
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Sun HPC ClusterTools™ 6 Software
Performance Guide

Part No. 819-4134-10
March 2006, Revision A

http://www.sun.com/hwdocs/feedback

Please
Recycle

Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, Solaris, Sun HPC ClusterTools, Sun Performance Library, and UltraSPARC are trademarks
or registered trademarks of Sun Microsystems, Inc. in the U.S. and in other countries.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans
les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, Solaris, Sun HPC ClusterTools, Sun Performance Library, et UltraSPARC sont des marques
de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

AMD, Opteron, le logo AMD, et le logo AMD Opteron sont des marques de fabrique ou des marques déposées de Advanced Micro Devices.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développment du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive do Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Preface xv

1. Quick Reference 1

Compilation and Linking 1

MPProf 2

Analyzer Profiling 3

Job Launch on a Multinode Cluster 5

MPI Programming Tips 7

2. Introduction: The Sun HPC ClusterTools Solution 9

Sun HPC Hardware 9

Processors 10

Nodes 10

Clusters 11

Sun HPC ClusterTools Software 11

Sun MPI 12

Cluster Runtime Environment 12

3. Choosing Your Programming Model and Hardware 15

Starting Out 15

Programming Models 16
iii

Scalability 19

Amdahl’s Law 20

Scaling Laws of Algorithms 21

Characterizing Platforms 22

Basic Hardware Factors 23

Other Factors 25

4. Performance Programming 27

General Good Programming 27

Clean Programming 27

Optimizing Local Computation 28

Optimizing MPI Communications 28

Reducing Message Volume 29

Reducing Serialization 29

Load Balancing 29

Synchronization 30

Buffering 31

Nonblocking Operations 32

Polling 33

Sun MPI Collectives 34

Contiguous Data Types 34

Special Considerations for Message Passing Over TCP 35

MPI Communications Case Study 35

Algorithms Used 36

Algorithm 1 37

Algorithm 2 38

Algorithm 3 39

Algorithm 4 40

Algorithm 5 41
iv Sun HPC ClusterTools™ 6 Software Performance Guide • March 2006

Making a Complete Program 43

Timing Experiments With the Algorithms 47

Baseline Results 48

Directed Polling 49

Increasing Sun MPI Internal Buffering 51

Use of MPI_Testall 54

5. One-Sided Communication 57

Introducing One-Sided Communication 57

Comparing Two-Sided and One-Sided Communications 58

Basic Sun MPI Performance Advice 58

Case Study: Matrix Transposition 59

Test Program A 61

Test Program B 63

Test Program C 65

Test Program D 67

Utility Routines 69

Timing 71

6. Compilation and Linking 73

Compiler Version 73

The mp* Utilities 74

The –fast Switch 74

The –xarch Switch 75

The –xalias Switch 75

The –g Switch 76

Other Useful Switches 76

7. Runtime Considerations and Tuning 79

Running on a Dedicated System 79
Contents v

Setting Sun MPI Environment Variables 80

Are You Running on a Dedicated System? 80

Does the Code Use System Buffers Safely? 81

Are You Willing to Trade Memory for Performance? 82

Do You Want to Initialize Sun MPI Resources? 82

Is More Runtime Diagnostic Information Needed? 82

Launching Jobs on a Multinode Cluster 83

Minimizing Communication Costs 83

Load Balancing 84

Controlling Bisection Bandwidth 84

Considering the Role of I/O Servers 85

Running Jobs in the Background 85

Limiting Core Dumps 86

Using Line-Buffered Output 86

Multinode Job Launch Under CRE 88

Collocal Blocks of Processes 88

Multithreaded Job 88

Round-Robin Distribution of Processes 89

Detailed Mapping 89

8. Profiling 91

General Profiling Methodology 91

Basic Approaches 92

MPProf Profiling Tool 95

Sample MPProf Output 96

Overview 96

Load Balance 97

Sun MPI Environment Variables 98

Breakdown by MPI Routine 99
vi Sun HPC ClusterTools™ 6 Software Performance Guide • March 2006

Time Dependence 101

Connections 102

Multithreaded Programs 106

The mpdump Utility 106

Managing Disk Files 106

Incorporating Environment Variable Suggestions 107

Performance Analyzer Profiling of Sun MPI Programs 109

Data Collection 110

Data Volume 110

Data Organization 112

Example 112

Other Data Collection Issues 113

Analyzing Profiling Data 113

Case Study 114

Overview of Functions 120

MPI Wait Times 123

Other Profiling Approaches 123

Using the MPI Profiling Interface 123

Inserting MPI Timer Calls 124

Using the gprof Utility 125

A. Sun MPI Implementation 127

Yielding and Descheduling 127

Progress Engine 128

Shared-Memory Point-to-Point Message Passing 132

Postboxes and Buffers 132

Connection Pools Versus Send-Buffer Pools 135

Eager Versus Rendezvous 137

Performance Considerations 139
Contents vii

Full Versus Lazy Connections 139

Optimizations for Collective Operations 140

Network Awareness 141

Shared-Memory Optimizations 143

Pipelining 145

Multiple Algorithms 146

One-Sided Message Passing Using Remote Process 147

B. Sun MPI Environment Variables 149

Yielding and Descheduling 149

Polling 150

Shared-Memory Point-to-Point Message Passing 150

Memory Considerations 152

Performance Considerations 152

Restrictions 153

Shared-Memory Collectives 153

Running Over TCP 154

Summary Table Of Environment Variables 155

Index 159
viii Sun HPC ClusterTools™ 6 Software Performance Guide • March 2006

Figures

FIGURE 4-1 Basic Ring Sending Algorithm 36

FIGURE 4-2 Basic Ring Sending Algorithm With Synchronization 37

FIGURE 4-3 Bandwidth as a function of message size for Algorithms 1 and 2 48

FIGURE 4-4 Bandwidth as a function of message size with directed polling 49

FIGURE 4-5 Bandwidth as a function of message size with nonblocking operations 51

FIGURE 4-6 Bandwidth as a function of message size with highly synchronized processes 53

FIGURE 4-7 Bandwidth as a function of message size with load imbalance 54

FIGURE 4-8 Bandwidth as a function of message size with MPI_Testall calls 55

FIGURE 4-9 Bandwidth as a function of computation between MPI_Testall calls 56

FIGURE 5-1 Matrix Transposition 59

FIGURE 5-2 Matrix Transposition, Distributed Over Two Processes 60

FIGURE 5-3 Matrix Transposition, Distributed Over Two Processes (Fortran Perspective) 60

FIGURE 5-4 Matrix Transposition, Maximal Aggregation for 4X4 Transposition 61

FIGURE 7-1 Relationship Between Bisection Bandwidth and Number of Nodes 85

FIGURE 8-1 Performance Analyzer—Main View 115

FIGURE 8-2 Performance Analyzer—Main View With Tracing Enabled 116

FIGURE 8-3 Performance Analyzer—Source View 117

FIGURE 8-4 Performance Analyzer—Callers–Callees View 118

FIGURE 8-5 Performance Analyzer—Timeline View 119

FIGURE 8-6 Performance Analyzer—Timeline View With Callstack 120
ix

FIGURE 8-7 Examples of Functions That Might Appear in Profiles 121

FIGURE A-1 Blocking Sends Interrupt Computation 129

FIGURE A-2 Nonblocking Operations Overlap With Computation 129

FIGURE A-3 Computational Resources Devoted Either to Computation or to MPI Operations 130

FIGURE A-4 Progress Made on Multiple Messages by a Single MPI Call That Does Not Explicitly
Reference the Other Messages 131

FIGURE A-5 Snapshot of a Pipelined Message 133

FIGURE A-6 A Medium-Size Message Using Only One Postbox 133

FIGURE A-7 A Short Message Squeezing Data Into the Postbox — No Buffers Used 134

FIGURE A-8 First Snapshot of a Cyclic Message 134

FIGURE A-9 Second Snapshot of a Cyclic Message 135

FIGURE A-10 Shared-Memory Resources Dedicated per Connection 136

FIGURE A-11 Shared-Memory Resources per Sender — Example of Send-Buffer Pools 137

FIGURE A-12 Eager Message-Passing Protocol 138

FIGURE A-13 Rendezvous Message-Passing Protocol 138

FIGURE A-14 Broadcast With Binary Fan-Out, First Example 140

FIGURE A-15 Broadcast With Binary Fan-Out, Second Example 141

FIGURE A-16 Broadcast With Binary Fan-Out, Third Example 142

FIGURE A-17 Broadcast With Binary Fan-Out, Fourth Example 143

FIGURE A-18 Broadcast Over Shared Memory With Binary Fan-Out, First Case 144

FIGURE A-19 Broadcast Over Shared Memory With Binary Fan-Out, Second Case 144

FIGURE A-20 Tree Broadcast versus Pipelined Broadcast of a Large Message 146

FIGURE B-1 Message of B Bytes Sent Over Shared Memory 151
x Sun HPC ClusterTools™ 6 Software Performance Guide • March 2006

Tables

TABLE 3-1 Comparison of Sun Compiler Suite and Sun HPC ClusterTools Software 16

TABLE 3-2 Comparison of Shared-Memory and Distributed-Memory Parallelism 17

TABLE 3-3 Speedup with Number of Processors 20

TABLE 3-4 Scaling of Computation and Communication Times for Selected Algorithms 21

TABLE 3-5 Sample Performance Values for MPI Operations on Two Sun Platforms 23

TABLE 8-1 Profiling Alternatives 93

TABLE 8-2 MPProf Attributes Bytes Sent and Received 100

TABLE B-1 Sun MPI Environment Variables 155
xi

xii Sun HPC ClusterTools™ 6 Software Performance Guide • March 2006

Code Samples

CODE EXAMPLE 4-1 Algorithm 1 Implemented in Fortran 90 38

CODE EXAMPLE 4-2 Algorithm 2 Implemented in Fortran 90 39

CODE EXAMPLE 4-3 Algorithm 3 Implemented in Fortran 90 40

CODE EXAMPLE 4-4 Algorithm 4 Implemented in Fortran 90 41

CODE EXAMPLE 4-5 Algorithm 5 Implemented in Fortran 90 42

CODE EXAMPLE 4-6 Driver Program for Example Algorithms 43

CODE EXAMPLE 5-1 Test Program A 61

CODE EXAMPLE 5-2 Test Program B 63

CODE EXAMPLE 5-3 Test Program C 65

CODE EXAMPLE 5-4 Test Program D 67

CODE EXAMPLE 5-5 The init Subroutine 69

CODE EXAMPLE 5-6 The initialize_matrix Subroutine 69

CODE EXAMPLE 5-7 The check_matrix Subroutine 70

CODE EXAMPLE 8-1 Sample MPProf Session, Rerunning a Program To Tune Performance 107
xiii

xiv Sun HPC ClusterTools™ 6 Software Performance Guide • March 2006

Preface

This manual presents techniques that application programmers can use to get top
performance from message-passing programs running on Sun™ servers and clusters
of servers.

Before You Read This Book
This manual assumes that the reader has basic knowledge of:

■ Developing parallel applications with the Sun MPI libraries
■ Executing parallel applications with the Sun Cluster Runtime Environment (CRE)

and a Distributed Resource Manager, such as Sun N1 Grid Engine (N1GE) Version
6, Load Sharing Facility (LSF) HPC Version 6.2 from Platform Computing, and
OpenPBS Portable Batch System (PBS) 2.3.16 and Altair PBS Professional 7.1.

■ Debugging parallel applications

How This Book Is Organized
This manual covers the following topics.

■ Chapter 1 – Quick Reference - A summary of performance tips
■ Chapter 2 – Introduction: The Sun HPC ClusterTools Solution
■ Chapter 3 – Choosing Your Programming Model and Hardware
■ Chapter 4 – Performance Programming with the Sun MPI (message-passing)

library
■ Chapter 5 – One-sided Communications
■ Chapter 6 – Compilation and Linking for top performance
xv

■ Chapter 7 – Runtime Considerations and Tuning
■ Chapter 8 – Profiling tools and techniques
■ Appendix A – Sun MPI Implementation and how it affects performance
■ Appendix B – Sun MPI Environment Variables and how to use them

Using UNIX Commands
This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com
xvi Sun HPC ClusterTools 6 Software Performance Guide • March 2006

http://docs.sun.com

Typographic Conventions

Shell Prompts

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls –a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Shell Prompt

C shell machine–name%

C shell superuser machine–name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
Preface xvii

Related Documentation
The following materials provide useful background about using Sun MPI and Sun
HPC ClusterTools.

In addition, if you are using Platform Computing’s Load Sharing Facility (LSF)
Suite, consult the documentation available from their website:

http://www.platform.com

Sun HPC ClusterTools documentation is available online at:

http://www.sun.com/documentation

Application Title Part Number

Sun HPC ClusterTools
Documentation

Read Me First: Guide to Sun HPC
ClusterTools Software Documentation

819-4136-10

Sun HPC ClusterTools
Software

Sun HPC ClusterTools 6 Software Release
Notes
Sun HPC ClusterTools 6 Software
Installation Guide
Sun HPC ClusterTools 6 Software User’s
Guide
Sun HPC ClusterTools 6 Software
Administrator’s Guide

819-4129-10

819-4130-10

819-4131-10

819-4132-10

Sun MPI Programming Sun MPI 7.0 Software Programming and
Reference Guide

819-4133-10
xviii Sun HPC ClusterTools 6 Software Performance Guide • March 2006

http://www.sun.com/documentation
http://www.platform.com

Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Sun HPC ClusterTools 6 Software Performance Guide, part number 819-4134-10

Sun Function URL

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/
Preface xix

http://www.sun.com/hwdocs/feedback
http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com/documentation/

xx Sun HPC ClusterTools 6 Software Performance Guide • March 2006

CHAPTER 1

Quick Reference

This list is a summary of the key performance tips found in this document. They are
organized under the following categories:

■ “Compilation and Linking” on page 1
■ “MPProf” on page 2
■ “Analyzer Profiling” on page 3
■ “Job Launch on a Multinode Cluster” on page 5
■ “MPI Programming Tips” on page 7

Compilation and Linking
Compilation and linking are discussed in Chapter 6.

■ Use Sun Studio Compiler Collection compilers for best performance. Sun HPC
ClusterTools 6 supports versions 8, 9, 10, and 11 of the Sun Studio compilers for
C, C++, and Fortran.

See “Compiler Version” on page 73.

■ Use the mpf77, mpf90, mpcc, and mpCC utilities where possible. Link with
–lmpi. For example:

See “The mp* Utilities” on page 74.

■ Compile with –fast.

See “The –fast Switch” on page 74.

% mpf90 –fast –g a.f –lmpi
1

■ As appropriate, add the following –xarch setting after –fast:

See “The –xarch Switch” on page 75.

■ Compile with –xalias=actual due to Fortran binding issues in the MPI standard.
See “The –xalias Switch” on page 75.

■ Compile and link with –g.

See “The –g Switch” on page 76.

■ Link with –lopt for C programs.
■ Compile and link with –xvector if math library intrinsics (logarithms,

exponentials, or trigonometric functions) appear inside long loops.
■ Compile with –xprefetch selectively.
■ Compile with –xrestrict and –xalias_level, as appropriate, for C

programs.
■ Compile with –xsfpconst, as appropriate, for C programs.
■ Compile with –stackvar, as appropriate, for Fortran programs.

See “Other Useful Switches” on page 76.

MPProf
■ Before running your Sun MPI program, set the MPI_Profile environment variable

to 1.

32-bit binary 64-bit binary

UltraSPARC II
(will also run on
UltraSPARC III)

–xarch=v8plusa –xarch=v9a

UltraSPARC III
(will not run on
UltraSPARC II)

–xarch=v8plusb –xarch=v9b

UltraSPARC IV and
IV+

–xarch=v8plusb -xarch=v9

AMD Opteron
processors

–xarch=i386 -xarch=amd64

% setenv MPI_PROFILE 1
2 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

■ After running your Sun MPI program, you will find a file of the form
mpprof.index.rm.jid in your working directory. Type the following command:

■ To archive profiling results, type the following command:

■ To clean up files, type the following command:

Analyzer Profiling
Use of the Performance Analyzer with Sun MPI programs is discussed in Chapter 7.

■ Set your path to include the most recent compiler software, usually
/opt/SUNWspro/bin

■ The following examples show basic usage to collect performance data and
analyze results:

% mpprof mpprof.index.rm.jid

% mpprof –r –g archive_directory mpprof.index.rm.jid

% mpprof –r mpprof.index.rm.jid

% mprun –np 16 collect a.out 3 5 341
% analyzer test.*.er
Chapter 1 Quick Reference 3

■ For more advanced data collection, use scripts. See the following example:

Here, the following techniques have been used:

■ Data volumes have been reduced by profiling only a subset of the processes.

■ Data volumes have been reduced by increasing the profiling frequency with the
collect –p switch.

■ Data volumes have been handled by collecting to the local filesystem /tmp. Other
fast file systems can be identified by your system administrator or with the
command /usr/bin/df –lk

■ MPI wait tracing data is activated with the collect –m switch.

■ Experiments have been named by process rank.

■ Experiments have been gathered to a centralized location, directory myrun, after
the MPI job finished.

■ Analyzing data

■ Basic view shows how much time is spent per function.

■ Click on the Source button to see how much time is spent per source-code line.
This requires that the code was compiled and linked with –g, which is
compatible with high levels of optimization and parallelization.

■ Click on Callers-Callees to see caller-callee relationships.

■ Click on Timeline to see a timeline view.

■ Select other metrics with the Metrics button.

■ Use er_print to bypass the graphical interface:

% cat csh-script
#!/bin/csh
if ($MP_RANK == 0) then

mkdir myrun
endif
if ($MP_RANK < 4) then

collect –p 20 –m on –o /tmp/proc-$MP_RANK.er $*
er_mv /tmp/proc-$MP_RANK.er myrun

else
$*

endif
% mprun –np 16 csh-script a.out 3 5 341

% er_print –functions proc-0.er
% er_print –callers-callees proc-0.er
% er_print –source lhsx_ 1 proc-0.er
4 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

■ Look at inclusive time for high-level MPI functions to filter out internal
software layers of the Sun MPI library:

■ To ensure that MPI wait times are profiled, select wall-clock time, instead of
CPU time, as the profiling metric. Or, to collect data in the first place, type the
following command:

■ Loading data:

■ The Performance Analyzer accepts experiment names on the command line,
such as the following:

■ After the Performance Analyzer has been started, use the Experiment menu to
Add and Drop individual experiments.

Job Launch on a Multinode Cluster
■ Checking Load (see the following example for CRE and UNIX commands useful

for checking load)

See “Running on a Dedicated System” on page 79.

■ Objectives for Job Launch

■ Minimize internode communication.

- Run on one node if possible.

- Place heavily communicating processes on the same node as one another.

% er_print –function proc-0.er | grep PMPI_

% setenv MPI_COSCHED 0
% setenv MPI_SPIN 1

% analyzer
% analyzer proc-0.er
% analyzer run1/proc-*.er

CRE UNIX

How high is the load? % mpinfo –N % uptime

What is causing the load? % mpps –e % ps –e
Chapter 1 Quick Reference 5

See “Minimizing Communication Costs” on page 83.

■ Maximize bisection bandwidth.

- Run on one node if possible.

- Otherwise, spread over many nodes.

- For example, spread jobs that use multiple I/O servers.

See “Controlling Bisection Bandwidth” on page 84.

■ Examples of Job Launch with CRE as the Resource Manager

■ To run jobs in the background, perhaps from a shell script, use the –n option:

or use the following commands:

See “Running Jobs in the Background” on page 85.

■ To eliminate core dumps, do so in the parent shell.

% limit coredumpsize 0 (for csh)

$ ulimit –c 0 (for sh)

See “Limiting Core Dumps” on page 86.

■ To run 32 processes, with each block of consecutive 4 processes mapped to a
node:

% mprun –np 32 –Zt 4 a.out

or

% mprun –np 32 –Z 4 a.out

See “Collocal Blocks of Processes” on page 88.

■ To run 16 processes, with no two mapped to the same node:

See “Multithreaded Job” on page 88.

% mprun –n –np 4 a.out &

% cat a.csh
#!/bin/csh
mprun –n –np 4 a.out
% a.csh

% mprun –Ns –np 16 a.out
6 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

■ To map 32 processes in round-robin fashion to the nodes in the cluster, with
possibly multiple processes per node:

See “Round-Robin Distribution of Processes” on page 89.

■ To map the first 4 processes to node0, the next 4 to node1, and the next 8 to
node2, type the following:

See “Detailed Mapping” on page 89.

MPI Programming Tips
■ Minimize number and volume of messages.

See “Reducing Message Volume” on page 29.

■ Reduce serialization and improve load balancing.

See “Reducing Serialization” on page 29 and “Load Balancing” on page 29.

■ Minimize synchronizations:

■ Generally reduce the amount of message passing.
■ Reduce the amount of explicit synchronization (such as MPI_Barrier(),

MPI_Ssend(), and so on).
■ Post sends well ahead of when a receiver needs data.
■ Ensure sufficient system buffering.

See “Synchronization” on page 30.

■ Pay attention to buffering:

■ Do not assume unlimited internal buffering by Sun MPI.
■ Use nonblocking calls such as MPI_Isend() for finest control over user-

specified buffering.
■ Post receives early to relieve pressure on system buffers.

See “Buffering” on page 31.

■ Replace blocking operations with nonblocking operations:

% mprun –Ns –W –np 32 a.out

% cat nodelist
node0 4
node1 4
node2 8
% mprun –np 16 –m nodelist a.out
Chapter 1 Quick Reference 7

■ Initiate nonblocking operations as soon as possible.

■ Complete nonblocking operations as late as possible.

■ Test the status of nonblocking operations periodically with MPI_Test() calls.

See “Nonblocking Operations” on page 32.

■ Pay attention to polling:

■ Match message-passing calls (receives to sends, collectives to collectives, and
so on).

■ Post MPI_Irecv() calls ahead of arrivals.
■ Avoid MPI_ANY_SOURCE.
■ Avoid MPI_Probe() and MPI_Iprobe().
■ Set the environment variable MPI_POLLALL to 0 at run time.

See “Polling” on page 33.

■ Take advantage of MPI collective operations.

See “Sun MPI Collectives” on page 34.

■ Use contiguous data types:

■ Send some unnecessary padding if necessary.
■ Pack your own data if you can outperform generalized

MPI_Pack()/MPI_Unpack() routines.

See “Contiguous Data Types” on page 34.

■ Avoid congestion if you’re going to run over TCP:

■ Avoid “hot receivers.”
■ Use blocking point-to-point communications.
■ Use synchronous sends (MPI_Ssend() and related calls).
■ Use MPI collectives such as MPI_Alltoall(), MPI_Alltoallv(),

MPI_Gather(), or MPI_Gatherv(), as appropriate.
■ At run time, set MPI_EAGERONLY to 0, and possibly lower

MPI_TCP_RENDVSIZE.

See “Special Considerations for Message Passing Over TCP” on page 35.
8 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

CHAPTER 2

Introduction: The Sun HPC
ClusterTools Solution

The Sun HPC ClusterTools suite is a solution for high-performance computing. It
provides the tools you need to develop and execute parallel (message-passing)
applications. These programs can run on any Sun system, from a single workstation
up to a cluster of high-end symmetric multiprocessors (SMPs).

This chapter presents an overview of the hardware and software products that Sun
Microsystems provides for high-performance computing, with emphasis on the
components of the Sun HPC ClusterTools software suite.

■ “Sun HPC Hardware” on page 9

■ “Processors” on page 10

■ “Nodes” on page 10

■ “Clusters” on page 11
■ “Sun HPC ClusterTools Software” on page 11

■ “Sun MPI” on page 12

■ “Cluster Runtime Environment” on page 12

Sun HPC Hardware
Programs written with Sun HPC ClusterTools software run on the whole line of Sun
servers and workstations. This feature enables you to exploit all available hardware
in achieving performance.

For detailed information on UltraSPARC-based computing see:

http://www.sun.com/sparc

http://www.sun.com/desktop
9

http://www.sun.com/desktop
http://www.sun.com/sparc

http://www.sun.com/servers

For detailed information on AMD Opteron x64-based computing, see:

http://www.sun.com/x64/index.html

This section notes the performance-related features of Sun SMPs and clusters. These
will be important in the first step of performance programming, choosing your tools
and hardware, discussed in Chapter 3.

Processors
UltraSPARC microprocessors are a full implementation of the SPARC V9
architecture, which provides high-performance, 64-bit computing in a Solaris
Operating System.

The UltraSPARC-I processor introduced this family in 1995.

The UltraSPARC-II processor supports CPU clock speeds in the range of 250-480
MHz and L2 cache sizes up to 8 bytes.

The UltraSPARC-III processor, introduced in 2000, has complete binary compatibility
with older applications, while introducing new performance enhancements for
programs that target only the latest processors. Clock speeds of up to 1.2 GHz are
supported. L2 cache sizes are up to 8 Mbytes.

The UltraSPARC IV processor has clock speeds up to 1350MHz, with L2 cache sizes
of up to 16 Mbytes. Its successor, the UltraSPARC IV+ processor supports initial
clock speeds of up to 1.5 MHz. The UltraSPARC IV+ contains a different caching
scheme than its predecessor, which allows it to support 2 MB of L2 cache on-chip as
well as 32 Mbytes of external L3 cache.

The AMD Opteron 200 Series processors in Sun Fire ™ network servers have clock
speeds of up to 2.4 GHz with 1 Mbytes of L2 cache per core on single- or dual-core
servers.

Nodes
Nodes (the units of a cluster) might be as small as a single workstation or server, or
as large as a high-end server containing multiple processors.
10 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

http://www.sun.com/servers
http://www.sun.com/x64/index.html

Clusters
SMPs might be clustered by means of any Sun-supported TCP/IP interconnect, such
as Gigabit Ethernet or Infiniband.

Individual Sun HPC ClusterTools message-passing applications can have up to 2048
processes running on as many as 256 nodes of a cluster. The programmer must
manage the location of data in the distributed memory and its transfers between
nodes.

Sun HPC ClusterTools Software
Sun’s HPC message-passing software supports applications designed to run on
single systems and clusters of SMPs. Called Sun HPC ClusterTools software, it
provides the tools for developing distributed-memory parallel applications and for
managing distributed resources in the execution of these applications.

Sun HPC ClusterTools 6 software runs under the Solaris 10 (32-bit or 64-bit)
Operating System (Solaris OS).

