
901 San Antonio Road
Palo Alto, CA 94303-4900 USA
650 960-1300 fax 650 969-9131

A Sun Microsystems, Inc. Business

Prism 5.0 User’s Guide

Part No.: 805-1552-10
Revision A, November 1997

Sun Microsystems Computer Company

Copyright 1997 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook, SunDocs, Solaris, OpenWindows, Sun HPC Software, Ultra HPC, Ultra HPC Cluster,
UltraSPARC, Sun Performance WorkShop Fortran, and Sun Performance Library are trademarks, registered trademarks, or service marks of
Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook, SunDocs, Solaris, OpenWindows, Sun HPC Software, Ultra HPC, Ultra HPC Cluster,
UltraSPARC, Sun Performance WorkShop Fortran, et Sun Performance Library sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et
sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant
les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents iii

Contents

Preface xi

1. Introduction 1-1

1.1 Overview 1-1

1.2 The Look and Feel of Prism 1-2

1.3 Loading and Executing Programs 1-3

1.4 Debugging 1-3

1.5 Visualizing Data 1-4

1.6 Analyzing Program Performance 1-4

1.7 Editing and Compiling 1-5

1.8 Obtaining On-Line Help and Documentation 1-5

1.9 Customizing Prism 1-5

2. Using Prism 2-1

2.1 Before Entering Prism 2-2

2.1.1 Supported Languages and Compilers 2-2

2.1.2 Compiling and Linking Your Program 2-2

2.1.3 Setting Up Your Environment 2-3

2.2 Entering Prism 2-3

2.2.1 Invoking Prism 2-3

2.2.2 Command-Line Options 2-4

iv Prism 5.0 User’s Guide • November 1997

2.3 Within Prism 2-6

2.3.1 Using the Mouse 2-6

2.3.2 Using Keyboard Alternatives to the Mouse 2-7

2.3.3 Issuing Commands 2-8

2.4 Using the Menu Bar 2-8

2.5 Using the Source Window 2-9

2.5.1 The Source Window 2-9

2.6 Using the Line-Number Region 2-12

2.7 Using the Command Window 2-13

2.7.1 Using the Command Line 2-14

2.7.2 Using the History Region 2-15

2.7.3 Redirecting Output 2-15

2.7.4 Logging Commands and Output 2-16

2.7.5 Executing Commands From a File 2-17

2.8 Writing Expressions in Prism 2-17

2.8.1 How Prism Chooses the Correct Variable or Procedure 2-18

2.8.2 Using Fortran Intrinsic Functions in Expressions 2-19

2.8.3 Using C Arrays in Expressions 2-20

2.8.4 Using Array-Section Syntax 2-20

2.8.5 Hints for Detecting NaNs and Infinities 2-21

2.9 Using Sun HPF Generic Procedures 2-21

2.10 Issuing Solaris Commands 2-23

2.10.1 Changing the Current Working Directory 2-23

2.10.2 Setting and Displaying Environment Variables 2-23

2.11 Leaving Prism 2-24

3. Loading and Executing a Program 3-1

3.1 Loading a Program 3-1

3.1.1 From the Menu Bar 3-2

3.1.2 From the Command Window 3-3

Contents v

3.1.3 What Happens When You Load a Program 3-3

3.1.4 Loading Subsequent Programs 3-3

3.2 Associating a Core File With a Loaded Program 3-3

3.3 Attaching To and Detaching From a Running Process 3-4

3.4 Executing a Program 3-5

3.4.1 Running a Program 3-5

3.4.2 Program I/O 3-6

3.4.3 Stepping Through a Program 3-6

3.4.4 Interrupting and Continuing Execution 3-7

3.4.5 Status Messages 3-7

3.5 Choosing the Current File and Function 3-9

3.6 Creating a Directory List for Source Files 3-11

4. Debugging a Program 4-1

4.1 Overview of Events 4-1

4.2 Using the Event Table 4-3

4.2.1 Description of the Event Table 4-3

4.2.2 Adding an Event 4-5

4.2.3 Deleting an Existing Event 4-6

4.2.4 Editing an Existing Event 4-6

4.2.5 Enabling and Disabling Events 4-7

4.2.6 Saving Events 4-7

4.3 Setting Breakpoints 4-8

4.3.1 Using the Line-Number Region 4-9

4.3.2 Using the Event Table and the Events Menu 4-10

4.3.3 Using Commands 4-11

4.4 Tracing Program Execution 4-13

4.4.1 Using the Event Table and the Events Menu 4-13

4.4.2 Using Commands 4-14

4.5 Displaying and Moving Through the Call Stack 4-15

vi Prism 5.0 User’s Guide • November 1997

4.5.1 Displaying the Call Stack 4-15

4.5.2 Moving Through the Call Stack 4-15

4.6 Examining the Contents of Memory and Registers 4-16

4.6.1 Displaying Memory 4-16

4.6.2 Displaying the Contents of Registers 4-17

5. Visualizing Data 5-1

5.1 Overview 5-1

5.1.1 Printing and Displaying 5-1

5.1.2 Visualization Methods 5-2

5.1.3 Changing the Default Radix 5-2

5.1.4 Data Visualization Limits 5-3

5.2 Choosing the Data to Visualize 5-3

5.2.1 Printing and Displaying From the Debug Menu 5-3

5.2.2 Printing and Displaying from the Source Window 5-4

5.2.3 Printing and Displaying From the Events Menu 5-4

5.2.4 Printing and Displaying From the Event Table 5-5

5.2.5 Printing and Displaying from the Command Window 5-6

5.3 Working with Visualizers 5-7

5.3.1 Using the Data Navigator in a Visualizer 5-8

5.3.2 Using the Display Window in a Visualizer 5-9

5.3.3 Using the File Menu 5-10

5.3.4 Using the Options Menu 5-10

5.3.5 Updating and Closing the Visualizer 5-21

5.4 Saving, Restoring, and Comparing Visualizers 5-22

5.4.1 Saving the Values of a Variable 5-22

5.4.2 Restoring the Data 5-23

5.4.3 Comparing the Data 5-24

5.5 Visualizing Layouts of Parallel Objects 5-26

5.6 Visualizing Structures 5-26

Contents vii

5.6.1 Expanding Pointers 5-27

5.6.2 Panning and Zooming 5-28

5.6.3 Deleting Nodes 5-29

5.6.4 More about Pointers in Structures 5-29

5.6.5 Updating and Closing a Structure Visualizer 5-30

5.7 Printing the Type of a Variable 5-30

5.7.1 What Is Displayed 5-30

5.8 Modifying Data 5-31

5.9 Changing the Radix of Data 5-31

5.10 Printing the Names and Values of Local Variables 5-31

6. Obtaining Performance Data 6-1

6.1 Overview 6-1

6.2 Writing and Compiling Your Program 6-2

6.3 Obtaining the Most Accurate Performance Data 6-2

6.4 Collecting Performance Data 6-3

6.4.1 Collecting Performance Data Outside of Prism 6-3

6.5 Displaying Performance Data 6-4

6.5.1 The Resources Pane 6-6

6.5.2 The Procedures Pane 6-7

6.5.3 The Source-Lines Pane 6-8

6.5.4 Displaying Performance Data in the Command Window 6-9

6.6 Interpreting the Data 6-9

6.7 Re-using Performance Data Files 6-10

7. Editing and Compiling Programs 7-1

7.1 Editing Source Code 7-1

7.2 Using the make Utility 7-2

7.2.1 Creating the Makefile 7-2

7.2.2 Using the Makefile 7-2

viii Prism 5.0 User’s Guide • November 1997

8. Getting Help 8-1

8.1 Getting Help 8-1

8.1.1 Using the Help System 8-1

8.1.2 Choosing Selections from the Help Menu 8-2

8.1.3 Getting Help on Using the Mouse 8-2

8.1.4 Obtaining Help from the Command Window 8-2

8.2 Obtaining Online Documentation 8-3

8.2.1 Viewing Manual Pages 8-3

9. Customizing Prism 9-1

9.1 Using the Tear-Off Region 9-1

9.1.1 Adding Menu Selections to the Tear-Off Region 9-2

9.1.2 Adding Prism Commands to the Tear-Off Region 9-3

9.2 Creating Aliases for Commands and Variables 9-3

9.3 Using the Customize Utility 9-4

9.3.1 How to Change a Setting 9-5

9.3.2 Resources 9-6

9.3.3 Where Prism Stores Your Changes 9-8

9.4 Changing Prism Defaults 9-8

9.4.1 Adding Prism Resources to the Resource Database 9-10

9.4.2 Specifying the Editor and Its Placement 9-11

9.4.3 Specifying the Window for Error Messages 9-11

9.4.4 Changing the Text Fonts 9-11

9.4.5 Changing Colors 9-12

9.4.6 Changing Keyboard Translations 9-13

9.4.7 Changing the Xterm to Use for I/O 9-14

9.4.8 Changing the Way Prism Signals an Error 9-15

9.4.9 Changing the make Utility to Use 9-15

9.4.10 Changing How Prism Treats Stale Data in Visualizers 9-15

9.4.11 Specifying the Browser to Use for Displaying Help 9-15

Contents ix

9.4.12 Changing the Way Prism Handles Sun HPF Generic Procedures
9-16

9.5 Initializing Prism 9-16

10. MP Prism 10-1

10.1 Overview 10-2

10.2 Entering MP Prism 10-2

10.2.1 Command-Line Options 10-3

10.2.2 Methods of Entering 10-3

10.2.3 Other Options 10-5

10.2.4 Attaching 10-6

10.3 Using Psets 10-6

10.3.1 Using the Psets Window 10-7

10.3.2 Predefined Psets 10-9

10.3.3 Defining Your Own Psets 10-9

10.3.4 Viewing the Contents of Psets 10-13

10.3.5 Deleting Psets 10-16

10.3.6 Current Pset 10-16

10.3.7 The Current Process 10-18

10.3.8 The Cycle Pset 10-19

10.3.9 Using Psets in Commands 10-21

10.4 Executing a Program in MP Prism 10-22

10.4.1 Attaching and Detaching 10-22

10.4.2 Quitting 10-22

10.4.3 Stepping and Continuing Through a Program 10-22

10.4.4 Interrupting and Waiting for Processes 10-23

10.4.5 Execution Pointer 10-24

10.4.6 Finding Out Execution Status 10-24

10.4.7 Executing a Program in Commands-Only MP Prism 10-25

10.5 Combining DP and MP Prism 10-25

10.6 Debugging in MP Prism 10-25

x Prism 5.0 User’s Guide • November 1997

10.6.1 Events in MP Prism 10-26

10.6.2 Where Graph 10-29

10.6.3 Scope in MP Prism 10-33

10.6.4 Examining Process Core Files 10-34

10.7 Visualizing Data in MP Prism 10-35

10.8 Customizing MP Prism 10-36

10.9 Using MP Prism With PVM Programs 10-37

10.10 Using MP Prism With Sun MPI Programs 10-38

10.10.1 Setting MPI_INIT_TIMEOUT 10-38

A. Commands-Only Prism A-1

Index Index-1

Preface xi

Preface

The Prism User’s Guide explains how to use the Prism programming environment to
develop, execute, debug, and visualize data in serial and parallel programs.

These instructions are intended for application programmers developing serial or
parallel programs that are to run on a Sun™ HPC System. We assume you know the
basics of developing and debugging programs, as well as the basics of the system on
which you will be using Prism. Some familiarity with the UNIX® debugger dbx is
helpful but not required. Prism is based on the X and OSF/Motif standards.
Familiarity with these standards is also helpful but not required.

Using UNIX Commands
This document may not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

■ AnswerBook™ online documentation for the Solaris™ 2.x software environment
■ Other software documentation that you received with your system

xii Prism 5.0 User’s Guide • November 1997

Typographic Conventions

Shell Prompts

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output.

Edit your .login file.
Use ls -a to list all files.
% You have mail .

AaBbCc123 What you type, when
contrasted with on-screen
computer output.

% su
Password:

AaBbCc123 Book titles, new words or
terms, words to be emphasized.
Command-line variable;
replace with a real name or
value.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be root to do this.
To delete a file, type rm filename.

TABLE P-2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell
superuser

#

xiii

Related Documentation

Ordering Sun Documents
SunDocsSM is a distribution program for Sun Microsystems technical documentation.
Contact SunExpress for easy ordering and quick delivery. You can find a listing of
available Sun documentation on the World Wide Web.

TABLE P-3 Related Documentation

Application Title Part Number

All Sun HPC Software 2.0 System
Administrator’s Guide

805-1554-10

All Sun HPC Software 2.0 Release Notes 805-2191-10

Sun MPI Programming Sun MPI 3.0 Guide 805-1556-10

Prism Prism 5.0 User’s Guide 805-1552-10

Prism Prism 5.0 Reference Manual 805-1553-10

Sun HPF Programming Sun HPF 1.0 Guide 805-1558-10

S3L S3L 2.0 Guide 805-1557-10

TABLE P-4 SunExpress Contact Information

Country Telephone Fax

Belgium 02-720-09-09 02-725-88-50

Canada 1-800-873-7869 1-800-944-0661

France 0800-90-61-57 0800-90-61-58

Germany 01-30-81-61-91 01-30-81-61-92

Holland 06-022-34-45 06-022-34-46

Japan 0120-33-9096 0120-33-9097

Luxembourg 32-2-720-09-09 32-2-725-88-50

Sweden 020-79-57-26 020-79-57-27

xiv Prism 5.0 User’s Guide • November 1997

Sun Documentation on the Web
The docs.sun.com web site enables you to access Sun technical documentation on
the World Wide Web. You can browse the docs.sun.com archive or search for a
specific book title or subject. The URL is http://docs.sun.com

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. You can email or fax your comments to us. Please include the part
number of your document in the subject line of your email or fax message.

■ Email: smcc-docs@sun.com

■ Fax: SMCC Document Feedback
1-650-786-6443

LSF Technical Support
LSF 3.0, a product of Platform Computing Corporation, is part of the Sun HPC
Software 2.0 Foundation Package. As such, it is supported by Sun as part of Sun
HPC Software 2.0.

Sun HPC Software includes LSF Base and LSF Batch. However, LSF JobScheduler
and LSF MultiCluster are not included and, therefore, not supported by Sun.

Switzerland 0800-55-19-26 0800-55-19-27

United Kingdom 0800-89-88-88 0800-89-88-87

United States 1-800-873-7869 1-800-944-0661

World Wide Web: http://www.sun.com/sunexpress/

TABLE P-4 SunExpress Contact Information

xv

Information Sources for PVM and PETSc
TABLE P-5 lists organizations and resources for information about the publicly
available libraries PVM and PETSc. This information is subject to change.

TABLE P-5 Information Sources for PVM and PETSc

Product Contact

PVM Copyright holders: University of Tennessee, Oak Ridge National
Laboratory, Emory University
Electronic mail: pvm@msr.epm.ornl.gov
Newsgroup: comp.parallel.pvm
Web site: http://www.epm.ornl.gov/pvm/pvm_home.html

PETSc Developed and supported by the Mathematics and Computer Science
Division of the Argonne National Laboratory.

xvi Prism 5.0 User’s Guide • November 1997

1-1

CHAPTER 1

Introduction

Prism is an integrated graphical environment within which users can develop,
execute, and debug programs. It provides an easy-to-use, flexible, and
comprehensive set of tools for performing all aspects of serial, data parallel, and
message-passing programming. Prism operates on terminals or workstations
running the Solaris™ operating environment under either OpenWindows™
environment or Sun’s Common Desktop Environment (CDE). In addition, a
commands-only option allows you to operate on any terminal, but without the
graphical interface.

This chapter introduces Prism. Subsequent chapters discuss specific aspects of it in
more detail.

1.1 Overview
You can either load an executable program into Prism, or start from scratch by
calling up an editor and a UNIX® shell within Prism and using them to write and
compile the program.

Once an executable program is loaded into Prism, you can (among other things):

■ Execute the program
■ Debug the program
■ Visualize data from the program
■ Analyze the performance of the program (data parallel programs only)

Prism supports message-passing programs, described in Chapter 10, “MP Prism."
Prism also supports data parallel programs, although the view presented to the user
is that of a single serial program.

1-2 Prism 5.0 User’s Guide • November 1997

1.2 The Look and Feel of Prism
FIGURE 1-1 shows the main window of Prism with a program loaded. It is within this
window that you debug and analyze your program. You can operate with a mouse,
use keyboard equivalents of mouse actions, or issue keyboard commands.

FIGURE 1-1 Prism’s Main Window

Clicking on items in the menu bar displays pulldown menus that provide access to
most of Prism’s functionality.

You can add frequently used menu items and commands to the tear-off region, below
the menu bar, to make them more accessible.

Line-number
region

Menu bar

Command
window

Tear-off
region

Status
region

Source
window

Chapter 1 Introduction 1-3

The status region displays the program’s name and messages about the program’s
status.

The source window displays the source code for the executable program. You can
scroll through this source code and display any of the source files used to compile
the program. When a program stops execution, the source window updates to show
the code currently being executed. You can select variables or expressions in the
source code and print their values or obtain other information about them.

The line-number region is associated with the source window. You can click to the
right of a line number in this region to set a breakpoint at that line. In FIGURE 1-1, a
breakpoint is set at line 25.

The command window at the bottom of the main Prism window displays messages
and output from Prism. You can also type commands in the command window
rather than use the graphical interface.

General aspects of using these areas are discussed in Chapter 2.

1.3 Loading and Executing Programs
You can load an executable program into Prism when you start it up, or any time
afterward. Once the program is loaded, you can run the program or step through it.
You can also interrupt execution at any time.

You can also attach to a running program or associate a core file with a program.

Chapter 3 discusses these topics in more detail. See Section 10.4, “Executing a
Program in MP Prism” for aspects of these topics that are unique to MP Prism.

1.4 Debugging
Prism allows you to perform standard debugging operations such as setting
breakpoints and traces, and displaying and moving through the call stack. Chapter 4
discusses these topics. See Chapter 10 for a discussion of debugging in MP Prism.

1-4 Prism 5.0 User’s Guide • November 1997

1.5 Visualizing Data
It is often important to obtain a visual representation of the data elements that make
up an array or parallel object. In Prism, you can create visualizers that provide
standard representations of variables or expressions. For example,

■ In the text representation, the data is shown as numbers or characters.

■ In the colormap representation, each data element is mapped to a color, based on a
range of values and a color map that you specify. (This representation is available
only on color workstations.)

■ In the threshold representation, each data element is mapped to either black or
white, based on a cutoff value that you can specify.

A data navigator lets you manipulate the display window relative to the data being
visualized. Options are available that let you update a visualizer or save a snapshot
of it.

See Chapter 5 for a discussion of visualizing data. Section 10.7 covers aspects of
visualization unique to MP Prism.

1.6 Analyzing Program Performance
Prism provides performance data that is essential for effectively analyzing and
tuning Sun HPF data parallel programs. The data includes:

■ User and system CPU time

■ Time spent in various forms of communication

■ Time spent performing I/O

The performance data is displayed as histograms and percentages (or elapsed times)
for each computing resource. You can also obtain data on usage for each procedure
and source line in the program. You can save the performance data in a file and
redisplay it at a later time.

See Chapter 6, “Obtaining Performance Data,” for a discussion of performance
analysis.

Chapter 1 Introduction 1-5

1.7 Editing and Compiling
You can call up the editor of your choice within Prism to edit source code (or any
other text files). If you change your source code and want to recompile, Prism also
provides an interface to the UNIX make utility. See Chapter 7.

1.8 Obtaining On-Line Help and
Documentation
Prism features a comprehensive on-line help system. Help is available for each
menu, window, and dialog box in Prism.

In addition to help on Prism itself, Prism on-line documentation is provided on the
Sun AnswerBook™.

On-line help and documentation are described in more detail in Chapter 8.

1.9 Customizing Prism
You can change aspects of the way Prism operates. They are discussed in Chapter 9.

1-6 Prism 5.0 User’s Guide • November 1997

2-1

CHAPTER 2

Using Prism

This chapter describes general aspects of using Prism. Succeeding chapters describe
how to perform specific functions within Prism.

See the following sections to learn:

■ What to do before entering the Prism programming environment — Section 2.1.

■ How to enter Prism — Section 2.2.

■ How to perform actions within Prism — Section 2.3.

■ How to use the menu bar — Section 2.4.

■ How to use windows, dialog boxes, and lists — 2.5.

■ How to use the source window and line-number region — Section 2.5.

■ How to use the command window — Section 2.7.

■ How to write expressions in Prism — Section 2.8.

■ How to work with Sun HPF generic procedures in Prism — Section 2.9.

■ How to issue Solaris commands — Section 2.10.

■ How to leave Prism — Section 2.11.

The best way to learn how to use Prism is to try it out for yourself as you read this
chapter.

2-2 Prism 5.0 User’s Guide • November 1997

2.1 Before Entering Prism

2.1.1 Supported Languages and Compilers
You can work on Sun HPF, Fortran, and C programs within Prism. Specifically,
Prism supports these compilers in Sun™ HPC Software 2.0:

■ Sun HPF Release 1.0
■ SPARCompiler™ Fortran 77 4.0 and 4.2
■ SPARCompiler C 4.0 and 4.2
■ gcc

Note – Prism does not support gcc ’s extensions to Standard C. If you make use of
these extensions, or if you use another compiler, you may receive error messages
about bad symbol table entries.

2.1.2 Compiling and Linking Your Program
To use Prism’s debugging features, compile and link each program module with the
–g compiler option to produce the necessary debugging information.

Note – If you use the C or Fortran SPARCompiler, you must also use the -xs option
when compiling and linking; this causes the debugging information to be placed in
the executable program rather than in the object files.

If you are going to be collecting performance data for a Sun HPF program, compile
and link with the -tmprofile option. Also, avoid using any optimization flags.

Note – If you use calls to tm_timer in your HPF program, the program (when run
within Prism) will occasionally report failure to open a file of the form
/proc/< pid>. Since Prism also uses files of the form /proc/< pid>, to avoid
conflicts you must comment out calls to tm_timer in your HPF program if you wish
to run the program within Prism.

Chapter 2 Using Prism 2-3

2.1.3 Setting Up Your Environment
To enter the Prism programming environment, you must be logged in to a terminal
or workstation running the X Window System (unless you want to run Prism in
commands-only mode; see below).

Prism works under these X servers:

■ OpenWindows
■ CDE

Make sure that your DISPLAY environment variable is set for the terminal or
workstation from which you are running X. For example, if your workstation is
named valhalla, you can issue this command (if you are running the C shell):

% setenv DISPLAY valhalla:0

2.2 Entering Prism

Note – This section applies only to entering Prism to work with a serial or data
parallel program. See Section 10.2 for more information on entering MP Prism to
work with a message-passing program. For additional information on using MP
Prism with Sun MPI programs, see Section 10.10.

