
Sun MPI 4.0 User’s Guide: With
LSF

901 San Antonio Road
Palo Alto, , CA 94303-4900

USA 650 960-1300 Fax 650 969-9131

Part No: 805-7230-10
June 1999, Revision A

Copyright Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers .
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunStore, AnswerBook2, docs.sun.com, and Solaris are trademarks, registered trademarks, or service
marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun

TM

Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.
Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303-4900 U.S.A. Tous droits réservés.
Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, SunStore, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun

TM

a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface vii

1. Introduction 1

Sun HPC Cluster Overview 1

Sun HPC Cluster Hardware 1

Sun HPC ClusterTools 3.0 Software and LSF Suite 3.2.3 2

Load Sharing Facility 2

Sun MPI and MPI I/O 2

Parallel File System 3

Prism 3

Sun S3L 4

Sun Compilers 5

Job Execution Modes 5

2. Starting Sun MPI Programs 7

Using Parallel Job Queues 7

bsub Overview 9

Submitting Jobs in Batch Mode 9

Submitting Interactive Batch Jobs 10

Using the --sunhpc Option 11

Redirect stderr 11

Contents iii

Redirect stdout 12

Collocate Jobs by Specifying Job ID 12

Collocate Jobs by Specifying Job Name 12

Specify the Number of Processes 13

Spawn a Job in the Stopped State 13

Generate Rank-Tagged Output 14

3. Performance Tuning 15

Current Settings 15

Runtime Diagnostic Information 15

Running on a Dedicated System 16

Safe Use of System Buffers 16

Trading Memory for Performance 17

Rendezvous or Eager Protocol? 17

Many Broadcasts or Reductions 18

Shared-Memory Point-to-Point Message Passing 18

Memory Considerations 19

Shared-Memory Collectives 19

Running over TCP 20

Remote Shared Memory (RSM) Point-to-Point Message Passing 20

Memory Considerations 21

Performance Considerations 22

A. Environment Variables 23

Informational 23

MPI_PRINTENV 23

MPI_QUIET 23

MPI_SHOW_ERRORS24

MPI_SHOW_INTERFACES24

General Performance Tuning 24

iv Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

MPI_POLLALL 24

MPI_PROCBIND 24

MPI_SPIN 24

Tuning Memory for Point-to-Point Performance 25

MPI_RSM_CPOOLSIZE 25

MPI_RSM_NUMPOSTBOX25

MPI_RSM_PIPESIZE 25

MPI_RSM_SBPOOLSIZE 25

MPI_RSM_SHORTMSGSIZE25

MPI_SHM_CPOOLSIZE 26

MPI_SHM_CYCLESIZE 26

MPI_SHM_CYCLESTART26

MPI_SHM_NUMPOSTBOX26

MPI_SHM_PIPESIZE 26

MPI_SHM_PIPESTART 26

MPI_SHM_SBPOOLSIZE 26

MPI_SHM_SHORTMSGSIZE27

Numerics 27

MPI_CANONREDUCE27

Tuning Rendezvous 27

MPI_EAGERONLY 27

MPI_RSM_RENDVSIZE 27

MPI_SHM_RENDVSIZE 28

MPI_TCP_RENDVSIZE 28

Miscellaneous 28

MPI_COSCHED 28

MPI_FLOWCONTROL28

MPI_FULLCONNINIT 28

Contents v

MPI_MAXFHANDLES 29

MPI_MAXREQHANDLES29

MPI_OPTCOLL 29

MPI_RSM_MAXSTRIPE 29

MPI_SHM_BCASTSIZE 29

MPI_SHM_GBPOOLSIZE 29

MPI_SHM_REDUCESIZE 30

MPI_SPINDTIMEOUT 30

MPI_TCP_CONNLOOP30

MPI_TCP_CONNTIMEOUT30

MPI_TCP_SAFEGATHER30

B. Troubleshooting 31

MPI Messages 31

Error Messages 32

Warning Messages 32

Standard Error Classes 32

MPI I/O Error Handling 34

vi Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

Preface

The Sun MPI 4.0 User’s Guide: With LSF explains how to execute Sun MPI jobs on
systems running Sun HPC ClusterTools 3.0 software with the LSF Suite, version 3.2.3,
from Platform Computing Corporation. It is intended to be used in conjunction with
the LSF Batch User’s Guide.

Note - If your cluster uses the Sun Cluster Runtime Environment (CRE) instead of the
LSF 3.2.3 workload management suite, read the Sun MPI 4.0 User’s Guide: With
CRE instead of this manual.

Before You Read This Book
This book supplements the LSF Batch User’s Guide, version 3.2.3. For information
about writing MPI programs, refer to the Sun MPI 4.0 Programming and Reference
Guide. Sun MPI 4.0 is part of the Sun HPC ClusterTools 3.0 suite of software. Product
notes for Sun MPI are included in Sun HPC ClusterTools 3.0 Product Notes.

Using UNIX® Commands
This document may not contain information on basic UNIX commands and
procedures, such as creating directories and copying and deleting files.

See one or more of the following for this information:

Preface vii

� AnswerBook
TM

online documentation for the Solaris
TM

2.6 or Solaris 7 software
environment

� Other software documentation that you received with your system

Typographic Conventions

TABLE P–1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files, and
directories; on-screen computer
output

Edit your .login file.

Use ls --a to list all files.

% You have mail .

AaBbCc123 What you type, when contrasted
with on-screen computer output

%su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

To delete a file, type rm filename.

Shell Prompts

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

viii Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

TABLE P–2 Shell Prompts (continued)

Shell Prompt

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Related Documentation

TABLE P–3 Related Documentation

Application Title Part Number

Sun HPC ClusterTools software Sun HPC ClusterTools 3.0 Product
Notes

805-6262-10

Sun HPC ClusterTools software Sun HPC ClusterTools 3.0
Administrator’s Guide: With LSF

805-6280-10

SCI Sun HPC 3.0 SCI Guide 805-6263-10

Installing Sun HPC ClusterTools
software

Sun HPC ClusterTools 3.0
Installation Guide

805-6264-10

Installing LSF Suite LSF 3.2.3 Installation Guide 805-6265-10

Sun MPI Programming Sun MPI 4.0 Programming and
Reference Guide

805-6269-10

Prism Prism 6.0 User’s Guide 805-6277-10

Prism Prism 6.0 Reference Manual 805-6278-10

Sun S3L Sun S3L 3.0 Programming and
Reference Guide

805-6275-10

ix

TABLE P–3 Related Documentation (continued)

Application Title Part Number

LSF Suite LSF Batch Administrator’s Guide 805-6257-10

LSF Suite LSF Batch User’s Guide 805-6258-10

LSF Suite LSF Parallel User’s Guide 805-6259-10

LSF Suite LSF Batch Programmer’s Guide 805-6260-10

Sun Documentation on the Web
The docs.sun.com SM web site enables you to access Sun technical documentation
on the Web. You can browse the docs.sun.com archive or search for a specific book
title or subject at:

http://docs.sun.com

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments and
suggestions. You can email your comments to us at:

docfeedback@sun.com

Please include the part number of your document in the subject line of your email.

x Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

CHAPTER 1

Introduction

This manual explains how to execute Sun
TM

MPI applications on a Sun HPC 3.0
cluster using Platform Computing Corporation’s LSF Batch software, enhanced by
the LSF Parallel facility.

