
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Prism™ 7.0 Software Reference
Manual

Part No. 817-0089-10
February 2003, Revision 01

Please
Recycle

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, Sun HPC ClusterTools, Prism, Forte, Sun Performance Library, RSM,
UltraSPARC, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans
les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, Sun HPC ClusterTools, Prism, Forte, Sun Performance Library, RSM,
UltraSPARC, et Solaris sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développment du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive do Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Preface ix

Command Reference 1

Redirecting Output 1

Psets: Processes and Threads 2

Getting Information About Threads 4

Prism Commands 6

/regexp, ?regexp 10

address/ 11

value=base 14

alias 15

assign 16

attach 17

call 18

catch 19

cd 20

cont 21

contw 22

core 23

cycle 24
iii

define pset 25

delete 27

delete pset 28

detach 29

disable 30

display 31

down 34

dump 35

edit 37

enable 38

eval pset 39

fg 40

file 41

func 42

help 43

hide 44

ignore 45

interrupt 46

kill 47

list 48

load 49

log 50

lwps 51

make 52

mpimsgs 53

next 55

nexti 56

print 57
iv Prism 7.0 Software Reference Manual • February 2003

printenv 60

process 61

pset 62

pstatus 64

pushbutton 65

pwd 66

quit 67

reload 68

rerun 69

return 70

run 71

select 72

set 73

setenv 75

sh 76

show 77

show events 78

show pset 79

show psets 80

source 82

status 83

step 84

stepi 85

stepout 86

stop 87

stopi 89

sync 91

syncs 92
Contents v

tearoff 93

thread 94

threads 95

trace 96

tracei 98

type 100

unalias 102

unset 103

unsetenv 104

untearoff 105

up 106

use 107

varsave 108

wait 109

whatis 110

when 112

where 114

whereis 115

which 116

A. Prism man Page 117

B. Debugger Command Comparison 125
vi Prism 7.0 Software Reference Manual • February 2003

Tables

TABLE 1 Commands Taking a Pset Qualifier 3

TABLE 2 Thread-Related Prism Commands 4

TABLE 3 Thread and LWP States 4

TABLE 4 Prism Commands 6

TABLE 5 Mode Arguments Supported by the Prism Environment 12

TABLE 6 Sun UltraSPARC Registers Supported by the Prism Environment 12

TABLE 7 Radix Settings for the display Command 31

TABLE 8 Sun UltraSPARC Registers Supported by the Prism Environment 32

TABLE 9 Radix Settings for the print command 57

TABLE 10 Sun UltraSPARC Registers Supported by the Prism Environment 58
vii

viii Prism 7.0 Software Reference Manual • February 2003

Preface

This manual provides reference descriptions of commands available in the Prism™
environment.

The manual is intended for application programmers developing serial or parallel
programs that are to run on a Sun™ HPC system. You should know the basics
of developing and debugging programs, as well as the basics of the system on which
you will be using Prism software. Some familiarity with the Solaris® debugger dbx
is helpful, but not required. The Prism interface is based on the X and OSF/Motif
standards. Familiarity with these standards is also helpful, but not required.

Using UNIX Commands
This document might not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

■ Solaris Handbook for Sun Peripherals
■ AnswerBook2™ online documentation for the Solaris™ operating environment
■ Other software documentation that you received with your system
ix

Typographic Conventions

Table with descriptions and examples of the typographic conventions that are used in this book.

Shell Prompts

Table with examples of the types of shell prompts that are used in this book.

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
x Prism 7.0 Software Reference Manual • February 2003

Related Documentation

Table listing other documents that are related to this book or product.

Accessing Sun Documentation
You can view, print, or purchase a broad selection of Sun documentation, including
localized versions, at:

http://www.sun.com/documentation

Application Title Part Number

Sun HPC ClusterTools
Documentation

Read Me First: Guide to Sun HPC
ClusterTools Documentation

817-0096-10

Sun HPC ClusterTools
Software

Sun HPC ClusterTools 5 Product Notes
Sun HPC ClusterTools 5 Installation
Guide
Sun HPC ClusterTools 5 Performance
Guide
Sun HPC ClusterTools 5 Administrator’s
Guide
Sun HPC ClusterTools 5 User’s Guide

817-0081-10

817-0082-10

817-0090-10

817-0083-10
817-0084-10

Sun MPI Programming Sun MPI 6.0 Programming and Reference
Guide

817-0085-10

Sun S3L Sun S3L 4.0 Programming Guide
Sun S3L 4.0 Reference Manual

817-0086-10
817-0087-10

Prism™ graphical
programming
environment

Prism 7.0 Software User’s Guide 817-0088-10
Preface xi

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can email your comments to Sun at:

docfeedback@sun.com

Please include the part number (817-0089-10) of your document in the subject line of
your email.
xii Prism 7.0 Software Reference Manual • February 2003

Command Reference

This reference manual gives, in alphabetical order, the syntax and reference
description of every command in the Prism™ programming environment. This
information is also available online:

■ Choose the Commands Reference selection from the Prism Help menu to obtain
reference information about all Prism commands.

■ Type help commands on the Prism command line to obtain summary
information about Prism commands.

■ Issue a command of the form help commandname on the command line to display
the reference description of the command.

TABLE 4 lists the commands discussed in this manual.

Redirecting Output
You can redirect the output of most Prism commands to a file by including an @
(at sign) followed by the name of the file on the command line. For example,

where @ where.output

puts the output of the where command into the file where.output in your current
working directory within the Prism environment.

You can also redirect output of a command to a window by using the syntax
commandname on window, where window can be

■ command (abbreviated com). commandname on command sends output to the
command window; it is the default.
1

■ dedicated (abbreviated ded). commandname on ded sends output to a window
dedicated to output for this command. If you subsequently issue the same
command (no matter what its arguments) and specify that output is to be sent to
the dedicated window, this window will be updated.

■ snapshot (abbreviated sna). commandname on snapshot creates a window that
provides a snapshot of the output. If you subsequently issue the same command
and specify that output is to be sent to the snapshot window, the Prism
environment creates a separate window for the new output. The time each
window was created is shown in its title. Snapshot windows let you save and
compare outputs.

■ You can also make up your own name for the window. You can then issue a
command using your window name, for example: commandname on myname. The
name myname will appear in the title of the window.

Note – You cannot redirect the output of the commands edit, make, and sh.

Psets: Processes and Threads
When viewing multiprocess or multithreaded programs (including single-process
programs with multiple threads), the Prism environment provides a method by
which certain commands can take a set of processes or threads, or both, called a pset,
as a qualifier. Note that psets are not available when viewing nonthreaded scalar
programs.

Commands that take a pset qualifier are listed in TABLE 1. The format for commands
taking a pset qualifier is

where pset_definition can include pset names (predefined or user-defined names),
process numbers, thread numbers, expressions composed of combinations of such
specifiers, and snapshots of all or part of such psets; see the define pset command
for a discussion of how to define a pset. For a detailed description of psets, see the
Prism User’s Guide.

Place the pset qualifier after any arguments to the command, but before the
optional on window syntax that specifies the window to which output is directed (see
“Redirecting Output” on page 1). A command with a pset qualifier applies only to
the processes (and threads) in the set. If you omit the qualifier, the command applies
to the processes (and threads) in the current set.

command pset [pset_name | pset_definition]
2 Prism 7.0 Software Reference Manual • February 2003

The commands listed in TABLE 1 can take a pset qualifier.

In summary, using the Prism environment, you can:

■ Define and view groups of processes
■ Define and view groups of threads within a single process
■ Define and view groups of threads spanning processes

Prism documentation describes, primarily, the multiprocess (MP) mode of the Prism
environment. The documentation distinguishes the MP mode from the scalar mode,
which you can use to view nonthreaded scalar programs. The scalar mode does not
support some features found in the MP mode, such as psets. For further information
on the scalar mode, see the appendix in the Prism User’s Guide.

TABLE 1 Commands Taking a Pset Qualifier

address/ lwps sync, syncs

assign mpimsgs thread, threads

call next, nexti trace, tracei

catch print wait

cont, contw pstatus whatis

display return, stepout where

ignore step, stepi

interrupt stop, stopi
3

Getting Information About Threads
The Prism environment includes several commands that provide information about
threads in the currently loaded program. These commands are described in TABLE 2.

The states of threads and light-weight processes (LWPs) are described in TABLE 3.

TABLE 2 Thread-Related Prism Commands

Command Description

thread Shows information about the last-stopped thread on
each process with members in the current (or
specified) pset

threads Shows the current stopping point for all threads in
processes that have a member in the current (or
specified) pset

lwps Shows all light-weight processes (LWPs) in the set of
processes belonging to the current pset. Although
Prism does not support debugging in terms of LWPs,
it makes the mapping from thread identifier to LWP
identifier available to you with the lwps command

sync Shows information about a specified (by address)
synchronization object (mutex lock)

syncs Shows a list (with addresses) of all synchronization
objects (mutex locks) for last-stopped threads in
processes with members belonging to the current (or
specified) pset

TABLE 3 Thread and LWP States

Thread and LWP States Description

suspended Thread has been explicitly suspended

runnable Thread is runnable and is waiting for an LWP as a
computational resource

zombie When a detached thread exits (thr_exit()), it is in
a zombie state until it has rendezvoused through the
use of thr_join(). THR_DETACHED is a flag
specified at thread creation time (thr_create()). A
nondetached thread that exits is in a zombie state
until it has been reaped
4 Prism 7.0 Software Reference Manual • February 2003

asleep on syncobj Thread is blocked on the given synchronization
object. Depending on what level of support
libthread and libthread_db provide, syncobj
might be as simple as a hexadecimal address or
something with more information content

active Thread is active on an LWP, but Prism cannot access
the LWP

unknown Prism cannot determine the state

lwpstate A bound or active thread state is the state of the LWP
associated with it

running LWP was running but was interrupted

syscall num LWP stopped on an entry into the given system call
number

syscall return num LWP stopped on an exit from the given system call
number

job control LWP stopped due to job control

LWP suspended LWP is blocked in the kernel

single stepped LWP has just completed a single step

breakpoint LWP has just hit a breakpoint

fault num LWP has incurred the given fault number

signal name LWP has incurred the given signal

process sync The process to which this LWP belongs has just
started executing

LWP death LWP is in the process of exiting

TABLE 3 Thread and LWP States (Continued)

Thread and LWP States Description
5

Prism Commands
TABLE 4 lists all the commands in the Prism environment in alphabetical order and
provides brief descriptions. It is followed by the complete command reference, also
in alphabetical order.

TABLE 4 Prism Commands

Command Use

/regexp Searches forward in the current file for the regular expression,
regexp

?regexp Searches backward in the current file for the regular expression,
regexp

address/ Prints the contents of memory addresses

value=base Converts a value to a different base

alias Defines an alias

assign Assigns the value of an expression to a variable or array

attach Attaches to a running process or job

call Calls a procedure or function

catch Tells Prism to catch the signal you specify

cd Changes the current working directory

cont Continues execution

contw Continues execution and then waits for members of the current pset
to finish execution (MP Prism environment only)

core Associates a core file with an executable program (not available in
MP Prism environment)

cycle Makes the next member of the cycle pset the current set (MP
Prism environment only)

define pset Creates a named pset (MP Prism environment only)

delete Removes one or more events from the event list

delete pset Deletes a user-defined pset (MP Prism environment only)

detach Detaches from a running process or job

disable Disables an event

display Displays the values of one or more expressions or variables

down Moves the symbol-lookup context down one level
6 Prism 7.0 Software Reference Manual • February 2003

dump Prints the names and values of local variables

edit Calls up an editor

enable Enables a previously disabled event

eval pset Updates the membership of a variable pset (MP Prism environment
only)

fg Runs the executable program in the foreground (MP Prism
environment only)

file Sets the source file to the specified file name

func Sets the current function to the specified function name

help Lists currently implemented commands

hide Hides a pane of a split source window (not available in commands-
only Prism)

ignore Tells Prism to ignore the specified signal

interrupt Interrupts execution of processes (MP Prism environment only)

kill Kills a process or job running within Prism

list Lists lines in the current source file

load Loads a program

log Creates a log file of your commands and Prism’s responses

lwps Lists all LWPs in the processes belonging to the current pset

make Executes the make utility

mpimsgs Displays the contents of MPI message queues

next Executes one or more source lines, stepping over functions

nexti Executes one or more instructions, stepping over functions

print Displays the values of one or more expressions or variables

printenv Displays currently set environment variables

process Sets or displays the current process of the current pset
(MP Prism environment only)

pset Sets or displays the current pset (MP Prism environment only)

pstatus Displays the execution status of processes (MP Prism environment
only)

pushbutton Adds a Prism command to the tear-off region (not available in
commands-only Prism)

pwd Displays the current working directory

TABLE 4 Prism Commands (Continued)

Command Use
7

quit Leaves the Prism environment

reload Reloads the currently loaded program

rerun Reruns the currently loaded program, using arguments previously
passed to the program

return Steps out to the caller of the current routine

run Starts execution of a program

select Chooses the master pane in a split source window

set Defines an abbreviation for a variable or expression

setenv Displays or sets environment variables

sh Passes a command line to the shell for execution

show Splits the source window (not available in commands-only Prism)

show events Displays the event list

show pset Displays the contents of a pset (MP Prism environment only)

show psets Displays information about all psets (MP Prism environment only)

source Reads commands from a file

status Displays the event list

step Executes one or more source lines

stepi Executes one or more instructions

stepout Steps out to the caller of the current routine

stop Sets a breakpoint

stopi Sets a breakpoint at an instruction

sync Shows information about a specified (by address) synchronization
object (mutex lock)

syncs Lists all synchronization objects (mutex locks) for last-stopped
threads in processes with members in the current (or specified) pset

tearoff Adds a menu selection to the tear-off region (not available in
commands-only Prism)

thread Displays information about the last-stopped thread on each process
with members in the current (or specified) pset

threads Displays the current stopping point for all threads in processes that
have a member in the current (or specified) pset

trace Traces program execution

tracei Traces instructions

TABLE 4 Prism Commands (Continued)

Command Use
8 Prism 7.0 Software Reference Manual • February 2003

type Specifies the data type of an S3L array handle, allowing Prism to
display and visualize the S3L array

unalias Removes an alias

unset Removes an abbreviation created by set

unsetenv Removes the setting of an environment variable

untearoff Removes a button from the tear-off region (not available in
commands-only Prism)

up Moves the symbol-lookup context up one level

use Adds a directory to the list to be searched for source files

varsave Saves values of a variable or expression to a file

wait Waits for a process or processes to stop execution (MP Prism
environment only)

whatis Displays the type of a variable

when Sets a breakpoint

where Displays a stack trace

whereis Displays the list of all fully qualified names for an identifier

which Displays the fully qualified name the Prism environment chooses
for an identifier

TABLE 4 Prism Commands (Continued)

Command Use
9

/regexp, ?regexp
Searches forward or backward for a regular expression in the current source file.