2.2.1 Invoking Prism
Issue the prism command just as you would any program. For example, issuing the
prism command at your Solaris prompt,

% prism

starts Prism on your login node in a Sun HPC System.

You can also start Prism as part of a tmrun or tmsub command, such as

% tmrun –p Thor prism

starting Prism on a node on partition Thor.

You can specify default option settings for tmsub or tmrun via the environment
variable TMRUN_FLAGS.

For complete information on tmrun , tmsub , and TMRUN_FLAGS, see the Sun HPC
Software User’s Guide.

2-4 Prism 5.0 User’s Guide • November 1997

When Prism starts, you see the main window shown in FIGURE 1-1 in Chapter 1.

2.2.2 Command-Line Options

2.2.2.1 Loading a Serial Program

If you specify the name of an executable program on the command line, that
program is automatically loaded into Prism. For example,

% prism primes.x

When you execute the program, it will execute on the node on which Prism is
running.

See 3.1 for more information about loading a program.

2.2.2.2 Loading a Multiprocess Program

If you are loading a data parallel or message-passing program, you typically want to
specify the number of processes it is to run. Use the –np option to do this. For
example,

% prism –np 4 primes.x

You can also use the -p option to specify the partition in which the program is to
run, and the -s option to specify the Sun HPC System (if you want it to run on a
System other than the one to which you are logged in).

Finally, you can use the -tmrun option to specify any other tmrun options that you
want to use to control the execution of the program. Enclose the options in quotation
marks. (If the option uses quotation marks itself, precede each of them with a
backslash.) For example,

% prism –np 4 –tmrun ”–S” mprog.x

Once you have entered Prism, you can issue the tmrunargs command to specify
any tmrun or tmsub options that you want to apply to your message-passing
program. Prism stores these options, then applies them when you start up a
multiprocess program. These options override any settings made via the prism
command line, or via the TMRUN_FLAGS environment variable.

See 10.2 for more information about using these options and the tmrunargs
command.

Chapter 2 Using Prism 2-5

2.2.2.3 Attaching to a Process

You can also attach to a process that is currently running. However, Prism must run
on the same node on which the process is running.

To attach to a process, add the process’s process ID (pid) after the name of the
program.

You can obtain the process’s pid and the node on which it is running by issuing the
Solaris ps command on a Sun HPC System. You can then issue a command like the
following:

% prism primes1.x 2256

See Section 3.3 for more information about attaching to and detaching from a
running process.

Note – In MP Prism, you can obtain the task ID (tid) by using the Sun HPC
command tmps . See Section 10.2.4, “Attaching" for information about attaching to
and detaching from processes and tasks using MP Prism.

2.2.2.4 Working With a Core File

You can associate a core file with a program. Add the name of the core file after the
name of the executable program.

See Section 3.2 for more information about core files.

2.2.2.5 Specifying Commands-Only Prism

Use the -C option to bring up Prism in commands-only mode. This allows you to
run Prism on a terminal with no graphics capability.

Use the -CX option to bring up a commands-only Prism that lets you redirect the
output of certain Prism commands to X windows.

See Appendix A for information about commands-only Prism.

2.2.2.6 Specifying X Toolkit Options

You can include most standard X toolkit command-line options when you issue the
prism command; for example, you can use the -geometry option to change the
size of the main Prism window. See your X documentation for information on these
options. Also, note these limitations:

2-6 Prism 5.0 User’s Guide • November 1997

■ The –font , –title , and –rv options have no effect.

■ The -bg option is overridden in part by the setting of the Prism.textBgColor
resource, which specifies the background color for text in Prism; see Section 9.4.5.

X toolkit options are ignored, if you use -C to run Prism in commands-only mode.

2.2.2.7 Specifying Input and Output Files

You can use the form

% prism < input–file

to specify a file from which Prism is to read and execute commands upon startup.
Similarly, use the form

% prism > log–file

to specify a file to which Prism commands and their output are to be logged.

If you have created a .prisminit initialization file, Prism automatically executes
the commands in the file when it starts up. See 9.5 for information on .prisminit .

2.3 Within Prism
Within Prism, you can perform most actions in one of three ways:

■ By using a mouse; see Section 2.3.1
■ By using keyboard alternatives to the mouse; see Section 2.3.2
■ By issuing commands from the keyboard; see Section 2.3.3

2.3.1 Using the Mouse
You can point and click with a mouse in Prism to choose menu items and to perform
actions within windows and dialog boxes. Prism assumes that you have a standard
three-button mouse.

In any window where you see this mouse icon:

you can left-click on the icon to obtain information about using the mouse in the
window.

Chapter 2 Using Prism 2-7

2.3.2 Using Keyboard Alternatives to the Mouse
You can use the keyboard to perform many of the same functions you can perform
with a mouse. This section lists these keyboard alternatives.

In general, to use a keyboard alternative, the focus must be in the screen region
where you want the action to take place. The focus is generally indicated by the
location cursor, which is a heavy line around the region.

General keyboard alternatives are listed below.

TABLE 2-1 General Keyboard Alternatives

Key Name Description

Tab Use the Tab key to move the location cursor from field to field
within a window or dialog box. The buttons in a window or
box constitute one field. The location cursor highlights one of
the buttons when you tab to this field.

Shift-Tab Use the Shift-Tab key to perform the same function as Tab, but
move through the fields in the opposite direction.

Return Use the Return key to choose a highlighted choice in a menu,
or to perform the action associated with a highlighted button
in a window or dialog box.

Arrow keys Use the up, down, left, and right arrow keys to move within a
field. For example, when the location cursor highlights a list,
you can use the up and down arrow keys to move through the
choices in the list. In some windows that contain text, pressing
the Control key along with an up or down arrow key scrolls
the text one-half page.

F1 Use the F1 key instead of the Help button to obtain help about
a window or dialog box.

F10 Use the F10 key to move the location cursor to the menu bar.

Meta Use the Meta key along with the underlined character in the
desired menu item to display a menu or dialog box
(equivalent to clicking on the item with the mouse). The Meta
key has different names on different keyboards; on some it is
the Left or Right key.

Ctrl-c Use the Ctrl-c key combination to interrupt command
execution.

Esc Use the Esc key instead of the Close or Cancel button to close
the window or dialog box in which the mouse pointer is
currently located.

2-8 Prism 5.0 User’s Guide • November 1997

The following keys and key combinations work on the command line and in text-
entry boxes—that is, fields in a dialog box or window where you can enter or edit
text:

TABLE 2-2 Text-entry Keyboard Alternatives

In addition, you can use keyboard accelerators to perform actions from the menu bar;
see Section 2.4.

2.3.3 Issuing Commands
You can issue commands in Prism from the command line in the command window.
Most commands duplicate functions you can perform from the menu bar; it’s up to
you whether you use the command or the corresponding menu selection. Some
functions are only available via commands. See the Prism Reference Manual for
complete information about Prism commands. Section 2.7 describes how to use the
command window.

Many commands have the same syntax and perform the same action in both Prism
and the Solaris debugger dbx . There are differences, however; you should check the
reference description of a command before using it.

2.4 Using the Menu Bar
The menu bar is the line of titles across the top of the main window of Prism.

Key Name Description

Back Space Deletes the character to the left of the I-beam cursor.

Delete Same as Back Space.

Ctrl-a Moves to the beginning of the line.

Ctrl-b Moves back one character.

Ctrl-d Deletes the character to the right of the I-beam cursor.

Ctrl-e Moves to the end of the line.

Ctrl-f Moves forward one character.

Ctrl-k Deletes to the end of the line.

Ctrl-u Deletes to the beginning of the line.

Chapter 2 Using Prism 2-9

Each title is associated with a pulldown menu, from which you can perform actions
within Prism.

2.4.0.1 Keyboard Accelerators

A keyboard accelerator is a shortcut that lets you choose a frequently used menu
item without displaying its pulldown menu. Keyboard accelerators consist of the
Control key plus a function key; you press both at the same time to perform the
action. The keyboard accelerator for a menu selection is displayed next to the name
of the selection; if nothing is displayed, there is no accelerator for the selection.

The keyboard accelerators (on a Sun keyboard) are

TABLE 2-3 Sun Keyboard Accelerators

2.5 Using the Source Window

2.5.1 The Source Window
The source window displays the source code for the executable program loaded into
Prism. (Chapter 3 describes how to load a program into Prism, and how to display
the different source files that make up the program.) When you execute the program,
and execution then stops for any reason, the source window updates to show the
code being executed at the stopping place. The Source File: field at the top of the
source window lists the file name of the file displayed in the window.

Accelerator Function

Ctrl-F1 Run

Ctrl-F2 Continue

Ctrl-F3 Interrupt

Ctrl-F4 Step

Ctrl-F5 Next

Ctrl-F6 Where

Ctrl-F7 Up

Ctrl-F8 Down

2-10 Prism 5.0 User’s Guide • November 1997

The source window is a separate pane within the main Prism window. You can
resize it by dragging the small resize box at the lower right of the window. If you
change its size, the new size is saved when you leave Prism.

You cannot edit the source code displayed in the source window. To edit source code
within Prism, you must call up an editor; see Chapter 7.

2.5.1.1 Moving through the Source Code

As mentioned above, you can move through a source file displayed in the source
window by using the scroll bar on the right side of the window. You can also use the
up and down arrow keys to scroll a line at a time, or press the Control key along
with the arrow key to move half a page at a time. To return to the current execution
point, type Ctrl-x in the source window.

To search for a text string in the current source file, issue the /string or ?string
command in the command window. The /string command searches forward in the
file for the string that you specify and repositions the file at the first occurrence it
finds. The ?string command searches backward in the file for the string that you
specify.

You can display different files by choosing the File or Func selection from the File
menu; see Section 3.5. You can also move between files. Prism keeps a list of the files
you have displayed. With the mouse pointer in the source window, do this to move
through the list:

■ To display the previous file in the list, click the middle mouse button while
pressing the left button. You are returned to the location at which you left the file.

■ To display the next file in the list, click the right mouse button while pressing the
left button.

2.5.1.2 Selecting Text

You can select text in the source window by dragging over it with the mouse; the
text is then highlighted. Or double-click with the mouse pointer pointing to a word
to select just that word. Left-click anywhere in the source window to “deselect”
selected text.

Chapter 2 Using Prism 2-11

Right-click in the source window to display a menu that includes actions to perform
on the selected text, see FIGURE 2-1. For example, select Print to display a visualizer
containing the value(s) of the selected variable or expression at the current point of
execution. (See Chapter 5 for a discussion of visualizers and printing.) To close the
popup menu, right-click anywhere else in the main Prism window

FIGURE 2-1 Popup Menu in Source Window

You can display the definition of a function by pressing the Shift key while selecting
the name of the function in the source window. This is equivalent to choosing the
Func selection from the File menu and selecting the name of the function from the
list; see Chapter 3. Do not include the arguments to the function, just the function
name.

▼ Splitting the Source Window

You can split the source window to simultaneously display the source code and
assembly code of the loaded program. Follow these steps to split the source window:

1. First load a program, as described in Chapter 3.

2. Right-click in the source window to display the popup menu.

3. Click on Show source pane in the popup menu.

This displays another menu.

2-12 Prism 5.0 User’s Guide • November 1997

4. Choose Show .s source from it.

This causes the assembly code for your program to be displayed in the bottom pane
of the window, as shown in FIGURE 2-2.

FIGURE 2-2 Split Source Window

When you split the source window, the top pane is highlighted; it is the master pane.
Left-click in the slave pane to make it the master. If you scroll through the master,
the slave pane scrolls to the corresponding place as well. Scrolling through the slave
does not cause the master to scroll.

To return to a single source window, right-click in the pane you want to get rid of,
and choose Hide this source pane from the popup menu.

2.6 Using the Line-Number Region
The line-number region shows the line numbers associated with the source code
displayed in the source window. FIGURE 2-3 shows a portion of a line-number region,
with a breakpoint set.

Chapter 2 Using Prism 2-13

FIGURE 2-3 Line Number Region

The > symbol in the line-number region in FIGURE 2-3 is the execution pointer. When
the program is being executed, the execution pointer points to the next line to be
executed. If you move elsewhere in the source code, typing Ctrl-x returns to the
current execution point.

A B appears in the line-number region next to every line at which execution is to
stop. You can set simple breakpoints directly in the line-number region; all methods
for setting breakpoints are described in Section 4.3.

A T appears in the line-number region next to a line for which Prism is tracing
execution. See Section 4.4 to learn how to trace program execution.

Shift-click on B or T in the line-number region to display the event associated with
the breakpoint or tracepoint. See Section 4.1 for a discussion of events.

The display of breakpoints and tracepoints in the line-number region is slightly
more complicated in MP Prism; see Section 10.6.1.

There are two other symbols you will see in the line-number region:

■ The - symbol is the scope pointer; it indicates the current source position (that is,
the scope). Prism uses the current source position to interpret names of variables.
When you scroll through source code, the scope pointer moves to the middle line
of the code that is displayed. Various Prism commands also change the position
of the scope pointer.

■ The * symbol is used when the current source position is the same as the current
execution point; this happens whenever execution stops.

If you right-click in the line-number window, you display the source-window popup
menu discussed in the previous section. Right-click anywhere in the main Prism
window to close this menu.

2.7 Using the Command Window
The command window is the area at the bottom of the main Prism window in which
you type commands and receive Prism output.

2-14 Prism 5.0 User’s Guide • November 1997

The command window consists of two boxes: the command line, at the bottom, and
the history region, above it. FIGURE 2-4 shows a command window, with a command
on the command line and messages in the history region.

FIGURE 2-4 Command Window With History Region

The command window is a separate pane within the main Prism window. You can
resize this window (using the resize box at the top right of the window) and scroll
through it. If you don’t intend to issue commands in the command window, you
may want to make this window smaller, so that you can display more code in the
source window. If you use the command window frequently, you may want to make
it bigger. If you change the size of the window, the new size is saved when you leave
Prism.

Use the set $history command, as described below, to specify the maximum
number of lines that Prism is to retain in the history region; the default is 10,000. For
example,

set $history = 2000

reduces the number of lines to 2000.

Prism uses up memory in maintaining a large history region. A smaller history
region, therefore, may improve performance and prevent Prism from running out of
memory.

2.7.1 Using the Command Line
You type commands on the command line at the bottom of the command window.
You can type in this box whenever it is highlighted and an I-shaped cursor, called an
I-beam, appears in it. See Section 2.3.2 for a list of keystrokes you can use in editing
the command line. Press Return to issue the command. Type Ctrl-c to interrupt
execution of a command (or choose the Interrupt selection from the Execute
menu).

You can issue multiple commands on the Prism command line; separate them with a
semicolon (;). One exception: If a command takes a file name as an argument, you
cannot follow it with a semicolon, because Prism can’t tell if the semicolon is part of
the file name.

Chapter 2 Using Prism 2-15

Prism keeps the commands that you issue in a buffer. Type Ctrl-p to display the
previous command in this buffer. Type Ctrl-n to display the next command in the
buffer. You can then edit the command and issue it in the usual way.

During long-running commands (for example, when you have issued the run
command to start a program executing), you may still be able to execute other
commands. If you issue a command that requires that the current command
complete execution, you receive a warning message and Prism waits for the
command to complete.

2.7.2 Using the History Region
Commands that you issue on the command line are echoed in the history region,
above the command line. Prism’s response appears beneath the echoed command.
Prism also displays other messages in this area, as well as command output that you
specify to go to the command window. Use the scroll bar at the right of this box to
move through the display.

You can select text in the history region, using one of these methods:

■ Double-click to select the word to which the mouse pointer is pointing.
■ Triple-click to select the line on which the mouse pointer is located.
■ Press the left mouse button and drag the mouse over the text to select it.

You can then paste the selected text into other text areas within Prism by clicking the
middle mouse button.

To re-execute a command, triple-click on a line in the history region to select it, then
click the middle mouse button with the mouse pointer still in the history region. If
you middle-click with the mouse pointer on the command line, the selected text
appears on the command line but is not executed. This gives you a way to edit the
text before executing it.

2.7.3 Redirecting Output
You can redirect the output of most Prism commands to a file by including an "at"
sign (@) followed by the name of the file on the command line. For example,

where @ where.output

puts the output of a where command (a stack trace) into the file where.output , in
your current working directory within Prism.

You can also redirect output of a command to a window by using the syntax on
window, where window can be:

2-16 Prism 5.0 User’s Guide • November 1997

■ command (abbreviated com). This sends output to the command window; this is
the default.

■ dedicated (abbreviated ded). This sends output to a window dedicated to
output for this command. If you subsequently issue the same command (no
matter what its arguments are) and specify that output is to be sent to the
dedicated window, this window will be updated. For example,

list on ded

displays the output of the list command in a dedicated window. (Some
commands that have equivalent menu selections display their output in the
standard window for the menu selection.)

■ snapshot (abbreviated sna). This creates a window that provides a snapshot of
the output. If you subsequently issue the same command and specify that output
is to be sent to the snapshot window, Prism creates a separate window for the
new output. The time each window was created is shown in its title. Snapshot
windows let you save and compare outputs.

You can also make up your own name for the window; the name appears in the title
of the window. This is useful if you want a particular label for a window. For
example, if you were doing a stack trace at line 22, you could issue this command:

where on line22

to label the window with the location of the stack trace.

The commands whose output you cannot redirect are run, edit , make, and sh .

Note – Although the run command cannot be redirected using on or @, run can be
redirected using > and other shell redirections.

2.7.4 Logging Commands and Output
As mentioned in Section 2.2.2, you can specify on the Prism command line the name
of a file to which commands and output are to be logged. You can also do this from
within Prism, by issuing the log command.

Use the log command to log Prism commands and output to a file. The log file will
be located in the current directory. This can be helpful in saving a record of a Prism
session. For example,

log @ prism.log

logs output to the file prism.log . Use @@ instead of @ to append the log to an
already existing file. Issue the command

log off

Chapter 2 Using Prism 2-17

to turn off logging.

You can use the log command along with the source command to replay a session
in Prism; see the next section. If you want to do this, you must edit the log file to
remove Prism output.

2.7.5 Executing Commands From a File
As mentioned in Section 2.2.2, you can specify on the Prism command line the name
of a file from which commands are to be read in and executed. You can also do this
from within Prism by issuing the source command.

Using the source command lets you rerun a session you saved via the log
command. You might also use source if, for example, your program has a long
argument list that you don’t want to retype constantly.

For example,

source prism.cmds

reads in the commands in the file prism.cmds . They are executed as if you had
actually typed them in the command window. When reading the file, Prism
interprets lines beginning with a pound sign (#) as comments.

The .prisminit file is a special file of commands; if it exists, Prism executes this
file automatically when it starts up. See Section 9.5 for more information.

2.8 Writing Expressions in Prism
While working in Prism, there are circumstances in which you may want to write
expressions that Prism will evaluate. For example, you can print or display
expressions, and you can specify an expression as a condition under which an action
is to take place. You can write these expressions in the language of the program you
are working on. This section discusses additional aspects of writing expressions.

2-18 Prism 5.0 User’s Guide • November 1997

2.8.1 How Prism Chooses the Correct Variable or
Procedure
Multiple variables and procedures can have the same name in a program. This can
be a problem when you specify a variable or procedure in an expression. To
determine which variable or procedure you mean, Prism tries to resolve its name by
using these rules:

■ It first tries to resolve the name using the scope of the current function. For
example, if you use the name x and there is a variable named x in the current
function or the current file, Prism uses that x . The current function is ordinarily
the function at the program’s current stopping point, but you can change this. See
Section 3.5.

■ If this fails to resolve the name, Prism goes up the call stack and tries to find the
name in the caller of the current function, then its caller, and so on.

■ If the name is not found in the call stack, Prism arbitrarily chooses one of the
variables or procedures with the name in the source code. When Prism prints out
the information, it adds a message of the form “[using qualified name]”. Qualified
names are discussed below.

Issue the which command to find out which variable or procedure Prism would
choose; the command displays the fully qualified name, as described below.

2.8.1.1 Using Qualified Names

You can override Prism’s procedure for resolving names by qualifying the name.

A fully qualified name starts with a back-quotation mark (`). The symbol farthest to
the left in the name is the file, followed optionally by the procedure, followed by the
variable name. Each is preceded by a backquote (`) . Thus,

`foo`a

specifies the variable a in file foo . (Note that you drop the extension in the
filename.) And

`foo`foo`a

specifies the a in the procedure foo in the file foo .

Partially qualified names do not begin with ‘ , but have a ‘ in them. For example,

foo`a

In this case, Prism looks up the name farthest to the left first and picks the innermost
symbol with that name that is visible from your current location.

Chapter 2 Using Prism 2-19

Use the whereis command to display a list of all the fully qualified names that
match the identifier you specify.

Prism assigns its own names (for example, $b1) to local blocks of C code. This
disambiguates variable names, in case you reuse a variable name in more than one
of these local blocks.

Prism attempts to be case-insensitive in interpreting names, but will use case to
resolve ambiguities.

2.8.2 Using Fortran Intrinsic Functions in Expressions
Prism supports the use of a subset of Fortran and HPF intrinsic functions in writing
expressions; the intrinsics work for all languages that Prism supports, except as
noted below.

The intrinsics, along with the supported arguments, are

■ ALL(logical array) – Determines whether all elements are true in a logical array.
Works for Fortran only.

■ ANY(logical array) – Determines whether any elements are true in a logical array.
Works for Fortran only.

■ CMPLX(numeric-arg, numeric-arg) – Converts the arguments to a complex
number. If the intrinsic is applied to Fortran variables, the second argument must
not be of type complex or double-precision complex.

■ COUNT(logical array) – Counts the number of true elements in a logical array.
Works for Fortran only.

■ DSIZE(array) – Counts the total number of elements in the array.

■ ILEN(I) – Returns one less than the length, in bits, of the two’s-complement
representation of an integer. If I is nonnegative, ILEN(I) has the value log2(I +
1); if I is negative, ILEN(I) has the value log2(-I).

■ IMAG(complex number) – Returns the imaginary part of a complex number. Works
for Fortran only.

■ MAXVAL(array) – Computes the maximum value of all elements of a numeric
array.

■ MINVAL(array) – Computes the minimum value of all elements of a numeric
array.

■ PRESENT(arg) – Determines if the specified argument exists in the context of the
current procedure call. Works for Sun HPF only.

■ PRODUCT(array) – Computes the product of all elements of a numeric array.

■ RANK(scalar or array) – Returns the rank of the array or scalar.

2-20 Prism 5.0 User’s Guide • November 1997

■ REAL(numeric argument) – Converts an argument to real type. Works for Fortran
only.

■ SUM(array) – Computes the sum of all elements of a numeric array.