Note - Users should read the LSF Batch User’s Guide for detailed information about
the LSF Batch system’s general features.

Sun HPC Cluster Overview
A Sun HPC 3.0 cluster can be a single Sun SMP (symmetric multiprocessor) server or
a cluster of these SMPs running Sun HPC ClusterTools 3.0 software and LSF Base,
Batch, and Parallel software.

Sun HPC Cluster Hardware
A Sun HPC cluster configuration can range from a single Sun SMP (symmetric
multiprocessor) server to a cluster of SMPs connected by any Sun-supported, TCP/
IP-capable interconnect.

Note - An individual SMP server within a Sun HPC cluster is referred to as a node.

1

Sun HPC ClusterTools 3.0 Software and
LSF Suite 3.2.3
Sun HPC ClusterTools 3.0 software is an integrated ensemble of parallel development
tools that extend Sun’s network computing solutions to high-end distributed-memory
applications. The Sun HPC ClusterTools products are teamed with LSF Suite 3.2.3,
Platform Computing Corporation’s resource management software.

Sun HPC ClusterTools software runs under Solaris 2.6 or Solaris 7 (32- or 64-bit).

Load Sharing Facility
LSF Suite 3.2.3 is a collection of resource-management products that provide
distributed batch scheduling, load balancing, job execution, and job termination
services across a network of computers. The LSF products required by Sun HPC
ClusterTools 3.0 software are: LSF Base, LSF Batch, and LSF Parallel.

� LSF Base – Provides the fundamental services upon which LSF Batch and LSF
Parallel depend. It supplies cluster configuration information as well as the
up-to-date resource and load information needed for efficient job allocation. It also
supports interactive job execution.

� LSF Batch – Performs batch job processing, load balancing, and policy-based
resource allocation.

� LSF Parallel – Extends the LSF Base and Batch services with support for parallel
jobs.

Sun MPI and MPI I/O
Sun MPI is a highly optimized version of the Message-Passing Interface (MPI)
communications library. Sun MPI implements all of the MPI 1.2 standard as well as a
significant subset of the MPI 2.0 feature list. For example, Sun MPI provides the
following features:

� Integration with LSF Suite 3.2.3.

� Support for multithreaded programming.

� Seamless use of different network protocols; for example, code compiled on a Sun
HPC System that has a Scalable Coherent Interface (SCI) network, can be run
without change on a system that has an ATM network.

� Multiprotocol support such that MPI picks the fastest available medium for each
type of connection (such as shared memory, SCI, or ATM).

2 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

� Communication via shared memory for fast performance on clusters of SMPs.

� Finely tunable shared memory communication.

� Optimized collectives for symmetric multiprocessors (SMPs).

� Prism support – Users can develop, run, and debug programs in the Prism
programming environment.

� MPI I/O support for file I/O.

� Sun MPI is a dynamic library.

Sun MPI and MPI I/O provide full F77, C, and C++ support and Basic F90 support.

Parallel File System
The Sun Parallel File System (PFS) component of the Sun HPC ClusterTools suite of
software provides high-performance file I/O for multiprocess applications running in
a cluster-based, distributed-memory environment.

PFS file systems closely resemble UFS file systems, but provide significantly higher
file I/O performance by striping files across multiple PFS I/O server nodes. This
means the time required to read or write a PFS file can be reduced by an amount
roughly proportional to the number of file server nodes in the PFS file system.

PFS is optimized for the large files and complex data access patterns that are
characteristic of parallel scientific applications.

Prism
Prism is the Sun HPC graphical programming environment. It allows you to develop,
execute, debug, and visualize data in message-passing programs. With Prism you can

� Control program execution, such as:

� Start and stop execution.

� Set breakpoints and traces.

� Print values of variables and expressions.

� Display the call stack.

� Visualize data in various formats.

� Analyze performance of MPI programs.

� Control entire multiprocess parallel jobs, aggregating processes into meaningful
groups, called process sets or psets.

Introduction 3

Prism can be used with applications written in F77, F90, C, and C++.

Sun S3L
The Sun Scalable Scientific Subroutine Library (Sun S3L) provides a set of parallel
and scalable functions and tools that are used widely in scientific and engineering
computing. It is built on top of MPI and provides the following functionality for
Sun MPI programmers:

� Vector and dense matrix operations (level 1, 2, 3 Parallel BLAS).

� Iterative solvers for sparse systems.

� Matrix-vector multiply for sparse systems.

� FFT

� LU factor and solve.

� Autocorrelation.

� Convolution/deconvolution.

� Tridiagonal solvers.

� Banded solvers.

� Eigensolvers.

� Singular value decomposition.

� Least squares.

� One-dimensional sort.

� Multidimensional sort.

� Selected ScaLAPACK and BLACS application program interface.

� Conversion between ScaLAPACK and S3L.

� Matrix transpose.

� Random number generators (linear congruential and lagged Fibonacci).

� Random number generator and I/O for sparse systems.

� Matrix inverse.

� Array copy.

� Safety mechanism.

� An array syntax interface callable from message-passing programs.

� Toolkit functions for operations on distributed data.

� Support for the multiple instance paradigm (allowing an operation to be applied
concurrently to multiple, disjoint data sets in a single call).

� Thread safety.

4 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

� Detailed programming examples and support documentation provided online.

Sun S3L routines can be called from applications written in F77, F90, C, and C++.

Sun Compilers
Sun HPC ClusterTools 3.0 software supports the following Sun compilers:

� Sun WorkShop Compilers C/C++ v4.2 and v5.0

� Sun WorkShop Compilers Fortran v4.2 and v5.0

Job Execution Modes
All Sun HPC jobs are handled by the LSF Batch system. Consequently, Sun HPC job
submission involves the following:

� When a Sun HPC job is submitted, it is placed in a job queue rather than being
launched immediately.

� These queues are created by the system administrator. Each queue is defined by a
set of job-launching criteria, called job scheduling policies. These policies can be
specified by the administrator, or default queue policies can be used.

� If a job has particular resource requirements and if a particular queue’s job
scheduling policies meet those requirements, the user can specify that the job be
placed on that queue. If a job does not require special execution conditions, the
user can leave the choice of queue to the LSF Batch system.

� The job waits in its queue until it reaches the head of the queue and the cluster is
able to satisfy the job scheduling policies of that queue. At that point the job is
launched.

