
Sun MPI 4.0 Programming and
Reference Guide

901 San Antonio Road
Palo Alto, , CA 94303-4900

USA 650 960-1300 Fax 650 969-9131

Part No: 805-6269-10
June 1999, Revision A

Copyright Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers .
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunStore, AnswerBook2, docs.sun.com, and Solaris are trademarks, registered trademarks, or service
marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun

TM

Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.
Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303-4900 U.S.A. Tous droits réservés.
Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, SunStore, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun

TM

a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface vii

1. Introduction to Sun MPI 1

What Is Sun MPI? 1

Background: The MPI Standard 1

Sun MPI Features 1

The Sun MPI Library 2

MPI I/O 2

Using Sun MPI 3

2. The Sun MPI Library 5

The Libraries 5

Sun MPI Routines 6

Point-to-Point Routines 6

Collective Communication 7

Managing Groups, Contexts, and Communicators 8

Data Types 9

Persistent Communication Requests 11

Managing Process Topologies 11

Environmental Inquiry Functions 12

Programming With Sun MPI 12

Contents iii

Fortran Support 13

Recommendations for All-to-All and All-to-One Communication 13

Signals and MPI 14

Multithreaded Programming 14

Guidelines for Thread-Safe Programming 15

Error Handlers 17

Profiling Interface 17

MPE: Extensions to the Library 18

H To Obtain and Build MPE 18

3. Getting Started 21

Header Files 21

Sample Code 22

Compiling and Linking 25

Choosing a Library Path 27

Stubbing Thread Calls 28

Basic Job Execution 28

Executing With LSF Suite 3.2.3 28

Executing With the CRE 29

Debugging 29

Debugging With Prism 30

Debugging With dbx 31

H To Debug Threads With dbx 31

Debugging With MPE 33

4. Programming With Sun MPI I/O 35

Using Sun MPI I/O 35

Data Partitioning and Data Types 36

Definitions 36

Routines 37

iv Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

Sample Code 45

For More Information 52

A. Sun MPI and Sun MPI I/O Routines 53

Sun MPI Routines 53

Point-to-Point Communication 53

Collective Communication 55

Groups, Contexts, and Communicators 56

Process Topologies 57

Process Creation and Management 57

Environmental Inquiry Functions and Profiling 58

Miscellaneous 59

MPI Routines: Alphabetical Listing 59

Sun MPI I/O Routines 75

File Manipulation 76

File Info 76

Data access 76

File Interoperability 77

File Consistency and Semantics 78

Handle Translation 78

MPI I/O Routines: Alphabetical Listing 78

B. Troubleshooting 85

MPI Messages 85

Error Messages 86

Warning Messages 86

Standard Error Classes 86

MPI I/O Error Handling 88

C. TNF Probes 91

TNF Probes for MPI 92

Contents v

The bytes Argument 92

Groups 95

Probes for MPI (Non-I/O Routines) 96

TNF Probes for MPI I/O 116

vi Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

Preface

Sun MPI 4.0 Programming and Reference Guide describes the Sun MPI library of
message-passing routines and explains how to develop an MPI (message-passing
interface) program on a Sun HPC system. For information about using MPI with
Platform Computing’s Load Sharing Facility (LSF) Suite 3.2.3, see the Sun MPI 4.0
User’s Guide: With LSF. For informatin about using MPI with the Sun Cluster
Runtime Environment (CRE), see the Sun MPI 4.0 User‘s Guide: With CRE.

For the most part, this guide does not repeat information that is available in detail
elsewhere; it focuses instead on what is specific to the Sun MPI implementation.
References to more general source materials are provided in the section “Related
Publications” on page ix of this preface.

The reader is assumed to be familiar with programming in C or Fortran. Some
familiarity with parallel programming and with the message-passing model is also
required.

Before You Read This Book
For general information about writing MPI programs, refer to any of the several MPI
source documents cited in the section “Related Publications” on page ix. Sun MPI 4.0
is part of the Sun HPC ClusterTools 3.0 suite of software. Jobs can be run using
either LSF Suite or the Sun CRE. If you are using LSF Suite, see Platform
Computing’s documentation and the Sun MPI 4.0 User’s Guide: With LSF for more
information. If you are using the CRE, see the Sun MPI 4.0 User‘s Guide: With
CRE for more information. Product notes for Sun MPI are included in Sun HPC
ClusterTools 3.0 Product Notes.

Preface vii

Using UNIX® Commands
This document may not contain information on basic UNIX commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

� AnswerBook
TM

online documentation for the Solaris
TM

2.6 or Solaris 7 software
environment

� Other software documentation that you received with your system

Typographic Conventions

TABLE P–1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files, and
directories; on-screen computer
output

Edit your .login file.

Use ls --a to list all files.

% You have mail .

AaBbCc123 What you type, when contrasted
with on-screen computer output

%su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

To delete a file, type rm filename.

viii Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

Shell Prompts
Unless otherwise specified, examples are presented in C-shell syntax.

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Related Publications
This book focuses on Sun MPI and assumes familiarity with the MPI standard. The
following materials provide useful background about using Sun MPI and about the
MPI standard.

Books
Among the documents included with Sun HPC ClusterTools software, you may want
to pay particular attention to these:

Application Title Part Number

Sun HPC ClusterTools
software

Sun HPC ClusterTools 3.0
Product Notes

805-6262-10

Using ClusterTools software
with LSF Suite

Sun MPI 4.0 User’s Guide:
With LSF

805-7230-10

ix

Application Title Part Number

Using ClusterTools software
with the CRE

Sun MPI 4.0 User‘s Guide:
With CRE

806-0296-10

LSF Suite LSF Batch User’s Guide 805-6258-10

LSF Suite LSF Parallel User’s Guide 805-6259-10

LSF Suite LSF Batch Programmer’s
Guide

805-6260-10

LSF Suite LSF Batch User’s Quick
Reference

805-6522-10

In addition, you may want to consult the Prism
TM

documentation for information on
debugging your Sun MPI program, as well as the Sun S3L documentation to learn
about using the Sun Scalable Scientific Subroutine Library.

Prism Prism 6.0 User’s Guide 805-6277-10

Prism Prism 6.0 Reference Manual 805-6278-10

Sun S3L Sun S3L 3.0 Programming
and Reference Guide

805-6275-10

These books, which are not provided by Sun, should be available at your local
computer bookstore:

� Using MPI: Portable Parallel Programming with the Message-Passing Interface, by
William Gropp, Ewing Lusk, and Anthony Skjellum (Cambridge: MIT Press, 1994).

� MPI: The Complete Reference, by Marc Snir, Steve W. Otto, Steven Huss-Lederman,
David W. Walker, and Jack Dongarra (Cambridge: MIT Press, 1995).

� Parallel Programming with MPI, by Peter S. Pacheco (San Francisco: Morgan
Kaufmann Publishers, Inc., 1997).

Man Pages
Man pages are also available online for all the Sun MPI and MPI I/O routines and
are accessible via the Solaris

TM

man command. These man pages are usually installed

x Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

in /opt/SUNWhpc/man . You may need to ask your system administrator for their
location at your site.

On the World Wide Web
There is a wealth of documentation on MPI available on the World Wide Web. Here
are a few URLs for Web sites:

� The MPI home page, with links to specifications for the MPI-2 standard:

http://www.mpi--forum.org

� Additional Web sites that provide links to papers, talks, the standard,
implementations, information about MPI-2, plus pointers to many other sources:

http://www.erc.msstate.edu/mpi/

http://www.arc.unm.edu/homepage/TutorialWorkshop.html

Sun Documentation on the Web
The docs.sun.com web site enables you to access Sun technical documentation on
the Web. You can browse the docs.sun.com SM archive or search for a specific book
title or subject at:

http://docs.sun.com

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments and
suggestions. You can email your comments to us at:

docfeedback@sun.com

Please include the part number of your document in the subject line of your email.

xi

xii Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

CHAPTER 1

Introduction to Sun MPI

What Is Sun MPI?
Sun MPI is Sun Microsystems’ implementation of MPI (message-passing interface),
the industry-standard specification for writing message-passing programs. Message
passing is a programming model that gives the programmer explicit control over
interprocess communication.

Background: The MPI Standard
The MPI specification was developed by the MPI Forum, a group of software
developers, computer vendors, academics, and computer-science researchers whose
goal was to develop a standard for writing message-passing programs that would be
efficient, flexible, and portable.

The outcome, known as the MPI Standard, was first published in 1993; its most
recent version (MPI-2) was published in July 1997. It was well received, and there are
several implementations available publicly.

Sun MPI Features
Sun MPI includes many useful features:

1

� Integration with Platform Computing’s Load Sharing Facility (LSF) Suite.

� Integration with the Sun Cluster Runtime Environment (CRE).

� Support for multithreaded programming.

� Seamless use of different network protocols; for example, if you’ve compiled your
code on a Sun HPC system that has a Scalable Coherent Interface (SCI) network,
you can run it without change on a system that has an ATM network.

� Multiprotocol support such that MPI picks the fastest available medium for each
type of connection (such as shared memory, SCI, or ATM).

� Communication via shared memory for fast performance on clusters of SMPs.

� Finely tunable shared memory communication.

� Optimized collectives for symmetric multiprocessors (SMPs).

� Prism support – Users can develop, run, and debug programs in the Prism
programming environment.

� MPI I/O support for file I/O.

� Implicit coscheduling – The Sun HPC spind daemon enables certain processes of a
given MPI job on a shared-memory system to be scheduled at approximately the
same time as other related processes. This coscheduling reduces the load on the
processors, thus reducing the effect that MPI jobs have on each other.

The Sun MPI Library
Sun MPI is a library of message-passing routines, including all MPI 1.1–compliant
routines and a subset of the MPI 2– compliant routines. Man pages for Sun MPI
routines are available online, and the routines are listed in Appendix A. Chapter 2
describes the Sun MPI library.

MPI I/O
File I/O in Sun MPI comprises MPI 2–compliant routines for parallel file I/O.
Chapter 4 describes these routines. Their man pages are provided online, and the
routines are listed in Appendix A.

2 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

Using Sun MPI
The current release of Sun MPI is optimized to run with Sun HPC ClusterTools 3.0
software using C, C++, Fortran 77, or Fortran 90.

To get started developing, executing, and debugging a Sun MPI program, see
Chapter 3. The Sun MPI 4.0 User’s Guide: With LSF and Sun MPI 4.0 User’s
Guide: With CRE describe using Sun MPI in more detail.

Introduction to Sun MPI 3

4 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

CHAPTER 2

The Sun MPI Library

This chapter describes the Sun MPI library:

� “The Libraries” on page 5

� “Sun MPI Routines” on page 6

� “Programming With Sun MPI” on page 12

� “Multithreaded Programming” on page 14

� “Profiling Interface” on page 17

� “MPE: Extensions to the Library” on page 18

The Libraries
Sun MPI comprises eight MPI libraries: four 32-bit versions and four 64-bit versions:

� 32- and 64-bit libraries – If you want to take advantage of the 64-bit capabilities of
Sun MPI 4.0, you must explicitly link to the 64-bit libraries. The 32-bit libraries are
the default in each category.

Note - The 64-bit libraries are installed only when the installation system is running
Solaris 7.

� Thread-safe and non-thread-safe libraries – For multithreaded programs, the user must
link with the thread-safe library in the appropriate category unless the program
has only one thread calling MPI. For programs that are not multithreaded, the user
can link against either the thread-safe or the default (non-thread-safe) library.
However, non-multithreaded programs will have better performance using the
default library, as it does not incur the extra overhead of providing thread-safety.

5

Therefore, you should use the default libraries whenever possible for maximum
performance.

� Standard and trace libraries – The trace libraries are used to take advantage of
Prism’s MPI performance analysis features and to provide enhanced error
reporting. These libraries are intended for development purposes only, as the
overhead involved in their aggressive parameter-checking and probes degrades
performance compared with the standard libraries.

The 32-bit libraries are the default, as are the standard (nontrace) libraries within the
32- or 64-bit categories. Within any given category (32- or 64-bit, standard or trace
library), the non-thread-safe library is the default. For full information about linking
to libraries, see “Compiling and Linking” on page 25.

Sun MPI Routines
This section gives a brief description of the routines in the Sun MPI library. All the
Sun MPI routines are listed in Appendix A with brief descriptions and their C
syntax. For detailed descriptions of individual routines, see the man pages. For more
complete information, see the MPI standard (see “Related Publications” on page ix of
the preface).

Point-to-Point Routines
Point-to-point routines include the basic send and receive routines in both blocking
and nonblocking forms and in four modes.

A blocking send blocks until its message buffer can be written with a new message. A
blocking receive blocks until the received message is in the receive buffer.

Nonblocking sends and receives differ from blocking sends and receives in that they
return immediately and their completion must be waited or tested for. It is expected
that eventually nonblocking send and receive calls will allow the overlap of
communication and computation.

MPI’s four modes for point-to-point communication are:

� Standard, in which the completion of a send implies that the message either is
buffered internally or has been received. Users are free to overwrite the buffer that
they passed in with any of the blocking send or receive routines, after the routine
returns.

� Buffered, in which the user guarantees a certain amount of buffering space.

� Synchronous, in which rendezvous semantics occur between sender and receiver;
that is, a send blocks until the corresponding receive has occurred.

6 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

� Ready, in which a send can be started only if the matching receive is already
posted. The ready mode for sends is a way for the programmer to notify the
system that the receive has been posted, so that the underlying system can use a
faster protocol if it is available.

Collective Communication
Collective communication routines are blocking routines that involve all processes in
a communicator. Collective communication includes broadcasts and scatters,
reductions and gathers, all-gathers and all-to-alls, scans, and a synchronizing barrier
call.

TABLE 2–1 Collective Communication Routines

MPI_Bcast Broadcasts from one process to all others in a
communicator.

MPI_Scatter Scatters from one process to all others in a
communicator.

MPI_Reduce Reduces from all to one in a communicator.

MPI_Allreduce Reduces, then broadcasts result to all nodes in a
communicator.

MPI_Reduce_scatter Scatters a vector that contains results across the nodes
in a communicator.

MPI_Gather Gathers from all to one in a communicator.

MPI_Allgather Gathers, then broadcasts the results of the gather in a
communicator.

MPI_Alltoall Performs a set of gathers in which each process
receives a specific result in a communicator.

MPI_Scan Scans (parallel prefix) across processes in a
communicator.

MPI_Barrier Synchronizes processes in a communicator (no data is
transmitted).

Many of the collective communication calls have alternative vector forms, with
which different amounts of data can be sent to or received from different processes.

The Sun MPI Library 7

The syntax and semantics of these routines are basically consistent with the
point-to-point routines (upon which they are built), but there are restrictions to keep
them from getting too complicated:

� The amount of data sent must exactly match the amount of data specified by the
receiver.

� There is only one mode, a mode analogous to the standard mode of point-to-point
routines.

Managing Groups, Contexts, and Communicators
A distinguishing feature of the MPI standard is that it includes a mechanism for
creating separate worlds of communication, accomplished through communicators,
contexts, and groups.

A communicator specifies a group of processes that will conduct communication
operations within a specified context without affecting or being affected by
operations occurring in other groups or contexts elsewhere in the program. A
communicator also guarantees that, within any group and context, point-to-point and
collective communication are isolated from each other.

A group is an ordered collection of processes. Each process has a rank in the group;
the rank runs from 0 to n–1. A process can belong to more than one group; its rank
in one group has nothing to do with its rank in any other group.

A context is the internal mechanism by which a communicator guarantees safe
communication space to the group.

At program startup, two default communicators are defined: MPI_COMM_WORLD,
which has as a process group all the processes of the job; and MPI_COMM_SELF,
which is equivalent to an identity communicator. The process group that corresponds
to MPI_COMM_WORLDis not predefined, but can be accessed using
MPI_COMM_GROUP. One MPI_COMM_SELFcommunicator is defined for each process,
each of which has rank zero in its own communicator. For many programs, these are
the only communicators needed.

Communicators are of two kinds: intracommunicators, which conduct operations
within a given group of processes; and intercommunicators, which conduct operations
between two groups of processes.

Communicators provide a caching mechanism, which allows an application to attach
attributes to communicators. Attributes can be user data or any other kind of
information.

New groups and new communicators are constructed from existing ones. Group
constructor routines are local, and their execution does not require interprocessor
communication. Communicator constructor routines are collective, and their
execution may require interprocess communication.

8 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

Note - Users who do not need any communicator other than the default
MPI_COMM_WORLDcommunicator --- that is, who do not need any sub- or
supersets of processes — can simply plug in MPI_COMM_WORLDwherever a
communicator argument is requested. In these circumstances, users can ignore this
section and the associated routines. (These routines can be identified from the listing
in Appendix A.)

Data Types
All Sun MPI communication routines have a data type argument. These may be
primitive data types, such as integers or floating-point numbers, or they may be
user-defined, derived data types, which are specified in terms of primitive types.

Derived data types allow users to specify more general, mixed, and noncontiguous
communication buffers, such as array sections and structures that contain
combinations of primitive data types.

The basic data types that can be specified for the data-type argument correspond to
the basic data types of the host language. Values for the data-type argument for
Fortran and the corresponding Fortran types are listed in the following table.

TABLE 2–2 Possible Values for the Data Type Argument for Fortran

MPI Data Type Fortran Data Type

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_DOUBLE_COMPLEX DOUBLE COMPLEX

MPI_REAL4 REAL*4

The Sun MPI Library 9

TABLE 2–2 Possible Values for the Data Type Argument for Fortran (continued)

MPI Data Type Fortran Data Type

MPI_REAL8 REAL*8

MPI_INTEGER2 INTEGER*2

MPI_INTEGER4 INTEGER*4

MPI_BYTE

MPI_PACKED

Values for the data-type argument in C and the corresponding C types are listed in
the following table. .

TABLE 2–3 Possible Values for the Data Type Argument for C

MPI Data Type C Data Type

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

10 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE 2–3 Possible Values for the Data Type Argument for C (continued)

MPI Data Type C Data Type

MPI_LONG_DOUBLE long double

MPI_LONG_LONG_INT long long int

MPI_BYTE

MPI_PACKED

The data types MPI_BYTE and MPI_PACKEDhave no corresponding Fortran or C
data types.

Persistent Communication Requests
Sometimes within an inner loop of a parallel computation, a communication with the
same argument list is executed repeatedly. The communication can be slightly
improved by using a persistent communication request, which reduces the overhead
for communication between the process and the communication controller. A
persistent request can be thought of as a communication port or “half-channel.”

Managing Process Topologies
Process topologies are associated with communicators; they are optional attributes
that can be given to an intracommunicator (not to an intercommunicator).

Recall that processes in a group are ranked from 0 to n–1. This linear ranking often
reflects nothing of the logical communication pattern of the processes, which may be,
for instance, a 2- or 3-dimensional grid. The logical communication pattern is
referred to as a virtual topology (separate and distinct from any hardware topology).
In MPI, there are two types of virtual topologies that can be created: Cartesian (grid)
topology and graph topology.

You can use virtual topologies in your programs by taking physical processor
organization into account to provide a ranking of processors that optimizes
communications.

The Sun MPI Library 11

Environmental Inquiry Functions
Environmental inquiry functions include routines for starting up and shutting down,
error-handling routines, and timers.

Few MPI routines may be called before MPI_Init or after MPI_Finalize .
Examples include MPI_Initialized and MPI_Version . MPI_Finalize may be
called only if there are no outstanding communications involving that process.

The set of errors handled by MPI is dependent upon the implementation. See
Appendix B for tables listing the Sun MPI 4.0 error classes.

Programming With Sun MPI
Although there are about 190 (non-I/O) routines in the Sun MPI library, you can
write programs for a wide range of problems using only six routines:

TABLE 2–4 Six Basic MPI Routines

MPI_Init Initializes the MPI library.

MPI_Finalize Finalizes the MPI library. This includes releasing
resources used by the library.

MPI_Comm_size Determines the number of processes in a specified
communicator.

MPI_Comm_rank Determines the rank of calling process within a
communicator.

MPI_Send Sends a message.

MPI_Recv Receives a message.

This set of six routines includes the basic send and receive routines. Programs that
depend heavily on collective communication may also include MPI_Bcast and
MPI_Reduce .

The functionality of these routines means you can have the benefit of parallel
operations without having to learn the whole library at once. As you become more
familiar with programming for message passing, you can start learning the more
complex and esoteric routines and add them to your programs as needed.