The Sun HPC ClusterTools suite is layered on top of the Sun compilers. Specifically,
HPC ClusterTools 6 software is supported with the Sun Studio Compiler Collection
8, 9, 10, and 11 release. The compiler collections include Fortran, C, and C++
compilers, Sun Performance Library software, and the Performance Analyzer, all of
which can be used to develop single-process or multithreaded programs. The HPC
ClusterTools software extends such shared-memory programming with message
passing, so that parallel programs can run distributed over multiple processes,
potentially on multiple nodes of a cluster. The relationship between HPC
ClusterTools software and the compiler collection are explored further in Chapter 3.

The remainder of this chapter describes some HPC ClusterTools features that extend
shared-memory programming:

■ Sun MPI library of message-passing and I/O routines

■ Sun CRE, a runtime environment that manages the resources of a server or cluster
to execute message-passing programs
Chapter 2 Introduction: The Sun HPC ClusterTools Solution 11

Sun MPI
Sun MPI is a highly optimized version of the Message-Passing Interface (MPI)
communications library. This dynamic library is the basis of distributed-memory
programming, as it enables the programmer to create distributed data structures and
to manage interprocess communications explicitly.

MPI is the de facto industry standard for message-passing programming. You can
find more information about it on the MPI web page and the many links it provides:

http://www.mpi-forum.org

Sun MPI is a complete library of message-passing routines, including all MPI 1.2
compliant and MPI 2 compliant routines. In addition, Sun MPI provides the
following features:

■ Multiprotocol support. Sun MPI provides these protocol modules:

■ SHM (Shared Memory) for ranks on the same shared-memory node

■ TCP (Transmission Control Protocol) for nodes connected by any commodity
interconnect supporting TCP/IP.

In addition, any party can provide additional protocol modules to interoperate
with Sun MPI and support high-performance message passing over any
interconnect. At run time, Sun MPI chooses from among all loaded protocol
modules to effect best performance.

■ Threadsafe support.

■ Finely tunable shared-memory communication.

■ Optimized collectives for SMPs, for long messages, for clusters, etc.

■ Parallel I/O to the ClusterTools Parallel (distributed) File System, as well as
single-stream I/O to a standard Solaris file system (UFS).

Sun MPI programs are compiled on Sun Studio compilers. MPI provides full support
for Fortran 77, C, and C++, and basic support for Fortran 90.

Chapter 4 and Appendix A of this manual provide more information about Sun MPI
features, as well as instructions for getting the best performance from an MPI
program.

Cluster Runtime Environment
The Cluster Runtime Environment (CRE) component of Sun HPC ClusterTools
software serves as the runtime resource manager for message-passing programs. It
supports interactive execution of Sun HPC applications on single SMPs, or on
clusters of SMPs.
12 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

CRE is layered on the Solaris OS, but enhanced to support multiprocess execution. It
provides the tools for configuring and managing clusters, nodes, and logical sets of
processors (partitions).

Alternatively, Sun HPC message-passing programs can be executed by third-party
resource-management software, such as Sun N1 Grid Engine (N1GE) Version 6,
Platform Computing LSF HPC Version 6.2, and OpenPBS Portable Batch System
(PBS) 2.3.16 and Altair PBS Professional 7.1.
Chapter 2 Introduction: The Sun HPC ClusterTools Solution 13

14 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

CHAPTER 3

Choosing Your Programming Model
and Hardware

This chapter outlines some points to consider in planning how to develop or port an
HPC application. It provides a high-level overview of how to compare and assess
programming models for use on Sun parallel hardware.

■ “Starting Out” on page 15
■ “Programming Models” on page 16
■ “Scalability” on page 19
■ “Characterizing Platforms” on page 22

Starting Out
The first step in developing a high-performance application is to settle upon your
basic approach. To make the best choice among the Sun HPC tools and techniques,
you need to:

■ Set goals for program performance and scalability
■ Determine the amount of time and effort you can invest
■ Select a programming model
■ Assess the available computing resources

There are two common models of parallel programming in high performance
computing: shared-memory programming and distributed-memory programming.
These models are supported on Sun hardware with Sun compilers and with Sun
HPC ClusterTools software, respectively. Issues in choosing between the models
might include existing source-code base, available software development resources,
desired scalability, and target hardware.
15

The basic Sun HPC ClusterTools programming model is distributed-memory
message passing. Such a program executes as a collection of Solaris OS processes
with separate address spaces. The processes compute independently, each on its own
local data, and share data only through explicit calls to message-passing routines.

You might choose to use this model regardless of your target hardware. That is, you
might run a message-passing program on an SMP cluster or run it entirely on a
single, large SMP server. Or, you might choose to forgo ClusterTools software
entirely and use only multithreaded parallelism, running on a single SMP server. It
is also possible to combine the two approaches.

Programming Models
A high-performance application will almost certainly be parallel, but parallelism
comes in many forms. The form you choose depends partly on your target hardware
(server versus cluster) and partly on the time you have to invest.

Sun provides development tools for several widely used HPC programming models.
These products are categorized by memory model: Sun Studio developer tools for
shared-memory programming and Sun HPC ClusterTools for distributed-memory
programming.

Shared memory means that all parts of a program can access one another’s data freely.
This might be because they share a common address space, which is the case with
multiple threads of control within a single process. Or, it might result from
employing a software mechanism for sharing memory.

Parallelism that is generated by the Sun compilers or is programmed using Solaris or
POSIX threads requires a shared address space running on a single Solaris image.

Distributed memory means that multiple processes exchange data only through
explicit message passing.

Message-passing programs, where the programmer inserts calls to the MPI library,
are the only programs that can run across a cluster of computers. They can also, of
course, run on a single computer or even on a serial processor.

TABLE 3-1 summarizes these two product suites.

TABLE 3-1 Comparison of Sun Compiler Suite and Sun HPC ClusterTools Software

Sun Studio Compiler Collection Sun HPC ClusterTools Suite

Target hardware Any Sun workstation or
SMP

Any Sun workstation, SMP,
or cluster
16 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Thus, available hardware does not necessarily dictate programming model. A
message-passing program can run on any configuration, and a multithreaded
program can run on a parallel server (SMP). The only constraint is that a program
without message passing cannot run on a cluster.

The choice of programming model usually depends more on software preferences
and available development time. Only when your performance goals demand the
combined resources of a cluster of servers is the message-passing model necessarily
required.

A closer look at the differences between shared-memory model and the distributed
memory model as they pertain to parallelism reveals some other factors in the
choice. The differences are summarized in TABLE 3-2.

Memory model Shared memory Distributed memory

Runtime resource manager Solaris OS CRE (Cluster Runtime
Environment) or third-party
product

Parallel execution Multithreaded Multiprocess with message
passing

TABLE 3-2 Comparison of Shared-Memory and Distributed-Memory Parallelism

Shared Memory Distributed Memory

Parallelization unit Loop Data structure

Compiler-generated
parallelism

Available in Fortran 77,
Fortran 90, and C via
compiler options,
directives/pragmas, and
OpenMP

No established solution;
options include HPF, split-C,
UPC, OpenMP compiled for
distributed memory,
Co-Array Fortran, and
various research projects.
None of these are part of the
Sun HPC ClusterTools
software suite.

Explicit (hand-coded)
parallelism

C/C++ and threads (Solaris
or POSIX)

Calls to MPI library routines
from Fortran 77, Fortran 90,
C, or C++

TABLE 3-1 Comparison of Sun Compiler Suite and Sun HPC ClusterTools Software

Sun Studio Compiler Collection Sun HPC ClusterTools Suite
Chapter 3 Choosing Your Programming Model and Hardware 17

Note – Nonuniform memory architecture (NUMA) is starting to blur the lines
between shared- and distributed-memory architectures. That is, the architecture
functions as shared memory, but typically the difference in cost between local and
remote memory accesses is so great that it might be desirable to manage data locality
explicitly. One way to do this is to use message passing.

Even without a detailed look, it is obvious that more parallelism is available with
less investment of effort in the shared-memory model.

To illustrate the difference, consider a simple program that adds the values of an
array (a global sum). In serial Fortran, the code is:

Compiler-generated parallelism requires little change. In fact, the compiler might
well parallelize this simple example automatically. At most, the programmer might
need to add a single directive:

To perform this operation with an MPI program, the programmer needs to
parallelize the data structure as well as the computational loop. The program would
look like this:

 REAL A(N), X
 X = 0.
 DO I = 1, N
 X = X + A(I)
 END DO

 REAL A(N), X
 X = 0.

 C$OMP DO REDUCTION(+:X)

 DO I = 1, N
 X = X + A(I)
 END DO

 REAL A(NLOCAL), X, XTMP

 XTMP = 0.
 DO I = 1, NLOCAL
 XTMP = XTMP + A(I)
 END DO
 CALL MPI_ALLREDUCE
 & (XTMP,X1,MPI_REAL,MPI_SUM,MPI_COMM_WORLD,IERR)
18 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

When this program executes, each process can access only its own (local) share of the
data array. Explicit message passing is used to combine the results of the multiple
concurrent processes.

Clearly, message passing requires more programming effort than shared-memory
parallel programming. But this is only one of several factors to consider in choosing
a programming model. The trade-off for the increased effort can be a significant
increase in performance and scalability.

In choosing your programming model, consider the following factors:

■ If you are updating an existing code, what programming model does it use? In
some cases, it is reasonable to migrate from one model to another, but this is
rarely easy. For example, to go from shared memory to distributed memory, you
must parallelize the data structures and redistribute them throughout the entire
source code.

■ What time investment are you willing to make? Compiler-based multithreading
(using Sun Studio developer tools) might allow you to port or develop a program
in less time than explicit message passing would require.

■ What is your performance requirement? Is it within or beyond the computing
capability associated with a single, uniform memory? Sun SMP servers can be
very large—up to 106 processors and 576 Gbytes of memory in the current
generation. For other purposes, a cluster—and thus distributed-memory
programming—will be required.

■ Is your performance requirement (including problem size) likely to increase in the
future? If so, it might be worth choosing the message-passing model even if a
single server meets your current needs. You can then migrate easily to a cluster in
the future. In the meantime, the application might run faster than a shared-
memory program on a single SMP because of the MPI discipline of enforcing data
locality.

Mixing models is generally possible, but not common.

Scalability
A part of setting your performance goals is to consider how your application will
scale.

The primary purpose of message-passing programming is to introduce explicit data
decomposition and communication into an application, so that it will scale to higher
levels of performance with increased resources. The appeal of a cluster is that it
increases the range of scalability: a potentially limitless amount of processing power
might be applied to complex problems and huge data sets.
Chapter 3 Choosing Your Programming Model and Hardware 19

The degree of scalability you can realistically expect is a function of the algorithm,
the target hardware, and certain laws of scaling itself.

Amdahl’s Law
Unfortunately, decomposing a problem among more and more processors ultimately
reaches a point of diminishing returns. This idea is expressed in a formula known as
Amdahl’s Law.1 Amdahl’s Law assumes (quite reasonably) that a task has only some
fraction f that is parallelizable, while the rest of the task is inherently serial. As the
number of processors NP is increased, the execution time T for the task decreases as

T = (1-f) + f / NP

For example, consider the case in which 90 percent of the workload can be
parallelized. That is, f = 0.90. The speedup as a function of the number of
processors is shown in TABLE 3-3

As the parallelizable part of the task is more and more subdivided, the non-parallel
10 percent of the program (in this example) begins to dominate. The maximum
speedup achievable is only 10-fold, and the program can actually use only about
three or four processors efficiently.

1. G.M. Amdahl, Validity of the single-processor approach to achieving large scale computing capabilities. In
AFIPS Conference Proceedings, vol. 30 (Atlantic City, N.J., Apr. 18-20). AFIPS Press, Reston, Va., 1967, pp.
483-485.

TABLE 3-3 Speedup with Number of Processors

Processors
(NP)

runtime
(T)

Speedup
(1/T) Efficiency

1 1.000 1.0 100%

2 0.550 1.8 91%

3 0.400 2.5 83%

4 0.325 3.1 77%

6 0.250 4.0 67%

8 0.213 4.7 59%

16 0.156 6.4 40%

32 0.128 7.8 24%

64 0.114 8.8 14%
20 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Keep Amdahl’s Law in mind when you target a performance level or run prototypes
on smaller sets of CPUs than your production target. In the preceding example, if
you had started measuring scalability on only two processors, the 1.8-fold speedup
would have seemed admirable, but it is actually an indication that scalability beyond
that might be quite limited.

In another respect, the scalability story is even worse than Amdahl’s Law suggests.
As the number of processors increases, so does the overhead of parallelization. Such
overhead might include communication costs or interprocessor synchronization. So,
observation will typically show that adding more processors will ultimately cause
not just diminishing returns but negative returns: eventually, execution time might
increase with added resources.

Still, the news is not all bad. With the high-speed interconnects within and between
nodes and with the programming techniques described in this manual, your
application might well achieve high, and perhaps near linear, speedups for some
number of processors. And, in certain situations, you might even achieve superlinear
scalability, because adding processors to a problem also provides a greater aggregate
cache.

Scaling Laws of Algorithms
Amdahl’s Law assumes that the work done by a program is either serial or
parallelizable. In fact, an important factor for distributed-memory programming that
Amdahl’s Law neglects is communication costs. Communication costs increase as
the problem size increases, although their overall impact depends on how this term
scales vis-a-vis the computational workload.

When the local portion (the subgrid) of a decomposed data set is sufficiently large,
local computation can dominate the runtime and amortize the cost of interprocess
communication. TABLE 3-4 shows examples of how computation and communication
scale for various algorithms. In the table, L is the linear extent of a subgrid while N
is the linear extent of the global array.

TABLE 3-4 Scaling of Computation and Communication Times for Selected Algorithms

Algorithm Communication Type
Communication
Count

Computation
Count

2-dimensional stencil nearest neighbor L L2

3-dimensional stencil nearest neighbor L2 L3

matrix multiply nearest neighbor N2 N3

multidimensional
FFT

all-to-all N N log(N)
Chapter 3 Choosing Your Programming Model and Hardware 21

With a sufficiently large subgrid, the relative cost of communication can be lowered
for most algorithms.

The actual speed-up curve depends also on cluster interconnect speed. If a problem
involves many interprocess data transfers over a relatively slow network
interconnect, the increased communication costs of a high process count might
exceed the performance benefits of parallelization. In such cases, performance might
be better with fewer processes collocated on a single SMP. With a faster interconnect,
on the other hand, you might see even superlinear scalability with increased process
counts because of the larger cache sizes available.

Characterizing Platforms
To set reasonable performance goals, and perhaps to choose among available sets of
computing resources, you need to be able to assess the performance characteristics
of hardware platforms.

The most basic picture of message-passing performance is built on two parameters:
latency and bandwidth. These parameters are commonly cited for point-to-point
message passing, that is, simple sends and receives.

■ Latency is the time required to send a null-length message.

■ Bandwidth is the rate at which very long messages are sent.

In this somewhat simplified model, the time required for passing a message between
two processes is

time = latency + message-size / bandwidth

Obviously, short messages are latency-bound and long messages are bandwidth-
bound. The crossover message size between the two is given as

crossover-size = latency x bandwidth

Another performance parameter is bisection bandwidth, which is a measure of the
aggregate bandwidth a system can deliver to communication-intensive applications
that exhibit little data locality. Bisection bandwidth might not be related to point-to-
point bandwidth, because the performance of the system can degrade under load
(many active processes) or since multiple CPUs are required to take advantage of the
interconnect.
22 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

To suggest orders of magnitude, TABLE 3-5 shows sample values of these parameters
for two Sun HPC platforms: a large SMP and a 64-node cluster.

The best performance is likely to come from a single server. With Sun servers, this
means up to 72 CPUs.

For clusters, these values indicate that the TCP cluster is latency-bound. A smaller
cluster using a faster interconnect would be less so. On the other hand, many nodes
are needed to match the bisection bandwidth of single node.

Basic Hardware Factors
Typically, you work with a fixed set of hardware factors: your system is what it is.
From time to time, however, hardware choices might be available, and, in any case,
you need to understand the ways in which your system affects program
performance. This section describes a number of basic hardware factors.

Processor speed is directly related to the peak floating-point performance a processor
can attain. Because an UltraSPARC processor can execute up to one floating-point
add and one floating-point multiply per cycle, peak floating-point performance is
twice the processor clock speed. For example, a 1.8 GHz processor would have a
peak floating-point performance of 3600 Mflops. In practice, achieved floating-point
performance will be less, due to imbalances of additions and multiplies and the
necessity of retrieving data from memory rather than cache. Nevertheless, some
number of floating-point intensive operations, such as the matrix multiplies that
provide the foundation for much of dense linear algebra, can achieve a high fraction
of peak performance, and typically increasing processor speed has a positive impact
on most performance metrics.

Large L2 (or external) caches can also be important for good performance. While it is
desirable to keep data accesses confined to L1 (or on-chip) caches, UltraSPARC
processors run quite efficiently from L2 caches as well. When you go beyond L2
cache to memory, however, the drop in performance can be significant. Indeed,

TABLE 3-5 Sample Performance Values for MPI Operations on Two Sun Platforms

Platform
Latency
(microseconds)

Bandwidth
(Mbyte/sec)

Crossover size
= lat x bw
(bytes)

Platform
Bisection
bandwidth
(Mbyte/sec)

SMP Enterprise
10000 server

~ 2 ~ 200 ~ 400 ~ 2500

Cluster of
64 nodes connected
with TCP network

~ 150 ~ 40 ~ 6000 ~ 2000
Chapter 3 Choosing Your Programming Model and Hardware 23

though Amdahl’s Law and other considerations suggest that performance should
scale at best linearly with processor counts, many applications see a range of
superlinear scaling, because an increase in processor count implies an increase in
aggregate L2 cache size.

The number of processors is, of course, a basic factor in performance because more
processors deliver potentially more performance. Naturally, it is not always possible
to utilize many processors efficiently, but it is vital that enough processors be
present. This means not only that there should be one processor per MPI process,
but ideally there should also be a few extra processors per node to handle system
daemons and other services.

System speed is an important determinant of performance for memory-access-bound
applications. For example, if a code goes often out of its caches, then it might well
perform better on 300-MHz processors with a 100-MHz system clock than on 333-
MHz processors with an 83-MHz system clock. Similarly, performance speedup from
900-MHz processors to 1200-MHz processors, both with a 150-MHz system clock, is
likely to be less than the 4/3 factor suggested by the processor speedup, since the
memory is at the same speed in both cases.

Memory latency is influenced not only by memory clock speed, but also by system
architecture. As a rule, as the maximum size of an architecture expands, memory
latency goes up. Hence, applications or workloads that do not require much
interprocess communication might well perform better on a cluster of 4-CPU
workgroup servers than on a 64-CPU Sun E25K server.

Memory bandwidth is the rate at which large amounts of data can be moved between
CPU and memory. It is related not only to cacheline size (amount of data moved per
memory operation) and memory latency (amount of time to move one cacheline),
but also to the system’s ability to prefetch data and have multiple outstanding
memory operations at any time.

Memory size is required to support large applications efficiently. While the Solaris OS
will run applications even when there is insufficient physical memory, using virtual
memory will degrade performance dramatically.

When many processes run on a single node, the backplane bandwidth of the node
becomes an issue. Large Sun servers scale very well with high processor counts, but
MPI applications can nonetheless tax backplane capabilities either due to local
memory operations (within an MPI process) or due to interprocess communications
via shared memory. MPI processes located on the same node exchange data by
copying into and then out of shared memory. Each copy entails two memory
operations: a load and a store. Thus, a two-sided MPI data transfer undergoes four
memory operations.

On a 24-CPU Sun Fire 6800 server, with a 9.6-Gbyte/s backplane, this means that a
large MPI all-to-all operation can run at about 2.4 Gbyte/s aggregate bandwidth.
Here, MPI bandwidth is the rate at which bytes are sent.
24 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

For cluster performance, the interconnect between nodes is typically characterized by
its latency and bandwidth. Choices include any network that supports TCP, such as
Gigabit Ethernet or Infiniband.

Importantly, there will often be wide gaps between the performance specifications of
the raw network and what an MPI application will achieve in practice. Notably:

■ Latency might be degraded by software layers, especially operating system
interactions in the case of TCP message passing.

■ Bandwidth might be degraded by the network interface (such as PCI).

■ Bandwidth might further be degraded on a loss-prone network if data is dropped
under load.

A cluster’s bisection bandwidth might be limited by its switch or by the number of
network interfaces that tap nodes into the network. In practice, the number of
network interfaces is typically the bottleneck. Thus, increasing the number of nodes
might or might not increase bisection bandwidth.

Other Factors
At other times, even other parameters enter the picture. Seemingly identical systems
can result in different performance because of the tunable system parameters
residing in /etc/system, the degree of memory interleaving in the system,
mounting of file systems, and other issues that might be best understood with the
help of your system administrator. Further, some transient conditions, such as the
operating system’s free-page list or virtual-to-physical page mappings, might
introduce hard-to-understand performance issues.

For the most part, however, the performance of the underlying hardware is not as
complicated an issue as this level of detail implies. As long as your performance
goals are in line with your hardware’s capabilities, the performance achieved will be
dictated largely by the application itself. This manual helps you maximize that
potential for MPI applications.
Chapter 3 Choosing Your Programming Model and Hardware 25

26 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

CHAPTER 4

Performance Programming

This chapter discusses approaches to consider when you are writing new message-
passing programs.

The general rules of good programming apply to any code, serial or parallel. This
chapter therefore focuses primarily on optimizing MPI interprocess communications
and concludes with an extended example.

When you are working with legacy programs, you need to consider the costs of
recoding in relation to the benefits.

General Good Programming
The general rules of good programming apply when your goal is to achieve top
performance along with robustness and, perhaps, portability.

Clean Programming
The first rule of good performance programming is to employ “clean” programming.
Good performance is more likely to stem from good algorithms than from clever
“hacks.” While tweaking your code for improved performance might work well on
one hardware platform, those very tweaks might be counterproductive when the
same code is deployed on another platform. A clean source base is typically more
useful than one laden with many small performance tweaks. Ideally, you should
emphasize readability and maintenance throughout the code base. Use performance
profiling to identify any hot spots, and then do low-level tuning to fix the hot spots.

One way to garner good performance while simplifying source code is to use library
routines. Advanced algorithms and techniques are available to users simply by
issuing calls to high-performance libraries. In certain cases, calls to routines from
27

one library might be speeded up simply by relinking to a higher-performing library.
The following table shows examples of selected operations and suggests how these
operations might be speeded up,

Optimizing Local Computation
The most dramatic impact on scalability in distributed-memory programs comes
from optimizing the data decomposition and communication. Aside from
parallelization issues, a great deal of performance enhancement can be achieved by
optimizing local (on-node) computation. Common techniques include loop rewriting
and cache blocking. Compilers can be leveraged by exploring compilation switches
(see Chapter 6).

For the most part, the important topic of optimizing serial computation within a
parallel program is omitted here. To learn more about this and other areas of
performance optimization, consult Techniques For Optimizing Applications: High
Performance Computing, by Rajat Garg and Ilya Shapov, Prentice-Hall, 2001, ISBN:
0-13-093476-3. That volume covers serial optimization and various parallelization
models. It deals with programming, compilation, and runtime issues and provides
numerous concrete examples.

Optimizing MPI Communications
The default behavior of Sun MPI accommodates many programming practices
efficiently. Tuning environment variables at runtime can result in even better
performance. However, best performance will typically stem from writing the best
programs. This section describes good programming practices under the following
headings:

■ “Reducing Message Volume” on page 29
■ “Reducing Serialization” on page 29
■ “Load Balancing” on page 29
■ “Synchronization” on page 30
■ “Buffering” on page 31
■ “Nonblocking Operations” on page 32
■ “Polling” on page 33

Operations... might be speeded up by...

BLAS routines linking to Sun Performance Library software

Collective MPI
operations

formulating in terms of MPI collectives and using Sun MPI
28 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

■ “Sun MPI Collectives” on page 34
■ “Contiguous Data Types” on page 34

These topics are all interwoven. Clearly, reducing the number and volume of
messages can reduce communication overheads, but such overheads are inherent to
parallelization of serial computation. Serialization is one extreme of load balancing.
Load imbalances manifest themselves as performance issues only because of
synchronization. Synchronization, in turn, can be mitigated with message buffering,
nonblocking operations, or general polling.

Following the general discussion of these issues, this chapter illustrates them in a
case study.

Reducing Message Volume
An obvious way to reduce message-passing costs is to reduce the amount of message
passing. One method is to reduce the total amount of bytes sent among processes.
Further, because a latency cost is associated with each message, aggregating short
messages can also improve performance.

Reducing Serialization
Serialization can take many different forms. In multithreaded programming,
contention for a lock might induce serialization. In multiprocess programming,
serialization might be induced, for example, in I/O operations through a particular
process that gathers or scatters data accordingly.

Serialization can also appear as operations that are replicated among all the
processes.

Load Balancing
Generally, the impediment to great scalability is not as blatant as serialization, but
simply a matter of poor work distribution or load balancing among the processes. A
multiprocess job completes only when the process with the most work has finished.

More so than for multithreaded programming, load balancing is an issue in
message-passing programming because work distribution or redistribution is
expensive in terms of programming and communication costs.

Temporally or spatially localized load imbalances sometimes balance against one
another. Imagine, for example, a weather simulation in which simulation of daytime
weather typically is more computationally demanding than that of nighttime
Chapter 4 Performance Programming 29

weather because of expensive radiation calculations. If different processes compute
on different geographical domains, then over the course of a simulation day each
process should see daytime and nighttime. Such circadian imbalances would
average out.

As the degree of synchronization in the simulation is increased, however, the extent
to which localized load imbalances degrade overall performance magnifies. In our
weather example, this means that if MPI processes are synchronized many times
over the course of a simulation day, then all processes will run at the slower, day-
time rate, even if this forces night-time processes to sit idle at synchronization
points.

Synchronization
The cost of interprocess synchronization is often overlooked. Indeed, the cost of
interprocess communication is often due not so much to data movement as to
synchronization. Further, if processes are highly synchronized, they tend to congest
shared resources such as a network interface or SMP backplane, at certain times and
leave those resources idle at other times. Sources of synchronization can include:

■ MPI_barrier calls.
■ Other MPI collective operations, such as MPI_Bcast and MPI_Reduce.
■ Synchronous MPI point-to-point calls, such as MPI_Ssend.
■ Implicitly synchronous transfers for messages that are large compared with the

interprocess buffering resources.

For example, the Sun MPI cyclic and rendezvous message-passing protocols
induce extra synchronization between senders and receivers in order to reduce
use of buffers. Use of such protocols and the size of internal buffering might be
changed at runtime with Sun MPI environment variables, which are discussed
in Chapter 7.