The LSF Batch system offers an enhanced form of queue-based job scheduling, called
interactive batch. This job submission mode provides all the job scheduling and
resource management services of the batch environment, while keeping the terminal
session from which the job was submitted attached to the job. This allows the user to
interact with the job throughout its execution.

Introduction 5

6 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

CHAPTER 2

Starting Sun MPI Programs

This chapter explains the basic steps for starting up message-passing programs on a
Sun HPC cluster using LSF Batch services. It covers the following topics:

� Using parallel job queues.

� Using bsub (overview).

� Submitting an MPI job in batch mode.

� Submitting an MPI job in interactive batch mode.

� Using the Sun HPC option --sunhpc .

For information about developing, compiling, and linking Sun MPI programs, see the
Sun MPI 4.0 Programming and Reference Manual.

Note - Running parallel jobs with LSF Suite 3.2.3 is supported on up to 1024
processors and up to 64 nodes.

Using Parallel Job Queues
Distributed MPI jobs must be submitted via batch queues that have been configured
to handle parallel jobs. This parallel capability is just one of the many characteristics
that a system administrator can assign when setting up a batch queue.

You can use the command bqueues -l to find out which job queues support
parallel jobs, as shown in Figure 2–1.

The bqueues --l output contains status information about all the queues currently
defined. Look for a queue that includes the line:

7

JOB_STARTER: pam

which means it is able to handle parallel (distributed MPI) jobs. In the example
shown in Figure 2–1, the queue hpc is defined in this way.

Note - The pam entry may be followed by a --t or --v . The --t option suppresses
printing of process status upon completion and --v specifies that the job is to run in
verbose mode.

Figure 2–1 Finding a Parallel Queue With bqueues --l

If no queues are currently configured for parallel job support, ask the system
administator to set one or more up in this way.

Once you know the name of a queue that supports parallel jobs, submit your Sun
MPI jobs explicitly to them. For example, the following command submits the job
hpc-job to the queue named hpc for execution on four processes.

hpc-demo% bsub --q hpc --n 4 hpc-job

Additional examples are provided in “Submitting Jobs in Batch Mode” on page 9
and “Submitting Interactive Batch Jobs” on page 10.

Note - To use LSF Batch commands, your PATHvariable must include the directory
where the LSF Base, Batch, and Parallel components were installed. The default
installation directory is /opt/SUNWlsf/bin . Likewise, your PATHvariable must
include the ClusterTools software installation directory; the default location for
ClusterTools components is /opt/SUNWhpc/bin .

8 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

bsub Overview
The command for submitting Sun MPI jobs to the LSF Batch system is bsub , just as
it is for submitting nonparallel batch jobs. The command syntax is essentially the
same as well, except for an additional option, --sunhpc , which applies specifically
to Sun MPI jobs. The bsub syntax for parallel jobs is

bsub [basic_options] [–sunhpc sunhpc_args] job

The basic_options entry refers to the set of standard bsub options that are described
in the LSF Batch User’s Guide. The --sunhpc option allows Sun HPC–specific
arguments to be passed to the MPI job job.

“Submitting Jobs in Batch Mode” on page 9 and “Submitting Interactive Batch Jobs”
on page 10 describe how to use bsub to submit jobs in batch and interactive batch
modes, respectively. The --sunhpc option is discussed in “Using the --sunhpc
Option” on page 11.

Refer to the LSF Batch User’s Guide for a full discussion of bsub and associated
job-submission topics.

Submitting Jobs in Batch Mode
The simplest way to submit a Sun MPI job to the LSF Batch system is in batch mode.
For example, the following command submits hpc-job to the queue named hpc in
batch mode and requests that the job be distributed across four processors.

hpc-demo% bsub --q hpc --n 4 hpc-job

Batch-mode is enabled by default, but can be disabled by the system administrator
via the INTERACTIVE parameter.

You can check to see if a queue is able to handle batch-mode jobs by running
bqueues -l queue_name. Then look in the SCHEDULING POLICIES: section of the
bqueues output for the following entries.

� ONLY_INTERACTIVE– This entry means that batch mode is disabled; interactive
and interactive batch modes are enabled.

� NO_INTERACTIVE– This entry means batch mode is enabled; interactive and
interactive batch modes are disabled.

Starting Sun MPI Programs 9

� No reference to INTERACTIVE – If there is no entry containing the term
XXX_INTERACTIVE, all modes are enabled; this is the default condition.

The example queue shown in Figure 2–1; has a SCHEDULING POLICIES:setting of
NO_INTERACTIVE, which allows batch-mode jobs, but not interactive batch.

As soon as hpc-job is submitted in batch mode, LSF Batch detaches it from the
terminal session that submitted it.

Note - If you request more processors than are available, you must use process
wrapping to allow multiple processes to be mapped to each processor. Otherwise, LSF
Batch will wait indefinitely for the number of resources to become available and the
job will never launched. Process wrapping is discussed in “Specify the Number of
Processes” on page 13.

Submitting Interactive Batch Jobs
The interactive batch mode makes full use of the LSF Batch system’s job scheduling
policies and host selection facilities, but keeps the job attached to the terminal session
that submitted it. This mode is well suited to Sun MPI jobs and other
resource-intensive applications.

The following example submits hpc-job to the queue named hpc in interactive
batch mode. As before, this example is based on the assumption that hpc is
configured to support parallel jobs.

hpc-demo % bsub --I --q hpc --n 4 hpc-job

The --I option specifies interactive batch mode.

The queue must not have interactive mode disabled. To check this, run

hpc-demo% bqueues --l hpc

and check the SCHEDULING POLICIES: section of the resulting output. If it contains
either

10 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

SCHEDULING POLICIES: ONLY_INTERACTIVE

or

SCHEDULING POLICIES:

(that is, no entry), interactive batch mode is enabled.

When the queue accepts the job, it returns a job ID. You can use the job ID later as an
argument to various commands that enquire about job status or that control certain
aspects of job state. For example, you can suspend a job or remove it from a queue
with the bstop jobid and bkill jobid commands. These commands are described in
Chapter 7 of the LSF Batch User’s Guide.

Using the --sunhpc Option
LSF Suite version 3.2.3 supports the bsub command-line option --sunhpc , which
gives users special control over Sun MPI jobs. As mentioned earlier, the --sunhpc
option and its arguments must be the last option on the bsub command line:

bsub [basic_options] [–sunhpc sunhpc_args] job

“Redirect stderr ” on page 11 through “Spawn a Job in the Stopped State” on page
13 describe the --sunhpc arguments.

Redirect stderr
Use the --e argument to redirect stderr to a file named file.R n, where file is the
user-supplied name of the output file. The Rn extension is supplied automatically
and indicates the rank of the process producing the stderr output.

For example, to redirect stderr to files named boston.R0 , boston.R1 , and so
forth, enter

Starting Sun MPI Programs 11

hpc-demo % bsub --I --n 4 --q hpc --sunhpc --e boston hpc-job

Redirect stdout
Use the --o argument to redirect stdout to a file named file.R n, where file is the
user-supplied name of the output file. The Rn extension is supplied automatically
and indicates the rank of the process producing the stdout output.