12 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

See “Sample Code” on page 22, for two simple Sun MPI code samples, one in C and
one in Fortran. See “Sun MPI Routines” on page 53, for a complete list of Sun MPI
routines.

Fortran Support
Sun MPI 4.0 provides basic Fortran support, as described in section 10.2 of the MPI-2
standard. Essentially, Fortran bindings and an mpif.h file are provided, as specified
in the MPI-1 standard. The mpif.h file is valid for both fixed- and free-source form,
as specified in the MPI-2 standard.

The MPI interface is known to violate the Fortran standard in several ways, which
cause few problems for Fortran 77 programs. These standard violations can cause
more significant problems for Fortran 90 programs, however, if you do not follow the
guidelines recommended in the standard. If you are programming in Fortran, and
particularly if you are using Fortran 90, you should consult section 10.2 of the MPI-2
standard for detailed information about basic Fortran support in an MPI
implementation.

Recommendations for All-to-All and All-to-One
Communication
The Sun MPI library uses the TCP protocol to communicate over a variety of
networks. MPI depends on TCP to ensure reliable, correct data flow. TCP’s reliability
compensates for unreliability in the underlying network, as the TCP retransmission
algorithms will handle any segments that are lost or corrupted. In most cases, this
works well with good performance characteristics. However, when doing all-to-all
and all-to-one communication over certain networks, a large number of TCP
segments may be lost, resulting in poor performance.

You can compensate for this diminished performance over TCP in these ways:

� When writing your own algorithms, avoid flooding one node with a lot of data.

� If you need to do all-to-all or all-to-one communication, use one of the Sun MPI
routines to do so. They are implemented in a way that avoids congesting a single
node with lots of data. The following routines fall into this category:

� MPI_Alltoall and MPI_Alltoallv – These have been implemented using a
pairwise communication pattern, so that every rank is communicating with
only one other rank at a given time.

� MPI_Gather /MPI_Gatherv – The root process sends ready-to-send packets
to each nonroot-rank process to tell the processes to send their data. In this
way, the root process can regulate how much data it is receiving at any one

The Sun MPI Library 13

time. Using this ready-to-send method is, however associated with a minor
performance cost. For this reason, you can override this method by setting the
MPI_TCPSAFEGATHERenvironment variable to 0. (See the Sun MPI user’s
guides for information about environment variables.)

Signals and MPI
When running the MPI library over TCP, nonfatal SIGPIPE signals may be
generated. To handle them, the library sets the signal handler for SIGPIPE to
ignore , overriding the default setting (terminate the process). In this way, the MPI
library can recover in certain situations. You should therefore avoid changing the
SIGPIPE signal handler.

The Sun MPI 4.0 Fortran and C++ bindings are implemented as wrappers on top of
the C bindings. The profiling interface is implemented using weak symbols. This
means a profiling library need contain only a profiled version of C bindings.

The SIGPIPE s may occur when a process first starts communicating over TCP. This
happens because the MPI library creates connections over TCP only when processes
actually communicate with one another. There are some unavoidable conditions
where SIGPIPE s may be generated when two processes establish a connection. If
you want to avoid any SIGPIPE s, set the environment variable
MPI_FULLCONNINIT, which creates all connections during MPI_Init() and avoids
any situations which may generate a SIGPIPE . For more information about
environment variables, see the Sun MPI user’s guides.

Multithreaded Programming
When you are linked to one of the thread-safe libraries, Sun MPI calls are thread
safe, in accordance with basic tenets of thread safety for MPI mentioned in the MPI-2
specification1. This means that:

� When two concurrently running threads make MPI calls, the outcome will be as if
the calls executed in some order.

� Blocking MPI calls will block the calling thread only. A blocked calling thread will
not prevent progress of other runnable threads on the same process, nor will it
prevent them from executing MPI calls. Thus, multiple sends and receives are
concurrent.

1. Document for a Standard Message-Passing Interface. Please see the preface of this document for more information
about this and other recommended reference material.

14 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

Guidelines for Thread-Safe Programming
Each thread within an MPI process may issue MPI calls; however, threads are not
separately addressable. That is, the rank of a send or receive call identifies a process,
not a thread, meaning that no order is defined for the case where two threads call
MPI_Recv with the same tag and communicator. Such threads are said to be in
conflict.

If threads within the same application post conflicting communication calls, data
races will result. You can prevent such data races by using distinct communicators or
tags for each thread.

In general, you will need to adhere to these guidelines:

� You must not have a request serviced by more than one thread. Although you
may have an operation posted in one thread and then completed in another, you
may not have the operation completed in more than one thread.

� A data type or communicator must not be freed by one thread while it is in use by
another thread.

� Once MPI_Finalize has been called, subsequent calls in any thread will fail.

� You must ensure that a sufficient number of lightweight processes (LWPs) are
available for your multithreaded program. Failure to do so may degrade
performance or even result in deadlock.

� You cannot stub the thread calls in your multithreaded program by omitting the
threads libraries in the link line. The libmpi.so library automatically calls in the
threads libraries, which effectively overrides any stubs.

The following sections describe more specific guidelines that apply for some
routines. They also include some general considerations for collective calls and
communicator operations that you should be aware of.

MPI_Wait , MPI_Waitall , MPI_Waitany , MPI_Waitsome
In a program where two or more threads call one of these routines, you must ensure
that they are not waiting for the same request. Similarly, the same request cannot
appear in the array of requests of multiple concurrent wait calls.

MPI_Cancel
One thread must not cancel a request while that request is being serviced by another
thread.

MPI_Probe , MPI_Iprobe
A call to MPI_Probe or MPI_Iprobe from one thread on a given communicator
should not have a source rank and tags that match those of any other probes or

The Sun MPI Library 15

receives on the same communicator. Otherwise, correct matching of message to probe
call may not occur.

Collective Calls
Collective calls are matched on a communicator according to the order in which the
calls are issued at each processor. All the processes on a given communicator must
make the same collective call. You can avoid the effects of this restriction on the
threads on a given processor by using a different communicator for each thread.

No process that belongs to the communicator may omit making a particular
collective call; that is, none should be left “dangling.”

Communicator Operations
Each of the communicator functions operates simultaneously with each of the
noncommunicator functions, regardless of what the parameters are and of whether
the functions are on the same or different communicators. However, if you are using
multiple instances of the same communicator function on the same communicator,
where all parameters are the same, it cannot be determined which threads belong to
which resultant communicator. Therefore, when concurrent threads issue such calls,
you must assure that the calls are synchronized in such a way that threads in different
processes participating in the same communicator operation are grouped together.
Do this either by using a different base communicator for each call or by making the
calls in single-thread mode before actually using them within the separate threads.

Please note also these special situations:

� If you are using multiple instances of the same function with differing parameters
and multiple threads, you must use different communicators. You must not use
multiple instances of the same function on the same communicator with other
differing parameters.

� When using splits with multiple instances of the same function with the same
parameters, but with different threads at the split, you must use different
communicators.

For example, suppose you wish to produce several communicators in different sets
of threads by performing MPI_Comm_split on some base communicator. To ensure
proper, thread-safe operation, you should replicate the base communicator via
MPI_Comm_dup(in the root thread or in one thread) and then perform
MPI_Comm_split on the resulting duplicate communicators.

� Do not free a communicator in one thread if it is still being used by another thread.

16 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

Error Handlers
When an error occurs as a result of an MPI call, the handler may not run on the
same thread as the thread that made the error-raising call. In other words, you
cannot assume that the error handler will execute in the local context of the thread
that made the error-raising call. The error handler may be executed by another
thread on the same process, distinct from the one that returns the error code.
Therefore, you cannot rely on local variables for error handling in threads; instead,
use global variables from the process.

Profiling Interface
Prism 6.0, a component of Sun HPC ClusterTools 3.0 software, can be used in
conjunction with the TNF probes and libraries included with Sun MPI 4.0 for
profiling your code. See Appendix C for information about the TNF probes and
“Choosing a Library Path” on page 27 for information about linking to the “trace” or
TNF libraries. See the Prism 6.0 User’s Guide for more information about the TNF
viewer built into Prism.

Sun MPI 4.0 also meets the requirements of the profiling interface described in
Chapter 8 of the MPI-1 Standard. You may write your own profiling library or
choose from a number of available profiling libraries, such as those included with the
multiprocessing environment (MPE) from Argonne National Laboratory. (See “MPE:
Extensions to the Library” on page 18 for more information.) The User’s Guide for
mpich, a Portable Implementation of MPI, includes more detailed information about
using profiling libraries. For information about this and other MPI- and
MPICH-related publications, see “Related Publications” on page ix.

The following figure illustrates how the software fits together. In this example, the
user is linking against a profiling library that collects information on MPI_Send() .
No profiling information is being collected for MPI_Recv() .

To compile the program, the user’s link line would look like this:

cc --l library–name --lmpi

The Sun MPI Library 17

Figure 2–1 Sun MPI Profiling Interface

MPE: Extensions to the Library
Although the Sun MPI library does not include or support the multiprocessing
environment (MPE) available from Argonne National Laboratory (ANL), it is
compatible with MPE. In case you would like to use these extensions to the MPI
library, we have included some instructions for downloading it from ANL and
building it yourself. Note that these procedures may change if ANL makes changes
to MPE.

To Obtain and Build MPE

The MPE software is available from Argonne National Laboratory.

18 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

1. Use ftp to obtain the file.

ftp://ftp.mcs.anl.gov/pub/mpi/misc/mpe.tar.gz

The mpe.tar.gz file is about 240 Kbytes.

1. Use gunzip and tar to decompress the software.

gunzip mpe.tar.gz
tar xvf mpe.tar

1. Change your current working directory to the mpe directory, and execute
configure with the arguments shown.

cd mpe
configure --cc=cc --fc=f77 --opt=--I/opt/SUNWhpc/include

1. Execute a make.

make

This will build several libraries.

Note - Sun MPI does not include the MPE error handlers. You must call the debug
routines MPE_Errors_call_dbx_in_xterm() and
MPE_Signals_call_debugger() yourself.

Please refer to the User’s Guide for mpich, a Portable Implementation of MPI, for
information on how to use MPE. It is available at the Argonne National Laboratory
web site:

http://www.mcs.anl.gov/mpi/mpich/

The Sun MPI Library 19

20 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

CHAPTER 3

Getting Started

This chapter describes the rudiments of developing, compiling and linking,
executing, and debugging a Sun MPI program. The chapter focuses on what is
specific to the Sun MPI implementation and, for the most part, does not repeat
information that can be found in related documents. Information about programming
with the Sun MPI I/O routines is in Chapter 4.

For complete information about developing MPI programs, see some of the MPI
publications listed in the preface. For complete information about executing
programs with LSF Suite and Sun HPC ClusterTools software, see the documentation
that came with your LSF software and the Sun MPI 4.0 User’s Guide: With LSF.
For information about executing programs with the Sun Cluster Runtime
Environment (CRE), see the Sun MPI 4.0 User‘s Guide: With CRE.

Header Files
Include syntax must be placed at the top of any program that calls Sun MPI routines.

� For C, use

#include <mpi.h>

� For C++, use

21

#include <mpi.h>

� For Fortran, use

INCLUDE "mpif.h"

These lines allow the program to access the Sun MPI version of the mpi header file,
which contains the definitions, macros, and function prototypes required when
compiling the program. Ensure that you are referencing the Sun MPI include file.

The include files are usually found in /opt/SUNWhpc/include/ or
/opt/SUNWhpc/include/v9/ . If the compiler cannot find them, check that they
exist and are accessible from the machine on which you are compiling your code.
The location of the include file is specified by a compiler option (see “Compiling and
Linking” on page 25).

Sample Code
CODE EXAMPLE 3–1 Simple Sun MPI Program in C: connectivity.c

/*
* Test the connectivity between all processes.
*/

#pragma ident "@(#)connectivity.c 1.1 99/02/02"

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <netdb.h>
#include <unistd.h>

#include <mpi.h>

int
main(int argc, char **argv)
{

MPI_Status status;
int verbose = 0;
int rank;
int np; /* number of processes in job

*/

(continued)

22 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

int peer;
int i;
int j;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &np);

if (argc>1 && strcmp(argv[1], "--v")==0)
verbose = 1;

for (i=0; i<np; i++) {
if (rank==i) {

/* rank i sends to and receives from each higher rank
*/

for(j=i+1; j<np; j++) {
if (verbose)

printf("checking connection %4d <-->
%--4d\n", i, j);

MPI_Send(&rank, 1, MPI_INT, j, rank, MPI_COMM_WORLD);
MPI_Recv(&peer, 1, MPI_INT, j, j, MPI_COMM_WORLD, &status);

}
} else if (rank>i) {

/* receive from and reply to rank i */
MPI_Recv(&peer, 1, MPI_INT, i, i, MPI_COMM_WORLD, &status);

MPI_Send(&rank, 1, MPI_INT, i, rank, MPI_COMM_WORLD);
}

}

MPI_Barrier(MPI_COMM_WORLD);
if (rank==0)

printf("Connectivity test on %d processes PASSED.\n", np);

MPI_Finalize();
return 0;

}

CODE EXAMPLE 3–2 Simple Sun MPI Program in Fortran: monte.f

!
! Estimate pi via Monte--Carlo method.
!
! Each process sums how many of samplesize random points generated
! in the square (--1,--1),(--1,1),(1,1),(1,--1)
fall in the circle of
! radius 1 and center (0,0), and then estimates pi from the formula

(continued)

Getting Started 23

(Continuation)

! pi = (4 * sum) / samplesize.
! The final estimate of pi is calculated at rank 0 as the average
of
! all the estimates.
!

program monte

include ’mpif.h’

double precision drand
external drand

double precision x, y, pi, pisum
integer*4 ierr, rank, np
integer*4 incircle, samplesize

parameter(samplesize=2000000)

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, np, ierr)

! seed random number generator
x = drand(2 + 11*rank)

incircle = 0
do i = 1, samplesize

x = drand(0)*2.0d0 -- 1.0d0 ! generate a
random point

y = drand(0)*2.0d0 -- 1.0d0

if ((x*x + y*y) .lt. 1.0d0) then
incircle = incircle+1 ! point is in the circle

endif
end do

pi = 4.0d0 * DBLE(incircle) / DBLE(samplesize)

! sum estimates at rank 0
call MPI_REDUCE(pi, pisum, 1, MPI_DOUBLE_PRECISION, MPI_SUM,

& 0 , MPI_COMM_WORLD, ierr)

if (rank .eq. 0) then
! final estimate is the average

pi = pisum / DBLE(np)
print ’(A,I4,A,F8.6,A)’,’Monte--Carlo estimate

of pi by ’,np,
& ’ processes is ’,pi,’.’

endif

call MPI_FINALIZE(ierr)
end

(continued)

24 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

Compiling and Linking
Sun MPI programs are compiled with ordinary C, C ++, or Fortran compilers, just
like any other C, C ++, or Fortran program, and linked with the Sun MPI library.

The tmf77 and tmcc utilities may be used to compile Fortran 77 and C programs.
For example, one might use

% tmf77 --fast --xarch=v8plusa --o a.out a.f --lmpi

to compile an f77 program that uses Sun MPI.

For performance, the single most important compilation switch is --fast . This is a
macro that expands to settings appropriate for high performance for a general set of
circumstances. Because its expansion varies from one compiler release to another,
you may prefer to specify the underlying switches explicitly. To see what --fast
expands to, use --v for “verbose” compilation output. Also, --fast assumes native
compilation, so you should compile on UltraSPARC processors.

The next important compilation switch is --xarch . While --fast picks many
performance-oriented settings by default, optimizations specific to UltraSPARC must
be specified explicitly to override certain binary-compatible defaults. Specify

--xarch=v8plusa

or

--xarch=v9a

after --fast for 32-bit or 64-bit binaries, respectively. To run 64-bit binaries, you
must use Solaris 7.

See the documents that came with your compiler for more information.

If you will be using the Prism debugger, you must compile your program with Sun
WorkShop

TM

Compilers C/C ++ or Sun WorkShop Compilers Fortran, either v4.2 or
v5.0. If the code is threaded, you will not be able to debug with Prism. (See
“Debugging ” on page 29.)

Getting Started 25

TABLE 3–1 Compile and Link Line Options for Sun MPI and Sun MPI I/O

When using . . . Use . . .

C (nonthreaded

example)
%cc filename.c –o filename \

–I/opt/SUNWhpc/include –L/opt/SUNWhpc/lib \

–R/opt/SUNWhpc/lib –lmpi

C++

Note that x.y represents the version
of your C++ compiler.

%CC filename.cc –o filename \

–I/opt/SUNWhpc/include –L/opt/SUNWhpc/lib \

–R/opt/SUNWhpc/lib –L/opt/SUNWhpc/lib/SCx.y
\

–R/opt/SUNWhpc/lib/SCx.y –mt –lmpi++ –lmpi

tmcc , tmCC % tmcc –o filename filename.c –lmpi

% tmCC –o filename filename.cc –mt –lmpi

Fortran 77

(nonthreaded

example)

% f77 --dalign filename.f –o filename \

–I/opt/SUNWhpc/include –L/opt/SUNWhpc/lib \

–R/opt/SUNWhpc/lib –lmpi

Fortran on a 64-bit system % f77 --dalign filename.f –o filename \

–I/opt/SUNWhpc/include/v9 –L/opt/SUNWhpc/
lib/sparcv9 \

–R/opt/SUNWhpc/lib/sparcv9 –lmpi

Fortran 90 Replace f77 with f90 .

tmf77 , tmf90 % tmf77 –o --dalign filename filename.f –lmpi

% tmf90 –o --dalign filename filename.f –lmpi

Multithreaded

programs and programs containing
nonblocking MPI I/O routines

Replace --lmpi with --lmpi_mt .

Note - For the Fortran interface, the --dalign option is necessary to avoid the
possibility of bus errors. (The underlying C routines in Sun MPI internals assume
that parameters and buffer types passed as REALs are double-aligned.)

26 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

Note - If your program has previously been linked to any static libraries, you will
have to relink it to libmpi.so before executing it.

Choosing a Library Path
The eight Sun MPI 4.0 libraries are described in “The Libraries” on page 5. The paths
for each of these libraries, which you must specify when you are compiling and
linking your program, are listed in the following table.

TABLE 3–2 Sun MPI 4.0 Libraries

Category Description Path: /opt/SUNWhpc/lib/ ...

32-Bit Libraries Default, not thread-safe libmpi.so

C++ (in addition to libmpi.so) SC4.2/libmpi++.so

Thread-safe libmpi_mt.so

Trace Trace, not thread-safe tnf/libmpi.so

Trace, thread-safe tnf/libmpi_mt.so

64-Bit Libraries Non-thread-safe sparcv9/libmpi.so

C++ (in addition to sparcv9/
libmpi.so)

SC5.0/libmpi++.so

Thread-safe sparcv9/libmpi_mt.so

Trace Trace, not thread-safe tnf/sparcv9/libmpi.so

Trace, thread-safe tnf/sparcv9/libmpi_mt.so

Overriding the Run-Time Library
As shown in the sample compile and link lines in Table 3–1, you use the --R flag in
the compile and link line to specify the path for a run-time library when you are

Getting Started 27

compiling. At run time, you can override the library specified in the --R argument
by setting the LD_LIBRARY_PATHenvironment variable. For example, to link to the
32-bit trace libraries before running your program, do this:

% setenv LD_LIBRARY_PATH /opt/SUNWhpc/lib/tnf

(This is a C shell example.)

Stubbing Thread Calls
The libthread.so libraries are automatically linked into the respective libmpi.so
libraries. This means that any thread-function calls in your program will be resolved
by the libthread.so library. Simply omitting libthread.so from the link line
will not cause thread calls to be stubbed out — you must remove the thread calls
yourself. For more information about the libthread.so library, see its man page.
(For the location of Solaris man pages at your site, see your system administrator.)

Basic Job Execution
The Sun MPI 4.0 User’s Guide: With LSF, the LSF Batch User’s Guide, and the
lsfintro and bsub man pages provide thorough instructions for executing jobs
with the LSF Suite. Likewise, the Sun MPI 4.0 User’s Guide: With CRE and the
mprun man page provide detailed information about running jobs with the CRE. In
this section you will find some basic information about executing jobs with either
resource manager.

Before starting your job, you may want to set one or more environment variables,
which are also described in the Sun MPI user’s guides.

Executing With LSF Suite 3.2.3

Note - Running parallel jobs with LSF Suite is supported on up to 1024 processors
and up to 64 nodes.