■ Data dependencies, in which one process must wait for data that is being
produced by another process.

For example, a receiver must wait if it issues an MPI_Recv before its partner
issues the corresponding MPI_Send.

Typically, synchronization should be minimized for best performance. You should:

■ Generally reduce the number of message-passing calls.
■ Specifically reduce the amount of explicit synchronization.
■ Post sends as early as possible and receives as late as possible.
■ Ensure sufficient system buffering.

If a send can be posted very early and the corresponding receive much later, then
there would be no problem with data dependency, because the data would be
available before it was needed. If internal system buffering is not provided to hold
30 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

the in-transit message, however, the completion of the send will in some way
become synchronized with the receive. This consideration brings up the topics of
buffering and nonblocking operations.

Buffering
In most MPI point-to-point communication, for example, using MPI_Send and
MPI_Recv calls, data starts in a user buffer on the sending process and ends up in a
user buffer on the receiving process. In transit, that data might also be buffered
internally multiple times by an MPI implementation.

There are performance consequences to such buffering. Among them:

■ Some degree of synchronization might be induced between the sender and the
receiver if the message exceeds the internal buffering that is available to it. That
is, a send cannot complete before the correspond receive has been posted if there
is nowhere else for the message to be stored.

■ Data must be copied from one buffer to another. This is noteworthy, but typically
not as important as synchronization effects.

■ Buffers might have to be allocated and deallocated. Under most conditions, this is
not important with Sun MPI.

The MPI standard does not require any particular amount of internal buffering for
standard MPI_Send operations. Specifically, the standard warns against issuing too
many MPI_Send calls without receiving any messages, as this can lead to deadlock.
(See Example 3.9 in the MPI 1.1 standard.) MPI does, however, allow users to
provide buffering with MPI_Buffer_attach and then to use such buffering with
MPI_Bsend or MPI_Ibsend calls.

Sun MPI, as a particular implementation of the standard, allows users to increase
internal buffering in two ways. One way, of course, is with the standard, portable
MPI_Buffer_attach call. Another is with Sun MPI-specific runtime environment
variables, as discussed in Chapter 7.

There are several drawbacks to using MPI_Buffer_attach. They stem from the
fact that a buffered send copies data out of the user buffer into a hidden buffer and
then issues a non-blocking send (like MPI_Isend) without giving the user access to
the request handle. Non-blocking sends (like MPI_Isend) should be used in
preference to buffered sends (like MPI_Bsend) because of these effects of buffered
sends:

■ Senders and receivers are not decoupled any more than with non-blocking sends.
■ Another level of buffering and copying is involved.
■ The status of the message cannot be queried (for instance, to determine when the

hidden buffer allocated by MPI_Buffer_attach is free).
■ The completion of the send cannot easily be forced.
Chapter 4 Performance Programming 31

Typically, performance will benefit more if internal buffering is increased by setting
Sun MPI environment variables. This is discussed further in Chapter 7.

Sun MPI environment variables might not be a suitable solution in every case. For
example, you might want finer control of buffering or a solution that is portable to
other systems. (Beware that the MPI standard provides few, if any, performance
portability guarantees.) In such cases, it might be preferable to using nonblocking
MPI_Isend sends in place of buffered MPI_Bsend calls. The nonblocking calls give
finer control over the buffers and better decouple the senders and receivers.

For best results:

■ Do not assume unlimited internal buffering by Sun MPI.
■ Use buffered calls, such as MPI_Bsend and the like, sparingly.
■ Tune Sun MPI environment variables at runtime to increase system buffering.
■ Use nonblocking calls such as MPI_Isend for finest control over user-specified

buffering.
■ Post nonblocking receives (like MPI_Irecv) early to relieve pressure on system

buffers.

Other examples of internal MPI buffering include MPI_Sendrecv_replace calls
and unexpected in-coming messages (that is, messages for which no receive
operation has yet been posted).

Nonblocking Operations
The MPI standard offers blocking and nonblocking operations. For example,
MPI_Send is a blocking send. This means that the call will not return until it is safe
to reuse the specified send buffer. On the other hand, the call might well return
before the message is received by the destination process.

Nonblocking operations enable you to make message passing concurrent with
computation. Basically, a nonblocking operation might be initiated with one MPI call
(such as MPI_Isend, MPI_Start, MPI_Startall, and so on) and completed with
another (such as MPI_Wait, MPI_Waitall, and so on). Still other calls might be
used to probe status, for example, MPI_Test.

Nonblocking operations might entail a few extra overheads. Indeed, use of a
standard MPI_Send and MPI_Recv provides the best performance with Sun MPI for
highly synchronized processes, such as in simple ping-pong tests. Generally,
however, the benefits of nonblocking operations far outweigh their performance
shortcomings.

The way these benefits derive, however, can be subtle. Though nonblocking
communications are logically concurrent with user computation, they do not
necessarily proceed in parallel. That is, typically, either computation or else
32 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

communication is being affected at any instant by a CPU. How performance benefits
derive from nonblocking communications is discussed further in the case study at
the end of this chapter

To maximize the benefits of nonblocking operations:

■ Replace blocking operations with nonblocking operations.
■ Initiate nonblocking operations as soon as possible.
■ Complete nonblocking operations as late as possible.
■ Test the status of nonblocking operations periodically with MPI_Test calls.

Polling
Polling is the activity in which a process searches incoming connections for arriving
messages whenever the user code enters an MPI call. Two extremes are:

■ General polling, in which a process searches all connections, regardless of the MPI
calls made in the user code. For example, an arriving message will be read if the
user code enters an MPI_Send() call.

■ Directed polling, in which a process searches only connections specified by the user
code. For example, a message from process 3 will be left untouched by an
MPI_Recv() call that expects a message from process 5.

General polling helps deplete system buffers, easing congestion and allowing
senders to make the most progress. On the other hand, it requires receiver buffering
of unexpected messages and imposes extra overhead for searching connections that
might never have any data.

Directed polling focuses MPI on user-specified tasks and keeps MPI from
rebuffering or otherwise unnecessarily handling messages the user code has not yet
asked to receive. On the other hand, it does not aggressively deplete buffers, so
improperly written codes might deadlock.

Thus, user code is most efficient when the following criteria are all met:

■ Receives are posted in the same order as their sends.
■ Collectives and point-to-point operations are interleaved in an orderly manner.
■ Receives such as MPI_Irecv() are posted ahead of arrivals.
■ Receives are specific and the program avoids MPI_ANY_SOURCE.
■ Probe operations such as MPI_Probe() and MPI_Iprobe() are used sparingly.
■ The Sun MPI environment variable MPI_POLLALL is set to 0 at runtime to

suppress general polling.
Chapter 4 Performance Programming 33

Sun MPI Collectives
Collective operations, such as MPI_Barrier(), MPI_Bcast(), MPI_Reduce(),
MPI_Alltoall(), and the like, are highly optimized in Sun MPI for UltraSPARC
servers and clusters of servers. User codes can benefit from the use of collective
operations, both to simplify programming and to benefit automatically from the
optimizations, which include:

■ Alternative algorithms depending on message size.
■ Algorithms that exploit cheap on-node data transfers and minimize expensive

internode transfers.
■ Independent optimizations for shared-memory and internode components of

algorithms.
■ Sophisticated runtime selection of the optimal algorithm.
■ Special optimizations to deal with hot spots within shared memory, whether

cache lines or memory pages.

For Sun MPI programming, you need only keep in mind that the collective
operations are optimized and that you should use them. The details of the
optimizations used in Sun MPI to implement collective operations are available in
Appendix A.

Contiguous Data Types
While interprocess data movement is considered expensive, data movement within a
process can also be costly. For example, interprocess data movement via shared
memory consists of two bulk transfers. Meanwhile, if data has to be packed at one
end and unpacked at the other, then these steps entail just as much data motion, but
the movement will be even more expensive because it is slow and fragmented.

You should consider:

■ Using only contiguous data types.
■ Sending a little unnecessary padding instead of trying to pack data that is only

mildly fragmented.
■ Incorporating special knowledge of the data types to pack data explicitly, rather

than relying on the generalized routines MPI_Pack() and MPI_Unpack().
34 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Special Considerations for Message Passing Over
TCP
Sun MPI supports message passing over any network that runs TCP. While TCP
offers reliable data flow, it does so by retransmitting data as necessary. If the
underlying network becomes loss-prone under load, TCP might retransmit a
runaway volume of data, causing MPI performance to suffer.

For this reason, applications running over TCP might benefit from throttled
communications. The following suggestions are likely to increase synchronization
and degrade performance. Nonetheless, you might want to try these suggestions if
the underlying network is losing too much data.

To throttle data transfers, you might:

■ Avoid “hot receivers” (too many messages expected at a node at any time).
■ Use blocking point-to-point communications (MPI_Send(), MPI_Recv(), and so

on).
■ Use synchronous sends (such as MPI_Ssend()).
■ Use MPI collectives, such as MPI_Alltoall(), MPI_Alltoallv(),

MPI_Gather(), or MPI_Gatherv(), as appropriate, because these routines
account for loss-prone networks.

■ Set the Sun MPI environment variable MPI_EAGERONLY to 0 at runtime and
possibly lower MPI_TCP_RENDVSIZE, causing Sun MPI to use a rendezvous
mode for TCP messages. See Appendix A and the Sun MPI Programming and
Reference Guide for more details.

MPI Communications Case Study
The following examples illustrate many of the issues raised in the preceding
conceptual discussion. These examples use a highly artificial test code to look at the
performance of MPI communication and its interplay with computational load
imbalance.

The main lessons to draw from this series of example are:

■ A key performance metric in MPI programs is not the rate at which data is
transferred, but the amount of idle time processes spend waiting to send or
receive data. You should try to reduce the costs of interprocess synchronization
that result from computational load imbalances.

■ Sun MPI buffering, adjusted with environment variables, should be made
sufficient for all messages that might be in transit at any one time.
Chapter 4 Performance Programming 35

■ In the event that buffering is insufficient, use nonblocking operations, such as
MPI_Isend and MPI_Irecv. This overlaps computation with communication. It
does not overlap computation with data transfer, but it does help overlap
computation with the wait times associated with communication.

■ Post nonblocking operations such as MPI_Isend and MPI_Irecv as early as
possible, and complete them with operations like MPI_Waitall as late as
possible.

■ In conjunction with nonblocking operations, MPI_Testall operations can be
made during otherwise large computational blocks if there are messages in
transit.

Algorithms Used
In these examples, each MPI process computes on some data and then circulates that
data among the other processes in a ring pattern. That is, 0 sends to 1, 1 sends to 2,
2 sends to 3, and so on, with process np-1 sending to 0. An artificial load imbalance
is induced in the computation.

The basic algorithm of this series of examples is illustrated in FIGURE 4-1 for four
processes.

FIGURE 4-1 Basic Ring Sending Algorithm
36 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

In this figure, time advances to the right, and the processes are labeled vertically
from 0 to 3. Processes compute, then pass data in a ring upward. There are temporal
and spatial load imbalances, but in the end all processes have the same amount of
work on average.

Even though the load imbalance in the basic algorithm averages out over time,
performance degradation results if the communication operations are synchronized,
as illustrated in FIGURE 4-2.

FIGURE 4-2 Basic Ring Sending Algorithm With Synchronization

Several variations on this basic algorithm are used in the following timing
experiments, each of which is accompanied by a brief description.

Algorithm 1
■ Phase 1: compute on buffer
■ Phase 2: send buffer with MPI_Send
■ Phase 3: receive buffer with MPI_Recv

This algorithm causes all processes to send data and then all to receive data. Because
no process is receiving when they are all sending, the MPI_Send call must buffer the
data to prevent code deadlock. This buffering requirement explicitly violates the
MPI 1.1 standard. See Example 3.9, along with associated discussion, in the MPI 1.1
standard.
Chapter 4 Performance Programming 37

Nevertheless, Sun MPI can progress messages and avoid deadlock if the messages are
sufficiently small or if the Sun MPI environment variable MPI_POLLALL is set to 1,
which is the default. (See Appendix A for information on progressing messages.)

The amount of computation to be performed in any iteration on any MPI process is
dictated by the variable ncompute and is passed in by the parent subroutine. The
array x is made multidimensional because subsequent algorithms will use
multibuffering.

Algorithm 2
■ Phase 1: compute on buffer
■ Phase 2: perform communication with MPI_Sendrecv_replace

CODE EXAMPLE 4-1 Algorithm 1 Implemented in Fortran 90

subroutine compute(lda,n,x,ncompute,me,iup,idown,sum)
include ’mpif.h’
real(8) x(lda,*), sum

! phase 1
call compute_kernel(ncompute,n,x(:,1),sum)

! phase 2
call MPI_Send(x(:,1),n,MPI_REAL8,iup ,1,MPI_COMM_WORLD,ier)

! phase 3
call MPI_Recv(x(:,1),n,MPI_REAL8,idown,1,MPI_COMM_WORLD,MPI_STATUS_IGNORE,ier)

end
38 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

This algorithm should not deadlock on any compliant MPI implementation, but it
entails unneeded overheads for extra buffering and data copying to “replace” the
user data.

Algorithm 3
■ Phase 1: compute on buffer
■ Phase 2: perform communication with MPI_Sendrecv

CODE EXAMPLE 4-2 Algorithm 2 Implemented in Fortran 90

subroutine compute(lda,n,x,ncompute,me,iup,idown,sum)
include ’mpif.h’
real(8) x(lda,*), sum

! phase 1
call compute_kernel(ncompute,n,x(:,1),sum)

! phase 2
call MPI_Sendrecv_replace(x(:,1),n,MPI_REAL8,iup ,1, &
 idown,1, &
 MPI_COMM_WORLD,MPI_STATUS_IGNORE,ier)

end
Chapter 4 Performance Programming 39

This algorithm removes the “replace” overheads by introducing double buffering.

Algorithm 4
■ Phase 1: nonblocking communication with MPI_Isend and MPI_Irecv
■ Phase 2: compute on buffer
■ Phase 3: MPI_Waitall to complete send and receive operations

This algorithm attempts to overlap communication with computation. That is,
nonblocking communication is initiated before the computation is started, then the
computation is performed, and finally the communication is completed. It employs
three buffers: one for data being sent, another for data being received, and another
for data used in computation.

CODE EXAMPLE 4-3 Algorithm 3 Implemented in Fortran 90

subroutine compute(lda,n,x,ncompute,me,iup,idown,sum)
include ’mpif.h’

real(8) :: x(lda,*), sum
integer ibufsend, ibufrecv
save ibufsend, ibufrecv
data ibufsend, ibufrecv / 1, 2 /

! phase 1
call compute_kernel(ncompute,n,x(:,ibufsend),sum)

! phase 2
call MPI_Sendrecv(x(:,ibufsend),n,MPI_REAL8,iup ,1, &
 x(:,ibufrecv),n,MPI_REAL8,idown,1, &
 MPI_COMM_WORLD,MPI_STATUS_IGNORE,ier)

! toggle buffers
ibufsend = 3 - ibufsend
ibufrecv = 3 - ibufrecv

end
40 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Sun MPI does not actually overlap communication and computation, as the ensuing
discussion makes clear. The real benefit of this approach is in decoupling processes
for the case of computational load imbalance.

Algorithm 5
■ Phase 1: nonblocking communication with MPI_Isend and MPI_Irecv
■ Phase 2: compute on buffer, with frequent calls to MPI_Testall
■ Phase 3: MPI_Waitall to complete send and receive operations

This algorithm is like Algorithm 4 except that it includes calls to MPI_Testall
during computation. (The purpose of this is explained in “Use of MPI_Testall” on
page 54.)

CODE EXAMPLE 4-4 Algorithm 4 Implemented in Fortran 90

subroutine compute(lda,n,x,ncompute,me,iup,idown,sum)

include ’mpif.h’

real(8) :: x(lda,*), sum
integer requests(2)

integer ibufsend, ibufrecv, ibufcomp
save ibufsend, ibufrecv, ibufcomp
data ibufsend, ibufrecv, ibufcomp / 1, 2, 3 /

! phase 1
call MPI_Isend &
 (x(:,ibufsend),n,MPI_REAL8,iup ,1,MPI_COMM_WORLD,requests(1),ier)
call MPI_Irecv &
 (x(:,ibufrecv),n,MPI_REAL8,idown,1,MPI_COMM_WORLD,requests(2),ier)

! phase 2
call compute_kernel(ncompute,n,x(:,ibufcomp),sum)

! phase 3
call MPI_Waitall(2,requests,MPI_STATUSES_IGNORE,ier)

! toggle buffers
ibuffree = ibufsend ! send buffer is now free
ibufsend = ibufcomp ! next, send what you just computed on
ibufcomp = ibufrecv ! next, compute on what you just received
ibufrecv = ibuffree ! use the free buffer to receive next

end
Chapter 4 Performance Programming 41

CODE EXAMPLE 4-5 Algorithm 5 Implemented in Fortran 90

subroutine compute(lda,n,x,ncompute,me,iup,idown,sum)
include ’mpif.h’

real(8) :: x(lda,*), sum
integer requests(2)
logical flag
integer ibufsend, ibufrecv, ibufcomp
save ibufsend, ibufrecv, ibufcomp
data ibufsend, ibufrecv, ibufcomp / 1, 2, 3 /
integer nblock0
save nblock0
data nblock0 / -1 /
character*20 nblock0_input
integer(4) iargc

! determine nblock0 first time through
if (nblock0 .eq. -1) then
 nblock0 = 1024 ! try 1024
 if (iargc() .ge. 3) then ! 3rd command-line argument overrides
 call getarg(3,nblock0_input)
 read(nblock0_input,*) nblock0
 endif
endif

! phase 1
call MPI_Isend &
 (x(:,ibufsend),n,MPI_REAL8,iup ,1,MPI_COMM_WORLD,requests(1),ier)
call MPI_Irecv &
 (x(:,ibufrecv),n,MPI_REAL8,idown,1,MPI_COMM_WORLD,requests(2),ier)

! phase 2
do i = 1, n, nblock0
 nblock = min(nblock0,n-i+1)
 call compute_kernel(ncompute,nblock,x(i,ibufcomp),sum)
 call MPI_Testall(2,requests,flag,MPI_STATUSES_IGNORE,ier)
end do

! phase 3
call MPI_Waitall(2,requests,MPI_STATUSES_IGNORE,ier)

! toggle buffers
ibuffree = ibufsend ! send buffer is now free
ibufsend = ibufcomp ! next, send what you just computed on
ibufcomp = ibufrecv ! next, compute on what you just received
ibufrecv = ibuffree ! use the free buffer to receive next

end
42 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Making a Complete Program
To make a functioning example, one of the preceding subroutines should be
combined with other source code and compiled using

% mpf90 -fast source-files -lmpi

CODE EXAMPLE 4-6 shows a sample Fortran 90 program that serves as the driver.

CODE EXAMPLE 4-6 Driver Program for Example Algorithms

program driver

include ’mpif.h’
character*20 arg
integer(4), parameter :: maxn = 500000
integer(4), parameter :: maxnbuffers = 3
integer(4) iargc
real(8) x(maxn,maxnbuffers), t

! initialize the buffers

x = 0.d0

! get the number of compute iterations from the command line

ncompute_A = 0
if (iargc() .ge. 1) then
 call getarg(1,arg)
 read(arg,*) ncompute_A
endif

ncompute_B = ncompute_A
if (iargc() .ge. 2) then
 call getarg(2,arg)
 read(arg,*) ncompute_B
endif

! initialize usual MPI stuff

call MPI_Init(ier)
call MPI_Comm_rank(MPI_COMM_WORLD, me, ier)
call MPI_Comm_size(MPI_COMM_WORLD, np, ier)
if (mod(np,2) .ne. 0) then
 print *, "expect even number of processes"
 call MPI_Finalize(ier)
 stop
endif
Chapter 4 Performance Programming 43

! pump a lot of data through to warm up buffers
call warm_up_buffers(maxn,x)

! iterations

if (me .eq. 0) write(6,’(" bytes/msg sec/iter
Mbyte/sec")’)
niter = 10
n = 0
do while (n .le. maxn)

 ! make measurement and report
 call sub(maxn,n,x,niter,ncompute_A,ncompute_B,t)
 t = t / niter
if (me .eq. 0) write(6,’(i15,2f20.6)’) 8 * n, t, 16.d-6 * n / t

 ! bump up n
 n = max(nint(1.2 * n), n + 1)

enddo

! shut down

call MPI_Finalize(ier)

end

subroutine sub(lda,n,x,niter,ncompute_A,ncompute_B,t)

include ’mpif.h’
real(8) :: x(lda,*), sum, t

! figure basic MPI parameters
call MPI_Comm_rank(MPI_COMM_WORLD, me, ier)
call MPI_Comm_size(MPI_COMM_WORLD, np, ier)

! initialize sum
sum = 0.d0

! figure nearest neighbors
idown = me - 1
iup = me + 1
if (idown .lt. 0) idown = np - 1
if (iup .ge. np) iup = 0

! start timer
call MPI_Barrier(MPI_COMM_WORLD,ier)
t = MPI_Wtime()
44 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

! loop
do iter = 1, niter

 ! induce some load imbalance
 if (iand(iter+me,1) .eq. 0) then
 ncompute = ncompute_A
 else
 ncompute = ncompute_B
 endif

 ! computation (includes communication)
 call compute(lda,n,x,ncompute,me,iup,idown,sum)

enddo

! stop timer
call MPI_Barrier(MPI_COMM_WORLD,ier)
t = MPI_Wtime() - t

! dummy check to keep compiler from optimizing all "computation"
away
if (abs(sum) .lt. -1.d0) print *, "failed dummy check"

end

subroutine compute_kernel(ncomplexity,n,x,sum)
real(8) x(n), sum, t
if (ncomplexity .eq. 0) return

! sweep over all data
do i = 1, n

 ! some elemental operation of particular complexity
 t = 1.d0
 do iloop = 1, ncomplexity
 t = t * x(i)
 enddo
 x(i) = t
 sum = sum + t

enddo

end
Chapter 4 Performance Programming 45

Note the following features of the driver program in CODE EXAMPLE 4-6:

■ Load Imbalance. The driver introduces an artificial computational load imbalance.
On average, the computational load is balanced, that is, each process performs the
same total amount of work as every other process. On any one iteration, however,

subroutine warm_up_buffers(n,x)
include ’mpif.h’
real(8) x(n,*), t

! pump a lot of data through to warm up buffers
! (ideally, use the same traffic pattern as in rest of code)
! (all this wouldn’t be necessary if MPI_WARMUP were supported)

! usual MPI stuff
call MPI_Comm_rank(MPI_COMM_WORLD, me, ier)
call MPI_Comm_size(MPI_COMM_WORLD, np, ier)

! figure nearest neighbors
idown = me - 1
iup = me + 1
if (idown .lt. 0) idown = np - 1
if (iup .ge. np) iup = 0

! figure number of iterations
nMB = 500 ! MB that should be enough to run through
all buffers
niter = nMB * 1024 * 1024 ! convert to byte
niter = niter / (8 * n) ! convert to number of iterations

! iterate
if (me .eq. 0) write(6,’(" Mbyte Mbyte/sec")’)
if (me .eq. 0) write(6,’(" (to date) (this
round)")’)
do i = 1, niter
 call MPI_Barrier(MPI_COMM_WORLD,ier)
 t = MPI_Wtime()
 call MPI_Sendrecv(x(:,1),n,MPI_REAL8,iup ,1, &
 x(:,2),n,MPI_REAL8,idown,1, &
 MPI_COMM_WORLD,MPI_STATUS_IGNORE,ier)
 call MPI_Barrier(MPI_COMM_WORLD,ier)
 call MPI_Barrier(MPI_COMM_WORLD,ier)
 t = MPI_Wtime() - t
if (me .eq. 0) write(6,’(2f20.6)’) 8.d-6 * i * n, 8.d-6 * n / t

end do

end
46 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

the processes will have different amounts of work. In particular, on one iteration,
every other process will do less work and the remaining processes will do more
work. The processes switch roles on every iteration.

■ Multiple Buffering. Some of the algorithms use multiple buffering. To keep the
subroutine interfaces all the same, all the code examples support multiple buffers,
even for the algorithms that do not use the additional buffers.

■ Bandwidth Reporting. The code reports a Mbyte/sec bandwidth, but this figure
also includes time for computation and is not, strictly speaking, just a
measurement of communication performance.

■ Buffer Warmup. The subroutine warm_up_buffers passes a series of messages to
make sure that MPI internal buffers are touched and ready for fast reuse.
Otherwise, spurious performance effects can result when particular buffers are
used for the first time.

Timing Experiments With the Algorithms
You can construct a functioning test code by choosing one of the preceding
algorithms and then compiling and linking it together with the driver code.

This section shows sample results for the various algorithms running as 4 MPI
processes on a Sun Fire 6800 server with 900-MHz CPUs and a 8-Mbyte L2 cache.
The command line for program execution is:

% mprun -np 4 a.out
Chapter 4 Performance Programming 47

Baseline Results

FIGURE 4-3 shows bandwidth as a function of message size for Algorithms 1 and 2.

FIGURE 4-3 Bandwidth as a function of message size for Algorithms 1 and 2

Algorithm 2 proves to be slower than Algorithm 1. This is because
MPI_Sendrecv_replace entails extra copying to “replace” data into a single
buffer. Further, Sun MPI has special optimizations that cut particular overheads for
standard MPI_Send and MPI_Recv calls, which is especially noticeable at small
message sizes.

For Algorithm 1, the program reports about 700 Mbytes/s bandwidth for reasonably
long messages. Above roughly 24 Kbyte, however, messages complete only due to
general polling and the performance impact of processing unexpected messages can
be seen in the figure.
48 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Directed Polling

Now, let us rerun this experiment with directed polling. This is affected by turning
general polling off:

It is generally good practice to unset environment variables after each experiment so
that settings do not persist inadvertently into subsequent experiments.

FIGURE 4-4 shows the resulting bandwidth as a function of message size.

FIGURE 4-4 Bandwidth as a function of message size with directed polling

Although it is difficult to make a direct comparison with the previous figure, it is
clear that direct polling has improved the bandwidth values across the range of
message sizes. This is because directed polling leads to more efficient message
passing. Time is not used up in searching all connections needlessly.