The intrinsics can be either upper- or lowercase.

2.8.3 Using C Arrays in Expressions
Prism handles arrays slightly differently from the way C handles them.

In a C program, if you have the declaration

int a[10];

and you use a in an expression, the type of a converts from “array of ints” to
“pointer to int”. Following the rules of C, therefore, a Prism command like

print a + 2

should print a hexadecimal pointer value. Instead, it prints two more than each
element of a (that is, a[0] + 2 , a[1] + 2 , etc.). This allows you to do array
operations and use visualizers on C arrays in Prism. (The print command and
visualizers are discussed in Chapter 5.)

To get the C behavior, issue the command as follows:

print &a + 2

2.8.4 Using Array-Section Syntax

2.8.4.1 In C Arrays

You can use Fortran 90 array-section syntax when specifying C arrays. This syntax is
useful, for example, if you want to print the values of only a subset of the elements
of an array. The syntax is:

(lower-bound: upper-bound: stride)

where

■ lower-bound – The lowest-numbered element you choose along a dimension; it
defaults to 0.

■ upper-bound – The highest-numbered element you choose along the dimension;
it defaults to the highest-numbered element for the dimension.

■ stride – The increment by which elements are chosen between the lower bound
and upper bound; it defaults to 1.

Chapter 2 Using Prism 2-21

You must enclose the values in parentheses (rather than brackets), as in Fortran. If
your array is multidimensional, you must separate the dimension specifications with
commas within the parentheses, once again as in Fortran.

For example, if you have this array:

int a[10][20];

then you can issue this command in Prism to print the values of elements 2-4 of the
first dimension and 2-10 of the second dimension:

print a(2:4,2:10)

2.8.5 Hints for Detecting NaNs and Infinities
Prism provides expressions that you can use to detect NaNs (values that are “not a
number”) and infinities in your data. These expressions derive from the way NaNs
and infinities are defined in the IEEE standard for floating-point arithmetic.

To find out if x is a NaN, use the expression:

(x .ne. x)

For example, if x is an array, issue the command

where (x .ne. x) print x

to print only the elements of x that are NaNs. (The print command is discussed in
Chapter 5.)

Also, note that if there are NaNs in an array, the mean of the values in the array will
be a NaN. (The mean is available via the Statistics selection in the Options
menu of a visualizer—see Chapter 5.)

To find out if x is an infinity, use the expression:

(x * 0.0 .ne. 0.0)

2.9 Using Sun HPF Generic Procedures
You can use Sun HPF generic procedures in any Prism command or dialog box that
asks for a procedure. If you do so, Prism will prompt you for the name(s) of the
specific procedure(s) you want to use.

2-22 Prism 5.0 User’s Guide • November 1997

For example, you use the syntax stop in procedure to set a breakpoint in a
procedure. If you use this syntax for a generic procedure, in graphical Prism a dialog
box like the one shown in FIGURE 2-5 would be displayed.

FIGURE 2-5 Generic Procedure Dialog Box

Commands-only Prism would prompt you as in this example:
(prism) stop in foo
The procedure ”foo” is a generic procedure.
Please either specify a specific procedure name, or type
”Return” to be prompted by a procedure menu that will contain
the 4 legal procedures in this context.
>

If you press the Return key, you would see a menu like this:
Please select one or more of the following:
 0) Cancel
 1) All
 2) foo(glorf.f:64)
 3) foo_real(glorf.f:121)
 4) foo_bar(glorf.f:189)
 5) foo_glorf(glorf.f:244)
>

If you choose 0 or press Return, the command is cancelled. If you choose other
numbers, Prism sets the breakpoint(s) in the specified procedure(s). For example,

> 3 4
(1) stop in foo_bar
(2) stop in foo_glorf
(prism)

Chapter 2 Using Prism 2-23

2.10 Issuing Solaris Commands
You can issue Solaris commands from within Prism.

■ From the menu bar – Choose the Shell selection from the Utilities menu. Prism
creates a Solaris shell. The shell is independent of Prism; you can issue Solaris
commands from it just as you would from any Solaris shell. The type of shell that
is created depends on the setting of your SHELL environment variable.

■ From the command window – Issue the sh command on the command line. With
no arguments, it creates a Solaris shell. If you include a Solaris command line as
an argument, the command is executed, and the results are displayed in the
history region.

Some Solaris commands have Prism equivalents, as described below.

2.10.1 Changing the Current Working Directory
By default your current working directory within Prism is the directory from which
you started Prism. To change this working directory, use the cd command, just as
you would in the Solaris environment. For example,

cd /sistare/bin

changes your working directory to /sistare/bin .

cd ..

changes your working directory to the parent of the current working directory. Issue
cd with no arguments to change the current working directory to your login
directory.

Prism interprets all relative file names with respect to the current working directory.
Prism also uses the current working directory to determine which files to show in
file-selection dialog boxes.

To find out what your current working directory is, issue the pwd command, just as
you would in the Solaris environment.

2.10.2 Setting and Displaying Environment Variables
You can set, unset, and display the settings of environment variables from within
Prism, just as you do in the Solaris system.

Use the setenv command to set an environment variable. For example,

2-24 Prism 5.0 User’s Guide • November 1997

setenv EDITOR emacs

sets your EDITOR environment variable to emacs.

Use the unsetenv command to remove the setting of an environment variable.
For example,

unsetenv EDITOR

removes the setting of the EDITOR environment variable.

Use the printenv command to print the setting of an individual environment
variable. For example,

printenv EDITOR

prints the current setting of the EDITOR environment variable. Or, issue printenv
or setenv with no arguments to print the settings of all your environment variables.

2.11 Leaving Prism
To leave Prism:

■ From the menu bar – Choose the Quit selection from the File menu. You are
asked if you are sure you want to quit. Click on OK if you’re sure; otherwise, click
on Cancel or press the Esc key to stay in Prism.

■ From the command window – Issue the quit command on the command line.
(You aren’t asked if you’re sure you want to quit.)

If you have created subprocesses while in Prism (for example, a Solaris shell), Prism
displays this message before exiting:

FIGURE 2-6 Sub-process Warning

Choose Yes (the default) to leave Prism and terminate the subprocesses. Choose No
to leave Prism without terminating the subprocesses. Choose Cancel to stay in
Prism.

3-1

CHAPTER 3

Loading and Executing a Program

This chapter describes how to load and run programs within Prism.

See the following sections to learn

■ How to load a program into Prism — Section 3.1.

■ How to associate a core file with a loaded program — Section 3.2.

■ How to attach to and detach from a running process — Section 3.3.

■ How to execute a program — Section 3.4.

■ How to change the current file and the current function — Section 3.5.

■ How to specify the directories to be searched for source files — Section 3.6.

For this chapter, you should already have an executable program that you want to
run within Prism. You can also develop a new program by calling up an editor
within Prism; see Chapter 7.

3.1 Loading a Program
Before you can execute or debug a program in Prism, you must first load the
program into Prism. Only one program can be loaded at a time.

As described in Chapter 2, you can load a program into Prism by specifying its name
as an argument to the prism command. If you don’t use this method, you can load
a program once you are in Prism by using one of the methods discussed next.

3-2 Prism 5.0 User’s Guide • November 1997

3.1.1 From the Menu Bar
Choose the Load selection from the File menu. (It is also by default in the tear-off
region.) A dialog box appears, as shown in FIGURE 3-1.

FIGURE 3-1 Load Program Filter

To load a program, you can simply double-click on its name, if the name appears in
the Programs scrollable list. Or, you can put its path name in the Selection box, then
click on Load. To put the file’s path name in the Selection box, you can either type it
directly in the box or click on its name in the Programs list. The Programs list
contains the executable programs in your current working directory; see Section
2.10.1.

Use the Load-Program Filter box to control the display of file names in the Programs
list; the box uses standard Solaris filters. For example, you can click on a directory in
the Directories list if you want to change to that directory. But the Programs list does
not update automatically to show the programs in the new directory. Instead, the
filter changes to directory-name/*, indicating that all files in directory-name are to be
displayed. Click on Filter to display the file names of the programs. Or simply
double-click on the directory name in the Directories list to display the programs in
the directory.

If you want to use a different filter, you can edit the Load-Program Filter box
directly. For example, change it to directory-name/prog* to display only programs
beginning with prog.

Click on Cancel or press the Esc key if you decide not to load a program.

Chapter 3 Loading and Executing a Program 3-3

3.1.2 From the Command Window
Issue the load command on the command line, with the name of the executable
program as its argument. For example,

load myprogram

The program you specify is loaded.

3.1.3 What Happens When You Load a Program
Once a program is successfully loaded:

■ The program’s name appears in the Program field in the main window.

■ The source file containing the program’s main function appears in the source
window.

■ The Load dialog box disappears (if you loaded the program using this box).

■ The status region displays the message not started .

You can now issue commands to execute and debug this program.

If Prism can’t find the source file, it displays a warning message in the command
window. Choose the Use selection from the File menu to specify other directories in
which Prism is to search; see Section 3.6.

3.1.4 Loading Subsequent Programs
Only one program can be loaded at a time. If you have a program loaded and you
want to switch to a new program, simply load the new program; the previously
loaded program is automatically unloaded. If you want to start fresh with the
current program, issue the reload command with no arguments; the currently
loaded program is reloaded into Prism.

3.2 Associating a Core File With a Loaded
Program
As mentioned in Chapter 2, you can have Prism associate a core file with a program
by specifying its name after the name of the program on the prism command line.

3-4 Prism 5.0 User’s Guide • November 1997

You can also do this by loading the program and then issuing the core command,
specifying the name of the corresponding core file as its argument.

In either case, Prism reports the error that caused the core dump and loads the
program with a stopped status at the location where the error occurred. You can then
work with the program within Prism. You can, for example, examine the stack and
print the values of variables. You cannot, however, continue execution from the
current location.

3.3 Attaching To and Detaching From a
Running Process
See Section 10.2.4 for information on attaching to a running message-passing
process.

As described in Section 2.2.2, you can load a running process into Prism by
specifying the name of the executable program and the process ID of the
corresponding running process on the Prism command line.

You can also attach to a running process from within Prism; note that, as with the
procedure described above, the process must be running on the same node as Prism
(unless you are using MP Prism).

▼ To attach from within Prism,

1. Find out the process’s process ID by issuing the Solaris command ps (or, if you
are using MP Prism, find the process’s task ID by issuing the Sun HPC command
tmps).

2. Load the executable program for the process into Prism.

3. Issue the attach command on the Prism command line, using the process’s
process ID (or task ID in MP Prism) as the argument.

With either method of attaching to the process, the process is interrupted; a message
is displayed in the command window giving its current location, and its status is
stopped. You can then work with the program in Prism as you normally would. The
only difference in behavior is that it does not do its I/O in a special Xterm window;
see Section 3.4.2.

Chapter 3 Loading and Executing a Program 3-5

To detach from a running process, issue the command detach from the Prism
command line. The process continues to run in the background from the point at
which it was stopped in Prism; it is no longer under the control of Prism. Note that
you can detach any process in Prism via the detach command, not just processes
that you have explicitly attached.

Note – Use the kill command to terminate the process or task (rather than
releasing it to run in the background) currently running within Prism.

3.4 Executing a Program
To execute a program, you must first load it, as described in Section 3.1. Once you
start the program running, you can step through it, and interrupt and continue
execution.

See Section 10.4 for information on executing a program in MP Prism.

3.4.1 Running a Program
To run a program:

■ From the menu bar – If you have no command-line arguments you want to
specify, choose the Run selection from the Execute menu; execution starts
immediately. (The Run selection by default is in the tear-off region.)

If you have command-line arguments, choose the Run (args) selection from the
Execute menu. A dialog box is displayed, in which you can specify any
command-line arguments for the program; see FIGURE 3-2. If you have more
arguments than fit in the input box, they scroll to the left. Click on the Run button
to start execution.

FIGURE 3-2 Run (args) Dialog Box

■ From the command window – Issue the run command, including any arguments
to the program on the command line. You can abbreviate the command to r . If
you have already run the program, you can issue the rerun command to run it

3-6 Prism 5.0 User’s Guide • November 1997

again, using the same argument list you previously passed to the program. In
both cases, you can redirect input or output using < or > in the standard Solaris
manner.

When the program starts executing, the status region displays the message
running .

You can continue to interact with Prism while a program is running, but many
features will be unavailable. Unavailable selections are grayed out in menus. If you
issue a command that cannot be executed while the program is running, it is queued
until the program stops.

3.4.2 Program I/O
Prism by default creates a new window for a program’s I/O. This window persists
across multiple executions and program loads, giving you a complete history of your
program’s input and output. If you prefer, you can display I/O in the Xterm from
which you invoked Prism; see Section 9.3.

3.4.3 Stepping Through a Program
You must begin execution by choosing Run or Run (args) (or issuing run from the
command line). If execution stops before the program finishes (for example, because
you have set a breakpoint), you can then step through the program, as described in
this section. To step through the entire program, set a breakpoint at the first
executable line, and then run to it. (See Section 4.3 for information on setting
breakpoints.)

From the menu bar:

■ Choose the Step selection from the Execute menu to execute the next line of the
program. (It is by default in the tear-off region.) Step steps into any functions
called on that line.

■ Choose the Next selection from the Execute menu to execute the next statement of
the program. (It is also by default in the tear-off region.) Next steps over any
function called in the line, considering the function to be a single statement.

■ Choose the Stepout selection from the Execute menu to execute the current
function, then return to its caller.

The execution pointer moves to indicate the next line to be executed.

From the command window: Issue the step , next , or stepout command from the
command line to perform the same action as the equivalent menu-bar selection;
return is a synonym for stepout . In addition, you can specify the number of lines

Chapter 3 Loading and Executing a Program 3-7

to be executed as an argument to step and next , and you can specify as an
argument to stepout the number of levels of the call stack that you want to step
out.

The stepi and nexti commands are also available for stepping by machine
instruction. The address and instruction are displayed in the command window.

If execution takes considerable time—for example, because Next calls a long-
running function—the status changes to running. You can use Prism, but many
commands will be unavailable. Unavailable selections are grayed out in menus.

3.4.4 Interrupting and Continuing Execution
To interrupt execution, choose Interrupt from the Execute menu or type Ctrl-c .
The status changes to interrupted, and the source window updates to show the point
at which execution stopped.

To continue execution after a program has been interrupted, choose Continue from
the Execute menu, or issue the cont command from the command line. (Or you
can step through the program, as described above.)

Continue and Interrupt are available by default in the tear-off region.

3.4.5 Status Messages
Prism displays the status messages listed in TABLE 3-1 before, during, and after the
execution of a program.

TABLE 3-1 Status Messages

Messag Meaning

error Prism has encountered an internal error.

connected Prism has connected to other nodes to work on a data parallel
or message-passing program.

connecting Prism is connecting to other nodes in order to work on a data
parallel or message-passing program.

initial Prism is starting up without a program loaded.

interrupted The program has been interrupted.

loading Prism is loading a program.

not started The program is loaded but not yet started.

3-8 Prism 5.0 User’s Guide • November 1997

running The program is running.

stopped The program has stopped at a breakpoint or signal.

terminated The program has run to completion and the process has gone
away.

TABLE 3-1 Status Messages

Messag Meaning

Chapter 3 Loading and Executing a Program 3-9

3.5 Choosing the Current File and Function
Prism uses the concepts of current file and current function.

The current file is the source file currently displayed in the source window. The
current function is the function or procedure displayed in the source window. You
might change the current file or function if, for example, you want to set a
breakpoint in a file that is not currently displayed in the source window, and you
don’t know the line number at which to set the breakpoint.

In addition, changing the current file and current function changes the scope used
by Prism for commands that refer to line numbers without specifying a file, as well
as the scope used by Prism in identifying variables; see Section 2.8.1 for a discussion
of how Prism identifies variables. The scope pointer (-) in the line-number region
moves to the current file or current function to indicate the beginning of the new
scope.

To change the current file:

■ From the menu bar – Choose the File selection from the File menu. A window is
displayed, listing in alphabetical order the source files that make up the loaded
program. Click on one, and it appears in the Selection box; click on OK, and the
source window updates to display the file. Or simply double-click, rapidly, on the
source file. You can also edit the file name in the Selection box.

Note – The File window displays only files compiled with the -g switch.

FIGURE 3-3 File Window

3-10 Prism 5.0 User’s Guide • November 1997

■ From the command window – Issue the file command, with the name of a file
as its argument. The source window updates to display the file.

To change the current function or procedure:

■ From the menu bar – Choose the Func selection from the File menu. A window is
displayed, listing the functions in the program in alphabetical order. (Fortran
procedure names are converted to all lowercase.) Click on one, and it appears in
the Selection box; click on OK, and the source window updates to display the
function. Or simply double-click on the function name in the list. You can also
edit the function name in the Selection box.

By default, the Func window displays only functions in files compiled with the
- g switch. To display all functions in the program, click on the Select All
Functions button. The button then changes to Show -g Functions; click on it to
return to displaying only the -g functions.

■ From the command window – Issue the func command with the name of a
function or subroutine as its argument. The source window updates to display the
function.

■ From the source window – Select the name of the function in the source window
by dragging the mouse over it while pressing the Shift key. When you let go of
the mouse button, the source window is updated to display the definition of this
function.

Note – Do not include the arguments with the function, just its name.

Note that if the function you choose is in a different source file from the current file,
changing to this function also has the effect of changing the current file.

Chapter 3 Loading and Executing a Program 3-11

3.6 Creating a Directory List for Source Files
If you have moved a source file, or if for some other reason Prism can’t find it, you
can explicitly add its directory to Prism’s search path.

■ From the menu bar – Choose the Use selection from the File menu. This displays
a dialog box, as shown in FIGURE 3-4. To add a directory, type its path name in the
Directory box, then click on Add. To remove a directory, click on it in the
directory list; its path name appears in the Directory box; then click on Remove.

FIGURE 3-4 Use Dialog Box

■ From the command window – Issue the use command on the command line.
Specify a directory as an argument; the directory is added to the front of the
search path. Issue use with no arguments to display the list of directories to be
searched.

Note – No matter what the contents of your directory list are, Prism searches for the
source file first in the directory in which the program was compiled.

3-12 Prism 5.0 User’s Guide • November 1997

4-1

CHAPTER 4

Debugging a Program

This chapter discusses how to debug programs in Prism. It also describes how to use
events to control the execution of a program.

See the following sections to learn

■ What events are — Section 4.1.

■ How to use the event table — Section 4.2.

■ How to set breakpoints — Section 4.3.

■ How to trace program execution — Section 4.4.

■ How to display and move through the call stack — Section 4.5.

■ How to examine the contents of memory and registers — Section 4.6.

See Chapter 10 for additional information on debugging a program in MP Prism.

4.1 Overview of Events
A typical approach to debugging is to stop the execution of a program at different
points so that you can perform various actions —for example, check the values of
variables. You stop execution by setting a breakpoint. If you perform a trace, execution
stops, then automatically continues.

Breakpoints and traces are events. You can specify before the execution of a program
begins what events are to take place during execution. When an event occurs:

■ The execution pointer moves to the current execution point.

■ A message is printed in the command window.

■ If you specified that an action was to accompany the event (for example, the
printing of a variable’s value), it is performed.

4-2 Prism 5.0 User’s Guide • November 1997

■ If the event is a trace, execution then continues. If it is a breakpoint, execution
does not resume until you explicitly order it to (for example, by choosing
Continue from the Execute menu).

Prism provides various ways of creating these events—for example, by issuing
commands, or by using the mouse in the source window. Section 4.3 describes how
to create breakpoint events; Section 4.4 describes how to create trace events. Section
4.2 describes the event table, which provides a unified method for listing, creating,
editing, and deleting events.

See Section 10.6.1 for a discussion of events in MP Prism.

You can define events so that they occur:

■ When the program reaches a certain point in its execution —For example, at a specified
line or function.

■ When the value of a variable changes —For example, you can define an event that
tells Prism to stop the program when x changes value. This kind of event is
sometimes referred to as a watchpoint. It slows execution considerably, since Prism
has to check the value of the variable after each statement is executed.

■ At every line or assembly-language instruction.

■ Whenever a program is stopped—For example, you can define an event that tells
Prism to print the value of x whenever the program stops.

Such events are referred to as triggering conditions.

In addition, you can qualify an event as follows:

■ So that it occurs only if a specified condition is met —For example, you can tell Prism
to stop at line 25 if x is not equal to 1. Like watchpoints, this kind of event slows
execution.

■ So that it occurs only after its triggering condition has been met a specified number of
times—For example, you can tell Prism to stop the tenth time that the program
reaches the function foo .

You can include one or more Prism commands as actions that are to take place as
part of the event. For example, using Prism commands, you can define an event that
tells Prism to stop at line 25, print the value of x , and do a stack trace.

Chapter 4 Debugging a Program 4-3

4.2 Using the Event Table
The event table provides a unified method for controlling the execution of a
program. Creating an event in any of the ways discussed later in this chapter adds
an event to the list in this table. You can also display the event table and use it to:

■ Add new events
■ Delete existing events
■ Edit existing events

You display the event table by choosing the Event Table selection from the Events
menu.

This section describes the general process of using the event table.

4.2.1 Description of the Event Table
FIGURE 4-1 shows the event table.

FIGURE 4-1 Event Table

The top area of the event table is the event list—a scrollable region in which events
are listed. When you execute the program, Prism uses the events in this list to
control execution. Each event is listed in a format in which you could type it as a
command in the command window. It is prefaced by an ID number assigned by
Prism. For example, in FIGURE 4-1, the events have been assigned the IDs 1 and 2.

4-4 Prism 5.0 User’s Guide • November 1997

The middle area of the event table is a series of fields that you fill in when editing or
adding an event; only a subset of the fields is relevant to any one event. The fields
are:

■ ID – This is an identification number associated with the event. You cannot edit
this field.

■ Location – Use this field to specify the location in the program at which the event
is to take place. Use the syntax "filename":line-number to identify the source file
and the line within this file. If you just specify the line number, Prism uses the
current file. There are also three keywords you can use in this field:

■ Use eachline to specify that the event is to take place at each line of the
program; this is the default.

■ Use eachinst to specify that the event is to take place at each assembly-
language instruction.

■ Use stopped to specify that the event is to take place whenever the program
stops execution.

■ Watch – Use this field to specify a variable or expression whose value(s) are to be
watched; the event takes place if the value of the variable or expression changes.
(If the variable is an array or a parallel variable, the event takes place if the value
of any element changes.) This slows execution considerably.

■ Actions – Use this field to specify the action(s) associated with the event. The
actions can be most Prism commands; separate multiple commands with
semicolons. (The commands that you can’t include in the Actions field are
attach , core , detach , load , return , run , and step .)