SYNTAX

Note – regexp may be any regular expression, as described in the man page
regexp(5).

DESCRIPTION

Use the / command to search forward in the current source file for the regular
expression you specify. The / command searches from line n+1 forward, wrapping
after it passes the end of the file. If the expression is found, the source pointer moves
to the line that contains the expression, and the line is echoed in the history region of
the command window.

The ? command works in the same way, except that it searches backward from line
n–1 in the source file, wrapping after it passes the beginning of the file.

Using / or ? updates the current line, affecting subsequent executions of the list
command. The list command resets the starting line for / and ?. For further
information, see “list” on page 48.

The / or ? commands with no arguments search for the next (or previous)
occurrence of the last-used regular expression. Both / and ? wrap around if no
match is found.

If the regular expression is not found, the Prism environment displays the message

No match.

in the history region of the command window.

Note – Because the scope pointer may be modified by this command, subsequent
expression evaluation uses the resulting scope pointer for symbol resolution.

/regexp
?regexp
10 Prism 7.0 Software Reference Manual • February 2003

address/
Prints to the screen the contents of the specified memory address.

SYNTAX

DESCRIPTION

Use this command to print the contents of memory or of a register. If two addresses
are separated by commas, the Prism environment prints the contents of memory
starting at the first address and continuing to the second address. If you specify a
count, the Prism environment prints count locations, starting from the address you
specify.

If the address is . (period), the Prism environment prints the address that follows
the most recently printed address.

Specify a symbolic address by preceding the name with an & (ampersand). For
example,

&x/

prints the contents of memory for variable x.

The address you specify can be an expression made up of other addresses and the
operators +, -, and indirection (unary *). For example,

0x1000+100/

prints the contents of the location 100 addresses above address 0x1000.

Specify a register by preceding its name with a dollar sign. For example,

$f0/

prints the contents of the f0 register. See TABLE 6 for a list of supported registers. If
you specify count with a register, that number of registers is printed, starting with
the specified register.

address, address/[mode] [pset pset_name | pset_definition]
address | register/[count] [mode]
11

The mode argument specifies how memory is to be printed; if it is omitted, the Prism
environment uses the previous mode that you specified. The initial mode is X.
Supported modes are listed below.

Supported UltraSPARC™ registers are listed below.

TABLE 5 Mode Arguments Supported by the Prism Environment

Mode Description

d Print a short word in decimal.

D Print a long word in decimal.

o Print a short word in octal.

O Print a long word in octal.

x Print a short word in hexadecimal.

X Print a long word in hexadecimal.

b Print a byte in octal.

c Print a byte as a character.

s Print a string of characters terminated by a null byte.

f Print a single-precision real number.

F Print a double-precision real number.

i Print the machine instruction.

TABLE 6 Sun UltraSPARC Registers Supported by the Prism Environment

Name Register

$g0–$g7 Global registers (64 bits)

$o0–$o7 Output registers (64 bits)

$l0–$l7 Local registers

$i0–$i7 Input registers

$psr Processor state register

$pc Program counter

$npc Next program counter

$y Y register

$wim Window invalid mask

$tbr Trap base register
12 Prism 7.0 Software Reference Manual • February 2003

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

$f0–$f31 Floating-point registers

$fsr Floating status register (64 bits)

$f0f1–$f62f63 Floating-point registers

$xg0–$xg7 Upper 32 bits of $g0–$g7 (SPARC V8 plus only, or higher)

$xo0–$xo7 Upper 32 bits of $o0–$o7 (SPARC V8 plus only, or higher)

$xfsr Upper 32 bits of $fsr (SPARC V8 plus only, or higher)

$fprs Floating-point registers state (SPARC V8 plus only, or higher)

$tstate Trap state register (SPARC V8 plus only, or higher)

$fp Frame pointer (synonym for $i6)

$sp Stack pointer (synonym for $o6)

TABLE 6 Sun UltraSPARC Registers Supported by the Prism Environment (Continued)

Name Register
13

value=base
Converts a value to the specified base.

SYNTAX

DESCRIPTION

Use the value=base command to convert the value you specify to the base you
specify. The value can be a decimal, hexadecimal, or octal number. Precede
hexadecimal numbers with 0x; precede octal numbers with 0 (zero). The base can be
D (decimal), X (hexadecimal), or O (octal). The Prism environment prints to the
screen the converted value in the command window.

EXAMPLES

value=base

0x100=D
256

256=X
0x100

0x100=O
0400

0400=X
0x100
14 Prism 7.0 Software Reference Manual • February 2003

alias
Sets up an alias for a command or string.

SYNTAX

DESCRIPTION

Use the alias command to set up an alias for a command or string. When
commands are processed, the Prism environment first checks if the word is an alias
for either a command or a string. If it is an alias, the Prism environment treats the
input as though the corresponding string (with values substituted for any
parameters) had been entered.

For example, to define an alias rr for the command rerun, issue the command:

alias rr rerun

To define an alias called b that sets a breakpoint at a particular line, issue the
command:

alias b(x) ”stop at x”

You can then issue the command b(12), which the Prism environment expands to:

stop at 12

The Prism environment sets up some aliases for you automatically. Issue alias with
no parameters to list the current set of aliases.

Issue the unalias command to remove an alias.

alias
alias new-name command
alias new-name [(parameters)] ”string”
15

assign
Assigns the value of an expression to a variable or array.

SYNTAX

DESCRIPTION

Use the assign command to assign the value of expression to lval. lval can be any
value that can go on the left-hand side of a statement in the language you are using,
such as a variable or a Fortran array section. The Prism environment performs the
proper type coercions if the right-hand side does not have the same type as the left-
hand side.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

EXAMPLES

To assign the value 1 to x:

assign x = 1

If x is an array, 1 is assigned to each element.

To add 2 to each element of array2 and assign these values to array1:

assign array1 = array2 + 2

Note that array2 and array1 must be conformable.

assign lval = expression [pset pset_name | pset_definition]
16 Prism 7.0 Software Reference Manual • February 2003

attach
Attaches to a running process or job.

SYNTAX

DESCRIPTION

Use the attach command to attach to the running process with process ID pid or to
the running job with job ID jid.

You can use the attach command to attach to an executable without issuing a prior
load command. You can simply attach to the process ID or job ID. For example,

(prism all) attach jid

The attach command will clean up the current session before attaching to the jid
specified in the command.

The attach command does not accept multiple job IDs.

However, if the job ID specified is a result of a MPI_Comm_spawn_multiple(),
multiple Prism sessions will get created.

You can attach through the shell command line when you launch the Prism
environment. To attach at startup, use the following syntax:

% prism – pid | jid | jid_list

where you use the dash (–) instead of the name of the executable and the name
jid_list is a list of job IDs.

Use the detach command to detach a process running within the Prism
environment.

attach pid | jid
17

call
Calls a procedure or function.

SYNTAX

DESCRIPTION

Use the call command to call the specified procedure or function at the current
stopping point in the program. The Prism environment executes the procedure as if
the call to it had occurred from the current stopping point. Breakpoints within the
procedure are ignored, however.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

call procedure (parameters) [pset pset_name | pset_definition]
18 Prism 7.0 Software Reference Manual • February 2003

catch
Tells the Prism environment to catch the specified Solaris™ signal.

SYNTAX

DESCRIPTION

The Prism environment can intercept Solaris signals before they are sent to the
program. Use the catch command to tell the Prism environment to catch the signal
you specify. When the Prism environment receives the signal, execution stops, and
the Prism environment prints a message. A subsequent cont from a naturally
occurring signal that is caught causes the signal to be propagated to signal handlers
in the program (if any); if there is no handler for the signal, the program
terminates—in other words, the program proceeds as if the Prism environment were
not present.

By default, the Prism environment catches all signals except SIGHUP, SIGEMT,
SIGKILL, SIGALRM, SIGTSTP, SIGCONT, SIGCHLD, and SIGWINCH; use the ignore
command to add other signals to this list.

Specify the signal by number or by name. Signal names are case-insensitive, and the
SIG prefix is optional.

Issue catch without an argument to list the signals that the Prism environment is
set to catch.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

catch [number | signal_name] [pset pset_name | pset_definition]
19

cd
Changes the current working directory.

SYNTAX

DESCRIPTION

Use the cd command to change your current working directory in the Prism
environment to directory; with no arguments, cd makes your login directory the
current working directory.

The cd command is identical to its Solaris counterpart. See your Solaris
documentation for more information.

cd [directory]
20 Prism 7.0 Software Reference Manual • February 2003

cont
Continues execution of a target program.

SYNTAX

DESCRIPTION

Use the cont command to continue execution of the process from the point at which
it stopped. If you specify a Solaris signal, either by name or by number, the process
continues as though it received the signal. Otherwise, the process continues as
though it had not been stopped.

You can use the default alias c for this command.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

cont [number | signal_name] [pset pset_name | pset_definition]
21

contw
Continues execution and then waits for the members of the current pset to finish
execution. The contw command is available only in the MP Prism environment.

SYNTAX

DESCRIPTION

The contw command is an alias for

cont; wait

Issuing the command continues execution of the process from the point at which it
stopped, then waits for the members of the current pset to finish execution. Most
Prism commands are unavailable during this time.

If you specify a Solaris signal, either by name or by number, the process continues as
though it received the signal. Otherwise, the process continues as though it had not
been stopped.

This command can take a pset qualifier. If used with a qualifier, it applies to the pset
you specify. If used without a qualifier, it applies to the current pset. See “Psets:
Processes and Threads” on page 2 for more information on pset qualifiers.

contw [number | signal_name] [pset pset_name | pset_definition]
22 Prism 7.0 Software Reference Manual • February 2003

core
Associates a core file with the loaded program.

SYNTAX

DESCRIPTION

Use the core command to associate the specified core file with the program
currently loaded in the Prism environment. The Prism environment reports the error
that caused the core dump and sets the current line to the location at which the error
occurred. You can then work with the program within the Prism environment—for
example, you can print the values of variables. You cannot continue execution from
the current line, however.

The core command is not available in the MP Prism environment. Instead, you
must specify the name of the process core file on the shell command line, after the
name of the program executable. For example,

% prism a.out core

See the Prism User’s Guide for more information.

core corefile
23

cycle
Makes the next member of the cycle pset the current set. The cycle command is
available only in the MP Prism environment.

SYNTAX

DESCRIPTION

Use the cycle command in the MP Prism environment to cycle through the
members of the cycle pset. The cycle pset is by default equivalent to the current
set; you can set it to some other set via the define pset command.

In a nonthreaded program, issuing the cycle command sets the current process to
the next one in the current pset. In threaded programs, it sets the current thread to
the next valid thread in the current process, and steps to the next process when
appropriate. This provides a convenient way of looking at each individual member
within a pset.

EXAMPLE

This example defines a pset, makes it current, then cycles through its members,
making each one the current set in turn:

cycle

(prism all) define pset foo 0:3
(prism all) pset foo
(prism foo) cycle
(prism 1) cycle
(prism 2) cycle
(prism 3) cycle
(prism 0)
24 Prism 7.0 Software Reference Manual • February 2003

define pset
Creates a named pset. The define pset command is available only in the MP
Prism environment.

SYNTAX

DESCRIPTION

Use the define pset command to create a pset with the membership you specify.

You can give a pset any name except the predefined names all, running, error,
interrupted, break, stopped, done, current, and cycle. The name must begin
with a letter; it may contain any alphanumeric character plus the dollar sign and
underscore.

For the definition, specify any of the following, singly or in combination:

■ An individual process (or thread) number.

■ The name of a pset. The new pset will have the same definition as the existing set.

■ A list of process (or thread) numbers. Separate the numbers with commas. Use a
colon between two process (or thread) numbers to indicate a range. Use a second
colon to indicate the stride to be used within this range.

■ A union, difference, or intersection of psets. To specify the union, use the symbol +,
|, or ||. To specify the difference, use the minus sign (–). To specify the
intersection, use the symbol &, &&, or *.The Prism environment evaluates these
expressions from left to right. For a union, if a process returns true for the first
part of the expression, it is not evaluated further. For an intersection, if a process
returns false for the first part of the expression, it is not evaluated further.

■ A snapshot of a pset expression. Use the snapshot (pset_expression) intrinsic
(parentheses are required) to define a pset with a constant value (in a
multithreaded program) which could otherwise change during program
execution.

■ A condition to be met. Put braces around an expression that evaluates to true or
false on each process. Processes in which the expression is true are part of the set.
This is referred to as a variable pset, since membership in it can vary depending on
the current state of your program. Use the command eval pset to update the
membership of a variable pset.

define pset name definition
25

If a variable is not active in a process, the Prism environment prints an error
message and does not execute the command. To ensure that the command is
executed, use the intrinsic isactive in the pset definition. The expression
isactive(variable) returns true if variable is on the stack for a process or is a global.
If variable is not fully qualified, it must be within the scope of the current process.