The highest bandwidth is delivered by Algorithm 1, but it deadlocks when the
message size reaches 24 Kbytes. At this point, the standard send MPI_Send no
longer is simply depositing its message into internal buffers and returning. Instead,

% setenv MPI_POLLALL 0
% mprun -np 4 a.out
% unsetenv MPI_POLLALL
Chapter 4 Performance Programming 49

the receiver is expected to start reading the message out of the buffers before the
sender can continue. With general polling (see “Baseline Results” on page 48),
processes drained the buffers even before receives were posted.

Algorithm 2 also benefits in performance from directed polling, and it provides an
MPI-compliant way of passing the messages. That is, it proceeds deadlock-free even
as the messages are made very large. Nevertheless, due to extra internal buffering
and copying to effect the "replace" behavior of the MPI_Sendrecv_replace
operation, this algorithm has the worst performance of the four.

Algorithm 3 employs MPI_Sendrecv and double buffering to eliminate the extra
internal buffering and copying. Algorithm 4 employs nonblocking operations. These
are fast and avoid deadlock..

Now, let us examine how Algorithm 4, employing nonblocking operations, fares
once processes have drifted out of tight synchronization because of computational
load imbalances.

Here, we run:

The driver routine shown earlier (CODE EXAMPLE 4-6) picks up the command-line
arguments (1 200) to induce an artificial load imbalance among the MPI processes.

CODE EXAMPLE 4-5 shows bandwidth as a function of message size when
nonblocking operations are used.

% setenv MPI_POLLALL 0
% mprun -np 4 a.out 1 200
% unsetenv MPI_POLLALL
50 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE 4-5 Bandwidth as a function of message size with nonblocking operations

While Algorithm 3 (MPI_Sendrecv) is comparable to Algorithm 4 (MPI_Isend,
MPI_Irecv, MPI_Waitall) for synchronized processes, the nonblocking operations
in Algorithm 4 offer the potential to decouple the processes and improve
performance when there is a computational load imbalance.

The reported bandwidths are substantially decreased because they now include non-
negligible computation times.

The internal buffering of Sun MPI becomes congested at longest message sizes,
however, making the two algorithms perform equally. This behavior sets in at 24
Kbytes.

Increasing Sun MPI Internal Buffering

Twice now, we have seen that the internal buffering becomes congested at 24 Kbytes.
This leads to deadlock in the case of Algorithm 1 and directed polling. It also leads
to synchronization of processes with Algorithm 4, even though that algorithm
employs nonblocking operations.

Note that Sun MPI has access to multiple protocol modules (PMs) to send messages
over different hardware substrates. For example, two processes on the same SMP
node exchange messages via the SHM (shared-memory) PM. If the two processes
Chapter 4 Performance Programming 51

were on different nodes of a cluster interconnected by some commodity network,
they would exchange messages via the TCP (standard Transmission Control
Protocol) PM. The 24-Kbyte limit we are seeing is specific to the SHM PM.

However, the 24-Kbyte SHM PM buffers can become congested. Buffer sizes might
be controlled with MPI_SHM_CPOOLSIZE, whose default value is 24576, or
MPI_SHM_SBPOOLSIZE. More information about cyclic message passing and SHM
PM buffers might be found in Appendix A. More information about the associated
environment variables might be found in Appendix B.

Now, we rerun with:

Here, we have set the environment variables not only to employ direct polling, but
also to increase internal buffering.

FIGURE 4-6 shows bandwidth as a function of message size for the case of highly
synchronized processes (the command line specifying a.out without additional
arguments).

% setenv MPI_POLLALL 0
% setenv MPI_SHM_SBPOOLSIZE 20000000
% setenv MPI_SHM_NUMPOSTBOX 2048
% mprun -np 4 a.out
% mprun -np 4 a.out 1 200
% unsetenv MPI_POLLALL
% unsetenv MPI_SHM_SBPOOLSIZE
% unsetenv MPI_SHM_NUMPOSTBOX
52 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE 4-6 Bandwidth as a function of message size with highly synchronized processes

Having increased the buffering, we see that our illegal Algorithm 1 no longer
deadlocks and is once again the performance leader. Strictly speaking, of course, it is
still not MPI-compliant and its use remains nonrobust. Algorithm 2, using
MPI_Sendrecv_replace, remains the slowest due to extra buffering and copying.

FIGURE 4-7 shows bandwidth as a function of message size for the case of load
imbalance (the command line specifying a.out 1 200). Once a computational load
imbalance is introduced, Algorithm 4, employing nonblocking operations, becomes
the clear leader. All other algorithms are characterized by imbalanced processes
advancing in lockstep.
Chapter 4 Performance Programming 53

FIGURE 4-7 Bandwidth as a function of message size with load imbalance

Use of MPI_Testall

In some cases, for whatever reason, it is not possible to increase Sun MPI internal
buffering sufficiently to hold all in-transit messages. For such cases, we can use
Algorithm 5, which employs MPI_Testall calls to progress these messages. (For
more information on progressing messages, see Progress Engine in Appendix A.)

Here, we run with:

% setenv MPI_POLLALL 0
% mprun -np 4 a.out 1 200 128
% mprun -np 4 a.out 1 200 256
% mprun -np 4 a.out 1 200 384
% mprun -np 4 a.out 1 200 512
% mprun -np 4 a.out 1 200 1024
% mprun -np 4 a.out 1 200 2048
% mprun -np 4 a.out 1 200 4096
% mprun -np 4 a.out 1 200 8192
% mprun -np 4 a.out 1 200 10240
% mprun -np 4 a.out 1 200 12288
% mprun -np 4 a.out 1 200 16384
% unsetenv MPI_POLLALL
54 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

The third command-line argument to a.out specifies, in some way, the amount of
computation to be performed between MPI_Testall calls.

This is a slightly unorthodox use of MPI_Testall. The standard use of MPI_Test
and its variants is to test whether specified messages have completed. The use of
MPI_Testall here, however, is to progress all in-transit messages, whether
specified in the call or not.

FIGURE 4-8 plots bandwidth against message size for the various frequencies of
MPI_Testall calls.

FIGURE 4-8 Bandwidth as a function of message size with MPI_Testall calls

There are too many curves to distinguish individually, but the point is clear. While
performance used to dip at 24 Kbytes, introducing MPI_Testall calls in concert
with nonblocking message-passing calls has maintained good throughput, even as
messages grow to be orders of magnitude beyond the size of the internal buffering.
Below the 24-Kbyte mark, of course, the MPI_Testall calls are not needed and do
not impact performance materially.

Another view of the data is offered in FIGURE 4-9. This figure plots bandwidth as a
function of the amount of computation performed between MPI_Testall calls.
Chapter 4 Performance Programming 55

FIGURE 4-9 Bandwidth as a function of computation between MPI_Testall calls

For clarity, FIGURE 4-9 shows only two message sizes: 64 Kbyte and 1 Mbyte. We see
that if too little computation is performed, then slight inefficiencies are introduced.
More drastic is what happens when too much computation is attempted between
MPI_Testall calls. Then, messages are not progressed sufficiently and long wait
times lead to degraded performance.

To generalize, if MPI_Testall is called too often, it becomes ineffective at
progressing messages. So, the optimal amount of computation between
MPI_Testall calls should be large compared with the cost of an ineffective
MPI_Testall call, which is on order of roughly 1 microsecond.

When MPI_Testall is called too seldom, interprocess synchronization can induce a
severe degradation in performance. As a rule of thumb, the time it takes to fill or
deplete MPI buffers sets the upper bound for how much computation to perform
between MPI_Testall calls. These buffers are typically on order of tens of Kbytes,
memory bandwidths are on order of hundreds of Mbyte/sec. Thus, the upper bound
is some fraction of a millisecond.

These are rough rules of thumb, but they indicate that there is a wide range of nearly
optimal frequencies for MPI_Testall calls.

Nevertheless, such techniques can be difficult to employ in practice. Challenges
include restructuring communication and computation to post nonblocking sends
and receives as early as possible while completing them as late as possible and
injecting progress-inducing calls effectively.
56 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

CHAPTER 5

One-Sided Communication

This chapter describes performance issues related to MPI-2 standard one-sided
communication:

■ “Introducing One-Sided Communication” on page 57
■ “Comparing Two-Sided and One-Sided Communications” on page 58
■ “Basic Sun MPI Performance Advice” on page 58
■ “Case Study: Matrix Transposition” on page 59

Introducing One-Sided Communication
The most common use of MPI calls is for two-sided communication. That is, if data
moves from one process address space to another, the data movement has to be
specified on both sides: the sender’s and the receiver’s. For example, on the sender’s
side, it is common to use MPI_Send() or MPI_Isend() calls. On the receiver’s side,
it is common to use MPI_Recv() or MPI_Irecv() calls. An MPI_Sendrecv() call
specifies both a send and a receive.

Even collective calls, such as MPI_Bcast(), MPI_Reduce(), and
MPI_Alltoall(), require that every process that contributes or receives data must
explicitly do so with the correct MPI call.

The MPI-2 standard introduces one-sided communication. Notably, MPI_Put() and
MPI_Get() allow a process to access another process address space without any
explicit participation in that communication operation by the remote process.
57

Comparing Two-Sided and One-Sided
Communications
In selected circumstances, one-sided communication offers several advantages:

■ They can reduce synchronization and so improve performance. Note that two-sided
communication implies some degree of synchronization. For example, a receive
operation cannot complete before the corresponding send has started.

Further, because a sender cannot usually write directly into a receiver’s address
space, some intermediate buffer is likely to be used. If such buffering is small
compared to the data volume, additional synchronization occurs whenever the
sender must wait for the receiver to free up buffering. With one-sided
communication, you must still specify synchronization to order memory
operations, but you can amortize a single synchronization over many data
movements.

■ They can reduce data movement. As noted, two-sided communication sometimes
introduces extra intermediate buffering, incurring extra data movement. An
example of this would be an MPI program running on a large, shared-memory
server. Interprocess communication usually depends upon having senders write
to a shared-memory area and having receivers read from that area. This action
requires twice as much data movement compared to the case where processes
write directly to one another’s address spaces. That extra data movement can
affect aggregate backplane bandwidth, a critical resource in larger shared-
memory servers.

■ They can simplify programming. Note that information about a data transfer must
be known and specified on only one side of the transfer, instead of two. This
information is especially useful for dynamic, unstructured computations, where
the traffic patterns change over the course of the computation.

Basic Sun MPI Performance Advice
Observe two principles to get good performance with one-sided communication
with Sun MPI:

1. When creating a window (choosing what memory to make available for one-sided
operations), use memory that has been allocated with the MPI_Alloc_mem
routine. This suggestion in the MPI-2 standard benefits Sun MPI users:

http://www.mpi-forum.org/docs/mpi-20-html/node119.htm#Node119
58 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

2. Use one-sided communication over the shared memory (SHM) protocol module.
That is, use one-sided communication between MPI ranks that share the same
shared-memory node. Protocol modules are chosen by Sun MPI at runtime and
can be checked by setting the environment variable MPI_SHOW_INTERFACES=2
before launching your MPI job.

Further one-sided performance considerations for Sun MPI are discussed in
Appendix A and Appendix B.

Case Study: Matrix Transposition
This section illustrates some of the advantages of one-sided communication with a
particular example: matrix transposition. While one-sided communication is
probably best suited for dynamic, unstructured computations, matrix transposition
offers a relatively simple illustration.

Matrix transposition refers to the exchange of the axes of a rectangular array, flipping
the array about the main diagonal. For example, in FIGURE 5-1, after a transposition
the array shown on the left side becomes the array shown on the right:

FIGURE 5-1 Matrix Transposition

There are many ways of distributing elements of a matrix over the address spaces of
multiple MPI processes. Perhaps the simplest is to distribute one axis in a block
fashion. For example, our example transposition might appear distributed over two
MPI processes (process 0 (p 0), and process 1 (p 1)) such as in FIGURE 5-2:

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
Chapter 5 One-Sided Communication 59

FIGURE 5-2 Matrix Transposition, Distributed Over Two Processes

The ordering of multidimensional arrays within a linear address space varies from
one programming language to another. A Fortran programmer, though, might think
of the preceding matrix transposition as looking like FIGURE 5-3:

FIGURE 5-3 Matrix Transposition, Distributed Over Two Processes (Fortran Perspective)

In the final matrix, as shown in FIGURE 5-4, elements that have stayed on the same
process show up in bold font, while elements that have moved between processes
are underlined.

These transpositions move data between MPI processes. Note that no two matrix
elements that start out contiguous end up contiguous. There are several strategies to
effecting the interprocess data movement:

■ Move one matrix element at a time. This strategy tends to introduce a lot of
overhead and, therefore, performance penalties.

■ Aggregate data locally within each MPI process, then move big blocks of matrix
elements between processes, and finally rearrange data locally within each MPI
process afterwards. This method makes the interprocess data movement relatively
efficient, but entails a great deal of local data movement before and after the
interprocess step.

p 0 p 1

1 5
2 6
3 7
4 8

9 13
10 14
11 15
12 16

p 0 p 1

1 2
5 6
9 10
13 14

3 4
7 8
11 12
15 16

p 0 p1

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

p 0 p 1

1
5
9
13
2
6
10
14

3
7
11
15
4
8
12
16
60 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

■ Move intermediate-size blocks of data between processes and do a moderate
amount of local data rearrangement. This in-between approach is possible
because there is some contiguity among data elements that travel between
common MPI processes.

FIGURE 5-4 is an example of maximal aggregation for our 4x4 transposition:

FIGURE 5-4 Matrix Transposition, Maximal Aggregation for 4X4 Transposition

Test Program A
Program A, shown in CODE EXAMPLE 5-1:

■ Aggregates data locally.

■ Establishes interprocess communication using a two-sided collective call
MPI_Alltoall().

■ Rearranges data locally using the call DTRANS(), the optimized transpose in the
Sun Performance Library.

CODE EXAMPLE 5-1 Test Program A

include “mpif.h”

real(8), allocatable, dimension(:) :: a, b, c, d
real(8) t0, t1, t2, t3

p 0 p 1

1 9

2 10

5 13

6 14

3 11

4 12

7 15

8 16

p 0 p 1

1 3

2 4

5 7

6 8

9 11

10 12

13 15

14 16

p0 p 1

1 9

2 10

3 11

4 12

5 13

6 14

7 15

8 16

p 0 p 1

1 3

5 7

9 11

13 15

2 4

6 8

10 12

14 16

Aggregate
Data

Move Data Rearrange
Data
Locally

From
Process
To Process

Locally
Chapter 5 One-Sided Communication 61

! initialize parameters
call init(me,np,n,nb)

! allocate matrices
allocate(a(nb*np*nb))
allocate(b(nb*nb*np))
allocate(c(nb*nb*np))
allocate(d(nb*np*nb))

! initialize matrix
call initialize_matrix(me,np,nb,a)

! timing
do itime = 1, 10
 call MPI_Barrier(MPI_COMM_WORLD,ier)
 t0 = MPI_Wtime()

 ! first local transpose
 do k = 1, nb
 do j = 0, np - 1
 ioffa = nb * (j + np * (k-1))
 ioffb = nb * ((k-1) + nb * j)
 do i = 1, nb
 b(i+ioffb) = a(i+ioffa)
 enddo
 enddo
 enddo

 t1 = MPI_Wtime()

 ! global all-to-all
call MPI_Alltoall(b, nb*nb, MPI_REAL8, &

c, nb*nb, MPI_REAL8, MPI_COMM_WORLD, ier)
t2 = MPI_Wtime()

 ! second local transpose
call dtrans(‘o’, 1.d0, c, nb, nb*np, d)
call MPI_Barrier(MPI_COMM_WORLD,ier)

 t3 = MPI_Wtime()

if (me .eq. 0) &
write(6,’(f8.3,” seconds; breakdown on proc 0 = ”,3f10.3)’) &
t3 - t0, t1 - t0, t2 - t1, t3 - t2

enddo

! check
call check_matrix(me,np,nb,d)

CODE EXAMPLE 5-1 Test Program A (Continued)
62 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Test Program B
Program B, shown in CODE EXAMPLE 5-2:

■ Aggregates data locally.

■ Establishes interprocess communication using a series of one-sided MPI_Put()
calls.

■ Rearranges data locally using a DTRANS() call.

Test program B should outperform test program A because one-sided interprocess
communication can write more directly to a remote process address space.

deallocate(a)
deallocate(b)
deallocate(c)
deallocate(d)

call MPI_Finalize(ier)
end

CODE EXAMPLE 5-2 Test Program B

include “mpif.h”

integer(kind=MPI_ADDRESS_KIND) nbytes
integer win
real(8) c(*)
pointer (cptr,c)

real(8), allocatable, dimension(:) :: a, b, d
real(8) t0, t1, t2, t3

! initialize parameters
call init(me,np,n,nb)
! allocate matrices
allocate(a(nb*np*nb))
allocate(b(nb*nb*np))
allocate(d(nb*np*nb))

nbytes = 8 * nb * nb * np
call MPI_Alloc_mem(nbytes, MPI_INFO_NULL, cptr, ier)
if (ier .eq. MPI_ERR_NO_MEM) stop

! create window
call MPI_Win_create(c, nbytes, 1, MPI_INFO_NULL, MPI_COMM_WORLD, win, ier)

CODE EXAMPLE 5-1 Test Program A (Continued)
Chapter 5 One-Sided Communication 63

! initialize matrix
call initialize_matrix(me,np,nb,a)

! timing
do itime = 1, 10
 call MPI_Barrier(MPI_COMM_WORLD,ier)
 t0 = MPI_Wtime()

 ! first local transpose
 do k = 1, nb
 do j = 0, np - 1
 ioffa = nb * (j + np * (k-1))
 ioffb = nb * ((k-1) + nb * j)
 do i = 1, nb
 b(i+ioffb) = a(i+ioffa)
 enddo

enddo
enddo
t1 = MPI_Wtime()

! global all-to-all
call MPI_Win_fence(0, win, ier)
do ip = 0, np - 1

nbytes = 8 * nb * nb * me
call MPI_Put(b(1+nb*nb*ip), nb*nb, MPI_REAL8, ip, nbytes, &

nb*nb, MPI_REAL8, win, ier)
enddo
call MPI_Win_fence(0, win, ier)
t2 = MPI_Wtime()

! second local transpose
call dtrans(‘o’, 1.d0, c, nb, nb*np, d)

 call MPI_Barrier(MPI_COMM_WORLD,ier)
 t3 = MPI_Wtime()
if (me .eq. 0) &

write(6,’(f8.3,” seconds; breakdown on proc 0 = ”,3f10.3)’) &
t3 - t0, t1 - t0, t2 - t1, t3 - t2

enddo

! check
call check_matrix(me,np,nb,d)

! deallocate matrices and stuff
call MPI_Win_free(win, ier)

CODE EXAMPLE 5-2 Test Program B (Continued)
64 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Test Program C
Program C, shown in CODE EXAMPLE 5-3:

■ Performs no data aggregation before the interprocess communication.

■ Establishes interprocess communication using numerous small MPI_Put() calls.

■ Rearranges data locally using a DTRANS() call.

Test program C should outperform test program B because program C eliminates
aggregation before the interprocess communication. Such a strategy would be more
difficult to implement with two-sided communication, which would have to make
trade-offs between programming complexity and increased interprocess
synchronization.

deallocate(a)
deallocate(b)
deallocate(d)
call MPI_Free_mem(c, ier)

call MPI_Finalize(ier)
end

CODE EXAMPLE 5-3 Test Program C

include “mpif.h”

integer(kind=MPI_ADDRESS_KIND) nbytes
integer win
real(8) c(*)
pointer (cptr,c)

real(8), allocatable, dimension(:) :: a, b, d
real(8) t0, t1, t2, t3

! initialize parameters
call init(me,np,n,nb)

! allocate matrices
allocate(a(nb*np*nb))
allocate(b(nb*nb*np))
allocate(d(nb*np*nb))

nbytes = 8 * nb * nb * np
call MPI_Alloc_mem(nbytes, MPI_INFO_NULL, cptr, ier)
if (ier .eq. MPI_ERR_NO_MEM) stop

CODE EXAMPLE 5-2 Test Program B (Continued)
Chapter 5 One-Sided Communication 65

! create window
call MPI_Win_create(c, nbytes, 1, MPI_INFO_NULL, MPI_COMM_WORLD, win, ier)

! initialize matrix
call initialize_matrix(me,np,nb,a)

! timing
do itime = 1, 10
 call MPI_Barrier(MPI_COMM_WORLD,ier)
 t0 = MPI_Wtime()
 t1 = t0

 ! combined local transpose with global all-to-all
 call MPI_Win_fence(0, win, ier)
 do ip = 0, np - 1
 do ib = 0, nb - 1

nbytes = 8 * nb * (ib + nb * me)
call MPI_Put(a(1+nb*ip+nb*np*ib), nb, MPI_REAL8, ip, nbytes, &

nb, MPI_REAL8, win, ier)
 enddo
 enddo
 call MPI_Win_fence(0, win, ier)

t2 = MPI_Wtime()

 ! second local transpose
 call dtrans(‘o’, 1.d0, c, nb, nb*np, d)

 call MPI_Barrier(MPI_COMM_WORLD,ier)
 t3 = MPI_Wtime()

if (me .eq. 0) &
write(6,’(f8.3,” seconds; breakdown on proc 0 = ”,3f10.3)’) &
t3 - t0, t1 - t0, t2 - t1, t3 - t2

enddo

! check
call check_matrix(me,np,nb,d)

! deallocate matrices and stuff
call MPI_Win_free(win, ier)
deallocate(a)
deallocate(b)
deallocate(d)
call MPI_Free_mem(c, ier)

CODE EXAMPLE 5-3 Test Program C (Continued)
66 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Test Program D
Program D, shown in CODE EXAMPLE 5-4:

■ Performs no data aggregation before the interprocess communication.

■ Establishes interprocess communication using very numerous small MPI_Put()
calls.

■ Rearranges no data after the interprocess communication call.

Test program D eliminates all local data movement before and after the interprocess
step, but it is slow because it moves all the data one matrix element at a time.

call MPI_Finalize(ier)
end

CODE EXAMPLE 5-4 Test Program D

include “mpif.h”

integer(kind=MPI_ADDRESS_KIND) nbytes
integer win
real(8) c(*)
pointer (cptr,c)

real(8), allocatable, dimension(:) :: a, b, d
real(8) t0, t1, t2, t3

! initialize parameters
call init(me,np,n,nb)

! allocate matrices
allocate(a(nb*np*nb))
allocate(b(nb*nb*np))
allocate(d(nb*np*nb))

nbytes = 8 * nb * nb * np
call MPI_Alloc_mem(nbytes, MPI_INFO_NULL, cptr, ier)
if (ier .eq. MPI_ERR_NO_MEM) stop

! create window
call MPI_Win_create(c, nbytes, 1, MPI_INFO_NULL, MPI_COMM_WORLD, win, ier)

! initialize matrix
call initialize_matrix(me,np,nb,a)

CODE EXAMPLE 5-3 Test Program C (Continued)
Chapter 5 One-Sided Communication 67

! timing
do itime = 1, 10
 call MPI_Barrier(MPI_COMM_WORLD,ier)
 t0 = MPI_Wtime()
 t1 = t0

 ! combined local transpose with global all-to-all
 call MPI_Win_fence(0, win, ier)
 do ip = 0, np - 1
 do ib = 0, nb - 1
 do jb = 0, nb - 1

nbytes = 8 * (ib + nb * (me + np * jb))
call MPI_Put(a(1+jb+nb*(ip+np*ib)), 1, MPI_REAL8, ip,nbytes, &

1, MPI_REAL8, win, ier)
 enddo
 enddo
 enddo
 call MPI_Win_fence(0, win, ier)

call MPI_Barrier(MPI_COMM_WORLD,ier)
 t2 = MPI_Wtime()
 t3 = t2

if (me .eq. 0) &
write(6,’(f8.3,” seconds; breakdown on proc 0 = ”,3f10.3)’) &
t3 - t0, t1 - t0, t2 - t1, t3 - t2

enddo

! check
call check_matrix(me,np,nb,c)

! deallocate matrices and stuff
call MPI_Win_free(win, ier)
deallocate(a)
deallocate(b)
deallocate(d)
call MPI_Free_mem(c, ier)

call MPI_Finalize(ier)
end

CODE EXAMPLE 5-4 Test Program D (Continued)
68 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Utility Routines
Test programs A, B, C, and D use the utility routines shown in CODE EXAMPLE 5-5,
CODE EXAMPLE 5-6, and CODE EXAMPLE 5-7 to initialize parameters, initialize the test
matrix, and check the transposition.

CODE EXAMPLE 5-5 The init Subroutine

subroutine init(me,np,n,nb)

include “mpif.h”

! usual MPI preamble
call MPI_Init(ier)
call MPI_Comm_rank(MPI_COMM_WORLD, me, ier)
call MPI_Comm_size(MPI_COMM_WORLD, np, ier)

! get matrix rank n
if (me .eq. 0) then
 write(6,*) “matrix rank n?”
 read(5,*) n
 if (mod(n,np) .ne. 0) then
 n = np * (n / np)
 write(6,*) “specified matrix rank not a power of np =”, np
 write(6,*) “using n =”, n
 endif
endif
call MPI_Bcast(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ier)
nb = n / np

end

CODE EXAMPLE 5-6 The initialize_matrix Subroutine

subroutine initialize_matrix(me,np,nb,x)

real(8) x(*)

n = nb * np

do k = 1, nb
do j = 0, np - 1
do i = 1, nb
 l2 = k + nb * me
Chapter 5 One-Sided Communication 69

 l1 = i + nb * j
 x(i+nb*(j+np*(k-1))) = l1 + n * (l2 - 1)
enddo
enddo
enddo

end

CODE EXAMPLE 5-7 The check_matrix Subroutine

subroutine check_matrix(me,np,nb,x)

include “mpif.h”

real(8) x(*), error_local, error_global

n = nb * np

error_local = 0
do k = 1, nb
do j = 0, np - 1
do i = 1, nb
l2 = k + nb * me
 l1 = i + nb * j
 error_local = error_local + &

abs(x(i+nb*(j+np*(k-1))) - (l2 + n * (l1 - 1)))
enddo
enddo
enddo
call MPI_Allreduce(error_local,error_global,1, &

MPI_REAL8,MPI_SUM,MPI_COMM_WORLD,ier)
if (me .eq. 0) write(6,*) “error:”, error_global

end

CODE EXAMPLE 5-6 The initialize_matrix Subroutine (Continued)
70 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Timing
Here are sample timings for the three factors on an (older-generation) Sun Enterprise
6000 server. An 8192x8192 matrix of 8-byte (64-bit) elements is transposed using 16
CPUs (that is, distributed over MPI processes).