For example, to redirect stdout to files named boston.R0 , boston.R1 , and so
forth, enter

hpc-demo % bsub --I --n 4 --q hpc --sunhpc --o boston hpc-job

Collocate Jobs by Specifying Job ID
Use the --j argument to specify the job ID of another job with which the new job
should collocate.

For example, to cause job hpc-job to be collocated with a job whose job ID is 4622,
enter

hpc-demo % bsub --I --n 4 --q hpc --sunhpc --j 4622 hpc-job

Use bjobs to find out the job ID of a job. See the LSF Batch User’s Guide for details.

Collocate Jobs by Specifying Job Name
Use the --J argument to specify the name of another job with which the new job
should collocate.

For example, to cause job hpc-job1 to be collocated with a job named hpc-job2 ,
enter

12 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

hpc-demo % bsub --I --n 4 --q hpc --sunhpc --J hpc-job2 hpc-job1

Specify the Number of Processes
Use the --n argument to specify the number of processes to run. This argument can
be used in concert with the bsub --n argument to cause process wrapping to occur.
Process wrapping is the term used to describe a technique for distributing multiple
processes to fewer processors than there are processes. As a result, each processor
has multiple processes, which are spawned in a cyclical, wrap-around, fashion.

For example, the following will distribute 48 processes across 16 processors, resulting
in a 3-process wrap per processor.

hpc-demo % bsub --I --n 16 --q hpc --sunhpc --n 48 hpc-job

If you specify a range of processors rather than a single quantity and a larger
number of processes, the process wrapping ratio (number of processes per to
processor) will depend on the number of processors that are actually allocated.

For example, the following will distribute 48 processes across at least 8 processors
and possibly as many as 16.

hpc-demo % bsub --I --n 8,16 --q hpc --sunhpc --n 48 hpc-job

Consequently, the process-to-processor wrapping ratio may be as high as 6:1 (48
processes across 8 processors) or as low as 3:1 (48 processes across 16 processors).

Spawn a Job in the Stopped State
Use the --s argument to cause a job to be spawned in the STOPPEDstate. It does
this by setting the stop-on-exec flag for the spawned process. This feature can be
of value in a program monitoring or debugging tool as a way of gaining control over
a parallel program. See the proc (4) man page for details.

Note - Do not use the --s argument with the Prism debugger. It would add nothing
to Prism’s capabilities and would be likely to interfere with Prism’s control over the
debugging session.

The following example shows the –s argument being used to spawn an interactive
batch job in the STOPPEDstate.

Starting Sun MPI Programs 13

hpc-demo % bsub --I --n 1 --q hpc --sunhpc --s hpc-job

To identify processes in the STOPPEDstate, issue the ps command with the –el
argument:

hpc-demo% ps --el
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
19 T 0 0 0 0 0 SY f0274e38 0 ? 0:00 sched

Here, the sched command is in the STOPPEDstate, as indicated by the T entry in
the S (State) column.

Note that, when spawning a process in the STOPPEDstate, the program’s name does
not appear in the ps output. Instead, the stopped process is identified as a RES
daemon.

Generate Rank-Tagged Output
Use the --t argument to cause all output to be tagged with its MPI rank.

Note - The --t argument cannot be used when output is redirected by the --e or
--o options to --sunhpc .

For example, the following adds a rank-indicator prefix to each line of output.

14 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

CHAPTER 3

Performance Tuning

Sun MPI uses a variety of techniques to deliver high-performance, robust, and
memory-efficient message passing under a wide set of circumstances. In certain
situations, however, applications will benefit from nondefault behaviors. The Sun
MPI environment variables discussed in this section allow you to tune these default
behaviors. A list of all Sun MPI environment variables, with brief descriptions, can
be found in Appendix A and in the MPI man page.

Current Settings
User tuning of MPI environment variables can be restricted by the system
administrator through a configuration file, hpc.conf . To determine whether such
resctrictions are in place on your local cluster use the MPI_PRINTENV (described
below) to verify settings. .

In most cases, performance will be good without tuning any environment variables.
Nevertheless, here are some performance guidelines for using MPI environment
variables. In some cases, diagnosis of whether environment variables would be
helpful is aided by Prism profiling with TNF probes, as described in the Prism User’s
Guide and the Sun MPI Programming and Reference Guide.

Runtime Diagnostic Information
Certain Sun MPI environment variables cause extra diagnostic information to be
printed out at run time:

15

% setenv MPI_PRINTENV 1
% setenv MPI_SHOW_INTERFACES 3
% setenv MPI_SHOW_ERRORS 1

Running on a Dedicated System
If your system has sufficient capacity for running your MPI job, you can commit
processors aggressively to your job. At a minimum, the CPU load should not exceed
the number of physical processors. The CPU load for your job is the number of MPI
processes in the job, but the load is greater if your job is multithreaded. The load on
the system must also be shared with any other jobs are running on the same system.
You can check the current load can be checked with the lsload command.

To run your job more aggressively on a dedicated system, set the MPI_SPIN and
MPI_PROCBINDenvironment variables:

% setenv MPI_SPIN 1

Use this only if you will leave at least one processor per node free to service system
daemons. Profiling with Prism introduces background daemons that cause a slight
but noticeable load, so you must be careful to avoid overloading when attempting to
profile a code with this setting.

% setenv MPI_PROCBIND 1

Set the MPI_PROCBINDvariable only if there are no other MPI jobs running and
your job is single-threaded.

Safe Use of System Buffers
In some MPI programs, processes send large volumes of data with blocking sends
before starting to receive messages. The MPI standard specifies that users must
explicitly provide buffering in such cases, perhaps using MPI_Bsend calls. In
practice, however, some users rely on the standard send routine (MPI_Send) to
supply unlimited buffering. By default, Sun MPI prevents deadlock in such

16 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

situations through general polling, which drains system buffers even when no
receives have been posted by the user code.

For best performance on typical, safe programs, you can suppress general polling
should by setting MPI_POLLALL:

% setenv MPI_POLLALL 0

Trading Memory for Performance
Depending on message traffic, performance can stall if system buffers become
congested, but it can be superior if buffers are large. Here, we examine performance
for on-node messages via shared-memory buffers.

It is helpful to think of data traffic per connection, the “path” from a particular
sender to a particular receiver, since many Sun MPI buffering resources are allocated
on a per-connection basis. A sender may emit bursts of messages on a connection,
during which time the corresponding receiver may not be depleting the buffers. For
example, a sender may execute a sequence of send operations to one receiver during
a period in which that receiver is not making any MPI calls whatsoever.

You may need to use profiling to diagnose such conditions. For more information on
profiling, see the Prism User’s Guide and the Sun MPI Programming and Reference
Guide.