If the Prism environment tries to evaluate a process that is running, the evaluation
fails and the command is not executed. To avoid this, use the intersection of the
predefined set stopped and the expression you want to evaluate. For example,

This command defines a pset xon consisting of processes that are stopped and in
which x is active and not equal to 0.

You cannot use this command in an event action.

Use the command delete pset to delete a pset that you have created using
define pset.

EXAMPLES

To create a pset foo containing the processes 0, 4, and 7:

define pset foo 0, 4, 7

To define a pset odd containing the odd-numbered processes
between 1 and 31:

define pset odd 1:31:2

To define a pset quux that contains processes that are members of either pset foo or
pset bar:

define pset quux foo | bar

To define a pset noty that consists of all processes that are stopped except those in
which y is equal to 1:

define pset noty stopped – {y == 1}

To define a pset, snap1, containing every process and thread (at the time of the
snapshot) in all except thread 1 of process 1:

define pset xon stopped && {isactive(x) && (x .NE. 0)}

(prism all) define pset snap1 snapshot (all - 1.1)
26 Prism 7.0 Software Reference Manual • February 2003

delete
Removes one or more events from the event list.

SYNTAX

DESCRIPTION

Use the delete command to remove the events corresponding to the specified ID
numbers (obtained by issuing the show events command). Use the all argument
to delete all existing events. Deleting the events also removes them from the event
list in the Event Table.

You can use the default alias d for this command.

delete all | ID [ID…]
27

delete pset
Deletes a user-defined pset. The delete pset command is available only in the MP
Prism environment.

SYNTAX

DESCRIPTION

Use the delete pset command to delete the pset pset_name. If you have created
events that apply to this pset, the events continue to exist. Their printed
representation, however, is changed so that it shows the processes that were
members of the pset at the time you deleted the set.

You cannot include the delete pset command in an event action.

Use the command define pset to create a pset.

delete pset pset_name
28 Prism 7.0 Software Reference Manual • February 2003

detach
Detaches a process or job running within the Prism environment.

SYNTAX

DESCRIPTION

Use the detach command to detach the process or job that is currently running
within the Prism environment. The process or job must be stopped before it can be
detached. Once detached, the process or job continues to run in the background, but
it is no longer under the control of the Prism environment.

The detach command only applies to the Prism session where it is invoked. If you
issue the detach command in a primary session, it is not propagated down to
secondary sessions.

For information about debugging multiple sessions, sessions spawned using calls to
MPI_Comm_spawn() or MPI_Comm_spawn_multiple(), see the Prism User’s Guide.

Use the attach command to attach to a running process or job.

Use the kill command to terminate the process or job to which the Prism
environment is attached.

detach
29

disable
Disables one or more events.

SYNTAX

DESCRIPTION

Use the disable command to disable the events with the specified ID numbers
(obtained by issuing the show events command). Disabled events are kept in the
event list, but they no longer affect execution. Use the enable command to re-
enable events. This can be more convenient than deleting events and then redefining
them.

disable event_ID [event_ID …]
30 Prism 7.0 Software Reference Manual • February 2003

display
Displays the values of one or more variables or expressions.

SYNTAX

DESCRIPTION

Use the display command to display the value(s) of the specified variable(s) or
expression(s). The display command prints the values to the screen immediately
and creates a display event, so that the values are updated automatically each time
the program stops execution.

The optional where expression provides a mask for the elements of the parallel
variable or array being displayed. The mask can be any expression that evaluates to
true or false for each element of the variable or array. Elements whose values
evaluate to true are considered active; elements whose values evaluate to false are
considered inactive. If values are displayed in the command window, values of
inactive elements are not printed. If values are displayed graphically, the treatment
of inactive elements depends on the type of representation you choose.

The optional /radix syntax specifies the radix to be used in displaying the value(s).
Possible settings of /radix are described in TABLE 7.

The default radix setting is decimal, unless you have overridden the default via the
set $radix command.

Redirection of output to a window via the on window syntax works slightly
differently for display (and print) from the way it works for other commands.

[where (expression)] display[/radix] expression [, expression …]
[pset pset_name | pset_definition]

TABLE 7 Radix Settings for the display Command

Symbol Radix

/b Binary

/d Decimal

/x Hexadecimal

/o Octal
31

If you don’t send output to the command window (the default), separate windows
are created for each variable or expression that you display. Note that displaying to
a window other than the command window creates a visualizer for the data.

Thus, the commands

create two dedicated windows, one for each variable; the two windows are updated
separately.

Also, by specifying as representation with the on window option, you can select the
visualizer representation shown. For example:

To display the contents of a register, precede the name of the register with a dollar
sign. For example,

display $pc on dedicated

displays the contents of the program counter register.

Supported UltraSPARC registers are listed in TABLE 8.

display x on dedicated
display y on dedicated

display x on dedicated as colormap
display y on dedicated as histogram

TABLE 8 Sun UltraSPARC Registers Supported by the Prism Environment

Name Register

$g0–$g7 Global registers (64 bits)

$o0–$o7 Output registers (64 bits)

$l0–$l7 Local registers

$i0–$i7 Input registers

$psr Processor state register

$pc Program counter

$npc Next program counter

$y Y register

$wim Window invalid mask

$tbr Trap base register

$f0–$f31 Floating-point registers, printable only as floats
32 Prism 7.0 Software Reference Manual • February 2003

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

EXAMPLES

To display the sum of the elements of the array foo:

display sum(foo)

To display (in a dedicated window) the values of foo that are not equal to 0:

where (foo .ne. 0) display foo on dedicated as text

$fsr Floating status register (64 bits)

$f0f1–$f62f63 Floating-point registers, printable only as doubles

$xg0–$xg7 Upper 32 bits of $g0–$g7 (SPARC V8 plus only, or higher)

$xo0–$xo7 Upper 32 bits of $o0–$o7 (SPARC V8 plus only, or higher)

$xfsr Upper 32 bits of $fsr (SPARC V8 plus only, or higher)

$fprs Floating-point registers state (SPARC V8 plus only, or higher)

$tstate Trap state register (SPARC V8 plus only, or higher)

$fp Frame pointer (synonym for $i6)

$sp Stack pointer (synonym for $o6)

TABLE 8 Sun UltraSPARC Registers Supported by the Prism Environment (Continued)

Name Register
33

down
Moves the symbol lookup context down one level in the call stack.

SYNTAX

DESCRIPTION

Use the down command to move the current function down the call stack (that is,
toward the current stopping point in the program) count levels. If you omit count, the
default is one level.

Issuing down repositions the source window at the new current function.

After a series of down commands, the Prism environment attempts to preserve the
level when the current process changes.

down [count]
34 Prism 7.0 Software Reference Manual • February 2003

dump
Prints the names and values of local variables.

SYNTAX

DESCRIPTION

Use the dump command to print the names and values of all the local variables in the
function or procedure you specify. If you omit function, the Prism environment uses
the current function. If you specify a period (.), dump follows all stack frames from
the current one back to main and prints the names and values of all local variables
in the functions in the stack.

Note – The dump command is not available in the MP Prism environment.

dump [function |…]
35

EXAMPLE

(prism) stop at 8
(1) stop at "dump.c":8
(prism) stop at 19
(2) stop at "dump.c":19
(prism) run
Running: /usr/users/tjl/dump.x
Debugee pid is 13302
stopped in procedure "main" at "dump.c":8
8 sub();
(prism) dump
Print all local variables from main()
‘dump.x‘dump.c‘main‘z = 1.900000
‘dump.x‘dump.c‘main‘x = 9
‘dump.x‘dump.c‘main‘y = 19.190000
(prism) c
stopped in procedure "sub" at "dump.c":19
19 y = y + x;
(prism) where
Show the active procedures on the call stack
sub(), line 19 in "dump.c"
main(), line 8 in "dump.c"
(prism) dump .
Print all local variables in all active procedures
‘dump.x‘dump.c‘sub:19‘y = 100 # from nested for() { } block
‘dump.x‘dump.c‘sub‘z = -9.100000 # from sub()
‘dump.x‘dump.c‘sub‘x = 1 # from sub()
‘dump.x‘dump.c‘sub‘y = 91.910000 # from sub()
‘dump.x‘dump.c‘main‘z = 1.900000 # from main()
‘dump.x‘dump.c‘main‘x = 9 # from main()
‘dump.x‘dump.c‘main‘y = 19.190000 # from main()
36 Prism 7.0 Software Reference Manual • February 2003

edit
Invokes an editor.

SYNTAX

DESCRIPTION

Use the edit command to invoke an editor. With no arguments, the editor is
invoked on the current file. If you specify filename, it is invoked on that file. If you
specify procedure, it is invoked on the file that contains that procedure or function,
positioning the cursor at the start of the procedure.

The editor that is invoked depends on the setting of the Prism resource
Prism.editor. If this resource is not set, the Prism environment uses the setting of
the EDITOR environment variable. If neither is set, the default editor is vi.

You cannot redirect the output of this command.

You can use the default alias e for this command.

edit [filename | procedure]
37

enable
Enables previously disabled events.

SYNTAX

DESCRIPTION

Use the enable command to enable the event with specified ID numbers (obtained
by issuing the show events command). Use the disable command to disable
events. Disabled events are kept in the event list, but they no longer affect execution.
Use the enable command to re-enable events. This can be more convenient than
deleting events and then redefining them.

enable event_ID [event_ID …]
38 Prism 7.0 Software Reference Manual • February 2003

eval pset
Updates the membership of a variable pset. The eval pset command is available
only in the MP Prism environment.

SYNTAX

DESCRIPTION

Use the eval pset command to update the membership of the variable pset
set_name. You create a variable pset by issuing the define pset command and
specifying a condition to be met. For example, to define a pset foo that consists of
all stopped processes in which x is active and is greater than zero:

define pset foo stopped && {isactive(x) && (x>0)}

The membership of such a set can change as a program executes. To update its
membership, issue the command:

eval pset foo

If the evaluation fails (for example, because a process that was previously stopped is
now running, and you didn’t include the stopped && syntax in your pset
definition), the membership of the pset does not update.

Note – The isactive intrinsic requires that its variable either must be fully
qualified or it must be within the scope of the current process.

eval pset pset_name
39

fg
Runs the executable program in the foreground. The fg command is available only
in the commands-only version of the MP Prism environment, or if you are using the
graphical interface of the Prism environment without an Xterm for I/O.

SYNTAX

DESCRIPTION

Use the fg command to bring your executable program into the foreground. When
executing a message-passing program in the commands-only interface of the MP
Prism environment, the program starts up in the background. Bring the program
into the foreground if it needs to read terminal input. You cannot execute Prism
commands while the program is executing in the foreground.

To have the program run in the background again and regain the (prism) prompt,
type Ctrl-Z.

fg
40 Prism 7.0 Software Reference Manual • February 2003

file
Changes or displays the current source file.

SYNTAX

DESCRIPTION

Use the file command to set the current source file to filename. If you do not specify
a file name, file prints the name of the current source file.

Note – The tilde (~) is valid syntax for all file names.

Changing the current file causes the new file to be displayed in the source window.
The scope pointer (–) in the line-number region moves to the current file to indicate
the beginning of the new scope that the Prism environment uses in identifying
variables.

When file is invoked with an absolute file name, the Prism environment searches
for filename as specified. When invoked with a relative file name, the Prism
environment searches first in the directory where filename was compiled. Then, if
filename is not found, the Prism environment attempts to locate filename using the
current-use list. For further information, see “use” on page 107.

Note – Because the scope pointer may be modified by this command, subsequent
expression evaluation uses the resulting scope pointer for symbol resolution.

file [filename]
41

func
Changes or displays the current procedure or function.

SYNTAX

DESCRIPTION

Use the func command to set the current procedure or function to function. If you
do not specify a procedure or function, func prints the name of the current function.

Changing the current function causes the file containing it to be displayed in the
source window; this file becomes the current file. The scope pointer (–) in the line-
number region moves to the current function to indicate the beginning of the new
scope that the Prism environment uses in identifying variables.

Invoking func with an invalid function name leaves the scope pointer unchanged.

The func command causes the function frame to be set to the first instance of the
specified function, if any, on the expression stack. For example, assume that the
function on the top of the stack, function bar, is not optimized. All of bar’s local
variables are accessible. Issuing the Prism command:

func foo

causes foo to become the first instance of foo on the stack. If foo is optimized, then
the only accessible variables are global variables. No local variable of foo is
accessible and none of the local variables of function bar are visible (because of
scope change), so none of bar’s variables are accessible. In other words, variables
that were previously accessible are no longer accessible after issuing the command:

func foo

Note – The set of accessible variables is a subset of the set of visible variables.

func [function]
42 Prism 7.0 Software Reference Manual • February 2003

help
Gets help.

SYNTAX

DESCRIPTION

Use the help command to get help about Prism commands.

Use the commands option to display a list of Prism commands. Specify a command
name to display reference information about that command.

Issuing help with no arguments displays a brief help message.

You can use the default alias h for this command.

help [commands | command_name]
43

hide
Removes a pane from a split source window.

SYNTAX

DESCRIPTION

Use the hide command to remove one of the panes in a split source window. The
pane that is removed contains the code specified by the file extension you supply as
the argument to the command.

Use the show command to create a split source window. For more information about
the show command, see “show” on page 77.

The hide command is not meaningful in the commands-only interface of the Prism
environment.

EXAMPLES

To remove the pane containing the assembly code for the loaded program, issue this
command:

hide .s

To remove the pane containing Fortran 77 source code, issue this command:

hide .f

hide file_extension
44 Prism 7.0 Software Reference Manual • February 2003

ignore
Tells the Prism environment to ignore the specified Solaris signal.