Parallel jobs can either be launched by LSF’s Parallel Application Manager (PAM) or
be submitted in queues configured to run PAM as the parallel job starter. LSF’s bsub
command launches both parallel interactive and batch jobs. For example, to start a
batch job named mpijob on four CPUs, use this command:

28 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

% bsub --n 4 pam mpijob

To launch an interactive job, add the --I argument to the command line. For
example, to launch an interactive job named earth on a single CPU in the queue
named sun , which is configured to launch jobs with PAM):

% bsub --q sun --Ip --n 1 earth

Executing With the CRE

Note - Running parallel jobs with the CRE is supported on up to 256 processors and
up to 64 nodes.

When using the CRE, parallel jobs are launched using the mprun command. For
example, to start a job with 6 processes named mpijob , use this command:

% mprun --np 6 mpijob

Debugging
Debugging parallel programs is notoriously difficult, since you are in effect
debugging a program potentially made up of many distinct programs executing
simultaneously. Even if the application is an SPMD one (single process, multiple
data), each instance may be executing a different line of code at any instant. Prism
eases the debugging process considerably.

Prism is recommended for debugging in the Sun HPC ClusterTools environment.
However, if you need to debug multithreaded Sun MPI programs at the thread level,
you should see “Debugging With dbx” on page 31. See also “Debugging With MPE”
on page 33, if you are using the multiprocessing environment (MPE) from Argonne
National Laboratory.

Getting Started 29

Debugging With Prism
This section provides a brief introduction to the Prism development environment.
For complete information about Prism, see the Prism 6.0 User’s Guide.

Prism can debug only one Sun MPI job at a time. Therefore, if an MPI job spawns or
connects to another job (using MPI_Comm_accept and MPI_Comm_connect to
implement client/server communication, for example, or MPI_Comm_spawnto
spawn jobs), the Prism session nonetheless has control of only the original MPI job to
which it is attached. For example, a Prism session debugging a server job cannot also
debug the clients of that job.

To use Prism to debug a Sun MPI program, the program must be written in the
SPMD (single process, multiple data) style — that is, all processes that make up a
Sun MPI program must be running the same executable.

Note - MPI_Comm_spawn_multiple can create multiple executables with only one
job id. You cannot use Prism to debug jobs with different executables that have been
spawned with this command.

Starting Up Prism

Note - To debug a Sun MPI program with Prism, you need to have compiled your
program using one of the compilers included in either the Sun Performance
WorkShop Fortran or Sun Performance WorkShop C++/C suite of tools.

To start Prism on a Sun MPI program, use the --n option to bsub to specify how
many processors you want to run on. For example,

% prism --n 4 foo

launches Prism on executable foo with four processes.

This starts up a graphical version of Prism with your program loaded. You can then
debug and visualize data in your Sun MPI program.

You can also attach Prism to running processes. First determine the job id (not the
individual process id), or jid, using either bsub (in LSF) or mpps (in the CRE). (See
the LSF Batch User’s Guide for further information about bjobs . See the Sun MPI
4.0 User‘s Guide: With CRE for further information about mpps.) Then specify the
jid at the command line with the --n (or --np , --c , --p) option:

30 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

% prism --n 4 foo 12345

This will launch Prism and attach it to the processes running in job 12345.

Note - To run graphical Prism, you must be running Solaris 2.6 or Solaris 7 with
either OpenWindows

TM

or the Common Desktop Environment (CDE), and with your
DISPLAY environment variable set correctly. See the Prism 6.0 User’s Guide for
information.

One important feature of Prism is that it lets you debug the Sun MPI program at any
level of detail. You can look at the program as a whole or at subsets of processes
within the program (for example, those that have an error condition), or at
individual processes, all within the same debugging session. For complete
information, see the Prism 6.0 User’s Guide.

Debugging With dbx
To debug your multithreaded program at the thread level, you can use dbx. The
following example illustrates this method of debugging with LSF Suite.

To Debug Threads With dbx

1. Add a variable to block the process until you attach with dbx.

In this sample program, simple--comm , the wait_for_dbx variable is set to 1 to
create a wait loop. It is placed before the function or functions to be debugged.

CODE EXAMPLE 3–3 Debugging a Multithreaded Sun MPI Program With dbx

#include <stdio.h>
#include "mpi.h"

void
main(int argc, char **argv)
{

MPI_Comm comm_dup;
int error;
int wait_for_dbx = 1;

if((error = (MPI_Init(&argc, &argv))) != MPI_SUCCESS)
{

printf("Bad Init\n");
exit(--1);

}

(continued)

Getting Started 31

(Continuation)

while (wait_for_dbx);

error = MPI_Comm_dup(MPI_COMM_WORLD, &comm_dup);
if (error != MPI_SUCCESS) {

printf("Bad Dup\n");
exit(--1);

}

error = MPI_Comm_free(&comm_dup);
if (error != MPI_SUCCESS) {

printf("Bad Comm free\n");
exit(--1);

}

MPI_Finalize();
}

2. Compile the code, then run it.

After compiling the program, run it using bsub . (See the LSF Batch User’s Guide
for more information.)

% bsub --n 4 --Ip simple--comm

3. Identify the processes to which you want to attach the debugger.

Use bjobs to obtain information about the processes in the task. (See the LSF
Batch User’s Guide for more about getting information about processes.)

4. Attach the debugger to the processes that you would like to debug.

Attach the debugger to the processes. If you would like to debug only a subset of
the processes, you must set up a conditional in such a way that the while
statement is executed in only the process(es) that you will debug.

% dbx simple--comm 10838
Attached to process 10838 with 2 LWPs
t@1 (l@1) stopped in main at line 18 in file "simple--comm.c"

18 while (wait_for_dbx);

5. Set your variable such that it will allow the process to unblock.

32 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

At the dbx prompt, use assign to change the value of the variable (here
wait_for_dbx) and, hence, unblock the processes.

(dbx) assign wait_for_dbx = 0

6. Debug the processes.

After you have attached and set the instrumentation code appropriately, you can
start debugging the processes as you normally would with dbx .

Debugging With MPE
The multiprocessing environment (MPE) available from Argonne National
Laboratory includes a debugger that can also be used for debugging at the thread
level. For information about obtaining and building MPE, see “MPE: Extensions to
the Library” on page 18.

Getting Started 33

34 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

CHAPTER 4

Programming With Sun MPI I/O

File I/O in Sun MPI 4.0 is fully MPI-2 compliant. MPI I/O is specified as part of that
standard, which was published in July, 1997. Its goal is to provide a library of
routines featuring a portable parallel file system interface that is an extension of the
MPI framework. See “Related Publications” on page ix for more information about
the MPI-2 standard.

The closest thing to a standard in file I/O is the UNIX file interface, but UNIX does
not provide efficient coordination among multiple simultaneous accesses to a file,
particularly when those accesses originate on multiple machines in a cluster. Another
drawback of the UNIX file interface is its single-offset interface, that is, its lack of
aggregate requests, which can also lead to inefficient access. The MPI I/O library
provides routines that accomplish this coordination. Furthermore, MPI I/O allows
multiple simultaneous access requests to be made to take advantage of Sun HPC’s
parallel file system, PFS. It is currently the only application programming interface
through which users can access Sun HPC’s PFS. For more information about PFS, see
the Sun HPC ClusterTools 3.0 Administrator’s Guide: With LSF (if you are using LSF
Suite) or the Sun HPC ClusterTools 3.0 Administrator’s Guide: With CRE (if you are
using the CRE). Also see the pfsstat man page.

Note - A direct interface to Sun HPC’s PFS (parallel file system) is not available to
the user in this release. Currently, the only way to access PFS is through Sun’s
implementation of MPI I/O or Solaris command-line utilities.

Using Sun MPI I/O
MPI I/O models file I/O on message passing; that is, writing to a file is analogous to
sending a message, and reading from a file is analogous to receiving a message. The

35

MPI library provides a high-level way of partitioning data among processes, which
saves you from having to specify the details involved in making sure that the right
pieces of data go to the right processes. This section describes basic MPI I/O
concepts and the Sun MPI I/O routines.

Data Partitioning and Data Types
MPI I/O uses the MPI model of communicators and derived data types to describe
communication between processes and I/O devices. MPI I/O determines which
processes are communicating with a particular I/O device. Derived data types can be
used to define the layout of data in memory and of data in a file on the I/O device.
(For more information about derived data types, see “Data Types” on page 9.)
Because MPI I/O builds on MPI concepts, it’s easy for a knowledgeable MPI
programmer to add MPI I/O code to a program.

Data is stored in memory and in the file according to MPI data types. Herein lies one
of MPI and MPI I/O’s advantages: Because they provide a mechanism whereby you
can create your own data types, you have more freedom and flexibility in specifying
data layout in memory and in the file.

The library also simplifies the task of describing how your data moves from
processor memory to file and back again. You create derived data types that describe
how the data is arranged in each process’s memory and how it should be arranged
in that process’s part of the disk file.

The Sun MPI I/O routines are described in “Routines” on page 37. But first, to be able
to define a data layout, you will need to understand some basic MPI I/O data-layout
concepts. The next section explains some of the fundamental terms and concepts.

Definitions
The following terms are used to describe partitioning data among processes. Figure
4–1 illustrates some of these concepts.

� An elementary data type (or etype) is the unit of data access and positioning. It can
be any MPI basic or derived data type. Data access is performed in
elementary-data-type units, and offsets (see below) are expressed as a count of
elementary data types.

� The file type (or filetype) is used to partition a file among processes; that is, a
file type defines a template for accessing the file. It is either a single elementary
data type or a derived MPI data type constructed from elementary data types. A
file type may contain “holes,” or extents of bytes that will not be accessed by this
process.

� A file displacement (or disp) is an absolute byte position relative to the beginning
of a file. The displacement defines the location where a view begins (see below).

36 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

� A view defines the current set of data visible and accessible by a process from an
open file in terms of a displacement, an elementary data type, and a file type. The
pattern described by a file type is repeated, beginning at the displacement, to
define the view.

� An offset is a position relative to the current view, expressed as a count of
elementary data types. Holes in the view’s file type are ignored when calculating
this position.

Figure 4–1 Displacement, the Elementary Data Type, the File Type, and the View

For a more detailed description of MPI I/O, see Chapter 9, “I/O,” of the MPI-2
standard.

Note for Fortran Users
When writing a Fortran program, you must declare the variable ADDRESSas

INTEGER*MPI_ADDRESS_KIND
ADDRESS

MPI_ADDRESS_KINDis a constant defined in mpi.h . This constant defines the
length of the declared integer.

Routines
This release of Sun MPI includes all the MPI I/O routines, which are defined in
Chapter 9, “I/O,” of the MPI-2 specification. (See the preface for information about
this specification.)

Code samples that use many of these routines are provided in “Sample Code” on
page 45.

Programming With Sun MPI I/O 37

File Manipulation

Collective coordination Noncollective coordination

MPI_File_open

MPI_File_close

MPI_File_set_size

MPI_File_preallocate

MPI_File_delete

MPI_File_get_size

MPI_File_get_group

MPI_File_get_amode

MPI_File_open and MPI_File_close are collective operations that open and
close a file, respectively — that is, all processes in a communicator group must
together open or close a file. To achieve a single-user, UNIX-like open, set the
communicator to MPI_COMM_SELF.

MPI_File_delete deletes a specified file.

The routines MPI_File_set_size , MPI_File_get_size , MPI_File_get_group ,
and MPI_File_get_amode get and set information about a file. When using the
collective routine MPI_File_set_size on a UNIX file, if the size that is set is
smaller than the current file size, the file is truncated at the position defined by size .
If size is set to be larger than the current file size, the file size becomes size .

When the file size is increased this way with MPI_File_set_size , new regions are
created in the file with displacements between the old file size and the larger, newly
set file size. Sun MPI I/O does not necessarily allocate file space for such new
regions. You may reserve file space either by using MPI_File_preallocate or by
performing a read or write to unallocated bytes. MPI_File_preallocate ensures
that storage space is allocated for a set quantity of bytes for the specified file;
however, its use is very “expensive” in terms of performance and disk space.

The routine MPI_File_get_group returns a communicator group, but it does not
free the group.

File Info

Noncollective coordination Collective coordination

MPI_File_get_info MPI_File_set_info

The opaque info object allows you to provide hints for optimization of your code,
making it run faster or more efficiently, for example. These hints are set for each file,
using the MPI_File_open , MPI_File_set_view , MPI_File_set_info , and
MPI_File_delete routines. MPI_File_set_info sets new values for the

38 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

specified file’s hints. MPI_File_get_info returns all the hints that the system
currently associates with the specified file.

When using UNIX files, Sun MPI I/O provides four hints for controlling how much
buffer space it uses to satisfy I/O requests: noncoll_read_bufsize ,
noncoll_write_bufsize , coll_read_bufsize , and coll_write_bufsize .
These hints may be tuned for your particular hardware configuration and application
to improve performance for both noncollective and collective data accesses. For
example, if your application uses a single MPI I/O call to request multiple
noncontiguous chunks that form a regular strided pattern inthe file, you may want to
adjust the noncoll_write_bufsize to match the size of the stride. Note that these
hints limit the size of MPI I/O’s underlying buffers but do not limit the size of how
much data a user can read or write in asingle request.

File Views

Noncollective coordination Collective coordination

MPI_File_get_view MPI_File_set_view

The MPI_File_set_view routine changes the process’s view of the data in the file,
specifying its displacement, elementary data type, and file type, as well as setting the
individual file pointers and shared file pointer to 0. MPI_File_set_view is a
collective routine; all processes in the group must pass identical values for the file
handle and the elementary data type, although the values for the displacement, the
file type, and the info object may vary. However, if you use the data-access routines
that use file positioning with a shared file pointer, you must also give the
displacement and the file type identical values. The data types passed in as the
elementary data type and the file type must be committed.

You can also specify the type of data representation for the file. See “File
Interoperability” on page 44 for information about registering data representation
identifiers.

Note - Displacements within the file type and the elementary data type must be
monotonically nondecreasing.

Data Access
The 35 data-access routines are categorized according to file positioning. Data access
can be achieved by any of these methods of file positioning:

� By explicit offset

� By individual file pointer

Programming With Sun MPI I/O 39

� By shared file pointer

In the following subsections, each of these methods is discussed in more detail.

While blocking I/O calls will not return until the request is completed, nonblocking
calls do not wait for the I/O request to complete. A separate “request complete” call,
such as MPI_Test or MPI_Wait , is needed to confirm that the buffer is ready to be
used again. Nonblocking routines have the prefix MPI_File_i , where the i stands
for immediate.

All the nonblocking collective routines for data access are “split” into two routines,
each with _begin or _end as a suffix. These split collective routines are subject to the
semantic rules described in Section 9.4.5 of the MPI-2 standard.

Data Access With Explicit Offsets

Synchronism Noncollective coordination Collective coordination

Blocking
MPI_File_read_at

MPI_File_write_at

MPI_File_read_at_all

MPI_File_write_at_all

Nonblocking orsplit
collective

MPI_File_iread_at

MPI_File_iwrite_at

MPI_File_read_at_all_begin

MPI_File_read_at_all_end

MPI_File_write_at_all_begin

MPI_File_write_at_all_end

To access data at an explicit offset, specify the position in the file where the next data
access for each process should begin. For each call to a data-access routine, a process
attempts to access a specified number of file types of a specified data type (starting
at the specified offset) into a specified user buffer.

The offset is measured in elementary data type units relative to the current view;
moreover, “holes” are not counted when locating an offset. The data is read from (in
the case of a read) or written into (in the case of a write) those parts of the file
specified by the current view. These routines store the number of buffer elements of a
particular data type actually read (or written) in the status object, and all the other
fields associated with the status object are undefined. The number of elements that
are read or written can be accessed using MPI_Get_count .

MPI_File_read_at attempts to read from the file via the associated file handle
returned from a successful MPI_File_open . Similarly, MPI_File_write_at
attempts to write data from a user buffer to a file. MPI_File_iread_at and
MPI_File_iwrite_at are the nonblocking versions of MPI_File_read_at and
MPI_File_write_at , respectively.

40 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

MPI_File_read_at_all and MPI_File_write_at_all are collective versions of
MPI_File_read_at and MPI_File_write_at , in which each process provides an
explicit offset. The split collective versions of these nonblocking routines are listed in
the table at the beginning of this section.

Data Access With Individual File Pointers

Synchronism Noncollective coordination Collective coordination

Blocking
MPI_File_read

MPI_File_write

MPI_File_read_all

MPI_File_write_all

Nonblocking orsplit
collective

MPI_File_iread

MPI_File_iwrite

MPI_File_read_all_begin

MPI_File_read_all_end

MPI_File_write_all_begin

MPI_File_write_all_end

For each open file, Sun MPI I/O maintains one individual file pointer per process
per collective MPI_File_open . For these data-access routines, MPI I/O implicitly
uses the value of the individual file pointer. These routines use and update only the
individual file pointers maintained by MPI I/O by pointing to the next elementary
data type after the one that has most recently been accessed. The individual file
pointer is updated relative to the current view of the file. The shared file pointer is
neither used nor updated. (For data access with shared file pointers, please see the
next section.)

These routines have similar semantics to the explicit-offset data-access routines,
except that the offset is defined here to be the current value of the individual file
pointer.

MPI_File_read_all and MPI_File_write_all are collective versions of
MPI_File_read and MPI_File_write , with each process using its individual file
pointer.

MPI_File_iread and MPI_File_iwrite are the nonblocking versions of
MPI_File_read and MPI_File_write , respectively. The split collective versions of
MPI_File_read_all and MPI_File_write_all are listed in the table at the
beginning of this section.

Programming With Sun MPI I/O 41

Pointer Manipulation

MPI_File_seek
MPI_File_get_position
MPI_File_get_byte_offset

Each process can call the routine MPI_File_seek to update its individual file
pointer according to the update mode. The update mode has the following possible
values:

� MPI_SEEK_SET– The pointer is set to the offset.

� MPI_SEEK_CUR– The pointer is set to the current pointer position plus the offset.

� MPI_SEEK_END– The pointer is set to the end of the file plus the offset.

The offset can be negative for backwards seeking, but you cannot seek to a negative
position in the file. The current position is defined as the elementary data item
immediately following the last-accessed data item.

MPI_File_get_position returns the current position of the individual file pointer
relative to the current displacement and file type.

MPI_File_get_byte_offset converts the offset specified for the current view to
the displacement value, or absolute byte position, for the file.

Data Access With Shared File Pointers

Synchronism Noncollective coordination Collective coordination

Blocking
MPI_File_read_shared

MPI_File_write_shared

MPI_File_read_ordered

MPI_File_write_ordered

MPI_File_seek_shared

MPI_File_get_position_shared

Nonblocking orsplit
collective

MPI_File_iread_shared

MPI_File_iwrite_shared

MPI_File_read_ordered_begin

MPI_File_read_ordered_end

MPI_File_write_ordered_begin

MPI_File_write_ordered_end

Sun MPI I/O maintains one shared file pointer per collective MPI_File_open
(shared among processes in the communicator group that opened the file). As with

42 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

the routines for data access with individual file pointers, you can also use the current
value of the shared file pointer to specify the offset of data accesses implicitly. These
routines use and update only the shared file pointer; the individual file pointers are
neither used nor updated by any of these routines.

These routines have similar semantics to the explicit-offset data-access routines,
except:

� The offset is defined here to be the current value of the shared file pointer.

� Multiple calls (one for each process in the communicator group) affect the shared
file pointer routines as if the calls were serialized.

� All processes must use the same file view.

After a shared file pointer operation is initiated, it is updated, relative to the current
view of the file, to point to the elementary data item immediately following the last
one requested, regardless of the number of items actually accessed.

MPI_File_read_shared and MPI_File_write_shared are blocking routines
that use the shared file pointer to read and write files, respectively. The order of
serialization is not deterministic for these noncollective routines, so you need to use
other methods of synchronization if you wish to impose a particular order.

MPI_File_iread_shared and MPI_File_iwrite_shared are the nonblocking
versions of MPI_File_read_shared and MPI_File_write_shared , respectively.

MPI_File_read_ordered and MPI_File_write_ordered are the collective
versions of MPI_File_read_shared and MPI_File_write_shared . They must
be called by all processes in the communicator group associated with the file handle,
and the accesses to the file occur in the order determined by the ranks of the
processes within the group. After all the processes in the group have issued their
respective calls, for each process in the group, these routines determine the position
where the shared file pointer would be after all processes with ranks lower than this
process’s rank had accessed their data. Then data is accessed (read or written) at that
position. The shared file pointer is then updated by the amount of data requested by
all processes of the group.