Rendezvous or Eager Protocol?
Is your program sending many long, unexpected messages? Sun MPI offers message
rendezvous, which requires a receiver to echo a ready signal to the sender before data
transmission can begin. This can improve performance for the case of a pair of
processes that communicate with a different order for their sends as for their
receives, since receive-side buffering would be reduced. To allow rendezvous
behavior for long messages, set the MPI_EAGERONLYenvironment variable:

% setenv MPI_EAGERONLY 0

The threshold message size for rendezvous behavior can be tuned independently for
each protocol with MPI_SHM_RENDVSIZE, MPI_TCP_RENDVSIZE, and
MPI_RSM_RENDVSIZE.

Performance Tuning 17

Note - Rendezvous will often degrade performance by coupling senders to receivers.
Also, for some “unsafe” codes, it can produce deadlock.

Many Broadcasts or Reductions
Does your program include many broadcasts or reductions on large messages? Large
broadcasts may benefit from increased values of MPI_SHM_BCASTSIZE, and large
reductions from increased MPI_SHM_REDUCESIZE. Also, if many different
communicators are involved, you may want to increase MPI_SHM_GBPOOLSIZE. In
most cases, the default values will provide best performance.

Shared-Memory Point-to-Point Message
Passing
The size of each shared-memory buffer is fixed at 1 Kbyte. Most other quantities in
shared-memory message passing are settable with MPI environment variables.

A short message, at most MPI_SHM_SHORTMSGSIZEbytes long, is fit into one
postbox and no buffers are used. Above that size, message data is written into
buffers and controlled by postboxes.

Only starting at MPI_SHM_PIPESTARTbytes, however, are multiple postboxes used,
which is known as pipelining. The amount of buffer data controlled by any one
postbox is at most MPI_SHM_PIPESIZE bytes. By default, MPI_SHM_PIPESTARTis
well below MPI_SHM_PIPESIZE. For the smallest pipelined messages, then, a
message is broken roughly into two, and each of two postboxes controls roughly half
the message.

Above MPI_SHM_CYCLESTARTbytes, messages are fed cyclically through two sets of
buffers, each set of size MPI_SHM_CYCLESIZEbytes. During a cyclic transfer, the
footprint of the message in shared memory buffers is 2*MPI_SHM_CYCLESIZEbytes.

The postbox area consists of MPI_SHM_NUMPOSTBOXpostboxes per connection. By
default, each connection has its own pool of buffers, each pool of size
MPI_SHM_CPOOLSIZEbytes.

By setting MPI_SHM_SBPOOLSIZE, users may specify that each sender has a pool of
buffers, of MPI_SHM_SBPOOLSIZEbytes each, to be shared among its various
connections. If MPI_SHM_CPOOLSIZEis also set, then any one connection may
consume only that many bytes from its send-buffer pool at any one time.

18 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

Memory Considerations
In all, the size of the shared-memory area devoted to point-to-point messages is

n * (n -- 1
)

* (
MPI_SHM_NUMPOSTBOX *

(64 + MPI_SHM_SHORTMSGSIZE)
+ MPI_SHM_CPOOLSIZE
)

bytes when per-connection pools are used (that is, when MPI_SHM_SBPOOLSIZEis
not set) and

n * (n -- 1
) * MPI_SHM_NUMPOSTBOX *
(64 + MPI_SHM_SHORTMSGSIZE)
+
n * MPI_SHM_SBPOOLSIZE

bytes when per-sender pools are used (that is, when MPI_SHM_SBPOOLSIZEis set).

Cyclic message passing limits the size of shared memory that is needed to transfer
even arbitrarily large messages.

Shared-Memory Collectives
Collective operations in Sun MPI are highly optimized and make use of a “general
buffer pool” within shared memory.

MPI_SHM_GBPOOLSIZEsets the amount of space available on a node for the
“optimized” collectives in bytes. By default, it is set to 20971520 bytes. This space is
used by MPI_Bcast , MPI_Reduce , MPI_Allreduce , MPI_Reduce_scatter , and
MPI_Barrier , provided that two or more of the MPI processes are on the node.

When a communicator is created, space is reserved in the general buffer pool for
performing barriers, short broadcasts, and a few other purposes.

For larger broadcasts, shared memory is allocated out of the general buffer pool. The
maximum buffer-memory footprint in bytes of a broadcast operation is set by an
environment variable as

(n/4) * 2 * MPI_SHM_BCASTSIZE

where n is the number of MPI processes on the node. If less memory is needed than
this, then less memory is used. After the broadcast operation, the memory is
returned to the general buffer pool.

For reduce operations,

Performance Tuning 19

n * n * MPI_SHM_REDUCESIZE

bytes are borrowed from the general buffer pool.

The broadcast and reduce operations are pipelined for very large messages. By
increasing MPI_SHM_BCASTSIZEand MPI_SHM_REDUCESIZE, one can improve the
efficiency of these collective operations for very large messages, but the amount of
time it takes to fill the pipeline can also increase.

If MPI_SHM_GBPOOLSIZEproves to be too small and a collective operation happens
to be unable to borrow memory from this pool, the operation will revert to slower
algorithms. Hence, under certain circumstances, performance could dictate increasing
MPI_SHM_GBPOOLSIZE.

Running over TCP
TCP ensures reliable dataflow, even over lossy networks, by retransmitting data as
necessary. When the underlying network loses a lot of data, the rate of
retransmission can be very high and delivered MPI performance will suffer
accordingly. Increasing synchronization between senders and receivers by lowering
the TCP rendezvous threshold with MPI_TCP_RENDVSIZEmay help in certain cases.
Generally, increased synchronization will hurt performance, but over a lossy network
it may help mitigate catastrophic degradation.

If the network is not lossy, then lowering the rendezvous threshold would be
counterproductive and, indeed, a Sun MPI safeguard may be lifted. For reliable
networks, use

% setenv MPI_TCPSAFEGATHER 0

Remote Shared Memory (RSM)
Point-to-Point Message Passing
The RSM protocol has some similarities with the shared memory protocol, but it also
has substantial deviations, and environment variables are used differently.

The maximum size of a short message is MPI_RSM_SHORTMSGSIZEbytes, with
default value of 401 bytes. Short RSM messages can span multiple postboxes, but
they still do not use any buffers.

20 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

The most data that will be sent under any one postbox for pipelined messages is
MPI_RSM_PIPESIZE bytes. There are MPI_RSM_NUMPOSTBOXpostboxes for each
RSM connection.

If MPI_RSM_SBPOOLSIZEis unset, then each RSM connection has a buffer pool of
MPI_RSM_CPOOLSIZEbytes. If MPI_RSM_SBPOOLSIZEis set, then each process has
a pool of buffers that is MPI_RSM_SBPOOLSIZEbytes per remote node for sending
messages to processes on the remote node.

