
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Sun HPC ClusterTools™ 6 Software
User’s Guide

Part No. 819-4131-10
March 2006, Revision A

http://www.sun.com/hwdocs/feedback

Please
Recycle

Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, Solaris, Sun HPC ClusterTools, Sun Studio, Sun Performance Library, Sun Fire, Sun
Cluster, Sun Java, and UltraSPARC are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and in other countries.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the Sun Microsystems, Inc. license agreements and as
provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct. 1998), FAR 12.212(a) (1995), FAR 52.227-19, or
FAR 52.227-14 (ALT III), as applicable.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans
les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, Solaris, Sun HPC ClusterTools, Sun Studio, Sun Performance Library, Sun Fire, Sun Cluster,
Sun Java, et UltraSPARC sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres
pays.

AMD, Opteron, le logo AMD, et le logo AMD Opteron sont des marques de fabrique ou des marques déposées de Advanced Micro Devices.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développment du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive do Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Preface xv

1. Introduction to Sun HPC ClusterTools Software 1

Supported Configurations 1

Sun HPC Cluster Runtime Environment (CRE) 2

Executing Programs With mprun 2

Killing Programs 2

Displaying Job Information 2

Displaying Node Information 2

Integration With Distributed Resource Management Systems 3

Sun MPI and MPI I/O 3

Debugging With TotalView 4

MPProf 4

2. Fundamental Concepts 7

Clusters and Nodes 7

Partitions 8

How Partitions Are Enabled and Selected 8

Load Balancing 10

Processes 10
iii

Jobs 10

How the CRE Environment Is Integrated With Distributed Resource Management
Systems 11

How Programs Are Launched 12

How Distributed Resource Managers Work 13

How CRE Works With Zones in the Solaris 10 Operating System 14

3. Before You Begin 15

Prerequisites 15

Command and Man Page Paths 15

Authentication Methods 16

Core Files 16

4. Running Programs With mprun 17

Syntax 17

Pre-Entering Command Options with MPRUN–FLAGS 18

Environment Variables Available for Scripts 19

Controlling Where the Program Runs 20

Precedence for Program Execution 20

▼ To Run a Program With Default Settings 21

▼ To Run on a Different Cluster (–c) 21

▼ To Run on a Different Partition (–p) 21

▼ To Run as Multiple Processes (–np) 22

▼ To Share Nodes (–j) 23

▼ To Enable Process Spawning (–Ys) 23

▼ To Disable Process Spawning (–Ns) 23

▼ To Wrap Multiple Processes (–W) 24

▼ To Settle for Available Processes (–S) 24

▼ To Include Independent Nodes (–u) 25

▼ To Combine Process Placement Options 26
iv Sun HPC ClusterTools™ 6 Software User’s Guide • March 2006

Mapping MPI Processes to Nodes 27

▼ To Distribute Processes Among Nodes (–l) 27

▼ To Distribute Processes by Block
(–Z and –Zt) 29

▼ To Distribute Processes by Rank Map (–m) 30

Restrictions 30

▼ To Reserve Resources For Spawning or Multithreading (–nr) 31

▼ To Select Nodes by Resource Requirement (–R) 32

Examples 35

Controlling Input/Output 37

▼ To Redirect Output to mprun (–D) 38

▼ To Redirect Output to Individual Files (–B) 39

▼ To Shut Off All Standard I/O (–N) 39

▼ To Redirect With an Argument Vector (–A) 39

▼ To Read Standard Input From /dev/null (–n) 40

▼ To Redirect With a Custom Configuration (–I) 40

Redirecting Output to Other File Descriptors 43

Redirecting File Descriptor Output to a File 43

Maximum Number of File Descriptors 44

Using mprun Options Instead of Shell Syntax 45

Controlling Other Job Attributes 47

▼ To Include Shell-Specific Actions 47

▼ To Move a Process to the Background 48

▼ To Change the Working Directory (–C) 48

▼ To Use a Different User Name (–U) 48

▼ To Use a Different Group Name (–G) 49

▼ To Run a Job on a Different Project (–P) 49

▼ To Specify Verbose Output (–v) 49

▼ To Display Command Help (–h) 50
Contents v

▼ To Display the Command’s Version (–V) 51

▼ To Display Job Status Information (–J) 51

▼ To Store Job Name in a File (–d) 51

▼ To Tag Output With Its Rank Number (–o) 51

Command Reference (mprun) 52

5. Running Programs With mprun in Distributed Resource Management
Systems 55

mprun Options for DRM Integration 55

Improper Flag Combinations for Batch Jobs 57

Running Parallel Jobs in the PBS Environment 57

▼ To Run an Interactive Job in PBS 58

▼ To Run a Script Job in PBS 59

Running Parallel Jobs in the LSF Environment 60

▼ To Run an Interactive Job in LSF 60

▼ To Run a Script Job in LSF 64

Running Parallel Jobs in the SGE Environment 64

▼ To Run an Interactive Job in SGE 65

▼ To Run a Script Job in SGE 66

6. Killing or Sending Signals to Programs With mpkill 69

What You Can Do 69

Return Values 69

▼ To Kill a Running Program 70

▼ To Remove All Traces of a Job 70

▼ To Display a List of Supported Signals
(–l –d) 70

▼ To Send a Signal to a Job 71

7. Displaying Program Information With mpps 73

What You Can Do 73
vi Sun HPC ClusterTools™ 6 Software User’s Guide • March 2006

▼ To Display Job Status 74

▼ To Display Information About Individual
Jobs (–J) 75

▼ To Display Job Name, PID, and Host of Current Job (–b) 76

▼ To Display Information About All Jobs (–e) 76

▼ To Display a Job’s Start Time (–f) 76

▼ To Display Job Information by Partition
(–A –a) 76

▼ To Display Job Information by Process
(–p –P) 77

Command Reference (mpps) 78

8. Profiling Programs With MPPROF 79

Enabling MPI Profiling 79

Controlling Data Collection 80

MPI_PROFDATADIR 80

MPI_PROFINDEXFDIR 80

MPI_PROFINTERVAL 81

MPI_PROFMAXFILESIZE 81

Using mpprof to Generate Reports 82

mpprof Command Syntax 82

Generating a Message Passing Report 84

Reporting on Specific Processes 84

Reporting Processes That Occur After a Specified Time Interval 84

To Save Report Output for Later Use 85

A Sample Report 85

Using mpdump to Convert Intermediate Binary Files to ASCII Files 90

The mpdump Command Syntax 90

A Sample mpdump File 91
Contents vii

9. Using the DTrace Utility With Sun MPI 93

mprun Privileges 94

Running DTrace with MPI Programs 95

Running an MPI Program Under DTrace 96

Attaching to MPI Processes 96

Simple MPI Tracing 97

Tracking Down Resource Leaks 99

10. Displaying Information With mpinfo 103

What You Can Do 103

▼ To Display Information About Published
Names (–T) 104

▼ To Display Information About Any
Cluster (–c) 104

▼ To Display Information About the Current Cluster (–C) 105

▼ To Display Information About Individual Partitions (–p) 106

▼ To Display Information About All
Partitions (–P) 106

▼ To Display Information About Individual Nodes (–n) 107

▼ To Display Information About All Nodes
(–N) 107

▼ To Display an Online List of Valid
Attributes (–lc, –lp, –ln) 108

▼ To Restrict Output to Individual Attributes (–A) 109

▼ To Display Information in Verbose Mode
(–v) 112

Command Reference (mpinfo) 114

A. Troubleshooting 115

MPI Messages 115

Error Messages 116

Warning Messages 116
viii Sun HPC ClusterTools™ 6 Software User’s Guide • March 2006

Standard Error Classes 117

MPI I/O Error Handling 118

Exceeding the File Descriptor Limit 120

Exceeding the TCP Port Limit 121

Index 123
Contents ix

x Sun HPC ClusterTools™ 6 Software User’s Guide • March 2006

Tables

TABLE 3-1 User Commands Required by Authentication Methods 16

TABLE 4-1 Combining mprun Process Placement Options 26

TABLE 4-2 Predefined Resources 33

TABLE 4-3 RRS Operators 34

TABLE 4-4 mprun I/O Shortcut Summary 46

TABLE 4-5 Options for mprun 52

TABLE 6-1 Options for mpkill 71

TABLE 7-1 Job Status Displayed by mpps 74

TABLE 7-2 Job attributes for –J option to mpps 75

TABLE 7-3 Process attributes for –P option to mpps 77

TABLE 7-4 Options for mpps 78

TABLE 8-1 mpprof Command Options 82

TABLE 8-2 Options to the mpdump Command 91

TABLE 10-1 Attributes Displayed by –A option to mpinfo 110

TABLE 10-2 Options for mpinfo 114

TABLE A-1 Sun MPI Standard Error Classes 117

TABLE A-2 Sun MPI I/O Error Classes 119
xi

xii Sun HPC ClusterTools™ 6 Software User’s Guide • March 2006

Figures

FIGURE 2-1 Defining Multiple Partitions Within a Cluster 8

FIGURE 2-2 CRE Partition Selection Criteria 9
xiii

xiv Sun HPC ClusterTools 6 Software User’s Guide • March 2006

Preface

This manual explains how to use distributed resource management packages for
effective resource management and utilization accounting. The following packages
work in conjunction with Sun Message-Passing Interface (Sun MPI) parallel
applications:

■ Sun N1™ Grid Engine (N1GE) Version 6

■ Load Sharing Facility (LSF) HPC Version 6.2 from Platform Computing
Corporation

■ OpenPBS Portable Batch System (PBS) 2.3.16 and Altair PBS Professional 7.1

Before You Read This Book
The Sun HPC ClusterTools™ 6 Software Release Notes includes release noteinformation
for the other components in this suite. For information about writing MPI programs,
refer to the Sun MPI 7.0 Software Programming and Reference Guide. For information
about a specific distributed resource management package, refer to the
documentation supplied with that package.

Using UNIX Commands
This document might not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:
xv

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at

http://www.sun.com/documentation

Typographic Conventions

Shell Prompts

.

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
xvi Sun HPC ClusterTools 6 Software User’s Guide • March 2006

http://www.sun.com/documentation

Related Documentation
This book focuses on Sun MPI and assumes familiarity with the MPI Standard. The
following materials provide useful background about using Sun MPI and about the
MPI Standard.

For more information about Sun N1 Grid Engine software, see the Sun N1 Grid
Engine web site at:

http://www.sun.com/software/gridware

If you are using the Load Sharing Facility (LSF) Suite from Platform Computing
Corporation, consult the documentation available from their website:

http://www.platform.com

Altair PBS Professional documentation is available from:

http://www.altair.com

Application Title Part Number

Sun HPC ClusterTools
Documentation

Read Me First: Guide to Sun HPC
ClusterTools Software Documentation

819-4136-10

Sun HPC ClusterTools
Software

Sun HPC ClusterTools 6 Software Release
Notes
Sun HPC ClusterTools 6 Software
Installation Guide
Sun HPC ClusterTools 6 Software
Performance Guide
Sun HPC ClusterTools 6 Software
Administrator’s Guide

819-4129-10

819-4130-10

819-4134-10

819-4132-10

Sun MPI Programming Sun MPI 7.0 Software Programming and
Reference Guide

819-4133-10
Preface xvii

http://www.platform.com
http://www.altair.com
http://www.sun.com/software/gridware

Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Sun HPC ClusterTools 6 Software User’s Guide, part number 819-4131-10

Sun Function URL

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/
xviii Sun HPC ClusterTools 6 Software User’s Guide • March 2006

http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com/hwdocs/feedback
http://www.sun.com/documentation/

CHAPTER 1

Introduction to Sun HPC
ClusterTools Software

Sun HPC ClusterTools™ 6 software is a set of parallel development tools that extend
the Sun network computing solutions to high-end distributed-memory applications.
This chapter summarizes its required configuration and principal components. It
contains the following sections:

■ “Supported Configurations” on page 1
■ “Sun HPC Cluster Runtime Environment (CRE)” on page 2
■ “Integration With Distributed Resource Management Systems” on page 3
■ “Sun MPI and MPI I/O” on page 3
■ “Debugging With TotalView” on page 4
■ “MPProf” on page 4

Supported Configurations
Sun HPC ClusterTools 6 software requires the Solaris™ 10 Operating System (Solaris
10 OS). All programs that execute under the Solaris 10 OS will execute in the Sun
HPC ClusterTools environment.

Sun HPC ClusterTools 6 software supports Sun Studio 8, 9, 10, and 11 C, C++, and
Fortran compilers.

Sun HPC ClusterTools 6 software can run MPI jobs of up to 2048 processes on as
many as 256 nodes. It also provides load balancing and support for spawning MPI
processes.

The Sun HPC ClusterTools software runs on clusters connected by any TCP/IP-
capable interconnect, such as high-speed Ethernet, Gigabit Ethernet, and Infiniband.
1

Sun HPC Cluster Runtime Environment
(CRE)
Sun HPC ClusterTools 6 software provides a command line interface (also called
CRE for Cluster Runtime Environment) that starts jobs and provides status
information. It performs four primary operations:

■ Executes programs
■ Kills programs
■ Displays job information
■ Displays node information

Each of these operations is summarized below. Subsequent chapters contain the
procedures.

Executing Programs With mprun

Sun HPC ClusterTools 6 software can start both serial and parallel jobs. It is
particularly useful for balancing computing load in serial jobs executed across
shared partitions, where multiple processes can be competing for the same node
resources. The syntax and use of mprun are described in Chapter 4.

Killing Programs
The runtime environment uses the mpkill command to kill jobs in progress and
send signals to those jobs. Its syntax and use are described in Chapter 6.

Displaying Job Information
The runtime environment uses the mpps command to display information about jobs
and their processes. Its syntax and use are described in Chapter 7.

Displaying Node Information
The runtime environment uses the mpinfo command to display information about
nodes and their partitions. Its syntax and use are described in Chapter 10.
2 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

Integration With Distributed Resource
Management Systems
Sun HPC ClusterTools 6 software provides new integration facilities with three select
distributed resource management (DRM) systems. These systems provide proper
resource allocation, parallel job control and monitoring, and proper job accounting.
They are:

■ Sun N1 Grid Engine (N1GE) Version 6

■ Load Sharing Facility (LSF) HPC Version 6.2 from Platform Computing

■ OpenPBS Portable Batch System (PBS) 2.3.16 and Altair PBS Professional 7.1

The support of other available DRM systems than those stated above are possible
through the use of open APIs. Please contact your Sun representative for more
information.

You can launch parallel jobs directly from these distributed resource management
systems. The DRM interacts closely with Sun CRE for proper resource description
and with the multiple processes comprising the requested parallel job.

For a description of the scalable and open architecture of the DRM integration
facilities, see “How the CRE Environment Is Integrated With Distributed Resource
Management Systems” on page 11. For instructions, see Chapter 5.

Sun MPI and MPI I/O
Sun MPI is a highly optimized version of the Message Passing Interface (MPI)
communications library. It implements all of the MPI 1.2 Standard and the MPI 2.0
Standard. Its highlights are:

■ Integration with the Sun HPC ClusterTools Runtime Environment (CRE)

■ Support for multithreaded programming

■ Seamless use of different network protocols; for example, code compiled on a Sun
HPC cluster that has fast Ethernet network can be run without change on a
cluster that has an ATM network

■ Multiprotocol support so that MPI picks the fastest available medium for each
type of connection (such as shared memory, fast Ethernet, or ATM)

■ Communication via shared memory for fast performance on clusters of SMPs

■ Optimized collectives for symmetric multiprocessors (SMPs) and clusters of SMPs
Chapter 1 Introduction to Sun HPC ClusterTools Software 3

■ Full F77, C, and C++ support, and basic F90 support

Debugging With TotalView
TotalView is a third-party multiprocess debugger from Etnus that runs on many
platforms. Support for using the TotalView debugger on Sun MPI applications
includes:

■ Making Sun HPC ClusterTools software compatible with the Etnus debugger
TotalView

■ Allowing Sun MPI jobs to be debugged by TotalView using the Sun Grid Engine
(SGE), the Portable Batch System (PBS), and Platform Computing’s Load Sharing
Facility (LSF)

■ Displaying Sun MPI message queues
■ Allowing multiple instantiations of TotalView on a single cluster
■ Supporting TotalView in Sun HPC ClusterTools software

Refer to the TotalView documentation at http://www.etnus.com for more
information about using TotalView.

MPProf
MPProf is a message-passing profiler intended for use with Sun MPI programs. It
extracts information about calls to Sun MPI routines, storing the data in a set of
intermediate files, one file per process. It then uses the intermediate data to generate
a report profiling the program’s message-passing activity.

MPProf’s data-gathering operations are enabled by setting an environment variable
before running the user program. If this environment variable is not set, program
execution proceeds without generating profiling data. The MPProf report generator
is invoked with the command-line utility, mpprof. The report is an ASCII text file
that provides the following types of information:

■ The percentage of total execution time spent in MPI calls across all processes
■ The percentage of time each process spent in MPI calls
■ The number of calls, time spent, and bytes sent or received per MPI routine,

averaged over all processes, with percent variation among processes
■ Connectivity statistics (message count and volume) between processor pairs
■ The settings of MPI environment variables that have performance implications
4 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

http://www.etnus.com

MPProf also includes a data conversion utility, mpdump, which converts the
intermediate data to user-readable ASCII files with the data in a raw (unanalyzed)
state. You can then use the mpdump output files as input to a report generator, which
you would supply in place of mpprof.

The MPProf tool is best suited for code analysis situations where message-passing
behavior is of primary interest and where simplicity and ease-of-use are also
important. For a comprehensive analysis of a complex MPI program, you would
need to use MPProf in combination with other profiling tools. For example,

■ Use a trace-history viewer to collect information about sequential relationships in
message-passing events. This would complement the MPProf focus on aggregate
statistics.

■ Use the Sun Studio Developer Performance Analyzer for analyzing parts of the
code other than the MPI routines.
Chapter 1 Introduction to Sun HPC ClusterTools Software 5

6 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

CHAPTER 2

Fundamental Concepts

This chapter summarizes a few basic concepts that you should understand to get the
most out of Sun’s HPC ClusterTools software. It contains the following sections:

■ “Clusters and Nodes” on page 7
■ “Partitions” on page 8
■ “Load Balancing” on page 10
■ “Processes” on page 10
■ “Jobs” on page 10
■ “How the CRE Environment Is Integrated With Distributed Resource

Management Systems” on page 11
■ “How Distributed Resource Managers Work” on page 13
■ “How CRE Works With Zones in the Solaris 10 Operating System” on page 14

Clusters and Nodes
High performance computing clusters1 are groups of Sun SMP servers
interconnected by any Sun-supported, TCP/IP-capable interconnect. Each server in a
cluster is called a node.

Note – A cluster can consist of a single SMP server. However, to execute MPI jobs on
even a single-node cluster, Sun Cluster Runtime Environment (CRE) must be
running on that cluster.

When using CRE, you can select the cluster and nodes on which your MPI programs
will run and how your processes will be distributed among them. For instructions,
see Chapter 4, “Running Programs With mprun.”

1. SunCluster™ is a completely different technology used for high availability (HA) applications.
7

Partitions
You can group a cluster’s nodes into partitions. Partitions let you run different jobs
simultaneously on different subsets of the cluster. You can also use partitions to
create groups of nodes with similar characteristics such as memory size, CPU count,
or I/O support, so you can target jobs that benefit from those characteristics.

Note – Sun servers can be configured into “logical nodes,” called domains. You can
also group these domains into CRE partitions. For more information about domains,
refer to the documentation that came with your Sun Fire hardware.

You can define multiple partitions within a cluster.

FIGURE 2-1 Defining Multiple Partitions Within a Cluster

Partitions do not have to include every node in the cluster. Nodes that are not
included in any partition are called independent or free-floating nodes.

A single node can be included in more than one partition. However, two partitions
with overlapping nodes cannot run jobs simultaneously. Only one of them can be
enabled at a time. In the example above, partitions A and B can run jobs
simultaneously with each other, but not with partition C.

How Partitions Are Enabled and Selected
A job can run only on a partition that has been enabled. Normally, the system
administrator who manages the cluster enables and disables partitions (for more
information, see the Sun HPC ClusterTools Software Administrator’s Guide).

node node node node

partition A partition B

partition C

node
8 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

To find out which partitions are currently enabled, use the –P option to the mpinfo
command, as described in “To Display Information About All Partitions (–P)” on
page 106.

If only one partition is enabled, all jobs must run on that partition. If multiple
partitions are enabled, where your particular job runs depends upon which
environment variables the cluster administrator set and which options to the mprun
command you entered. To determine the partition, CRE steps through the criteria
shown in FIGURE 2-2, in order.