The split collective versions of MPI_File_read_ordered and
MPI_File_write_ordered are listed in the table at the beginning of this section.

MPI_File_seek_shared is a collective routine, and all processes in the
communicator group associated with the particular file handler must call
MPI_File_seek_shared with the same file offset and the same update mode. All
the processes are synchronized with a barrier before the shared file pointer is
updated.

The offset can be negative for backwards seeking, but you cannot seek to a negative
position in the file. The current position is defined as the elementary data item
immediately following the last-accessed data item, even if that location is a hole.

MPI_File_get_position_shared returns the current position of the shared file
pointer relative to the current displacement and file type.

Programming With Sun MPI I/O 43

File Interoperability

MPI_Register_datarep
MPI_File_get_type_extent

Sun MPI I/O supports the basic data representations described in Section 9.5 of the
MPI-2 standard:

� native – With native representation, data is stored exactly as in memory, in other
words, in Solaris/UltraSPARC data representation. This format offers the highest
performance and no loss of arithmetic precision. It should be used only in a
homogeneous environment, that is, on Solaris/UltraSPARC nodes running Sun
ClusterTools software. It may also be used when the MPI application will perform
the data type conversions itself.

� internal – With internal representation, data is stored in an
implementation-dependent format, such as for Sun MPI 4.0.

� external32 – With external32 representation, data is stored in a portable format,
prescribed by the MPI-2 and IEEE standards.

These data representations, as well as any user-defined representations, are specified
as an argument to MPI_File_set_view .

You may create user-defined data representations with MPI_Register_datarep .
Once a data representation has been defined with this routine, you may specify it as
an argument to MPI_File_set_view , so that subsequent data-access operations
will call the conversion functions specified with MPI_Register_datarep .

If the file data representation is anything but native, you must be careful when
constructing elementary data types and file types. For those functions that accept
displacements in bytes, the displacements must be specified in terms of their values
in the file for the file data representation being used.

MPI_File_get_type_extent can be used to calculate the extents of data types in
the file. The extent is the same for all processes accessing the specified file. If the
current view uses a user-defined data representation,
MPI_File_get_type_extent uses one of the functions specified in setting the
data representation to calculate the extent.

44 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

File Consistency and Semantics

Noncollective coordination Collective coordination

MPI_File_get_atomicity MPI_File_set_atomicity

MPI_File_sync

The routines ending in _atomicity allow you to set or query whether a file is in
atomic or nonatomic mode. In atomic mode, all operations within the communicator
group that opens a file are completed as if sequentialized into some serial order. In
nonatomic mode, no such guarantee is made. In nonatomic mode, MPI_File_sync
can be used to assure weak consistency.

The default mode varies with the number of nodes you are using. If you are running
a job on a single node, a file is in nonatomic mode by default when it is opened. If
you are running a job on more than one node, a file is in atomic mode by default.

MPI_File_set_atomicity is a collective call that sets the consistency semantics for
data-access operations. All the processes in the group must pass identical values for
both the file handle and the Boolean flag that indicates whether atomic mode is set.

MPI_File_get_atomicity returns the current consistency semantics for
data-access operations. Again, a Boolean flag indicates whether the atomic mode is
set.

Note - In some cases, setting atomicity to false may provide better performance.
The default atomicity value on a cluster is true . The lack of synchronization among
the distributed caches on a cluster will often prevent your data from completing in
the desired state. In these circumstances, you may suffer performance disadvantages
with atomicity set to true , especially when the data accesses overlap.

Sample Code
In this section, we give some sample code to get you started with programming your
I/O using Sun MPI 4.0. We start with an example that shows how a parallel job can
partition file data among its processes. Next we explore how you can adapt our
initial example to use a broad range of other I/O programming styles supported by
Sun MPI I/O. Finally, we present a sample code that illustrates the use of the
nonblocking MPI I/O routines.

Before we start, remember that MPI I/O is part of MPI, so you must call MPI_Init
before calling any MPI I/O routines and MPI_Finalize at the end of your
program, even if you only use MPI I/O routines.

Programming With Sun MPI I/O 45

Partitioned Writing and Reading in a Parallel Job
MPI I/O was designed to enable processes in a parallel job to request multiple data
items that are noncontiguous within a file. Typically, a parallel job partitions file data
among the processes.

One method of partitioning a file is to derive the offset at which to access data from
the rank of the process. The rich set of MPI derived types also allows us to easily
partition file data. For example, we could create an MPI vector type as the filetype
passed into MPI_File_set_view . Since vector types do not end with a hole, a call
must be made, either to MPI_Type_create_resized or to MPI_Type_ub , to
complete the partition. This call extends the extent to include holes at the end of the
type for processes with higher ranks. We create a partitioned file by passing different
displacements to MPI_File_set_view . Each of these displacements would be
derived from the process’ rank. Consequently, offsets would not need to be derived
from the ranks because only the data in that process’ portion of the partition would
be visible in that process’ view.

In the following example, we use the first method where we derive the file offsets
directly from the process’ rank. Each process writes and reads NUM_INTSintegers
starting at the offset rank * NUM_INTS. We pass an explicit offset to our MPI I/O
data-access routines MPI_File_write_at and MPI_File_read_at . We call
MPI_Get_elements to find out how many elements were written or read. To verify
that the write was successful, we compare the data written and read as well as set up
an MPI_Barrier before calling MPI_File_get_size to verify that the file is the
size that we expect upon completion of all the processes’ writes.

Observe that we called MPI_File_set_view to set our view of the file as
essentially an array of integers instead of the UNIX-like view of the file as an array
of bytes. Thus, the offsets that we pass to MPI_File_write_at and
MPI_File_read_at are indices into an array of integers and not a byte offset.

CODE EXAMPLE 4–1 Example code in which each process writes and reads NUM_INTSintegers to a file
using MPI_File_write_at and MPI_File_read_at , respectively.

/* wr_at.c
*
* Example to demonstrate use of MPI_File_write_at and MPI_File_read_at
*

*/

#include <stdio.h>
#include "mpi.h"

#define NUM_INTS 100

void sample_error(int error, char *string)
{

fprintf(stderr, "Error %d in %s\n", error, string);
MPI_Finalize();

(continued)

46 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

exit(--1);
}

void
main(int argc, char **argv)
{

char filename[128];
int i, rank, comm_size;
int *buff1, *buff2;
MPI_File fh;
MPI_Offset disp, offset, file_size;
MPI_Datatype etype, ftype, buftype;
MPI_Info info;
MPI_Status status;
int result, count, differs;

if(argc < 2) {
fprintf(stdout, "Missing argument: filename\n");
exit(--1);

}
strcpy(filename, argv[1]);

MPI_Init(&argc, &argv);

/* get this processor’s rank */
result = MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if(result != MPI_SUCCESS)

sample_error(result, "MPI_Comm_rank");

result = MPI_Comm_size(MPI_COMM_WORLD, &comm_size);
if(result != MPI_SUCCESS)

sample_error(result, "MPI_Comm_size");

/* communicator group MPI_COMM_WORLD opens file "foo"
for reading and writing (and creating, if necessary) */

result = MPI_File_open(MPI_COMM_WORLD, filename,
MPI_MODE_RDWR | MPI_MODE_CREATE, (int)NULL, &fh);

if(result != MPI_SUCCESS)
sample_error(result, "MPI_File_open");

/* Set the file view which tiles the file type MPI_INT, starting
at displacement 0. In this example, the etype is also MPI_INT.

*/
disp = 0;
etype = MPI_INT;
ftype = MPI_INT;
info = (MPI_Info)NULL;
result = MPI_File_set_view(fh, disp, etype, ftype, (char *)NULL,

info);
if(result != MPI_SUCCESS)

sample_error(result, "MPI_File_set_view");

/* Allocate and initialize a buffer (buff1) containing NUM_INTS
integers,

(continued)

Programming With Sun MPI I/O 47

(Continuation)

where the integer in location i is set to i. */
buff1 = (int *)malloc(NUM_INTS*sizeof(int));
for(i=0;i<NUM_INTS;i++) buff1[i] = i;

/* Set the buffer type to also be MPI_INT, then write the buffer
(buff1)

starting at offset 0, i.e., the first etype in the file. */
buftype = MPI_INT;
offset = rank * NUM_INTS;
result = MPI_File_write_at(fh, offset, buff1, NUM_INTS, buftype, &status);
if(result != MPI_SUCCESS)

sample_error(result, "MPI_File_write_at");

result = MPI_Get_elements(&status, MPI_BYTE, &count);
if(result != MPI_SUCCESS)

sample_error(result, "MPI_Get_elements");
if(count != NUM_INTS*sizeof(int))

fprintf(stderr, "Did not write the same number of bytes as requested\n");
else

fprintf(stdout, "Wrote %d bytes\n", count);

/* Allocate another buffer (buff2) to read into, then read NUM_INTS
integers into this buffer. */

buff2 = (int *)malloc(NUM_INTS*sizeof(int));
result = MPI_File_read_at(fh, offset, buff2, NUM_INTS, buftype, &status);
if(result != MPI_SUCCESS)

sample_error(result, "MPI_File_read_at");

/* Find out how many bytes were read and compare to how many
we expected */

result = MPI_Get_elements(&status, MPI_BYTE, &count);
if(result != MPI_SUCCESS)

sample_error(result, "MPI_Get_elements");
if(count != NUM_INTS*sizeof(int))

fprintf(stderr, "Did not read the same number of bytes as requested\n");
else

fprintf(stdout, "Read %d bytes\n", count);

/* Check to see that each integer read from each location is
the same as the integer written to that location. */

differs = 0;
for(i=0; i<NUM_INTS; i++) {

if(buff1[i] != buff2[i]) {
fprintf(stderr, "Integer number %d differs\n", i);
differs = 1;

}
}
if(!differs)

fprintf(stdout, "Wrote and read the same data\n");

MPI_Barrier(MPI_COMM_WORLD);

result = MPI_File_get_size(fh, &file_size);
if(result != MPI_SUCCESS)

(continued)

48 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

sample_error(result, "MPI_File_get_size");

/* Compare the file size with what we expect */
/* To see a negative response, make the file preexist with a larger

size than what is written by this program */
if(file_size != (comm_size * NUM_INTS * sizeof(int)))

fprintf(stderr, "File size is not equal to the write size\n");

result = MPI_File_close(&fh);
if(result != MPI_SUCCESS)

sample_error(result, "MPI_File_close");

MPI_Finalize();

free(buff1);
free(buff2);

}

Data Access Styles
We can adapt our example above to support the I/O programming style that best
suits our application. Essentially, there are three dimensions on which to choose an
appropriate data access routine for your particular task: file pointer type, collective
or noncollective, and blocking or nonblocking.

We need to choose which file pointer type to use: explicit, individual, or shared. In
the example above, we used an explicit pointer and passed it directly as the offset
parameter to the MPI_File_write_at and MPI_File_read_at routines. Using an
explicit pointer is equivalent to calling MPI_File_seek to set the individual file
pointer to offset, then calling MPI_File_write or MPI_File_read , which is
directly analogous to calling UNIX lseek() and write() or read() . If each
process accesses the file sequentially, individual file pointers save you the effort to
recalculate offset for each data access. We would use a shared file pointer in
situations where all the processes need to cooperatively access a file in a sequential
way, for example, writing log files.

Collective data-access routines allow the user to enforce some implicit coordination
among the processes in a parallel job when making data accesses. For example, if a
parallel job alternately reads in a matrix and performs computation on it, but cannot
progress to the next stage of computation until all processes have completed the last
stage, then a coordinated effort between processes when accessing data might be
more efficient. In the example above, we could easily append the suffix _all to
MPI_File_write_at and MPI_File_read_at to make the accesses collective. By
coordinating the processes, we could achieve greater efficiency in the MPI library or
at the file system level in buffering or caching the next matrix. In contrast,

Programming With Sun MPI I/O 49

noncollective accesses are used when it is not evident that any benefit would be
gained by coordinating disparate accesses by each process. UNIX file accesses are
noncollective.

Overlapping I/O With Computation and Communication
MPI I/O also supports nonblocking versions of each of the data-access routines, that
is, the data-access routines that have the letter i before write or read in the routine
name (i stands for immediate). By definition, nonblocking I/O routines return
immediately after the I/O request has been issued and does not wait until the I/O
request has been completed. This functionality allows the user to perform
computation and communication at the same time as the I/O. Since large I/O
requests can take a long time to complete, this provides a way to more efficiently
utilize your programs waiting time.

As in our example above, parallel jobs often partition large matrices stored in files.
These parallel jobs may use many large matrices or matrices that are too large to fit
into memory at once. Thus, each process may access the multiple and/or large
matrices in stages. During each stage, a process reads in a chunk of data, then
performs some computation on it (which may involve communicating with the other
processes in the parallel job). While performing the computation and communication,
the process could issue a nonblocking I/O read request for the next chunk of data.
Similarly, once the computation on a particular chunk has completed, a nonblocking
write request could be issued before performing computation and communication on
the next chunk.

The following example code illustrates the use of a nonblocking data-access routine.
Notice that, like nonblocking communication routines, the nonblocking I/O routines
require a call to MPI_Wait to wait for the nonblocking request to complete or
repeated calls to MPI_Test to determine when the nonblocking data access has
completed. Once complete, the write or read buffer is available for use again by the
program.

CODE EXAMPLE 4–2 Example code in which each process reads and writes NUM_BYTESbytes to a file using
the nonblocking MPI I/O routines MPI_File_iread_at and MPI_File_iwrite_at , respectively. Note
the use of MPI_Wait and MPI_Test to determine when the nonblocking requests have completed.

/* iwr_at.c
*
* Example to demonstrate use of MPI_File_iwrite_at and MPI_File_iread_at
*

*/

#include <stdio.h>
#include "mpi.h"

#define NUM_BYTES 100

(continued)

50 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

void sample_error(int error, char *string)
{

fprintf(stderr, "Error %d in %s\n", error, string);
MPI_Finalize();
exit(--1);

}

void
main(int argc, char **argv)
{

char filename[128];
char *buff;
MPI_File fh;
MPI_Offset offset;
MPI_Request request;
MPI_Status status;
int i, rank, flag, result;

if(argc < 2) {
fprintf(stdout, "Missing argument: filename\n");
exit(--1);

}
strcpy(filename, argv[1]);

MPI_Init(&argc, &argv);

result = MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if(result != MPI_SUCCESS)

sample_error(result, "MPI_Comm_rank");

result = MPI_File_open(MPI_COMM_WORLD, filename,
MPI_MODE_RDWR | MPI_MODE_CREATE,
(MPI_Info)NULL, &fh);

if(result != MPI_SUCCESS)
sample_error(result, "MPI_File_open");

buff = (char *)malloc(NUM_BYTES*sizeof(char));
for(i=0;i<NUM_BYTES;i++) buff[i] = i;

offset = rank * NUM_BYTES;
result = MPI_File_iread_at(fh, offset, buff, NUM_BYTES,

MPI_BYTE, &request);
if(result != MPI_SUCCESS)

sample_error(result, "MPI_File_iread_at");

/* Perform some useful computation and/or communication */

result = MPI_Wait(&request, &status);

buff = (char *)malloc(NUM_BYTES*sizeof(char));
for(i=0;i<NUM_BYTES;i++) buff[i] = i;
result = MPI_File_iwrite_at(fh, offset, buff, NUM_BYTES,

MPI_BYTE, &request);
if(result != MPI_SUCCESS)

(continued)

Programming With Sun MPI I/O 51

(Continuation)

sample_error(result, "MPI_File_iwrite_at");

/* Perform some useful computation and/or communication */

flag = 0;
i = 0;
while(!flag) {

result = MPI_Test(&request, &flag, &status);
i++;
/* Perform some more computation or communication, if possible

*/
}

result = MPI_File_close(&fh);
if(result != MPI_SUCCESS)

sample_error(result, "MPI_File_close");

MPI_Finalize();

fprintf(stdout, "Successful completion\n");

free(buff);
}

For More Information
For more information on MPI I/O, refer to the documents listed in the section
“Related Publications” on page ix of the preface.

52 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

APPENDIX A

Sun MPI and Sun MPI I/O Routines

The tables in this appendix list the routines and environment variables for the Sun
MPI and Sun MPI I/O routines, along with the C syntax of the routines and a brief
description of each. For more information about the routines, see their online man
pages, usually found in /opt/SUNWhpc/man . Your system administrator can tell
you where they are installed at your site.

Sun MPI Routines
Table A–1 lists the Sun MPI routines in alphabetical order. The following sections list
the routines by functional category.

Point-to-Point Communication

Blocking Routines
MPI_Send
MPI_Bsend
MPI_Ssend
MPI_Rsend
MPI_Recv
MPI_Sendrecv
MPI_Sendrecv_replace

53

Nonblocking Routines
MPI_Isend
MPI_Ibsend
MPI_Issend
MPI_Irsend
MPI_Irecv

Communication Buffer Allocation
MPI_Buffer_attach
MPI_Buffer_detach

Status Data Structure
MPI_Get_count
MPI_Get_elements

Persistent (Half-Channel) Communication
MPI_Send_init
MPI_Bsend_init
MPI_Rsend_init
MPI_Ssend_init
MPI_Recv_init
MPI_Start
MPI_Startall

Completion Tests
MPI_Wait
MPI_Waitany
MPI_Waitsome
MPI_Waitall
MPI_Test
MPI_Testany
MPI_Testsome
MPI_Testall
MPI_Request_free
MPI_Cancel
MPI_Test_cancelled

Probing for Messages (Blocking/Nonblocking)
MPI_Probe
MPI_Iprobe

Packing and Unpacking Functions
MPI_Pack
MPI_Pack_size
MPI_Unpack

54 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

Derived Data Type Constructors and Functions
MPI_Address: Deprecated -- Use MPI_Get_address.
MPI_Type_commit
MPI_Type_contiguous
MPI_Type_create_indexed_block
MPI_Type_create_keyval
MPI_Type_delete_attr
MPI_Type_dup
MPI_Type_free_keyval
MPI_Type_get_attr
MPI_Type_set_attr
MPI_Type_get_contents
MPI_Type_get_envelope
MPI_Type_get_name
MPI_Type_set_name
MPI_Type_create_resized
MPI_Type_free
MPI_Type_get_true_extent
MPI_Type_hvector: Deprecated -- Use
MPI_Type_create_hvector.
MPI_Type_indexed
MPI_Type_hindexed: Deprecated -- Use
MPI_Type_create_hindexed.
MPI_Type_struct: Deprecated -- Use
MPI_Type_create_struct.
MPI_Type_lb: Deprecated -- Use
MPI_Type_get_extent.
MPI_Type_ub: Deprecated -- Use
MPI_Type_get_extent.
MPI_Type_vectorMPI_Type_extent: Deprecated -- Use
MPI_Type_get_extent.
MPI_Type_size

Collective Communication

Barrier
MPI_Barrier

Broadcast
MPI_Bcast

Processor Gather/Scatter
MPI_Gather
MPI_Gatherv
MPI_Allgather
MPI_Allgatherv
MPI_Scatter
MPI_Scatterv
MPI_Alltoall
MPI_Alltoallv

Sun MPI and Sun MPI I/O Routines 55

Global Reduction/Scan Operations
MPI_Reduce
MPI_Allreduce
MPI_Reduce_scatter
MPI_Scan
MPI_Op_create
MPI_Op_free

Groups, Contexts, and Communicators

Group Management

Group Accessors
MPI_Group_size
MPI_Group_rank
MPI_Group_translate_ranks
MPI_Group_compare

Group Constructors
MPI_Comm_group
MPI_Group_union
MPI_Group_intersection
MPI_Group_difference
MPI_Group_incl
MPI_Group_excl
MPI_Group_range_incl
MPI_Group_range_excl
MPI_Group_free

Communicator Management

Communicator Accessors
MPI_Comm_size
MPI_Comm_rank
MPI_Comm_compare

Communicator Constructors
MPI_Comm_dup
MPI_Comm_create
MPI_Comm_split
MPI_Comm_free

56 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

Intercommunicators
MPI_Comm_test_inter
MPI_Comm_remote_group
MPI_Comm_remote_size
MPI_Intercomm_create
MPI_Intercomm_merge

Communicator Attributes
MPI_Keyval_create: Deprecated -- Use
MPI_Comm_create_keyval.
MPI_Keyval_free: Deprecated -- Use
MPI_Comm_free_keyval.
MPI_Attr_put: Deprecated -- Use
MPI_Comm_set_attr.
MPI_Attr_get: Deprecated -- Use
MPI_Comm_get_attr.
MPI_Attr_delete: Deprecated -- Use
MPI_Comm_delete_attr.