Note that test program B is twice as fast in interprocess communication as test
program A. This increased speed is because two-sided communication on a shared-
memory server, while efficient, still moves data into a shared-memory area and then
out again. In contrast, one-sided communication moves data directly from the
address space of one process into that of the other. The aggregate bandwidth of the
interprocess communication step for the one-sided case is:

8192 x 8192 x 8 byte / 0.466 seconds = 1.1 Gbyte/second

which is very close to the maximum theoretical value supported by this server (half
of 2.6 Gbyte/second).

Further, the cost of aggregating data before the interprocess communication step can
be eliminated, as demonstrated in test program C. This change adds a modest
amount of time to the interprocess communication step, presumably due to the
increased number of MPI_Put() calls that must be made. The most important
advantage of this technique is that it eliminates the task of balancing the extra
programming complexity and interprocess synchronization that two-sided
communication requires.

Test program D allows complete elimination of the two local steps, but at the cost of
moving data between processes one element at a time. The huge increase in runtime
is evident in the timings. The issue here is not just overheads in interprocess data
movement, but also the prohibitive cost of accessing single elements in memory
rather than entire cache lines.

Program Total (seconds) Local
Aggregation

Interprocess
Communication

Local DTRANS()
Call

A 2.109 0.585 0.852 0.673

B 1.797 0.587 0.466 0.744

C 1.177 0.000 0.430 0.747

D 4.908 0.000 4.908 0.000
Chapter 5 One-Sided Communication 71

72 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

CHAPTER 6

Compilation and Linking

This chapter describes the Sun compiler switches that typically give the best
performance for Sun MPI programs:

■ “Compiler Version” on page 73
■ “The mp* Utilities” on page 74
■ “The –fast Switch” on page 74
■ “The –xarch Switch” on page 75
■ “The –xalias Switch” on page 75
■ “The –g Switch” on page 76
■ “Other Useful Switches” on page 76

For more detailed information on compilation, refer to the following:

■ The documentation and man pages that accompany your compiler
■ The man pages for the Sun HPC ClusterTools utilities mpf90, mpcc, and mpCC
■ Techniques For Optimizing Applications: High Performance Computing, by Rajat Garg

and Ilya Shapov, Prentice-Hall, 2001, ISBN: 0-13-093476-3

Compiler Version
The simplest way to get the best performance from a compiler and associated
libraries is to use the latest available version. The Sun Studio Compiler Collection
software releases 8, 9, 10, and 11 are supported for the Sun HPC ClusterTools 6 suite.
73

The mp* Utilities
Sun HPC ClusterTools programs can be written for and compiled by the Fortran 77,
Fortran 90, C, or C++ compilers. Although you can invoke these compilers directly,
you might prefer to use the convenience scripts mpf77, mpf90, mpcc, and mpCC,
provided with Sun HPC ClusterTools software.

This chapter describes the basic compiler switches that typically give best
performance. The discussion centers around the mpf90 and mpcc scripts, but it
applies equally to the various scripts and aliases just mentioned. For example, you
can use:

% mpf90 –fast –xalias=actual –g a.f –lmpi

to compile a Fortran program that uses Sun MPI.

For more detailed information, refer to the Sun HPC ClusterTools User’s Guide.

The –fast Switch
The single most useful compilation switch for performance, is –fast. This macro
expands to settings that are appropriate for high performance for a general set of
circumstances. Because its expansion varies from one compiler release to another,
you might prefer to specify the underlying switches explicitly. To see what the
–fast switch expands to in the current release, use the –v option with Fortran or
the –# option with C for verbose compilation output.

Part of the –fast switch is –xtarget=native, which directs the compiler to try to
produce optimal code for the platform on which compilation is taking place. If you
compile on the same type of platform that you expect to run on, then this setting is
appropriate. (A compile-time warning might remind you that the resulting binary
will not be compatible with older processors.)

Otherwise, specify the target platform with the –xtarget switch. The compiler man
page (f90, cc, or CC) gives the legal values of the –xtarget switch.The –xtarget
macro then expands into appropriate values of the –xarch, –xchip, and –xcache
switches. It might suffice simply to specify the target instruction set architecture
with the –xarch switch, as discussed next.

If you compile with the –fast switch and link in a separate step, be sure to link
with the –fast switch.
74 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

If a Fortran program makes calls to the Sun MPI library, all its objects must have
been compiled with the –dalign switch. This requirement is automatically satisfied
when you compile with the –fast switch.

The –xarch Switch
The second most important compiler switch for maximizing performance is –xarch.
While the –fast switch picks many performance-oriented settings by default, you
should specify a value for the –xarch switch if you are compiling for a processor
type that is different from the compilation system. Further, if you want 64-bit
addressing for large-memory applications, then the –xarch argument is required to
specify the format of the executable.

■ Specify –xarch=v8plusa for 32-bit object binaries for UltraSPARC II processors.
■ Specify –xarch=v9a for 64-bit object binaries for UltraSPARC II processors.
■ Specify –xarch=v8plusb for 32-bit binaries for UltraSPARC III processors.
■ Specify –xarch=v9b for 64-bit binaries for UltraSPARC III processors.
■ Specify -xarch=v9 for 64-bit binaries for UltraSPARC IV and IV+ processors.
■ Specify -xarch=amd64 for 64-bit binaries for the AMD Opteron x64 processors.

Note when using the –xarch switch, object files in 64-bit format can be linked only
with other object files in the same format.

The –fast switch should appear before the –xarch switch on the compile or link
line, as shown in the examples in this chapter. If you compile with the –xarch
switch and then link in a separate step, be sure to link with the same setting.

The –xalias Switch
Sun MPI programs compiled using the Sun Studio Compiler Collection, Fortran
compiler should be compiled with –xalias=actual.

This recommendation arises because the MPI Fortran binding is inconsistent with
the Fortran 90 standard in several respects. This is documented in the MPI 2
standard,

http://www-unix.mcs.anl.gov/mpi/mpi-standard/
mpi-report-2.0/node19.htm#Node19

Specifically, see the discussion of "A Problem with Register Optimization."
Chapter 6 Compilation and Linking 75

This recommendation applies to the use of high levels of compiler optimization. A
highly optimizing Fortran compiler could break MPI codes that use nonblocking
operations.

While failures are unlikely, they can occur. The failure modes can be varied and
insidious:

■ Silently incorrect answers
■ Intermittent and mysterious floating-point exceptions
■ Intermittent and mysterious hangs

The –g Switch
With most compilers, the –g switch is not thought of as a performance switch. On
the contrary, the –g switch has traditionally inhibited compiler optimizations.

With the Sun compilers, however, there is virtually no loss of performance with this
switch. Further, –g compilation enables source-code annotation by the Performance
Analyzer, which provides important performance-tuning information. Thus, the –g
switch might be considered one of the basic switches to use in performance-tuning
work.

Other Useful Switches
Performance benefits from linking in the optimized math library. For Fortran, the
–fast switch invokes –xlibmopt automatically. For C, be sure to add the –lmopt
switch to your link line (as shown in the following example):

Include the argument –xvector[=yes] if math library intrinsics, such as
logarithm, exponentiation, or trigonometric functions, appear inside long loops. This
will make calls to the optimized vector math library. If you compile with the
–xvector[=yes] argument, then include this switch on your link line to link in the
vector library. The –fast switch might already include –xvector for Fortran
compilation, but not for C.

The use of data prefetch can help hide the cost of loading data from memory.
Compile with the –xprefetch switch to enable compiler generation of prefetch
instructions. The –fast switch (typically) already includes –xprefetch for Fortran

% mpcc –fast –g –o a.out a.c –lmpi –lmopt
76 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

compilation, but not for C. Sometimes, the –xprefetch switch can slow
performance, so it might best be used selectively. For example, you can compile
some files with the –xprefetch[=yes] argument and some with –xprefetch=no.
Or, for even greater selectivity, annotate your source code with prefetch pragmas or
directives. For more information, see the compiler user guides.

C programmers should consider using the –xrestrict switch, which causes the
compiler to treat pointer-valued function parameters as restricted pointers. Other
information about pointer aliasing can be provided to the compiler by using the
argument –xalias_level. Refer to the C User’s Guide for more details.

C programmers should also consider the switch –xsfpconst if they largely perform
floating-point arithmetic to 32-bit precision. Note that in C, floating-point constants
are treated as double-precision values unless they are explicitly declared as floats.
For example, in the expression a=1.0/b, the constant is treated as a double
precision value, regardless of the types of a and b. This condition might lead to
unintended numeric conversions and other performance implications. You can
rewrite the expression as a=1.0f/b. Alternatively, you can compile with the
–xsfpconst switch to treat unsuffixed floating-point constants as single-precision
quantities.

Fortran codes written so that the values of local variables are not needed for
subsequent calls might benefit from the argument –stackvar.
Chapter 6 Compilation and Linking 77

78 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

CHAPTER 7

Runtime Considerations and Tuning

To understand runtime tuning, you need to understand what happens on your
cluster at runtime—that is, how hardware characteristics can impact performance
and what the current state of the system is.

This chapter discusses the performance implications of:

■ “Running on a Dedicated System” on page 79
■ “Setting Sun MPI Environment Variables” on page 80
■ “Launching Jobs on a Multinode Cluster” on page 83
■ “Multinode Job Launch Under CRE” on page 88

Running on a Dedicated System
The primary consideration in achieving maximum performance from an application
at runtime is giving it dedicated access to the resources. Useful commands include:

The UNIX commands give information only for the node where the command is
issued. The CRE commands return information for all nodes in a cluster.

CRE’s mpps command shows only those processes running under the resource
manager. For more complete information, try the UNIX ps command. For example,
either

% /usr/ucb/ps augx

or

CRE UNIX

How high is the load? % mpinfo –N % uptime

What is causing the load? % mpps –e % ps –e
79

% /usr/bin/ps –e –o pcpu –o pid –o comm | sort –n

will list most busy processes for a particular node.

Note that small background loads can have a dramatic impact. For example, the
fsflush daemon flushes memory periodically to disk. On a server with a lot of
memory, the default behavior of this daemon might cause a background load of only
about 0.2, representing a small fraction of 1 percent of the compute resource of a 64-
way server. Nevertheless, if you attempted to run a “dedicated” 64-way parallel job
on this server with tight synchronization among the processes, this background
activity could potentially disrupt not only one CPU for 20 percent of the time, but in
fact all CPUs, because MPI processes are often very tightly coupled. (For the
particular case of the fsflush daemon, a system administrator should tune the
behavior to be minimally disruptive for large-memory machines.)

In short, it is desirable to leave at least one CPU idle per cluster node. In any case, it
is useful to realize that the activity of background daemons is potentially very
disruptive to tightly coupled MPI programs.

Setting Sun MPI Environment Variables
Sun MPI uses a variety of techniques to deliver high-performance, robust, and
memory-efficient message passing under a wide set of circumstances. In most cases,
performance will be good without tuning any environment variables. In certain
situations, however, applications will benefit from nondefault behaviors. The Sun
MPI environment variables discussed in this section enable you to tune these default
behaviors.

If you need a quick and approximate evaluation of your environment variable
settings, you can skip this section entirely and rely on the MPProf profiling tool,
described further in Chapter 8, to recommend Sun MPI environment variable
settings based on collected profiling data.

For greater detail, more information is available in Appendix A and Appendix B.

Are You Running on a Dedicated System?
If your system’s capacity is sufficient for running your Sun MPI job, you can commit
processors aggressively to your job. Your CPU load should not exceed the number of
physical processors. Load is basically defined as the number of MPI processes in
your job, but it can be greater if other jobs are running on the system or if your job is
multithreaded. Load can be checked with the uptime or mpinfo command, as
discussed at the beginning of this chapter.
80 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

To run more aggressively, use either of these settings:

■ % setenv MPI_SPIN 1

This setting causes Sun MPI to “spin” aggressively, regardless of whether it is
doing any useful work. If you use this setting, you should leave at least one
idle processor per node to service system daemons. If you intend to use all
processors on a node, setting this aggressive spin behavior can slow
performance, so some experimentation is needed.

■ % setenv MPI_PROCBIND 1

While the Solaris OS schedules processes in generally optimal ways,
performance in a dedicated environment is sometimes improved by binding
processes to processors. This can be effected by setting the MPI_PROCBIND
variable to 1 (one). Detailed control over the binding can be achieved by listing
specific processors for binding. See the MPI man page for more details on
MPI_PROCBIND.

Performance can deteriorate dramatically with MPI_PROCBIND if multiple
processes are bound to the same processor or if the processes are
multithreaded.

Does the Code Use System Buffers Safely?
In some MPI programs, processes send large volumes of data with blocking sends
before starting to receive messages. The MPI standard specifies that users must
explicitly provide buffering in such cases, such as by using MPI_Bsend() calls. In
practice, however, some users rely on the standard send (MPI_Send()) to supply
unlimited buffering. By default, Sun MPI prevents deadlock in such situations
through general polling, which drains system buffers even when no receives have
been posted by the user code.

For best performance on typical, safe programs, general polling should be
suppressed by using the setting shown in the following example:

If deadlock results from this setting, you might nonetheless use the setting for best
performance if you resolve the deadlock with increased buffering, as discussed in
the next section.

% setenv MPI_POLLALL 0
Chapter 7 Runtime Considerations and Tuning 81

Are You Willing to Trade Memory for
Performance?
Messages traveling from one MPI process to another are staged in intermediate
buffers, internal to Sun MPI. If this buffering is insufficient, senders can stall
unnecessarily while receivers drain the buffers.

One alternative is to increase the internal buffering using Sun MPI environment
variables. For example, try this setting before you run:

Another alternative is to run your program with the MPProf tool, which suggests
environment variable settings if it detects internal buffer congestion. See Chapter 8
for more information on MPProf.

For a more detailed understanding of these environment variables, see Appendix A
and Appendix B.

Do You Want to Initialize Sun MPI Resources?
Use of certain Sun MPI resources might be relatively expensive when they are first
used. This use can disrupt performance profiles and timings. While it is best, in any
case, to ensure that performance has reached a level of equilibrium before profiling
starts, a Sun MPI environment variable might be set to move some degree of
resource initialization to the MPI_Init() call. Use:

% setenv MPI_FULLCONNINIT 1

Note that this setting does not tend to improve overall performance. However, it
might improve performance and enhance profiling in most MPI calls, while slowing
down the MPI_Init() call. The initialization time, in extreme cases, can take
minutes to complete.

Is More Runtime Diagnostic Information Needed?
Some environment variable settings are advisory and will be ignored due to system
administration policies or system resource limitations. Or, some settings may be
ignored because a variable name was misspelled. To confirm what Sun MPI
environment variable values are being used, set the MPI_PRINTENV environment
variable:

% setenv MPI_SHM_SBPOOLSIZE 8000000
% setenv MPI_SHM_NUMPOSTBOX 256
82 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

% setenv MPI_PRINTENV 1

When multiple interconnects are available on your cluster, you can check which
interconnects are actually used by your program with by setting the
MPI_SHOW_INTERFACES environment variable:

% setenv MPI_SHOW_INTERFACES 2

Launching Jobs on a Multinode Cluster
In a cluster configuration, the mapping of MPI processes to nodes in a cluster can
impact application performance significantly. This section describes some important
issues:

■ “Minimizing Communication Costs” on page 83
■ “Load Balancing” on page 84
■ “Controlling Bisection Bandwidth” on page 84
■ “Considering the Role of I/O Servers” on page 85
■ “Running Jobs in the Background” on page 85
■ “Limiting Core Dumps” on page 86
■ “Using Line-Buffered Output” on page 86

Minimizing Communication Costs
Communication between MPI processes on the same shared-memory node is much
faster than between processes on different nodes. Thus, by collocating processes on
the same node, application performance can be increased. Indeed, if one of your
servers is very large, you might want to run your entire “distributed-memory”
application on a single node.

Meanwhile, not all processes within an MPI job need to communicate efficiently
with all others. For example, the MPI processes might logically form a square
“process grid,” in which there are many messages traveling along rows and
columns, or predominantly along one or the other. In such a case, it might not be
essential for all processes to be collocated, but only for a process to be collocated
with its partners within the same row or column.
Chapter 7 Runtime Considerations and Tuning 83

Load Balancing
Running all the processes on a single node can improve performance if the node has
sufficient resources available to service the job, as explained in the preceding section.
At a minimum, it is important to have no more MPI processes on a node than there
are CPUs. It might also be desirable to leave at least one CPU per node idle (see
“Running on a Dedicated System” on page 79). Additionally, if bandwidth to
memory is more important than interprocess communication, you might prefer to
underpopulate nodes with processes so that processes do not compete unduly for
limited server backplane bandwidth. Finally, if the MPI processes are multithreaded,
it is important to have a CPU available for each lightweight process (LWP) within an
MPI process. This last consideration is especially tricky because the resource
manager (CRE or LSF) might not know at job launch that processes will spawn other
LWPs.

Controlling Bisection Bandwidth
Clusters configured with commodity interconnects typically provide little internodal
bandwidth per node. Meanwhile, bisection bandwidth might be the limiting factor
for performance on a wide range of applications. In this case, if you must run on
multiple nodes, you might prefer to run on more nodes rather than on fewer.

This point is illustrated qualitatively in FIGURE 7-1. The high-bandwidth backplanes
of large Sun servers provide excellent bisection bandwidth for a single node. Once
you have multiple nodes using a commodity interconnect, however, the interface
between each node and the network will typically become the bottleneck. Bisection
bandwidth starts to recover again when the number of nodes—actually, the number
of network interfaces—increases.
84 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE 7-1 Relationship Between Bisection Bandwidth and Number of Nodes

In practice, every application benefits at least somewhat from increased locality, so
collocating more processes per node by reducing the number of nodes has some
positive effect. Nevertheless, for codes that are dominated by all-to-all types of
communication, increasing the number of nodes can improve performance.

Considering the Role of I/O Servers
The presence of I/O servers in a cluster affects the other issues we have been
discussing in this section. If, for example, a program will make heavy use of a
particular I/O server, executing the program on that I/O node might improve
performance. If the program makes scant use of I/O, you might prefer to avoid I/O
nodes, since they might consume nodal resources. If multiple I/O servers are used,
you might want to distribute MPI processes in a client job to increase aggregate
(“bisection”) bandwidth to I/O.

Running Jobs in the Background
Performance experiments conducted in the course of tuning often require multiple
runs under varying conditions. It might be desirable to run such jobs in the
background.
Chapter 7 Runtime Considerations and Tuning 85

To run jobs in the background, perhaps from a shell script, use the –n switch with
the CRE mprun command when the standard input is not being used. Otherwise, the
job could block. The following example shows the use of this switch:

Limiting Core Dumps
Core dumps can provide valuable debugging information, but they can also induce
stifling repercussions for silly mistakes. In particular, core dumps of Sun HPC
processes can be very large. For multiprocess jobs, the problem can be compounded,
and the effect of dumping multiple large core files over a local network to a single,
NFS-mounted file system can be crippling.

To limit core dumps for jobs submitted with the CRE mprun command, simply limit
core dumps in the parent shell before submitting the job. If the parent shell is csh,
use the command limit coredumpsize 0. If the parent shell is sh, use the
ulimit –c 0 command.

Using Line-Buffered Output
When multiple MPI ranks are writing to the same output device, the multiple output
streams may interfere with one another, such that output from different ranks can be
interleaved in the middle of an output line.

One way of handling this is to specify to CRE that it should use line-buffered output.
For example, one may use the –o or –I switches to the mprun command.

% mprun –n –np 4 a.out &
% cat a.csh
#!/bin/csh
mprun –n –np 4 a.out
% a.csh
86 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

The –I syntax is not simple but allows detailed control over a job’s I/O streams. For
example, consider the sample Fortran MPI code:

Executing the job without line buffering can lead to output lines from different ranks
being combined (as shown in this example):

In contrast, you can use the –I switch:

% mprun –np 16 –I 0r=/dev/null,1wl,2w=errorfile a.out

Using this switch directs the job:

■ To read stdin from /dev/null
■ To use line buffering for stdout
■ To direct stderr to errorfile

For more information on this syntax, see the section of the mprun man page that
covers file descriptor strings.

include "mpif.h"

call MPI_Init(ier)
call MPI_Comm_rank(MPI_COMM_WORLD,me,ier)
call MPI_Barrier(MPI_COMM_WORLD,ier)
do i = 1, 1000

write(6,’("rank",i4,"; iteration", i6)’) me, i
enddo
call MPI_Finalize(ier)
end

% mprun –np 16 a.out
[...]
rank 2; iteration 34
rank 2; iteration 35
rank 2; iteration 36
rank 2; iteration 37
rank 2; iteration 3rank 7; iteration 1
rank 7; iteration 2
rank 7; iteration 3
rank 7; iteration 4
[...]
Chapter 7 Runtime Considerations and Tuning 87

Multinode Job Launch Under CRE
CRE provides a number of ways to control the mapping of jobs to the respective
nodes of a cluster.

Collocal Blocks of Processes

CRE supports the collocation of blocks of processes—that is, all processes within a
block are mapped to the same node.

Assume you are performing an LU decomposition on a 4x8 process grid. If
minimization of communication within each block of four consecutive MPI ranks is
most important, then these 32 processes could be launched in blocks of 4 collocated
MPI processes by using the –Z or –Zt option, respectively:

In either case, MPI ranks 0 through 3 will be mapped to a single node. Likewise,
ranks 4 through 7 will be mapped to a single node. Each block of four consecutive
MPI ranks is mapped to a node as a block. Using the –Zt option, no two blocks will
be mapped to the same node—eight nodes will be used. Using the –Z option,
multiple blocks might be mapped to the same node. For example, with the –Zt
option, the entire job might be mapped to a single node if it has at least 32 CPUs.

Multithreaded Job

Consider a multithreaded MPI job in which there is one MPI process per node, with
each process multithreaded to make use of all the CPUs on the node. You could
specify 16 such processes on 16 different nodes by using:

% mprun –np 32 –Zt 4 a.out
% mprun –np 32 –Z 4 a.out

% mprun –Ns –np 16 a.out
88 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Round-Robin Distribution of Processes

Imagine that you have an application that depends on bandwidth for uniform, all-
to-all communication. If the code requires more CPUs than can be found on any
node within the cluster, it should be run over all the nodes in the cluster to
maximize bisection bandwidth. For example, for 32 processes, this can be effected
with the command:

That is, CRE tries to map processes to distinct nodes (because of the –Ns switch, as
in the preceding multithreaded case), but it will resort to “wrapping” multiple
processes (–W switch) onto a node as necessary.

Detailed Mapping

For more complex mapping requirements, use the mprun switch –m or –l to specify
a rankmap as a file or a string, respectively. For example, if the file nodelist
contains:

then the command:

% mprun –np 16 –m nodelist a.out

maps the first 4 processes to node0, the next 4 to node1, and the next 8 to node2.
Refer to the Sun HPC CluaterTools User’s Guide for more information about process
mappings.

% mprun –Ns –W –np 32 a.out

node0
node0 2
node0
node1 4
node2 8
Chapter 7 Runtime Considerations and Tuning 89

90 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

CHAPTER 8

Profiling

An important component of performance tuning is profiling, through which you
develop a picture of how well your code is running and what sorts of bottlenecks it
might have. Profiling can be a difficult task in the simplest of cases, and the
complexities multiply with MPI programs because of their parallelism. Without
profiling information, however, code optimization can be wasted effort.

This chapter describes:

■ “General Profiling Methodology” on page 91
■ “MPProf Profiling Tool” on page 95
■ “Performance Analyzer Profiling of Sun MPI Programs” on page 109
■ “Other Profiling Approaches” on page 123

This chapter includes a few case studies that examine some of the NAS Parallel
Benchmarks 2.3. These are available from the NASA Ames Research Center at

http://www.nas.nasa.gov/Software/NPB/index.html

Note – The runs shown in this chapter were not optimized for the platforms on
which they executed.

General Profiling Methodology
It is likely that only a few parts of a program account for most of its runtime.
Profiling enables you to identify these “hot spots” and characterize their behavior.
You can then focus your optimization efforts on the spots where they will have the
most effect.
91

Profiling can be an experimental, exploratory procedure. So you might find yourself
rerunning an experiment frequently. It is a challenge to design such runs so that they
complete quickly, while still capturing the performance characteristics you are trying
to study. There are several ways you can strip down your runs to achieve this
balance, including reducing the data set and performing fewer loop iterations.
However, regardless of which streamlining method you employ, keep the following
caveats in mind:

■ Try to maintain the same problem size, since changing the size of your data set
can change the performance characteristics of your code. Similarly, reducing the
number of processors used can mask scalability problems or produce
ungeneralizable behavior.

■ If the problem size must be reduced because only a few processors are available,
try to determine how the data set should be scaled to maintain comparable
performance behavior. For many algorithms, it makes most sense to maintain a
fixed subgrid size. For example, if a full dataset of 8 Gbytes is expected to run on
64 processors, then maintain the fixed subgrid size of 128 Mbyte per processor by
profiling a 512-Mbyte data set on 4 processors.

■ Try to shorten experiments by running fewer iterations. One difficulty with this
approach is that the long-term, steady-state performance behavior of your code
might become dwarfed by otherwise inconsequential factors. In particular, code
might behave differently the first few times it is executed than when buffers,
caches, and other resources have been warmed up.

Basic Approaches
There are various approaches to profiling Sun HPC ClusterTools programs:

■ Use MPProf, a message-passing profiler introduced with the Sun HPC ClusterTools 5
release. This extremely easy-to-use profiler offers both basic information about
MPI performance of your program and Sun MPI–specific recommendations for
environment variable tuning.

■ Use the Performance Analyzer. (The programs Collector and Performance Analyzer
are supplied in conjunction with the Sun Studio Compiler Collections.) This
method is probably the most basic approach to profiling an HPC application on
Sun systems, both for Sun MPI and non-MPI programs. No recompiling or
relinking is required. Sampling data shows which routines are consuming the
most time. User computation and MPI message passing are profiled, and caller-
callee relationships are shown. Recompilation and relinking with the –g switch
enable attribution to individual source-code lines with almost no loss in
optimizations. On UltraSPARC microprocessors, hardware-based profiling can
identify where floating-point operations, cache misses, and so forth, occur. A
timeline view indicates synchronization and load imbalance problems. For
information about using Performance Analyzer profiling, see “Performance
Analyzer Profiling of Sun MPI Programs” on page 109.
92 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

■ Modify your source code to include timer calls. This modification is most appropriate
if you have reasonable familiarity with the program. You can place timers at a
high level to understand gross aspects of the code, or at a fine level to study
particular details. For information about the inserting timer calls using Sun MPI,
see “Inserting MPI Timer Calls” on page 124.

