level PMI
...
Waiter cur;
...
if (!(cur=test_album.all_start(DU("topoGetNodeReport"),

DU("NULL"),Callback(done_cb, &done)))) {
cout << test_album.get_error_string() << endl;
exit(9);

}
if (cur.get_except()) {

cout << cur.get_except()->reason() << endl;
exit(10);

}
// subscribe to any future incoming replies
 cur.when_resp(Callback(asyn_cb,0));
...
Chapter 8 Performing Asynchronous Management Operations 8-13

8.3.3.1 Defining the Signature of the Callback Function

The signature of any callback function you write must be in the following format:

Where:

■ callbackName is the name you assign to your callback function.

■ userdata is the data passed to the callback by your application.

■ calldata is the data passed to the callback by the scheduler that calls the

callback function.

Note – This format is identical to that required for event-handling callbacks as

defined in Section 7.2.2 “Writing Callback Functions for Event Handling” on

page 7-6.

8.3.3.2 Writing Code for Handling a Confirmation That an
Asynchronous Operation Has Finished

In the body of your callback function, provide code that you want your application

to run when an asynchronous operation finishes. The code you write depends on

what you want the callback to do when it is run. If you do not need to process the

data that the scheduler passes to the callback function, you can ignore callback’s

second argument.

An example of a callback for processing a confirmation that an asynchronous

operation has finished is given in CODE EXAMPLE 8-5.

void callbackName (Ptr userdata, Ptr calldata)

CODE EXAMPLE 8-5 Callback for Completion of an Asynchronous Operation

...
#include <pmi/hi.hh> // High Level PMI
...
void alb_derived_cb(Ptr context_data, Ptr)
{

callback_data *cb_data = (callback_data *)context_data;
char **args_list = cb_data->get_args();
char *g_class = cb_data->get_derivation_class();
fprintf(stdout,
"\n~~\n");
fprintf(stdout,

"%s: Album Derivation Callback Function\n",
8-14 Developing C++ Applications • October 2001

When this callback is run, it checks for the success of the derivation. If the derivation

fails, the callback prints a message stating that the derivation has failed. If the

derivation succeeds, the callback prints the number of Image instances in the

derived Album instance.

8.3.3.3 Writing Code for Handling Responses From Managed Objects

In the body of your callback function, provide code that you want your application

to run when it receives a response from a managed object. The code you write

depends on what you want the callback to do when it is run.

Making Correct Use of the Data Passed By the Scheduler

If you intend to register your callback by calling when_resp , you must use the data

that the scheduler passes to the callback function to build a CurrentEvent object.

This data is a void pointer. It is passed in the second argument of the callback.

If you ignore this data, memory allocated by the scheduler for this data is not freed,

leading to a memory leak.

args_list[0]);
Album alb = cb_data->get_album();
if (!alb)

fprintf(stderr,
"%s: Error initializing Album in callback\n",
args_list[0]);

else {
fprintf(stdout,

"Number of %s instances found: %d\n",
g_class, alb.num_images());

}

fprintf(stdout,
"\n~~\n");
delete cb_data;
fprintf(stdout,

"\n%s: Program complete, terminating MIS connection\n\n", args_list[0]);
MIS_Connected = FALSE;

}

CODE EXAMPLE 8-5 Callback for Completion of an Asynchronous Operation (Continued)
Chapter 8 Performing Asynchronous Management Operations 8-15

Code that correctly uses the data passed by the scheduler is shown in

CODE EXAMPLE 8-6.

In this example, the data passed by the scheduler is used in the callback to build a

CurrentEvent object. The memory allocated by the scheduler for this data is freed,

thereby avoiding a memory leak.

Code that does not correctly use the data passed by the scheduler is shown

inCODE EXAMPLE 8-7.

In this example, the data passed by the scheduler is ignored, leading to a memory

leak.

CODE EXAMPLE 8-6 Correct Use of Data Passed by the Scheduler

...
void cb(Ptr userdata, Ptr calldata)
{
// do whatever
if(calldata)

{
CurrentEvent ce(calldata);
// Do whatever and use and access the information
// within the CurrentEvent ce
}

// do whatever
}
...

CODE EXAMPLE 8-7 Incorrect Use of Data Passed by the Scheduler

...
void cb(Ptr userdata,Ptr calldata)
{
// do whatever but never use calldata to build
// a CurrentEvent object.

}
// or
void cb(Ptr userdata)
{
// do whatever and ignore the second argument
}
...
8-16 Developing C++ Applications • October 2001

Extracting Information Contained In a Response From a Managed Object

Extract the information contained in responses that is useful to the user of your

application. To extract information contained in a response, call functions of the

CurrentEvent class in the body of your callback function.

The information available depends on the response.

Information available from all responses and the functions for extracting the

information are given in TABLE 8-7.

Information available only from action replies sent in response to CMIS M-ACTION
requests and the functions for extracting the information are given in TABLE 8-8.

Note – The information available from responses is a subset of the information

available from event notifications. Functions of the CurrentEvent class that are not

listed in TABLE 8-7 and TABLE 8-8 extract meaningful information only from event

notifications, not from responses. For more information, refer to Section 7.2.2.2

“Extracting Information From an Event Notification” on page 7-7.

TABLE 8-7 Information Available From All Responses

Information Function

A pointer to the response that caused the callback function to be called.

This pointer has no meaning outside the scope of the CurrentEvent
object that represents the response.

get_message

The Album instance associated with the response. get_album

The Image instance associated with the response. get_image

The class of the managed object that sent the response. get_objclass

The fully distinguished name (FDN) of the managed object that sent the

response.

get_objname

TABLE 8-8 Information Available Only From Action Replies

Information Function

The action reply information in encoded form. get_info_raw

The name of the action request. get_eventtype
Chapter 8 Performing Asynchronous Management Operations 8-17

Example Callback for Handling Responses From Managed Objects

A callback function for handling responses from managed objects is shown in

CODE EXAMPLE 8-8.

CODE EXAMPLE 8-8 Callback for Handling Responses From Managed Objects

...
#include <pmi/hi.hh> // High Level PMI
...
void asyn_cb(Ptr , Ptr calldata)
{
static int num = 1;

cout << "\nExecuting asyn1 callback function for ";
cout << num << " times";

cout << endl;
cout << "--" << endl;
num++;

// Get and print the new attribute value.
cout << "During the all_start operation ";
cout << endl;

if(calldata)
{

CurrentEvent ce(calldata);
cout << "OBJNAME = " << ce.get_objname().chp() << endl;
cout << "OBJCLASS = " << ce.get_objclass().chp() << endl;
MessagePtr msg = (MessagePtr)ce.get_message();

if(msg->type()==ACTION_RES)
{
ActionRes* srmsg = (ActionRes*)msg;
cout << "OBJCLASS = " << oc2name(srmsg->oc).chp() << endl;
cout << "FDN = " << oi2fdn(srmsg->oi).chp() << endl;
cout << "ACTION-TYPE = " << endl;
(srmsg->action_type).print(stdout);
cout << "\n" << endl;
cout << "ACTION-REPLY = " << endl;
(srmsg->action_reply).print(stdout);
cout << "\n" << endl;
}

Morf mf = ce.get_info_raw();
Asn1Value val = mf.get_value();
if(val)
{
cout << "info_raw() field of current event ACTION-REPLY = " << endl;
val.print(stdout);
8-18 Developing C++ Applications • October 2001

The callback in this example checks a response to determine if the response is an

action reply. If the response is an action reply, the following information about the

action reply are printed:

■ The managed object class of the action reply

■ The FDN of the action reply

■ The type of action request sent

■ The text of the action reply message

For any response, the callback then prints out the following information:

■ The nickname of the object collection to which the request was sent

■ The derivation string of the object collection to which the request was sent

■ The FDN of the managed object that sent the reply

cout << "\n" << endl;
}

cout << "eventtype() field of current event ACTION-TYPE = " <<
ce.get_eventtype().chp() << endl;

cout << "Information setting in the current event related Album " << endl;
cout << "Derivation rule for the Album " <<
ce.get_album().get_prop(duNICKNAME).chp() << " is : " <<
ce.get_album().get_derivation().chp() << endl;
cout << "\n" << endl;

cout << "Information setting in the current event related Image" << endl;
Image im = ce.get_image();
cout << " image name is " << im.get_objname().chp() << endl;
cout << " image class is " << im.get_objclass().chp() << endl;
cout << " image state is " << im.get_state().chp() << endl;
cout << " image last_error is " << im.get_last_error().chp() << endl;
if (im.exists())
cout << " image exists " << endl;
else
cout << " image does not exist " << endl;

cout << " attribute(s) and attribute value(s) setting in the image " << endl;
Array(DU) attr_names = im.get_attr_names();
for (int i=0; i<attr_names.size; i++) {

char *name = strdup(attr_names[i].chp());
cout << name;
cout << ": ";
cout << im.get_str(name).chp() << endl;

}
cout << "\n" << endl;

}
}

CODE EXAMPLE 8-8 Callback for Handling Responses From Managed Objects (Continued)
Chapter 8 Performing Asynchronous Management Operations 8-19

■ The managed object class of the managed object that sent the reply

■ The state of the managed object that sent the reply

■ The last error associated with the managed object that sent the reply

8.3.4 Scheduling Response Handling

An application cannot predict when it will receive a response to an asynchronous

operation. Therefore, to process a response to an asynchronous operation, an

application must be able to interrupt whatever function is being performed and

process the response when it is received. To interrupt the function it is currently

performing, an application requires a scheduler. A scheduler retrieves each event

from the event queue and calls the function required to process the event correctly.

To schedule response handling, use one of the schedulers that Solstice EM provides:

■ sched - For applications without a graphical user interface

■ xtsched - For applications with a graphical user interface

Use these schedulers for response handling in the same way that you use them for

event handling as explained in:

■ Section 7.3.1 “Scheduling for Applications Without a Graphical User Interface” on

page 7-11

■ Section 7.3.2 “Scheduling for Applications With a Graphical User Interface” on

page 7-13

When you use the sched scheduler for response handling, you can schedule

response handling in either of the following modes, depending on the requirements

of your application:

■ Nonblocking mode. Schedule response handling in nonblocking mode if you

want your application to continue with other operations while an asynchronous

operation is outstanding.

■ Blocking mode. Schedule response handling in blocking mode if you want your

application to carry out some operations only after an asynchronous operation

has finished. Blocking mode enables your application to carry out other

operations while the asynchronous operation is outstanding.

When you use the xtsched scheduler for response handling, you can schedule

response handling in nonblocking mode only.
8-20 Developing C++ Applications • October 2001

8.3.4.1 Scheduling Response Handling in Nonblocking Mode

In nonblocking mode, your application continues with other operations while an

asynchronous is outstanding.

To schedule response handling in nonblocking mode, activate the scheduler in a

loop as shown in CODE EXAMPLE 8-9.

In this example, the dispatch_recursive function of the sched scheduler is

called while the application remains connected to an MIS.

8.3.4.2 Scheduling Response Handling in Blocking Mode

In blocking mode, your application carries out some operations only after an

asynchronous operation has finished. Blocking mode enables your application to

carry out other operations while the asynchronous operation is outstanding.

To schedule response handling in blocking mode, activate the scheduler in a loop

only while the asynchronous operation is still outstanding. To test whether the

asynchronous operation is still outstanding, call the was_completed function of the

Waiter class repeatedly until it returns a value indicating that the operation

represented by the Waiter instance has finished.

Outside the loop, call functions for operations that you want to be carried out only

after the asynchronous operation has finished.

Inside the loop, call functions for operations you want to be carried out while the

asynchronous operation is outstanding. These operations must not block the

application.

CODE EXAMPLE 8-9 Scheduling Nonblocking Asynchronous Response Handling

...
#include <pmi/hi.hh> // High Level PMI
...
// Non-Blocking Example (note: boot_cb not shown in this example):

Waiter waiter1 = cell_image.start_create(Callback(boot_cb, 0));
waiter1.waitmore(3.0); // Specify 3 sec. timeout for boot operation
while (MIS_Connected)

dispatch_recursive(TRUE);
...
Chapter 8 Performing Asynchronous Management Operations 8-21

Code for scheduling response handling in blocking mode is shown in

CODE EXAMPLE 8-10.

In this example, attribute values in the MIS for all Image instances in an object

collection are updated asynchronously. To ensure that the dispatch_recursive
function of the sched scheduler is called only while this operation is still

unfinished, it is called in a loop while the was_completed function returns FALSE.

8.3.5 Adding a Callback to the Scheduler Queue

Add a callback to the scheduler queue when you want the callback to be run.

Adding a callback to the scheduler queue enables you to specify data that the

scheduler passes to your callback when the callback is run.

You only need to add a callback to the scheduler queue if you are implementing an

asynchronous function yourself. You do not need to add a callback to the scheduler

queue if you are using the asynchronous functions supplied in the Solstice EM APIs.

Adding a callback to the scheduler queue involves:

■ Initializing an instance of Waiter by calling an asynchronous function

■ Registering the callback by calling the when_resp function on the Waiter
instance that you initialized

■ Calling the send_resp function on the Waiter instance that you initialized to

add the registered callback to the scheduler queue

In the call to send_resp , specify a pointer to the data that the scheduler passes to

the callback when the callback is run. Your callback must include code for

converting the data into a CurrentEvent instance when the callback is run. If you

CODE EXAMPLE 8-10 Scheduling Blocking Asynchronous Response Handling

...
#include <pmi/hi.hh> // High Level PMI
...
// Blocking Example:

Waiter waiter2 = cell_album.all_start_store();
while (!waiter2.was_completed){
// Do operations you want to be carried out while the
// asynchronous operation is outstanding. These operations
// must not block the application.

dispatch_recursive(TRUE);
}

// Continue with operations you want to be carried out only after
// the asynchronous operation has finished.
...
8-22 Developing C++ Applications • October 2001

want to process the data, in your callback, call functions of the CurrentEvent class

for processing the data. For more information, refer to Section 8.3.3.3 “Writing Code

for Handling Responses From Managed Objects” on page 8-15.

8.4 Verifying and Changing the Status of an
Asynchronous Operation
To verify or change the status of an asynchronous operation, use the instance of the

Waiter class returned by the function you called to initiate the asynchronous

operation. The instance of Waiter returned enables you verify or change the status

of an asynchronous operation by:

■ Verifying the result of an asynchronous operation

■ Cancelling an asynchronous operation

■ Specifying or extending the timeout of an operation

Note – The start_create function returns an instance of the Result class, not

the Waiter class. Consequently, you cannot check or change the status of an

asynchronous operation to add a managed object to the MIS.

8.4.1 Verifying the Result of an Asynchronous

Operation

To enable your application to take different actions depending on whether an

asynchronous operation succeeds, verify the result of the operation. For example,

verify the result of an asynchronous operation to notify the user, or take some other

recovery action, if the operation fails.

To verify the result of an asynchronous operation, call the get_except function of

the Waiter class.

The get_except function returns one of the following:

■ If the operation failed, get_except returns a pointer to an instance of the

ExceptionType class. This instance provides information on why the operation

failed.

■ If the operation succeeded, get_except returns NULL.

The value returned by the get_except function is valid only while the operation is

outstanding.
Chapter 8 Performing Asynchronous Management Operations 8-23

Note – The procedure for verifying the result of an asynchronous operations is

different from that for asynchronous operations described in Section 4.1.2 “Using the

get_error_type Function” on page 4-2. The get_error_type and

get_error_string functions of the Waiter class return information about

functions of the Waiter class, not about the operation represented by the instance of

Waiter .

To obtain information on why an asynchronous operation failed, call functions of the

ExceptionType class as follows:

■ To obtain the exception type, call the name function of the ExceptionType class.

■ To obtain the reason for the failure, call the reason function of the

ExceptionType class.

Code for verifying the result of an asynchronous operation is shown in

CODE EXAMPLE 8-11.

If the asynchronous operation represented by the instance of Waiter named

cell_waiter fails, an error message is written to stderr . The text returned by the

calls to the name and reason functions of ExceptionType is incorporated in the

message written to stderr .

8.4.2 Cancelling an Asynchronous Operation

Cancel an asynchronous operation that you no longer require to be completed.

To cancel an outstanding asynchronous operation, call the cancel function of the

Waiter class.

CODE EXAMPLE 8-11 Verifying the Result of an Asynchronous Operation

...
#include <pmi/hi.hh> // High Level PMI
...
// WARNING: get_except() returns a 0 pointer if operation successful.
// Following code can also trigger segmentation faults if error occurs
// with SEM 3.0. Bottom line: AVOID USE OF ASYNC FUNCTIONALITY

if (cell_waiter.get_except()) {
fprintf(stderr, "Waiter: Exception: %s, Reason: %s\n",

(cell_waiter.get_except())->name(),
(cell_waiter.get_except())->reason());

}

8-24 Developing C++ Applications • October 2001

8.4.3 Changing the Timeout of an Asynchronous

Operation

The timeout of an asynchronous operation specifies the maximum length of time an

application allows for an asynchronous operation to finish. If an asynchronous

operation is not completed within this length of time, the operation is cancelled.

Change the timeout of an asynchronous operation if you want the timeout to change

in response to an event. For example, if your application is waiting for several

events, change the timeout each time an event is received so that your application

only times out if the interval between events exceeds some threshold.

To change the timeout of an asynchronous operation, call the waitmore function of

the Waiter class. In the call to the Waitmore function, you have to specify the

timeout. The timeout is a typedef double that represents the length of the timeout

in seconds.

Code for changing the timeout of an asynchronous operation is given in

CODE EXAMPLE 8-12.

In this example, the timeout for an asynchronous operation to add a managed object

to an MIS is changed to 3.0 seconds.

CODE EXAMPLE 8-12 Changing the Timeout of an Asynchronous Operation

...
#include <pmi/hi.hh> // High Level PMI
...
// Nonblocking Example (note: boot_cb not shown in this example):

Waiter waiter1 = cell_image.start_create(Callback(boot_cb, 0));
waiter1.waitmore(3.0); // Specify 3 sec. timeout for creation operation

...
Chapter 8 Performing Asynchronous Management Operations 8-25

8-26 Developing C++ Applications • October 2001

CHAPTER 9

Encoding and Decoding Complex
ASN.1 Values

In the Solstice EM environment, attribute values in management requests, responses

and event notifications are represented in a machine-independent format for

transmission over a network. The format used is defined in ITU-T X.208/ISO-8824

Specification of Abstract Syntax Notation One (ASN.1). This standard defines several

complex data types and enables you to define your own custom data types. When an

application sends a request to set an attribute value represented by a complex data

type, the application must encode this value for transmission over a network. When

an application receives an attribute value represented by a complex data type (for

example in a response or an event notification) the application must decode this

value to extract the information the value contains.

This chapter explains how to encode and decode complex ASN.1 values.

■ Section 9.1 “Introduction to the Morf Class” on page 9-1

■ Section 9.2 “Creating Complex ASN.1 Values” on page 9-2

■ Section 9.3 “Parsing Complex ASN.1 Values” on page 9-9

■ Section 9.4 “Decoding Complex ASN.1 Values” on page 9-24

■ Section 9.5 “Using the MorfBuilder Class” on page 9-32

9.1 Introduction to the Morf Class
The high-level Portable Management Interface (PMI) API provides the Morf
(mysterious object related to framework) class for representing complex ASN.1

values. To simplify the encoding and decoding of complex ASN.1 values, use the

Morf class for:

■ Creating complex ASN.1 values

■ Parsing complex ASN.1 values to get information on their structure and content

■ Decoding the values stored in complex ASN.1 values
9-1

Every instance of the Morf class is associated with an instance of the Syntax class.

The Syntax class represents an ASN.1 type loaded into the metadata repository

(MDR). The Morf class provides a simple way to transform string data into

Asn1Value data in the underlying Syntax instance or to decode Asn1Value data

into string data. Constructing and decoding complex data values by using strings is

often much simpler than using the Asn1Value class directly.

Morf instances that represent complex data values can be used to pass data as a

single instance to other functions and applications. This can be particularly useful is

the data type of the value is unknown until run time, such as with a CHOICEtype. In

many cases where an application requires an Asn1Value instance, it is easier to

construct a Morf instance and then use its get_value function to create the

Asn1Value instance.

The MorfBuilder class provides additional facilities for building Morf instances

that represent CHOICE, SET, SET OF, SEQUENCE, and SEQUENCE OFdata types. The

MorfBuilder class relies on constructing or decoding a value as a collection of

Morf instances, so you need to understand how to work with the Morf class.

Working with the MorfBuilder class is explained in Section 9.5 “Using the

MorfBuilder Class” on page 9-32.

9.2 Creating Complex ASN.1 Values
To enable an application to send a request to set a complex ASN.1 value, you must

create the value. To create a complex ASN.1 value, create and initialize an instance of

the Morf class from any of the following:

■ Data represented as strings

■ Values that are instances of primitive types

■ Other Morf instances

9.2.1 Creating a Morf Instance From String Data

You can represent the values in a complex value as a string. You can use this string

directly in the Morf constructor or by calling the set function of the Morf class. The

Morf class takes care of converting the string into the underlying Asn1Value
instances contained in the complex value.

Most complex values contain lists of other values. Any value defined as a SET, SET
OF, SEQUENCE, or SEQUENCE OFis considered a list. Lists can contain scalar values

as well as other lists. Scalar values are represented literally as strings such as "32" ,

"4.104" , or "Satellite A" . Lists require additional syntax to mark the start and

end of the list and to separate the list members.
9-2 Developing C++ Applications • October 2001

9.2.1.1 Representing Complex Values as Strings

To represent a list as a string, enclose all of the list data in braces, { and } , and

separate members with a comma.

Use the name of an ENUMERATEDtype in the string.

Consider the syntax of the DestructSet type in the satellite example, as shown in

CODE EXAMPLE 9-1.

An instance of the DestructSet type is a set the members of which are sequences,

and each sequence contains a set (checkSum). An instance of the DestructSet type

that contains two members is represented as a string as follows:

9.2.1.2 Constructing a Morf Instance From a String

When you construct a Morf instance, you probably get the data for the Morf
instance’s attributes from various sources. Convert the data to DataUnit strings,

then add the braces and commas required to order the data in sets and sequences.

You can only build a Morf instance from a string that has values for all of the

attributes in the underlying Syntax instance. You cannot update only a subset of the

Morf instance’s attributes.

If you need to build the subcomponents of a Morf instance at different times,

consider building a Morf instance for each subcomponent. You can create an array

of Morf instances from the subcomponents, and build a complex Morf instance that

contains those subcomponents from the array. See Section 9.2.5 “Creating Complex

Morf Instances From Other Morf Instances” on page 9-8.

CODE EXAMPLE 9-1 ASN.1 Syntax of DestructSet

CheckSum ::= SET OF OBJECT IDENTIFIER

DestructSet ::= SET OF SEQUENCE {
name GraphicString,
value Integer32,
checkSum CheckSum

}

"{{name \"Code 1\", value 6753, checkSum { 1 34 12 }}, {name \"Code
B\", value 9345, checkSum { 3 12 5 }}}"
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-3

CODE EXAMPLE 9-2 shows how to construct a destructSet from string data. This

code creates a Syntax instance that represents the destructSet type, builds a

string representation of a data set, then shows two ways of creating a Morf instance.

CODE EXAMPLE 9-2 Constructing a Morf From a String

...
#include <pmi/hi.hh>
#include <rw/cstring.h>
...
// CheckSum ::= SET OF OBJECT IDENTIFIER

// DestructSet ::= SET OF SEQUENCE {
// name GraphicString,
// value Integer32,
// checkSum CheckSum
// }

// Assume em_mis is an existing Platform instance
// previously connected to the MIS

Syntax syn(DU("destructSet"), em_mis);
RWCString destrSet, destrSequence1, destrSequence2;

//Build the string representation of the set
destrSequence1 =

"{ name \"Code A\", value 6753, checkSum { 1 34 12 }}";
destrSequence2 =

"{ name \"Code B\", value 9345, checkSum { 3 12 5 }}";
destrSet = "{" + destrSequence1 + ","

+ destrSequence2 + "}";

//Construct a Morf using the string and Syntax syn
Morf m1(syn, destrSet.data());

//Construct an empty Morf, then add the data
Morf m2(syn);
m2 = m2.set(destrSet);
if (m2.get_error_type != PMI_SUCCESS) {

 //handle the error
}
...
9-4 Developing C++ Applications • October 2001

9.2.2 Creating Simple Morf Instances

The set_str function converts a string to an arbitrary ASN.1 scalar value, such as

graphicString , topoBoolean , or INTEGER. The set_str function does not work

on values that are instances of list types such as SET or SEQUENCE. Use set for

values that are instances of list types.

It may be easier to use assign numeric data directly to a scalar, rather than first

converting it to a character string. There are several functions for using numeric data

to set the value of scalars based on numeric types.

The numeric data functions work on Morf instances that represent a scalar value the

base type of which is one of the following:

■ BOOLEAN
■ ENUMERATED
■ INTEGER
■ OCTET STRING
■ REAL

The functions for setting scalar values all return a new Morf instance. The functions

in TABLE 9-1 set the ASN.1 value of scalar-valued Morf instances.

TABLE 9-1 Functions for Assigning Scalar Values to a Morf Instance

Function Description

set_dbl Use a variable of type double to assign a value to a scalar-valued numeric

Morf instance.

set_gint Use a reference to a variable of type GenInt to assign a value to a scalar-

valued numeric Morf instance. Most types derived from int (long , I32 ,

U32) can be cast as GenInt .

set_long Use a variable of type long to assign a value to a scalar-valued numeric

Morf instance.

set_str Use a string to assign a value to a scalar-valued Morf instance of any

ASN.1 type (for example: GraphicString , Integer32 , or BOOLEAN). In

the call to set_str , you also have to specify format bits to control the

format of the string. For more information, see Section 9.4.1.2 “Controlling

the String Representation of a Morf Instance” on page 9-26.
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-5

9.2.3 Selecting the Type for a CHOICEValue

Before you assign a value to a CHOICEtype, call the set_memname function to select

which real syntax this instance of the type should use.

A Morf instance that corresponds to a CHOICEvalue has no definite syntax until one

of the types in the CHOICEis selected. If you attempt to assign a value to an

uninitialized Morf instance of type CHOICE, the Morf instance will not understand

which syntax to use.

CODE EXAMPLE 9-3 shows how to use set_memname.

CODE EXAMPLE 9-3 Selecting the Type for a CHOICEValue

...
#include <pmi/hi.hh>
...
// Assume Syntax syn is associated with a GeoLocation:
//
// GeoLocation ::= CHOICE {
// null NULL,
// value SEQUENCE {
// longitude REAL,
// latitude REAL
// }
// }

...
Morf geoLocation(syn);
geoLocation.set_memname("value"); // use value syntax, not null
geoLocation.set("{longitude 122.35, latitude 38.35}");
...
9-6 Developing C++ Applications • October 2001

9.2.4 Creating a Morf Instance for ASN.1 ANYValues

Call the set_any function to assign another Morf instance associated with the real

syntax of the value to a Morf instance associated with an ANYor ANY DEFINED BY
syntax. In the call to set_any , specify the Morf instance associated with the real

syntax of the value.

ANYand ANY DEFINED BYvalues are harder to build programmatically because the

actual ASN.1 type, syntax, and valid values for the data are context sensitive. For

example, the AttributeValueAssertion type has the following syntax:

In this type, the kind of data referenced by the type field determines the syntax of

the value field.

Assigning a value to a Morf instance of type ANYinvolves:

■ Creating a Morf instance (m1) based on the Syntax instance of type ANY
■ Creating a second Morf instance (m2) by using the real Syntax instance of the

value to be assigned

■ Assigning a value to the second Morf instance by calling, for example, set or

set_str
■ Calling set_any on m1, specifying m2as follows:

CODE EXAMPLE 9-5 shows the construction of an AttributeValueAssertion
ASN.1 value. The value represents the attribute value assertion:

topoBoolean = TRUE .

CODE EXAMPLE 9-4 ASN.1 Syntax of AttributeValueAssertion

AttributeType ::= OBJECT IDENTIFIER
AttributeValue ::= ANY

AttributeValueAssertion ::= SEQUENCE {
type AttributeType,
value AttributeValue

}

m1.set_any(Morf m2(realSyntax, DU(realData));

CODE EXAMPLE 9-5 Assigning a Value to an Instance of the ASN.1 ANYType

...
#include <pmi/hi.hh>
...
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-7

9.2.5 Creating Complex Morf Instances From Other

Morf Instances

CODE EXAMPLE 9-5 shows how to build a Morf instance by first building Morf
instances that represent its component values. For SEQUENCE, SEQUENCE OF, SET,

and SET OFtype Morf instances, you can create an array that has the list members

as elements, then use that array to construct a new Morf instance.

You can also use the Queue class to construct a Morf instance from a queue (that is,

an ordered list) of Morf instances.

// Create Syntax for AttributeValueAssertion, AttributeType
// AttributeValue and TopoBoolean (real type of AttributeValue
// Assume em_mis is an existing Platform instance
// previously connected to the MIS
Syntax avaSyn("attributeValueAsserion", em_mis);
Syntax attSyn("attributeType", em_mis);
Syntax atvSyn("attributeValue", em_mis);
Syntax tbSyn("topoBoolean", em_mis);

// get the OID of TopoBoolean to create a Morf
Oid tbOid;
Result r;
if ((r = OidNameRegistry::find_oid_by_name("topoBoolean", tbOID))

!= OK) {
// Handle error

}
Morf attMf(attSyn, tbOid.data());

// create an AttributeValue Morf (type ANY) and assign a
// Morf of type TopoBoolean to it
Morf atvMf(atvSyn);
Morf tbMf(tbSyn, "TRUE");
atvMf = atvMf.set_any(tbMf);

// Assemble the type and the value into one Morf
Array(Morf) ava(2);

ava[0] = attMf;
ava[1] = atvMf;

Morf avaMf(avaSyn, ava);
...

CODE EXAMPLE 9-5 Assigning a Value to an Instance of the ASN.1 ANYType (Continued)
9-8 Developing C++ Applications • October 2001

The syntax of the constructor for creating a Morf instance from an array of Morf
instances is as follows:

The syntax of the constructor for creating a Morf instance from a queue of Morf
instances is as follows:

These constructors are useful for simple SET and SEQUENCEvalues. More complex

values may involve CHOICEvalues, SETvalues within SETvalues, or SEQUENCE OF
SET values, for example. For constructing any moderately complex Morf instance, it

is usually easier to use the MorfBuilder class. See Section 9.5 “Using the

MorfBuilder Class” on page 9-32 for information on using the MorfBuilder class.

Note – A Morf instance does not change after you have constructed it. Changes

made to an array or a queue after the Morf instance is constructed are not reflected

in the Morf instance.

9.3 Parsing Complex ASN.1 Values
You usually derive a complex ASN.1 value from the Solstice EM platform as an

instance of the Morf class without knowing its explicit type and structure. Parsing

the Morf instance that represents a complex ASN.1 value enables you to understand

the structure of the instance and its ASN.1 syntax. When you know the type and

structure, you can extract the data you need from the Morf instance or run different

code based on the type of data received.

Reading or modifying values in a Morf instance involves:

■ Finding the member of the instance that you want (for example, a particular

member of a SET or an attribute in a SEQUENCE)
■ Verifying the ASN.1 type of the selected member

■ Understanding any constraints on values for the selected type (valid ranges or

size constraints)

You need to parse a Morf instance when the data type of a value is unknown, but

also sometimes when the type is known. For CHOICEtypes, you must parse the

Morf instance to determine which of the possible types the data represents.

Morf(Syntax& syn, Array(Morf)& ma)

Morf(Syntax& syn, class Queue(MorfElem)& mq)
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-9

The Morf class provides functions to discover the structure of a Morf instance and

all of the data types of all the values it contains.

9.3.1 Structure of Morf Instances

Every Morf instance is associated with a Syntax instance that represents an ASN.1

type. Every ASN.1 type is either a scalar type or a constructed type. A constructed

type is either a list type (namely: SET, SET OF, SEQUENCE, or SEQUENCE OF)or a

CHOICEtype.

The ANYor ANY DEFINED BYis an open type. The actual syntax of the data

contained in an instance of the type could be any valid ASN.1 type. For ANY
DEFINED BY, the possible syntax choices are restricted to types allowed by the type

named in the declaration.

Lists and scalars may be combined with other lists or scalars to create more complex

types. For example, a SEQUENCEcan contain scalars and a SET of instances of the

type SEQUENCE.

Functions for parsing a Morf instance enable you decompose a Morf instance into

the values it contains, decompose those values, and so on, until you have identified

all of the fundamental scalar values and how they are contained in other values.

Any type or a corresponding Morf instance can be only one of the following types:

■ ANY
■ CHOICE
■ List type

■ Scalar

Parsing a Morf instance involves:

■ Determining the type associated with the Morf instance

■ Doing one of the following, depending on the type:

■ If the type is CHOICEor ANY, extracting the actual syntax of the data as a new

Morf instance then resuming parsing

■ If the type is a list type, breaking the list into an array or queue of Morf
instances and resuming parsing each array or queue
9-10 Developing C++ Applications • October 2001

9.3.2 Overview of Functions for Parsing Morf Instances

The functions of the Morf class for obtaining information about the structure of a

Morf instance are listed in TABLE 9-2.

TABLE 9-2 Functions for Parsing Morf Instances

Morf Class Function Description

extract Extracts the specified element as a Morf instance. Use a navigation string to specify an

attribute name or element number in the current Morf instance or one of its contained

values. Separate contained values with a dot (.). For example, the navigation string

GeoLocation.value.latitude extracts the value of latitude from the value
element in the attribute GeoLocation . The definition of the GeoLocation type is

shown in CODE EXAMPLE 9-3.

get_member_names Returns an array of the Morf instance’s attribute names. If the Morf instance

represents an instance of a CHOICEtype, returns the attribute names of the type chosen

for the instance.

get_memname Returns the attribute name of the ASN.1 type associated with the Morf instance. If the

Morf instance represents an instance of a CHOICEtype, returns the attribute names of

the type chosen for the instance.

get_platform Returns the Platform instance associated with the Morf instances’s Syntax instance.

get_syntax Returns a Syntax instance that represents the syntax associated with the Morf
instance.

get_type Returns an Asn1Type instance that corresponds to the Morf instance’s ASN.1 type.

has_value Use only to check if the Morf instance has a value assigned to it. If there is no value

assigned or if the value is NULL, this function returns a null pointer.

is_any Returns TRUEif the Morf instance represents an instance of type ANYor ANY
DEFINED BY.

is_choice Returns TRUEif the Morf instance represents an instance of type CHOICE.

is_list Returns TRUEif the Morf instance represents an instance of type SEQUENCE,
SEQUENCE OF, SET, or SET OF.

is_sequence Returns TRUEif the Morf instance represents an instance of type SEQUENCEor

SEQUENCE OF.

is_set Returns TRUEif the Morf instance represents an instance of type SET or SET OF.

num_elements Returns the number of elements in a set or sequence. Valid only on list type Morf
instances.

split_array Returns the elements in a value that is an instance of a list type as an array of Morf
instances. Valid only on list type Morf instances.

split_queue Returns the elements in a value that is an instance of a list type as a queue of

MorfElem types. Valid only on list type Morf instances.
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-11

TABLE 9-3 lists functions provided by the Asn1Type class that are also useful for

parsing Morf instances. Call the get_type function of the Morf class to extract an

Asn1Type instance from a Morf instance.

9.3.3 Parsing CHOICEValues

Use is_choice to determine if a Morf instance represents a CHOICEtype.

If you only want to know what type is chosen, use get_memname. For CHOICE
types, get_memname returns the attribute name of the chosen type.

If you want to parse the instance further, call extract to extract a Morf instance

associated with the chosen syntax. In the call to extract , specify a navigation string

by calling get_memname to identify the name of the chosen instance.

CODE EXAMPLE 9-6 shows how to get information about a CHOICEvalue by using

get_memname and extract .

TABLE 9-3 Functions of the Asn1Type Class For Parsing Morf Instances

Asn1Type Class Function Description

get_bit_string_identifiers Valid for BIT STRING types. Returns an array that contains the name

and position of possible values defined for the string.

get_enum_identifiers Valid for ENUMERATEDtypes. Returns an array that contains the string

identifier and numeric value for all values defined in the enumeration.

get_range Valid for types derived from INTEGERor REAL. Returns the lowest and

highest possible value for this type. If a range cannot be determined for

this type, get_range returns NOT_OK.

get_size_constraint Valid for types derived from BIT STRING, OCTET STRING, SEQUENCE
OF, and SET OF. Returns the smallest and largest possible size for this

type. If there are no size constraints for this type,

get_size_constraint returns NOT_OK.

CODE EXAMPLE 9-6 Extracting Data From a CHOICEValue

...
#include <pmi/hi.hh>
...
// Assume we have a CHOICE Morf in morf
if (morf.is_choice()) {

cout << "CHOICE attribute selected is : ";
cout << morf.get_memname();
9-12 Developing C++ Applications • October 2001

9.3.4 Parsing List Values

Parsing a list value involves:

■ Determining if the Morf instance represents a list

■ Determining how many members are in the list

■ Splitting the list into an array or queue of new Morf instances

■ Getting the type of members of the list

The sample code in Section 9.3.7 “Example of Parsing a Morf Instance” on page 9-23

shows how to parse list values.

9.3.4.1 Determining That a Morf Instance Represents a List

The following functions enable you to determine if a Morf instance represents a list

and, if so, whether the list is a sequence or a set:

■ is_list returns TRUEfor any list.

■ is_sequence returns TRUEfor any instance of type SEQUENCEor SEQUENCE OF.

■ is_set returns TRUEfor any instance of type SET or SET OF.

9.3.4.2 Getting the Number of Members in a List

If a Morf instance represents a list, call num_elements to determine how many

members are in the list.

// Now replace morf with the chosen Syntax for further
// parsing.
Morf tmp = morf;
morf = tmp.extract(tmp.get_memname());
if (!morf) {

// handle the error
}

}

// Continue parsing with morf
...

CODE EXAMPLE 9-6 Extracting Data From a CHOICEValue (Continued)
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-13

9.3.4.3 Splitting a List Into an Array or Queue of New Morf
Instances

If you need to parse the members of a list, you first need to extract the members into

new Morf instances. The following functions return each element in a list as a new

Morf instance:

■ split_array returns an array of Morf instances.

■ split_queue returns a queue of Morf instances.

You then need to parse each element in the array or queue.

CODE EXAMPLE 9-7 shows how to use a queue to determine whether a list contains a

particular value.

CODE EXAMPLE 9-7 Using a Queue to Parse a List

...
#include <pmi/hi.hh>
...
// SatelliteSeq ::= SEQUENCE {
// name GraphicString,
// value Integer32,
// checkSum CheckSum
// }

SatelliteData ::= SET OF SatelliteSeq

// Assume Morf morf is of type SatelliteData

// Create the value we are looking for
// Assume em_mis is an existing Platform instance
// previously connected to the MIS
Syntax syn("Integer32", em_mis);
Morf testMf(syn, "7777");

// Iterate over the SatelliteData looking for a SatelliteSeq
// that matches our test value
if (morf.is_set() && (morf.num_elements() > 0)) {

Queue(MorfElem) setQ = morf.split_queue();
MorfElem mfe;
for (mfe = setQ.fiq(); mfe; mfe = setQ.niq(mfe)) {

// Each queue item is a SatelliteSeq; check its 'value'
Morf testVal = mfe.mf->extract("value");
if (!testVal) continue;
if (testVal == testMf) {

// Found, return this SatelliteSeq
return Morf(mfe.mf);
9-14 Developing C++ Applications • October 2001

9.3.4.4 Getting the Types of Members of a List

You may need only the types of the members of a list. For example, if the type of a

member is CHOICEor ANY, you can only know at runtime the actual type of the

member. To get the actual type of a member that is an instance of the CHOICEor ANY
type, call the get_member_names function.

The get_member_names function returns an array the ASN.1 of types in of the

members of list.

To examine the array, call functions of the DataUnit class to get information about

the data types.

9.3.5 Getting Objects Associated With a Morf Instance

An instance of each of the following classes is associated with a Morf instance:

■ Platform
■ Syntax
■ Asn1Type

To retrieve an instance, call one of the functions of the Morf class listed in TABLE 9-4.

}
}

}
return Morf(); // Not found or empty set
...

TABLE 9-4 Functions for Retrieving Information About the Type Instance

Class Function Returns

Platform get_platform A reference to the associated Platform instance

Syntax get_syntax The instance of the Syntax class associated with the Morf
instance’s syntax

Asn1Type get_type The Asn1Type instance that represents the Morf instance’s

underlying ASN.1 type

CODE EXAMPLE 9-7 Using a Queue to Parse a List (Continued)
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-15

9.3.6 Getting Metainformation About the ASN.1 Type

of a Morf Instance

To test if a value is assigned to a Morf instance, call the has_value function on the

Morf instance. Use the has_value function only to test if a value is assigned to a

Morf instance. Do not attempt to use pointer that the has_value function returns.

The Asn1Type class provides functions for getting:

■ Identifiers for a BIT STRING value

■ Identifiers for an ENUMERATEDvalue

■ The range of a value of a type or subtype of REALor INTEGER
■ The size constraints of a value of a type or subtype of BIT STRING, OCTET

STRING, SEQUENCE OF, or SET OF

Use the get_type function of the Morf class to get an Asn1Type instance that

corresponds to the Morf instance. Use the returned Asn1Type instance to call

functions for getting metainformation about values. For example:

9.3.6.1 Getting Identifiers for a BIT STRING Value

To get identifiers for a BIT STRING value, call the

get_bit_string_identifiers function of the Asn1Type class.

The syntax of get_bit_string_identifiers is as follows:

If this function returns OK, the idents array holds the identifiers and associated

positions for the members in an ASN.1 BIT STRING value.

CODE EXAMPLE 9-8 shows how to use get_bit_string_identifiers .

9.3.6.2 Getting Identifiers for an ENUMERATEDValue

To get identifiers for an ENUMERATEDvalue, call the get_enum_identifiers
function of the Asn1Type class.

Result r = morf.get_type().get_enum_identifiers(idArray);

Result get_bit_string_identifiers(Array(Asn1NamedNumber) & idents)
9-16 Developing C++ Applications • October 2001

The syntax of get_enum_identifiers is as follows:

If this function returns OK, the idents array holds the identifiers and associated

values for the values defined in an ASN.1 ENUMERATEDvalue.

CODE EXAMPLE 9-8 shows how to use get_bit_string_identifiers and

get_enum_identifiers to print the possible values for BIT STRING and

ENUMERATEDtypes:

Result get_enum_identifiers(Array(Asn1NamedNumber) & idents)

CODE EXAMPLE 9-8 Obtaining BIT STRING and ENUMERATEDIdentifiers

...
#define BIT_STRING 1
#define ENUM 2
#include <pmi/hi.hh>
...

void show_idents(Array(Asn1NamedNumber) &idents, int type) {
Asn1TypeInt int_type(AK_INTEGER);
DU ident;
GenInt numbvalue;
U32 i;
Asn1Value asn1number;
Asn1ParsedValue number;

cout << "Number of identifiers: " << idents.size << endl;
for (i=0; i<idents.size; i++) {

number = idents[i].num;
ident = idents[i].name;
if (number) {

asn1number = number.get_real_val(int_type);
asn1number.decode_int(numbvalue);

}

cout << "Identifier # => " << i << " Name is => ";
cout << ident.chp() << ";";
cout << " Identifier ";
cout << ((type == ENUM) ? "value" : "position") ;
cout << " is => ";
if (number) {

cout << I32(numbvalue);
} else {

cout << "NULL" ;
}

Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-17

9.3.6.3 Getting the Range of a Value of a Type or Subtype of REALor
INTEGER

To get the range of a value of a type or subtype of REALor INTEGER, call the

get_range function of the Asn1Type class.

The syntax of get_range is as follows:

The get_range function returns NOT_OKif it is called on an instance that does not

represent an ASN.1 type or subtype of INTEGERor REAL.

cout << endl ;
} // end for()

} // end show_idents()

...
// bitStrMf is a Morf of type BIT STRING
// enumMf is a Morf of type ENUMERATED
...
Result r;
Array(Asn1NamedNumber) newidents;

// BIT STRING
r = bitStrMf.get_type().get_bit_string_identifiers(newidents);
if (r == NOT_OK) {

cout << "Failed to get BIT STRING identifiers!" << endl;
} else {

show_idents(newidents, BIT_STRING);
}

// ENUMERATED
r = enumMf.get_type().get_enum_identifiers(newidents);
if (r == NOT_OK) {

cout << "Failed to get ENUMERATED identifiers!" << endl;
} else {

show_idents(newidents, ENUM);
}
...

Result get_range(Asn1ParsedValue & lower,
Boolean & lower_open,
Asn1ParsedValue & upper,
Boolean & upper_open)

CODE EXAMPLE 9-8 Obtaining BIT STRING and ENUMERATEDIdentifiers (Continued)
9-18 Developing C++ Applications • October 2001

If the function returns OK, lower is set to the lowest possible value for the type and

upper is set to the highest possible value.

ITU-T X.208/ISO-8824 Specification of Abstract Syntax Notation One (ASN.1) uses MIN
and MAXto define the lower and upper ranges of subtypes of INTEGERand REAL.
The PMI library encodes MIN and MAXas NULL Asn1ParsedValue values.

Therefore, you must make sure lower and upper are not NULL before attempting to

decode them.

If the function returns OK, the lower_open and upper_open boolean variables indicate

whether the lower and upper range limits are open (TRUE). If a range limit is not

open, the corresponding variable (lower_open or upper_open) is set to FALSE.

The code in CODE EXAMPLE 9-9 shows how to use get_range to parse and decode

the range limits for REALand INTEGERtypes.

CODE EXAMPLE 9-9 Obtaining the Range Limits for a Value

...
#include <pmi/hi.hh>
...
void show_range(Asn1Type rtype) {

Asn1TypeInt int_type(AK_INTEGER);
Asn1Type real_type(AK_REAL);
Result r;
int is_real = 0;
Asn1Value asn1lower, asn1upper;
Asn1ParsedValue lower, upper;
GenInt low, up;
Boolean lower_open, upper_open;
double dbl;

if (rtype.base_kind() == AK_REAL) {
is_real = 1;

} else if (rtype.base_kind() != AK_INTEGER) {
// Not valid type for get_range()!

cout << "Cannot determine range for type." << endl;
return;

}

r = rtype.get_range(lower, lower_open, upper, upper_open);
if (r == NOT_OK) {

cout << "get_range() failed!" << endl;
return;

}

cout << '\t';
if (lower) {
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-19

if (is_real) { //REAL
asn1lower = lower.get_real_val(real_type);
asn1lower.decode_real(dbl);
cout << "Lower range is " << dbl << ".";

} else { // INTEGER
asn1lower = lower.get_real_val(int_type);
asn1lower.decode_int(low);
cout << "Lower range is " << I32(low) << ".";

}

if (lower_open == TRUE) {
cout << "Lower range is open." << endl;

} else {
cout << "Lower range is closed." << endl;

}
} else { // lower is NULL, range is MIN

cout << "Lower range is MIN." << endl;
}

cout << '\t';
if (upper) {

if (is_real) { //REAL
asn1upper = upper.get_real_val(real_type);
asn1upper.decode_real(dbl);
cout << "Upper range is " << dbl << ".";

} else { // INTEGER
asn1upper = upper.get_real_val(int_type);
asn1upper.decode_int(up);
cout << "Lower range is " << I32(up) << ".";

}

if (upper_open == TRUE) {
cout << "Upper range is open." << endl;

} else {
cout << "Upper range is closed." << endl;

}
} else { // upper is NULL, range is MAX

cout << "Upper range is MAX." << endl;
}

} // end show_range()

...
// Morf morf represents a type we think is
// derived from INTEGER or REAL

CODE EXAMPLE 9-9 Obtaining the Range Limits for a Value (Continued)
9-20 Developing C++ Applications • October 2001

9.3.6.4 Getting the Size Constraints of a Value

To get the size constraints of a value of a type or subtype of BIT STRING, OCTET
STRING, SEQUENCE OF, or SET OF, call the get_size_constraint function of the

Asn1Type class.

The syntax of get_size_constraint is as follows:

If the function returns OK, lower is set to the smallest possible size for the type and

upper is set to the largest possible size.

ITU-T X.208/ISO-8824 Specification of Abstract Syntax Notation One (ASN.1) uses MIN
and MAXto define the lower and upper size limits of subtypes of BIT STRING,

OCTET STRING, SEQUENCE OF, and SET OF. The PMI library encodes MIN and MAX
as NULL Asn1ParsedValue values. Therefore, you must make sure lower and upper
are not NULL before attempting to decode them.

If the function returns OK, the lower_open and upper_open boolean variables indicate

whether the lower and upper size limits are open (TRUE). If a size limit is not open,

the corresponding variable (lower_open or upper_open) will be set to FALSE.

The get_size_constraint function returns NOT_OKif it is called on an instance

that does not represent an ASN.1 type or subtype of BIT STRING, OCTET STRING,
SEQUENCE OF, or SET OF.

if (morf.get_type()) {
if ((morf.get_type().base_kind() == AK_INTEGER) ||

(morf.get_type().base_kind() == AK_REAL))
show_range(morf.get_type());

} else {
cout << "morf not initialized!" << endl;

}
...

Result get_size_constraint(Asn1ParsedValue & lower,
Boolean & lower_open,
Asn1ParsedValue & upper,
Boolean & upper_open)

CODE EXAMPLE 9-9 Obtaining the Range Limits for a Value (Continued)
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-21

The code in CODE EXAMPLE 9-10 shows how to use get_size_constraint to parse

and decode the size limits for BIT STRING, OCTET STRING, SEQUENCE OF, and

SET OFtypes.

CODE EXAMPLE 9-10 Obtaining the Size Constraints of a Value

...
#include <pmi/hi.hh>
...
void show_size_constraint(Asn1Type stype) {

char buf[4096], *bufp;
U32 i, buflen = 4096;
Asn1TypeInt int_type(AK_INTEGER);
Result r;
Asn1Value asn1lower, asn1upper;
Asn1ParsedValue lower, upper;
GenInt low, up;
Boolean lower_open, upper_open;

r = stype.get_size_constraint(lower, lower_open, upper,
upper_open);

if (r == NOT_OK) {
cout << "Could not get size constraints." << endl;
return;

}

if (lower) {
asn1lower = lower.get_real_val(int_type);
asn1lower.decode_int(low);

buflen = 4096;
bufp = buf;
int_type.format_value(asn1lower, bufp, buflen, 0,

TAG_EXPLICIT, DataUnit(), 0);
cout << "Lower limit is " << buf << "." << endl;

cout << "Lower limit is ";
cout << ((lower_open == TRUE) ? "open" : "closed") ;
cout << "." << endl;

} else { // lower is NULL, constraint is MIN
cout << "Lower limit is MIN." << endl;

}

if (upper) {
asn1upper = upper.get_real_val(int_type);
asn1upper.decode_int(up);
9-22 Developing C++ Applications • October 2001

9.3.7 Example of Parsing a Morf Instance

The function morf_split in CODE EXAMPLE 9-11 shows a typical recursive algorithm

for parsing any type of Morf instance. The example prints out type names and

values for scalars, but you can use the same algorithm to do other things with the

data.

buflen = 4096;
bufp = buf;
int_type.format_value(asn1upper, bufp, buflen, 0,

TAG_EXPLICIT, DataUnit(), 0);
cout << "Upper limit is " << buf << "." << endl;

cout << "Upper limit is ";
cout << ((upper_open == TRUE) ? "open" : "closed") ;
cout << "." << endl;

} else { // upper is NULL, constraint is MAX
cout << "Upper limit is MAX." << endl;

}

} // end show_size_constraint()

...
// Morf morf has been derived from the platform somehow...
if (morf.get_type()) {

show_size_constraint(morf.get_type());
} else {

cout << "morf not initialized!" << endl;
}
...

CODE EXAMPLE 9-11 Sample Function for Parsing a Morf Instance

...
#include <pmi/hi.hh>
...
void
morf_split(Morf& m)
{

// Check if the morf contains CHOICE,
//

CODE EXAMPLE 9-10 Obtaining the Size Constraints of a Value (Continued)
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-23

9.4 Decoding Complex ASN.1 Values
After you understand the structure of any Morf instance, you may want to extract

values assigned to attributes in the instance. The Morf class provides functions for

extracting or decoding data in a Morf instance. You can decode any Morf instance

that has been initialized with data by:

■ Getting a string representation of the Morf instance

■ Extracting a value in the Morf instance as a new Morf instance

■ Getting the value assigned to the Morf instance as an Asn1Value instance

■ Getting scalar values assigned to a Morf instance

// If the morf contains CHOICE,
// extract the morf, then call the function recursively.
// If the morf does not contains CHOICE,
// Check if the morf contains a compound data value.
//
// If the morf contains a compound data value,
// split the morf, then call the function recursively.
//
// If the morf contains scalar data value,
// print the scalar data value.

if (m.is_choice()){
morf_split(m.extract(DU()));

} else if (m.is_list()) {
Array(Morf) mm = m.split_array();
for (int i=0; i<mm.size; i++) {

cout << "morf[";
cout << i ;
cout << "] = ";
cout << mm[i].get_str().chp();
cout << endl;
morf_split(mm[i]);

}
} else {

cout << endl;
cout << "---scalar value--->";
cout << m.get_str().chp();
cout << endl << endl << endl;

}
}

CODE EXAMPLE 9-11 Sample Function for Parsing a Morf Instance (Continued)
9-24 Developing C++ Applications • October 2001

9.4.1 Getting a String Representation of a Morf
Instance

To retrieve a string representation of a Morf instance’s values, call the get function

on the Morf instance. The get function works on any Morf instance. The get
function returns a string that represents the Morf instance’s structure and the values

assigned to attributes.

9.4.1.1 Getting the Default String Representation of a Morf Instance

To get the default string representation of a Morf instance, call the get function on

the Morf instance specifying 0 for the format bits parameter. The default

representation of each value depends on the type of the value as shown inTABLE 9-5.

CODE EXAMPLE 9-12 shows the ASN.1 type definition of the GeoLocation type.

TABLE 9-5 Default String Representation of Values by Type in a Morf Instance

Type Representation

SET
SEQUENCE

The members of the SET or SEQUENCEvalue are enclosed in braces

and separated by commas.

CHOICE
ANY

The actual type represented by a CHOICEor ANYvalue is indicated

by a label of the form "type : " in the string before the values. By

default, the string contains identifiers of named numbers, such as

ENUMERATEDvalues.

BIT STRING When they appear as numbers, BIT STRING values are enclosed in

single quotes followed by B. For example, '01101101'B .

OCTET STRING When they appear as hexadecimal values, OCTET STRINGvalues

are enclosed in single quotes followed by H. For example,

'323A1F0A'H .

BOOLEAN Boolean values are translated into the strings TRUEand FALSE.

CODE EXAMPLE 9-12 ASN.1 Type Definition of the GeoLocation Type

GeoLocation ::= CHOICE {
null NULL,
value SEQUENCE {

latitude REAL,
longitude REAL

}
}

Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-25

CODE EXAMPLE 9-13 shows the default string representation of a GeoLocation value

returned by a call to get .

9.4.1.2 Controlling the String Representation of a Morf Instance

You often extract a string representation of a Morf instance or one of its members by

using the get function. Strings can represent any arbitrary data in a way that makes

it easy to parse or to reuse the data to build new Morf instances. If you require a

string representation that uses a different format than the default, specify the format

bits parameter in calls to functions that use strings.

The format bits argument is a set of bit flags that specify how to format data in the

output string. The default value is 0, and that is usually what you use.

Because the Morf class handles complex data as familiar string types, you

sometimes want control over how to format the string. The format bits argument is

used in get and get_str . The set and set_str functions also accept format bits,

but only the USE_EXPLICIT_CHOICE flag is meaningful when a value is set.

To use the format bits, combine all of the flags you want to use using a bitwise OR:

CODE EXAMPLE 9-13 Default String Representation of a GeoLocation Value

"value : {
122.35,
38.37 }"

cout << "mrf = " << mrf.get(USE_NUMERIC_NAMES|USE_C_ESCAPES);
9-26 Developing C++ Applications • October 2001

TABLE 9-6 lists the identifiers for specifying format bits.

9.4.2 Extracting a Value in a Morf Instance as a New

Morf Instance

To extract a value in a Morf instance as a new Morf Instance, call the extract
function on the existing Morf instance. The extract function retrieves a member of

a Morf instance that represents a list.

Use the extract function when you want to work with a subcomponent of a

complex Morf instance, especially when you want to extract one element from a SET
or SEQUENCE. Unlike split_array and split_queue , extract enables you to

name and extract a single item from a list.

The extract function is also useful for working with CHOICEtypes. The CHOICE
syntax tells you nothing about the structure of the data. To get information on the

structure of the data, use extract to extract a Morf instance that represents the

syntax of the actual values assigned to the Morf instance.

In the call to extract , specify a navigation string. The navigation string indicates

which member of a list Morf instance to extract. The navigation string is composed

of one or more identifiers separated by periods (.). Each identifier can be one of the

following:

TABLE 9-6 Identifiers for Format Bits Arguments

Format Bit Identifier Description

USE_NUMERIC_NAMES Returns only the numbers of an object identifier. Do not attempt

to translate OID components into names.

OMIT_NEWLINES Removes newline characters from a string before it is returned.

USE_C_ESCAPES Returns OCTET STRINGvalues with special characters escaped

by using C shell escape characters. Nonprinting characters are

represented by \0 , \a , \b , \f , \n , \t , \r , \v , or \ nnn where

nnn is the hexadecimal value of the character.

USE_EXPLICIT_TYPES Prefixes values of type ANYor ANY DEFINED BYwith a label

that indicates the actual type of the value returned.

OMIT_SPACES Strips spaces from a string before it is returned.

USE_HEX Shows the hexadecimal value of each octet in OCTET STRING
data.

USE_EXPLICIT_CHOICE Prefixes values of type CHOICEwith a label that indicates the

actual type of the value returned.
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-27

■ The name of an attribute in a SEQUENCE
■ The name of an attribute option in a CHOICE
■ A number that represents the position of an element in a SEQUENCEor SET

CODE EXAMPLE 9-14 shows how to use navigation strings to extract Morf instances

from a list.

9.4.3 Getting the Value Assigned to a Morf Instance

To obtain the Asn1Value instance that represents the value assigned to a Morf
instance, call the get_value function on the Morf instance.

For list type Morf instances, you can only get either the string representation or the

Asn1Value representation of a Morf instance’s value. For some scalar Morf
instances, you can retrieve the value directly into an integer or real variable as

explained in Section 9.4.4 “Getting Scalar Values Assigned to a Morf Instance” on

page 9-29.

CODE EXAMPLE 9-14 Using Navigation Strings With the extract Function

...
#include <pmi/hi.hh>
...
// SatelliteSeq ::= SEQUENCE {
// name GraphicString,
// value Integer32,
// checkSum CheckSum
// }
//
// SatelliteData ::= SET OF SatelliteSeq
//
// If Syntax syn is associated with SatelliteData and
// Morf satSetMf is associated with syn...
...
// satSetMf is a SET OF; try to get the third element in SET
Morf seqMf = satSetMf.extract("3");
if (!seqMf) return(NOT_OK);

// Three ways to get the name from the third element in
// the satSetMf set
Morf nameMf1 = seqMf.extract("name");
Morf nameMf2 = satSetMf.extract("3.name");
Morf nameMf3 = satSetMf.extract("3.1");
...
9-28 Developing C++ Applications • October 2001

You may need to get the value of a Morf instance for another function or application

that expects an Asn1Value instance.

The get_value function is also useful for obtaining the real value associated with

scalar values such as ENUMERATEDand OBJECT IDENTIFIER values. From the

resulting Asn1Value instance, you can decode the value (not the identifier) and

assign it to an instance of a class such as GenInt or Oid .

9.4.4 Getting Scalar Values Assigned to a Morf Instance

The Morf and ASN1Value classes provide functions for assigning a scalar Morf
instance’s value directly to a variable of another type as follows:

■ The Morf class provides functions for retrieving values as DataUnit , long ,

GenInt , or double .

■ The Asn1Value class provides functions for converting the Asn1Value instance

associated with a Morf instance into another type.

To retrieve the string representation of any scalar value, call the get_str function of

the Morf class. Calling the get_str function on a list type Morf instance is

equivalent to calling the get function on that instance.

The other functions of the Morf class for scalar values return values that can be

assigned to variables of numeric types. These functions are very useful for extracting

numeric data because you do not have to convert from a string or Asn1Value
instance to a number.

TABLE 9-7 lists the functions for obtaining numeric scalar values from a Morf
instance.

TABLE 9-7 Functions for Extracting Numeric Scalars Into Numeric Types

Function Description

get_dbl Returns the numeric value assigned to the Morf instance as a double . If the

Morf instance is not a scalar nor based on a numeric type, get_dbl returns

0.0 .

get_gint Returns the integer part of the numeric value assigned to a Morf instance as

an instance of the GenInt class. The GenInt class eases the handling of

arbitrary integers. If the Morf instance is not a scalar nor based on a numeric

type, get_gint returns 0.

get_long Returns the integer part of the numeric value assigned to a Morf instance as a

long . If the Morf instance is not a scalar nor based on a numeric type,

get_long returns 0.
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-29

These functions are valid only for values the base type of which is BOOLEAN,
ENUMERATED, INTEGER, OCTET STRING, or REAL. The following rules govern the

conversion of these values to numeric values:

■ Nonnumeric values or non-scalar values return 0 (or 0.0).

■ REALvalues retrieved by using the integer functions return only the integer part

of the Morf instance’s value. For example, get_gint and get_long return 6 for

6.022e23 .

■ BOOLEANvalues return 0 (or 0.0) for FALSE, and nonzero for TRUE.
■ ENUMERATEDvalues return the integer value associated with the named value.

■ OCTET STRINGvalues are returned as a single number. For example, get_long
converts a string of four octets to an integer with four significant bytes, that is, an

integer in the range 0 to 231 (0..2^31).

In addition to numeric values or strings, you may want to extract a Morf instance’s

data directly into other types. To get other types of data, you can use get_type to

get an Asn1Value instance of the value, then call one of the decoding functions on

the Asn1Value instance. It is often easier to work with data in a closely matching

type, and sometimes it may be required. For example, if a function takes an Oid
instance as a parameter, you may want to extract an Oid instance directly from a

Morf instance of type OBJECT IDENTIFIER .

Using the decoding functions of the Asn1Value class makes it easy to extract data

into the following types:

■ Boolean

■ Octet

■ OID

TABLE 9-8 lists the functions of the Asn1Value class for decoding data and the

conversions they perform.

TABLE 9-8 Functions of the Asn1Value Class For Decoding Data

Asn1Value Class Function Source ASN.1 Type Return Values

decode_bits BIT STRING decode_bits returns:

• A string of octets that represents the BIT STRING value

• The number of octets in the string

If necessary, the beginning of the string is padded with

zeroes to make an octet.

decode_boolean BOOLEAN decode_boolean returns a boolean value.

decode_octets OCTET STRING decode_octets returns:

• The octets of the OCTET STRINGvalue

• The number of octets returned

decode_oid OBJECT IDENTIFIER decode_oid returns an instance of the Oid class that

represents the OBJECT IDENTIFIER value.
9-30 Developing C++ Applications • October 2001

To use these functions on data stored in a Morf instance, you must first call

get_value to get the Asn1Value instance of the Morf instance.

CODE EXAMPLE 9-15 shows how to use decode_oid to retrieve an instance of the

OBJECT IDENTIFIER type from a Morf instance.

CODE EXAMPLE 9-15 Decoding a Morf Instance Directly Into an Oid Instance

...
#include <pmi/hi.hh>
...
// TopoNodeAttrList ::= SEQUENCE {
// view TopoNodeId,
// attrs SET OF OBJECT IDENTIFIER
// }
//
// Assume morf is a Morf associated with the Syntax of
// TopoNodeAttrList... extract each OBJECT IDENTIFIER
// in attrs as an instance of the Oid class.
...
Morf attrMf = morf.extract("attrs"); // Get the attrs SET
if (attrMf.num_elements() > 0) {

Array(Oid) oids(attrMf.num_elements());
Array(Morf) oidsMf = attrMf.split_array();
Result r;
for (int i=0; i<oidsMf.size;i++) {

// Need Asn1Value to get Oid from Morf
r = oidsMf.get_value().decode_oid(oids[i])
if (r == NOT_OK) oids[i] = Oid(DU("")); // NULL

}
...
// Do something useful with all those OIDs

...
}
...
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-31

9.5 Using the MorfBuilder Class
The MorfBuilder class makes it easier to work with very complex Morf instances,

especially if the ASN.1 syntax includes combinations of CHOICE, SET, or SEQUENCE.

The MorfBuilder class does not ease the decoding of Morf data, but it is possible

to extract any part of a MorfBuilder instance as a new Morf instance. You can then

use techniques described in the following sections to parse and decode the Morf
instance:

■ Section 9.3 “Parsing Complex ASN.1 Values” on page 9-9

■ Section 9.4 “Decoding Complex ASN.1 Values” on page 9-24

To build complex Morf instances by using only the Morf class, you must either

build very complex string representations of the data or carefully assemble

subcomponents into larger arrays and build a new Morf instance from the array.

Use the MorfBuilder class for:

■ Constructing a MorfBuilder instance

■ Adding data to a MorfBuilder instance

■ Selecting a syntax for CHOICEvalues

■ Setting a navigation type for SEQUENCEvalues

■ Validating the data in a MorfBuilder instance

■ Assembling the MorfBuilder data into a single Morf instance

The MorfBuilder class enhances the features of the Morf class. Therefore you need

to understand how to use the Morf class to be able to work with MorfBuilder
instances. You will need to navigate the structure of the MorfBuilder instance’s

underlying syntax by using navigation strings. Refer to Section 9.4.1 “Getting a

String Representation of a Morf Instance” on page 9-25 for more information about

how syntactic structure is represented in a string.
9-32 Developing C++ Applications • October 2001

9.5.1 Constructing a MorfBuilder Instance

To construct a MorfBuilder instance that corresponds to any Syntax instance, use

the one of the constructors of the MorfBuilder class listed in TABLE 9-9.

9.5.2 Adding Data to a MorfBuilder Instance

Adding data to a MorfBuilder instance assigns values to members contained in the

MorfBuilder instance. You can assign a value to any member of a MorfBuilder
instance in any order. To assign a value, call one of the following functions of the

MorfBuilder class:

■ set , specifying a string representation of the value you want to assign

■ set_raw , specifying a Morf instance corresponding to the syntax and the values

you want to assign to the member

These functions replace the value of the MorfBuilder instance (or the selected

member) and any contained instances with new values. Any updates you have made

to the selected member or the members it contains will be lost unless they have been

cached.

To update the currently cached image of a MorfBuilder instance or any of its

members, call validate or get_raw before calling set or set_raw . These

functions update the cached copy of the MorfBuilder instance. After you call set
or set_raw , call validate or get_raw again to update the cached copy with the

latest changes.

TABLE 9-9 Constructors of the MorfBuilder Class

Constructor Description

MorfBuilder(Morf& morf) Constructs a MorfBuilder instance by using

the syntax and values stored in an existing Morf
instance

MorfBuilder(Syntax& syntax) Creates a MorfBuilder instance based on the

syntax of a Syntax instance with no assigned

value

MorfBuilder(CDU attr_name,
Platform& plat = Platform::def_platform)

Looks up the syntax of attr_name on the named

Platform instance or the default Platform
instance and uses it to create a new

MorfBuilder instance

MorfBuilder(const MorfBuilder& old_mbd) Creates a new MorfBuilder instance that has

the same syntax and values as an existing

MorfBuilder instance
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-33

Section 9.5.5 “Validating the Data in a MorfBuilder Instance” on page 9-38 and

Section 9.5.6 “Assembling MorfBuilder Data Into a Single Morf Instance” on

page 9-39 contain more information about the internally cached MorfBuilder
instance.

The set function of the MorfBuilder class is similar to the set function of the

Morf class, but it also takes an optional navigation string. Use the navigation string

to specify the attribute or member of the MorfBuilder instance to which to assign

the value. Refer to Section 9.2.1 “Creating a Morf Instance From String Data” on

page 9-2 for details on forming the value string.

The set_raw function uses a Morf instance instead of a string to assign a value to a

MorfBuilder instance or one of its members.

CODE EXAMPLE 9-16 shows how to update members of a MorfBuilder instance.