FIGURE 2-2 CRE Partition Selection Criteria

❶

❷

❹

❸

❺

–p option to mprun command If entered by user at runtime

–p option to MPRUN–FLAGS
environment variable

If set by user before entering mprun
command

SUNHPC–PART environment
variable

If set by cluster administrator Admin
Guide

This
book

This
book

The user’s login partition If the node is currently assigned to a
partition and that partition is

enabled

partition specified in default_
interactive_partition

attribute

If set by cluster administrator Admin
Guide

Admin
Guide

❻ The partition enabled by the
cluster administrator

If only one partition is enabled Admin
Guide

If multiple partitions are enabled, the
job fails
Chapter 2 Fundamental Concepts 9

Load Balancing
CRE load-balances programs when more CPUs are available than are required for a
job. When you issue the mprun command to start a job, CRE first determines what
criteria (if any) you have specified for the node or nodes on which the program is to
run. It then determines which nodes within the partition meet these criteria. If more
nodes meet the criteria than are required to run your program, CRE starts the
program on the node or nodes that are least loaded. It examines the one-minute load
averages of the nodes and ranks them accordingly.

This load-balancing mechanism ensures that your program’s execution will not be
unnecessarily delayed because it was placed on a heavily loaded node. It also
ensures that some nodes do not sit idle while other nodes are heavily loaded, which
keeps the overall throughput of the partition as high as possible.

Processes
When a serial program executes on a Sun HPC cluster, it becomes a Solaris process
with a Solaris process ID, or PID. When CRE executes a distributed message-passing
program it spawns multiple Solaris processes, each with its own PID.

CRE allows you to control several aspects of jobs and process execution, such as:

■ Number of processes per job
■ Process spawning
■ Mapping processes to nodes

For tasks and instructions, see Chapter 4.

Jobs
CRE assigns a job ID, or jid, to a program. In an MPI job, the jid applies to the overall
job. Many CRE commands take jids as arguments. CRE provides a variety of
information about jobs. To find out how to obtain that information, see Chapter 7.
10 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

How the CRE Environment Is Integrated
With Distributed Resource Management
Systems
As described in Chapter 1, the ClusterTools 6 environment provides close integration
between CRE and three different DRM systems:

■ SGE/SGEE/N1GE
■ LSF
■ PBS

The integration process is similar for all three, with some individual differences. The
DRM system, whether SGE, LSF, or PBS, launches the job through a script. The script
calls mprun, and passes it a host file of the resources that have been allocated for the
job, plus the job ID assigned by the DRM system.

The CRE environment continues to perform most of its normal parallel-processing
actions, but its child processes do not fork any executable programs. Instead, each
child process identifies a communications channel (specifically, a listen query socket)
through which it can be monitored by the CRE environment while running in the
DRM system.

You can also invoke a similar process interactively, without a script. Instructions for
script-based and interactive job launching are provided in Chapter 5.

script

■ calls mprun
■ passes file with

allocated resources
■ passes job ID

DRM System

CRE

mprun

■ spawns child processes
■ identifies listen query socket
■ inserts wrapper program

around each child process

a two-way
communications

channel is established
for each executable

program
Chapter 2 Fundamental Concepts 11

How Programs Are Launched
The exact instructions vary from one resource manager to another, and are affected
by CRE’s configuration, but they all follow these general guidelines:

1. You can launch the job either interactively or through a script. Instructions for
both are provided in Chapter 5 and the following man pages:

■ lsf_cre(1)
■ pbs_cre(1)
■ sge_cre(1)

2. Enter the DRM processing environment before launching jobs with mprun.

3. Reserve resources for the parallel job and set other job control parameters from
within their resource manager.

4. Invoke the mprun command with the applicable resource manager flags. Those
flags are described in Chapter 5 and the mprun(1) manpage.

Here is a diagram that summarizes the user interaction:
12 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

How Distributed Resource Managers
Work
If you are using a Distributed Resource Manager (DRM) such as Sun Grid Engine,
PBS, or LSF for resource management, all Sun HPC ClusterTools jobs are handled by
the DRM’s Batch system. Consequently, Sun HPC ClusterTools job submission
involves the following:

■ When a Sun HPC ClusterTools job is submitted, it is placed in a job queue,
running interactively.

■ These queues are created by the system administrator. Each queue is defined by a
set of job-start criteria, called job-scheduling policies. These policies can be specified
by the administrator, or default queue policies can be used.

resource manager user reserves
resources

CRE ... user invokes
mprun to launch job

job completes

RM releases
resources

user enters

user exits

mprun calls totalview (optional)

then...

–x
–nr
–np
Chapter 2 Fundamental Concepts 13

■ If a job has particular resource requirements and if a particular queue’s job-
scheduling policies meet those requirements, you can specify that the job be
placed on that queue. If a job does not require special execution conditions, you
can leave the choice of queue to the DRM’s Batch system.

■ The job waits in its queue until it reaches the head of the queue and the cluster is
able to satisfy the job scheduling policies of that queue. At that point the job is
started.

For further information about using DRMs with CRE, see the man pages
sge_cre.1, pbs_cre.1, and lsf_cre.1.

How CRE Works With Zones in the
Solaris 10 Operating System
The Solaris 10 Operating System (Solaris 10 OS) allows you to create secure, isolated
areas within a single instance of the Solaris 10 OS. These areas, called zones, provide
secure environments for running applications. Applications that execute in one zone
cannot monitor or affect activity in another zone. You can create multiple non-global
zones to run as virtual instances of the Solaris OS on the same hardware.

The global zone is the default zone for the Solaris system. You install Sun HPC
ClusterTools software into the global zone. However, any non-global zones running
under that Solaris system cannot “inherit” that installation, and installing HPC
ClusterTools into an individual non-global zone is not supported. This means that
you must install and configure HPC ClusterTools in the global zone only, though
you may compile/run/debug in either a global or a non-global zone.
14 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

CHAPTER 3

Before You Begin

This chapter provides miscellaneous information about the runtime environment
that you should know before you begin to use it. It contains the following sections:

■ “Prerequisites” on page 15
■ “Command and Man Page Paths” on page 15
■ “Authentication Methods” on page 16
■ “Core Files” on page 16

Prerequisites
If your program uses Sun HPC ClusterTools components, compile and link it on a
cluster that contains the Sun HPC ClusterTools software.

See the Sun MPI Software Programming and Reference Guide and the Sun HPC
ClusterTools Software Performance Guide for information on linking in the Sun MPI
libraries.

Command and Man Page Paths
CRE commands typically reside in the directory /opt/SUNWhpc/bin. If you are
unable to execute them, you may need to add that directory to your path; check with
your system administrator.

The man pages for Sun HPC ClusterTools commands reside in the
/opt/SUNWhpc/man directory.
15

Authentication Methods
Sun HPC ClusterTools software supports two optional forms of user authentication
that require the execution of user-level commands. The two methods are Kerberos
Version 5 and DES. If one of these authentication methods is enforced on your Sun
HPC cluster, use the commands listed in the following table.

See your system administrator for guidance.

Core Files
Core files are produced as they normally are in the Solaris environment. However, if
more than one process dumps core in a multiprocess program, the resulting core file
may be overwritten in the same directory. Use coreadmin(1M) to control the
naming and placement of core files.

TABLE 3-1 User Commands Required by Authentication Methods

Authentication Method Required Command

Kerberos 5 While Kerberos Version 5 authentication is in use, you must
issue a kinit command before running any CRE command.

DES While DES authentication is in use, you must issue the
keylogin command before issuing any CRE command.
16 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

CHAPTER 4

Running Programs With mprun

The mprun command controls several aspects of program execution. This chapter
describes what you can do with the command. It contains the following sections:

■ “Syntax” on page 17
■ “Controlling Where the Program Runs” on page 20
■ “Mapping MPI Processes to Nodes” on page 27
■ “Controlling Input/Output” on page 37
■ “Controlling Other Job Attributes” on page 47
■ “Command Reference (mprun)” on page 52

Syntax

Options

The options control the behavior of the command. The tasks they perform are
summarized in the diagram on the previous page. TABLE 4-5 lists the options in
alphabetical order, with a brief description.

The runtime environment applies the options to the mprun command according to
useful program logic rather than sequential order. Some options override conflicting
options that appear earlier in the command line or in the MPRUN_FLAGS
environment variable. In some cases, the presence of one option causes other options
in the command line to be ignored, even if they appear later in the command line.
As a result, option precedence varies by task. A table at the beginning of each group
of tasks lists precedence order for the options used in those tasks.

% mprun [options] [–] program–name [program–arguments]
17

Program–Name

If program–name conflicts with the name of an mprun option, use the – (dash) symbol
to separate the program name from the option list. Be sure to add a space between
the – symbol and the dash in the program name. For example:

Program–Arguments

Enter any required program–arguments after the program–name.

Pre-Entering Command Options with MPRUN–FLAGS

You can pre-enter options to the mprun command by setting the MPRUN–FLAGS
environment variable. Since the MPRUN–FLAGS variable only affects default behavior,
you can override those options by entering different ones when you enter the mprun
command itself.

The MPRUN–FLAGS environment variable uses the same options as the mprun
command. (For a complete list, see TABLE 4-5.) If you use more than one word,
enclose the list in quotation marks.

For example, to make part2 the default partition, enter:

C shell:

Bourne shell:

You can check the current setting of MPRUN_FLAGS by issuing the command
printenv.

% mprun –np 4 – myprogram

% setenv MPRUN_FLAGS "–p part2"

MPRUN_FLAGS = "–p part2"; export MPRUN_FLAGS

% printenv MPRUN_FLAGS
18 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

Environment Variables Available for Scripts

Three environment variables related to mprun are available for your scripts:

Each variable is automatically set by the mprun command at execution time. For
example, this instance of mprun...

... would set the value of the variables to:

MP_RANK The rank of a process in the job: 0 – 2047

MP_NPROCS The number of processes in a job: 1 – 2048

MP_JOBID The jid of the job

% mprun –np 6 a.out

MP_RANK 0 through 5

MP_NPROCS 6

MP_JOBID The same jid that can be displayed by mpps (see Chapter 7)
Chapter 4 Running Programs With mprun 19

Controlling Where the Program Runs

Precedence for Program Execution

To Perform This Task Use This Option

How to run with default settings

How to run on a different cluster –c

How to run on a different partition –p

How to run as multiple processes –np

How to share nodes –j

How to enable process spawning –Ys

How to disable process spawning –Ns

How to wrap multiple processes –W

How to settle for available processes –S

How to include independent nodes –u

To Combine Process Placement
Options

This Option... Nullifies the Previous
Instance of This Option ...

–np –np

–Ys –Ns

–Ns –Ys

–W –S

–S –W

–u –u

–G –G

–A –A

–C –C
20 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

▼ To Run a Program With Default Settings
To run the program with default settings, enter the command and program name,
followed by any required arguments to the program:

▼ To Run on a Different Cluster (–c)
By default, a program runs on your login cluster. To run a program on a different
cluster, use the –c option:

To find the name of a cluster, use the mpinfo command with the –C option, as
described in “To Display Information About the Current Cluster (–C)” on page 105.
Note case sensitivity.

▼ To Run on a Different Partition (–p)
To run the program on a partition other than your login partition, use the –p option:

The partition must be enabled. If it is not enabled, the job fails. (As described in
“Partitions” on page 8, if a node is included in multiple partitions, only one partition
can be enabled at a time.)

–c –c

–p –p

–r –r

% mprun program–name

% mprun –c cluster–name program–name

% mprun –p partition–name program–name

This Option... Nullifies the Previous
Instance of This Option ...
Chapter 4 Running Programs With mprun 21

▼ To Run as Multiple Processes (–np)
By default, an MPI program started with mprun runs as one process. To run the
program as multiple processes, use the –np option:

When you request multiple processes, CRE attempts to start one process per CPU. If
you request more processes than the number of available CPUs, you must use either
the –W (Page 24) or –S (Page 24) options to prevent mprun from failing.

If you enter 0 as the number of processes, the runtime environment starts one
process per available CPU. For example:

The first example runs four copies of the program a.out on the login partition. The
second example runs the job on partition2, which has six CPUs. Because the
second command specifies “0” processes, the runtime environment runs six copies of
a.out, one for each available CPU.

When launching a multi-threaded program, use the x threads syntax to specify the
number of threads per process. Although the job requires a number of resources
equal to process–count multiplied by threads, only process–count processes are started.
The ranks are numbered from 0 (zero) to process–count minus 1. The processes are
allocated across nodes so that each node provides a number of CPUs equal to or
greater than threads. If threading requirements cannot be met, the job fails and
provides diagnostic messages. As with a processor value of 0, a thread value of 0
requests all available resources on the node. In this way it is equivalent to the –Ns
option.

When using CRE as a resource manager, the syntax –np process–count is equivalent
to the syntax –np process–countx1. The default is –np 1x1. For the other resource
managers, -np is equal to 0 by default.

Note – If a batch job calls MPI_Comm_spawn(3SunMPI) or
MPI_Comm_spawn_multiple(3SunMPI), be sure to use the –nr option to reserve
the additional resources.

% mprun –np process–count program–name

% mprun –np 4 a.out

% mprun –p partition2 –np 0 a.out

% mprun –np process–count x threads program–name
22 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

▼ To Share Nodes (–j)
To run a program on the same node(s) as another program, use the –j option:

The jid argument is the program’s job ID (described in “Jobs” on page 10).

Place additional mprun–options, if any, after the –j option. Here are two examples.

Both of the examples above run the program a.out on the same node as the
program identified by the jid of 85. The second example includes the –Ns option to
disable process spawning (Page 23).

▼ To Enable Process Spawning (–Ys)
To enable a program that runs on a node with multiple CPUs to spawn processes,
use the –Ys option:

▼ To Disable Process Spawning (–Ns)
To limit the number of processes a program uses to one per node, use the –Ns
option:

The –Ns option prevents nodes that have multiple CPUs from spawning additional
processes.

% mprun –j jid [mprun–options] program–name

% mprun –j cre.85 a.out

% mprun –j cre.85 –Ns a.out

% mprun –Ys program–name

% mprun –Ns program–name
Chapter 4 Running Programs With mprun 23

▼ To Wrap Multiple Processes (–W)

Note – This option is incompatible with the –Z option.

When you have more processes than available CPUs, use the –W option to wrap the
processes:

Without the –W option, excess processes would make the job fail. The –W option
assigns as many processes as required to each CPU, and executes the processes one
at a time. (To include independent nodes in the wrap, use the –u option, described
on page 25.)

For example:

If the partition part2 had six available CPUs and you specified 10 wrapped
processes, CRE would distribute the processes among the CPUs according to load-
balancing rules.

(The –S option, described below, provides a different solution to the same problem.)

▼ To Settle for Available Processes (–S)

Note – This option is incompatible with the –Z option.

When you have more processes than available CPUs, use the –S option to settle for
the number of available CPUs.

Without the –S option, excess processes would make the job fail. The –S option
assigns one process to each CPU, and when it runs out of CPUs, it ignores the
remaining processes. (To assign the remaining processes to independent nodes, use
the –u option, described below.)

% mprun –np process–count –W program–name

% mprun –p part2 –np 10 –W a.out

% mprun –np process–count –S program–name
24 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

For example:

If the partition part2 had six available CPUs and you specified 10 processes with
the –S option, CRE would assign one process to each of the six CPUs, and discard
the remaining four processes.

(The –W option, described on page 24, provides a different solution to the same
problem.)

▼ To Include Independent Nodes (–u)
When a partition does not have enough CPUs to handle all the processes of a job,
and you select either the –S option or the –W option, you can use the –u option to
assign the extra processes to independent nodes outside the partition:

To be eligible, an independent node must satisfy three requirements:

1. It must be enabled.

2. It cannot belong to another partition that is currently enabled.

3. It must be running the same version of the Solaris Operating System as the nodes
in the partition. For the current release of Sun HPC ClusterTools software, this OS
must be Solaris 10.

For example, assume partition2 had six available CPUs and the node had two
independent nodes. If you specified 10 wrapped processes and added the –u
option...

... CRE would distribute the ten processes among the 8 CPUs, and use load-
balancing rules to assign the remaining two processes.

% mprun –p part2 –np 10 –S a.out

% mprun –np process–count –W –u program–name

% mprun –np process–count –S –u program–name

% mprun –p part2 –np 10 –W –u a.out
Chapter 4 Running Programs With mprun 25

If you specified 10 processes with the –S option and added the –u option....

... CRE would assign one process to each of the six CPUs, one to each independent
node, and discard the remaining two processes.

▼ To Combine Process Placement Options
As described in “To Run as Multiple Processes (–np)” on page 22, you can request x
processes, if as many as x processors are available, using the –np option. For
example,

If you specify 0 as the number of processes, the runtime environment starts one
process per available CPU.

However, if you combine the –np option with the –Ns option (assign one process per
node) or the –W option (assign processes to the available nodes until the
–np argument is satisfied),

% mprun –p part2 –np 10 –S –u a.out

% mprun –np x a.out

TABLE 4-1 Combining mprun Process Placement Options

Option Combination Interpretation

mprun –np 0 –Ns a.out Request a process on each node.

mprun –np x –W a.out Request x processes, without regard to distribution
on the nodes.

mprun –np 0 –Ns –W a.out Request one process per node, wrap until all
processors in your cluster are used.

mprun –np x –Ns –W a.out Request one process per node until your cluster has x
of them.
26 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

Mapping MPI Processes to Nodes

If you assign to a node a number of processes that is greater than the number of
CPUs on that node, the runtime environment complies with your request unless the
value of total_max_procs prevents it.

Precedence for Mapping

Four primary mprun options affect rank placement: –l, –m, –Z, and –Zt. Four
ancillary options also influence rank placement: –W, –S, –np, and –u. The following
table summarizes an interaction matrix for these options:

▼ To Distribute Processes Among Nodes (–l)
To distribute processes among individual nodes, use the –l option following the
–np option:

To Perform This Task Use This Option

How to distribute processes among nodes –l

How to distribute processes by block –Z or –Zf

How to distribute processes by rank map –m

How to select nodes by resource requirement –R

This Option Nullifies Previous Instances of And Ignores

–l –l –m –Z –Zt –j –R

–m –l –m –Z –Zt –j –R

–R –l –m –Z –Zt –j –R

–j –l –m –Z –Zt –j –R –u

–Z –l –m –Z –Zt –j –Ns –Ys

–Zt –l –m –Z –Zt –j –Ns –Ys

% mprun –np process–count –l rank–spec program–name
Chapter 4 Running Programs With mprun 27

process–count

The –np option (described in “To Run as Multiple Processes (–np)” on page 22)
specifies the number of processes the program uses.

rank–spec

The rank–specs specify how many processes go to each node. Be sure to enclose the
set of rank–specs with one set of quotation marks, and use commas to separate them
from each other:

“rank–spec, rank–spec, rank–spec”

The number of rank–specs you use must be a factor of the number of processes you
specify with the –np option. For example:

The examples above use one rank–spec for one process, two rank–specs for two
processes, and three rank–specs for three processes. You cannot use three rank–specs
with four processes, for instance, because four processes cannot be evenly
distributed across three nodes.

Each rank–spec identifies one node and the number of processes that run on it:

rank–spec ––> node–name [process–count]

The node–name can be a name or an IP address. The process–count argument is
optional. If you omit it, as in the examples above, one process is assigned to each
node. If you have more processes than nodes, you must include the process–count
argument to indicate how many processes are assigned to each node. For example:

In the example above, the program runs with two processes on one node, node0, so
you must indicate that both processes are assigned to node0.

% mprun –np 1 –l "node0" a.out
% mprun –np 2 –l "node0, node1" a.out
% mprun –np 3 –l "node0, node1, node2" a.out

% mprun –np 2 –l "node0 2” a.out
28 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

In the following example, the program runs with four processes on two nodes, so
you must indicate how those processes are assigned to the nodes. Three
combinations are possible:

▼ To Distribute Processes by Block
(–Z and –Zt)

Note – –Z is incompatible with –S or –W.

You can arrange a job’s processes into blocks. The blocks of processes are then
distributed among the nodes. The –Z option distributes the blocks among the
available nodes using load balancing. In other words, two blocks may be assigned to
the same node if that is the most efficient way to execute the job. To force each block
to be assigned to a separate node instead, use the –Zt option. Use the –Z or –Zt
option ahead of the –np option:

Here are some examples:

In the example above, the –Z option specifies two blocks. Because the total number
of processes is four (–np 4), each block has two processes. They are distributed
among available nodes as efficiently as possible. The –Zt option also creates two
blocks, each with two processes, but they are distributed to two separate nodes.

Here are more examples:

% mprun –np 4 –l "node0 2, node1 2" a.out
% mprun –np 4 –l "node0 1, node1 3" a.out
% mprun –np 4 –l "node0 3, node1 1" a.out

% mprun –Z block–count –np process–count program–name
% mprun –Zt block–count –np process–count program–name

% mprun –Z 2 –np 4 a.out
% mprun –Zt 2 –np 4 a.out

% mprun –Z 3 –np 8 a.out
% mprun –Zt 3 –np 8 a.out
Chapter 4 Running Programs With mprun 29

Both examples above create three blocks, two with three processes each, and one
with two processes.