SYNTAX

DESCRIPTION

The Prism environment can intercept Solaris signals before they are sent to the
program. Use the ignore command to tell the Prism environment to ignore the
specified signal. If the signal is ignored, the Prism environment sends it to the
program and allows the program to continue running without interruption; the
program can then react to the signal as though the Prism environment were not
there. By default, the Prism environment catches all signals except SIGHUP, SIGEMT,
SIGKILL, SIGALRM, SIGTSTP, SIGCONT, SIGCHLD, and SIGWINCH; use the catch
command to catch these signals as well.

Specify the signal by number or by name. Signal names are case-insensitive, and the
SIG prefix is optional.

Issue ignore with no arguments to list the signals that the Prism environment
ignores.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

ignore [number | signal_name] [pset pset_name | pset_definition]
45

interrupt
Suspends execution on processes. The interrupt command is available only in the
MP Prism environment.

SYNTAX

DESCRIPTION

Use the interrupt command to suspend execution on processes.

The interrupted processes become members of the predefined pset interrupted.

Without a pset qualifier, interrupt suspends execution on the processes in the
current pset. With a pset qualifier, interrupt suspends execution on the processes
in the set you specify. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

EXAMPLES

To interrupt the execution of the members of the predefined pset running:

interrupt pset running

To interrupt the execution of process 5:

interrupt pset 5

interrupt [pset pset_name | pset_definition]
46 Prism 7.0 Software Reference Manual • February 2003

kill
Kills a process or job running within the Prism environment.

SYNTAX

DESCRIPTION

Use the kill command to terminate the process or job that is currently running
within the Prism environment.

If you issue a kill command in a primary Prism session, the command will
propagate to the secondary Prism sessions. That is, the Prism environment will shut
down the secondary Prism sessions and the debuggees.

For information about debugging multiple sessions, sessions spawned using calls to
MPI_Comm_spawn() or MPI_Comm_spawn_multiple(), see the Prism User’s Guide.

kill
47

list
Lists lines in the current source file or specified routine.

SYNTAX

DESCRIPTION

Use the list command to list lines in the current file. The source window is
repositioned. The command also affects the scope that the Prism environment uses
for resolving names. By default, the lines are displayed in the command window.

With no arguments, list lists the next 10 lines starting with the current line.

If you specify line numbers, the lines are listed from the first line number through
the second.

If you specify a procedure or function, list lists 10 lines starting with the first
statement in the procedure or function.

In the commands-only interface of the Prism environment, list changes the current
source line (but not the current execution line) to the last line displayed. Subsequent
list commands (or search commands, for further information, see “/regexp,
?regexp” on page 10) begin from the new current line.

In the graphical mode of the Prism environment, the current source line is indicated
by a dash (–) and the current execution line is indicated by an angle bracket (>). If
the current source line is the same as the current execution line, that line is indicated
by an asterisk (*).

You can use the default alias l (lowercase letter “L”) for this command.

You can repeat this command by pressing Enter.

Note – Because the scope pointer may be modified by this command, subsequent
expression evaluation uses the resulting scope pointer for symbol resolution.

list [source_line_number [, source_line_number]]
list routine
48 Prism 7.0 Software Reference Manual • February 2003

load
Loads an executable program into the Prism environment.

SYNTAX

DESCRIPTION

The load command loads the file specified by filename into the Prism environment.
The file must be an executable program compiled with the appropriate debugging
switch.

When you execute load, the name of the program appears in the Program field of
the main Prism window, and the source code that contains the main function of the
program is displayed in the source window.

Use the reload command to reload the program currently loaded in the Prism
environment.

load filename
49

log
Creates a log file.

SYNTAX

DESCRIPTION

Use the log command to create a log file, filename, of your commands and the Prism
environment’s responses.

Use the @@ form of the command to append the log to an already existing file.

Use log off to turn off logging.

log @ filename
log @@ filename
log off
50 Prism 7.0 Software Reference Manual • February 2003

lwps
Lists all lightweight processes (LWPs) in the set of processes that belong to the
current (or specified) pset.

SYNTAX

DESCRIPTION

Use the lwps command to display a list of all lightweight processes belonging to the
current (or specified) pset.

This command requires the MP Prism environment. If used with a pset qualifier, it
applies to the processes (not threads) with members belonging to the pset you
specify. If used without a pset qualifier, it applies to the processes with members
belonging to the current pset.

For information about LWP states, see TABLE 3.

lwps [pset pset_name | pset_definition]
51

make
Executes the make utility.

SYNTAX

DESCRIPTION

Use the make command to execute the make utility to update and regenerate one or
more programs. You can specify any arguments that are valid in the Solaris version
of make.

By default, the Prism environment uses the standard Solaris make, /bin/make. You
can change this by using the Customize utility or by changing the setting of the
Prism resource Prism.make.

You cannot redirect the output of this command.

make [option…]
52 Prism 7.0 Software Reference Manual • February 2003

mpimsgs
Displays the contents of MPI message queues.

SYNTAX

where

send – Allows you to examine the message queue for Posted Sends.

recv – Allows you to examine the message queue for Posted Receives.

urecv – Allows you to examine the message queue for Unexpected Receives.

verbose – Displays additional details about the communicator and dumps the
contents of each message.

pset – Using the pset option, you can specify the message queues you wish to view
by choosing a set of processes. If you do not use the pset option, the current pset is
used by default. However, among the members of the specified pset, only the
message queues of the processes that are stopped are displayed. For more
information about psets, see “Psets: Processes and Threads” on page 2.

DESCRIPTION

Use the mpimsgs command to display message queues created by a Sun MPI
program. The Prism environment displays the messages in the output window,
sorting the messages by rank. The fields of each message are displayed, including
message size, tag, to (or from), comm (communicator), protocol, and data
type.

Specify the verbose option to display more details about the communicator and to
display the contents of the message.

mpimsgs [send | recv | urecv] [verbose] [pset pset_name | pset_definition]
53

EXAMPLE

A typical message with the verbose option enabled,

Queues for Rank 0:

** 6 Posted Sends:
0: size = 40

tag = 101
to = 0
comm:

name = MPI_COMM_WORLD
fortran handle = 1
topology = none
size = 4
ranks = 0:3

protocol = loopback
data type = int
contents:

0 1 2 3 4 5 6 7 8 9
54 Prism 7.0 Software Reference Manual • February 2003

next
Executes one or more source lines, counting functions or procedures as single
statements.

SYNTAX

DESCRIPTION

Use the next command to execute the next n source lines, stepping over procedures
and functions. If you do not specify a number, next executes the next source line.

You can use the default alias n for this command.

You can repeat this command by pressing Enter.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

next [n] [pset pset_name | pset_definition]
55

nexti
Executes one or more machine instructions, stepping over procedure and
function calls.

SYNTAX

DESCRIPTION

Use the nexti command to execute the next n machine instructions, stepping over
procedures and functions. If you do not specify a number, nexti executes the next
machine instruction.

You can repeat this command by pressing Enter.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

nexti [n] [pset pset_name | pset_definition]
56 Prism 7.0 Software Reference Manual • February 2003

print
Prints the values of one or more variables or expressions.

SYNTAX

DESCRIPTION

Use the print command to print to the screen the values of the specified variable(s)
or expression(s).

The optional where expression provides a mask for the elements of the parallel
variable or array being printed. The mask can be any expression that evaluates to
true or false for each element of the variable or array. Elements whose values
evaluate to true are considered active; elements whose values evaluate to false are
considered inactive. If values are printed in the command window, values of inactive
elements are not printed. If values are printed graphically, the treatment of inactive
elements depends on the type of representation you choose.

The optional /radix syntax specifies the radix to be used in printing the value(s).
Possible settings of /radix are described in TABLE 9.

The default radix is decimal, unless you have overridden the default via the
set $radix command.

Redirection of output to a window via the on window syntax works slightly
differently for print and display from the way it works for other commands.
If you don’t send output to the command window (the default), separate windows
are created for each variable or expression that you print. Note that printing to a
window other than the command window creates a visualizer for the data.

[where (expression)] print[/radix] expression [, expression …]
[pset pset_name | pset_definition]

TABLE 9 Radix Settings for the print command

Symbol Radix

/b Binary

/d Decimal

/x Hexadecimal

/o Octal
57

Thus, the commands

create two dedicated windows, one for each variable; the two windows are updated
separately.

Also, by specifying as representation when you use the on window option, you can
select the visualizer representation shown. For example:

To print the contents of a register, precede the name of the register with a dollar sign.
For example,

print $pc on dedicated

prints the contents of the program counter register.

Supported UltraSPARC registers are listed in the following table.

print x on dedicated
print y on dedicated

print x on dedicated as colormap
print y on dedicated as histogram

TABLE 10 Sun UltraSPARC Registers Supported by the Prism Environment

Name Register

$g0–$g7 Global registers (64 bits)

$o0–$o7 Output registers (64 bits)

$l0–$l7 Local registers

$i0–$i7 Input registers

$psr Processor state register

$pc Program counter

$npc Next program counter

$y Y register

$wim Window invalid mask

$tbr Trap base register

$f0–$f31 Floating-point registers, printable only as floats

$fsr Floating status register (64 bits)

$f0f1–$f62f63 Floating-point registers, printable only as doubles
58 Prism 7.0 Software Reference Manual • February 2003

You can use the default alias p for the print command.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

EXAMPLES

To print the maximum value of the array a:

print maxval(a)

To print in a dedicated window the values of a that are greater than 3:

where (a > 3) print a on dedicated as text

$xg0–$xg7 Upper 32 bits of $g0–$g7 (SPARC V8 plus only, or higher)

$xo0–$xo7 Upper 32 bits of $o0–$o7 (SPARC V8 plus only, or higher)

$xfsr Upper 32 bits of $fsr (SPARC V8 plus only, or higher)

$fprs Floating-point registers state (SPARC V8 plus only, or higher)

$tstate Trap state register (SPARC V8 plus only, or higher)

$fp Frame pointer (synonym for $i6)

$sp Stack pointer (synonym for $o6)

TABLE 10 Sun UltraSPARC Registers Supported by the Prism Environment (Continued)

Name Register
59

printenv
Displays currently set environment variables.

SYNTAX

DESCRIPTION

Use the printenv command to display the value of the specified environment
variable. If you omit variable, the command prints the values of all environment
variables that are currently set.

The Prism environment’s printenv command is identical to its Solaris C shell
counterpart. See your Solaris documentation for more information.

printenv [variable]
60 Prism 7.0 Software Reference Manual • February 2003

process
Sets or displays the current process (or thread) of the current pset. The process
command is available only in the MP Prism environment.

SYNTAX

DESCRIPTION

Use the process command to change the current process (or thread) of the current
pset to process_number. If you omit the argument, process displays the current
process of the current pset. By default, the lowest numbered process in the pset is
the default process; in threaded programs, the lowest numbered thread in the lowest
numbered process in the current pset is the current thread. (The current process,
among other functions, determines the scope used in interpreting the names of
variables.) If you omit the argument, process displays the current process of the
current pset.

You cannot include this command in event actions.

EXAMPLE

To change the current thread from thread 4 to thread 3:

In the following example, as a result of changing the current pset, the current thread
changes from thread 3 of process 1 to thread 5 of process 2:

Note that the current pset now includes threads 5 and 6 of processes 2 through 7.

process [process_number]

(prism 1.4) process 1.3
(prism 1.3)

(prism 1.3) pset (2:7).(5,6)
(prism 2:7.(5.6))
61

pset
Sets or displays the current pset. Controls which threads are visible or hidden in the
psets of multithreaded programs. The pset command is available only in the MP
Prism environment.

SYNTAX

DESCRIPTION

Use the pset command to change the current pset. You can either specify the name
of a pset or the definition of a pset. See “define pset” on page 25 for an explanation
of how to define a pset.

The (prism) prompt changes to reflect the new current set.

Use the –hide pset_expression argument to specify the set of threads to be hidden
from view in the Prism environment. Hidden threads never appear in any pset.
Debugging commands have no effect on hidden threads. By default, threads 2, 3,
and 4 are hidden. These are auxiliary threads created by any program linked with
libthread.so. They are rarely of interest to programmers.

Use the –hide argument without pset_expression to show the set of currently hidden
threads.

Use the –unhide pset_expression argument to specify the set of threads to be made
visible from the set of currently hidden threads.

The –hide and –unhide arguments are valid only when debugging a multithreaded
program.

Use the snapshot argument in pset_definition to set the current pset—which would
otherwise change during program execution—to a constant value (in a
multithreaded program). For further information about constant and unbounded
psets, see the Prism User’s Guide.

With no arguments specified, pset displays the membership of the current process
set.

You cannot include the pset command in an event action.

pset [pset_name | pset_definition][–hide | –unhide pset_expression]
62 Prism 7.0 Software Reference Manual • February 2003

EXAMPLES

This example changes the current pset a couple of times and displays its
membership:

This example sets the current pset to contain every process and thread (at the time of
the snapshot) in all except process 1 and its number 1 thread:

Because you have used the snapshot argument, all threads except 1.1 become the
current pset. Unless you explicitly change the current pset (for example, by issuing
another pset command), the current pset will continue to have the same members,
even though new threads have been created.

(prism all) pset
The current set was created by evaluating the Pset
’all’ once at the time when it became the current set.
The set contains threads: 0:3.(1,5,6)
(prism all) pset -hide all.6
(prism all) pset
The current set was created by evaluating the Pset
’all’ once at the time when it became the current set.
The set contains threads: 0:3.(1,5).
(prism all) pset -hide
currently hiding the set: 0:3.(2:4,6)
(prism all) pset -unhide all.6
Processes 0:3.6: stopped in procedure "do_work" at
"mpmt_julia.cc":278
(prism all) pset
The current set was created by evaluating the Pset
’all’ once at the time when it became the current set.
The set contains threads: 0:3.(1,5,6).

(prism all) pset snapshot (all - 1.1)
63

pstatus
Displays the execution status of pset members. The pstatus command is available
only in the MP Prism environment.

SYNTAX

DESCRIPTION

Use the pstatus command to display the execution status of the members of the
pset you specify. See “define pset” on page 25 for a discussion of how to define a
pset. If you issue pstatus with no arguments, it displays the execution status of the
members of the current pset. Pset members that have the same status are grouped
together.