CODE EXAMPLE 9-16 Using set to Update a MorfBuilder Instance

...
#include <pmi/hi.hh> // High-level PMI
#include <extpmi/exthi.hh> // Extended PMI (MorfBuilder, for

// example)
...
// SatelliteSeq ::= SEQUENCE {
// name GraphicString,
// value Integer32,
// checkSum CheckSum
// }
//
// If Syntax syn is associated with SatelliteSeq...
...
Result r;
DU name, value, platform;
MorfBuilder mfb(syn);
...
// ...code to retrieve name, value, and checkSum
// from some data source...
...
mfb.set("name", name);
// validate() updates the cached mfb with the new name so
// subsequent set() calls do not clobber this change
if (mfb.validate() == NOT_OK) {

cout << mfb.get_error_string() << endl;
}
mfb.set("value", value);
if (mfb.validate() == NOT_OK) {

cout << mfb.get_error_string() << endl;
}

9-34 Developing C++ Applications • October 2001

9.5.3 Selecting a Syntax for CHOICEValues

You can select the ASN.1 syntax to use for any CHOICEvalue contained in the

MorfBuilder syntax in one of the following ways:

■ select_choice uses a string to name the value selected.

■ set_syntax uses a Syntax instance that corresponds to the value selected.

The function you use depends on what data is available to your program when the

CHOICEsyntax needs to be selected.

■ If you know the attributes listed in the CHOICEsyntax ahead of time, use

select_choice .

■ If you are working with data derived from the platform, you may not know what

choices area available to a given instance at run time. At run time, for example,

you may be parsing another Morf instance to determine which syntax to select. In

that case, use set_syntax with an instance derived from the Morf instance’s

get_syntax function.

You cannot assign values to a member of type CHOICE. First, you must use one of

these functions to choose the actual syntax. Both functions for selecting a syntax for

a CHOICEaccept navigation strings, so both can be used to set a choice for any

member of a constructed type.

Note – Both select_choice and set_syntax change the Syntax instance

associated with a member of a MorfBuilder instance. After calling one of these

functions, the syntax will no longer represent a CHOICEvalue. Calling one of these

functions after a syntax has already been chosen by a previous call will return

NOT_OK.

mfb.set("checkSum", checkSum);
if (mfb.validate() == NOT_OK) {

cout << mfb.get_error_string() << endl;
}
...

CODE EXAMPLE 9-16 Using set to Update a MorfBuilder Instance (Continued)
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-35

CODE EXAMPLE 9-17 shows how to use both functions for selecting a CHOICEvalue.

CODE EXAMPLE 9-17 Selecting a Syntax For a CHOICEValue

...
#include <pmi/hi.hh>
#include <extpmi/exthi.hh>
...
// Syntax hostSyn is associated with this ASN.1:
//
// myHostEntry ::= SEQUENCE {
// myHostname GraphicString,
// myIpAddr CHOICE {
// ipString GraphicString, -- "111.222.111.222"
// ipInt INTEGER, -- 32-bit int
// ipOctet OCTET STRING(SIZE(4))
// }
// }
//
// Syntax ipOctetSyn is associated with the syntax of ipOctet
...
Result r;
MorfBuilder host1Mfb(hostSyn);
MorfBuilder host2Mfb(hostSyn);
r = host1Mfb.set("myHostname", DU("mailhost"));
// handle if r != OK
r = host2Mfb.set("myHostname", DU("newshost"));
r = host1Mfb.validate();
r = host2Mfb.validate();

// SELECT_CHOICE()
// Set host1Mfb’s myIpAddr to use ipString, then assign value
r = host1Mfb.select_choice("myIpAddr", "ipString");
// myIpAddr is now a GraphicString type
r = host1Mfb.set("myIpAddr", DU("111.222.111.12"));
r = host1Mfb.validate();
...

// SET_SYNTAX
// Set host2Mfb’s myIpAddr to use ipOctet;
r = host2Mfb.set_syntax("myIpAddr", ipOctetSyn);
Morf ipOct(ipOctetSyn);
if (!ipOct) {

// handle error
}

9-36 Developing C++ Applications • October 2001

9.5.4 Setting a Navigation Type for SEQUENCEValues

You can control whether navigation strings address members of a sequence by

names or by position number. By default, you must use the name of a member of a

sequence in a navigation string.

Instances of the MorfBuilder class have a property called access_type that

indicates how members of a SEQUENCEmust be addressed. The access_type
property can be set for any component of a MorfBuilder syntax that represents a

SEQUENCEtype.

The access_type property can be set to one of the following:

■ by_name (default) means that you must use the attribute name to refer to

members of a SEQUENCE
■ by_index means that you must use a position number to refer to members of a

SEQUENCE

To get the value of the access_type property for a SEQUENCEcomponent of a

MorfBuilder instance, call the get_prop function on the MorfBuilder instance.

In the call to get_prop , specify:

■ A key. The only valid key is access_type . If the selected component is a

SEQUENCEvalue, get_prop returns either by_name or by_value . Otherwise,

get_prop returns a NULL DataUnit instance.

■ Optionally, a navigation string. Use a navigation string to select a component of

a constructed value.

To set the access_type for a SEQUENCEcomponent, use set_prop . Use a

navigation string to select a component of a constructed value.

CODE EXAMPLE 9-18 shows how to use get_prop and set_prop .

ipOct = ipOct.set(DU("6FDE6F0D")); // 111.222.11.13
r= host2Mfb.set_raw("myIpAddr", ipOct);
...

CODE EXAMPLE 9-18 Using get_prop and set_prop

...
#include <pmi/hi.hh>
#include <extpmi/exthi.hh>
...

CODE EXAMPLE 9-17 Selecting a Syntax For a CHOICEValue (Continued)
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-37

9.5.5 Validating the Data in a MorfBuilder Instance

At any point during the construction of a MorfBuilder instance, you can validate

the values assigned to any component of the underlying syntax. To validate the

values assigned to a component, call the validate function of the MorfBuilder
class.

The validate function verifies that the internal values of the MorfBuilder
instance or component are valid. If all of the assigned values are valid, the

validate function returns OK.

The validate function accepts a boolean parameter. If you set this parameter to

TRUE, validate only ensures that the values are valid for the type defined in the

ASN.1 syntax without making sure that they are tagged with the proper attribute

type. For example, an integer value might be valid for an ENUMERATEDtype even

though the value is not explicitly tagged as ENUMERATED.

// MorfBuilder mbd is associated with the simple syntax:
//
// SEQUENCE {
// int INTEGER,
// char OCTET STRING
// }
...
Morf morf;
Result r;
...
// using get_prop()
if (mbd.get_prop("access_type") == DU("by_name")) {

morf = mbd.get_raw("char");
} else if (mbd.get_prop("access_type") == DU("by_index")) {

morf = mbd.get_raw("2");
} else {

cout << "No access_type available!" << endl;
}
...
// using set_prop()
r = mbd.set_prop("access_type", "by_name");
if (r == OK) morf = mbd.get_raw("char");

r = mbd.set_prop("access_type", "by_index");
if (r == OK) morf = mbd.get_raw("2");
...

CODE EXAMPLE 9-18 Using get_prop and set_prop (Continued)
9-38 Developing C++ Applications • October 2001

The validate function updates the internally cached image of the MorfBuilder
instance with any new changes made since the last update. Call validate as you

assemble a MorfBuilder instance to update the cached image of the instance so

that later calls to set and set_raw do not overwrite previous changes.

9.5.6 Assembling MorfBuilder Data Into a Single

Morf Instance

After you have assigned all the values to a MorfBuilder instance, extract the data

as an instance of the Morf class so that you can do something useful with it. To

extract the entire MorfBuilder instance or any component as a new Morf instance,

call the get_raw function.

Use get_raw and a navigation string to extract any part of a constructed value.

If get_raw fails to construct a Morf instance from the underlying MorfBuilder
instance, it returns a null Morf instance.

The get_raw function accepts a boolean parameter.

■ If this parameter is set to TRUE, get_raw attempts to update the cached internal

Syntax and Asn1Value relationships and build a new Morf instance. If the

Syntax instance associated with a MorfBuilder instance is a constructed type,

changes you make to any member values are not updated in the internally cached

copy until you call get_raw(TRUE) or validate .

■ If this parameter is set to FALSE, get_raw returns the internal cached

representation of the Syntax and Asn1Value assignments. This copy represents

whatever data was assembled from the previous call to validate or

get_raw(TRUE) . Any changes made since the last update to the internal cache

are not reflected in the Morf instance that get_raw(FALSE) returns.
Chapter 9 Encoding and Decoding Complex ASN.1 Values 9-39

9-40 Developing C++ Applications • October 2001

CHAPTER 10

Developing Object Behaviors

The Object Development Tools (ODT) of Solstice EM provide a simple and

automated framework for adding and writing behaviors for managed objects

residing in the Solstice EM MIS. You can define objects and their behaviors by using

GDMO and ASN.1.

The GDMO definitions formally specify the syntaxes of attributes, actions and

notifications. This defines the interface to the object, which is formally specified

using ASN.1. The state changes that the object undergoes as a result of the action or

operation on the object or as a result of internal changes (perhaps resulting in the

creation of notifications) are specified in an informal way in GDMO english text as

object behavior. When implementing an object, the developers need to translate this

text into a formal state machine in a programming language such as C++.

This chapter explains how to use the Solstice EM object development tools (ODT) to

develop object behaviors.

■ Section 10.1 “ODT Overview” on page 10-2

■ Section 10.2 “Object Interfaces” on page 10-3

■ Section 10.3 “Object Development Overview” on page 10-5

■ Section 10.4 “Object Code Generator Utility” on page 10-8

■ Section 10.5 “Implementing GDMO Specified Object Behavior” on page 10-14

■ Section 10.6 “Debugging Objects” on page 10-26

■ Section 10.7 “Generated Files” on page 10-29

■ Section 10.8 “TRY Exception Macros” on page 10-32

■ Section 10.9 “Object Development Examples” on page 10-34

■ Section 10.10 “Object Development Scenario Using Chai Object” on page 10-49
10-1

10.1 ODT Overview
The ODT allows you to perform the following operations:

■ Generate code and interfaces required to support object behavior for a

GDMO/ASN.1-defined object.

■ Add or remove attributes from the GDMO definition and re-generate the code and

interfaces.

■ Add or remove actions from the GDMO definition and re-generate the code and

interfaces.

■ Add or remove notifications from the GDMO definition and re-generate the code

and interfaces.

■ Switch from using default behaviors to API-user-extended behaviors without re-

generating the code and interfaces.

■ Add or remove discriminators from the GDMO definition and re-generate the code

and interfaces.

■ Specify persistence or volatility for the attributes of an object class.

■ Create and initialize an instance of a new object after the GDMO for it has been

loaded.

The ODT lets you define behavior for actions or define behavior for generating any

event, not just the standard ones. ODT also lets you define behavior when attributes

are accessed or when object instances are created and deleted.

10.1.1 Supporting Functions

To provide a useful object implementation, Solstice EM provides the following

supporting functions:

■ Ability to invoke operations on an object

■ Response/error generation

■ Standard event generation

■ Transaction management

■ Lock management

■ Persistence

■ Concurrent access to objects

■ MIT management

■ Scoping and filtering support

■ Validation of user requests (For example, DELETE, GET, SET, and CREATE

operations for an object follow rules defined in the GDMO.)

■ Automatic instance naming

These supporting functions are hidden within the Solstice EM platform and are used

transparently by the user-defined implementation code generated by ODT.
10-2 Developing C++ Applications • October 2001

10.1.2 Object Development Components

FIGURE 10-1 shows the major components and interfaces the ODT provides or uses:

FIGURE 10-1 ODT components

10.2 Object Interfaces
The ODT provides object interfaces for object developers to use when implementing

agent or manager-role behaviors using the ODT. The object interfaces are:

■ Object Behavior Interface (OBI)

■ Object Services Application Programming Interface (OSAPI)

Solstice EM
MIS

O
bj

ec
t S

er
vi

ce
s

In
te

rf
ac

e

O
bj

ec
t B

eh
av

io
r

In
te

rf
ac

e
(G

en
er

at
ed

 C
od

e
In

te
rf

ac
e)

Object
Developer
Provided

Code

Request

Response

Request

Response

Dynamically Linked
Shared Library

Solstice EM MIS
UNIX Process

MDR
(GDMO

and ASN.1
definitions)
Chapter 10 Developing Object Behaviors 10-3

10.2.1 Object Behavior Interface

The Object Behavior Interface (OBI) provides functions that allow the MIS to invoke

(or request) object behavior functions developed by an API user and receive

responses from the user developed functions.

It provides the following functions:

■ Attribute access implementing behavior for GET and SET CMIP operations

■ Action access implementing CMIP ACTION operation

■ Instantiation access implementing behavior for CREATE, DELETE CMIP

operation

■ Notification behavior implementing event generation and behavior to be executed

on receipt of events

A large part of the software in this interface is generated code. This interface also

contains generated stub function interfaces (also referred to as stubs) where you can

add your own object behavior code. To write unique object behavior code, you may

use the Object Services API or write your own C++ code.

Generated stub function interfaces are provided for the following:

■ Each attribute defined for a GDMO object class

■ Each action defined for a GDMO object class

■ Handling the receipt of notifications by an object

■ Handling special instantiation and deletion behavior defined for a GDMO object

class

You are required to provide functionality for only the action stub function interface

and not for the other stubs functions interfaced. If you do not provide functionality,

default behavior functionality is used.

10.2.2 Object Services API

The Object Services API (OSAPI) lets you access services provided by the MIS to

implement inter-object behaviors or specialized behaviors. Framework utilities

provide capabilities for building, loading, unloading, and instantiating objects.

The decision to use these services depends on the behavior defined for an object. For

example, if an action defined for a GDMO object requires the object to check the

administrativeState of the log object as part of the action, the user-developed

behavior code needs to use the object services interface to issue a get request to

obtain the value of the administrativeState attribute of the log object.

The OSAPI provides the following set of services that can be used within an object

implementation:

■ Issue a get request and (asynchronously) receive any responses
10-4 Developing C++ Applications • October 2001

■ Issue a set request and (asynchronously) receive any responses

■ Issue a create request and (asynchronously) receive any responses

■ Issue a delete request and (asynchronously) receive any responses

■ Issue an action request and (asynchronously) receive any responses

■ Issue an unconfirmed event report request

10.3 Object Development Overview
The process for defining and implementing object behavior is as follows:

1. Define object classes.

Define and develop Managed Object Class (MOC) using GDMO and ASN.1

definitions to include the behaviors for the MOC. If you have existing GDMO and

ASN.1 documents that define the appropriate behaviors, you can use those existing

files.

2. Compile and load MOC into MDR.

Use the GDMO/ASN.1 compiler to compile and load the GDMO and ASN.1 files

into the Meta-Data Repository (MDR).

3. Generate object code and develop behavior.

Use the Object Code Generator (OCG) utility to generate the default object

implementation for the MOC. The OCG generates function stub interfaces, a

Makefile, object loading and unloading utilities, an object instantiation program, and

a README file that contains instructions about the generated files and how to

extend the default implementation.

To develop additional behavior, add C++ code at insert areas clearly identified in the

generated code. The code you add implements behaviors that are defined in GDMO

for the MOC.

Refer to section__________

4. Compile and build object implementation source.

Use the OCG-generated Makefile .className to build default or user-extended

object implementation. The Makefile builds the object implementation as a dynamic

library and a PMI client program for instantiating the object.

5. Load object implementation and restart MIS.

Use the object loading utility, className.load , to load the new object implementation

into the platform. Then, restart the MIS (using em_services -start) to read the

new object implementation. When the MIS restarts, the new object implementation is
Chapter 10 Developing Object Behaviors 10-5

loaded dynamically into the em_mis process. Subsequent CMIP operation on an

object instance for this object class results in executing the behavior implemented by

the user.

6. Debug object implementation [optional]

User-implemented behaviors might contain errors which result in operation failures

and, in some instances, MIS crashes. You can use a debugger to attach to the running

MIS or directly debug em_mis to debug new object implementations. Using

em_debug, you can enable or disable developer-provided object-operation traces at

runtime.

For a complete scenario that illustrates this process, see Section 10.10 “Object

Development Scenario Using Chai Object” on page 10-49.”

10.3.1 Possible Errors

Errors can occur in the following phases of object behavior definition:

■ GDMO object class definition

The GDMO and ASN.1 compiler identify syntax errors in your GDMO and ASN.1

documents. For the Object Code Generator to generate appropriate code, you must

provide complete and syntactically correct GDMO and ASN.1 object definition.

■ GDMO object class composition

When the MIS restarts, the object class definition and behavior definition are

composed and registered. Any errors in this phase display on your screen.

■ Object class instantiation

When an instance of a class is created, any problems in creating an instance arising

out of an improper object definition are returned as an error for the create request.

■ User-developed code

If you add any user-defined code to the generated code, you might introduce errors.

10.3.2 Sanity Check Procedure

It might not be possible to detect all GDMO or ASN.1 errors using the

GDMO/ASN.1 compiler or the object implementation process, for example, OID

registration clashes, name binding and attribute mismatches for initial values,

default values, and so on. Sometimes, late in your object development process, you

may find errors or failures that result from errors in the GDMO or ASN.1 definition

for the MOC. Use the following sanity-check procedure to minimize potential

problems:
10-6 Developing C++ Applications • October 2001

1. Comment out ACTION definitions in GDMO.

Comment out the ACTION definitions in the GDMO definition for the object class.

You must do this because you cannot compose an object class that contains actions

without loading the appropriate action implementation in a dynamic library.

2. Compile and load object class in MDR.

The object class definition in GDMO and ASN.1 must be compiled and loaded in the

MDR using the following commands:

3. Compose object class.

Use the compose program to compose the new object class. This verifies the OIDs,

attributes, and syntax and catches such errors as clashes with existing classes,

attribute mismatches, and invalid syntax (referring to a different document/syntax

label that is valid but not actually desired by the object implementor). Use the

following command:

Note – If you find errors in this step, you can often get additional error details by

using the oammsg* and mdr* tracing flags with the em_debug utility.

4. Load name bindings.

Use the load name binding utilities to load the defined name bindings in the

platform. This detects possible errors in the name binding or naming attribute. Use

the following command:

Repeat this for all name bindings specified in the GDMO definition for the object

class.

Note – If you find errors in this step, you can often get additional error details by

using the oammsg* and mdr* tracing flags with the em_debug utility.

hostname% em_gdmo -v -f -o /var/opt/SUNWconn/em/usr/data/MDR/
className.gdmo
hostname% em_asn1 -v -o /var/opt/SUNWconn/em/usr/data/ASN1/
className.asn1

em_compose_oc className

em_load_name_bindings Namebinding
Chapter 10 Developing Object Behaviors 10-7

5. Create an instance.

Use OBED or a simple PMI program to create an instance of the MOC. This ensures

that the GDMO/ASN.1 definitions are correct and that all CMIP operations can be

performed. After you verify this, use OBED or the PMI program to delete the

instance.

6. Restore ACTION definitions in GDMO.

Remove the comments to the ACTIONS in the GDMO definition for the MOC. You

should now be ready to use ODT.

7. Remove old definitions and prepare to load new object.

Run em_services -reload to reinitialize the MDR and MIS. Follow the object

development process (see Section 10.3 “Object Development Overview” on

page 10-5”) to load your new implementation.

10.4 Object Code Generator Utility
The Object Code Generator utility (OCG) provides a set of C++ classes and methods

that you use can to implement the behavior for managed objects defined in GDMO.

The OCG is external to the MIS. The code generated and the user-defined

implementation reside in a dynamic shared library linked to the MIS.

The OCG generates the C++ stubs for attribute access, instance access, and action

access for the class. You fill in the behavior in the stubs. The utility hides the process

by which user-defined behavior is connected to the framework. In other words, you

only change code stubs for:

■ Attribute access (CMIP GETand SET)

■ Action access (CMIP ACTION)

■ Instance access (CMIP CREATEand DELETE)
■ Notification emission (CMIP NOTIFICATION)

■ Discriminator-match stub to implement behavior when a discriminator matches,

if the user includes the discriminator package in the class definition.

The generated code also contains debugging information to help you trace what

happens at run time.

Note – The Solstice EM MIS must be running locally to generate implementation.
10-8 Developing C++ Applications • October 2001

10.4.1 Generated Code Interfaces

The generated code interface provides a set of generated code stubs that can be used

to invoke user developed object behavior functions. The interfaces and underlying

code are produced by the OCG, which operates on information in the meta data

repository (MDR) and on information in a configuration file. The GDMO and ASN.1

definitions for GDMO object need to be loaded into the MDR prior to generating the

code and interfaces.

The Object Behavior Interface is shown in FIGURE 10-2, with the generated code

interface highlighted:

FIGURE 10-2 ODT Framework, with Generated Code Interface Highlighted

Solstice EM
MIS

O
bj

ec
t S

er
vi

ce
s

In
te

rf
ac

e

O
bj

ec
t B

eh
av

io
r

In
te

rf
ac

e
(G

en
er

at
ed

 C
od

e
In

te
rf

ac
e)

 Object
Developer
Provided

Code

Request

Response

Request

Response

Dynamically Linked
Shared Library

Solstice EM MIS
UNIX Process

MDR
(GDMO /
ASN.1
defs)
Chapter 10 Developing Object Behaviors 10-9

10.4.2 Code Generation Components

FIGURE 10-3 shows the components involved in the agent role behavior code

generation portion of the Object Behavior Interface. The OCG generates the

appropriate agent role behavior code and code stubs for the GDMO-defined

managed object class based on the GDMO definition loaded into the MDR and on

parameters you specify in a configuration file.

The OCG also generates a PMI client create program that you can use to instantiate

an instance of the new managed object class.

FIGURE 10-3 Code Generation Components

Code
Generation

Tool

User-
Provided
Configur
ation File

Generated PMI Client
Create Program

(pmi_ className.cc)

MDR

Generated Files
className_user.odt.hh
className_user.odt.cc
Makefile. className
className.load
className.unload

README.className

hidden files

MOI

ASN.1
Module

GDMO
Module

Compiling
And Dynamic

Linking

Create
Request

Code
Generation

M
O

C

cl
a

ss
N

a
m

e.s
o

Solstice
EM MIS

Abbreviations:

MDR: Meta-Data Repository

MOI: Managed Object Instance

MOC: Managed Object Class

Agent-
role
Behavior
Code
10-10 Developing C++ Applications • October 2001

10.4.2.1 Inputs

The Object Code Generator utility takes input from the following sources:

■ GDMO and ASN.1 files containing the class descriptions

■ Configuration file

10.4.2.2 Outputs

The Object Code Generator utility provides the following output:

■ C++ code stubs for attribute access, actions access, and instance access

■ The stub for attribute access allows you to add behavior for each attribute

when a CMIP GET/SET is done.

■ The stubs for action access allow you to add behavior for each action

supported by the GDMO class definition.

■ The stubs for instance access allow you to add behavior to be executed when

CMIP CREATE/DELETE operations are done.

■ Code that links the object implementation to the framework

This is called the annotation code. Object implementors should not change any of

this code. The annotation OID is unique and is generated automatically.

Note – All the attributes and the object instance are either persistent or volatile. You

control volatility on a per-object class basis.

■ Makefile that generates an object implementation (shared library)

■ Utilities to load and unload object implementation dynamically

■ If a GDMO object class has notification definitions, you need to add specialized

behavior code to specify when the event should be generated. To do this, you use

the SendEventReportRequest function provided by the Object Services API

(OSAPI).

■ GDMO Inheritance is supported. This means behavior defined for a superior class

is re-used transparently when generating code for a derived class. You cannot

override any behavior inherited from the superior class.
Chapter 10 Developing Object Behaviors 10-11

10.4.3 Using the Object Code Generator Utility

Before you use the OCG, you must compile the GDMO and ASN.1 definitions using

the GDMO and ASN.1 compiler and restart MIS to load the GDMO and ASN.1

definitions. You then have the following options for the object behavior:

■ Default behavior with persistence

■ Default behavior with volatile attributes

■ Non-default (user-specified) behavior with persistence

■ Non-default (user-specified) behavior with volatile attributes

The OCG is a command line function. To run it, use the following command:

Note – $EM_HOMEis an environment variable used to designate the directory in

which Solstice EM is installed, typically /opt/SUNWconn/em .

TABLE 10-1 identifies the options available for em_obcodegen .

Example

To generate code for the chai example, you would use the following format:

% $EM_HOME/bin/em_obcodegen -help filename

TABLE 10-1 OCG Command Line Options

Option Description

-help Displays a list of command options.

filename Identifies the class name to generate code for. The

GDMO and ASN.1 files must match this file name.

% $EM_HOME/bin/em_obcodegen chai
10-12 Developing C++ Applications • October 2001

10.4.4 Configuring the Object Code Generator Utility

The specific code the OCG generates depends on a number of configuration

parameters. You can define these parameters in any of the following locations:

■ In your login shell as user-specific environment variables

■ In a local configuration file called EM_obcodegen.cfg
■ In the global configuration file

/etc/opt/SUNWconn/em/conf/odt/EM_obcodegen.cfg

If several developers need to use a standard configuration, use the global

configuration file. TABLE 10-2 lists the parameters you can define for ODT

configuration.

10.4.5 How Filter Attributes Affect Code Generation

The GDMO definition for your object class can include following three attributes

that affect how code is generated for receiving events:

■ DiscriminatorConstruct

■ OperationalState

■ AdministrativeState

TABLE 10-2 Object Development Tool Configuration File Parameters

Parameter Default Value Description

CODEGENDIR .

(Current directory)

Directory for writing the generated code

files.

DATASTORAGE PERSISTENT Data storage for the object class. Valid

values are VOLATILE or PERSISTENT.

OBAPITRACE YES Enables runtime functional tracing.

OBAPIDEBUG YES Enables runtime debugging output.

HIDDENDIR .hidden Indicates where all the hidden annotation

and implementation code is generated.

Users should not modify files located in

this directory.

FILTER_ATTR DiscriminatorConstruct If the object class needs to support event

discrimination, set this flag to

DiscriminatorConstruct. This causes the

discrimination secretary to be generated.
Chapter 10 Developing Object Behaviors 10-13

If these attributes exist in your GDMO definition and FILTER_ATTR is set to

DiscriminatorConstruct, then OCG generates the following code:

If FILTER_ATTR is set to DiscriminatorConstruct and any of these attributes are not

defined in your GDMO, then you see a warning message and this line of code is not

generated.

10.5 Implementing GDMO Specified Object
Behavior
There are 5 important operational aspects to the Generated Interfaces the ODT user

must understand:

■ MIS object modeling concepts

■ Asynchronous interface behavior

■ Use of the subfetch , subread , subwrite and substore interfaces

■ Propagation of errors

■ Serialization of object requests

10.5.1 MIS Object Modeling Concepts

Solstice EM defines object behaviors according to the abstractions described in

TABLE 10-3.

receive_event(EventType, EventInfo);

TABLE 10-3 Behavior Abstractions

Behavior Function

Instantiation object creation and deletion

Containment management of children

Attribute

Management

storage/access to attributes

Actions action behavior
10-14 Developing C++ Applications • October 2001

These four areas have C++ base classes that define interfaces for the functionality

listed above. The base C++ classes that implement these behaviors are known

collectively as Secretaries. A Secretary is a named component of code that

implements a specific functionality. New object behaviors are added to the MIS

framework by describing to the MIS the set of secretaries (components of behavior)

that will implement the behaviors for a particular GDMO Object Class. This

description is called the Object Behavior Definition (OBD). The OBD is a list of the

secretaries and is automatically generated by the ODT and is hidden from the ODT

user.

The framework by default provides for instantiation, containment, attribute and

action support of agent role behavior. The ODT user need only insert behavior code

at well defined interfaces to supplement or augment these default behaviors.

New behaviors are created by deriving new C++ object classes from the base C++

secretary classes. The ODT generates these derived classes on behalf of the user for a

specific GDMO Managed Object Class. To simplify the problem of creating agent

behaviors the ODT has exposed the interfaces listed below.

The following list summarizes the functions or points in the generated code that can

be modified by a user of the Object Behavior Interface. For most objects, you will not
need to supply additional code for every interface point listed here:

■ Attribute secretary read function: className_AttrSecty::read
■ Attribute secretary write function: className_AttrSecty::write
■ Attribute secretary read function: className_AttrSecty::fetch
■ Attribute secretary write function: className_AttrSecty::store
■ Action secretary check function: classNameActionSecty::action
■ Action secretary perform function: className_InstanceSecty::create_vote
■ Action secretary do not perform function:

className_AttributeSecty::destroy_vote
■ Dynamic Loader interface: className_loader

10.5.2 Asynchronous Interface Behavior

Asynchronous behavior is introduced at an interface by providing a callback

parameter as part of the interface invocation. The expectation is that the

implementor of the interface will only invoke the callback when the interface

functionality is complete. Solstice EM provides the following asynchronous

interfaces:

■ fetch
■ store
■ action
Chapter 10 Developing Object Behaviors 10-15

These provide interfaces which allow the user an asynchronous interface to fetch

data, store data and perform actions in an asynchronous manner. A callback is

invoked by using the exec method:

The parameter to the exec invocation is one of the ways used to indicate status to

the invoker. For more information on this parameter, see Section 10.5.4 “Propagation

of Errors” on page 10-22”.

The Object Framework uses a state machine model to manage the different phases to

complete the different CMIS requests. These requests and the interfaces they invoke

are described in TABLE 10-4 and TABLE 10-5.

TABLE 10-4 lists the order of interfaces invoked for each CMIS request.

At each phase the framework invokes the appropriate interface for all attributes in

the CMIS request. An M_GETwith an attribute list with two attributes will invoke

fetch twice followed by 2 read requests. An M_SETfor three attributes will invoke

fetch for each of the three attributes, followed by a read for each of the three

attributes followed by a write and a store for each of the listed attributes.

cb.exec(parmarater);

TABLE 10-4 Interfaces for CMIS Requests

Interface Action

Fetch Issue fetch for all operations in request and wait for all Callbacks

Read Issue read for all attributes in request

Write Issue write for all attributes in request

Store Issue store for all attributes in request and wait for all Callbacks

TABLE 10-5 Order of CMIS Request Interfaces

CMIS Request Order of interfaces invoked

M_GET fetch, read

M_SET fetch, read, write, store

M_CREATE write, store
10-16 Developing C++ Applications • October 2001

Consider the fetch interface as a simple example of how asynchronous behavior is

achieved:

The invoker of this interface does not expect that when the fetch function returns

that the attribute specified by ai has been fetched. The implementation may need to

send a request to another entity or agent to fetch the attribute data. However,

instead of waiting for the remote entity to respond, the fetch implementation can

store the callback parameter and schedule its own callback for when the remote

entity provides the attribute data.

On receipt of the attribute data, the fetch interface then invokes the stored callback,

indicating to the originator of the fetch invocation that data is now available

synchronously. In other words, you can pass a callback to subfetch which, when

called, calls the original callback passed in fetch . The invoker can then invoke the

ClassName_AttrSecty::read synchronously.

Similarly for storage operation, the ClassName_AttrSecty::store function is

passed a callback. Only when the data has been stored should the implementor

invoke the passed callback.

The Solstice EM Object Framework invokes the generated Object Behavior Interfaces

fetch , read , write and store in a particular order depending on the CMIS

request being performed. These interfaces are designed to allow asynchronous

requests to be satisfied. The fetch , store and action interfaces are all

asynchronous interfaces. FIGURE 10-4 outlines the normal order of operations for a

GETrequest. The framework calls the UserSecty code fetch function for all

attributes providing as parameters the attribute identifier and the callback to be

invoked when the fetch has been completed. The fetch code is responsible for

fetching the attribute data from wherever it is stored.

Once the data has been fetched the UserSecty code must then call the callback

provided. The framework maintains a count of all the outstanding callbacks. When

all callbacks have been received, the framework enters the read phase. The

assumption is that since the (asynchronous) fetch has completed, the

(synchronous) read can complete without blocking. Remember that read and

write are synchronous operations for accessing memory, while fetch and store
are asynchronous and act on disk storage.

In the sequence diagrams below, half arrows indicate asynchronous operations and

full arrows denote synchronous operations.

ClassName_AttrSecty::fetch(ai,callback)
Chapter 10 Developing Object Behaviors 10-17

FIGURE 10-4 Sequence Diagram for M_GEToperation

FIGURE 10-4 indicates the normal flow for the code that is generated by the ODT. In

particular it is important to understand that the subordinate operations do not need

to be called unless default behavior is desired. However, once a subordinate fetch
function is called, the subsequent read on the fetch attribute should also call the

subread function. The use of the sub functions is detailed in the sub operation

section following.

The diagrams below outline the sequence flow for M_ACTIONand M_SEToperations.

Object FrameWork User SectyCode SubordinateSecty

*for all attrs fetch(ai,cb1)

fetch all attrs
as each attr is

for all subfetch(ai,cb2) *

call all cb2’s

invoke all cb1’s

*

*

read (ai,aval) subread (ai,aval)

return by valuereturn by value

* *

*
*

fetched call the
corresponding cb2
callback
10-18 Developing C++ Applications • October 2001

FIGURE 10-5 Sequence Diagram for M_ACTION

User SectyCode

action(ActionInfo, cb)

When action completed
invoke cb*

Store cb and perform whatever
local behavior is required for the action

Object FrameWork
Chapter 10 Developing Object Behaviors 10-19

FIGURE 10-6 Sequence Diagram for M_SET

Object FrameWork User SectyCode SubordinateSectyCode

*for all attrs fetch(ai,cb1)

fetch all attrs;
as each is fetched
call corresponding

for all subfetch(ai,cb2) *

call cb2

invoke cb1

*

*

read(ai,aval) subread(ai,aval)

return by valuereturn by value

* *

*
*

write(ai,value) subwrite(ai,value)

return statusreturn status *
*

* *

*for all attrs store(ai,cb3) for all attrs substore (ai,cb4)
*

read from where
data is stored

write to memory
or data storage

when data
is stored call
correspondinginvoke cb3*

cb2.

cb4’s
call cb4
10-20 Developing C++ Applications • October 2001

It is important for the ODT interface implementor to obey the rules of the interface.

Essentially the implementor must issue a callback for every asynchronous received.

Failure to do so will cause the original request to be suspended. The MIS will

continue to operate and service other requests

The default behavior for fetch and store is that the callback is executed

immediately from the fetch and substore operations. If the ODT developer does

not wish to use this default behavior and decides to delay the invocation of the

fetch or store callback the ODT developer must register the object class

implementation with the OamAsyncable Interface. To register an object class in the

OamAsyncTableIf the oamasynctblif::AppendAsyncTBl method is used:

This registers Object Class 1.3.4.5.6.7 as an asynchronous class.

Note – Failure to register the Object Class as asynchronous may result in random

MIS code dumps.

10.5.3 Sub Operations: subfetch , subread , subwrite ,

substore

The interfaces subfetch , subread , subwrite , and substore are used to interface

to a service layer coupled to the UserSecty code via a late binding mechanism in

the MIS framework. The services currently offered in this manner are Volatile and

Persistent. Volatile refers to an in-core storage mechanism for managed objects.

Persistent refers to the persistent service component of Solstice EM. Volatile or

persistent behavior is defined by configuration. See Section 12.5.6 “Configuring the

Object Code Generator” for information on how to configure for volatile or

persistent behavior. By obeying the conventions of the sub operations an object class

implementation can be switched easily from volatile to persistent.

To use the volatile or persistent services the ODT developer must invoke the sub

operations. The rules that apply to the fetch , read , write and store interface

apply again. The semantics are the same.

The invocation of sub operations are not mandatory. However the rules of the

interfaces must be obeyed. Subfetch must always be called before subread .

Subread cannot be called until the callback passed to subfetch has been invoked.

Subwrite must always be called before substore . Data is not deemed to be stored

until the substore callback has been called.

oamasyntblif::AppendAsyncTbl(Oid(“1.2.3.4.5.6.7”, TRUE);
Chapter 10 Developing Object Behaviors 10-21

The default code generated by ODT for fetch is to call subfetch . The subfetch
code then invokes the original invoker’s callback. If you pass a different callback to

subfetch , it must call the original callback to fetch . If the ODT developer chooses

not to call the subfetch function then the ODT developer assumes responsibility

for invoking the callback supplied as an argument to the fetch call.

A user may choose to only use persistence for a write through capability. In this case

the ODT developer would only need to use subwrite and substore . Once data

has been stored to persistence using the subwrite and substore interfaces, the

user may subsequently use subfetch and subread to retrieve the data.

10.5.4 Propagation of Errors

The ODT framework has three different means to reflect errors back to the request

invoker:

■ Return Value

■ Solstice EM MIS Exceptions

■ Operr Data Structure

The interface error mechanisms have been designed to allow for maximum flexibility

while at the same time offering support to hide the complexity of building a CMIS

error PDU. CMIP errors come in two flavors: List Errors and Fatal Errors.

ClassName::fetch(ai,framework_cb)
{
 if (using_sub_service) {
 subfetch(ai,framework_cb
 return OK;
 }
 // Set up for my own callback, allocates a Context structure
 // which saves the callback, This context is passed to ClassName::my_cb
 schedule_my_cb(ai,framework_cb)
 return OK;
}
// Local Callback mechanism invoked when Data has been fetched
ClassName::my_cb(Ptr P1, Ptr P2)
{
 MyLocalContext *p_contect = (MyLocalContext*) P1;
 // Invoke original callback with 0 as an indication of Success
 p_context->framework_cb.exec((Ptr) 0);
}

10-22 Developing C++ Applications • October 2001

List errors occur on M_SETand M_GEToperations and indicate a partial error on a

specific attribute or list of attributes. For example, an M_SEToperation on an object

containing AdminstrativeState and OperationalState would result in a

SET_LIST_ERRORresponse since OperationalState is read-only. An attempt to

create an instance of an unknown object class would result in a Fatal Error of

NO_SUCH_OBJECT_CLASS.

The Object Framework determines the appropriate error for errors reflected by

return value or exceptions. It builds the error PDU and issues the error response.

The Operr mechanism allows for complete flexibility to indicate any type of error to

the request invoker. The Operr mechanism is used at the fetch and store
interfaces only.

Note – The Operr method is the recommended means to generate errors for all

operations.

10.5.4.1 Return Value

The Return Value is OKor NOT_OK. The specifics of which error an OKor NOT_OK
produces is detailed in the sections specific to each interface.

10.5.4.2 MIS Exceptions

Exceptions are passed back across an interface by using the THROWor VTHROW
macros. The specifics of which error is produced for an interface is detailed in the

sections specific to each interface.

10.5.4.3 Operr Returns Values

The Operr class has four constructors which will construct different error responses.

The types of error responses that can be constructed are:

■ ANY CMIS Error Message

■ Processing Failure with Specific Error

■ Processing Failure with Probable Cause Oid Format

■ Processing Failure with Probable Cause Integer Format

Operr(Message * ErrorMsgp);
Chapter 10 Developing Object Behaviors 10-23

This will cause the MIS to send an error message, pointed by ErrorMsgp to the

original requester. The error message is allocated using the

Message::new_message method All fields must be completed in the Error

Message.

This will cause the MIS to send a ProcessFailure message to the original

requester. errorId and errorInfo constitute the specific error part of that

ProcessFailure message. The syntax for SpecificErrorInfo is:

The errorId parameter must be a valid OID. The errorInfo must be a properly

encoded Asn1Value as defined by errorId .

This will cause the MIS to send a ProcessFailure message to the original

requester. The specific error part of the message is set to probableCause
(2.9.3.2.7.18) and the error number indicated by OperrInt .

This will cause the MIS to send a ProcessFailure message. The specific error part

of the message is set to probableCause (2.9.3.2.7.18) and the error information

indicated by OperrOid . In this case, the OperrOid must contain one of the valid

OID defined in /SUNWconn/etc/gdmo/dmi.gdmo for probableCause .

To use the Operr format of error reporting the user must allocate an appropriate

Operr instance on the heap and then pass it to a fetch or store callback:

Operr(Oid & errorId, Asn1Value &errorInfo);

SpecificErrorInfo ::= SEQUENCE {
 errorId OBJECT IDENTIFIER,
 errorInfo ANY DEFINED BY errorId

}

Operr(int OperrInt);

Operr(Oid & OperrOid);
10-24 Developing C++ Applications • October 2001

Note – Fetch and store are called for every attribute. The ODT developer must

respond to every fetch and store by issuing a callback for every fetch and

store received. The object framework examines these callbacks for errors but only

uses the first error reported to generate the requested error response. It will discard

any subsequent Operr responses.

Note – The ODT developer must allocate the Operr Data Structure from the heap.

The framework deletes the Operr structure when it no longer needs it. Operr data

structures can only be used in fetch and store Callbacks. They must not be used

for the ::Action result callback.

10.5.5 Serialization of Object Requests

To guarantee consistency within a managed object instance, the object framework

employs a simple lock management scheme to lock the object for destructive

operations. The locking mechanism locks an object exclusively for M_SET,
M_CREATE, M_DELETEand M_ACTIONrequests. Exclusive locks enforce serialized

access to the object and force an operation to complete before the next operation is

allowed to start. M_GETrequests are honored using a shared lock level, allowing

multiple M_GETsto operate on the same managed instance concurrently.

Operr *p_err = new Operr(2);// Processing Failure ProbableCause 2

fetch_cb.exec(p_err);// Called function will delete the Operr
return OK;

or

Operr *p_err = new Operr(“2.9.3.2.0.0.1”);
// Processing Failure ProbableCause
// adaptError, see DMI.ASN1 for
// complete ProbableCause Error list

store_cb.exec((Ptr)p_err);// Called function will delete the Operr
return OK;
Chapter 10 Developing Object Behaviors 10-25

The default lock mode for M_ACTIONsis LOCK_EXCL(exclusive). This mode requires

that an action completes before any other operation can be started. Since M_ACTION
requests are not necessarily destructive and may execute for a long time, the

framework allows the ODT developer to set the lock mode that a specific M_ACTION
may be executed at.

To override the default lock level for an action the ODT developer must set the

desired action lock level using the oamlockif interface defined in oamlockif.hh .

The function set_action_lock_level is used to set the action lock level. The

following code example shows how to use the set_action_lock_level function:

The preceding code example sets the action defined by ActionOid to be shared.

This will allow M_GETsand other shareable M_ACTIONsto be performed on the

instance supporting these actions while an action is being executed. It will not allow

M_SETsto be performed while any M_GETsto M_ACTIONsare in progress.

Note – If M_GEToperations seem to block indefinitely and the object

implementation supports long running actions set the action level appropriately.

10.6 Debugging Objects

10.6.1 Process

1. Find out the process identifier of the running MIS.

You should see output similar to the following:

Oid ActionOid(“2.9.2.3.8.1”);
oamlockif::set_action_lock_level(ActionOid, OAM_LOCK_SHARE);

hostname% ps -eaf | grep mis

 root 9324 1 80 08:26:00 pts/12 0:59 em_mis -k
10-26 Developing C++ Applications • October 2001

2. Run the debugger against the process identifier of the MIS.

Make sure you put a blank space between the hyphen and the process identifier.

For the output shown in the previous step, you would use the following:

3. When the debugger comes up, go to the debugger line and open the file
className_user.cc . This should look similar to the following:

4. Set a breakpoint in the className_user.cc file.

5. Continue.

10.6.2 Dynamic Loading in Solstice EM

OCG generates a default object implementation for a MOC defined using GDMO

and ASN.1 and loaded in the MDR. Application developers can modify the default

object implementation. The object implementation is built as a shared library that is

loaded dynamically into the MIS at startup (em_services). Similarly, object

implementations can be unloaded dynamically at MIS startup.

ODT provides two utilities that are generated as part of OCG:

■ className.load installs the shared library and adds it to the system configuration

file that MIS reads to load the object implementation.

■ className.unload removes the shared library and removes it from the system

configuration file that MIS reads to unload the object implementation.

hostname% debugger - MIS_pid_from_previous_step

hostname% debugger - 9324

(debugger) file chai_user.cc

(debugger) stop in wherever

(debugger) cont
Chapter 10 Developing Object Behaviors 10-27

Because the object implementations are loaded at different address spaces in the MIS

when the MIS is started, an application developer cannot set a breakpoint at a well-

known location in the dynamically loaded shared library. To enable users to debug

object implementation, em_mis provides a well-known breakpoint that you can use

before providing other breakpoints in the dynamically-loaded object

implementation.

10.6.3 ASN.1 and GDMO Debugging

Solstice EM does not provide specific tools for debugging ASN.1 and GDMO files.

For complete information on these syntax definitions, see the following:

■ ITU X.208 ISO/IEC 8824, Specification of Abstract Syntax Notation One (ASN.1)

■ ITU X.209 ISO/IEC 8825 Specification of Basic Encoding Rules for Abstract Syntax

Notation One (ASN.1)

■ ITU X.722 ISO/IEC 10165-4, Information Technology—Open systems

Interconnection - Structure of Management Information—Part 4: Guidelines for

the Definition of Managed Objects (GDMO)

10.6.4 Printing ASN.1 Values in Human-Readable Form

To print ASN.1 values (information in Asn1Value form) in human-readable form,

first define the following in your .cc file:

Then, use the print method of Asn1Value defined in the PMI (asn1_val.hh) as

follows:

Where:

■ Debug_on(className_info) is already generated by OCG in

className_user.odt.cc .

■ Debug_on(className_info) defines a Debug agent (className_info) that can

be enabled or disabled at runtime or at compile time by using Debug_off,
which turns off the agent.

Debug_on (className_info);
Asn1Value av;

av.print(className_info);
10-28 Developing C++ Applications • October 2001

10.6.5 Debugging Flags

OCG generates debug agents (className_error and className_info) for every

object class. If you specify OBAPIDEBUG as YES in the configuration file, OCG

enables these agents at compile time. To enable or disable these agents at runtime,

use em_debug and the following commands:

■ em_debug -c “on className_info” to enable agent at runtime

■ em_debug -c “off className_info” to disable agent at runtime

■ em_debug -c “on className_*” to enable all debug agents for className at

runtime

When debugging behaviors that require you to use Object Services API (for example,

if implementing inter-object behaviors), you can enable or disable debug agents

specifically for Object Services API calls. To enable these agents, use the “objsvc_ *”

options for the em_debug utility as follows:

Or use the following command:

To disable these agents, use em_debug -c “off objsvc_*.”

10.7 Generated Files
If you have created valid GDMO and ASN.1 definition files and loaded them into

the MDR, when you run OCG it creates the files in the target directory specified in

your configuration file:

■ Makefile .className
■ README.className
■ className_user.odt.cc
■ className_user.odt.hh
■ pmi_ className.cc
■ className.load
■ className.unload

For complete examples of each of these files, see Section 10.10 “Object Development

Scenario Using Chai Object” on page 10-49.”

$EM_HOME/bin/em_debug -c "on objsvc_test
$EM_HOME/bin/em_debug -c "on objsvc_error

$EM_HOME/bin/em_debug -c "on objsvc_*"
Chapter 10 Developing Object Behaviors 10-29

10.7.1 Makefile (Makefile. className)

You use the Makefile to create (“make”) a dynamic linked library for every object

class for either default or user-extended implementation.

10.7.2 Readme File (README.className)

The README file explains how to use the files generated by OCG.

10.7.3 User Header File (className_user.odt.hh)

This header file contains the class definitions for the object class className. OCG

generates definitions for the Attribute class, Action class, and Instance class. The

Attribute and Action classes contain several helper methods that can be used to

access other attributes or actions defined in this file or to perform read/write actions

on other attributes or actions defined in this file, while implementing specific

behavior for a given attribute or implementing a specific action.

In addition to the class definitions, the user header file defines Action indices,

Attribute indices, and OIDs for Attributes, Actions, and Name Bindings.

Note – You are not allowed to modify this file directly. The default object

implementation build uses this file, so changes made to it will cause unpredictable

results.

To add function prototypes or members in the header file, copy this file to

className_user.hh and add your code there.

TABLE 10-6 identifies the Attribute classes OCG defines in this file:

TABLE 10-6 Attribute Class Helper Methods

Attribute Class Name Description

index2AttributeSectyInfo Converts from AttributeIndex to AttributeInfo

AttributeSectyInfo2index Converts from AttributeInfo to AttributeIndex

index2ActionSectyInfo Converts from ActionIndex to ActionSectyInfo

action Performs action

read /write /fetch /store Read/Write/Fetch/Store Attribute
10-30 Developing C++ Applications • October 2001

TABLE 10-7 identifies the Action classes OCG defines in this file:

10.7.4 PMI Client Create Program for Object

Instantiation (pmi_ className.cc)

The PMI client create program file contains PMI client application code that is used

to instantiate an instance of the new object class after the dynamic library for the

new object class has been linked into the MIS.

10.7.5 User Code File (className_user.odt.cc)

The C++ source file contains the user-level methods defined for Attribute, Action,

and Instance classes. The user function stubs that OCG generates include: read,

write, fetch, store, action, create_vote, and destroy_vote. In addition, OCG generates

a stub for receive_event if discrimination service is used.

Note – You are not allowed to modify this file directly. The default object

implementation build uses this file, so changes made to it will cause unpredictable

results.

To add user-defined behaviors, copy this file to className_user.cc and add your

code in the insertion areas clearly identified.

When implementing intra-object behaviors, you should use only the helper methods

defined in Attribute, Action, and Instances classes. When implementing inter-object

behavior, you should use the Object Services API calls as needed for behavior

implementation.

TABLE 10-7 Action Class Helper Methods

Action Class Name Description

index2AttrSectyInfo Converts from AttributeIndex to AttributeInfo

index2ActionSectyInfo Converts from ActionIndex to ActionInfo

read Reads attribute

write Writes attribute

fetch Fetches attribute

store Stores attribute
Chapter 10 Developing Object Behaviors 10-31

10.7.6 Dynamic Loading File (className.load)

When you run this utility, the object implementation build is loaded into the

platform as a shared library. The new object implementation is read at MIS startup.

10.7.7 Dynamic Unloading File (className.unload)

When you run this utility, the object implementation is removed from the platform.

The object implementation is not read at MIS startup.

10.8 TRY Exception Macros
The development environment of Solstice EM includes some exception-handling

macros that are used in cases where the C++ compiler does not handle the exception.

These exception-handling macros are known as TRY macros. The basic elements of

the TRY macros are the TRY block and the Handler block.

10.8.1 Overview

The TRY block brackets the code from which you want to receive exceptions. It must

be followed immediately by a Handler block in which you specify how to handle the

exception.

Exceptions are scoped dynamically. What this means is that a TRY block establishes

a new exception context. When you exit the TRY block, you return to the previous

exception context.
10-32 Developing C++ Applications • October 2001

10.8.2 Code Structure

The basic structure of a TRY exception is as follows:

10.8.3 Code Examples

The following example from the chai scenario shows how the TRY macros are used

in the generated code:

TRY {
 some block of code that may generate exceptions
}

BEGHANDLERS
 CATCH macros that handle various exceptions
ENDHANDLERS

 TRY
 {
 // Fetch attribute specified by (ai)
 return subfetch(ai,cb);

 }
 BEGHANDLERS
 CATCHALL {

#ifdef ODT_DEFAULT
 return (NOT_OK);
#endif

 }
 ENDHANDLERS
}

Chapter 10 Developing Object Behaviors 10-33

10.9 Object Development Examples
Solstice EM comes with several examples that illustrate how to develop object

behaviors. All of these examples are located in the $EM_HOME/src/odt directory.

This directory includes a README file that explains how to build the examples.

TABLE 10-8 identifies the examples and provides a brief description of what each one

includes. A complete scenario that illustrates how to develop an object is included in

Section 10.10 “Object Development Scenario Using Chai Object” on page 10-49.”

10.9.1 Compiling All Examples

You can compile and run the object behavior samples shipped with Solstice EM

individually or as a group. Instructions for running each of the individual samples

are provided in Section 10.9.2 “cellSample” on page 10-35” through Section 10.9.6

“diskInfo” on page 10-48.” In addition, Section 10.10 “Object Development Scenario

Using Chai Object” on page 10-49” leads you through the entire process for the chai

object in detail.

TABLE 10-8 Object Development Examples

Class Name Description

cellSample Defines a set of intra-object complex behaviors. Basically, it

looks at an object and, if its behavior changes then the

behavior of its neighboring objects changes.

chai Looks at an attribute called “chaiReady” to decide whether

there is any chai (tea) ready to drink. If not, it sends an action

“brewChai” to make more.

demoPing Defines behavior of a “native agent.”

demoregistry Provides an MIS client function to operate as a “remote

agent.” This demonstrates how to register an application,

similar to a licensing facility.

demoServer Provides an MIS server function to operate as a “remote

agent.” This provides required support for demoregistry and

diskInfo examples.

diskInfo Demonstrates behavior to get information from an external

(outside the MIS) process.
10-34 Developing C++ Applications • October 2001

ODT provides a global Makefile that compiles all the object behavior examples. To

build these examples, perform the following commands:

Note – This mechanism does not currently compile the cellSample example. You

must compile and run cellSample by itself.

10.9.2 cellSample

10.9.2.1 Important Code Functions

The cellSample example illustrates how to use the Object Services API. Specific

sections of the code are not specifically identified as being more important than any

others. You might want to look at all the code to see how the Object Services API can

be used effectively.

To Build the Example

1. Go to the ODT examples directory.

2. Copy the cellSample GDMO and ASN.1 files to the appropriate directories.

3. Load the GDMO into the MDR.

hostname# cd $EM_HOME/odt/src
hostname# Make all

hostname% cd $EM_HOME/src/odt/cellSample

hostname% cp cellSample.gdmo $EM_HOME/etc/gdmo
hostname% cp cellSample.asn1 $EM_HOME/etc/asn1

hostname% em_services -r
Chapter 10 Developing Object Behaviors 10-35

4. Generate the code for cellSample.

5. Create the dynamic linked library for the cellSample object class for default
implementation.

6. Load the cellSample source into an addressable location in the MIS.

7. Restart the MIS.

To Execute the Example

1. Create an instance of the cellSample object (instantiate the class).

2. Start OBED and run actions against the cellSample.

10.9.3 demoPing

10.9.3.1 Important Code Functions

The demoPing example shows how you can develop a simple native agent using the

ODT.

hostname% em_obcodegen cellSample

hostname% make -f Makefile.cellSample extended

hostname% ./cellSample.load

hostname% $EM_HOME/bin/em_services

./cellSample
10-36 Developing C++ Applications • October 2001

Action Implementation

//--//
// ACTION IMPLEMENTATION //
//--//
// Switch for all actions specified in the GDMO definition of Managed //
// Object Class. Add the Action implementation in individual case //
// statements.//

// IMPORTANT NOTE: //
// --------------- //
// When implementing an Action, Please do not forget to return Action//
// result in cd.result for individual actions in switch statement. //
// //

// ODT_DEFAULT IMPLEMENTATION: //
// ----------------------- //
// Default implementation returns a NULL Asn1Value and indicates //
// success by returning CHECK_DONE in CheckData. //
//--//

 switch(ai.local_value())
 {
 case IDX_pingHost:

#ifdef ODT_EXTENDED
//********* $ODT_EXT_START [ACTION IMPLEMENTATION INSERT] **********//

 {

 DataUnit hostname;
 input.decode_octets(hostname);
 demoPing_error.print("IS %s\n",hostname.chp());

 if(!demoping(hostname, cb))
 {
 cd.result = CheckData::CHECK_ERROR;
 cb.exec(&cd);
 }
 return;

 }

//*********** $ODT_EXT_END [ACTION IMPLEMENTATION INSERT] ********//
#endif
 break;
Chapter 10 Developing Object Behaviors 10-37

 };
 #ifdef ODT_DEFAULT

// Default implementation (returns NULL Action Response & Success)
 cd.result = CheckData::CHECK_DONE;
 cb.exec(&cd);
#endif
 }

 BEGHANDLERS
 CATCHALL {

#ifdef ODT_EXTENDED
//******* $ODT_EXT_START [EXCEPTION HANDLING CATCHALL INSERT] *****//
//******* $ODT_EXT_END [EXCEPTION HANDLING CATCHALL INSERT] *****//
#endif

 }
 ENDHANDLERS
}

10-38 Developing C++ Applications • October 2001

demoPing Callback Function

void
demoping_cb(Ptr userdata, Ptr calldata)

{
CheckData cd;
demoping_userdata *d1 = (demoping_userdata *)userdata;
DataUnit hostname = d1->hostname;

 struct sockaddr_in from;
int len;
char buf[1024];
int fromlen=sizeof(from);

if ((len = recvfrom(d1->sockfd, (char *)buf, 1024 , 0,
(sockaddr*)&from, &fromlen)) < 0)

{
demoPing_error.print("Failed in recvfrom() for ICMP Packet \n");
cd.result = CheckData::CHECK_ERROR;
d1->cb.exec(&cd);
purge_fd_read_callback(d1->sockfd);
close(d1->sockfd);
delete d1;
return;
}

demoPing_debug.print("received %d = %s\n",len,buf);
demoPing_debug.print("from %ld\n",from.sin_addr);

pingreply_struct prpl;

if(!pr_pack((char *)buf, len, &prpl))
{
post_fd_read_callback(d1->sockfd,

Callback((CallbackHandler)demoping_cb, d1));
return;
}

close(d1->sockfd);
Chapter 10 Developing Object Behaviors 10-39

To Build the Example

1. Go to the ODT examples directory.

2. Copy the demoPing GDMO and ASN.1 files to the appropriate directories.

3. Load the GDMO into the MDR.

Asn1Value direply;
if(!make_pingrpl(&prpl,direply))
{
demoPing_error.print("Failed in encoding action reply\n");
cd.result = CheckData::CHECK_ERROR;
d1->cb.exec(&cd);
purge_fd_read_callback(d1->sockfd);
close(d1->sockfd);
delete d1;
return;
}
direply.print(demoPing_error);

cd.rv = direply;
cd.result = CheckData::CHECK_DONE;
purge_fd_read_callback(d1->sockfd);
close(d1->sockfd);
d1->cb.exec(&cd);
delete d1;

}

hostname% cd $EM_HOME/src/odt/demoPing

hostname% cp demoPing.gdmo $EM_HOME/etc/gdmo
hostname% cp demoPing.asn1 $EM_HOME/etc/asn1

hostname% em_services reload
10-40 Developing C++ Applications • October 2001

4. Generate the code for demoPing.

5. Create the dynamic linked library for the demoPing object class for default
implementation.

6. Load the demoPing source into an addressable location in the MIS.

7. Restart the MIS.

To Execute the Example

1. Create an instance of the demoPing object (instantiate the class).

2. Start OBED and run action on instance specifying the hostname you want to ping.

3. Alternatively, you can run the ODT Sample Program driver (odtsamples) and
select the Ping option.

hostname% em_obcodegen demoPing

hostname% make -f Makefile.demoPing extended

hostname% ./demoPing.load

hostname% $EM_HOME/bin/em_services

./pmi_demoPing
Chapter 10 Developing Object Behaviors 10-41

10.9.4 demoregistry

10.9.4.1 Important Code Functions

Action Implementation

//--//
// ACTION IMPLEMENTATION //
//--//
// Switch for all actions specified in the GDMO definition of Managed //
// Object Class. Add the Action implementation in individual case //
// statements. //

// IMPORTANT NOTE: //
// --------------- //
// When implementing an Action, Please do not forget to return Action//
// result in cd.result for individual actions in switch statement. //
// //

// ODT_DEFAULT IMPLEMENTATION: //
// ----------------------- //
// Default implementation returns a NULL Asn1Value and indicates //
// success by returning CHECK_DONE in CheckData. //
//--//

 switch(ai.local_value())
 {
 case IDX_emDemoRegistryReg:
#ifdef ODT_EXTENDED

//********** $ODT_EXT_START [ACTION IMPLEMENTATION INSERT] **********//
 {

 Asn1Value hostasn1;
 Asn1Value appasn1;
 Asn1Value appidasn1;
 Asn1Value temp;
 DataUnit appname;
 DataUnit hostname;
 I32 appid;
10-42 Developing C++ Applications • October 2001

 input.first_component(temp);
 temp.first_component(hostasn1);
 input.next_component(temp,temp);
 temp.first_component(appasn1);
 input.next_component(temp,temp);
 temp.first_component(appidasn1);

 hostasn1.decode_octets(hostname);
 appasn1.decode_octets(appname);
 appidasn1.decode_int(appid);

 if(!register_me(appname, hostname, appid, cb))
 {
 cd.result = CheckData::CHECK_ERROR;
 cb.exec(&cd);
 }
 return;

 }

//********** $ODT_EXT_END [ACTION IMPLEMENTATION INSERT] **********//
#endif
 break;
 case IDX_emDemoRegistryValidateCookie:

#ifdef ODT_EXTENDED
//*********** $ODT_EXT_START [ACTION IMPLEMENTATION INSERT] *********//
 // Use it to implement some good cookie eating in your app
//*********** $ODT_EXT_END [ACTION IMPLEMENTATION INSERT] **********//
#endif

 break;
 case IDX_emDemoRegistryUnreg:

#ifdef ODT_EXTENDED
//********* $ODT_EXT_START [ACTION IMPLEMENTATION INSERT] **********//

 {
 Asn1Value hostasn1;
 Asn1Value appasn1;
 Asn1Value appidasn1;
 Asn1Value temp;

 DataUnit appname;
 DataUnit hostname;
 I32 appid;
Chapter 10 Developing Object Behaviors 10-43

 input.first_component(temp);
 temp.first_component(hostasn1);
 input.next_component(temp,temp);
 temp.first_component(appasn1);
 input.next_component(temp,temp);
 temp.first_component(appidasn1);

 hostasn1.decode_octets(hostname);
 appasn1.decode_octets(appname);
 appidasn1.decode_int(appid);

 if(!unregister_me(appname, hostname, appid, cb))
 {
 cd.result = CheckData::CHECK_ERROR;
 cb.exec(&cd);
 }
 return;

 }

//********** $ODT_EXT_END [ACTION IMPLEMENTATION INSERT] **********//
#endif
 break;
 };

#ifdef ODT_DEFAULT
// Default implementation (returns NULL Action Response & Success)

 cd.result = CheckData::CHECK_DONE;
 cb.exec(&cd);
#endif

 }
 BEGHANDLERS
 CATCHALL {

#ifdef ODT_EXTENDED
//******** $ODT_EXT_START [EXCEPTION HANDLING CATCHALL INSERT] *****//
//******** $ODT_EXT_END [EXCEPTION HANDLING CATCHALL INSERT] *****//
#endif

 }
 ENDHANDLERS
}

10-44 Developing C++ Applications • October 2001

Function to Register Application

Function to Unregister Application

Result
register_me(DataUnit &appname, DataUnit &hostname, int appid,

Callback &cb)
{

demoregistry_userdata *d1=new demoregistry_userdata;
emDemoRegister info;

strcpy(info.appname,appname.chp());
strcpy(info.hostname,hostname.chp());

if(! demoClientSend(&info, DemoRegister, d1->sockfd,
hostname.chp()))

return(NOT_OK);

d1->cb = (Callback *)&cb;
d1->appname = appname;
d1->hostname = hostname;
d1->appid = appid;

post_fd_read_callback(d1->sockfd,
 Callback((CallbackHandler)demoregistry_cb, d1));

return OK;
}

Result
unregister_me(DataUnit &appname, DataUnit &hostname, int appid,

Callback &cb)
{

demoregistry_userdata *d1=new demoregistry_userdata;
emDemoRegister info;

strcpy(info.appname,appname.chp());
strcpy(info.hostname,hostname.chp());
Chapter 10 Developing Object Behaviors 10-45

To Build the Example

1. Go to the ODT examples directory.

2. Copy the demoregistry GDMO and ASN.1 files to the appropriate directories.

3. Load the GDMO into the MDR.

4. Generate the code for demoregistry.

5. Create the dynamic linked library for the demoregistry object class for default
implementation.

if(! demoClientSend(&info, DemoUnregister, d1->sockfd,
hostname.chp()))

return(NOT_OK);

d1->cb = (Callback *)&cb;
d1->appname = appname;
d1->hostname = hostname;
d1->appid = appid;

post_fd_read_callback(d1->sockfd,
 Callback((CallbackHandler)demounregistry_cb, d1));

return OK;
}

hostname% cd $EM_HOME/src/odt/demoregistry

hostname% cp demoregistry.gdmo $EM_HOME/etc/gdmo
hostname% cp demoregistry.asn1 $EM_HOME/etc/asn1

hostname% em_services reload

hostname% em_obcodegen demoregistry

hostname% make -f Makefile.demoregistry extended
10-46 Developing C++ Applications • October 2001

6. Load the demoregistry source into an addressable location in the MIS.

7. Restart the MIS.

10.9.4.2 Running the Example

1. Create an instance of demoregistry class (instantiate the class).

2. Run demo_server on your local host or, if running on a remote host make sure
Solstice EM is installed on the remote host.

3. Start OBED and find the object instance under EM-MIS.

4. Click on the OI and issue a DemoReg action where the ActionInfo parameter is
{“hostname”, “ApplicationName”, 345} .

5. Alternatively, you can run the ODT Sample Program driver (odtsamples) and
run the Register option or the UnRegister option.

10.9.5 demoServer

10.9.5.1 Building the Example

1. Go to the ODT examples directory.

2. Create the dynamic linked library for the demoServer object class for default
implementation.

hostname% ./demoregistry.load

hostname% $EM_HOME/bin/em_services

./pmi_demoregistry

hostname% cd $EM_HOME/src/odt/demoServer

hostname% make
Chapter 10 Developing Object Behaviors 10-47

10.9.5.2 Running the Example

To start the demo_server:

10.9.6 diskInfo

10.9.6.1 Building the Example

1. Go to the ODT examples directory.

2. Copy the diskInfo GDMO and ASN.1 files to the appropriate directories.

3. Load the GDMO into the MDR.

4. Generate the code for diskInfo.

5. Create the dynamic linked library for the diskInfo object class for default
implementation.

6. Load the diskInfo source into an addressable location in the MIS.

> demo_server

hostname% cd $EM_HOME/src/odt/diskInfo

hostname% cp diskInfo.gdmo $EM_HOME/etc/gdmo
hostname% cp diskInfo.asn1 $EM_HOME/etc/asn1

hostname% em_services reload

hostname% em_obcodegen diskInfo

hostname% make -f Makefile.diskInfo extended

hostname% ./diskInfo.load
10-48 Developing C++ Applications • October 2001

7. Restart the MIS.

10.9.6.2 Running the Example

1. Create an instance of the diskInfo object (instantiate the class).

2. Start OBED and run an action on the object instance, specifying the hostname
about which you want to get disk information.

3. Alternatively, you can run the ODT Sample Program driver (odtsamples) and
select the DiskInfo of a Host option.

10.10 Object Development Scenario Using
Chai Object
The sample files shipped with Solstice EM for object development scenarios provide

important information in README files. Although the information in the README

files is fairly complete, this section of the documentation provides an expanded view

of the object development scenario for the Chai managed object.

10.10.1 Creating Your Own Object Class

1. Load the chai managed object into the Meta Data Repository (MDR).

hostname% $EM_HOME/bin/em_services

./pmi_diskInfo

em_gdmo hostname chai.gdmo
em_asn1 -o ‘pwd’ chai.asn1
cp 1.3.6.1.4.1.42.2.2.2.1.96.3.1
/var/opt/SUNWconn/em/usr/data/ASN1
cp *-ASN1 /var/opt/SUNWconn/em/usr/data/ASN1
Chapter 10 Developing Object Behaviors 10-49

2. Define environment variables, if needed.

Location of hidden/intermediate files:

HIDDENDIR=/tmp

Data storage for OC whether PERSISTENT or VOLATILE:

DATASTORAGE=PERSISTENT

3. Go to the directory where you want your code to be generated.

4. Generate the C++ code for your objects.

You will see output similar to the following:

Note that OCG identifies the attributes, actions, and name bindings for which code

will be generated.

The following files are generated:

■ Makefile .chai

■ README.chai
■ chai.load
■ chai.unload
■ chai_user.odt.cc
■ chai_user.odt.hh
■ pmi_chai.cc

% cd user_directory

hostname% em_obcodegen chai
objdefn_info: Attribute Name is chaiKettleNumber
objdefn_info: Attribute Name is chaiBlend
objdefn_info: Attribute Name is chaiReady
objdefn_info: Attribute Name is discriminatorConstruct
objdefn_info: Attribute Name is administrativeState
objdefn_info: Attribute Name is operationalState
objdefn_info: Total Number Of Attributes is 6
objdefn_info: ********************************
objdefn_info: Action Name is brewChai
objdefn_info: Total Number Of Actions is 1
objdefn_info: *****************************
objdefn_info: Name Binding Name is chai-system
objdefn_info: Name Binding Name is chai-chai
objdefn_info: Total Number Of Name Bindings is 2
objdefn_info: ***********************************
10-50 Developing C++ Applications • October 2001

5. Compile and make the dynamic library for the default implementation.

This command compiles and makes a dynamic library called chai.so .

6. Create a customized implementation.

To create a customized implementation, you need to first modify the source code.