■ Use the MPI profiling interface (PMPI) to diagnose other aspects of message-passing
performance. The MPI standard supports an interface for instrumentation of MPI
calls, which enables you to apply custom or third-party instrumentation of MPI
usage without modifying your application’s source code. For more information
about using the MPI profiling interface, see “Using the MPI Profiling Interface”
on page 123.

Use the DTrace dynamic tracing utility. DTrace is a component of the Solaris 10 OS.
DTrace is a comprehensive dynamic tracing utility that you can use to monitor the
behavior of applications programs as well as the operating system itself. For more
information about DTrace, refer to the Solaris Dynamic Tracing Guide (Part Number
817-6223). This guide is part of the Solaris 10 OS Software Developer Collection.

Solaris 10 OS documentation can be found on the web at the following location:

http://www.sun.com/documentation

TABLE 8-1 outlines the advantages and disadvantages associated with each of these
methods of profiling.

TABLE 8-1 Profiling Alternatives

Method Advantages Disadvantages

MPProf • Very simple to use.
• Generates self-explanatory

performance report.
• Gives feedback in simple terms

(such as which environment
variables to set for better
performance).

• Simplicity.
• Has no knowledge of user code.
• Performance suggestions are

fallible.
Chapter 8 Profiling 93

http://www.sun.com/documentation

DTrace • Included with the Solaris 10 OS
• Can be used on live production

systems to monitor behavior
and track errors.

• No need to recompile
application code.

• Can be attached and detached
to and from an MPI program
multiple times without
disturbing the run.

• Use of a scripting language
allows you to generate complex
output.

• The D scripting language has
many built-in functions, so
scripts are less complicated to
write.

• Need to learn another scripting
language.

• Very simple output processing
(no GUI).

• Very low level tool.

Performance
Analyzer
Profiling

• No recompilation or relinking is
required.

• Profiles whole programs: user
computation and MPI message
passing.

• Identifies time-consuming
routines.

• With –g recompilation and
relinking, gives attribution on a
per-source-line basis with
negligible loss in optimization
level.

• Shows caller–callee
relationships.

• Uses a style familiar to gprof
users.

• On UltraSPARC
microprocessors, profiles based
on hardware counters (floating-
point operations, cache misses,
and so forth).

• Timeline functionality.

• Has very limited knowledge of
MPI or message passing.

• Improper timeline support for
multinode runs.

Timers • Very versatile. • Requires manual
instrumentation.

• Requires that you understand
the code.

TABLE 8-1 Profiling Alternatives (Continued)

Method Advantages Disadvantages
94 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

The following are sample scenarios:

■ I don’t know whether my program is spending time in serial computation or in MPI calls.
The performance guide says I’m supposed to set Sun MPI environment variables to trade
off memory for performance, but it seems like a lot of work to figure how what values to
use.

Using MPProf, you can easily see if your program is spending a lot of time in
MPI. It will suggest environment variable values for you.

■ I am rather unfamiliar with the code I’m running. I do not know whether my
optimization efforts should focus on serial computation or message passing—or, for that
matter, in which routines.

Using the Performance Analyzer, you can see which routines consume the most
time.

■ I know that a few innermost loops are bottlenecks and I need more detailed information.

Adding timers and other instrumentation around innermost loops might help you
if you already have some idea about your code’s performance.

■ I have used certain MPI profiling tools in other environments and am used to them.

Depending on how those tools were constructed, the MPI profiling interface
might allow you to continue using them with Sun HPC ClusterTools programs.

MPProf Profiling Tool
Sun HPC ClusterTools software includes the mpprof profiler, a tool that supports
programming with the Sun MPI library.

gprof • Familiar tool.
• Provides an overview of user

code.

• Ignores time spent in MPI.

PMPI • You can instrument or modify
MPI without modifying source.

• Allows use of other profiling
tools.

• Profiles MPI usage only.
• Requires integration effort.

TABLE 8-1 Profiling Alternatives (Continued)

Method Advantages Disadvantages
Chapter 8 Profiling 95

To collect profiling data on a Sun MPI program, set the MPI_PROFILE environment
variable before running the program. To generate a report using this data, invoke the
mpprof command-line utility. For example:

If profiling has been enabled, Sun MPI creates a binary-format profiling data file for
each MPI process. The MPProf utility digests the data from these numerous,
intermediate, data files—generating statistical summaries in ASCII text. Wherever
possible, MPProf adds direct tuning advice to the statistical summaries of MPI
process behavior.

MPProf does not provide detailed information about the ordering of message-
passing events or interprocess synchronization. That is, MPProf is not a trace-history
viewer.

Note – To get information on user code as well as MPI message-passing activity, use
Performance Analyzer.

Sample MPProf Output
Output from the MPProf report generator is self explanatory and should require no
further documentation. Nevertheless, sample output is included here for readers
who do not have immediate access to this tool.

Overview

The first section (sample output shown in box below) is an overview that includes

■ The name of your program
■ When you ran your program
■ What time period is covered in this report
■ What fraction of time was spent in MPI

% setenv MPI_PROFILE 1
% mprun –np 16 a.out
% mpprof mpprof.index.rm.jid
96 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

■ How many MPI ranks are covered in the report

Load Balance

The Load section (sample output shown in box below) shows the distribution of
how much time was spent in MPI per process. When a process spends much time in
MPI, this may be because it’s waiting for another process. Thus, performance
bottlenecks may be in processes that spend little time in MPI. Those processes, as

OVERVIEW
========
The program being reported on is
"/home/myusername/mycode/a.out,"
which ran as job name "cre.6975" on Fri Mar 17 18:45:04 2006.
Profiled Time Range:
Start at elapsed time 0.000029 secs
End at elapsed time 9.475821 secs
Total duration is 9.475792 secs
Fraction spent in MPI 21.5%
Elapsed time is measured from the end of MPI_Init. Data is being
reported for 16 processes of a 16-process job.
Chapter 8 Profiling 97

well as the nodes they ran on, are identified in this section. Other tools, such as the
Performance Analyzer, are needed to pinpoint bottlenecks further if load imbalances
are apparent.

Sun MPI Environment Variables

As discussed in Chapter 7, Sun MPI environment variables are set by default to
values that will be appropriate in many cases, but runtime performance can in cases
be enhanced by further tuning.

LOAD BALANCE
============
Data is being reported on 16 MPI processes. The following histogram
shows how these processes were distributed as a function of the
fraction of the time the processes spent in MPI routines:

Number of MPI Processes

10-|
9-|
8-|
7-| #
6-| #
5-| ##
4-| ##
3-| ###
2-| ###
1-| # ####
0-+----+----+----+----+----+----+----+----+----+----+
15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0

Percentage time in MPI

Rank Hostname MPI Time
0 node0 17.39%
15 node0 61.04%
4 node0 62.03%
13 node0 62.08%
11 node0 62.12%

[...]
98 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

In particular, Sun MPI implements two-sided message passing between processes
that cannot directly access one another’s address spaces with internal shared buffers.
If these buffers become congested, performance can suffer. MPProf monitors these
buffers, watches for congestion, and suggests environment variable values for
enhanced performance at the cost of higher memory usage.

The report discusses its recommendations and then provides a summary (sample
output shown in box below) that may be “copy-and-pasted” into a session window
or run script. The code may then be run again to determine whether better
performance results from the recommendations.

Breakdown by MPI Routine

The Breakdown by MPI Routine section of the report (sample output shown in box
below) gives a breakdown by MPI routine. Attributing bytes sent and received to
MPI routines can be tricky due to nonblocking and collective operations. Note that:

■ For nonblocking sends, MPProf attributes bytes sent to the initiating call (such as
MPI_Isend), since this is often the call that actually moves the data.

■ For nonblocking receives, MPProf attributes bytes received to the completing call
(such as MPI_Wait), since the actual number of bytes received is not known
before this call.

MPI ENVIRONMENT VARIABLES
=========================
[...]

SUGGESTION SUMMARY
==================
[...]

In the C shell, these environment variables may be set by the
following commands:

setenv MPI_POLLALL 0
setenv MPI_PROCBIND 1
setenv MPI_SHM_SBPOOLSIZE 368640
setenv MPI_SPIN 1

In the Bourne or Korn shell, these environment variables may be
set by the following commands:

export MPI_POLLALL=0
export MPI_PROCBIND=1
export MPI_SHM_SBPOOLSIZE=368640
export MPI_SPIN=1
Chapter 8 Profiling 99

■ For collectives, MPProf attributes bytes sent and received as follows:

Assumptions:

■ n is the number of elements passed to the MPI collective routine multiplied by the
size of the data type used.

■ np is the number of processes participating in the collective operation.

■ Some byte counts are attributed only at the root process or the nonroot processes,
as noted.

TABLE 8-2 MPProf Attributes Bytes Sent and Received

Sent Received

MPI_Barrier 0 0

MPI_Bcast n (root) n (nonroot)

MPI_Gather n np * n (root)

MPI_Scatter np * n (root) n

MPI_Allgather n np * n

MPI_Alltoall np * n np * n

MPI_Reduce n n (root)

MPI_Allreduce n n

MPI_Scan n n

MPI_Reduce_scatter np * n n
100 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

.

Time Dependence

Performance analysis tools are sometimes classified as profiling tools, which give
overall performance characterization of a program, or tracing tools, which give
detailed time histories of events that occur during program execution.

While MPProf is a profiling tool, it includes some time-dependent information (a
sample of the Time Dependence section of the MPProf report is shown below). This
information is coarse but can prove useful in different ways:

■ If your program does not terminate normally (due to program error or your
decision to abort the run), some profiling information is still available.

■ You can monitor your program’s performance while it is still running. Note that
some collected data might not have been flushed to disk yet. This means that if
you generate an MPProf report while your program is still running, the report
might not represent the latest state of your program.

■ You can sometimes identify different phases of computation (startup, steady-state
computation, post processing, and so forth) and focus on any one of them for
better analysis using the mpprof switches –s and –e.

BREAKDOWN BY MPI ROUTINE
========================

Here, averages over all MPI processes profiled are reported. The
numbers in parentheses roughly indicate the variations there are
among all of the MPI processes. These variations are computed as
(1-min/max)/2 where "min" and "max" are the minimum and maximum
values, respectively, for each statistic reported. A total of 9
different MPI APIs were called.

MPI Routine Time Calls Made Sent Received
MPI_Allreduce 0.15 (39%) 11 (0%) 45276 (0%) 45276 (0%)
MPI_Alltoall 0.00 (8%) 11 (0%) 704 (0%) 704 (0%)
MPI_Alltoallv 0.55 (3%) 11 (0%) 23672 (0%) 23672 (2%)
MPI_Comm_rank 0.00 (16%) 1 (0%) 0 (0%) 0 (0%)
MPI_Comm_size 0.00 (8%) 1 (0%) 0 (0%) 0 (0%)
MPI_Irecv 0.00 (23%) 0 (0%) 0 (0%) 0 (0%)
MPI_Reduce 0.00 (49%) 2 (0%) 12 (0%) 0 (50%)
MPI_Send 0.00 (27%) 0 (0%) 3 (0%) 0 (0%)
MPI_Wait 0.00 (50%) 0 (0%) 0 (0%) 3 (0%)

Where "Time" is in seconds and "Sent" and "Received" are in bytes.
Chapter 8 Profiling 101

In the following example, there is considerable broadcast and barrier activity before
the program settles down to steady-state behavior, the performance of which is
critical for long-running programs.

Connections

A connection is a sender/receiver pair. MPProf shows how much point-to-point
message traffic there is per connection, with one matrix showing numbers of
messages and another showing numbers of bytes. Values are scaled.

A real application is likely to have various communication patterns in it, but the
overall matrix may resemble some easy-to-recognize case. The following examples
illustrate some simple patterns.

TIME DEPENDENCE
===============
Time periods may be missing if no MPI calls were made during the
period. Times for MPI calls that persist over multiple reporting
intervals will only be reported in a single interval; these
reported times may be greater than 100%.

period MPI_Barrier MPI_Bcast MPI_Send MPI_Waitall

1 1.2% 6.9% 0.0% 0.0%
5 0.0% 0.0% 0.0% 123.0%
6 0.0% 0.0% 0.0% 4.2%
7 0.0% 803.3% 0.1% 3.1%
16 0.0% 101.0% 3.9% 0.0%
17 0.0% 7.6% 0.0% 0.0%
18 32.5% 0.0% 0.5% 10.3%
19 18.9% 5.0% 52.4% 0.0%
20 191.9% 0.0% 22.6% 34.5%
21 0.0% 0.0% 0.0% 0.0%
22 10.9% 0.0% 0.0% 0.0%
23 16.7% 2.1% 0.2% 4.3%
24 21.7% 2.1% 0.3% 4.6%
25 21.0% 2.1% 0.3% 5.4%
26 21.1% 3.6% 0.3% 5.2%
27 20.1% 1.9% 0.4% 5.9%
28 20.6% 2.1% 0.3% 5.3%
29 20.4% 2.1% 0.3% 5.5%
30 17.9% 3.6% 0.2% 5.0%
31 22.6% 2.1% 0.3% 5.4%
102 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

CONNECTIONS
===========

sender
 0 1 2 3 4 5 6 7 8 9
receiver

 0 _ 99 99 99 99 99 99 99 99 99
 1 _ _ _ _ _ _ _ _ _ _
 2 _ _ _ _ _ _ _ _ _ _
 3 _ _ _ _ _ _ _ _ _ _
 4 _ _ _ _ _ _ _ _ _ _
 5 _ _ _ _ _ _ _ _ _ _
 6 _ _ _ _ _ _ _ _ _ _
 7 _ _ _ _ _ _ _ _ _ _
 8 _ _ _ _ _ _ _ _ _ _
 9 _ _ _ _ _ _ _ _ _ _

CONNECTIONS
===========

 _ _ _ _ _ _ _ _ _ _
 99 _ _ _ _ _ _ _ _ _
 99 _ _ _ _ _ _ _ _ _
 99 _ _ _ _ _ _ _ _ _
 99 _ _ _ _ _ _ _ _ _
 99 _ _ _ _ _ _ _ _ _
 99 _ _ _ _ _ _ _ _ _
 99 _ _ _ _ _ _ _ _ _
 99 _ _ _ _ _ _ _ _ _
 99 _ _ _ _ _ _ _ _ _
Chapter 8 Profiling 103

CONNECTIONS
===========

 _ 99 _ _ _ _ _ _ _ _
 99 _ 99 _ _ _ _ _ _ _
 _ 99 _ 99 _ _ _ _ _ _
 _ _ 99 _ 99 _ _ _ _ _
 _ _ _ 99 _ 99 _ _ _ _
 _ _ _ _ 99 _ 99 _ _ _
 _ _ _ _ _ 99 _ 99 _ _
 _ _ _ _ _ _ 99 _ 99 _
 _ _ _ _ _ _ _ 99 _ 99
 _ _ _ _ _ _ _ _ 99 _

CONNECTIONS
===========

 _ 99 _ _ _ _ _ _ _ 99
 99 _ 99 _ _ _ _ _ _ _
 _ 99 _ 99 _ _ _ _ _ _
 _ _ 99 _ 99 _ _ _ _ _
 _ _ _ 99 _ 99 _ _ _ _
 _ _ _ _ 99 _ 99 _ _ _
 _ _ _ _ _ 99 _ 99 _ _
 _ _ _ _ _ _ 99 _ 99 _
 _ _ _ _ _ _ _ 99 _ 99
 99 _ _ _ _ _ _ _ 99 _
104 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Once the connectivity matrices have been displayed, MPProf prints the average
message length:

CONNECTIONS
===========

 _9____99____________________9______
 9_9_____9____________________9_____
 _9_9_____9____________________9____
 __9_9_____9____________________9___
 ___9_9_____9____________________9__
 ____9_9_____9____________________9_
 9____9_______9____________________9
 9_______9____99____________________
 _9_____9_9_____9___________________
 __9_____9_9_____9__________________
 ___9_____9_9_____9_________________
 ____9_____9_9_____9________________
 _____9_____9_9_____9_______________
 ______99____9_______9______________
 _______9_______9____99_____________
 ________9_____9_9_____9____________
 _________9_____9_9_____9___________
 __________9_____9_9_____9__________
 ___________9_____9_9_____9_________
 ____________9_____9_9_____9________
 _____________99____9_______9_______
 ______________9_______9____99______
 _______________9_____9_9_____9_____
 ________________9_____9_9_____9____
 _________________9_____9_9_____9___
 __________________9_____9_9_____9__
 ___________________9_____9_9_____9_
 ____________________99____9_______9
 9____________________9_______9____9
 _9____________________9_____9_9____
 __9____________________9_____9_9___
 ___9____________________9_____9_9__
 ____9____________________9_____9_9_
 _____9____________________9_____9_9
 ______9____________________99____9_

The average length of point-to-point messages was 13916 bytes per
message.
Chapter 8 Profiling 105

This message length can be compared to the product of some characteristic latency
in your system and some characteristic bandwidth. For example, if “ping-pong”
tests indicate an MPI latency of about 2 microseconds and bandwidth of about 500
Mbyte/sec, then the product is 1000 bytes. An average length of 13916 bytes
suggests bandwidth is more important than latency to your application’s
performance.

Multithreaded Programs
MPProf profiling might be used with multi-threaded MPI programs. If many threads
per process are engaged in heavy MPI activity, however, MPProf data collection can
slow down measurably. MPProf aggregates data for all threads on a process.

The mpdump Utility
It is sometimes possible to extract more information from MPProf data files than the
report generator prints out. You can use the mpdump utility to convert MPProf binary
data files to an ASCII format and then process the data directly, perhaps with
customized scripts. The format of the ASCII files is undocumented, but it is easy to
interpret.

Managing Disk Files
MPProf writes relatively little data to disk during profiling runs. This means that it
is relatively easy to use compared to tracing tools, the data volumes of which must
be managed carefully.

Nevertheless, one file per process is generated and it is worth managing these files.
Specifically, MPProf profiling generates one data file per process per run, as well as
one index file per run that points to the data files. The data files, by default, are
stored in /usr/tmp of the respective nodes where the processes ran.

Use

% mpprof –r –g directory mpprof.index.rm.jid

to collect data files from their respective nodes to an archival location if you want to
save the files.

Use

% mpprof –r –mpprof.index.rm.jid

to remove data files to clean up after a run.
106 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Incorporating Environment Variable Suggestions
MPProf generates suggestions for tuning Sun MPI environment variables.

These suggestions are often helpful, but they do not guarantee performance
improvement. Some experimentation may be necessary. If you incorporate MPProf’s
suggestions, the next profiling run may indicate further suggestions. Multiple reruns
may be required before MPProf no longer has further recommendations, but most of
the speedup, if any, is likely to result from the first round or two of experimentation.

Rerunning a program incorporating MPProf’s tuning suggestions may be
automated. Here is an example.

CODE EXAMPLE 8-1 Sample MPProf Session, Rerunning a Program To Tune Performance

% cat my_mpprof_script.csh
#!/bin/csh

set LOGFILE = mpprofrun.logfile

always run with this on
setenv MPI_PROFILE 1
echo
echo trial-0
echo setenv MPI_PROFILE 1

iterate at most 10 times
@ iteration = 0
while ($iteration < 10)

run the job
$* >& $LOGFILE

archive this run

mkdir trial-$iteration
mpprof -r -g trial-$iteration mpprof.index.* < /dev/null
mv $LOGFILE trial-$iteration/log

go to the archive
cd trial-$iteration

report the basics
mpprof mpprof.index.* < /dev/null > mpprof.output
grep "Total duration is" mpprof.output
grep "Fraction spent in" mpprof.output

increment interation count
Chapter 8 Profiling 107

@ iteration = $iteration + 1

look at the environment variable suggestions
grep "setenv" mpprof.output | grep -v Suggestion > mpprof.envvars
set wclist = (‘wc -l mpprof.envvars‘)
echo

start reporting on next round

if ($wclist[1] != 0) then
echo trial-$iteration
cat mpprof.envvars
source mpprof.envvars

endif

clean up
rm -f mpprof.envvars
cd ..

convergence?
if ($wclist[1] == 0) then

break
endif

end

% my_mpprof_script.csh mprun -np 16 a.out

trial-0
setenv MPI_PROFILE 1

Total duration is 23.702518 secs
Fraction spent in MPI 21.9

%trial-1
setenv MPI_POLLALL 0
setenv MPI_PROCBIND 1
unsetenv MPI_SHM_CPOOLSIZE
setenv MPI_SHM_SBPOOLSIZE 533504
setenv MPI_SPIN 1

Total duration is 21.697837 secs
Fraction spent in MPI 14.5%

trial-2
setenv MPI_SHM_NUMPOSTBOX 66
setenv MPI_SHM_SBPOOLSIZE 1064960

Total duration is 19.901631 secs
Fraction spent in MPI 5.7%

CODE EXAMPLE 8-1 Sample MPProf Session, Rerunning a Program To Tune Performance
108 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Performance Analyzer Profiling of Sun
MPI Programs
The Performance Analyzer offers a good first step to understanding the performance
characteristics of a program on Sun systems. It combines ease of use with powerful
functionality.

As with most profiling tools, there are two basic steps to using Sun’s performance
analysis tools. The first step is to use the Collector to collect performance data. The
second step is to use the Performance Analyzer to examine results. For example, this
procedure can be as simple as replacing this:

% mprun –np 16 a.out 3 5 341

with this:

% mprun –np 16 collect a.out 3 5 341

% analyzer test.*.er

Sun’s compilers and tools are usually located in the directory /opt/SUNWspro/bin.
Check with your system administrator for details for your site.

trial-3
setenv MPI_SHM_SBPOOLSIZE 1598464

Total duration is 19.993672 secs
Fraction spent in MPI 5.9%

trial-4
setenv MPI_SHM_SBPOOLSIZE 2129920

Total duration is 19.946838 secs
Fraction spent in MPI 5.8%

trial-5
setenv MPI_SHM_SBPOOLSIZE 2661376

Total duration is 19.906594 secs
Fraction spent in MPI 5.7%

% ls -d trial-*

trial-0 trial-1 trial-2 trial-3 trial-4 trial-5

CODE EXAMPLE 8-1 Sample MPProf Session, Rerunning a Program To Tune Performance
Chapter 8 Profiling 109

The following sections show the use of the Performance Analyzer with Sun MPI
programs, often revisiting variations of the preceding example.

Data Collection
There are several ways of using the Collector with MPI codes. For example, the
simplest usage would be to add collect to the mprun command line:

% mprun –np 16 collect a.out 3 5 341

In this section we discuss some of the issues that can arise when using the Collector,
and how to handle them.

Data Volume

The volume of collected data can grow large, especially for long-running or parallel
programs. Though the Collector mitigates this problem, the scaling to large volumes
remains an issue.

There are a number of useful strategies for managing these data volumes:

■ Increase the profiling interval. The interval might be specified in milliseconds with
the –p switch to the collect command. The default value is 10. The actual
interval used depends on the resolution of the profiling system. Of course, while
increasing the interval reduces the data volume, it can reduce the quality of the
sampling data.

For example, to reduce the number of profiled events roughly by a factor of two,
use:

% mprun –np 16 collect –p 20 a.out 3 5 341

■ Collect data on only a subset of the MPI processes. In many cases, activity on one MPI
process reflects performance behavior on all processes fairly closely. Or, if there
are load imbalances among the processes, a larger subset might be used. Of
course, limiting data collection to a subset of the processes might bias the
110 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

profiling data. In particular, a master process might behave unlike any of the
other processes. In the following example, we collect on only the first four MPI
ranks using a script:

■ Collect data to a local file system. This method does not reduce the volume of data
collected, but it helps mitigate the impact. Meanwhile, local file systems are often
not mounted on all nodes, so gathering experiment data to a common location
should also be part of this approach. In the following example, we collect local
data and then gather it centrally:

This strategy should be a routine part of data collection.

A large parallel job might run out of a central NFS-mounted file system. While this
might be adequate for jobs that are not I/O intensive, it might cause a critical
bottleneck for profiling sessions. If multiple MPI processes are trying to write large
volumes of profiling data simultaneously over NFS to a single file system, that file
system, along with network congestion, could lead to tremendous slowdowns and
perturbations of the program’s performance. It is preferable to collect profiling data
to local file systems and, perhaps, gather them to a central directory after program
execution.

To identify local file systems, use:

% /usr/bin/df –lk

on each node of the cluster you will use, or ask your system administrator about
large-volume, high-performance disk space.

% cat csh-script
#!/bin/csh
if ($MP_RANK < 4) then

collect $*
else

$*
endif
% mprun –np 16 csh-script a.out 3 5 341

% cat csh-script
#!/bin/csh
collect –d /tmp $*
er_mv /tmp/test.$MP_RANK.er myrun
% mkdir myrun
% mprun –np 16 csh-script a.out 3 5 341
Chapter 8 Profiling 111

One possible choice of a local file system is /tmp. Note that the /tmp file system on
different nodes of a cluster refer to different, respectively local file systems. Also, the
/tmp file system might not be very large, and if it becomes filled there might be a
great impact on general system operability.

Data Organization
The Collector generates one “experiment” per MPI process. If there are multiple runs
of a multiprocess job, therefore, the number of experiments can grow quickly.

To organize these experiments, it often makes sense to gather experiments from a
run into a distinctive subdirectory. Use the commands er_mv, er_rm, and er_cp
(again, typically under the directory /opt/SUNWspro/bin) to move, remove, or
copy experiments, respectively. For more information on these utilities, refer to the
corresponding man pages or the Sun Studio Compiler Collection documentation.

If you collect an experiment directly into a directory, make sure that the directory
has already been created and, ideally, that no other experiments already exist in it.

Example

The er_rm steps are not required because (in this instance) we are using freshly
created directories. Nevertheless, these steps serve as reminders to avoid the
confusion that can result when too many experiments are gathered in the same
directory.

% mkdir run1
% er_rm –f run1/*.er
% mprun –np 16 collect –d run1 a.out 3 5 341
% mkdir run2
% er_rm –f run2/*.er
% mprun –np 16 collect –d run2 a.out 3 5 341
% mkdir run3
% er_rm –f run3/*.er
% mprun –np 16 collect –d run3 a.out 3 5 341
%

112 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Other Data Collection Issues
The Collector collects sampling information by default. Thus, Sun MPI calls will be
profiled if they consume a sufficiently high fraction of runtime. Sometimes it is
interesting to capture MPI calls more methodically. In particular, for time-line
analysis, it is desirable to mark the beginnings and endings of MPI calls with higher
resolution than sampling provides. MPI call tracing may be activated with the
–m on switch to collect.