Unlike the case of the shared-memory protocol, values of the MPI_RSM_PIPESIZE,
MPI_RSM_CPOOLSIZE, and MPI_RSM_SBPOOLSIZEenvironment variables are
merely requests. Values set with the setenv or printed when MPI_PRINTENV is used
may not reflect effective values. In particular, only when connections are actually
established are the RSM parameters truly set. Indeed, the effective values could
change over the course of program execution if lazy connections are employed.

Striping refers to passing messages over multiple links to get the speedup of their
aggregate bandwidth. The number of stripes used is MPI_RSM_MAXSTRIPEor all
physically available stripes, whichever is less.

Use of rendezvous for RSM messages is controlled with MPI_RSM_RENDVSIZE.

Memory Considerations
Memory is allocated on a node for each remote MPI process that sends messages to
it over RSM. If np_local is the number of processes on a particular node, then the
memory requirement on the node for RSM message passing from any one remote
process is

np_local * (MPI_RSM_NUMPOSTBOX* 128 + MPI_RSM_CPOOLSIZE)

bytes when MPI_RSM_SBPOOLSIZEis unset, and

np_local * MPI_RSM_NUMPOSTBOX * 128 + MPI_RSM_SBPOOLSIZE

bytes when MPI_RSM_SBPOOLSIZEis set.

The amount of memory actually allocated may be higher or lower than this
requirement:

� The memory requirement is rounded up to some multiple of 8192 bytes with a
minimum of 32768 bytes.

� This memory is allocated from a 256-Kbyte (262,144-byte) segment.

� If the memory requirement is greater than 256 Kbytes, then insufficient
memory will be allocated.

� If the memory requirement is less than 256 Kbytes, some allocated memory
will go unused. (There is some, but only limited, sharing of segments.)

Performance Tuning 21

If less memory is allocated than is required, then requested values of
MPI_RSM_CPOOLSIZEor MPI_RSM_SBPOOLSIZEmay be reduced at run time. This
can cause the requested value of MPI_RSM_PIPESIZE to be overridden as well.

Each remote MPI process requires its own allocation on the node as described above.

If multiple stripes are employed, the memory requirement increases correspondingly.

Performance Considerations
The pipe size should be at most half as big as the connection pool

2 * MPI_RSM_PIPESIZE <= MPI_RSM_CPOOLSIZE

Otherwise, pipelined transfers will proceed slowly. The library adjusts
MPI_RSM_PIPESIZE appropriately.

Reducing striping has no performance advantage, but varying MPI_RSM_MAXSTRIPE
can give you insight into the relationship between application performance depends
and internode bandwidth.

For pipelined messages, a sender must synchronize with its receiver to ensure that
remote writes to buffers have completed before postboxes are written. Long
pipelined messages can absorb this synchronization cost, but performance for short
pipelined messages will suffer. In some cases, raising MPI_RSM_SHORTMSGSIZEcan
mitigate this effect.

22 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

APPENDIX A

Environment Variables

Many environment variables are available for fine-tuning your Sun MPI
environment. All 39 Sun MPI environment variables are listed here with brief
descriptions. The same descriptions are also available on the MPI man page. If you
want to return to the default setting after having set a variable, simply unset it (using
unsetenv). The effects of the variables are explained in more detail in Chapter 3.

The environment variables are listed here in six groups:

� “Informational” on page 23

� “General Performance Tuning” on page 24

� “Tuning Memory for Point-to-Point Performance” on page 25

� “Numerics” on page 27

� “Tuning Rendezvous” on page 27

� “Miscellaneous” on page 28

Informational
MPI_PRINTENV
When set to 1, causes the environment variables and hpc.conf parameters
associated with the MPI job to be printed out. The default is 0.

MPI_QUIET
If set to 1, suppresses Sun MPI warning messages. The default value is 0.

23

MPI_SHOW_ERRORS
If set to 1, the MPI_ERRORS_RETURNerror handler prints the error message and
returns the error. The default value is 0.

MPI_SHOW_INTERFACES
When set to 1, 2 or 3, information regarding which interfaces are being used by an
MPI application prints to stdout . Set MPI_SHOW_INTERFACESto 1 to print the
selected internode interface. Set it to 2 to print all the interfaces and their rankings.
Set it to 3 for verbose output. The default value, 0, does not print information to
stdout .

General Performance Tuning
MPI_POLLALL
When set to 1, the default value, all connections are polled for receives, also known
as full polling. When set to 0, only those connections are polled where receives are
posted. Full polling helps drain system buffers and so lessen the chance of deadlock
for “unsafe” codes. Well-written codes should set MPI_POLLALL to 0 for best
performance.

MPI_PROCBIND
Binds each MPI process to its own processor. By default, MPI_PROCBINDis set to 0,
which means processor binding is off. To turn processor binding on, set it to 1. The
system administrator may allow or disable processor binding by setting the pbind
parameter in the hpc.conf file on or off. If this parameter is set, the
MPI_PROCBINDenvironment variable is disabled. Performance can be enhanced
with processor binding, but very poor performance will result if processor binding is
used for multithreaded jobs or for more than one job at a time.

MPI_SPIN
Sets the spin policy. The default value is 0, which causes MPI processes to spin
nonaggressively, allowing best performance when the load is at least as great as the
number of CPUs. A value of 1 causes MPI processes to spin aggressively, leading to

24 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

best performance if extra CPUs are available on each node to handle system
daemons and other background activities.

Tuning Memory for Point-to-Point
Performance
MPI_RSM_CPOOLSIZE
The requested size, in bytes, to be allocated per stripe for buffers for each
remote-shared-memory connection. This value may be overridden when connections
are established. The default value is 16384 bytes.

MPI_RSM_NUMPOSTBOX
The number of postboxes per stripe per remote-shared-memory connection. The
default is 15 postboxes.

MPI_RSM_PIPESIZE
The limit on the size (in bytes) of a message that can be sent over remote shared
memory via the buffer list of one postbox per stripe. The default is 8192 bytes.

MPI_RSM_SBPOOLSIZE
If set, MPI_RSM_SBPOOLSIZEis the requested size in bytes of each RSM send buffer
pool. An RSM send buffer pool is the pool of buffers on a node that a remote process
would use to send to processes on the node. A multiple of 1024 must be used. If
unset, then pools of buffers are dedicated to connections rather than to senders.

MPI_RSM_SHORTMSGSIZE
The maximum size, in bytes, of a message that will be sent via remote shared
memory without using buffers. The default value is 401 bytes.

Environment Variables 25

MPI_SHM_CPOOLSIZE
The amount of memory, in bytes, that can be allocated to each connection pool.
When MPI_SHM_SBPOOLSIZEis not set, the default value is 24576 bytes. Otherwise,
the default value is MPI_SHM_SBPOOLSIZE.

MPI_SHM_CYCLESIZE
The limit, in bytes, on the portion of a shared-memory message that will be sent via
the buffer list of a single postbox during a cyclic transfer. The default value is 8192
bytes. A multiple of 1024 that is at most MPI_SHM_CPOOLSIZE/2 must be used.