▼ To Distribute Processes by Rank Map (–m)
To distribute processes among nodes with a rank map file, use the –m option:

Use the –m rankmap–file option to assign processes to nodes as specified in the file
rankmap–file. The rankmap in the file is specified as one or more nodenames, each
followed optionally by the number of processes to assign to that node (in rank
order); the default is one. The rankmap file can also accept IP addresses instead of
nodenames.

Multiple nodenames (or IP addresses) may be separated by newlines; if multiple
nodenames appear on the same line, they are separated by commas.

You can obtain the names and IP addresses of nodes using the –Nv option to the
mpinfo command.

Restrictions

The rank map specified with the –m option will be rejected if any of the following
conditions are true:

■ One or more of the requested nodes is not enabled or is otherwise invalid
■ The max_total_procs value set via the mpadmin command defeats the

requested number of ranks for a node

■ The requested nodes span multiple enabled partitions

■ The requested nodes are running different versions of the operating system

■ One or more of the following options is listed either in the command line or in the
MPRUN_FLAGS environment variable: –j, –Ns, –R, –Ys, or –Z

% mprun –np process–count –m rankmap–file program–name

% mpinfo –Nv
30 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

process–count

If the process–count used with the –np option is greater than the number of ranks
specified in the rank map, you must use either –S (to settle for the available number
of ranks in the rank map) or –W (to wrap the requested processes on the specified
nodes). Otherwise your job will fail.

If the value specified in the –np option is less than the number of ranks specified in
the rank map, the rank assignment will be limited to the value of –np.

If you use –np 0, the number of processes will be derived from the number or ranks
described in the rank map.

rankmap–file

A rank map file has this syntax:

rank–map file––> node–name [,]
node–name [,]
node–name [,] ...

A node–name can be a name or an IP address. Since commas can be used to separate
node names in a file, you could simply place the contents of an inline rank map in a
file. However, new-line characters (\n) are also recognized as separators in rank
map files, so you will probably find it easier to list each node on its own line. For
example:

▼ To Reserve Resources For Spawning or
Multithreading (–nr)
This syntax reserves a number of resources equal to numprocs x threads. These
resources are held in reserve over and above the number of resources specified by
the –np option. Use this option when the batch job contains calls to
MPI_Comm_spawn(3SunMPI) or MPI_Comm_spawn_multiple(3SunMPI). Specify a
number of resources equal to or greater than the total number of processes that will
be spawned. For example,

mars 2
venus 2
jupiter 2

% mprun –nr numprocs [x threads]...
Chapter 4 Running Programs With mprun 31

In a multithreaded environment, use the xthreads syntax to specify the number of
threads per process. The syntax –nr numprocs is equivalent to the syntax –nr
numprocsx1. The default is –nr 0x1.

A threads setting of 0 allocates the processes among all available reserved resources.
It is equivalent to the –Ns option.

▼ To Select Nodes by Resource Requirement (–R)
To distribute processes among nodes by resource requirement, use the –R option:

process–count

The processes are distributed among the nodes that satisfy the criteria in the resource
requirement spec (RRS).

resource–requirement–spec

The RRS accommodates computing requirements that are more complex than those
accepted by rank maps. It has this syntax:

RRS ––> "resource–requirement [& | | resource–requirement]..."

The & symbol is a logical AND operation. In other words, a node must satisfy all the
criteria in the spec. The | symbol is a logical OR operation. A node must satisfy
either of the criteria in the spec. Use them alone or in combination:

resource–requirement & resource–requirement
resource–requirement | resource–requirement

Each individual resource–requirement has this syntax:

resource–requirement ––> resource [operator value]

The resource argument identifies the resource whose requirement is specified. For a
list of resources, see TABLE 4-2.

The operator argument is an arithmetic or logical symbol such as = or > that indicates
the relationship between the resource and its value. For example:

"name=node0"

In the example above, the processes are distributed to a node whose name resource
is equal to node0. For a list of operators, see TABLE 4-3.

% mprun –np process–count –R resource–requirement–spec program–name
32 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

The value argument is simply the value of the resource that must be met. Although
the operator and value are optional, they are used in the great majority of cases.

The runtime environment parses the attribute settings in the order in which they are
listed in the RRS, along with other options you specify. It then merges these results
with the results of an internally specified RRS that controls load-balancing.

The result is an ordered list of CPUs that meet your requirements. If a job uses only
one process, the process is sent to the first CPU on the list. If a job uses n processes,
they are distributed among the first n CPUs, wrapping if necessary.

Note – Unless –Ns is specified, the RRS specifies node resources but generates a list
of CPUs. If –Ns is specified, the list refers only to nodes.

TABLE 4-2 lists the predefined resources you can use. Your system administrator may
have defined additional resources for your particular cluster. To display them, use
the mpinfo command described in Chapter 10.

TABLE 4-2 Predefined Resources

Resource Description

cpu_idle Percent of time that the CPU is idle.

cpu_iowait Percent of time that the CPU spends waiting for I/O.

cpu_kernel Percent of time that the CPU spends in the kernel.

cpu_type CPU architecture.

cpu_user Percent of time that the CPU spends running user’s program.

load1 Node’s load average for the past minute.

load5 Node’s load average for the past 5 minutes.

load15 Node’s load average for the past 15 minutes.

manufacturer Hardware manufacturer.

mem_free Nodes’s available memory, in Mbytes.

mem_total Node’s total physical memory, in Mbytes.

name Node’s host name.

os_max_proc Maximum number of processes allowed on the node, including
cluster daemons.

os_arch_kernel Node’s kernel architecture.

os_name Operating system’s name.

os_release Operating system’s release number.

os_release_maj The major number of the operating system’s release number.
Chapter 4 Running Programs With mprun 33

The operators have the following precedence, from strongest to weakest:

os_release_min The minor number of the operating system’s release number.

os_version Operating system’s version.

serial_number Node’s serial number.

swap_free Node’s available swap space, in Mbytes.

swap_total Node’s total swap space, in Mbytes.

TABLE 4-3 RRS Operators

Operator Meaning

< Select all nodes where the value of the specified attribute is less
than the specified value.

<= Select all nodes where the value of the specified attribute is less
than or equal to the specified value.

= Select all nodes where the value of the specified attribute is equal
to the specified value.

>= Select all nodes where the value of the specified attribute is greater
than or equal to the specified value.

> Select all nodes where the value of the specified attribute is greater
than the specified value.

!= Attribute must not be equal to the specified value. (Precede with a
backslash in the C shell.)

! Boolean FALSE.

<< Select the node(s) that have the lowest value for this attribute.

>> Select the node(s) that have the highest value for this attribute.

unary –
*, /
+, binary –
=, !=, >=, <=, >, <, <<, >>
!
&, |
?

TABLE 4-2 Predefined Resources (Continued)

Resource Description
34 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

Examples

Here are some examples of resource requirement specifiers in use.

The last example specifies that you only want nodes whose individual load averages
over the previous five minutes were less than four.

When the value of an attribute contains a floating point number or a string decimal
number, you must enclose the number in single quotes. For example:

Attributes that use either << or >> take no value. For example:

The example above specifies that you prefer nodes with the largest physical memory
available.

If you use the << or >> operator, CRE does not provide load-balancing. In the
previous example, CRE would choose the node with the most free swap space,
regardless of its load. If you use << or >> more than once, only the last use has any
effect — it overrides the previous uses. For example:

The example above initially selects the nodes that have the most free memory, but
then selects nodes that have the largest amount of available swap space. The second
selection may yield a different set of nodes than were selected initially.

You can also use arithmetic expressions for numeric attributes anywhere. For
example:

% mprun –R "name = hpc–demo" a.out

% mpinfo –N –R "partition.name=part1"

% mprun –R "load5 < 4" a.out

% mpinfo –R "os_release='5.8'"

% mprun –R "mem_total>>" a.out

% mprun –R "mem_free>> swap_free>>" a.out

% mprun –R "load1 / load5 < 2" a.out
Chapter 4 Running Programs With mprun 35

specifies that the ratio between the one-minute load average and the five-minute
load average must be less than two. In other words, the load average on the node
must not be growing too fast.

You can use standard arithmetic operators as well as the C conditional operator.

Note – Because some shell programs interpret characters used in RRS arguments,
you may need to protect your RRS entries from undesired interpretation by your
shell program. For example, if you use csh, write "–R \!private" instead of "–R
!private".

Boolean attributes are either true or false. If you want the attribute to be true, simply
list the attribute in the RRS. For example, if your system administrator has defined
an attribute called ionode, you can request a node with that attribute:

If you want the attribute to be false (that is, you do not want a resource with that
attribute), precede the attribute’s name with !. (Precede this with a backslash in the
C shell; the backslash is an escape character to prevent the shell from interpreting
the exclamation point as a “history” escape.) For example:

For example:

The example above specifies that the node must have over 256 Mbytes of available
RAM.

The example above specifies that the node picked must have the highest available
swap space.

The following example specifies that the program must run on a node in the
partition with 512 Mbytes of memory:

% mprun –R "ionode" a.out

% mprun –R "\!ionode" a.out

% mprun –R "mem_free > 256" a.out

% mprun –R "swap_free >>" a.out

% mprun –p part2 –R "mem_total=512" a.out
36 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

The following example specifies that you want to run on any of the three nodes
listed:

The following example chooses nodes with over 300 Mbytes of free swap space. Of
these nodes, it then chooses the one with the most total physical memory:

The following example assumes that your system administrator has defined an
attribute called framebuffer, which is set (TRUE) on any node that has a frame
buffer attached to it. You could then request such a node via this command:

Controlling Input/Output

By default, mprun handles standard output and standard error the way rsh does:
the output and error streams are merged and are displayed on your terminal screen.
Note that this behavior is slightly different from the standard Solaris behavior when
you are not executing remotely; in that case, the stdout and stderr streams are
separate. You can obtain this behavior with mprun via the –D option.

Likewise, the mprun standard input (stdin) is sent to the standard input of all the
processes.

% mprun –R "name=node1 | name=node2 | name=node3" a.out

% mprun –R "swap_free > 300 & mem_total>>" a.out

% mprun –R "framebuffer" a.out

To Perform This Task Use This Option

How to redirect output to mprun –D

How to redirect output to individual files –B

How shut off all standard I/O –N

How to redirect with an argument vector –A

How read standard input from /dev/null –n

How to redirect with a custom configuration –I
Chapter 4 Running Programs With mprun 37

You can redirect the mprun standard input, output, and error using the standard
shell syntax. For example,

You also can change what happens to the standard input, output, and error of each
process in the job. For example,

The example above sends hello across the network from the echo process to the
mprun process, which writes it to a file called message.

Precedence for Input/Output

The set of mprun options that controls stdio handling cannot be combined. These
options override one another. If more than one is given on a command line, the last
one overrides all of the rest. The relevant options are: –D, –N, –B, –n, –i, –o, and –I.

▼ To Redirect Output to mprun (–D)
To redirect a job’s stdout and stderr to those of the mprun command, use the –D
option:

% mprun –np 4 echo hello > hellos

% mprun echo hello > message

Option Nullifies Previous

–B –D –N –B –I

–D –D –N –B –I

–I –D –N –B –I

–N –D –N –B –I

% mprun –D program–name
38 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

▼ To Redirect Output to Individual Files (–B)
You can merge the standard output and standard error streams from each process
and direct them to individual files by using the –B option.

The –B option writes one file for each process. The filename has this nomenclature:

out.jid.rank

The jid is the program’s job ID. The rank is the rank of the process. The files are
stored in the job’s working directory.

▼ To Shut Off All Standard I/O (–N)
To shut off all standard I/O to all processes, use the –N option:

This option closes all stdin, stdout, and stderr connections for the job. For
instance, you can reduce the overhead incurred by establishing standard I/O
connections for each remote process and then closing those connections as each
process ends.

▼ To Redirect With an Argument Vector (–A)
By default, mprun passes the vector of a program’s command-line arguments to the
program in the standard way. In cluster-level programming, it is sometimes useful to
specify a first argument that is not the name of the program. You can use the –A
option to do this.

The argument to –A is the name of the program to be executed. After the program
name you can add the argument of your choice. For example, if you issue the
command:

% mprun –B program–name

% mprun –N program–name

% mprun –A program–name argument...

% mprun a.out arg1 arg2
Chapter 4 Running Programs With mprun 39

mprun passes an array in which the name of the program, a.out, is the first element
and arg1 and arg2 are the second and third elements. Or, to pass newarg as the
first argument to the program a.out, along with arg1 and arg2, you could issue
the command:

▼ To Read Standard Input From /dev/null (–n)
To read stdin from /dev/null, use the –n option:

Reading input from /dev/null can be useful when running mprun in the
background, either directly or through a script. Without –n, mprun would block in
this situation, even if no reads were posted by the remote job. With –n, the user
process encounters an EOF if it attempts to read from stdin. This behavior is similar
to the behavior of the –n option to rsh.

▼ To Redirect With a Custom Configuration (–I)
To redirect output with a custom configuration, use the –I option:

custom–configuration

A custom configuration tells the runtime environment how to handle each job’s I/O
streams (standard input, output, and error). It has this syntax:

custom–configuration ––> file–descriptor [, file–descriptor]...

file–descriptor

Each file–descriptor provides handling instructions for one process. It has this syntax:

file–descriptor --> stream-number attribute

% mprun –A a.out newarg arg1 arg2

% mprun –n program–name

% mprun –I custom–configuration program–name
40 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

Quotation marks are optional. You can place the file–descriptors in any order. A
custom configuration can include a file–descriptor for each stream associated with a
job; if any file–descriptor is omitted, its stream is not connected to any device.

If you include strings to redirect both standard output and standard error, you must
also redirect standard input. If the job has no standard input, you can redirect file
descriptor 0 to /dev/null.

stream–number

The stream identifies the input, output, or error stream. The standard I/O streams are
assigned these numbers:

attribute

The handling instructions for each stream are specified by the attribute.

You must specify either r or w for each file descriptor—that is, whether the file
descriptor is to be written to or read from. Thus, the string

5w

means that the stream associated with file descriptor 5 is to be written. And

Stream Stream Number

standard input (stdin) 0

standard output (stdout) 1

standard error (stderr) 2

Attribute Description Dependencies

r Read from the stream

w Write to the stream

p Attach the stream to a pseudo-terminal (pty)

b Input only goes to the first process Must use with r

i Input only goes to rank 0, not to any other ranks

l Make the output line-buffered Must use with w

t Tag the line-buffered output with rank number Must use with w

a Append the stream to a file Must use with w

m Echo keystrokes multiple times for multiple
processes

Must use with rp
Chapter 4 Running Programs With mprun 41

0rp

means that the standard input is to be read from the pseudo-terminal.

If you use the p (pty) attribute, you must have one rp and one wp in the complete
series of file descriptor strings. In other words, you must specify both reading from
and writing to the pty. No other attributes can be associated with rp and wp.

Note – NFS does not support append operations.

For example, you can make each process send its standard output or standard error
to a file on its own node. In the following example, each node will write hello to a
local file called message:

Use the l attribute in combination with the w attribute to line-buffer the output of
multiple processes. This takes care of the situation in which output from one process
arrives in the middle of output from another process. For example:

With the l attribute, you ensure that processes do not intrude on each other’s
output. The following example shows how using the l attribute could prevent the
problem illustrated in the previous example:

Be sure to press the Return or Enter key to begin the output.

Use the t attribute in place of l to force line-buffering and, additionally, to prefix
each line with the rank of the process producing the output. For example:

% mprun –I "1w=message" echo hello

% mprun –np 2 echo "Hello"
HelHello
lo

% mprun –np 2 –I "0r, 1wl" echo "Hello"
[Return]
Hello
Hello

% mprun –np 2 –I "0r, 1wt" echo "Hello"
[Return]
r0:Hello
r1:Hello
42 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

As with the –l option, be sure to press the Return or Enter key to begin the output.

The b attribute is input-related and thus can be used only in combination with r. In
multiprocess jobs, the b attribute specifies that input is to go only to the first process,
rather than to all processes, which is the default behavior.

The m attribute pertains to reading from a pseudo-terminal and thus can be used
only with rp. The m attribute in combination with rp causes keystrokes to be echoed
multiple times when multiple processes are running. The default is to display
multiple keystrokes only once.

Redirecting Output to Other File Descriptors

You can direct one file descriptor’s output to the same location as that specified by
another file descriptor by using the syntax:

fdattr=@other_fd

For example, 2w=@1means that the standard error is to be sent wherever the
standard output is going. You cannot do this for a file descriptor string that uses the
p attribute.

If the behavior of the second file descriptor in this syntax is changed later in the –I
argument list, the change does not affect the earlier reference to the file descriptor.
That is, the –I argument list is parsed from left to right.

Redirecting File Descriptor Output to a File

You can tie a file descriptor’s output to a file by using the syntax

fdattr=filename

For example, 10w=output means that the stream associated with file descriptor 10
is to be written to the file output. Once again, however, you cannot use this feature
for a file descriptor defined with the p attribute.

In the following example, the standard input is read from the pty, the standard
output is written to the pty, and the standard error is sent to the file named errors:

If you use the w attribute without specifying a file, the file descriptor’s output is
written to the corresponding output stream of the parent process; the parent process
is typically a shell, so the output is typically written to the user’s terminal.

For multiprocess jobs, each process creates its own file; the file is opened on the node
on which the process runs.

% mprun –I "0rp,1wp,2w=errors" a.out
Chapter 4 Running Programs With mprun 43

Note – If output is redirected such that multiple processes open the same file over
NFS, the processes will overwrite each other’s output.

In specifying the individual file names for processes, you can use the following
symbols:

■ &J – The job ID of the job
■ &R – The rank of the process within the job

The symbols will be replaced by the actual values. For example, assuming the job ID
is 15, this file descriptor string

1w=myfile.&J.&R

redirects standout output from a multiprocess job to a series of files named
myfile.15.0, myfile.15.1, myfile.15.2, and so on, one file for each rank of
the job.

In the following example, there is no standard input (it comes from /dev/null),
and the standard output and standard error are written to the files out.job.rank:

This is the behavior of the –B option. Note the inclusion in this example of a file
descriptor string for standard input even though the job has none. This is required
because both standard output and standard error are redirected.

Maximum Number of File Descriptors

By default, the maximum number of file descriptors that a process can have open is
1024. This is because CRE enforces only the hard limit for file descriptors and
ignores any file descriptor soft limit that may be set.

Note – CRE enforces soft limits for all other kernel parameters.

The default, per-process limit of 1024 file descriptors is likely to be more than
enough for all but the most extreme MPI job execution requirements. You can,
however, easily accommodate exceptional file descriptor demands by taking the
following steps:

■ Compiling and linking the MPI application to 64-bit libraries

■ Increasing the open file descriptor limit to a value that will satisfy expected
demands

% mprun –I "0r=/dev/null,1w=out.&J.&R,2w=@1" a.out
44 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

For example, to increase the file descriptor hard limit to 2048, add the following line
to the /etc/system file on each node in the cluster:

Using mprun Options Instead of Shell Syntax

The default I/O behavior of mprun (merged standard error and standard output) is
equivalent to:

The –D option provides separate standard output and standard error streams; it is
equivalent to:

You can use the –o option to force each line of output to be prepended with the rank
of the process writing it. This is equivalent to:

If you redirect output to a shared file, you must use standard shell redirection rather
than the equivalent –I formulation (–I "lwt=outfile"). The same restriction also
applies to the linebuffer formulation (–I "lwt=outfile").

For example, the following command line concatenates the outputs of the individual
processes of a job and writes them to outfile.dat:

The following command line concatenates the outputs of the individual processes
and appends them to the previous content of the output file:

set rlim_fd_max=2048

% mprun –I "0rp,1wp,2w=@1" a.out

% mprun –I "0rp,1wp,2w" a.out

% mprun –I "0rp,1wt,2w=@1" a.out

% mprun –np 4 myprogram > outfile.dat

% mprun –np 4 myprogram >> outfile.dat
Chapter 4 Running Programs With mprun 45

The following table describes three mprun command-line options that provide the
same control over standard I/O as some –I constructs, but are much simpler to
express. Their –I equivalents are also shown.

Note – Specifying –o (forcing processes to prepend rank on output lines), or the
equivalent –I syntax (such as –I1wt) will not work if redirection is also specified
with –I (such as with –I1w=outfile). Use the standard shell redirection operator
instead.

Use the –i option to mprun with caution, since the –i option provides only one
stdin connection (to rank 0). If that connection is closed, keyboard signals are no
longer forwarded to those remote processes. To signal the job, you must go to
another window and issue the mpkill command. For example, if you issue the
command mprun –np 2 –i cat and then type the Ctrl–d character (which causes
cat to close its stdin and exit), rank 0 will exit. However, rank 1 is still running,
and can no longer be signaled from the keyboard.