Then, to compile and make a customized library, use the following format:

7. Load the new dynamic library.

8. Terminate and restart the MIS.

9. Instantiate the new chai object.

10. Run the debugger to verify the object behaves as expected.

% make -f Makefile.chai default

% make -f Makefile.chai extended

% chai.load

em_services

% cd chai_Create_program
% make chai
% chai// This creates the chai object
% chai -g// This gets attributes of new chai object

% debugger $EM_HOME/bin/em_mis &
 stop in DynLoader::DynLoader
 run
Chapter 10 Developing Object Behaviors 10-51

10.10.2 Debugging Flags

The following code lines that contain the debug agents for the chai object class are

included in the chai_user.odt.cc file.

If debug agents are spread across multiple files, the above definitions must only be

included in the chai_user.hh file (copied and modified from

chai_user.odt.hh). The other files need to contain the following code lines:

10.10.3 Sample Behavior Implementation

The following program implements specialized behavior for the chaiReady

attribute. If chaiReady is 0, then set the chaiBlend to “Earl Grey” and send

brewAction.

To add this behavior, insert the following piece of code in chai_user.cc at the

location of chai_AttrSecty::read after the subread is performed.

Debug_on(cahi_info)
Debug_on(chai_error)

extern Debug chai_info;
extern Debug chai_error;

// User Behavior Extension: Start
// Def: If the chaiReady is equal to 0 then
// Set the blend to “Earl Grey” and then send a action
// to brewchai.

// SectyInfo definition
AttrSectyInfo AttrInfo;
ActionSectyInfo ActionInfo;

Asn1Value ready, blend, Orig_Blend;
I32 Is_chai_Ready;

// Get original index of our Attribute
int org_index = AttrSectyInfo2index(ai);
10-52 Developing C++ Applications • October 2001

// Check to see we’re reading chaiReady, if yes, then specialize
// the behavior

if (org_index == IDX_chaiReady) {
 if (av) {
av.decode_int(Is_chai_Ready);
if (!Is_chai_Ready)
{
// We’re out of chai.. brew and choose my blend
 // Earl Grey
 index2AttrSectyInfo(IDX_chaiBlend, AttrInfo);
 (void) fetch(AttrInfo, NULL_CALLBACK);
 (void) read(AttrInfo, Orig_Blend);

 DataUnit O_blend;
 Asn1Value new_blend;

 Orig_Blend.decode_octets(O_blend);
 chai_debug.print(“Read Secretary - chai_Blend is\n”);
 Orig_Blend.print(chai_debug);
 if (O_blend != DataUnit(“Earl Grey”))
 {
 // Special check to blend only Earl Grey
 DataUnit chai_blend(“Earl Grey”);

 new_blend.encode_octets(TAG_OCTSTR, chai_blend);
 (void) write(AttrInfo, new_blend);

 (void) store(AttrInfo, NULL_CALLBACK);
 }

// Go Ahead and Brewchai
index2ActionSectyInfo(IDX_brewchai, ActionInfo);

action(ActionInfo, new_blend, NULL_CALLBACK);
}
}

}

Chapter 10 Developing Object Behaviors 10-53

10.10.4 chai Object Class Definitions

The example GDMO and ASN.1 definitions for the chai object class are installed into

the $EM_HOME/src/odt/chai directory when you install the ODT onto your

system (SUNWemobjpackage).

The chai.gdmo file defines the following attributes:

■ chaiKettleNumber
■ chaiBlend
■ chaiReady

The chai.gdmo file also defines the brewChai action.
10-54 Developing C++ Applications • October 2001

10.10.4.1 Sample chai.gdmo Definitions File

-- Copyright 03 Apr 1996 Sun Microsystems, Inc. All Rights Reserved.--
-- #pragma ident “@(#)chai.gdmo1.2 96/04/03 Sun Microsystems”

MODULE “EM Chai Document”

basechai MANAGED OBJECT CLASS
DERIVED FROM “Rec. X.721 | ISO/IEC 10165-2 : 1992” : top;

CHARACTERIZED BY
chaiPackage;
REGISTERED AS { em-chai-objectClass 0 };

chaiPackage PACKAGE
BEHAVIOUR chaiPackageDefinition BEHAVIOUR DEFINED AS
!This managed object class represents the chai
from the neighbourhood chai shop !;
;
ATTRIBUTES
chaiKettleNumber GET-REPLACE,
chaiBlend GET-REPLACE,
chaiReady GET-REPLACE,
“Rec. X.721 | ISO/IEC 10165-2 : 1992” : discriminatorConstruct

REPLACE-WITH-DEFAULT
DEFAULT VALUE Attribute

ASN1Module.defaultDiscriminatorConstruct
GET-REPLACE,

“Rec. X.721 | ISO/IEC 10165-2 : 1992” : administrativeState
GET-REPLACE,

“Rec. X.721 | ISO/IEC 10165-2 : 1992” : operationalState
GET;

ACTIONS
brewChai;
NOTIFICATIONS
“Rec. X.721 | ISO/IEC 10165-2 : 1992” :

objectCreation,
“Rec. X.721 | ISO/IEC 10165-2 : 1992” :

objectDeletion,
“Rec. X.721 | ISO/IEC 10165-2 : 1992” :

attributeValueChange;
REGISTERED AS { em-chai-package 1 };
Chapter 10 Developing Object Behaviors 10-55

chai MANAGED OBJECT CLASS
DERIVED FROM basechai;
REGISTERED AS { em-chai-objectClass 1 };

-- Actions

brewChai ACTION
MODE CONFIRMED;
WITH INFORMATION SYNTAX Chai-ASN1.ChaiString;
WITH REPLY SYNTAX Chai-ASN1.ChaiString;
REGISTERED AS { em-chai-action 1 };

-- Name Bindings

chai-system NAME BINDING
SUBORDINATE OBJECT CLASS chai;
NAMED BY
SUPERIOR OBJECT CLASS “Rec. X.721 | ISO/IEC 10165-2 : 1992” : system;
WITH ATTRIBUTE chaiKettleNumber;
BEHAVIOUR chai-rootBehaviour BEHAVIOUR DEFINED AS
!This name is used to define the chai object
name binding!;
;
CREATE;
DELETE ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS { em-chai-binding 1 };

chai-chai NAME BINDING
SUBORDINATE OBJECT CLASS chai;
NAMED BY
SUPERIOR OBJECT CLASS chai;
WITH ATTRIBUTE chaiKettleNumber;
BEHAVIOUR chai-systemchai BEHAVIOUR DEFINED AS
!This name is used to define the chai object
name binding under system branch!;
;
CREATE;
DELETE ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS { em-chai-binding 2 };

-- Attributes
10-56 Developing C++ Applications • October 2001

chaiKettleNumber ATTRIBUTE
WITH ATTRIBUTE SYNTAX Chai-ASN1.ChaiInteger;
MATCHES FOR EQUALITY;
BEHAVIOUR chaiKettleNumberBehaviour BEHAVIOUR DEFINED AS
!This is the naming attribute for the chai
object.!;
;
REGISTERED AS { em-chai-attribute 1 };

chaiBlend ATTRIBUTE
WITH ATTRIBUTE SYNTAX Chai-ASN1.ChaiString;
MATCHES FOR EQUALITY;
BEHAVIOUR chaiBlendBehaviour BEHAVIOUR DEFINED AS
!This is the blend of chai that is brewing
in the current Kettle!;
;
REGISTERED AS { em-chai-attribute 2 };

chaiReady ATTRIBUTE
WITH ATTRIBUTE SYNTAX Chai-ASN1.ChaiInteger;
MATCHES FOR EQUALITY;
BEHAVIOUR chaiReadyBehaviour BEHAVIOUR DEFINED AS
!If this attribute is true there is chai in
the Kettle!;
;
REGISTERED AS { em-chai-attribute 3 };

END
Chapter 10 Developing Object Behaviors 10-57

10.10.4.2 Sample chai.asn1 Definitions File

10.10.5 Sample PMI Program to Create a New chai
Object Instance

-- Copyright 03 Apr 1996 Sun Microsystems, Inc. All Rights Reserved.--
-- #pragma ident "@(#)chai.asn11.2 96/04/03 Sun Microsystems

Chai-ASN1
{iso(1) org(3) dod(6) internet(1) private(4) enterprises(1) sun(42)

 products(2) management(2) em(2) odt(1) em-chai(96)
asn1Module(2) 0}

DEFINITIONS ::=
BEGIN
em-chai OBJECT IDENTIFIER ::=

{iso(1) org(3) dod(6) internet(1) private(4) enterprises(1) sun(42)
 products(2) management(2) em(2) odt(1) em-chai(96)}

em-chai-objectClass OBJECT IDENTIFIER ::= { em-chai 3 }
em-chai-package OBJECT IDENTIFIER ::= { em-chai 4 }
em-chai-binding OBJECT IDENTIFIER ::= { em-chai 6 }
em-chai-attribute OBJECT IDENTIFIER ::= { em-chai 7 }
em-chai-action OBJECT IDENTIFIER ::= { em-chai 9 }

ChaiInteger ::= INTEGER
ChaiString ::= GraphicString
ChaiBoolean ::= BOOLEAN
END

/*
“This file is generated using Solstice EM (2.0) - Object Development Tools” Code
Generator
*/
10-58 Developing C++ Applications • October 2001

#include <hi.hh>
#include <error.hh>
#include <sys/types.h>
#include <unistd.h>
#ifdef HPUX
#include <sys/param.h>
#else
#include <sys/systeminfo.h>
#endif

void create_chai(DU &dn);

main(int argc, char **argv)
{

printf(“MODIFY THE GENERATED CODE FILE ./pmi_chai.cc \n”);
exit(0);

Platform plat(duEM);

if (plat.get_error_type() != PMI_SUCCESS)
{

 printf(“Platform constructor failed...\n”);
 printf(“Reason: %s\n”, plat.get_error_string());
 exit(1);
 }

// Initialize to the dn of object

// dn can be a name starting from local root or fully distinguished name
DU dn; /* DISTINIGUISHED NAME OF OBJECT HERE*/

// Connect to the mis running on the local host
if (!plat.connect(“localhost”, “chai_sample”))
{
printf(“Connecting to platform Failed \n”);

 printf(“Reason: %s\n”, plat.get_error_string());
exit(2);
}

// Create the object
create_chai(dn);

}

Chapter 10 Developing Object Behaviors 10-59

void
display_attributes(Image &im)
{

// Get all the attribute names in an Array of DataUnits.
// Perform a get on each attribute to get its value
// Note we have stripped off the document name to make
// the attribute value pairs more readable
// the chp() method of the DataUnit is necessary to null
// terminate the DataUnit.
//

 Array(DU) attr_names = im.get_attr_names();
 fprintf(stdout, “Attribute\tValue\n---------\t-----\n”);
 for (int i=0; i<attr_names.size; i++) {
 DU& name = attr_names[i];
 // note: next to lines use chp() function to convert a
 // DataUnit into char *.
 char *short_name = strrchr(attr_names[i].chp(),’:’);
 fprintf(stdout, “%s: \t%s \n”, ++short_name,
 im.get_str(name,USE_EXPLICIT_CHOICE|OMIT_NEWLINES).chp());
 }
 fprintf(stdout, “\n\n”);
 fflush(stdout);
}

void
create_chai(DU &dn)
{

Image im;
im = Image(dn,DU(“chai”));

if (!im.boot())
{
printf(“Image::boot Failed %s\n”,im.get_error_string());
exit(3);
}

10-60 Developing C++ Applications • October 2001

/* UNCOMMENT AND MODIFY THE APPROPRIATE LINES IF YOU WANT TO CREATE
 * OBJECT WITH SOME ATTRIBUTE VALUES
if (!im.set_str(“chaiKettleNumber”, “None”))
{
printf(“Image::set_str() failed for chaiKettleNumber: %s %d\n”,

im.get_error_string(), im.get_error_type());
exit(4);
}
if (!im.set_str(“chaiBlend”, “None”))
{
printf(“Image::set_str() failed for chaiBlend: %s %d\n”,

im.get_error_string(), im.get_error_type());
exit(4);
}
if (!im.set_str(“chaiReady”, “None”))
{
printf(“Image::set_str() failed for chaiReady: %s %d\n”,

im.get_error_string(), im.get_error_type());
exit(4);
}
 *
 */
if (im.get_error_type() != PMI_SUCCESS)
{
printf(“Image::set_str Failed %s\n”,im.get_error_string());
exit(5);
}

if (!im.create())
{
printf(“Create Failed %s\n”,im.get_error_string());
exit(6);
}
printf(“Created instance %s\n”, dn.chp());

 display_attributes(im);
}

Chapter 10 Developing Object Behaviors 10-61

10.10.6 Example Generated Code in .cc File

The following generated code stub examples are based on the chai example object.

A complete scenario for defining the chai object is provided in Section 10.10 “Object

Development Scenario Using Chai Object” on page 10-49.” The actual code that OCG

generates can contain additional comments not reflected in this book.

Note – Throughout these examples and in any code generated by OCG, there are

lines that are similar to the following:

//********** $ODT_EXT_START [LOCAL VARIABLE INSERT] ************//
//********** $ODT_EXT_END [LOCAL VARIABLE INSERT] ************//
These lines indicate areas in the code where you can safely add your own code to the

generated code to further customize object behaviors.

10.10.6.1 Generated Asynchronous Read Stub Function (FETCH)

Function

Description

This function is an asynchronous interface for reading attributes. For every attribute

requested in a GETor SETrequest, the MIS Framework calls fetch for that attribute,

followed by a read of the same attribute. The fetch function can reflect status back

to the invoker by:

■ Using the return value from the function

■ Throwing an MIS exception

■ Passing a parameter to the invocation of the callback

Arguments

This function uses the following arguments:

■ ai indicates the attribute to be read

■ cb identifies the callback routine passed by Framework

chai_AttrSecty::fetch (Const AttrSectyInfo & ai, Const callback
&cb)
10-62 Developing C++ Applications • October 2001

Return Value

This function returns the following values:

■ OK if the attribute is fetched and read successfully

■ NOT_OK to indicate failure in fetching/reading attribute specified by ai

Errors
■ NOT_OK

SET_LIST_ERROR or GET_LIST_ERROR

■ MIS Exceptions

Any exception results in an SET_LIST_ERROR or a GET_LIST_ERROR. If an
exception is thrown the callback must not be invoked

■ Operr(ErrorMessage)

■ Operr(intval)

■ Operr(probableCauseOid);

■ Operr(errorId, errorValue)

The Operr data structure is passed to the Object Framework by invoking the passed

exec with the parameter set to a pointer to the allocated Operr data structure. The

default behavior is for the subordinate secretary to invoke the callback.

Note – A NULL parameter to the invocation of the callback indicates a POSITIVE
status e.g cb.exec((Ptr) 0); If the ODT developer wishes to return an error, an Operr

Data structure must be allocated from the heap and passed to the callback function.
Chapter 10 Developing Object Behaviors 10-63

Code Example

Result
chai_AttrSecty::fetch(const AttrSectyInfo &ai, const Callback &cb)
{
 TRACE(Tracer TR(chai_trace, "chai_AttrSecty::fetch",
 "this = 0x%lx, const AttrSectyInfo &ai = 0x%lx, const Callback &cb = "
 "0x%lx", (void*)this, &ai, (void*)cb));

#ifdef ODT_EXTENDED
//********** $ODT_EXT_START [LOCAL VARIABLE INSERT] ************//
//********** $ODT_EXT_END [LOCAL VARIABLE INSERT] ************//
#endif

 TRY
 {
 // Fetch attribute specified by (ai)
 return subfetch(ai,cb);

#ifdef ODT_EXTENDED
//***** $ODT_EXT_START [FETCH BEHAVIOUR SPECIALIZATION INSERT] **//
//***** $ODT_EXT_END [FETCH BEHAVIOUR SPECIALIZATION INSERT] **//
#endif

 }
 BEGHANDLERS
 CATCHALL {

#ifdef ODT_DEFAULT
 return (NOT_OK);
#endif

#ifdef ODT_EXTENDED
//***** $ODT_EXT_START [EXCEPTION HANDLING CATCHALL INSERT] *****//
//***** $ODT_EXT_END [EXCEPTION HANDLING CATCHALL INSERT] *****//
#endif

 }
 ENDHANDLERS
}

10-64 Developing C++ Applications • October 2001

10.10.6.2 Generated Asynchronous Write Stub Function (STORE)

Function

Description

This function is an asynchronous interface for storing attributes. For every attribute

requested in a SET request, MIS Framework calls write for that attribute, followed

by a store of the same attribute. The store function can reflect status back to the

invoker by:

■ using the return value from the function

■ throwing an MIS exception

■ passing a parameter to the invocation of the callback

Arguments

This function uses the following arguments:

■ ai indicates the attribute to be stored

■ cb identifies the callback routine passed by Framework

Return Value

This function returns the following values:

■ OK if the attribute is written and stored successfully

■ NOT_OK to indicate failure in writing/storing attribute specified by ai

Errors
■ NOT_OK

SET_LIST_ERROR

■ MIS Exceptions

Any exception results in a Process Failure If an exception is thrown the callback
must not be invoked

■ Operr(ErrorMessage)

chai_AttrSecty::store (Const AttrSectyInfo & ai, Const callback
&cb)
Chapter 10 Developing Object Behaviors 10-65

■ Operr(intval)

■ Operr(probableCauseOid);

■ Operr(errorId, errorValue)

The Operr data structure is passed to the Object Framework by invoking the passed

exec with the parameter set to a pointer to the allocated Operr data structure. The

default behavior is for the subordinate secretary to invoke the callback.

Note – A NULL parameter to the invocation of the callback indicates a POSITIVE

status e.g cb.exec((Ptr) 0); If the ODT developer wishes to return an error, an Operr

Data structure must be allocated from the heap and passed to the callback function.
10-66 Developing C++ Applications • October 2001

Code Example

Result
chai_AttrSecty::store(const AttrSectyInfo &ai, const Callback &cb)
{
 TRACE(Tracer TR(chai_trace, "chai_AttrSecty::store",
 "this = 0x%lx, const AttrSectyInfo &ai = 0x%lx, const Callback &cb = "
 "0x%lx", (void*)this, &ai, (void*)cb));

#ifdef ODT_EXTENDED
//*********** $ODT_EXT_START [LOCAL VARIABLE INSERT] ************//
//*********** $ODT_EXT_END [LOCAL VARIABLE INSERT] ************//
#endif

 TRY
 {
 // store attribute to DATASTORAGE specified by (ai)
 return substore(ai,cb);

#ifdef ODT_EXTENDED
//***** $ODT_EXT_START [STORE BEHAVIOUR SPECIALIZATION INSERT] **//
//***** $ODT_EXT_END [STORE BEHAVIOUR SPECIALIZATION INSERT] **//
#endif

 }
 BEGHANDLERS
 CATCHALL {

#ifdef ODT_DEFAULT
 return (NOT_OK);
#endif

#ifdef ODT_EXTENDED
//***** $ODT_EXT_START [EXCEPTION HANDLING CATCHALL INSERT] *****//
//***** $ODT_EXT_END [EXCEPTION HANDLING CATCHALL INSERT] *****//
#endif

 }
 ENDHANDLERS
}

Chapter 10 Developing Object Behaviors 10-67

10.10.6.3 Generated Synchronous Read Stub Function (READ)

Function

Description

This function is a synchronous interface for reading attributes. For every attribute

requested in a GET or SET request, MIS Framework calls read for that attribute. The

read function can reflect status back to the invoker by:

■ using the return value from the function

■ throwing an MIS exception

Arguments

This function uses the following arguments:

■ ai indicates the attribute to be read

■ av identifies the Asn1Value of the attribute read (output parameter)

Return Value

This function returns the following values:

■ OK if the attribute is read successfully

■ NOT_OK to indicate failure

Errors
■ NOT_OK

SET_LIST or GET_LIST Error

■ MIS Exceptions

All exceptions result in a SET_LIST or GET_LIST Error except in the case of a

Resourcelimx exception which generates a ResourceLimit Error.

chai_AttrSecty::read (Const AttrSectyInfo & ai, Asn1Value & av)
10-68 Developing C++ Applications • October 2001

Code Example

Result
chai_AttrSecty::read(const AttrSectyInfo &ai, Asn1Value &av)
{
 TRACE(Tracer TR(chai_trace, "chai_AttrSecty::read",
 "this = 0x%lx, const AttrSectyInfo &ai = 0x%lx, Asn1Value &av = "
 "0x%lx", (void*)this, &ai, (void*)av));

#ifdef ODT_EXTENDED
//*********** $ODT_EXT_START [LOCAL VARIABLE INSERT] ************//
//*********** $ODT_EXT_END [LOCAL VARIABLE INSERT] *************//
#endif

 TRY
 {
 int index = AttrSectyInfo2index(ai);

 // Validate passed attribute index
 if(!is_valid_index(index))
 {
 return NOT_OK;
 }

 // Read in-memory value of attribute specified by (ai)
 TRYRES (subread(ai,av));

 // Assign read attribute value
 index2lhsvalue(index) = av ;

#ifdef ODT_EXTENDED
//***** $ODT_EXT_START [READ BEHAVIOUR SPECIALIZATION INSERT] ****//
//***** $ODT_EXT_END [READ BEHAVIOUR SPECIALIZATION INSERT] ****//
#endif
 return(OK);
 }
 BEGHANDLERS
 CATCHALL {

#ifdef ODT_DEFAULT
 return (NOT_OK);
#endif
Chapter 10 Developing Object Behaviors 10-69

10.10.6.4 Generated Synchronous Write Stub Function (WRITE)

Function

Description

This function is a synchronous interface for writing attributes. For every attribute

requested in a SET request, MIS Framework calls write for that attribute. The write

function can reflect status back to the invoker by:

■ using the return value from the function

■ throwing an MIS exception

Arguments

This function uses the following arguments:

■ ai indicates the attribute to be written

■ av identifies the Asn1Value of the attribute written (output parameter)

Return Value

This function returns the following values:

■ OK if the attribute is written successfully

■ NOT_OK to indicate failure

#ifdef ODT_EXTENDED
//***** $ODT_EXT_START [EXCEPTION HANDLING CATCHALL INSERT] *****//
//***** $ODT_EXT_END [EXCEPTION HANDLING CATCHALL INSERT] *****//
#endif

 }
 ENDHANDLERS
}

chai_AttrSecty::write (Const AttrSectyInfo & ai, Const Asn1Value
&av)
10-70 Developing C++ Applications • October 2001

Errors
■ NOT_OK

SET_LIST or GET_LIST Error

■ MIS Exceptions

All exceptions result in a ProcessFailure.

Code Example

Result
chai_AttrSecty::write(const AttrSectyInfo &ai,
 const Asn1Value &av)
{
 TRACE(Tracer TR(chai_trace, "chai_AttrSecty::write",
 "this = 0x%lx, const AttrSectyInfo &ai = 0x%lx, const Asn1Value "
 "&av = 0x%lx", (void*)this, &ai, (void*)av));

#ifdef ODT_EXTENDED
//*********** $ODT_EXT_START [LOCAL VARIABLE INSERT] ************//
//*********** $ODT_EXT_END [LOCAL VARIABLE INSERT] *************//
#endif

 TRY
 {
 int index = AttrSectyInfo2index(ai);

 // Validate passed attribute index
 if(!is_valid_index(index))
 {
 return NOT_OK;
 }

 // Assign written attribute value
 index2lhsvalue(index) = av ;

 // Execute Write thru
 TRYRES (subwrite(ai,av));

#ifdef ODT_EXTENDED
//***** $ODT_EXT_START [WRITE BEHAVIOUR SPECIALIZATION INSERT] **//
//***** $ODT_EXT_END [WRITE BEHAVIOUR SPECIALIZATION INSERT] **//
#endif
Chapter 10 Developing Object Behaviors 10-71

10.10.6.5 Generated Action Stub Function (ACTION)

Function

Description

This function is an asynchronous interface for handling CMIP ACTIONS. The CMIP

actions handled are those specified in the Managed Object Class definition in the

GDMO. The action stub function can issue status to the invoker using 2 methods:

■ Throwing an MIS Exception

■ As a Parameter to the Callback

 return(OK);
 }

 BEGHANDLERS
 CATCHALL {

#ifdef ODT_DEFAULT
 return (NOT_OK);
#endif

#ifdef ODT_EXTENDED
//***** $ODT_EXT_START [EXCEPTION HANDLING CATCHALL INSERT] *****//
//***** $ODT_EXT_END [EXCEPTION HANDLING CATCHALL INSERT] *****//
#endif

 }
 ENDHANDLERS
}

chai_AttrSecty::action (Const AttrSectyInfo & ai, Const Asn1Value
&input, Const callback & cb)
10-72 Developing C++ Applications • October 2001

Arguments

This function uses the following arguments:

■ ai indicates the action

■ input indicates the Asn1Value specified by the user through the INFORMATION

SYNTAX clause in the GDMO ACTION definition

■ cb identifies the callback routine passed by Framework to process cb.exec
(CheckData) where CheckData contains the returned ACTION RESPONSE and

ACTION RESULT

Return Value

This function returns no values aside from those passed back in the cb argument.

CheckData return values are:

■ If Operation completed successfully

■ Set cd.result to CHECK_DONE.

■ Set cd.rv to encoded Asn1Value of ACTION RESPONSE.

■ If Operation terminated with an error the developer has 2 options

■ Throw an MIS exception which will result in a ProcessingFailure. The callback

need not be invoked

■ Use the Checkdata Structure to indicate the error. Set cd.result to

CHECK_ERROR and fill in cd.error with an Error Response Message. If

cd.error is not set the framework will issue a processing failure error.
Chapter 10 Developing Object Behaviors 10-73

Sample Error Generating Code

The following code illustrates how to build an Action Response message. The

action_type Oid is found in the ai and needs to be encoded using CONTEXT(2) as

the tag. The object instance and object class information can be found from the moi

reference. The action_reply is an any defined by the action_type. This needs to be

encoded according to the syntax of the action_reply_syntax:

The same method above could be used to create any response message defined in

message.hh that would make sense for this action request.

// Encode the action Type using Oid from the ai parameter
Asn1Value action_type;
action_type.encode_oid(TAG_CONT(2), ai.id);

// allocate and fill in Error Resp, need
// to complete the OI, OC, action_Type and action reply fields
ActionRes *resp;
if (!(resp = (ActionRes *)Message::new_message(ACTION_RES)) ||
 !(resp->action_type = action_type) ||
 resp->oc.encode_oid(TAG_CONT(0), moi->object_class()) !=OK ||
 !(resp->oi = moi->fdn())) {

THROW(ResourceLimX);
}

Asn1Value action_reply;
// Here we need to encode the action reply, consider a reply syntax
// of
// INTEGER ::= {
// noerror(0),
// nobandwidth(1)
//}
// To encode a nobandwidth error
action_reply.encode_int(TAG_INT,1);
resp->action_reply = action_reply;
cd.error = (ResMess *) resp;
cd.result = CHECK_ERROR;
cb.exec(&cd);
10-74 Developing C++ Applications • October 2001

Code Example

void
chai_ActionSecty::action(const ActionSectyInfo &ai,
 const Asn1Value &input,
 const Callback &cb)
{
 TRACE(Tracer TR(chai_trace, "chai_ActionSecty::action",
 "this = 0x%lx, const ActionSectyInfo &ai = 0x%lx, const Asn1Value "
 "&input = 0x%lx, const Callback &cb = 0x%lx",
 (void*)this, &ai, (void*)input, (void*)cb));

#ifdef ODT_EXTENDED
//*********** $ODT_EXT_START [LOCAL VARIABLE INSERT] ************//
//*********** $ODT_EXT_END [LOCAL VARIABLE INSERT] ************//
#endif

 TRY
 {

CheckData cd; // CheckData (cd) - Action Response value //

 switch(ai.local_value())
 {
 case IDX_brewChai:
#ifdef ODT_EXTENDED
//********* $ODT_EXT_START [ACTION IMPLEMENTATION INSERT] *******//
//********* $ODT_EXT_END [ACTION IMPLEMENTATION INSERT] ********//
#endif
 break;

 };

#ifdef ODT_DEFAULT
// Default implementation (returns NULL Action Response & Success)

 cd.result = CheckData::CHECK_DONE;
 cb.exec(&cd);
#endif

 }
Chapter 10 Developing Object Behaviors 10-75

10.10.6.6 Generated Instance Create Stub Function (CREATE)

Function

Description

This function lets you validate a CMIP CREATE request before the infrastructure

creates the object instance. The function is passed a resolved attribute list and FDN,

which you can validate before voting OK or NOT_OK.

Arguments

This function uses the following arguments:

■ fdn is the FDN (Fully-Distinguished Name) of the object instance to be created.

■ av identifies the Asn1Value of the resolved Attribute List.

Return Value

This function returns the following values:

■ OK to go ahead and create the object instance.

■ NOT_OK to not create the object instance.

 BEGHANDLERS
 CATCHALL {

#ifdef ODT_EXTENDED
//****** $ODT_EXT_START [EXCEPTION HANDLING CATCHALL INSERT] ****//
//****** $ODT_EXT_END [EXCEPTION HANDLING CATCHALL INSERT] ****//
#endif

 }
 ENDHANDLERS
}

chai_AttrSecty::create_vote (Const Asn1Value & fdn,
Const Asn1Value & av)
10-76 Developing C++ Applications • October 2001

Code Example

Result
chai_InstanceSecty::create_vote(const Asn1Value &fdn,
 const Asn1Value &av)
{
 TRACE(Tracer TR(chai_trace, "chai_InstanceSecty::create",
 "this = 0x%lx, const Asn1Value &fdn = 0x%lx, const Asn1Value "
 "&av = 0x%lx", (void*)this, &ai, (void*)fdn, (void*)av));

#ifdef ODT_EXTENDED
//*********** $ODT_EXT_START [LOCAL VARIABLE INSERT] ************//
//*********** $ODT_EXT_END [LOCAL VARIABLE INSERT] *************//
#endif

 TRY
 {

#ifdef ODT_EXTENDED
//***** $ODT_EXT_START [CREATE VOTE SPECIALIZATION INSERT] ******//
//***** $ODT_EXT_END [CREATE VOTE SPECIALIZATION INSERT] ******//
#endif

 return OK;
 }

 BEGHANDLERS
 CATCHALL {

#ifdef ODT_DEFAULT
 return (NOT_OK);
#endif

#ifdef ODT_EXTENDED
//***** $ODT_EXT_START [EXCEPTION HANDLING CATCHALL INSERT] *****//
//***** $ODT_EXT_END [EXCEPTION HANDLING CATCHALL INSERT] *****//
#endif

 }
 ENDHANDLERS
}

Chapter 10 Developing Object Behaviors 10-77

10.10.6.7 Generated Instance Destroy Stub Function (DELETE)

Function

Description

This function lets you validate a CMIP DELETE request before the infrastructure

deletes the object instance.

Arguments

This function uses no arguments.

Return Value

This function returns the following values:

■ OK to delete the object instance.

■ NOT_OK to not delete the object instance.

Code Example

chai_AttrSecty::destroy_vote()

Result
chai_AttrSecty::destroy_vote()
{
 TRACE(Tracer TR(chai_trace, "chai_InstanceSecty::destroy_vote",
 "this = 0x%lx", (void*)this));

#ifdef ODT_EXTENDED
//*********** $ODT_EXT_START [LOCAL VARIABLE INSERT] ************//
//*********** $ODT_EXT_END [LOCAL VARIABLE INSERT] *************//
#endif

 TRY
 {
10-78 Developing C++ Applications • October 2001

#ifdef ODT_EXTENDED
//****** $ODT_EXT_START [DELETE VOTE SPECIALIZATION INSERT] *****//
//****** $ODT_EXT_END [DELETE VOTE SPECIALIZATION INSERT] *****//
#endif

 return OK;
 }

 BEGHANDLERS
 CATCHALL {

#ifdef ODT_DEFAULT
 return (NOT_OK);
#endif

#ifdef ODT_EXTENDED
//***** $ODT_EXT_START [EXCEPTION HANDLING CATCHALL INSERT] *****//
//***** $ODT_EXT_END [EXCEPTION HANDLING CATCHALL INSERT] *****//
#endif

 }
 ENDHANDLERS
}

Chapter 10 Developing Object Behaviors 10-79

10.10.6.8 Generated Receive Event Stub Function (RECEIVE_EVENT)

Function

Description

This function lets you receive events and notifications specified in event_type and

event_info . You would provide specialized processing depending on

event_type and event_info which have been received as the

discriminatorConstruct specified in the object instance.

Note – The receive_event function only allow the user to access the event_type and

event_info. This is a known problem. To access the complete event message place

code in the invoke_moi function in the ObjectClassimpl.cc file which lives in

the.hidden directory. In the cmd == discriminator_match section the developer can

access the complete event message by casting parm to be an EventReq *. See

example below.

chai_AttrSecty::receive_event (Asn1Value & event_type,
Asn1Value & event_info)

Result chai_MOI::invoke_moi(void * s, const Command &cmd, void *parm)
{
 if (cmd == discriminator_match)
 {
 // INSERT YOUR CODE HERE and cast parm to be an
 // and EventReq Message.
 Eventreq *p_event = (EvenReq *) parm;
 // Use p_event to access oi,oc,event_time,event_type
 // and event_info
 // Decide if receive_event needs to be Called
 TRYRES(attrsecty->receive_event(

((EventReq *)parm)->event_type,
 ((EventReq *)parm)->event_info)) ;
 return OK;
 }
 return NOT_OK;
}

10-80 Developing C++ Applications • October 2001

Note – This function is generated only if you specify the three discriminator

attributes (DiscriminatorConstruct, OperationalState, and AdministrativeState) in

your GDMO file and specify FILTER_ATTR: DiscriminatorConstruct in your

configuration file.

Arguments

This function uses the following arguments:

■ event_type is the type of event or notification received

■ event_info is the Event Info received

Return Value

This function returns the following values:

■ OK if the event or notification was processed successfully

■ NOT_OK to indicate failure in processing event or notification

Code Example

Result chai_AttrSecty::receive_event(
 Asn1Value &event_type, Asn1Value &event_info)
{

#ifdef ODT_EXTENDED
//*********** $ODT_EXT_START [LOCAL VARIABLE INSERT] ************//
//*********** $ODT_EXT_END [LOCAL VARIABLE INSERT] ************//
#endif

 TRY
 {

#ifdef ODT_DEFAULT
 return OK;
#endif
Chapter 10 Developing Object Behaviors 10-81

10.10.7 Example Generated Code in .hh File

The chai_user.hh file contains class definitions required for implementing

behaviors. The object framework uses the methods defined in this file to perform

CMIS operations on the managed object instance. The following secretaries are

defined in this file:

■ chai_AttrSecty
■ chai_ActionSecty
■ chai_InstanceSecty

10.10.7.1 Generated Object Definitions

#ifdef ODT_EXTENDED
//*********** $ODT_EXT_START [EVENT PROCESSING INSERT] **********//
//*********** $ODT_EXT_END [EVENT PROCESSING INSERT] ***********//
#endif

 }
 BEGHANDLERS
 CATCHALL {

 return (NOT_OK);

#ifdef ODT_EXTENDED
//***** $ODT_EXT_START [EXCEPTION HANDLING CATCHALL INSERT] *****//
//***** $ODT_EXT_END [EXCEPTION HANDLING CATCHALL INSERT] *****//
#endif

 }
 ENDHANDLERS
}

//---//
// OBJECT ATTRIBUTES ENUMERATION //
//---//
enum chai_ATTR_INDEX{
 IDX_chaiKettleNumber,
 IDX_chaiBlend,
 IDX_chaiReady,
 NUM_chai_ATTR
};
10-82 Developing C++ Applications • October 2001

//---//
// OBJECT ACTIONS ENUMERATION //
//---//
enum chai_ACTION_INDEX {
 IDX_brewChai,
 NUM_chai_ACTION
};
Chapter 10 Developing Object Behaviors 10-83

10.10.7.2 Generated OIDs

10.10.7.3 Attribute Class Definition

//---//
// ATTRIBUTE OBJECT IDENTIFIERS (OID) //
//---//
#define OID_chai_chaiKettleNumber "1.3.6.1.4.1.42.2.2.2.1.96.7.1"
#define OID_chai_chaiBlend "1.3.6.1.4.1.42.2.2.2.1.96.7.2"
#define OID_chai_chaiReady "1.3.6.1.4.1.42.2.2.2.1.96.7.3"

//---//
// ACTION OBJECT INDENTIFIERS (OID) //
//---//
#define OID_chai_brewChai "1.3.6.1.4.1.42.2.2.2.1.96.9.1"

//---//
// NAME BINDING OBJECT IDENTIFIERS (OID) //
//---//
#define OID_chai_chai_system "1.3.6.1.4.1.42.2.2.2.1.96.6.1"
#define OID_chai_chai_chai "1.3.6.1.4.1.42.2.2.2.1.96.6.2"

class chai_AttrSecty: public AttrSecty
{
private:
protected:
 // Constructor ODT RESERVED
 chai_AttrSecty(ObjMethMOI &m, const AttrSecty *sp,
 const AttrSectyTmpl &t);

 // Destructor ODT RESERVED
 ~chai_AttrSecty();
public:
 // Local storage for MOI's Attributes
 Asn1Value chaiKettleNumber;
 Asn1Value chaiBlend;
 Asn1Value chaiReady;
10-84 Developing C++ Applications • October 2001

 // User Methods
 Result read(const AttrSectyInfo &ai, Asn1Value &av);
 Result write(const AttrSectyInfo &ai, const Asn1Value &av);
 Result fetch(const AttrSectyInfo &ai, const Callback &cb);
 Result store(const AttrSectyInfo &ai, const Callback &cb);
 Result destroy_vote();
 Result receive_event(Asn1Value &event_type, Asn1Value &event_info);

 void action(const ActionSectyInfo &ai, const Asn1Value &input,
 const Callback &cb);

 static int AttrSectyInfo2index(const AttrSectyInfo &ai);
 Result index2AttrSectyInfo(int index, AttrSectyInfo &ai);
 Result index2ActionSectyInfo(int index, ActionSectyInfo &ai);

 // ODT RESERVED METHODS
 static AttrSecty *new_secty(ObjMethMOI &m, const AttrSecty *sp,
 const AttrSectyTmpl &t);
 Asn1Value &index2lhsvalue(int attrindex);
 Result delete_prepare(DeleteType type);
 static Result is_valid_index(int index);
 static Oid index2Oid(int attrindex);
 chai_ActionSecty *get_actionsecty()
 {
 chai_MOI *mm = (chai_MOI *)&moi;
 chai_ActionSecty *actionsecty = mm->actionsecty;
 return actionsecty;
 }

#ifdef ODT_EXTENDED
//******* $ODT_EXT_START [MEMBER FUNCTION/PROTOTYPE INSERT] *****//
//******* $ODT_EXT_END [MEMBER FUNCTION/PROTOTYPE INSERT] ******//
#endif

};
Chapter 10 Developing Object Behaviors 10-85

10.10.7.4 Action Class Definition

class chai_ActionSecty: public ActionSecty
{
protected:
 chai_ActionSecty(ObjMethMOI &m, const ActionSecty *sp,
 const ActionSectyTmpl &t) ;

public:
 // USER METHODS
 void action(const ActionSectyInfo &ai, const Asn1Value &input,
 const Callback &cb);

 // INTRA-OBJECT CONV. METHODS
 Result read(const AttrSectyInfo &ai, Asn1Value &av);
 Result write(const AttrSectyInfo &ai, const Asn1Value &av);
 Result fetch(const AttrSectyInfo &ai, const Callback &cb);
 Result store(const AttrSectyInfo &ai, const Callback &cb);
 Result index2AttrSectyInfo(int index, AttrSectyInfo &ai);
 Result index2ActionSectyInfo(int index, ActionSectyInfo &ai);

 // ODT RESERVED METHODS
 static ActionSecty *new_secty(ObjMethMOI &m, const ActionSecty *sp,
 const ActionSectyTmpl &t)
 {
 return (ActionSecty *)new chai_ActionSecty(m, sp, t);
 }
 static Result is_valid_index(int index);
 static Oid index2Oid(int attrindex);
 chai_AttrSecty *get_attrsecty()
 {
 chai_MOI *mm = (chai_MOI *)&moi;
 chai_AttrSecty *attrsecty = mm->attrsecty;
 return attrsecty;
 }
 virtual void check(const ActionSectyInfo &ai,
 const ActionInfo *t,
 const Asn1Value &av, const Callback &cb);

#ifdef ODT_EXTENDED
//******* $ODT_EXT_START [MEMBER FUNCTION/PROTOTYPE INSERT] *****//
//******* $ODT_EXT_END [MEMBER FUNCTION/PROTOTYPE INSERT] *****//
#endif

};
10-86 Developing C++ Applications • October 2001

CHAPTER 11

Writing Management Protocol
Adaptors (MPAs)

The Solstice EM MIS (Management Information Server) is responsible for

maintaining the MIT (Management Information Tree) and ensuring that all activity

within the MIT is transparent to an application. This transparency allows

applications to make requests for information in a normalized fashion without

regard for object location or communications protocol. The MIS resolves the request

and routes it to an appropriate entity that is capable of making the correct protocol

request. These entities are called protocol adaptors. Adaptors exist to map information

into the MIT maintained by the MIS. The Management Protocol Adaptors (MPAs)

shipped with Solstice EM exist as separate processes from the MIS. Three such

adaptors are shipped with Solstice EM: the SNMP MPA, the RPC MPA, the CMIP

MPA, and the JDMK MPA. These adaptors provide the protocol translation into the

SNMP, RPC, CMIP, and JDMK domains respectively.

This chapter explains how to write MPAs.

■ Section 11.1 “Review of MIS Architecture” on page 11-2

■ Section 11.2 “Initializing Management Protocol Adaptors and Protocol Driver

Modules” on page 11-4

■ Section 11.3 “Routing Messages” on page 11-12

■ Section 11.4 “MPA/PDM Request Management” on page 11-19

■ Section 11.5 “Timer Management” on page 11-23

■ Section 11.6 “File Descriptor Management” on page 11-26

■ Section 11.7 “Notifications” on page 11-30

■ Section 11.8 “Sample MPA/PDM Source Code” on page 11-33

■ Section 11.9 “Developing an Adaptor” on page 11-35
11-1

11.1 Review of MIS Architecture
The MIS has a modular architecture. Modules are connected by Service Access

Points (SAPs). These SAPs provide an asynchronous bi-directional message pipe

interface. The core of MIS is the Message Routing Module (MRM) which routes

messages to the appropriate modules. New modules can be added to the MIS by

attaching a SAP from the new module to the MRM. Each SAP has a unique address

which is registered with the MRM when it is attached.

New adaptors are introduced to the system by creating a new SAP to the MRM. (For

MPA, no new SAP needs to be created. All MPAs are routed by the same MPA SAP.)
11-2 Developing C++ Applications • October 2001

The figure bellow illustrates some of the modules within the MIS..

FIGURE 11-1 MIS Architecture

The shaded components in FIGURE 11-1 illustrate how users can add new adaptors to

communicate to a proprietary device X. The two choices are clearly indicated, MPA

or PDM.

Message Routing

Module (MRM)

Event Distribution

System (EDS)

Object Access Module (OAM)

Persistent

Store

Traps

em_snmp-trap

CMIP MPA

PMI

CMIP/LPP

SunLink OSI

Nerve Center

Engine (NCE)

snmfwd

MIT Local Objects

(Agent Role)

Meta Data

Repository

(MDR)

hostperf, diskinfo,

snmp, snmpv2, ping,

etc.

Alarm Service

SNMP Agents
RPC Agents

CMIP Agents

SNMP MPA

PMI

CMIP/LPP

RPC MPA

PMI

CMIP/LPP

Log

Server
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-3

All requests are initially sent to the Message Routing Module (MRM). The MRM

uses configuration information maintained in the MIT to determine where to satisfy

the request. Local requests are sent to the OAM. Remote requests are directed to the

appropriate adaptor that has registered to handle that remote portion of the MIT.

Note – Both the MPA and the PDM use SAP to communicate to the MRM. There is

very little difference between a MPA and a PDM once the SAP has been created.

They both receive identical messages through the same interface.

11.2 Initializing Management Protocol
Adaptors and Protocol Driver Modules
This section describes how Management Protocol Adaptors and Protocol Driver

Modules are initialized.

11.2.1 Services Access Points (SAPs)

SAPs provide an asynchronous message passing service. The message set is based on

the set of CMIP Protocol Data Units (PDUs). The complete set of messages that can

be passed over a SAP is defined in message.hh .

All SAP’s are C++ class instances derived from the C++ MessageSAP class defined

in message.hh . This class defines the interfaces that allow messages to be sent and

received over SAP pairs. An initialized SAP consists of a coupled pair of

MessageSAP instances.

Note – SAP will now be used to refer to an initialized SAP pair.
11-4 Developing C++ Applications • October 2001

Once a SAP has been initialized, the following functions may be performed:

This set of functions provides the following message services:

The interface is defined to be asynchronous. This is achieved using callbacks.

Callbacks are a C++ class that consist of a static function pointer and user data. The

user data is passed as a parameter to the callback function when the function is

invoked.

Example 1

The following example from the fdn_register function in samp_utils.cc
illustrates a CONFIRMED request message.

SendResult send(MessagePtr mp, MTime block_time = INFINITY);
SendResult send(MessagePtr mp, const Callback &cb,
 MTime block_time = INFINITY);
Result receive_request(MessagePtr &mp);

Result receive_response(MessId m_id, MessagePtr &mp);
Result receive_response(ResponseHandle rh, MessagePtr &mp);
void cancel_callback(MessId m_id);
void cancel_callback(Callback &cb);

TABLE 11-1 Message Services

Function Service Provided

Send Send and expect no Response

Send Send and schedule to Receive a Response

Receive Receive a message of a particular id

Receive Receive the first Message on the incoming queue

Cancel Cancel callbacks for a particular Message

Cancel Cancel callbacks for a particular Callback

// Need source so responses can come back.
areq->source.aclass = AC_PRIMITIVE;
areq->source.atag = my_sap_no;
Callback recv_cb((CallbackHandler)pdm_receive_resp, sap);
// Send off the request to add.
TRYRES(sap->send(areq,recv_cb,0));
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-5

Note – A callback is created with a static function called pdm_receive_resp as

the callback function pointer. The callback data is the SAP instance pointer. The send

function includes the callback recv_cb in the send arguments.

When the MIS completes the request, the pdm_receive_resp function is called

with two parameters. The first parameter is the SAP and the second is a response

handle which is used to receive the message response.

Example 2

The following example excerpt is from the msgio.cc module and illustrates the

pdm_receive_resp function.

SAPs are initialized by creating SAP pairs. When a SAP pair is created, the

init_kernel_msg_sap function is used. The init_kernel_msg_sap function is

a utility function which couples two SAPs. Once the SAPs have been coupled, the

local SAP must have two callback functions initialized: the receive request callback

and the detached callback.

The receive request callback handler is the handler which is invoked when message

requests are sent to the SAP. The detach callback handler is invoked when the

remote SAP is deleted.

11.2.2 Initializing a Management Protocol Adaptor

Initializing a Management Protocol Adaptor involves:

■ Creating the listen port and request SAP

■ Connecting to the MIS and using extract raw SAP

■ Locking the application discriminator

pdm_receive_resp(Ptr cbh, Ptr rh)
{
Message *mp;
MessageSAP *p_sap = (MessageSAP *) cbh;

Vtry {
TTRYPROC(p_sap->receive_response(rh, mp));
// At this point mp points to the received response
Message:: delete_message(mp);

}

11-6 Developing C++ Applications • October 2001

11.2.2.1 Creating the Listen Port and Request SAP

The MIS to MPA communication is a form of CMIP over TCP/IP. The MIS creates

and manages associations to an MPA on a per request basis. If an association is not

used for a period of time the association is released. If an association is already

established it will be reused for subsequent requests. Each request has a request

identifier which allows for multiple requests to be outstanding at any one time. To

facilitate demand based association establishment, the MPA must allocate an IP

listen port. An IP listen port is where the MPA listens for association requests from

the MIS.

The utility function init_mpa creates both a SAP and a listen port.

init_mpa(portnum, &p_sap);

where portnumber is a port number for an IP socket, and p_sap is the address of a

pointer to a MessageSAP data type.

11.2.2.2 Connecting to the MIS and Using get_raw_sap

Because the underlying transport mechanism for this SAP might not be active (that

is, an underlying association is not established), another SAP must be created to

send event reports to the MIS. This other SAP is allocated by creating a platform
instance which is connected to the MIS. This platform instance gives access to an

ApplMessageSAP . This SAP is based on another MessageSAP implementation.

Because the implementation is derived from MessageSAP, the ApplMessageSAP
can be used as a MessageSAP. This is possible through C++ inheritance and virtual

function mechanisms.
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-7

Example

The following code example illustrates how to create a SAP that sends event reports

to the MIS and initialize the resultant SAP to receive requests and disconnects.

Once the platform instance has been created, the get_raw_sap method returns the

SAP which can be used for sending event reports to the MIS.

11.2.2.3 Locking the Application Discriminator

This step must be completed to allow for proper operation of the MPA. It is most

important, as locking the application discriminator has direct impact on system

performance. Every platform instance creates an application object instance within

the MIS as long as the platform instance is instantiated. Each application object

instance contains a discriminator which forwards all platform notifications to the

connected application. The MPA typically does not require this feature.

To disable event forwarding, the application instance discriminator must be locked.

host = getenv("EM_MIS_DEFAULT_HOST");
if (host!=NULL) {
host = def_host;
}

if (emPlatform.connect(host, “SAMPLE_MPA”) == OK) {
emPlatform.when(“DISCONNECTED”,

Callback(pdm_test_handle_detach, 0));
mis_connected = TRUE ;

} else
mis_connected = FALSE ;
ev_sap = (MessageSAP *) emPlatform.get_raw_sap();
pdm_test_sap->receive_request_cb.handler =

 pdm_receive_request_msgs;
pdm_test_sap->receive_request_cb.data = (Ptr) pdm_test_sap;
pdm_test_sap->detach_cb.handler =

pdm_test_handle_detach;
pdm_test_sap->detach_cb.data = (Ptr) pdm_test_sap;
11-8 Developing C++ Applications • October 2001

Example

The following example excerpt from the samp_main.cc module in the samples

directory illustrates this locking mechanism.

11.2.3 Initializing a Protocol Driver Module

Protocol Driver Modules are shared libraries that are loaded at MIS start-up time.

The MIS looks in the $EM_HOME/config/EM_shared_libs file for a list of libraries

to load. Once it finds an entry in that file, it uses the dlopen () system call to load

that library. Once the library is loaded, the MIS looks for an instance of the

DynLoader class that matches the name of the loaded library. Once the Dynloader
instance has been located, the entry point is invoked with a D_LOADcommand.

Note – The second parameter of the instance of the declared DynLoader must

match the name of the shared library. See dyn_lib.cc for an example.

Initializing a Protocol Driver Module involves:

■ Creating a kernel message SAP pair

■ Registering the SAP with the Fully Distinguished Name (FDN) table

11.2.3.1 Creating a Kernel Message SAP

A kernel message SAP pair is created using the init_kern_msg_sap function.

DU appinst = emPlatform.get_prop(duAPPLICATION_OBJNAME) ;
Image app_image(appinst);
if(app_image.get_error_type()!=PMI_SUCCESS ||

!app_image.boot() ||
!app_image.set_str("administrativeState","locked") ||
!app_image.store()) {

printf(“Error starting MPA %s\n”,
app_image.get_error_string());

exit(1);

}

extern Result init_kernel_msg_sap (Address , MessageSAP **);
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-9

This utility function creates a pair of coupled kernel message SAPs. It returns to the

caller a pointer to a local MessageSAP and initializes the remote SAP to be attached

to the MRM at the SAP Address supplied. This Address must be the same as the

Address supplied in the FDN table configuration step. See the section on “Example

of Timer Initialization” for more information on Address Format.

Each request (message) contains a destination address field dest . The MRM

searches in its list of attached SAPs for an address match. When the destination

address of a request matches a registered SAP, the request is routed over that SAP.

Note – The destination field component is completed by the lookup code within the

MIS.

11.2.3.2 Registering an FDN Table Entry

The utility function fdn_register in samp_utils.cc illustrates how to add an

entry to the FDN table.

The fdn_register function creates a table entry which specifies a mapping

between a fully distinguished name (FDN) and a specific address. It takes three

parameters to create a table entry:

■ A SAP over which to send the addfdn ACTION request

■ An integer which specifies the SAP TAG (unique identifier for a SAP)

■ An encoded distinguished name

Result fdn_register(MessageSAP *, int, Asn1Value &);
11-10 Developing C++ Applications • October 2001

Example

The following example from dyn_libs.cc illustrates the creation of a table entry:

// Check in em_config for TEST SAP number.
// GETENV is a front end MACRO to EM-config file
// Using EM-config forces SAP numbers to be unique
// if not there use default of defined VAL (64)
const char *p_sap_no;

if ((p_sap_no = GETENV(“TEST_PDM_SAP”))) {
 pdm_test_addr.atag = atoi(p_sap_no);
} else
 pdm_test_addr.atag = MY_PDM_SAP;

pdm_test_addr.aclass = AC_PRIMITIVE;
pdm_test_sap = (MessageSAP *) 0;

// Create a kernel message SAP, this binds us to the
// MRM at SAP class AC_PRIMITIVE and SAP number MY_PDM_SAP
// Whenever a request’s DN matches a DN in the FDN table
// that request is forwarded to the SAP that matches
// the Address portion of the FDN Table Entry. In this case
// our Address is AC_PRIMITIVE, MY_PDM_SAP.

if (init_kernel_msg_sap (pdm_test_addr, &pdm_test_sap) != OK)
 Return(NOT_OK);

// Here is where we set up our request handlers.
pdm_test_sap->receive_request_cb.handler =
 pdm_receive_request_msgs;
pdm_test_sap->receive_request_cb.data = (Ptr) pdm_test_sap;
pdm_test_sap->detach_cb.handler =
 pdm_test_handle_detach;
pdm_test_sap->detach_cb.data = (Ptr) pdm_test_sap;
ev_sap = pdm_test_sap;

// This is where we register the PDM DN with the
// fdn table. We register an entry with
// DN = /systemId=”pdm” and an address of
// of AC_PRIMITIVE and SAP number MY_PDM_SAP
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-11

See Section 11.3.2 “MPA and PDM Addresses” on page 11-14” for information on

using EM_config . See Section 11.3.1.1 “Address Classes” on page 11-13” for more

information on the AC_PRIMITIVE class.

11.3 Routing Messages

11.3.1 How Messages are Routed to the Adaptors

The MIS contains a table which is analogous to the NFS mount table that the UNIX

kernel maintains. The table is a complete mapping of the remote MIT. The MRM

searches this table for complete or partial matches of the Distinguished Name (DN)

for every request. If there is a match, the MRM stores the address information found

in the FDN table entry in the destination field of the message and forwards the

message to the SAP that matches that address.

To route a message to an adaptor the FDN table must previously have been updated

with the DN or DNs that the adaptor is responsible for and an address for the

adaptor’s SAP.

The FDN table is updated by two action requests: emAddFdnEntry and

emRemoveFdnEntry . These action requests are defined in the em.gdmo document.

The fdn_register function uses these actions to update the FDN table. The CMIP

Configuration utility (em_cmipconfig) uses the same actions to achieve the same

purpose.

The FDN table entry has two components: the DN and the Address. The address

component is based on the address C++ class defined in address.hh . An address

has three components:

■ class, type of Address

■ tag, particular instance of a particular class

■ value, data associated with that address class

Asn1Value pdm_dn = my_dn(my_name);

// Lets delete first in case we did not unload
// gracefully.
TRYRES(fdn_unregister(pdm_test_sap, MY_PDM_SAP,pdm_dn));

// Now register should work
TRYRES(fdn_register(pdm_test_sap, MY_PDM_SAP,pdm_dn));
11-12 Developing C++ Applications • October 2001

11.3.1.1 Address Classes

Four address classes are defined:

■ AC_DEFAULT

Implies default routing based on type, for example, an event report is always

routed to the EMM.

■ AC_APP

Is the address class for SAPs that are attached to applications. Each PMI

application results in an Application SAP being created. The address class of each

application SAP is AC_APP.

■ AC_DIR_SERVICE

Is reserved for directory service management.

■ AC_PRIMITIVE

Is the address class for PDMs and MPAs

11.3.1.2 AC_PRIMITIVE Address Tags (SAP number)

Each Address class uses the tag value to uniquely identify SAP instances. For the

purposes of developing PDMs or MPAs, familiarity with AC_PRIMITIVE tags is

critical.

The following is a list of the well known AC_PRIMITIVE tags:

Note – The tags listed above are the well known AC_PRIMITIVE tags that are in use

by the MIS system. Providers of new PDMs must choose a value outside this range.

#define AT_PRIM_OAM 0
#define AT_PRIM_EMM 1
#define AT_PRIM_CMIP_PRES_ADDR 2
#define AT_PRIM_SNMP_ADDR 3

#define AT_PRIM_AET_ADDR 4 // ASN1: AE-title
#define AT_PRIM_MPA_ADDR 5

#define AT_PRIM_AGENT_DN 6 // ASN1: FDN
#define AT_PRIM_RPC_ADDR 7
#define AT_PRIM_CMIP_CONFIG 8 //
String:{psel,ssel,tsel,nsap}
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-13

11.3.1.3 Address Data (aval)

The data field of an address can be used for any purpose. It is a DataUnit which is

of variable length. Of particular interest is the aval syntax for the

AT_PRIM_CMIP_PRES_ADDRtagged AC_PRIMITIVE class. This contains a complete

Presentation Address using the following syntax:

This is a series of octets, one octet of length followed by value octets. A length value

of -1 (255) indicates a null selector.

11.3.2 MPA and PDM Addresses

11.3.2.1 PDM Addresses

A PDM Address is defined to have the following values

■ class, AC_PRIMITIVE

■ tag, user specified tag, an integer value outside of the range of the well defined set

listed above

■ value, Data Portion is user definable

length byte, Presentation Selector,
length byte Session Selector,
length byte, Transport Selector,
count byte (number of Network Selectors),

 length byte, Network Selector.....
11-14 Developing C++ Applications • October 2001

Example

The following example from dyn_lib.cc serves as an illustration:

Note – A convention exists to ensure that user-supplied PDMs use conflicting PDM

SAP numbers. This convention is illustrated above. The convention consists of

specifying the PDM number in the $RUNTIME/conf/EM-config file which can be

extracted using the GETENV macro.

11.3.2.2 MPA Addresses

MPAs have one more level of indirection than PDMs. The additional level allows the

MPA to be a separate process that can be run anywhere in the TCP/IP domain. The

MPA addresses are defined as:

■ class, AC_PRIMITVE

■ tag, AT_PRIM_MPA_ADDR.

The developer need not worry about configuring an MPA Address programmatically

since the Address for an MPA is configured using the em_cmipconfig utility. The

em_cmipconfig utility creates an address where the aval portion contains all the

relevant configuration information. The MIS extracts this information and presents it

to the MPA using the remote_oi and remote fields of the message request sent to

the MPA request routine.

The following fields need to be configured for a custom MPA:

■ Entity Name

■ Custom MPA: The port and hostname fields must be completed.

■ Session Selector

// Check in em_config for TEST SAP number.
// Using EM-config forces SAP numbers to be unique
// if not there use default of defined VAL (64)
const char *p_sap_no;

if ((p_sap_no = GETENV(“TEST_PDM_SAP”))) {
pdm_test_addr.atag = atoi(p_sap_no);

} else
pdm_test_addr.atag = MY_PDM_SAP;

pdm_test_addr.aclass = AC_PRIMITIVE;
pdm_test_sap = (MessageSAP *) 0;
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-15

■ Network SAP: The Network address of the entity containing the real object should

be included.

■ FDN

Note – If the Presentation address of the remote entity has a null session selector,

the session selector must be configured with some default value (for example,

“MPA”).

The example MPA supplied used the following configuration:

Once the em_cmipconfig configuration has been completed, the MRM attempts to

match entries against what has been configured in the FDN table using

em_cmipconfig .

Requests for multiple entities can be directed to a custom MPA. The sample source

supplied only supports one entity /pdmId=”testMPA” . A custom MPA can be

created to support multiple entities.

The CMIP MPA provided with the MIS is an example of an MPA that is capable of

supporting multiple entities. Each CMIP agent in the MIS’ management domain is

viewed as an entity. For each CMIP agent to be managed, the user must run

em_cmipconfig specifying the agent parameters, in particular, the agent’s

presentation address.

11.3.2.3 Message remote_oi and remote Fields

The values in the remote_oi and remote fields are one of the specific differences

between an MPA and a PDM.

The MPA can make explicit use of these fields. The remote_oi contains the DN of

the CMIP table entry that was used to route the request to the MPA. The last RDN of

this DN can be used to find the AE-Title (Application Entity Table). The remote

Entity Name : { 1 2 3 4 5 1 }
Custom MPA port : 5597
Custom MPA host: "carla"

Session Selector : "Test"
Network SAP : carla:5597
FDN : /pdmId=string:"testMPA"
11-16 Developing C++ Applications • October 2001

field contains whatever was configured for that entity’s presentation address. This

information is what the CMIP MPA uses to establish an association with a remote

entity. The aval portion of the remote field contains a string of the format:

This is an ASCII representation of the remote entities presentation address as

configured using em_cmipconfig . See Section 11.3.1.3 “Address Data (aval)” on

page 11-14 for more information.

Note – A PDM can not make use of the remote_oi or the remote field.

Multiple FDN table entries can be stored which point to a single MPA or PDM. This

storage mechanism can be used as a persistent configuration store for each entity

supported by the MPA/PDM. This mechanism, in conjunction with the remote_oi
and remote fields, allows for easy multiplexing to the real object information.

11.3.3 FDN Table Configuration Options

There are multiple ways to configure the MIS to route messages to adaptors. In

deciding which configuration to use, it is important to implement a model view that

is appropriate for the problem being solved. Common sense can be a good start. For

example, it would not be appropriate to add thousands of entries to the FDN table

when the MPA could easily implement an efficient proprietary lookup based on the

DN.

To help clarify the process, the following options are examined:

■ MPA supporting two remote objects

■ PDM supporting two remote objects

These examples are used to indicate the various options open to the developer.

Note – These examples are not the only options and are used for illustrative

purposes only.

11.3.3.1 MPA Supporting Two Remote Objects

Two possible strategies for adding entries to the FDN table are:

■ Two entries can be added to the FDN table using em_cmipconfig with two

different entity names specified.

"{ Pres, Sess, Tsel, Net }"
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-17

■ Two entries can be added to the FDN table using em_cmipconfig with only one

entity name specified.

The second case illustrates how em_cmipconfig allows one entity to support

multiple objects. It is assumed that the remote entity that supports these objects is

identically addressed, that is, the objects live at the same presentation address.

11.3.3.2 PDM Supporting Two Remote Objects

Two possible strategies for adding entries to the FDN table are:

■ Two entries can be added to the FDN table with an identical PDM address.

■ Two entries can be added to the FDN table with identical class and tag values in

the address with different data value in the address value field.

The first case assumes that the DN is decoded in the request and that the request is

routed to the appropriate agent entity.

The second case allows the data that is configured in the value (aval) portion of the

dest field of the message to be used for achieving multiplexing to the remote agent

entity.

11.3.4 Source and Destination Fields in the Message

All messages contain src and dest fields. These fields are C++ instances of Address

and are very important for message routing.

Note – The src field must be completed for all CONFIRMED requests.

The MPA/PDM developer must complete the src address if responses are expected.

The src field is the same address used when creating the SAP and when specifying

the address component of the FDN table registry entry.

The dest field is only important if you wish to explicitly route the message.

Caution – Because explicit routing is used for passing messages between

applications, it should be used carefully.
11-18 Developing C++ Applications • October 2001

11.4 MPA/PDM Request Management
The MIS has been designed to be a multi-user server and can handle multiple

requests transparently and asynchronously. The SAP interface has been designed to

make this asynchronous style of programming easier.

In FIGURE 11-2, a scenario is illustrated that is typical of a real world environment.

FIGURE 11-2 Potential Real World Configuration

Application1 makes continuous requests to the local MIT. These requests can be

satisfied immediately.

Application2 makes requests to A1 and A2. These agents are at the remote end of

very slow links. The architecture must support the scheduling of responses to

requests that could take a long time to complete. The design and implementation

should also handle cases where requests overlap. If appropriate, multiple

overlapping requests should be queued and serviced with a single response.

The MPA/PDM module serving A1 and A2 schedules its responses. It achieves this

by using the underlying PMI scheduling services.

Application1 Application2

MIS Local MIT

A1 A2

SLOW LINK SLOW LINK

PMI PMI
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-19

The transport mechanism used by the MPA/PDM is normally hidden behind a

UNIX file descriptor. The MPA/PDM developer needs to use the underlying

scheduling services to interface to the file descriptor. This scheduling service makes

use of the underlying poll (select) system call to determine the following:

■ Whether data is available at the file descriptor

■ Whether data can be written to the file descriptor

■ Whether there is an underlying exception on the file descriptor

To satisfy remote requests, the MPA/PDM code typically opens a file descriptor to

the agent. As requests are made to the agent, they are written to the file descriptor.

The MPA/PDM code then schedules a callback for whenever data becomes available

at the file descriptor. When the data is completely transferred, the MPA/PDM sends

a response back to the MIS.

At a high level, the steps can be broken down as shown in TABLE 11-2.:

Note – Because all requests have unique identifiers, it is easy to match responses to

requests.

11.4.1 Asynchronous Request Code Specifics

When managing asynchronous requests, familiarity with some of the underlying

C++ classes that facilitate asynchronous request management is critical. The most

important C++ class is the Callback class. This is used by all of the asynchronous

interfaces. There is also a C++ programming style that must be understood. The

proposed C++ model is that a C++ class must be built with a class implementation

with the following characteristics:

TABLE 11-2 MIS and MPA/PDM Connections

MIS MPA/PDM

Request for MIS

Create a connection to remote agent.

Schedule a callback to indicate connect complete.

Send request with unique identifier.

Schedule a callback for response.

When data callback, check for data complete.

If data complete, send response to MIS.

MIS receives Response
11-20 Developing C++ Applications • October 2001

■ Original request information, particularly the request id, the src, and dest fields

must be stored.

■ A static member function must exist that can be used as a callback handler.

■ A variable must exist than can be used to count the number of callbacks expected.

■ Class instances must be easily found by the request identifier so that CANCEL

GET requests can be serviced in a timely manner.

■ Responses must be queued for synchronous requests.

These characteristics determine what can be called a pending request class. This type

of class encompasses the functionality required for responding to requests

asynchronously.

Example

The following example excerpt from a class called pdm_pend_req in samp_inc.hh
illustrates some key elements associated with asynchronous requests:

The pdm_pend_req class has the following characteristics:

■ Maintains a copy of the original request and request id

■ Has a callback counter

■ Can be queued

■ Can be hashed based on a MessId type

■ Has an asynchronous interface to a start_req routine

■ Has a callback to be used for invoking operation completions

class pdm_pend_req : public QueueElem {
ObjReqMess *orig_msg;
MessId req_id;

public:

// hash of all pending requests based on request id.
Hashdeclare(MessId, pdm_pend_req, hash_MessId,

MessIdcmp,0,0)
static Hash(MessId, pdm_pend_req) *p_pdm_req_hash;
I32cbs_pending;
I32num_in_scope;

ReqStatus status;
Result start_req(Callback &req_done);
// Used in cases where atomic operation requested.
Queue(RespQElement) resp_q;

}

Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-21

The function of this class is to remember original request information, to start

requests, and to ensure that a final response is sent if required. Requests are

completed when there are no more callbacks pending, that is, cbs_pending == 0.

The req_mngt.cc module supplied in the samples directory illustrates all of these

key concepts. The req_mngt.cc starts requests, counts the callbacks, and releases

resources that are no longer required.

11.4.2 Validating Requests

Each request can be validated. The extent of the validation is dependent on the

implementor and the specifics of the implementation. In some cases, it will make no

sense to validate requests since much of the intelligence to validate is on the remote

agent. The CMIP MPA supplied does little more than store request identifiers and

forward the requests to the CMIP agent. The sample source, which is supplied, does

some validation for illustrative purposes.

The typical items that can be validated up front are object class and operation types.

For illustrations of typical items than can be validated, see the code in msgio.cc
particularly pdm_verify_oc and pdm_verify_dn.

11.4.3 Matching Requests to Responses

Every request is identified with an identifier. To send a response to a particular

request, set the response message id to the request Id. For completeness the src and

dest fields must be completed also.