MPI_SHM_CYCLESTART
Shared-memory transfers that are larger than MPI_SHM_CYCLESTARTbytes will be
cyclic. The default value is 24576 bytes.

MPI_SHM_NUMPOSTBOX
The number of postboxes dedicated to each shared-memory connection. The default
value is 16.

MPI_SHM_PIPESIZE
The limit, in bytes, on the portion of a shared-memory message that will be sent via
the buffer list of a single postbox during a pipeline transfer. The default value is 8192
bytes. The value must be a multiple of 1024.

MPI_SHM_PIPESTART
The size, in bytes, at which shared-memory transfers will start to be pipelined. The
default value is 2048. Multiples of 1024 must be used.

MPI_SHM_SBPOOLSIZE
If set, MPI_SHM_SBPOOLSIZEis the size, in bytes, of the pool of shared-memory
buffers dedicated to each sender. A multiple of 1024 must be used. If unset, then
pools of shared-memory buffers are dedicated to connections rather than to senders.

26 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

MPI_SHM_SHORTMSGSIZE
The size (in bytes) of the section of a postbox that contains either data or a buffer list.
The default value is 256 bytes.

Note - If MPI_SHM_PIPESTART, MPI_SHM_PIPESIZE, or MPI_SHM_CYCLESIZEis
increased to a size larger than 31744 bytes, then MPI_SHM_SHORTMSGSIZEmay also
have to be increased. See Chapter 3 for more information.

Numerics
MPI_CANONREDUCE
Prevents reduction operations from using any optimizations that take advantage of
the physical location of processors. This may provide more consistent results in the
case of floating-point addition, for example. However, the operation may take longer
to complete. The default value is 0, meaning optimizations are allowed. To prevent
optimizations, set the value to 1.

Tuning Rendezvous
MPI_EAGERONLY
When set to 1, the default, only the eager protocol is used. When set to 0, both eager
and rendez-vous protocols are used.

MPI_RSM_RENDVSIZE
Messages communicated by remote shared memory that are greater than this size
will use the rendezvous protocol unless the environment variable MPI_EAGERONLY
is set to 1. Default value is 16384 bytes.

Environment Variables 27

MPI_SHM_RENDVSIZE
Messages communicated by shared memory that are greater than this size will use
the rendezvous protocol unless the environment variable MPI_EAGERONLYis set.
The default value is 24576 bytes.

MPI_TCP_RENDVSIZE
Messages communicated by TCP that contain data of this size and greater will use
the rendezvous protocol unless the environment variable MPI_EAGERONLYis set.
Default value is 49152 bytes.

Miscellaneous
MPI_COSCHED
Specifies the user’s preference regarding use of the spind daemon for coscheduling.
Values can be 0 (prefer no use) or 1 (prefer use). This preference may be overridden
by the system administrator’s policy. This policy is set in the hpc.conf file and can
be 0 (forbid use), 1 (require use), or 2 (no policy). If no policy is set and no user
preference is specified, coscheduling is not used.

Note - If no user preference is specified, the value 2 will be shown when
environment variables are printed with MPI_PRINTENV.

MPI_FLOWCONTROL
Limits the number of unexpected messages that can be queued from a particular
connection. Once this quantity of unexpected messages has been received, polling the
connection for incoming messages stops. The default value, 0, indicates that no limit
is set. To limit flow, set the value to some integer greater than zero.

MPI_FULLCONNINIT
Ensures that all connections are established during initialization. By default,
connections are established lazily. However, you can override this default by setting
the environment variable MPI_FULLCONNINIT to 1, forcing full-connection
initialization mode. The default value is 0.

28 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

MPI_MAXFHANDLES
The maximum number of Fortran handles for objects other than requests.
MPI_MAXFHANDLESspecifies the upper limit on the number of concurrently allocated
Fortran handles for MPI objects other than requests. This variable is ignored in the
default 32-bit library. The default value is 1024. Users should take care to free MPI
objects that are no longer in use. There is no limit on handle allocation for C codes.

MPI_MAXREQHANDLES
The maximum number of Fortran request handles. MPI_MAXREQHANDLESspecifies
the upper limit on the number of concurrently allocated MPI request handles. Users
must take care to free up request handles by properly completing requests. The
default value is 1024. This variable is ignored in the default 32-bit library.

MPI_OPTCOLL
The MPI collectives are implemented using a variety of optimizations. Some of these
optimizations can inhibit performance of point-to-point messages for “unsafe”
programs. By default, this variable is 1, and optimized collectives are used. The
optimizations can be turned off by setting the value to 0.

MPI_RSM_MAXSTRIPE
Defines the maximum number of stripes that can be used during communication via
remote shared memory. The default value is the number of stripes in the cluster, with
a maximum default of 2.

MPI_SHM_BCASTSIZE
On SMPs, the implementation of MPI_Bcast() for large messages is done using a
double-buffering scheme. The size of each buffer (in bytes) is settable by using this
environment variable. The default value is 32768 bytes.

MPI_SHM_GBPOOLSIZE
The amount of memory available, in bytes, to the general buffer pool for use by
collective operations. The default value is 20971520 bytes.

Environment Variables 29

MPI_SHM_REDUCESIZE
On SMPs, calling MPI_Reduce() causes all processors to participate in the reduce.
Each processor will work on a piece of data equal to the MPI_SHM_REDUCESIZE
setting. The default value is 256 bytes. Care must be taken when setting this variable
because the system reserves MPI_SHM_REDUCESIZE* np * np memory to execute the
reduce.

MPI_SPINDTIMEOUT
When coscheduling is enabled, limits the length of time (in milliseconds) a message
will remain in the poll waiting for the spind daemon to return. If the timeout occurs
before the daemon finds any messages, the process re-enters the polling loop. The
default value is 1000 ms. A default can also be set by a system administrator in the
hpc.conf file.

MPI_TCP_CONNLOOP
Sets the number of times MPI_TCP_CONNTIMEOUToccurs before signaling an error.
The default value for this variable is 0, meaning that the program will abort on the
first occurrence of MPI_TCP_CONNTIMEOUT.

MPI_TCP_CONNTIMEOUT
Sets the timeout value in seconds that is used for an accept() call. The default
value for this variable is 600 seconds (10 minutes). This timeout can be triggered in
both full- and lazy-connection initialization. After the timeout is reached, a warning
message will be printed. If MPI_TCP_CONNLOOPis set to 0, then the first timeout
will cause the program to abort.

MPI_TCP_SAFEGATHER
Allows use of a congestion-avoidance algorithm for MPI_Gather() and
MPI_Gatherv() over TCP. By default, MPI_TCP_SAFEGATHERis set to 1, which
means use of this algorithm is on. If you know that your underlying network can
handle gathering large amounts of data on a single node, you may want to override
this algorithm by setting MPI_TCP_SAFEGATHERto 0.