Process Topologies
MPI_Cart_create
MPI_Dims_create
MPI_Graph_create
MPI_Topo_test
MPI_Graphdims_get
MPI_Graph_get
MPI_Cartdim_get
MPI_Cart_get
MPI_Cart_rank
MPI_Cart_coords
MPI_Graph_neighbors
MPI_Graph_neighbors_count
MPI_Cart_shift
MPI_Cart_sub
MPI_Cart_map
MPI_Graph_map

Process Creation and Management

Establishing Communication
MPI_Close_port
MPI_Comm_accept
MPI_Comm_connect
MPI_Comm_disconnect
MPI_Open_port

Process Manager Interface
MPI_Comm_get_parent
MPI_Comm_spawn

Sun MPI and Sun MPI I/O Routines 57

MPI_Comm_spawn_multiple

Environmental Inquiry Functions and Profiling

Startup and Shutdown
MPI_Init
MPI_Finalize
MPI_Finalized
MPI_Initialized
MPI_Abort
MPI_Get_processor_name
MPI_Get_version

Error Handler Functions
MPI_Errhandler_create: Deprecated -- Use
MPI_Comm_create_errhandler.
MPI_Errhandler_set: Deprecated -- Use
MPI_Comm_set_errhandler.
MPI_Errhandler_get: Deprecated -- Use
MPI_Comm_get_errhandler.
MPI_Errhandler_free
MPI_Error_string
MPI_Error_class

Info Objects
MPI_Info_create
MPI_Info_delete
MPI_Info_dup
MPI_Info_free
MPI_Info_get
MPI_Info_get_nkeys
MPI_Info_get_nthkey
MPI_Info_get_valuelen
MPI_Info_set

Timers
MPI_Wtime
MPI_Wtick

Profiling
MPI_Pcontrol

58 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

Miscellaneous

Associating Information With Status
MPI_Status_set_cancelled
MPI_Status_set_elements

Generalized Requests
MPI_Grequest_complete
MPI_Grequest_start

Naming Objects
MPI_Comm_get_name
MPI_Comm_set_name
MPI_Type_get_name
MPI_Type_set_name

Threads
MPI_Query_thread

Handle Translation
MPI_Comm_c2f
MPI_Comm_f2c
MPI_Group_c2f
MPI_Group_f2c
MPI_Info_c2f
MPI_Info_f2c
MPI_Op_c2f
MPI_Op_f2c
MPI_Request_c2f
MPI_Request_f2c
MPI_Type_c2f
MPI_Type_f2c

Status Conversion
MPI_Status_c2f
MPI_Status_f2c

MPI Routines: Alphabetical Listing

Sun MPI and Sun MPI I/O Routines 59

TABLE A–1 Sun MPI Routines

Routine and C Syntax Description

MPI_Abort (MPI_Comm comm, int errorcode) Terminates MPI execution
environment.

MPI_Address (void *location, MPI_Aint *address) Deprecated: Use instead
MPI_Get_address . Gets the
address of a location in memory.

MPI_Allgather (void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

Gathers data from all processes
and distributes it to all.

MPI_Allgatherv (void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int *recvcount,
int *displs, MPI_Datatype recvtype, MPI_Comm comm)

Gathers data from all processes
and delivers it to all. Each process
may contribute a different amount
of data.

MPI_Allreduce (void *sendbuf, void *recvbuf, int
count, MPI_Datatype datatype, MPI_Op op, MPI_Comm
comm)

Combines values from all processes
and distributes the result back to
all processes.

MPI_Alltoall (void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

Sends data from all to all processes.

MPI_Alltoallv (void *sendbuf, int *sendcounts, int
*sdispls, MPI_Datatype sendtype, void *recvbuf, int
*recvcounts, int *rdispls, MPI_Datatype recvtype,
MPI_Comm comm)

Sends data from all to all
processes, with a displacement.
Each process may contribute a
different amount of data.

MPI_Attr_delete (MPI_Comm comm, int keyval) Deprecated: Use instead
MPI_Comm_delete_attr . Deletes
attribute value associated with a
key.

MPI_Attr_get (MPI_Comm comm, int keyval, void
*attribute_val, int *flag)

Deprecated: Use instead
MPI_Comm_get_attr . Retrieves
attribute value by key.

MPI_Attr_put (MPI_Comm comm, int keyval, void
*attribute_val)

Deprecated: Use instead
MPI_Comm_set_attr . Stores
attribute value associated with a
key.

MPI_Barrier (MPI_Comm comm) Blocks until all processes have
reached this routine.

60 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Bcast (void *buffer, int count, MPI_Datatype
datatype, int root, MPI_Comm comm)

Broadcasts a message from the
process with rank root to all other
processes of the group.

MPI_Bsend (void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

Basic send with user-specified
buffering.

MPI_Bsend_init (void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Builds a handle for a buffered send.

MPI_Buffer_attach (void *buf, int size) Attaches a user-defined buffer for
sending.

MPI_Buffer_detach (void *buf, int *size) Removes an existing buffer (for use
in MPI_Bsend , etc.).

MPI_Cancel (MPI_Request *request) Cancels a communication request.

MPI_Cart_coords (MPI_Comm comm, int rank, int
maxdims, int *coords)

Determines process coordinates in
Cartesian topology given rank in
group.

MPI_Cart_create (MPI_Comm comm_old, int ndims,
int *dims, int *periods, int reorder, MPI_Comm
*comm_cart)

Makes a new communicator to
which topology information has
been attached.

MPI_Cart_get (MPI_Comm comm, int maxdims, int
*dims, int *periods, int *coords)

Retrieves Cartesian topology
information associated with a
communicator.

MPI_Cart_map (MPI_Comm comm, int ndims, int
*dims, int *periods, int *newrank)

Maps process to Cartesian
topology information.

MPI_Cart_rank (MPI_Comm comm, int *coords, int
*rank)

Determines process rank in
communicator given Cartesian
location.

MPI_Cart_shift (MPI_Comm comm, int direction, int
disp, int *rank_source, int *rank_dest)

Returns the shifted source and
destination ranks, given a shift
direction and amount.

MPI_Cart_sub (MPI_Comm comm, int *remain_dims,
MPI_Comm *comm_new)

Partitions a communicator into
subcommunicators, which form
lower-dimensional Cartesian
subgrids.

Sun MPI and Sun MPI I/O Routines 61

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Cartdim_get (MPI_Comm comm, int *ndims) Retrieves Cartesian topology
information associated with a
communicator.

MPI_Close_port (char *port_name) Releases the specified network
address.

MPI_Comm_c2f(MPI_Comm comm) Translates a C handle into a
Fortran handle.

MPI_Comm_accept (char *port_name, MPI_Info info,
int root, MPI_Comm comm, MPI_Comm *newcomm)

Establishes communication with a
client (collective).

MPI_Comm_compare(MPI_Comm comm1, MPI_Comm
comm2, int *result)

Compares two communicators.

MPI_Comm_connect (char *port_name, MPI_Info info,
int root, MPI_Comm comm, MPI_Comm *newcomm)

Establishes communication with a
server (collective).

MPI_Comm_create (MPI_Comm comm, MPI_Group
group, MPI_Comm *newcomm)

Creates a new communicator from
a group.

MPI_Comm_create_errhandler (MPI_Comm_errhandler_fn
*function,

MPI_Errhandler *errhandler)

Creates an error handler that can
be attached to communicators.

MPI_Comm_create_keyval (MPI_Comm_copy_attr_function
*comm_copy_attr_fn, MPI_Comm_delete_attr_function
*comm_delete_attr_fn, int *comm_keyval, void
*extra_state)

Generates a new attribute key.

MPI_Comm_delete_attr (MPI_Comm comm, int
comm_keyval)

Deletes attribute value associated
with a key.

MPI_Comm_disconnect (MPI_Comm *comm) Deallocates communicator object
and sets handle to
MPI_COMM_NULL(collective).

MPI_Comm_dup(MPI_Comm comm, MPI_Comm
*newcomm)

Duplicates an existing
communicator with all its cached
information.

MPI_Comm_f2c(MPI_Fint comm) Translates a Fortran handle into a
C handle.

62 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Comm_free (MPI_Comm *comm) Marks the communicator object for
deallocation.

MPI_Comm_free_keyval (int *comm_keyval) Frees attribute key for
communicator cache attribute.

MPI_Comm_get_attr (MPI_Comm comm, int
comm_keyval, void *attribute_val, int *flag)

Retrieves attribute value by key.

MPI_Comm_get_errhandler (MPI_Comm comm,
MPI_Errhandler *errhandler)

Retrieves error handler associated
with a communicator.

MPI_Comm_get_name(MPI_Comm comm, char
*comm_name, int *resultlen)

Returns the name that was most
recently associated with a
communicator.

MPI_Comm_get_parent (MPI_Comm *parent) Returns the parent
intercommunicator of current
spawned process.

MPI_Comm_group(MPI_Comm comm, MPI_Group
*group)

Accesses the group associated with
a communicator.

MPI_Comm_rank(MPI_Comm comm, int *rank) Determines the rank of the calling
process in a communicator.

MPI_Comm_remote_group (MPI_Comm comm,
MPI_Group *group)

Accesses the remote group
associated with an
intercommunicator.

MPI_Comm_remote_size (MPI_Comm comm, int size) Determines the size of the remote
group associated with an
intercommunicator.

MPI_Comm_set_attr (MPI_Comm comm, int
comm_keyval, void *attribute_val)

Stores attribute value associated
with a key.

MPI_Comm_set_errhandler (MPI_Comm comm,
MPI_Errhandler *errhandler)

Attaches a new error handler to a
communicator.

MPI_Comm_set_name(MPI_Comm comm, char
*comm_name)

Associates a name with a
communicator.

MPI_Comm_size (MPI_Comm comm, int *size) Determines the size of the group
associated with a communicator.

Sun MPI and Sun MPI I/O Routines 63

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Comm_spawn(char *command, char *argv[], int
maxprocs, MPI_Info info, int root, MPI_Comm comm,
MPI_Comm *intercomm, int array_of_errcodes[])

Spawns a number of identical
binaries.

MPI_Comm_spawn_multiple (int count, char
*array_of_commands[], char **array_of_argv[], int
array_of_maxprocs[], MPI_Info array_of_info[], int root,
MPI_Comm comm, MPI_Comm *intercomm, int
array_of_errcodes[])

Spawns multiple binaries, or the
same binary with multiple sets of
arguments.

MPI_Comm_split (MPI_Comm comm, int color, int key,
MPI_Comm *newcomm)

Creates new communicators based
on colors and keys.

MPI_Comm_test_inter (MPI_Comm comm, int *flag) Tests whether a communicator is
an intercommunicator.

MPI_Dims_create (int nnodes, int ndims, int *dims) Creates a division of processors in
a Cartesian grid.

MPI_Errhandler_create (MPI_Handler_function
*function, MPI_Errhandler *errhandler)

Deprecated: Use instead
MPI_Comm_create_errhandler .
Creates an MPI error handler.

MPI_Errhandler_free (MPI_Errhandler *errhandler) Frees an MPI error handler.

MPI_Errhandler_get (MPI_Comm comm,
MPI_Errhandler *errhandler)

Deprecated: Use instead
MPI_Comm_get_errhandler .
Gets the error handler for a
communicator.

MPI_Errhandler_set (MPI_Comm comm,
MPI_Errhandler errhandler)

Deprecated: Use instead
MPI_Comm_set_errhandler .
Sets the error handler for a
communicator.

MPI_Error_class (int errorcode, int *errorclass) Converts an error code into an
error class.

MPI_Error_string (int errorcode, char *string, int
*resultlen)

Returns a string for a given error
code.

MPI_Finalize () Terminates MPI execution
environment.

64 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Finalized (int *flag) Checks whether MPI_Finalize
has completed.

MPI_Gather (void *sendbuf, int *sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Gathers values from a group of
processes.

MPI_Gatherv (void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int *recvcounts,
int *displs, MPI_Datatype recvtype, int root, MPI_Comm
comm)

Gathers into specified locations
from all processes in a group. Each
process may contribute a different
amount of data.

MPI_Get_address (void *location, MPI_Aint *address) Gets the address of a location in
memory.

MPI_Get_count (MPI_Status *status, MPI_Datatype
datatype, int *count)

Gets the number of top-level
elements received.

MPI_Get_elements (MPI_Status *status,
MPI_Datatype datatype, int *count)

Returns the number of basic
elements in a data type.

MPI_Get_processor_name (char *name, int
*resultlen)

Gets the name of the processor.

MPI_Get_version (int *version, int *subversion) Returns the version of the standard
corresponding to the current
implementation.

MPI_Graph_create (MPI_Comm comm_old, int
nnodes, int *index, int *edges, int reorder, MPI_Comm
*comm_graph)

Makes a new communicator to
which graph topology information
has been attached.

MPI_Graph_get (MPI_Comm comm, int maxindex, int
maxedges, int *index, int *edges)

Retrieves graph topology
information associated with a
communicator.

MPI_Graph_map (MPI_Comm comm, int nnodes, int
*index, int *edges, int *newrank)

Maps process to graph topology
information.

MPI_Graph_neighbors (MPI_Comm comm, int rank,
int maxneighbors, int *neighbors)

Returns the neighbors of a node
associated with a graph topology.

MPI_Graph_neighbors_count (MPI_Comm comm,
int rank, int *nneighbors)

Returns the number of neighbors
of a node associated with a graph
topology.

Sun MPI and Sun MPI I/O Routines 65

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Graphdims_get (MPI_Comm comm, int *nnodes,
int *nedges)

Retrieves graph topology
information associated with a
communicator.

MPI_Grequest_complete (MPI_Request request) Reports that a generalized request
is complete.

MPI_Grequest_start (MPI_Grequest_query_function
*query_fn, MPI_Grequest_free_function *free_fn,
MPI_Greqeust_cancel_function *cancel_fn, void
*extra_state, MPI_Request *request)

Starts a generalized request and
returns a handle to it.

MPI_Group_c2f (MPI_Group group) Translates a C handle into a
Fortran handle.

MPI_Group_compare (MPI_Group group1,
MPI_Group group2, int *result)

Compares two groups.

MPI_Group_difference (MPI_Group group1,
MPI_Group group2, MPI_Group *group_out)

Makes a group from the difference
of two groups.

MPI_Group_excl (MPI_Group group, int n, int *ranks,
MPI_Group *newgroup)

Produces a group by reordering an
existing group and taking only
unlisted members.

MPI_Group_f2c (MPI_Fint group) Translates a Fortran handle into a
C handle.

MPI_Group_free (MPI_Group *group) Frees a group.

MPI_Group_incl (MPI_Group group, int n, int *ranks,
MPI_Group *group_out)

Produces a group by reordering an
existing group and taking only
listed members.

MPI_Group_intersection (MPI_Group group1,
MPI_Group group2, MPI_Group *group_out)

Produces a group at the
intersection of two existing groups.

MPI_Group_range_excl (MPI_Group group, int n,
int ranges[][3], MPI_Group *newgroup)

Produces a group by excluding
ranges of processes from an
existing group.

MPI_Group_range_incl (MPI_Group group, int n,
int ranges[][3], MPI_Group *newgroup)

Creates a new group from ranges
of ranks in an existing group.

66 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Group_rank (MPI_Group group, int *rank) Returns the rank of this process in
the given group.

MPI_Group_size (MPI_Group group, int *size) Returns the size of a group.

MPI_Group_translate_ranks (MPI_Group group1,
int n, int *ranks1, MPI_Group group2, int *ranks2)

Translates the ranks of processes in
one group to those in another
group.

MPI_Group_union (MPI_Group group1, MPI_Group
group2, MPI_Group *group_out)

Produces a group by combining
two groups.

MPI_Ibsend (void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Starts a nonblocking buffered send.

MPI_Info_c2f (MPI_Info info) Translates a C handle into a
Fortran handle.

MPI_Info_create (MPI_Info *info) Creates a new info object.

MPI_Info_delete (MPI_Info *info, char *key, char
*value)

Deletes a key/value pair from info.

MPI_Info_dup (MPI_Info info, MPI_Info *newinfo) Duplicates an info object.

MPI_Info_f2c (MPI_Fint info) Translates a Fortran handle into a
C handle.

MPI_Info_free (MPI_Info *info) Frees info and sets it to
MPI_INFO_NULL.

MPI_Info_get (MPI_Info *info, char *key, char *value) Retrieves key value for an info
object.

MPI_Info_get_nkeys (MPI_Info info, int *nkeys) Returns the number of currently
defined keys in info.

MPI_Info_get_nthkey (MPI_Info info, int n, char
*key)

Returns the nth defined key in info.

MPI_Info_get_valuelen (MPI_Info info, char *key,
int *valuelen, int *flag)

Retrieves the length of the key
value associated with an info
object.

Sun MPI and Sun MPI I/O Routines 67

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Info_set (MPI_Info *info, char *key, char *value) Adds a key/value pair to info.

MPI_Init (int *argc, char ***argv) Initializes the MPI execution
environment.

MPI_Initialized (int *flag) Indicates whether MPI_Init has
been called.

MPI_Intercomm_create (MPI_Comm local_comm, int
local_leader, MPI_Comm peer_comm, int remote_leader,
int tag, MPI_Comm *newintercomm)

Creates an intercommunicator.

MPI_Intercomm_merge (MPI_Comm intercomm, int
high, MPI_Comm *newintracomm

Creates an intracommunicator from
an intercommunicator.

MPI_Iprobe (int source, int tag, MPI_Comm comm, int
*flag, MPI_Status *status)

Nonblocking test for a message.

MPI_Irecv (void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Request *request)

Begins a nonblocking receive.

MPI_Irsend (void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Begins a nonblocking ready send.

MPI_Isend (void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Begins a nonblocking send.

MPI_Issend (void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Begins a nonblocking synchronous
send.

MPI_Keyval_create (MPI_Copy_function *copy_fn,
MPI_Delete_function *delete_fn, int *keyval, void
*extra_state)

Deprecated: Use instead
MPI_Comm_create_keyval .
Generates a new attribute key.

MPI_Keyval_free (int *keyval) Deprecated: Use instead
MPI_Comm_free_keyval . Frees
attribute key for communicator
cache attribute.

68 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Op_c2f (MPI_Op op) Translates a C handle into a
Fortran handle.

MPI_Op_create (MPI_User_function *function, int
commute, MPI_Op *op)

Creates a user-defined combination
function handle.

MPI_Op_f2c (MPI_Fint op) Translates a Fortran handle into a
C handle.

MPI_Op_free (MPI_Op *op) Frees a user-defined combination
function handle.

MPI_Open_port (MPI_Info info, char *port_name) Establishes a network address for a
server to accept connections from
clients.

MPI_Pack (void *inbuf, int incount, MPI_Datatype
datatype, void *outbuf, int outsize, int *position,
MPI_Comm comm)

Packs data of a given data type
into contiguous memory.

MPI_Pack_size (int incount, MPI_Datatype datatype,
MPI_Comm comm, int *size)

Returns the upper bound on the
amount of space needed to pack a
message.

MPI_Pcontrol (int level, ...) Controls profiling.

MPI_Probe (int source, int tag, MPI_Comm comm,
MPI_Status *status)

Blocking test for a message.

MPI_Query_thread (int *provided) Returns the current level of thread
support.

MPI_Recv (void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status
*status)

Performs a standard receive.

MPI_Recv_init (void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Request *request)

Builds a persistent receive request
handle.

MPI_Reduce (void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root,
MPI_Comm comm)

Reduces values on all processes to
a single value.

Sun MPI and Sun MPI I/O Routines 69

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Reduce_scatter (void *sendbuf, void *recvbuf,
int *recvcounts, MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)

Combines values and scatters the
results.

MPI_Request_c2f (MPI_Request request) Translates a C handle into a
Fortran handle.

MPI_Request_f2c (MPI_Fint request) Translates a Fortran handle into a
C handle.

MPI_Request_free (MPI_Request *request) Frees a communication request
object.