Sometimes it is desirable to collect data not only on a process, but its descendants, as
well. The collect tag will follow descendants with the –F on switch.

For example, the Solaris 10 Operating System supports multiple page sizes with the
/usr/bin/ppgsz command-line utility. To collect performance data on a code run
with 4-Mbyte memory pages, our sample data collection becomes:

% mprun –np 16 collect –F on ppg sz –o heap=4M,stack=512K a.out 3 5 341

In the particular case of the ppgsz utility, a cleaner alternative may be to preload the
mpss.so.1 shared object, so that the ppgsz utility need not appear on the
command line. For more information on multiple page size support, see the ppgsz
and mpss.so.1 man pages in the Solaris 10 Operating System.

Analyzing Profiling Data
Once data has been gathered with the Collector, it can be viewed with the
Performance Analyzer. For example:

% analyzer myrun/test.*.er

Use of the Performance Analyzer is illustrated in the case study.

There are also command-line utilities to aid in data analysis. For more information,
see the er_print and er_src man pages. Here are examples of their use:

■ To view a summary of how time was spent in functions, use:

% er_print –functions test.*.er

■ To view a summary of how time was spent in MPI functions, use:

% er_print –functions test.*.er | grep PMPI_

■ To view caller-callee relationships (as with gprof), use:

% er_print –callers-callees test.*.er

■ To view where time is spent on a per-source-line basis, along with compiler
commentary, compile and link with the –g switch and use:

% er_print –source myfunction_ 1 test.*.er

The 1 is used to distinguish in case of multiple instances of the named function.
Chapter 8 Profiling 113

■ To view the compiler commentary associated with an object file without even
running your program, compile with the –g switch and use:

% er_src my_file.o

Case Study
In this case study, we examine the NPB 2.3 BT benchmark. We run the program
using the following environment variable settings:

These settings are not required for Performance Analyzer profiling. We simply use
them to profile our code as it would run in production. See Appendix C for more
information about using Sun MPI environment variables for high performance. Also
refer to the Sun MPI Programming and Reference Guide.

The job is run on a single, shared-memory node using 25 processes.

FIGURE 8-1 shows the Performance Analyzer’s first view of the resulting profiling
data. This default view shows how time is spent in different functions. Both
exclusive and inclusive user CPU times are shown for each function, excluding and
including, respectively, time spent in any functions it calls. The top line shows that a
total of 3362.710 seconds, over all 25 processes, are profiled.

We see that the functions LHSX(), LHSY(), and LHSZ() account for
523.410+467.960+444.350=1435.72 seconds of that time.

% setenv MPI_SPIN 1
% setenv MPI_PROCBIND 1
% setenv MPI_POLLALL 0
114 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE 8-1 Performance Analyzer—Main View

Fortran programmers will note that the term function is used in the C sense to
include all subprograms, whether they pass return values or not. Further, function
names are those generated by the Fortran compiler. That is, by default they are
converted to lower case and have an underscore appended.

In FIGURE 8-2, we see how this overview appears when MPI tracing is turned on with
the Collector’s –m on switch. Note that accounting for bytes sent and received is
slightly different from the way accounting is handled by MPProf. In particular, for
bytes received, the size of the receive buffer is used rather than the actual number of
bytes received. For more information on how bytes are counted for MPI calls, refer
to the Performance Analyzer documentation volume Program Performance Analysis
Tools.
Chapter 8 Profiling 115

FIGURE 8-2 Performance Analyzer—Main View With Tracing Enabled

We can see how time is spent within a subroutine if the code was compiled and
linked with the –g switch. This switch introduces minimal impact on optimization
and parallelization, and it can be employed rather freely by performance-oriented
users. When we click on the Source tab, the Performance Analyzer brings up a text
editor for the highlighted function. The choice of text editor can be changed under
the Options menu with the Text Editor Options selection. The displayed, annotated
source code includes the selected metrics, the user source code, and compiler
commentary. A small fragment is shown in FIGURE 8-3. In particular, notice that the
Performance Analyzer highlights hot (time-consuming) lines of code. Only a small
fragment is shown since, in practice, the annotated source can become rather wide.
116 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE 8-3 Performance Analyzer—Source View

To get a better idea of where time is spent at a high level in the code, you can also
click on the Callers–Callees tab. FIGURE 8-4 shows a possible Callers–Callee view. The
selected function appears in the middle section, its callers appear above it, and its
callees below. Selected metrics are shown for all displayed functions. By clicking on
callers, you can find where time incurred in the particular function occurs in the
source code at a high level. By clicking on callees, you can find more detail on
expensive calls a particular function might be making. This sort of analysis is
probably familiar to gprof users, but the Performance Analyzer has features that go
beyond some of gprof’s limitations. For more information about gprof, see “Using
the gprof Utility” on page 125.
Chapter 8 Profiling 117

FIGURE 8-4 Performance Analyzer—Callers–Callees View

Different metrics can be selected for the various displays by clicking on the Metrics
button, as seen at the bottom of FIGURE 8-1. You can choose which metrics are shown,
the order in which they are shown, and which metric should be used for sorting.

Click on the Timeline tab to see a view similar to the one shown in FIGURE 8-5. Time
is shown across the horizontal axis, while experiments appear on the vertical axis.
Experiments are numbered sequentially, starting from 1. For example, MPI rank 7
might appear as experiment 8. The timeline view helps you see synchronization
points, load imbalances, and other performance characteristics of your parallel MPI
program.
118 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE 8-5 Performance Analyzer—Timeline View

In FIGURE 8-6, another timeline view is shown. Click on an event to see its callstack in
the lower right corner. When you zoom in to the time scale of the clock sampling (10
milliseconds by default), clock-sampled events appear discretely on the view. Using
MPI tracing helps maintain resolution even to the highest levels of zoom.
Chapter 8 Profiling 119

FIGURE 8-6 Performance Analyzer—Timeline View With Callstack

Because clocks on different nodes of a cluster are not guaranteed to be synchronized,
and because the Performance Analyzer makes no attempt to synchronize time
stamps from different nodes, timeline views of Sun MPI runs that were distributed
over multiple nodes in a cluster are not guaranteed to be displayed properly.

Overview of Functions

In a profile, you will typically find many unfamiliar functions that do not appear
explicitly in your code. Further, it can happen that none of the familiar MPI calls you
do use will appear, such as MPI_Isend(), MPI_Irecv(), MPI_Wait(), or
MPI_Waitall().
120 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE 8-7 shows examples of functions you might find in your profiles, along with
explanations of what you are seeing. The functions are organized by load object, such
as an executable (here, a.out) or a dynamic library.

FIGURE 8-7 Examples of Functions That Might Appear in Profiles

Note that:

■ The top function is _start, which calls the main function. In Fortran programs,
the main function calls the MAIN_ function.

■ By default, the Fortran compiler converts subprogram names to lower case and
appends underscores. For example, the Fortran routine MY_FORTRAN_ROUTINE()
would be converted to my_fortran_routine_().

a.out:

_start
main
MAIN (Fortran only)
My_C_Routine
my_fortran_routine_

libmpi:

pmpi_send, pmpi_recv, etc. (Fortran only)
PMPI_Send, PMPI_Recv, etc.
MPIP_*, mpip_*, makeconns, initconns (internal MPI routines)

Loadable
Protocol
Modules:

shm_*, mpip_shm_*
tcp_*, mpip_tcp_*

librte:

RTE_Init*
cte_atexit

libcre:

TMRTE_*
TMRTE*
tmrte_*

libhpcshm:

create_arena
hpcshm_*

libc, libc_psr, libthread:

_poll, poll, yield
memcpy
_read, read, _write, _writev, writev

User
executables

Sun MPI
library

Other Sun HPC
ClusterTools
libraries
called by
Sun MPI

Other libraries
called by
Sun HPC
ClusterTools

libcollector:

PMPI_RECV, mutex_lock, etc.
Chapter 8 Profiling 121

■ The MPI standard defines a profiling interface, which provides that MPI_*
functions should also be accessible by using the shifted names PMPI_*. In the Sun
MPI implementation, this means that all user-callable functions are named with
their PMPI_* forms, with a pmpi_* wrapper for Fortran use.

For example, a C call to MPI_Send() will enter the function PMPI_Send.

Sun MPI uses a number of internal routines, which will appear in profiles.

■ A Fortran call to MPI_SEND() enters the function pmpi_send_, which in turn
calls PMPI_Send.

■ libcollector intercepts particular calls to the Sun MPI or threads libraries to
support synchronization tracing. Thus, functions such as PMPI_Recv and
mutex_lock might appear twice in profiles — once belonging to a user-callable
library and once belonging to libcollector.

■ Sun MPI calls routines in other Sun HPC ClusterTools libraries.

■ Various Sun HPC ClusterTools libraries call other standard libraries. Notably:

■ The _poll, poll, and yield calls might be called by a Sun MPI process for
waiting.

■ The memcpy call is often called when an MPI process is copying data locally,
such as for on-node message passing.

■ The _read, read, _write, _writev, and writev calls are used in off-node
message passing over TCP.

One way to get an overview of which MPI calls are being made, and which are most
important, is to look for the PMPI entry points into the MPI library. For our case
study example:

In this example, roughly 20 seconds out of 146.93 seconds profiled are due to MPI
calls. The exclusive times are typically small and meaningless. Synchronizing calls,
such as PMPI_Wait and PMPI_Waitall, appear twice, once due to libmpi and
once to libcollector. Such duplication can be ignored.

If ever there is a question about what role an unfamiliar (but possibly time-
consuming) function is playing, within the Performance Analyzer you can:

% er_print –function proc-0.er | grep PMPI_

0.050 16.980 PMPI_Wait

0.030 0.810 PMPI_Isend

0.030 16.930 PMPI_Wait

0.020 0.490 PMPI_Irecv

0. 0. PMPI_Finalize

0. 0.150 PMPI_Init

0. 1.630 PMPI_Waitall

0. 1.630 PMPI_Waitall

%

122 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

■ Choose Callers–Callees to see which function is calling it.

■ Choose Show Summary Metrics from the View menu to see what is displayed
under Load Object.

■ Choose Select Load Objects Included from the View menu to restrict viewing to
functions that belong to specific load objects (such as your executable or libmpi).

MPI Wait Times

Time might be spent in MPI calls for a wide variety of reasons. Specifically, much of
that time might be spent waiting for some condition (a message to arrive, internal
buffering to become available, and so on), rather than in moving data.

While an MPI process waits, it might or might not tie up a CPU. Nevertheless, such
wait time probably has a cost in terms of program performance.

Your options for ensuring that wait time is profiled include:

■ Have Sun MPI spin a CPU aggressively during wait situations. This option
requires turning off coscheduling and turning on spin behavior. Both are off by
default. To do this, use the following environment variable settings:

■ Select wall-clock time, rather than CPU time, as the profiling metric. Profiling
metrics are described earlier in this chapter in the case study.

Other Profiling Approaches
Both Sun MPI and the Solaris OS environment offer useful profiling facilities. Using
the MPI profiling interface, you can investigate MPI calls. Using your own timer
calls, you can profile specific behaviors. Using the Solaris gprof utility, you can
profile diverse multiprocess codes, including those using MPI.

Using the MPI Profiling Interface
The MPI standard supports a profiling interface, which allows any user to profile
either individual MPI calls or the entire library. This interface supports two
equivalent APIs for each MPI routine. One has the prefix MPI_, while the other has

% setenv MPI_COSCHED 0
% setenv MPI_SPIN 1
Chapter 8 Profiling 123

PMPI_. User codes typically call the MPI_ routines. A profiling routine or library
will typically provide wrappers for the MPI_ routines that simply call the PMPI_
ones, with timer calls around the PMPI_ call.

You can use this interface to change the behavior of MPI routines without modifying
your source code. For example, suppose you believe that most of the time spent in
some collective call, such as MPI_Allreduce, is due to the synchronization of the
processes that is implicit to such a call. Then, you can compile a wrapper such as the
one that follows, and link it into your code before the –lmpi switch. The effect will
be that time profiled by MPI_Allreduce calls will be due exclusively to the
MPI_Allreduce operation, with synchronization costs attributed to barrier
operations.

Profiling wrappers or libraries can be used even with application binaries that have
already been linked. Refer to the Solaris man page for ld for more information about
the environment variable LD_PRELOAD.

You can get profiling libraries from independent sources for use with Sun MPI. An
example of a profiling library is included in the multiprocessing environment (MPE)
from Argonne National Laboratory. Several external profiling tools can be made to
work with Sun MPI using this mechanism. For more information on this library and
on the MPI profiling interface, refer to the Sun MPI Programming and Reference Guide.

Inserting MPI Timer Calls
Sun HPC ClusterTools implements the MPI timer call MPI_Wtime (demonstrated in
the example that follows) with the high-resolution timer gethrtime. If you use
MPI_Wtime calls, you should use them to measure sections that last more than
several microseconds. Times on different processes are not guaranteed to be
synchronized. For information about the gethrtime timer, see the gethrtime(3C)
man page.

When profiling multiprocess codes, ensure that the timings are not distorted by the
asynchrony of the various processes. For this purpose, you usually need to
synchronize the processes before starting and before stopping the timer.

subroutine MPI_Allreduce(x,y,n,type,op,comm,ier)
integer x(*), y(*), n, type, op, comm, ier
call PMPI_Barrier(comm,ier)
call PMPI_Allreduce(x,y,n,type,op,comm,ier)
end
124 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

In the following example, most processes might accumulate time in the interesting,
timed portion, waiting for process 0 (zero) to emerge from uninteresting
initialization. This condition would skew your program’s timings. For example:

When stopping a timer, remember that measurements of elapsed time will differ on
different processes. So, execute another barrier before the “stop” timer. Alternatively,
use “maximum” elapsed time for all processes.

Avoid timing very small fragments of code. This is good advice when debugging
uniprocessor codes, and the consequences are greater with many processors. Code
fragments perform differently when timed in isolation. The introduction of barrier
calls for timing purposes can be disruptive for short intervals.

Using the gprof Utility
The Solaris utility gprof might be used for multiprocess codes, such as those that
use MPI. Several points should be noted:

■ Compile and link your programs with the –pg (Fortran) or –xpg (C) switch.

■ Use the environment variable PROFDIR to profile multiprocess jobs, such as those
that use MPI.

■ Use the gprof command after program execution to gather summary statistics
either on individual processes or for multiprocess aggregates.

Note, however, that the gprof utility has several limitations.

■ The gprof utility requires recompilation and relinking.

■ Many libraries do not have gprof versions. For example, activity spent within
Sun MPI calls do not appear in gprof profiles.

■ The gprof utility apportions time equally among all callers. For example, assume
a matrix-multiply routine is called from one caller for small matrices and an equal
number of times from another caller for large matrices. The gprof utility
attributes time spent in the matrix multiplication equally to both callers, even if
the large-matrix operations are substantially more time consuming.

CALL MPI_COMM_RANK(MPI_COMM_WORLD,ME,IER)
IF (ME .EQ. 0) THEN
 initialization
END IF
! place barrier here
! CALL MPI_BARRIER(MPI_COMM_WORLD, IER)
T_START = MPI_WTIME()
 timed portion
T_END = MPI_WTIME()
Chapter 8 Profiling 125

■ It does not count time spent in sleeps and yields, which can skew results.

■ It loses the relationships between process ids (used to tag profile files) and MPI
process ranks.

■ Its profiles from different processes might overwrite one another if a multiprocess
job spans multiple nodes.

Note that the Performance Analyzer is simple to use, provides the profiling
information that gprof does, offers additional functionality, and avoids the pitfalls.
Thus, gprof users are highly encouraged to migrate to the Performance Analyzer
for both MPI and non-MPI codes.

For more information about the gprof utility, refer to the gprof man page. For
more information about the Performance Analyzer, refer to the documentation
supplied with the Sun Studio Compiler Collections.
126 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

APPENDIX A

Sun MPI Implementation

This appendix discusses various aspects of the Sun MPI implementation that affect
program performance:

■ “Yielding and Descheduling” on page 127
■ “Progress Engine” on page 128
■ “Shared-Memory Point-to-Point Message Passing” on page 132
■ “Full Versus Lazy Connections” on page 139
■ “Optimizations for Collective Operations” on page 140
■ “Network Awareness” on page 141
■ “Shared-Memory Optimizations” on page 143
■ “Pipelining” on page 145
■ “Multiple Algorithms” on page 146

Many of these characteristics of the Sun MPI implementation can be tuned at
runtime with environment variables, as discussed in Appendix B.

Yielding and Descheduling
In many programs, too much time in MPI routines is spent waiting for particular
conditions, such as the arrival of incoming data or the availability of system buffers.
This busy waiting costs computational resources, which could be better spent
servicing other users’ jobs or necessary system daemons.

Sun MPI has a variety of provisions for mitigating the effects of busy waiting. This
feature allows MPI jobs to run more efficiently, even when the load of a cluster node
exceeds the number of processors it contains. Two methods of avoiding busy waiting
are yielding and descheduling:

■ Yielding – A Sun MPI process can yield its processor with a Solaris system call if it
waits busily too long.
127

■ Descheduling – Alternatively, a Sun MPI process can deschedule itself. In
descheduling, a process registers itself with the “spin daemon” (spind), which
will poll for the gating condition on behalf of the process. Descheduling
consumes fewer resource than having the process poll, because the spind
daemon can poll on behalf of multiple processes. The process will once again be
scheduled either if the spind daemon wakes the process in response to a
triggering event, or if the process restarts spontaneously, according to a preset
timeout condition.

Yielding is less disruptive to a process than descheduling, but descheduling helps
free resources for other processes more effectively. As a result of these policies,
processes that are tightly coupled can become coscheduled. Yielding and
coscheduling can be tuned with Sun MPI environment variables, as described in
Appendix B.

Progress Engine
When a process enters an MPI call, Sun MPI might act on a variety of messages.
Some of the actions and messages might not pertain to the call at all, but might
relate to past or future MPI calls.

To illustrate, consider the following code sequence:

Sun MPI behaves as one would expect. That is, the computational portion of the
program is interrupted to perform MPI blocking send operations, as illustrated in
FIGURE A-1.

computation
CALL MPI_SEND()
computation
CALL MPI_SEND()
computation
CALL MPI_SEND()
computation
128 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE A-1 Blocking Sends Interrupt Computation

Now, consider the following code sequence:

In this case, the nonblocking receive operation conceptually overlaps with the
intervening computation, as in FIGURE A-2.

FIGURE A-2 Nonblocking Operations Overlap With Computation

In fact, however, progress on the nonblocking receive is suspended from the time the
MPI_Irecv() routine returns until the instant Sun MPI is once again invoked, with
the the MPI_Wait() routine. No actual overlap of computation and communication
occurs, and the situation is as depicted in FIGURE A-3.

computation
CALL MPI_IRECV(REQ)
computation
CALL MPI_WAIT(REQ)
computation
Appendix A Sun MPI Implementation 129

FIGURE A-3 Computational Resources Devoted Either to Computation or to MPI
Operations

Nevertheless, reasonably good overlap between computation and nonblocking
communication can be realized, given that the Sun MPI library is able to progress a
number of message transfers within one MPI call. Consider the following code
sequence, which combines the previous examples:

Now, there is effective overlap of computation and communication, because the
intervening, blocking sends also progress the nonblocking receive, as depicted in
FIGURE A-4. The performance payoff is not due to computation and communication
happening at the same time. Indeed, a CPU still only computes or else moves
data—never both at the same time. Rather, the speed-up results because scheduling
of computation with the communication of multiple messages is better interwoven.

computation
CALL MPI_IRECV(REQ)
computation
CALL MPI_SEND()
computation
CALL MPI_SEND()
computation
CALL MPI_SEND()
computation
CALL MPI_WAIT(REQ)
computation
130 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE A-4 Progress Made on Multiple Messages by a Single MPI Call That Does Not
Explicitly Reference the Other Messages

In general, when Sun MPI is used to perform a communication call, a variety of
other activities might also take place during that call, as we have just discussed.
Specifically:

1. A process might progress any outstanding, nonblocking sends, depending on the
availability of system buffers.

2. A process might progress any outstanding, nonblocking receives, depending on
the availability of incoming data.

3. A process might generally poll for any messages whatsoever, to drain system
buffers.

4. A process must periodically watch for message cancellations from other
processes, in case another process issues an MPI_Cancel() call for a send.

5. A process might choose to yield its computational resources to other processes, if
no useful progress is being made.

6. A process might choose to deschedule itself, if no useful progress is being made.

A nonblocking MPI communication call will return whenever there is no progress to
be made. For example, system buffers might be too congested for a send to proceed,
or there might not yet be any more incoming data for a receive.

In contrast, a blocking MPI communication call might not return until its operation
has completed, even when there is no progress to be made. Such a call will
repeatedly try to make progress on its operation, also checking all outstanding
nonblocking messages for opportunities to perform constructive work (items 1–4). If
these attempts prove fruitless, the process will periodically yield its CPU to other
processes (item 5). After multiple yields, the process will attempt to deschedule itself
by using the spind daemon (item 6).
Appendix A Sun MPI Implementation 131

Shared-Memory Point-to-Point Message
Passing
Sun MPI uses a variety of algorithms for passing messages from one process to
another over shared memory. The characteristics of the algorithms, as well as the
ways in which algorithms are chosen at runtime, can largely be controlled by Sun
MPI environment variables, which are described in Appendix B. This section
describes the background concepts.

Postboxes and Buffers
For on-node, point-to-point message passing, the sender writes to shared memory
and the receiver reads from there. Specifically, the sender writes a message into
shared-memory buffers, depositing pointers to those buffers in shared-memory
postboxes. As soon as the sender finishes writing any postbox, that postbox, along
with any buffers it points to, might be read by the receiver. Thus, message passing is
pipelined—a receiver might start reading a long message, even while the sender is
still writing it.

FIGURE A-5 depicts this behavior. The sender moves from left to right, using the
postboxes consecutively. The receiver follows. The buffers F, G, H, I, J, K, L, and M
are still “in flight” between sender and receiver, and they appear out of order.
Pointers from the postboxes are required to keep track of the buffers. Each postbox
can point to multiple buffers, and the case of two buffers per postbox is illustrated
here. Message data is buffered in the labeled areas.
132 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE A-5 Snapshot of a Pipelined Message

Pipelining is advantageous for long messages. For medium-size messages, only one
postbox is used, and there is effectively no pipelining, as suggested in FIGURE A-6.
Message data is buffered in the shaded areas.

FIGURE A-6 A Medium-Size Message Using Only One Postbox

Further, for extremely short messages, data is squeezed into the postbox itself, in
place of pointers to buffers that would otherwise hold the data, as illustrated in
FIGURE A-7. Message data is buffered in the shaded area.

postboxes

buffers

M

postbox

buffers
Appendix A Sun MPI Implementation 133

FIGURE A-7 A Short Message Squeezing Data Into the Postbox — No Buffers Used

For very long messages, it might be desirable to keep the message from overrunning
the shared-memory area. In that limit, the sender is allowed to advance only one
postbox ahead of the receiver. Thus, the footprint of the message in shared memory
is limited to at most two postboxes at any one time, along with associated buffers.
Indeed, the entire message is cycled through two fixed sets of buffers.

FIGURE A-8 and FIGURE A-9 show two consecutive snapshots of the same cyclic
message. The two sets of buffers, through which all the message data is being cycled,
are labeled X and Y. The sender remains only one postbox ahead of the receiver.
Message data is buffered in the labeled areas.

FIGURE A-8 First Snapshot of a Cyclic Message

postbox

buffers
134 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE A-9 Second Snapshot of a Cyclic Message

Connection Pools Versus Send-Buffer Pools
In the following example, we consider n processes that are collocal to a node.

A connection is a sender-receiver pair. Specifically, for n processes, there are n x (n–
1) connections. That is, A sending to B uses a different connection than B sending to
A, and any process sending to itself is handled separately.

Each connection has its own set of postboxes. For example, in FIGURE A-10, there are
two unidirectional connections for each pair of processes. There are 5x4=20
connections in all for the 5 processes. Each connection has shared-memory resources,
such as postboxes, dedicated to it. The shared-memory resources available to one
sender are shown.
Appendix A Sun MPI Implementation 135

FIGURE A-10 Shared-Memory Resources Dedicated per Connection

By default, each connection also has its own pool of buffers. Users might override
the default use of connection pools, however, and cause buffers to be collected into n
pools, one per sender, with buffers shared among a sender’s n–1 connections. An
illustration of n send-buffer pools is shown in FIGURE A-11. The send-buffer pool
available to one sender is shown.
136 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE A-11 Shared-Memory Resources per Sender — Example of Send-Buffer Pools

Eager Versus Rendezvous
Another issue in passing messages is the use of the rendezvous protocol. By default,
a sender will be eager and try to write its message without explicitly coordinating
with the receiver (FIGURE A-12). Under the control of environment variables, Sun MPI
can employ rendezvous for long messages. Here, the receiver must explicitly
indicate readiness to the sender before the message can be sent, as seen in
FIGURE A-13.

To force all connections to be established during initialization, set the
MPI_FULLCONNINIT environment variable:
Appendix A Sun MPI Implementation 137

% setenv MPI_FULLCONNINIT 1

FIGURE A-12 Eager Message-Passing Protocol

FIGURE A-13 Rendezvous Message-Passing Protocol

Eager

write data

Rendezvous

ready?

write data

acknowledgment
138 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Performance Considerations
The principal performance consideration is that a sender should be able to deposit
its message and complete its operation without coordination with any other process.
A sender might be kept from immediately completing its operation if:

■ Rendezvous is in force. (Rendezvous is suppressed by default.)

■ The message is being sent cyclically (cyclic message passing is suppressed by
default).

■ The shared-memory resources (either buffers or postboxes) are temporarily
congested. Shared-memory resources can be increased by setting Sun MPI
environment variables at runtime to handle any burst of message-passing activity.

Using send-buffer pools, rather than connection pools, helps pool buffer resources
among a sender’s connections. For a fixed total amount of shared memory, this
process can deliver effectively more buffer space to an application, improving
performance. Multithreaded applications can suffer, however, because a sender’s
threads would contend for a single send-buffer pool instead of for (n–1) connection
pools.

Rendezvous protocol tends to slow performance of short messages, not only because
extra handshaking is involved, but especially because it makes a sender stall if a
receiver is not ready. Long messages can benefit, however, if there is insufficient
memory in the send-buffer pool, or if their receives are posted in a different order
than they are sent.