30 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

APPENDIX B

Troubleshooting

This appendix describes some common problem situations, resulting error messages,
and suggestions for fixing the problems. Sun MPI error reporting, including I/O,
follows the MPI-2 standard. By default, errors are reported in the form of standard
error classes. These classes and their meanings are listed in Table B–1 (for non-I/O
MPI) and Table B–2 (for MPI I/O) and are also available on the MPI man page.

Three predefined error handlers are available in Sun MPI 4.0:

� MPI_ERRORS_RETURN– The default, returns an error code if an error occurs.

� MPI_ERRORS_ARE_FATAL– I/O errors are fatal, and no error code is returned.

� MPI_THROW_EXCEPTION– A special error handler to be used only with C++.

MPI Messages
You can make changes to and get information about the error handler using any of
the following routines:

� MPI_Comm_create_errhandler

� MPI_Comm_get_errhandler

� MPI_Comm_set_errhandler

Messages resulting from an MPI program fall into two categories:

� Error messages – Error messages stem from within MPI. Usually an error message
explains why your program cannot complete, and the program aborts.

� Warning messages – Warnings stem from the environment in which you are
running your MPI program and are usually sent by MPI_Init . They are not
associated with an aborted program, that is, programs continue to run despite
warning messages.

31

Error Messages
Sun MPI error messages use a standard format:

[x y z] Error in function_name: errclass_string:intern(a): description: unixerrstring

where

� [x y z] is the process communication identifier, and:

� x is the job id (or jid).

� y is the name of the communicator if a name exists; otherwise it is the address
of the opaque object.

� z is the rank of the process.

The process communication identifier is present in every error message.

� function_name is the name of the associated MPI function. It is present in every
error message.

� errclass_string is the string associated with the MPI error class. It is present in
every error message.

� intern is an internal function. It is optional.

� a is a system call, if one is the cause of the error. It is optional.

� description is a description of the error. It is optional.

� unixerrstring is the UNIX error string that describes system call a. It is optional.

Warning Messages
Sun MPI warning messages also use a standard format:

[x y z] Warning message

where

� message is a description of the error.

Standard Error Classes
Listed below are the error return classes you may encounter in your MPI programs.
Error values may also be found in mpi.h (for C), mpif.h (for Fortran), and
mpi++.h (for C++).

32 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

TABLE B–1 Sun MPI Standard Error Classes

Error Code ValueMeaning

MPI_SUCCESS 0Successful return code.

MPI_ERR_BUFFER 1Invalid buffer pointer.

MPI_ERR_COUNT 2Invalid count argument.

MPI_ERR_TYPE 3Invalid datatype argument.

MPI_ERR_TAG 4Invalid tag argument.

MPI_ERR_COMM 5Invalid communicator.

MPI_ERR_RANK 6Invalid rank.

MPI_ERR_ROOT 7Invalid root.

MPI_ERR_GROUP 8Null group passed to function.

MPI_ERR_OP 9Invalid operation.

MPI_ERR_TOPOLOGY 10Invalid topology.

MPI_ERR_DIMS 11Illegal dimension argument.

MPI_ERR_ARG 12Invalid argument.

MPI_ERR_UNKNOWN 13Unknown error.

MPI_ERR_TRUNCATE 14Message truncated on receive.

MPI_ERR_OTHER 15Other error; use Error_string .

MPI_ERR_INTERN 16Internal error code.

MPI_ERR_IN_STATUS 17Look in status for error value.

MPI_ERR_PENDING 18Pending request.

Troubleshooting 33

TABLE B–1 Sun MPI Standard Error Classes (continued)

Error Code ValueMeaning

MPI_ERR_REQUEST 19Illegal MPI_Request handle.

MPI_ERR_KEYVAL 36Illegal key value.

MPI_ERR_INFO 37Invalid info object.

MPI_ERR_INFO_KEY 38Illegal info key.

MPI_ERR_INFO_NOKEY 39No such key.

MPI_ERR_INFO_VALUE 40Illegal info value.

MPI_ERR_TIMEDOUT 41Timed out.

MPI_ERR_RESOURCES 42Out of resources.

MPI_ERR_TRANSPORT 43Transport layer error.

MPI_ERR_HANDSHAKE 44Error accepting/connecting.

MPI_ERR_SPAWN 45Error spawning.

MPI_ERR_LASTCODE 46Last error code.

MPI I/O message are listed separately, in Table B–2.

MPI I/O Error Handling
Sun MPI I/O error reporting follows the MPI-2 standard. By default, errors are
reported in the form of standard error codes (found in
/opt/SUNWhpc/include/mpi.h). Error classes and their meanings are listed in
Table B–2. They can also be found in mpif.h (for Fortran) and mpi++.h (for C++).

34 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

You can change the default error handler by specifying MPI_FILE_NULL as the file
handle with the routine MPI_File_set_errhandler , even no file is currently
open. Or, you can use the same routine to change a specific file’s error handler.

TABLE B–2 Sun MPI I/O Error Classes

Error Class ValueMeaning

MPI_ERR_FILE 20Bad file handle.

MPI_ERR_NOT_SAME 21Collective argument not identical on all
processes.

MPI_ERR_AMODE 22Unsupported amode passed to open.

MPI_ERR_UNSUPPORTED_DATAREP 23Unsupported datarep passed to
MPI_File_set_view .

MPI_ERR_UNSUPPORTED_OPERATION 24Unsupported operation, such as seeking on a
file that supports only sequential access.

MPI_ERR_NO_SUCH_FILE 25File (or directory) does not exist.

MPI_ERR_FILE_EXISTS 26File exists.

MPI_ERR_BAD_FILE 27Invalid file name (for example, path name
too long).

MPI_ERR_ACCESS 28Permission denied.

MPI_ERR_NO_SPACE 29Not enough space.

MPI_ERR_QUOTA 30Quota exceeded.

MPI_ERR_READ_ONLY 31Read-only file system.

MPI_ERR_FILE_IN_USE 32File operation could not be completed, as the
file is currently open by some process.

MPI_ERR_DUP_DATAREP 33Conversion functions could not be registered
because a data representation identifier that
was already defined was passed to
MPI_REGISTER_DATAREP.

Troubleshooting 35

TABLE B–2 Sun MPI I/O Error Classes (continued)

Error Class ValueMeaning

MPI_ERR_CONVERSION 34An error occurred in a user-supplied
data-conversion function.

MPI_ERR_IO 35I/O error.

MPI_ERR_INFO 37Invalid info object.

MPI_ERR_INFO_KEY 38Illegal info key.

MPI_ERR_INFO_NOKEY 39No such key .

MPI_ERR_INFO_VALUE 40Illegal info value.

MPI_ERR_LASTCODE 46Last error code.

36 Sun MPI 4.0 User’s Guide: With LSF ♦ June 1999, Revision A