MPI_Request_get_status (MPI_Request request, int
*flag, MPI_Status *status)

Accesses information associated
with a request without freeing the
request.

MPI_Rsend (void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

Performs a ready send.

MPI_Rsend_init (void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Builds a persistent ready send
request handle.

MPI_Scan (void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Computes the scan (partial
reductions) of data on a collection
of processes.

MPI_Scatter (void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Sends data from one task to all
other processes in a group.

MPI_Scatterv (void *sendbuf, int *sendcounts, int
*displs, MPI_Datatype sendtype, void *recvbuf, int
recvcount, MPI_Datatype recvtype, int root, MPI_Comm
comm)

Scatters a buffer in parts to all
processes in a group.

MPI_Send (int *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Performs a standard send.

MPI_Send_init (void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Builds a persistent send request
handle.

70 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Sendrecv (void *sendbuf, int sendcount,
MPI_Datatype sendtype, int dest, int sendtag, void
*recvbuf, int recvcount, MPI_Datatype recvtype, int
source, int recvtag, MPI_Comm comm, MPI_Status
*status)

Sends and receives two messages
at the same time.

MPI_Sendrecv_replace (void *buf, int count,
MPI_Datatype datatype, int dest, int sendtag, int source,
int recvtag, MPI_Comm comm, MPI_Status *status)

Sends and receives using a single
buffer.

MPI_Ssend (void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

Performs a synchronous send.

MPI_Ssend_init (void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Builds a persistent synchronous
send request handle.

MPI_Start (MPI_Request *request) Initiates a communication using a
persistent request handle.

MPI_Startall (int count, MPI_Request
array_of_requests[])

Starts a collection of requests.

MPI_Status_c2f (MPI_Status *c_status, MPI_Fint
*f_status)

Translates a C status into a Fortran
status.

MPI_Status_f2c (MPI_Fint *f_status, MPI_Status
*c_status)

Translates a Fortran status into a C
status.

MPI_Status_set_cancelled (MPI_Status *status,
int flag)

Sets status to indicate a request has
been cancelled.

MPI_Status_set_elements (MPI_Status *status,
MPI_Datatype datatype, int count)

Modifies opaque part of status to
allow MPI_Get_elements to
return count.

MPI_Test (MPI_Request *request, int *flag, MPI_Status
*status)

Tests for the completion of a send
or receive.

MPI_Test_cancelled (MPI_Status *status, int *flag) Tests whether a request was
canceled.

Sun MPI and Sun MPI I/O Routines 71

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Testall (int count, MPI_Request
array_of_requests, int *flag, MPI_Status
*array_of_statuses)

Tests for the completion of all of
the given communications.

MPI_Testany (int count, MPI_Request
array_of_requests[], int *index, int *flag, MPI_Status
status)

Tests for completion of any of the
given communications.

MPI_Testsome (int incount, MPI_Request
array_of_requests[], int *outcount, int *array_of_indices,
MPI_Status *array_of_statuses)

Tests for some given
communications to complete.

MPI_Topo_test (MPI_Comm comm, int *top_type) Determines the type of topology (if
any) associated with a
communicator.

MPI_Type_c2f (MPI_Datatype datatype) Translates a C handle into a
Fortran handle.

MPI_Type_commit (MPI_Datatype *datatype) Commits a data type.

MPI_Type_contiguous (int count, MPI_Datatype
oldtype, MPI_Datatype *newtype)

Creates a contiguous data type.

MPI_Type_create_darray (int size, int rank, int
ndims, int array_of_gsizes[], int array_of_distribs[], int
array_of_dargs[], int array_of_psizes[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Creates an array of data types.

MPI_Type_create_hindexed (int count, int
array_of_blocklengths, MPI_Aint array_of_displacements[],
MPI_Datatype oldtype, MPI_Datatype *newtype)

Creates an indexed data type with
offsets in bytes.

MPI_Type_create_hvector (int count, int
blocklength, MPI_Aint stride, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Creates a vector (strided) data type
with offset in bytes.

MPI_Type_create_indexed_block (int count, int
blocklength, int array_of_displacements[], MPI_Datatype
oldtype, MPI_Datatype *newtype)

Creates an indexed block.

MPI_Type_create_keyval (MPI_Type_copy_attr_function
*type_copy_attr_fn, MPI_Type_delete_attr_function
*type_delete_attr_fn, int *type_keyval, void *extra_state)

Generates a new attribute key.

72 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Type_create_resized (MPI_Datatype oldtype,
MPI_Aint lb, MPI_Aint extent, MPI_Datatype *newtype)

Returns a new data type with new
extent and upper and lower
bounds.

MPI_Type_create_struct (int count, int
array_of_blocklengths[], MPI_Aint
array_of_displacements[], MPI_Datatype array_of_types[],
MPI_Datatype *newtype)

Creates a struct data type.

MPI_Type_create_subarray (int ndims, int
array_of_sizes[], int array_of_subsizes[], int
array_of_starts[], int order, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Creates a data type describing a
subarray of an array.

MPI_Type_delete_attr (MPI_Datatype type, int
type_keyval)

Deletes attribute value associated
with a key.

MPI_Type_dup (MPI_Datatype type, MPI_Datatype
*newtype)

Duplicates a data type with
associated key values.

MPI_Type_extent (MPI_Datatype datatype, MPI_Aint
*extent)

Deprecated: Use instead
MPI_Type_get_extent . Returns
the extent of a data type, the
difference between the upper and
lower bounds of the data type.

MPI_Type_f2c (MPI_Fint datatype) Translates a Fortran handle into a
C handle.

MPI_Type_free (MPI_Datatype *datatype) Frees a data type.

MPI_Type_free_keyval (int *type_keyval)

MPI_Type_get_attr (MPI_Datatype type, int
type_keyval, void *attribute_val, int *flag)

Returns the attribute associated
with a data type.

MPI_Type_get_contents (MPI_Datatype datatype,
int max_integers, int max_addresses, int max_datatypes,
int array_of_integers[], MPI_Aint array_of_addresses[],
MPI_Datatype array_of_datatypes[])

Returns information about
arguments used in creation of a
data type.

MPI_Type_get_envelope (MPI_Datatype datatype,
int *num_integers, int *num_addresses, int
*num_datatypes, int *combiner)

Returns information about input
arguments associated with a data
type.

Sun MPI and Sun MPI I/O Routines 73

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Type_get_extent (MPI_Datatype datatype,
MPI_Aint *lb, MPI_Aint *extent)

Returns the lower bound and
extent of a data type.

MPI_Type_get_name (MPI_Datatype type, char
*type_name, int *resultlen)

Gets the name of a data type.

MPI_Type_get_true_extent (MPI_Datatype
datatype, MPI_Aint *true_lb, MPI_Aint *true_extent)

Returns the true lower bound and
extent of a data type’s
corresponding typemap, ignoring
MPI_UB and MPI_LB markers.

MPI_Type_hindexed (int count, int
*array_of_blocklengths, MPI_Aint *array_of_displacements,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Deprecated: Use instead
MPI_Type_create_hindexed .
Creates an indexed data type with
offsets in bytes.

MPI_Type_hvector (int count, int blocklength,
MPI_Aint stride, MPI_Datatype oldtype, MPI_Datatype
*newtype)

Deprecated: Use instead
MPI_Type_create_hvector .
Creates a vector (strided) data type
with offset in bytes.

MPI_Type_indexed (int count, int
*array_of_blocklengths, int *array_of_displacements,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Creates an indexed data type.

MPI_Type_lb (MPI_Datatype datatype, MPI_Aint
*displacement)

Deprecated: Use instead
MPI_Type_get_extent . Returns
the lower bound of a data type.

MPI_Type_set_attr (MPI_Datatype type, int
type_keyval, void *attribute_val)

Stores attribute value associated
with a key.

MPI_Type_set_name (MPI_Comm comm, char
*comm_name)

Sets the name of a data type.

MPI_Type_size (MPI_Datatype datatype, int *size) Returns the number of bytes
occupied by entries in the data
type.

MPI_Type_struct (int count, int
*array_of_blocklengths, MPI_Aint *array_of_displacements,
MPI_Datatype *array_of_types, MPI_Datatype *newtype)

Deprecated: Use instead
MPI_Type_create_struct .
Creates a struct data type.

74 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE A–1 Sun MPI Routines (continued)

Routine and C Syntax Description

MPI_Type_ub (MPI_Datatype datatype, MPI_Aint
*displacement)

Deprecated: Use instead
MPI_Type_get_extent . Returns
the upper bound of a data type.

MPI_Type_vector (int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Creates a vector (strided) data type.

MPI_Unpack (void *inbuf, int insize, int *position, void
*outbuf, int outcount, MPI_Datatype datatype,
MPI_Comm comm)

Unpacks a data type into
contiguous memory.

MPI_Wait (MPI_Request *request, MPI_Status *status) Waits for an MPI send or receive to
complete.

MPI_Waitall (int count, MPI_Request
array_of_requests[], MPI_Status array_of_statuses[])

Waits for all of the given
communications to complete.

MPI_Waitany (int count, MPI_Request
array_of_requests[], int *index, MPI_Status *status)

Waits for any of the given
communications to complete.

MPI_Waitsome (int incount, MPI_Request
array_of_requests[], int *outcount, int array_of_indices[],
MPI_Status array_of_statuses[])

Waits for some given
communications to complete.

double MPI_Wtick () Returns the resolution of
MPI_Wtime .

double MPI_Wtime () Returns an elapsed time on the
calling processor.

Sun MPI I/O Routines
Table A–2 lists the Sun MPI I/O routines in alphabetical order. The following
sections list the routines by functional category.

Sun MPI and Sun MPI I/O Routines 75

File Manipulation

Collective coordination Noncollective coordination

MPI_File_open

MPI_File_close

MPI_File_set_size

MPI_File_preallocate

MPI_File_delete

MPI_File_get_size

MPI_File_get_group

MPI_File_get_amode

File Info
Noncollective coordination Collective coordination

MPI_File_get_info MPI_File_set_info

Data access

Data Access With Explicit Offsets

Synchronism Noncollective coordination Collective coordination

Blocking
MPI_File_read_at

MPI_File_write_at

MPI_File_read_at_all

MPI_File_write_at_all

Nonblocking or split
collective

MPI_File_iread_at

MPI_File_iwrite_at

MPI_File_read_at_all_begin

MPI_File_read_at_all_end

MPI_File_write_at_all_begin

MPI_File_write_at_all_end

76 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

Data Access With Individual File Pointers

Synchronism Noncollective coordination Collective coordination

Blocking
MPI_File_read

MPI_File_write

MPI_File_read_all

MPI_File_write_all

Nonblocking or split
collective

MPI_File_iread

MPI_File_iwrite

MPI_File_read_all_begin

MPI_File_read_all_end

MPI_File_write_all_begin

MPI_File_write_all_end

Data Access With Shared File Pointers

Synchronism Noncollective coordination Collective coordination

Blocking
MPI_File_read_shared

MPI_File_write_shared

MPI_File_read_ordered

MPI_File_write_ordered

MPI_File_seek_shared

MPI_File_get_position_shared

Nonblocking or split
collective

MPI_File_iread_shared

MPI_File_iwrite_shared

MPI_File_read_ordered_begin

MPI_File_read_ordered_end

MPI_File_write_ordered_begin

MPI_File_write_ordered_end

Pointer Manipulation
MPI_File_seek
MPI_File_get_position
MPI_File_get_byte_offset

File Interoperability
MPI_Register_datarep
MPI_File_get_type_extent

Sun MPI and Sun MPI I/O Routines 77

File Consistency and Semantics
MPI_File_set_atomicity
MPI_File_get_atomicity
MPI_File_sync

Handle Translation
MPI_File_f2c
MPI_File_c2f

MPI I/O Routines: Alphabetical Listing

TABLE A–2 Sun MPI I/O Routines

Routine and C Syntax Description

MPI_File_c2f (MPI_File file) Translates a C handle into a
Fortran handle.

MPI_File_close (MPI_File *fh) Closes a file (collective).

MPI_File_create_errhandler (MPI_File_errhandler_fn
*function, MPI_Errhandler *errhandler)

Creates an MPI-style error handler
that can be attached to a file.

MPI_File_delete (char *filename, MPI_Info info) Deletes a file.

MPI_File_f2c (MPI_File file) Translates a Fortran handle into a
C handle.

MPI_File_get_amode (MPI_File fh, int *amode) Returns mode associated with open
file.

MPI_File_get_atomicity (MPI_File fh, int *flag) Returns current consistency
semantics for data-access
operations.

MPI_File_get_byte_offset (MPI_File fh,
MPI_Offset offset, MPI_Offset *disp)

Converts a view-relative offset into
an absolute byte position.

MPI_File_get_errhandler (MPI_Comm file,
MPI_Errhandler *errhandler)

Gets the error handler for a file.

MPI_File_get_group (MPI_File fh, MPI_Group
*group)

Returns the process group of file.

78 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE A–2 Sun MPI I/O Routines (continued)

Routine and C Syntax Description

MPI_File_get_info (MPI_File fh, MPI_Info
*info_used)

Returns a new info object
containing hints.

MPI_File_get_position (MPI_File fh, MPI_Offset
*offset)

Returns current position of
individual file pointer.

MPI_File_get_position_shared (MPI_File fh,
MPI_Offset *offset)

Returns current position of the
shared file pointer (collective).

MPI_File_get_size (MPI_File fh, MPI_Offset *size) Returns current size of file.

MPI_File_get_type_extent (MPI_File fh,
MPI_Datatype datatype, MPI_Aint *extent)

Returns the extent of the data type
in a file.

MPI_File_get_view (MPI_File fh, MPI_Offset *disp,
MPI_Datatype *etype, MPI_Datatype *filetype, char
*datarep)

Returns process’s view of data in
file.

MPI_File_iread (MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

Reads a file starting at the location
specified by the individual file
pointer (nonblocking,
noncollective).

MPI_File_iread_at (MPI_File fh, MPI_Offset offset,
void *buf, int count, MPI_Datatype datatype,
MPI_Request *request)

Reads a file at an explicitly
specified offset (nonblocking,
noncollective).

MPI_File_iread_shared (MPI_File fh, void *buf, int
count, MPI_Datatype datatype, MPI_Request *request)

Reads a file using the shared file
pointer (nonblocking,
noncollective).

MPI_File_iwrite (MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

Writes a file starting at the location
specified by the individual file
pointer (nonblocking,
noncollective).

MPI_File_iwrite_at (MPI_File fh, MPI_Offset offset,
void *buf, int count, MPI_Datatype datatype,
MPI_Request *request)

Writes a file at an explicitly
specified offset (nonblocking,
noncollective).

MPI_File_iwrite_shared (MPI_File fh, void *buf,
int count, MPI_Datatype datatype, MPI_Request
*request)

Writes a file using the shared file
pointer (nonblocking,
noncollective).

Sun MPI and Sun MPI I/O Routines 79

TABLE A–2 Sun MPI I/O Routines (continued)

Routine and C Syntax Description

MPI_File_open (MPI_Comm comm, char *filename,
init amode, MPI_Info info, MPI_File *fh)

Opens a file (collective).

MPI_File_preallocate (MPI_File fh, MPI_Offset
size)

Preallocates storage space for a
portion of a file (collective).

MPI_File_read (MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

Reads a file starting at the location
specified by the individual file
pointer.

MPI_File_read_all (MPI_File fh, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

Reads a file starting at the locations
specified by individual file pointers
(collective).

MPI_File_read_all_begin (MPI_File fh, void *buf,
int count, MPI_Datatype datatype)

Reads a file starting at the locations
specified by individual file
pointers; beginning part of a split
collective routine (nonblocking).

MPI_File_read_all_end (MPI_File fh, void *buf,
MPI_Status *status)

Reads a file starting at the locations
specified by individual file
pointers; ending part of a split
collective routine (blocking).

MPI_File_read_at (MPI_File fh, MPI_Offset offset,
void *buf, int count, MPI_Datatype datatype,
MPI_Status *status)

Reads a file at an explicitly
specified offset.

MPI_File_read_at_all (MPI_File fh, MPI_Offset
offset, void *buf, int count, MPI_Datatype datatype,
MPI_Status *status)

Reads a file at explicitly specified
offsets (collective).

MPI_File_read_at_all_begin (MPI_File fh,
MPI_Offset offset, void *buf, int count, MPI_Datatype
datatype)

Reads a file at explicitly specified
offsets; beginning part of a split
collective routine (nonblocking).

MPI_File_read_at_all_end (MPI_File fh, void
*buf, MPI_Status *status)

Reads a file at explicitly specified
offsets; ending part of a split
collective routine (blocking).

MPI_File_read_ordered (MPI_File fh, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

Reads a file at a location specified
by a shared file pointer (collective).

80 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE A–2 Sun MPI I/O Routines (continued)

Routine and C Syntax Description

MPI_File_read_ordered_begin (MPI_File fh, void
*buf, int count, MPI_Datatype datatype)

Reads a file at a location specified
by a shared file pointer; beginning
part of a split collective routine
(nonblocking).

MPI_File_read_ordered_end (MPI_File fh, void
*buf, MPI_Status *status)

Reads a file at a location specified
by a shared file pointer; ending
part of a split collective routine
(blocking).

MPI_File_read_shared (MPI_File fh, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

Reads a file using the shared file
pointer (blocking, noncollective).

MPI_File_seek (MPI_File fh, MPI_Offset offset, int
whence)

Updates individual file pointers.

MPI_File_seek_shared (MPI_File fh, MPI_Offset
offset, int whence)

Updates the global shared file
pointer (collective).

MPI_File_set_atomicity (MPI_File fh, int flag) Sets consistency semantics for
data-access operations (collective).

MPI_File_set_errhandler (MPI_File file,
MPI_Errhandler errhandler)

Sets the error handler for a file.

MPI_File_set_info (MPI_File fh, MPI_Info info) Sets new values for hints
(collective).

MPI_File_set_size (MPI_File fh, MPI_Offset size) Resizes a file (collective).

MPI_File_set_view (MPI_File fh, MPI_Offset disp,
MPI_Datatype etype, MPI_Datatype filetype, char
*datarep, MPI_Info info)

Changes process’s view of data in
file (collective).

MPI_File_sync (MPI_File fh) Makes semantics consistent for
data-access operations (collective).

MPI_File_write (MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

Writes a file starting at the location
specified by the individual file
pointer.

MPI_File_write_all (MPI_File fh, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

Writes a file starting at the
locations specified by individual
file pointers (collective).

Sun MPI and Sun MPI I/O Routines 81

TABLE A–2 Sun MPI I/O Routines (continued)

Routine and C Syntax Description

MPI_File_write_all_begin (MPI_File fh, void
*buf, int count, MPI_Datatype datatype)

Writes a file starting at the locations
specified by individual file
pointers; beginning part of a split
collective routine (nonblocking).

MPI_File_write_all_end (MPI_File fh, void *buf,
MPI_Status *status)

Writes a file starting at the
locations specified by individual
file pointers; ending part of a split
collective routine (blocking).

MPI_File_write_at (MPI_File fh, MPI_Offset offset,
void *buf, int count, MPI_Datatype datatype,
MPI_Status *status)

Writes a file at an explicitly
specified offset.

MPI_File_write_at_all (MPI_File fh, MPI_Offset
offset, void *buf, int count, MPI_Datatype datatype,
MPI_Status *status)

Writes a file at explicitly specified
offsets (collective).

MPI_File_write_at_all_begin (MPI_File fh,
MPI_Offset offset, void *buf, int count, MPI_Datatype
datatype)

Writes a file at explicitly specified
offsets; beginning part of a split
collective routine (nonblocking).

MPI_File_write_at_all_end (MPI_File fh, void
*buf, MPI_Status *status)

Writes a file at explicitly specified
offsets; ending part of a split
collective routine (blocking).

MPI_File_write_ordered (MPI_File fh, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)

Writes a file at a location specified
by a shared file pointer (collective).

MPI_File_write_ordered_begin (MPI_File fh,
void *buf, int count, MPI_Datatype datatype)

Writes a file at a location specified
by a shared file pointer; beginning
part of a split collective routine
(nonblocking).

MPI_File_write_ordered_end (MPI_File fh, void
*buf, MPI_Status *status)

Writes a file at a location specified
by a shared file pointer; ending
part of a split collective routine
(blocking).

82 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE A–2 Sun MPI I/O Routines (continued)

Routine and C Syntax Description

MPI_File_write_shared (MPI_File fh, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

Writes a file using the shared file
pointer (blocking, noncollective).