■ Condition – Use this field to specify a logical condition that must be met if the
event is to take place. The logical condition can be any language expression that
evaluates to true or false. See Section 2.8 for more information about writing
expressions in Prism. Specifying a condition slows execution considerably, unless
you also specify a location at which the condition is to be checked.

■ After – Use this field to specify how many times a triggering condition is to be
met (for example, how often a program location is reached) before the event is to
take place. The event table updates during execution to show the current count
(that is, how many times are left for the triggering condition to be met before the
event is to take place). Once the event takes place, the count is reset to the original
value. The default setting is 1, and the event takes place each time the condition is
met. See Section 4.1 for a discussion of triggering conditions.

■ Stop – Use this field to specify whether or not the event is to halt execution of the
program. Putting a y in this field creates a breakpoint event; putting an n in this
field creates a trace event.

■ Inst – Use this field to specify whether to display a disassembled assembly-
language instruction when the event occurs.

■ Silent – Use this field to specify whether or not the event is to cause a message to
appear in the command window when it occurs.

Chapter 4 Debugging a Program 4-5

■ Enabled – Use this field to specify whether the event is enabled. Putting an n in
this field disables the event; it still exists, but it does not affect program execution.

The buttons beneath these fields are for use in creating and deleting events, and are
described below.

The area headed Common Events contains buttons that provide shortcuts for
creating certain standard events.

Click on Close or press the Esc key to cancel the Event Table window.

4.2.2 Adding an Event
You can either add an event, editing field by field, or you can use the Common
Events buttons to fill in some of the fields for you. You would add an event from
scratch if it weren’t similar to any of the categories covered by the Common Events
buttons.

▼ To Add an Event

1. Click on the New button; all values currently in the fields are cleared.

2. Fill in the relevant fields to create the event.

3. Click on the Save button to save the new event; it appears in the event list.

▼ To Use the Common Events Buttons to Add an Event

1. Click on the button for the event you want to add —for example, Print.

This fills in certain fields (for example, it puts print on dedicated in the Actions field)
and highlights the field or fields that you need to fill in (for example, it highlights
the Location field when you click on Print, because you have to specify a program
location).

2. Fill in the highlighted field(s). You can also edit other fields, if you like.

3. Click on Save to add the event to the event list.

Most of these Common Events buttons are also available as separate selections in the
Events menu. This lets you add one of these events without having to display the
entire event table. The menu selections, however, prompt you only for the field(s)
you must fill in. You cannot edit other fields.

Individual Common Events buttons are discussed throughout the remainder of this
guide.

You can also create a new event by editing an existing event; see Section 4.2.4.

4-6 Prism 5.0 User’s Guide • November 1997

4.2.3 Deleting an Existing Event

▼ To Delete an Existing Event, Using the Event Table

1. Click on the line representing the event in the event list, or move to it with the up
and down arrow keys.

This causes the components of the event to be displayed in the appropriate fields
beneath the list.

2. Click on the Delete button.

You can also choose the Delete selection from the Events menu to display the event
table. You can then follow the procedure described above.

Deleting a breakpoint at a program location also deletes the B in the line-number
region at that location.

4.2.4 Editing an Existing Event
You can edit an existing event to change it, or to create a new event similar to it.

▼ To Edit an Existing Event

1. Click on the line representing the event in the event list, or move to it with the up
and down arrow keys.

This causes the components of the event to be displayed in the appropriate fields
beneath the list.

2. Edit these fields.

For example, you can change the Location field to specify a different location in the
program.

3. Click on Replace to save the newly edited event in place of the original version of
the event.

Click on the Save button to save the new event in addition to the original version of
the event; it is given a new ID and is added to the end of the event list. Clicking on
Save is a quick way of creating a new event similar to an event you have already
created.

Chapter 4 Debugging a Program 4-7

4.2.5 Enabling and Disabling Events
You can disable and enable events. When you disable an event, Prism keeps it in the
event list, but it no longer affects execution. You can subsequently enable it when
you once again want it to affect execution. This can be more convenient than
deleting events and then redefining them.

■ From the event table – The event table has an Enabled field. By default, there is
a y in this field, meaning that the event being defined or edited is enabled. Click
on the field and change the y to an n to disable the event. The event remains in
the event list, but is labeled (disabled) . You can then edit the event as
described in Section 4.2.4 and change the field back to a y to enable the event
once again.

■ From the command line – Issue the disable command to disable an event. Use
the event’s ID as the argument. You can obtain this ID from the event list in the
event table, or by issuing the show events command.

For example, this sequence of commands displays the event list, then disables an
event, then redisplays the event list:

(prism) show events
(1) trace
(2) when stopped { print board }
(prism) disable 1
event 1 disabled
(prism) show events
(1) trace (disabled)
(2) when stopped { print board }

Issue the enable command to enable an event that has been disabled. Specify the ID
of the disabled event as the argument.

4.2.6 Saving Events
Events that you create for a program are automatically maintained when you reload
the same program during a Prism session. This saves you the effort of redefining
these events each time you reload a program.

Note these points:

■ Prism prints a warning message if it can’t maintain an event —for example,
because the event is supposed to occur at a source line that no longer exists.
Obviously, changing the program can also change the meaning of events; a
breakpoint set at line 32, for example, may still be a valid event, but it may not be
the event you want if you have deleted lines earlier in the program.

■ Disabled events become enabled when a program is reloaded.

■ Events are deleted when you leave Prism.

4-8 Prism 5.0 User’s Guide • November 1997

▼ Executing Prism Commands From a File
To use Prism commands to save your events to a file, and then execute them from
the file rather than individually

1. Issue the show events command, which displays the event list.

Redirect the output to a file. For example,

show events @ primes.events

(See Section 2.7.3 for information on redirecting output.)

2. Edit this file to remove the ID number at the beginning of each event.

This leaves you with a list of Prism commands.

3. Issue the source command when you want to read in and execute the commands
from the file.

For example,

source primes.events

4.3 Setting Breakpoints
A breakpoint stops execution of a program when a specific location is reached, if a
variable or expression changes its value, or if a certain condition is met. Breakpoints
are events that Prism uses to control execution of a program. This section describes
the methods available in Prism for setting a breakpoint.

You can set a breakpoint

■ By using the line-number region

■ By using the event table and the Events menu

■ From the command window, by issuing the command stop or when

You’ll probably find it most convenient to use the line-number region for setting
simple breakpoints; however, the other two methods give you greater flexibility—
for example, in setting up a condition under which the breakpoint is to take place.

In all cases, an event is added to the list in the event table. If you delete the
breakpoint using any of the methods described in this section, the corresponding
event is deleted from the event list. If you set a breakpoint at a program location, a B
appears next to the line number in the line-number region.

Chapter 4 Debugging a Program 4-9

4.3.1 Using the Line-Number Region
To use the line-number region to set a breakpoint, the line at which you want to stop
execution must appear in the source window. If it doesn’t, you can scroll through the
source window (if the line is in the current file), or use the File or Func selection
from the File menu to display the source file you are interested in.

▼ To Set a Breakpoint in the Line-Number Region

1. Position the mouse pointer to the right of the line numbers; the pointer turns into
a B.

2. Move the pointer next to the line at which you want to stop execution.

3. Left-click the mouse.

4. A B is displayed, indicating that a breakpoint has been set for that line.

A message appears in the command window confirming the breakpoint, and an
event is added to the event list.

The source line you choose must contain executable code; if it does not, you receive
a warning in the command window, and no B appears where you clicked.

Shift-click on the letter in the line-number region to display the complete event (or
events) associated with it.

See Section 2.6 for more information on the line-number region.

See Section 10.6.1 for a discussion of the line-number region in MP Prism.

4.3.1.1 Deleting Breakpoints via the Line-Number Region

To delete the breakpoint, left-click on the B that represents the breakpoint you want
to delete. The B disappears; a message appears in the command window, confirming
the deletion.

4.3.1.2 What Happens in a Split Source Window

As described in Section 2.5.1, you can split the source window to display source
code and the corresponding assembly code.

You can set a breakpoint in either pane of the split source window. The B appears in
the line-number region of both panes, unless you set the breakpoint at an assembly
code line for which there is no corresponding source line.

4-10 Prism 5.0 User’s Guide • November 1997

Deleting a breakpoint from one pane of the split source window deletes it from the
other pane as well.

4.3.2 Using the Event Table and the Events Menu
To set a breakpoint, choose the Stop <loc> or Stop <var> selection from the Events
menu. These choices are also available as Common Events buttons within the event
table itself; see Section 4.2.2.

■ Stop <loc> prompts for a location at which to stop the program. You can also
specify a function or procedure; the program stops at the first line of the function
or procedure.

FIGURE 4-2 Stop <loc> Dialog Box

■ Stop <var> prompts for a variable name. The program stops when the variable’s
value changes. The variable can be an array, in which case execution stops any
time any element of the array changes. This slows execution considerably.

In addition, Stop <cond> is available as a Common Events button. It prompts for a
condition, which can be any expression that evaluates to true or false; see Section 2.8
for more information on expressions. The program stops when the condition is met.
This slows execution considerably.

You can also use the event table to create combinations of these breakpoints; for
example, you can create a breakpoint that stops at a location if a condition is met. In
addition, you can use the Actions field of the event table to specify the Prism
commands that are to be executed when execution stops.

4.3.2.1 Deleting Breakpoints via the Event Table

To delete a breakpoint, choose the Delete selection from the Events menu, or use the
Delete button in the event table itself. See Section 4.2.3.

Chapter 4 Debugging a Program 4-11

4.3.3 Using Commands
Issue the command stop (or when, which is an alias for stop) from the command
line to set a breakpoint. The syntax of the stop command is also used by the stopi ,
trace , and tracei commands, which are discussed below. The general syntax for
all the commands is:

command [variable | at line | in func] [if expr] [{cmd[; cmd...]}] [after n]

where

■ command – As mentioned above, can be stop , stopi , when, trace , or tracei .

■ variable – Is the name of a variable. The command is executed (in other words, the
event takes place) if the value of the variable changes. If the variable is an array,
an array section, or a parallel variable, the command is executed if the value of
any element changes. This form of the command slows execution considerably.
You cannot specify both a variable and a program location.

■ line – Specifies the line number where the stop or trace is to be executed. If the
line is not in the current file, use the format:

at ”filename”:line-number

■ func – Is the name of the function or procedure in which the stop or trace is to be
executed.

■ expr – Is any language expression that evaluates to true or false. This argument
specifies the logical condition, if any, under which the stop or trace is to be
executed. For example,

if a .GT. 1

This form of the command slows execution considerably, unless you combine it
with the at line syntax. See Section 2.8 for more information on writing
expressions in Prism.

■ cmd – Is any Prism command (except attach , core , detach , load , return ,
run , or step). This argument specifies the actions, if any, that are to accompany
the execution of the stop or trace. For example, {print a} prints the value of a.
If you include multiple commands, separate them with semicolons.

■ n – Is an integer that specifies how many times a triggering condition is to be
reached before the stop or trace is executed; see Section 4.1 for a discussion of
triggering conditions. This is referred to as an after count. The default is 1. Once
the stop or trace is executed, the count is reset to its original value. Note that if
there is both a condition and an after count, the condition is checked first.

The first option listed (specifying the location or the name of the variable) must
come first on the command line; the other options, if you include them, can be in any
order.

4-12 Prism 5.0 User’s Guide • November 1997

For the when command, you can use the keyword stopped to specify that the
actions are to occur whenever the program stops execution.

When you issue the command, an event is added to the event list. If the command
sets a breakpoint at a program location, a B appears in the line-number region next
to the location.

4.3.3.1 Examples

To stop execution the tenth time in function foo and print a:

stop in foo {print a} after 10

To stop at line 17 of file bar if a is equal to 0:

stop at “bar”:17 if a == 0

To stop whenever a changes:

stop a

To stop the third time a equals 5:

stop if a .eq. 5 after 3

To print a and do a stack trace every time the program stops execution:

when stopped {print a; where}

4.3.3.2 For Machine Instructions

To set a breakpoint at a machine instruction, issue the stopi command, using the
syntax described above, and specifying a machine address. For example,

stopi at 0x1000

stops execution at address 1000 (hex).

The history region displays the address and the machine instruction. The source
pointer moves to the source line being executed.

4.3.3.3 Deleting Breakpoints via the Command Window

To delete a breakpoint via the command window, first issue the show events
command. This prints out the event list. Each event has an ID number associated
with it.

To delete one or more of these events, issue the delete command, listing the ID
numbers of the events you want to delete; separate multiple IDs with one or more
blank spaces. For example,

Chapter 4 Debugging a Program 4-13

delete 1 3

deletes the events with IDs 1 and 3. Use the argument all to delete all existing
events.

4.4 Tracing Program Execution
You can trace program execution by using the event table or Events menu, or by
issuing commands. All methods add an event to the event table. If you trace a source
line, Prism displays a T next to the line in the line-number region.

As described earlier, tracing is essentially the same as setting a breakpoint, except
that execution continues automatically after the breakpoint is reached. When tracing
source lines, Prism steps into procedures if they were compiled with the -g option;
otherwise it steps over them as if it had issued a next command.

4.4.1 Using the Event Table and the Events Menu
To trace program execution, choose the Trace, Trace <loc>, or Trace <var> selection
from the Events menu. These choices are also available as Common Events buttons
within the event table itself.

■ Trace displays source lines in the command window before they are executed.

■ Trace <loc> prompts for a source line. Prism displays a message immediately
prior to the execution of this source line.

■ Trace <var> prompts for a variable name. A message is printed when the
variable’s value changes. The variable can be an array, an array section, or a
parallel variable, in which case a message is printed any time any element
changes. This slows execution considerably.

In addition, Trace <cond> is available as a Common Events button. It prompts for a
condition, which can be any expression that evaluates to true or false; see Section 2.8
for more information on writing expressions. The program displays a message when
the condition is met. This also slows execution considerably.

For variations of these traces, you can create your own event in the event table. You
can also use the Actions field to specify Prism commands that are to be executed
along with the trace.

4-14 Prism 5.0 User’s Guide • November 1997

4.4.1.1 Deleting Traces via the Event Table

To delete a trace, choose the Delete selection from the Events menu, or use the Delete
button in the event table itself. See Section 4.2.3.

4.4.2 Using Commands
Issue the trace command from the command line to trace program execution.
Issuing trace with no arguments causes each source line in the program to be
displayed in the command window before it is executed.

The trace command uses the same syntax as the stop command; see Section 4.3.3.
For example:

■ trace {print a} – traces and prints a on every source line.

■ trace at 17 if a .GT. 10 – traces line 17 if a is greater than 10.

In addition, Prism interprets

■ trace line-number – as being the same as – trace at line-number

4.4.2.1 For Machine Instructions

To trace machine instructions, use the tracei command, specifying a machine
address. When tracing machine instructions, Prism follows all procedure calls down.
The tracei command has the same syntax as the stop command; see Section 4.3.3.

The history region displays the address and the machine instruction. The execution
pointer moves to the next source line to be executed.

4.4.2.2 Deleting Traces via the Command Window

To delete a trace, use the show events command to obtain the ID associated with
the trace, then issue the delete command with the ID as its argument. See Section
4.3.3.

Chapter 4 Debugging a Program 4-15

4.5 Displaying and Moving Through the
Call Stack
The call stack is the list of procedures and functions currently active in a program.
Prism provides you with methods for examining the contents of the call stack.

See Section 10.6.2 for a discussion of displaying the call stack in MP Prism.

4.5.1 Displaying the Call Stack
■ From the menu bar – Choose the Where selection from the Debug menu. The

Where window is displayed; see FIGURE 4-3. The window contains the call stack; it
is updated automatically when execution stops or when you issue commands that
change the stack.

FIGURE 4-3 Where Window

■ From the command window – Issue the where command on the command line.
If you include a number, it specifies how many active procedures are to be
displayed; otherwise, all active procedures are displayed in the history region.

Values of arguments in displayed procedures are shown in the default radix, which
is decimal unless you change it via the set $radix command; see Section 5.1.3.

4.5.2 Moving Through the Call Stack
Moving up through the call stack means heading toward the main procedure.
Moving down through the call stack means heading toward the current stopping
point in the program.

4-16 Prism 5.0 User’s Guide • November 1997

Moving through the call stack changes the current function and repositions the
source window at this function. It also affects the scope that Prism uses for
interpreting the names of variables you specify in expressions and commands.

Prism provides these methods for moving through the call stack:

From the menu bar – Choose Up or Down from the Debug menu. Up moves up one
level in the call stack; Down moves down one level. These selections are available by
default in the tear-off region.

From the command window – Issue the up command on the command line to move
up one level. If you specify an integer as an argument, you move up that number of
levels. Issue the down command to move down one level; specifying an integer
moves down that number of levels.

From the Where window – If the Where window is displayed, clicking on a function
in it changes the stack level to make that function current.

4.6 Examining the Contents of Memory and
Registers
You can issue commands in the command window to display the contents of
memory addresses and registers.

4.6.1 Displaying Memory
To display the contents of an address, specify the address on the command line,
followed by a slash (/). For example,

0x10000/

If you specify the address as a period, Prism displays the contents of the memory
address following the one printed most recently.

Specify a symbolic address by preceding the name with an &. For example,

&x/

prints the contents of memory for variable x. The Prism output, for example, might
be

0x000237f8: 0x3f800000

The address you specify can be an expression made up of other addresses and the
operators +, - , and indirection (unary *). For example,

Chapter 4 Debugging a Program 4-17

0x1000+100/

prints the contents of the location 100 addresses above address 0x1000.

After the slash you can specify how memory is to be displayed. These formats are
supported:

The initial format is X. If you omit the format in your command, you get either X (if
you haven’t previously specified a format) or the format you specified previously.

You can print the contents of multiple addresses by specifying a number after the
slash (and before the format). For example,

0x1000/8X

displays the contents of eight memory locations starting at address 0x1000. Contents
are displayed as hexadecimal long words.

4.6.2 Displaying the Contents of Registers
You can examine the contents of registers in the same way that you examine the
contents of memory. Specify a register by preceding its name with a dollar sign. For
example,

$f0/

prints the contents of the X register.

d Print a short word in decimal

D Print a long word in decimal

o Print a short word in octal

O Print a long word in octal

x Print a short word in hexadecimal

X Print a long word in hexadecimal

b Print a byte in octal

c Print a byte as a character

s Print a string of characters terminated by a null byte

f Print a single-precision real number

F Print a double-precision real number

i Print the machine instruction

4-18 Prism 5.0 User’s Guide • November 1997

Specify a number after the slash to print the contents of multiple registers. For
example,

$f0/3

prints the contents of registers f0 , f1 , and f2 . The order in which the registers are
displayed is that shown in TABLE 4-1.

You can also specify a format, as described above. The format specifier controls the
display of the output; it doesn’t affect how much of the register contents is
displayed. Thus,

% $f0/3X

displays three registers; the output is displayed as hexadecimal longwords.

TABLE 4-1 UltraSPARC Registers

Name Register

$g0-$g7 Global registers (64 bits)

$o0-$o7 Output registers (64 bits)

$l0-$l7 Local registers

$i0-$i7 Input registers

$psr Processor state register

$pc Program counter

$npc Next program counter

$y Y register

$wim Window invalid mask

$tbr Trap base register

$f0-$f31 Floating-point registers

$fsr Floating status register (64 bits)

$f0f1-$f62f63 Floating-point registers

$xg0-$xg7 Upper 32 bits of $g0-$g7

$xo0-$xo7 Upper 32 bits of $o0-$o7

$xfsr Upper 32 bits of $fsr

$fprs Floating-point registers state

$tstate Trap state register

$fp Frame pointer (synonym for $i6)

$sp Stack pointer (synonym for $o6)

Chapter 4 Debugging a Program 4-19

4-20 Prism 5.0 User’s Guide • November 1997

5-1

CHAPTER 5

Visualizing Data

This chapter describes how to examine the values of variables and expressions in
your program. This is referred to as visualizing data. In addition, it describes how to
find out the type of a variable and change its values.

See the following sections to learn

■ How to choose the variable or expression whose values are to be
visualized — Section 5.2.

■ How to work with graphical visualizers — Section 5.3.

■ How to save, restore, and compare visualizers — Section 5.4.

■ How to visualize structures and pointers — Section 5.6.

■ How to print the type of a variable — Section 5.7.

■ How to change the values of a variable — Section 5.8.

■ How to change the radix of data — Section 5.9.

See Section 10.7 for a discussion of visualizing data in MP Prism.

5.1 Overview
You can visualize either variables (including arrays, structures, pointers, etc.) or
expressions; see Section 2.9 for information on writing expressions in Prism. In
addition, you can provide a context, so that Prism handles the values of data
elements differently, depending on whether they meet the condition you specify.

5.1.1 Printing and Displaying
Prism provides two general methods for visualizing data: printing and displaying.

5-2 Prism 5.0 User’s Guide • November 1997

■ Printing data shows the value(s) of the data at a specified point during program
execution.

■ Displaying data causes its value(s) to be updated every time the program stops
execution.

Printing or displaying to the history region of the command window prints out the
numeric or character values of the data in standard fashion.

Printing or displaying to a graphical window creates a visualizer, which provides you
with various options as to how to represent the data.

5.1.2 Visualization Methods
Prism provides these methods for choosing what to print or display:

■ By choosing the Print or Display selection from the Debug menu in the menu bar
(see Section 5.2.1)

■ By selecting text within the source window (see Section 5.2.2)

■ By adding events to the event table (see Section 5.2.3)

■ By issuing commands from the command window (see Section 5.2.5)

In all cases, choosing Display adds an event to the event list, since displaying data
requires an action to update the values each time the program is stopped. Note that,
since Display updates automatically, the only way to keep an unwanted display
window from reappearing is to delete the corresponding display event.

You create print events only via the event table and the Events menu.

5.1.3 Changing the Default Radix
By default, Prism prints and displays values as decimal numbers. You can change
this default by issuing the set $radix command, specifying as a setting 2 (binary),
8 (octal), or 16 (hexadecimal). For example,

set $radix = 16

changes the default representation to hexadecimal. To reset the default to decimal,
issue the command

set $radix = 10

You can override the default for an individual print or display operation. See Section
5.2.5 and Section 5.3.4.

The default setting also affects the display of argument values in procedures in the
call stack; see Section 4.5.1.

Chapter 5 Visualizing Data 5-3

5.1.4 Data Visualization Limits
Note these points in visualizing data:

■ You cannot print or display any variables after a program finishes execution.

■ Visualizers do not deal correctly with Fortran adjustable arrays. The size is
determined when you create a visualizer for such an array. Subsequent updates to
the visualizer will continue to use this same information, even though the size of
the array may have changed since the last update. This will result in incorrect
values in the visualizer. Printing or displaying values of an adjustable array in the
command window or to a new window will work, however.