EXAMPLE

pstatus [pset_name | pset_definition]

(prism foo) pstatus
process 0: interrupted in procedure ”make_move” at ”chess.c”:1261
process 1: running
processes 2,3: interrupted in procedure ”bishop_moves” at
”chess.c”:478
processes 4,5: interrupted in procedure ”knight_moves” at
”chess.c”:383
processes 6,7: interrupted in procedure ”generate_moves” at
”chess.c”:883
64 Prism 7.0 Software Reference Manual • February 2003

pushbutton
Adds a Prism command to the tear-off region of the main window of the Prism
graphic user interface.

SYNTAX

DESCRIPTION

Use the pushbutton command to create a customized button in the tear-off region.
The button will have the label you specify; clicking on it will execute the command
you specify. The label must be a single word. The command can be any valid Prism
command, along with its arguments.

To remove a button created via the pushbutton command, either enter tear-off
mode and click on the button, or issue the untearoff command, using label as its
argument.

Changes you make to the tear-off region are saved when you leave the Prism
environment.

This command is not available in the commands-only interface of the Prism
environment.

EXAMPLE

This command creates a button labeled printfoo that executes the command
print foo on dedicated:

pushbutton printfoo print foo on dedicated

pushbutton label command
65

pwd
Displays the path name of the current working directory.

SYNTAX

DESCRIPTION

Use the pwd command to display the path name of the current working directory in
the Prism environment.

The Prism environment’s pwd command is identical to its Solaris counterpart. See
your Solaris documentation for more information.

pwd
66 Prism 7.0 Software Reference Manual • February 2003

quit
Leaves the Prism environment.

SYNTAX

DESCRIPTION

Issue the quit command to immediately leave the Prism environment. Note that,
unlike its menu equivalent, quit does not ask you if you are sure you want to quit.

When issued in the primary Prism session (of a multiple session), the quit
command does not propagate down to the secondary sessions unless you issue the
command with the –all option.

If the job was run by the primary Prism session, the command quit –all will kill
the debuggees in the primary as well as the secondary Prism sessions and close all
the Prism sessions.

If you attached to the job in the primary Prism session, then quit –all will leave
the debuggees running and close all the Prism sessions.

The –all option is valid only in the primary Prism session.

The quit entry on the Prism File menu is the same as the Prism (command-line)
quit command. To quit all Prism sessions, you must type

(prism all) quit –all

For information about debugging multiple sessions, sessions spawned using calls to
MPI_Comm_spawn() or MPI_Comm_spawn_multiple(), see the Prism User’s Guide.

quit [–all]
67

reload
Reloads the currently loaded program.

SYNTAX

DESCRIPTION

Use the reload command to reload the program currently loaded in the Prism
environment.

reload
68 Prism 7.0 Software Reference Manual • February 2003

rerun
Reruns the currently loaded program, using arguments previously passed to the
program.

SYNTAX

DESCRIPTION

Use the rerun command to execute the program currently loaded in the Prism
environment. If you do not specify args, rerun uses the argument list previously
passed to the program. Otherwise, rerun is identical to the run command. You can
specify any command-line arguments as args, and you can redirect input or output
using < or > in the standard Solaris manner.

When you issue the rerun command in a primary Prism session, the Prism
environment will clean up any the secondary Prism sessions spawned by that
session. That is, the Prism environment will shut down the secondary Prism sessions
and the debuggees.

For information about debugging multiple sessions, sessions spawned using calls to
MPI_Comm_spawn() or MPI_Comm_spawn_multiple(), see the Prism User’s Guide.

rerun [args] [< filename] [> filename]
69

return
Steps out to the caller of the current function.

SYNTAX

DESCRIPTION

Use the return command to execute the current function, then return to its caller.
If you specify an integer as an argument, return steps out the specified number of
levels in the call stack.

return is a synonym for stepout.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

return [count] [pset pset_name | pset_definition]
70 Prism 7.0 Software Reference Manual • February 2003

run
Executes the currently loaded program.

SYNTAX

DESCRIPTION

Use the run command to execute the program currently loaded in the Prism
environment. Specify any command-line arguments as args. You can also redirect
input or output using < or > in the standard Solaris manner.

When you issue the run command in a primary Prism session, the Prism
environment will clean up any the secondary Prism sessions spawned by that
session. That is, the Prism environment will shut down the secondary Prism sessions
and the debuggees.

For information about debugging multiple sessions, sessions spawned using calls to
MPI_Comm_spawn() or MPI_Comm_spawn_multiple(), see the Prism User’s Guide.

You can use the default alias r for this command.

run [args] [< filename] [> filename]
71

select
Chooses the master pane in a split source window.

SYNTAX

DESCRIPTION

Use the select command to choose the “master pane” when the source window is
split into more than one pane. The master pane will contain the code with the file
extension you specify as the argument to select.

The Prism environment interprets unqualified line numbers in commands in terms
of the source code in the master pane. It also uses the master pane to determine the
source code and language to use in displaying messages, events, the call stack, and
so on.

Scrolling through the master pane causes the slave pane to scroll to the
corresponding location. You can scroll the slave pane independently, but this does
not cause the master pane to scroll.

When used in the commands-only interface of the Prism environment, select
determines the programming language used to display messages, events, and so on.

EXAMPLES

To make the pane containing the loaded program’s assembly code the master pane:

select .s

To select the pane containing the Fortran 77 source code to be the master pane:

select .f

select file_extension
72 Prism 7.0 Software Reference Manual • February 2003

set
Defines abbreviations and sets values for variables.

SYNTAX

DESCRIPTION

Use the set command to define other names (typically abbreviations) for variables
and expressions. The names you choose cannot conflict with names in the program
loaded in the Prism environment; they are expanded to the corresponding variable
or expression within other commands. For example, if you issue this command:

set x = variable_with_a_long_name

then

print x

is equivalent to

print variable_with_a_long_name

In addition to print and display, the whatis, whereis, and which commands
recognize variables set using the set command. For example, issuing the command
whatis x after issuing the set command above produces this response:

user-set variable, x = variable_with_a_long_name

In addition, you can use the set command to set the value of certain internal
variables used by the Prism environment. These variables begin with a $ so that they
will not conflict with the names of user-set variables. You may change the settings of
these internal variables:

■ $d_precision, $f_precision

Use these variables to specify the default number of significant digits the Prism
environment prints for doubles and floating-point variables, respectively. the
Prism environment’s defaults are 16 for doubles and 7 for floating-point variables;
this is the maximum precision for these variables. The value you set applies to
printing in both the command window and text visualizers. For example,

set $f_precision = 5

This causes the Prism environment to print five significant digits for floating-
point values.

set variable = expression
73

■ $history

The Prism environment stores the maximum number of lines in the history region
in this variable. When the history region reaches the maximum, the Prism
environment starts throwing away the earliest lines in the history. The default
number of lines in the history region is 10,000. To specify an infinite length for the
history region, use any negative number. For example,

set $history = -1

Maintaining a large history region uses up memory. A smaller history region,
improves performance and can prevent running out of memory.

■ $fortran_string_length

The Prism environment uses this value as the length of a character string when
the length is not explicitly specified. The default is 10.

■ $fortran_adjust_limit

Prism uses this value as the limit of an adjustable array. The default is 10.

■ $page_size

This value is used only in the commands-only interface of the Prism environment.
It specifies the number of output lines the Prism environment displays before
stopping and prompting with a more? message. The Prism environment obtains
its default from the size of your screen. If you specify 0, the Prism environment
never displays a more? message.

■ $print_width

This value is used only in the commands-only interface of the Prism environment.
It specifies the number of items to be printed on a line. The default is 1.

■ $prompt_length

This value is used only in the MP Prism environment. It specifies the maximum
number of characters to appear in the pset part of the (prism) prompt. The
default is 25.

■ $radix

This value specifies the radix to be used for printing the values of variables.
Possible settings are 2 (binary), 8 (octal), 10 (decimal), and 16 (hexadecimal). The
default is 10.

■ $viz

This value specifies the default visualizer representation to be used for the print
or display commands. Possible settings are “Text“, “Histogram”, “Dither”,
“Threshold”, “ColorMap”, “Graph”, “Surface”, and “Vector“ (quotation marks
are required).

Issue the set command with no arguments to display your current settings.

Issue the unset command to remove a user-defined setting.
74 Prism 7.0 Software Reference Manual • February 2003

setenv
Displays or sets an environment variable.

SYNTAX

DESCRIPTION

Use the setenv command to set an environment variable within the Prism
environment. With no arguments, setenv displays all current settings.

Environment variables become defined or undefined in the Prism environment at
the moment that setenv or unsetenv is executed. The program to be debugged
inherits the Prism environment at the moment that the target program is executed.
For this reason, changes to the Prism environment by setenv and unsetenv do not
affect any other processes that are already running.

Although the Prism environment, and any programs executed within it, inherits its
environment from the shell that created it, the setenv and unsetenv commands do
not affect the shell that started the Prism environment, or the Prism executable itself.

The Prism environment’s setenv command is identical to its Solaris C shell
counterpart. See your Solaris documentation for more information.

setenv [variable [setting]]
75

sh
Passes a command line to the shell for execution.

SYNTAX

DESCRIPTION

Use the sh command to execute a Solaris command line from a shell; the response is
displayed in the history region. If you don’t specify a command line, the Prism
environment invokes an interactive shell in a separate window. The setting of your
SHELL environment variable determines which shell is used; if it isn’t set, the C shell
is used.

You cannot redirect the output of this command.

sh [command_line]
76 Prism 7.0 Software Reference Manual • February 2003

show
Splits the source window to display the file with the specified extension.

SYNTAX

DESCRIPTION

Use the show command to split the source window and display the assembly code,
or the version of the source code with the specified extension, in the new pane.

The show command is not meaningful in the commands-only interface of the Prism
environment.

Use the hide command to cancel the display of the assembly code or source-code
version and return to a single source window.

EXAMPLE

To display the assembly code for the loaded program, issue this command:

show .s

show file_extension
77

show events
Displays the event list.

SYNTAX

DESCRIPTION

Use the show events command to print the event list. The list includes an ID for
each command; you use this ID when issuing the delete command to delete an
event from the event list. You can use the enable and disable commands to
control whether specified events in the event list affect execution. See the enable,
delete, and disable commands for further information.

show events on ded brings up the Event Table window, just as though you selected
the Event Table option from the Events menu.

If you use the optional argument processnumber, the show events command reports
only for the process number specified. If processnumber is not specified, all events are
displayed.

Note – The show events command does not accept a pset qualifier.

You can use the default alias j for this command.

show events [processnumber] [on windowname]
78 Prism 7.0 Software Reference Manual • February 2003

show pset
Displays the contents of a pset. This command is available only in the MP Prism
environment.

SYNTAX

DESCRIPTION

Use the show pset command to display the contents of the pset you specify. (See the
define pset command for a discussion of how to define a pset.) With no
arguments, show pset displays the contents of the current pset.

EXAMPLE

To display the contents of the pset stopped:

show pset [pset_name | pset_definition]

show pset stopped
The set contains the following processes: 0:3.
79

show psets
Displays information about all psets. This command is available only in the MP
Prism environment.

SYNTAX

DESCRIPTION

Use the show psets command to display information about all currently defined
psets. The output includes each set’s definition, members, and current process. The
sets listed include user-named sets, predefined sets, and sets that the user has
defined but not named.

In either the graphical interface, or in the commands-only interface of the Prism
environment started with the –CX option, issuing the command show psets on
dedicated displays the Psets window.

show psets
80 Prism 7.0 Software Reference Manual • February 2003

EXAMPLE

Here is sample output from a show psets command:

(prism foo) show psets
foo:
definition = 0:7
 members = 0:7
 current process = 0
break:
definition = break
 members = nil
 current process = (none)
done:
definition = done
 members = nil
 current process = (none)
interrupted:
definition = interrupted
 members = 0:31
 current process = 0
error:
definition = error
 members = nil
 current process = (none)
running:
definition = running
 members = nil
 current process = (none)
stopped:
definition = stopped
 members = 0:31
 current process = 0
current:
definition = foo
 members = 0:7
 current process = 0
cycle:
definition = foo
 members = 0:7
 current process = 0
all:
 definition = all
 members = 0:31
 current process = 0
81

source
Reads commands from a file.

SYNTAX

DESCRIPTION

Use the source command to read in and execute Prism commands from filename.
This is useful if, for example, you have redirected the output of a show events
command to a file, thereby saving all events from a previous session.

In the file, the Prism environment interprets lines beginning with # as comments. If
\ is the final character on a line, the Prism environment interprets it as a
continuation character.

source filename
82 Prism 7.0 Software Reference Manual • February 2003

status
Displays the event list.

SYNTAX

DESCRIPTION

Use the status command to display the event list. The list includes an ID for each
command; you use this ID when issuing the delete command to delete an event.
You can use the enable and disable commands to control whether specified
events in the event list affect execution. See the enable, delete, and disable
commands for further information.

status is a synonym for the show events command.

You can use the default alias j for this command.

status
83

step
Executes one or more source lines.

SYNTAX

DESCRIPTION

Use the step command to execute the next n source lines, stepping into procedures
and functions. If you do not specify a number, step executes the next source line.

You can use the default alias s for this command.

You can repeat this command by pressing Enter.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

step [n] [pset pset_name | pset_definition]
84 Prism 7.0 Software Reference Manual • February 2003

stepi
Executes one or more machine instructions.

SYNTAX

DESCRIPTION

Use the stepi command to execute the next n machine instructions, stepping into
procedures and functions. If you do not specify a number, stepi executes the next
machine instruction.

You can repeat this command by pressing Enter.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

stepi [n] [pset pset_name | pset_definition]
85

stepout
Steps out to the caller of the current function.