Example

The following example excerpt from msgio.cc send_resp. rmp is a pointer to a

response message. msg is a pointer to the original request.

rmp->id = msg->id;
rmp->source = msg->dest;
rmp->dest = msg->source;
rmp->qos = msg->qos;
11-22 Developing C++ Applications • October 2001

11.5 Timer Management
The following timer management services are available to the developer:

■ Create and delete a timer

■ Start a timer

■ Stop a timer

Timers are very useful in the MPA/PDM environment. In particular, they are needed

to implement time out strategies. Every request requires a response. In the real

world, there are occasions when devices do not respond. The timer facilities are

useful to set a timeout callback which can send an TIMED_OUT response to the MIS

in these types of situations.

Note – MPAs cannot use TIMED_OUT, DEST_UNREACHor NO_SUCH_DESTmessages.

PDMs may use these message to signify errors. For error conditions like these, the

MPA should return a PROC_FALL message with a Probable Cause specific error

which is defined by the implementor.

Timers can also be used to check on device status. If the device status has changed,

the MPA/PDM can emit an attribute change notification. Applications can then be

written to wait for these notifications and to operate on an event driven basis.

Asynchronous applications (applications that do not POLL or that are event driven)

have a positive impact on overall system performance.

The MPA/PDM developer should always attempt to use a notification based

mechanism to communicate with applications. Timers can be used to schedule these

specific notifications. Using GDMO, any type of notification can be designed. Once

the GDMO syntax has been loaded into the metadata repository (MDR), the

MPA/PDM can emit the notification based on the behavior defined in the GDMO.

11.5.1 Timer Management Interface

The timer interface consist of a set of functions which allow the scheduling of

callback handlers based on criteria specified in instances of a timer C++ class. These

timer instances specify the following:

■ A callback handler

■ An interval specifying expiration time before the handler is invoked

■ A reload interval value load after the original interval expires
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-23

Note – These timers are not suitable for real time solutions.

The class definition for timer is defined in sched.hh and is listed below as well as

the interface functions to the scheduler.

The four functions detailed above provide the interface to the scheduler for enabling

and disabling callbacks based on time. The user can choose a purge interface suitable

for the implementation.

class Timer {
public:

MTime time; // expiration time in milliseconds
MTime reload; // reload time after expiration
Callback cb; // callback to post when expired

Timer() {
time = 0;
reload = 0;

}
Timer(MTime t, MTime re, CallbackHandler hand, Ptr d) {
time = t;
reload = re;
cb.handler = hand;
cb.data = d;
}

friend int operator==(const Timer &t1, const Timer &t2) {
return t1.cb == t2.cb;
}

};

void post_timer(const Timer &);
// Post a timer into the scheduler queue

void purge_timer(const Timer &);
// Purge any matching timers from the scheduler queue

void purge_timer_handler(CallbackHandler handler);
// Purge any timers with matching handler

void purge_timer_data(Ptr data);
// Purge any timers with matching data
11-24 Developing C++ Applications • October 2001

11.5.1.1 Example of Timer Initialization

The following example excerpt start_timer from rusagobj.cc uses the

post_timer scheduling function to start a timer. The timer that is passed to

post_timer is an instance of the C++ class timer.

The timer constructor takes three parameters

■ Timer intervals

■ Timer reload interval value

■ Callback to be executed

All interval values are specified in milliseconds. The timer instance created above is

based on a variable, timerval , stored in the rusageobj instance. This value is in

seconds and is converted to milliseconds by multiplying by 1000. The

implementation requires that the timer be continuous so a reload value identical to

the initial interval is passed for the reload parameter. The callback parameter is

passed containing pdmrusage_timer as the function to be called and the rusageobj

instance pointer is passed as the Callback user data.

Note – The implementation of post_timer makes a copy of the timer and Callback

parameters passed. It is okay to use timers and Callbacks that get destructed.

void start_timer() {
// Timer Input is in milli secs
// parms are: timer interval, timer reload value
// Handler and parm passed to handler

post_timer(Timer(timerval * 1000, timerval * 1000,
(CallbackHandler) pdmrusage_timer, (Ptr) this));

timer_posted = TRUE;
}

Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-25

11.5.2 Stopping a Timer

Timers are stopped or purged using the purge_timer , purge_timer_handler or

purge_timer_data utility functions. The stop_timer method in

rusageobj.cc , listed below uses the purge_timer_handler function to cancel

the pdmrusage_timer callback when it is no longer needed, that is, when the

runtime attribute is set to 0.

purge_timer_handler searches the list of active timers for any timer that has a

callback handler equal to the value passed. It then purges any timers matching from

the timer queue.

Note – It is important to remember if timers have been posted. A common error is

that users forget to purge timers. The callback then tries to use data that has been

deallocated.

11.6 File Descriptor Management
The normal mechanism of communicating outside of a UNIX process is through a

UNIX file descriptor. The services provided by the scheduler to interface to file

descriptors are important to understand because most MPA/PDMs use file

descriptors to communicate with remote devices.

11.6.1 Asynchronous File I/O

It is important that the MPA/PDM never blocks (makes a system call that does not

return immediately). The underlying UNIX File I/O system allows file descriptors to

be opened or created in NON-BLOCKING modes. It is most important that any file

descriptors be opened in a non-blocking mode.

The most important aspect of non-blocking file I/O is that some operations may not

complete. The code must handle properly partial reads/writes. By using the

underlying operating poll system call (select on BSD systems), the scheduler

void stop_timer() {
purge_timer_handler((CallbackHandler) pdmrusage_timer);
timer_posted = FALSE;
}

11-26 Developing C++ Applications • October 2001

facilitates non-blocking I/O by providing a set of utility functions to allow for

callbacks when particular events happen at a file descriptor. These are based on the

standard UNIX set:

■ Data can be read

■ Data can be written

■ Error or exception

Whenever a user expects to read from a file descriptor the user should use

post_fd_read_callback . If data needs to be scheduled to be written, the user

should use post_fd_write_callback . To handle error cases there should be a

handler for exceptions. This handler can be set using post_fd_except_callback .

Callback handlers as discussed above are static functions that are invoked when the

event they have been scheduled to service occurs. The file management functions are

passed the file descriptor they are managing as parameter two. Parameter one is the

data specified when the CallBack was created. Oftentimes parameter one is a pointer

to a C++ instance that contains the file descriptor and any status associated with it.

The complete set of function prototypes as defined in sched.hh are listed below:

Note – File descriptor callbacks should be purged if the instance associated with the

callback is deleted.

11.6.2 Example of a Read Callback Implementation

The example below is taken from the unixobj.cc sample source code. There are

two items of importance:

■ Scheduling the callback

■ Callback execution

void post_fd_read_callback(int fd, const Callback &cb);
void post_fd_write_callback(int fd, const Callback &cb);
void post_fd_except_callback(int fd, const Callback &cb);
void purge_fd_read_callback(int fd);
void purge_fd_write_callback(int fd);
void purge_fd_except_callback(int fd);
void purge_fd_callbacks(int fd);
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-27

11.6.2.1 Scheduling the Callback

The following example is taken from the unxobj.cc start_get_req routine. Once

the pipe has been successfully opened, the code creates a callback and schedules the

callback function execution when there is data available from the pipe. The read

callback handler is scheduled using the post_fd_read_callback routine.

The following should be noted:

■ The FPTR (fp) is converted to a file descriptor using fileno . (See the man pages

for more information.)

■ The callback which is created is initialized to have a function pointer

sh_fetch_input and a data pointer of this. (This is C++ this for instance being

operated on).

The routine sh_fetch_input is invoked wherever there is data available at the file

descriptor fileno (fp).

11.6.2.2 Callback Execution

The code below is excerpted from unixobj.cc sh_fetch_input .

The sh_fetch_input routine does the following:

■ Uses parameter one as a pdmunixOi pointer since that is what was defined as the

user data parameter when the callback was scheduled.

■ Accesses the file descriptor from the instance pointer where it was stored.

■ Allocates a temporary dataunit to store the data read.

■ Reads the data until there is no more data (for example, EOF). When that

happens, it calls the get_complete method of the pdmunixOi C++ instance.

■ If there is more data, it reposts the callback having first saved the data read in

sh_data . The dataunit catenate is used to add any new data to the end of the old

data.

// Set up to get called back when Data is
// available from the pipe.
Callback rd_cb((CallbackHandler)sh_fetch_input, this);
post_fd_read_callback(fileno(fp),rd_cb);
11-28 Developing C++ Applications • October 2001

Example

This is a very complete example of a read callback handler since it remembers state

information (data just read) and reschedules itself.

Note – The callback must be rescheduled if more data is to be read. A common error

is the omissions of reposting the callback when the data transfer has not been

completed.

static void sh_fetch_input(pdmunixOi *p_obj, int)
{

int rv;
DataUnit tmp(RSIZ);

// Read the data
if (!(rv = fread((char *)(const Octet *) tmp,1,

RSIZ,p_obj->fp))) {

// End of pipe, need to encode, save for Persistence
// and then call the requestor get_complete routine.
pclose(p_obj->fp);
p_obj->fp = 0;
p_obj->get_complete();
return;

}
// Store it into the sh_data Dataunit, just the correct amount
DataUnit rdata(rv);
memcpy((void *)(const Octet *) rdata, (const Octet *) tmp,

rv);

// Need to get rid of old data, so we do not keep growing
sh_data

if (p_obj->firstdata == TRUE) {
p_obj->firstdata = FALSE;
p_obj->sh_data = DataUnit();
}
p_obj->sh_data = catenate(p_obj->sh_data,rdata);

// Need to get Called Back again so reschedule
post_fd_read_callback(fileno(p_obj->fp),
Callback((CallbackHandler)sh_fetch_input, p_obj));

}

Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-29

11.7 Notifications
Notifications are based on the OSI Management Event Reporting function. All

notifications are instances of the CMIP Event Report Request. They contain:

■ Object Instance

■ Object Class

■ Event Time

■ Event Type

■ Event Information

The ASN.1 syntax for a notification is defined in x711.asn and is listed below:

Note – The event information field is an ASN.1 any defined by value, which is

defined by the Event Type field. To generate a notification, the eventInfo must first

be constructed according to the syntax defined for that specific notification.

Notifications can be confirmed or unconfirmed. Typically notifications are

unconfirmed.

Notifications are generated based on the behavior of the object class being modeled.

The standard notification set includes ObjectCreation, ObjectDeletion, and

attributeValueChange notifications. New notification types can be defined that are

specific to the model being presented to the applications. These new notification

types and syntaxes must be loaded into the MDR using the em_gdmoand em_asn1
utilities.

EventReportArgument ::= SEQUENCE {
managedObjectClass ObjectClass,
managedObjectInstance ObjectInstance,

eventTime [5] IMPLICIT GeneralizedTime OPTIONAL,
eventType EventTypeId,
eventInfo [8] ANY DEFINED BY eventType OPTIONAL

}

11-30 Developing C++ Applications • October 2001

11.7.1 Creating a Notification

Notifications are created by:

■ Allocating an event report request message

■ Filling in the message fields

■ Sending the completed messages to the MIS

These steps are illustrated in the pdm_issue_notif routine in msgio.cc . Excerpts

from that routine are used in the following subsections.

11.7.1.1 Allocating an Event Report Message

Messages are allocated using the new_message function. An example of how they

are allocated follows:

11.7.1.2 Filling in the Event Report Message Fields

The time and info fields are optional and only need to be competed if the syntax

demands that they be completed. All other fields must be filled in. Each of the fields

require an encoded Asn1Value:

// Allocate Event Report Message
if ((mp = (EventReq *)Message::new_message(EVENT_REPORT_REQ))

== NULL)

{
pdm_test_error.print(“pdm_issue_notif:
Not enough memory for “
“M-Event-Report message\n”);

Return(NOT_OK);
}

mp->mode = UNCONFIRMED;
mp->oc = oc;
mp->oi = oi;

TRYRES(event.encode_oid(TAG_CONT(6), event_type));
mp->event_type = event;
mp->event_info = info;
getGeneralizedTime(mp->event_time);
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-31

Each field has a specific encoding. This must be adhered to as defined by the

definition of an EventReport. See the “Notifications” section for information on

syntax. The object class field needs to be encoded TAG CONTEXT 0. The OI needs to

be defined according to the specific encoding rules for ObjectInstance. See the

x711.asn1 documentation for more information about ObjectInstance.

11.7.1.3 Sending a Notification

All messages are sent to the MIS over an initialized SAP.

Unconfirmed event report request messages are sent using the send function.

Confirmed event report requests also use the send function, however, it needs the

asynchronous version.

The MIS forwards all event report requests to the Event Distribution System (EDS)

where it is discriminated (filtered). The notification is then forwarded to applications

that have registered for it.

This routine accepts an already encoded Info parameter. For a complex example of

encoding an eventInfo structure, see pdm_make_attr_chginfo in

samp_utils.cc .

// Send the Message to the MIS
if (ev_sap->send(mp) != SENT)

{
// Major System Error
Message::delete_message(mp);

pdm_test_error.print(“pdm_issue_notif: Could not send “
“M-Event-Report message\n”);

Return(NOT_OK);
}

SendResult send(MessagePtr mp, const Callback &cb, MTime cd
block_time)
11-32 Developing C++ Applications • October 2001

11.8 Sample MPA/PDM Source Code
The source code example provided is meant for illustrative and educational

purposes. Much of the example code would not be used by a standard MPA/PDM.

The sample source provides additional Logical Object Services that would normally

be provided in the remote agent. To avoid dependencies on a specific remote agent,

simple Logical Object Services are included in the sample source.

Note – All of the sample source code should be studied in detail.

11.8.1 Files and Configuration

The sample source and the GDMO and ASN.1 files are included in the

mpa_samples directory. There is also a set of netperl scripts which can be used to

illustrate the functionality of the MPA/PDM.

Note – The GDMO and ASN.1 files must be loaded before any of the example code

is used.

The MPA/PDM sample source consists of the files listed in TABLE 11-3.

TABLE 11-3 MPA Example Files

Filename Description

Makefile contains rules

dyn_lib.cc Portion of Code to create dyn lib entry point and

initialization

samp_main.cc Generates a main for the testmpa program. Attaches

to MIS and initializes the MPA event sap.

dynload.hh Needed by for DynLoader Instance

msgio.cc Handles message IO from the MIS.

req_mngt.cc Manages the Requests

samp_inc.hh Includes and definitions

samp_utils.cc Utility functions
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-33

The makefile can be used to generate two files, testmpa and testpdm.so . The

testmpa file is an executable and testpdm.so is a shared library.

11.8.1.1 Sample MPA Configuration: testmpa

Testmpa is an executable that binds to 5597 on whatever machine it is run on. It

manages a logical MIT that begins at /pdmId=”testMPA” . em_cmipconfig must

be run to address this MPA. The MPA has a DN of /pdmId=”testMPA”; it is a

CUSTOM MPA that lives at a default port of 5597. You can choose whatever machine

name that is needed. Be sure to include a session selector of “test” when using

em_cmipconfg .

Note – The port number can be overridden by using the environment variable

TEST_MPA_DEFAULT_PORT. Make sure that this port is entered in em_cmipconfig
when configuring the MPA.

11.8.1.2 Sample PDM Configuration: testpdm.so

Testpdm.so is a shared library that can be loaded at platform start-up time. To load

testpdm.so , edit $EM_HOME/config/EM_shared_libs. There are two methods for

loading testpdm.so :

■ Provide a complete pathname in the file.

To do so, include the complete pathname of the shared library in EM_shared_libs,

e.g. “/opt/ger/pdmsrc/testpdm.so”.

■ Provide the library name if the library will be placed in $EM_HOME/lib.

To do so, include the libname and place the shared library in $EM_HOME/lib.

lroot.cc Sample logical Root Object

rusageobj.cc Sample object which reads /proc and generates

rusage info. Can be configured to send Attribute

Change notifications.

unixobj.cc Sample that uses the unix popen command to

execute unix commands. Illustrates Asyc File IO and

Object Create Notifications.

TABLE 11-3 MPA Example Files (Continued)

Filename Description
11-34 Developing C++ Applications • October 2001

The PDM manages a logical MIT that begins at /pdmId=”testPDM” , it configures

itself to be attached to the MRM at an AC_PRIMITIVE SAP type with a SAP number

of 64.

Note – PDM SAP numbers can be chosen by the implementor.

To allow for multiple PDMs to exist, this SAP number should be configurable and

readable from a file. By convention and default, SAP tag numbers are stored in

/var/opt/SUNWconn/em/conf/EM-config . The format is Name : Value. For

example:

could be added to the file. This entry can be read using

GETENV(“TEST_PDM_SAP”). See the source example in dyn_lib.cc .

11.9 Developing an Adaptor
Developing an adaptor involves:

■ Defining the management information model

■ Designing and implementing the request management interface

■ Designing and implementing the protocol code

11.9.1 Defining the Management Information Model

The information model presented to the MIS must be defined in GDMO. If the

existing agent already has some GDMO definitions, the task may be easier. In some

cases, the existing GDMO definitions may not be adequately abstracted and

therefore, will not be suitable. If the existing GDMO model does not provide a

sufficient level of abstraction, new definitions should be defined. The GDMO model

defined should make every attempt to fully abstract the management problem being

solved.

For example, in a case where a device has 5000 ports, the following activities could

be defined:

■ The device could be defined as one single object with a set of attributes and

ACTIONS that could be used to access the ports.

■ Each port could be defined as an object with multiple attributes.

TEST_PDM_SAP : 64
Chapter 11 Writing Management Protocol Adaptors (MPAs) 11-35

The model chosen is dependent on the problem being solved. In most cases, the

more abstract models can provide for less complex development and better

performance for the most common operations. Models can also be optimized to

enhance the solution.

The preferred solution in the above scenario would be the single object view. This

view would be less complex to implement and require less code. Since there is only

one logical object to manage, the overhead in maintaining a logical tree would be

minimal and the performance may be better. If the object was defined properly, the

applications using the model would also be simpler. They would not have to incur

the overhead of managing thousands of objects.

There are no specific rules that can be applied here. Common sense and a clear

understanding of the real problem and specific solution required by the customer are

the best guides.

11.9.2 The Request Management Interface

As outlined in the sample source, the interface to the MIS must be completely

asynchronous. The interface code must be capable of managing multiple outstanding

requests. In addition, it must have minimal impact on the overall system

performance. This is critical in the case of the PDM. The request interface can be

modeled on the sample source and the msgio.cc and req_mngt.cc modules can

provide the basis for any adaptor.

11.9.3 The Protocol Code

Each device or remote entity must support some type of remote access. Often there

are existing libraries that have already implemented a suitable protocol interface to

the devices which are to be managed. These interfaces should be reused as much as

possible. The most important consideration when reusing existing protocol stack

code is that there be no underlying interface element that could block. All code must

be asynchronous. When only synchronous interfaces are provided, a layer needs to

be built that provides the asynchronous interface.
11-36 Developing C++ Applications • October 2001

CHAPTER 12

Controlling Access to Applications
and Data

Controlling access to applications and data prohibits unwanted access to critical

applications and network components. Without access control, any user of your

network management solution can read or modify all your network management

and configuration data. The risks of this approach can be devastating when users

without the proper authority or expertise modify your network management data or

the configuration data of your network management solution. By controlling user

access, users are allowed to access only those applications and data they need based

on their network management responsibilities and other relevant criteria.

This chapter explains how to control access to applications and data.

■ Section 12.1 “Access Control Levels” on page 12-1

■ Section 12.2 “Enforcing Predefined Access Control Rules” on page 12-4

■ Section 12.3 “Modifying Access Control Information” on page 12-8

■ Section 12.4 “Getting Access Control Defaults” on page 12-32

■ Section 12.5 “Keeping Event Notifications Private” on page 12-36

■ Section 12.6 “Making MPAs Secure” on page 12-40

12.1 Access Control Levels
To enable you make your applications and data secure, Solstice EM provides the

following levels of access control:

■ Application-level access control

■ Application-feature-level access control

■ Managed-object-level access control

■ Event notification access control

■ Management protocol adapter (MPA) access control
12-1

12.1.1 Application-Level Access Control

Implement application-level access control if you want your entire application to be

inaccessible to some users of the network management solution that your

application is a part of. For example, if your application is used for the

administration of your network management solution, make the application

accessible only to system administrators and inaccessible to network operators.

If you implement application-level access control, make sure that your application

gives proper feedback to a user that is denied access to your application.

Before you implement application-level access control, make sure that the

application’s features are defined and implemented.

Solstice EM enables you to implement application-level access control by either of

the methods described in:

■ Section 12.2 “Enforcing Predefined Access Control Rules” on page 12-4

■ Section 12.3 “Modifying Access Control Information” on page 12-8

12.1.2 Application-Feature-Level Access Control

Implement application-feature-level access control if you want some users to be able

to access some, but not all, the features of your application. For example, if your

application enables users to monitor, add, modify, and delete network resources,

implement application-feature-level access control to allow some users to monitor

network resources, but not to add, modify, or delete network resources.

If you implement application-feature-level access control, make sure that your

application gives proper feedback if a user is denied access to a feature. Where

possible, make sure that your application prevents users from performing operations

they do not have permission to perform. In a graphical application, make commands

for performing such operations inactive and grayed out.

If you implement application-feature-level access control, make the list of

application features available to your system administrator so that the system

administrator can grant users access rights to perform various operations.

Before you implement application-feature-level access control, make sure that the

application’s features are defined and implemented.

Solstice EM enables you to implement application-feature-level access control by

either of the methods described in:

■ Section 12.2 “Enforcing Predefined Access Control Rules” on page 12-4

■ Section 12.3 “Modifying Access Control Information” on page 12-8
12-2 Developing C++ Applications • October 2001

12.1.3 Managed-Object-Level Access Control

Implement managed-object-level access control if you want some managed objects to

be inaccessible to some users of your network management solution.

Managed-object-level access control denies users access to managed objects

regardless of which application they use to try to access the managed objects. If you

use application-feature-level access control to deny access to these managed objects,

you do not prevent users from accessing the managed objects by using other features

of other applications.

If you implement managed-object-level access control, make sure that your

application gives proper feedback if a user is denied access to a managed object. In

addition, make sure that your application can handle any exceptions or errors

thrown if a user is denied access to a managed object.

Solstice EM enables you to implement managed-object-level access control by either

of the methods described in:

■ Section 12.2 “Enforcing Predefined Access Control Rules” on page 12-4

■ Section 12.3 “Modifying Access Control Information” on page 12-8

12.1.4 Event Notification Access Control

Implement event notification access control if you want to ensure that a user’s event

logs contain only event notifications emitted by managed objects to which the user

has access. By default, all events that the Solstice EM platform receives are written to

a user’s event logs, including event notifications from managed objects that the user

is normally denied access to.

For information on how to implement event notification access control, refer to

Section 12.5 “Keeping Event Notifications Private” on page 12-36.

12.1.5 Management Protocol Adapter (MPA) Access

Control

Implement MPA access control if you want some managed objects that are accessed

through an MPA to be inaccessible to some users of your application.

If you implement MPA access control, make sure that your application gives proper

feedback if a user is denied access to a managed object accessed through an MPA.

For information on how to implement MPA access control, refer to Section 12.6

“Making MPAs Secure” on page 12-40.
Chapter 12 Controlling Access to Applications and Data 12-3

12.2 Enforcing Predefined Access Control
Rules
Enforce predefined access control rules if you want to control access to applications

and data, but do not require your application to modify access control rules that

have already been defined.

Solstice EM enables you to enforce predefined access control rules for the following

levels of access control:

■ Application-level

■ Application-feature-level

■ Managed-object-level

Enforcing predefined access control rules involves:

■ Defining the access control rules

■ Enforcing application-level and application-feature-level access control

■ Handling denial of access to managed objects

Note – The Solstice EM access control module enforces access control rules defined

for managed objects. You do not need to add code to your applications for enforcing

managed-object-level access control.

For information on source code examples that show how to enforce predefined

access control rules, refer to Section A.5.3 “Password Request Example” on

page A-10 and Section A.5.3 “Password Request Example” on page A-10.

12.2.1 Defining Access Control Rules

Access control rules are the basis for denying or granting users access to

applications, application features, and managed objects. Access control rules

identify:

■ User groups to which access controls are to be applied

■ Applications, features or managed objects to which access is to be granted or

denied

■ The policy that determines if access is to be granted or denied

Solstice EM enables you to define access control rules in either of the following

ways:

■ Interactively

■ From the command line
12-4 Developing C++ Applications • October 2001

12.2.1.1 Defining Access Control Rules Interactively

Defining access control rules interactively provides immediate verification of the

access control rules you define, thereby making it simple to define complex access

control rules. To define access control rules interactively, use the Security tool. For

information on how to use the Security tool, refer to Managing Your Network.

12.2.1.2 Defining Access Control Rules From the Command Line

Defining access control rules from the command line saves time and effort when you

need to define large numbers of rules, or when you need to apply the same rules to

several different systems. To define access control rules from the command line, use

the em_accesscmd utility.

The em_accesscmd utility defines access control rules in accordance with

information supplied in em_accesscmd commands. The em_accesscmd utility can

also read em_accesscmd commands from an em_accesscmd script, which is a text

file.

For information on how to use the em_accesscmd utility, refer to Managing Your
Network.

An em_accesscmd script is shown in CODE EXAMPLE 12-1.

CODE EXAMPLE 12-1 em_accesscmd Script

//
// Run this script during MIS startup by using the em_accesscmd utility.
// This script creates access control objects for the "Security" application.

//
// Create Application
//
createApplication "security" "Security sample graphical application"

//
// Create "Security sample application" features
//
createFeature "security" "View only" "View/Connect only"
createFeature "security" "Delete" "Delete objects"

assignApps "Operator" "security"

// Assign groups to the application features

assignAppFeatures "View Only" "security" "View only"
Chapter 12 Controlling Access to Applications and Data 12-5

The em_accesscmd command script shown in this example defines access control

rules as follows:

■ The createApplication command places an application named security
under access control. The description of this application is

Security sample graphical application .

■ The createFeature command places features of the application named

security under access control as follows:

■ A feature named View only for which the description is

View/Connect only
■ A feature named Delete for which the description is Delete objects

■ The assignApps command grants members of the Operator privilege group

access to the application named security .

■ The assignAppFeatures command grants members of the View Only
privilege group access to the feature named View only of the application named

security .

12.2.2 Enforcing Application-Level and Application-

Feature-Level Access Control

Enforcing application-level and application-feature-level access control enables your

application to verify if the user that started the application has the privileges to use

the application and its features. These privileges are granted or denied based on

access control rules defined for the application as explained in Section 12.2.1

“Defining Access Control Rules” on page 12-4.

12.2.2.1 Enforcing Application-Level Access Control

Enforcing application-level access control involves:

■ Ensuring that the access rules defined for the application deny access to all

features of the application

■ Verifying that no features are granted to the user who is running the application

■ Disabling the application

Verifying that no features are granted to the user who is running the application

involves:

■ Creating and initializing an instance of the AuthFeatures class

■ Passing this instance in a call to the get_authorized_features function of the

Platform class

■ Verifying that the call to get_authorized_features returns an empty list

How to enable or disable an application depends on the application.
12-6 Developing C++ Applications • October 2001

12.2.2.2 Enforcing Application-Feature-Level Access Control

Enforcing application-feature-level access control involves:

■ Getting a list of features granted to the user who is running the application

■ For each feature in the list:

■ Verifying if the user is granted access to the feature

■ Enabling or disabling the feature depending on whether the user is granted

access to it

Getting a list of features granted to the user who is running the application involves:

■ Creating and initializing an instance of the AuthFeatures class

■ Passing this instance in a call to the get_authorized_features function of the

Platform class

To verify if a user is granted access to a feature, call the is_authorized function of

the AuthFeatures class. In the call to is_authorized , specify the name of the

feature.

How to enable or disable a of an application feature depends on the application.

12.2.2.3 Example of Enforcing Application-Level and Application-
Feature-Level Access Control

CODE EXAMPLE 12-2 shows code for enforcing application-level and application-

feature-level access control.

CODE EXAMPLE 12-2 Controlling Application- and Application-Feature-Level Access

...
#include <pmi/hi.hh> // High Level PMI
...
AuthFeatures feature_list;

if (!em_mis.get_authorized_features(feature_list)) {
cout << "Not authorized to run this program!" << endl;
return 0;

}
...

if (!feature_list.is_authorized("Delete"))
XtSetSensitive(main_window->delete_btn, 0);

else
XtSetSensitive(main_window->delete_btn, 1);

...
Chapter 12 Controlling Access to Applications and Data 12-7

In this example, if the call to get_authorized_features returns an empty list, a

message warning that the user is denied access to the application is printed and the

application is terminated. Otherwise, the application verifies if the user is granted

access to the Delete feature of the application and does one of the following:

■ If the user is denied access to the Delete feature, the menu command for

choosing this feature is made inactive and grayed out.

■ If the user is granted access to the Delete feature, the menu command for

choosing this feature is made active.

12.2.3 Handling Denial of Access to Managed Objects

If your application is likely to be used in a situation where managed-object-level

access control is enforced, ensure that your application takes appropriate action if

access to a managed object is denied. To do so, include error checking with every

operation on a managed object to verify that access was granted before your

application tries to process the result of the operation. If your application is denied

access to managed objects it requires to function, make sure that your application

provides proper feedback to the user and is terminated gracefully.

If the enforcement action for a managed object is deny without response, your

application will receive no indication that it has been denied access to a managed

object. In this situation, your application will become blocked indefinitely if it waits

for a response. To prevent a denial without response from blocking your application

indefinitely, specify a timeout period for all operations on managed objects.

12.3 Modifying Access Control Information
Enable an application to modify access control information if:

■ You want the access control applied to applications and data to change while the

application is running.

■ You want to write a custom security tool.

Solstice EM enables you to modify access control information for the following

levels of access control:

■ Application-level

■ Application-feature-level

■ Managed-object-level
12-8 Developing C++ Applications • October 2001

To enable an application to modify access control information, you use the access

control API. Enabling an application to modify access control information involves:

■ Activating access control for the Solstice EM platform

■ Adding a user to a privilege group

■ Listing all application features under access control

■ Adding applications and application features to a privilege group

■ Defining a target

■ Defining a security rule

■ Handling access control errors

For information on source code examples that show how to modify access control

information, refer to Section A.5.1 “Access Control API Examples” on page A-9.

12.3.1 Activating Access Control for the Solstice EM

Platform

Access control the Solstice EM platform is set active or inactive during installation. If

you want to enforce access control in your application, you must ensure that access

control is active for the Solstice EM platform.

To determine if access control is active, call the get_access_control_switch
function of the ACAccessControlRules class.

To activate access control, call the set_access_control_switch function of the

ACAccessControlRules class. In the call to set_access_control_switch ,

specify the access control switch status as emAccessControlOn .

To deactivate access control, call the set_access_control_switch function of the

ACAccessControlRules class, specifying the access control switch status as

emAccessControlOff .

Note – Any user who runs a program that activates or deactivates access control

must have full access privileges, such as those of a system administrator.

CODE EXAMPLE 12-3 shows code for activating access control for the Solstice EM

platform.

CODE EXAMPLE 12-3 Activating Access Control for the Solstice EM Platform

...
 #include <acapi/accesscontrolrules.hh> // AC rules
...
ACAccessControlRules access_control_defaults;
Chapter 12 Controlling Access to Applications and Data 12-9

In this example, if access control is not active for the Solstice EM platform, the

function set_access_control_switch is called to activate access control.

12.3.2 Adding a User to a Privilege Group

Access control rules are not set for individual users, but for a group of users called a

privilege group. Any user that requires access to secure applications, application

features, or managed objects must belong to a privilege group. All users in a

privilege group have the same access control privileges. The access control model of

Solstice EM allows individual users to belong to more than one group.

Solstice EM provides predefined privilege groups as given in TABLE 12-1.

ACAccessControlSwitch access_switch =
access_control_defaults.get_access_control_switch();

if (access_switch == emAccessControlOff)
{

access_switch = emAccessControlOn;
access_control_defaults.set_access_control_switch(access_switch);

}
...

TABLE 12-1 Predefined Privilege Groups

Privilege Group Description

Full Access Provided they are enabled to grant all privileges, users belonging to

the Full Access group are permitted to create, modify, and remove

access to all Solstice EM tools and managed objects according to any

existing rules or settings of the default rule.

Without the ability to grant all privileges, users will be able to

connect to a remote management information server (MIS), but will

not be able to update the security controls.

This group is not the same as turning off access control. When access

control is turned off, no existing rules limit a user’s access to

applications and managed objects.

Operators Users belonging to the Operators group can access specific tools but

cannot modify managed data.

View Only Users belonging to the View Only group can view a restricted set of

controlled object data, but they cannot modify the data. Users in

this group have access to a restricted set of tools to use for viewing

data to which they have access.

CODE EXAMPLE 12-3 Activating Access Control for the Solstice EM Platform (Continued)
12-10 Developing C++ Applications • October 2001

Adding a user to a privilege group involves:

■ Creating the privilege group

■ Creating the user

■ Making the user known to the management information server (MIS)

■ Adding the user to the privilege group and storing the group

12.3.2.1 Creating a Privilege Group

Before you assign a user to a privilege group, make sure that the privilege group

exists.

Creating a privilege group involves:

■ Creating and initializing an instance of the ACGroup class

■ Verifying that the privilege group does not exist in the MIS

■ Adding the privilege group to the MIS

Creating and Initializing an Instance of the ACGroup Class

Create and initialize an instance of the ACGroup class to represent the privilege

group. In the call to the constructor of the ACGroup class, specify the privilege group

name. The privilege group name is one of those listed in TABLE 12-1 or the name of a

custom privilege group you want to define yourself.

If you create a predefined privilege group, you only need to add users to it.

Verifying That a Privilege Group Does Not Exist in the MIS

Before trying to add a privilege group to the MIS, verify that the group does not

already exist in the MIS. To verify that a privilege group does not exist in the MIS,

call the exists function that the ACGroup class inherits from the ACObject class.

Adding a Privilege Group to the MIS

Adding a privilege group to the MIS enables the MIS to apply access control to the

privilege group. To add a privilege group to the MIS, call the create function that

the ACGroup class inherits from the ACObject class.

Note – When you add a privilege group to the MIS, the privilege group is stored

only in memory, not persistently. To store the privilege group persistently, store it as

described in Section 12.3.2.4 “Adding a User to a Privilege Group and Storing the

Group” on page 12-14.
Chapter 12 Controlling Access to Applications and Data 12-11

Example of Creating a Privilege Group

Code for creating a privilege group is shown in CODE EXAMPLE 12-4.

In this example, an instance of the ACGroup class is created and initialized to

represent the Operator privilege group. The overloaded NOT(!) operator acts on the

call to exists to verify that the privilege group does not exist. If the privilege group

does not exist, the create function is called to add the privilege group to the MIS.

12.3.2.2 Creating a User

Before you assign a user to a privilege group, create the user. To create a user, create

and initialize an instance of the ACUser class. The ACUser class represents a user in

a privilege group. In the call to the constructor of the ACUser class, specify the login

name of the user and, optionally, the full name of the user.

Code for creating a user is shown in CODE EXAMPLE 12-5.

In this example, a user whose login name is specified by the user_name variable is

created. The initialization of the user_name variable is not shown in this example.

CODE EXAMPLE 12-4 Creating a Privilege Group

...
#include <acapi/acgroup.hh> // ACGroup class
...

RWCString group_name("Operator"); // default group name
ACGroup group(group_name);
if (!group.exists())

group.create();
...

CODE EXAMPLE 12-5 Creating a User

...
#include <acapi/acaccessuserlist.hh> // ACUser class
...
ACUser user(user_name) ;
...
12-12 Developing C++ Applications • October 2001

12.3.2.3 Making a User Known to the MIS

Each user in your network management environment must be made known to the

MIS to be granted privileges to access applications, application features or managed

objects.

Making a user known to the MIS involves:

■ Creating an access control list

■ Adding a user to the access control list and storing the list

Creating an Access Control List

An access control list contains all users in your network management environment.

To create an access control list, call the get_access_user_list function of the

ACInterface class. The get_access_user_list function returns an instance of

the ACAccessUserList class. The ACAccessUserList class represents an access

control list.

Code for creating an access control list is shown in CODE EXAMPLE 12-6

Adding a User to an Access Control List and Storing the List

After you have created an access control list, add to the list each user in the network

management environment. To add a user to the access control list, call the add_user
function of the ACAccessUserList class. In the call to add_user , specify the

instance of ACUser that represents the user you want to add.

Each time you add a user to an access control list, store the list in the MIS. To store

the list in the MIS, call the store function that the ACAccessUserList class

inherits from the ACObject class.

CODE EXAMPLE 12-6 Creating an Access Control List

...
#include <acapi/acinterface.hh // ACInterface class
#include <acapi/acaccessuserlist.hh> // ACAccessUserList class
...
ACInterface ac_interface;
...
ACAccessUserList user_list = ac_interface.get_access_user_list();
...
Chapter 12 Controlling Access to Applications and Data 12-13

Code for adding a user to an access control list and storing the list is shown in

CODE EXAMPLE 12-7.

In this example, if the attempt to add the user represented by user_name succeeds,

the access control list is stored in the MIS. If the user already exists in the access

control list, the list is not stored, and a message that states that the user exists is

printed. If the attempt to add the user fails for another reason, the list is not stored

in the MIS. The reason for the failure is printed.

The initialization of the user_list object is shown in CODE EXAMPLE 12-6.

The initialization of the user_name variable is not shown in this example.

12.3.2.4 Adding a User to a Privilege Group and Storing the Group

Each user that you want to grant access privileges to must belong to a privilege

group. Add a user to a privilege group after you have made the user known to the

MIS. To add a user to a privilege group, call the add_group_member function on

the instance of ACGroup that represents the group.

CODE EXAMPLE 12-7 Adding a User and Storing an Access Control List

...
#include <acapi/acaccessuserlist.hh> // ACAccessUserList class
...
if (user_list.add_user(user) == TRUE) // Add the user to the user_list

user_list.store(); // Store user_list in the MIS

// Error checking and reporting
if (user_list.get_error_type() == ACC_OK)
{

Return(OK);
}
if (user_list.get_error_type() == ACC_USER_EXISTS)

 {
cout << user_name << " already exists, will continue ..."

<< endl;
Return(OK);

}
else
{

cout << "Error: " << user_list.get_error_string() << endl;
Return(NOT_OK);

}
...
12-14 Developing C++ Applications • October 2001

Each time you add a user to a privilege group, store the privilege group persistently

in the MIS. To store a privilege group persistently in the MIS, call the store
function that the ACGroup class inherits from the ACObject class.

Code for adding a user to a privilege group and storing the group is shown in

CODE EXAMPLE 12-8.

In this example, if the attempt to add the user represented by user_name succeeds,

the privilege group is stored in the MIS. If the user is already a member of the

privilege group, the privilege group is not stored, and a message that states that the

user is a member is printed. If the attempt to add the user fails for another reason,

the privilege group is not stored in the MIS. The reason for the failure is printed.

The initialization of the user_name variable is not shown in this example.

The initialization of the group object is shown in CODE EXAMPLE 12-4.

CODE EXAMPLE 12-8 Adding a User to a Privilege Group

...
#include <acapi/acgroup.hh> // ACGroup class
...

if (group.add_group_member(user_name) == TRUE)
group.store();

// Error checking and reporting
if (group.get_error_type() == ACC_OK)
{

Return(OK);
}
if (group.get_error_type() == ACC_USER_EXISTS)
{

cout << user_name << " already exists, will continue ..."
<< endl;

Return(OK);
}
else
{

cout << "Error: " << group.get_error_string() << endl;
Return(NOT_OK);

}
}

Chapter 12 Controlling Access to Applications and Data 12-15

12.3.3 Listing All Application Features Under Access

Control

To determine whether all the features you want to restrict access to are under access

control, list all application features under application-feature-level access control.

Listing all application features under application-feature-level access control

involves:

■ Listing all applications under application-feature-level access control

■ For each application listed, listing the features of the application that are under

access control

12.3.3.1 Listing All Applications Under Application-Feature-Level
Access Control

Listing all applications under application-feature-level access control involves:

■ Creating and initializing an instance of the ACInterface class

■ Calling the get_application_container function of the ACInterface class

to get an instance of the ACApplicationContainer class

■ Calling the get_all_applications function on the instance of

ACApplicationContainer that the call to get_application_container
returned

If you want to get a description of each application, call the

get_application_description function on each application in the list returned

by the call to get_all_applications .

Code for listing all applications under application-feature-level access control and

getting a description of each application is shown in CODE EXAMPLE 12-9.

CODE EXAMPLE 12-9 Listing Applications Under Application-Feature-Level Access
Control

...
#include <acapi/acapplication.hh>
#include <acapi/acapplicationfeature.hh>
#include <acapi/acinterface.hh>
...

ACInterface ac_interface;
ACApplicationContainer app_container =

ac_interface.get_application_container();

ACApplicationList app_list =
app_container.get_all_applications();
12-16 Developing C++ Applications • October 2001

12.3.3.2 Listing the Features of an Application That Are Under Access
Control

After you have listed all applications under application-feature-level access control,

get for each application a list of the features that are under access control.

Listing the features of an application that are under access control involves:

■ Creating and initializing an instance of the ACAppFeatureContainer class

■ Calling the get_all_features function of the ACAppFeatureContainer class

to get an instance of the ACApplicationFeatureList class

If you want to get a description of each application, call the

get_feature_description function on each feature in the list returned by the

call to get_all_features .

Code for listing the features of an application that are under access control and

getting a description of each feature is shown in CODE EXAMPLE 12-10.

...
for (int k=0; k < app_list.entries(); k++)
{

ACApplication app(app_list[k].data());
cout << app_list[k].data();
cout << app.get_application_description() << endl;

}
...

CODE EXAMPLE 12-10 Listing Application Features Under Access Control

...
#include <acapi/acapplication.hh>
#include <acapi/acapplicationfeature.hh>
...

ACAppFeatureContainer app_features(application_name);
ACApplicationFeatureList feature_list =

app_features.get_all_features();
...

for (int j=0; j < feature_list.entries(); j++)
{

ACApplicationFeature feature(application_name,
feature_list[j].data());

cout << feature_list[j].data();

CODE EXAMPLE 12-9 Listing Applications Under Application-Feature-Level Access Control
(Continued)
Chapter 12 Controlling Access to Applications and Data 12-17

12.3.4 Adding Applications and Application Features to

a Privilege Group

Adding applications and application features to a privilege group defines which

applications and application features are accessible to the users in the privilege

group.

To add an application to a privilege group, call the add_application function on

the instance of ACGroup that represents the group. In the call to add_application ,

specify the name of the application you want to add.

To add an application feature to a privilege group, call the

add_application_feature function on the instance of ACGroup that represents

the group. In the call to add_application_feature , specify:

■ The name of the application that provides the feature you want to add

■ The name of the feature you want to add

Note – For information on how to enable your application to enforce application

level and application-feature-level access control, refer to Section 12.2.2 “Enforcing

Application-Level and Application-Feature-Level Access Control” on page 12-6.

12.3.5 Defining a Target

A target is a collection of management information that is subject to access control.

Define a target for each collection of management information that you want to be

subject to the same set of security rules for the same user group.

cout << feature.get_feature_description() << endl;
}

...

CODE EXAMPLE 12-10 Listing Application Features Under Access Control (Continued)
12-18 Developing C++ Applications • October 2001

Solstice EM provides predefined targets as given in TABLE 12-2.

Defining a target involves:

■ Creating a target

■ Defining the list of operations for the target

■ Defining the membership of the target

■ Storing the target persistently in the MIS

12.3.5.1 Creating a Target

Before you define the membership of a target, make sure that the target exists.

Creating a target involves:

■ Creating and initializing an instance of the ACTargets class

■ Verifying that the target does not exist in the MIS

■ Adding the target to the MIS

■ Checking for errors

Creating and Initializing an Instance of the ACTargets Class

Create and initialize an instance of the ACTargets class to represent the target. In

the call to the constructor of the ACTargets class, specify:

■ The target name. The target name is one of those listed in TABLE 12-2 or the name

of a custom target you want to define yourself. If you create a predefined target,

you do not need to define its membership.

■ Optionally, the target type. The target type specifies the managed object class

that defines the target. The target type is one of the following:

■ X741_TARGETS, which specifies the targets managed object class defined in

ITU-T X.741 Objects and Attributes for Access Control
■ EM_TARGETS, which specifies the emTargets managed object class defined in

Solstice EM access control module

TABLE 12-2 Predefined Targets

Name of Target Description

DenyAccessControlObjectsChange Pointer to the object /em-
name=”accessControlContainer ”

Connection Pointer for the instance of the object
subsuystemid=’EM-MIS ” which is of type

emApplicationinstance

View Only Pointer to the root of the management information tree

(MIT)
Chapter 12 Controlling Access to Applications and Data 12-19

The default target type is X741_TARGETS.

Verifying That a Target Does Not Exist in the MIS

Before trying to add a target to the MIS, verify that the target does not already exist

in the MIS. To verify that a target does not exist in the MIS, call the exists function

that the ACTargets class inherits from the ACObject class.

Adding a Target to the MIS

Adding a target to the MIS enables the MIS to apply access control to the target. To

add a target to the MIS, call the create function that the ACTargets class inherits

from the ACObject class.

Note – When you add a target to the MIS, the target is stored only in memory, not

persistently. To store the target persistently, store it as described in Section 12.3.5.4

“Storing the Target Persistently in the MIS” on page 12-25.

Checking for Errors

After you have added a target to the MIS, check for errors. You have to explicitly

check for errors because no errors are returned when you verify if the target exists or

when you add a target to the MIS. To check for errors, call the get_error_type
function that the ACTargets class inherits from the ACObject class. To get the

reason for an error, call the get_error_string function that the ACTargets class

inherits from the ACObject class.

Example of Creating a Target

Code for creating a target is shown in CODE EXAMPLE 12-11.

CODE EXAMPLE 12-11 Creating a Target

...
#include <acapi/actargets.hh> //ACTargets class
...

ACTargets target(target_name);
if (!target.exists())
target.create();
12-20 Developing C++ Applications • October 2001

In this example, an instance of the ACTargets class is created and initialized to

represent the target identified by target_name . The overloaded NOT(!) operator

acts on the call to exists to verify that the target does not exist. If the target does

not exist, the create function is called to add the target to the MIS. If an error

occurs, a message explaining the reason for the error is printed.

The initialization of the target_name variable is not shown in this example.

12.3.5.2 Defining the List of Operations for a Target

The list of operations for a target specifies which management operations on the

target are subject to any security rule applied to the target. The operations are

permitted or disallowed, depending on the security rule applied to the target. For

information on how to define a security rule, see Section 12.3.6 “Defining a Security

Rule” on page 12-26.

Defining the list of operations for a target involves:

■ Creating the list of operations for a target

■ Adding each operation to the list

■ Adding the list of operations to the target

To create a list of operations for a target, create an instance of the defined type

ACOperationsList to represent the list.

To add an operation to a list of operations, call the insert function of the defined

type ACOperationsList . In the call to insert , specify the operation. The

operation must be one of the operations defined in TABLE 12-3.

// Error checking and reporting
if (target.get_error_type() != ACC_OK)
{
cerr << "Error: " << target.get_error_string() << endl;
exit(3);

...

TABLE 12-3 Operations for a Target

Operation Definition

create Creates a managed object

delete Deletes a managed object

get Obtains attribute values from a managed object

replace Replaces the existing value with a specified value

CODE EXAMPLE 12-11 Creating a Target (Continued)
Chapter 12 Controlling Access to Applications and Data 12-21

To add a list of operations to a target, call the set_operations_list function of

the ACTargets class.

Code for defining the list of operations for a target is shown in CODE EXAMPLE 12-12.

In this example, a list that consists of the operations get and replace is defined for

a target. The set_operations_list function is called to add the list to the target.

The initialization of the target object is shown in CODE EXAMPLE 12-11.

addMember Adds a value to the current value of a multi-valued

attribute

removeMember Removes a value from the current value of a multi-valued

attribute

replacewithDefault Replaces the existing value with the default value defined

in the property list in the ATTRIBUTESconstruct of the

attribute’s GDMO specification

action Performs an action on a managed object

multipleObjectSelection Selects multiple objects in the MIT to be the subject of a

management operation

filter Applies a filter to a subtree of the MIT

CODE EXAMPLE 12-12 Defining the List of Operations for a Target

...
#include <acapi/actargets.hh> // ACTargets class and

 // ACOperationsList typedef
 ...

ACOperationsList oper_list;

RWCString operation1("get");
oper_list.insert(operation1);

RWCString operation2("replace");
oper_list.insert(operation2);

 ...
target.set_operations_list(oper_list);

 ...

TABLE 12-3 Operations for a Target (Continued)

Operation Definition
12-22 Developing C++ Applications • October 2001

12.3.5.3 Defining the Membership of a Target

Defining the membership of a target identifies a collection of management

information that is subject to access control. In the Solstice EM environment, this

collection of management information is an object set that consists of one or more of

the following:

■ One or more managed objects

■ A subtree of the MIT

■ All instances of one or more managed object classes

Selecting One or More Managed Objects

If the managed objects you want to be members of a target are distributed

throughout the MIT, select them individually.

To select one managed object, call the add_moi function of the ACTargets class. In

the call to add_moi , specify the fully distinguished name (FDN), local distinguished

name (LDN), or nickname of the managed object.

Selecting more than one managed object involves:

■ Creating an instance of the defined type ACMOIList to represent the list of

managed objects you want to select

■ Calling the insert function once for each managed object you want to add to the

list

■ Passing the list in a call to the set_moi_list function of the ACTargets class

Selecting a Subtree of the MIT

If the managed objects you want to be members of a target are in a subtree of the

MIT, select the subtree. To select a subtree, specify:

■ The base managed object

■ A scope

■ A filter

The base managed object is the root object of the subtree you want to select. To

specify the base managed object, call the add_moi function of the ACTargets class.

In the call to add_moi , specify the FDN, LDN, or nickname of the base managed

object.

The scope selects one or more managed objects in the subtree rooted at the base

managed object. The scope is defined with reference to the base managed object.
Chapter 12 Controlling Access to Applications and Data 12-23

To specify a scope, call the set_scope function of the ACTargets class. In the call

to set_scope , create and initialize an instance of the ACScope class to represent the

scope. In the call to the constructor of the ACScope class, specify one of the scope

values given in TABLE 12-4.

The filter selects or rejects objects based on the presence and values of specific

attributes. The filter is a boolean expression, which may be a single test or a

combination of multiple tests. The filter is optional. If you omit it, all managed

objects identified by the base managed object and scope are selected.

To specify a filter, call the set_filter function of the ACTargets class. In the call

to set_filter , specify an instance of the defined type ACFilter to represent the

filter. This defined type corresponds to a string. The required format of this string is

identical to a filter in a derivation string as defined in Section 6.3.2.3 “Filter” on

page 6-7.

Selecting All Instances of One or More Managed Object Classes

To select all instances of a managed object class, call the add_moc function of the

ACTargets class. In the call to add_moc , specify the name of the managed object

class.

If a managed object class with the same name is defined in more than one of the

GDMO documents loaded into the MIS, you must specify in which document the

managed object class you are interested in is defined.

To specify the document, prefix the managed object class name with the document

name specified in the MODULEconstruct of the managed object’s GDMO

specification, for example: "My Document":reusedMOC .

Specifying all instances of more than one managed object class involves:

TABLE 12-4 Scope Values in the Constructor of ACScope

Value Selects

BASE_OBJECT The base managed object only

ALL_LEVELS The base managed object and its entire subtree

ALL_LEVELS_EXCEPT_BASE The entire subtree of the base managed object excluding the

base managed object itself

NTH_LEVEL, n Only level n subordinates of the base managed object,

where n is an integer

BASE_TO_NTH_LEVEL, n The base managed object and all its subordinates to level n,

where n is an integer
12-24 Developing C++ Applications • October 2001

■ Creating an instance of the defined type ACMOCList to represent the list of

managed object classes you want to specify

■ Calling the insert function once for each managed object class you want to add

to the list

■ Passing the list in a call to the set_moc_list function of the ACTargets class

12.3.5.4 Storing the Target Persistently in the MIS

After you have defined the list of operations for a target and the membership of a

target, store the target persistently in the MIS.To store a target persistently in the

MIS, call the store function that the ACTargets class inherits from the ACObject
class.

Code for storing a target persistently in the MIS is shown in CODE EXAMPLE 12-13.

In this example, if the managed object class and list of operations are added to the

target, the target is stored persistently in the MIS. The initialization of the target
object is shown in CODE EXAMPLE 12-11.

CODE EXAMPLE 12-13 Storing a Target Persistently in the MIS

...
#include <acapi/actargets.hh> // ACTargets class and
...

if (target.add_moc(moc) && target.set_operations_list(oper_list))
{

target.store();
}

...
Chapter 12 Controlling Access to Applications and Data 12-25

12.3.6 Defining a Security Rule

A security rule grants or denies a privilege group access to the management

information in a target. Solstice EM provides predefined security rules as given in

TABLE 12-5.

Defining a security rule involves:

■ Creating the security rule

■ Adding a privilege group to the security rule

■ Adding a target to the security rule

■ Defining the enforcement action of the security rule

■ Storing the security rule persistently in the MIS

12.3.6.1 Creating a Security Rule

Before you add a target or a privilege group to a security rule, create the security

rule.

Creating a security rule involves:

■ Creating and initializing an instance of the ACRule class

■ Verifying that the security rule does not exist in the MIS

■ Adding the security rule to the MIS

■ Checking for errors

TABLE 12-5 Predefined Security Rules

Rule Name Description

Full Access Grants the users of “Operators” and “Full Access”

groups access to all managed objects

DenyAccesscontrolObjectsChange Denies the users of the “Operator” group access to

change object attributes

View Only Grants the users of the “View Only” group access to

the following objects named:

• “View Only” which allows the users to view data

but not change it

• “Connection” which allows them to connect to an

MIS to view data
12-26 Developing C++ Applications • October 2001

Creating and Initializing an Instance of the ACRule Class

Create and initialize an instance of the ACRule class to represent the security rule. In

the call to the constructor of the ACRule class, specify the name of the security rule.

The security rule name is one of those listed in TABLE 12-5 or the name of a custom

security rule you want to define yourself. If you create a predefined security rule,

you do not need to add a target or a privilege group nor define the enforcement

action, unless you want to extend the rule.

Verifying That a Security Rule Does Not Exist in the MIS

Before trying to add a security rule to the MIS, verify that the security rule does not

already exist in the MIS. To verify that a security rule does not exist in the MIS, call

the exists function that the ACRule class inherits from the ACObject class.

Adding a Security Rule to the MIS

Adding a security rule to the MIS enables the MIS to enforce the security rule. To

add a security rule to the MIS, call the create function that the ACRule class

inherits from the ACObject class.

Note – When you add a security rule to the MIS, the security rule is stored only in

memory, not persistently. To store the security rule persistently, store it as described

in Section 12.3.6.5 “Storing the Security Rule Persistently in the MIS” on page 12-30.

Checking for Errors

After you have added a security rule to the MIS, check for errors. You have to

explicitly check for errors because no errors are returned when you verify if a

security rule exists or when you add a security rule to the MIS. To check for errors,

call the get_error_type function that the ACRule class inherits from the

ACObject class. To get the reason for an error, call the get_error_string
function that the ACRule class inherits from the ACObject class.
Chapter 12 Controlling Access to Applications and Data 12-27

Example of Creating a Security Rule

Code for creating a security rule is shown in CODE EXAMPLE 12-14.

In this example, an instance of the ACRule class is created and initialized to

represent the security rule identified by rule_name . The overloaded NOT(!)

operator acts on the call to exists to verify that the security rule does not exist. If

the security rule does not exist, the create function is called to add the security rule

to the MIS. If an error occurs, a message explaining the reason for the error is

printed.

The initialization of the rule_name variable is not shown in this example.

12.3.6.2 Adding a Privilege Group to a Security Rule

Adding a privilege group to a security rule specifies the users that the security rule

applies to. To add a privilege group to a security rule, call the add_group function

of the ACRule class. In the call to add_group , specify the name of the privilege

group you want to add.

CODE EXAMPLE 12-15 shows code for adding a privilege group to a security rule.

CODE EXAMPLE 12-14 Creating a Security Rule

...
#include <acapi/acrule.hh> // ACRule class
...

ACRule rule(rule_name);

if (!rule.exists())
rule.create();

// Error checking and reporting
if (rule.get_error_type() != ACC_OK)
{
cerr << "Error: " << rule.get_error_string() << endl;
exit(4);
}

...

CODE EXAMPLE 12-15 Adding a Privilege Group to a Security Rule

...
#include <acapi/acrule.hh> // ACRule class
...
12-28 Developing C++ Applications • October 2001

In this example, a privilege group named Operator is added to a security rule. The

initialization of the rule_name variable is not shown in this example.

12.3.6.3 Adding a Target to a Security Rule

Adding a target to a security rule specifies the collection of management information

that the security rule applies to. To add a target to a security rule, call the

add_targets function of the ACRule class. In the call to add_targets , specify the

name of the target you want to add.

CODE EXAMPLE 12-16 shows code for adding a target to a security rule.

In this example, a target named View Only is added to a security rule. The

initialization of the rule_name variable is not shown in this example.

12.3.6.4 Defining the Enforcement Action of a Security Rule

Defining the enforcement action of a security rule specifies the result of an attempt

by a member of the security rule’s privilege group to perform a management

operation on a member of the security rule’s target.

ACRule rule(rule_name);
...

RWCString group("Operator");
rule.add_group(group);

...

CODE EXAMPLE 12-16 Adding a Target to a Security Rule

...
#include <acapi/acrule.hh> // ACRule class
...

ACRule rule(rule_name);
...

RWCString target("View Only");
rule.add_targets(target);

...

CODE EXAMPLE 12-15 Adding a Privilege Group to a Security Rule (Continued)
Chapter 12 Controlling Access to Applications and Data 12-29

To define the enforcement action of a security rule, call the

set_enforcement_action function of the ACRule class. In the call to

set_enforcement_action , specify the enforcement action. The enforcement

action must be one of the enforcement actions defined in TABLE 12-6.

CODE EXAMPLE 12-17 shows code for defining the enforcement action of a security

rule.

In this example, the enforcement action of a security rule is set to

denyWithResponse . The initialization of the rule_name variable is not shown in

this example.

12.3.6.5 Storing the Security Rule Persistently in the MIS

After you have defined the enforcement action, store the security rule persistently in

the MIS. To store a security rule persistently in the MIS, call the store function that

the ACRule class inherits from the ACObject class.

TABLE 12-6 Enforcement Actions

Enforcement Action Meaning

allow Allows the requested management operation to be performed

denyWithResponse Denies the requested management operation and returns the

access denied response

denyWithoutResponse Denies the requested management operation without giving a

response

denyWithFalseResponse Gives a false response and, if the management operation was

performed in confirmed mode, returns incorrect management

information

abortAssociation Aborts the association between the manager and the

managed entity

CODE EXAMPLE 12-17 Defining the Enforcement Action of a Security Rule

...
#include <acapi/acrule.hh> // ACRule class
...

ACRule rule(rule_name);
...

EnforcementAction enforcement_action = denyWithResponse;
rule.set_enforcement_action(enforcement_action);

...
12-30 Developing C++ Applications • October 2001

CODE EXAMPLE 12-18 shows code for storing a security rule persistently in the MIS.

In this example, if the privilege group and target are added to the security rule, and

if the enforcement action is defined, the security rule is stored persistently in the

MIS.

12.3.7 Handling Access Control Errors

Users need to know when an attempted access control operation has failed. By

providing accurate information on why the operation failed, your applications can

ease a user’s work by indicating the corrective action required when problems occur.

To provide accurate diagnostic information, test for the success of any function call

that may, in some circumstances, fail to return the desired result.

To test for the success of a function call, call the get_error_type function. When

you test for the success of a function call, call the get_error_string function to

get information on the error and present that information to the user.

Note – The get_error_type and get_error_string functions of the access

control API are similar to the corresponding functions of the Error class described

in Chapter 4.

If you need to ignore an error and carry on, call the reset_error function. Call this

function should before any valid call is made on an object.

CODE EXAMPLE 12-18 Storing a Security Rule

...
#include <acapi/acrule.hh> // ACRule class
...
ACRule rule(rule_name);
...
RWCString group("Operator");
RWCString target("View Only");
EnforcementAction enforcement_action = denyWithResponse;

if (rule.add_group(group) && rule.add_targets(target) &&
rule.set_enforcement_action(enforcement_action))

{
rule.store();

}
...
Chapter 12 Controlling Access to Applications and Data 12-31

CODE EXAMPLE 12-19 shows code for testing the success of a function call and for

providing information on the reason for the failure if the function call fails.

12.4 Getting Access Control Defaults
Getting access control defaults enables you to determine if you need to modify any

of the predefined security rules provided with the Solstice EM platform. Solstice EM

enables you to get the following access control defaults:

■ Default enforcement action for all management operations

■ Default enforcement action for all events

■ List of trusted hosts

■ Access control denial granularity

■ Access control domain

CODE EXAMPLE 12-19 Error Handling Example

...
#include <acapi/acgroup.hh> // ACGroup class
...

RWCString group_name("Operator"); // default group name
ACGroup group(group_name);

if (!group.exists())
group.create();

...
// Error checking and reporting
if (group.get_error_type() != ACC_OK)
{

cout << "Error: " << group.get_error_string() << endl;
exit(3);

}
...
12-32 Developing C++ Applications • October 2001

12.4.1 Getting the Default Enforcement Action for All

Management Operations

The enforcement action for a management operation specifies the result of an

attempt to perform the management operation.

The management operations to which an enforcement action can be applied are

listed in TABLE 12-3. The possible enforcement actions are listed in TABLE 12-6.

To get the default enforcement action for all management operations, call the

get_default_access function of the ACAccessControlRules class. The

get_default_access function returns a list of value pairs. There is one item in the

list for each management operation. Each item in the list consists of the management

operation and its enforcement action separated by a space.

CODE EXAMPLE 12-20 shows code for getting the default enforcement action for all

management operations.

12.4.2 Getting the Default Enforcement Action for All

Events

The enforcement action for an event specifies the result of an attempt to view the

information contained in an event. By default, Solstice EM applies the same

enforcement action to all events, regardless of event type.

To get the default enforcement action for all events, call the

get_default_event_access function of the ACAccessControlRules class. The

get_default_event_access function returns one of the enforcement actions

listed in TABLE 12-6.

CODE EXAMPLE 12-20 Getting Default Access Control for All Operations

...
 #include <acapi/accesscontrolrules.hh // AC rules
...

ACAccessControlRules access_control_defaults;
...

ACDefaultAccess access =
access_control_defaults.get_default_access();

...
Chapter 12 Controlling Access to Applications and Data 12-33

CODE EXAMPLE 12-21 shows code for getting the default enforcement action for all

events.

12.4.3 Getting a List of Trusted Hosts

A trusted host provides its root user with full access permission to the MIS of the

current host whenever that user is running a Solstice EM application or tool.

To get a list of trusted hosts for a Solstice EM system, call the

get_trusted_host_list function of the ACAccessControlRules class.

CODE EXAMPLE 12-22 shows code for getting a list of trusted hosts.

CODE EXAMPLE 12-21 Getting the Default Enforcement Action for All Events

...
 #include <acapi/accesscontrolrules.hh // AC rules
...

ACAccessControlRules access_control_defaults;
...

ACDefaultEventAccess event_access =
access_control_defaults.get_default_event_access();

...

CODE EXAMPLE 12-22 Getting a List of Trusted Hosts

...
 #include <acapi/accesscontrolrules.hh // AC rules
...

ACAccessControlRules access_control_defaults;
...

ACTrustedHostList trusted_hosts =
access_control_defaults.get_trusted_host_list();

...
12-34 Developing C++ Applications • October 2001

12.4.4 Getting the Access Control Denial Granularity

The access control denial granularity defines the level at which access is denied. The

possible values of access control denial granularity are given in TABLE 12-7.

To get the access control denial granularity, call the get_denial_granularity
function of the ACAccessControlRules class. The get_denial_granularity
function returns one of the granularity values given inTABLE 12-7.

CODE EXAMPLE 12-23 shows code for getting the access control denial granularity.

TABLE 12-7 Access Control Denial Granularity Levels

Granularity Value Meaning

request Access is denied at the request level. An entire request to access one

or more managed objects in the MIS is denied if access to one of the

managed objects in the request is denied. The request is allowed

only when all managed objects in the request are accessible.

object Access is denied at the managed object level. Access is denied only

to managed objects in the request that are not accessible. Access to

the remaining managed objects in the request is allowed.

attribute Access is denied at the attribute level. A request to access a

managed object is denied if access to one or more of its attributes is

denied. Access to the managed object is allowed only when all the

attributes of the managed object are accessible.

CODE EXAMPLE 12-23 Getting the Access Control Denial Granularity

...
 #include <acapi/accesscontrolrules.hh // AC rules
...

ACAccessControlRules access_control_defaults;
...

ACDenialGranularity denial_gran =
access_control_defaults.get_denial_granularity();

...
Chapter 12 Controlling Access to Applications and Data 12-35

12.4.5 Getting the Access Control Domain

To get the domain that your access control rules govern, call the

get_domain_identity function of the ACAccessControlRules class.

CODE EXAMPLE 12-24 shows code for getting the access control domain.

12.5 Keeping Event Notifications Private
Keeping event notifications private ensures that a user’s logs contain only event

notifications emitted by managed objects to which the user has access. By default, all

event notifications that the Solstice EM platform receives are written to a user’s logs,

including event notifications from managed objects that the user is normally denied

access to.

Keeping event notifications private involves:

■ Assigning an owner to a log

■ Enabling access control for the log server

12.5.1 Assigning an Owner to a Log

The owner of a log is the user who will read the log. Assigning an owner to a log

associates the log with the managed objects to which the owner of the log has access.

This association enables the log server to perform access control on event

notifications. When the log server receives an event notification, the log server

verifies if the owner of the log is granted access to the managed object that emitted

the event notification. If the owner is granted access to the managed object, the event

is logged. Otherwise, the event is not logged.

CODE EXAMPLE 12-24 Getting the Access Control Domain

...
 #include <acapi/accesscontrolrules.hh // AC rules
...
ACAccessControlRules access_control_defaults;
...

cout << "Access control domain is";
adjust_indentation("Access control domain is");
cout << access_control_defaults.get_domain_identity() << endl;

...
12-36 Developing C++ Applications • October 2001

Assigning an owner to a log involves:

■ Creating an auxiliary object for the log

■ Verifying that the auxiliary object does not exist in the MIS

■ Adding the auxiliary object to the MIS

■ (Optional) Changing the owner of the log

■ Storing the auxiliary object persistently in the MIS

12.5.1.1 Creating an Auxiliary Object for a Log

In the Solstice EM environment, a log is represented by an instance of the log class

as defined in ITU-T X.735/ISO 10164-6 Log Control Function. This class provides no

mechanism for assigning an owner to a log. Consequently, to assign an owner to a

log, you must create an auxiliary object for the log. An auxiliary object contains an

identifier for a log and an identifier for the owner of the log.

To create an auxiliary object for a log, create and initialize an instance of the

ACDbObject class. The ACDbObject class represents a database object, such as a

log, on which access control can be enforced. In the call to the constructor of

ACDbObject , specify the FDN, LDN or nickname of the log.

12.5.1.2 Verifying That an Auxiliary Object Does Not Exist in the MIS

Before trying to add an auxiliary object to the MIS, verify that the auxiliary object

does not already exist in the MIS. To verify that an auxiliary object does not exist in

the MIS, call the exists function that the ACDbObject class inherits from the

ACObject class.

12.5.1.3 Adding an Auxiliary Object to the MIS

Adding an auxiliary object for a log to the MIS enables the log server to use the

auxiliary object for performing access control on event notifications. To add an

auxiliary object to the MIS, call the create function that the ACDbObject class

inherits from the ACObject class.

Note – When you add an auxiliary object to the MIS, the auxiliary object is stored

only in memory, not persistently. To store the auxiliary object persistently, store it as

described in “Storing the Auxiliary Object Persistently in the MIS” on page 38.
Chapter 12 Controlling Access to Applications and Data 12-37

12.5.1.4 (Optional) Changing the Owner of a Log

When you create an auxiliary object for a log, the log server sets the owner of the log

to the user name of the user who created the log. To change the owner of a log, call

the set_auxobject_owner function of the ACDbObject class.

In the call to set_auxobject_owner , specify:

■ The type of the new owner, which must be USER
■ The user name of the new owner

Note – Any user who runs a program that changes the owner of a log must have

full access privileges, such as those of a system administrator.

12.5.1.5 Storing the Auxiliary Object Persistently in the MIS

After you have added an auxiliary object to the MIS, store the auxiliary object

persistently in the MIS. To store an auxiliary object persistently in the MIS, call the

store_auxobject function of the ACDbObject class.

12.5.1.6 Example of Assigning an Owner to a Log

CODE EXAMPLE 12-25 shows code for assigning an owner to a log.