These shortcuts are not exact substitutions. CRE uses ptys correctly, whether the –I
option is present or absent. Also, CRE merges standard error with standard output
when it is appropriate. If either stderr or stdout is redirected (but not both), ptys
are not used and stderr and stdout are separated. If both stderr and stdout
are redirected, ptys are still not used, but stderr and stdout are combined.

TABLE 4-4 mprun I/O Shortcut Summary

Command Description

mprun –i Standard input to mprun is sent only to rank 0, and not to all other
ranks. Equivalent to mprun –I "0rpb,1wp,2w=@1" a.out

mprun –B Standard output and standard error are written to the file
out.job.rank. Equivalent to mprun –I "0r=/dev/null,1w=
out.&J.&R,2w=@1" a.out

mprun –o Use line buffering on standard output, prefixing each line with the
rank of the process that wrote it. Equivalent to mprun –I
"0rp,1wt,2w=@1" a.out
46 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

Controlling Other Job Attributes

▼ To Include Shell-Specific Actions
To perform actions that are shell specific, such as executing compound commands,
invoke the appropriate shell as part of the mprun command:

Here are two examples:

To Perform This Task Use This Option

How to include shell-specific actions

How to move a process to the background

How to change the working directory –C

How to use a different user name –U

How to use a different group name –A

How to run a job on a different project –P

How to display command help –h

How to display the command’s version number –V

How to display job status information –J

How to store the job name in a file –d

How to tag output with its rank number –o

% mprun shell–command shell–options

% mprun csh –c 'echo $USER'

% mprun csh –c 'cd /foo ; bar'
Chapter 4 Running Programs With mprun 47

▼ To Move a Process to the Background
To move either a process started with mprun or a script that issues mprun
commands to the background, redirect stdin to a file, like this:

You can also use the –n option to mprun so that standard input is read from
/dev/null. See “To Read Standard Input From /dev/null (–n)” on page 40.

When mprun stops, whether via Control–Z or in terminal output, the job under
control of mprun is stopped.

▼ To Change the Working Directory (–C)
Use the –C option to specify the path of an alternative working directory to be used
by the processes spawned when you run your program:

Setting a path with –C does not affect where the runtime environment looks for
executables. If you do not specify –C, the default is the current working directory.
For example:

The syntax above changes the working directory for a.out to
/home/collins/bin.

▼ To Use a Different User Name (–U)
To start a program with a different user name or ID, use the –U option:

% mprun < /dev/null program–name

% mprun –n program–name

% mprun –C working–directory program–name

% mprun –C /home/collins/bin a.out

% mprun –U username program–name
% mprun –U userid program–name
48 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

If you are not the user identified by username, you must have superuser privileges.

▼ To Use a Different Group Name (–G)
To start a program with a different group name or ID, use the –G option:

You must belong to the group you use, or be the superuser.

▼ To Run a Job on a Different Project (–P)
For accounting purposes, any job you run is part of your current project. You can set
a default project by changing the value of the variable SUNHPC_PROJECT. That value
overrides your current project. However, you can override both values by adding
the –P option to the mprun command:

▼ To Specify Verbose Output (–v)
Use this syntax to specify verbose output. For example,

% mprun –G group–name program–name
% mprun –G groupid program–name

% mprun –P project–name

% mprun –v
Chapter 4 Running Programs With mprun 49

▼ To Display Command Help (–h)
To display a list of mprun options, use the –h option (alone):

% mprun –h
USAGE: mprun {options} [-] <exec> [<arg1> [<arg2> ...]]
 where {options} may include:
 -h Displays this help/usage text
 -V Displays tool version information
 -c <cluster> Specifies the cluster to use
 -p <partition> Specifies the partition to use
 -A <aout> Specify the argv [0] explicitly
 -U <uid> Specify uid to execute as
 -G <gid> Specify gid to execute as
 -I <iofds> Specify the I/O fd set to multiplex
 -Is Specify CRE I/O (use with -x)
 -C <path> Specify an alternate working directory
 -P <project> Specify a project name
 -r <path> Chroot to working dir before execution
 -J Show job id after exec
 -np <PxT> Specify the number of processes/threads in job

-nr <PxT> Specify the number of processes/threads to reserve
 -R <rrs> Specify Resource Requirement String
 -W Allow wrapping of hosts
 -S Settle for available hosts
 -j <job name> Run this job on same resources as <job name>
 -i Only rank 0 gets stdin
 -o Rank-tag stdout
 -D Separate stdout/stderr streams
 -N No stdio connections
 -B Batch stream handling
 -n No stdin connection
 -Ns No spawning on SMP’s
 -Ys Enable spawning on SMP’s
 -Z <n> Group procs <n> to an SMP
 -Zt <n> Group/tile procs <n> to an SMP
 -l "<host> [<procs>][,...]" Specify rankmap string
 -m <file> Specify rankmap file
 -u Use any partition independent nodes

-t <n> Multiply daemon and mprun timeouts by factor n; n > 1
 -d <filename> Dump JID to a file

-v Verbose. Gives extra information during job startup.
-x <RM> Run processes under control of resource manager RM
50 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

▼ To Display the Command’s Version (–V)
To display the command’s version number, use the –V (upper case) option (alone):

▼ To Display Job Status Information (–J)
To display information about the job after it finishes executing, add the –J option to
the command:

In this example, the job ID (jid), cluster name, and number of processes are
displayed after the job finishes executing:

▼ To Store Job Name in a File (–d)
To store the job name in a user-specified file for later access, use the –d option:

▼ To Tag Output With Its Rank Number (–o)
To precede each output line with the number of the rank that wrote it, use the –o
option:

% mprun –V

% mprun options –J program–name

% mprun –np 4 –J a.out

% mprun options –d output–file hostname

% mprun options –o program–name
Chapter 4 Running Programs With mprun 51

Command Reference (mprun)
TABLE 4-5 Options for mprun

Option Description

–A Redirect output with an argument vector

–B Redirect stderr and stdout output streams to
individual files

–C Run the program using a different working directory

–c Run the job on a different cluster

–d Store the job name in a file

–D Redirect output to mprun

–G Start the program with a different group name

–h List the options of the mprun command

–I Redirect output with a custom configuration

–i Standard input is sent only to rank 0

–J Display a program’s jid and number of processes after it
finishes executing

–j Run a program on the same nodes as another program

–l Distribute processes among nodes

–m Distribute processes among nodes as specified in a rank
map file

–n Read standard input from /dev/null

–N How to shut off all I/O connections

–np Run a program on multiple processes

–Ns Run a program with process spawning disabled

–o Tag each output line with the rank of the process that
wrote it.

–p Run the program on a different partition

–P Run the job as part of a different project

–R Distribute nodes among processes using a resource
requirement spec

–S Settle for the available number of processes

–U Start the program with a different user name
52 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

–u Include independent nodes when you distribute
processes among the nodes of a partition

–V Display the command’s version information

–W Wrap multiple processes around available nodes

–Ys Execute the program with process spawning enabled

–Z Distribute processes among nodes by block

–Zt Distribute processes among nodes by block, but force
each block to use a different node

TABLE 4-5 Options for mprun (Continued)

Option Description
Chapter 4 Running Programs With mprun 53

54 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

CHAPTER 5

Running Programs With mprun in
Distributed Resource Management
Systems

This chapter describes the options to the mprun command that are used for
distributed resource management, and provides instructions for each resource
manager. It has four sections:

■ “mprun Options for DRM Integration” on page 55
■ “Running Parallel Jobs in the PBS Environment” on page 57
■ “Running Parallel Jobs in the LSF Environment” on page 60
■ “Running Parallel Jobs in the SGE Environment” on page 64

mprun Options for DRM Integration
Call mprun from within the resource manager, as explained in “Integration With
Distributed Resource Management Systems” on page 3. Use the –x flag to specify the
resource manager, and the –np and –nr flags to specify the resources you need. In
addition, the –Is flag selects the default CRE I/O environment, the –v flag produces
verbose output, and the –J flag displays a fuller identification of each process.

Some mprun flags do not make sense for a batch job, and will cause the mprun
request to be rejected if used with the –x flag. See “Improper Flag Combinations for
Batch Jobs” on page 57.

These are the DRM integration options for mprun:
55

–Is

When launching mprun from a resource manager, the –Is option selects CRE’s
default I/O behavior, overriding the I/O behavior of the resource manager.
You do not need this option when using any of these mprun flags: –I, –D, –N,
–B, –n, –i, or –o.

Each of those flags already invokes CRE’s default I/O behavior. You also do
not need this option if you prefer to keep the resource manager’s default I/O
behavior.

–np numprocs [x threads]
Request the specified number of processes in a job. The default is 1 if you are
using CRE. For other resource managers, the default is 0. . Use the argument 0
to specify that you want to start one process for each available CPU, based on
your resource requirements.

When launching a multithreaded program, use the x threads syntax to specify
the number of threads per process. Although the job requires a number of
resources equal to numprocs multiplied by threads, only numprocs processes are
started. The ranks are numbered from 0 to numprocs minus 1. The processes are
allocated across nodes so that each node provides a number of CPUs equal to
or greater than threads. If threading requirements cannot be met, the job fails
and provides diagnostic messages.

A threads setting of 0 allocates the processes among all available resources. It is
equivalent to the –Ns option.

The syntax –np numprocs is equivalent to the syntax –np numprocsx1. The
default is –np 1x1.

If your batch job calls MPI_Comm_spawn(3SunMPI) or
MPI_Comm_spawn_multiple(3SunMPI), be sure to use the –nr option to
reserve the additional resources.

Note – The -np switch is not supported under LSF. The LSF resource manager
selects where the processes will run and how many. This cannot be changed by
using the -np switch with LSF. If you do specify the -np switch under LSF, you will
get an error message.

–x resource_manager
The –x option specifies the resource_manager. Supported resource_ managers are:

■ pbs
■ lsf
56 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

■ sge

If you set a default resource manager in the hpc.conf(4) file, mprun is
automatically launched with that resource manager and you don’t have to use
the –x option. To override the default, use the –x resource–manager flag.

–v

Verbose output. Each interaction of the CRE environment with the resource
manager is displayed in the output.

Improper Flag Combinations for Batch Jobs
Do not use the following flags with the –x resource_manager flag; if you do, the
mprun request will be rejected:

■ –C
■ –G
■ –j
■ –l
■ –m
■ –S
■ –U
■ –W
■ –Z

Running Parallel Jobs in the PBS
Environment
First reserve the number of resources by invoking the qsub command with the
–l option. The –l option specifies the number of nodes and the number of processes
per node. For example, this command sequence reserves four nodes with four
processes per node for the job myjob.sh:

% qsub –l nodes=4:ppn=4 myjob.sh
Chapter 5 Running Programs With mprun in Distributed Resource Management Systems 57

Once you enter the PBS environment, you can launch an individual job or a series of
jobs with mprun. Use the –x pbs option to the mprun command. The mprun
command launches the job using the rankmap file produced by PBS and stored in
the environment variable PBS_NODEFILE. The job ranks are children of PBS, not
CRE.

You can run a CRE job within the PBS environment in two different ways:

▼ To Run an Interactive Job in PBS
1. Enter the PBS environment interactively with the –I option to qsub, and use the

–l option to reserve resources for the job.

Here is an example.

The command sequence shown above enters the PBS environment and reserves one
node with two processes for the job. Here is the output:

2. Launch the mprun command with the –x pbs option.

Here is an example that launches the hostname command with a verbose output:

To Run an Interactive Job in PBS

To Run a Script Job in PBS

hpc–u2–6% qsub –l nodes=1:ppn=2 –I

qsub: waiting for job 20.hpc–u2–6 to start
qsub: job 20.hpc–u2–6 ready
Sun Microsystems Inc. SunOS 5.10 Generic January 2005
pbs%

pbs% mprun –x pbs –v hostname
58 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

The hostname program uses the rankmap specified by the PBS environment
variable PBS_NODEFILE. The output shows the hostname program being run on
ranks r0 and r1:

▼ To Run a Script Job in PBS
1. Write a script that calls mprun with the –x pbs option.

As described on page 56, the –x flag identifies the resource manager that will be
used for the job launched by mprun. In the following examples, the script is called
myjob.csh. Here is an example of the script.

The line above launches the hostname program in verbose mode, using PBS as the
resource manager.

2. Enter the PBS environment and use the –l option to qsub to reserve resources for
the job.

Here is an example of how to use the -l option with the qsub command.

The command sequence shown above enters the PBS environment and reserves one
node with two processes for the job that will be launched by the script named
myjob.csh.

3. Invoke the script.

[mprun:/opt/SUNWhpc/lib/pbsrun –v ––
/opt/SUNWhpc/lib/mpexec –x pbs –v ––/usr/bin/hostname]

[pubsrun:r0–r1:/opt/SUNWhpc/lib/mpexec –x pbs –v
–– /usr/bin/hostname]

[mpexec:r0:/usr/bin/hostname]

[mpexec:r1:/usr/bin/hostname]

mprun –x pbs –v hostname

hpc–u2% qsub –l nodes=1:ppn=2 myjob.csh
Chapter 5 Running Programs With mprun in Distributed Resource Management Systems 59

Here is the output to the script myjob.csh.

As you can see, because the mprun command was invoked with the –x pbs option,
it calls the pbsrun command, which calls mpexec, which forks into two calls of the
hostname program, one for each node.

Running Parallel Jobs in the LSF
Environment

▼ To Run an Interactive Job in LSF
1. Enter the LSF environment with the bsub command.

a. Use the –Is option to select interactive mode.

b. Use the –n option to reserve resources for the job.

[mprun:/opt/SUNWhpc/lib/pbsrun –v
––/opt/SUNWhpc/lib/mpexec–x pbs –v ––/usr/bin/hostname]

[pbsrun:r0–r1:/opt/SUNWhpc/lib/mpexec –x pbs –v
–– /usr/bin/hostname]

[mpexec:r0:/usr/bin/hostname]

[mpexec:r1:/usr/bin/hostname]
60 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

c. Use the –q option to select the queue.

Here is an example that shows how to use the -q option.

The command sequence shown above enters the LSF environment in interactive
mode, reserves 4 nodes, and selects the short queue. Here is the output:

burl-ct-v4% bsub –n 4 –q short –Is csh

Job <24559> is submitted to queue <short>
<<Waiting for dispatch...>>
<<Starting on burl-ct-v4>>
burl-ct-v4
Chapter 5 Running Programs With mprun in Distributed Resource Management Systems 61

2. Use pam and mprun as shown below to start the parallel job.

pam requires the -g switch, which specifies the generic job launcher framework.
mprun requires the -x lsf switch in order to specify that it is running under the
LSF resource manager.
62 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

 burl-ct-v4-4 137 =>bsub -n 4 -q short -Is
bsub> No command is specified. Job not submitted.
 burl-ct-v4-4 138 =>bsub -n 4 -q short -Is tcsh
Job <1151> is submitted to queue <short>.
<<Waiting for dispatch ...>>
<<Starting on burl-ct-v4-5>>
 burl-ct-v4-5 41 =>pam -g mprun -x lsf -v hostname
[lsf hostlist: burl-ct-v4-5 4]
[aout_exec: /usr/bin/newtask -p default /opt/SUNWhpc/lib/mpexec -k 4
-x lsf -v -- /hpc/rte/LSF/cluster1/6.2/sparc-sol10-64/bin/TaskStarter
-p burl-ct-v4-5:36519 -c /hpc/rte/LSF/cluster1/conf -a SOL64
/usr/bin/hostname]
[mpexec: r0: /hpc/rte/LSF/cluster1/6.2/sparc-sol10-64/bin/TaskStarter
-p burl-ct-v4-5:36519 -c /hpc/rte/LSF/cluster1/conf -a SOL64
/usr/bin/hostname]
[mpexec: r1: /hpc/rte/LSF/cluster1/6.2/sparc-sol10-64/bin/TaskStarter
-p burl-ct-v4-5:36519 -c /hpc/rte/LSF/cluster1/conf -a SOL64
/usr/bin/hostname]
[mpexec: r2: /hpc/rte/LSF/cluster1/6.2/sparc-sol10-64/bin/TaskStarter
-p burl-ct-v4-5:36519 -c /hpc/rte/LSF/cluster1/conf -a SOL64
/usr/bin/hostname]
[mpexec: r3: /hpc/rte/LSF/cluster1/6.2/sparc-sol10-64/bin/TaskStarter
-p burl-ct-v4-5:36519 -c /hpc/rte/LSF/cluster1/conf -a SOL64
/usr/bin/hostname]
burl-ct-v4-5
burl-ct-v4-5
burl-ct-v4-5
burl-ct-v4-5
[Job lsf.1151 on burl-ct-v4-5: r0: exit status 0]
[Job lsf.1151 on burl-ct-v4-5: r1: exit status 0]
[Job lsf.1151 on burl-ct-v4-5: r2: exit status 0]
[Job lsf.1151 on burl-ct-v4-5: r3: exit status 0]
Job mprun -x lsf -v hostname

TID HOST_NAME COMMAND_LINE STATUS TERMINATION_TIME
===== ========== ================ ======================= =========
==========
00000 burl-ct-v4 /usr/bin/hostnam Done 02/28/2006
13:16:35
00001 burl-ct-v4 /usr/bin/hostnam Done 02/28/2006
13:16:35
00002 burl-ct-v4 /usr/bin/hostnam Done 02/28/2006
13:16:35
00003 burl-ct-v4 /usr/bin/hostnam Done 02/28/2006
13:16:35
 burl-ct-v4-5 42 =>
Chapter 5 Running Programs With mprun in Distributed Resource Management Systems 63

▼ To Run a Script Job in LSF
1. Write a script that calls mprun with the –x lsf option.

As described on page 56, the –x flag identifies the resource manager that will be
used for the job launched by mprun. Here is an example of the script.

The line above launches the hostname program in verbose mode, using LSF as the
resource manager.

2. Enter the LSF environment with the bsub command.

a. Use the –n option to reserve resources for the job.

b. Use the –q option to select the queue.

c. Invoke the script. Make sure you precede it with pam -g.

The command sequence shown above enters the LSF environment, reserves 4 nodes,
selects the short queue, and invokes the script myjob.csh, which calls mprun.

Running Parallel Jobs in the SGE
Environment
You can launch MPI programs from within SGE in two different ways:

■ To Run an Interactive Job in SGE

■ To Run a Script Job in SGE

Note – Sun N1 Grid Engine 6 (N1GE6) is the supported version of Sun Grid Engine
in Sun HPC ClusterTools 6. For the purposes of this manual, N1GE6 is referred to as
SGE.

mprun –x lsf –v hostname

 burl-ct-v4-4 139 =>bsub -n 4 -q short pam -g myjob.csh
Job <1152> is submitted to queue <short>.
 burl-ct-v4-4 140 =>
64 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

Before you can use SGE with HPC ClusterTools, you need to set up the queue and
parallel environment (PE) in SGE/N1GE. For information about how to set up the
queue and the PE to work with HPC ClusterTools, refer to the Sun HPC ClusterTools
6 Software Administrator’s Guide.

▼ To Run an Interactive Job in SGE
1. Enter the SGE environment with the qsh command.

a. Use the –pe option to reserve resources for the job.

b. Use the cre option to specify CRE as the parallel processing environment.

Here is an example.

The command sequence shown above enters the SGE environment in interactive
mode, reserves 2 nodes, and specifies CRE as the parallel processing environment.
Here is the output from the command sequence:

2. Enter the mprun command with the –x sge option.

The output shows the hostname program being run on ranks r0 and r1:

hpc–u2–6% qsh –pe cre 2

waiting for interactive job to be scheduled ...

Your interactive job 24 has been successfully scheduled.

hpc–u2–6% mprun –x sge –v hostname

 [r0: aout: qrsh, args:
 qrsh –inherit –V hpc–u2–7 /opt/SUNWhpc/lib/mpexec
 –x sge –– hostname]

[r1: aout: qrsh, args:
 qrsh –inherit –V hpc–u2–6 /opt/SUNWhpc/lib/mpexec
 –x sge –– hostname]
Chapter 5 Running Programs With mprun in Distributed Resource Management Systems 65

▼ To Run a Script Job in SGE
1. Write a script that calls mprun with the –x sge option.

As described on page 56, the –x flag identifies the resource manager that will be
used for the job launched by mprun. Here is an example of a script.

The line above launches the hostname program in verbose mode, using SGE as the
resource manager.

2. Enter the SGE environment with the qsub command.

a. Use the –pe option to reserve resources for the job.

b. Use the –cre option to specify CRE as the parallel processing environment.

c. In the qsub syntax, use the script name instead of the program name.

Here is an example of how to use qsub with the script name.

The command sequence shown above enters the CRE environment, reserves 2 nodes,
and invokes the script myjob.csh, which calls mprun. Here is the output:

This is all you need to do to run the job.

3. To display the output from the job, find the output file and display its contents.

a. Use the ls command to list the files into which the script has loaded the
output.