SYNTAX

DESCRIPTION

Use the stepout command to execute the current function, then return to its caller.
If you specify an integer as an argument, stepout steps out the specified number of
levels in the call stack.

return is a synonym for stepout.

stepout [count]
86 Prism 7.0 Software Reference Manual • February 2003

stop
Sets a breakpoint.

SYNTAX

DESCRIPTION

Use the stop command to set a breakpoint at which the program is to stop
execution. You can abbreviate this command to st.

The first option listed in the synopsis (var | at line | in func) must come first on the
command line; you can specify the other options, if you include them, in any order.

var is the name of a variable. Execution stops whenever the value of the variable
changes. If the variable is an array or a parallel variable, execution stops when the
value of any element changes. This form of the command slows execution
considerably. You cannot specify both a variable and a location.

at line stops execution when the specified line is reached. If the line is not in the
current file, use the form ”filename”:line_number, using quotation marks around the
file name.

in func stops execution when the specified procedure or function is reached. Note
that the Prism environment uniformly treats main (the program’s entry point) and
MAIN (the main subroutine of the Fortran program) as separate and distinct entities.
stop in MAIN will consistently give you different results than stop in main.

if expression specifies the logical condition, if any, under which execution is to stop.
The logical condition can be any expression that evaluates to true or false. Unless
combined with the at line syntax, this form of stop slows execution considerably.

{cmd; cmd …} specifies the actions, if any, that are to accompany the breakpoint.
Put the actions in braces. The actions can be any Prism commands; if you include
multiple commands, separate them with semicolons.

after n specifies how many times a trigger condition (for example, reaching a
program location) is to occur before the breakpoint occurs. The default is 1. If you
specify both a condition and an after count, the Prism environment checks the
condition first.

stop [var | at line | in func] [if expression] [{cmd; cmd …}] [after n]
[silent | disabled] [pset pset_name | pset_definition]
87

silent allows you to create the event and gives the event the same attribute as if
you had specified y in the silent field of the Event Table of the Prism graphic
interface. disabled allows you to create the event, but the event is disabled as if
you had specified n in the enabled field of the Event Table of the Prism graphic
interface.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

EXAMPLES

To stop execution the tenth time in the function foo, print a, and execute the where
command:

stop in foo {print a; where} after 10

To stop execution at line 17 of file bar if a is equal to 0:

stop at ”bar”:17 if a == 0

To stop execution whenever the value of a changes:

stop a

To stop execution the third time a equals 5:

stop if a .eq. 5 after 3
88 Prism 7.0 Software Reference Manual • February 2003

stopi
Sets a breakpoint at a machine instruction.

SYNTAX

DESCRIPTION

Use the stopi command to set a breakpoint at a machine instruction.

The first option listed in the synopsis (var | at addr | in func) must come first on the
command line; you can specify the other options, if you include them, in any order.

var is the name of a variable. Execution stops whenever the value of the variable
changes. If the variable is an array or a parallel variable, execution stops when the
value of any element changes. This form of the command slows execution
considerably. You cannot specify both a variable and a location.

at addr stops execution when the specified address is reached.

in func stops execution when the specified procedure or function is reached. Note
that the Prism environment uniformly treats main (the program’s entry point) and
MAIN (the main subroutine of the Fortran program) as separate and distinct entities.
stop in MAIN will consistently give you different results than stop in main.

if expression specifies the logical condition, if any, under which execution is to stop.
The logical condition can be any expression that evaluates to true or false. Unless
combined with the at addr syntax, this form of stopi slows execution considerably.

{cmd; cmd …} specifies the actions, if any, that are to accompany the breakpoint.
The actions can be any Prism commands; if you include multiple commands,
separate them with semicolons.

after n specifies how many times a trigger condition (for example, reaching a
program location) is to occur before the breakpoint occurs. The default is 1. If you
specify both a condition and an after count, the Prism environment checks the
condition first.

stopi [var | at addr | in func] [if expression] [{cmd; cmd …}] [after n]
[silent | disabled] [pset pset_name | pset_definition]
89

silent allows you to create the event and gives the event the same attribute as if
you had specified y in the silent field of the Event Table of the Prism graphic
interface. disabled allows you to create the event, but the event is disabled as if
you had specified n in the enabled field of the Event Table of the Prism graphic
interface.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

EXAMPLES

To stop execution at address 1000 (hex):

stopi at 0x1000

To stop execution at address 500 (hex) if a is equal to 0:

stopi at 0x500 if a == 0
90 Prism 7.0 Software Reference Manual • February 2003

sync
Shows information about a specified (by address) synchronization object (mutex
lock).

SYNTAX

DESCRIPTION

Shows information about the specified (by address) synchronization object (mutex
lock), such as which thread it blocks or which thread owns the locks.

This command requires the MP Prism environment. If used with a pset qualifier, it
applies to the threads in each of the processes with members belonging to the pset
you specify. If used without a pset qualifier, it applies to the threads in each of the
processes with members belonging to the current pset.

sync –info [addr] [pset pset_name | pset_definition]
91

syncs
Lists all synchronization objects (mutex locks) for the last-stopped thread in
processes with members in the current (or specified) pset.

SYNTAX

DESCRIPTION

Lists all synchronization objects (and their addresses) known to libthread.

This command requires the MP Prism environment. If used with a pset qualifier, it
applies to the threads in each of the processes with members belonging to the pset
you specify. If used without a pset qualifier, it applies to the threads in each of the
processes with members belonging to the current pset.

syncs [pset pset_name | pset_definition]
92 Prism 7.0 Software Reference Manual • February 2003

tearoff
Places a menu selection in the tear-off region.

SYNTAX

DESCRIPTION

Use the tearoff command to add a menu selection to the tear-off region of the
main window of the Prism environment. Put the selection name in quotation marks.
Case and blank spaces don’t matter, and you can omit the three dots that indicate
that choosing the selection displays a dialog box. If the selection name is available in
more than one menu, put the name of the menu you want in parentheses after the
selection name.

Use the untearoff command to remove a menu selection from the tear-off region.

Changes you make to the tear-off region are saved when you leave the Prism
environment.

This command is not available in the commands-only interface of the Prism
environment.

EXAMPLES

To put the File selection in the tear-off region:

tearoff ”file”

To put the Print selection from the Events menu in the tear-off region:

tearoff ”print (events)”

tearoff ”selection”
93

thread
Displays information about the last-stopped thread on each process with members
in the current (or specified) pset.

SYNTAX

DESCRIPTION

Use the thread command to view information about the last-stopped thread.

Options

If you omit the pset specification, thread displays the ID of the last-stopped thread.

■ info – Display everything known about the last-stopped thread.
■ blocks – List all locks held by the last-stopped thread.
■ blockedby – Show which synchronization object (if any) blocks the last-stopped

thread.

For information about thread states, see TABLE 3.

This command requires the MP Prism environment. If used with a pset qualifier, it
applies to the last-stopped thread in each of the processes with members belonging
to the pset you specify. If used without a pset qualifier, it applies to the last-stopped
thread in each of the processes with members in the current pset.

thread [–option] [pset pset_name | pset_definition]
94 Prism 7.0 Software Reference Manual • February 2003

threads
Displays a list of threads belonging to the processes in the current pset.

Syntax

DESCRIPTION

Use the threads command to view a list of threads belonging to the processes in
the current pset.

Options

The options of the threads command are:

■ all – Display the list of all known threads.
■ mode all|filter – Controls whether the threads command displays all

threads (the all option) or filters them by default. The filter option filters out
all threads that have called thr_exit() but otherwise remain in the threads list
(zombie threads).

■ mode – Show which synchronization object blocks the given thread, if any.

This command requires the MP Prism environment. If used with a pset qualifier, it
applies to the threads in each of the processes with members belonging to the pset
you specify. If used without a pset qualifier, it applies to the threads in each of the
processes with members belonging to the current pset.

threads [–all] [–mode all | filter] [pset pset_name | pset_definition]
95

trace
Traces program execution.

SYNTAX

DESCRIPTION

Use the trace command to print tracing information when the program is executed.
In a trace, the Prism environment prints a message in the command window when a
program location is reached, a value changes, or a condition becomes true; it then
continues execution.

The first option listed in the synopsis (var | at line | in func) must come first on the
command line; you can specify the other options, if you include them, in any order.

var is the name of a variable. The value of the variable is displayed whenever it
changes. If the variable is an array or a parallel variable, values are displayed if the
value of any element changes. This form of the command slows execution
considerably. You cannot specify both a variable and a location.

at line specifies that the line is to be printed immediately prior to its execution. If the
line is not in the current file, use the form ”filename”:line_number, placing the file
name between quotation marks. You can also specify a line number without the at;
the Prism environment will interpret it as a line number rather than a variable.

in func causes tracing information to be printed only while executing inside the
specified procedure or function.

if expression specifies the logical condition, if any, under which tracing is to occur.
The logical condition can be any expression that evaluates to true or false. Unless
combined with the at line syntax, this form of trace slows execution considerably.

{cmd; cmd …} specifies the actions, if any, that are to accompany the trace. Put the
actions in braces. The actions can be any Prism commands; if you include multiple
commands, separate them with semicolons.

after n specifies how many times a trigger condition (for example, reaching a
program location) is to occur before the trace occurs. The default is 1. If you specify
both a condition and an after count, the Prism environment checks the condition
first.

trace [var | at line | in func] [if expression] [{cmd; cmd …}] [after n]
[silent | disabled] [pset pset_name | pset_definition]
96 Prism 7.0 Software Reference Manual • February 2003

When tracing source lines, the Prism environment steps into procedure calls if they
have source associated with them. It “nexts” over them if they do not have source.
See “next” on page 55 for more information.

silent allows you to create the event and gives the event the same attribute as if
you had specified y in the silent field of the Event Table of the Prism graphic
interface. disabled allows you to create the event, but the event is disabled as if
you had specified n in the enabled field of the Event Table of the Prism graphic
interface.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

Note – In the scalar mode of the Prism environment, issuing the trace command
prints a status line followed by the source code for each source line traced. In the MP
Prism environment, the trace command prints only status lines.

EXAMPLES

To do a trace, print the value of a, and execute the where command at every source
line:

trace {print a; where}

To trace line 17 if a is greater than 10:

trace at 17 if a .gt. 10

To trace line 20 of file bar:

trace ”bar”:20
97

tracei
Traces machine instructions.

SYNTAX

DESCRIPTION

Use the tracei command to trace machine instructions when the program is
executed.

The first option listed in the synopsis (var | at addr | in func) must come first on the
command line; you can specify the other options, if you include them, in any order.

var is the name of a variable. The value of the variable is displayed whenever it
changes. If the variable is an array or a parallel variable, values are displayed if the
value of any element changes. This form of the command slows execution
considerably. You cannot specify both a variable and a location.

at addr causes a message to be displayed immediately prior to the execution of the
specified address.

in func causes tracing information to be displayed only while executing inside the
specified procedure or function.

if expression specifies the logical condition, if any, under which tracing is to occur.
The logical condition can be any expression that evaluates to true or false. Unless
combined with the at addr syntax, this form of tracei slows execution
considerably.

{cmd; cmd …} specifies the actions, if any, that are to accompany the trace. Put the
actions in braces. The actions can be any Prism commands; if you include multiple
commands, separate them with semicolons.

after n specifies how many times a trigger condition (for example, reaching a
program location) is to occur before the trace occurs. The default is 1. If you specify
both a condition and an after count, the Prism environment checks the condition
first.

When tracing instructions, the Prism environment follows all procedure calls down.

tracei [var | at addr | in func] [if expression] [{cmd; cmd …}]
[after n] [silent | disabled] [pset pset_name | pset_definition]
98 Prism 7.0 Software Reference Manual • February 2003

silent allows you to create the event and gives the event the same attribute as if
you had specified y in the silent field of the Event Table of the Prism graphic
interface. disabled allows you to create the event, but the event is disabled as if
you had specified n in the enabled field of the Event Table of the Prism graphic
interface.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

EXAMPLES

To trace the instruction at address 1000 (hex) the third time it is reached:

tracei 0x1000 after 3

To trace the instruction at address 500 (hex) if a is equal to 0:

tracei 0x500 if a == 0
99

type
Specifies the data type of a Sun™ Scalable Scientific Subroutine Library (Sun S3L)
array handle, allowing the Prism environment to display and visualize S3L arrays of
as many as seven dimensions.

SYNTAX

DESCRIPTION

Use the type command to notify the Prism environment that a specified program
variable is an S3L array descriptor, and to specify the specific basic data type of the
S3L array. Basic data types are int, float, double, complex8, and complex16. Before
using the type command, the Prism environment recognizes the array handle as a
simple variable. In Fortran 77 and Fortran 90, the array handle is a variable of type
integer*8. In C, the array handle is type S3L_array_t.

The basic type used in the type command must match the basic type of the S3L
array in the program.

Once you have specified the correct data type, the Prism environment can display
the S3L array using the print command.

type datatype variable
100 Prism 7.0 Software Reference Manual • February 2003

EXAMPLE

To visualize a with one of the Prism visualizers:

(prism all) print a on dedicated

To gather information on where the elements of a are distributed:

(prism all) print layout(a) on dedicated

To assign a value to one or more elements of a:

(prism all) assign a(2,3) = 5.0

(prism all) whatis a
integer*8 a
(prism all) type float a
"a" defined as "float a"
(prism all) whatis a
(Parallel) $float a(0:19,0:33)
(prism all) print a(0:3,0:4)
a(0:3,0:4) =
(0:3,0) 0.4861192 0.8060876 0.4792756 0.4549360
(0:3,1) 0.05794585 0.1046422 0.05787051 0.1529560
(0:3,2) 0.4907097 0.02554476 0.4807888 0.6942390
(0:3,3) 0.5493287 0.2982326 0.8591906 0.3039416
(0:3,4) 0.01880360 0.3234419 0.2168089 0.1593620
101

unalias
Removes an alias.