Pipelining can roughly double the point-to-point bandwidth between two processes.
It might have little or no effect on overall application performance, however, if
processes tend to get considerably out of step with one another, or if the nodal
backplane becomes saturated by multiple processes exercising it at once.

Full Versus Lazy Connections
Sun MPI, in default mode, starts up connections between processes on different
nodes only as needed. For example, if a 32-process job is started across four nodes,
eight processes per node, then each of the 32 processes has to establish 32–8=24
remote connections for full connectivity. If the job relied only on nearest-neighbor
connectivity, however, many of these 32x24=768 remote connections would be
unneeded.

On the other hand, when remote connections are established on an “as needed”
basis, startup is less efficient than when they are established en masse at the time of
the MPI_Init() call.
Appendix A Sun MPI Implementation 139

Timing runs typically exclude warmup iterations and, in fact, specifically run several
untimed iterations to minimize performance artifacts in start-up times. Hence, both
full and lazy connections perform equally well for most interesting cases.

Optimizations for Collective Operations
Many MPI implementations effect collective operations in terms of individual point-
to-point messages. In contrast, Sun MPI exploits special, collective, algorithms to
exploit the industry-leading size of Sun servers and their high-performance
symmetric interconnects to shared memory. These optimizations are employed for
one-to-many (broadcast) and many-to-one (reduction) operations, including barriers.
To a great extent, users need not be aware of the implementation details, since the
benefits are realized simply by utilizing MPI collective calls. Nevertheless, a flavor
for the optimizations is given here through an example.

Consider a broadcast operation on 8 processes. The usual, distributed-memory
broadcast uses a binary fan-out, as illustrated in FIGURE A-14.

FIGURE A-14 Broadcast With Binary Fan-Out, First Example

In Step 1, the root process sends the data halfway across the cluster. In Step 2, each
process with a copy of the data sends a distance one fourth of the cluster. For 8
processes, the broadcast is completed in Step 3. More generally, the algorithm runs
somewhat as

log2(NP) X time to send the data point-to-point
140 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

There are several problems with this algorithm. They are explored in the following
sections, and the solutions used in Sun MPI are briefly mentioned. For more
information, see the paper Optimization of MPI Collectives on Clusters of Large-Scale
SMPs, by Steve Sistare, Rolf vandeVaart, and Eugene Loh of Sun Microsystems, Inc.
This paper is available at:

http://portal.acm.org/ft_gateway.cfm?id=331555&type=pdf

Network Awareness
In a cluster of SMP nodes, the message-passing performance on a node is typically
far better than that between nodes.

For a broadcast operation, message passing between nodes in a cluster can be
minimized by having each participating node receive the broadcast exactly once. In
our example, this optimal performance might be realized if, say, processes 0-3 are on
one node of a cluster, while processes 4-7 are on another. This is illustrated in
FIGURE A-15.

FIGURE A-15 Broadcast With Binary Fan-Out, Second Example

Unless the broadcast algorithm is network aware, however, nodes in the cluster
might receive the same broadcast data repeatedly. For instance, if the 8 processes in
our example were mapped to two nodes in a round-robin fashion, Step 3 would
entail four identical copies of the broadcast data being sent from one node to the
other at the same time, as in FIGURE A-16.
Appendix A Sun MPI Implementation 141

http://portal.acm.org/ft_gateway.cfm?id=331555&type=pdf

FIGURE A-16 Broadcast With Binary Fan-Out, Third Example

Or, even if the processes were mapped in a block fashion, processes 0-3 to one node
and 4-7 to another, if the root process for the broadcast were, say, process 1,
excessive internodal data transfers would occur, as in FIGURE A-17.
142 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE A-17 Broadcast With Binary Fan-Out, Fourth Example

In Sun MPI, processes are aware of which other processes in their communication
groups are collocal with them. This information is used so that collective operations
on clusters do not send redundant information over the internodal network.

Shared-Memory Optimizations
Communication between two processes on the same node in a cluster is typically
effected with high performance by having the sender write data into a shared-
memory area and the receiver read the data from that area.

While this provides good performance for point-to-point operations, even better
performance is possible for collective operations.

Consider, again, the 8-process broadcast example. The use of shared memory can be
illustrated as in FIGURE A-18. The data is written to the shared-memory area 7 times
and read 7 times.
Appendix A Sun MPI Implementation 143

FIGURE A-18 Broadcast Over Shared Memory With Binary Fan-Out, First Case

In contrast, by using special collective shared-memory algorithms, the number of
data transfers can be reduced and data made available much earlier to receiving
processes, as illustrated in FIGURE A-19. With a collective implementation, data is
written only once, and is made available much earlier to most of the processes.

FIGURE A-19 Broadcast Over Shared Memory With Binary Fan-Out, Second Case

Sun MPI uses such special collective shared-memory algorithms. Sun MPI also takes
into account possible hot spots in the physical memory of an SMP node. Such hot
spots can sometimes occur if, for example, a large number of processes are trying to
read simultaneously from the same physical memory, or if multiple processes are
sharing the same cache line.
144 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Pipelining
Even in the optimized algorithms discussed in the previous section, there is a delay
between the time when the collective operation starts and the time when receiving
processes can start receiving data. This delay is especially pronounced when the
time to transfer the data is long compared with other overheads in the collective
operation.

Sun MPI employs pipelining in its collective operations. This means that a large
message might be split into components and different components processed
simultaneously. For example, in a broadcast operation, receiving processes can start
receiving data even before all the data has left the broadcast process.

For example, in FIGURE A-19, the root (sender) writes into the shared-memory area
and then the receiving processes read. If the broadcast message is sufficiently large,
the receiving processes might well sit idle for a long time, waiting for data to be
written. Further, a lot of shared memory would have to be allocated for the large
message. With pipelining, the root could write a small amount of data to the shared
area. Then, the receivers could start reading as the root continued to write more.
This enhances the concurrency of the writer with the readers and reduces the
shared-memory footprint of the operation.

As another example, consider a broadcast among 8 different nodes in a cluster, so
that shared-memory optimizations cannot be used. A tree broadcast, such as shown
in FIGURE A-14, can be shown schematically as in FIGURE A-20, view a, for a large
message. Again, the time to complete this operation grows roughly as

log2(NP) X time to send the data point-to-point

In contrast, if the data were passed along a bucket brigade and pipelined, as
illustrated in FIGURE A-20, view b, then the time to complete the operation goes
roughly as the time to send the data point-to-point. The specifics depend on the
internodal network, the time to fill the pipeline, and so on. The basic point remains,
however, that pipelining can improve the performance of operations involving large
data transfers.
Appendix A Sun MPI Implementation 145

FIGURE A-20 Tree Broadcast versus Pipelined Broadcast of a Large Message

Multiple Algorithms
In practice, multiple algorithms are used to optimize any one particular collective
operation. For example, network awareness is used to detect which processes are
collocal on a node. Communications between a node might use a particular network
algorithm, while collocal processes on a node would use a different shared-memory
algorithm. Further, if the data volume is sufficiently large, pipelining might also be
used.

Performance models for different algorithms are employed to make runtime choices
among the algorithms, based on process group topology, message size, and so on.

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

a)

b)
146 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

One-Sided Message Passing Using
Remote Process
An important performance advantage of MPI-2 one-sided communication is that the
remote process does not need to be involved. Nevertheless, Sun MPI will invoke the
remote process when it is required.

When an MPI rank cannot directly access another rank’s address space, Sun MPI
must invoke the remote process to effect one-sided transfers. This occurs, for
example, when the window was not created with the MPI_Alloc_mem routine or
when the connection between the ranks uses the TCP protocol module.

There are two ways that the remote process may provide services for one-sided
operations:

■ The process itself may provide the services. This happens when the process
makes an MPI call and the Sun MPI progress engine, described earlier in this
appendix, alerts the process that such services are required. The disadvantage of
this approach is that the latency for one-sided operations may become high if the
remote process makes MPI calls infrequently.

■ The process may spawn an agent thread to act on its behalf. While this allows
services to be provided even when the remote process is not making any MPI
calls, this approach does create an extra thread that may compete with MPI
processes for CPUs and other system resources and so oversubscribe the system.

The use of an agent thread may be tuned with MPI_USE_AGENT_THREAD.
Appendix A Sun MPI Implementation 147

148 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

APPENDIX B

Sun MPI Environment Variables

This appendix describes some Sun MPI environment variables and their effects on
program performance. It covers the following topics:

■ “Yielding and Descheduling” on page 149
■ “Polling” on page 150
■ “Shared-Memory Point-to-Point Message Passing” on page 150
■ “Shared-Memory Collectives” on page 153
■ “Running Over TCP” on page 154
■ “Summary Table Of Environment Variables” on page 155

Prescriptions for using MPI environment variables for performance tuning are
provided in Chapter 7. Additional information on these and other environment
variables can be found in the Sun MPI Programming and Reference Guide.

These environment variables are closely related to the details of the Sun MPI
implementation, and their use requires an understanding of the implementation.
More details on the Sun MPI implementation can be found in Appendix A.

Yielding and Descheduling
A blocking MPI communication call might not return until its operation has
completed. If the operation has stalled, perhaps because there is insufficient buffer
space to send or because there is no data ready to receive, Sun MPI will attempt to
progress other outstanding, nonblocking messages. If no productive work can be
performed, then in the most general case Sun MPI will yield the CPU to other
processes, ultimately escalating to the point of descheduling the process by means of
the spind daemon.

Setting MPI_COSCHED=0 specifies that processes should not be descheduled. This is
the default behavior.
149

Setting MPI_SPIN=1 suppresses yields. The default value, 0, allows yields.

Polling
By default, Sun MPI polls generally for incoming messages, regardless of whether
receives have been posted. To suppress general polling, use MPI_POLLALL=0.

Shared-Memory Point-to-Point Message
Passing
The size of each shared-memory buffer is fixed at 1 Kbyte. Most other quantities in
shared-memory message passing are settable with MPI environment variables.

For any point-to-point message, Sun MPI will determine at runtime whether the
message should be sent via shared memory, remote shared memory, or TCP. The
flowchart in FIGURE B-1 illustrates what happens if a message of B bytes is to be sent
over shared memory.
150 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

FIGURE B-1 Message of B Bytes Sent Over Shared Memory

For pipelined messages, MPI_SHM_PIPESIZE bytes are sent under the control of any
one postbox. If the message is shorter than 2 x MPI_SHM_PIPESIZE bytes, the
message is split roughly into halves.

For cyclic messages, MPI_SHM_CYCLESIZE bytes are sent under the control of any
one postbox, so that the footprint of the message in shared memory buffers is 2 x
MPI_SHM_CYCLESIZE bytes.

The postbox area consists of MPI_SHM_NUMPOSTBOX postboxes per connection.

By default, each connection has its own pool of buffers, each pool of size
MPI_SHM_CPOOLSIZE bytes.

By setting MPI_SHM_SBPOOLSIZE, users can specify that each sender has a pool of
buffers, each pool having MPI_SHM_SBPOOLSIZE bytes, to be shared among its
various connections. If MPI_SHM_CPOOLSIZE is also set, then any one connection
might consume only that many bytes from its send-buffer pool at any one time.
Appendix B Sun MPI Environment Variables 151

Memory Considerations
In all, the size of the shared-memory area devoted to point-to-point messages is

n x (n – 1) x (MPI_SHM_NUMPOSTBOX x (64 + MPI_SHM_SHORTMSGSIZE) +
MPI_SHM_CPOOLSIZE)

bytes when per-connection pools are used (that is, when MPI_SHM_SBPOOLSIZE is
not set), and

n x (n – 1) x MPI_SHM_NUMPOSTBOX x (64 + MPI_SHM_SHORTMSGSIZE) + n x
MPI_SHM_SBPOOLSIZE

bytes when per-sender pools are used (that is, when MPI_SHM_SBPOOLSIZE is set).

Performance Considerations
A sender should be able to deposit its message and complete its operation without
waiting for any other process. You should typically:

■ Use the default setting of MPI_EAGERONLY, or set MPI_SHM_RENDVSIZE to be
larger than the greatest number of bytes any on-node message will have.

■ Use the default setting of MPI_SHM_CYCLESTART.
■ Increase MPI_SHM_CPOOLSIZE to ensure sufficient buffering at all times.

In theory, rendezvous can improve performance for long messages if their receives
are posted in a different order than their sends. In practice, the right set of
conditions for overall performance improvement with rendezvous messages is rarely
met.

Send-buffer pools can be used to provide reduced overall memory consumption for
a particular value of MPI_SHM_CPOOLSIZE. If a process will only have outstanding
messages to a few other processes at any one time, then set MPI_SHM_SBPOOLSIZE
to the number of other processes times MPI_SHM_CPOOLSIZE. Multithreaded
applications might suffer, however, since then a sender’s threads would contend for
a single send-buffer pool instead of for multiple, distinct connection pools.

Pipelining, including for cyclic messages, can roughly double the point-to-point
bandwidth between two processes. This is a secondary performance effect, however,
since processes tend to get considerably out of step with one another, and since the
nodal backplane can become saturated with multiple processes exercising it at the
same time.
152 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Restrictions
■ The short-message area of a postbox must be large enough to point to all the

buffers it commands. In practice, this restriction is relatively weak since, if the
buffer pool is not too fragmented, the postbox can point to a few, large,
contiguous regions of buffer space. In the worst case, however, a postbox will
have to point to many disjoint, 1-Kbyte buffers. Each pointer requires 8 bytes, and
8 bytes of the short-message area are reserved. Thus, to avoid runtime errors

(MPI_SHM_SHORTMSGIZE – 8) x 1024 / 8

should be at least as large as

max(

MPI_SHM_PIPESTART,

MPI_SHM_PIPESIZE,

MPI_SHM_CYCLESIZE)

■ If a connection-pool buffer is used, it must be sufficiently large to accommodate
the minimum footprint any message will ever require. This means that to avoid
runtime errors, MPI_SHM_CPOOLSIZE should be at least as large as

max(

MPI_SHM_PIPESTART,

MPI_SHM_PIPESIZE,

2 x MPI_SHM_CYCLESIZE)

■ If a send-buffer pool is used and all connections originating from this sender are
moving cyclic messages, there must be at least enough room in the send buffer
pool to advance one message:

MPI_SHM_SBPOOLSIZE ≥ ((np – 1) + 1) x MPI_SHM_CYCLESIZE

■ Other restrictions are noted in TABLE B-1.

Shared-Memory Collectives
Collective operations in Sun MPI are highly optimized and make use of a general
buffer pool within shared memory. MPI_SHM_GBPOOLSIZE sets the amount of space
available on a node for the “optimized” collectives in bytes. By default, it is set to
20971520 bytes. This space is used by MPI_Bcast(), MPI_Reduce(),
MPI_Allreduce(), MPI_Reduce_scatter(), and MPI_Barrier(), provided
that two or more of the MPI processes are on the node.

Memory is allocated from the general buffer pool in three different ways:
Appendix B Sun MPI Environment Variables 153

■ When a communicator is created, space is reserved in the general buffer pool for
performing barriers, short broadcasts, and a few other purposes.

■ For larger broadcasts, shared memory is allocated out of the general buffer pool.
The maximum buffer-memory footprint in bytes of a broadcast operation is set by
an environment variable as

(n / 4) x 2 x MPI_SHM_BCASTSIZE

where n is the number of MPI processes on the node. If less memory is needed
than this, then less memory is used. After the broadcast operation, the memory
is returned to the general buffer pool.

■ For reduce operations,

n x n x MPI_SHM_REDUCESIZE

bytes are borrowed from the general buffer pool and returned after the
operation.

In essence, MPI_SHM_BCASTSIZE and MPI_SHM_REDUCESIZE set the pipeline sizes
for broadcast and reduce operations on large messages. Larger values can improve
the efficiency of these operations for very large messages, but the amount of time it
takes to fill the pipeline can also increase. Typically, the default values are suitable,
but if your application relies exclusively on broadcasts or reduces of very large
messages, then you can try doubling or quadrupling the corresponding environment
variable using one of the following:

If MPI_SHM_GBPOOLSIZE proves to be too small and a collective operation happens
to be unable to borrow memory from this pool, the operation will revert to slower
algorithms. Hence, under certain circumstances, performance optimization could
dictate increasing MPI_SHM_GBPOOLSIZE.

Running Over TCP
TCP ensures reliable dataflow, even over los-prone networks, by retransmitting data
as necessary. When the underlying network loses a lot of data, the rate of
retransmission can be very high, and delivered MPI performance will suffer
accordingly. Increasing synchronization between senders and receivers by lowering

% setenv MPI_SHM_BCASTSIZE 65536
% setenv MPI_SHM_BCASTSIZE 131072
% setenv MPI_SHM_REDUCESIZE 512
% setenv MPI_SHM_REDUCESIZE 1024
154 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

the TCP rendezvous threshold with MPI_TCP_RENDVSIZE might help in certain
cases. Generally, increased synchronization will hurt performance, but over a loss-
prone network it might help mitigate performance degradation.

If the network is not lossy, then lowering the rendezvous threshold would be
counterproductive and, indeed, a Sun MPI safeguard might be lifted. For reliable
networks, use

% setenv MPI_TCP_SAFEGATHER 0

to speed MPI_Gather() and MPI_Gatherv() performance.

Summary Table Of Environment
Variables

TABLE B-1 Sun MPI Environment Variables

Name Units Range Default

Informational

MPI_PRINTENV (None) 0 or 1 0

MPI_QUIET (None) 0 or 1 0

MPI_SHOW_ERRORS (None) 0 or 1 0

MPI_SHOW_INTERFACES (None) 0 – 3 0

Shared Memory Point-to-Point

MPI_SHM_NUMPOSTBOX Postboxes 1 16

MPI_SHM_SHORTMSGSIZE Bytes Multiple of 64 256

MPI_SHM_PIPESIZE Bytes Multiple of 1024 8192

MPI_SHM_PIPESTART Bytes Multiple of 1024 2048

MPI_SHM_CYCLESIZE Bytes Multiple of 1024 8192

MPI_SHM_CYCLESTART Bytes — The default value is 0x7fffffff for 32-bit
and 0x7fffffffffffffff for 64-bit Operating
Systems. That is, by default there is no
cyclic message passing.
Appendix B Sun MPI Environment Variables 155

MPI_SHM_CPOOLSIZE Bytes Multiple of 1024 24576 if MPI_SHM_SBPOOLSIZE is not set
MPI_SHM_SBPOOLSIZE if it is set

MPI_SHM_SBPOOLSIZE Bytes Multiple of 1024 (Unset)

Shared Memory Collectives

MPI_SHM_BCASTSIZE Bytes Multiple of 128 32768

MPI_SHM_REDUCESIZE Bytes Multiple of 64 256

MPI_SHM_GBPOOLSIZE Bytes >256 20971520

TCP

MPI_TCP_CONNTIMEOUT Seconds ≥0 600

MPI_TCP_CONNLOOP Occurrences ≥0 0

MPI_TCP_SAFEGATHER (None) 0 or 1 1

One-Sided Communication

MPI_USE_AGENT_THREAD (None) 0 or 1 0

Polling and Flow

MPI_FLOWCONTROL Messages ≥0 0

MPI_POLLALL (None) 0 or 1 1

Dedicated Performance

MPI_PROCBIND (None) 0 or 1 0

MPI_SPIN (None) 0 or 1 0

Full vs. Lazy Connections

MPI_FULLCONNINIT (None) 0 or 1 0

Eager vs. Rendezvous

MPI_EAGERONLY (None) 0 or 1 1

TABLE B-1 Sun MPI Environment Variables (Continued)

Name Units Range Default
156 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

MPI_SHM_RENDVSIZE Bytes ≥1 24576

MPI_TCP_RENDVSIZE Bytes ≥1 49152

Collectives

MPI_CANONREDUCE (None) 0 or 1 0

MPI_OPTCOLL (None) 0 or 1 1

Coscheduling

MPI_COSCHED (None) 0 or 1 (Unset, or “2”)

MPI_SPINDTIMEOUT Milliseconds ≥0 1000

Handles

MPI_MAXFHANDLES Handles ≥1 1024

MPI_MAXREQHANDLES Handles ≥1 1024

TABLE B-1 Sun MPI Environment Variables (Continued)

Name Units Range Default
Appendix B Sun MPI Environment Variables 157

158 Sun HPC ClusterTools 6 Software Performance Guide • March 2006

Index
Symbols
–, 74

A
Amdahl’s Law, 20

B
backplane bandwidth, 24
bandwidth, 22
bisection bandwidth, 22, 25, 84
blocking sends, 81, 128, 149
buffer congestion, 8
buffering, 7, 31

C
Cluster Runtime Environment (CRE), 12
collective operations, 34, 153
collocating processes, 83, 85, 88
communication costs, 21, 29
compiler switches, 1, 73

–dalign, 75
–fast, 74
–g, 76
–stackvar, 77
–xarch, 75
–xlibmopt, 76
–xprefetch, 76
–xrestrict, 77
–xsfpconst, 77
–xtarget, 74
–xvector, 76

cyclic message passing, 151

D
data movement, within a process, 34
deadlock, 81
dedicated access, 79
descheduling, 128, 149
distributed-memory programming, 16
documentation

LSF on web, xviii

E
environment variables, summary of, 155
external cache, 23

F
full connections, 140

G
gprof, 125

I
interconnects, among nodes, 25

L
L2 cache, 24
latency, 22
lazy connections, 140
load

background, 80
defined, 80
159

load balancing, 29, 84

M
mapping processes to nodes, 83, 88
memory bandwidth, 24
memory latency, 24
mpCC, 73
mpcc, 73
mpf90, 73
MPI profiling interface (PMPI), 123
MPI web page, 12
multithreaded MPI jobs, 88

N
nonuniform memory architecture, 18

P
pipelined messages, 139, 151, 152
polling, 8, 33, 81, 150
postboxes, 132, 135, 151
problem size, reducing, 92
profiling

MPI interface, 123
Solaris utilities, 125

profiling alternatives, compared, 93
programming practices, general, 28

R
rendezvous protocol, 35, 137, 152

S
send-buffer pools, 136, 151, 152
serializaiton, reduction of, 29
shared-memory programming, 16
spin behavior, 81, 149
symmetric multiprocessor (SMP), 9
synchronization, 7, 30

T
TCP connections, 154
TCP retransmission of data, 35
throttled communications, 35
timer calls, 93

U
UltraSPARC processor, 10, 23

Y
yielding, 127, 149
160 Sun HPC ClusterTools™ 6 Software Performance Guide • March 2006

	Sun HPC ClusterTools™ 6 Software Performance Guide
	Contents
	Figures
	Tables
	Code Samples
	Quick Reference
	Compilation and Linking
	MPProf
	Analyzer Profiling
	Job Launch on a Multinode Cluster
	MPI Programming Tips

	Introduction: The Sun HPC ClusterTools Solution
	Sun HPC Hardware
	Processors
	Nodes
	Clusters

	Sun HPC ClusterTools Software
	Sun MPI
	Cluster Runtime Environment

	Choosing Your Programming Model and Hardware
	Starting Out
	Programming Models
	Scalability
	Amdahl’s Law
	Scaling Laws of Algorithms

	Characterizing Platforms
	Basic Hardware Factors
	Other Factors

	Performance Programming
	General Good Programming
	Clean Programming
	Optimizing Local Computation

	Optimizing MPI Communications
	Reducing Message Volume
	Reducing Serialization
	Load Balancing
	Synchronization
	Buffering
	Nonblocking Operations
	Polling
	Sun MPI Collectives
	Contiguous Data Types
	Special Considerations for Message Passing Over TCP

	MPI Communications Case Study
	Algorithms Used
	Algorithm 1
	Algorithm 2
	Algorithm 3
	Algorithm 4
	Algorithm 5

	Making a Complete Program
	Timing Experiments With the Algorithms
	Baseline Results
	Directed Polling
	Increasing Sun MPI Internal Buffering
	Use of MPI_Testall

	One-Sided Communication
	Introducing One-Sided Communication
	Comparing Two-Sided and One-Sided Communications
	Basic Sun MPI Performance Advice
	Case Study: Matrix Transposition
	Test Program A
	Test Program B
	Test Program C
	Test Program D
	Utility Routines
	Timing

	Compilation and Linking
	Compiler Version
	The mp* Utilities
	The -fast Switch
	The -xarch Switch
	The -xalias Switch
	The -g Switch
	Other Useful Switches

	Runtime Considerations and Tuning
	Running on a Dedicated System
	Setting Sun MPI Environment Variables
	Are You Running on a Dedicated System?
	Does the Code Use System Buffers Safely?
	Are You Willing to Trade Memory for Performance?
	Do You Want to Initialize Sun MPI Resources?
	Is More Runtime Diagnostic Information Needed?

	Launching Jobs on a Multinode Cluster
	Minimizing Communication Costs
	Load Balancing
	Controlling Bisection Bandwidth
	Considering the Role of I/O Servers
	Running Jobs in the Background
	Limiting Core Dumps
	Using Line-Buffered Output

	Multinode Job Launch Under CRE
	Collocal Blocks of Processes
	Multithreaded Job
	Round-Robin Distribution of Processes
	Detailed Mapping

	Profiling
	General Profiling Methodology
	Basic Approaches

	MPProf Profiling Tool
	Sample MPProf Output
	Overview
	Load Balance
	Sun MPI Environment Variables
	Breakdown by MPI Routine
	Time Dependence
	Connections

	Multithreaded Programs
	The mpdump Utility
	Managing Disk Files
	Incorporating Environment Variable Suggestions

	Performance Analyzer Profiling of Sun MPI Programs
	Data Collection
	Data Volume

	Data Organization
	Example

	Other Data Collection Issues
	Analyzing Profiling Data
	Case Study
	Overview of Functions
	MPI Wait Times

	Other Profiling Approaches
	Using the MPI Profiling Interface
	Inserting MPI Timer Calls
	Using the gprof Utility

	Sun MPI Implementation
	Yielding and Descheduling
	Progress Engine
	Shared-Memory Point-to-Point Message Passing
	Postboxes and Buffers
	Connection Pools Versus Send-Buffer Pools
	Eager Versus Rendezvous
	Performance Considerations

	Full Versus Lazy Connections
	Optimizations for Collective Operations
	Network Awareness
	Shared-Memory Optimizations
	Pipelining
	Multiple Algorithms
	One-Sided Message Passing Using Remote Process

	Sun MPI Environment Variables
	Yielding and Descheduling
	Polling
	Shared-Memory Point-to-Point Message Passing
	Memory Considerations
	Performance Considerations
	Restrictions

	Shared-Memory Collectives
	Running Over TCP
	Summary Table Of Environment Variables

	Index