5.2 Choosing the Data to Visualize
This section describes the methods Prism provides for printing and displaying data.

5.2.1 Printing and Displaying From the Debug Menu
To print a variable or expression at the current program location, choose Print from
the Debug menu. It is also by default in the tear-off region.

To display a variable or expression every time execution stops, starting at the current
program location, choose Display from the Debug menu.

When you choose Print or Display, a dialog box appears; FIGURE 5-1 shows an
example of the Print dialog box.

FIGURE 5-1 Print Dialog Box

In the Expression box, enter the variable or expression whose value(s) you want
printed. Text selected in the source window appears as the default; you can edit this
text.

The dialog boxes also offer choices as to the window in which the values are to
appear:

5-4 Prism 5.0 User’s Guide • November 1997

■ You can specify that the values are to be printed or displayed in a standard
window dedicated to the specified expression. The first time you print or display
the data, Prism creates this window. If you print data, and subsequently print it
again, this standard window is updated. This is the default choice for both Print
and Display.

■ You can create a separate snapshot window for printing or displaying values. This
is useful if you want to compare values between windows.

■ You can print out the values in the command window.

Click on Print or Display to print the values of the specified expression at the current
program location.

Click on Cancel or press the Esc key to close the window without printing or
displaying.

5.2.2 Printing and Displaying from the Source Window

▼ To Print and Display From the Source Window

1. Select the variable or expression by dragging over it with the mouse or double-
clicking on it.

2. Right-click the mouse to display a pop-up menu.

3. Click on Print in this menu to display a snapshot visualizer containing the
value(s) of the selected variable or expression at that point in the program’s
execution.

Click on Display to display a visualizer that is automatically updated whenever
execution stops.

To print without bothering to display the menu, press the Shift key while selecting
the variable or expression.

Note – Prism prints the correct variable when you choose it in this way, even if the
scope pointer sets a scope that contains another variable of the same name.

5.2.3 Printing and Displaying From the Events Menu
You can use the Events menu to define a print or display event that is to take place
at a specified location in the program.

Chapter 5 Visualizing Data 5-5

The Print dialog box (see FIGURE 5-2) prompts for the variable or expression whose
value(s) are to be printed, the program location at which the printing is to take place,
and the name of the window in which the value(s) are to be displayed.

FIGURE 5-2 Print Dialog Box

Window names are dedicated, snapshot, and command; you can also make up your
own name. The default is dedicated. See Section 2.7.3 for a discussion of these
names.

When you have filled in the fields, click on OK; the event is added to the event table.
When the location is reached in the program, the value(s) of the expression or
variable are printed.

The Display dialog box is similar, but it does not prompt for a location; the display
visualizer will update every time the program stops execution.

5.2.4 Printing and Displaying From the Event Table
You can use the event table to define a print or display event that is to take place at
a specified location in the program.

Click on Print or Display in the Common Events buttons to create an event that will
print or display data.

If you click on Print, the Location and Action fields are highlighted. Put a program
location in the Location field. Complete the print event in the Actions field,
specifying the variable or expression, and the window in which it is to be printed.
For example,

print d2 on dedicated

If you click on Display, the Location field displays stopped , and the Actions field
displays print on dedicated . Complete the description of the print event, as
described above. The variable or expression you specify is then displayed whenever
the program stops execution.

5-6 Prism 5.0 User’s Guide • November 1997

5.2.5 Printing and Displaying from the Command
Window
Use the print command to print the value(s) of a variable or expression from the
command window. Use the display command to display the value(s). The
display command prints the value(s) of the variable or expression immediately,
and creates a display event so that the values are updated automatically whenever
the program stops.

The commands have this format:

[where (expression)] command variable[, variable ...]

The optional where (expression) syntax sets the context for printing the variable or
expression; see below.

In the syntax, command is either print or display , and variable is the variable or
expression to be displayed or printed.

Redirection of output to a window via the on window syntax works slightly
differently for display and print from the way it works for other commands; see
Section 2.7.3 for a discussion of redirection. Separate windows are created for each
variable or expression that you print or display. Thus, the commands

display x on dedicated
display y/4 on dedicated
display [0:128:2]z on dedicated

create three windows, each of which is updated separately.

To print or display the contents of a register, precede the register’s name with a
dollar sign. For example,

print $pc

prints the program counter register. See Section 4.6.2 for a list of register names
supported by Prism.

5.2.5.1 Setting the Context

You can precede the print or display command with a where statement that can
make elements of a variable or array inactive. Inactive elements are not printed in the
command window; Section 5.3.4 describes how they are treated in visualizers.
Making elements inactive is referred to as setting the context.

To set the context, follow the where keyword with an expression in parentheses. The
expression must evaluate to true or false for every element of the variable or array
being printed.

Chapter 5 Visualizing Data 5-7

For example,

where (i .gt. 0) print i

prints (in the command window) only the values of i that are greater than 0.

You can use certain Fortran intrinsics in the where statement. For example,

where (a .eq. maxval(a)) print a

prints the element of a that has the largest value. (This is equivalent to the MAXLOC
intrinsic function.) See Section 2.8 for more information on writing expressions in
Prism.

Note that setting the context affects only the printing or displaying of the variable. It
does not affect the actual context of the program as it executes.

5.2.5.2 Specifying the Radix

You can specify the radix to be used in printing or displaying values by adding a
suffix of the form /radix to the print or display command. radix can be b
(binary), d (decimal), x (hexadecimal), or o (octal). For example,

print/b pvar1

prints the binary representation of pvar1 in the command window.

display/x pvar2 on dedicated

displays the hexadecimal values of pvar2 in a dedicated window.

The default radix is decimal, unless you have used the set $radix command to
change it; see Section 5.1.3.

5.3 Working with Visualizers
The window that contains the data being printed or displayed is called a visualizer.
FIGURE 5-3 shows a visualizer for a 3-dimensional array.

5-8 Prism 5.0 User’s Guide • November 1997

FIGURE 5-3 Visualizer for a 3-Dimensional Array.

The visualizer consists of two parts: the data navigator and the display window. There
are also File and Options pulldown menus.

The data navigator shows which portion of the data is being displayed, and provides
a quick method for moving through the data. The appearance of the data navigator
depends on the number of dimensions in the data. It is described in more detail in
Section 5.3.1.

The display window is the main part of the visualizer. It shows the data, using a
representation that you can choose from the Options menu. The default is text : that
is, the data is displayed as numbers or characters. FIGURE 5-3 is a text visualizer. The
display window is described in more detail in Section 5.3.2.

The File menu lets you save, update, or cancel the visualizer; see Section 5.3.3 for
more information. The Options menu, among other things, lets you change the way
values are represented; see Section 5.3.4.

5.3.1 Using the Data Navigator in a Visualizer
The data navigator helps you move through the data being visualized. It has
different appearances, depending on the number of dimensions in your data. If your
data is a single scalar value, there is no data navigator.

Chapter 5 Visualizing Data 5-9

For 1-dimensional arrays and parallel variables, the data navigator is the scroll bar
to the right of the data. The number to the right of the buttons for the File and
Options menus indicates the coordinate of the first element that is displayed. The
elevator in the scroll bar indicates the position of the displayed data relative to the
entire data set.

For 2-dimensional data, the data navigator is a rectangle in the shape of the data,
with the axes numbered. The white box inside the rectangle indicates the position of
the displayed data relative to the entire data set. You can either drag the box or click
at a spot in the rectangle. The box moves to that spot, and the data displayed in the
display window changes.

For 3-dimensional data, the data navigator consists of a rectangle and a slider, each
of which you can operate independently. The value to the right of the slider
indicates the coordinate of the third dimension. Changing the position of the bar
along the slider changes which 2-dimensional plane is displayed out of the
3-dimensional data.

For data with more than three dimensions, the data navigator adds a slider for each
additional dimension.

5.3.1.1 Changing the Axes

You can change the way the visualizer lays out your data by changing the numbers
that label the axes. Click in the box surrounding the number; it is highlighted, and
an I-beam appears. You can then type in the new number of the axis; you don’t have
to delete the old number. The other axis number automatically changes; for example,
if you change axis 1 to 2, axis 2 automatically changes to become axis 1.

5.3.2 Using the Display Window in a Visualizer
The display window shows the data being visualized.

In addition to using the data navigator to move through the data, you can drag the
data itself relative to the display window by holding down the left mouse button;
this provides finer control over the display of the data.

To find out the coordinates and value of a specific data element, click on it while
pressing the Shift key. Its coordinates are displayed in parentheses, and its value is
displayed beneath them. If you have set a context for the visualizer, you also see
whether the element is active or inactive (see Section 5.3.4). Drag the mouse with the
Shift key pressed, and you see the coordinates, value, and context of each data
element over which the mouse pointer passes.

5-10 Prism 5.0 User’s Guide • November 1997

You can resize the visualizer to display more (or less) data either horizontally or
vertically.

5.3.3 Using the File Menu
Click on File to pull down the File menu.

Choose Update from this menu to update the display window for this variable,
using the value(s) at the current program location. See Section 5.3.5 for more
information on updating a visualizer.

Choose Save or Save As to save the visualizer’s values to a file. See Section 5.4.1 for
more information.

Choose Diff or Diff With to compare the visualizer’s values with values stored in a
file. See Section 5.4.3 for more information.

Choose Snapshot to create a copy of the visualizer, which you can use to compare
with later updates.

Choose Close to cancel the visualizer.

5.3.4 Using the Options Menu
Click on Options to pull down the Options menu. See FIGURE 5-4.

FIGURE 5-4 Options Menu in a Visualizer

Chapter 5 Visualizing Data 5-11

5.3.4.1 Choosing the Representation

Choose Representation from the Options menu to display another menu that gives
the choices for how the values are represented in the display window. The choices
are described below. You can control aspects of the way these visualizers appear by
changing their parameters, as described later in this section.

■ Choose Text to display the values as numbers or letters. This is the default.

■ Choose Histogram to display the values of an array or parallel variable in a
histogram. See FIGURE 5-5 for an example.

The vertical axis displays the number of data points; the horizontal axis displays the
range of values. Prism divides up this range evenly in creating the histogram bars.
It prints summary data above the histogram.

Shift-click on a histogram bar to display the range and number of data points it
represents.

Note that the histogram represents all the values of the variable, not just those
shown in the 2-dimensional slice of data that happens to be displayed in other
representations.

FIGURE 5-5 Histogram Visualizer

■ Choose Dither to display the values as a shading from black to white. Groups of
values in a low range are assigned more black pixels; groups of values in a high
range are assigned more white pixels. This has the effect of displaying the data in

5-12 Prism 5.0 User’s Guide • November 1997

various shades of gray. FIGURE 5-6 shows a 2-dimensional dither visualizer. The
lighter area indicates values that are higher than values in the surrounding areas;
the darker area indicates values that are lower than surrounding values.

For complex numbers, Prism uses the modulus.

FIGURE 5-6 Dither Visualizer

■ Choose Threshold to display the values as black or white. By default, Prism uses
the mean of the values as the threshold; values less than or equal to the mean are
black, and values greater than the mean are white. FIGURE 5-7 shows a threshold
representation of a 3-dimensional array.

For complex numbers, Prism uses the modulus.

Chapter 5 Visualizing Data 5-13

FIGURE 5-7 Threshold Visualizer

■ Choose Colormap (if you are using a color workstation) to display the values as a
range of colors. By default, Prism displays the values as a continuous spectrum
from blue (for the minimum value) to red (for the maximum value). You can
change the colors that Prism uses; see Section 9.3.2.

For complex numbers, Prism uses the modulus.

■ Choose Graph to display values as a graph, with the index of each array element
plotted on the horizontal axis and its value on the vertical axis. A line connects
the points plotted on the graph. This representation is particularly useful for
1-dimensional data, but can be used for higher-dimensional data as well; for
example, in a 2-dimensional array, graphs are shown for each separate
1-dimensional slice of the 2-dimensional plane.

5-14 Prism 5.0 User’s Guide • November 1997

FIGURE 5-8 shows a graph visualizer for a 1-dimensional array.

FIGURE 5-8 i-Dimensional Graph Visualizer

■ Choose Surface (if your data has more than one dimension) to render the
3-dimensional contours of a 2-dimensional slice of data. In the representation, the
2-dimensional slice of data is tilted 45 degrees away from the viewer, with the top
edge further from the viewer than the bottom edge. The data values rise out of
this slice. FIGURE 5-9 is an example.

Chapter 5 Visualizing Data 5-15

FIGURE 5-9 Surface Visualizer

Note – If there are large values in the top rows of the data, they may be drawn off
the top of the screen. To see these values, flip the axes as described earlier in this
section, so that the top row appears in the left column.

■ Choose Vector to display data as vectors. The data must be a Fortran complex or
double complex number, or a pair of variables to which the CMPLX intrinsic
function has been applied (see Section 2.8.2). The complex number is drawn
showing both magnitude and direction. The length of the vector increases with
magnitude. There is a minimum vector length of five pixels, because direction is
difficult to see for smaller vectors. By default, the lengths of all vectors scale
linearly with magnitude, varying between the minimum and maximum vector
lengths. FIGURE 5-10 shows a vector visualizer.

5-16 Prism 5.0 User’s Guide • November 1997

FIGURE 5-10 Vector Visualizer

5.3.4.2 Setting Parameters

Choose Parameters from the Options menu to display a dialog box in which you can
change various defaults that Prism uses in setting up the display window; see
FIGURE 5-11. If a parameter is grayed out or missing, it does not apply to the current
representation.

FIGURE 5-11 Visualization Parameters Dialog Box

The parameters (for all representations except the histogram representation) are:

■ Field Width – Type a value in this box to change the width of the field that Prism
allocates to every data element.

Chapter 5 Visualizing Data 5-17

For the text representation, the field width specifies the number of characters in
each column. If a number is too large for the field width you specify, dots are
printed instead of the number.

For dither, threshold, colormap, and vector representations, the field width
specifies how wide (in pixels) the representation of each data element is to be. By
default, dither, threshold, and colormap visualizers are scaled to fit the display
window. Note, however, that for dither visualizers, the gray shading may be more
noticeable with a smaller field width.

For the graph representation, the field width specifies the horizontal spacing
between elements.

For the surface representation, it specifies the spacing of elements along both
directions of the plane.

■ Field Height – For graph and surface representations, changing this value affects
the maximum height (in pixels) to which Prism scales every data value.

■ Precision – Type a value in this box to change the precision with which Prism
displays real numbers in a text visualizer. The precision must be less than the
field width. By default, Prism prints doubles with 16 significant digits, and
floating-point values with 7 significant digits. You can change this default by
issuing the set command with the $d_precision variable (for doubles) or
$f_precision variable (for floating-point values). For example,

set $d_precision = 11

sets the default precision for doubles to 11 significant digits.

■ Minimum and Maximum – For colormap representations, use these variables to
specify the minimum and maximum values that Prism is to use in assigning color
values to the data elements. Data elements that have values below the minimum
and above the maximum are assigned default colors.

For graph, surface, and vector representations, these parameters represent the
bottom and top of the range that is to be represented. Values below the minimum
are shown as the minimum; values above the maximum are shown as the
maximum.

By default Prism uses the entire range of values for all these representations.

■ Threshold – For threshold representations, use this variable to specify the value
at which Prism is to change the display from black to white. Data elements whose
values are at or below the threshold are displayed as black; data elements whose
values are above the threshold are displayed as white. By default, Prism uses the
mean of the data as the threshold.

The parameters for the histogram representation are:

5-18 Prism 5.0 User’s Guide • November 1997

■ Bar Width – Specifies the width in pixels of each histogram bar (except for the
bars representing infinities and NaNs, which must be wide enough to fit the Inf
or NaN label underneath). The default is 10 pixels.

■ Bar Height – Specifies the height in pixels of the largest histogram bar.
The default is 100 pixels.

■ Minimum – Specifies the minimum value to be included in the histogram.
By default the actual minimum value is used.

■ Maximum– Specifies the maximum value to be included in the histogram.
By default the actual maximum value is used.

If you specify a different minimum or maximum, values below the minimum or
above the maximum are not displayed in the histogram, but are counted as
outliers instead; the number of outliers is displayed above the histogram.

■ Max Buckets – Specifies the number of “buckets” into which values are to be
poured—in other words, the number of histogram bars to be used. The default is
30. (Prism may use fewer to make the horizontal labels come out evenly.)

5.3.4.3 Displaying a Ruler

Choose Ruler from the Options menu to toggle the display of a ruler around the data
in the display window. The ruler is helpful in showing which elements are being
displayed. FIGURE 5-12 shows a 3-dimensional threshold visualizer with the ruler
displayed.

In the surface representation, the ruler cannot indicate the coordinates of elements in
the vertical axis, since they change depending on the height of each element.
However, you can press the Shift key and left-click as described above to display the
coordinates and value of an element.

Chapter 5 Visualizing Data 5-19

FIGURE 5-12 Threshold Visualizer with a Ruler

5.3.4.4 Displaying Statistics

Choose Statistics from the Options menu to display a window containing statistics
and other information about the variable being visualized. The window contains:

■ The name of the variable

■ Its type and number of dimensions

■ The total number of elements the variable contains, and the total number of active
elements, based on the context you set within Prism (see the next section for a
discussion of setting the context)

■ The variable’s minimum, maximum, and mean; these statistics reflect the context
you set for the visualizer

FIGURE 5-13 gives an example of the Statistics window.

5-20 Prism 5.0 User’s Guide • November 1997

FIGURE 5-13 Statistics for a Visualizer

For complex numbers, Prism uses the modulus.

5.3.4.5 Using the Set Context Dialog Box

Choose Set Context from the Options menu to display a dialog box in which you can
specify which elements of the variable are to be considered active and which are to
be considered inactive. Active and inactive elements are treated differently in
visualizers:

■ In text, graph, surface, and vector visualizers, inactive elements are grayed out.

■ In colormap visualizers, inactive elements by default are displayed as gray. You
can change this default; see Section 9.3.2.

■ Context has no effect on dither and threshold visualizers.

FIGURE 5-14 shows the Set Context dialog box.

FIGURE 5-14 Set Context Dialog Box

By default, all elements of the variable are active; this is the meaning of the
everywhere keyword in the text-entry box. To change this default, you can either
edit the text in the text-entry box directly or click on the Where button to display a
menu. The choices in the menu are everywhere and other:

■ Choose everywhere, as mentioned above, to make all elements active.

Chapter 5 Visualizing Data 5-21

■ Choose other to erase the current contents of the text-entry box. You can then
enter an expression into the text-entry box.

In the text-entry box, you can enter any valid expression that will evaluate to true or
false for each element of the variable.

The context you specify for printing does not affect the program’s context; it just
affects the way the elements of the variable are displayed in the visualizer.

See “Setting the Context” above for more information on context. See Section 2.8 for
more information on writing expressions in Prism.

Click on Apply to set the context you specified. Click on Cancel or press the Esc key
to close the dialog box without setting the context.

5.3.4.6 Changing the Radix

Choose Radix from the Options menu to change the radix used in the text
representation of a value.

Choosing Radix pulls down a submenu with four selections: Decimal, Hex, Octal,
and Binary. Choosing one of these changes the value to the specified radix. Prism
continues to use this radix if the visualizer is updated.

By default, Prism displays values in decimal. You can change this default via the
set $radix command; see Section 5.1.3. You can also override it for a specific
print or display command; see Section 5.2.5.

5.3.5 Updating and Closing the Visualizer
If you created a visualizer by issuing a display command, it automatically updates
every time the program stops execution.

If you created the visualizer by issuing a print command, its display window is
grayed out when the program resumes execution and the values in the window are
outdated. To update the values, choose Update from the visualizer’s File menu.

To close the visualizer, choose Close from the File menu, or press the Esc key.

5-22 Prism 5.0 User’s Guide • November 1997

5.4 Saving, Restoring, and Comparing
Visualizers
You can save the values of a variable or expression to a file. You can subsequently
visualize these values and compare them with the values in another visualizer—for
example, the same variable later in the run, or during a totally separate execution of
the program. This provides a convenient way of spotting changes in the values of a
variable.

5.4.1 Saving the Values of a Variable
You can save the values of a variable or expression to a file for later use.

5.4.1.1 From the Command Line

Use the command varsave to save the values of a variable or expression to a file.
Its syntax is

varsave ” filename” expression

where filename is the name of the file to which the data is to be saved, and expression
is the variable or expression whose values are to be saved. For example,

varsave ”alpha.data” alpha

saves the values of the variable alpha in the file alpha . data (in your current
working directory within Prism).

varsave ”/u/kathy/alpha2.data” alpha*2

saves the results of the expression alpha*2 in the file with the pathname
/u/kathy/alpha2.data.

5.4.1.2 From a Visualizer

Use the Save or Save As selection from a visualizer’s File menu to save the
visualizer’s values to a file.

If you choose Save As, a dialog box appears in which you can specify the name of
the file to which the values are to be saved:

Chapter 5 Visualizing Data 5-23

FIGURE 5-15 Saving Visualizer’s Data to a File

The highlighted directory is the current working directory. If you want to put the file
there, simply type its name in the Save As box and click on OK.

If you want to put the file in another directory, click on the directory. (The parent
directories of the current working directory are shown above it in the Directories list;
its subdirectories are listed beneath it.) This will display the subdirectories of the
directory you clicked on. You can traverse the directory structure in this manner
until you find the directory in which you want to put the file, or, you can simply
type the entire path name in the Save As box.

Choose the Save selection to save the values in the file you most recently specified.
If you haven’t specified a file, the values are saved in a file called noname. var in
your current working directory in Prism.

5.4.2 Restoring the Data
Use the intrinsic varfile to bring values you have saved to a file back into Prism.
Its syntax is

varfile(” filename”)

where filename is the name of the file that contains the values you want to restore.

Note – The varfile intrinsic is not available in MP Prism.

5-24 Prism 5.0 User’s Guide • November 1997

You can use the varfile intrinsic anywhere you could have used the original
variable or expression that you saved to a file. For example, if you saved x:

varsave ”x.var” x

then the command

print varfile(”x.var”)

is equivalent to

print x

Note that this allows you to save a variable’s values, then print them during a later
Prism session, without having a program loaded or running.

5.4.3 Comparing the Data
You can compare a variable or expression whose values have been saved in a file
with another version of the variable or expression. This comparison could take place
later in the same run of the program, during a subsequent run, or even during a
second, simultaneous Prism session.

You can also compare the values with those of another variable, as long as both
variables have the same base type (that is, you can’t compare integers with floating-
point numbers).

5.4.3.1 From the Command Line

You can use the print or display command with the difference operator and the
varfile intrinsic to perform a comparison between two versions of a variable or
expression.