This example uses the job number to identify the output files:

The file that contains the job’s errors is named myjob.csh.e33. The file that
contains the job’s output has the name myjob.csh.o33.

set echo
mprun –x sge –v hostname

hpc–u2–6% qsub –pe cre 2 myjob.csh

 your job 33 ("myjob.csh") has been submitted

hpc–u2–6% ls *33
myjob.csh.e33 myjob.csh.o33 myjob.csh.pe33 myjob.csh.po33
66 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

b. To view the job’s output, display the contents of the job’s output file.

Continuing with the example above:

hpc–u2–6% cat myjob.csh.o33

[r0: aout: qrsh, args:
qursh –inherit –V hpc–u2–6
/opt/SUNWhpc/lib/mpexec –x sge ––hostname]

[r1: aout: qrsh, args:
qursh –inherit –V hpc–u2–7
/opt/SUNWhpc/lib/mpexec –x sge ––hostname]
Chapter 5 Running Programs With mprun in Distributed Resource Management Systems 67

68 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

CHAPTER 6

Killing or Sending Signals to
Programs With mpkill

What You Can Do

Return Values
The mpkill command returns these values:

■ 0 – The command executed successfully.
■ 1 – An error occurred during execution. For example, the job was not known.
■ 2 – The command was partially successful. This typically occurs when you send a

signal to a job in which one or more of the processes has already exited and
therefore could not receive the signal. Note that this is usually not an error, since
the reason you are using mpkill is most likely to eliminate a job that has hung in
this intermediate state.

To Perform This Task Use This Option

How to kill a running program mpkill

How to remove all traces of a job –C

How to display a list of signals –l –d

How to send a signal to a job –signal
69

▼ To Kill a Running Program
To kill a running program, use the mpkill command and the program’s job ID:

The mpkill command stops all the processes associated with the Job ID.

The job ID now begins with the name of the resource manager (cre, lsf, pbs, or
sge). For example: lsf.1289. To obtain a program’s job ID, use the mpps
command, described in “To Display Information About Individual Jobs (–J)” on
page 75.

▼ To Remove All Traces of a Job
If you have killed a job but it continues to appear in the output of the mpps
command (described in Chapter 7), log in as root to the master node and invoke the
mpkill command with the –C option and the jid.

The –C option purges the job from the CRE database, including unpublishing names
associated with the job.

Note – Processes spawned in the ClusterTools Runtime Environment are not killed
by the mpkill or kill commands so long as they have (spawned) child processes
running. To remove the parent process, you must first remove all of its child
processes.

▼ To Display a List of Supported Signals
(–l –d)
To simply list the supported signals, use the –l option.

% mpkill jid

% mpkill –C jid

% mpkill –l
70 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

To display a list with brief descriptions, use the –d option.

▼ To Send a Signal to a Job
To send a signal to a job, use this syntax:

For example:

The example above sends a SIGCONT signal to the processes of the program whose
job ID is sge.59.

Issuing mpkill without specifying a signal sends a SIGTERM to the job.

% mpkill –d

% mpkill –signal jid

% mpkill –CONT sge.59

TABLE 6-1 Options for mpkill

Command Description

none Stop all processes associated with a particular job

–C Remove all traces of a job, including unpublished
names, from the CRE database

–l Display a list of supported signals

–d Display a descriptive list of supported signals

–signal Send a signal to a job
Chapter 6 Killing or Sending Signals to Programs With mpkill 71

72 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

CHAPTER 7

Displaying Program Information
With mpps

What You Can Do
To Perform This Task Use this Option

How to display job status none

How to display information about individual
jobs

–J

How to display name, PID, and host of
current job

–b

How to display information about all jobs –e

How to display a job’s start time –f

How to display job information by partition –A –a

How to display job information by process –P –p
73

▼ To Display Job Status
To display status information about your jobs running in the default partition, enter
the mpps command without options:

For example:

The status fields are described in TABLE 7-1.

% mpps

% mpps
JOBNAME NPROC UID STATE AOUT
cre.41 3 slu RUN AAA
cre.46 4 slu EXNG tmp
cre.49 1 slu EXIT tmp
cre.99 9 slu EXNG uname
cre.100 9 slu EXNG uname

TABLE 7-1 Job Status Displayed by mpps

mpps Output Description

CORE The job or process exited due to a signal and core was dumped.

CORING The job is exiting due to a signal. The first process to die dumped core.

EXIT The job or process exited normally.

EXITING The job is exiting. At least one process exited normally.

FAIL The job or process failed while starting, or was aborted.

FAILING Initialization of the job failed, or a job abort has been signaled.

RUN The job or process is running.

SIGNALING The job or process exited due to a signal.

SIGNALED The job is exiting due to a signal. The first process to die was killed by a
signal. At least one of its processes is still in the RUN state.

SPAWN The job or process is being spawned.

STOPPED The job or process is stopped.
74 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

▼ To Display Information About Individual
Jobs (–J)
To display information about a job, use the –J option and a job–attribute.

Separate multiple job–attributes either with a comma or a space, but not both.

% mpps –J job–attribute[,job–attribute...]

TABLE 7-2 Job attributes for –J option to mpps

Attribute Description

part The name of the partition running the job

jobname The job’s unique ID, expressed as <resource–manager>.jobname

mprun_pid The process identifier (PID) of the current mprun job

mprun_host The host of the current mprun job

nproc The number of processes requested (the actual number of
processes started may differ if the –W (“To Wrap Multiple Processes
(–W)” on page 24) or –S (“To Settle for Available Processes (–S)” on
page 24) flags were used with mprun)

uid The user on whose behalf the job was run (normally the user who
submitted the job)

gid The group on whose behalf the job was run (normally the group of
the user who submitted the job)

state BUILD – The job is being submitted
WAIT – The job is waiting to run
SPAWN – The job is preparing to run
RUN – The job is running
RSTRT – The job has been killed because one of the nodes on which
it was running went down; the job will be restarted

running The number of processes actually running in this job. Not always
equal to the number of processes started for the job because
processes that have exited are not counted

wkdir The directory in which the job’s processes start

aout The name of the program

paout The full path of the program

ctime The time when mprun was invoked
Chapter 7 Displaying Program Information With mpps 75

▼ To Display Job Name, PID, and Host of Current
Job (–b)
Use the –b option to display job name, process identifier, and host of a current MPI
job.

▼ To Display Information About All Jobs (–e)
Use the –e option to display information about all jobs.

▼ To Display a Job’s Start Time (–f)
Use the –f option to display the start time for each job.

▼ To Display Job Information by Partition
(–A –a)
To display information about jobs running in all partitions, use the –A option.

args The command-line arguments of the program

stime The time the job was started

prio The job priority (higher numbers run first)

% mpps –b

% mpps –e

% mpps –f

% mpps –A

TABLE 7-2 Job attributes for –J option to mpps

Attribute Description
76 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

To display information about jobs running in a specific partition, use the –a option,
followed by the name of the partition.

▼ To Display Job Information by Process
(–p –P)
Use the –p option to include information about the processes that make up the jobs:

For example:

The output fields are described in TABLE 7-3, below.

To display information about a particular process attribute, use the –P option:

Separate multiple process–attributes either with a comma or a space, but not both. Use
the attributes described in TABLE 7-3, below.

% mpps –a partition–name

% mpps –p

% mpps –p
JID NPROC UID STATE AOUT RANK PID STATE NODE
lsf.2320 4 shaw RUN sleep 0 10190 RUN node6

 1 4744 RUN node7
2 16564 RUN node4
3 9412 RUN node5

% mpps –P process–attribute[,process–attribute...]

TABLE 7-3 Process attributes for –P option to mpps

Attribute Description

rank The rank of the process within the job

pid The process ID

state The current execution state of the process
Chapter 7 Displaying Program Information With mpps 77

Command Reference (mpps)

iod The process ID of the I/O daemon for this process

load The load on the node executing the process

node The name of the node executing the process

TABLE 7-4 Options for mpps

Option Description

none Display status information about your jobs running in
the default partition

–J Display information about a particular job

–b Display name, process identifier, and host of current job

–e Display information about all jobs

–f Display the time a job started

–A Display information about jobs running in all partitions

–a Display information about jobs running in a particular
partition

–P Display process information about a job

–p Display information about a particular process attribute

TABLE 7-3 Process attributes for –P option to mpps

Attribute Description
78 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

CHAPTER 8

Profiling Programs With MPPROF

This chapter explains how to use the MPProf utilities and environment variables to
extract profiling information from executing MPI programs and generate formatted
reports from that data. It also explains how to convert intermediate binary files to
unanalyzed ASCII files. It has four sections:

■ “Enabling MPI Profiling” on page 79
■ “Controlling Data Collection” on page 80
■ “Using mpprof to Generate Reports” on page 82
■ “Using mpdump to Convert Intermediate Binary Files to ASCII Files” on page 90

Enabling MPI Profiling
To enable MPI profiling with MPProf, set the MPI_PROFILE environment variable to
1 before starting the MPI program.

When MPProf is enabled, it will extract information about calls to Sun MPI routines
and store the information in a set of intermediate files. A separate data file is created
for each MPI process rank in which MPI calls were made.

MPProf also creates an index file describing the locations of the intermediate files.
The index file name has the form:

% setenv MPI_PROFILE 1

mpprof.index.rm.jid
79

where rm is the name of the resource manager and jid is the job ID. The report
generator, mpprof, uses this index file to gather the profiling data and associate it
with particular MPI processes.

Note – If the MPI program uses an instrumented loadable protocol module (PM),
MPProf passes PM-related profiling data back to the PM. This allows the reporting
of PM profile data independent of mpprof.

Controlling Data Collection
MPProf provides the following environment variables to control various aspects of
MPProf behavior:

■ MPI_PROFDATADIR – Specify a location where the intermediate files will be
stored.

■ MPI_PROFINDEXDIR – Specify a location where the index file will be stored.

■ MPI_PROFINTERVAL – Specify an interval between intermediate file updates.

■ MPI_PROFMAXFILESIZE – Specify the maximum size, in kilobytes, that can be
written to any intermediate file.

These environment variables are explained in the following sections.

MPI_PROFDATADIR

The environment variable MPI_PROFDATADIR can be used to specify a nondefault
location where the intermediate files will be created for each process. This directory
must exist.

If profiling is enabled and MPI_PROFDATADIR specifies a directory that does not
exist, MPProf will output an error message and abort the program. If
MPI_PROFDATADIR is not set and profiling is enabled, intermediate files will be
created in /usr/tmp.

MPI_PROFINDEXFDIR

The environment variable MPI_PROFINDEXDIR can be used to specify a nondefault
location for storing the index file. This directory must exist.
80 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

If profiling is enabled and MPI_PROFDATADIR specifies a directory that does not
exist, MPProf will output an error message and abort the program. If profiling is
enabled and MPI_PROFINDEXDIR is not set, the index file will be stored locally in
the current directory.

MPI_PROFINTERVAL

The environment variable MPI_PROFINTERVAL can be used to specify a data
sampling period. When this value is a number greater than 0, the intermediate files
will be updated at the prescribed intervals. The data recorded with each update
represent the MPI activity that occurred since the previous update.

Setting MPI_PROFINTERVAL to 0 forces updates to be made for every MPI call.
Setting MPI_PROFINTERVAL to Inf (meaning infinity) causes the intermediate files
to be updated only once, at MPI_Finalize time. If MPI_PROFINTERVAL is unset
or is set without a value, the default value of 60 seconds will be used.t

The following example sets an interval of 5 seconds:

In this case, the first update of intermediate files would occur approximately 5
seconds after the MPI_Init call, with additional updates appended to the file at 5-
second intervals.

If time intervals are used and an MPI program terminates before the MPI_Finalize
call, any updates that were made can be used by mpprof to generate a profile of
program operations up to the point of termination.

MPI_PROFMAXFILESIZE

The environment variable MPI_PROFMAXFILESIZE can be used to specify, in
kilobytes, the maximum amount of data a process can record in its intermediate file.
The default value is 51,200 kilobytes (approximately 50 megabytes). Setting
MPI_PROFMAXFILESIZE to unlimited removes any limits on the size to which the
intermediate files can grow. Setting MPI_PROFMAXFILESIZE to 0 is an error and will
cause MPProf to abort the program

If a write to a given intermediate file exceeds the MPI_PROFMAXFILESIZE limit, the
write operation will complete, but that process will be unable to record additional
profiling data. Profiling can continue for other processes that have not reached the
file size limit.

% setenv MPI_PROFINTERVAL 5
Chapter 8 Profiling Programs With MPPROF 81

Using mpprof to Generate Reports
This section shows how to use the mpprof command, which is used to generate
reports from profiling information that is collected by the MPI library. To enable MPI
profiling, you set the MPI_PROFILE environment variable to 1 before executing the
mprun command.

When you use the mpprof command, you always specify an index file that points to
files that contain profiling data. The naming convention for the index file is
mpprof.index.rm.jid, where rm is the resource manager used and jid is the job
ID assigned to the MPI program. When profiling is enabled, the MPI library creates
the index file in the current directory by default.

Note – The mpdump command, discussed in the next section, is used to translate
binary profiling data into ASCII text.

mpprof Command Syntax
The mpprof command syntax is

where the following command options are available:

mpprof [–h] [–V] [–r] [–S] [–g output–directory] [–p process–set]
[–c columns] –s start–time] [–e end–time] [–o output–file]
index–file

TABLE 8-1 mpprof Command Options

Option Description

–h Lists the optional arguments and exits.

–V Displays the program version during startup.

–r Removes the intermediate files associated with the specified index–file. By
default, the remove command will use rsh for each node in order to unlink the
files. If the –r option is used with the –S option, the secure shell (ssh) will be
used instead of rsh.
If the –r option is used with the –p option, only a subset of the files will be
removed.

–S Use the secure ssh and scp commands instead of rsh and rcp.
82 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

–g Gathers (copies) the intermediate files associated with the specified index file to
the specified output–directory. The file names will be preserved and will
overwrite any existing files of the same name. A new index file will be created
in the specified output–directory to be used with the files. If the –p option
is used with the –g option, a subset of the files will be copied.
.The –g option can be used with the –r option as a way to archive the
intermediate data files. If the –g output–directory contains previously
stored intermediate files, a new index file will be created. No data will be lost.

–p Specifies a subset of the processes to be analyzed. The –p process–set
option is entered as a comma-separated list of tuples.
If the –p option is used with –S and/or –g, the operation will be performed
only on the specified subset. If a process set encompasses the complete set of
ranks, the –p option will have no effect.
If the –p option is given a stride, the upper bound of the stride is omitted. For
example, if a stride is specified as 1:4:2, the upper bound (4) is not included in
the set. In this example, the resulting set is {1,3}.
See the section “Reporting on Specific Processes” below for additional
information.

–c Specifies the output width of the generated report. The smallest number of
columns supported is 35. When mpprof prints to a terminal window, the
display width will be adjusted automatically unless this option is specified.
Wrapping will occur if the terminal window has fewer than 35 columns.

–s Specifies that any profiling data generated before the specified start–time
should be ignored. This time reference is measured from the point at which the
program calls BMPI_Init. The –s option is useful only when a profiling interval
has been specified for the intermediate files. If no start–time is specified on
the mpprof command line, the earliest time specified in any intermediate file is
used to begin data recording.

–e Specifies that any profiling data occurring after the specified end–time should
be ignored. This time is also measured in seconds, beginning from the time the
program calls MPI_Init. This option can be used with, or in place of, the –s
option. If no end–time is specified, the latest time in any intermediate file is
used for reporting.

–o Specifies that the report should be written to the specified output–file. If
this option is not used or if the output–file is ‘–’, the report will be written
to stdout. If the output–file already exists, it will be overwritten.

TABLE 8-1 mpprof Command Options

Option Description
Chapter 8 Profiling Programs With MPPROF 83

Generating a Message Passing Report
The mpprof command generates a report file based on processes listed in a specified
index file. The following example generates a report file called report.txt that is
based on process profile data stored in files that are specified in an index file called
mpprof.index.cre.14:

When you enter this command, a new file called report.txt is created in the
current directory. If you did not use the –o report.txt command line option, the
report would be sent to the standard output.

Reporting on Specific Processes
You can fine-tune profiling output by specifying a subset of processes of the job,
using the –p option as shown in the following example:

The output report file is always specified before the index file. The preceding
command causes these processes to be analyzed for the report: 0, 3, 4, 5, 9, 10, 11, 12,
18, 21, 24, and 27. To view the report, open the report.txt file in the current
directory.

Reporting Processes That Occur After a Specified
Time Interval
The following example runs the mpprof command to generate a report on all
processes that occur starting 2 minutes (120 seconds) or later after a call to
MPI_Init, which initializes the accumulation of data on processes:

The –s option is useful when you want to exclude startup routines from reporting
because startup routines may not be critical to performance. To view the report, open
the report.txt file in the current directory.

% mpprof –o report.txt mpprof.index.cre.14

% mpprof –p 0,3–5,9:12,18:27:3 –o report.txt mpprof.index.cre.14

% mpprof –s 120 –o report.txt mpprof.index.cre.14
84 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

To Save Report Output for Later Use
If you want to save report output to a specific directory other than the current
directory, use the –g option:

You can combine the –g reportname option with the –r option, removing the intermediate
data files created during the profiling process at the same time as you store the report output:

A Sample Report
The sample report shown is the result of running the following command, which
places the report in a file called report.txt:

Note – The file mpprof.index.cre.39 was created when this MPI command was
run:
% mprun –np 28 /opt/SUNWhpc/examples/mpi/connectivity
The command generates 28 separate files.

The sample report is shown below:

% mpprof –g report.txt mpprof.index.cre.14

% mpprof –r –g report.txt mpprof.index.cre.14

% mpprof –p 0,3–5,9:12,18:27:3 –o report.txt mpprof.index.cre.39

OVERVIEW
========

The program being reported on is "/opt/SUNWhpc/examples/mpi/connectivity,"
which ran as job name "cre.39" on SatOct 29 14:04:29 2005.

Profiled Time Range:

 Start at elapsed time 0.000030 secs
 End at elapsed time 0.008181 secs
 Total duration is 0.008151 secs
 Fraction spent in MPI 85.9%

Elapsed time is measured from the end of MPI_Init. Data is being reported for
Chapter 8 Profiling Programs With MPPROF 85

12 processes of a 28–process job.

LOAD BALANCE
============

Data is being reported on 12 MPI processes. The following histogram shows how
these processes were distributed as a function of the fraction of the time the
processes spent in MPI routines:

 Number of MPI Processes

10-|
|

9-|
|

8-|
|

7-|
|

6-|
|

5-|
|

4-|
|

3-|
|

2-|
|

1-| # # # # # # # # ## # #
| # # # # # # # # ## # #

0-+----+----+----+----+----+----+----+----+----+----+----+----+----+------
84.5 84.7 84.9 85.1 85.3 85.5 85.7 85.9 86.1 86.4 86.6 86.8 87.0 87.2

 Percentage time in MPI

Rank Hostname MPI Time
 12 hpc–smp6–0 84.51%
 24 hpc–smp6–0 84.62%
 27 hpc–smp6–0 84.91%
 0 hpc–smp6–0 85.18%
 5 hpc–smp6–0 85.62%
 10 hpc–smp6–0 85.96%
 4 hpc–smp6–0 86.03%
 3 hpc–smp6–0 86.18%
 21 hpc–smp6–0 86.59%
 11 hpc–smp6–0 86.63%
 18 hpc–smp6–0 87.00%
 9 hpc–smp6–0 87.30%
86 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

Low MPI time for an MPI process may indicate the process has too much of a compute
load. A high compute load forces the other processes to wait, increasing their
MPI time.

To focus reporting on one or more particular processes you may use the –p option
on the command line for mpprof. Type "mpprof –h" for more information.

MPI ENVIRONMENT VARIABLES
=========================

MPI_POLLALL:
You ran with full polling of connections. This means that Sun MPI monitored all
connections for incoming messages, whether your program explicitly posted
receive requests for those connections or not. Typically, this leads to a
degradation in performance.

Suggestion: Set the environment variable MPI_POLLALL to "0".

Warning: If your program relies on MPI_Send to provide substantial internal
buffering of messages, this suggestion could result in deadlock. On the other
hand, that would be an indication that the program in not MPI compliant. If such
deadlock results, it may be resolved by disregarding this suggestion. Even
better performance could result, however, by modifying the program to post the
appropriate receives or, in some cases, by setting MPI environment variables to
increase internal buffers.

SHM
===

The loadable protocol module "shm" has nothing to report.

SUGGESTION SUMMARY
==================

Summary of environment variable suggestions:

 Set: MPI_POLLALL=0

In the C shell, these environment variables may be set by the following commands:

setenv MPI_POLLALL 0

In the Bourne or Korn shell, these environment variables may be set by the
following commands:

export MPI_POLLALL=0

BREAKDOWN BY MPI ROUTINE
Chapter 8 Profiling Programs With MPPROF 87

========================

Here, averages over all MPI processes profiled are reported. The numbers in
parentheses roughly indicate the variations there are among all of the MPI
processes. These variations are computed as (1–min/max)/2 where "min" and "max"
are the minimum and maximum values, respectively, for each statistic reported.
A total of 5 different MPI APIs were called.