CODE EXAMPLE 12-25 Assigning an Owner to a Log

...
#include <pmi/sched.hh> // Scheduler for applications with no GUI
#include <acapi/acdbobject.hh> // ACDbObject class
...

ACDbObject *acdbobj_ptr = new ACDbObject(logname, FALSE);

if (!acdbobj_ptr->exists()) {
{

if (!acdbobj_ptr->create()) {
cout<<"The auxiliary object has not been created."<<endl;
exit(1);

}
else{

cout<<"The auxiliary object has not been created."<<endl;
exit(1);

}

12-38 Developing C++ Applications • October 2001

In this example, an auxiliary object for the log identified by log_name is created.

The overloaded NOT(!) operator acts on the call to exists to verify that the

auxiliary object does not exist. If the auxiliary object does not exist, the create
function is called to add the auxiliary object to the MIS. The

set_auxobject_owner is then called to change the owner of the log to the user

identified by owner_id. After the owner of the log has been changed, the

store_auxobject function is called to store the auxiliary object persistently in the

MIS.

The initialization of the log_name and owner_id variables is not shown in this

example.

12.5.2 Enabling Access Control for the Log Server

By default, the log server does not perform access control on event notifications. To

enable the log server to perform access control on event notifications, set the

EM_LOG_MPA_EVENT_ACCESSenvironment variable to TRUE. To disable access

control on event notifications, set the EM_LOG_MPA_EVENT_ACCESSenvironment

variable to FALSE. To set environment variables for Solstice EM, edit the

/opt/SUNWconn/em/build/acct /EM-config configuration file.

}
//Send and receive the messages.
dispatch_recursive(FALSE);
cout<<"Resetting the auxiliary object."<<endl;

if(!acdbobj_ptr->set_auxobject_owner(USER, owner_id)) {
cout<<"Failed to reset the auxiliary object."<<endl;
exit(3);

}
if(!acdbobj_ptr->store_auxobject()) {

cout<<"Failed to reset the auxiliary object."<<endl;
exit(3);

}

CODE EXAMPLE 12-25 Assigning an Owner to a Log (Continued)
Chapter 12 Controlling Access to Applications and Data 12-39

12.6 Making MPAs Secure
Making MPAs secure protects objects that are accessed through a management

protocol adapter (MPA) from unauthorized access. An MPA performs protocol

translation required for communication between the Solstice EM MIS and an

external entity, such as an agent. Making an MPA secure enables the MPA to enforce

access control on the objects it manages.

To make an MPA secure, you use the access control engine API. Making an MPA

secure involves:

■ Subscribing to access control events

■ Creating and initializing an instance of the ACEclass

■ Handling access control events

■ Implementing a class derived from AuxServerUtils
■ Calling access control decision and enforcement functions

For information on source code examples that show how to make an MPA secure,

refer to Section A.5.2 “Access Control Engine API Examples” on page A-9.

12.6.1 Subscribing to Access Control Events

To be able to enforce current access control policies on the objects it manages, a

secure MPA must be updated with changes to access control information that is

stored in the MIS. Changes to access control information in the MIS are

communicated by access control events.

A secure MPA needs to receive access control events to be updated with changes to

access control information. A secure MPA receives access control events only if it has

subscribed to them.

Subscribing to access control events involves:

■ Selecting the managed object that represents the MPA’s connection to the MIS

■ Setting the emSpecialEvents attribute of the managed object to

accessControlEvent

For information on how to select a managed object, refer to Section 5.3 “Selecting a

Managed Object” on page 5-8. To obtain the FDN of the managed object that

represents an MPA’s connection to the MIS, call the get_prop function of the

Platform class. In the call to get_prop , specify the APPLICATION_OBJNAME
property.
12-40 Developing C++ Applications • October 2001

For information on how to set an attribute of a managed object, refer to Section 5.7

“Setting Attribute Values of an Object” on page 5-19. You have to set the

emSpecialEvents attribute to the text string accessControlEvent . Therefore,

call the set_str function of the Image class to set this attribute in the Image
instance.

Code for subscribing to access control events is shown in CODE EXAMPLE 12-26.

CODE EXAMPLE 12-26 Subscribing to Access Control Events

....
#include <pmi/hi.hh> // High Level PMI
...
Platform emPlatform(duEM);
...
extern Debug pdm_test_error;
...
/*
* Set the special events on the testmpa’s application instance
*/
DU appl_obj = emPlatform.get_prop(duAPPLICATION_OBJNAME);
Image appl_inst(appl_obj);
if (!appl_inst.set_str("emSpecialEvents",

"{accessControlEvent}"))
{
pdm_test_error.print(

"Error in setting special events on the testmpa’s
application instance\n");

pdm_test_error.print("Reason: %s\n",
emPlatform.get_error_string());

exit (-1);
}
// Store the changes
if (!appl_inst.store())
{

pdm_test_error.print(
"Error in setting special events on the topo server’s

application instance\n");
pdm_test_error.print("Reason: %s\n",

emPlatform.get_error_string());
exit (-1);
}

Chapter 12 Controlling Access to Applications and Data 12-41

12.6.2 Creating and Initializing an Instance of the ACE
Class

Creating and initializing an instance of the ACEclass provides an MPA with the

services it requires to enforce access control on the objects it manages. An MPA uses

an instance of the ACEclass to call access control decision and enforcement

functions.

An instance of the ACEclass loads access control information that is stored in the

MIS into an MPA. The loading of this information is done by internal callbacks.

Consequently, the loading of this information is complete only when

dispatch_recursive is called. If functions of any classes in the access control

engine (ACE) API are called before dispatch_recursive is called, the default

behavior is provided.

Create and initialize an instance of the ACEclass in the main function of the MPA

after the MPA has established a connection to the MIS. In the constructor of the ACE
class, specify:

■ The domain for which access control is to be provided

■ A reference to the class that implements the AuxServerUtils class (see

Section 12.6.4 “Implementing a Class Derived From AuxServerUtils” on

page 12-44)

To specify the access controldomain, create and initialize an instance of the

ACEDomain class and pass this instance to the constructor of the ACEclass. In the

constructor of ACEDomain, specify:

■ The name of the security domain

■ The message service access point (SAP) of the security domain

Code for creating and initializing an instance of the ACEclass is shown in

CODE EXAMPLE 12-27.

CODE EXAMPLE 12-27 Creating and Initializing an Instance of the ACEClass

...
#include <ace/ace.hh> // ACE API
#include "mpapdm_ace.hh" // AuxServerUtils implementation
...
ACEDomain ace_domain ("AccessControl", ev_sap);
mpapdm_aux_server = new MpapdmAuxServer();
ace_ptr = new ACE(ace_domain, *mpapdm_aux_server);
...
12-42 Developing C++ Applications • October 2001

In this example, an instance of the ACEDomain class is initialized with the domain

AccessControl and the message SAP identified by ev_sap . This instance and a

reference to the MpapdmAuxServer class are passed to the constructor of the ACE
class. The MpapdmAuxServer class is an implementation of the AuxServerUtils
class.

The initialization of the ev_sap variable is not shown in this example.

12.6.3 Processing Information in Access Control Events

Changes to access control information in the MIS are communicated to an MPA by

access control events. An MPA needs to be able to process information in these

events to ensure that its access control information is current.

To enable an MPA to process information in access control events, register a callback

for these events. The callback is called when the MPA receives an access control

event.

To register a callback for access control events, call the when function of the

Platform class. In the call to when, you must:

■ Specify the event type

■ Initialize an instance of the Callback class to represent the callback function you

want to register

The event type must be RAW_EVENT.

To initialize an instance of the Callback class, call its constructor in the call to the

when function. In the call to the constructor of the Callback class, specify:

■ The name of the callback function. The callback must be one of the following

functions of the ACEclass:

■ hi_process_ace_event to process high-level events

■ lo_process_ace_event to process low-level events

■ A pointer to the data to be passed as an argument to the callback function. You

can specify a null pointer if you do not want to pass any data to the callback

function.
Chapter 12 Controlling Access to Applications and Data 12-43

Code for registering a callback for access control events is shown in

CODE EXAMPLE 12-28.

In this example, the callback function hi_process_ace_event of the ACEclass is

registered so that it is called when the MPA receives an event of type RAW_EVENT.
The pointer ace_ptr specifies data that is passed to the function.

12.6.4 Implementing a Class Derived From

AuxServerUtils

The AuxServerUtils class is an abstract that contains all of the functions that must

be implemented for MPA access control. Before creating a secure MPA, you must

implement a class derived from the abstract class AuxServerUtils .

An example implementation of a class derived from the AuxServerUtils class is

shown in the source code example file

/opt/SUNWconn/em/src/mpa_pdm/src/mpapdm_ace.cc .

12.6.5 Calling Access Control Decision and Enforcement

Functions

Access control decision and enforcement functions check the access control rules.

Include calls to these functions in a secure MPA whenever a managed object is

accessed through the MPA.

CODE EXAMPLE 12-28 Registering a Callback for Access Control Events

...
#include <pmi/hi.hh> //High Level PMI
...
emPlatform.when("RAW_EVENT", Callback(ACE::hi_process_ace_event, ace_ptr));
...
12-44 Developing C++ Applications • October 2001

CHAPTER 13

Optimizing Performance

The high-level Portable Management Interface (PMI) provides many features that

simplify the coding of an application. However, if you need fast response from an

application, or if an application is controlling and monitoring a large number of

managed objects, you need to tune the application to obtain optimum performance.

This chapter explains how to optimize the performance of your applications.

■ Section 13.1 “General Guidelines for Optimizing Performance” on page 13-1

■ Section 13.2 “Selectively Activating Image Instances” on page 13-2

■ Section 13.3 “Filtering Events” on page 13-3

■ Section 13.4 “Writing Your Own Classes to Represent Managed Objects” on

page 13-3

■ Section 13.5 “Using the Low-Level PMI” on page 13-3

13.1 General Guidelines for Optimizing
Performance
The high-level PMI provides many features that simplify the coding of an

application. But using these features reduces the performance and efficiency of the

application. Tuning at appropriate places improves the performance and efficiency

of an application by:

■ Saving memory. The default behavior of many high-level PMI classes is to cache

all information on managed objects in an application. Caching only the

information that is relevant to your application saves memory.

■ Reducing network traffic. The default behavior of many high-level PMI classes is

to transfer all information on managed objects between the management

information server (MIS) and an application. Transferring only the information

that is relevant to your application reduces the network traffic between the MIS

and an application
13-1

To simplify tuning an application, code each time-critical section as a separate

function call. To tune an application coded in this way, all you need do is replace a

single function, rather than rewrite the entire application to improve its

performance.

13.2 Selectively Activating Image Instances
Selectively activating an Image instance loads information only on attributes that

are relevant to your application. By default, information on all attributes of a

managed object is loaded when an instance of Image is activated. Loading

information on all attributes increases network traffic and the amount of memory

the Image instance uses.

To selectively activate an Image instance, call the boot function of the Image class,

specifying only the attributes your application needs.

For more information on the boot function, refer to Section 5.4 “Updating an Image

Instance” on page 5-14.

For more information on the Image class, refer to Chapter 5.

Code for selectively activating an Image instance is shown in CODE EXAMPLE 13-1.

In this example, only information on the program attribute is loaded when the

Image instance is activated.

CODE EXAMPLE 13-1 Selectively Activating an Image Instance

...
#include <pmi/hi.hh> // High Level PMI
...

Image channel_image(channel_name.data());
if (channel_image.get_error_type() != PMI_SUCCESS) {

cout << channel_image.get_error_string() << endl;
return FALSE;

}
...

Array(DU) attrs;
attrs = Array(DU)(1);
attrs[0] = strdup("program");
if (!channel_image.boot(attrs)) {

cout << channel_image.get_error_string() << endl;
return FALSE;

}

13-2 Developing C++ Applications • October 2001

13.3 Filtering Events
Filtering events makes sure that the MIS forwards to your application only the

events that are relevant to the application. Filter events to reduce the amount of

network traffic between your application and the MIS it is connected to. By default,

the MIS forwards all events it receives to your application.

For information on how to filter events, refer to Section 7.4 “Filtering Events” on

page 7-16.

13.4 Writing Your Own Classes to Represent
Managed Objects
Using an instance of Image to store all the data in a managed object simplifies the

coding of your applications, but it does require a lot of memory. If memory is scarce,

you can save memory by defining your own C++ class to represent managed objects

locally in an application. For more information, refer to Section 5.12 “Representing

MIS Instances Locally in an Application” on page 5-35.

13.5 Using the Low-Level PMI
Using the Album class to perform management operations on object collections

increases network traffic and the amount of memory your application instance uses,

particularly if your collections contain a large number of managed objects.

To improve the performance of your application, use the low-level PMI to perform

operations on object collections. To keep the coding of your application simple, you

can still use the high-level PMI for:

■ Enabling your application to access managed objects as described in Chapter 3

■ Performing operations on individual managed objects as described in Chapter 5

When you use the low-level PMI, the data you pass in function calls must be in

ASN.1 format, which is the format that Solstice EM uses internally. If you are

unfamiliar with this format, use the high-level PMI to produce a representation of

your data in this format by:

■ Writing a prototype application by using the high-level PMI
Chapter 13 Optimizing Performance 13-3

■ Monitoring communications between the MIS and your prototype application by

using the em_debug tool

For information on how to use em_debug, refer to Section 15.2 “Monitoring

Communications With the MIS” on page 15-7.

When you have the information you need, modify your prototype to use the low-

level PMI, copying the format of ASN.1 data types in the messages displayed by

em_debug.

CODE EXAMPLE 13-2 shows code for getting information from an object collection.

This example is equivalent to using the Album class to define the membership of an

object collection by derivation.

CODE EXAMPLE 13-2 Getting Information From an Object Collection

...
#include <pmi/sched.hh> // Scheduler for applications without a GUI
...
GetReq *msg = (GetReq*)Message::new_message(GET_REQ);

asap = (ApplMessageSAP *) em_mis.get_raw_sap();

msg->id = asap->new_id();
cout << "Deriving from localroot" << endl;
// This is the actual_class. For get, set, and delete operations the class
// of the object is not checked if this is given.
msg->oc = enc("CMIP-1", "ObjectClass", "globalForm:{2 9 3 4 3 42}");

DU remainder;
msg->oi = fdn2oi(""); // localroot systemId branch

if(!msg->oi)
{

cout << "fdn2oi failed" << endl;
exit(1);

}

// Scope of all levels selected
msg->scope = MessScope(NTH_LEVEL, 1);

char *filter = "item: equality: {objectClass, satellite}";
msg->filter = enc("CMIP-1", "CMISFilter", filter);

if (!msg->filter) {
cout << "Filter encoding failed!" << endl;
}

// Set the attribute list to indicate that no attributes are of interest.
13-4 Developing C++ Applications • October 2001

In this example, a CMIS Get request is sent to get the FDN of each instance of the

satellite managed object class contained by the root object. An instance of the

Callback class is initialized to handle the response received to this request. To

ensure that the callback is called, dispatch_recursive is called in a loop while

the application is still waiting for the last response.

CODE EXAMPLE 13-3 shows the definition of the callback handler for processing

responses to the request sent in CODE EXAMPLE 13-2.

// Only the object instances are received - none of their attributes.
// This is equivalent to an Album object with NO AUTOIMAGE.

// If all attributes are of interest comment the following line.
// This is equivalent to an Album object with AUTOIMAGE.

// If some, but not all, attributes are wanted refer to boot.cc example.
msg->attr_id_list.start_construct(TAG_SET);

Callback mycb(data_return,0);

// For the reply sent to this message, mycb will be called
if(!asap->send(msg, mycb))
{

cout << "send failed" << endl;;
exit(2);

}

last_response = 0;
// last_response will be set after all the linked
// replies are received
do
{

dispatch_recursive(TRUE);
}
while(!last_response);

...

CODE EXAMPLE 13-3 Callback for Handling Responses to a Get Request

...
void data_return(Ptr userdata, Ptr calldata)
{

Message *msg;
asap->receive_response(ResponseHandle(calldata), msg);

CODE EXAMPLE 13-2 Getting Information From an Object Collection (Continued)
Chapter 13 Optimizing Performance 13-5

if(!msg) {
printf("receive_response failed \n");
exit(4);

}

GetRes* grmsg ;
switch (msg->type()) {

case GET_RES:
grmsg = (GetRes*)msg;
if (grmsg->oc) {

// Note: This is stored in Q? A1- Must be stored somewhere,
// A2- oc2name() etc calls dispatch_re which calls data_return()
// each call is > 20 frame stack, for 10 it will > 200 etc....
ocs.enq(new Asn1ValueElem(grmsg->oc));

}
if (grmsg->oi) {

ois.enq(new Asn1ValueElem(grmsg->oi));
}
break;

default:
printf("Incorrect message type %d\n",msg->type());
fflush(stdout);
exit(5);

}
if(!grmsg->linked) {

last_response = 1;
printf("Last Respnse\n");

}
}
...

CODE EXAMPLE 13-3 Callback for Handling Responses to a Get Request (Continued)
13-6 Developing C++ Applications • October 2001

CHAPTER 14

Guidelines for Compiling and
Linking Applications

Applications you develop by using the Solstice EM C++ APIs require specific flags to

be set at compilation time. You also need to link your applications with the Solstice

EM C++ libraries.

This chapter states the compiler version requirements for applications you develop

by using the Solstice EM C++ APIs. It lists, for each class in the Solstice EM C++

APIs, the header files you need to include in your application code and the libraries

you need to link your applications with. This chapter also explains the flags you

must set when you compile applications developed by using the Solstice EM C++

APIs.

■ Section 14.1 “Compiler Version Requirements” on page 14-1

■ Section 14.2 “Header Files and Libraries” on page 14-1

■ Section 14.3 “Options for Locating Header Files and Libraries” on page 14-7

■ Section 14.4 “Compilation Flags” on page 14-8

14.1 Compiler Version Requirements
To compile applications you develop by using the Solstice EM C++ APIs, you must

use version 5.3 of the Sun™ Workshop C++ compiler.

14.2 Header Files and Libraries
TABLE 14-1 and TABLE 14-2 list for each Solstice EM scheduler and API class:

■ The header file you need to include in your application code

■ The flags you need to add to the LDLIBS entry in your makefile
14-1

The header files of Solstice EM are contained in subdirectories of the

/opt/SUNWconn/em/include directory. The C++ libraries of Solstice EM are

provided as shared libraries. They are contained in the /opt/SUNWconn/em/lib
directory.

TABLE 14-1 Header Files and Libraries for the Solstice EM Schedulers

Scheduler Header File LDLIB Flag

sched (Applications with no GUI) pmi/hi.hh -lsched

xtsched (GUI applications) pmi/xtsched.hh -lxtsched

TABLE 14-2 Header Files and Libraries for the Solstice EM API Classes

Class Header File LDLIB Flag

ACAccessControlRules acapi/accesscontrolrules.hh -lacapi

ACAccessUserList acapi/acaccessuserlist.hh -lacapi

ACAppFeatureContainer acapi/acapplicationfeature.hh -lacapi

ACApplication acapi/acapplication.hh -lacapi

ACApplicationContainer acapi/acapplication.hh -lacapi

ACApplicationFeature acapi/acapplicationfeature.hh -lacapi

ACCallback acapi/accallback.hh -lacapi

ACContainer acapi/accontainer.hh -lacapi

ACDbObject acapi/acdbobject.hh -lacapi

ACDbObjectContainer acapi/acdbobject.hh -lacapi

ACE ace/ace.hh -lace

ACEContext ace/ace_context.hh -lace

ACEDecision ace/ace_decision.hh -lace

ACEDomain ace/ace_domain.hh -lace

ACEMNotificationEmitter acapi/notificationemitter.hh -lacapi

ACEMTargets acapi/acemtargets.hh -lacapi

ACEReqData ace/ace_req_data.hh -lace

ACGroup acapi/acgroup.hh -lacapi

ACGroupContainer acapi/acgroup.hh -lacapi

ACInterface acapi/acinterface.hh -lacapi
14-2 Developing C++ Applications • October 2001

ACObject acapi/acobject.hh -lacapi

ACRule acapi/acrule.hh -lacapi

ACRuleContainer acapi/acrule.hh -lacapi

ACScope acapi/actargets.hh -lacapi

ACTargets acapi/actargets.hh -lacapi

ACTargetsContainer acapi/actargets.hh -lacapi

ACUser acapi/acaccessuserlist.hh -lacapi

AccessDenied pmi/message.hh -lpmi

ActionReq pmi/message.hh -lpmi

ActionRes pmi/message.hh -lpmi

Address pmi/address.hh -lpmi

Album pmi/hi.hh -lpmi

AlbumImage pmi/hi.hh -lpmi

AppInstComm app_comm.hh -lappapi

AppInstObj app_comm.hh -lappapi

AppRequest app_comm.hh -lappapi

AppTarget app_comm.hh -lappapi

Asn1ParsedValue pmi/asn1_type.hh -lpmi

Asn1Tag Both of the following:

• pmi/basic.hh
• pmi/asn1_val.hh

-lpmi

Asn1Type pmi/asn1_type.hh -lpmi

Asn1Value pmi/asn1_val.hh -lpmi

AssocReleased pmi/message.hh -lpmi

AttrModifier pmi/hi.hh -lpmi

AuthApps pmi/auth_apps.hh -lpmi

AuthFeatures pmi/auth_features.hh -lpmi

AuxServerUtils ace/ace_aux_server_utils.hh -lacapi

Blockage pmi/sched.hh -lsched

Callback pmi/callback.hh -lpmi

CancelGetReq pmi/message.hh -lpmi

TABLE 14-2 Header Files and Libraries for the Solstice EM API Classes (Continued)

Class Header File LDLIB Flag
Chapter 14 Guidelines for Compiling and Linking Applications 14-3

CancelGetRes pmi/message.hh -lpmi

ClassInstConfl pmi/message.hh -lpmi

Coder pmi/hi.hh -lpmi

Command pmi/command.hh -lpmi

Config pmi/config.hh -lpmi

CreateReq pmi/message.hh -lpmi

CreateRes pmi/message.hh -lpmi

CurrentEvent pmi/hi.hh -lpmi

DataUnit pmi/du.hh -lpmi

DeleteReq pmi/message.hh -lpmi

DeleteRes pmi/message.hh -lpmi

Dictionary pmi/dict.hh -lpmi

DuplicateOI pmi/message.hh -lpmi

DupMessageId pmi/message.hh -lpmi

EMAgent topo_api/topo_api.hh -ltopo_api

EMCmipAgent topo_api/topo_api.hh -ltopo_api

EMCmipAgentDn topo_api/topo_api.hh -ltopo_api

EMIntegerSet topo_api/topo_api.hh -ltopo_api

EMIntegerSetIterator topo_api/topo_api.hh -ltopo_api

EMObject topo_api/topo_api.hh -ltopo_api

EMRpcAgent topo_api/topo_api.hh -ltopo_api

EMRpcAgentDn topo_api/topo_api.hh -ltopo_api

EMSnmpAgent topo_api/topo_api.hh -ltopo_api

EMSnmpAgentDn topo_api/topo_api.hh -ltopo_api

EMStatus topo_api/topo_api.hh -ltopo_api

EMTopoNode topo_api/topo_api.hh -ltopo_api

EMTopoNodeDn topo_api/topo_api.hh -ltopo_api

EMTopoPlatform topo_api/topo_api.hh -ltopo_api

EMTopoType topo_api/topo_api.hh -ltopo_api

EMTopoTypeDn topo_api/topo_api.hh -ltopo_api

TABLE 14-2 Header Files and Libraries for the Solstice EM API Classes (Continued)

Class Header File LDLIB Flag
14-4 Developing C++ Applications • October 2001

EMdataset grapher/EMgraph.hh -lemgraphapi

EMdynamicDataset grapher/EMgraph.hh -lemgraphapi

EMgraph grapher/EMgraph.hh -lemgraphapi

EMstaticDataset grapher/EMgraph.hh -lemgraphapi

Err grapher/EMgraph.hh -lemgraphapi

Error pmi/error.hh -lpmi

ErrorResUnexp pmi/message.hh -lpmi

EventReq pmi/message.hh -lpmi

GenInt pmi/genint.hh -lpmi

GetListErr pmi/message.hh -lpmi

GetReq pmi/message.hh -lpmi

GetRes pmi/message.hh -lpmi

Hash pmi/hash.hh -lpmi

HashImpl pmi/hash.hh -lpmi

Hdict pmi/dict.hh -lpmi

Hrefdict pmi/dict.hh -lpmi

Image pmi/hi.hh -lpmi

InvalidActionArg pmi/message.hh -lpmi

InvalidAttrVal pmi/message.hh -lpmi

InvalidEventArg pmi/message.hh -lpmi

InvalidFilter pmi/message.hh -lpmi

InvalidOI pmi/message.hh -lpmi

InvalidOperation pmi/message.hh -lpmi

InvalidOperator pmi/message.hh -lpmi

InvalidScope pmi/message.hh -lpmi

LinkedResUnexp pmi/message.hh -lpmi

Message pmi/message.hh -lpmi

MessQOS pmi/message.hh -lpmi

MessScope pmi/message.hh -lpmi

MessageSAP pmi/message.hh -lpmi

TABLE 14-2 Header Files and Libraries for the Solstice EM API Classes (Continued)

Class Header File LDLIB Flag
Chapter 14 Guidelines for Compiling and Linking Applications 14-5

MissingAttrVal pmi/message.hh -lpmi

MistypedArg pmi/message.hh -lpmi

MistypedError pmi/message.hh -lpmi

MistypedOp pmi/message.hh -lpmi

MistypedRes pmi/message.hh -lpmi

Morf pmi/hi.hh -lpmi

MorfBuilder extpmi/exthi.hh -lextpmi

NCAsyncResIterator nci/nc_api.hh -lnci

NCParsedReqHandle nci/nc_api.hh -lnci

NCTopoInfoList nci/nc_apiiI.hh -lnci

NoSuchAction pmi/message.hh -lpmi

NoSuchActionArg pmi/message.hh -lpmi

NoSuchAttr pmi/message.hh -lpmi

NoSuchEvent pmi/message.hh -lpmi

NoSuchEventArg pmi/message.hh -lpmi

NoSuchMessageId pmi/message.hh -lpmi

NoSuchOC pmi/message.hh -lpmi

NoSuchOI pmi/message.hh -lpmi

NoSuchRefOI pmi/message.hh -lpmi

ObjReqMess pmi/message.hh -lpmi

ObjResMess pmi/message.hh -lpmi

Oid pmi/oid.hh -lpmi

OpCancelled pmi/message.hh -lpmi

PasswordTty pmi/password_tty.hh -lpmi

Platform pmi/hi.hh -lpmi

ProcessFailure pmi/message.hh -lpmi

Queue pmi/queue.hh -lpmi

ReqMess pmi/message.hh -lpmi

ResMess pmi/message.hh -lpmi

ResourceLimit pmi/message.hh -lpmi

TABLE 14-2 Header Files and Libraries for the Solstice EM API Classes (Continued)

Class Header File LDLIB Flag
14-6 Developing C++ Applications • October 2001

14.3 Options for Locating Header Files and
Libraries
To enable the compiler to locate the required Solstice EM header files and libraries,

specify the following entries in your makefile:

ScopedReqMess pmi/message.hh -lpmi

SetListErr pmi/message.hh -lpmi

SetReq pmi/message.hh -lpmi

SetRes pmi/message.hh -lpmi

SyncNotSupp pmi/message.hh -lpmi

Syntax pmi/hi.hh -lpmi

TimedOut pmi/message.hh -lpmi

Timer pmi/sched.hh -lpmi

UnexpChildOp pmi/message.hh -lpmi

UnexpError pmi/message.hh -lpmi

UnexpRes pmi/message.hh -lpmi

UnrecError pmi/message.hh -lpmi

UnrecLinkedId pmi/message.hh -lpmi

UnrecMessageId pmi/message.hh -lpmi

UnrecOp pmi/message.hh -lpmi

ViewerAPI viewer_api.hh -lviewer_api

Waiter pmi/hi.hh -lpmi

CFLAGS += -I/opt/SUNWconn/em/include
LDFLAGS += -L/opt/SUNWconn/em/lib -R/opt/SUNWconn/em/lib

TABLE 14-2 Header Files and Libraries for the Solstice EM API Classes (Continued)

Class Header File LDLIB Flag
Chapter 14 Guidelines for Compiling and Linking Applications 14-7

14.4 Compilation Flags
Set the compilation flags listed in TABLE 14-3 to instruct the compiler to load the

proper code for the various operating systems, and to specify whether tracing and

debugging are required.

TABLE 14-3 Compilation Flags for Applications Developed With the Solstice EM C++
APIs

Flag Definition

-DSOLARIS Specifies the Solaris™ operating environment.

-DSYSV Specifies the Berkeley BSD System V operating system.

-DNO_TRACE Disables the tracing functions in the portable management interface (PMI).

Set this option for the production version of your applications. It is not

needed during the development phase of your applications.

-DDEBUG Enables use of the PMI debug class. Set this option during the

development phase of your applications. It is not needed for the

production version.
14-8 Developing C++ Applications • October 2001

CHAPTER 15

Troubleshooting

Applications will not always behave as expected. Therefore, good testing and

debugging practices are an essential part of any serious software engineering

project. During the final stages of development, you need to find and correct all

errors in your applications. Such errors typically result from logical errors or simple

typing mistakes in the code. In addition, you need to make sure that changes to the

environment in which your applications run do not cause your deployed

applications to fail.

This chapter provides guidelines on how to troubleshoot errors specific to

applications developed by using the Solstice EM C++ APIs.

■ Section 15.1 “Testing and Debugging Programs” on page 15-1

■ Section 15.2 “Monitoring Communications With the MIS” on page 15-7

■ Section 15.3 “Avoiding Common Problems” on page 15-19

■ Section 15.4 “Example Troubleshooting Scenarios” on page 15-23

15.1 Testing and Debugging Programs
The Solstice EM C++ development environment provides tools to help you test and

debug your programs. Use these tools for:

■ Verifying Guidelines for the Definition of Managed Objects (GDMO) and Abstract

Syntax Notation One (ASN.1) syntax and logic

■ Trapping errors in high-level Portable Management Interface (PMI) function calls

■ Trapping programming logic errors

■ Monitoring protocol translation by a management protocol adapter (MPA)

■ Reloading GDMO documents
15-1

15.1.1 Verifying GDMO and ASN.1 Syntax and Logic

Verify that the GDMO and ASN.1 syntax and logic of your function calls are correct

if your application fails to:

■ Perform create, set, get, or delete operations

■ Send an action request

To verify the GDMO and ASN.1 syntax and logic of your function calls, use the MIS

Objects tool. The MIS Objects tool enables you to perform operations directly on

managed objects in the management information tree (MIT). Use the MIS Objects

tool to verify GDMO and ASN.1 syntaxes in your function calls by performing the

operation your application is attempting. If you can perform the operation by using

the MIS Objects tool, make sure that your program uses the same syntax and logic

when it performs the same operation.

15.1.2 Trapping Errors in PMI Function Calls

The classes of the high-level Portable Management Interface (PMI) inherit error

handling methods from the Error class. To detect the failure of a high-level PMI

call, call the get_error_type function. The error type set by a failed call provides

valuable information about what caused the failure.

Use the functions and operators inherited from the Error class to print a diagnostic

message if a function call fails. Use the get_error_string function of the Error
class to display information about the specific error. Printing other information, such

as the name of the function that failed and the values of parameters passed to the

function, also provides information useful in trapping errors in PMI function calls.

For more information, refer to Chapter 4.

15.1.3 Trapping Programming Logic Errors

Programming logic errors result when a program does not execute the correct code

in response to an input. Programming logic errors frequently arise when runtime

conditions are different from those envisaged when the application was designed.

To trap programming logic errors, trace the code that the application executes.

Tracing the code that the application executes determines the exact point at which

the program logic differs from the expected behavior, for example, an if statement

is present where an else statement is required.
15-2 Developing C++ Applications • October 2001

Trace the code that the application executes by using:

■ Text output functions, such as cout or printf , of standard C++ libraries

■ A standard debugging tool such as dbx or the GUI-based debugger embedded in

the Forte™ (formerly Sun WorkShop™) C or Forte C++ software

If you are using the Forte compilers and want to use a standard debugging tool, you

must set the -g flag when you compile your programs.

15.1.4 Monitoring Protocol Translation by an MPA

An MPA performs protocol translation required for communication between the

Solstice EM MIS and an external entity, such as an agent. Solstice EM provides MPAs

for the following protocols:

■ Simple Network Management Protocol (SNMP)

■ Common Management Information Protocol (CMIP)

■ Remote procedure call (RPC) protocol

To obtain detailed information about the protocol translation that the MPAs perform,

run them in debug mode.

The MPAs of Solstice EM are started by the /etc/rc2.d/S98ipmpa script. To run

the MPAs in debug mode, modify this script to specify a debug flag, then restart the

MPAs. Modify the script to turn off debug mode when you no longer require

information about the protocol translation that the MPAs perform.

The possible debug flags are:

■ -debug – Shows SNMP, RPC, and CMIP translations

■ -debug2 – Shows all translations specified by the -debug flag and shows user

datagram protocol (UDP) packets

Note – Only the root user usually has write access to the /etc/rc2.d/S98ipmpa
script. If you do not have write access to this script, ask your system administrator

to give you write access to it.

To specify a debug flag, change the occurrence of $EXE_PATH/$1 in the else
statement of the startmpa() function to read:

Where flag is -debug or -debug2 .

$EXE_PATH/$1 flag >/tmp/dbgout_$1 2>&1
Chapter 15 Troubleshooting 15-3

The translation information from each MPA is written to the following files:

■ /tmp/dbgout_em_mpa_snmp (for output from the SNMP MPA)

■ /tmp/dbgout_em_mpa_rpc (for output from the RPC MPA)

To stop and restart the MPAs after you have edited the script, type the following

commands as root:

15.1.5 Reloading GDMO Documents

During development, particularly during the early phases of development, the

GDMO documents that describe your object model are likely to change. If a GDMO

document that is already loaded into the metadata repository (MDR) changes, you

need to reload the GDMO document into the MDR.

Reloading GDMO documents is rarely required for deployed applications. When

equipment is added to your network, a GDMO document that describes the

equipment is usually supplied with the equipment. All you need to do is load this

document into the MDR.

When you load a GDMO document into the MDR, any version that already exists is

not overwritten. To make your new version effective, you must remove the existing

version before loading the new version.

You can remove a GDMO document by:

■ Rebuilding the Solstice EM database. Rebuild the Solstice EM database only if

you have no data in the Solstice EM database that you want to preserve.

■ Removing a single compiled GDMO document. Remove a single compiled

GDMO document if you want to preserve data in the Solstice EM database.

15.1.5.1 Removing a GDMO Document by Rebuilding the Solstice EM
Database

Removing a GDMO document by rebuilding the Solstice EM database guarantees

that your GDMO document is removed from the MDR, but the entire Solstice EM

database is destroyed and rebuilt in the process. Rebuild the Solstice EM database

only if you have no data in the Solstice EM database that you want to preserve.

/etc/rc2.d/S98ipmpa stop
... shutdown messages ...
/etc/rc2.d/S98ipmpa start
... startup messages ...
15-4 Developing C++ Applications • October 2001

To Remove a GDMO Document by Rebuilding the Solstice EM Database

1. Ensure that the uncompiled GDMO document file is not present in the
/opt/SUNWconn/em/etc/gdmo directory.

If necessary, delete the file from the /opt/SUNWconn/em/etc/gdmo directory. For

example, to remove the satman.gdmo document file, type the following commands:

Note – If you want to modify a GDMO document instead of removing it, modify

the uncompiled GDMO document file instead of deleting the file.

2. Type the command for rebuilding the Solstice EM database:

When the em_services -reload command is run:

■ The management information server (MIS) is stopped.

■ All data in the Solstice EM database is removed.

■ All files contained in the /opt/SUNWconn/em/etc/gdmo directory are loaded

into the MDR.

■ The MIS is restarted.

For more information on maintaining the MIS, refer to the Management Information
Server (MIS) Guide.

15.1.5.2 Removing a Single Compiled GDMO Document

Removing a single compiled GDMO document preserves data in the remainder of

the Solstice EM database, but requires more work than rebuilding the Solstice EM

database. Remove a single compiled GDMO document if you have existing data in

the Solstice EM database that you want to preserve.

Note – If you are using Solstice EM in an agent role and have set agent role

behavior for Solstice EM, you must rebuild the Solstice EM database. You cannot

remove a single compiled GDMO document. For information on how to set agent

role behavior for Solstice EM, refer to Section 2.6.2 “Setting Agent Role Behavior of

Solstice EM” on page 2-37.

prompt% cd /opt/SUNWconn/em/etc/gdmo
prompt% rm satman.gdmo

prompt% em_services -reload
Chapter 15 Troubleshooting 15-5

To remove a single compiled GDMO document, locate the file that contains the

compiled GDMO document on the MIS host and delete the file.

The name and location of the file that contains a compiled GDMO document depend

on the options set when the document was loaded in to the MDR:

■ If an output directory was specified, the file is located in the directory specified.

The name of the file is the GDMO document name as specified in the MODULE
construct of the GDMO document. Each space in the document name is replaced

with an underscore. For example, a GDMO document named Satellite Manager

would be compiled into a file named Satellite_Manager .

■ If no output directory was specified, the file is located in the

/var/opt/SUNWconn/em/data/MDR directory on the MIS host. The name of the

file is assigned automatically by Solstice EM. The file name begins with the

characters MA.

To locate a compiled GDMO document the name of which was automatically

assigned, use the grep command to find all files the names of which start with the

characters MAthat contain the document name. For example, to remove the compiled

Satellite Manager GDMO document, type the following commands:

After you have removed or replaced a compiled GDMO document, restart the MIS

by typing em_services -start . This command restarts the MIS without

rebuilding the Solstice EM database.

host1% rlogin mishost
Password: *******
mishost% cd /var/opt/SUNWconn/em/data/MDR
mishost% rm ‘grep -l Satellite\ Manager MA*‘
mishost% em_services -start
15-6 Developing C++ Applications • October 2001

15.2 Monitoring Communications With the
MIS
Monitoring communications with the management information server (MIS) enables

you to verify if requests sent from your application and notifications emitted by

managed objects reach the MIS. Monitoring communications with the MIS provides

information on the content of:

■ Messages the MIS receives

■ Management requests your application sends to the MIS

■ Responses sent by managed objects to management requests

■ Notifications emitted by managed objects

To monitor communications with the MIS, use the em_debug utility. The em_debug
utility connects to the debug port of the MIS and receives the debugging messages

you specify when you start em_debug .

15.2.1 Starting em_debug

When you start em_debug, you can select the types of message you want to display,

or exclude message types. When you exclude message types, all currently running

em_debug sessions stop showing the excluded message types.

To start em_debug and select message types, type:

To start em_debug and exclude message types, type:

Where:

■ hostname is the name of the host on which the MIS is running. If hostname is not

specified, the local host is assumed.

■ port is the debug port of the MIS. The default is 5556.

■ messageType is the type of message that you want em_debug to display or exclude.

Wildcard characters are permitted in messageType.

prompt% em_debug [-host hostname] [-port port] on messageType

prompt% em_debug [-host hostname] [-port port] off messageType
Chapter 15 Troubleshooting 15-7

Commonly used em_debug message types are given in TABLE 15-1. For a complete

list, see Section 15.2.3 “Full List of em_debug Message Types” on page 15-15.

Specify the wildcard character (*) if you want to specify several message types in

the command to start em_debug. For example, to specify that em_debug displays all

messages related to the OAM, type:

15.2.2 Interpreting em_debug Messages

Interpret em_debug messages to find the data related to your application and

identify the information your application exchanges with the MIS.

The messages displayed by em_debug contain ASN.1 data encoded by using rules

specified in ITU-T X.209/ISO-8825 Specification of Basic Encoding Rules for Abstract
Syntax Notation One (ASN.1). Values that are encoded by using ASN.1 basic encoding

rules have the following fields:

■ Tag identifies the type of data that is contained in the Value field.

■ Len indicates the number of octets used for the Value field.

■ Value contains a data value of the type specified by the Tag field that has a

length in bytes as specified by the Length field.

TABLE 15-1 Commonly Used em_debug Message Types

Message Type Parameter Messages Printed

actmsg_debug PMI action request and response messages

oammsg_debug Object access module (OAM) get, set, create, and delete messages

asn_debug ASN.1 module processing messages

oamnotif_debug Event notification information

snmp_debug SNMP object access

rpc_debug RPC object access

mdr_debug MDR access

emm_info Event monitor information

cmip_debug Debug messages from acse , rose , lpp and tcp

cmip_info CMIP information

ace_debug Access control information

misc_out Nerve Center debug messages

prompt% em_debug "on oam*"
15-8 Developing C++ Applications • October 2001

A tag is a combination of the class and the tag number. For example, a context-

specific class that uses the value 7 for a specific meaning is displayed as C7.

Application class tags are displayed as A1, A2, A3, etc. Private tags are displayed as

P1, P2, P3, etc. Some of the Universal class tags are displayed by using text

identifiers. For example, an object identifier (OID) tag is displayed as OID rather

than as U6.

15.2.2.1 Classes of Tags

ASN.1 defines the following classes of tags:

■ Universal class. Universal class tags are defined by the ASN.1 standards: ITU-T

X.208/ISO-8824 Specification of Abstract Syntax Notation One (ASN.1) and ITU-T

X.209/ISO-8825 Specification of Basic Encoding Rules for Abstract Syntax Notation
One (ASN.1). Each universal class tag is assigned to a unique data type or is

assigned to a data type that is used to construct new data types. Each tag number

shown in TABLE 15-2 is a universal class tag.

■ Application class. Application class tags are assigned to data types by other

international standards. An application class tag is unique within a standard. An

example of an application class tag is the IpAddress data type used for Internet

network management applications, which is defined in an Internet request for

comments (RFC).

■ Context-specific class. Context-specific class tags are interpreted within the

context in which they are used. They are normally used with constructed data

types such as SET or SEQUENCE. In the case of SET or SEQUENCE, a context-

specific tag only has meaning within the context of a previously defined SET or

SEQUENCE.

■ Private class. Private class tags are not assigned by international standards.

Private class tags can be used by enterprises to define proprietary data types.
Chapter 15 Troubleshooting 15-9

15.2.2.2 ASN.1 Data Types and Tag Numbers

A data type is a type of value, such as integer, real, or string. ASN.1 defines a

number of data types and assigns a tag number to identify each of the data types.

ASN.1 data types and tag numbers are shown in TABLE 15-2.

TABLE 15-2 ASN.1 Data Types and Tag Numbers

Tag Number ASN.1 Data Types

1 BOOLEAN

2 INTEGER

3 BIT STRING

4 OCTET STRING

5 NULL

6 OBJECT IDENTIFIER

7 OBJECT DESCRIPTOR

8 EXTERNAL

9 REAL

10 ENUMERATED

11-15 Reserved for future use

16 SEQUENCE, SEQUENCE-OF

17 SET, SET-OF

18 NumericString

19 PrintableString

20 TeletexString

21 VideoTexString

22 IA5String

23 UTCTime

24 GeneralizedTime

25 GraphicsString

26 VisibleString

27 GeneralString

28 CharacterString

29 Reserved for future use
15-10 Developing C++ Applications • October 2001

15.2.2.3 Tips For Reading em_debug Output

Note – In addition to the messages transmitted between applications and the MIS,

em_debug displays messages that the MIS generates internally.

After you understand how to read em_debug output, search for output from your

application and identify information that has been exchanged with the MIS.

Output from em_debug contains all communication with the MIS and some

internally generated messages. If other applications are running, you will see

messages from them in addition to messages from your application. You will have to

sift through the messages to find what is relevant to you. With a little experience,

you will learn how to focus on the messages for your application.

Each request is followed by a response. Whether you are debugging the request or

the response from the MIS, start by searching for the request from your application.

After you find the request, search for the next matching response if you need it.

For example, if you are debugging a failed create request, search through the

em_debug output until you find a create request. Then check the managed object

specified in the request to see if the create request you are looking at is the one your

application sent.

After you find your create request, check the corresponding create response.

The example in Section 15.2.2.4 “Example em_debug Output” on page 15-11 shows

you how to read em_debug output.

15.2.2.4 Example em_debug Output

CODE EXAMPLE 15-1 shows an example of the output from em_debug. In this

example, em_debug was started by typing

prompt% em_debug -c "on oammsg_debug"

CODE EXAMPLE 15-1 Sample em_debug Output

oammsg_debug: ***
oammsg_debug: received by OAM: create request
oammsg_debug: message type = create request
oammsg_debug: id = 87
Chapter 15 Troubleshooting 15-11

oammsg_debug: source =
oammsg_debug: aclass = DEF, atag = 0

aval = Du: no data unit allocated
oammsg_debug: dest =
oammsg_debug: aclass = DEF, atag = 0

aval = Du: no data unit allocated
oammsg_debug: remote =
oammsg_debug: aclass = DEF, atag = 0

aval = Du: no data unit allocated
oammsg_debug: mode = CONFIRMED
oammsg_debug: app_context = Du: no data unit allocated
oammsg_debug: oc =
oammsg_debug: Tag Len Value
oammsg_debug: C0 c 1.3.6.1.4.1.42.2.2.2.1.3.2
oammsg_debug: oi = NULL
oammsg_debug: superior_oi =
oammsg_debug: Tag Len Value
oammsg_debug: C4 13
oammsg_debug: Tag Len Value
oammsg_debug: SET 11
oammsg_debug: Tag Len Value
oammsg_debug: SEQ f
oammsg_debug: Tag Len Value
oammsg_debug: OID 5 2.9.3.5.7.11
oammsg_debug: Tag Len Value
oammsg_debug: GRPH 6 "EM-MIS"
oammsg_debug: access = NULL
oammsg_debug: reference_oi = NULL
oammsg_debug: attr_list =
oammsg_debug: Tag Len Value
oammsg_debug: C7 69
oammsg_debug: Tag Len Value
oammsg_debug: SEQ 11
oammsg_debug: Tag Len Value
oammsg_debug: C0 c 1.3.6.1.4.1.42.2.2.2.1.7.1
oammsg_debug: Tag Len Value
oammsg_debug: INT 1 = 22U
oammsg_debug: Tag Len Value
oammsg_debug: SEQ 1d
oammsg_debug: Tag Len Value
oammsg_debug: C0 c 1.3.6.1.4.1.42.2.2.2.1.7.2
oammsg_debug: Tag Len Value
oammsg_debug: GRPH d "Object Editor"
oammsg_debug: Tag Len Value
oammsg_debug: SEQ 29
oammsg_debug: Tag Len Value

CODE EXAMPLE 15-1 Sample em_debug Output (Continued)
15-12 Developing C++ Applications • October 2001

In the example in CODE EXAMPLE 15-1, the following message indicates that an

application has just started and connected to the MIS:

Several lines later in the em_debug output, the keyword oc = is followed by the

OID of the managed object class specified in the create request as follows:

This OID is defined in the GDMO documents supplied with Solstice EM. It is the

OID of the emApplicationInstance managed object class.

On the next line of the em_debug output, the keyword oi = is followed by the

name of managed object instance specified in the create request as follows:

oammsg_debug: C0 c 1.3.6.1.4.1.42.2.2.2.1.7.6
oammsg_debug: Tag Len Value
oammsg_debug: SEQ 19
oammsg_debug: Tag Len Value
oammsg_debug: SET 17
oammsg_debug: Tag Len Value
oammsg_debug: SEQ 15
oammsg_debug: Tag Len Value
oammsg_debug: OID c 1.3.6.
1.4.1.42.2.2.2.1.7.7
oammsg_debug: Tag Len Value
oammsg_debug: GRPH 5 "kevin"
oammsg_debug: Tag Len Value
oammsg_debug: SEQ a
oammsg_debug: Tag Len Value
oammsg_debug: C0 5 0x59 03 02 07 1f
oammsg_debug: Tag Len Value
oammsg_debug: ENUM 1 = 0
oammsg_debug: ***

received by OAM: create request

oammsg_debug: oc =
oammsg_debug: Tag Len Value
oammsg_debug: C0 c 1.3.6.1.4.1.42.2.2.2.1.3.2

oammsg_debug: oi = NULL
oammsg_debug: superior_oi =
oammsg_debug: Tag Len Value

CODE EXAMPLE 15-1 Sample em_debug Output (Continued)
Chapter 15 Troubleshooting 15-13

In this example, oi = NULL , indicating that the request is from a call to the

create_within function of the Image class.

The keyword superior_oi = is followed by the name of the superior object

specified in the create request. The superior object is identified by the local

distinguished name subSystemId="EM-MIS" . The MIS assigns the relative

distinguished name of the new object automatically.

The keyword attr_list = is followed by each attribute that is set in the create
request and the value it is set to as follows:

The OIDs of the attributes are defined in the GDMO documents supplied with

Solstice EM. These OIDs are as follows:

■ 1.3.6.1.4.1.42.2.2.2.1.7.1 is the OID of the emApplicationID attribute.

■ 1.3.6.1.4.1.42.2.2.2.1.7.2 is the OID of the emApplicationType
attribute.

The emApplicationID attribute is set to the INTEGERvalue 22. The

emApplicationType attribute is set to the GraphicString "Object Editor" .

oammsg_debug: C4 13
oammsg_debug: Tag Len Value
oammsg_debug: SET 11
oammsg_debug: Tag Len Value
oammsg_debug: SEQ f
oammsg_debug: Tag Len Value
oammsg_debug: OID 5 2.9.3.5.7.11
oammsg_debug: Tag Len Value
oammsg_debug: GRPH 6 "EM-MIS"

oammsg_debug: attr_list =
oammsg_debug: Tag Len Value
oammsg_debug: C7 69
oammsg_debug: Tag Len Value
oammsg_debug: SEQ 11
oammsg_debug: Tag Len Value
oammsg_debug: C0 c 1.3.6.1.4.1.42.2.2.2.1.7.1
oammsg_debug: Tag Len Value
oammsg_debug: INT 1 = 22U
oammsg_debug: Tag Len Value
oammsg_debug: SEQ 1d
oammsg_debug: Tag Len Value
oammsg_debug: C0 c 1.3.6.1.4.1.42.2.2.2.1.7.2
oammsg_debug: Tag Len Value
oammsg_debug: GRPH d "Object Editor"
15-14 Developing C++ Applications • October 2001

15.2.3 Full List of em_debug Message Types

The full list of em_debug message types is given in TABLE 15-1.

TABLE 15-3 em_debug Message Types

Category Message Types

Access control ac_init_debug

access_debug

access_error

ace_debug

ace_error

ace_init_error

audit_trail

emDbInfo_debug

emDbInfo_info

emDbObject_debug

emDbObject_info

security_alarm

Action messages actmsg_debug

Alarm services alarmsvc_debug

alarmsvc_error

Annotation secretary anno_debug

anno_error

anno_info

ASN.1 asn_debug

asn_error

asn_info

asn_trace

Backing store bs_error

bsblob_error

CMIP cmip_debug

cmip_error

cmip_info
Chapter 15 Troubleshooting 15-15

cmip_trace

Connection manager connectMgr_error

connectMgr_impl

connectMgr_info

Debugging port dbgport_error

dbgport_trace

Distributed alarm log manager dalarm_debug

dalarm_impl

Distributed transaction

processing

XA_error

XA_info

XA_xactimpl_info

xactimpl_error

Discriminators discrim_info

Event management module emm_debug

emm_error

emm_info

emm_stat_info

emm_trace

sieve_stat_info

sv_debug

sv_error

sv_info

Exceptions exception_info

Filtering filt_debug

filt_error

filt_info

Geographical maps map_debug

map_error

map_trace

TABLE 15-3 em_debug Message Types (Continued)

Category Message Types
15-16 Developing C++ Applications • October 2001

High-level PMI hi_debug

hi_error

hi_info

hi_trace

Initialization init_debug

init_error

Log management evr2oc_error

evr2oc_info

log_error

log_info

Message routing module mrm_debug

mrm_error

mrm_info

mrm_trace

MDR mdr_debug

mdr_error

mdr_info

mdr_trace

Nerve Center interface nc_deb

nc_error

nc_event

nc_miniger_debug

nc_miniger_error

nc_mosi_debug

nc_mosi_error

nc_mosi_trace

nc_poll

nc_poll_debug

nc_poll_error

nc_poll_info

TABLE 15-3 em_debug Message Types (Continued)

Category Message Types
Chapter 15 Troubleshooting 15-17

nc_state

ncam_if_debug

nce_at_debug

nce_at_error

nce_at_info

nce_debug

nce_error

nce_info

nce_poll_debug

nce_poll_error

nce_poll_info

nce_poll_trace

nce_snmp_error

nce_trace

mi_info

minigreg_debug

minigreg_error

minigreg_info

mosireg_error

pm_deb

pm_error

pm_trace

rcl_debug

OAM oam_debug

oam_error

oam_info

oam_trace

oammsg_debug

oamnot_debug

oamrmt_debug

TABLE 15-3 em_debug Message Types (Continued)

Category Message Types
15-18 Developing C++ Applications • October 2001

15.3 Avoiding Common Problems
Avoid some of the most common problems encountered with custom Solstice EM

applications by:

■ Verifying attribute and class names

■ Creating automatically named managed object instances appropriately

■ Testing that scopes and filters are supported

15.3.1 Verifying Attribute and Class Names

Whenever the MIS responds with an error message of the type Unknown object
class or Unknown attribute , verify that the attribute or managed object class

name in your application code matches exactly the name in the GDMO document.

oamsvc_error

oamsvc_info

swap_debug

Object collections coll_debug

coll_error

coll_trace

Scheduler sched_debug

sched_error

sched_info

Shutdown manager shutdown_debug

Topology topo_debug

topo_error

topo_info

topo_trace

TABLE 15-3 em_debug Message Types (Continued)

Category Message Types
Chapter 15 Troubleshooting 15-19

All GDMO identifiers, including managed object class names and attribute names,

are case-sensitive. Therefore, the case and the spelling of an attribute or managed

object class name in your application code must match exactly the name in its

GDMO document. A common mistake is to specify the systemId attribute (note the

lower case d) as systemID .

If the MIS still responds with an error after you have verified an attribute or class

name, verify that the correct version of the GDMO document is loaded into the

MDR. For more information, refer to Section 15.1.5 “Reloading GDMO Documents”

on page 15-4.

15.3.2 Creating Automatically Named Managed Object

Instances Appropriately

If you want to create an automatically named managed object, you must call the

create_within function of the Image class. An attempt to create an automatically

named managed object by calling the create function of the Image class fails.

Check the name binding between a managed object class and its superior managed

object class to determine if instances of the class are automatically named. The name

binding is part of the GDMO specification of a managed object. If the name binding

specifies CREATE WITH-AUTOMATIC-INSTANCE-NAMING, instances of the managed

object class are automatically named. For example, instances of the topoNode and

logRecord managed object classes are automatically named.

For information on name bindings, refer to Section 2.2.6.1 “Name Bindings” on

page 2-15.

15.3.3 Testing That Scopes and Filters are Supported

Some MPAs and agents may not fully support scopes and filters. Find out whether

the agents your application will manage support scopes and filters before

implementing them in your management application.

To test if an MPA or agent supports scopes and filters, write a simple application

that sends management requests with scopes and filters. If the requests fail, verify

that the failure is not due to an error in your application. If the failure is not due to

an error in your application, the agent or MPA does not support scopes or filters.

If your application will be used with an MPA or agent that does not support scopes

or filters, select managed objects by performing multiple derivations. In these

derivations, avoid specifying scopes or filters to select objects that are accessed via

an agent or MPA that does not support scopes or filters.
15-20 Developing C++ Applications • October 2001

For information on how to select managed objects by derivation, refer to

Section 6.3.1 “Defining the Membership by Derivation” on page 6-3.

The code in CODE EXAMPLE 15-2 shows how to work with an MPA that does not

support filters. In this example, a filtered request for satellite and channel
object instances will fail. Instead, an Album instance is created that contains all

instances of the satellite class and their contained channel instances. An

instance of the AlbumImage class is then created to obtain each channel instance.

CODE EXAMPLE 15-2 Replacing a Scope and a Filter With Multiple Derivations

...
#include <pmi/hi.hh> // High Level PMI
#include <rw/cstring.h> // Rogue Wave RWCString
...
void get_satellites()
{

satellites = Album("collection of all satellites");

// Automatically add Image objects to the Album object
// based on derivation rules
//
if (!satellites.set_prop(duTRACKMODE, duTRACK)) {

cout << satellites.get_error_string() << endl;
return;

}

// By default, an Image object is in the down state and read only.
// Specify automatic activation of new Image objects
// which are children of the derivation FDN
//
if (!satellites.set_prop(duAUTOIMAGE, duYES)) {

cout << satellites.get_error_string() << endl;
return;

}

// Set up the distinguished name to start the derivation
RWCString derive_str;
derive_str = "/systemId='";
derive_str += server;
derive_str += "'/LV(1)";
derive_str += "/CMISFilter(item:equality:{objectClass,satellite})";

cout << "Deriving satellites: " << derive_str.data() << endl;

if (!satellites.set_derivation((char *) derive_str.data())) {
cout << "Failed to set derivation string." << endl;
Chapter 15 Troubleshooting 15-21

cout << satellites.get_error_string() << endl;
return;

}

// Get the objects from the MIS
//
if (!satellites.derive()) {

cout << "Derivation failed." << endl;
cout << satellites.get_error_string() << endl;
return;

}
...
}
...
void get_channels()
{

channels = Album("collection of all channels");

// Automatically add Image objects to the Album object based on
// derivation rules.

if (!channels.set_prop(duTRACKMODE, duTRACK)) {
cout << channels.get_error_string() << endl;
return;

}

// By default, an Image object is in the inactive state and read only.
// Specify automatic activation of new Image objects
// which are children of the derivation FDN

if (!channels.set_prop(duAUTOIMAGE, duYES)) {
cout << channels.get_error_string() << endl;
return;

}

// Set up the distinguished name to start the derivation
AlbumImage ai;
for (ai = satellites.first_image(); ai; ai = ai.next_image()) {

Album tmpch = Album("temporary holder for channels");
Image im(ai);
if (im.get_error_type() != PMI_SUCCESS) {

cout << im.get_error_string() << endl;
exit(8);

}

DU objname = im.get_objname();

CODE EXAMPLE 15-2 Replacing a Scope and a Filter With Multiple Derivations (Continued)
15-22 Developing C++ Applications • October 2001

15.4 Example Troubleshooting Scenarios
This section explains how to apply troubleshooting techniques described in this

chapter to the following scenarios:

■ Failure to set an attribute value

■ Failure to process event notifications

15.4.1 Failure to Set an Attribute Value

If an application attempts but fails to set an attribute value, debug the application

by:

■ Verifying GDMO and ASN.1 specifications

■ Trapping errors in high-level PMI function calls

■ Trapping programming logic errors

■ Monitoring communications with the MIS

cout << endl;
cout << "Distinguished Name: ";
cout << objname.chp() << endl;
RWCString derive_str;
derive_str = objname.chp();
derive_str += "/LV(1)";
cout << "Deriving Channels: " << derive_str.data() << endl;
if (!tmpch.set_derivation((char *) derive_str.data())) {

cout << "Failed to set derivation string." << endl;
cout << satellites.get_error_string() << endl;
return;

}

if (!tmpch.derive(300)) {
cout << "Derivation failed." << endl;
return;

}
channels.include(tmpch);

}
...
}
...

CODE EXAMPLE 15-2 Replacing a Scope and a Filter With Multiple Derivations (Continued)
Chapter 15 Troubleshooting 15-23

15.4.1.1 Verifying GDMO and ASN.1 Specifications

To verify that your application code is consistent with the GDMO and ASN.1

specifications of your object model:

■ Verify that the case and the spelling of the attribute or managed object class name

in your application code matches exactly the name in its GDMO specification.

■ Check the managed object class definition to ensure that the managed object class

you specified includes the attribute that you want to set.

■ Verify that the attribute that you want to set is settable. Specifically, the property

list in the ATTRIBUTESconstruct of the attribute’s GDMO specification must

include the operation you want to perform when setting the attribute. For more

information, refer to Section C.4 “Package Template” on page C-7.

■ Use the MIS Objects tool to set the attribute. If you succeed, make sure your

application code matches the attributes you used in the MIS Objects tool.

15.4.1.2 Trapping Errors in High-Level PMI Function Calls

To trap errors in high-level PMI function calls:

■ Use the overloaded not (!) operator on high-level PMI function calls before the

attempt to set the attribute to verify that those calls succeeded.

■ Call the get_error_string function of the Image class after the attempt to set

the attribute. The error string returned may provide valuable information on the

cause of the problem.

For more information on handling errors in high-level PMI function calls, refer to

Chapter 4.

15.4.1.3 Trapping Programming Logic Errors

To verify that the program is executing the code that you expect it to execute:

■ Set the -g flag when you compile the code, then run a debugger and step through

the code one line at a time.

■ Add print statements to verify that the program calls the function to set the

attribute. You may find, for example, that the function is inside an if statement

that is never called.
15-24 Developing C++ Applications • October 2001

15.4.1.4 Monitoring Communications With the MIS

To verify that the MIS receives the set request and sends a successful response:

■ Run em_debug, specifying "on oam*" to print all object access messages that are

sent to the MIS.

■ Check the debug output for the set request. It is possible that the MIS never

receives the request.

■ Check the debug output for a response to the set request. The response may

contain more useful information about why the request failed.

15.4.2 Failure to Process Notifications

If an application has registered to receive a type of event notification, but appears

not to be acting on event notifications of that type, debug the application by:

■ Verifying GDMO and ASN.1 specifications

■ Trapping errors in high-level PMI function calls

■ Trapping programming logic errors

■ Monitoring communications with the MIS

15.4.2.1 Verifying GDMO and ASN.1 Specifications

To verify that your application code is consistent with the GDMO and ASN.1

specifications of your object model:

■ Verify that the case and the spelling of the event type in your application code

matches exactly the event type in its GDMO specification.

■ Use the MIS Objects tool and watch the status line for event notifications of the

type your application has registered to receive.

15.4.2.2 Trapping Errors in High-Level PMI Function Calls

To trap errors in high-level PMI function calls:

■ Use the overloaded not (!) operator on high-level PMI function calls before the

registration of the callback for the event type to verify that those calls succeeded.

■ Verify that you are not excluding the event type in your application discriminator.

■ Use the MIS Objects tool to check the subsystemId="EM-
MIS"/emApplicationID= yourApplicationId and check the value for the

discriminator attribute.

For more information on handling errors in high-level PMI function calls, refer to

Chapter 4.
Chapter 15 Troubleshooting 15-25

15.4.2.3 Trapping Programming Logic Errors

To verify that the program is executing the code that you expect it to execute:

■ Verify that you have registered the correct callback function for the event type

you want to handle.

■ Add print statements to verify if your callbacks have been called.

■ Set the -g flag when you compile the code, then run a debugger. Set breakpoints

in the callback functions and check that the breakpoints are reached.

15.4.2.4 Monitoring Communication With the MIS

To verify that event notifications that your application has registered to receive are

reaching the MIS:

■ Run em_debug, specifying "on not*" to print out all notifications that are sent

to the MIS.

■ Check the em_debug output for event notifications of the type your application

has registered to receive. It is possible that the event notifications of the type are

never sent to the MIS.

■ If the source of the event notification is an SNMP agent, turn on SNMP

debugging, and monitor that trace to verify that the event notification was

received by the SNMP MPA.
15-26 Developing C++ Applications • October 2001

CHAPTER 16

Integrating Applications With
Solstice EM

Integrating applications with Solstice EM enables users to start your applications

from the Solstice EM platform. Applications you develop will typically be used in

conjunction with other Solstice EM components to provide a complete network

management solution. Integrating applications with Solstice EM enhances the

usability of your network management solution by providing users with the most

convenient means to start applications. Integrating applications with Solstice EM

also ensures that information required by the applications when they are started is

always passed to them. Depending on the purpose of an application, you can

integrate the application by adding it to a tools window, extending the Tools menu

of a Solstice EM tool, or customizing the Network Views tool.

This chapter explains how to integrate applications with Solstice EM.

■ Section 16.1 “Adding an Application to a Tools Window” on page 16-1

■ Section 16.2 “Extending the Tools Menu of a Solstice EM Tool” on page 16-4

■ Section 16.3 “Customizing the Network Views Tool” on page 16-6

16.1 Adding an Application to a Tools
Window
Users of the Solstice EM platform start tools from a tools window. Each tools

window groups together a number of related tools and provides for each tool an

icon which, when clicked, starts the tool. Integrate an application with Solstice EM

by adding the application to a tools window if the application is independent of

other Solstice EM components in your network management solution.
16-1

Add an application to one of the following tools windows, depending on the

purpose of the application:

■ Network Tools if the application is used for network management

■ Administration if the application is used for administration of your network

management solution

To add an application to a tools window, edit one of the configuration files given in

TABLE 16-1, depending on the window you want to add the application to.

Note – The tools windows enable you to add applications to them interactively

instead of by editing a configuration file. For information on how to add

applications interactively to a tools window, refer to Managing Your Network.

Each configuration file for a tools window contains an entry for each application that

you can start from the tools window. The format of an entry is as follows:

The variable parts of this format are explained in TABLE 16-2.

TABLE 16-1 Configuration Files for Solstice EM Tools Windows

Window Configuration File

Network Tools /opt/SUNWconn/em/config/em_panel.cf

Administration /opt/SUNWconn/em/config/em_admintool.cf

toolsWindow.glyph n: glyphFile
toolsWindow.label n: labelText
toolsWindow.commandn: command
toolsWindow.response n: response
toolsWindow.app_name n: applicationName

TABLE 16-2 Variable Parts in a Configuration File Entry for a Tools Window

toolsWindow Specifies the tools window that the entry applies to. toolsWindow is

one of the following keywords:

• em_panel - Network Tools window

• em_admintool - Administration window

n An integer that specifies where in relation to other icons the icon for

this application is displayed in the tools window. Icons in a tools

window are displayed left to right and top to bottom.

glyphFile The name of the file, including the full path, that contains icon that

is displayed in the tools window. By default, Solstice EM glyph files

are located in the /opt/SUNWconn/em/glyphs directory.
16-2 Developing C++ Applications • October 2001

CODE EXAMPLE 16-1 shows an entry in the configuration file for the Network Tools

window.

In this example, an application is added in the fourth position of the Network Tools

window. The properties of this application are as follows:

■ The icon that represents the application is contained in the file

/opt/SUNWconn/em/glyphs/em_datacollector.pm .

■ The text label Data Collections is displayed beneath the icon. A line break is

inserted after the word Data in this label.

■ The command to start the application is

/opt/SUNWconn/em/bin/em_datacollector . The -host EM_MIS argument

is passed to the application when it is started.

■ The icon for this application remains grayed out and inactive until the Network

Tools window receives a response from the application.

■ The application was registered as em_datacollector when it was placed under

security control.

labelText The text label displayed beneath the icon in the tools window. To

create a multiline label, insert \n where you want a line break.

command The command to start the application, including:

• The full path to the command

• Any arguments that must be passed to the application when it is

started

response Specifies whether the tools window waits for a response from the

application when a user starts the application. response is one of the

following values:

• 0 - The tools window does not wait for a response. The icon for

the application in the tools window remains grayed out and

inactive for 5 seconds after a user starts the application.

• 1 - The tools window waits for a response from the application to

confirm that the application has started. The icon for the application

in the tools window remains grayed out and inactive until the tools

window receives a response.

applicationName The name of the application as registered when the application was

placed under security control. For information on how to place an

application under security control, refer to Managing Your Network.

CODE EXAMPLE 16-1 Network Tools Window Configuration File Entry

em_panel.glyph4: /opt/SUNWconn/em/glyphs/em_datacollector.pm
em_panel.label4: Data\nCollections
em_panel.command4: /opt/SUNWconn/em/bin/em_datacollector -host EM_MIS
em_panel.response4: 1
em_panel.app_name4: em_datacollector

TABLE 16-2 Variable Parts in a Configuration File Entry for a Tools Window (Continued)
Chapter 16 Integrating Applications With Solstice EM 16-3

16.2 Extending the Tools Menu of a Solstice
EM Tool
Extending the Tools menu of a Solstice EM tool enables users to start your

application by choosing a command from the Tools menu of a Solstice EM tool.

Integrate an application by extending a Solstice EM tool if the purpose of the

application is to provide additional features that the tool does not already provide,

or if the application operates on a selection made in the tool.

For example, consider an application that processes alarms in a specialized manner.

Any alarm that the application processes must be selected in the Alarms tool. To

integrate this application with Solstice EM, the Alarms tool would be extended to

add the command for starting the application to the Tools menu of the Alarms tool.

To extend the Tools menu of a Solstice EM tool, edit one of the configuration files

given in TABLE 16-3, depending on the tool.