For example, if you saved x in the file x.var :

varsave ”x.var” x

then the command

print x - varfile(”x.var”)

prints the difference between the current and saved values of x.

If an element is printed as 0, it is the same in both versions. If it is nonzero, its value
is different in the two versions.

Chapter 5 Visualizing Data 5-25

5.4.3.2 From a Visualizer

Use the Diff or Diff With selection from a visualizer’s File menu to compare the
visualizer’s values with values stored in a file.

Choose Diff With to choose the file containing the values. It displays a dialog box
like the one shown below.

FIGURE 5-16 Diff With Dialog Box

The dialog box has the same format as the Save As dialog box described in Section
5.4.1. It lists the files found in your current working directory in Prism. Click on a
file name, then click on OK to choose the file. Or type a file name in the Diff With
text-entry box and click on OK.

Choose Diff to compare the visualizers values to those in the most recently specified
file; if no file has been specified, values are compared to those in the file
noname.var in your current working directory in Prism.

Once you have specified a file via Diff or Diff With, Prism creates a new visualizer
that displays the difference in values between the visualizer and the file. If an
element’s value in the new visualizer is 0, the value is the same in both versions. If it
is nonzero, it is different in the two versions.

You can work with this visualizer as you would any visualizer. For example, you can
change the representation and display summary statistics.

5-26 Prism 5.0 User’s Guide • November 1997

5.5 Visualizing Layouts of Parallel Objects
Prism provides a layout intrinsic that returns the numbers of the nodes on which
the data elements of a parallel object are located. Its syntax is

layout(pvar)

where pvar is a parallel object. For Sun HPF, it can be a parallel array. You can use
the Fortran 90 array-section syntax described in Section2.8.4 to specify a range of
elements within a parallel object.

You can print or display the results of applying the layout intrinsic to a parallel
object. For example,

print layout(p1) on dedicated

creates a visualizer that is the same size and shape as the parallel object p1 . The
visualizer displays the rank of the process that is holding each value.

Note that you can use other visualizer representations—for example, dither or
colormap—to display the layout graphically.

5.6 Visualizing Structures
If you print a pointer or a structure (or a structure-valued expression) in a window,
a structure visualizer appears.

FIGURE 5-17 shows an example of a structure visualizer.

Chapter 5 Visualizing Data 5-27

FIGURE 5-17 Structure Visualizer

The structure you specified appears inside a box; this is referred to as a node. The
node shows the fields in the structure and their values. If the structure contains
pointers, small boxes appear next to them; they are referred to as buttons. Left-click
on a node to select it. Use the up and down arrow keys to move between buttons of
a selected node.

You can perform various actions within a structure visualizer, as described below.

5.6.1 Expanding Pointers
You can expand scalar pointers in a structure to generate new nodes. (You cannot
expand a pointer to a parallel variable.)

To expand a single pointer:

■ With a mouse – Left-click on a button to expand the pointer. For example,
clicking on the button next to the nav field in FIGURE 5-17 changes the visualizer as
shown in FIGURE 5-18.

■ From the keyboard – Use the right arrow key to expand and visit the node
pointed to by the current button. If the node is already expanded, pressing the
right arrow key simply visits the node. Use the left arrow key to visit the parent
of a selected node.

5-28 Prism 5.0 User’s Guide • November 1997

FIGURE 5-18 Structure Visualizer, With One Pointer Expanded

To expand all pointers in a node:

■ With the mouse – Double-click or Shift-left-click on the node.

■ From the keyboard – Press the Shift key along with the right arrow key.

■ From the Options menu – Click on Expand. The cursor turns into a target; move
the cursor to the node you are interested in and left-click.

To recursively expand all pointers from the selected node on down:

■ With the mouse – Triple-click or Control-left-click on the node.

■ From the keyboard – Press the Control key and the right arrow key.

■ From the Options menu – Click on Expand All. The cursor turns into a target;
move the cursor to the node you are interested in and left-click.

5.6.2 Panning and Zooming
You can left-click and drag through the data navigator or the display window to pan
through the data, just as you can with visualizers; see Sections 5.3.1 and 5.3.2.

You can also “zoom” in and out on the data by left-clicking on the Zoom arrows.
Click on the down arrow to zoom out and see a bird’s-eye view of the structure;
click on the up arrow to get a closeup. FIGURE 5-19 shows part of a complicated
structure visualizer in which we have zoomed out.

Chapter 5 Visualizing Data 5-29

Left-click on a node in a zoomed-out structure visualizer to pop up a window
showing the full contents of the node.

FIGURE 5-19 Zooming Out in a Structure Visualizer

The selected node is centered in the display window whenever you zoom in or out.

5.6.3 Deleting Nodes
To delete a node (except the root node),

■ With the mouse – Middle-click on a node (except the root node).

■ From the Options menu – Click on Delete. The cursor turns into a target; move
the cursor to the node you want to delete and left-click.

Deleting a node also deletes its children (if any).

5.6.4 More about Pointers in Structures
Note the following about pointers in structure visualizers:

■ Null pointers—for example, root in FIGURE 5-18—have “ground” symbols next to
them.

■ If a pointer has previously been expanded, it has an arrow next to its button; you
can’t expand the pointer again. (This prevents infinite loops on circular data
structures.)

5-30 Prism 5.0 User’s Guide • November 1997

■ A pointer containing a bad address has an X drawn over its button.

5.6.5 Updating and Closing a Structure Visualizer
Left-click on Update in the File menu to update a structure visualizer. When you do
this, the root node is re-read; Prism attempts to expand the same nodes that are
currently expanded. (The same thing happens if you re-print an existing structure
visualizer.)

Left-click on Close in the File menu to close the structure visualizer.

5.7 Printing the Type of a Variable
Prism provides several methods for finding out the type of a variable.

From the menu bar – Choose the Whatis selection from the Debug menu. The
Whatis dialog box appears; it prompts for the name of a variable. Click on Whatis to
display the information about the variable in the command window.

From the source window – Select a variable by double-clicking on it or by dragging
over it while pressing the left mouse button. Then hold down the right mouse
button; a pop-up menu appears. Choose Whatis from this menu. Information about
the variable appears in the command window.

From the command window – Issue the whatis command from the command line,
specifying the name of the variable as its argument.

5.7.1 What Is Displayed
Prism displays the information about the variable in the command window. For
example,

whatis primes
logical primes(1:999)

Chapter 5 Visualizing Data 5-31

5.8 Modifying Data
You can use the assign command to assign new values to a variable or an array.
For example,

assign x = 0

assigns the value 0 to the variable x . You can put anything on the left-hand side of
the statement that can go on the left-hand side in the language you are using—
for example, a variable or a Fortran array section.

If the right-hand side does not have the same type as the left-hand side, Prism
performs the proper type coercion.

5.9 Changing the Radix of Data
Use the command value = base to change the radix of a value in Prism. The value can
be a decimal, hexadecimal, or octal number. Precede hexadecimal numbers with 0x ;
precede octal numbers with 0 (zero). The base can be D (decimal), X (hexadecimal),
or O (octal). Prism prints the converted value in the command window.

For example, to convert 100 (hex) to decimal, issue this command:

0x100=D

Prism responds:

256

5.10 Printing the Names and Values of Local
Variables
Use the dump command, followed by the name of a function or procedure, to print
the names and values of all local variables in that function or procedure. If you omit
the function name, dump uses the current function. If you specify a period, dump
prints the names and values of all local variables in the functions in the stack.

5-32 Prism 5.0 User’s Guide • November 1997

6-1

CHAPTER 6

Obtaining Performance Data

Prism lets you collect performance data on your Sun HPF program. Collecting and
analyzing performance data can help you uncover and correct bottlenecks that slow
down a program.

Section 6.1 is an overview See the following sections to learn:

■ How to write and compile your program to obtain performance data
— Section 6.2.

■ How to obtain the most accurate performance data — Section 6.3.

■ How to collect performance data — Section 6.4.

■ How to display performance data — Section 6.5.

■ How to interpret performance data — Section 6.6.

■ How to save a file of performance data and reload it into Prism — Section 6.7.

6.1 Overview
Prism helps you determine where your Sun HPF program is spending its time, and
why.

To determine where your program is spending its time, Prism provides data at the
level of the entire program, individual procedures within the program (with both
call-graph and flat displays), and individual source lines within procedures. This
allows you to zero in on the lines that have the greatest impact on a program’s
performance.

6-2 Prism 5.0 User’s Guide • November 1997

To determine why a procedure or a source line is a bottleneck in your program,
Prism provides data on a program’s use of several different computing resources,
not just CPU time. For example, the code may be doing a lot of scatter/gather
communication or I/O. Providing data on the code’s use of these resources makes it
easier to determine how, or if, the code’s performance can be improved.

In addition to displaying the data, Prism provides tips on how to interpret the data.
See Section 6.6 for more information.

6.2 Writing and Compiling Your Program
To collect performance data on Sun HPF programs, you must compile (and link)
your program with the -tmprofile option. If your program calls routines that were
not compiled with the -tmprofile option, such as a routine from a library like S3L,
Prism still provides summary information under the Code not profiled category.

Note – Prism reports summary information on routines compiled without
the -tmprofile option, but only if such routines are called (directly or indirectly)
from other routines that have been compiled (and linked) with the -tmprofile
option.

6.3 Obtaining the Most Accurate
Performance Data
This section gives some hints on how to obtain the most accurate performance data
in Prism.

Note these general points:

■ Collecting performance data slows execution of the program. The exact degree to
which this occurs depends on the program. In general, programs whose processes
work on small amounts of data are affected more by this performance-collection
overhead. Prism corrects for this effect when it presents its data. If you are using
your own timers to measure performance during a run in which Prism is also
collecting data, however, you need to be aware that this effect will inflate the
values in these timers.

■ Interrupting your program while collecting performance data (for example, by
stopping at a breakpoint and printing values) will distort the data.

Chapter 6 Obtaining Performance Data 6-3

6.4 Collecting Performance Data
To collect performance data, you must turn collection on before running the
program. Collection remains on until you explicitly turn it off.

■ From the menu bar – Choose Collection from the Performance menu. (This
selection is also available by default in the tear-off region.) Collection toggles the
collection of performance data. Performance collection is off when the toggle box
to the left of the menu selection is not filled in; this is the default. Choosing
Collection turns it on, and the toggle box is filled in. To turn it off, choose
Collection when the toggle box is filled in.

■ From the command window – Issue the collection on command to turn
collection on; issue collection off to turn it off. Issuing the collection
command also affects the state of the toggle box in the Collection menu selection.

6.4.1 Collecting Performance Data Outside of Prism
You can also collect performance data by setting environment variables, without
entering Prism. This is convenient if you can’t enter Prism for some reason (for
example, because the Sun HPC partition is only accepting batch jobs).

To turn on collection of performance data, set the environment variable TMPROF to t .
For example (in the C shell),

% setenv TMPROF t

To turn collection off, you can either set TMPROF to f, or unset it. For example,

% unsetenv TMPROF

Note – Setting the environment variable TMPROF outside of Prism has no effect on
the Collection command within Prism. In fact, choosing Collection from the
Performance menu (or issuing collection on from the command window) within
Prism causes TMPROF to be set to t.

To specify the program on which data is to be collected, set the environment variable
TMPROF_EXEC to the path name of the executable program. For example,

% setenv TMPROF_EXEC a.out

To specify the file to which the performance data is to be sent, set the environment
variable TMPROF_DATAFILE to the path name of the file. For example,

% setenv TMPROF_DATAFILE perf.data

6-4 Prism 5.0 User’s Guide • November 1997

You can load this file into Prism for examination at a later time; Section 6.7 explains
how.

6.5 Displaying Performance Data
To display performance data, the program must have finished execution. Choose
Display Data from the Performance menu. A window appears, containing the
data. FIGURE 6-1 shows an example.

FIGURE 6-1 Performance Data Window

Chapter 6 Obtaining Performance Data 6-5

At the top of the window are two values that represent the program’s execution
time:

■ Elapsed time represents the actual "wall clock" time from when the program
started to when it finished; thus, it is sensitive to effects of timesharing and load.

■ Busy time represents the time actually spent running the program (specifically,
the longest amount of time spent on any one node); this measurement takes into
account timesharing, and should be reasonably consistent no matter what the
load is on the nodes.

The Performance Data window contains three levels of performance data:

■ Performance statistics for the resources that Prism measures, along with totals for
each of the two subsystems.

■ Per-procedure performance statistics for a specified resource or subsystem. You
can choose either flat or call-graph display of these statistics.

■ Per-source-line performance statistics for a specified resource and procedure.

All statistics are displayed as histograms in panes within the Performance Data
window, along with the amount of time or the percentage of busy time that each
histogram bar represents. If the program didn’t use the resource, the histogram bar
does not appear. (Occasionally, however, a resource will show a utilization of 0%
because of rounding.)

By default, the window displays the number of seconds used by the resource next to
each histogram bar. Choose Units from the Options menu to change this. You have
these choices:

■ Choose Seconds (the default) to display the actual time, in seconds, that the
histogram bar represents.

■ Choose Microseconds to display the actual time in microseconds.

■ Choose Utilization to display the percentage of the total busy time that the
histogram bar represents.

In all cases, the data represents the longest amount of time spent on the resource by
any process.

Once collected, performance data is retained until you load another program
(whether or not you leave collection on) or until you re-execute the currently loaded
program with collection on.

Choose Close from the File menu to close the Performance Data window.

6-6 Prism 5.0 User’s Guide • November 1997

6.5.1 The Resources Pane
The Resources pane within the Performance Data window displays histogram bars
showing a program’s use of the measured resources. For each resource, Prism
displays the maximum utilization of the resource across all processes that are part of
the program.

You can use the Sort By selection from the Options menu to determine the order in
which the resources are displayed.

■ Choose Name (the default) to display the resource utilizations by category.

■ Choose Time to display the resources in order from the highest utilization (at the
top) to the lowest.

The Resources pane provides this data:

■ Serial user CPU – This is CPU time used by the serial portion of the program.

■ Serial system CPU – This is CPU time used by the operating system on behalf of
the serial portion of the program.

■ Serial I/O – This is the time spent doing I/O during the serial portion of the
program.

■ Parallel user CPU – This is CPU time used by the parallel (distributed) portion of
the program.

■ Parallel system CPU – This is CPU time used by the operating system on behalf
of the parallel (distributed) portion of the program.

■ Parallel I/O – This is the time spent doing I/O during the parallel (distributed)
portion of the program.

■ Scatter/Gather – This is the time that the program spent in scatter/gather
communication; for example, time spent in HPF routines using vector subscripts.

■ Shift – This is the time that the program spent in shift communication (also
referred to as grid communication); for example, time spent in calls to HPF
functions such as CSHIFT, and OSHIFT.

■ Reduce/Spread – This is the time that the program spent doing data reductions;
for example, time spent in calls to HPF functions such as SUM, PRODUCT, ALL, ANY,
and SPREAD.

■ Serial<-->Parallel –This is the time that the serial and parallel portions of the
program spent in sending data between serial and parallel arrays in HPF.

■ Code not profiled – This is the time spent by routines that weren’t compiled with
the - tmprofile option. If the routine had been compiled with - tmprofile , this
time would be allocated to one of the other resources.

Chapter 6 Obtaining Performance Data 6-7

■ Serial Total and Parallel Total – The totals of these resources. (These may provide
a different overall total from the total busy time because the Resources pane lists
the maximum usage of each resource by any one process, whereas busy time
reflects the largest amount of time spent in the entire program by any one
process.)

6.5.2 The Procedures Pane
The pane titled Resource: name in the Performance Data window displays
histograms showing the utilization of a specific resource or subsystem by each
procedure in a program; this is the Procedures pane. You choose the resource by left-
clicking on it in the Resources pane. By default, the most-used resource appears in
the Procedures pane. The name of the resource appears in the title of the pane.

Use the Mode selection from the Options menu to choose how you want to display
the procedure data:

■ Choose Call Graph to display the dynamic call graph of the procedures.

■ Choose Flat (the default) to display a list of all procedures in the program and
their use of the resource.

In flat mode, the Procedures pane displays a list of all procedures in the program
and each one’s total use of the selected resource. This is useful for determining
which procedures are consuming most of the time for the resource. The Procedures
pane in FIGURE 6-1 shows the data in flat mode.

Note – Data for the Code not profiled resource is not available in flat mode.

In call-graph mode, you see which procedures call which other procedures, and the
use of the selected resource for each individual call. This gives a more detailed
picture of the program’s behavior. FIGURE 6-2 shows the call-graph display for the
data shown in the Procedures pane in FIGURE 6-1. Note in FIGURE 6-2 that the time
allocated to the MAIN routine includes the time spent in the routines that it calls.

6-8 Prism 5.0 User’s Guide • November 1997

FIGURE 6-2 Call-Graph display

To navigate down through the call graph, click anywhere on the line that lists a
procedure (other than the procedure at the top); the display changes to show this
procedure at the top, with the procedures it calls below it. Thus, in call-graph mode,
the Procedures pane at any one time shows two levels of the call graph.

To move up through the call graph, click on the top procedure in the display; the
display changes to show the caller of this procedure at the top, with the procedures
it calls beneath it.

As with the Resources pane, you can use the Sort By selection from the Options
menu to arrange the procedures in the Procedures pane.

■ Choose Time (the default) to list procedures according to their use of the
resource, from most to least.

■ Choose Name to arrange the procedures by category.

In call-graph mode, the sorting applies only to the children of the calling procedure;
the calling procedure is always at the top of the display.

If a routine is not compiled with the –tmprofile option, Prism will display data
only for the Unprofiled resource.

6.5.3 The Source-Lines Pane
The pane titled Procedure: name displays performance data associated with each
source line in a procedure; this is the Source-Lines pane. Choose the procedure by
left-clicking on the line for the procedure in the Procedures pane; by default, Prism
displays the source code for the procedure that has the highest utilization of the
most-used resource. The resource for which the data is shown is the one displayed in
the Procedures pane.

Chapter 6 Obtaining Performance Data 6-9

For Sun HPF programs, Prism actually calculates performance data at the level of
basic blocks. These basic blocks can include one or more lines of source code; the lines
are not necessarily contiguous. Prism allocates the amount of time spent in a basic
block equally to each line in the block. In general, this will give an accurate picture
of each line’s contribution to the overall time spent in the basic block. It is possible,
however, that the data may be misleading. To get a more accurate picture of per-line
data, compile with the -g switch in addition to -tmprofile . This produces
unoptimized code, however, and overall performance will be much worse.

If a routine is not compiled with the –tmprofile option, source-line data is not
available.

6.5.4 Displaying Performance Data in the Command
Window
To display an ASCII version of the performance data, issue the perf command from
the command window. As with other commands, you can redirect output to a file by
using the syntax @ filename. This is useful if you are using Prism with the
commands-only option, or if you want to study the data at a later time when you
don’t have a graphical interface available.

By default the perf command displays actual times, in seconds, for resources. Use
the util argument to display utilization percentages.

6.6 Interpreting the Data
Prism’s performance data gives you a picture of how your program uses system
resources. You will want to use this information to try to improve the program’s
performance. The key to improving performance is to find the bottlenecks in the
program—the procedures, and the source lines within the procedures, whose use of
a particular resource has the greatest impact on how long the program takes to
complete.

To help you in this analysis, Prism provides performance tips. To display this
information, choose Tip from the Performance menu, or issue the command
perftip . You can use these performance tips, or you can analyze the data on your
own, to isolate the bottlenecks in your program. Following this procedure provides
the best method for interpreting the performance data.

Ask these questions to isolate the bottlenecks in your program:

6-10 Prism 5.0 User’s Guide • November 1997

■ Which resource has the highest usage? If Scatter/Gather communication is the
most-used resource, then you will obtain the greatest performance gains by
reducing the use of this resource.

■ Which procedure uses this resource most heavily? This tells you where you will
have the biggest payoff when attempting to reduce the use of the most heavily
used resource.

■ Which source lines within this procedure use this resource most heavily? Finally,
going to the source-line level isolates the specific lines of code that have the
greatest effect on performance.

When you first display data for a program, by default the Performance Data
window displays the most-used resource and the procedure that uses this resource
the most; this helps you analyze your data quickly.

6.7 Re-using Performance Data Files
You can save performance data you have collected for a program in a file; you can
later load this file into Prism and re-display the data. This lets you look at the
progression of performance analyses as you work on your program. It is also useful
if you do your original data collection outside of Prism or in commands-only Prism,
and later want to look at your data in the graphical version.

▼ To Save and Load Performance Data Files

1. Collect the data as you normally do (that is, turn collection on and run the
program to completion).

2. Choose Save Data from the Performance menu. (Alternatively, you can choose
Display Data from the Performance menu to display the Performance Data
window, then choose Save Data from the File menu in this window.)

A dialog box appears; in it, specify the name of the file in which you want to save
the data. If you don’t supply a complete path name, the file name is interpreted
relative to the directory from which you started Prism. The data is then saved in this
file.

Alternatively, you can issue the perfsave command from the command window,
specifying the name of the file in which the data is to be saved.

When you want to look at the data again, choose Load Data from the Performance
menu (or from the File menu in the Performance Data window). A file-selection
dialog box is displayed, from which you choose the file in which you saved the data.
The data is then reloaded. If no program is loaded at the time, Prism loads the
corresponding executable program; if another program is loaded, Prism displays a
dialog box and asks if you want to load the program associated with the

Chapter 6 Obtaining Performance Data 6-11

performance data. If you don’t, the usefulness of the performance data will be
limited, since Prism will incorrectly associate the data with the procedures and
source lines of the program that is loaded.

Alternatively, you can issue the perfload command from the command window,
specifying the name of the file in which the data was saved.

Note these points in saving and loading performance data:

■ The performance data is associated with a specific version of the program. If you
modify the program, Prism will not be able to load the version for which the data
was collected. (It prints a warning when it detects that its performance data file is
out of date.) Therefore, if you want to use this feature to maintain a historical
record of your attempts at improving a program’s performance, you should
rename the program whenever you change it, and save the earlier versions along
with their performance data files.

■ You can display only one set of performance data at a time within Prism.
Therefore, if you want to compare data from different versions of a program
on-screen, you have to run multiple instances of Prism.

6-12 Prism 5.0 User’s Guide • November 1997

7-1

CHAPTER 7

Editing and Compiling Programs

You can edit and compile source code by invoking the appropriate utilities from
Prism.

See the following sections to learn:

■ How to edit source code — Section 7.1.

■ How to use the Solaris make utility from within Prism to compile and link source
code — Section 7.2.

7.1 Editing Source Code
Prism provides an interface to the editor of your choice. You can use this editor to
edit source code (or anything else).

To call the editor from within Prism:

■ From the menu bar – From the Utilities menu, choose the Edit selection.

■ From the command window – On the command line, issue the command edit .