 MPI Routine Time Calls Made Sent Received
MPI_Barrier 0.001625 (49.8%) 1 (0.0%) 0 (0.0%) 0 (0.0%)
MPI_Comm_rank 0.000003 (13.5%) 1 (0.0%) 0 (0.0%) 0 (0.0%)
MPI_Comm_size 0.000002 (10.1%) 1 (0.0%) 0 (0.0%) 0 (0.0%)
MPI_Recv 0.003758 (39.3%) 27 (0.0%) 0 (0.0%) 108 (0.0%)
MPI_Send 0.001612 (43.2%) 27 (0.0%) 108 (0.0%) 0 (0.0%)

Where "Time" is in seconds and "Sent" and "Received" are in bytes.

TIME DEPENDENCE
===============

Here is a rough depiction of time variations in MPI usage over the reported time
range. The fraction of time spent in each of the top 4 MPI routines overall are
shown for 60.0–second time periods.

Each time period is specified with an integer. This integer roughly corresponds
to the number of time periods passed, with the first time period lasting from
0–60.0 seconds. There are 1 different time periods. Time periods may be missing
if no MPI calls were made during the period. Times for MPI calls that persist
over multiple reporting intervals will only be reported in a single interval;
these reported times may be greater than 100%.

period MPI_Recv MPI_Barrier MPI_Send MPI_Comm_rank
 1 0.0% 0.0% 0.0% 0.0%

CONNECTIONS
===========

A connection is a sender/receiver pair. For 28 processes, there are 28x28=784
connections, including send–to–self connections.

You asked to see data on a 12–member subset of the MPI processes. Only point–
to–point messages that were sent from this subset are reported. The following
statistics represent 12x12=144 connections.

Here are statistics on the messages sent for each connection, reported on a
scale of 0–99 with 99 corresponding to 1 messages:

sender
 0 3 4 5 9 10 11 12 18 21 24 27
88 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

receiver
 0 _ 99 99 99 99 99 99 99 99 99 99 99
 1 99 99 99 99 99 99 99 99 99 99 99 99
 2 99 99 99 99 99 99 99 99 99 99 99 99
 3 99 _ 99 99 99 99 99 99 99 99 99 99
 4 99 99 _ 99 99 99 99 99 99 99 99 99
 5 99 99 99 _ 99 99 99 99 99 99 99 99
 6 99 99 99 99 99 99 99 99 99 99 99 99
 7 99 99 99 99 99 99 99 99 99 99 99 99
 8 99 99 99 99 99 99 99 99 99 99 99 99
 9 99 99 99 99 _ 99 99 99 99 99 99 99
 10 99 99 99 99 99 _ 99 99 99 99 99 99
 11 99 99 99 99 99 99 _ 99 99 99 99 99
 12 99 99 99 99 99 99 99 _ 99 99 99 99
 13 99 99 99 99 99 99 99 99 99 99 99 99
 14 99 99 99 99 99 99 99 99 99 99 99 99
 15 99 99 99 99 99 99 99 99 99 99 99 99
 16 99 99 99 99 99 99 99 99 99 99 99 99
 17 99 99 99 99 99 99 99 99 99 99 99 99
 18 99 99 99 99 99 99 99 99 _ 99 99 99
 19 99 99 99 99 99 99 99 99 99 99 99 99
 20 99 99 99 99 99 99 99 99 99 99 99 99
 21 99 99 99 99 99 99 99 99 99 _ 99 99
 22 99 99 99 99 99 99 99 99 99 99 99 99
 23 99 99 99 99 99 99 99 99 99 99 99 99
 24 99 99 99 99 99 99 99 99 99 99 _ 99
 25 99 99 99 99 99 99 99 99 99 99 99 99
 26 99 99 99 99 99 99 99 99 99 99 99 99
 27 99 99 99 99 99 99 99 99 99 99 99 _

Here are statistics on the bytes sent for each connection, reported on a scale
of 0–99 with 99 corresponding to 4 bytes:

 sender
 0 3 4 5 9 10 11 12 18 21 24 27
receiver
 0 _ 99 99 99 99 99 99 99 99 99 99 99
 1 99 99 99 99 99 99 99 99 99 99 99 99
 2 99 99 99 99 99 99 99 99 99 99 99 99
 3 99 _ 99 99 99 99 99 99 99 99 99 99
 4 99 99 _ 99 99 99 99 99 99 99 99 99
 5 99 99 99 _ 99 99 99 99 99 99 99 99
 6 99 99 99 99 99 99 99 99 99 99 99 99
 7 99 99 99 99 99 99 99 99 99 99 99 99
 8 99 99 99 99 99 99 99 99 99 99 99 99
 9 99 99 99 99 _ 99 99 99 99 99 99 99
 10 99 99 99 99 99 _ 99 99 99 99 99 99
 11 99 99 99 99 99 99 _ 99 99 99 99 99
 12 99 99 99 99 99 99 99 _ 99 99 99 99
Chapter 8 Profiling Programs With MPPROF 89

Using mpdump to Convert Intermediate
Binary Files to ASCII Files
The mpdump command converts each raw (unanalyzed) intermediate file that is
generated by the MPI library into a readable ASCII file. The mpdump command
produces files that have the .txt extension. For example, the following command
creates a series of ASCII files in the current directory (the default) based on all the
processes that are listed in the index file mpprof.index.cre.14:

The mpdump Command Syntax
The syntax of the mpdump command is

 13 99 99 99 99 99 99 99 99 99 99 99 99
 14 99 99 99 99 99 99 99 99 99 99 99 99
 15 99 99 99 99 99 99 99 99 99 99 99 99
 16 99 99 99 99 99 99 99 99 99 99 99 99
 17 99 99 99 99 99 99 99 99 99 99 99 99
 18 99 99 99 99 99 99 99 99 _ 99 99 99
 19 99 99 99 99 99 99 99 99 99 99 99 99
 20 99 99 99 99 99 99 99 99 99 99 99 99
 21 99 99 99 99 99 99 99 99 99 _ 99 99
 22 99 99 99 99 99 99 99 99 99 99 99 99
 23 99 99 99 99 99 99 99 99 99 99 99 99
 24 99 99 99 99 99 99 99 99 99 99 _ 99
 25 99 99 99 99 99 99 99 99 99 99 99 99
 26 99 99 99 99 99 99 99 99 99 99 99 99
 27 99 99 99 99 99 99 99 99 99 99 99 _

The average length of point–to–point messages was 4 bytes per message.

% mpdump mpprof.index.cre.14

mpdump [–h] [–V] [–S] [–p process–set] [–o output–directory]
index–file
90 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

where the following command options are available:

A Sample mpdump File
The following command creates 28 ASCII text files that are based on the 28 files that
were created in the previous section using the mprun command.

Each of the 28 files contains profiling data about a process in the job. The contents of
one of the files is shown below:

TABLE 8-2 Options to the mpdump Command

Option Description

–h Lists the optional arguments and exits.

–V Displays the program version during start up.

–S Uses the secure ssh and scp commands instead of rsh and rcp.

–p Specifies a subset of the processes to be included in the mpdump output. The –p
process–set option is entered as a comma-separated list of tuples.
If the –p option is used with –S and/or –g, the operation will be performed
only on the specified subset. If a process set encompasses the complete set of
ranks, the –p option will have no effect.
If the –p option is given a stride, the upper bound of the stride is omitted. For
example, if a stride is specified as 1:4:2, the upper bound (4) is not included in
the set. In this example, the resulting set is {1,3}.

–o Specifies that the mpdump output files are to be written to the named directory.
The named directory must already exist. If the specified output–directory
does not exist, an error message will be issued. If –o is not specified, the output
files will be written to the current directory.

% mpdump mpprof.index.cre.39

H: version="MPProf 1.0" np=28 rank=0 timeperiod=60.000000;
H: jobname="cre.39" pid=8399 date="Sat Oct 29 14:04:29 2005"
H: maxfilesize=52428800 hostname="hpc–smp6–0"
H: arg0="/opt/SUNWhpc/examples/mpi/connectivity"
V: variable=MPI_POLLALL actual=1 user=<unset>;
V: variable=MPI_PROCBIND actual=1 user=L;
V: variable=MPI_SPIN actual=1 user=1;
V: variable=MPI_CANONREDUCE actual=0 user=<unset>;
V: variable=MPI_OPTCOLL actual=1 user=<unset>;
V: variable=MPI_EAGERONLY actual=1 user=<unset>;
V: variable=MPI_COSCHED actual=2 user=<unset>;
Chapter 8 Profiling Programs With MPPROF 91

V: variable=MPI_FLOWCONTROL actual=0 user=<unset>;
V: variable=MPI_FULLCONNINIT actual=0 user=<unset>;
V: variable=MPI_WARMUP actual=0 user=<unset>;
x:shm.2: H: version="MPProf 1.0" hostname="hpc–smp6–0";
x:shm.2: V: variable=MPI_SHM_CPOOLSIZE actual=24576 user=<unset>;
x:shm.2: V: variable=MPI_SHM_CYCLESIZE actual=8192 user=<unset>;
x:shm.2: V: variable=MPI_SHM_CYCLESTART actual=24576 user=<unset>;
x:shm.2: V: variable=MPI_SHM_NUMPOSTBOX actual=16 user=<unset>;
x:shm.2: V: variable=MPI_SHM_PIPESIZE actual=8192 user=<unset>;
x:shm.2: V: variable=MPI_SHM_PIPESTART actual=2048 user=<unset>;
x:shm.2: V: variable=MPI_SHM_SBPOOLSIZE actual=0 user=<unset>;
x:shm.2: V: variable=MPI_SHM_SHORTMSGSIZE actual=256 user=<unset>;
x:shm.2: V: variable=MPI_SHM_RENDVSIZE actual=24576 user=<unset>;
x:shm.2: V: variable=MPI_SHM_GBPOOLSIZE actual=20971520 user=<unset>;
h: start=0.000030 end=0.008181 snapshot=1;
c: routine=MPI_Barrier time=0.005588 bytessent=0 bytesrecv=0 calls=1;
c: routine=MPI_Comm_rank time=0.000003 bytessent=0 bytesrecv=0 calls=1;
c: routine=MPI_Comm_size time=0.000002 bytessent=0 bytesrecv=0 calls=1;
c: routine=MPI_Recv time=0.001103 bytessent=0 bytesrecv=108 calls=27;
c: routine=MPI_Send time=0.000248 bytessent=108 bytesrecv=0 calls=27;
p: destrank=1 bytessent=4 msgssent=1;
p: destrank=2 bytessent=4 msgssent=1;
p: destrank=3 bytessent=4 msgssent=1;
p: destrank=4 bytessent=4 msgssent=1;
p: destrank=5 bytessent=4 msgssent=1;
p: destrank=6 bytessent=4 msgssent=1;
p: destrank=7 bytessent=4 msgssent=1;
p: destrank=8 bytessent=4 msgssent=1;
p: destrank=9 bytessent=4 msgssent=1;
p: destrank=10 bytessent=4 msgssent=1;
p: destrank=11 bytessent=4 msgssent=1;
p: destrank=12 bytessent=4 msgssent=1;
p: destrank=13 bytessent=4 msgssent=1;
p: destrank=14 bytessent=4 msgssent=1;
p: destrank=15 bytessent=4 msgssent=1;
p: destrank=16 bytessent=4 msgssent=1;
p: destrank=17 bytessent=4 msgssent=1;
p: destrank=18 bytessent=4 msgssent=1;
p: destrank=19 bytessent=4 msgssent=1;
p: destrank=20 bytessent=4 msgssent=1;
p: destrank=21 bytessent=4 msgssent=1;
p: destrank=22 bytessent=4 msgssent=1;
p: destrank=23 bytessent=4 msgssent=1;
p: destrank=24 bytessent=4 msgssent=1;
p: destrank=25 bytessent=4 msgssent=1;
p: destrank=26 bytessent=4 msgssent=1;
p: destrank=27 bytessent=4 msgssent=1;
x:shm.2: alloc_mem=MPI_Alloc_mem no_memory_allocated=0;
e:
92 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

CHAPTER 9

Using the DTrace Utility With Sun
MPI

This chapter discusses how to use the Solaris Dynamic Tracing utility (DTrace) with
Sun MPI. DTrace is a comprehensive dynamic tracing utility that you can use to
monitor the behavior of applications programs as well as the operating system itself.
You can use DTrace on live production systems to understand those systems’
behavior and to track down any problems that might be occurring.

The D language is the programming language used to create the source code for
DTrace programs.

The material in this chapter assumes knowledge of the D language and how to use
DTrace.

For more information about the D language and DTrace, refer to the Solaris Dynamic
Tracing Guide (Part Number 817-6223). This guide is part of the Solaris 10 OS
Software Developer Collection.

Solaris 10 OS documentation can be found on the web at the following location:

http://www.sun.com/documentation

Follow these links to the Solaris Dynamic Tracing Guide:

Solaris Operating Systems -> Solaris 10 -> Solaris 10 Software Developer Collection

Note – The sample program mpicommleak and other sample scripts are located at:

/opt/SUNWhpc/examples/mpi/dtrace

The following topics are covered in this chapter:

■ mprun Privileges
■ Running DTrace with MPI Programs
■ Simple MPI Tracing
93

http://www.sun.com/documentation

■ Tracking Down Resource Leaks

mprun Privileges
Before you run a program under DTrace, you need to make sure that you have the
correct mprun privileges.

In order to run the script under mprun, make sure that you have dtrace_proc and
dtrace_user privileges. Otherwise, DTrace will return the following error because
it does not have sufficient privileges:

To determine whether you have the appropriate privileges on the entire cluster,
perform the following steps:

1. Use your favorite text editor to create the following shell script, called
mpppriv.sh:

2. Type the following command:

If the output of ppriv shows that the E privilege set has the dtrace privileges, then
you will be able to run dtrace under mprun (see the two examples below)
Otherwise, you will need to adjust your system to get dtrace access.

dtrace: failed to initialize dtrace: DTrace requires additional
privileges

#!/bin/sh
mpppriv.sh - run ppriv under a shell so you can get the privileges
of the process that mprun creates
ppriv $$

% mprun -np 0 -Ns mpppriv.sh
94 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

The following example shows the output from ppriv if the correct user privileges
have not been set:

This example shows ppriv output when the privileges have been set:

Note – To update your privileges, ask your system administrator to add the
dtrace_user and dtrace_proc privileges to your account in the
/etc/user_attr file.

After the privileges have been changed, you can use the ppriv command to execute
the dtrace commands under mprun.

Running DTrace with MPI Programs
There are two ways to use Dynamic Tracing with MPI programs:

■ Run the program directly under DTrace, or

■ Attach DTrace to a running MPI program

% ppriv $$
4084: -csh
flags = <none>

E: basic
I: basic
P: basic
L: all

% ppriv $$
2075: tcsh
flags = <none>

E:basic,dtrace_proc,dtrace_user
I:basic,dtrace_proc,dtrace_user
P:basic,dtrace_proc,dtrace_user
L: all
Chapter 9 Using the DTrace Utility With Sun MPI 95

Running an MPI Program Under DTrace
For illustration purposes, assume you have a program named mpiapp. To trace the
program mpiapp using the mpitrace.d script, type the following command:

The advantage of tracing an MPI program in this way is that all the processes in the
job will be traced from the beginning. This method is probably most useful in doing
performance measurements, when you need to start at the beginning of an
application and you need all the processes in a job to participate in collecting data.

This approach also has some disadvantages. One disadvantage of running a
program like the one in the above example is that all the tracing output for all four
processes is directed to standard output (stdout). One way around this problem is
to create a script similar to the following:

To trace a parallel program and get separate trace files, type the following command
to run the partrace.sh shell script:

This will run mpiapp under dtrace using the mpitrace.d script. The script saves
the trace output for each process in a job under a separate file name, based on the job
ID and rank of the process.

Attaching to MPI Processes
The second way to use dtrace with Sun MPI is to attach dtrace to a running
process. Perform the following procedure:

% mprun -np 4 dtrace -s mpitrace.d -c mpiapp

#!/bin/sh
partrace.sh - a helper script to dtrace Sun MPI jobs from the
start of the job.
dtrace -s $1 -c $2 -o $2.$MP_JOBID.$SUNHPC_PROC_RANK.trace

% mprun -np 4 partrace.sh mpitrace.d mpiapp
96 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

1. Type the following command to get the process ID (PID) of the running process
and the nodes on which it is running.

2. Decide which rank you want to use to attach dtrace, and then log in to the node
that contains the rank you want to use (in this example, rank 1 for the job cre.1).
In the example, you would log in to the node mynode.

3. Type the following command to attach to the rank 1 process (identified by its
process ID, which is 6391 in the example) and run the DTrace script mpitrace.d:

Simple MPI Tracing
DTrace enables you to easily trace programs. When used in conjunction with MPI
and the more than 200 functions defined in the MPI standard, DTrace provides an
easy way to determine which functions might be in error during the debugging
process, or those functions which might be of interest. After you determine the
function showing the error, it is easy to locate the desired job, process, and rank on
which to run your scripts. As demonstrated above, DTrace allows you to perform
these determinations while the program is running

Although the MPI standard provides the MPI profiling interface, using DTrace does
provide a number of advantages. The advantages of using DTrace include the
following:

■ The PMPI interface requires you to restart a job every time you make changes to
the interposing library.

■ DTrace allows you to define probes that let you capture tracing information on
MPI without having to code the specific details for each function you want to
capture.

■ DTrace’s scripting language D has several built-in functions that help in
debugging problematic programs.

% mpps -p
JOBNAME NPROC UID STATE AOUT
cre.1 2 joeuser RUN mpiapp

RANK PID STATE NODE
0 6390 RUN mynode
1 6391 RUN mynode

% dtrace -p 6391 -s mpitrace.d
Chapter 9 Using the DTrace Utility With Sun MPI 97

The following example shows a simple script that traces the entry and exit into all
the MPI API calls.

When you use this example script to attach DTrace to a job that performs send and
recv operations, the output looks similar to the following:

You can easily modify the mpitrace.d script to include an argument list. The
resulting output resembles truss output. For example:

mpitrace.d:
pid$target:libmpi:MPI_*:entry
{
printf(“Entered %s...”, probefunc);
}

pid$target:libmpi:MPI_*:return
{
printf(“exiting, return value = %d\n”, arg1);
}

% dtrace -q -p 6391 -s mpitrace.d
Entered MPI_Send...exiting, return value = 0
Entered MPI_Recv...exiting, return value = 0
Entered MPI_Send...exiting, return value = 0
Entered MPI_Recv...exiting, return value = 0
Entered MPI_Send...exiting, return value = 0 ...

mpitruss.d:
pid$target:libmpi:MPI_Send:entry,
pid$target:libmpi:MPI_*send:entry,
pid$target:libmpi:MPI_Recv:entry,
pid$target:libmpi:MPI_*recv:entry
{
printf(“%s(0x%x, %d, 0x%x, %d, %d, 0x%x)”,probefunc, arg0, arg1,
arg2, arg3, arg4, arg5);
}
pid$target:libmpi:MPI_Send:return,
pid$target:libmpi:MPI_*send:return,
pid$target:libmpi:MPI_Recv:return,
pid$target:libmpi:MPI_*recv:return
{
printf(“\t\t = %d\n”, arg1);
}

98 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

The mpitruss.d script shows how you can specify wildcard names to match the
functions. Both probes will match all send and receive type function calls in the MPI
library. The first probe shows the usage of the built-in arg variables to print out the
arglist of the function being traced.

Take care when wildcarding the entrypoint and the formatting argument output,
because you could end up printing either too many arguments, or not enough
arguments, for certain functions. For example, in the above case, the MPI_Irecv
and MPI_Isend functions will not have their Request handle parameters printed
out.

The following example shows a sample output of the mpitruss.d script:

Tracking Down Resource Leaks
One of the biggest issues with programming is the unintentional leaking of resources
(such as memory). With MPI, tracking and repairing resource leaks can be
somewhat more challenging because the objects being leaked are in the middleware,
and thus are not easily detected by the use of memory checkers.

DTrace helps with debugging such problems using variables, the profile provider,
and a callstack function. The mpicommcheck.d script (shown in the example
below) probes for all the the MPI communicator calls that allocate and deallocate
communicators, and keeps track of the stack each time the function is called. Every
10 seconds the script dumps out the current count of MPI communicator calls and
the total calls for the allocation and deallocation of communicators. When the
dtrace session ends (usually by typing Ctrl-C, if you attached to a running MPI
program), the script will print out the totals and all the different stack traces, as well
as the number of times those stack traces were reached.