SYNTAX

DESCRIPTION

Use the unalias command to remove the alias with the specified name. Issue the
alias command with no arguments to obtain a list of your current aliases.

unalias name
102 Prism 7.0 Software Reference Manual • February 2003

unset
Deletes a user-set name.

SYNTAX

DESCRIPTION

Use the unset command to delete the setting associated with name. See the set
command for a discussion of setting names for variables and expressions.

Do not use the unset command to unset any of the Prism internal variables
(variable names beginning with $).

EXAMPLE

If you use the set command to set this abbreviation for a variable name:

set fred = frederick_bartholomew

then you can unset it as follows:

unset fred

In this example, after issuing the unset command, you can no longer use fred as
an abbreviation for frederick_bartholomew.

unset name
103

unsetenv
Unsets an environment variable.

SYNTAX

DESCRIPTION

Use the unsetenv command to remove the specified environment variable.

Environment variables become defined or undefined in the Prism environment at
the moment that setenv or unsetenv is executed. The program to be debugged
inherits the Prism environment at the moment that the target program is executed.
For this reason, changes to the Prism environment by setenv and unsetenv do not
affect any processes that are already running.

Although the Prism environment, and any programs executed within it, inherits its
environment from the shell that created it, the setenv and unsetenv commands do
not affect the shell that started the Prism environment, or the Prism environment
itself.

The Prism environment’s unsetenv command is identical to its Solaris C shell
counterpart. See your Solaris documentation for more information.

unsetenv variable
104 Prism 7.0 Software Reference Manual • February 2003

untearoff
Removes a button from the tear-off region.

SYNTAX

DESCRIPTION

Use the untearoff command to remove a button from the tear-off region of the
main window of the Prism environment. Put the button’s label in quotation marks.
Case and blank spaces don’t matter, and you can omit the three dots that indicate
that clicking the button displays a dialog box. If the tear-off region includes more
than one button with the same label, include the name of the selection’s menu in
parentheses after the label.

Changes you make to the tear-off region are saved when you leave the Prism
environment.

This command is not available in the commands-only interface of the Prism
environment.

EXAMPLES

To remove the Load button from the tear-off region:

untearoff ”load”

To remove the button that executes the Print selection from the Events menu:

untearoff ”print (events)”

untearoff ”label”
105

up
Moves the symbol lookup context up one level in the call stack.

SYNTAX

DESCRIPTION

Use the up command to move the current function up the call stack count levels (that
is, away from the current stopping point in the program toward the main
procedure). If you omit count, the default is one level.

Issuing up repositions the source window at the new current function.

After a series of up commands, the Prism environment attempts to preserve the level
when the current process changes.

up [count]
106 Prism 7.0 Software Reference Manual • February 2003

use
Adds a directory to the list of directories to be searched when looking for source
files.

SYNTAX

DESCRIPTION

Issue the use command to add directory to the front of the list of directories the
Prism environment is to search when looking for source files. This is useful if you
have moved a source file since compiling the program, or if for some other reason
the Prism environment can’t find a file. If you do not specify a directory, use prints
the current list.

No matter what the contents of the directory list is, the Prism environment always
searches first in the directory in which the program was compiled.

use [directory]
107

varsave
Save the value of a variable or expression to a file.

SYNTAX

DESCRIPTION

Use the varsave command to save the value of the variable or expression specified
by expression to the file filename. You can subsequently restore the values in filename
via the varfile intrinsic (except in the MP Prism environment) and compare them
with another version of the variable or expression via the Diff or Diff With selection
from a visualizer’s Options menu.

EXAMPLES

To save the value of the variable alpha in the file alpha.data (in your current
working directory within the Prism environment):

varsave ”alpha.data” alpha

To save the results of the expression alpha*2 in the file with the path name
/u/kathy/alpha2.data:

varsave ”/u/kathy/alpha2.data” alpha*2

varsave ”filename” expression
108 Prism 7.0 Software Reference Manual • February 2003

wait
Waits for a process or processes to stop execution. The wait command is available
only in the MP Prism environment.

SYNTAX

DESCRIPTION

Use the wait command to tell the Prism environment to wait for the specified
process or processes to stop execution before accepting commands that affect other
processes (for example, commands that start or stop execution). A process is
considered to have stopped if it has entered the done, break, interrupted, or
error state.

This command can take a pset qualifier. If used with a qualifier, it applies to the pset
you specify. If used without a qualifier, it applies to the current pset. See “Psets:
Processes and Threads” on page 2 for more information on pset qualifiers.

Use the form wait or wait every to wait for every process in the pset to stop
execution. The default is wait every.

Use the form wait any to wait for any running process in the pset to stop execution.

You can end the wait by doing one of the following:

■ Type Ctrl-C; this does not affect processes that are running.

■ Choose the Interrupt selection from the Execute menu (in the graphical interface
of the Prism environment); this stops processes that are running, as well as
ending the wait.

You cannot use an unbounded (dynamic) pset as the context for a wait every
command. For information about unbounded psets, see the Prism User’s Guide.

wait [every | any] [pset pset_name | pset_definition]
109

whatis
Displays the declaration of a name.

SYNTAX

DESCRIPTION

Use the whatis command to display information about a specified name in the
program.

The Prism environment displays type information using the syntax of the source
language (the language of the definition, not the declaration). In programs written in
a mixture of Fortran and C, the Prism environment displays each declaration in the
appropriate language.

When a keyword (struct, class, enum, or union) is present, the Prism
environment treats name as a type name. The keyword resolves ambiguities where
there are types and variables with the same name.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

EXAMPLE

To display information about Name (by default, the declaration is assumed to be the
declaration of a variable, not a type):

whatis [struct | class | enum | union] name
[pset pset_name | pset_definition]

(prism) whatis Name
Name *Name;
110 Prism 7.0 Software Reference Manual • February 2003

Use the struct keyword to ask about a type. In this example there are two types
spelled Name. One Name is a typedef:

The other Name is a struct:

(prism) whatis struct Name
More than one identifier ’Name’.
Select one of the following names:
0) Cancel
1) ‘a.out‘whatis.c‘struct Name
2) ‘a.out‘whatis.c‘Name
> 2
typedef struct Name Name;

(prism) whatis struct Name
More than one identifier ’Name’.
Select one of the following names:
0) Cancel
1) ‘a.out‘whatis.c‘struct Name
2) ‘a.out‘whatis.c‘Name
> 1
struct Name {
char last[50];
char first[40];
char middle;
struct Name *next;
};
111

when
Sets a breakpoint. The when command is similar to the stop command.

SYNTAX

DESCRIPTION

Use the when command to set a breakpoint at which the program is to stop
execution.

The first option listed in the synopsis (var | at line | in func | stopped) must
come first on the command line; you can specify the other options, if you include
them, in any order.

var is the name of a variable. Execution stops whenever the value of the variable
changes. If the variable is an array or a parallel variable, execution stops when the
value of any element changes. This form of the command slows execution
considerably. You cannot specify both a variable and a location.

at line stops execution when the specified line is reached. If the line is not in the
current file, use the form ”filename”:line_number, placing the file name between
quotation marks.

in func stops execution when the specified procedure or function is reached.

stopped specifies that the actions associated with the command occur every time
the program stops execution.

if expr specifies the logical condition, if any, under which execution is to stop. The
logical condition can be any expression that evaluates to true or false. Unless
combined with the at line syntax, this form of when slows execution considerably.

{cmd; cmd …} specifies the actions, if any, that are to accompany the breakpoint. Put
the actions in curly braces. The actions can be any Prism commands; if you include
multiple commands, separate them with semicolons.

after n specifies how many times a location is to be reached before the breakpoint
occurs. The default is 1. If you specify both a condition and an after count, the Prism
environment checks the condition first.

when [var | at line | in func | stopped] [if expr] [{cmd [; cmd …]}]
[after n]
112 Prism 7.0 Software Reference Manual • February 2003

EXAMPLE

To print the value of a in a dedicated window whenever execution stops:

when stopped {print a on dedicated}
113

where
Displays the call stack.

SYNTAX

DESCRIPTION

Use the where command to print out a list of the active procedures and functions on
the call stack. With no argument, where displays the entire list. If you specify count,
where displays the specified number of functions.

The where command reports all active stack frames that have a stack pointer. The
where command does not report routines that have no frame pointer and routines
that have been inlined.

You can use the default alias t for this command.

In the graphical mode of the Prism environment, the command where on
dedicated displays a Where graph, a dynamic call graph of the program.

When issued in the MP Prism environment, this command can take a pset qualifier.
If used with a qualifier, it applies to the pset you specify. If used without a qualifier,
it applies to the current pset. See “Psets: Processes and Threads” on page 2 for more
information on pset qualifiers.

where [count] [pset pset_name | pset_definition]
114 Prism 7.0 Software Reference Manual • February 2003

whereis
Displays the full qualification of all the symbols matching a given identifier.

SYNTAX

DESCRIPTION

Use the whereis command to display a list of the fully qualified names of all
symbols whose name matches identifier. The symbol class (for example, procedure
or variable) is also listed.

Use the whatis command on the fully qualified names to determine their types.

EXAMPLE

Issuing this command:

whereis x

might produce this response:

variable: ‘a.out‘foo.c‘foo‘x

whereis identifier
115

which
Displays the fully qualified name of an identifier.

SYNTAX

DESCRIPTION

Use the which command to display the fully qualified name of identifier. This
indicates which (of several possible) variables or procedures by the name identifier
the Prism environment would use at this point in the program (for example, in an
expression). The fully qualified name includes the file name or function name with
which the identifier is associated.

Use the whatis command on the fully qualified names to determine their types.

For more information on fully qualified names, see the Prism User’s Guide.

which identifier
116 Prism 7.0 Software Reference Manual • February 2003

APPENDIX A

Prism man Page

prism
Enter the Prism environment.

Syntax
To start in multi-process program mode:

To attach to a running multi-process job:

mprun [mprun-options] prism
[–C | –CX]
[Xoption ...]
[< infile] [> outfile]
[–install] [–threads] [–nothreads]
[program-name]

prism [program-name | - jid | - jid-list]
[–C | –CX]
[Xoption ...]
[< infile] [> outfile]
[–install] [–threads] [–nothreads]
117

To start in serial program mode:

To attach to a running serial program:

Ways To Start Prism
The Prism environment is an X-based graphical environment that enables you to
develop, execute, debug, and visualize data for both serial and parallel programs.
Youcan start the Prism environment independently and then run a set of programs
through it, or you can attach it to a running pro gram. As a result, you can start
the Prism environment in four different ways:

■ “Starting In Multi-Process Program Mode” on page 118
■ “Attaching To A Running Multi-Process Program” on page 119
■ “Starting in Serial Program Mode” on page 119
■ “Attaching To A Running Serial Program” on page 119

Starting In Multi-Process Program Mode

When you start the Prism environment in parallel program mode, you are essentially
starting it along with a parallel processing environment. That parallel processing
environment uses the number of processes, resource manager, and any other
characteristics specified by the mprun(1) command. The syntax is:

mprun mprun-options prism prism-options

For example:

prism program-name
[–C | –CX]
[Xoption ...]
[< infile] [> outfile]
[–install] [–threads] [–nothreads]

prism [program-name | - pid]
[–C | –CX]
[Xoption ...] [core-file]
[< infile] [> outfile]
[–install] [–threads] [–nothreads]

% mprun -np 4 -x lsf prism
118 Prism 7.0 Software Reference Manual • February 2003

The syntax shown above starts a multi-processing environment with four processes
under the control of the LSF resource manager, a host prism process, and four node
prism processes, one for each of the four processes reserved by mprun(1).

Attaching To A Running Multi-Process Program

You can attach the Prism environment to a parallel program that is already running.
One instance of the prism environment is created for each process in the program,
plus one for the host. All you need to provide is the job name or job names to which
you want the Prism environment attached. The syntax for attaching prism to a
running parallel program is:

The Prism environment loads the jobs you specify into the Prism environment. The
processes are interrupted, and you can then work with the program in the Prism
environment as you normally would.

Starting in Serial Program Mode

You can start the Prism environment for use with serial (scalar) programs, by using
this syntax:

Attaching To A Running Serial Program

You can attach the Prism environment to a running serial program by using this
syntax:

When attaching to a running serial program in this manner, the Prism environment
must be started on the same node on which the process is running.

prism [program-name | -jid | -jid-list] prism-options

prism program-name prism-options

prism [program-name | - pid] prism-options
Appendix A Prism man Page 119

Integrating the Prism Environment With Resource
Managers
As described in mprun(1), you can start a parallel job from within several different
resource managers, either interactively or through a script. Using either method,
you must first enter the resource manager environment before you can start the
Prism environment.

Once you have entered the resource manager environment, start the Prism
environment either within mprun or after, using this syntax:

The mprun command launches a node Prism process for each rank, and a host prism
process on the same node as rank 0. The Prism processes running on the ranks are
under the control of the resource manager, but the host Prism process is not.
Following are examples of the Prism environment being used by the resource
managers to debug the program a.out in interactive mode. For more information,
see the appropriate resource manager manpage:

mprun mprun-options prism prism-options
120 Prism 7.0 Software Reference Manual • February 2003

An interactive LSF session - see the lsf_cre(1) manpage:

An interactive PBS session - see the pbs_cre(1) manpage:

An interactive SGE session - see the sge_cre(1) manpage:

You cannot attach the Prism environment to an individual job through the batch
system because no resources would be available for it. Instead, attach it using this
syntax:

The example above attaches the Prism environment to the program a.out with jobid
sge.100. To find a program’s jobid, use mpps(1).

Notes
You must execute the prism command from a terminal or workstation running the X
Window System (unless you specify the -C option).