You can specify which editor Prism is to call by using the Customize utility to set a
Prism resource; see Section 9.3. If this resource has no setting, Prism uses the setting
of your EDITOR environment variable. Otherwise, Prism uses a default editor, as
listed in the Customize window.

The editor is invoked on the current file, as displayed in the source window. If
possible, the editor is also positioned at the current execution point, as seen in the
source window; this depends on the editor.

If you issue the edit command from the command window, you can specify a file
name or a function name, and the editor will be invoked on the specified file or
function.

7-2 Prism 5.0 User’s Guide • November 1997

After the editor has been created, it runs independently. This means that changes
you make in the current file are not reflected in the source window. To update the
source window, you must recompile and reload the program. You can do this using
the Make selection from the Utilities menu, as described below.

7.2 Using the make Utility
Prism provides an interface to the standard Solaris tool make. The make utility lets
you automatically recompile and relink a program that is broken up into different
source files. See your Solaris documentation for an explanation of make and
makefiles.

7.2.1 Creating the Makefile
Create the makefile as you normally would. Within Prism, you can choose the Edit
selection from the Utilities menu to bring up a text editor in which you can create
the file; see Section 7.1.

7.2.2 Using the Makefile
After you have made changes in your program, you can run make to update the
program.

Prism uses the standard Solaris make utility, /usr/ccs/bin/make , unless you
specify otherwise. You do this by using the Customize utility to change the setting
of a Prism resource; see Section 9.3.

■ To run make from the menu bar – From the Utilities menu, choose the Make
selection. A window appears; FIGURE 7-1 is an example.

Chapter 7 Editing and Compiling Programs 7-3

FIGURE 7-1 The make Window

The window prompts for the names of the makefile, the target file(s), the directory in
which the makefile is located, and other arguments to make. If a file is loaded, its
name is in the Target box, and the directory in which it is located is in the Directory
box; you can change these if you like.

If you leave the Makefile or the Target box empty, make uses a default. See your
Solaris documentation for a discussion of these defaults. If you leave the Directory
box empty, make looks for the makefile in the directory from which you started
Prism.

You can specify any standard make arguments in the Other Args box.

The dialog box also asks if you want to reload after the make. Answering Yes (the
default) automatically reloads the newly compiled program into Prism if the make is
successful. If you answer No, the program is not reloaded.

To cancel the make while it is in progress, click on the Cancel button. If a make is not
in progress, clicking on Cancel closes the window.

The output from make is displayed in the box at the bottom of the Make window.
Subsequent makes use the same window, unless you start a new make while a
previous make is still in progress.

From the command window – Issue the make command on the command line. You
can specify any arguments that are valid in the Solaris version of make.

7-4 Prism 5.0 User’s Guide • November 1997

8-1

CHAPTER 8

Getting Help

This chapter describes how to obtain information about Prism and other Sun
products available at your site.

See the following sections to learn

■ How to obtain help about Prism — Section 8.1.

■ How to obtain other on-line documentation — Section 8.2.

8.1 Getting Help
There are several ways in which you can get help in Prism:

■ The Help menu in the menu bar provides help on several major topics. It includes
the Help Index, which gives in-depth information about all aspects of Prism. See
Section 8.1.2.

■ The Help selection in menus and the Help button in windows and dialog boxes
provide instructions for using these screen areas. Pressing the F1 key in a window
or dialog box also displays a help screen.

■ Command-line help provides information about commands you can issue from
the command window.

8.1.1 Using the Help System
Prism displays its help files via your World Wide Web browser. The default browser
is Netscape™, although your system administrator can change this. To specify which
browser you want to use for graphical Prism, set the Prism resource
Prism.helpBrowser to the executable name of the browser; see Section 9.4.11.

8-2 Prism 5.0 User’s Guide • November 1997

If you don’t have a browser running, Prism starts one. If you have a browser
currently running as you use Prism, by default Prism displays the help information
in that browser. You can change this behavior via the Prism.helpUseExisting
resource; once again, see Section 9.4.11.

8.1.2 Choosing Selections from the Help Menu
The Help menu provides information in a variety of ways:

■ Choose Index to display an index of entries. Click on an entry to display the
section of the Prism User’s Guide in which the entry is discussed.

■ Choose Using Help to display an overview of the Help system.

■ Choose Overview to display an overview of the features of Prism.

■ Choose Glossary to display a list of terms used in Prism. You can click on a term
to find out more about it.

■ Choose Commands Reference to display a list of Prism commands. You can click
on a command’s link marker to obtain its reference description.

■ Choose Tutorial to display a tutorial that will teach you the basics of Prism.

8.1.3 Getting Help on Using the Mouse
Some Prism windows include an icon of a mouse,

Click on this icon to display information about using the mouse in the window.

8.1.4 Obtaining Help from the Command Window
Use the help command to obtain help from the command window. Issuing the
command

help commands

displays a list of Prism commands and editing key combinations. Issuing help with
the name of a command as an argument displays help on that command. Issuing
help with no arguments displays a brief message about how to use command-line
help.

Chapter 8 Getting Help 8-3

8.2 Obtaining Online Documentation
Prism documentation is available both in print and Sun AnswerBook forms. Prism
also comes with a Solaris-style manual page.

8.2.1 Viewing Manual Pages
To obtain a manual page, choose the Man Pages selection from the Doc menu. This
brings up xman, a standard X program for viewing manual pages; xman operates
independently of Prism.

Help for xman appears in the xman window, as shown in FIGURE 8-1. You can use
xman to view any Solaris manual pages available on your Sun system.

Note – If xman is not available on your system, you will not be able to use this
feature.

8-4 Prism 5.0 User’s Guide • November 1997

FIGURE 8-1 xman Window

Chapter 8 Getting Help 8-5

8-6 Prism 5.0 User’s Guide • November 1997

9-1

CHAPTER 9

Customizing Prism

This chapter discusses ways in which you can change various aspects of Prism’s
appearance and the way Prism operates.

See the following sections to learn:

■ How to use the tear-off region — Section 9.1.

■ How to set up alternative names for commands and variables — Section 9.2.

■ How to change Prism defaults by using the Customize utility — Section 9.3.

■ How to change Prism defaults in your X resource database — Section 9.4.

■ How to initialize Prism — Section 9.5.

9.1 Using the Tear-Off Region
You can place frequently used menu selections and commands in the tear-off region
below the menu bar; in the tear-off region, they become buttons that you can click on
to execute functions. FIGURE 9-1 shows the buttons that are there by default.

FIGURE 9-1 The Tear-Off Region.

Putting menu selections and commands in the tear-off region lets you access them
without having to pull down a menu or issue a command from the command line.

Changes you make to the tear-off region are saved when you leave Prism; see
Section 9.3.3.

9-2 Prism 5.0 User’s Guide • November 1997

9.1.1 Adding Menu Selections to the Tear-Off Region
■ From the menu bar – To add a menu selection to the tear-off region, first enter

tear-off mode by choosing Tear-off from the Utilities menu. A dialog box appears
that describes tear-off mode; see FIGURE 9-2.

FIGURE 9-2 Tear-Off Region Dialog Box

While the dialog box is on the screen, choosing any selection from a menu adds a
button for this selection to the tear-off region. Clicking on a button in the tear-off
region removes that button. If you fill up the region, you can resize it to
accommodate more buttons. To resize the region, drag the small resize box at the
bottom right of the region.

Click on Close or press the Esc key while the mouse pointer is in the dialog box to
close the box and leave tear-off mode.

When you are not in tear-off mode, clicking on a button in the tear-off region has
the same effect as choosing the equivalent selection from a menu.

■ From the command window – Use the tearoff and untearoff commands
from the command window to add menu selections to and remove them from the
tear-off region. Put the selection name in quotation marks; case doesn’t matter,
and you can omit spaces and the ellipsis (...) that indicates the selection displays a
window or dialog box. If the selection name is ambiguous, put the menu name in
parentheses after the selection name. For example,

tearoff ”print (events)”

adds a button for the Print selection from the Events menu to the tear-off region.

Chapter 9 Customizing Prism 9-3

9.1.2 Adding Prism Commands to the Tear-Off Region
To add a Prism command to the tear-off region, issue the pushbutton command,
specifying the label for the tear-off button and the command it is to execute. The
label must be a single word. The command can be any valid Prism command, along
with its arguments. For example,

pushbutton printa print a on dedicated

adds a button labeled printa to the tear-off region. Clicking on it executes the
command print a on dedicated .

To remove a button created via the pushbutton command, you can either click on it
while in tear-off mode, or issue the untearoff command as described above.

9.2 Creating Aliases for Commands and
Variables
Prism provides commands that let you create alternative names for commands,
variables, and expressions.

Use the alias command to set up an alternative name for a Prism command.
For example,

alias ni nexti

makes ni an alias for the nexti command. Prism provides some default aliases for
common commands. Issue alias with no arguments to display a list of the current
aliases. Issue the unalias command to remove an alias. For example,

unalias ni

removes the alias created above.

Use the set command to set up an alternative name for a variable or expression. For
example,

set alan = annoyingly_long_array_name

abbreviates the annoyingly long array name to alan . You can use this abbreviation
subsequently in your program to refer to this variable. Use the unset command to
remove a setting. For example,

unset alan

removes the setting created above.

9-4 Prism 5.0 User’s Guide • November 1997

Changes you make via alias and set last for your current Prism session. To make
them permanent, you can add the appropriate commands to your .prisminit file;
see Section 9.5.

9.3 Using the Customize Utility
Many aspects of Prism’s behavior and appearance —for example, the colors it
displays on color workstations, and the fonts it uses for text —are controlled by the
settings of Prism resources. The default settings for many of these resources appear in
the file Prism in the X11 app-defaults directory for your system. Your system
administrator can change these system-wide defaults. You can override these
defaults in two ways:

■ For many of them, you can use the Customize selection from the Utilities menu to
display a window in which you can change the settings. This section describes
this method.

■ A more general method is to add an entry for a resource to your X resource
database, as described in the next section. Using the Customize utility is much
more convenient, however.

Choosing Customize from the Utilities menu displays the window shown in
FIGURE 9-3.

Chapter 9 Customizing Prism 9-5

FIGURE 9-3 Customize Window.

9.3.1 How to Change a Setting
On the left of the Customize window are the names of the resources. Next to each
resource is a text-entry box that contains the resource’s setting (if any). To the right
of the fields are Help buttons. Clicking on a Help button or anywhere in the text-
entry field displays help about the associated resource in the box at the top of the
window.

The way you set a value for a resource differs depending on the resource:

■ For Edit Geometry, Menu Threshold, Text Font, and Visualizer Color File, you
enter the setting in the resource’s text-entry box.

■ For Editor, Error Window, and Make, you can left-click on the button labeled with
the resource’s name. This displays a menu of choices for the resource. Clicking on
one of these choices displays it in the resource’s text-entry box. For Editor and
Make, you can also enter the setting directly in the text-entry box.

9-6 Prism 5.0 User’s Guide • November 1997

■ For Error Bell, Procedure Menu, Mark Stale Data, and Use Xterm, there are only
two possible settings, true and false; clicking on the button labeled with the
resource’s name toggles the current setting.

Whenever you make a change in a text-entry box, Apply and Cancel buttons appear
to the right of it. Click on Apply to save the new setting; it takes effect immediately.
Click on Cancel to cancel it; the setting changes back to its previous value.

Click on Close or press the Esc key to close the Customize window.

9.3.2 Resources
Edit Geometry – Use this resource to specify the X geometry string for the editor
created by the Edit and Email selections from the Utilities menu. The geometry
string specifies the number of columns and rows, and optionally the left and right
offsets from the corner of the screen. The Prism default is 80x24 (that is, 80 rows and
24 columns). See your X documentation for more information on X geometries.

Editor – Use this resource to specify the editor that Prism is to invoke when you
choose the Edit or Email selection from the Utilities menu. Click on the Editor box to
display a menu of possible choices. If you leave this field blank, Prism uses the
setting of your EDITOR environment variable to determine which editor to use.

Error Bell – Use this resource to specify how Prism is to signal errors. Choosing true
tells Prism to ring the bell of your workstation. Choose false (the Prism default) to
have Prism flash the screen instead.

Error Window – Use this resource to tell Prism where to display Prism error
messages. Choose command (the Prism default) to display them in the command
window. Choose dedicated to send the messages to a dedicated window; the
window will be updated each time a new message is received. Choose snapshot to
send each message to a separate window.

Make – Use this resource to tell Prism which make utility to use when you choose
the Make selection from the Utilities menu. The Prism default is the standard Solaris
make utility, /usr/ccs/bin/make . Click on the Make box to display a menu of
possible choices.

Mark Stale Data – Use this resource to tell Prism how to treat the data in a
visualizer that is out-of-date (because the program has continued execution past the
point at which the data was displayed). Choose true (the default) to have Prism
draw diagonal lines over the data; choose false to leave the visualizer’s
appearance unchanged.

Chapter 9 Customizing Prism 9-7

Procedure Menu – Use this resource to specify whether a menu is to be displayed
when you set a breakpoint in a Sun HPF generic procedure. If you choose true (the
default), a menu of possible procedures is displayed, from which you can choose the
procedure(s) in which the breakpoint is to be set. Choose false if you want to set the
breakpoint automatically in all the generic procedures.

Menu Threshold – Use this resource to specify the maximum number of procedures
that are to be displayed in a menu when you perform an action (for example, setting
a breakpoint) on a Sun HPF generic procedure. The default is 22. Enter 0 to indicate
that there should be no maximum. If the number of procedures exceeds the specified
threshold, you are prompted to either enter the procedure name or display the
menu.

Text Font – Use this resource to specify the name of the X font that Prism is to use in
displaying the labels of histogram bars and text in visualizers. The default, 8x13, is a
12-point fixed-width font. To list the fonts available on your system, issue the Solaris
command xlsfonts . Specifying a font much larger than the default can cause
display problems, because Prism doesn’t resize windows and buttons to
accommodate the larger font.

Use Xterm – Use this resource to tell Prism what to do with the I/O of a program.
Specify true (the Prism default) to tell Prism to create an Xterm in which to display
the I/O. Specify false to send the I/O to the Xterm from which you started Prism.

Visualizer Color File – Use this resource to tell Prism the name of a file that specifies
the colors to be used in colormap visualizers. If you leave this field blank, Prism
uses gray for elements whose values are not in the context you specify; for elements
whose values are in the context, it uses black for values below the minimum, white
for values above the maximum, and a smooth spectral map from blue to red for all
other values.

The file must be in ASCII format. Each line of the file must contain three integers
between 0 and 255 that specify the red, green, and blue components of a color.

The first line of the visualizer color file contains the color that is to be displayed for
values that fall below the minimum you specify in creating the visualizer. The next-
to-last line contains the color for values that exceed the maximum. The last line
contains the color used to display the values of elements that are not in the context
specified by the user in a where statement. Prism uses the colors in between to
display the values falling between the minimum and the maximum. For example,

0 0 0
255 0 0
255 255 0
0 255 0
0 255 255
0 0 255
255 0 255
255 255 255
100 100 100

9-8 Prism 5.0 User’s Guide • November 1997

Like the default settings, this file specifies black for values below the minimum,
white for values above the maximum, and gray for values outside the context. But
the file reverses the default spectral map for other values: from lowest to highest,
values are mapped red-yellow-green-cyan-blue-magenta.

9.3.3 Where Prism Stores Your Changes
Prism maintains a file called .prism_defaults in your home directory. In it, Prism
keeps

■ Changes you make to Prism via the Customize utility
■ Changes you make to the tear-off region
■ Changes you make to the size of the panes within the main Prism window

Do not attempt to edit this file; make all changes to it through Prism itself. If you
remove this file, you get the default configuration the next time you start Prism.

9.4 Changing Prism Defaults
As mentioned in the previous section, you can change the settings of many Prism
resources either by using the Customize utility or by adding them to your X
resource database. This section describes how to add a Prism resource to your X
resource database. An entry is of the form

resource-name: value

where resource-name is the name of the Prism resource, and value is the setting.
TABLE 9-1 lists the Prism resources.

TABLE 9-1 Prism Resources

Resource Use

Prism.cppPath Specifies the path to your C preprocessor.

Prism.dialogColor Specifies the color for dialog boxes.

Prism.editGeometry Specifies the size and placement of the
editor window.

Prism.editor Specifies the editor to use.

Prism.errorBell Specifies whether the error bell is to ring.

Prism.errorwin Specifies the window to use for error
messages.

Chapter 9 Customizing Prism 9-9

Prism*fontList Specifies the font for labels, menu
selections, etc.

Prism.helpBrowser Specifies the browser to use for
displaying help.

Prism.helpUseExisting Specifies whether to use a currently
running browser for displaying help.

Prism.mainColor Specifies the main background color for
Prism.

Prism.make Specifies the make utility to use.

Prism.markStaleData Specifies how Prism is to mark stale data
in visualizers.

Prism.procMenu Specifies whether a menu is displayed
when setting a breakpoint in a Sun HPF
generic procedure.

Prism.procThresh Changes the maximum number of
specific procedures automatically shown
when performing an action on a Sun HPF
generic procedure.

Prism.spectralMapSize Specifies the size of the default spectral
color map for color visualizers.

Prism.textBgColor Specifies the background color for
widgets containing text.

Prism.textFont Specifies the text font to use for certain
labels.

Prism.textManyFieldTranslations Specifies the keyboard translations for
dialog boxes that contain several text
fields.

Prism.textMasterColor Specifies the color used to highlight the
master pane in a split source window.

Prism.textOneFieldTranslations Specifies the keyboard translations for
dialog boxes that contain one text field.

TABLE 9-1 Prism Resources

Resource Use

9-10 Prism 5.0 User’s Guide • November 1997

Note that the defaults mentioned in the sections below are the defaults for Prism as
shipped; your system administrator can change these in Prism’s file in your system’s
app-defaults directory.

Note also that commands-only Prism is not aware of the settings of any Prism
resources, unless they are contained in Prism’s app-defaults file. This matters
only for the resources Prism.cppPath and Prism.pathMap .

9.4.1 Adding Prism Resources to the Resource Database
The X resource database keeps track of default settings for programs running under
X. Use the xrdb program to add a Prism resource to this database. An easy way to
do this is to use the -merge option and to specify the resource and its setting from
the standard input. For example, the following command specifies a default editor
(the resource is described below):

% xrdb - merge
 Prism.editor: emacs
 Ctrl - d

Type Ctrl-d to signal that there is no more input. Note that you must include the
-merge option; otherwise, what you type replaces the contents of your database.
The new settings take effect the next time you start Prism.

Another way to add your changes is to put them in a file, then merge the file into the
database. For example, if your changes are in prism.defs , you could issue this
command:

% xrdb - merge prism.defs

Consult your X documentation for more information about xrdb .

Prism.useXterm Specifies whether to use a new Xterm
for I/O.

Prism.vizColormap Specifies the colors to be used in
colormap visualizers.

Prism*XmText.fontList Specifies the text font to use for most
running text.

TABLE 9-1 Prism Resources

Resource Use

Chapter 9 Customizing Prism 9-11

9.4.2 Specifying the Editor and Its Placement
Use the Prism.editor resource to specify the editor that Prism is to invoke when
you choose the Edit or Email selection from the Utilities menu (or issue the
corresponding commands).

Use the resource Prism.editGeometry to specify the X geometry string for the
editor created by the Edit selection from the Utilities menu. The geometry string
specifies the number of columns and rows, and the left and right offsets from the
corner of the screen.

You can also change the settings of these resources via the Customize utility; see
Section 9.3 for more information.

9.4.3 Specifying the Window for Error Messages
Use the Prism.errorwin resource to specify the window to which Prism is to send
error messages. Predefined values are command, dedicated, and snapshot. You can
also specify your own name for the window.

You can also change the setting of this resource via the Customize utility; see
Section 9.3.

9.4.4 Changing the Text Fonts
You may need to change the fonts Prism uses if, for example, its fonts aren’t
available on your system. Use the resources described below to do this. To list the
names of the fonts available on your system, issue the Solaris xlsfonts command.
You should try to substitute a font that is about the same size as the Prism default;
substituting a font that is much larger can cause display problems, since Prism does
not resize windows and buttons to accommodate the larger font.

Use the Prism.textFont resource to specify the font that Prism is to use in
displaying the labels of histograms and text in visualizers. By default, Prism uses a
12-point fixed-width font for this text.

You can also change the setting of this resource via the Customize utility; see
Section 9.3.

Use the Prism*XmText.fontList resource to change the font used to display most
of the running text in Prism, such as the source code in the source window. By
default, Prism uses a 12-point fixed-width font for this text.

9-12 Prism 5.0 User’s Guide • November 1997

Use the Prism*fontList resource to change the font used for everything else (for
example, menu selections, pushbuttons, and list items). By default, Prism uses a
14-point Helvetica font for this text.

9.4.5 Changing Colors
Prism provides several resources for changing the default colors it uses when it is
run on a color workstation.

9.4.5.1 Changing the Colors Used for Colormap Visualizers

Use the Prism.vizColormap resource to specify a file that contains the colors to be
used in colormap visualizers. You can also change the setting of this resource via the
Customize utility; see Section 9.3. See Section 9.3.2 for a discussion of how to create
a visualizer color file.

Use the resource Prism.spectralMapSize to specify how large the default
spectral color map is to be for colormap visualizers. The default is 100 entries. You
would typically use this resource to specify fewer entries, if this number causes
problems on your workstation. To set the default to 50, for example, set the resource
in your X resource database as follows:

Prism.spectralMapSize: 50

9.4.5.2 Changing Prism’s Standard Colors

Use the Prism.dialogColor resource to change the background color of dialog
boxes.

Use the Prism.textBgColor resource to change the background color for text in
buttons, dialog boxes, etc. Note that this setting overrides the setting of the X toolkit
-bg option.

Use the Prism.textMasterColor resource to change the color used to highlight
the master pane when the source window is split.

Use the Prism.mainColor resource to change the color used for just about
everything else.

The defaults are:

Prism.dialogColor: Thistle
Prism.textBgColor: snow2
Prism.textMasterColor: black
Prism.mainColor: light sea green

Chapter 9 Customizing Prism 9-13

9.4.6 Changing Keyboard Translations
You can change the keys and key combinations that Prism translates into various
actions. In general, doing this requires an understanding of X and Motif
programming. You may be able to make some changes, however, by reading this
section and studying the defaults in Prism’s file in your system’s app-defaults
directory.