In order to perform these tasks, the script uses DTrace features such as variables,
associative arrays, built-in functions (count, ustack) and the predefined variable
probefunc.

% dtrace -q -p 6391 -s mpitruss.d
MPI_Send(0x80470b0, 1, 0x8060f48, 0, 1,0x8060d48) = 0
MPI_Recv(0x80470a8, 1, 0x8060f48, 0, 0, 0x8060d48) = 0
MPI_Send(0x80470b0, 1, 0x8060f48, 0, 1, 0x8060d48) = 0
MPI_Recv(0x80470a8, 1,0x8060f48, 0, 0, 0x8060d48) = 0 ...
Chapter 9 Using the DTrace Utility With Sun MPI 99

The following example shows the mpicommcheck.d script.

This script attaches dtrace to a suspect section of code in your program (that is, a
section of code that might contain a resource leak). If, during the process of running
the script, you see that the printed totals for allocations and deallocations are

mpicommcheck.d:
BEGIN
{
 allocations = 0;
 deallocations = 0;
 prcnt = 0;
}

pid$target:libmpi:MPI_Comm_create:entry,
pid$target:libmpi:MPI_Comm_dup:entry,
pid$target:libmpi:MPI_Comm_split:entry
{
 ++allocations;
 @counts[probefunc] = count();
 @stacks[ustack()] = count();
}

pid$target:libmpi:MPI_Comm_free:entry
{
 ++deallocations;
 @counts[probefunc] = count();
 @stacks[ustack()] = count();
}

profile:::tick-1sec
/++prcnt > 10/
{
printf(“===

==============”);
 printa(@counts);
 printf(“Communicator Allocations = %d \n”, allocations);
 printf(“Communicator Deallocations = %d\n”, deallocations);
 prcnt = 0;
}

END
{
 printf(“Communicator Allocations = %d, Communicator
Deallocations = %d\n”,

allocations, deallocations);
}

100 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

starting to steadily diverge, you might have a resource leak. Depending on how
your program is designed, it might take some time and observation of the
allocation/deallocation totals in order to definitively determine that the code
contains a resource leak. Once you do determine that a resource leak is definitely
occurring, you can type Ctrl-C to break out of the dtrace session. Next, using the
stack traces dumped, you can try to determine where the issue might be occurring.

The following example shows code containing a resource leak, and the output that is
displayed using the mpicommcheck.d script.

The sample MPI program containing the resource leak is called mpicommleak. This
program performs three MPI_Comm_dup operations and two MPI_Comm_free
operations. The program thus “leaks” one communicator operation with each
iteration of a loop.

When you attach dtrace to mpicommleak using the mpicommcheck.d script
above, you will see a 10-second periodic output. This output shows that the count
of the allocated communicators is growing faster than the count of deallocations.

When you finally end the dtrace session by typing Ctrl-C, the session will have
output a total of five stack traces, showing the distinct three MPI_Comm_dup and
two MPI_Comm_free call stacks, as well as the number of times each call stack was
encountered.
Chapter 9 Using the DTrace Utility With Sun MPI 101

For example:

% dtrace -q -p 6581 -s mpicommcheck.d
==
 MPI_Comm_free 4
 MPI_Comm_dup 6
Communicator Allocations = 6
Communicator Deallocations = 4
==
 MPI_Comm_free 8
 MPI_Comm_dup 12
Communicator Allocations = 12
Communicator Deallocations = 8
==
 MPI_Comm_free 12
 MPI_Comm_dup 18
Communicator Allocations = 18
Communicator Deallocations = 12
^C
Communicator Allocations = 21, Communicator Deallocations = 14

libmpi.so.1`MPI_Comm_dup
mpicommleak`allocate_comms+0x1e
mpicommleak`main+0x5b
mpicommleak`0x805091a
7

libmpi.so.1`MPI_Comm_dup
mpicommleak`allocate_comms+0x30
mpicommleak`main+0x5b
mpicommleak`0x805091a
7

libmpi.so.1`MPI_Comm_dup
mpicommleak`allocate_comms+0x42
mpicommleak`main+0x5b
mpicommleak`0x805091a
7

libmpi.so.1`MPI_Comm_free
mpicommleak`deallocate_comms+0x19
mpicommleak`main+0x6a
mpicommleak`0x805091a
7

libmpi.so.1`MPI_Comm_free
mpicommleak`deallocate_comms+0x26
mpicommleak`main+0x6a
mpicommleak`0x805091a
7

102 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

CHAPTER 10

Displaying Information With
mpinfo

What You Can Do
Task Option

How to display information about published names –T

How to display information about any cluster –c

How to display information about the current cluster –C

How to display information about individual partitions –p

How to display information about all partitions –P

How to display information about individual nodes –n

How to display information about all nodes –N

How to display an online list of valid attributes –lc –lp –ln

How to restrict output to individual attributes –A

How to display information in verbose mode –v
103

▼ To Display Information About Published
Names (–T)
Use the –T option:

The name, associated port value, and the jid of the publishing job are displayed. For
example:

The fields in the output are described in TABLE 10-1.

Include the –A option to restrict the output to a particular attribute or set of
attributes. (See “To Restrict Output to Individual Attributes (–A)” on page 109.)

▼ To Display Information About Any
Cluster (–c)
Use the –c option:

If you do not enter a cluster, the command uses the cluster named by the
SUNHPC_CLUSTER environment variable. If that environment variable has not been
set, be sure to manually enter a cluster, or the command fails.

% mpinfo –T

% mpinfo –T
JID NAME PORT
14 bachelor xxx.xxx.xxx.xxx:48944
14 biker xxx.xxx.xxx.xxx:48944
14 centralia xxx.xxx.xxx.xxx:48944
14 rockstar xxx.xxx.xxx.xxx:48944
18 freddie xxx.xxx.xxx.xxx:501
18 lackluster xxx.xxx.xxx.xxx:503
18 bennie xxx.xxx.xxx.xxx:505
18 stellar xxx.xxx.xxx.xxx:507

% mpinfo –c [cluster] –C | –P | – N
104 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

Use one of the three options –C, –P, or –N to indicate the type of information you
want to display (cluster-level, partition, or node). Use only one option at a time. For
example:

The fields in the output are described in TABLE 10-1.

Include the –A option to restrict the output to a particular attribute or set of
attributes. (See “To Restrict Output to Individual Attributes (–A)” on page 109.)

▼ To Display Information About the Current
Cluster (–C)
Use the –C option (upper case):

This option is a shortcut for a common use of the –c option:

% mpinfo –c hpc–cluster–0 –C
NAME ADMINISTRATOR DEF_INTER_PART
hpc–cluster–0 – all

% mpinfo –c hpc–cluster–0 –P
NAME NODES: Tot(cpu) Enb(cpu) Onl(cpu) ENA LOG MP
all 1(28) 1(28) 1(28) yes yes yes

% mpinfo –c hpc–cluster–0 –N
NAME UP PARTITION OS OSREL NCPU FMEM FSWP LOAD1 LOAD5 LOAD15
node0 y all SunOS 5.10 10 748.07 1459 10.54 10.62 10.66
node1 y all SunOS 5.10 10 811.63 1492 10.51 10.53 10.55
node2 y all SunOS 5.10 10 715.10 1432 10.87 10.88 10.91
node3 y all SunOS 5.10 10 837.91 1514 10.06 10.24 10.31

% mpinfo –C

% mpinfo –C
NAME ADMINISTRATOR DEF_INTER_PART
hpc–cluster–0 – all

% mpinfo –c hpc–cluster–0 –C
NAME ADMINISTRATOR DEF_INTER_PART
hpc–cluster–0 – all
Chapter 10 Displaying Information With mpinfo 105

The fields in the output are described in TABLE 10-1.

Include the –A option to restrict the output to a particular attribute or set of
attributes. (See “To Restrict Output to Individual Attributes (–A)” on page 109.)

▼ To Display Information About Individual
Partitions (–p)
Use the –p option:

Separate multiple partition names with a comma. You can also enclose the set of
partition names in quotation marks.

For example:

The fields of the output are described in TABLE 10-1.

Include the –A option to restrict the output to a particular attribute or set of
attributes. (See “To Restrict Output to Individual Attributes (–A)” on page 109.)

▼ To Display Information About All
Partitions (–P)
Use the –P option (upper case):

% mpinfo –p partition–name[,partition–name ...]

% mpinfo –p part1,part2
NAME NODES: Tot(cpu) Enb(cpu) Onl(cpu) ENA LOG MP
part1 1(4) 1(4) 1(4) no yes yes
part2 1(4) 1(4) 1(4) yes yes yes

% mpinfo –P
106 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

For example:

The fields of the output are described in TABLE 10-1.

Include the –A option to restrict the output to a particular attribute or set of
attributes. (See “To Restrict Output to Individual Attributes (–A)” on page 109.)

▼ To Display Information About Individual Nodes
(–n)
Use the –n option:

When listing multiple node names, separate the names with commas but no spaces.
For example:

The fields in the output are described in TABLE 10-1.

Include the –A option to restrict the output to a particular attribute or set of
attributes. (See “To Restrict Output to Individual Attributes (–A)” on page 109.)

▼ To Display Information About All Nodes
(–N)
Use the –N option (upper case).

% mpinfo –P
NAME NODES: Tot(cpu) Enb(cpu) Onl(cpu) ENA LOG MP
part10 1(4) 1(4) 1(4) no yes yes
part11 1(4) 1(4) 1(4) yes yes yes

% mpinfo –n node–name[,node–name...]

% mpinfo -n node1,node2
NAME UP PARTITION OS OSREL NCPU FMEM FSWP LOAD1 LOAD5 LOAD15
node1 y all SunOS 5.10 2 2252 7935 0.04 0.03 0.03
node2 y all SunOS 5.10 2 2084 7743 0.03 0.02 0.02

% mpinfo –N
Chapter 10 Displaying Information With mpinfo 107

For example:

The fields in the output are described in TABLE 10-1.

Include the –A option to restrict the output to a particular attribute or set of
attributes. (See “To Restrict Output to Individual Attributes (–A)” on page 109.)

▼ To Display an Online List of Valid
Attributes (–lc, –lp, –ln)
Use the –lc, –lp, or –ln options for clusters, partitions, or nodes:

% mpinfo –N
NAME UP PARTITION OS OSREL NCPU FMEM FSWP LOAD1 LOAD5 LOAD1
node0 y p0 SunOS 5.10 1 0.89 158.34 0.09 0.11 0.13
node1 y p0 SunOS 5.10 1 31.41 276.12 0.00 0.01 0.01
node2 y p1 SunOS 5.10 1 25.59 279.77 0.00 0.00 0.01
node3 y p1 SunOS 5.10 1 25.40 279.88 0.00 0.00 0.01

% mpinfo –lc
% mpinfo –lp
% mpinfo –ln
108 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

For example:

▼ To Restrict Output to Individual Attributes (–A)
Add the –A option to other mpinfo options to restrict the output to specific
attributes of a node, partition, or cluster:

Separate multiple partition attributes with commas but no spaces. For a list of valid
attributes, see TABLE 10-1.

% mpinfo –lc
 name cluster name (NAME)
 admin cluster administrator (ADMINISTRATOR)
 definter default interactive partition (DEF_INTER_PART)

% mpinfo –lp
 name partition name (NAME)
 enabled partition state (ENA)
 nodes node count (NODES: Tot(cpu) Enb(cpu) Onl(cpu))
 maxt max total procs (MAXT)
 login logins allowed (LOG)
 mp mp jobs allowed (MP)

% mpinfo –ln
 cpu_idle idle cpu idle time (%) (IDLE)
 cpu_iowait iowait cpu iowait time (%) (IWAIT)
 cpu_kernel kernel cpu kernel time (%) (KERNL)
 cpu_type cpu cpu architecture (CPU)
 ...

% mpinfo –p partition –A attribute[,attribute...]
% mpinfo –P –A attribute[,attribute...]
% mpinfo –n node –A attribute[,attribute...]
% mpinfo –N –A attribute[,attribute...]
% mpinfo –c cluster [–C | –P | –N] –A attribute[,attribute...]
% mpinfo –C partition –A attribute[,attribute...]
Chapter 10 Displaying Information With mpinfo 109

This example begins by showing the full set of node attributes displayed when you
identify the object (in this case with the –N option), but leave out the –A option. Then
it shows how adding the –A option restricts the list to a subset of the information:

% mpinfo –N
NAME UP PARTITION OS OSREL NCPU FMEM FSWP LOAD1 LOAD5 LOAD15
node0 y all SunOS 5.10 10 750.19 1527 10.52 10.66 10.70
node1 y all SunOS 5.10 10 816.07 1576 10.55 10.59 10.61
node2 y all SunOS 5.10 10 721.84 1524 10.91 10.95 10.96
node3 y all SunOS 5.10 10 840.41 1596 10.42 10.42 10.40

% mpinfo –N –A name
NAME
node0
node1
node2
node3

TABLE 10-1 Attributes Displayed by –A option to mpinfo

Object Attribute Description

Partition NAME Name of the partition

NODES Information about the nodes in the partition:
Tot – total number of nodes
Enb – number that are enabled
Onl – number currently online
ENA – whether the partition is enabled (YES/NO)
LOG – whether the node accepts logins (YES/NO)
MP – whether the node accepts multinode jobs
(YES/NO)

MAXT Maximum number of simultaneously running
processes allowed on each node of the partition

Cluster NAME Name of the cluster (host name of the master
node)

ADMINISTRATOR Name of the cluster’s administrator

DEF_INTER_PART Default interactive partition

Node cpu_idle Percent of time CPU is idle (IDLE).

cpu_iowait Percent of time CPU spends waiting for
I/O (IWAIT).

cpu_kernel Percent of time CPU spends in kernel (KERNL).

cpu_type CPU architecture (CPU).
110 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

Node
(continued)

cpu_user Percent of time CPU spends running user’s
program (USER).

domain DNS domain.

enabled If set, node is available for spawning jobs on it.

load1 Load average for the past minute (LOAD1).

load5 Load average for the past five minutes (LOAD5).

load15 Load average for the past 15 minutes (LOAD15).

manufacturer Hardware manufacturer (MANUFACTURER).

mem_free Node’s available RAM (in Mbytes) (FMEM).

mem_total Node’s total physical memory (in Mbytes) (MEM).

name Name of the node (NAME).

ncpus Number of CPU modules in the node (NCPU).

os_arch_kernel Node’s kernel architecture (MACH).

os_max_proc Maximum number of processes allowed on the
node (note that this is all processes, including
cluster daemons) (MPROC).

os_name Name of the operating system running on the
node (OS).

os_release Operating system’s release number (OSREL).

os_release_maj The major number of the operating system release
number (MAJ).

os_release_min The minor number of the operating system release
number (MIN).

os_version Operating system’s version (OSVER).

partition The partition of which the node is a member
(PARTITION).

serial_number Hardware serial number (SERIAL).

swap_free Node’s available swap space (in Mbytes) (FSWP).

swap_total Node’s total swap space (in Mbytes) (SWAP).

TABLE 10-1 Attributes Displayed by –A option to mpinfo (Continued)

Object Attribute Description
Chapter 10 Displaying Information With mpinfo 111

▼ To Display Information in Verbose Mode
(–v)
Add the –v option to any other option to display its information in verbose mode:

Verbose mode displays a little more information than standard mode, and makes it
easier to read. This example shows how the information is displayed first without,
and then with the verbose mode:

% mpinfo –p partition –v
% mpinfo –P –v
% mpinfo –n node –v
% mpinfo –N –v
% mpinfo –c cluster [–C | –P | –N] –v
% mpinfo –C partition –v
112 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

% mpinfo –N
NAME UP PARTITION OS OSREL NCPU FMEM FSWP LOAD1 LOAD5 LOAD15
node0 y all SunOS 5.10 10 839.30 1610 10.18 10.57 10.65
node1 y all SunOS 5.10 10 900.45 1646 10.12 10.47 10.54
node2 y all SunOS 5.10 10 802.66 1592 10.42 10.78 10.84
node3 y all SunOS 5.10 10 927.55 1676 10.11 10.48 10.48

% mpinfo –N –v

Node "node0":
 LPM Interfaces: shm,tcp
 State: enabled & online
 partition: "all"

 os: SunOS 5.10 (Generic_108528–07)
 arch: sun4u, cpu: sparc, ncpus: 10
 manufacturer: Sun_Microsystems, serial no: 809deb49
 memory: 1280.000M (775.727M free),
 swap: 1932.539M (1579.609M free)
 isalist: sparcv9+vis sparcv9 sparcv8plus+vis sparcv8plus
 sparcv8 sparcv8–fsmuld sparcv7 sparc

 load averages: 10.53, 10.57, 10.64
cpu states: 0.00% idle, 46.31% user, 53.69% kernel, 0.00% iowait

 local attributes:

Node "node1":
 LPM Interfaces: shm,tcp
 State: enabled & online
 partition: "all"
.
.
.

Chapter 10 Displaying Information With mpinfo 113

Command Reference (mpinfo)
TABLE 10-2 Options for mpinfo

Command Description

–T Display name publishing information

–c Display cluster-level, partition, or node information
about any cluster

–C Display cluster-level information about the current
cluster; equivalent to mpinfo –c cluster–name –C

–p Display information about individual partitions

–P Displays information about all partitions in the cluster

–n Displays information about individual nodes

–N Displays information about all nodes in the cluster

–lc List the cluster attributes that can be displayed by –A

–lp List the partition attributes that can be displayed by –A

–ln List the node attributes that can be displayed by –A

–A Restrict the display of cluster, partition, or node
information to individual attributes—must combine
with one of these options: –c –C –p –P –n –N

–v Display information in verbose mode—must combine
with one of these options: –c –C –p –P –n –N
114 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

APPENDIX A

Troubleshooting

This appendix describes some common problem situations, resulting error messages,
and suggestions for fixing the problems. Sun MPI error reporting, including I/O,
follows the MPI-2 Standard. By default, errors are reported in the form of standard
error classes. These classes and their meanings are listed in TABLE A-1 (for non-I/O
MPI) and TABLE A-2 (for MPI I/O), and are also available on the MPI man page.

Three predefined error handlers are available in Sun MPI:

■ MPI_ERRORS_RETURN – The default, returns an error code if an error occurs.
■ MPI_ERRORS_ARE_FATAL – I/O errors are fatal, and no error code is returned.
■ MPI_THROW_EXCEPTION – A special error handler to be used only with C++.

MPI Messages
You can make changes to and get information about the error handler using any of
the following routines:

■ MPI_Comm_create_errhandler
■ MPI_Comm_get_errhandler
■ MPI_Comm_set_errhandler

Messages resulting from an MPI program fall into two categories:

■ Error messages – Error messages stem from within MPI. Usually an error message
explains why your program cannot complete, and the program aborts.

■ Warning messages – Warnings stem from the environment in which you are
running your MPI program and are usually sent by MPI_Init(). They are not
associated with an aborted program, that is, programs continue to run despite
warning messages.
115

Error Messages
Sun MPI error messages use a standard format:

[x y z] Error in function_name: errclass_string:intern(a):description:unixerrstring

where

■ [x y z] is the process communication identifier, and:

■ x is the job ID (or jid).

■ y is the name of the communicator if a name exists; otherwise it is the address
of the opaque object.

■ z is the rank of the process.

The process communication identifier is present in every error message.

■ function_name is the name of the associated MPI function. It is present in every
error message.

■ errclass_string is the string associated with the MPI error class. It is present in
every error message.

■ intern is an internal function. It is optional.

■ a is a system call, if one is the cause of the error. It is optional.

■ description is a description of the error. It is optional.

■ unixerrstring is the UNIX error string that describes system call a. It is optional.

Warning Messages
Sun MPI warning messages also use a standard format:

[x y z] Warning message

where message is a description of the error.
116 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

Standard Error Classes
Listed below are the error return classes you may encounter in your MPI programs.
Error values may also be found in mpi.h (for C), mpif.h (for Fortran), and
mpi++.h (for C++).

TABLE A-1 Sun MPI Standard Error Classes

Error Code Value Meaning

MPI_SUCCESS 0 Successful return code.

MPI_ERR_BUFFER 1 Invalid buffer pointer.

MPI_ERR_COUNT 2 Invalid count argument.

MPI_ERR_TYPE 3 Invalid datatype argument.

MPI_ERR_TAG 4 Invalid tag argument.

MPI_ERR_COMM 5 Invalid communicator.

MPI_ERR_RANK 6 Invalid rank.

MPI_ERR_ROOT 7 Invalid root.

MPI_ERR_GROUP 8 Null group passed to function.

MPI_ERR_OP 9 Invalid operation.

MPI_ERR_TOPOLOGY 10 Invalid topology.

MPI_ERR_DIMS 11 Illegal dimension argument.

MPI_ERR_ARG 12 Invalid argument.

MPI_ERR_UNKNOWN 13 Unknown error.

MPI_ERR_TRUNCATE 14 Message truncated on receive.