Note – Solstice EM tools enable you to extend their Tools menus interactively

instead of by editing a configuration file. For information on how to extend the Tools

menu of a Solstice EM tool interactively, refer to Managing Your Network.

Each configuration file for a Solstice EM tool contains an entry for each command on

the Tools menu of the tool. To extend the Tools menu of a Solstice EM tool, add an

entry to the configuration file for the tool. The format of an entry is as follows:

TABLE 16-3 Configuration Files for Solstice EM Tools

Solstice EM Tool Configuration File

Network Views /opt/SUNWconn/em/config/em_viewer.cf

Alarms /opt/SUNWconn/em/config/em_alarmmgr_tp.cf

Event Logs /opt/SUNWconn/em/config/em_logmgr_tp.cf

Log Entries /opt/SUNWconn/em/config/em_logview_tp.cf

Application
{
name: commandLabel
path: command
args: argList
}

16-4 Developing C++ Applications • October 2001

Each entry starts with the keyword Application . The remainder of the entry is

enclosed in braces.

The variable parts of a configuration file entry for a Solstice EM tool are explained in

TABLE 16-4.

CODE EXAMPLE 16-2 shows an entry for extending the Tools menu in the

configuration file for a Solstice EM tool.

In this example, the Alarms command is added to the Tools menu of a Solstice EM

tool. When a user chooses this command, the application that has the executable file

/opt/SUNWconn/em/bin/em_alarmmgr is started. The argument -host EM_MIS
is passed to the application when it is started. The ellipsis indicates that another

window is opened when a user chooses this command.

TABLE 16-4 Variable Parts in a Configuration File Entry for a Solstice EM Tool

commandLabel The name of the command for starting the application as it appears

on the Tools menu. If choosing this command opens another

window, append an ellipsis to the command name.

command The command to start the application, including the full path to the

command.

argList A list of arguments that must be passed to the application when the

application is started. Each argument in argList is separated from

the argument that precedes it by a space.

CODE EXAMPLE 16-2 Configuration File Entry for Extending the Tools Menu

Application
{
name: Alarms...
path: /opt/SUNWconn/em/bin/em_alarmmgr
args: -host EM_MIS
}

Chapter 16 Integrating Applications With Solstice EM 16-5

16.3 Customizing the Network Views Tool
The actions that the Network Views tool provides depend on the topology type of

the object selected in the Network Views window. Integrate an application by

customizing the Network Views tool if the application is intended to process objects

of a particular topology type. Depending on the purpose of the application, you can

customize the Network Views tool by:

■ Extending the Actions menu of the Network Views tool

■ Setting the activation of a topology type

Note – The following subsections explain how to customize the Network Views tool

by editing a configuration file. Solstice EM enables you to customize the Network

Views tool interactively. For information on how to customize the Network Views

tool interactively, refer to Managing Your Network.

16.3.1 Extending the Actions Menu of the Network

Views Tool

Extending the Actions menu of the Network Views tool enables users to start your

application by choosing a command from the Actions menu of the Network Views

tool. The Actions menu of the Network Views tool provides additional custom

commands that depend on the topology type of the object selected in the Network

Views window. Integrate an application by extending the Actions menu of the

Network Views tool if the application provides a specialized action for a particular

topology type.
16-6 Developing C++ Applications • October 2001

To extend the Actions menu of the Network Views tool, edit the

/opt/SUNWconn/em/config/em_viewer.cf configuration file. This file contains

an entry for each topology type to specify the custom commands on the Actions

menu. The format of an entry that defines custom commands for a topology type is

as follows:

Each entry starts with the keyword Menu followed by the topology type. Each

command that you want to add to the Actions menu is specified on a separate line.

The commands are enclosed in braces.

The variable parts of a configuration file entry that defines custom commands on the

Actions menu for a topology type are explained in TABLE 16-5.

Menu topoType
{
" commandText1" command1
.
.
.
" commandTextN" commandN
}

TABLE 16-5 Variable Parts in a Configuration File Entry for the Actions Menu

topoType The topology type that the custom commands apply to.

commandText1 The name of the first custom command on the Actions menu. If

choosing this command opens another window, append an ellipsis

to the command name. commandText1 is enclosed in double quotes.

command1 The command to start the application associated with the first

custom command, including:

• The full path to the command

• Any arguments that must be passed to the application when it is

started

commandTextN The name of the Nth custom command on the Actions menu. If

choosing this command opens another window, append an ellipsis

to the command name. commandTextN is enclosed in double quotes

commandN The command to start the application associated with the Nth

custom command, including:

• The full path to the command

• Any arguments that must be passed to the application when it is

started
Chapter 16 Integrating Applications With Solstice EM 16-7

CODE EXAMPLE 16-3 shows an entry for extending the Actions menu of the Network

Views tool for a topology type.

In this example, the following commands are added to the Actions menu of the

Network Views tool for the Satellite topology type:

■ Display View. When a user chooses this command, the Network Views tool

changes the current view to the associated object.

■ Alarms. When a user chooses this command, the application that has the

executable file /opt/SUNWconn/em/bin/em_alarmmgr is started. The

arguments -host EM_MIS and -id EM_UNIQUE_ID are passed to the

application when it is started. The ellipsis indicates that another window is

opened when a user chooses this command.

■ Dish Watcher. When a user chooses this command, the application that has the

executable file /opt/SUNWconn/em/bin/graphics is started. No arguments are

passed to the application when it is started. The ellipsis indicates that another

window is opened when a user chooses this command.

■ Properties. When a user chooses this command, the application that has the

executable file /opt/SUNWconn/em/bin/em_oct is started. The arguments

-host EM_MIS and -id EM_UNIQUE_ID are passed to the application when it is

started. The ellipsis indicates that another window is opened when a user chooses

this command.

Note – EM_GOTOVIEWis a Network Views command macro. Assign this command

macro only to topology types that are a view (for example, Container or Monitor

types). For more information, refer to Managing Your Network.

CODE EXAMPLE 16-3 Extending the Actions Menu of the Network Views Tool

Menu Satellite
{
"Display View" EM_GOTOVIEW
"Alarms..." /opt/SUNWconn/em/bin/em_alarmmgr -host EM_MIS -id EM_UNIQUE_ID
"Dish Watcher..." /opt/SUNWconn/em/bin/graphics
"Properties..." /opt/SUNWconn/em/bin/em_oct -host EM_MIS -id EM_UNIQUE_ID
}

16-8 Developing C++ Applications • October 2001

16.3.2 Setting the Activation of a Topology Type

Setting the activation of a topology type specifies the action carried out when a

topology node of the type in the Network Tools window is double clicked. Integrate

an application by setting the activation of a topology type if the application

performs the default action for the topology type. The application is run when a

topology node of the type in the Network Tools window is double clicked.

To set the activation of a topology type, edit the

/opt/SUNWconn/em/config/em_viewer.cf configuration file. This file contains

an entry that sets the activations of all topology types that are displayed in the

Network Tools window. The format of this entry is as follows:

This entry starts with the keyword Activations . The activation setting for each

topology type is specified on a separate line. The activation settings are enclosed in

braces.

The variable parts of the configuration file entry that sets activations of topology

types are explained in TABLE 16-6.

Activations
{
" topoType1" command1
.
.
.
" topoTypeN" commandN
}

TABLE 16-6 Variable Parts of the Configuration File Entry That Sets Activations

topoType1 The first topology type that you want to set the activation of.

topoType1 is enclosed in double quotes.

command1 The command that specifies the action carried out when a topology

node of type topoType1 is double clicked. You must include:

• The full path to the command

• Any arguments that must be passed to the application when it is

started

topoTypeN The Nth topology type that you want to set the activation of.

topoTypeN is enclosed in double quotes.

commandN The command that specifies the action carried out when a topology

node of type topoTypeN is double clicked. You must include:

• The full path to the command

• Any arguments that must be passed to the application when it is

started
Chapter 16 Integrating Applications With Solstice EM 16-9

CODE EXAMPLE 16-4 shows an example of the configuration file entry that defines

activations of topology types.

In this example, activations of topology types are set as follows:

■ When a topology node of type Array is double clicked, the Network Views tool

changes the current view to the associated object.

■ When a topology node of type Bridge is double clicked, the application that has

the executable file /opt/SUNWconn/em/bin/em_alarmmgr is started. The

arguments -host EM_MIS and -id EM_UNIQUE_ID are passed to the

application when it is started.

■ When a topology node of type Dish is double clicked, the application that has the

executable file /opt/SUNWconn/em/bin/graphics is started. No arguments are

passed to the application when it is started.

Note – EM_GOTOVIEWis a Network Views command macro. Assign this command

macro only to topology types that are a view (for example, Container or Monitor

types). For more information, refer to Managing Your Network.

CODE EXAMPLE 16-4 Setting the Activations of Topology Types

Activations
{
"Array" EM_GOTOVIEW
"Bridge" /opt/SUNWconn/em/bin/em_alarmmgr -host EM_MIS -id EM_UNIQUE_ID
"Dish" /opt/SUNWconn/em/bin/graphics
}

16-10 Developing C++ Applications • October 2001

CHAPTER 17

Writing RPC Agents for Solstice EM

Solstice Enterprise Manager (Solstice EM) supports agents written to the

Site/SunNet/Domain Manager (SNM) interfaces and libraries. SNM agents can

communicate with the Solstice EM MIS via the Solstice EM MIS RPC interface. The

Solstice EM MIS RPC interface translates from SNM ONC RPC to the Solstice EM

PMI.

This chapter explains how to write RPC agents for Solstice EM.

■ Section 17.1 “Manager-Agent Model” on page 17-1

■ Section 17.2 “Types of Agents” on page 17-2

■ Section 17.3 “Steps for Writing an Agent” on page 17-3

■ Section 17.4 “Solstice EM Integration” on page 17-4

17.1 Manager-Agent Model
The SNM design is based on the manager/agent model in the Open Systems

Interconnection (OSI) management framework. The manager is a process started by

the user (for example, the Solstice EM MIS). The agent is a process that collects data

from the managed resource and reports it to the manager.

The Manager/Agent Services libraries provide the management infrastructure and

handle the communication services. The agent and manager need not be concerned

with the underlying networking involved in their communication. The agent process

is concerned only with collecting data from the managed resource. The manager and

agent processes make use of the Services through Application Programming

Interfaces (APIs).

Another aspect of the manager/agent model involves the definition of management

data. Open management standards—for example, OSI and the Simple Network

Management Protocol (SNMP)—specify that agents abstract the properties (or

attributes) of managed resources into data items (for example, “how busy a CPU is”
17-1

becomes a value between 0 and 100). In SNM, the attributes for a managed resource

are described in the agent schema. The agent is able to respond to the manager’s

request, because both use the same data definitions for the managed resource.

17.2 Types of Agents
All SNM agents communicate with the manager in the manner just described. Agent

types differ in the relationship with their respective managed resources.

Agents can directly or indirectly access managed resources. Most of the SNM agents

provided with Solstice EM manage resources on the Sun workstations where they

are installed. For example, the hostmem agent uses the same mechanism as

netstat -m to get memory utilization data.

The second type of agent provides the ability to manage objects that are not directly

accessible. Such agents are called proxy agents. Proxy agents run on Sun

workstations, called proxy systems, and use protocol translation mechanisms to

provide the necessary access to the managed resources. The proxy system may be

the workstation on which the Solstice EM MIS is running or another workstation on

the network.

The ping proxy agent provides the ability to test the reachability of Internet Protocol

(IP) devices, translating manager requests into Internet Control Message Protocol

(ICMP) echo requests. Similarly, the hostperf proxy agent uses the rstat protocol to

gather host statistics.

Proxy agents provide a mechanism allowing SNM to extend into virtually any

domain. The Simple Network Management Protocol (SNMP) proxy agent provides

the ability to manage any device that supports SNMP, the widely accepted standard

management protocol for the TCP/IP world.
17-2 Developing C++ Applications • October 2001

17.3 Steps for Writing an Agent
Before an agent is written, access to the managed resource must exist (that is, code

must be written to get the required management data).

Note – The prefixes NETMGT, Netmgt , and netmgt are reserved for network

management functions.

From a high-level viewpoint, the steps involved in implementing an agent are as

follows:

■ Assigning a name to each discrete management data item—attribute. For instance,

if the input packet count is an attribute, an appropriate name is ipkts .

■ Determining the data type for each attribute. In the example, ipkts is an integer.

■ Using the attribute information to form the agent schema file, which will be

specific to the particular agent.

Note – The conversion of SNM schema files into GDMO files for use with the

Solstice EM MIS requires that only alphanumeric characters be used for names.

Therefore, use special characters with caution.

■ Expanding the original code written for accessing the managed resource to

incorporate the agent schema definitions.

■ Writing the code that uses the SNM Agent Services library. This includes code for

agent initialization, request handling, and error reporting.

■ Incorporating any agent-specific error messages into the agent schema file.

■ Testing and integrating the completed agent code and schema file with Solstice

EM.
Chapter 17 Writing RPC Agents for Solstice EM 17-3

17.4 Solstice EM Integration
Once you are satisfied your agent is performing correctly, install it where you want

it to run on the systems, then integrate it with the Solstice EM MIS database.

17.4.1 Installing the Agent

For each system where you want your agent to run,

■ Copy your agent to the directory where the other SNM agents are installed. If no

SNM agents have been installed on the system, first run the SNM utility

getagents.

■ Add the following entry to snm.conf :

This will set your agent security level on this host to zero (no security checking).

Optionally, you can set your agent to any value between 1 and 5.

■ Add an entry for your agent to /etc/inetd.conf to allow inetd to

automatically start your agent when a manager sends a request to your agent.

Here’s a summary of the inetd.conf(5) file format.

For example, the entry for the iproutes agent (on a Solaris 2.x machine) is:

■ Force inetd to reread its configuration file by sending it a SIGHUPsignal:

na. my-agent-name0

na. agent-name/10 tli rpc/udp wait root agent program absolute pathname agent-
name arguments

na.hostmem/10 tli rpc/udp wait root
/opt/SUNWconn/snm/agents/na.iproutes na.iproutes

hostname% kill -HUP inetd’s process ID
17-4 Developing C++ Applications • October 2001

17.4.2 Updating the Solstice EM MIS Database

Solstice EM uses GDMO descriptions, rather than the schema files used by SNM

products, to represent the managed object classes available to the management

database. Thus, the Solstice EM Schema compiler (em_snm2gdmo) is used as the first

step in converting the SNM schema files into GDMO descriptions used in Solstice

EM.

To translate an SNM schema file, run the Schema compiler with the file to be

translated as an argument (filename).

The output of the translation is a GDMO document, with a name of the form

filename.gdmo , and an ASN.1 document, with a name of the form filename.asn1 .

You must then pass the GDMO file through the GDMO compiler.

hostname% em_snm2gdmo < filename
Chapter 17 Writing RPC Agents for Solstice EM 17-5

17-6 Developing C++ Applications • October 2001

APPENDIX A

Solstice EM C++ Source Code
Examples

Solstice EM is supplied with a number of source code examples that show how to

use the Solstice EM C++ application programming interfaces (APIs) to develop

network management applications. The examples are contained in subdirectories of

the /opt/SUNWconn/em/src directory. For detailed information about an example,

refer to the READMEfile supplied with the example.

This appendix introduces the C++ source code examples supplied with Solstice EM.

■ Section A.1 “Guidelines for Compiling the Examples” on page A-1

■ Section A.2 “Satellite Example” on page A-2

■ Section A.3 “High-Level PMI Examples” on page A-3

■ Section A.4 “Scenario Examples” on page A-8

■ Section A.5 “Security Examples” on page A-9

■ Section A.6 “Low-Level PMI Examples” on page A-10

■ Section A.7 “Object Modeling Example” on page A-11

■ Section A.8 “Object Development Examples” on page A-11

■ Section A.9 “Miscellaneous Examples” on page A-12

A.1 Guidelines for Compiling the Examples
To simplify compiling the examples, a Makefile is supplied with each example.

Note – Before trying to compile an example, make sure that the output files are

written to a directory you have write access to. The file access permissions of the

directories under /opt/SUNWconn allow only the root user to write these

directories.
A-1

If you want to compile an example by using the CCcommand, refer to Chapter 14 for

guidelines on how to compile applications developed with the Solstice EM C++

APIs.

To compile the examples, you must use version 5.2 of the Sun™ Workshop C++

compiler. To verify the compiler version, type the following command:

A.2 Satellite Example
The satellite example illustrates applications to manage a number of satellites by:

■ Monitoring the traffic on the satellites

■ Controlling the geographical coordinates of the satellites

■ Monitoring alarms and events

■ Changing communication parameters of the satellites

The example is contained in subdirectories of the

/opt/SUNWconn/em/src/satellite directory. The files in each subdirectory

illustrate a particular aspect of the application development process as shown in

TABLE A-1.

prompt% CC -V

TABLE A-1 Subdirectories of the Satellite Example Directory

Subdirectory Illustrates

mgmt_info Developing the object model of the satellites

platform Enabling an application to access managed objects

actions Retrieving data from the metadata repository

objects Performing operations on managed objects

collection Performing management operations on object collections

graphics Handling events in a GUI application

security Making applications and managed objects secure

simulate Simulating events

discover Handling network topology
A-2 Developing C++ Applications • October 2001

A.3 High-Level PMI Examples
The /opt/SUNWconn/em/src/pmi_hi directory contains examples that show how

to use the high-level PMI. The examples show how to accomplish tasks related to

several different aspects of network management as described in the following

subsections.

A.3.1 Managed Object Examples

TABLE A-2 lists examples showing how to perform management operations on

managed objects. The examples are contained in the

/opt/SUNWconn/em/src/pmi_hi directory.

complex Encoding and decoding complex data types

performance Optimizing performance by saving memory and speeding up event

processing

low_level Optimizing performance by using the low-level portable

management interface (PMI) API

TABLE A-2 Managed Object Examples for the High-Level PMI

File Description

get.cc Synchronously gets the value of the specified attribute for the

specified managed object. If no attribute is specified, the program

gets the values of all attributes for the specified managed object. If

no arguments are specified, the program gets the values of all

attributes for the topology database topoType object named Host .

To start the program after compiling it, type:

prompt% get [fdn moc [attribute]]

Where:

• fdn is the fully distinguished name (FDN) of the managed object.

• moc is the managed object class of the object.

• attribute is the attribute you want to get.

get_asyn.cc Asynchronously gets an attribute value of a managed object. This

example is an asynchronous version of get.cc .

TABLE A-1 Subdirectories of the Satellite Example Directory (Continued)

Subdirectory Illustrates
Appendix A Solstice EM C++ Source Code Examples A-3

set.cc Synchronously sets the value of the specified attribute for the

specified managed object. If no arguments are specified, the

program sets the poll rate of the NerveCenter PollRate Fast
object to 777. To start the program after compiling it, type:

prompt% set fdn moc attribute value

Where:

• fdn is the FDN of the managed object.

• moc is the managed object class of the object.

• attribute is the attribute you want to set.

• value is the value you want to set the attribute to.

set_asyn.cc Asynchronously sets an attribute value of a managed object. This

example is an asynchronous version of set.cc .

image_boot.cc Loads information on the specified attributes of the specified

managed object. If no attributes are specified, information on all

attributes of the managed object is loaded. To start the program after

compiling it, type:

prompt% image_boot -d fdn [-a attr1 -a attr2 … -a attrN]

Where:

• fdn is the FDN of the managed object.

• attri are the specified attribute names. If no attributes are

specified, all attributes are obtained.

object_count.cc Counts all local objects, stores FDN entries in a hash table, and

searches the entries in the hash table.

TABLE A-2 Managed Object Examples for the High-Level PMI (Continued)

File Description
A-4 Developing C++ Applications • October 2001

A.3.2 Object Collection Examples

TABLE A-3 lists examples showing how to perform management operations on object

collections. The examples are contained in the /opt/SUNWconn/em/src/pmi_hi
directory.

A.3.3 Event Handling Examples

TABLE A-4 lists examples showing how to handle events. The examples are contained

in the /opt/SUNWconn/em/src/pmi_hi directory.

TABLE A-3 Object Collection Examples for the High-Level PMI

File Description

album.cc Synchronously derives an object collection. For each object in the

collection, the example program prints the FDN of the object, and

for each attribute its name and value. To start the program after

compiling it, type:

prompt% album [-h hostName]

Where hostName is the name of the host where the MIS is running. If

it is not specified, localhost is assumed.

album_asyn.cc Asynchronously derives an object collection. This example is an

asynchronous version of album.cc .

album_logObj.cc Derives a collection of all log objects created under the host where

the MIS is running. If a new log object is created, an Image instance

representing it is added to the object collection.

album_wait.cc Derives an object collection the membership of which is maintained

automatically.

derive_rpc.cc Derives an object collection for RPC groups, for the specified host

and MIS.

derive_snmp.cc Derives an object collection for SNMP MIB II groups, for the

specified host and MIS.

TABLE A-4 Event Handling Examples for the High-Level PMI

File Description

efd.cc Creates an event forwarding discriminator (EFD) and sets

up an MIS to forward events to another MIS.

event_send1.cc Sends an event notification containing the event name,

event information, and a default time stamp.
Appendix A Solstice EM C++ Source Code Examples A-5

A.3.4 Log Record Handling Examples

TABLE A-5 lists examples showing how to handle log records. The examples are

contained in the /opt/SUNWconn/em/src/pmi_hi directory

event_send2.cc Sends an event notification containing the event name,

event information, and a custom time stamp.

event_send3.cc Sends an event notification containing the event name,

event information, and a custom time stamp in ASN.1

notation.

event.cc Listens for all events and prints the contents of any event it

receives.

event_app1.cc Listens for specific event types and prints the contents of

any event it receives.

event_app2.cc Listens for events of all types that happen to instances of

the specified managed object classes. To start the program

after compiling it, type:

prompt% event_app2 moc1 moc2 … mocN

Where moci are the specified managed object classes.

event_create_logObj.cc Listens for and prints log object creation events.

plat_get_conn_fd.cc Gets and prints the file descriptor for an MIS connection.

TABLE A-5 Log Record Handling Examples for the High-Level PMI

File Description

create.cc Synchronously creates a log object.

create_asyn.cc Asynchronously creates a log object. This example is an

asynchronous version of create.cc.

delete.cc Deletes the specified log object.

delete_asyn.cc Asynchronously deletes the specified log object. This example is an

asynchronous version of delete.cc .

TABLE A-4 Event Handling Examples for the High-Level PMI (Continued)

File Description
A-6 Developing C++ Applications • October 2001

A.3.5 Network Topology Examples

TABLE A-6 lists examples showing how to read and modify topology node data. The

examples are contained in the

/opt/SUNWconn/em/src/pmi_hi/topo_user_data directory.

A.3.6 FDN Translation Examples

TABLE A-5 lists examples showing how to translate FDNs of managed objects into

nicknames. The examples are contained in the

/opt/SUNWconn/em/src/pmi_hi/dn_translation directory.

A.3.7 Graphical Application Examples

The /opt/SUNWconn/em/src/pmi_hi/cmipconfig directory contains an

example of a graphical application for setting up MIS-to-MIS communication. For

information on the components of this example, refer to the

/opt/SUNWconn/em/src/pmi_hi/cmipconfig/README file.

TABLE A-6 Network Topology Examples for the High-Level PMI

File Description

get_topoNodeUserData.cc Gets the value of a topology node attribute in compound

and scalar format.

set_topoNodeUserData.cc Sets the value of a topology node attribute.

TABLE A-7 FDN Translation Examples for the High-Level PMI

File Description

fdn_translate.cc Gets partial nicknames of Image instances that represent

managed objects.

get_nickname_NNsvr.cc Retrieves the FDN translation of a managed object and sets

the nickname of an Image instance to the translated name.

set_nickname_NNsvr.cc Sets the nickname of an Image instance and defines this

nickname in the nickname server.
Appendix A Solstice EM C++ Source Code Examples A-7

A.3.8 MDR Action Examples

The /opt/SUNWconn/em/src/pmi_hi/mdr_action.cc file contains an example

of how to use actions to retrieve data from the metadata repository (MDR).

A.3.9 Encoding and Decoding Examples

The /opt/SUNWconn/em/src/pmi_hi/morf_topoNode.cc file contains an

example of how to use the Morf class to split a compound data attribute value into

scalar data values.

A.4 Scenario Examples
The scenario examples show how to use several components of Solstice EM together

to develop a complete network management solution. The examples are contained in

subdirectories of the /opt/SUNWconn/em/src/scenario directory. The scenarios

are covered by the files in one or more of the subdirectories as follows:

For more information on each example, refer to the READMEfile in the subdirectory

that contains the example.

TABLE A-8 Scenario Examples

Scenario Subdirectory

Adding and managing a new class of device example1
example2

Using PMI client applications to present information example3
example4
example5

Sharing information among PMI client applications example6

Using multiple MISs example7
example8
example9
A-8 Developing C++ Applications • October 2001

A.5 Security Examples
The security examples show how to use the access control mechanisms of Solstice

EM to make applications and managed objects secure.

A.5.1 Access Control API Examples

TABLE A-9 lists examples showing how to use the access control API to make

applications and managed objects secure. The examples are contained in the

/opt/SUNWconn/em/src/ac_api directory.

A.5.2 Access Control Engine API Examples

TABLE A-9 lists examples showing how to use the access control engine API to make

a management protocol adapter (MPA) or protocol driver module (PDM) secure. The

examples are contained in the /opt/SUNWconn/em/src/mpa_pdm/src directory.

TABLE A-9 Access Control API Examples

File Description

app_feature_list.cc Lists applications and their features.

create_em_user.cc Configures access control for applications.

create_rule.cc Creates a security rule.

create_target.cc Configures access control for managed objects.

list_security_defaults.cc Lists security defaults.

TABLE 17-1 Access Control Engine API Examples

File Description

mpapdm_ace.cc Implements the MpapdmAuxServer class.

msgio.cc Checks access control and cleans up access control objects.

req_mngt.cc Checks access control on pending MPA PDM requests.

samp_main.cc Initializes access control objects.
Appendix A Solstice EM C++ Source Code Examples A-9

A.5.3 Password Request Example

The /opt/SUNWconn/em/src/pmi_hi/passwd_dialog/dialog_box.cc file

contains an example of how to create a dialog box that requests a password from a

user to before allowing access to an application.

A.5.4 Application-Feature-Level Example

The /opt/SUNWconn/em/src/pmi_hi/access_feature/access_feature_level.cc file

contains an example of how to use the high-level PMI to add feature-level access

control to an application.

A.6 Low-Level PMI Examples
TABLE A-10 lists examples showing how to use the low-level PMI. The examples are

in the /opt/SUNWconn/em/src/pmi_low directory.

TABLE A-10 Low-Level PMI Example Programs

File Description

album_low.cc S ends a scoped GetReq command. The high-level PMI equivalent is

Album::derive with scoping.

boot_low.cc Sends a GetReq command with a selected attribute list. The high-

level PMI equivalent is Image::boot(attrlist) .

create_low.cc Sends a CreateReq command with a selected attribute list. The

high-level PMI equivalent is Image::set calls followed by

Image::create .

delete_low.cc Sends a DeleteReq command. The high-level PMI equivalent is

Image::destroy .

event_gen_low.cc Sends events directly to the event manager in the MIS.

filter_low.cc Sends a scoped, filtered GetReq command. The high level PMI

equivalent is Album::derive with scoping and filtering.

set_low.cc Sends a SetReq command with a selected attribute list. The high-

level PMI equivalent is Image::set calls followed by

Image::store .

simple_low.cc Sends a simple GetReq command for the root object. No attributes

are retrieved. There is no high level PMI equivalent.
A-10 Developing C++ Applications • October 2001

A.7 Object Modeling Example
The /opt/SUNWconn/em/src/gdmo_sample directory contains the GDMO

definition and ASN.1 module specification of an example managed object class.

A.8 Object Development Examples
The object development examples show how to use object development tools (ODT)

to develop object behaviors. Each example is contained in a subdirectory of the

/opt/SUNWconn/src/odt directory as listed in TABLE A-11.

TABLE A-11 Object Development Examples

Subdirectory Description

cellSample Defines a set of complex intra-object behaviors. This example

monitors an object. If the behavior of the monitored object

changes, the example changes the behavior of the monitored

object’s neighboring objects.

chai Monitors an attribute named chaiReady to determine if there

is any chai tea ready to drink. If not, the example sends an

action named brewChai to make more chai tea.

demoPing Defines behavior of a native agent.

demoregistry Provides an MIS client function to operate as a remote agent.

This example demonstrates how to register an application,

similar to a licensing facility.

demoServer Provides an MIS server function to operate as a remote agent.

This example provides support required for the

demoregistry and diskInfo examples.

diskInfo Demonstrates behavior to get information from a process that

is outside the MIS.
Appendix A Solstice EM C++ Source Code Examples A-11

A.9 Miscellaneous Examples
The examples listed in TABLE A-12 are in subdirectories of the

/opt/SUNWconn/em/src directory.

TABLE A-12 Miscellaneous API Examples

Subdirectory Illustrates

app_api Using the application-to-application API

grapher_api Using the grapher API

topo_api Using the topology API

viewer_api Using the viewer API

mpa_pdm Developing an MPA or PDM

nci Sending Nerve Center requests

nn Getting and setting nicknames

objop Creating and modifying managed objects by using the em_objop
utility

odt Developing object behaviors

overload Using the overload control mechanism of the CMIP MPA

sql Generating reports by using the structured query language (SQL)
A-12 Developing C++ Applications • October 2001

APPENDIX B

Standards Reference and Further
Reading

B.1 Standards Reference
Solstice EM is based on the specifications and standards listed in the following

subsections.

Telecommunications Management Network (TMN)
■ M.3000 Overview of TMN Recommendations

■ M.3010 Principles of a Telecommunications Management Network

■ M.3020 TMN Interface Specification Methodology

■ M.3100 Generic Network Information Model

■ M.3180 Catalogue of TMN Management Information

■ M.3200 TMN Management Services: Overview

■ M.3300 TMN Management Capabilities

■ M.3400 TMN Management Functions

OSI Model and Notation
■ ITU-T X.208/ISO-8824 Specification of Abstract Syntax Notation One (ASN.1)

■ ITU-T X.209/ISO-8825 Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1)
B-1

OSI Structure of Management Information
■ ITU-T X.700/ISO-7498 Management Framework

■ ITU-T X.701/ISO-10040 System Management Overview

■ ITU-T X.710/ISO-9595 Common Management Information Services (CMISE)

■ ITU-T X.711/ISO-9596-1 Common Management Information Protocol Specification

■ ITU-T X.720/ISO-10165-1 Management Information Model

■ ITU-T X.721/ISO-10165-2 Definition of Management Information

■ ITU-T X.722/ISO-10165-4 Guidelines for the Definition of Managed Objects (GDMO)

OSI Service Elements
■ ITU-T X.219/ISO-9072-1 Remote Operations: Model, Notation and Service Definition

■ ITU-T X.229/ISO-9072-2 Remote Operations: Protocol Specification

■ ITU-T X.217/ISO-8649 Service Definition for the Association Control Service Element

■ ITU-T X.227/ISO-8650 Connection-Oriented Protocol Specification for the Association
Control Service Element

Systems Management Functions
■ X.730/ ISO 10164-1 Object Management Function

■ X.731/ ISO 10164-2 State management Function

■ X.732/ ISO 10164-3 Attributes for Representing Relationships

■ X.733/ ISO 10164-4 Alarm Reporting Function

■ X.734/ ISO 10164-5 Event Report Management Function

■ X.735/ ISO 10164-6 Log Control Function

■ X.736/ ISO 10164-7 Security Alarm Reporting Function

■ X.737/ ISO 10164-14 Confidence and Diagnostic Test Categories

■ X.738/ ISO 10164-13 Summarization Function

■ X.739/ ISO 10164-11 Metric Objects and Attributes

■ X.740/ ISO 10164-8 Security Audit Trail Function

■ X.741/ ISO 10164-9 Objects and Attributes for Access Control

■ X.742/ ISO 10164-10 Usage Metering Function for Accounting Purposes

■ X.745/ ISO 10164-12 Test Management Function

■ X.746/ ISO 10164-15 Scheduling Function

■ X.750/ ISO 10164-16 Management Knowledge Management Function

■ X.751/ ISO 10164-17 Changeover Function
B-2 Developing C++ Applications • October 2001

B.2 Terminology References
The ISO specifications provide precise technical definitions for a number of terms

used through out this document.

TABLE B-1 ISO Specifications for Terminology Definitions

Term Defined In

access control X.741 ISO/IEC 10164-9: 1995(E)

action X.720 ISO/IEC 10165-1

agent X.701 ISO/IEC 10040

agent role X.701 ISO/IEC 10040

Application Entity Title (AE-Title) ISO 7498-3

Application Program Title (AP-Title) ISO 7498-3

Association Control Service Element (ACSE) protocol ITU-T X.227/ISO-8650

Association Control Service Element (ACSE) service ITU-T X.217/ISO-8649

attribute X.710 ISO/IEC 9595

attribute identifier X.720 ISO 10165-1

attribute type X.720 ISO 10165-1

attribute value assertion X.720 ISO 10165-1

constructed encoding X.209 ISO 8825

containment X.720 ISO 10165-1

destination (see destination attribute syntax) X.734 ISO 10164-5

discriminator X.734 ISO 10164-5

distinguished name X.720 ISO 10165-1

end-of-contents octets X.209 ISO 8825

event forwarding discriminator (see

eventForwardingDiscriminator managed object

class syntax)

X.734 ISO 10164-5

event report management function X.734 ISO 10164-5

filter (see CMISfilter syntax) X.711 ISO/IEC 9596-1

functional unit X.710 ISO/IEC 9595

identifier octets X.209 ISO 8825
Appendix B Standards Reference and Further Reading B-3

length octets X.209 ISO 8825

local distinguished name (see ObjectInstance
syntax)

X.711 ISO/IEC 9596-1

managed object ISO 7498-4

managed object class X.701 ISO/IEC 10040

management information X.701 ISO/IEC 10040

managed information base ISO 7498-4

manager X.701 ISO/IEC 10040

manager role X.701 ISO/IEC 10040

naming binding X.720 ISO 10165-1

naming tree X.720 ISO 10165-1

notification X.701 ISO/IEC 10040

notification type X.701 ISO/IEC 10040

open system X.200 ISO 7498

primitive encoding X.209 ISO 8825

relative distinguished name X.720 ISO 10165-1

Remote Operations Service Element (ROSE) protocol ITU-T X.229/ISO-9072-2

Remote Operations Service Element (ROSE) service ITU-T X.219/ISO-9072-1

systems management X.200 ISO 7498

top managed object class X.721 ISO/IEC 10165-2

TABLE B-1 ISO Specifications for Terminology Definitions (Continued)

Term Defined In
B-4 Developing C++ Applications • October 2001

B.3 Further Reading
The following books are useful for more detailed information about OSI networking

concepts and principles:

■ Computer Networks (Second Edition) by Andrew S. Tanenbaum (Prentice-Hall
International Editions, 1988)

■ OSI A Model for Computer Communications Standards by Uyless Black (Prentice-Hall,
1991)

■ Network Management Standards (The OSI, SNMP and CMOL Protocols) by Uyless
Black (McGraw-Hill on Computer Communications, 1992)

■ SNMP, SNMPv2, and CMIP: The Practical Guide to Network-Management Standards
by William Stallings (Addison-Wesley, 1993)

■ Telecommunications Network Management into the 21st Century: Techniques, Standards,
Technologies and Applications edited by Salah Aidarous and Thomas Plevyak (IEEE

Press, 1994)

■ GDMO Object Modelling and Definition for Network Management by Baha Hebrawi

(Technology Appraisals, 1995)
Appendix B Standards Reference and Further Reading B-5

B-6 Developing C++ Applications • October 2001

APPENDIX C

GDMO Templates

This appendix describes the templates defined by ITU-T X.722/ISO-10165-4

Guidelines for the Definition of Managed Objects (GDMO).

■ Section C.1 “Conventions Used in the Definitions” on page C-1

■ Section C.2 “Managed Object Class Template” on page C-2

■ Section C.3 “Name Binding Template” on page C-4

■ Section C.4 “Package Template” on page C-7

■ Section C.5 “Attribute Template” on page C-11

■ Section C.6 “Action Template” on page C-13

■ Section C.7 “Notification Template” on page C-15

■ Section C.8 “Parameter Template” on page C-18

■ Section C.9 “Attribute Group Template” on page C-20

■ Section C.10 “Behaviour Template” on page C-22

C.1 Conventions Used in the Definitions
In the template definitions:

■ Capitalized words are GDMO keywords.

■ Words in angle brackets represent information that is filled in when a template is

instantiated.

■ An item in square brackets represents an optional value.

■ A closing square bracket followed by an asterisk indicates that the item enclosed

in brackets may be repeated zero or more times.

Note – Some items are references to an instance of use of another GDMO template.

If an item is defined in a different GDMO document, the item must be specified as a

fully-qualified name, that is: <GDMO-Document-Name> : <label> .
C-1

C.2 Managed Object Class Template
The Managed Object Class template references all other templates to make up the

managed object class definition.

The Managed Object Class template references the following other templates either

directly or indirectly:

■ Package

■ Parameter

■ Attribute

■ Attribute Group

■ Behaviour

■ Action

■ Notification

C.2.1 Managed Object Class Template Format

The format of the Managed Object Class template is as follows:

<class-label> MANAGED OBJECT CLASS
[DERIVED FROM <class-label> [,<class-label>]*;
]

[CHARACTERIZED BY <package-label> [,<package-label>]*;
]

[CONDITIONAL PACKAGES <package-label> PRESENT IF condition-definition
[,<package-label> PRESENT IF condition-definition]*;

]

REGISTERED AS object-identifier;
C-2 Developing C++ Applications • October 2001

C.2.2 Managed Object Class Template Constructs

The meaning of each construct in the Managed Object Class template is defined in

TABLE C-1.

TABLE C-1 Managed Object Class Template Constructs

Construct Description

<class-label> MANAGED
OBJECT CLASS

The MANAGED OBJECT CLASSconstruct identifies the

template as a definition for a managed object class.

<class-label> specifies the name of the managed

object class. The REGISTERED ASconstruct in the

template associates a unique object identifier with this

label.

DERIVED FROM <class-label>
[,<class-label>]*

The DERIVED FROMconstruct identifies other

managed object classes that are base classes of the

managed object class that is being defined.

Each <class-label> specifies a base class of the

managed object class that is being defined.

CHARACTERIZED BY
<package-label>
[,<package-label>]*

The CHARACTERIZED BYconstruct identifies the

packages that the managed object class supports. A

package defines a set of behaviors, attributes,

operations, and notifications. For detailed information

on the contents of a package, see Section C.4 “Package

Template” on page C-7.

Each <package-label> is the name of a package

that the managed object class supports.

CONDITIONAL PACKAGES
<package-label> PRESENT IF
condition-definition
[,<package-label>
PRESENT IF condition-
definition]

The CONDITIONAL PACKAGESconstruct identifies

any packages that are conditionally supported by the

managed object class. Each conditional package will

be included in a managed object instance if the

condition specified by the PRESENT IFclause for the

package is true.

Each <package-label> is the name of a conditional

package.

Each condition-definition specifies a condition

that must be true for the package to be included in a

managed object instance when the instance is created.

REGISTERED AS
object-identifier

The REGISTERED ASconstruct identifies the globally

unique identifier assigned to the managed object

class.

object-identifier is replaced with the object

identifier (OID) that globally and uniquely identifies

the managed object class.
Appendix C GDMO Templates C-3

C.3 Name Binding Template
The Name Binding template specifies instantiation and legal parameters for

managed objects. Containment, creation, and deletion constraints are initiated from

this template.

C.3.1 Name Binding Template Format

The format of the Name Binding template is as follows:

<name-binding-label> NAME BINDING
SUBORDINATE OBJECT CLASS <class-label> [AND SUBCLASSES];
NAMED BY SUPERIOR OBJECT CLASS <class-label> [AND SUBCLASSES];
WITH ATTRIBUTE <attribute-label>;

[BEHAVIOUR <behaviour-definition-label>
[,<behaviour-definition-label>]*;

]

[CREATE [create-modifier [,create-modifier]]
[<parameter-label>]*;

]

[DELETE [delete-modifier] [<parameter-label>]*;
]

REGISTERED AS object-identifier;
C-4 Developing C++ Applications • October 2001

C.3.2 Name Binding Template Constructs

The meaning of each construct in the Name Binding template is explained in

TABLE C-2.

TABLE C-2 Name Binding Template Constructs

Construct Description

<name-binding-label>
NAME BINDING

The NAME BINDINGconstruct identifies the template

as a definition for a name binding.

<name-binding-label> specifies the name of the

name binding. The REGISTERED ASconstruct in the

template associates a unique OID with this label.

SUBORDINATE OBJECT CLASS
<class-label>
[AND SUBCLASSES]

The SUBORDINATE OBJECT CLASSconstruct

identifies a managed object class whose instances can

be named by using an instance of the managed object

class specified in the NAMED BY SUPERIOR OBJECT
CLASSconstruct.

<class-label> identifies the subordinate managed

object class.

AND SUBCLASSES, if included, specifies that instances

of a derived class of the subordinate class can also be

named by using an instance of the class specified in

the NAMED BY SUPERIOR OBJECT CLASSconstruct.

NAMED BY SUPERIOR OBJECT
CLASS <class-label>
[AND SUBCLASSES]

The NAMED BY SUPERIOR OBJECT CLASSconstruct

identifies a managed object class whose instances can

be used to name an instance of the managed object

class specified in the SUBORDINATE OBJECT CLASS
construct.

<class-label> identifies the superior managed

object class.

AND SUBCLASSES, if included, specifies that instances

of a derived class of the superior class can also be

used to name an instance of the class specified in the

SUBORDINATE OBJECT CLASSconstruct.

WITH ATTRIBUTE
<attribute-label>

The WITH ATTRIBUTEconstruct identifies the

attribute that will be used to form the relative

distinguished name (RDN) of an instance of the

managed object class specified in the SUBORDINATE
OBJECT CLASSconstruct.

<attribute-label> identifies the attribute used to

form the RDN for an instance of the object class

specified by the SUBORDINATE OBJECT CLASS
construct.

For more information on RDNs, refer to Section 2.2.6.2

“Names of Managed Object Instances” on page 2-18.
Appendix C GDMO Templates C-5

BEHAVIOUR <behaviour-
definition-label>
[,<behaviour-definition-
label>]*

The BEHAVIOURconstruct specifies any behavior

impact that results specifically due to the use of the

name binding.

Each <behaviour-definition-label> identifies a

behavior as defined in an instance of use of the

Behaviour template.

CREATE [create-modifier
[,create-modifier]]
[<parameter-label>]*

The CREATEconstruct specifies that an instance of

managed object class specified by the SUBORDINATE
OBJECT CLASSconstruct can be created by a

management operation (normally a CMIS M-CREATE
operation).

create-modifier specifies permitted options for an

M-CREATEoperation. The options are as follows:

• WITH-REFERENCE-OBJECT- Specifies that a

reference object may be specified in an M-CREATE
operation

• WITH-AUTOMATIC-INSTANCE-NAMING- Specifies

that the object instance name can be omitted from the

M-CREATEoperation

<parameter-label> identifies name binding error

parameters associated with create operations.

DELETE [delete-modifier]
[<parameter-label>]*

The DELETEconstruct specifies that an instance of

managed object class specified by the SUBORDINATE
OBJECT CLASSconstruct can be deleted by a

management operation (normally a CMIS M-DELETE
operation).

delete-modifier specifies behavior for a managed

object instance when the instance is deleted. The

options are as follows:

• ONLY-IF-NO-CONTAINED-OBJECTS - Specifies

that a delete operation will fail and return an error if

there are any contained managed object instances

under the instance being deleted

• DELETES-CONTAINED-OBJECTS- Specifies that a

delete operation will fail and return an error if any of

the managed object instances directly or indirectly

under the instance being deleted are subject to the

ONLY-IF-NO-CONTAINED-OBJECTS delete modifier

<parameter-label> identifies name binding error

parameters associated with delete operations.

REGISTERED AS
object-identifier

The REGISTERED ASconstruct identifies the globally

unique identifier assigned to the name binding.

object-identifier is replaced with the OID that

globally and uniquely identifies the name binding.

TABLE C-2 Name Binding Template Constructs (Continued)

Construct Description
C-6 Developing C++ Applications • October 2001

C.4 Package Template
The Package template is defines a combination of behavior definitions, attributes,

attribute groups, operations, actions, notifications, and parameters for later inclusion

in a managed object class template. A package can be referenced by more than one

managed object class definition.

C.4.1 Package Template Format

The format of the Package template is as follows:

<package-label> PACKAGE
[BEHAVIOUR <behaviour-definition-label>

[,<behaviour-definition-label>]*;
]

[ATTRIBUTES <attribute-label> propertyList [<parameter-label>] *
[,<attribute-label> propertyList [<parameter-label>]*]*;

]

[ATTRIBUTE GROUPS <group-label> [<attribute-label>]*
[,<group-label> [<attribute-label>]*]*;

]

[ACTIONS <action-label> [<parameter-label>] *
[,<action-label> [<parameter-label>]*]*;

]

[NOTIFICATIONS <notification-label> [<parameter-label>]*
[,<notification-label> [<parameter-label>]*]*;

]

[REGISTERED AS object-identifier];
Appendix C GDMO Templates C-7

C.4.2 Package Template Constructs

The meaning of each construct in the Package template is explained in TABLE C-3.

TABLE C-3 Package Template Constructs

Construct Description

<package-label>
PACKAGE

The PACKAGEconstruct identifies the template as a

definition for a package.

<package-label> specifies the name of the package. The

REGISTERED ASconstruct in the template associates a

unique OID with this label.

BEHAVIOUR <behaviour-
definition-label>
[,<behaviour-
definition-label>]*

The BEHAVIOURconstruct enables the semantics of the

package to be completely described. This construct relates

the external view of aspects of a managed object, such as

its operations and notifications, to its internal operation.

Each <behaviour-definition-label> identifies a

behavior as defined in an instance of use of the Behaviour

template.

ATTRIBUTES
<attribute-label>
propertyList
[<parameter-label>]
*[,<attribute-label>
propertyList
[<parameter-label>]*]*

The ATTRIBUTESconstruct defines operations permitted

on a managed object with respect to its attributes.

Each <attribute-label> specifies the name of an

attribute.

Each propertyList specifies the operations permitted on

a managed object with respect to the attribute associated

with the propertyList . The format of a propertyList
is defined in Section C.4.3 “PropertyList Supporting

Production” on page C-9.

Each <parameter-label> specifies an error parameter

specific to the managed object class. This parameter is

associated with management operations on the attribute.

ATTRIBUTE GROUPS
<group-label>
[<attribute-label>]*
[,<group-label>
[<attribute-label>]*]*

The ATTRIBUTE GROUPSconstruct enables a set of

attribute groups to be identified as part of the package.

Each <group-label> specifies the name of an attribute

group.
Each <attribute-label> specifies the name of an

attribute in an attribute group.
C-8 Developing C++ Applications • October 2001

C.4.3 PropertyList Supporting Production

The format of the propertyList supporting production is as follows:

ACTIONS <action-label>
[<parameter-label>] *
[,<action-label>
[<parameter-label>]*]*

The ACTIONSconstruct specifies a set of action definitions

that are included in the package.

Each <action-label> specifies the name of an action.

Each <parameter-label> specifies the name of an action

information, action reply or error parameter.

NOTIFICATIONS
<notification-label>
[<parameter-label>]*
[,<notification-label
[<parameter-label>]*]*

The NOTIFICATIONS construct specifies the notifications

that are included in the package.

Each <notification-label> specifies the name of a

notification.

Each <parameter-label> specifies the name of a

parameter.

REGISTERED AS
object-identifier

The REGISTERED ASconstruct identifies the globally

unique identifier assigned to the package.

object-identifier is replaced with the OID that

globally and uniquely identifies the package.

[REPLACE-WITH-DEFAULT]
[DEFAULT VALUE value-specifier]
[INITIAL VALUE value-specifier]
[PERMITTED VALUES type-reference]
[REQUIRED VALUES type-reference]
[get-replace]
[add-remove]
[SET-BY-CREATE]
[NO-MODIFY]

TABLE C-3 Package Template Constructs (Continued)

Construct Description
Appendix C GDMO Templates C-9

The items in the propertyList supporting production are defined in TABLE C-4.

TABLE C-4 propertyList Supporting Production Definitions

Item Description

REPLACE-WITH-DEFAULT Specifies that a management operation can set the attribute

to a default value. If this property is specified but the

DEFAULT VALUEproperty is not specified, the default

value is determined by other means local to the

management system.

DEFAULT VALUE
value-specifier

Specifies that the attribute has a default value given by

value-specifier .

INITIAL VALUE
value-specifier

Specifies that the attribute must be set at creation time to

the value given by value-specifier .

PERMITTED VALUES
type-reference

Specifies that permitted values of the attribute are

restricted to those given by type-reference.

REQUIRED VALUES
type-reference

Specifies that the attribute shall be able to take any values

given by type-reference. This property defines the

value set required for conformance.

value-specifier Specifies the value in a DEFAULT VALUEor INITIAL
VALUEproperty.

value-specifier is one of the following:

• value-reference - The value is a fully qualified

reference to a data value defined in an ASN.1 module, that

is: ASN.1-Module-Name.data-value-label .

• DERIVATION RULE <behaviour-definition-
label> - The value is determined by the derivation rule

specified in <behaviour-definition-label> .

<behaviour-definition-label> identifies a behavior

as defined in an instance of use of the Behaviour template.

type-reference Specifies the values in a PERMITTED VALUESor a

REQUIRED VALUESproperty.

type-reference is a fully qualified reference to a data

type defined in an ASN.1 module, that is: ASN.1-Module-
Name.data-type-label .

get-replace Specifies the management operations allowed on the

attribute. get-replace is one of the following:

• GET- A management operation can read the attribute.

• REPLACE- A management operation can set the

attribute.

• GET-REPLACE- A management operation can read or

set the attribute.
C-10 Developing C++ Applications • October 2001

C.5 Attribute Template
The Attribute template defines attributes used by GDMO classes. A single attribute

can be referenced by more than one managed object class definition.

The Attribute template defines individual attribute types. If desired these attribute

types can be combined in a group by using the Attribute Group template.

add-remove Specifies, for a multi-valued attribute only, how a

management operation is allowed to add or remove values

in the attribute. add-remove is one of the following:

• ADD- A management operation can add a value to the

attribute.

• REMOVE- A management operation can remove a value

from the attribute.

• ADD-REMOVE- A management operation can add a

value to or remove a value from the attribute.

SET-BY-CREATE Specifies that the attribute may be set by a creation

operation (normally a CMIS M-CREATEoperation). The

SET-BY-CREATEproperty is meaningful only if the name

binding of the managed object instances supports the

creation operation.

NO-MODIFY Specifies that the attribute cannot be modified in the class

that has this property and in all subclasses and compatible

managed objects. This property is not allowed in a

managed object class definition that has the REPLACE,
GET-REPLACE, ADD, REMOVE, or ADD-REMOVEproperties

on the same attribute.

TABLE C-4 propertyList Supporting Production Definitions (Continued)

Item Description
Appendix C GDMO Templates C-11

C.5.1 Attribute Template Format

The format of the Attribute template is as follows:

C.5.2 Attribute Template Constructs

The meaning of each construct in the Attribute template is explained in TABLE C-5.

<attribute-label> ATTRIBUTE
derived-or-with-syntax-choice;

[MATCHES FOR qualifier [,qualifier]*;]

[BEHAVIOUR <behaviour-definition-label> [,<behaviour-definition-label>]*;
]

[PARAMETER <parameter-label> [<parameter-label>]*;
]

[REGISTERED AS object-identifier];

TABLE C-5 Attribute Template Constructs

Construct Description

<attribute-label>
ATTRIBUTE

The ATTRIBUTE construct identifies the template as a

definition for an attribute.

<attribute-label> specifies the name of the attribute.

The REGISTERED ASconstruct in the template associates a

unique object identifier with this label.

derived-or-with-
syntax-choice

This construct specifies how the attribute is defined.

derived-or-with-syntax-choice is one of the

following mutually exclusive options:

• DERIVED FROM <attribute-label> - The attribute is

based on the definition referenced by <attribute-
label>.
• WITH ATTRIBUTE SYNTAX <type-reference> - The

data type of the attribute is the ASN.1 type specified by

<type-reference> .
C-12 Developing C++ Applications • October 2001

C.6 Action Template
The Action template defines actions that can be performed by a managed object

class. The Action template defines actions that are performed by using the CMIS M-
ACTIONservice. The template does not include actions or behavior defined for other

CMIS services, such as M-GET, or M-SET, for example. An action can be referenced

by more than one managed object class.

The Action template defines the behavior and syntax of an action. The syntax

definitions specify the contents of the action information and action reply fields in

CMIS action requests and responses.

MATCHES FOR qualifier
[,qualifier]*

The MATCHES FORconstruct defines the types of tests that

may be applied to the value of the attribute by using a

filter operation. Each qualifier is one of the following:

• EQUALITY - The attribute value can be tested for

equality against a given value.

• ORDERING- The attribute value can be tested against a

given value to determine which value is greater.

• SUBSTRINGS- The attribute value can be tested against

a given substring to determine if the attribute value is

present in the substring.

• SET-COMPARISON- The attribute value can be tested

against a given value to determine if the attribute value is

a subset or superset of the given value.

• SET-INTERSECTION - The attribute value can be tested

against a given value to determine if there is a nonnull set

intersection between the two values.

BEHAVIOUR <behaviour-
definition-label>
[,<behaviour-
definition-label>]*

The BEHAVIOURconstruct specifies behavior that is generic

to this attribute.

Each <behaviour-definition-label> specifies an

instance of use of the Behaviour template.

PARAMETER
<parameter-label>
[<parameter-label>]*

The PARAMETERconstruct associates parameters with the

behavior of the attribute for the definition of processing

failures.

Each <parameter-label> specifies a processing failure

parameter for the attribute.

REGISTERED AS
object-identifier

The REGISTERED ASconstruct identifies the globally

unique identifier assigned to the attribute.

object-identifier is replaced with the OID that

globally and uniquely identifies the attribute.

TABLE C-5 Attribute Template Constructs (Continued)

Construct Description
Appendix C GDMO Templates C-13

C.6.1 Action Template Format

The format of the Action template is as follows:

C.6.2 Action Template Constructs

The meaning of each construct the Action template is explained in TABLE C-6.

<action-label> ACTION
[BEHAVIOUR <behaviour-definition-label>

[,<behaviour-definition-label>]*;
]

[MODE CONFIRMED;
]

[PARAMETERS <parameter-label> [<parameter-label>]*;
]

[WITH INFORMATION SYNTAX type-reference;
]

[WITH REPLY SYNTAX type-reference;]
REGISTERED AS object-identifier;

TABLE C-6 Action Template Constructs

Construct Description

<action-label> ACTION The ACTION construct identifies the template as a

definition for an attribute.

<action-label> specifies the name of the action. The

REGISTERED ASconstruct in the template associates a

unique object identifier with this label.

BEHAVIOUR <behaviour-
definition-label>
[,<behaviour-
definition-label>]*

The BEHAVIOURconstruct defines the behavior of the

action, the parameters that shall be passed to the action,

the results the action may generate, and the meaning of the

results.

Each <behaviour-definition-label> specifies an

instance of use of the Behaviour template.
C-14 Developing C++ Applications • October 2001

C.7 Notification Template
The Notification template defines notifications that can be emitted by a managed

object class. A notification can be referenced by more than one managed object class.

The Notification template defines the behavior and syntax of a notification. The

syntax definitions specify the contents of the event information and event reply

fields in CMIP event report requests and responses.

MODE CONFIRMED The MODE CONFIRMEDconstruct specifies that an action is

confirmed. If this construct is not specified, the choice of

whether the action is confirmed is left to the entity acting

in the manager role.

PARAMETERS
<parameter-label>
[<parameter-label>]*

The PARAMETERSconstruct specifies action information,

action reply parameters, or processing information for the

action.

Each <parameter-label> specifies the name of a

parameter.

WITH INFORMATION
SYNTAX type-reference

The WITH INFORMATION SYNTAXconstruct specifies the

action information associated with this type of action.

type-reference defines the data type of the action

information. It is a fully qualified reference to a data type

defined in an ASN.1 module, that is: ASN.1-Module-
Name.data-type-label .

WITH REPLY
SYNTAX type-reference

The WITH REPLY SYNTAXconstruct specifies the action

reply information associated with this type of action.

type-reference defines the data type of the action reply

information. It is a fully qualified reference to a data type

defined in an ASN.1 module, that is: ASN.1-Module-
Name.data-type-label .

REGISTERED AS
object-identifier

The REGISTERED ASconstruct identifies the globally

unique identifier assigned to the action.

object-identifier is replaced with the OID that

globally and uniquely identifies the action.

TABLE C-6 Action Template Constructs (Continued)

Construct Description
Appendix C GDMO Templates C-15

C.7.1 Notification Template Format

The format of the Notification template is as follows:

C.7.2 Notification Template Constructs

The meaning of each construct in the Notification template is explained in TABLE C-7.

<notification-label> NOTIFICATION
[BEHAVIOUR <behaviour-definition-label>

[,<behaviour-definition-label>]*;
]

[PARAMETERS <parameter-label> [<parameter-label>]*;
]

[WITH INFORMATION SYNTAX type-reference
[AND ATTRIBUTE IDS <field-name> <attribute-label>

[,<field-name> <attribute-label>]*
] ;

]

[WITH REPLY SYNTAX type-reference;
]

REGISTERED AS object-identifier;

TABLE C-7 Notification Template Constructs

Construct Description

NOTIFICATION
<notification-label>

The NOTIFICATION construct identifies the template as a

definition for a notification.

<notification-label> specifies the name of the

notification. The REGISTERED ASconstruct in the

template associates a unique object identifier with this

label.

BEHAVIOUR <behaviour-
definition-label>
[,<behaviour-
definition-label>]*

The BEHAVIOURconstruct defines the behavior of the

notification, the data that shall be specified with the

notification, the results the notification may generate, and

the meaning of the results.

Each <behaviour-definition-label> specifies an

instance of use of the Behaviour template.
C-16 Developing C++ Applications • October 2001

PARAMETERS
<parameter-label>
[<parameter-label>]*

The PARAMETERSconstruct specifies event information,

event reply parameters, or processing information for the

notification.

Each <parameter-label> specifies the name of a

parameter.

WITH INFORMATION
SYNTAX type-reference
[AND ATTRIBUTE IDS
<field-name>
<attribute-label>
[,<field-name>
<attribute-label>]*]

The WITH INFORMATION SYNTAXconstruct specifies the

event information associated with this type of notification.

type-reference defines the data type of the action

information. It is a fully qualified reference to a data type

defined in an ASN.1 module, that is: ASN.1-Module-
Name.data-type-label .

The AND ATTRIBUTE IDSoption is typically used to

specify the attributes contained within a SETor SEQUENCE
data type, when a SET or SEQUENCEdata type is

referenced by the WITH INFORMATION SYNTAXconstruct.

Each <field-name> specifies a label that is defined

within the same ASN.1 module as specified in the WITH
INFORMATION SYNTAXconstruct. The field name label

within the ASN.1 module is used to label the data type

that specifies the type of the attribute specified by

<attribute-label> .

Each <attribute-label> specifies an attribute that is

defined within a GDMO module. The definition of this

attribute must reference the data type specified by the

<field-name> .

WITH REPLY SYNTAX
type-reference

The WITH REPLY SYNTAXconstruct specifies the event

reply information associated with this type of notification.

type-reference defines the data type of the event reply

information. It is a fully qualified reference to a data type

defined in an ASN.1 module, that is: ASN.1-Module-
Name.data-type-label .

REGISTERED AS
object-identifier

The REGISTERED ASconstruct identifies the globally

unique identifier assigned to the notification.

object-identifier is replaced with the OID that

globally and uniquely identifies the notification.

TABLE C-7 Notification Template Constructs (Continued)

Construct Description
Appendix C GDMO Templates C-17

C.8 Parameter Template
The Parameter template defines parameter syntaxes for later inclusion in Package,

Attribute, Action, and Notification templates. A parameter can be referenced by one

or more of each of these templates.

The Parameter template specifies and registers the parameter syntaxes and

associated behavior that may be associated with particular attributes, operations,

and notifications within Package, Attribute, Action, and Notification templates. The

type specified in a Parameter template is used to fill in the ANY DEFINED BYoid
construct.

C.8.1 Parameter Template Format

The format of the Parameter template is as follows:

<parameter-label> PARAMETER
CONTEXT context-type;

syntax-or-attribute-choice;

[BEHAVIOUR <behaviour-definition-label>
[,<behaviour-definition-label>]*;

]

[REGISTERED AS object-identifier];
C-18 Developing C++ Applications • October 2001

C.8.2 Parameter Template Constructs

The meaning of each construct in the Parameter template is explained in TABLE C-8.

TABLE C-8 Parameter Template Constructs

Construct Description

<parameter-label>
PARAMETER

The PARAMETERconstruct identifies the template as a

definition for a parameter.

<parameter-label> specifies the name of the parameter.

The REGISTERED ASconstruct in the template associates a

unique object identifier with this label.

CONTEXT context-type The CONTEXTconstruct identifies the context in which this

parameter is applicable.

context-type specifies the context for the parameter

definition. context-type can take on one of the

following values:

• context-keyword - A reference to a context defined

externally to the template. context-keyword has the

form: type-reference.<identifier> , where type-
reference is a fully qualified reference to a data type

defined in an ASN.1 module (that is:

ASN.1-Module-Name.data-type-label) and

<identifier> is the name of one of the fields in that data

type.

• ACTION-INFO - A CMIS action information parameter.

• ACTION-REPLY - A CMIS action reply parameter.

• EVENT-INFO - A CMIS event information parameter.

• EVENT-REPLY- A CMIS event reply parameter.

• SPECIFIC-ERROR - A CMIS processing failure error.

syntax-or-attribute-
choice

This construct specifies how the data type associated with

the context of the parameter is defined.

syntax-or-attribute-choice is one of the following

mutually exclusive options:

• ATTRIBUTE <attribute-label> - The syntax and

OID of the attribute specified by <attribute-label> are

used as the syntax and OID of the parameter.

• WITH SYNTAX type-reference - The ASN.1 type of

the parameter is that specified by type-reference .

type-reference is a fully qualified reference to a data

type defined in an ASN.1 module, that is: ASN.1-Module-
Name.data-type-label .
Appendix C GDMO Templates C-19

C.9 Attribute Group Template
The Attribute Group template defines one or more attributes that can be referenced

as a group. A managed object class definition can include all attributes of a group by

referencing the group, rather than referencing each attribute individually. More than

one managed object class definition can reference an attribute group.

Attribute groups make it easier to collectively perform operations on a large number

of individual attributes.

C.9.1 Attribute Group Template Format

The format of the Attribute Group template is as follows:

BEHAVIOUR <behaviour-
definition-label>
[,<behaviour-
definition-label>]*

The BEHAVIOURconstruct specifies any behavior or

semantics associated with the parameter. If the ATTRIBUTE
construct is used, the BEHAVIOURconstruct does not

modify the behavior of the attribute.

Each <behaviour-definition-label> specifies an

instance of use of the Behaviour template.

REGISTERED AS
object-identifier

The REGISTERED ASconstruct identifies the globally

unique identifier assigned to the parameter.

object-identifier is replaced with the OID that

globally and uniquely identifies the parameter.

<group-label> ATTRIBUTE GROUP
[GROUP ELEMENTS <attribute-label> [,<attribute-label>]*;
]

[FIXED;
]

[DESCRIPTION delimited-string;
]

REGISTERED AS object-identifier;

TABLE C-8 Parameter Template Constructs (Continued)

Construct Description
C-20 Developing C++ Applications • October 2001

C.9.2 Attribute Group Template Constructs

The meaning of each construct in the Attribute Group template is explained in

TABLE C-9.

TABLE C-9 Attribute Group Template Constructs

Construct Description

<group-label>
ATTRIBUTE GROUP

The ATTRIBUTE GROUPconstruct identifies the template

as a definition for an attribute group.

<group-label> specifies the name of the attribute group.

The REGISTERED ASconstruct in the template associates a

unique object identifier with this label.

GROUP ELEMENTS
<attribute-label>
[,<attribute-label>]*

The GROUP ELEMENTSconstruct specifies the attributes

that are members of this attribute group.

Each <attribute-label> specifies an attribute in the

group.

FIXED The FIXED construct limits the membership of the

attribute group to only those attributes specified by the

GROUP ELEMENTSconstruct. If the FIXED construct is

omitted, the group is made extensible. The group can be

extended by adding attributes that are referenced in

Package templates.

DESCRIPTION
delimited-string

The DESCRIPTIONconstruct provides a description of the

semantics of the attribute group, for example 'Group of
all state attributes in the managed object' .

REGISTERED AS
object-identifier

The REGISTERED ASconstruct identifies the globally

unique identifier assigned to the attribute group.

object-identifier is replaced with the OID that

globally and uniquely identifies the attribute group.
Appendix C GDMO Templates C-21

C.10 Behaviour Template
The Behaviour template describes the expected behavior of:

■ Managed object classes

■ Name bindings

■ Parameters

■ Attributes

■ Actions

■ Notifications

The behavior may be defined by readable text, high level languages, formal

description techniques, references to standard constructs, or by any combination of

the preceding definition methods.

C.10.1 Behaviour Template Format

The format of the Behaviour template is as follows:

C.10.2 Behaviour Template Constructs

The meaning of each construct in the Behaviour template is explained in TABLE C-10.

<behaviour-definition-label> BEHAVIOUR
[DEFINED AS delimited-string;
]

TABLE C-10 Behaviour Template Constructs

Construct Description

BEHAVIOUR <behaviour-
definition-label>

The BEHAVIOURconstruct identifies the template as a

definition for a behavior.

<behaviour-definition-label> specifies the name of

the behavior.