MPI_Register_datarep (char *datarep,

MPI_Datarep_conversion_function *read_conversion_fn,

MPI_Datarep_conversion_function
*write_conversion_fn, MPI_Datarep_extent_function
*dtype_file_extent_fn, void *extra_state)

Defines data representation.

Sun MPI and Sun MPI I/O Routines 83

84 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

APPENDIX B

Troubleshooting

This appendix describes some common problem situations, resulting error messages,
and suggestions for fixing the problems. Sun MPI error reporting, including I/O,
follows the MPI-2 standard. By default, errors are reported in the form of standard
error classes. These classes and their meanings are listed in Table B–1 (for non-I/O
MPI) and Table B–2 (for MPI I/O) and are also available on the MPI man page.

Three predefined error handlers are available in Sun MPI 4.0:

� MPI_ERRORS_RETURN– The default, returns an error code if an error occurs.

� MPI_ERRORS_ARE_FATAL– I/O errors are fatal, and no error code is returned.

� MPI_THROW_EXCEPTION– A special error handler to be used only with C++.

MPI Messages
You can make changes to and get information about the error handler using any of
the following routines:

� MPI_Comm_create_errhandler

� MPI_Comm_get_errhandler

� MPI_Comm_set_errhandler

Messages resulting from an MPI program fall into two categories:

� Error messages – Error messages stem from within MPI. Usually an error message
explains why your program cannot complete, and the program aborts.

� Warning messages – Warnings stem from the environment in which you are
running your MPI program and are usually sent by MPI_Init . They are not
associated with an aborted program, that is, programs continue to run despite
warning messages.

85

Error Messages
Sun MPI error messages use a standard format:

[x y z] Error in function_name: errclass_string:intern(a): description: unixerrstring

where

� [x y z] is the process communication identifier, and:

� x is the job id (or jid).

� y is the name of the communicator if a name exists; otherwise it is the address
of the opaque object.

� z is the rank of the process.

The process communication identifier is present in every error message.

� function_name is the name of the associated MPI function. It is present in every
error message.

� errclass_string is the string associated with the MPI error class. It is present in
every error message.

� intern is an internal function. It is optional.

� a is a system call, if one is the cause of the error. It is optional.

� description is a description of the error. It is optional.

� unixerrstring is the UNIX error string that describes system call a. It is optional.

Warning Messages
Sun MPI warning messages also use a standard format:

[x y z] Warning message

where

� message is a description of the error.

Standard Error Classes
Listed below are the error return classes you may encounter in your MPI programs.
Error values may also be found in mpi.h (for C), mpif.h (for Fortran), and
mpi++.h (for C++).

86 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE B–1 Sun MPI Standard Error Classes

Error Code ValueMeaning

MPI_SUCCESS 0Successful return code.

MPI_ERR_BUFFER 1Invalid buffer pointer.

MPI_ERR_COUNT 2Invalid count argument.

MPI_ERR_TYPE 3Invalid datatype argument.

MPI_ERR_TAG 4Invalid tag argument.

MPI_ERR_COMM 5Invalid communicator.

MPI_ERR_RANK 6Invalid rank.

MPI_ERR_ROOT 7Invalid root.

MPI_ERR_GROUP 8Null group passed to function.

MPI_ERR_OP 9Invalid operation.

MPI_ERR_TOPOLOGY 10Invalid topology.

MPI_ERR_DIMS 11Illegal dimension argument.

MPI_ERR_ARG 12Invalid argument.

MPI_ERR_UNKNOWN 13Unknown error.

MPI_ERR_TRUNCATE 14Message truncated on receive.

MPI_ERR_OTHER 15Other error; use Error_string .

MPI_ERR_INTERN 16Internal error code.

MPI_ERR_IN_STATUS 17Look in status for error value.

MPI_ERR_PENDING 18Pending request.

Troubleshooting 87

TABLE B–1 Sun MPI Standard Error Classes (continued)

Error Code ValueMeaning

MPI_ERR_REQUEST 19Illegal MPI_Request handle.

MPI_ERR_KEYVAL 36Illegal key value.

MPI_ERR_INFO 37Invalid info object.

MPI_ERR_INFO_KEY 38Illegal info key.

MPI_ERR_INFO_NOKEY 39No such key.

MPI_ERR_INFO_VALUE 40Illegal info value.

MPI_ERR_TIMEDOUT 41Timed out.

MPI_ERR_RESOURCES 42Out of resources.

MPI_ERR_TRANSPORT 43Transport layer error.

MPI_ERR_HANDSHAKE 44Error accepting/connecting.

MPI_ERR_SPAWN 45Error spawning.

MPI_ERR_LASTCODE 46Last error code.

MPI I/O message are listed separately, in Table B–2.

MPI I/O Error Handling
Sun MPI I/O error reporting follows the MPI-2 standard. By default, errors are
reported in the form of standard error codes (found in
/opt/SUNWhpc/include/mpi.h). Error classes and their meanings are listed in
Table B–2. They can also be found in mpif.h (for Fortran) and mpi++.h (for C++).

88 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

You can change the default error handler by specifying MPI_FILE_NULL as the file
handle with the routine MPI_File_set_errhandler , even no file is currently
open. Or, you can use the same routine to change a specific file’s error handler.

TABLE B–2 Sun MPI I/O Error Classes

Error Class ValueMeaning

MPI_ERR_FILE 20Bad file handle.

MPI_ERR_NOT_SAME 21Collective argument not identical on all
processes.

MPI_ERR_AMODE 22Unsupported amode passed to open.

MPI_ERR_UNSUPPORTED_DATAREP 23Unsupported datarep passed to
MPI_File_set_view .

MPI_ERR_UNSUPPORTED_OPERATION 24Unsupported operation, such as seeking on a
file that supports only sequential access.

MPI_ERR_NO_SUCH_FILE 25File (or directory) does not exist.

MPI_ERR_FILE_EXISTS 26File exists.

MPI_ERR_BAD_FILE 27Invalid file name (for example, path name
too long).

MPI_ERR_ACCESS 28Permission denied.

MPI_ERR_NO_SPACE 29Not enough space.

MPI_ERR_QUOTA 30Quota exceeded.

MPI_ERR_READ_ONLY 31Read-only file system.

MPI_ERR_FILE_IN_USE 32File operation could not be completed, as the
file is currently open by some process.

MPI_ERR_DUP_DATAREP 33Conversion functions could not be registered
because a data representation identifier that
was already defined was passed to
MPI_REGISTER_DATAREP.

Troubleshooting 89

TABLE B–2 Sun MPI I/O Error Classes (continued)

Error Class ValueMeaning

MPI_ERR_CONVERSION 34An error occurred in a user-supplied
data-conversion function.

MPI_ERR_IO 35I/O error.

MPI_ERR_INFO 37Invalid info object.

MPI_ERR_INFO_KEY 38Illegal info key.

MPI_ERR_INFO_NOKEY 39No such key .

MPI_ERR_INFO_VALUE 40Illegal info value.

MPI_ERR_LASTCODE 46Last error code.

90 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

APPENDIX C

TNF Probes

Through Prism, you can use Trace Normal Form (TNF), an extensible system for
event-based instrumentation, to analyze the performance of your Sun MPI 4.0
programs. The TNF-instrumented libraries included with Sun MPI (see “Choosing a
Library Path” on page 27) include probes for most of the MPI and MPI I/O routines,
including some specific arguments. These probes are also categorized into specific
groups, so that you can analyze the performance of particular types of routines. For
information about using Prism to take advantage of these probes, see the Prism 6.0
User’s Guide.

This appendix includes all the probes, including their arguments and associated
groups, both for MPI (Table C–1, below) and for MPI I/O (Table C–2). The follwing
figure depicts the relationships among the various probe groups.

Figure C–1 TNF Probe Groups for Sun MPI, Including I/O

91

TNF Probes for MPI
Each MPI routine is associated with two TNF probes: one ending in _start , and
one ending in _end . Probes are also included for some specific arguments, most of
which are defined in the MPI standard and described in the man pages included
with Sun MPI 4.0. Four of the arguments, however, are not mentioned in the
standard or man pages:

� bytes – The number of bytes sent or received by an MPI process. See the next
section for more information about the bytes argument.

� ctxt – The context id is a number assigned to a particular communicator. The
processes in a given communicator may be associated with only one context id.
You can determine the context id associated with a communicator using either the
MPI_Comm_set_name_end or the MPI_Comm_get_name_end probe.

� newctxt – The context id associated with a communicator that is returned as a
newcommor comm_out argument.

� request – An integer that uniquely refers to a request object. For Fortran calls,
this integer is equal to the request-handle argument.

The bytes Argument
The meaning of the bytes argument varies slightly depending on the situation. Here
is some general information for different types of sends and receives, followed by
some examples of how the byte argument works with them.

� point-to-point blocking sends – The start probes for routines that initiate
point-to-point blocking sends report the number of bytes to be sent. These routines
are:

� MPI_Bsend

� MPI_Rsend

� MPI_Send

� MPI_Ssend

� MPI_Sendrecv

� MPI_Sendrecv_replace

� point-to-point nonblocking sends – The end probes for routines that initiate
point-to-point nonblocking sends report the number of bytes to be sent. These
routines are:

� MPI_Bsend_init

� MPI_Ibsend

92 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

� MPI_Irsend

� MPI_Isend

� MPI_Issend

� MPI_Rsend_init

� MPI_Send_init

� MPI_Ssend_init

� point-to-point receives – The end probes for routines that terminate or could
terminate point-to-point nonblocking sends report the number of bytes actually
received. These routines are:

� MPI_Iprobe

� MPI_Probe

� MPI_Recv

� MPI_Test

� MPI_Testall

� MPI_Testany

� MPI_Testsome

� MPI_Wait

� MPI_Waitall

� MPI_Waitany

� MPI_Waitsome

� MPI_Sendrecv

� MPI_Sendrecv_replace

� collectives – The start probes for collective routines report the number of bytes to
be sent from an MPI process and the number to be received at the process. Such
byte counts are independent of the algorithm used. For example, the number of
bytes sent from the root in a broadcast is given as the number of bytes in the
broadcast message, regardless of whether the root sends this message multiple
times as part of a binary-tree fan-out. These collective routines are:

� MPI_Allgather , MPI_Allgatherv

sendbytes – Number of bytes to be sent from this process.

recvbytes – Total number of bytes to be received at any process from all processes.

� MPI_Allreduce , MPI_Reduce , MPI_Reduce_scatter

bytes – Number of bytes on any process to be reduced.

� MPI_Alltoall , MPI_Alltoallv

sendbytes – Total number of bytes to be sent from this process to all processes.

recvbytes – Total number of bytes to be received at this process from all processes.

TNF Probes 93

� MPI_Bcast

bytes – Number of bytes to be broadcast.

� MPI_Gather , MPI_Gatherv

sendbytes – Root reports total number of bytes to be sent; other processes report 0.

recvbytes – Root reports total number of bytes to be received; other processes
report 0.

� MPI_Scan

bytes – Number of bytes contributed by any process.

� MPI_Scatter , MPI_Scatterv

sendbytes – Root reports total number of bytes to be sent; other processes report 0.

recvbytes – Number of bytes to be received at this process from the root.

� pack and unpack – The start probes for these routines report the number of bytes
packed or unpaced. These routines are:

� MPI_Pack

� MPI_Unpack

Examples:
� MPI_Send

call MPI_Send(x,m,MPI_REAL8,...)

Probe mpi_send_start reports that 8*mbytes are to be sent.

� MPI_Recv

call MPI_Recv(x,n,MPI_REAL8,...)

Probe mpi_recv_end reports the number of bytes that were actually received,
which must be at most 8*n.

� MPI_Sendrecv

call MPI_Sendrecv(x,m,MPI_REAL8,...,y,n,MPI_REAL8,...)

Probe mpi_sendrecv_start reports that 8*mbytes are to be sent, and probe
mpi_sendrecv_end reports the number of bytes that were actually received, which
must be at most 8*n.

� MPI_Irecv , MPI_Wait

integer req
call MPI_Irecv(x,n,MPI_REAL8,...,req,...)
call MPI_Wait(req,...)

Probe mpi_wait_end reports the number of bytes that were actually received,
which must be at most 8*n.

94 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

� MPI_Isend , MPI_Irecv , MPI_Wait

integer reqs(2)
call MPI_Isend(x,m,MPI_REAL8,...,reqs(1),...)
call MPI_Irecv(Y,N,MPI_REAL8,...,reqs(2),...)
call MPI_Waitany(2,reqs,...)
call MPI_Waitany(2,reqs,...)

Probe mpi_isend_start reports that 8*mbytes are to be sent. The MPI_Waitany
call that completes the receive will show the number of bytes that were actually
received, which must be at most 8*n, in its mpi_waitany_end probe. The other
MPI_Waitany call, which completes the send, will report 0 bytes received.

� MPI_Waitall

integer reqs(8)
call MPI_Isend(x1,m,MPI_REAL8,...,reqs(1),...)
call MPI_Isend(x2,m,MPI_REAL8,...,reqs(2),...)
call MPI_Isend(x3,m,MPI_REAL8,...,reqs(3),...)
call MPI_Isend(x4,m,MPI_REAL8,...,reqs(4),...)
call MPI_Irecv(x5,n,MPI_REAL8,...,reqs(5),...)
call MPI_Irecv(x6,n,MPI_REAL8,...,reqs(6),...)
call MPI_Irecv(x7,n,MPI_REAL8,...,reqs(7),...)
call MPI_Irecv(x8,n,MPI_REAL8,...,reqs(8),...)
call MPI_Waitall(8,reqs,..)

Probe mpi_isend_start reports that 8*mbytes are to be sent in each of the four
MPI_Isend cases. Probe mpi_waitall_end reports the number of bytes that were
actually received, which must be at most 4*8*n.

Groups
Every TNF probe for MPI is associated with the mpi_api group, so choosing that
group allows Prism to probe all the MPI routines for which probes exist (including
the I/O routines). Additional groups exist to probe subsets of the MPI routines, as
well. Some routines are associated with more than one group. The ten groups for
MPI routine probes are these:

� mpi_api – All the TNF probes for MPI routines

� mpi_blkp2p – Probes for blocking point-to-point routines

� mpi_coll – Probes for collective routines

� mpi_comm – Probes for communicator-related routines

� mpi_datatypes – Probes for data type–related routines

� mpi_nblkp2p – Probes for nonblocking point-to-point routines

� mpi_procmgmt – Probes for process-management routines

� mpi_pt2pt – Probes for all point-to-point routines (blocking and nonblocking)

� mpi_request – Probes for functions producing or acting on request(s)

TNF Probes 95

� mpi_topo – Probes for topology-related routines

Probes for MPI (Non-I/O Routines)

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Address_start

MPI_Address_end

MPI_Allgather_start sendbytes
recvbytes
ctxt

mpi_coll

MPI_Allgather_end mpi_coll

MPI_Allgatherv_start sendbytes
recvbytes
ctxt

mpi_coll

MPI_Allgatherv_end mpi_coll

MPI_Allreduce_start bytes ctxt mpi_coll

MPI_Allreduce_end mpi_coll

MPI_Alltoall_start sendbytes
recvbytes
ctxt

mpi_coll

MPI_Alltoall_end mpi_coll

MPI_Alltoallv_start sendbytes
recvbytes
ctxt

mpi_coll

MPI_Alltoallv_end mpi_coll

96 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Attr_delete_start

MPI_Attr_delete_end

MPI_Attr_get_start

MPI_Attr_get_end

MPI_Attr_put_start

MPI_Attr_put_end

MPI_Barrier_start ctxt mpi_coll

MPI_Barrier_end mpi_coll

MPI_Bcast_start bytes root
ctxt

mpi_coll

MPI_Bcast_end mpi_coll

MPI_Bsend_start bytes dest
tag

mpi_pt2pt
mpi_blkp2p

MPI_Bsend_end mpi_pt2pt
mpi_blkp2p

MPI_Bsend_init_start mpi_pt2pt
mpi_request

MPI_Bsend_init_end bytes dest
tag request

mpi_pt2pt
mpi_request

MPI_Buffer_attach_start buffer size

MPI_Buffer_attach_end buffer size

TNF Probes 97

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Buffer_detach_start buffer size

MPI_Buffer_detach_end

MPI_Cancel_start request mpi_request

MPI_Cancel_end mpi_request

MPI_Cart_coords_start mpi_topo

MPI_Cart_coords_end mpi_topo

MPI_Cart_create_start mpi_topo

MPI_Cart_create_end mpi_topo

MPI_Cartdim_get_start mpi_topo

MPI_Cartdim_get_end mpi_topo

MPI_Cart_get_start mpi_topo

MPI_Cart_get_end mpi_topo

MPI_Cart_map_start mpi_topo

MPI_Cart_map_end mpi_topo

MPI_Cart_rank_start mpi_topo

MPI_Cart_rank_end mpi_topo

MPI_Cart_shift_start mpi_topo

MPI_Cart_shift_end mpi_topo

98 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Cart_sub_start mpi_topo

MPI_Cart_sub_end mpi_topo

MPI_Close_port_start port_name mpi_procmgmt

MPI_Close_port_end mpi_procmgmt

MPI_Comm_accept_start port_name
root ctxt

mpi_procmgmt

MPI_Comm_accept_end port_name
root ctxt
newctxt

mpi_procmgmt

MPI_Comm_compare_start mpi_comm

MPI_Comm_compare_end mpi_comm

MPI_Comm_connect_start port_name
root ctxt

mpi_procmgmt

MPI_Comm_connect_end port_name
root ctxt
newctxt

mpi_procmgmt

MPI_Comm_create_start ctxt group mpi_comm

MPI_Comm_create_end ctxt newctxt mpi_comm

MPI_Comm_create_errhandler_start

MPI_Comm_create_errhandler_end

MPI_Comm_create_keyval_start

MPI_Comm_create_keyval_end

TNF Probes 99

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Comm_delete_attr_start

MPI_Comm_delete_attr_end

MPI_Comm_disconnect_start ctxt mpi_procmgmt

MPI_Comm_disconnect_end mpi_procmgmt

MPI_Comm_dup_start ctxt mpi_comm

MPI_Comm_dup_end ctxt newctxt mpi_comm

MPI_Comm_free_start ctxt mpi_comm

MPI_Comm_free_end mpi_comm

MPI_Comm_free_keyval_start

MPI_Comm_free_keyval_end

MPI_Comm_get_attr_start

MPI_Comm_get_attr_end

MPI_Comm_get_errhandler_start

MPI_Comm_get_errhandler_end

MPI_Comm_get_name_start

MPI_Comm_get_name_end ctxt
comm_name

mpi_comm

MPI_Comm_group_start

MPI_Comm_group_end

100 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Comm_remote_group_start

MPI_Comm_remote_group_end

MPI_Comm_set_attr_start

MPI_Comm_set_attr_end

MPI_Comm_set_errhandler_start

MPI_Comm_set_errhandler_end

MPI_Comm_set_name_start

MPI_Comm_set_name_end ctxt
comm_name

mpi_comm

MPI_Comm_split_start ctxt mpi_comm

MPI_Comm_split_end ctxt newctxt mpi_comm

MPI_Comm_test_inter_start

MPI_Comm_test_inter_end

MPI_Dims_create_start mpi_topo

MPI_Dims_create_end mpi_topo

MPI_Errhandler_create_start

MPI_Errhandler_create_end

MPI_Errhandler_free_start

MPI_Errhandler_free_end

TNF Probes 101

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Errhandler_get_start

MPI_Errhandler_get_end

MPI_Errhandler_set_start

MPI_Errhandler_set_end

MPI_Error_class_start

MPI_Error_class_end

MPI_Error_string_start

MPI_Error_string_end

MPI_Finalize_start

MPI_Finalize_end

MPI_Gather_start sendbytes
recvbytes
root ctxt

mpi_coll

MPI_Gather_end mpi_coll

MPI_Gatherv_start sendbytes
recvbytes
root ctxt

mpi_coll

MPI_Gatherv_end mpi_coll

MPI_Get_address_start

MPI_Get_address_end

102 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Get_count_start

MPI_Get_count_end

MPI_Get_elements_start

MPI_Get_elements_end

MPI_Get_processor_name_start

MPI_Get_processor_name_end

MPI_Get_version_start

MPI_Get_version_end

MPI_Graph_create_start mpi_topo

MPI_Graph_create_end mpi_topo

MPI_Graphdims_get_start mpi_topo

MPI_Graphdims_get_end mpi_topo

MPI_Graph_get_start mpi_topo

MPI_Graph_get_end mpi_topo

MPI_Graph_map_start mpi_topo

MPI_Graph_map_end mpi_topo

MPI_Graph_neighbors_start mpi_topo

MPI_Graph_neighbors_end mpi_topo

TNF Probes 103

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Graph_neighbors_count_start mpi_topo