MPI_ERR_OTHER 15 Other error; use Error_string.

MPI_ERR_INTERN 16 Internal error code.

MPI_ERR_IN_STATUS 17 Look in status for error value.

MPI_ERR_PENDING 18 Pending request.

MPI_ERR_REQUEST 19 Illegal MPI_Request() handle.

MPI_ERR_KEYVAL 36 Illegal key value.

MPI_ERR_INFO 37 Invalid info object.

MPI_ERR_INFO_KEY 38 Illegal info key.
Appendix A Troubleshooting 117

MPI I/O message are listed separately, in TABLE A-2.

MPI I/O Error Handling
Sun MPI I/O error reporting follows the MPI-2 Standard. By default, errors are
reported in the form of standard error codes (found in
/opt/SUNWhpc/include/mpi.h). Error classes and their meanings are listed in
TABLE A-2. They can also be found in mpif.h (for Fortran) and mpi++.h (for C++).

MPI_ERR_INFO_NOKEY 39 No such key.

MPI_ERR_INFO_VALUE 40 Illegal info value.

MPI_ERR_TIMEDOUT 41 Timed out.

MPI_ERR_RESOURCES 42 Out of resources.

MPI_ERR_TRANSPORT 43 Transport layer error.

MPI_ERR_HANDSHAKE 44 Error accepting/connecting.

MPI_ERR_SPAWN 45 Error spawning.

MPI_ERR_WIN 46 Invalid window.

MPI_ERR_BASE 47 Invalid base.

MPI_ERR_SIZE 48 Invalid size.

MPI_ERR_DISP 49 Invalid displacement.

MPI_ERR_LOCKTYPE 50 Invalid locktype.

MPI_ERR_ASSERT 51 Invalid assert.

MPI_ERR_RMA_CONFLICT 52 Conflicting accesses to window.

MPI_ERR_RMA_SYNC 53 Erroneous RMA synchronization.

MPI_ERR_NO_MEM 54 Memory exhauste.

MPI_ERR_LASTCODE 55 Last error code.

TABLE A-1 Sun MPI Standard Error Classes (Continued)

Error Code Value Meaning
118 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

You can change the default error handler by specifying MPI_FILE_NULL as the file
handle with the routine MPI_File_set_errhandler(), even if no file is currently
open. Or, you can use the same routine to change a specific file’s error handler.

TABLE A-2 Sun MPI I/O Error Classes

Error Class Value Meaning

MPI_ERR_FILE 20 Bad file handle.

MPI_ERR_NOT_SAME 21 Collective argument not identical on all
processes.

MPI_ERR_AMODE 22 Unsupported amode passed to open.

MPI_ERR_UNSUPPORTED_DATAREP 23 Unsupported datarep passed to
MPI_File_set_view().

MPI_ERR_UNSUPPORTED_OPERATION 24 Unsupported operation, such as seeking
on a file that supports only sequential
access.

MPI_ERR_NO_SUCH_FILE 25 File (or directory) does not exist.

MPI_ERR_FILE_EXISTS 26 File exists.

MPI_ERR_BAD_FILE 27 Invalid file name (for example, path
name too long).

MPI_ERR_ACCESS 28 Permission denied.

MPI_ERR_NO_SPACE 29 Not enough space.

MPI_ERR_QUOTA 30 Quota exceeded.

MPI_ERR_READ_ONLY 31 Read-only file system.

MPI_ERR_FILE_IN_USE 32 File operation could not be completed,
as the file is currently open by some
process.

MPI_ERR_DUP_DATAREP 33 Conversion functions could not be
registered because a data representation
identifier that was already defined was
passed to MPI_REGISTER_DATAREP.

MPI_ERR_CONVERSION 34 An error occurred in a user-supplied
data-conversion function.

MPI_ERR_IO 35 I/O error.

MPI_ERR_INFO 37 Invalid info object.

MPI_ERR_INFO_KEY 38 Illegal info key.
Appendix A Troubleshooting 119

Exceeding the File Descriptor Limit
If your application attempts to open a file descriptor when the maximum limit of
open file descriptors has been reached, the job will fail and display the following
message:

Should this occur, increase the value of the file descriptor hard limit before starting
your job again.

If you are logged in to a C shell as superuser, you can determine the current hard
limit value via the limit function, as follows:

If you are logged in to a Bourne shell as superuser, use the ulimit function.

Each function returns the file descriptor hard limit that was in effect. Once you know
what the previous hard limit was, you can estimate what the new hard limit value
should be and set it accordingly.

From a C shell, use the limit command to set the new value in the .login file.

MPI_ERR_INFO_NOKEY 39 No such key.

MPI_ERR_INFO_VALUE 40 Illegal info value.

MPI_ERR_LASTCODE 55 Last error code.

Too many open file descriptors

limit –h descriptors

ulimit –Hn

limit –h descriptors limit

TABLE A-2 Sun MPI I/O Error Classes (Continued)

Error Class Value Meaning
120 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

From a Bourne shell, use the ulimit command to set the new value in the
.profile file.

In each case, limit is the value of the new hard limit.

Alternatively, you can determine whether the file descriptor hard limit is anything
other than the default by looking in the /etc/system file to see whether the
rlim_fd_max parameter has been set to a nondefault value. If not, the file
descriptor hard limit will be 1024. To change the hard limit in a Solaris environment,
simply add the following line to the /etc/system file:

Again, limit is the value of the new file descriptor hard limit.

Exceeding the TCP Port Limit
If you are running a large (highly parallel), communication-intensive MPI job on a
Sun HPC cluster that includes both of the following conditions,

■ TCP/IP as the only interconnect medium
■ A node that has more than 32 CPUs

the number of TCP ports may be too limited. If the MPI job attempts to access a TCP
port when no more are available, the job will fail and print the following message:

Most likely, this occurs only when the job is running on the configuration described
above and one of the following conditions exists:

■ MPI_FULLCONNINIT is set.
■ MPI_Alltoall is used.
■ The application includes its own all-to-all code.

Other activity on the cluster, such as file I/O or other MPI jobs, will increase the
chance of this occurring.

You can avoid exceeding the TCP port limit by taking one or more of the following
steps:

ulimit –Hn limit

set rlim_fd_max=limit

low level communications error: Cannot assign requested address
Appendix A Troubleshooting 121

■ Configure the node with more than 32 nodes into two or more domains. From the
TCP perspective, each domain will be seen as a separate node with its own
supply of TCP ports.

■ Reconfigure the cluster to exclude the node with more than 32 CPUs.

■ Avoid running multiple MPI jobs or other tasks that would compete for available
TCP ports.

■ If two large MPI jobs must run on the same cluster, wait a few minutes between
the jobs to give the OS time to reclaim the ports created for the previous job.

■ If the application does not include any all-to-all operations, use the default lazy
connections mode instead of MPI_FULLCONNINIT.

■ If the application contains any all-to-all operations, either MPI_Alltoall or
custom code, use a non-TCP network technology.
122 Sun HPC ClusterTools 6 Software User’s Guide • March 2006

Index
Symbols
, 34
!, 34
!=, 34
/dev/null, how to read input from, 40
=, 34
>, 34
>=, 34
>>, 34

A
argument vector, how to redirect output with, 39
attribute

how to display a list of valid cluster, node, or
partition attributes, 108

how to restrict output to individual
attributes, 109

list of, displayed by mpinfo -A, 110
attributes

custom configuration attributes, 41
job attributes displayed by mpps, 75

B
background, how to move a process to the, 48
block, distribute processes by, 29

C
cluster

about, 7
how to display a list of valid attributes, 108
how to display information about any, 104

how to display information about the
current, 105

partitions, 8
ClusterTools Runtime Environment, 2
command line interface (CRE), 2
configuration

how to redirect output custom, 40
configurations, supported, 1
controlling input / output, 37
Controlling where a program runs, 20
cpu_idle, 33
cpu_iowait, 33
cpu_kernel, 33
cpu_type, 33
cpu_user, 33
CRE, 2

D
D language, 93
default settings

how to run a program with, 21
default_interactive_partition attribute, 9
documentation

LSF on web, xvii
MPI Reference Manual, xv
product notes, xv

domains, 8
DTrace, 93

advantages over MPI profiling, 97
attaching to an MPI process, 96
running with MPI programs, 95
123

tracing MPI programs, 97
tracking resource leaks, 99
using with MPI, 96

dtrace_proc, 94
dtrace_user, 94
Dynamic tracing

using with MPI, 95

E
E privilege set

dtrace privileges, 94
environment variable

MP_JOBID, 19
MP_NPROCS, 19
MP_RANK, 19
MPRUN-FLAGS, 18
SUNHPC_PART, 9

error classes, standard, 117
error classes, Sun MPI I/O, 119
error handling, MPI I/O, 118
error messages

about, 115
format, 116

errors
tracing using DTrace, 97

exceeding the file descriptor limit, 120
exceeding the TCP port limit, 121

F
File descriptor

exceeding the limit, 120
file descriptor, 40

maximum number, 44
redirecting output to other, 43
redirecting their output to a file, 43

G
group name, how to use a different, 49

H
help, how to display, 50
How to

attach DTrace to an MPI process, 96
change the working directory, 48
determine which function is returning errors, 97
determine your mprun privileges, 94

disable process spawning, 23
display a job’s start time, 76
display an online list of valid attributes, 108
display command help, 50
display information about all jobs, 76
display information about all nodes, 107
display information about all partitions, 106
display information about any cluster, 104
display information about individual jobs, 75
display information about individual nodes, 107
display information about individual

partitions, 106
display information about the current

cluster, 105
display information in verbose mode, 112
display job information by partition, 76
display job information by process, 77
display job status information, 51
display the command’s version, 51
distribute processes among nodes, 27
distribute processes by block, 29
distribute processes by rankmap, 30
enable process spawning, 23
include independent nodes, 25
include shell-specific actions, 47
kill a running program, 70
move a process to the background, 48
read standard input from /dev/null, 40
redirect output to individual files, 39
redirect output to mprun, 38
redirect with a custom configuration, 40
redirect with an argument vector, 39
restrict output to individual attributes, 109
run a job on a different project, 49
run a program as multiple processes, 22
run a program on a different partition, 21
run a program with default settings, 21
select nodes by resource requirement, 32
send a signal to a job, 71
settle for available processes, 24
share nodes, 23
shut off all standard I/O, 39
tag output with its rank number, 51
track down a resource leak, 100
use a different group name, 49
use a different user name, 48
use DTrace with an MPI program, 96
use DTrace with Sun MPI, 93
wrap multiple processes, 24
124 Sun HPC ClusterTools™ 6 Software User’s Guide • March 2006

how to
display a list of supported signals, 70

J
job

how to display information about all jobs, 76
how to display information by partition, 76
how to display information by process, 77
how to display start time, 76
how to display status information, 51

K
killing a program, how to, 70
killing programs with mpkill, 69

L
limit -h, 120
load balancing

about, 10
load1, 33
load15, 33
load5, 33
login partition, 9

M
manufacturer, 33
mapping MPI processes to nodes, 27
max_total_procs, 30
mem_free, 33
mem_total, 33
messages, MPI, 115
MPI

attaching DTrace to a process, 96
running a program under DTrace, 96
Sun MPI, 3
Sun MPI I/O, 3
tracing programs, 96
tracing programs using DTrace, 97
tracking resource leaks, 99

MPI messages, 115
MPI_ERRORS_ARE_FATAL, 115
MPI_ERRORS_RETURN, 115
MPI_THROW_EXCEPTION, 115
mpinfo

-A, 109
-C, 105

-c, 104
-lc, 108
-ln, 108
-lp, 108
-N, 107
-n, 107
-P, 106
-p, 106
-V, 112
what you can do, 103

mpkill
-l, 70
return values, 69
what you can do, 69

mpkill-d, 70
mpps

-A, 76
-a, 76
-e, 76
-f, 76
-J, 75
-P, 77
-p, 77
what you can do, 73

mprun
-A, 39
-B, 39
-C, 48
-D, 38
-d, 51
default settings, 21
determining privileges on the cluster, 94
-G, 49
-h, 50
-I, 40
-J, 51
-j, 23
-l, 27
-m, 30
-N, 39
-n, 40
-np, 22
-nr, 31
-Ns, 23
-o, 51
-P, 49
-p, 21
privileges for use with DTrace, 94
Index 125

-R, 32
rank-spec, 28
-S, 24
syntax, 17
-U, 48
-u, 25
-V, 51
-v, 49
-W, 24
-x, 56
-Ys, 23
-Z, 29
-Zt, 29

N
name (resource), 33
node

how to display a list of valid attributes, 108
how to display information about all nodes, 107
how to display information about individual

nodes, 107
how to distribute processes among, 27
how to include independent, 25
how to select by resource requirement, 32
how to share, 23
mapping MPI processes to, 27

nodes
about, 7
independent, 8

O
os arch kernel, 33
os_max_proc, 33
os_name, 33
os_release, 33
os_release_maj, 33
os_release_min, 34
os_version, 34
output

how to redirect to mprun, 38

P
partition

about, 8
enabling and selecting, 8
how to display a list of valid attributes, 108
how to display information about all

partitions, 106
how to display information about individual

partitions, 106
how to display job information by, 76
how to run a program on a different, 21
login, 9
selection criteria, 9

precedence
about, 17
for input/output, 38
for mapping processes to nodes, 27
for program execution, 20

process
how to display job information by, 77
how to distribute among nodes, 27
how to distribute by block, 29
how to distribute by rankmap, 30
how to move to the background, 48
how to run a program as multiple, 22
how to wrap, 24
mapping to nodes, 27
pid, 10
settling for available, how to, 24
spawning, how to disable, 23
spawning, how to enable, 23

processes
about, 10

program
displaying program information with mpps, 73

R
rank

how to tag output with rank number, 51
rankmap, 30

how to distribute processes by, 30
rankmap file, 31

rankmap file, 31
rank-spec, 28
redirect output to individual files, how to, 39
redirect output to mprun, how to, 38
redirecting file descriptor output to a file, 43
redirecting output to other file descriptors, 43
Resource leaks

determining using DTrace, 100
tracking, 99

resource requirement
examples of, 35
126 Sun HPC ClusterTools™ 6 Software User’s Guide • March 2006

how to select nodes by, 32
operators, list of, 34
predefined resources, list of, 33
resource requirement spec, 32

runtime environment, 2

S
scalability, 1
serial_number, 34
shell, how to include shell-specific actions, 47
signal

how to send to a job, 71
SIGTERM, 71

signals, how to display a list of supported, 70
Solaris Dynamic Tracing utility (DTrace), 93
spawning, process, how to disable, 23
spawning, processes, how to enable, 23
standard error, how mprun handles, 37
standard output, how mprun handles, 37
status, how to display job status information, 51
stream-number, 41
SUNHPC_PART environment variable, 9
swap_free, 34
swap_total, 34

T
TCP port limit, exceeding, 121
total_max_procs, 27
troubleshooting, 115

U
ulimit -Hn, 120
user name, how to use a different, 48

V
verbose, how to display information in verbose

mode, 112
version, how to display, 51

W
warning messages

about, 115
format, 116

wildcards
using in tracing scripts, 99

working directory, how to change the, 48
Index 127

128 Sun HPC ClusterTools™ 6 Software User’s Guide • March 2006

	Sun HPC ClusterTools™ 6 Software User’s Guide
	Contents
	Tables
	Figures
	Preface
	Introduction to Sun HPC ClusterTools Software
	Supported Configurations
	Sun HPC Cluster Runtime Environment (CRE)
	Executing Programs With mprun
	Killing Programs
	Displaying Job Information
	Displaying Node Information

	Integration With Distributed Resource Management Systems
	Sun MPI and MPI I/O
	Debugging With TotalView

	MPProf

	Fundamental Concepts
	Clusters and Nodes
	Partitions
	How Partitions Are Enabled and Selected

	Load Balancing
	Processes
	Jobs
	How the CRE Environment Is Integrated With Distributed Resource Management Systems
	How Programs Are Launched

	How Distributed Resource Managers Work
	How CRE Works With Zones in the Solaris 10 Operating System

	Before You Begin
	Prerequisites
	Command and Man Page Paths
	Authentication Methods
	Core Files

	Running Programs With mprun
	Syntax
	Pre-Entering Command Options with MPRUN-FLAGS
	Environment Variables Available for Scripts

	Controlling Where the Program Runs
	Precedence for Program Execution
	To Run a Program With Default Settings
	To Run on a Different Cluster (-c)
	To Run on a Different Partition (-p)
	To Run as Multiple Processes (-np)
	To Share Nodes (-j)
	To Enable Process Spawning (-Ys)
	To Disable Process Spawning (-Ns)
	To Wrap Multiple Processes (-W)
	To Settle for Available Processes (-S)
	To Include Independent Nodes (-u)
	To Combine Process Placement Options

	Mapping MPI Processes to Nodes
	To Distribute Processes Among Nodes (-l)
	To Distribute Processes by Block (-Z and -Zt)
	To Distribute Processes by Rank Map (-m)
	Restrictions

	To Reserve Resources For Spawning or Multithreading (-nr)
	To Select Nodes by Resource Requirement (-R)
	Examples

	Controlling Input/Output
	To Redirect Output to mprun (-D)
	To Redirect Output to Individual Files (-B)
	To Shut Off All Standard I/O (-N)
	To Redirect With an Argument Vector (-A)
	To Read Standard Input From /dev/null (-n)
	To Redirect With a Custom Configuration (-I)
	Redirecting Output to Other File Descriptors
	Redirecting File Descriptor Output to a File
	Maximum Number of File Descriptors
	Using mprun Options Instead of Shell Syntax

	Controlling Other Job Attributes
	To Include Shell-Specific Actions
	To Move a Process to the Background
	To Change the Working Directory (-C)
	To Use a Different User Name (-U)
	To Use a Different Group Name (-G)
	To Run a Job on a Different Project (-P)
	To Specify Verbose Output (-v)
	To Display Command Help (-h)
	To Display the Command’s Version (-V)
	To Display Job Status Information (-J)
	To Store Job Name in a File (-d)
	To Tag Output With Its Rank Number (-o)

	Command Reference (mprun)

	Running Programs With mprun in Distributed Resource Management Systems
	mprun Options for DRM Integration
	Improper Flag Combinations for Batch Jobs

	Running Parallel Jobs in the PBS Environment
	To Run an Interactive Job in PBS
	To Run a Script Job in PBS

	Running Parallel Jobs in the LSF Environment
	To Run an Interactive Job in LSF
	To Run a Script Job in LSF

	Running Parallel Jobs in the SGE Environment
	To Run an Interactive Job in SGE
	To Run a Script Job in SGE

	Killing or Sending Signals to Programs With mpkill
	What You Can Do
	Return Values
	To Kill a Running Program
	To Remove All Traces of a Job
	To Display a List of Supported Signals (-l -d)
	To Send a Signal to a Job

	Displaying Program Information With mpps
	What You Can Do
	To Display Job Status
	To Display Information About Individual Jobs (-J)
	To Display Job Name, PID, and Host of Current Job (-b)
	To Display Information About All Jobs (-e)
	To Display a Job’s Start Time (-f)
	To Display Job Information by Partition (-A -a)
	To Display Job Information by Process (-p -P)

	Command Reference (mpps)

	Profiling Programs With MPPROF
	Enabling MPI Profiling
	Controlling Data Collection
	MPI_PROFDATADIR
	MPI_PROFINDEXFDIR
	MPI_PROFINTERVAL
	MPI_PROFMAXFILESIZE

	Using mpprof to Generate Reports
	mpprof Command Syntax
	Generating a Message Passing Report
	Reporting on Specific Processes
	Reporting Processes That Occur After a Specified Time Interval
	To Save Report Output for Later Use
	A Sample Report

	Using mpdump to Convert Intermediate Binary Files to ASCII Files
	The mpdump Command Syntax
	A Sample mpdump File

	Using the DTrace Utility With Sun MPI
	mprun Privileges
	Running DTrace with MPI Programs
	Running an MPI Program Under DTrace
	Attaching to MPI Processes
	Simple MPI Tracing

	Tracking Down Resource Leaks

	Displaying Information With mpinfo
	What You Can Do
	To Display Information About Published Names (-T)
	To Display Information About Any Cluster (-c)
	To Display Information About the Current Cluster (-C)
	To Display Information About Individual Partitions (-p)
	To Display Information About All Partitions (-P)
	To Display Information About Individual Nodes (-n)
	To Display Information About All Nodes (-N)
	To Display an Online List of Valid Attributes (-lc, -lp, -ln)
	To Restrict Output to Individual Attributes (-A)
	To Display Information in Verbose Mode (-v)

	Command Reference (mpinfo)

	Troubleshooting
	MPI Messages
	Error Messages
	Warning Messages
	Standard Error Classes

	MPI I/O Error Handling
	Exceeding the File Descriptor Limit
	Exceeding the TCP Port Limit

	Index