DEFINED AS
delimited-string

The DEFINED ASconstruct defines the behavior.

delimited-string contains the text of the behavior.
C-22 Developing C++ Applications • October 2001

Index
SYMBOLS
! operator, 4-2

A
abortAssociation enforcement action, 12-30

Abstract Syntax Notation #1 (ASN.1)

introduction, 2-23

basic encoding rules (BER), 15-8 to 15-9

em_debug message types, 15-15

syntax and logic, verifying, 15-2

abstracting managed object classes, 2-7 to 2-8

ACAccessControlRules class

get_access_control_switch function, 12-9

to 12-10

get_default_access function, 12-33

get_default_event_access function, 12-33

get_denial_granularity function, 12-35

get_domain_identity function, 12-36

get_trusted_host_list function, 12-34

set_access_control_switch function, 12-9

to 12-10

ACAccessUserList class, 12-13

ACAppFeatureContainer class, 12-17

ACApplication class, 12-17

ACApplicationContainer class, 12-16

ACApplicationFeature class, 12-17

ACApplicationFeatureList class, 12-17

access control

overview, 1-10 to 1-12

activating, 12-9 to 12-10

application level

introduction, 12-2

enforcing predefined rules, 12-6, 12-7 to 12-8

privilege groups, adding applications to, 12-18

application-feature level

introduction, 12-2

enforcing predefined rules, 12-7 to 12-8

getting feature list, 12-16 to 12-18

privilege groups, adding features to, 12-18

deactivating, 12-9 to 12-10

decision and enforcement functions, 12-44

defaults, getting, 12-32 to 12-36

denial granularity, 12-35

domains

generally, 12-36

specifying for secure MPAs, 12-42

em_debug message types, 15-15

enforcement actions

defining, 12-29 to 12-30

events, 12-33 to 12-34

management operations, 12-33

error handling

generally, 12-31 to 12-32

rule creation, 12-27

target creation, 12-20

events

introduction, 12-3

auxiliary object, 12-37, 12-38

enforcement actions, 12-33 to 12-34

log owners, assigning, 12-36 to 12-39

log server, enabling, 12-39

examples, A-9 to A-10

managed-object level

introduction, 12-3

denial, handling, 12-8

granularity, of denial, 12-35
Index-1

operations permitted, defining, 12-21 to 12-22

rules, 12-29, 12-33

selecting objects for, 12-18 to 12-21, 12-23 to 12-25

MPAs

introduction, 12-3

ACE class, 12-42 to 12-43

AuxServerUtils class, 12-44

decision and enforcement functions, 12-44

domains, 12-42

processing information in events, 12-43 to 12-44

services required, 12-42 to 12-43

updating access control information, 12-40 to

12-41

privilege groups

introduction, 12-10

applications, adding, 12-18

creating, 12-11 to 12-12

features, adding, 12-18

MIS, adding to, 12-11

predefined, 12-10

rules, adding to, 12-28 to 12-29

storing persistently, 12-14 to 12-15

users, adding, 12-14 to 12-15

rules

introduction, 12-26

creating, 12-26 to 12-28

defining, 12-4 to 12-6

enforcing, 12-4, 12-6 to 12-8

MIS, adding to, 12-27

predefined, 12-26

privilege groups, adding, 12-28 to 12-29

storing persistently, 12-30 to 12-31

targets, adding, 12-29

targets

introduction, 12-18 to 12-19

creating, 12-19 to 12-21

operations permitted, defining, 12-21 to 12-22

rules, adding to, 12-29

trusted hosts, 12-34

users

introduction, 12-10

creating, 12-12

MIS, adding to, 12-13 to 12-14

privilege groups, adding to, 12-14 to 12-15

access control API

introduction, 1-16

error-handling functions, 12-31 to 12-32

examples, A-9

access control engine API

introduction, 1-16

examples, A-9

access_type property, MorfBuilder class, 9-37 to

9-38

ACDbObject class

constructor, 12-37

create function, 12-37

exists function, 12-37

set_auxobject_owner function, 12-38

store function, 12-38

ACE class, 12-42 to 12-43

ACFilter defined type, 12-24

ACGroup class

add_application function, 12-18

add_application_feature function, 12-18

add_group_member function, 12-14

constructor, 12-11

create function, 12-11

exists function, 12-11

store function, 12-15

ACInterface class

get_access_user_list function, 12-13

get_application_container function, 12-16

ACMOCList defined type, 12-25

ACMOIList defined type, 12-23

ACOperationsList defined type, 12-21

ACRule class

add_group function, 12-28

add_targets function, 12-29

constructor, 12-27

create function, 12-27

exists function, 12-27

get_error_string function, 12-27

get_error_type function, 12-27

set_enforcement_action function, 12-30

store function, 12-30

ACScope class, 12-24

ACTargets class

introduction, 12-19

add_moc function, 12-24

add_moi function, 12-23

constructor, 12-19 to 12-20

create function, 12-20

exists function, 12-20

get_error_string function, 12-20

get_error_type function, 12-20

set_filter function, 12-24

set_moc_list function, 12-25

set_moi_list function, 12-23
Index-2 Developing C++ Applications • October 2001

set_operations_list function, 12-22

set_scope function, 12-24

store function, 12-25

Action GDMO template, C-13 to C-15

action operation, targets, 12-22

actions

debugging, 15-2

defining, 2-11

em_debug message types, 15-15

on managed objects

generally, 5-23 to 5-25

asynchronous, 8-3

metadata retrieval, 5-29 to 5-30

on object collections

generally, 6-20

asynchronous, 8-4

CMIS, 8-10

replies to, information contained in, 8-17

retrieving from MDR, 5-30

timeouts, 6-20

Actions menu, Network Views tool, customizing, 16-6

to 16-8

activating

access control, 12-9 to 12-10

Image instances

generally, 5-4

asynchronously, 8-3, 8-4

in object collections, 6-16 to 6-17, 8-4

activation, topology types, customizing, 16-9 to 16-10

ACUser class, 12-12

ADD operation

asynchronous CMIS M-SET request, 8-9

Image class and, 5-21

add_application function, ACGroup class, 12-18

add_application_feature function, ACGroup
class, 12-18

add_group function, ACRule class, 12-28

add_group_member function, ACGroup class, 12-14

add_moc function, ACTargets class, 12-24

add_moi function, ACTargets class, 12-23

add_targets function, ACRule class, 12-29

add_user function, ACAccessUserList class, 12-13

addMember operation, targets, 12-22

Administration window, customizing, 16-2 to 16-3

AdministrativeState, 10-13

agent

directly access managed resource, 17-2

indirectly access managed resource, 17-2

manager-agent model, 17-1

process that accesses the managed object, 17-1

process that accesses the managed resource, 17-1

process that collects data, 17-1

agent role, Solstice EM in, 2-37 to 2-38

agents

introduction, 2-3

filters, support for, 15-20 to 15-23

hierarchical arrangement, 2-4

in ISO model, 1-2

scopes, support for, 15-20 to 15-23

simulating, 5-30 to 5-35

alarm log manager, em_debug message types, 15-16

alarm services, em_debug message types, 15-15

Alarms tool, customizing, 16-4 to 16-5

Album class

introduction, 6-2

all_boot function, 8-4

all_call function, 6-20

all_create function, 6-18

all_create_within function, 8-4

all_destroy function, 6-18

all_set_dbl function, 6-19

all_set_gint function, 6-19

all_set_long function, 6-19

all_set_raw function, 6-19

all_set_str function, 6-19

all_shutdown function, 8-4

all_start functions, 8-4

all_store function, 6-20

asynchronous functions, 8-4

AUTOIMAGE property, 6-16

CMIS operations supported, 8-5

constructor, 6-2

derive function

generally, 6-5

restrictions, 6-15

exclude function, 6-15

first_image function, 6-22

include function, 6-15

instance associated with event, getting, 7-7

nicknames, 6-2

performance considerations, 13-3

set_derivation function, 6-3

set_prop function, 6-14, 6-17, 6-21

start_derive function, 8-4

start_m_action function, 8-10

start_m_action_raw function, 8-10

start_m_get function, 8-7

start_m_set function, 8-7 to 8-10
Index-3

TRACKMODE property, 6-14

when function, 7-4 to 7-5

AlbumImage class

introduction, 6-21

next_album function, 6-23

next_image function, 6-22

all_boot function, Album class, 8-4

all_call function, Album class, 6-20

all_create function, Album class, 6-18

all_create_within function, Album class, 8-4

all_destroy function, Album class, 6-18

ALL_LEVELS scope value, 12-24

ALL_LEVELS_EXCEPT_BASE scope value, 12-24

all_set_dbl function, Album class, 6-19

all_set_gint function, Album class, 6-19

all_set_long function, Album class, 6-19

all_set_raw function, Album class, 6-19

all_set_str function, Album class, 6-19

all_shutdown function, Album class, 8-4

all_start functions, Album class, 8-4

all_store function, Album class, 6-20

allocating OIDs, guidelines for, 2-32 to 2-33

allow enforcement action, 12-30

and keyword, filters, 6-9

annotation secretary, em_debug message types, 15-15

ANY ASN.1 type

definition, 2-26

creating Morf instances for, 9-7 to 9-8

formatting string representation of, 9-27

string representation, Morf class, 9-25

ANY DEFINED BY ASN.1 type

creating Morf instances for, 9-7 to 9-8

formatting string representation of, 9-27

anyString keyword, filters, 6-11

APIs (application programming interfaces) of Solstice

EM

architecture, 1-14

uses of, 1-1

application class ASN.1 tags, 15-9

application context, 7-13

application launcher, See tools windows

application programming interfaces (APIs) of Solstice

EM

architecture, 1-14

uses of, 1-1

APPLICATION_OBJNAME property, 7-23

applications

access control

introduction, 12-2

enforcing predefined rules, 12-6, 12-7 to 12-8

privilege groups, adding applications to, 12-18

access to managed objects

generally, 3-1 to 3-3

asynchronous, 8-3

compiling, guidelines for, 14-1 to 14-8

data component, 1-3

development process

overview, 1-4

debugging, 1-22, 15-1 to 15-26

examples, A-2 to A-3, A-8

high-level design, 1-4 to 1-13

implementation, 1-19 to 1-22

integration, 1-22

low-level design, 1-13 to 1-18

requirements analysis, 1-4 to 1-13

system testing, 1-22

unit testing, 1-22, 15-1 to 15-26

direct access to databases, 3-5 to 3-10

error handling, 4-1 to 4-3

feature-level access control

introduction, 12-2

enforcing predefined rules, 12-7 to 12-8

getting feature list, 12-16 to 12-18

privilege groups, adding applications to, 12-18

GUI component, 1-3

integrating, 16-1 to 16-10

linking, guidelines for, 14-1 to 14-8

performance, enhancing, 13-1 to 13-6

programming model, 1-2 to 1-3

Solstice EM API component, 1-2 to 1-3

starting

overview, 1-8 to 1-9

from Actions menu, Network Views tool, 16-6 to

16-8

by double clicking topology nodes, 16-9 to 16-10

from Tools menu, Solstice EM tools, 16-4 to 16-5

from tools windows, 16-1 to 16-3

tuning, 13-1 to 13-2

types developed with Solstice EM APIs, 1-1

user interaction with, 1-7 to 1-9

application-to-application API

introduction, 1-16

examples, A-12

architecture, of Solstice EM APIs, 1-14

arguments

Actions menu applications, 16-7

Tools menu applications, 16-5

tools window applications, 16-3
Index-4 Developing C++ Applications • October 2001

topology type activation, 16-9

ASN.1

printing values, 10-28

sanity check, 10-6

ASN.1 (Abstract Syntax Notation #1)

introduction, 2-23

basic encoding rules (BER), 15-8 to 15-9

em_debug message types, 15-15

syntax and logic, verifying, 15-2

ASN.1 modules

examples, A-11

exporting, 2-29

format of, 2-23 to 2-24

importing, 2-28 to 2-29

information in, retrieving from MDR, 5-29

names, retrieving from MDR, 5-29

ASN.1 tags, 15-9 to 15-10

ASN.1 types

allowed values

defining, 2-27

getting, 9-18 to 9-21

complex

checking value last set, 5-22

getting, 5-17

setting, 5-19, 6-19

definitions, format of, 2-24 to 2-26

of Morf instance, getting, 9-16

tag numbers, 15-10

universal types, 2-26

ASN.1 values

decoding

introduction, 9-1

ENUMERATED values, 9-29

examples, A-8

lists, 9-27 to 9-28

OBJECT IDENTIFIER values, 9-29

scalars, 9-28 to 9-31

SEQUENCE values, 9-27 to 9-28

SET values, 9-27 to 9-28

as strings, 9-25 to 9-27

defining in ASN.1 module specification, 2-27 to 2-28

encoding

introduction, 9-1

ANY and ANY DEFINED BY values, 9-7 to 9-8

CHOICE values, 9-6, 9-35 to 9-37

examples, A-8

lists, 9-2 to 9-3

MorfBuilder class, by using, 9-32 to 9-39

scalars, 9-5

SEQUENCEand SEQUENCE OFvalues, 9-8 to 9-9,

9-37 to 9-38

SET and SET OF values, 9-8 to 9-9

from string data, 9-2 to 9-4

extracting

from lists, 9-27 to 9-29

from scalars, 9-28 to 9-31

formatting, 9-26 to 9-27

parsing

introduction, 9-9 to 9-10

BIT STRING values, 9-16, 9-17 to 9-18, 9-21 to

9-23

CHOICE values, 9-12 to 9-13

ENUMERATED values, 9-16 to 9-18

example, 9-23 to 9-24

lists, 9-13 to 9-15

OCTET STRING values, 9-21 to 9-23

REAL values, 9-18 to 9-21

SEQUENCE OF values, 9-21 to 9-23

SET OF values, 9-21 to 9-23

type, getting, 9-16

ranges allowed for a type

defining, 2-27

getting, 9-18 to 9-21

Asn1ParsedValue class, 9-19, 9-21

Asn1Type class

functions for parsing Morf instances, 9-12

get_bit_string_identifiers function, 9-16,

9-17 to 9-18

get_enum_identifiers function, 9-16 to 9-18

get_range function, 9-18 to 9-21

get_size_constraint function, 9-21 to 9-23

Morf class and, 9-15

Asn1Value

printing, 10-28

Asn1Value class

decoding data, functions for, 9-30

getting from Morf instance, 9-28 to 9-29

strings, transformation by Morf class, 9-2

assigning nicknames to managed objects, 5-11 to 5-12

asynchronous operations

introduction, 8-2

cancelling, 8-24

CMIS, 8-5 to 8-10

completion of

callback code, 8-14 to 8-15

callback registration, 8-11 to 8-12

error handling, 8-23 to 8-24

on managed objects, 8-3
Index-5

MIS, interaction with, 8-3

on object collections, 8-4, 8-5 to 8-10

response handling, 8-11 to 8-23

return values, 8-2

testing for completion of, 8-21

timeouts, changing, 8-25

atomic synchronization, 6-21

ATTR_CHANGED event, 7-5

attribute

AdministrativeState, 10-13

code generation and filters, 10-13

DiscriminatorConstruct, 10-13

OperationalState, 10-13

Attribute GDMO template

definition, C-11 to C-13

example, 2-11

Attribute Group GDMO template, C-20 to C-21

attribute value assertion (AVA), 2-18

attributes

defining, 2-9 to 2-11

denial of access to, 12-35

failure to set, 15-23 to 15-25

filters, in, 6-9, 6-10

getting, 5-17 to 5-18, 8-7

management operations permitted, 2-20

names in function calls, checking, 15-19 to 15-20

operations on

Image class, 5-21

in asynchronous CMIS set request, 8-9

read-only, modifying, 5-31 to 5-32

retrieving from MDR, 5-30

setting

asynchronous CMIS M_SET request, 8-7 to 8-10

Image class, using, 5-19 to 5-23

in object collections, 6-19 to 6-20

ATTRIBUTES construct

getting attributes, 5-17

operations on attributes, 5-21, 8-9

read-only attributes, 5-31

setting attributes, 5-19

values allowed for attributes, 5-20

attributeValueChange event, 7-3, 7-5

AttrModifier class, 8-8 to 8-10

AuthFeatures class, 12-6, 12-7

AUTOIMAGE property, Album class, 6-16

automatic assignment, managed object names, 15-20

auxiliary objects, event access control, 12-37, 12-38

AuxServerUtils class, 12-44

AVA (attribute value assertion), 2-18

B
backing store, em_debug message types, 15-15

base managed object

access control, 12-23

event filtering, 7-17

object collections, 6-6

BASE_OBJECT scope value, 12-24

BASE_TO_NTH_LEVEL scope value, 12-24

baseToNthLevel scope value, 7-18

basic encoding rules (BER), 15-8 to 15-9

BEGIN keyword, ASN.1 modules, 2-23

behavior code, 1-17 to 1-18

behavior, defining in object model, 2-13

Behaviour GDMO template, C-22

BER (basic encoding rules), 15-8 to 15-9

best effort synchronization, 6-21

bibliography, B-5

BIT STRING ASN.1 type

definition, 2-26

identifiers, getting, 9-16, 9-17 to 9-18

size constraints, getting, 9-21 to 9-23

string representation, Morf class, 9-25

blocking user interaction, 7-14 to 7-15

BOOLEAN ASN.1 type

definition, 2-26

creating Morf instances for, 9-5

string representation, Morf class, 9-25

boot function, Image class, 5-4, 5-14

brace notation

names of managed objects, 2-20

OIDs, 2-33 to 2-34

built-in ASN.1 types, 2-26

bulk operations, 6-1

bypassing MISs, 3-5 to 3-10

C
C shell, escape characters, 9-27

call function, Image class, 5-24

call_raw function, Image class, 5-24

Callback class

asynchronous operations, 8-11 to 8-12

event handling, 7-5

secure MPAs, 12-43

callback functions

adding to scheduler queue, 8-22 to 8-23

asynchronous operation completion, 8-14 to 8-15

example, 7-8, 8-18 to 8-20
Index-6 Developing C++ Applications • October 2001

extracting event information, 7-7

hi_process_ace_event , 12-43

Image instances, updating, 5-27

lo_process_ace_event , 12-43

object collections, updating, 6-15 to 6-16

registering

access control events, 12-43 to 12-44

asynchronous operations, 8-11 to 8-12

event handling, 7-4 to 7-6

responses from managed objects, 8-12 to 8-13

responses from managed objects

extracting information from, 8-17 to 8-20

registration, 8-12 to 8-13

scheduler data, correct use of, 8-15 to 8-16

signature

asynchronous operations, 8-14

event handling, 7-6

tracking changes to managed objects, 7-10 to 7-11

cancel function, Waiter class, 8-24

case sensitivity, GDMO identifiers, 15-20

cellSample example, 10-35

CFLAGS makefile entry, 14-7

chai example, 10-49

CHOICE ASN.1 type

definition, 2-26

creating Morf instances for, 9-6

encoding, 9-35 to 9-37

extracting values from, 9-27 to 9-28

formatting string representation of, 9-27

parsing, 9-12 to 9-13

string representation, Morf class, 9-25

className.load, 10-27, 10-32

className.unload, 10-27, 10-32

className_error, 10-29

className_info, 10-29

className_user.odt.cc, 10-31

className_user.odt.hh, 10-30

CMIP (Common Management Information Protocol)

em_debug message types, 15-15 to 15-16

support for, 2-3

translation, monitoring, 15-3 to 15-4

CMIS (common management information service), 8-5

code generator utility, 10-8

CODEGENDIR, 10-13

collections, See object collections

command names

Actions menu, 16-7

Tools menu, 16-5

command-line arguments

Actions menu applications, 16-7

Tools menu applications, 16-5

tools window applications, 16-3

topology type activation, 16-9

Common Management Information Protocol (CMIP)

em_debug message types, 15-15 to 15-16

support for, 2-3

translation, monitoring, 15-3 to 15-4

common management information service (CMIS), 8-5

communications protocols, See management protocols

communicationsAlarm event, 7-3

comparison keywords, filters, 6-10

compilation guidelines

applications, 14-1 to 14-8

debugging programs, 15-3

source code examples, A-1 to A-2

compilers, 2-36

C++, 14-1

object model translation, 2-36

components, of applications, 1-2 to 1-3

concise MIB compiler, 2-36

conditional packages, 2-20

configuration

OCG, 10-13

OCG, CODEGENDIR, 10-13

OCG, DATASTORAGE, 10-13

OCG, FILTER_ATTR, 10-13

OCG, HIDDENDIR, 10-13

OCG, OBAPIDEBUG, 10-13

OCG, OBAPITRACE, 10-13

configuration files

environment variables, 12-39

Network Views tool, 16-7 to 16-8, 16-9 to 16-10

Solstice EM tools, 16-4 to 16-5

tools windows, 16-2 to 16-3

configuration parameters, 1-6

connect function, Platform class, 3-3

connecting

to databases, 3-5 to 3-10

to MISs

generally, 3-1 to 3-3

asynchronously, 8-3

connection manager, em_debug message types, 15-16

Connection target, 12-19

connection to MIS, managed object representing, 7-23

constraints, ASN.1 values, 9-18 to 9-23

constructors, error checking, 4-2

containment tree, defining, 2-14 to 2-20

context-specific class ASN.1 tags, 15-9
Index-7

converting SNM 2.x schema files to GDMO descrip-

tions, 17-5

CREATE construct, 5-2

create function

ACDbObject class, 12-37

ACGroup class, 12-11

ACRule class, 12-27

ACTargets class, 12-20

Image class, 5-6

create operation, targets, 12-21

create_within function, Image class, 8-3, 15-20

creating

managed objects

generally, 5-2 to 5-8

in agent simulation, 5-32 to 5-35

object collections, container for, 6-2

CurrentEvent class

introduction, 7-7

do_nothing function, 7-9

do_something function, 7-10

functions for extracting information

from events, 7-7

from responses, 8-17

customizing

Actions menu, Network Views tool, 16-6 to 16-8

Network Views tool, 16-6 to 16-10

Solstice EM tools, 16-4 to 16-5

tools windows, 16-1 to 16-3

topology type activation, 16-9 to 16-10

D
data

access control, See managed objects, access control

isolating from program code, 1-2

presenting to users, 1-8

data component, of applications, 1-3

data types, defining, 2-23 to 2-29

databases

direct access to, 3-5 to 3-10

modifying, 15-5 to 15-6

DATASTORAGE, 10-13

deactivating

access control, 12-9 to 12-10

Image instances, 8-3, 8-4

debugging

overview, 1-22

ASN.1 syntax and logic, 15-2

attributes, failure to set, 15-23 to 15-25

compilation flags for, 14-8

event handling, 15-25 to 15-26

filters, 15-20 to 15-23

GDMO syntax and logic, 15-2

high-level PMI calls, 15-2

logic errors, 15-2 to 15-3

managed objects, failure to create, 15-20

management operations, 15-2

MIS communications, 15-7 to 15-19

name bindings and, 15-20

names, in function calls, 15-19 to 15-20

object model updates, 15-4 to 15-6

protocol translation, 15-3 to 15-4

scopes, 15-20 to 15-23

debugging agents, 10-29

debugging ASN.1, 10-28

debugging GDMO, 10-28

debugging objects, 10-26

debugging port, em_debug message types, 15-16

decoding ASN.1 values

introduction, 9-1

ENUMERATED values, 9-29

examples, A-8

lists, 9-27 to 9-28

OBJECT IDENTIFIER values, 9-29

scalars, 9-28 to 9-31

SEQUENCE values, 9-27 to 9-28

SET values, 9-27 to 9-28

as strings, 9-25 to 9-27

decoding functions, Asn1Value class, 9-30

DEFAULT operation, Image class, 5-21

defining object behavior, 10-5

definitions

protocol adaptors, 11-1

SAPs, 11-4

Service Access Points, 11-4

DEFINITIONS keyword, ASN.1 modules, 2-23

DELETE construct, 5-15

delete operation, targets, 12-21

DELETES-CONTAINED-OBJECTS modifier, 5-15

deleting

GDMO documents from MDR, 15-4 to 15-6

managed objects

generally, 5-15 to 5-16

asynchronously, 8-10

in object collection, 6-18 to 6-19

demoPing example, 10-36

demoregistry example, 10-42
Index-8 Developing C++ Applications • October 2001

demoServer example, 10-47

denial granularity, access control, 12-35

deny without response, 12-8

DenyAccesscontrolObjectsChange access control rule,

12-26

DenyAccessControlObjectsChange target, 12-19

denyWithFalseResponse enforcement action, 12-30

denyWithoutResponse enforcement action, 12-30

denyWithResponse enforcement action, 12-30

derivation strings

introduction, 6-5

base managed object, 6-6

examples, 6-11 to 6-12

filters

introduction, 6-7 to 6-8

attributes, 6-9, 6-10

comparison keywords, 6-10

items, 6-9

operators, 6-9

substrings, 6-10 to 6-11

scope, 6-6 to 6-7

setting, 6-3 to 6-4

derivation, of object collections

introduction, 6-3

setting derivation string, 6-3 to 6-4

starting

generally, 6-5

asynchronously, 8-4

derive function, Album class

generally, 6-5

restrictions, 6-15

destroy function, Image class, 5-15

development environment, uses of, 1-1

development process

overview, 1-4

debugging, 1-22

examples, A-2 to A-3, A-8

high-level design, 1-4 to 1-13

implementation, 1-19 to 1-22

integration, 1-22

low-level design, 1-13 to 1-18

requirements analysis, 1-4 to 1-13

system testing, 1-22

unit testing, 1-22

devices, 1-5 to 1-6, 1-7

diagnostic information, providing to users, 4-3

diagnostic messages, 15-2

disconnect function, Platform class, 3-4

DISCONNECTED event, 7-5

disconnecting from MISs

generally, 3-4

asynchronously, 8-3

discriminator construct, 7-19 to 7-20

DiscriminatorConstruct, 10-13

discriminators, em_debug message types, 15-16

dispatch_main_loop function, 7-12 to 7-13

dispatch_recursive function

event handling, 7-11 to 7-12

secure MPAs and, 12-42

"DNFILTER" : emDnScope attribute, 7-18

do_nothing function, CurrentEvent class, 7-9

do_something function, CurrentEvent class, 7-10

documents, GDMO, 2-22

domains, access control

generally, 12-36

specifying for secure MPAs, 12-42

dot notation, OIDs, 2-33

double click behavior, topology types, 16-9 to 16-10

duEM platform type, 3-2

dynamic libraries, 10-27

E
em_accesscmd utility, 12-5 to 12-6

em_admintool.cf file, 16-2 to 16-3

em_alarmmgr_tp.cf file, 16-4 to 16-5

em_asn1 compiler, 2-36

em_cmib2gdmo compiler, 2-36

em_compose_all script, 2-38

em_compose_oc command, 2-37 to 2-38

em_compose_poc command, 2-37 to 2-38

em_debug

ODT agents, 10-29

em_debug utility

introduction, 15-7

message types, 15-8, 15-15 to 15-19

output from, 15-8 to 15-14

starting, 15-7 to 15-8

em_gdmo compiler, 2-36

EM_GOTOVIEW macro, 16-8, 16-10

em_load_name_bindings command, 2-38

EM_LOG_MPA_EVENT_ACCESSenvironment variable,

12-39

em_logmgr_tp.cf file, 16-4 to 16-5

em_logview_tp.cf file, 16-4 to 16-5

em_nnadd command, 5-11

em_nnconfig command, 5-12
Index-9

em_nnmpa daemon, 5-10

em_objop utility

generally, 5-32 to 5-35

examples, A-12

em_panel.cf file, 16-2 to 16-3

em_services command, 15-5, 15-6

em_snm2gdmo compiler, 17-5

EM_TARGETS target type, 12-19

em_viewer.cf file, 16-4 to 16-5, 16-7 to 16-8, 16-9 to

16-10

EM-config configuration file, 12-39

EMDBConnectInfo class, 3-5 to 3-7

emSpecialEvents attribute

log record events, 7-23

secure MPAs, 12-40

encoding ASN.1 values

introduction, 9-1

ANY and ANY DEFINED BY values, 9-7 to 9-8

CHOICE values, 9-6, 9-35 to 9-37

examples, A-8

lists, 9-2 to 9-3

MorfBuilder class, by using, 9-32 to 9-39

scalars, 9-5

SEQUENCE and SEQUENCE OF values, 9-8 to 9-9,

9-37 to 9-38

SET and SET OF values, 9-8 to 9-9

from string data, 9-2 to 9-4

END keyword

ASN.1 module, 2-23

GDMO documents, 2-22

enforcement actions

defining, 12-29 to 12-30

events, 12-33 to 12-34

management operations, 12-33

enhancing performance

generally, 13-1 to 13-6

event handling, 7-9

managed objects, 5-35 to 5-37

object collections, 6-15

enq function, Queue class, 8-8

ENUMERATED ASN.1 type

definition, 2-26

creating Morf instances for, 9-5

extracting values from, 9-29

identifiers, getting, 9-16 to 9-18

enumeration, of object collections, 6-12

environmentalAlarm event, 7-3

equality keyword, filters, 6-10

equipmentAlarm event, 7-3

Error class

generally, 4-2 to 4-3

debugging, use in, 15-2

error handling

access control

generally, 12-31 to 12-32

rule creation, 12-27

target creation, 12-20

in asynchronous operations, 8-23 to 8-24

in constructors, 4-2

device errors, 1-6

in function calls, 4-1 to 4-3

high-level PMI, 4-1 to 4-3

in synchronous operations, 4-1 to 4-3

user errors

generally, 1-9

preventing, 7-14 to 7-15

error types, 4-2

error.hh file, 4-2

Event Logs tool, customizing, 16-4 to 16-5

event notifications, See events; notifications

events

introduction, 7-1

access control

introduction, 12-3

auxiliary object, 12-37, 12-38

enforcement actions, 12-33 to 12-34

log owners, assigning, 12-36 to 12-39

log server, enabling, 12-39

processing information in, 12-43 to 12-44

subscribing to, 12-40 to 12-41

callback function registration

generally, 7-4 to 7-6

secure MPAs, 12-43 to 12-44

defined by standard X.721, 7-3

em_debug message types, 15-16

examples, A-5 to A-6

extracting information from, 7-7

failure to process, 15-25 to 15-26

filtering

introduction, 7-16

by event type, 7-16 to 7-17

by managed object class, 7-16 to 7-17

selecting subtree of MIT, 7-17 to 7-19

specifying discriminator construct, 7-19 to 7-20

listening for, See events, scheduling; subscribing, to

log record events

log record, 7-23 to 7-24

managed objects associated with, getting, 7-7
Index-10 Developing C++ Applications • October 2001

MISs associated with, getting, 7-7

object collections associated with, getting, 7-7

OIDs of, getting, 7-7

performance considerations, 13-3

pre-empting automatic updates, 7-10

recognized by when function, 7-5

scheduling

introduction, 7-11

customization guidelines, 7-15

graphical applications, 7-13 to 7-15

nongraphical applications, 7-11 to 7-13

sending to MIS, 7-21

simulating, 7-20 to 7-22

standard, 7-3

updating managed objects, 7-9 to 7-11

X Window system, 7-13 to 7-15

example

cellSample, 10-35

chai, 10-49

demoPing, 10-36

demoregistry, 10-42

demoServer, 10-47

ODT, 10-34

examples

access control, A-9 to A-10

compilation guidelines, A-1 to A-2

development scenarios, A-2 to A-3, A-8

encoding and decoding ASN.1 values, A-8

event handling, A-5 to A-6

FDN translation, A-7

graphical applications, A-7

high-level PMI, A-3 to A-8

log record handling, A-6

low-level PMI, A-10

managed objects, A-3 to A-4

MDR, querying, A-8

miscellaneous, A-12

object collections, A-5

object modeling, A-11

ODT, A-11, A-12

topology, A-7

troubleshooting scenarios, 15-23 to 15-26

exception macros, 10-32

exceptions, em_debug message types, 15-16

ExceptionType class, 8-23, 8-24

exclude function, Album class, 6-15

EXCLUDE operation, Image class, 5-21

exists function

ACDbObject class, 12-37

ACGroup class, 12-11

ACRule class, 12-27

ACTargets class, 12-20

Image class, 5-5

EXPORTS keyword, ASN.1 modules, 2-29

extending

Actions menu, Network Views tool, 16-6 to 16-8

Tools menu, Solstice EM tools, 16-4 to 16-5

tools windows, 16-1 to 16-3

extract function, Morf class, 9-11, 9-12, 9-27 to 9-28

extracting ASN.1 values

from lists, 9-27 to 9-29

from scalars, 9-28 to 9-31

F
failed operations, reporting, 4-1

false response, 12-30

faults, See error handling

FDNs (fully distinguished names)

introduction, 2-18 to 2-19

of connection to MIS, getting, 7-23

of event sources, getting, 7-7

specifying in management requests, 5-9

translation, examples, A-7

features, controlling access to

introduction, 12-2

enforcing predefined rules, 12-7 to 12-8

getting feature list, 12-16 to 12-18

privilege groups, 12-18

file descriptors, 7-15

files

configuration

environment variables, 12-39

Network Views tool, 16-7 to 16-8, 16-9 to 16-10

Solstice EM tools, 16-4 to 16-5

tools windows, 16-2 to 16-3

files, MPA debug output, 15-4

filter attributes, 10-13

filter operation, targets, 12-22

FILTER_ATTR, 10-13

filtering events

introduction, 7-16

by event type, 7-16 to 7-17

by managed object class, 7-16 to 7-17

selecting subtree of MIT, 7-17 to 7-19

specifying discriminator construct, 7-19 to 7-20

filters
Index-11

introduction, 6-7 to 6-8

access control, 12-24

attributes, 6-9, 6-10

comparison keywords, 6-10

em_debug message types, 15-16

items, 6-9

operators, 6-9

substrings, 6-10 to 6-11

testing support for, 15-20 to 15-23

finalString keyword, filters, 6-11

first_album function, Image class, 6-23

first_image function, Album class, 6-22

flags, compilation

generally, 14-8

debugging tools and, 15-3

format bits, Morf class, 9-26 to 9-27

formatting

Morf instance

data, 9-3

string representation, 9-26 to 9-27

tools windows, 16-2

Forte compilers, 15-3

FROM keyword, ASN.1 modules, 2-28

Full Access

privilege group, 12-10

rule, access control, 12-26

fully distinguished names (FDNs)

introduction, 2-18 to 2-19

of connection to MIS, getting, 7-23

of event sources, getting, 7-7

specifying in management requests, 5-9

translation, examples, A-7

function calls, error handling, 4-1 to 4-3

further reading, B-5

G
GDMO

sanity check, 10-6

GDMO (Guidelines for the Definition of Managed Ob-

jects), 2-5

syntax and logic, verifying, 15-2

GDMO compiler, 2-36

GDMO compiler (em_gdmo), 17-5

GDMO document, 17-5

GDMO documents

introduction, 2-22

examples, A-11

identifiers, case sensitivity, 15-20

names, getting from MDR, 5-29

reloading, 15-4 to 15-6

GDMO packages

introduction, 2-20 to 2-22

retrieving from MDR, 5-30

GDMO templates

Action, C-13 to C-15

Attribute

definition, C-11 to C-13

example, 2-11

Attribute Group, C-20 to C-21

Behaviour, C-22

conventions, C-1

Managed Object Class

definition, C-2 to C-3

example, 2-7 to 2-8

Name Binding

definition, C-4 to C-6

example, 2-16, 2-17 to 2-18

Notification

definition, C-15 to C-17

example, 2-12 to 2-13

Package

definition, C-7 to C-11

example, 2-21 to 2-22

Parameter, C-18 to C-20

generated code, isolating from handwritten code, 1-3

GenInt class, 9-29

geographical maps, em_debug message types, 15-16

get function, Morf class, 9-25 to 9-26

get operation, targets, 12-21

get_access_control_switch function, ACAc-
cessControlRules class, 12-9 to 12-10

get_access_user_list function, ACInterface
class, 12-13

get_album function, CurrentEvent class, 7-7, 8-17

get_all_applications function, ACApplica-
tionContainer class, 12-16

get_all_features function, ACAppFeature-
Container class, 12-17

get_application_container function, ACInter-
face class, 12-16

get_application_description function, ACAp-
plication class, 12-16

get_authorized_features function, Platform
class, 12-6, 12-7

get_bit_string_identifiers function,

Asn1Type class, 9-12, 9-16, 9-17 to 9-18
Index-12 Developing C++ Applications • October 2001

get_database_name function, EMDBConnectInfo
class, 3-7

get_dbl function

Image class, 5-17

Morf class, 9-29

get_default_access function, ACAccessCon-
trolRules class, 12-33

get_default_event_access function, ACAc-
cessControlRules class, 12-33

get_denial_granularity function, ACAccess-
ControlRules class, 12-35

get_domain_identity function, ACAccessCon-
trolRules class, 12-36

get_enum_identifiers function, Asn1Type class,

9-12, 9-16 to 9-18

get_error_string function

access control API, 12-31

ACRule class, 12-27

ACTargets class, 12-20

Error class, 4-3, 15-2

get_error_type function

access control API, 12-31

ACRule class, 12-27

ACTargets class, 12-20

Error class, 4-2 to 4-3, 15-2

get_event function, CurrentEvent class, 7-7

get_event_raw function, CurrentEvent class, 7-7

get_eventtype function, CurrentEvent class, 7-7,

8-17

get_except function, Waiter class, 8-23

get_feature_description function, ACAppli-
cationFeature class, 12-17

get_gint function

Image class, 5-17

Morf class, 9-29

get_image function, CurrentEvent class, 7-7, 8-17

get_info function, CurrentEvent class, 7-7

get_info_raw function, CurrentEvent class, 7-7,

8-17

get_long function, Image class, 5-17

get_member_name function, Morf class, 9-11, 9-15

get_memname function, Morf class, 9-11, 9-12

get_message function, CurrentEvent class, 7-7,

8-17

get_name function, CurrentEvent class, 7-7

get_nickname function, Image class, 5-13

get_objclass function, CurrentEvent class, 7-7,

8-17

get_objname function, CurrentEvent class, 7-7,

8-17

get_oid function, CurrentEvent class, 7-7

get_platform function, CurrentEvent class, 7-7

get_platform function, Morf class, 9-11, 9-15

get_prop function

MorfBuilder class, 9-37 to 9-38

Platform class, 7-23, 12-40

get_range function, Asn1Type class, 9-12, 9-18 to

9-21

get_raw function

Image class, 5-17

MorfBuilder class, 9-33, 9-39

get_role function, EMDBConnectInfo class, 3-7

get_server_name function, EMDBConnectInfo
class, 3-7

get_server_type function, EMDBConnectInfo
class, 3-7

get_set_dbl function, Image class, 5-22

get_set_gint function, Image class, 5-22

get_set_long function, Image class, 5-22

get_set_raw function, Image class, 5-22

get_set_str function, Image class, 5-22

get_size_constraint function, Asn1Type class,

9-12, 9-21 to 9-23

get_status function, EMDBConnectInfo class, 3-7

get_str function

Image class, 5-17

Morf class, 9-29

get_syntax function, Morf class, 9-11, 9-15

get_time function, CurrentEvent class, 7-7

get_trusted_host_list function, ACAccess-
ControlRules class, 12-34

get_type function, Morf class, 9-11, 9-15, 9-16, 9-30

get_user_name function, EMDBConnectInfo class,

3-7

get_user_password function, EMDBConnectInfo
class, 3-7

get_value function, Morf class, 9-31

getting

attributes, 5-17 to 5-18

asynchronously, 8-7

metadata, actions for, 5-29 to 5-30

value in last set request, 5-22

glyph files, default location, 16-2

granularity, denial of requests, 12-35

grapher API

introduction, 1-17

examples, A-12

Grapher tool, 1-17
Index-13

graphical applications, examples, A-7

graphical user interface (GUI) component, 1-3

greaterOrEqual keyword, filters, 6-10

grouping managed objects, 6-1 to 6-2

groups, See privilege groups

GUI (graphical user interface) component, 1-3

Guidelines for the Definition of Managed Objects (GD-

MO), 2-5

syntax and logic, verifying, 15-2

H
Handler block, 10-32

has_value function, Morf class, 9-11, 9-16

header files, 14-1 to 14-7

hi_process_ace_event callback function, 12-43

HIDDENDIR, 10-13

hierarchy

managed objects, 2-14

managers and agents, 2-4

high-level design, 1-4 to 1-13

high-level PMI

introduction, 1-15

debugging calls to, 15-2

em_debug message types, 15-17

error handling, 4-1 to 4-3

performance considerations, 13-1

historical data, object collections, 6-14, 6-15

how to generate code, 10-12

I
icons, in tools windows, 16-2

IGNORE operation, Image class, 5-21

Image class

introduction, 5-2

activating instances of

generally, 5-4

asynchronously, 8-3

in object collection, 6-16 to 6-17, 8-4

asynchronous functions, 8-3

boot function, 5-4, 5-14

call function, 5-24

call_raw function, 5-24

constructor, 5-3

create function, 5-6

create_within function, 8-3, 15-20

deactivating instances of, 8-3, 8-4

DEFAULT operation, 5-21

destroy function, 5-15

EXCLUDE operation, 5-21

exists function, 5-5

find_by_nickname function, 5-13

first_album function, 6-23

get_dbl function, 5-17

get_gint function, 5-17

get_long function, 5-17

get_nickname function, 5-13

get_raw function, 5-17

get_set_dbl function, 5-22

get_set_gint function, 5-22

get_set_long function, 5-22

get_set_raw function, 5-22

get_set_str function, 5-22

get_str function, 5-17

IGNORE operation, 5-21

imaginary values, 5-22 to 5-23

INCLUDE operation, 5-21

instance associated with event, getting, 7-7

operations on attributes, 5-21

performance considerations, 13-2, 13-3

real values, 5-22 to 5-23

REPLACE operation, 5-21

restrictions, 5-35

send_event function, 7-21

set_dbl function, 5-19

set_gint function, 5-19

set_long function, 5-19

set_nickname function, 5-13

set_prop function, 5-26

set_raw function, 5-19

set_str function, 5-19

shutdown function, 8-3

start functions, 8-3

start_create function, 8-23

store function, 5-21

TRACKMODE property, 5-26, 5-27

updating instances of

asynchronously, 8-3

in response to application requests, 5-14

in response to network activity, 5-26 to 5-27

when function, 7-4 to 7-5

IMAGE_EXCLUDED event, 7-5

IMAGE_INCLUDED event, 7-5

imaginary values, 5-22 to 5-23

implementation, overview, 1-19 to 1-22
Index-14 Developing C++ Applications • October 2001

IMPORTS keyword, ASN.1 modules, 2-28

include files, See header files

include function, Album class, 6-15

INCLUDE operation, Image class, 5-21

individualLevels scope value, 7-18

information, See data; management information

inheritance, managed object classes, 2-8

initialization, em_debug message types, 15-17

initializing, managed objects, 5-5 to 5-6

initialString keyword, filters, 6-11

insert function

ACMOCList defined type, 12-25

ACMOIList defined type, 12-23

ACOperationsList defined type, 12-21 to 12-22

INTEGER ASN.1 type

definition, 2-26

creating Morf instances for, 9-5

ranges, getting, 9-18 to 9-21

integer values

checking value last set, 5-22

getting, 5-17

setting

in managed objects, 5-19

in object collections, 6-19

integrating, applications, 1-22, 16-1 to 16-10

integrityViolation event, 7-3

International Organization for Standardization (ISO)

network management model, 1-2, 2-1 to 2-4

is_any function, Morf class, 9-11

is_authorized function, AuthFeatures class, 12-7

is_choice function, Morf class, 9-11, 9-12

is_list function, Morf class, 9-11, 9-13

is_sequence function, Morf class, 9-11, 9-13

is_set function, Morf class, 9-11, 9-13

ISO (International Organization for Standardization)

network management model, 1-2, 2-1 to 2-4

ISO registration tree, 2-30 to 2-31

ITU-T X.208/ISO-8824 Specification of Abstract Syntax
Notation One (ASN.1), 2-23

ITU-T X.209/ISO-8825 Specification of Basic Encoding
Rules for Abstract Syntax Notation One (ASN.1), 15-8

ITU-T X.710/ISO-9595 Common Management Informa-
tion Services (CMISE), 1-14, 8-5

ITU-T X.721/ISO-10165-2 Definition of Management In-
formation, 7-3

ITU-T X.722/ISO-10165-4 Guidelines for the Definition of
Managed Objects (GDMO), 2-5

ITU-T X.735/ISO 10164-6 Log Control Function, 12-37

ITU-T X.741 Objects and Attributes for Access Control,

12-19

L
label texts

Actions menu commands, 16-7

Tools menu commands, 16-5

tools windows, 16-3

launcher, See tools windows

layout, icons in tools windows, 16-2

LDFLAGS makefile entry, 14-7

LDLIBS makefile entry, 14-1 to 14-7

LDNs (local distinguished names)

introduction, 2-19

specifying in management requests, 5-9

lessOrEqual keyword, filters, 6-10

libraries, 14-1 to 14-7

manager/agent services API, 17-1

limitations, verifying for managed resources, 2-7

limits, ASN.1 values, 9-18 to 9-23

linking applications, guidelines for, 14-1 to 14-8

listening for events, See scheduling, event handling;

subscribing, to log record events

lists

ASN.1 type of, getting, 9-13

creating Morf instances for, 9-2 to 9-3

decoding, 9-27 to 9-28

length of, getting, 9-13

members, getting ASN.1 types of, 9-15

parsing, 9-13 to 9-15

splitting, 9-14 to 9-15

lo_process_ace_event callback function, 12-43

Load Data Definitions tool, 2-36, 2-37

loading libraries, 10-27

local distinguished names (LDNs)

introduction, 2-19

specifying in management requests, 5-9

local objects, 1-17

local root, 2-19

locating managed objects, 2-14

location, header files and libraries, 14-7

log class, 12-37

Log Entries tool, customizing, 16-4 to 16-5

log management, em_debug message types, 15-17

log server, enabling access control, 12-39

LOG_SVC defined type, 3-6

logic errors, 15-2 to 15-3

logs
Index-15

direct access to, 3-5

events from

examples, A-6

subscribing to, 7-23 to 7-24

owners, assigning to, 12-36 to 12-39

long integers

checking value last set, 5-22

getting, 5-17

setting

in managed objects, 5-19

in object collections, 6-19

low-level design, 1-13 to 1-18

low-level PMI

introduction, 1-14

examples, A-10

performance enhancement, use in, 13-3 to 13-6

M
macros, 10-32

maintainability, of applications, 1-2

makefile, entries required by Solstice EM, 14-1 to 14-7

Managed Object Class GDMO template

definition, C-2 to C-3

example, 2-7 to 2-8

managed object classes

abstracting, 2-7 to 2-8

adding to MIS, 2-37 to 2-38

definitions, retrieving from MDR, 5-29

of event sources, getting, 7-7

filtering events by, 7-16 to 7-17

inheritance, 2-8

names in function calls, verifying, 15-19 to 15-20

selecting all instances of, 12-24 to 12-25

managed objects

introduction, 1-2, 2-3

access by applications

generally, 3-1 to 3-3

asynchronous, 8-3

access control

introduction, 12-3

denial, handling, 12-8

granularity, of denial, 12-35

operations permitted, defining, 12-21 to 12-22

rules, 12-29, 12-33

selecting objects for, 12-18 to 12-21, 12-23 to 12-25

actions, performing

generally, 5-23 to 5-25

asynchronously, 8-3, 8-4

on object collections, 6-20

adding to MIS

asynchronously, 8-3, 8-4

in object collections, 6-18

individually, 5-6 to 5-7

attributes

defining, 2-9 to 2-11

denial of access to, 12-35

failure to set, 15-23 to 15-25

filters, in, 6-9, 6-10

getting, 5-17 to 5-18, 8-7

management operations permitted, 2-20

names in function calls, checking, 15-19 to 15-20

operations on, 5-21, 8-9, 12-22

read-only, modifying, 5-31 to 5-32

retrieving from MDR, 5-30

setting, 5-19 to 5-23, 6-19 to 6-20, 8-7 to 8-10

C++ representation, 5-35 to 5-37

creating

generally, 5-2 to 5-8

in agent simulation, 5-32 to 5-35

deleting

generally, 5-15 to 5-16

asynchronously, 8-10

in object collection, 6-18 to 6-19

designing object model

overview, 2-5

actions, 2-11

attributes, 2-9 to 2-11

behavior, 2-13

classes, 2-7 to 2-8

containment, 2-14 to 2-20

documents, 2-22

examples, A-11

inheritance, 2-8

management operations, 2-6 to 2-7

notifications, 2-12 to 2-13

packages, 2-20 to 2-22

direct containment by MIS, 5-31

enhancing performance, 5-35 to 5-37

examples, A-3 to A-4

existence of, verifying, 5-5

finding all object collections for, 6-23 to 6-24

grouping, 6-1 to 6-2

hierarchy, 2-14

initializing, 5-5 to 5-6

multiple selection, 6-3 to 6-12

names
Index-16 Developing C++ Applications • October 2001

automatic assignment, 15-20

brace notation, 2-20

fully distinguished, 2-18 to 2-19

local distinguished, 2-19

relative distinguished, 2-18

nicknames of, assigning, 5-11 to 5-12

pre-empting event-related updates, 7-10

removing from MIS

generally, 5-15 to 5-16

asynchronously, 8-3

representing connection to MIS, getting, 7-23

selecting

all instances of a class, 12-24 to 12-25

by FDN or LDN, 5-9, 12-23

by nickname, 5-10 to 5-13

from object collections, 6-21 to 6-22

subtree of MIT, 6-5 to 6-12, 8-6 to 8-7, 12-23 to

12-24

tracking changes to

automatically, 7-9

from callback functions, 7-10 to 7-11

Image class, using, 5-26 to 5-27

manually, 7-10

overriding updates, 7-9

managed resources

introduction, 2-3

capabilities, verifying, 2-7

management information

presenting to users, 1-8

sharing, 1-9 to 1-10

management information base (MIB), 2-36

management information servers (MISs)

introduction, 3-1

agent role behavior, 2-37

auxiliary objects

adding, 12-37

storing persistently, 12-38

bypassing, 3-5 to 3-10

communications with

limiting, 13-1 to 13-6

monitoring, 15-7 to 15-19

connecting to

generally, 3-1 to 3-3

asynchronously, 8-3

containing managed objects in, 5-31

current state of, verifying, 5-21 to 5-22

disconnecting from

generally, 3-4

asynchronously, 8-3

of event sources, getting, 7-7

events, sending to, 7-21

managed object classes, loading, 2-37 to 2-38

managed object representing connection to, 7-23

managed objects

adding, 5-6 to 5-7, 8-3

removing, 5-15 to 5-16, 8-3

managing several, 1-12 to 1-13

name bindings, loading, 2-38

nickname service, adding, 5-10 to 5-11

object collections

adding, 6-18, 8-4

removing, 6-18 to 6-19, 8-4

privilege groups

adding, 12-11

storing persistently, 12-14 to 12-15

purging, 15-5

rules, access control

adding, 12-27

storing persistently, 12-30 to 12-31

starting, 15-5, 15-6

stopping, 15-5

targets, access control

adding, 12-20

storing persistently, 12-25

updating after set request

asynchronously, 8-3, 8-4

on managed object, 5-21

on object collection, 6-20

users, adding, 12-13 to 12-14

management information tree (MIT)

introduction, 2-14

direct manipulation, 15-2

managed objects, selecting, 6-3

subtree, selecting

access control, 12-23 to 12-24

asynchronous CMIS operations, 8-6 to 8-7

event filtering, 7-17 to 7-19

object collections, 6-5 to 6-12

management operations

access control, 12-21 to 12-22

CMIS, 8-5

debugging, 15-2

defining, 2-6 to 2-7

denial granularity, 12-35

enforcement actions, 12-29 to 12-30, 12-33

permitted on attributes, 2-20

supported by Solstice EM, 5-2

synchronization, 6-21
Index-17

management protocol adapters (MPAs)

access control

introduction, 12-3

ACE class, 12-42 to 12-43

AuxServerUtils class, 12-44

connection to MIS, 12-40

decision and enforcement functions, 12-44

domains, 12-42

events, subscribing to, 12-40 to 12-41

processing information in events, 12-43 to 12-44

services required, 12-42 to 12-43

comparison with using ODT, 1-18

debug mode, 15-3 to 15-4

filters, support for, 15-20 to 15-23

scopes, support for, 15-20 to 15-23

starting, 15-3 to 15-4

stopping, 15-4

management protocols, 2-3 to 2-4

manager-agent model

agent, 17-1

managers

introduction, 2-2

hierarchical arrangement, 2-4

in ISO model, 1-2

mandatory packages, 2-20

MDR (metadata repository)

actions, 5-29 to 5-30

ASN.1 types, representation of, 9-2

em_debug message types, 15-17

naming attribute, 5-28

populating, 2-36

querying

generally, 5-27 to 5-30

examples, A-8

updating, 15-4 to 15-6

memory leaks, avoiding, 8-15 to 8-16

memory, saving, 5-35, 13-1 to 13-6

message routing module, em_debug message types,

15-17

messages

See also notifications, 2-12

from devices, 1-5 to 1-6

metadata repository (MDR)

actions, 5-29 to 5-30

ASN.1 types, representation of, 9-2

em_debug message types, 15-17

naming attribute, 5-28

populating, 2-36

querying

generally, 5-27 to 5-30

examples, A-8

updating, 15-4 to 15-6

metadata, effect of disconnection on, 3-4

metaName attribute, MDR managed object, 5-28

MIB (management information base), 2-36

MIS Objects tool, 5-32, 15-2

MISs (management information servers)

introduction, 3-1

agent role behavior, 2-37

auxiliary objects

adding, 12-37

storing persistently, 12-38

bypassing, 3-5 to 3-10

communications with

limiting, 13-1 to 13-6

monitoring, 15-7 to 15-19

connecting to

generally, 3-1 to 3-3

asynchronously, 8-3

containing managed objects in, 5-31

current state of, verifying, 5-21 to 5-22

disconnecting from

generally, 3-4

asynchronously, 8-3

of event sources, getting, 7-7

events, sending to, 7-21

managed object classes, loading, 2-37 to 2-38

managed object representing connection to, 7-23

managed objects

adding, 5-6 to 5-7, 8-3

removing, 5-15 to 5-16, 8-3

managing several, 1-12 to 1-13

name bindings, loading, 2-38

nickname service, adding, 5-10 to 5-11

object collections

adding, 6-18, 8-4

removing, 6-18 to 6-19, 8-4

privilege groups

adding, 12-11

storing persistently, 12-14 to 12-15

purging, 15-5

rules, access control

adding, 12-27

storing persistently, 12-30 to 12-31

starting, 15-5, 15-6

stopping, 15-5

targets, access control

adding, 12-20
Index-18 Developing C++ Applications • October 2001

storing persistently, 12-25

updating after set request

asynchronously, 8-3, 8-4

on managed object, 5-21

on object collection, 6-20

users, adding, 12-13 to 12-14

MIT (management information tree)

introduction, 2-14

direct manipulation, 15-2

managed objects, selecting, 6-3

subtree, selecting

access control, 12-23 to 12-24

asynchronous CMIS operations, 8-6 to 8-7

event filtering, 7-17 to 7-19

object collections, 6-5 to 6-12

modes, of object collections, 6-16 to 6-17

modification list, 8-8

modifying, Solstice EM database, 15-5 to 15-6

MODULE keyword, GDMO documents, 2-22

monitoring

MIS communications, 15-7 to 15-19

protocol translation, 15-3 to 15-4

Morf class

introduction, 9-1 to 9-2

Asn1Type instance associated with, 9-15

constructors

other Morf instances, 9-9

string data, 9-2

creating instances from MorfBuilder instance,

9-39

default representation, ASN.1 types, 9-25

examples, A-8

extract function, 9-11, 9-12, 9-27 to 9-28

format bits, 9-26 to 9-27

get function, 9-25 to 9-26

get_dbl function, 9-29

get_gint function, 9-29

get_member_name function, 9-11, 9-15

get_memname function, 9-11, 9-12

get_platform function, 9-11, 9-15

get_str function, 9-29

get_syntax function, 9-11, 9-15

get_type function, 9-11, 9-15, 9-16, 9-30

get_value function, 9-31

has_value function, 9-11, 9-16

is_any function, 9-11

is_choice function, 9-11, 9-12

is_list function, 9-11, 9-13

is_sequence function, 9-11, 9-13

is_set function, 9-11, 9-13

lists, representation by, 9-2 to 9-3

metainformation, 9-16 to 9-24

navigation strings, 9-12, 9-27 to 9-28

num_elements function, 9-11, 9-13

Platform instance associated with, 9-15

set function, 9-5

set_any function, 9-7

set_dbl function, 9-5

set_gint function, 9-5

set_long function, 9-5

set_memname function, 9-6

set_str function, 9-5

split_array function, 9-11, 9-14

split_queue function, 9-11, 9-14

Syntax instance associated with, 9-15

MorfBuilder class

introduction, 9-32

access_type property, 9-37 to 9-38

constructors, 9-33

creating Morf instances from, 9-39

data, adding to instance of, 9-33 to 9-35

get_prop function, 9-37 to 9-38

get_raw function, 9-33, 9-39

navigation strings, 9-34, 9-37

set function, 9-33 to 9-35

set_prop function, 9-37 to 9-38

set_raw function, 9-33 to 9-34

validate function, 9-33, 9-38 to 9-39

MPAs (management protocol adapters)

access control

introduction, 12-3

ACE class, 12-42 to 12-43

AuxServerUtils class, 12-44

connection to MIS, 12-40

decision and enforcement functions, 12-44

domains, 12-42

events, subscribing to, 12-40 to 12-41

processing information in events, 12-43 to 12-44

services required, 12-42 to 12-43

comparison with using ODT, 1-18

debug mode, 15-3 to 15-4

filters, support for, 15-20 to 15-23

scopes, support for, 15-20 to 15-23

starting, 15-3 to 15-4

stopping, 15-4

multiple selection, of managed objects, 6-3 to 6-12

multipleObjectSelection operation, targets,

12-22
Index-19

multi-valued attributes, 5-21, 8-9

N
Name Binding GDMO template

definition, C-4 to C-6

example, 2-16, 2-17 to 2-18

name bindings

introduction, 2-15

adding to MIS, 2-38

containment, defining, 2-15

creation, managed objects, 2-15, 5-2

deletion, managed objects, 2-15, 5-15

example

multiple levels, 2-17 to 2-18

one level, 2-16

multiple containment levels, 2-16 to 2-18

name function, ExceptionType class, 8-24

names

managed objects

automatic assignment, 15-20

brace notation, 2-20

fully distinguished, 2-18 to 2-19

local distinguished, 2-19

relative distinguished, 2-18

object model items, retrieving from MDR, 5-29

naming attribute

definition, 2-15

MDR managed object, 5-28

navigation strings

Morf class, 9-12, 9-27 to 9-28

MorfBuilder class, 9-34, 9-37

Nerve Center interface

introduction, 1-15

em_debug message types, 15-17 to 15-18

examples, A-12

network management model, of Solstice EM, 2-1 to 2-4

network resources, See managed resources

Network Tools window, customizing, 16-2 to 16-3

Network Views tool

topology API and, 1-15

viewer API and, 1-16

Network Views tool, customizing, 16-4 to 16-5, 16-6 to

16-10

networks, 1-7

next_album function, AlbumImage class, 6-23

next_image function, AlbumImage class, 6-22

nickname service

introduction, 5-10

adding nicknames to, 5-12

adding to MIS, 5-10 to 5-11

starting, 5-10

nicknames

introduction, 5-10

adding to nickname service, 5-12

Album instances, 6-2

assigning to managed objects, 5-11 to 5-12

examples, A-12

getting, 5-13

Image instance, finding, 5-13

setting, 5-13

nonNullSetIntersection keyword, filters, 6-10

not keyword, filters, 6-9

NOT operator, 4-2

Notification GDMO template

definition, C-15 to C-17

example, 2-12 to 2-13

notifications

introduction, 2-2

defining, 2-12 to 2-13

failure to process, 15-25 to 15-26

from devices, 1-5

retrieving from MDR, 5-30

NTH_LEVEL scope value, 12-24

NULL ASN.1 type, definition, 2-26

num_elements function, Morf class, 9-11, 9-13

O
OAM (object access module), em_debug message

types, 15-18 to 15-19

OBAPIDEBUG, 10-13

OBAPITRACE, 10-13

object

debugging process, 10-26

ODT interfaces, 10-3

object access module (OAM), em_debug message

types, 15-18 to 15-19

object API, 10-4

Object Code Generator

See OCG

object collections

introduction, 6-1

actions, performing

generally, 6-20

asynchronously, 8-4, 8-10
Index-20 Developing C++ Applications • October 2001

activating Image instances in

generally, 6-16 to 6-17

asynchronously, 8-4

adding to MIS

generally, 6-18

asynchronously, 8-4

attributes

getting, 8-7

setting, 6-19 to 6-20, 8-7 to 8-10

base managed object, 6-6

callback functions for, 6-15 to 6-16

creating container for, 6-2

deleting

generally, 6-18 to 6-19

asynchronously, 8-4

em_debug message types, 15-19

examples, A-5

historical data, 6-14, 6-15

individual objects, selecting, 6-21 to 6-22

members

choosing, 6-1 to 6-2

deriving, 6-3 to 6-5, 8-4

enumerating, 6-12

tracking, 6-23 to 6-24

MIS, updating after set request

generally, 6-20

asynchronously, 8-4

modes of, 6-16 to 6-17

performance considerations, 13-3 to 13-6

setting attributes, 6-19 to 6-20

subset of, selecting, 8-6 to 8-7

synchronization, 6-21

timeouts, 6-20

tracking changes, 6-13 to 6-17

updating, 6-13 to 6-17

Object Development Tools

See ODT

object development tools (ODT)

comparison with writing MPAs, 1-18

examples, A-11, A-12

restrictions, 1-18

object framework, 10-4

OBJECT IDENTIFIER ASN.1 type

definition, 2-26

extracting values from, 9-29

formatting string representation of, 9-27

object identifiers (OIDs)

allocating, guidelines for, 2-32 to 2-33

brace notation, 2-33 to 2-34

dot notation, 2-33

of events, getting, 7-7

labelling, 2-34

of Solstice EM, 2-30

registering, 2-30 to 2-31

retrieving from MDR, 5-29

object model

introduction, 2-1

designing

overview, 2-5

actions, 2-11

attributes, 2-9 to 2-11

behavior, 2-13

classes, 2-7 to 2-8

containment, 2-14 to 2-20

documents, 2-22

inheritance, 2-8

management operations, 2-6 to 2-7

notifications, 2-12 to 2-13

packages, 2-20 to 2-22

examples, A-11

loading into MDR, 2-36

SNMP MIBs, 2-36

standards as basis for, 2-35

updating, 15-4 to 15-6

object services, 10-4

object services API, 1-15

object utilities, 10-4

OBJECT_CREATED event, 7-5

OBJECT_DESTROYED event, 7-5

objectCreation event, 7-3, 7-5

objectDeletion event, 7-3, 7-5

objects

See also managed objects

behavior code, 1-17 to 1-18

location, 1-17

objsvc_error, 10-29

objsvc_test, 10-29

OBSAPI, 10-4

OCG, 10-8

className.load, 10-32

className.unload, 10-32

className_user.odt.cc, 10-31

className_user.odt.hh, 10-30

client create file, 10-31

CODEGENDIR, 10-13

components, 10-10

configuration, 10-13

DATASTORAGE, 10-13
Index-21

dynamic loading file, 10-32

dynamic unloading file, 10-32

exception-handling macros, 10-32

filter attributes, 10-13

FILTER_ATTR, 10-13

generated code interfaces, 10-9

generated files, 10-29

HIDDENDIR, 10-13

how to use, 10-12

inputs, 10-11

Makefile, 10-30

OBAPIDEBUG, 10-13

OBAPITRACE, 10-13

outputs, 10-11

pmi_className.cc, 10-31

README, 10-30

user code file, 10-31

user header file, 10-30

OCTET STRING ASN.1 type

definition, 2-26

creating Morf instances for, 9-5

formatting string representation of, 9-27

size constraints, getting, 9-21 to 9-23

string representation, Morf class, 9-25

ODT

cellSample example, 10-35

chai example, 10-49

className.load, 10-27

className.unload, 10-27

code generation components, 10-10

components, 10-3

definition, 10-1

demoPing example, 10-36

demoregistry example, 10-42

demoServer example, 10-47

dynamic libraries, 10-27

em_debug agents, 10-29

examples, 10-34

generated code, 10-9

interfaces, 10-3

Object Behavior Interface, 10-4

Object Code Generator, 10-8

object development scenario, 10-49

operations, 10-2

process, 10-5

sanity check, 10-6

ODT (object development tools)

comparison with writing MPAs, 1-18

examples, A-11, A-12

restrictions, 1-18

Oid class, 9-29

OIDs (object identifiers)

allocating, guidelines for, 2-32 to 2-33

brace notation, 2-33 to 2-34

dot notation, 2-33

of events, getting, 7-7

labelling, 2-34

of Solstice EM, 2-30

registering, 2-30 to 2-31

retrieving from MDR, 5-29

Open Systems Interconnection (OSI), standards sup-

ported by Solstice EM, B-1 to B-2

OperationalState, 10-13

operationalViolation event, 7-3

operations on attributes

access control, 12-22

asynchronous CMIS set request, 8-9

Image class, 5-21

operator overloading, 4-2

Operators privilege group, 12-10

or keyword, filters, 6-9

OSAPI

debug agents, 10-29

OSI (Open Systems Interconnection), standards sup-

ported by Solstice EM, B-1 to B-2

overloaded operators, 4-2

overriding automatic updates to managed objects, 7-9

P
Package GDMO template

definition, C-7 to C-11

example, 2-21 to 2-22

packages, GDMO

introduction, 2-20 to 2-22

retrieving from MDR, 5-30

Parameter GDMO template, C-18 to C-20

parameters

OCG, CODEGENDIR, 10-13

OCG, DATASTORAGE, 10-13

OCG, FILTER_ATTR, 10-13

OCG, HIDDENDIR, 10-13

OCG, OBAPIDEBUG, 10-13

OCG, OBAPITRACE, 10-13

parameters, configuration, 1-6

parsing ASN.1 values

introduction, 9-9 to 9-10
Index-22 Developing C++ Applications • October 2001

BIT STRING values, 9-16, 9-17 to 9-18, 9-21 to 9-23

CHOICE values, 9-12 to 9-13

ENUMERATED values, 9-16 to 9-18

example, 9-23 to 9-24

lists, 9-13 to 9-15

OCTET STRING values, 9-21 to 9-23

REAL values, 9-18 to 9-21

SEQUENCE OF values, 9-21 to 9-23

SET OF values, 9-21 to 9-23

type, getting, 9-16

performance

devices, of, 1-6

enhancing

generally, 13-1 to 13-6

event handling, 7-9

managed objects, 5-35 to 5-37

object collections, 6-15

networks, of, 1-7

performance, enhancing, 5-21

physicalViolation event, 7-3

Platform class

introduction, 3-1

connect function, 3-3

constructor, 3-2

disconnect function, 3-4

get_authorized_features function, 12-6, 12-7

get_prop function, 7-23, 12-40

Morf class and, 9-15

replace_discriminator function, 7-17 to 7-18,

7-19

replace_discriminator_classes function,

7-16 to 7-17

restrictions, 3-2

start_connect function, 8-3

start_disconnect function, 8-3

when function, 7-4 to 7-5

platform types, 3-2

PMI (Portable Management Interface)

high-level

introduction, 1-15

debugging calls to, 15-2

em_debug message types, 15-17

error handling, 4-1 to 4-3

examples, A-3 to A-8

performance considerations, 13-1

low-level

introduction, 1-14

examples, A-10

performance enhancement, use in, 13-3 to 13-6

pmi_className.cc, 10-31

polling, devices, 1-5, 1-7

Portable Management Interface (PMI)

high-level

introduction, 1-15

debugging calls to, 15-2

em_debug message types, 15-17

error handling, 4-1 to 4-3

examples, A-3 to A-8

performance considerations, 13-1

low-level

introduction, 1-14

examples, A-10

performance enhancement, use in, 13-3 to 13-6

pre-empting automatic updates, events, 7-10

present keyword, filters, 6-10

presenting management information, 1-8

private class ASN.1 tags, 15-9

privilege groups

introduction, 12-10

applications, adding, 12-18

creating, 12-11 to 12-12

features, adding, 12-18

MIS, adding to, 12-11

predefined, 12-10

rules, adding to, 12-28 to 12-29

storing persistently, 12-14 to 12-15

users, adding, 12-14 to 12-15

process

defining object behavior, 10-5

processingErrorAlarm event, 7-3

programming model, 1-2 to 1-3

property list, ATTRIBUTES construct

definition, C-9 to C-11

getting attributes, 5-17

operations on attributes, 5-21, 8-9

read-only attributes, 5-31

setting attributes, 5-19

values allowed for attributes, 5-20

protocol adaptors, 11-1

protocol translation, debugging, 15-3 to 15-4

protocols, See management protocols

proxy agent

manage resources not directly accessible, 17-2

protocol translation, 17-2

purging, Solstice EM database, 15-5
Index-23

Q
quality assurance, See system testing; unit testing

qualityofServiceAlarm event, 7-3

Queue class, 8-8

asynchronous CMIS M-SET request, 8-8

Morf instance, use in creating, 9-8

R
RAW_EVENT event, 7-5

RDNs (relative distinguished names), 2-18

read-only attributes, 5-31 to 5-32

REAL ASN.1 type

definition, 2-26

creating Morf instances for, 9-5

ranges, getting, 9-18 to 9-21

real values

checking value last set, 5-22

getting, 5-17

setting

in managed objects, 5-19

in object collections, 6-19

real values in Image instance, 5-22 to 5-23

reason function, ExceptionType class, 8-24

rebuilding, Solstice EM database, 15-5

recommended books, B-5

registering callback functions

access control events, 12-43 to 12-44

asynchronous operations, 8-11 to 8-12

event handling, 7-4 to 7-6

responses from managed objects, 8-12 to 8-13

registering OIDs, 2-30 to 2-31

relationshipChange event, 7-3

relative distinguished names (RDNs), 2-18

remote objects, 1-17

remote procedure call (RPC) protocol

support for, 2-3

translation, monitoring, 15-3 to 15-4

REMOVE operation, asynchronous CMIS M-SET re-

quest, 8-9

removeMember operation, targets, 12-22

removing, GDMO documents from MDR, 15-4 to 15-6

REPLACE operation

asynchronous CMIS M-SET request, 8-9

Image class, 5-21

replace operation, targets, 12-21

replace_discriminator function, Platform
class, 7-17 to 7-18, 7-19

replace_discriminator_classes function,

Platform class, 7-16 to 7-17

replacewithDefault operation, targets, 12-22

request templates, 7-21

requests

introduction, 2-2

denial of, 12-35

requirements analysis, 1-4 to 1-13

reset_error function, access control API, 12-31

responses

introduction, 2-2

callback functions

code, 8-15 to 8-20

registration, 8-12 to 8-13

extracting information from, 8-17 to 8-20

false, 12-30

scheduling handling of

introduction, 8-20

blocking mode, 8-21 to 8-22

nonblocking mode, 8-21

restrictions

access control, activating, 12-9

asynchronous CMIS operations, 8-5

attributes

getting, 5-17

in multiple GDMO documents, 5-17 to 5-18, 5-20

setting, 5-19

compilers, A-2

derive function, Album class, 6-15

EM_GOTOVIEW macro, 16-8, 16-10

Error class, 4-3

GDMO documents, 2-22

get_error_type function, Error class, 4-1

Image class, 5-35

log owners, changing, 12-38

managed objects

creation, 5-2

deletion, 5-15

inheritance, 2-8

modifying Solstice EM database, 15-5

Morf instance, updating, 9-3

ODT, 1-18

Platform class, 3-2

reloading GDMO documents, 15-4

send_event function, Image class, 7-21

source code examples, A-1

start_create function, Image class, 8-23

start_m_action function, Album class, 8-10

start_m_action_raw function, Album class, 8-10
Index-24 Developing C++ Applications • October 2001

start_m_set function, Album class, 8-8

robustness, of applications, 1-2

root object, 2-14

RPC (remote procedure call) protocol

support for, 2-3

translation, monitoring, 15-3 to 15-4

rules, access control

introduction, 12-26

creating, 12-26 to 12-28

defining, 12-4 to 12-6

enforcement actions

defining, 12-29 to 12-30

getting, 12-33

enforcing, 12-4, 12-6 to 12-8

MIS, adding to, 12-27

predefined, 12-26

privilege groups, adding, 12-28 to 12-29

storing persistently, 12-30 to 12-31

targets, adding, 12-29

S
S98ipmpa script, 15-3

sanity checking, 10-6

SAPs, 11-4

saving memory, 5-35, 13-1 to 13-6

scalars

creating Morf instances for, 9-5

decoding, 9-28 to 9-31

scenario

developing object behaviors, 10-49

sched scheduler

em_debug message types, 15-19

events

receiving, 7-11 to 7-12

simulating, 7-21

responses to asynchronous operations, 8-20

schedulers, correct use of data passed by, 8-15 to 8-16

scheduling

callback function execution, 8-22 to 8-23

event handling

introduction, 7-11

customization guidelines, 7-15

graphical applications, 7-13 to 7-15

nongraphical applications, 7-11 to 7-13

response handling

introduction, 8-20

blocking mode, 8-21 to 8-22

nonblocking mode, 8-21

Schema compiler (em_snm2gdmo), 17-5

scopes

access control, 12-23 to 12-24

event filtering, 7-17 to 7-18

object collections, 6-6 to 6-7

testing support for, 15-20 to 15-23

Security tool, 12-5

security, See access control

securityServiceOrMechanismViolation event,

7-3

select() system call, 7-15

send_event function, Image class, 7-21

send_resp function, Waiter class, 8-22

sending events, to MIS, 7-21

SEQUENCE ASN.1 type

definition, 2-26

creating Morf instances for, 9-2, 9-8 to 9-9

encoding, 9-37 to 9-38

extracting values from, 9-27 to 9-28

string representation, Morf class, 9-25

SEQUENCE OF ASN.1 type

definition, 2-26

creating Morf instances for, 9-2, 9-8 to 9-9

size constraints, getting, 9-21 to 9-23

Service Access Points, 11-4

SET ASN.1 type

definition, 2-26

creating Morf instances for, 9-2, 9-8 to 9-9

extracting values from, 9-27 to 9-28

string representation, Morf class, 9-25

set function

Morf class, 9-5

MorfBuilder class, 9-33 to 9-35

SET OF ASN.1 type

definition, 2-26

creating Morf instances for, 9-2, 9-8 to 9-9

size constraints, getting, 9-21 to 9-23

set_access_control_switch function, ACAc-
cessControlRules class, 12-9 to 12-10

set_any function, Morf class, 9-7

set_app_context function, xtsched scheduler,

7-13

set_auxobject_owner function, ACDbObject
class, 12-38

set_dbl function

Morf class, 9-5

set_dbl function, Image class, 5-19

set_derivation function, Album class, 6-3
Index-25

set_enforcement_action function, ACRule class,

12-30

set_filter function, ACTargets class, 12-24

set_gint function

Image class, 5-19

Morf class, 9-5

set_long function

Image class, 5-19

Morf class, 9-5

set_memname function, Morf class, 9-6

set_moc_list function, ACTargets class, 12-25

set_moi_list function, ACTargets class, 12-23

set_nickname function, Image class, 5-13

set_operations_list function, ACTargets class,

12-22

set_operator function, AttrModifier class, 8-8 to

8-9

set_prop function

Album class, 6-14, 6-17, 6-21

Image class, 5-26

MorfBuilder class, 9-37 to 9-38

set_raw function

Image class, 5-19

MorfBuilder class, 9-33 to 9-34

set_scope function, ACTargets class, 12-24

set_str function

Image class, 5-19

Morf class, 9-5

SET_TO_DEFAULT operation, asynchronous CMIS M-
SET request, 8-9

set_value function, AttrModifier class, 8-8

set_X_event_processing function, xtsched
scheduler, 7-14 to 7-15

setting

attributes

asynchronously, 8-7 to 8-10

in managed objects, 5-19 to 5-23

in object collections, 6-19 to 6-20

derivation strings, 6-3 to 6-4

shared libraries, See libraries

sharing management information, 1-9 to 1-10

shutdown function, Image class, 8-3

shutdown manager, em_debug message types, 15-19

signature, callback functions

asynchronous operations, 8-14

event handling, 7-6

Simple Network Management Protocol (SNMP)