% bsub -Is -n 16 qshort csh
LSF csh> mprun -x lsf prism -C a.out
prism> run
prism> quit
LSF csh>

% qsub -l nodes=16:ppn=1 -I
PBS csh> mprun -x pbs prism -C a.out
prism> run
prism> quit
PBS csh>

% qsh -pe cre 16
SGE csh> mprun -x sge prism a.out
prism> run
prism> quit
SGE csh>

% prism a.out sge.100
Appendix A Prism man Page 121

If started in GUI mode and issued without the name of an executable program,
prism displays the main window of the Prism environment, with no program
loaded.

If you specify core-file, the Prism environment associates that core file with the
program you load. Within the Prism environment, you can then examine the stack
and display the values of variables at the point at which core was dumped.

If you specify infile, prism reads and executes commands from the specified file
upon startup. Note that specifying an infile redirects standard input (stdin), blocking
subsequent user input to the Prism environment. If you specify outfile, the Prism
environment logs all its input and output to this file. This includes commands from
infile and commands typed on the command line within the Prism environment.

If you specify -install, prism uses a private colormap at startup. If the -install option
is not used, prism uses the default colormap and might run out of color resources.

If you specify -threads, prism operates on programs that have not been linked to the
libmpi_mt library as threaded programs. For example, you might want to use this
option if your program uses threads in its I/O or graphic user interface.

If you specify -nothreads, prism treats multithreaded programs as though they are
unthreaded. This allows you to debug multithreaded programs using only the main
thread. For example, you might want to use this option if your program generates
threads automatically (by making library calls that have threaded implementations).

If there is a .prisminit file in your current working directory, prism executes the
commands in it upon startup. If .prisminit isn’t in your current working directory,
the Prism environment looks for it in your home directory. If it isn’t in either place,
the Prism environment starts up without executing a .prisminit file.

To use the Prism environment’s debugging features, compile and link each program
module with the -g compiler option to produce the necessary debugging
information.

Options
-C
Start the Prism environment for commands-only execution. The Prism environment
displays a prompt from which you can issue any Prism commands. If you use this
option, you do not need an X terminal or workstation.

-CX
Start the mode of the Prism environment that uses commands-only execution (like -
C), but in which the output of certain Prism commands can be sent to X windows.

-install
Use a private colormap at startup.
122 Prism 7.0 Software Reference Manual • February 2003

-threads
View programs that have not been linked with libmpi_mt as threaded programs.

-nothreads
View multithreaded programs as though they were unthreaded.

Xoption
Apply the X toolkit option. The prism command accepts all standard X toolkit
options. However, the -font, -title, and -rv options have no effect, and the -bg
option is overridden in part by the setting of the Prism.textBgColor resource. X
toolkit options are meaningless, of course, if you use -C to run Prism in commands-
only mode.

Passing Command Line Options to Secondary Sessions

When debugging programs that make calls to MPI_Comm_spawn() or
MPI_Comm_spawn_multiple(), the Prism environment creates special node Prism
processes to debug the processes created by the spawn calls. These special node
Prism processes are sometimes called secondary Prism sessions.

Secondary Prism sessions acquire some, but not all, options that you have set when
you launch the primary Prism session. The acquisition status of Prism command
line options is described below:

Command Option Set In Primary Prism Session Acquired by Secondary Prism Session

-C | -CX Yes

Xoption Yes

-pid | -jid | -jid-list Yes

core-file | pid | jid-list No

< infile No

> outfile No

-install Yes

-threads | -nothreads Yes

- No
Appendix A Prism man Page 123

Files

Identification
Prism Version 7.0.

See Also
mprun(1), mpps(1), sge_cre(1), lsf_cre(1), pbs_cre(1)
Prism User’s Guide, Prism Reference Manual

.prisminit Prism initialization file

.prism_defaults Prism defaults file
124 Prism 7.0 Software Reference Manual • February 2003

APPENDIX B

Debugger Command Comparison

Prism Equivalents for Common GDB
and dbx Commands
The following tables list approximately equivalent Prism commands for some
common dbx and GNU Debugging (GDB) commands.

TABLE B-1 Breakpoint and Watchpoint Commands

GDB dbx Prism

break line stop at line stop at line

break func stop in func stop in func

break *addr stopi at addr stopi {addr}

break ... if expr stop ... -if expr stop ... if expr

cond n stop ... -if expr stop ... if expr

watch expr stop expr stop expr

info break status status

info watch status status

clear fun delete n delete n

delete delete all delete all

disable n handler -disable n disable n
125

enable n handler -enable n enable n

ignore n cnt handler -count n cnt ignore

commands n when ... { cmds; } when ... { cmds; }

TABLE B-2 Program Stack Commands

GDB dbx Prism

backtrace n where n where n

info reg reg print $reg print $reg

TABLE B-3 Execution Control Commands

GDB dbx Prism

finish step up stepout

signal num cont sig num cont num

set var=expr assign var=expr assign var=expr

TABLE B-4 Display Address Commands

GDB dbx Prism

x/fmt addr x addr/fmt addr/[mode]

disassem addr dis addr addr/i

TABLE B-5 Shell Commands

GDB dbx Prism

shell cmd sh cmd sh cmd

TABLE B-6 Signal Commands

GDB dbx Prism

handle sig stop sig sig catch sig

TABLE B-1 Breakpoint and Watchpoint Commands (Continued)

GDB dbx Prism
126 Prism 7.0 Software Reference Manual • February 2003

TABLE B-7 Debugging Target Commands

GDB dbx Prism

attach pid debug - pid attach pid

attach pid debug a.out pid attach pid

exec file debug file load file

core file debug a.out corefile load a.out; core corefile

TABLE B-8 Debugger Environment Commands

GDB dbx Prism

dir name pathmap name use name

show dir pathmap use

TABLE B-9 Source File Commands

GDB dbx Prism

forw regexp search regexp /regexp

rev regexp bsearch regexp ?regexp
Appendix B Debugger Command Comparison 127

128 Prism 7.0 Software Reference Manual • February 2003

Index
SYMBOLS
/regexp command, 10
?regexp command, 10
@, 1

A
address/ command, 11
alias command, 15
assign command, 16
attach command, 17

C
call command, 18
catch command, 19
cd command, 20
cont command, 21
contw command, 22
core command, 23
cycle command, 24

D
dedicated window, 2
define pset command, 25
delete command, 27
delete pset command, 28

detach command, 29
disable command, 30
display command, 31
down command, 34
dump command, 35

E
edit command, 37
enable command, 38
eval pset command, 39

F
fg command, 40
file command, 41
func command, 42

H
help command, 43
hide command, 44

I
ignore command, 45
interrupt command, 46
129

K
kill command, 47

L
list command, 48
load command, 49
log command, 50
lwps command, 51

M
make command, 52

N
next command, 55
nexti command, 56

O
output

redirecting, 1

P
print command, 57
printenv command, 60
process command, 61
pset command, 62
pset qualifiers, 2
pstatus command, 64
pushbutton command, 65
pwd command, 66

Q
quit command, 67

R
reload command, 68
rerun command, 69
return command, 70
run command, 71

S
S3L array descriptor, 100
S3L array handle, 100
select command, 72
set command, 73
setenv command, 75
sh command, 76
show command, 77
show events command, 78
show pset command, 79
show psets command, 80
snapshot pset intrinsic, 25
snapshot window, 2
source command, 82
status command, 83
step command, 84
stepi command, 85
stepout command, 86
stop command, 87
stopi command, 89
sync command, 91
syncs command, 92

T
tearoff command, 93
thread and LWP states, 4
thread command, 94
threads command, 95
trace command, 96
tracei command, 98
type command, 100
130 Prism 7.0 Software Reference Manual • February 2003

U
unset command, 103
untearoff command, 65, 104, 105
up command, 106
use command, 107

V
value=base command, 14
varfile intrinsic, 108
varsave command, 108

W
wait command, 109
whatis command, 110
when command, 112
where command, 114
whereis command, 115
which command, 116
Index 131

132 Prism 7.0 Software Reference Manual • February 2003

	Contents
	Tables
	Preface
	Using UNIX Commands
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Accessing Sun Documentation
	Sun Welcomes Your Comments

	Command Reference
	Redirecting Output
	Psets: Processes and Threads
	Getting Information About Threads
	Prism Commands
	/regexp, ?regexp
	SYNTAX
	DESCRIPTION

	address/
	SYNTAX
	DESCRIPTION

	value=base
	SYNTAX
	DESCRIPTION
	EXAMPLES

	alias
	SYNTAX
	DESCRIPTION

	assign
	SYNTAX
	DESCRIPTION
	EXAMPLES

	attach
	SYNTAX
	DESCRIPTION

	call
	SYNTAX
	DESCRIPTION

	catch
	SYNTAX
	DESCRIPTION

	cd
	SYNTAX
	DESCRIPTION

	cont
	SYNTAX
	DESCRIPTION

	contw
	SYNTAX
	DESCRIPTION

	core
	SYNTAX
	DESCRIPTION

	cycle
	SYNTAX
	DESCRIPTION
	EXAMPLE

	define pset
	SYNTAX
	DESCRIPTION
	EXAMPLES

	delete
	SYNTAX
	DESCRIPTION

	delete pset
	SYNTAX
	DESCRIPTION

	detach
	SYNTAX
	DESCRIPTION

	disable
	SYNTAX
	DESCRIPTION

	display
	SYNTAX
	DESCRIPTION
	EXAMPLES

	down
	SYNTAX
	DESCRIPTION

	dump
	SYNTAX
	DESCRIPTION
	EXAMPLE

	edit
	SYNTAX
	DESCRIPTION

	enable
	SYNTAX
	DESCRIPTION

	eval pset
	SYNTAX
	DESCRIPTION

	fg
	SYNTAX
	DESCRIPTION

	file
	SYNTAX
	DESCRIPTION

	func
	SYNTAX
	DESCRIPTION

	help
	SYNTAX
	DESCRIPTION

	hide
	SYNTAX
	DESCRIPTION
	EXAMPLES

	ignore
	SYNTAX
	DESCRIPTION

	interrupt
	SYNTAX
	DESCRIPTION
	EXAMPLES

	kill
	SYNTAX
	DESCRIPTION

	list
	SYNTAX
	DESCRIPTION

	load
	SYNTAX
	DESCRIPTION

	log
	SYNTAX
	DESCRIPTION

	lwps
	SYNTAX
	DESCRIPTION

	make
	SYNTAX
	DESCRIPTION

	mpimsgs
	SYNTAX
	DESCRIPTION
	EXAMPLE

	next
	SYNTAX
	DESCRIPTION

	nexti
	SYNTAX
	DESCRIPTION

	print
	SYNTAX
	DESCRIPTION
	EXAMPLES

	printenv
	SYNTAX
	DESCRIPTION

	process
	SYNTAX
	DESCRIPTION
	EXAMPLE

	pset
	SYNTAX
	DESCRIPTION
	EXAMPLES

	pstatus
	SYNTAX
	DESCRIPTION
	EXAMPLE

	pushbutton
	SYNTAX
	DESCRIPTION
	EXAMPLE

	pwd
	SYNTAX
	DESCRIPTION

	quit
	SYNTAX
	DESCRIPTION

	reload
	SYNTAX
	DESCRIPTION

	rerun
	SYNTAX
	DESCRIPTION

	return
	SYNTAX
	DESCRIPTION

	run
	SYNTAX
	DESCRIPTION

	select
	SYNTAX
	DESCRIPTION
	EXAMPLES

	set
	SYNTAX
	DESCRIPTION

	setenv
	SYNTAX
	DESCRIPTION

	sh
	SYNTAX
	DESCRIPTION

	show
	SYNTAX
	DESCRIPTION
	EXAMPLE

	show events
	SYNTAX
	DESCRIPTION

	show pset
	SYNTAX
	DESCRIPTION
	EXAMPLE

	show psets
	SYNTAX
	DESCRIPTION
	EXAMPLE

	source
	SYNTAX
	DESCRIPTION

	status
	SYNTAX
	DESCRIPTION

	step
	SYNTAX
	DESCRIPTION

	stepi
	SYNTAX
	DESCRIPTION

	stepout
	SYNTAX
	DESCRIPTION

	stop
	SYNTAX
	DESCRIPTION
	EXAMPLES

	stopi
	SYNTAX
	DESCRIPTION
	EXAMPLES

	sync
	SYNTAX
	DESCRIPTION

	syncs
	SYNTAX
	DESCRIPTION

	tearoff
	SYNTAX
	DESCRIPTION
	EXAMPLES

	thread
	SYNTAX
	DESCRIPTION
	Options

	threads
	Syntax
	DESCRIPTION
	Options

	trace
	SYNTAX
	DESCRIPTION
	EXAMPLES

	tracei
	SYNTAX
	DESCRIPTION
	EXAMPLES

	type
	SYNTAX
	DESCRIPTION
	EXAMPLE

	unalias
	SYNTAX
	DESCRIPTION

	unset
	SYNTAX
	DESCRIPTION
	EXAMPLE

	unsetenv
	SYNTAX
	DESCRIPTION

	untearoff
	SYNTAX
	DESCRIPTION
	EXAMPLES

	up
	SYNTAX
	DESCRIPTION

	use
	SYNTAX
	DESCRIPTION

	varsave
	SYNTAX
	DESCRIPTION
	EXAMPLES

	wait
	SYNTAX
	DESCRIPTION

	whatis
	SYNTAX
	DESCRIPTION
	EXAMPLE

	when
	SYNTAX
	DESCRIPTION
	EXAMPLE

	where
	SYNTAX
	DESCRIPTION

	whereis
	SYNTAX
	DESCRIPTION
	EXAMPLE

	which
	SYNTAX
	DESCRIPTION

	Prism man Page
	prism
	Syntax
	Ways To Start Prism
	Starting In Multi-Process Program Mode
	Attaching To A Running Multi-Process Program
	Starting in Serial Program Mode
	Attaching To A Running Serial Program

	Integrating the Prism Environment With Resource Managers
	Notes
	Options
	Passing Command Line Options to Secondary Sessions

	Files
	Identification
	See Also

	Debugger Command Comparison
	Prism Equivalents for Common GDB and dbx Commands

	Index