MPI_Graph_neighbors_count_end mpi_topo

MPI_Grequest_complete_start request mpi_request

MPI_Grequest_complete_end mpi_request

MPI_Grequest_start_start request mpi_request

MPI_Grequest_start_end mpi_request

MPI_Group_compare_start

MPI_Group_compare_end

MPI_Group_difference_start

MPI_Group_difference_end

MPI_Group_excl_start

MPI_Group_excl_end

MPI_Group_free_start

MPI_Group_free_end

MPI_Group_incl_start

MPI_Group_incl_end

MPI_Group_intersection_start

MPI_Group_intersection_end

104 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Group_range_excl_start

MPI_Group_range_excl_end

MPI_Group_range_incl_start

MPI_Group_range_incl_end

MPI_Group_translate_ranks_start

MPI_Group_translate_ranks_end

MPI_Group_union_start

MPI_Group_union_end

MPI_Ibsend_start mpi_pt2pt
mpi_nblkp2p
mpi_request

MPI_Ibsend_end bytes dest
tag done
request

mpi_pt2pt
mpi_nblkp2p
mpi_request

MPI_Info_create_start

MPI_Info_create_end

MPI_Info_delete_start

MPI_Info_delete_end

MPI_Info_dup_start

MPI_Info_dup_end

TNF Probes 105

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Info_free_start

MPI_Info_free_end

MPI_Info_get_start

MPI_Info_get_end

MPI_Info_get_nkeys_start

MPI_Info_get_nkeys_end

MPI_Info_get_nthkey_start

MPI_Info_get_nthkey_end

MPI_Info_get_valuelen_start

MPI_Info_get_valuelen_end

MPI_Info_set_start

MPI_Info_set_end

MPI_Intercomm_create_start mpi_comm

MPI_Intercomm_create_end mpi_comm

MPI_Intercomm_merge_start mpi_comm

MPI_Intercomm_merge_end mpi_comm

MPI_Iprobe_start source tag
ctxt

106 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Iprobe_end source tag
ctxt flag

MPI_Irecv_start mpi_pt2pt
mpi_nblkp2p
mpi_request

MPI_Irecv_end done request mpi_pt2pt
mpi_nblkp2p
mpi_request

MPI_Irsend_start mpi_pt2pt
mpi_nblkp2p
mpi_request

MPI_Irsend_end bytes dest
tag done
request

mpi_pt2pt
mpi_nblkp2p
mpi_request

MPI_Isend_start mpi_pt2pt
mpi_nblkp2p
mpi_request

MPI_Isend_end bytes dest
tag done
request

mpi_pt2pt
mpi_nblkp2p
mpi_request

MPI_Issend_start mpi_pt2pt
mpi_nblkp2p
mpi_request

MPI_Issend_end bytes dest
tag done
request

mpi_pt2pt
mpi_nblkp2p
mpi_request

MPI_Keyval_create_start

MPI_Keyval_create_end

TNF Probes 107

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Keyval_free_start

MPI_Keyval_free_end

MPI_Op_create_start

MPI_Op_create_end

MPI_Open_port_start port_name mpi_procmgmt

MPI_Open_port_end port_name mpi_procmgmt

MPI_Op_free_start

MPI_Op_free_end

MPI_Pack_start bytes mpi_datatypes

MPI_Pack_end mpi_datatypes

MPI_Pack_size_start count
datatype

mpi_datatypes

MPI_Pack_size_end count
datatype
size

mpi_datatypes

MPI_Pcontrol_start

MPI_Pcontrol_end

MPI_Probe_start source tag
ctxt

MPI_Probe_end source tag
ctxt

108 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Query_thread_start

MPI_Query_thread_end

MPI_Recv_start mpi_pt2pt
mpi_blkp2p

MPI_Recv_end bytes source
tag

mpi_pt2pt
mpi_blkp2p

MPI_Recv_init_start mpi_pt2pt
mpi_request

MPI_Recv_init_end request mpi_pt2pt
mpi_request

MPI_Reduce_start bytes root
ctxt

mpi_coll

MPI_Reduce_end mpi_coll

MPI_Reduce_scatter_start bytes ctxt mpi_coll

MPI_Reduce_scatter_end mpi_coll

MPI_Request_free_start request mpi_request

MPI_Request_free_end mpi_request

MPI_Rsend_start bytes dest
tag

mpi_pt2pt
mpi_blkp2p

MPI_Rsend_end mpi_pt2pt
mpi_blkp2p

MPI_Rsend_init_start mpi_pt2pt
mpi_request

TNF Probes 109

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Rsend_init_end bytes dest
tag request

mpi_pt2pt
mpi_request

MPI_Scan_start bytes ctxt mpi_coll

MPI_Scan_end mpi_coll

MPI_Scatter_start sendbytes
recvbytes
root ctxt

mpi_coll

MPI_Scatter_end mpi_coll

MPI_Scatterv_start sendbytes
recvbytes
root ctxt

mpi_coll

MPI_Scatterv_end mpi_coll

MPI_Send_start bytes dest
tag

mpi_pt2pt
mpi_blkp2p

MPI_Send_end mpi_pt2pt
mpi_blkp2p

MPI_Send_init_start mpi_pt2pt
mpi_request

MPI_Send_init_end bytes dest
tag request

mpi_pt2pt
mpi_request

MPI_Sendrecv_start bytes dest
sendtag

mpi_pt2pt
mpi_blkp2p

MPI_Sendrecv_end bytes source
recvtag

mpi_pt2pt
mpi_blkp2p

110 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Sendrecv_replace_start bytes dest
sendtag

mpi_pt2pt
mpi_blkp2p

MPI_Sendrecv_replace_end bytes source
recvtag

mpi_pt2pt
mpi_blkp2p

MPI_Ssend_start bytes dest
tag

mpi_pt2pt
mpi_blkp2p

MPI_Ssend_end mpi_pt2pt
mpi_blkp2p

MPI_Ssend_init_start mpi_pt2pt
mpi_request

MPI_Ssend_init_end bytes dest
tag request

mpi_pt2pt
mpi_request

MPI_Start_start request mpi_pt2pt
mpi_request

MPI_Start_end mpi_pt2pt
mpi_request

MPI_Startall_start count mpi_pt2pt
mpi_request

MPI_Startall_end mpi_pt2pt
mpi_request

MPI_Status_set_cancelled_start

MPI_Status_set_cancelled_end

MPI_Status_set_elements_start

MPI_Status_set_elements_end

TNF Probes 111

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Test_start request mpi_request

MPI_Test_end recvbytes
source
recvtag flag
request

mpi_request

MPI_Testall_start count mpi_request

MPI_Testall_end bytes count
flag

mpi_request

MPI_Testany_start count mpi_request

MPI_Testany_end bytes index
flag

mpi_request

MPI_Test_cancelled_start mpi_request

MPI_Test_cancelled_end flag mpi_request

MPI_Testsome_start incount mpi_request

MPI_Testsome_end bytes
outcount

mpi_request

MPI_Topo_test_start mpi_topo

MPI_Topo_test_end mpi_topo

MPI_Type_contiguous_start mpi_datatypes

MPI_Type_contiguous_end mpi_datatypes

MPI_Type_create_hindexed_start mpi_datatypes

MPI_Type_create_hindexed_end mpi_datatypes

112 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Type_create_f90_integer_start mpi_datatypes

MPI_Type_create_f90_integer_end mpi_datatypes

MPI_Type_create_keyval_start mpi_datatypes

MPI_Type_create_keyval_end mpi_datatypes

MPI_Type_create_struct_start mpi_datatypes

MPI_Type_create_struct_end mpi_datatypes

MPI_Type_delete_attr_start mpi_datatypes

MPI_Type_delete_attr_end mpi_datatypes

MPI_Type_dup_start mpi_datatypes

MPI_Type_dup_end mpi_datatypes

MPI_Type_extent_start mpi_datatypes

MPI_Type_extent_end mpi_datatypes

MPI_Type_free_start mpi_datatypes

MPI_Type_free_end mpi_datatypes

MPI_Type_free_keyval_start mpi_datatypes

MPI_Type_free_keyval_end mpi_datatypes

MPI_Type_get_attr_start mpi_datatypes

MPI_Type_get_attr_end mpi_datatypes

TNF Probes 113

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Type_get_contents_start mpi_datatypes

MPI_Type_get_contents_end mpi_datatypes

MPI_Type_get_envelope_start mpi_datatypes

MPI_Type_get_envelope_end mpi_datatypes

MPI_Type_get_extent_start mpi_datatypes

MPI_Type_get_extent_end mpi_datatypes

MPI_Type_get_name_start mpi_datatypes

MPI_Type_get_name_end mpi_datatypes

MPI_Type_get_true_extent_start mpi_datatypes

MPI_Type_get_true_extent_end mpi_datatypes

MPI_Type_hindexed_start mpi_datatypes

MPI_Type_hindexed_end mpi_datatypes

MPI_Type_indexed_start mpi_datatypes

MPI_Type_indexed_end mpi_datatypes

MPI_Type_create_indexed_block_start mpi_datatypes

MPI_Type_create_indexed_block_end mpi_datatypes

MPI_Type_lb_start mpi_datatypes

MPI_Type_lb_end mpi_datatypes

114 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Type_create_resized_start mpi_datatypes

MPI_Type_create_resized_end mpi_datatypes

MPI_Type_set_attr_start mpi_datatypes

MPI_Type_set_attr_end mpi_datatypes

MPI_Type_set_name_start mpi_datatypes

MPI_Type_set_name_end mpi_datatypes

MPI_Type_size_start mpi_datatypes

MPI_Type_size_end mpi_datatypes

MPI_Type_struct_start mpi_datatypes

MPI_Type_struct_end mpi_datatypes

MPI_Type_ub_start mpi_datatypes

MPI_Type_ub_end mpi_datatypes

MPI_Unpack_start bytes mpi_datatypes

MPI_Unpack_end mpi_datatypes

MPI_Wait_start request mpi_request

MPI_Wait_end recvbytes
source
recvtag
request

mpi_request

MPI_Waitall_start count mpi_request

TNF Probes 115

TABLE C–1 TNF Probes and Associated Arguments and Groups for MPI Calls (continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api

MPI_Waitall_end bytes count mpi_request

MPI_Waitany_start count mpi_request

MPI_Waitany_end bytes index mpi_request

MPI_Waitsome_start incount mpi_request

MPI_Waitsome_end bytes
outcount

mpi_request

TNF Probes for MPI I/O
Like the MPI routines, each MPI I/O routine is associated with two TNF probes: one
ending in _start , and one ending in _end . Probes are also included for some
specific arguments, most of which are defined in the MPI standard and described in
the man pages included with Sun MPI 4.0. The ctxt argument for the context id
assigned to a particular communicator, however, is not mentioned in the standard or
man pages. It is described in “TNF Probes for MPI” on page 92.

Every TNF probe for MPI I/O is associated with both the mpi_api and the mpi_io
groups. Choosing mpi_api allows Prism to probe all the MPI routines for which
probes exist, whereas choosing mpi_io allows you to focus on the I/O routines.
Additional groups exist to probe subsets of the I/O routines, as well. The seven
groups for MPI I/O routine probes are these:

� mpi_api – All the TNF probes for MPI routines

� mpi_io – MPI I/O routines only

� mpi_io_consistency – Atomicity and synchronization routines

� mpi_io_datarep – Data representation routines

� mpi_io_errhandler – Error-handling routines

� mpi_io_file – Group(s), in addition to mpi_api and mpi_io

� mpi_io_rw – Read/write routines

116 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–2 TNF Probes and Associated Arguments and Groups for MPI I/O Calls

Probe Argument(s) Group(s), in
Addition to
mpi_api &
mpi_io

MPI_File_close_start filename mpi_io_file

MPI_File_close_end mpi_io_file

MPI_File_create_errhandler_start mpi_io_errhandler

MPI_File_create_errhandler_end mpi_io_errhandler

MPI_File_delete_start filename mpi_io_file

MPI_File_delete_end filename mpi_io_file

MPI_File_get_amode_start filename
amode

mpi_io_file

MPI_File_get_amode_end filename
amode

mpi_io_file

MPI_File_get_atomicity_start filename
flag

mpi_io_consistency

MPI_File_get_atomicity_end filename
flag

mpi_io_consistency

MPI_File_get_byte_offset_start filename
offset disp

mpi_io_rw

MPI_File_get_byte_offset_end filename
offset disp

mpi_io_rw

MPI_File_get_errhandler_start filename mpi_io_errhandler

MPI_File_get_errhandler_end filename mpi_io_errhandler

MPI_File_get_group_start filename mpi_io_file

TNF Probes 117

TABLE C–2 TNF Probes and Associated Arguments and Groups for MPI I/O Calls
(continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api &
mpi_io

MPI_File_get_group_end filename mpi_io_file

MPI_File_get_info_start filename mpi_io_file

MPI_File_get_info_end filename mpi_io_file

MPI_File_get_position_start filename
offset

mpi_io_rw

MPI_File_get_position_end filename
offset

mpi_io_rw

MPI_File_get_position_shared_start filename
offset

mpi_io_rw

MPI_File_get_position_shared_end filename
offset

mpi_io_rw

MPI_File_get_size_start filename
size

mpi_io_file

MPI_File_get_size_end filename
size

mpi_io_file

MPI_File_get_type_extent_start filename
datatype
extent

mpi_io_datarep

MPI_File_get_type_extent_end filename
datatype
extent

mpi_io_datarep

MPI_File_get_view_start filename
disp etype
filetype
datarep_name

mpi_io_file

118 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–2 TNF Probes and Associated Arguments and Groups for MPI I/O Calls
(continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api &
mpi_io

MPI_File_get_view_end filename
disp etype
filetype
datarep_name

mpi_io_file

MPI_File_iread_start filename
bytes

mpi_io_rw

MPI_File_iread_end filename mpi_io_rw

MPI_File_iread_at_start filename
offset

mpi_io_rw

MPI_File_iread_at_end filename
offset

mpi_io_rw

MPI_File_iread_shared_start filename mpi_io_rw

MPI_File_iread_shared_end filename mpi_io_rw

MPI_File_iwrite_start filename mpi_io_rw

MPI_File_iwrite_end filename mpi_io_rw

MPI_File_iwrite_at_start filename
offset

mpi_io_rw

MPI_File_iwrite_at_end filename
offset

mpi_io_rw

MPI_File_iwrite_shared_start filename mpi_io_rw

MPI_File_iwrite_shared_end filename mpi_io_rw

TNF Probes 119

TABLE C–2 TNF Probes and Associated Arguments and Groups for MPI I/O Calls
(continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api &
mpi_io

MPI_File_open_start filename
amode
file_handle

mpi_io_file

MPI_File_open_end filename
amode
file_handle

mpi_io_file

MPI_File_nonblocking_read_actual_end filename
offset count
datatype

mpi_io_rw

MPI_File_nonblocking_write_actual_end filename
offset count
datatype

mpi_io_rw

MPI_File_preallocate_start filename
size

mpi_io_file

MPI_File_preallocate_end filename
size

mpi_io_file

MPI_File_read_start filename
count
datatype

mpi_io_rw

MPI_File_read_end filename mpi_io_rw

MPI_File_read_all_start filename mpi_io_rw

MPI_File_read_all_end filename mpi_io_rw

MPI_File_read_all_begin_start filename mpi_io_rw

MPI_File_read_all_begin_end filename mpi_io_rw

120 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–2 TNF Probes and Associated Arguments and Groups for MPI I/O Calls
(continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api &
mpi_io

MPI_File_read_all_end_start filename mpi_io_rw

MPI_File_read_all_end_end filename
bytes

mpi_io_rw

MPI_File_read_at_start filename
offset

mpi_io_rw

MPI_File_read_at_end filename
offset

mpi_io_rw

MPI_File_read_at_all_start filename
offset

mpi_io_rw

MPI_File_read_at_all_end filename
offset

mpi_io_rw

MPI_File_read_at_all_begin_start filename
offset

mpi_io_rw

MPI_File_read_at_all_begin_end filename
offset

mpi_io_rw

MPI_File_read_at_all_end_start filename mpi_io_rw

MPI_File_read_at_all_end_end filename
bytes

mpi_io_rw

MPI_File_read_ordered_start filename mpi_io_rw

MPI_File_read_ordered_end filename mpi_io_rw

MPI_File_read_ordered_begin_start filename mpi_io_rw

MPI_File_read_ordered_begin_end filename mpi_io_rw

TNF Probes 121

TABLE C–2 TNF Probes and Associated Arguments and Groups for MPI I/O Calls
(continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api &
mpi_io

MPI_File_read_ordered_end_start filename mpi_io_rw

MPI_File_read_ordered_end_end filename
bytes

mpi_io_rw

MPI_File_read_shared_end filename mpi_io_rw

MPI_File_seek_start filename
offset
whence

mpi_io_rw

MPI_File_seek_end filename
offset
whence

mpi_io_rw

MPI_File_seek_shared_start filename
offset
whence

mpi_io_rw

MPI_File_seek_shared_end filename
offset
whence

mpi_io_rw

MPI_File_set_atomicity_start filename
flag

mpi_io_consistency

MPI_File_set_atomicity_end filename
flag

mpi_io_consistency

MPI_File_set_errhandler_start filename mpi_io_errhandler

MPI_File_set_errhandler_end filename mpi_io_errhandler

MPI_File_set_info_start filename mpi_io_file

MPI_File_set_info_end filename mpi_io_file

122 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–2 TNF Probes and Associated Arguments and Groups for MPI I/O Calls
(continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api &
mpi_io

MPI_File_set_size_start filename
size

mpi_io_file

MPI_File_set_size_end filename
size

mpi_io_file

MPI_File_set_view_start filename
disp etype
filetype
datarep_name

mpi_io_file

MPI_File_set_view_end filename
disp etype
filetype
datarep_name

mpi_io_file

MPI_File_sync_start filename mpi_io_consistency

MPI_File_sync_end filename mpi_io_consistency

MPI_File_write_start filename mpi_io_rw

MPI_File_write_end filename mpi_io_rw

MPI_File_write_all_start filename mpi_io_rw

MPI_File_write_all_end filename mpi_io_rw

MPI_File_write_all_begin_start filename mpi_io_rw

MPI_File_write_all_begin_end filename mpi_io_rw

MPI_File_write_all_end_start filename mpi_io_rw

MPI_File_write_all_end_end filename
bytes

mpi_io_rw

TNF Probes 123

TABLE C–2 TNF Probes and Associated Arguments and Groups for MPI I/O Calls
(continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api &
mpi_io

MPI_File_write_at_start filename
offset

mpi_io_rw

MPI_File_write_at_end filename
offset

mpi_io_rw

MPI_File_write_at_all_start filename
offset

mpi_io_rw

MPI_File_write_at_all_end filename
offset

mpi_io_rw

MPI_File_write_at_all_begin_start filename
offset

mpi_io_rw

MPI_File_write_at_all_begin_end filename
offset

mpi_io_rw

MPI_File_write_at_all_end_start filename mpi_io_rw

MPI_File_write_at_all_end_end filename
bytes

mpi_io_rw

MPI_File_write_ordered_start filename mpi_io_rw

MPI_File_write_ordered_end filename mpi_io_rw

MPI_File_write_ordered_begin_start filename mpi_io_rw

MPI_File_write_ordered_begin_end filename mpi_io_rw

MPI_File_write_ordered_end_start filename mpi_io_rw

MPI_File_write_ordered_end_end filename
bytes

mpi_io_rw

124 Sun MPI 4.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE C–2 TNF Probes and Associated Arguments and Groups for MPI I/O Calls
(continued)

Probe Argument(s) Group(s), in
Addition to
mpi_api &
mpi_io

MPI_File_write_shared_start filename mpi_io_rw

MPI_File_write_shared_end filename mpi_io_rw

MPI_Register_datarep_start datarep_name mpi_io_datarep

MPI_Register_datarep_end datarep_name mpi_io_datarep

TNF Probes 125