MIB as object model, 2-36

support for, 2-3

translation, monitoring, 15-3 to 15-4

simulating

agents, 5-30 to 5-35

events, 7-20 to 7-22

SNMP (Simple Network Management Protocol)

MIB as object model, 2-36

support for, 2-3

translation, monitoring, 15-3 to 15-4

software abstraction, 2-3

Solstice EM API component of applications, 1-2 to 1-3

Solstice EM tools, customizing, 16-4 to 16-5

source code examples

access control, A-9 to A-10

compilation guidelines, A-1 to A-2

development scenarios, A-2 to A-3, A-8

encoding and decoding ASN.1 values, A-8

event handling, A-5 to A-6

FDN translation, A-7

graphical applications, A-7

high-level PMI, A-3 to A-8

log record handling, A-6

low-level PMI, A-10

managed objects, A-3 to A-4

MDR, querying, A-8

miscellaneous, A-12

object collections, A-5

object modeling, A-11

ODT, A-11, A-12

topology, A-7

split_array function, Morf class, 9-11, 9-14

split_queue function, Morf class, 9-11, 9-14

standards

supported by Solstice EM, B-1 to B-2

terminology references, B-3 to B-4

start functions, Image class, 8-3

start_connect function, Platform class, 8-3

start_create function, Image class, 8-23

start_derive function, Album class, 8-4

start_disconnect function, Platform class, 8-3

start_m_action function, Album class, 8-10

start_m_action_raw function, Album class, 8-10

start_m_get function, Album class, 8-7

start_m_set function, Album class, 8-7 to 8-10

starting

applications

overview, 1-8 to 1-9

from Actions menu, Network Views tool, 16-6 to

16-8

by double clicking topology nodes, 16-9 to 16-10
Index-26 Developing C++ Applications • October 2001

from Tools menu, Solstice EM tools, 16-4 to 16-5

from tools windows, 16-1 to 16-3

MISs, 15-5, 15-6

MPAs, 15-3 to 15-4

state information, 2-9

stateChange event, 7-3

stopping

MISs, 15-5

MPAs, 15-4

store function

ACAccessUserList class, 12-13

ACDbObject class, 12-38

ACGroup class, 12-15

ACRule class, 12-30

ACTargets class, 12-25

Image class, 5-21

strings, creating Morf instances from, 9-2 to 9-4

string-valued attribute

checking value last set, 5-22

getting, 5-17

setting, 6-19

string-valued attributes

setting, 5-19

subclasses, 2-8

subordinate object, 2-14

subscribing

to access control events, 12-40 to 12-41

to log record events, 7-23 to 7-24

subsetOf keyword, filters, 6-10

substrings, filters, 6-10 to 6-11

superclasses, 2-8

superior object, 2-14

supersetOf keyword, filters, 6-10

synchronization

asynchronous CMIS requests

M-ACTION, 8-10

M-SET, 8-8

management operations, object collections, 6-21

synchronous operations, 8-1

Syntax class

introduction, 9-2

Morf class and, 9-15

system object, 2-14

system testing, 1-22

systems management functions, supported by Solstice

EM, B-2

T
tag length value (TLV) encoding, 15-8 to 15-9

tags, ASN.1, 15-9 to 15-10

targets, access control

introduction, 12-18 to 12-19

creating, 12-19 to 12-21

operations permitted, defining, 12-21 to 12-22

rules, adding to, 12-29

Telecommunications Management Network (TMN),

standards supported by Solstice EM, B-1

templates, See GDMO templates

terminology, references to standards documents, B-3 to

B-4

testing, See system testing; unit testing

text labels

Actions menu commands, 16-7

Tools menu commands, 16-5

tools windows, 16-3

time, of event, getting, 7-7

timeDomainViolation event, 7-3

timeouts

actions, object collections, 6-20

asynchronous operations, 8-25

denial without response, 12-8

TLV (tag length value) encoding, 15-8 to 15-9

TMN (Telecommunications Management Network),

standards supported by Solstice EM, B-1

Tools menu, customizing, 16-4 to 16-5

tools windows, customizing, 16-1 to 16-3

top object class, 2-8

topology API

introduction, 1-15

em_debug message types, 15-19

examples, A-7

topology types, activation, customizing, 16-9 to 16-10

tracing code, 14-8, 15-2 to 15-3

tracking changes

from callback functions, 7-10 to 7-11

managed objects, 5-26 to 5-27

object collections, 6-13 to 6-17

TRACKMODE property

Album class, 6-14

Image class, 5-26, 5-27

traps, from devices, 1-5

troubleshooting, 15-1 to 15-26

trusted hosts, 12-34

TRY block, 10-32

TRY execption macros, 10-32

tuning, applications, 13-1 to 13-2
Index-27

U
UDP (user datagram protocol), 15-3

unit testing, 1-22, 15-1 to 15-26

universal ASN.1 types

introduction, 2-26

class tags, 15-9

Unknown attribute message, 15-19

Unknown object class error message, 15-19

unsolicited messages

See also notifications

from devices, 1-5 to 1-6

updating

Image instances

asynchronously, 8-3

in response to application requests, 5-14

in response to network activity, 5-26 to 5-27

object collections, 6-13 to 6-17

object model, 15-4 to 15-6

user datagram protocol (UDP), 15-3

user groups, See privilege groups

users

access control, requirements, 12-10

creating, for access control, 12-12

error information for, 4-1 to 4-3

interaction with applications, 1-7 to 1-9

MIS, adding to, 12-13 to 12-14

privilege groups, adding to, 12-14 to 12-15

rules, access control, 12-28 to 12-29

uses, of Solstice EM APIs, 1-1

V
validate function, MorfBuilder class, 9-33, 9-38 to

9-39

values, in filters, 6-9, 6-10

version requirements, compilers, 14-1, A-2

View Only

privilege group, 12-10

rule, access control, 12-26

target, 12-19

viewer API

introduction, 1-16

examples, A-12

W
WAIT event, 7-5

Waiter class

introduction, 8-2

cancel function, 8-24

get_except function, 8-23

send_resp function, 8-22

was_completed function, 8-21

when_resp function, 8-12 to 8-13, 8-22

waitmore function, Waiter class, 8-25

was_completed function, Waiter class, 8-21

when function, 7-4 to 7-5

when_resp function, Waiter class, 8-12 to 8-13, 8-22

X
X Window system, 7-13 to 7-15

X741_TARGETS target type, 12-19

XtAppMainLoop function, xtsched scheduler, 7-13

xtsched scheduler

introduction, 7-13

activating, 7-13 to 7-14

blocking user interaction, 7-14 to 7-15

event simulation, 7-21

initializing, 7-13 to 7-14

responses to asynchronous operations, 8-20

XtAppMainLoop function, 7-13
Index-28 Developing C++ Applications • October 2001

	Developing C++ Applications
	Solstice Enterprise Manager™ 4.1
	Contents
	1. Introduction to the Solstice EM C++ Development Environment�1�1
	2. Modeling Managed Objects�2�1
	3. Enabling Applications to Access Managed Objects�3�1
	4. Handling Errors�4�1
	5. Performing Operations on Managed Objects�5�1
	6. Performing Management Operations on Object Collections�6�1
	7. Handling Events�7�1
	8. Performing Asynchronous Management Operations�8�1
	9. Encoding and Decoding Complex ASN.1 Values�9�1
	10. Developing Object Behaviors�10�1
	11. Writing Management Protocol Adaptors (MPAs)�11�1
	12. Controlling Access to Applications and Data�12�1
	13. Optimizing Performance�13�1
	14. Guidelines for Compiling and Linking Applications�14�1
	15. Troubleshooting�15�1
	16. Integrating Applications With Solstice EM�16�1
	17. Writing RPC Agents for Solstice EM�17�1
	A. Solstice EM C++ Source Code Examples�A�1
	B. Standards Reference and Further Reading�B�1
	C. GDMO Templates�C�1

	Tables
	Code Samples
	Figures
	Preface

	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Typographic Conventions
	TABLE�P�1 Typographic Conventions�

	Shell Prompts
	TABLE�P�2 Shell Prompts�

	Accessing Sun Documentation Online
	Sun Welcomes Your Comments
	1
	Introduction to the Solstice EM C++ Development Environment

	1.1 What You Can Develop in the Solstice EM C++ Development Environment
	1.2 Solstice EM Network Management Model
	1.3 Solstice EM Programming Model
	1.3.1 Solstice EM Application Program Interface (API) Component
	1.3.2 Data Component
	1.3.3 Graphical User Interface (GUI) Component

	1.4 Overview of the Application Development Process
	1.4.1 Requirements Analysis and High-Level Design
	1.4.1.1 Device Type Properties
	Polling a Device
	Handling Unsolicited Messages From a Device
	Setting Configuration Parameters of a Device
	Monitoring the Performance of a Device
	Handling Error Conditions for a Device

	1.4.1.2 Network Properties
	Importance of the Device to the Functioning of Your Network
	Performance Requirements of Your Network Backbone

	1.4.1.3 User Interaction
	Identifying Information That is Presented to Users of Your Application
	Deciding How Information is Presented to Users of Your Application
	Determining How Users Should Start Applications You Develop
	Preventing Users From Introducing Errors

	1.4.1.4 Management Information Sharing
	Access to Information From Multiple Users
	Information Sharing and Storage Requirements
	Distribution of Information in Unsolicited Messages
	Access Control for Shared Information

	1.4.1.5 Access Control for Solstice EM Applications
	Application-Level Access Control
	Application-Feature-Level Access Control
	Managed-Object-Level Access Control
	Event Notification Access Control
	MPA Access Control

	1.4.1.6 Multiple Management Information Server (MIS) Management
	Determining the Subordinate Objects of the Root of the MIT
	Deciding if the FDN Table Requires Manual Updating
	Assigning Managed Objects to an MIS
	Deciding Which Information is Exchanged Between MISs

	1.4.2 Low-Level Design
	1.4.2.1 API Choice
	FIGURE�1�1 Architecture of the Solstice EM C++ APIs
	Low-Level Portable Management Interface (PMI)
	High-Level PMI
	Object Services API
	Topology API
	Nerve Center Interface
	Application-to-Application API
	Viewer API
	Access Control Engine API
	Access Control API
	Grapher API

	1.4.2.2 Object Location
	1.4.2.3 Provision of Behavior Code for Objects
	Using ODT
	Writing an MPA

	1.4.2.4 Managed Object Identification

	1.4.3 Implementation
	1.4.3.1 Enabling Applications to Access Managed Objects
	1.4.3.2 Handling Errors
	1.4.3.3 Performing Operations on Managed Objects
	1.4.3.4 Performing Management Operations on Object Collections
	1.4.3.5 Handling Events
	1.4.3.6 Performing Asynchronous Management Operations
	1.4.3.7 Encoding and Decoding Complex ASN.1 Values
	1.4.3.8 Controlling Access to Applications and Data
	1.4.3.9 Optimizing Performance
	1.4.3.10 Compiling and Linking Applications

	1.4.4 Unit Testing and Debugging
	1.4.5 Integration
	1.4.6 System Testing
	2
	Modeling Managed Objects

	2.1 ISO Management Model
	FIGURE�2�1 ISO Network Management Model
	2.1.1 Managers
	2.1.2 Agents
	2.1.3 Managed Resources
	2.1.4 Managed Objects
	2.1.5 Management Protocols
	2.1.6 Manager-Agent Hierarchy
	FIGURE�2�2 Manager-Agent Hierarchy

	2.2 Designing the Object Model
	2.2.1 Defining the Task
	2.2.1.1 Identifying Monitoring and Control Operations - Example
	2.2.1.2 Verifying the Capabilities of the Managed Resource

	2.2.2 Identifying Managed Object Classes
	CODE�EXAMPLE�2�1 GDMO Definition of the dish Managed Object Class�

	2.2.3 Identifying Inheritance Relationships
	FIGURE�2�3 Example Inheritance Tree

	2.2.4 Identifying the Characteristics of a Managed Object Class
	2.2.4.1 Attributes
	TABLE�2�1 Attributes for the satellite Managed Object Class�
	TABLE�2�2 Attributes for the channel Managed Object Class�
	TABLE�2�3 Attributes for the dish Managed Object Class�
	CODE�EXAMPLE�2�2 GDMO Definition of the censureButton Attribute�
	CODE�EXAMPLE�2�3 ASN.1 Syntax Definition of the ButtonPress Data Type�

	2.2.4.2 Actions
	2.2.4.3 Notifications
	TABLE�2�4 Notifications for the Satellite Example�
	CODE�EXAMPLE�2�4 GDMO Specification of the objectCreation Event�

	2.2.5 Describing the Behavior of Items in the Object Model
	CODE�EXAMPLE�2�5 Behavior of the packetRetries Attribute�

	2.2.6 Identifying Containment Relationships
	FIGURE�2�4 Example MIT
	2.2.6.1 Name Bindings
	Definition of a Containment Relationship
	Additional Definitions in a Name Binding
	Example Name Binding Definition
	CODE�EXAMPLE�2�6 GDMO Definition of the satellite-system Name Binding�

	Definition of Multiple Levels of Containment
	CODE�EXAMPLE�2�7 GDMO Definition of the Example MIT�

	2.2.6.2 Names of Managed Object Instances
	Relative Distinguished Names
	Fully Distinguished Names
	FIGURE�2�5 Containment Tree and Object Naming

	Local Distinguished Names

	2.2.6.3 Brace Notation for Relative and Fully Distinguished Names

	2.2.7 Grouping Information Into Packages
	CODE�EXAMPLE�2�8 GDMO Definition of the dishPackage Package�

	2.2.8 Grouping GDMO Definitions Into Documents
	CODE�EXAMPLE�2�9 Naming a GDMO Document�

	2.3 Abstract Syntax Notation #1 (ASN.1)
	2.3.1 Grouping ASN.1 Syntax Definitions Into Modules
	CODE�EXAMPLE�2�10 Beginning and End of an ASN.1 Module�

	2.3.2 Defining ASN.1 Types
	2.3.2.1 Type Reference
	2.3.2.2 Type
	Definition in Terms of an ASN.1 Universal Type
	CODE�EXAMPLE�2�11 Definition of the CurrentLogSize ASN.1 Type�

	Definition in Terms of Another Custom Type
	CODE�EXAMPLE�2�12 Definition of the SatelliteData ASN.1 Type�
	CODE�EXAMPLE�2�13 Definition of the SatelliteSeq ASN.1 Type�

	2.3.2.3 Universal Types
	TABLE�2�5 ASN.1 Universal Types�

	2.3.2.4 Ranges of Allowed Values
	CODE�EXAMPLE�2�14 Specifying a Range of Allowed Values for an ASN.1 Type �

	2.3.3 Defining ASN.1Values
	CODE�EXAMPLE�2�15 Defining an ASN.1 Value�

	2.3.4 Reusing Definitions From Other ASN.1 Modules
	2.3.4.1 Importing a Definition
	CODE�EXAMPLE�2�16 Importing ASN.1 Definitions�

	2.3.4.2 Exporting a Definition
	CODE�EXAMPLE�2�17 Exporting ASN.1 Definitions�

	2.4 Assigning Unique Identifiers
	2.4.1 Registering an OID
	FIGURE�2�6 ISO Registration Tree

	2.4.2 Guidelines for Allocating Your Own OIDs
	CODE�EXAMPLE�2�18 OIDs for Branches of the Subtree in the Satellite Example�
	CODE�EXAMPLE�2�19 OIDs for the Satellite Example�

	2.4.3 Notation for OIDs
	2.4.3.1 Dot Notation
	2.4.3.2 Brace Notation
	2.4.3.3 OID Labels
	CODE�EXAMPLE�2�20 Labelling an OID�
	CODE�EXAMPLE�2�21 Using an OID Label in an OID Assignment�

	2.5 Obtaining GDMO and ASN.1 Specifications for Objects
	2.5.1 Existing GDMO Definitions
	2.5.2 SNMP MIBs

	2.6 Making Your Object Model Available to Solstice EM
	2.6.1 Loading Your Object Model Into the MDR
	2.6.2 Setting Agent Role Behavior of Solstice EM
	2.6.2.1 Loading Managed Object Class Definitions Into the MIS
	2.6.2.2 Loading Name Bindings
	2.6.2.3 Setting Default Agent Role Behavior in a Single Operation
	3
	Enabling Applications to Access Managed Objects

	3.1 Connecting to an MIS
	3.1.1 Creating and Initializing an Instance of the Platform Class
	CODE�EXAMPLE�3�1 Creating and Initializing a Platform Instance�

	3.1.2 Calling the connect Function of the Platform Class
	CODE�EXAMPLE�3�2 Calling the connect Function�

	3.2 Disconnecting From an MIS
	CODE�EXAMPLE�3�3 Calling the disconnect Function�

	3.3 Bypassing the MIS to Access Solstice EM Databases
	3.3.1 Getting Information Required for a Database Connection
	3.3.1.1 Creating and Initializing an Instance of the EMDBConnectInfo Class
	CODE�EXAMPLE�3�4 Creating and Initializing an Instance of the EMDBConnectInfo Class�

	3.3.1.2 Calling Functions of the EMDBConnectInfo Class
	TABLE�3�1 Functions for Getting Information About a Database�

	3.3.2 Passing Database Information to a Database Application Development Tool
	CODE�EXAMPLE�3�5 Connecting to a Solstice EM Database�

	3.3.3 Example Database Connection Program
	CODE�EXAMPLE�3�6 Getting Information Directly From a Solstice EM Database�
	4
	Handling Errors

	4.1 Testing for the Success a Function Call
	4.1.1 Using the Overloaded NOT Operator
	CODE�EXAMPLE�4�1 Using the Overloaded NOT Operator for Error Checking�

	4.1.2 Using the get_error_type Function
	CODE�EXAMPLE�4�2 Using the get_error_type Function for Error Checking�

	4.2 Providing Error Information to Users
	5
	Performing Operations on Managed Objects

	5.1 Management Operations
	5.2 Creating a Managed Object
	5.2.1 Creating and Initializing an Instance of Image
	CODE�EXAMPLE�5�1 Creating and Initializing an Image Instance�

	5.2.2 Activating the Instance of Image
	CODE�EXAMPLE�5�2 Activating an Image Instance�

	5.2.3 Verifying if the Managed Object Exists
	CODE�EXAMPLE�5�3 Verifying if a Managed Object Exists�

	5.2.4 Initializing Attributes of the Managed Object
	CODE�EXAMPLE�5�4 Initializing Managed Object Attributes�

	5.2.5 Adding the Managed Object to the MIS
	CODE�EXAMPLE�5�5 Adding a Managed Object to an MIS�

	5.2.6 Example Object Creation Function
	CODE�EXAMPLE�5�6 Example Object Creation Function�

	5.3 Selecting a Managed Object
	5.3.1 Selecting a Managed Object by Specifying its FDN or LDN
	CODE�EXAMPLE�5�7 Selecting a Managed Object by Specifying its FDN�

	5.3.2 Selecting a Managed Object by Specifying its Nickname
	5.3.2.1 Starting and Configuring the Nickname Service
	Starting the Nickname Service Daemon
	Adding the Nickname Service to the MIS
	Assigning Nicknames to Managed Objects
	CODE�EXAMPLE�5�8 Mappings Between FDNs and Nicknames�

	Loading Nickname Assignments Into the Nickname Service

	5.3.2.2 Getting the Image Instance Associated With a Nickname
	CODE�EXAMPLE�5�9 Getting the Image Instance Associated With a Nickname�

	5.3.2.3 Getting and Setting Nicknames

	5.4 Updating an Image Instance
	CODE�EXAMPLE�5�10 Updating an Image Instance�

	5.5 Deleting a Managed Object
	5.5.1 Removing the Managed Object From the MIS
	CODE�EXAMPLE�5�11 Removing a Managed Object from the MIS�

	5.5.2 Example Object Deletion Function
	CODE�EXAMPLE�5�12 Example Object Deletion Function�

	5.6 Getting Attribute Values From an Object
	TABLE�5�1 Functions for Getting Attribute Values From an Image Instance�
	CODE�EXAMPLE�5�13 Getting Attribute Values�

	5.7 Setting Attribute Values of an Object
	5.7.1 Setting Attribute Values in the Image Instance
	TABLE�5�2 Functions for Setting Attribute Values in an Image Instance�
	5.7.1.1 Attribute Name
	5.7.1.2 Attribute Value
	5.7.1.3 Operation
	TABLE�5�3 Operations for Setting Attributes�

	5.7.2 Updating the MIS With the Changed Values
	5.7.3 Checking If the MIS Has Been Updated
	TABLE�5�4 Functions for Getting the Value Last Set by an Application�

	5.7.4 Real and Imaginary Values in an Image Instance
	5.7.5 Example
	CODE�EXAMPLE�5�14 Setting an Attribute Value�

	5.8 Performing an Action on an Object
	TABLE�5�5 Functions for Sending an Action Request to a Managed Object�
	CODE�EXAMPLE�5�15 Sending an Action Request�
	CODE�EXAMPLE�5�16 GDMO Specification of the topoNodeGetByName Action�
	CODE�EXAMPLE�5�17 ASN.1 Definitions of Data Types Used by topoNodeGetByName�

	5.9 Tracking Changes to an Object
	5.9.1 Automatically Tracking Changes to an Object
	CODE�EXAMPLE�5�18 Setting the TACKMODE Property of an Image Instance�

	5.9.2 Manually Tracking Changes to an Object

	5.10 Retrieving Data From the Metadata Repository
	5.10.1 Selecting the MDR Managed Object
	CODE�EXAMPLE�5�19 Selecting the MDR Managed Object�

	5.10.2 Updating the Image Instance That Represents the MDR Managed Object
	CODE�EXAMPLE�5�20 Updating the Image Instance that Represents the MDR�

	5.10.3 Sending the Action Request
	TABLE�5�6 Actions for Retrieving Metadata From the MDR�
	CODE�EXAMPLE�5�21 Sending an Action Request�

	5.11 Simulating an Agent Object
	5.11.1 Containing Managed Objects in the Solstice EM MIS
	CODE�EXAMPLE�5�22 Name Binding Clause for Instantiation Under system�

	5.11.2 Making Read-Only Attributes Modifiable
	5.11.3 Loading GDMO Descriptions Into the MIS
	5.11.4 Creating and Modifying Objects in the MIS
	5.11.4.1 Creating and Modifying Objects Interactively
	5.11.4.2 Creating and Modifying Objects From the Command Line
	Starting the em_objop Utility
	Format of an em_objop Script
	TABLE�5�7 Variable Parts of the Format of an em_objop Script�

	Example em_objop Scripts
	CODE�EXAMPLE�5�23 em_objop Script for Creating an Object�
	CODE�EXAMPLE�5�24 em_objop Script for Setting an Attribute Value�
	CODE�EXAMPLE�5�25 em_objop Script for Deleting an Object�
	CODE�EXAMPLE�5�26 em_objop Script for Deriving an Album Instance�

	5.12 Representing MIS Instances Locally in an Application
	CODE�EXAMPLE�5�27 C++ Representation of Managed Object Classes�
	6
	Performing Management Operations on Object Collections

	6.1 Grouping Managed Objects
	6.2 Creating a Container for an Object Collection
	CODE�EXAMPLE�6�1 Creating and Initializing an Album Instance�

	6.3 Defining the Membership of an Object Collection
	6.3.1 Defining the Membership by Derivation
	6.3.1.1 Setting a Derivation String
	CODE�EXAMPLE�6�2 Setting a Derivation String�

	6.3.1.2 Starting the Derivation
	CODE�EXAMPLE�6�3 Starting a Derivation�

	6.3.2 Format of a Derivation String
	6.3.2.1 Base Managed Object
	6.3.2.2 Scope
	TABLE�6�1 Scope Values in a Derivation String�
	FIGURE�6�1 Scope Values

	6.3.2.3 Filter
	FIGURE�6�2 Combination of a Scope and a Filter
	Filter Operator
	TABLE�6�2 Filter Operator Keywords�

	Filter Item
	TABLE�6�3 Comparison Keywords in a Filter Without Substrings�
	TABLE�6�4 Part Keywords in a Substring�

	6.3.2.4 Example Derivation Strings
	CODE�EXAMPLE�6�4 Selecting All log Objects�
	CODE�EXAMPLE�6�5 Selecting All Enabled Instances of log�
	CODE�EXAMPLE�6�6 Selecting all Objects That are not Instances of log�
	CODE�EXAMPLE�6�7 Equivalent Derivation Strings�

	6.3.3 Defining the Membership by Enumeration

	6.4 Tracking Changes to an Object Collection
	6.4.1 Maintaining the Membership of an Object Collection
	6.4.1.1 Automatically Maintaining the Membership of an Object Collection
	CODE�EXAMPLE�6�8 Setting the TACKMODE Property of an Album Instance�

	6.4.1.2 Manually Maintaining the Membership of an Object Collection
	CODE�EXAMPLE�6�9 Using Callback Functions With an Object Collection�

	6.4.2 Setting the Mode of an Object Collection
	CODE�EXAMPLE�6�10 Setting the Mode of an Object Collection�

	6.5 Accessing All Objects in an Object Collection
	6.5.1 Adding All Objects in an Object Collection to the MIS
	6.5.2 Deleting All Objects in an Object Collection
	6.5.3 Setting Attribute Values of All Objects in an Object Collection
	6.5.3.1 Setting an Attribute Value in the Image Instances
	TABLE�6�5 Functions for Setting Attribute Values in an Object Collection�

	6.5.3.2 Updating the MIS With the Changed Values

	6.5.4 Performing an Action on an All Objects in an Object Collection
	6.5.5 Setting the Synchronization of an Object Collection

	6.6 Accessing Individual Objects in an Object Collection
	CODE�EXAMPLE�6�11 Retrieving Objects From an Object Collection�

	6.7 Obtaining All Object Collections for an Object
	CODE�EXAMPLE�6�12 Obtaining all Object Collections for an Object�
	7
	Handling Events

	7.1 Event Notifications
	CODE�EXAMPLE�7�1 Specification of Event Types Supported by a Managed Object Class
	CODE�EXAMPLE�7�2 GDMO Specification of the objectCreation Event�
	TABLE�7�1 Event Types Defined in Recommendation ITU-T X.721/ISO-10165-2�

	7.2 Processing Information in Event Notifications
	7.2.1 Registering Callback Functions for Event Handling
	7.2.1.1 Specifying the Event Type
	TABLE�7�2 Event Types Recognized by the when Function�

	7.2.1.2 Initializing an Instance of the Callback Class
	7.2.1.3 Example
	CODE�EXAMPLE�7�3 Registering Callback Functions�

	7.2.2 Writing Callback Functions for Event Handling
	7.2.2.1 Defining the Signature of the Callback Function
	7.2.2.2 Extracting Information From an Event Notification
	TABLE�7�3 Functions for Extracting Information from Event Notifications�
	CODE�EXAMPLE�7�4 Callback Function�

	7.2.3 Controlling Event-Related Updates
	7.2.3.1 Automatically Tracking Changes
	7.2.3.2 Overriding Automatic Updates for a Specific Event Type
	7.2.3.3 Tracking Changes From Within a Callback
	CODE�EXAMPLE�7�5 Tracking Changes From Within a Callback�

	7.3 Scheduling Event Handling
	7.3.1 Scheduling for Applications Without a Graphical User Interface
	CODE�EXAMPLE�7�6 Calling the dispatch_recursive Function�
	CODE�EXAMPLE�7�7 Calling the dispatch_main_loop Function�
	CODE�EXAMPLE�7�8 Contents of the dispatch_main_loop Function�

	7.3.2 Scheduling for Applications With a Graphical User Interface
	7.3.2.1 Initializing and Activating the xtsched Scheduler
	CODE�EXAMPLE�7�9 Initializing and Activating the xtsched Scheduler�

	7.3.2.2 Preventing Erroneous User Input
	CODE�EXAMPLE�7�10 Disabling and Enabling the Processing of X Events�

	7.3.3 Guidelines for Developing Your Own Scheduler

	7.4 Filtering Events
	7.4.1 Selecting Managed Object Classes and Event Types
	CODE�EXAMPLE�7�11 Selecting Managed Object Classes and Event Types�

	7.4.2 Selecting a Subtree of the MIT
	TABLE�7�4 Scope Values in a Subtree for the replace_discriminator Function�
	CODE�EXAMPLE�7�12 Selecting a Subtree of the MIT

	7.4.3 Specifying a Discriminator Construct
	CODE�EXAMPLE�7�13 Specifying a Discriminator Construct�

	7.5 Simulating an Event
	7.5.1 Simulating an Event Without Using the Solstice EM APIs
	7.5.2 Simulating an Event Programatically
	CODE�EXAMPLE�7�14 Simulating an Event Programatically�

	7.6 Subscribing to Log Record Events
	CODE�EXAMPLE�7�15 Subscribing to Log Record Events�
	8
	Performing Asynchronous Management Operations

	8.1 Asynchronous and Synchronous Operation
	8.2 Specifying Asynchronous Operations
	8.2.1 Interactions With the MIS
	TABLE�8�1 Synchronous and Asynchronous Functions of the Platform Class�

	8.2.2 Asynchronous Operations on Managed Objects
	TABLE�8�2 Synchronous and Asynchronous Functions of the Image Class�

	8.2.3 Asynchronous Operations on Object Collections
	TABLE�8�3 Synchronous and Asynchronous Functions of the Album Class�

	8.2.4 Asynchronous CMIS Operations on Object Collections
	TABLE�8�4 CMIS Operations Supported by the Album Class�
	8.2.4.1 Selecting the Managed Objects to be the Subject of a CMIS Operation
	CODE�EXAMPLE�8�1 Selecting Managed Objects for a CMIS Operation�

	8.2.4.2 Requesting a CMIS Operation
	TABLE�8�5 Functions of the Album Class for Requesting CMIS Operations�
	Requesting an Asynchronous CMIS M-GET Operation
	Requesting an Asynchronous CMIS M-SET Operation
	TABLE�8�6 Operations for the set_operator Function�
	CODE�EXAMPLE�8�2 Requesting an Asynchronous CMIS M-SET Operation�

	Requesting an Asynchronous CMIS M-ACTION Operation With a Text Parameter
	Requesting an Asynchronous CMIS M-ACTION Operation With an Encoded Parameter
	Requesting an Asynchronous CMIS M-DELETE Operation

	8.3 Handling Responses From an Asynchronous Operation
	8.3.1 Registering a Callback Function for the Completion of an Asynchronous Operation
	CODE�EXAMPLE�8�3 Registering a Callback for an Asynchronous Operation

	8.3.2 Registering a Callback Function for Handling Responses From Managed Objects
	CODE�EXAMPLE�8�4 Registering a Callback Function for Response Handling�

	8.3.3 Writing Callback Functions for Asynchronous Operations
	8.3.3.1 Defining the Signature of the Callback Function
	8.3.3.2 Writing Code for Handling a Confirmation That an Asynchronous Operation Has Finished
	CODE�EXAMPLE�8�5 Callback for Completion of an Asynchronous Operation�

	8.3.3.3 Writing Code for Handling Responses From Managed Objects
	Making Correct Use of the Data Passed By the Scheduler
	CODE�EXAMPLE�8�6 Correct Use of Data Passed by the Scheduler�
	CODE�EXAMPLE�8�7 Incorrect Use of Data Passed by the Scheduler�

	Extracting Information Contained In a Response From a Managed Object
	TABLE�8�7 Information Available From All Responses�
	TABLE�8�8 Information Available Only From Action Replies�

	Example Callback for Handling Responses From Managed Objects
	CODE�EXAMPLE�8�8 Callback for Handling Responses From Managed Objects�

	8.3.4 Scheduling Response Handling
	8.3.4.1 Scheduling Response Handling in Nonblocking Mode
	CODE�EXAMPLE�8�9 Scheduling Nonblocking Asynchronous Response Handling�

	8.3.4.2 Scheduling Response Handling in Blocking Mode
	CODE�EXAMPLE�8�10 Scheduling Blocking Asynchronous Response Handling�

	8.3.5 Adding a Callback to the Scheduler Queue

	8.4 Verifying and Changing the Status of an Asynchronous Operation
	8.4.1 Verifying the Result of an Asynchronous Operation
	CODE�EXAMPLE�8�11 Verifying the Result of an Asynchronous Operation�

	8.4.2 Cancelling an Asynchronous Operation
	8.4.3 Changing the Timeout of an Asynchronous Operation
	CODE�EXAMPLE�8�12 Changing the Timeout of an Asynchronous Operation�
	9
	Encoding and Decoding Complex ASN.1 Values

	9.1 Introduction to the Morf Class
	9.2 Creating Complex ASN.1 Values
	9.2.1 Creating a Morf Instance From String Data
	9.2.1.1 Representing Complex Values as Strings
	CODE�EXAMPLE�9�1 ASN.1 Syntax of DestructSet �

	9.2.1.2 Constructing a Morf Instance From a String
	CODE�EXAMPLE�9�2 Constructing a Morf From a String �

	9.2.2 Creating Simple Morf Instances
	TABLE�9�1 Functions for Assigning Scalar Values to a Morf Instance�

	9.2.3 Selecting the Type for a CHOICE Value
	CODE�EXAMPLE�9�3 Selecting the Type for a CHOICE Value�

	9.2.4 Creating a Morf Instance for ASN.1 ANY Values
	CODE�EXAMPLE�9�4 ASN.1 Syntax of AttributeValueAssertion �
	CODE�EXAMPLE�9�5 Assigning a Value to an Instance of the ASN.1 ANY Type�

	9.2.5 Creating Complex Morf Instances From Other Morf Instances

	9.3 Parsing Complex ASN.1 Values
	9.3.1 Structure of Morf Instances
	9.3.2 Overview of Functions for Parsing Morf Instances
	TABLE�9�2 Functions for Parsing Morf Instances �
	TABLE�9�3 Functions of the Asn1Type Class For Parsing Morf Instances�

	9.3.3 Parsing CHOICE Values
	CODE�EXAMPLE�9�6 Extracting Data From a CHOICE Value �

	9.3.4 Parsing List Values
	9.3.4.1 Determining That a Morf Instance Represents a List
	9.3.4.2 Getting the Number of Members in a List
	9.3.4.3 Splitting a List Into an Array or Queue of New Morf Instances
	CODE�EXAMPLE�9�7 Using a Queue to Parse a List�

	9.3.4.4 Getting the Types of Members of a List

	9.3.5 Getting Objects Associated With a Morf Instance
	TABLE�9�4 Functions for Retrieving Information About the Type Instance�

	9.3.6 Getting Metainformation About the ASN.1 Type of a Morf Instance
	9.3.6.1 Getting Identifiers for a BIT STRING Value
	9.3.6.2 Getting Identifiers for an ENUMERATED Value
	CODE�EXAMPLE�9�8 Obtaining BIT STRING and ENUMERATED Identifiers �

	9.3.6.3 Getting the Range of a Value of a Type or Subtype of REAL or INTEGER
	CODE�EXAMPLE�9�9 Obtaining the Range Limits for a Value�

	9.3.6.4 Getting the Size Constraints of a Value
	CODE�EXAMPLE�9�10 Obtaining the Size Constraints of a Value �

	9.3.7 Example of Parsing a Morf Instance
	CODE�EXAMPLE�9�11 Sample Function for Parsing a Morf Instance�

	9.4 Decoding Complex ASN.1 Values
	9.4.1 Getting a String Representation of a Morf Instance
	9.4.1.1 Getting the Default String Representation of a Morf Instance
	TABLE�9�5 Default String Representation of Values by Type in a Morf Instance�
	CODE�EXAMPLE�9�12 ASN.1 Type Definition of the GeoLocation Type�
	CODE�EXAMPLE�9�13 Default String Representation of a GeoLocation Value�

	9.4.1.2 Controlling the String Representation of a Morf Instance
	TABLE�9�6 Identifiers for Format Bits Arguments�

	9.4.2 Extracting a Value in a Morf Instance as a New Morf Instance
	CODE�EXAMPLE�9�14 Using Navigation Strings With the extract Function�

	9.4.3 Getting the Value Assigned to a Morf Instance
	9.4.4 Getting Scalar Values Assigned to a Morf Instance
	TABLE�9�7 Functions for Extracting Numeric Scalars Into Numeric Types�
	TABLE�9�8 Functions of the Asn1Value Class For Decoding Data�
	CODE�EXAMPLE�9�15 Decoding a Morf Instance Directly Into an Oid Instance �

	9.5 Using the MorfBuilder Class
	9.5.1 Constructing a MorfBuilder Instance
	TABLE�9�9 Constructors�of the MorfBuilder Class�

	9.5.2 Adding Data to a MorfBuilder Instance
	CODE�EXAMPLE�9�16 Using set to Update a MorfBuilder Instance�

	9.5.3 Selecting a Syntax for CHOICE Values
	CODE�EXAMPLE�9�17 Selecting a Syntax For a CHOICE Value �

	9.5.4 Setting a Navigation Type for SEQUENCE Values
	CODE�EXAMPLE�9�18 Using get_prop and set_prop �

	9.5.5 Validating the Data in a MorfBuilder Instance
	9.5.6 Assembling MorfBuilder Data Into a Single Morf Instance
	10
	Developing Object Behaviors

	10.1 ODT Overview
	10.1.1 Supporting Functions
	10.1.2 Object Development Components
	FIGURE�10�1 ODT components

	10.2 Object Interfaces
	10.2.1 Object Behavior Interface
	10.2.2 Object Services API

	10.3 Object Development Overview
	1. Define object classes.
	2. Compile and load MOC into MDR.
	3. Generate object code and develop behavior.
	4. Compile and build object implementation source.
	5. Load object implementation and restart MIS.
	6. Debug object implementation [optional]
	10.3.1 Possible Errors
	10.3.2 Sanity Check Procedure
	1. Comment out ACTION definitions in GDMO.
	2. Compile and load object class in MDR.
	3. Compose object class.
	4. Load name bindings.
	5. Create an instance.
	6. Restore ACTION definitions in GDMO.
	7. Remove old definitions and prepare to load new object.

	10.4 Object Code Generator Utility
	10.4.1 Generated Code Interfaces
	FIGURE�10�2 ODT Framework, with Generated Code Interface Highlighted

	10.4.2 Code Generation Components
	FIGURE�10�3 Code Generation Components
	10.4.2.1 Inputs
	10.4.2.2 Outputs

	10.4.3 Using the Object Code Generator Utility
	TABLE�10�1 OCG Command Line Options
	Example

	10.4.4 Configuring the Object Code Generator Utility
	TABLE�10�2 Object Development Tool Configuration File Parameters

	10.4.5 How Filter Attributes Affect Code Generation

	10.5 Implementing GDMO Specified Object Behavior
	10.5.1 MIS Object Modeling Concepts
	TABLE�10�3 Behavior Abstractions

	10.5.2 Asynchronous Interface Behavior
	TABLE�10�4 Interfaces for CMIS Requests
	TABLE�10�5 Order of CMIS Request Interfaces
	FIGURE�10�4 Sequence Diagram for M_GET operation
	FIGURE�10�5 Sequence Diagram for M_ACTION
	FIGURE�10�6 Sequence Diagram for M_SET

	10.5.3 Sub Operations: subfetch, subread, subwrite, substore
	10.5.4 Propagation of Errors
	10.5.4.1 Return Value
	10.5.4.2 MIS Exceptions
	10.5.4.3 Operr Returns Values

	10.5.5 Serialization of Object Requests

	10.6 Debugging Objects
	10.6.1 Process
	1. Find out the process identifier of the running MIS.
	2. Run the debugger against the process identifier of the MIS.
	3. When the debugger comes up, go to the debugger line and open the file className_user.cc. This ...
	4. Set a breakpoint in the className_user.cc file.
	5. Continue.

	10.6.2 Dynamic Loading in Solstice EM
	10.6.3 ASN.1 and GDMO Debugging
	10.6.4 Printing ASN.1 Values in Human-Readable Form
	10.6.5 Debugging Flags

	10.7 Generated Files
	10.7.1 Makefile (Makefile.className)
	10.7.2 Readme File (README.className)
	10.7.3 User Header File (className_user.odt.hh)
	TABLE�10�6 Attribute Class Helper Methods
	TABLE�10�7 Action Class Helper Methods

	10.7.4 PMI Client Create Program for Object Instantiation (pmi_className.cc)
	10.7.5 User Code File (className_user.odt.cc)
	10.7.6 Dynamic Loading File (className.load)
	10.7.7 Dynamic Unloading File (className.unload)

	10.8 TRY Exception Macros
	10.8.1 Overview
	10.8.2 Code Structure
	10.8.3 Code Examples

	10.9 Object Development Examples
	TABLE�10�8 Object Development Examples
	10.9.1 Compiling All Examples
	10.9.2 cellSample
	10.9.2.1 Important Code Functions
	To Build the Example
	1. Go to the ODT examples directory.
	2. Copy the cellSample GDMO and ASN.1 files to the appropriate directories.
	3. Load the GDMO into the MDR.
	4. Generate the code for cellSample.
	5. Create the dynamic linked library for the cellSample object class for default implementation.
	6. Load the cellSample source into an addressable location in the MIS.
	7. Restart the MIS.

	To Execute the Example
	1. Create an instance of the cellSample object (instantiate the class).
	2. Start OBED and run actions against the cellSample.

	10.9.3 demoPing
	10.9.3.1 Important Code Functions
	Action Implementation
	demoPing Callback Function
	To Build the Example
	1. Go to the ODT examples directory.
	2. Copy the demoPing GDMO and ASN.1 files to the appropriate directories.
	3. Load the GDMO into the MDR.
	4. Generate the code for demoPing.
	5. Create the dynamic linked library for the demoPing object class for default implementation.
	6. Load the demoPing source into an addressable location in the MIS.
	7. Restart the MIS.

	To Execute the Example
	1. Create an instance of the demoPing object (instantiate the class).
	2. Start OBED and run action on instance specifying the hostname you want to ping.
	3. Alternatively, you can run the ODT Sample Program driver (odtsamples) and select the Ping option.

	10.9.4 demoregistry
	10.9.4.1 Important Code Functions
	Action Implementation
	Function to Register Application
	Function to Unregister Application
	To Build the Example
	1. Go to the ODT examples directory.
	2. Copy the demoregistry GDMO and ASN.1 files to the appropriate directories.
	3. Load the GDMO into the MDR.
	4. Generate the code for demoregistry.
	5. Create the dynamic linked library for the demoregistry object class for default implementation.
	6. Load the demoregistry source into an addressable location in the MIS.
	7. Restart the MIS.

	10.9.4.2 Running the Example
	1. Create an instance of demoregistry class (instantiate the class).
	2. Run demo_server on your local host or, if running on a remote host make sure Solstice EM is in...
	3. Start OBED and find the object instance under EM-MIS.
	4. Click on the OI and issue a DemoReg action where the ActionInfo parameter is {“hostname”, “App...
	5. Alternatively, you can run the ODT Sample Program driver (odtsamples) and run the Register opt...

	10.9.5 demoServer
	10.9.5.1 Building the Example
	1. Go to the ODT examples directory.
	2. Create the dynamic linked library for the demoServer object class for default implementation.

	10.9.5.2 Running the Example

	10.9.6 diskInfo
	10.9.6.1 Building the Example
	1. Go to the ODT examples directory.
	2. Copy the diskInfo GDMO and ASN.1 files to the appropriate directories.
	3. Load the GDMO into the MDR.
	4. Generate the code for diskInfo.
	5. Create the dynamic linked library for the diskInfo object class for default implementation.
	6. Load the diskInfo source into an addressable location in the MIS.
	7. Restart the MIS.

	10.9.6.2 Running the Example
	1. Create an instance of the diskInfo object (instantiate the class).
	2. Start OBED and run an action on the object instance, specifying the hostname about which you w...
	3. Alternatively, you can run the ODT Sample Program driver (odtsamples) and select the DiskInfo ...

	10.10 Object Development Scenario Using Chai Object
	10.10.1 Creating Your Own Object Class
	1. Load the chai managed object into the Meta Data Repository (MDR).
	2. Define environment variables, if needed.
	3. Go to the directory where you want your code to be generated.
	4. Generate the C++ code for your objects.
	5. Compile and make the dynamic library for the default implementation.
	6. Create a customized implementation.
	7. Load the new dynamic library.
	8. Terminate and restart the MIS.
	9. Instantiate the new chai object.
	10. Run the debugger to verify the object behaves as expected.

	10.10.2 Debugging Flags
	10.10.3 Sample Behavior Implementation
	10.10.4 chai Object Class Definitions
	10.10.4.1 Sample chai.gdmo Definitions File
	10.10.4.2 Sample chai.asn1 Definitions File

	10.10.5 Sample PMI Program to Create a New chai Object Instance
	10.10.6 Example Generated Code in .cc File
	10.10.6.1 Generated Asynchronous Read Stub Function (FETCH)
	Function
	Description
	Arguments
	Return Value
	Errors
	Code Example

	10.10.6.2 Generated Asynchronous Write Stub Function (STORE)
	Function
	Description
	Arguments
	Return Value
	Errors
	Code Example

	10.10.6.3 Generated Synchronous Read Stub Function (READ)
	Function
	Description
	Arguments
	Return Value
	Errors
	Code Example

	10.10.6.4 Generated Synchronous Write Stub Function (WRITE)
	Function
	Description
	Arguments
	Return Value
	Errors
	Code Example

	10.10.6.5 Generated Action Stub Function (ACTION)
	Function
	Description
	Arguments
	Return Value
	Sample Error Generating Code
	Code Example

	10.10.6.6 Generated Instance Create Stub Function (CREATE)
	Function
	Description
	Arguments
	Return Value
	Code Example

	10.10.6.7 Generated Instance Destroy Stub Function (DELETE)
	Function
	Description
	Arguments
	Return Value
	Code Example

	10.10.6.8 Generated Receive Event Stub Function (RECEIVE_EVENT)
	Function
	Description
	Arguments
	Return Value
	Code Example

	10.10.7 Example Generated Code in .hh File
	10.10.7.1 Generated Object Definitions
	10.10.7.2 Generated OIDs
	10.10.7.3 Attribute Class Definition
	10.10.7.4 Action Class Definition
	11
	Writing Management Protocol Adaptors (MPAs)

	11.1 Review of MIS Architecture
	FIGURE�11�1 MIS Architecture

	11.2 Initializing Management Protocol Adaptors and Protocol Driver Modules
	11.2.1 Services Access Points (SAPs)
	TABLE�11�1 Message Services
	Example 1
	Example 2

	11.2.2 Initializing a Management Protocol Adaptor
	11.2.2.1 Creating the Listen Port and Request SAP
	11.2.2.2 Connecting to the MIS and Using get_raw_sap
	Example

	11.2.2.3 Locking the Application Discriminator
	Example

	11.2.3 Initializing a Protocol Driver Module
	11.2.3.1 Creating a Kernel Message SAP
	11.2.3.2 Registering an FDN Table Entry
	Example

	11.3 Routing Messages
	11.3.1 How Messages are Routed to the Adaptors
	11.3.1.1 Address Classes
	11.3.1.2 AC_PRIMITIVE Address Tags (SAP number)
	11.3.1.3 Address Data (aval)

	11.3.2 MPA and PDM Addresses
	11.3.2.1 PDM Addresses
	Example

	11.3.2.2 MPA Addresses
	11.3.2.3 Message remote_oi and remote Fields

	11.3.3 FDN Table Configuration Options
	11.3.3.1 MPA Supporting Two Remote Objects
	11.3.3.2 PDM Supporting Two Remote Objects

	11.3.4 Source and Destination Fields in the Message

	11.4 MPA/PDM Request Management
	FIGURE�11�2 Potential Real World Configuration
	TABLE�11�2 MIS and MPA/PDM Connections
	11.4.1 Asynchronous Request Code Specifics
	Example

	11.4.2 Validating Requests
	11.4.3 Matching Requests to Responses
	Example

	11.5 Timer Management
	11.5.1 Timer Management Interface
	11.5.1.1 Example of Timer Initialization

	11.5.2 Stopping a Timer

	11.6 File Descriptor Management
	11.6.1 Asynchronous File I/O
	11.6.2 Example of a Read Callback Implementation
	11.6.2.1 Scheduling the Callback
	11.6.2.2 Callback Execution
	Example

	11.7 Notifications
	11.7.1 Creating a Notification
	11.7.1.1 Allocating an Event Report Message
	11.7.1.2 Filling in the Event Report Message Fields
	11.7.1.3 Sending a Notification

	11.8 Sample MPA/PDM Source Code
	11.8.1 Files and Configuration
	TABLE�11�3 MPA Example Files�
	11.8.1.1 Sample MPA Configuration: testmpa
	11.8.1.2 Sample PDM Configuration: testpdm.so

	11.9 Developing an Adaptor
	11.9.1 Defining the Management Information Model
	11.9.2 The Request Management Interface
	11.9.3 The Protocol Code
	12
	Controlling Access to Applications and Data

	12.1 Access Control Levels
	12.1.1 Application-Level Access Control
	12.1.2 Application-Feature-Level Access Control
	12.1.3 Managed-Object-Level Access Control
	12.1.4 Event Notification Access Control
	12.1.5 Management Protocol Adapter (MPA) Access Control

	12.2 Enforcing Predefined Access Control Rules
	12.2.1 Defining Access Control Rules
	12.2.1.1 Defining Access Control Rules Interactively
	12.2.1.2 Defining Access Control Rules From the Command Line
	CODE�EXAMPLE�12�1 em_accesscmd Script�

	12.2.2 Enforcing Application-Level and Application- Feature-Level Access Control
	12.2.2.1 Enforcing Application-Level Access Control
	12.2.2.2 Enforcing Application-Feature-Level Access Control
	12.2.2.3 Example of Enforcing Application-Level and Application- Feature-Level Access Control
	CODE�EXAMPLE�12�2 Controlling Application- and Application-Feature-Level Access�

	12.2.3 Handling Denial of Access to Managed Objects

	12.3 Modifying Access Control Information
	12.3.1 Activating Access Control for the Solstice EM Platform
	CODE�EXAMPLE�12�3 Activating Access Control for the Solstice EM Platform�

	12.3.2 Adding a User to a Privilege Group
	TABLE�12�1 Predefined Privilege Groups�
	12.3.2.1 Creating a Privilege Group
	Creating and Initializing an Instance of the ACGroup Class
	Verifying That a Privilege Group Does Not Exist in the MIS
	Adding a Privilege Group to the MIS
	Example of Creating a Privilege Group
	CODE�EXAMPLE�12�4 Creating a Privilege Group�

	12.3.2.2 Creating a User
	CODE�EXAMPLE�12�5 Creating a User�

	12.3.2.3 Making a User Known to the MIS
	Creating an Access Control List
	CODE�EXAMPLE�12�6 Creating an Access Control List�

	Adding a User to an Access Control List and Storing the List
	CODE�EXAMPLE�12�7 Adding a User and Storing an Access Control List�

	12.3.2.4 Adding a User to a Privilege Group and Storing the Group
	CODE�EXAMPLE�12�8 Adding a User to a Privilege Group�

	12.3.3 Listing All Application Features Under Access Control
	12.3.3.1 Listing All Applications Under Application-Feature-Level Access Control
	CODE�EXAMPLE�12�9 Listing Applications Under Application-Feature-Level Access Control�

	12.3.3.2 Listing the Features of an Application That Are Under Access Control
	CODE�EXAMPLE�12�10 Listing Application Features Under Access Control�

	12.3.4 Adding Applications and Application Features to a Privilege Group
	12.3.5 Defining a Target
	TABLE�12�2 Predefined Targets�
	12.3.5.1 Creating a Target
	Creating and Initializing an Instance of the ACTargets Class
	Verifying That a Target Does Not Exist in the MIS
	Adding a Target to the MIS
	Checking for Errors
	Example of Creating a Target
	CODE�EXAMPLE�12�11 Creating a Target�

	12.3.5.2 Defining the List of Operations for a Target
	TABLE�12�3 Operations for a Target�
	CODE�EXAMPLE�12�12 Defining the List of Operations for a Target�

	12.3.5.3 Defining the Membership of a Target
	Selecting One or More Managed Objects
	Selecting a Subtree of the MIT
	TABLE�12�4 Scope Values in the Constructor of ACScope�

	Selecting All Instances of One or More Managed Object Classes

	12.3.5.4 Storing the Target Persistently in the MIS
	CODE�EXAMPLE�12�13 Storing a Target Persistently in the MIS�

	12.3.6 Defining a Security Rule
	TABLE�12�5 Predefined Security Rules�
	12.3.6.1 Creating a Security Rule
	Creating and Initializing an Instance of the ACRule Class
	Verifying That a Security Rule Does Not Exist in the MIS
	Adding a Security Rule to the MIS
	Checking for Errors
	Example of Creating a Security Rule
	CODE�EXAMPLE�12�14 Creating a Security Rule�

	12.3.6.2 Adding a Privilege Group to a Security Rule
	CODE�EXAMPLE�12�15 Adding a Privilege Group to a Security Rule�

	12.3.6.3 Adding a Target to a Security Rule
	CODE�EXAMPLE�12�16 Adding a Target to a Security Rule�

	12.3.6.4 Defining the Enforcement Action of a Security Rule
	TABLE�12�6 Enforcement Actions�
	CODE�EXAMPLE�12�17 Defining the Enforcement Action of a Security Rule�

	12.3.6.5 Storing the Security Rule Persistently in the MIS
	CODE�EXAMPLE�12�18 Storing a Security Rule�

	12.3.7 Handling Access Control Errors
	CODE�EXAMPLE�12�19 Error Handling Example�

	12.4 Getting Access Control Defaults
	12.4.1 Getting the Default Enforcement Action for All Management Operations
	CODE�EXAMPLE�12�20 Getting Default Access Control for All Operations�

	12.4.2 Getting the Default Enforcement Action for All Events
	CODE�EXAMPLE�12�21 Getting the Default Enforcement Action for All Events�

	12.4.3 Getting a List of Trusted Hosts
	CODE�EXAMPLE�12�22 Getting a List of Trusted Hosts�

	12.4.4 Getting the Access Control Denial Granularity
	TABLE�12�7 Access Control Denial Granularity Levels�
	CODE�EXAMPLE�12�23 Getting the Access Control Denial Granularity

	12.4.5 Getting the Access Control Domain
	CODE�EXAMPLE�12�24 Getting the Access Control Domain

	12.5 Keeping Event Notifications Private
	12.5.1 Assigning an Owner to a Log
	12.5.1.1 Creating an Auxiliary Object for a Log
	12.5.1.2 Verifying That an Auxiliary Object Does Not Exist in the MIS
	12.5.1.3 Adding an Auxiliary Object to the MIS
	12.5.1.4 (Optional) Changing the Owner of a Log
	12.5.1.5 Storing the Auxiliary Object Persistently in the MIS
	12.5.1.6 Example of Assigning an Owner to a Log
	CODE�EXAMPLE�12�25 Assigning an Owner to a Log�

	12.5.2 Enabling Access Control for the Log Server

	12.6 Making MPAs Secure
	12.6.1 Subscribing to Access Control Events
	CODE�EXAMPLE�12�26 Subscribing to Access Control Events�

	12.6.2 Creating and Initializing an Instance of the ACE Class
	CODE�EXAMPLE�12�27 Creating and Initializing an Instance of the ACE Class�

	12.6.3 Processing Information in Access Control Events
	CODE�EXAMPLE�12�28 Registering a Callback for Access Control Events�

	12.6.4 Implementing a Class Derived From AuxServerUtils
	12.6.5 Calling Access Control Decision and Enforcement Functions
	13
	Optimizing Performance

	13.1 General Guidelines for Optimizing Performance
	13.2 Selectively Activating Image Instances
	CODE�EXAMPLE�13�1 Selectively Activating an Image Instance�

	13.3 Filtering Events
	13.4 Writing Your Own Classes to Represent Managed Objects
	13.5 Using the Low-Level PMI
	CODE�EXAMPLE�13�2 Getting Information From an Object Collection�
	CODE�EXAMPLE�13�3 Callback for Handling Responses to a Get Request�
	14
	Guidelines for Compiling and Linking Applications

	14.1 Compiler Version Requirements
	14.2 Header Files and Libraries
	TABLE�14�1 Header Files and Libraries for the Solstice EM Schedulers�
	TABLE�14�2 Header Files and Libraries for the Solstice EM API Classes�

	14.3 Options for Locating Header Files and Libraries
	14.4 Compilation Flags
	TABLE�14�3 Compilation Flags for Applications Developed With the Solstice EM C++ APIs�
	15
	Troubleshooting

	15.1 Testing and Debugging Programs
	15.1.1 Verifying GDMO and ASN.1 Syntax and Logic
	15.1.2 Trapping Errors in PMI Function Calls
	15.1.3 Trapping Programming Logic Errors
	15.1.4 Monitoring Protocol Translation by an MPA
	15.1.5 Reloading GDMO Documents
	15.1.5.1 Removing a GDMO Document by Rebuilding the Solstice EM Database
	To Remove a GDMO Document by Rebuilding the Solstice EM Database
	1. Ensure that the uncompiled GDMO document file is not present in the /opt/SUNWconn/em/etc/gdmo ...
	2. Type the command for rebuilding the Solstice EM database:

	15.1.5.2 Removing a Single Compiled GDMO Document

	15.2 Monitoring Communications With the MIS
	15.2.1 Starting em_debug
	TABLE�15�1 Commonly Used em_debug Message Types�

	15.2.2 Interpreting em_debug Messages
	15.2.2.1 Classes of Tags
	15.2.2.2 ASN.1 Data Types and Tag Numbers
	TABLE�15�2 ASN.1 Data Types and Tag Numbers�

	15.2.2.3 Tips For Reading em_debug Output
	15.2.2.4 Example em_debug Output
	CODE�EXAMPLE�15�1 Sample em_debug Output�

	15.2.3 Full List of em_debug Message Types
	TABLE�15�3 em_debug Message Types�

	15.3 Avoiding Common Problems
	15.3.1 Verifying Attribute and Class Names
	15.3.2 Creating Automatically Named Managed Object Instances Appropriately
	15.3.3 Testing That Scopes and Filters are Supported
	CODE�EXAMPLE�15�2 Replacing a Scope and a Filter With Multiple Derivations�

	15.4 Example Troubleshooting Scenarios
	15.4.1 Failure to Set an Attribute Value
	15.4.1.1 Verifying GDMO and ASN.1 Specifications
	15.4.1.2 Trapping Errors in High-Level PMI Function Calls
	15.4.1.3 Trapping Programming Logic Errors
	15.4.1.4 Monitoring Communications With the MIS

	15.4.2 Failure to Process Notifications
	15.4.2.1 Verifying GDMO and ASN.1 Specifications
	15.4.2.2 Trapping Errors in High-Level PMI Function Calls
	15.4.2.3 Trapping Programming Logic Errors
	15.4.2.4 Monitoring Communication With the MIS
	16
	Integrating Applications With Solstice EM

	16.1 Adding an Application to a Tools Window
	TABLE�16�1 Configuration Files for Solstice EM Tools Windows�
	TABLE�16�2 Variable Parts in a Configuration File Entry for a Tools Window�
	CODE�EXAMPLE�16�1 Network Tools Window Configuration File Entry�

	16.2 Extending the Tools Menu of a Solstice EM Tool
	TABLE�16�3 Configuration Files for Solstice EM Tools�
	TABLE�16�4 Variable Parts in a Configuration File Entry for a Solstice EM Tool�
	CODE�EXAMPLE�16�2 Configuration File Entry for Extending the Tools Menu�

	16.3 Customizing the Network Views Tool
	16.3.1 Extending the Actions Menu of the Network Views Tool
	TABLE�16�5 Variable Parts in a Configuration File Entry for the Actions Menu�
	CODE�EXAMPLE�16�3 Extending the Actions Menu of the Network Views Tool�

	16.3.2 Setting the Activation of a Topology Type
	TABLE�16�6 Variable Parts of the Configuration File Entry That Sets Activations�
	CODE�EXAMPLE�16�4 Setting the Activations of Topology Types�
	17
	Writing RPC Agents for Solstice EM

	17.1 Manager-Agent Model
	17.2 Types of Agents
	17.3 Steps for Writing an Agent
	17.4 Solstice EM Integration
	17.4.1 Installing the Agent
	17.4.2 Updating the Solstice EM MIS Database
	A
	Solstice EM C++ Source Code Examples

	A.1 Guidelines for Compiling the Examples
	A.2 Satellite Example
	TABLE�A�1 Subdirectories of the Satellite Example Directory �

	A.3 High-Level PMI Examples
	A.3.1 Managed Object Examples
	TABLE�A�2 Managed Object Examples for the High-Level PMI�

	A.3.2 Object Collection Examples
	TABLE�A�3 Object Collection Examples for the High-Level PMI�

	A.3.3 Event Handling Examples
	TABLE�A�4 Event Handling Examples for the High-Level PMI�

	A.3.4 Log Record Handling Examples
	TABLE�A�5 Log Record Handling Examples for the High-Level PMI�

	A.3.5 Network Topology Examples
	TABLE�A�6 Network Topology Examples for the High-Level PMI�

	A.3.6 FDN Translation Examples
	TABLE�A�7 FDN Translation Examples for the High-Level PMI�

	A.3.7 Graphical Application Examples
	A.3.8 MDR Action Examples
	A.3.9 Encoding and Decoding Examples

	A.4 Scenario Examples
	TABLE�A�8 Scenario Examples�

	A.5 Security Examples
	A.5.1 Access Control API Examples
	TABLE�A�9 Access Control API Examples�

	A.5.2 Access Control Engine API Examples
	A.5.3 Password Request Example
	A.5.4 Application-Feature-Level Example

	A.6 Low-Level PMI Examples
	TABLE�A�10 Low-Level PMI Example Programs�

	A.7 Object Modeling Example
	A.8 Object Development Examples
	TABLE�A�11 Object Development Examples�

	A.9 Miscellaneous Examples
	TABLE�A�12 Miscellaneous API Examples�
	B
	Standards Reference and Further Reading

	B.1 Standards Reference
	Telecommunications Management Network (TMN)
	OSI Model and Notation
	OSI Structure of Management Information
	OSI Service Elements
	Systems Management Functions

	B.2 Terminology References
	TABLE�B�1 ISO Specifications for Terminology Definitions�

	B.3 Further Reading
	C
	GDMO Templates

	C.1 Conventions Used in the Definitions
	C.2 Managed Object Class Template
	C.2.1 Managed Object Class Template Format
	C.2.2 Managed Object Class Template Constructs
	TABLE�C�1 Managed Object Class Template Constructs�

	C.3 Name Binding Template
	C.3.1 Name Binding Template Format
	C.3.2 Name Binding Template Constructs
	TABLE�C�2 Name Binding Template Constructs�

	C.4 Package Template
	C.4.1 Package Template Format
	C.4.2 Package Template Constructs
	TABLE�C�3 Package Template Constructs�

	C.4.3 PropertyList Supporting Production
	TABLE�C�4 propertyList Supporting Production Definitions�

	C.5 Attribute Template
	C.5.1 Attribute Template Format
	C.5.2 Attribute Template Constructs
	TABLE�C�5 Attribute Template Constructs�

	C.6 Action Template
	C.6.1 Action Template Format
	C.6.2 Action Template Constructs
	TABLE�C�6 Action Template Constructs�

	C.7 Notification Template
	C.7.1 Notification Template Format
	C.7.2 Notification Template Constructs
	TABLE�C�7 Notification Template Constructs�

	C.8 Parameter Template
	C.8.1 Parameter Template Format
	C.8.2 Parameter Template Constructs
	TABLE�C�8 Parameter Template Constructs�

	C.9 Attribute Group Template
	C.9.1 Attribute Group Template Format
	C.9.2 Attribute Group Template Constructs
	TABLE�C�9 Attribute Group Template Constructs�

	C.10 Behaviour Template
	C.10.1 Behaviour Template Format
	C.10.2 Behaviour Template Constructs
	TABLE�C�10 Behaviour Template Constructs�
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