9.4.6.1 Changing Keyboard Translations in Text Widgets

Use the Prism.textOneFieldTranslations resource to change the default
keyboard translations for dialog boxes that contain only one text field. Its default
definition is:

Prism.textOneFieldTranslations: \

<Key>osfDelete: delete - previous - character() \n\
 <Key>osfBackSpace: delete - previous - character() \n\

Ctrl<Key>u: erase_to_beginning() \n\
Ctrl<Key>k: erase_to_end() \n\
Ctrl<Key>d: delete_char_at_cursor_position() \n\
ctrl<Key>f: move_cursor_to_next_char() \n\
Ctrl<Key>h: move_cursor_to_prev_char() \n\
Ctrl<Key>b: move_cursor_to_prev_char() \n\
Ctrl<Key>a: move_cursor_to_beginning_of_text() \n\
Ctrl<Key>e: move_cursor_to_end_of_text()

(The definitions with osf in them are special Motif keyboard symbols.)

Use the Prism.textManyFieldTranslations resource to change the default
keyboard translations for dialog boxes that contain several text fields. Its default
definition is:

Prism.textManyFieldTranslations: \
 <Key>osfDelete: delete - previous - character() \n\
 <Key>osfBackSpace: delete - previous - character() \n\
 <Key>Return: next - tab - group() \n\
 <Key>KP_Enter: next - tab - group() \n\

Ctrl<Key>u: erase_to_beginning() \n\
Ctrl<Key>k: erase_to_end() \n\
Ctrl<Key>d: delete_char_at_cursor_position() \n\
Ctrl<Key>f: move_cursor_to_next_char() \n\
Ctrl<Key>h: move_cursor_to_prev_char() \n\
Ctrl<Key>b: move_cursor_to_prev_char() \n\
Ctrl<Key>a: move_cursor_to_beginning_of_text() \n\
Ctrl<Key>e: move_cursor_to_end_of_text()

If you make a change to any field in one of these resources, you must copy all the
definitions.

9-14 Prism 5.0 User’s Guide • November 1997

9.4.6.2 Changing General Motif Keyboard Translations

Prism uses the standard Motif translations that define the general mappings of
functions to keys. They are shown below.

*defaultVirtualBindings: \

 osfActivate : <Key>Return \
 osfAddMode : Shift <Key>F8 \n
 osfBackSpace : <Key>BackSpace \n\
 osfBeginLine : <Key>Home \n\
 osfClear : <Key>Clear \n\
 osfDelete : <Key>Delete \n\
 osfDown : <Key>Down \n\
 osfEndLine : <Key>End \n\
 osfCancel : <Key>Escape \n\
 osfHelp : <Key>F1 \n\
 osfInsert : <Key>Insert \n\
 osfLeft : <Key>Left \n\
 osfMenu : <Key>F4 \n\
 osfMenuBar : <Key>F10 \n\
 osfPageDown : <Key>Next \n\
 osfPageUp : <Key>Prior \n\
 osfRight : <Key>Right \n\
 osfSelect : <Key>Select \n\
 osfUndo : <Key>Undo \n\
 osfUp : <Key>Up

To change any of these, you must edit its entry in this resource. For example, if your
keyboard doesn’t have an F10 key, you could edit the osfMenuBar line and
substitute another function key.

Note these points in changing this resource:

■ All entries in the resource must be included in your resource database if you want
to change any of them; otherwise the omitted entries are undefined.

■ The entries in this resource apply to all Motif-based applications. If you want
your changes to apply only to Prism, change the first line of the resource to
Prism*defaultVirtualBindings .

9.4.7 Changing the Xterm to Use for I/O
By default, Prism creates a new Xterm for input to and output from a program. Set
the Prism.useXterm resource to false to tell Prism not to do this. Instead, I/O
will go to the Xterm from which you invoked Prism. You can also change the setting
of this resource via the Customize utility; see Section 9.3.

Chapter 9 Customizing Prism 9-15

9.4.8 Changing the Way Prism Signals an Error
By default, Prism flashes the command window when there is an error. Set the
resource Prism.errorBell to true to tell Prism to ring the bell of your
workstation instead. You can also change the setting of this resource via the
Customize utility; see Section 9.3.

9.4.9 Changing the make Utility to Use
By default, Prism uses the standard Solaris make utility, /bin/make . Use the
resource Prism.make to specify the path name of another version of make to use.
You can also change the setting of this resource via the Customize utility; see
Section 9.3.

9.4.10 Changing How Prism Treats Stale Data in
Visualizers
By default, Prism prints diagonal lines over data in visualizers that has become
“stale” because the program has continued execution from the spot where the data
was collected. Set the resource Prism.markStaleData to false to tell Prism not
to draw these diagonal lines. You can also change the setting of this resource via the
Customize utility; see Section 9.3.

9.4.11 Specifying the Browser to Use for Displaying
Help
There are several resources you can use to affect the way help is displayed.

By default, graphical Prism uses the Netscape browser to display help information;
see Section 8.1.1. Set the Prism.helpBrowser resource to the executable name of
another browser to start; the name must be on your path. Graphical Prism supports
Mosaic and Netscape browsers. You can include in the setting any browser-specific
options that you want passed to the browser when Prism starts it up. (Note that
these options do not take effect if Prism uses an existing browser; see below.)

If you already have a browser running when you request help from Prism, by
default Prism displays the help information in this browser. Set the resource
Prism.helpUseExisting to false if you want Prism to start a new browser.
Set it to true to return to the default behavior.

9-16 Prism 5.0 User’s Guide • November 1997

9.4.12 Changing the Way Prism Handles Sun HPF
Generic Procedures
There are two resources you can use to change the way Prism handles Sun HPF
generic procedures.

By default, Prism displays a menu (in commands-only Prism) or a dialog box when
you attempt to set a breakpoint in a Sun HPF generic procedure. Set the Prism
resource Prism.procMenu to false to specify that Prism is to set the breakpoint in
every one of these procedures, without displaying a menu or dialog box. You can
also change the setting of this resource via the Customize utility; see Section 9.3.

By default, commands-only Prism displays a maximum of 22 procedures in a menu
when you attempt to perform an action (like setting a breakpoint) on a Sun HPF
generic procedure. If there are more than this number of specific procedures, Prism
asks you whether you want to specify the name of a specific procedure or to view a
menu. Use the Prism.procThresh resource to specify a different maximum.
Set the resource to 0 to specify that there is to be no maximum.

9.5 Initializing Prism
Use the .prisminit file to initialize Prism when you start it up. You can put any
Prism commands into this file. When Prism starts, it executes these commands,
echoing them in the history region of the command window.

When starting up, Prism first looks in the current directory for a file called
.prisminit . If the file is there, Prism uses it. If the file isn’t there, Prism looks for it
in your home directory. If the file isn’t in either place, Prism starts up without
executing a .prisminit file.

The .prisminit file is useful if there are commands that you always want to
execute when starting Prism. For example,

■ If you always want to log command output, put a log command in the file; see
Section 2.7.4.

■ If you want to use your own aliases for Prism commands, put the appropriate
alias commands in the file; see Section 9.2.

Note that you don’t need to put pushbutton or tearoff commands into the
.prisminit file, because changes you make to the tear-off region are automatically
saved when you leave Prism; see Section 9.1.

In the .prisminit file, Prism interprets lines beginning with # as comments. If \ is
the final character on a line, Prism interprets it as a continuation character.

10-1

CHAPTER 10

MP Prism

MP Prism is the version of Prism used for debugging and visualizing data in
message-passing or other multiprocess programs that use the SPMD (single
program, multiple data) programming style. This chapter describes how to use MP
Prism; it assumes that you are already familiar with Prism when used with scalar
programs. (If you aren’t familiar with Prism, the chapter points you to the
appropriate sections in previous chapters.) It talks only about message-passing
programs, but MP Prism works with any multiprocess program, whether or not its
processes communicate.

In this chapter, the term DP Prism refers to the version of Prism discussed in
previous chapters of this manual. DP Prism is used to debug data parallel and serial
programs. (When you load a data parallel program into Prism, you view and operate
on it as if it were a single program; in fact, these programs are actually running as
multiprocess message-passing programs, and MP Prism is operating below the
surface. You will generally not be aware of this when interacting with Prism.)

Note – You cannot use MP Prism to debug a message-passing program that is made
up of different executables.

See the following sections to learn:

■ How to enter MP Prism — see Section 10.2.

■ How to create and use psets — see Section 10.3.

■ How to execute programs in MP Prism — see Section 10.4.

■ About combining data parallel and message-passing code — see Section 10.5.

■ How to debug in MP Prism — see Section 10.6.

■ How to visualize data in MP Prism — see Section 10.7.

■ About customizing MP Prism — see Section 10.8.

■ About using MP Prism with PVM programs — see Section 10.9.

■ About using MP Prism with Sun MPI programs — see Section 10.10

10-2 Prism 5.0 User’s Guide • November 1997

:

10.1 Overview
In most message-passing programs, each individual processor runs its own copy of
the same program. At a given point in the execution of the program, all these
processes may be doing the same thing, or (more likely) different subsets of
processes may be doing different things.

To debug such a program, you may want to look at the behavior of individual
processes or of particular groups of processes. A key concept in MP Prism is the pset;
a pset (pronounced “pee-set”) is a predefined or user-defined group of processes
that you can view and operate on as a single entity. Aggregating processes into psets
can help provide you with the correct level of analysis for your program.

In general, MP Prism operates in much the same way as DP Prism. The differences
in many cases involve the application of the concept of psets to DP Prism features
such as events and visualizers. In addition:

■ MP Prism provides a variety of ways of creating and deleting psets. You can use
psets to qualify many Prism commands, so that the command applies only to the
processes that are members of the pset.

■ MP Prism lets you interrupt execution of individual processes or sets of processes,
and wait for execution to stop in the processes of a pset.

■ In MP Prism you can create events that are tied to specified psets so that, for
example, you can set a breakpoint only in certain processes. Prism also provides a
Where graph that displays a snapshot of the dynamic call graph of the program,
for processes that aren’t running.

■ MP Prism adds an extra “process” axis to visualizers, so that you can see the
values of a variable in each process in a pset.

10.2 Entering MP Prism
See Section 2.2 for basic information about entering Prism.

The major difference between starting Prism to work on a serial program and
starting MP Prism is that, with MP Prism, you are actually starting multiple Prism
processes, in a client/server model:

Chapter 10 MP Prism 10-3

■ There is one client MP Prism process for each process in the message-passing
program. The MP Prism process attaches itself to the message-passing process to
collect information about it.

■ There is a single server Prism process that communicates with the MP Prism
processes and provides the interface to the user. This process is referred to as
Host Prism.

Typically, Host Prism runs on a node in a shared partition. The multiple MP Prism
processes run on the nodes on which the message-passing processes are running,
which may be in either a shared or a dedicated partition.

Note that the information in this section also applies to executing data parallel
programs under Prism. The major difference is that, when you are executing a data
parallel program, the MP Prism user interface is, for the most part, hidden. See
Section 10.5 for more information.

10.2.1 Command-Line Options
To enter MP Prism, issue the prism command with the -np option, specifying the
number of client MP Prism processes you want to start. Use the value 0 to specify
that you want to run on all available nodes, one process per node.

10.2.2 Methods of Entering
You can specify where you want both Host Prism and the message-passing processes
(along with their associated MP Prism processes) to run. You can do this either
explicitly or by using defaults.

10.2.2.1 Specifying Where Host Prism Is to Run

If you simply issue the command

% prism - np 4

Host Prism starts on the node to which you are logged in. If necessary, you can start
Prism on a partition other than the one you are logged into, by using tmrun or
tmsub.

Using tmrun or tmsub, you can specify where Host Prism is to run the same way
you would specify where any Sun HPC Software program is to run, via options to
the tmrun or tmsub command, and by the setting of the TMRUN_FLAGS environment
variable. For example,

% tmrun - p Scylla prism - np 4

10-4 Prism 5.0 User’s Guide • November 1997

starts Host Prism on a node in the partition Scylla. If you have set the values of other
options via TMRUN_FLAGS, tmrun uses them as well in determining where Host
Prism is to run.

See Section 2.2 for more information on starting Prism, and see the Sun HPC Software
User’s Guide for more information on starting Sun HPC programs in general.

10.2.2.2 Specifying Where MP Prism and the Message-Passing
Processes Are to Run

There are three ways in which you can specify where message-passing processes,
and their associated MP Prism processes are to run, as well as other options
associated with program execution:

■ Via the setting of the TMRUN_FLAGS environment variable

■ Via options to the prism command

■ Via options to the tmrunargs command, once you are in Prism

TMRUN_FLAGS– Prism uses the setting of the TMRUN_FLAGS environment variable to
determine where the message-passing processes, and their associated MP Prism
processes, are to run. Thus, if the default options are

- p Charybdis - np 4

then four copies of the message-passing program start on nodes of the partition
Charybdis.

Note that default settings that are appropriate for Host Prism may be inappropriate
for the message-passing processes and their associated MP Prism processes, and vice
versa. For example, if the default setting is simply

- p Shared

then only one copy of the message-passing process starts, on a load-balanced node
in the shared partition.

Prism command-line options – If you are in MP Prism, you can also use the Prism
options listed below to specify where you want the message-passing processes and
their associated MP Prism processes to run.

■ Use -p partition_name on the prism command line to specify the partition in
which the message-passing processes are to run.

■ Use the -tmrun option to specify any other tmrun or tmsub options that you
want to control the selection of nodes. Enclose the options in quotation marks. For
example,

% prism - np 4 - tmrun ” - W” a.x

Chapter 10 MP Prism 10-5

If the tmrun or tmsub option itself uses quotation marks, refer to the documentation
for your shell program for the syntax for handling quotes. For example, using the C
shell (csh),

% prism - np 2 - tmrun ’ - R ”load1<1”’ a.x

As with tmrun and tmsub , specifying these options on the prism command line
overrides settings of these same options established via the TMRUN_FLAGS
environment variable.

Thus, the command

% tmrun prism - np 4 mpiprogram

starts four message-passing processes, with their associated MP Prism processes.
Where it starts them is determined by the TMRUN_FLAGS settings.

The tmrunargs command – Once you have entered Prism, you can issue the
tmrunargs command to specify any tmrun or tmsub options that you want to
apply to your message-passing program. Prism stores these options, then applies
them when you start up a multiprocess program. Specifying the setting of an option
via the tmrunargs command overrides the setting of the same option you have
established via TMRUN_FLAGS or the prism command line. If it is an option that has
otherwise not been specified, it is added to the existing settings.

You can issue tmrunargs in DP Prism. If you use the -np option to specify multiple
processes, MP Prism starts up.

To remove any existing tmrun or tmsub options you have specified, issue the
command

tmrunargs off

This removes options you have set via the prism command line and the tmrunargs
command, but not via TMRUN_FLAGS.

Issuing the tmrunargs command with no options shows the current tmrun and
tmsub options.

10.2.3 Other Options
As with DP Prism, you can specify other options on the prism command line. For
example, you can specify the -C option to bring up MP Prism in commands-only
mode, or the -CX option (from an Xterm) to bring it up in commands-only mode, but
be able to send the output of certain commands to X windows.

If you start the graphical version, MP Prism’s main window is virtually the same as
DP Prism’s. There are two differences:

10-6 Prism 5.0 User’s Guide • November 1997

■ There are fields for Current Pset and Current Process in the status region above
the source window. These fields are discussed in Sections 10.3.6 and 10.3.7.

■ The command-line prompt is different. Once again, see Section 10.3.6.

10.2.4 Attaching
You can attach to running message-passing programs. To do this, specify the task ID
of the processes (not an individual process ID) on the prism command line, after the
name of the executable program. For example,

% prism - p Dedicated tmmpi t462

starts MP Prism on the nodes of the partition Dedicated and attaches to the running
processes in task t462. You obtain the task ID by issuing the tmps command.

You can also attach to a task from within Prism via the attach command;
see Section 10.4.1.

If you attach to a program under MP Prism, your task will be automatically
detached from MP Prism if you quit or run another program. You can detach from
the task by issuing the detach command from within Prism.

You can also attach to a single process of a message-passing program by specifying
its process ID, just as you do in DP Prism; see Section 2.2.2. If you do this, however,
you won’t be able to view or debug what is happening in the other processes.

10.3 Using Psets
MP Prism provides you with the capability of viewing your message-passing
program at the level of an individual process, a group of processes, or all processes
that make up the program. For example, at times it may be useful to look at the
status of process 0, because you have reason to believe there is a problem with it. At
other times you may want to look at all processes that have encountered an error, or
at all processes in which the value of a particular variable exceeds a certain number.

These groups of processes, typically chosen because they have some useful
characteristic in common, are referred to as psets (pronounced “pee-sets”). MP Prism
treats a pset as a unit; for example, you can use the name of a pset as a qualifier for
many commands. The command is then executed for each process in the set. For
example, you can set a breakpoint that applies only to processes in a specified pset.
(See Section 10.3.9 for more information.) In addition, many graphical actions apply
only to processes in a pset.

Chapter 10 MP Prism 10-7

If you don’t need to view your program at the level of an individual process or a
subset of processes, you can also view its operation on all the processes that make
up the message-passing program.

You can view psets in the Psets window, as described in Sections 10.3.1 and 10.3.4.

Note – MP Prism assigns a logical ID number to each process that makes up a
message-passing program. For example, in an 8-process message-passing program,
the individual processes would be numbered 0-7. These numbers are used to
identify processes in psets. Do not confuse these numbers with the Solaris process
IDs (pids) assigned by the system to the message-passing processes.

As described in Section 10.3.2, Prism provides predefined psets for certain standard
groups of processes; for example, the set of all processes in an error state is a
predefined pset. You can also define your own psets, as described in Section 10.3.3;
for example, you can define a pset to be those processes in which variable x is
greater than 0. Section 10.3.5 describes how to delete psets.

If you don’t specify a pset as a qualifier to a command (that can take a pset
qualifier), the command is executed on the current pset; many graphical actions also
apply to processes in the current set. The concept of the current pset is described in
Section 10.3.6. Section 10.3.7 describes the current process, which is a distinguished
process within a pset.

Section 10.3.8 describes the cycle pset, which is a predefined pset with special
characteristics.

10.3.1 Using the Psets Window
You can use the Psets window to view the current status of the processes in your
program and to perform many of the actions associated with psets.

To display the window:

■ From the menu bar – Choose the Psets selection from the Debug menu.
■ From the command window – Issue the command show psets on dedicated .

10-8 Prism 5.0 User’s Guide • November 1997

FIGURE 10-1 shows the Psets window for a 4-process message-passing program.

FIGURE 10-1 Psets WIndow

The various components of the window are described in detail in later sections. Here
is a brief overview:

■ The main area of the window shows psets and their members. Processes that are
members of a set are shown as black (or colored) cells within a rectangle that
represents the entire set of processes that make up the message-passing program.

■ The current process (see Section 10.3.7) for each pset is shown in gray (or, on a
color workstation, a darker shade of the color in the other squares). The current
pset (see Section 10.3.6) is shown in the upper left corner of the window.

■ You can cycle through the cycle pset (see Section 10.3.8) by clicking on the left
and right arrows labeled Cycle at the top left of the control panel.

■ If you have many psets and a large number of processes, you can use the Zoom
arrows to zoom in or out on these psets. The box next to the arrows shows what
part of the entire display you are seeing; you can drag the mouse through this box
to pan through the display.

■ You can view and change the current pset and current process via the boxes at the
top right of the window

■ The Options menu at the top left of the window lets you hide, display, create, and
delete psets. See Sections 10.3.3 through 10.3.5.

■ The File menu lets you close the Psets window.

Chapter 10 MP Prism 10-9

10.3.2 Predefined Psets
MP Prism provides the predefined psets described below.

■ all – This set contains all the processes in the program; it is the default pset.

■ running – This set contains all processes that are currently executing.

■ error – This set contains all processes that have encountered an error.

■ interrupted – This set contains the processes that were most recently forcibly
interrupted by the user. See Section 10.4.4 for a discussion of the interrupt
command and a further explanation of this pset.

■ break – This set contains the processes that are currently stopped at breakpoints.

■ stopped – This set contains all processes that are currently stopped. It is the
union of the sets error , interrupted , and break .

■ done – This set contains all processes that have terminated successfully.

Except for the pset all , these sets are dynamic; that is, as a program executes, Prism
automatically adjusts the contents of each set to reflect the program’s current state.

In addition, there are two set names that have special meaning in MP Prism:
current and cycle . They are discussed in Sections 10.3.6 and 10.3.8, respectively.

10.3.3 Defining Your Own Psets

10.3.3.1 Syntax for Defining a Pset

This section describes the syntax you can use to specify a pset. As described below,
you can assign a name to a pset you specify using this syntax; this provides a useful
shorthand for complicated pset specifications.

First, let’s look at the syntax you use to specify a pset as an argument to a command:

To apply a command to a specific pset, use the pset keyword, followed by a process
specification. Put this pset clause at the end of the command line (but before an on
window clause, if any). Thus,

print x pset error

prints the values of the variable x in the predefined pset error . (See Section 10.7 for
a discussion of printing variables in MP Prism.)

Now let’s look at the ways in which you can specify your own pset as part of this
pset clause:

Specify an individual process number. An individual process can constitute a pset. Thus,

10-10 Prism 5.0 User’s Guide • November 1997

print x pset 0

prints the value of x in process 0.

Specify the name of a pset. You name a pset using the define pset command, as
described in the section “Naming Psets,” below. Thus,

print x pset foo

prints x in the processes you have defined to be members of pset foo .

Specify a list of process numbers. Separate the numbers with commas. Thus,

print x pset 0, 4, 7

prints x in processes 0, 4, and 7.

Ranges and strides are allowed. Use a colon between two process numbers to
indicate a range. Use a second colon to indicate the stride to be used within this
range. Thus,

print x pset 0:10

prints x in processes 0 through 10. And

print x pset 0:10:2

prints x in processes 0, 2, 4, 6, 8, and 10.

You can combine comma-separated process numbers and range specifications. For
example,

print x pset 0, 1, 3:5, 8

prints x in processes 0, 1, 3, 4, 5, and 8.

Specify a union, difference, or intersection of psets. To specify the union of two psets, use
the symbol +, | , or || . For example,

print x pset 0:2 + 8:10

prints x in processes 0, 1, 2, 8, 9, and 10.

print x pset foo | bar

prints x in processes that are members of either pset foo or pset bar .

Prism evaluates the pset expression from left to right. If a process returns true for
the first part of the expression, it is not evaluated further. In the above example, if a
process is a member of foo , its value of x is printed; Prism does not check its
membership in bar .

Use a minus sign to specify the difference of two psets. For example,

Chapter 10 MP Prism 10-11

print x pset stopped - foo

prints x in all processes that are stopped except those belonging to the pset foo .

To specify the intersection of two psets, use the &, &&, or * symbol. For example,

print x pset foo & bar

prints x in processes that are members of both pset foo and pset bar . If a process
returns false for the first part of the expression, it is not evaluated further. In the
above example, if a process is not a member of foo , Prism doesn’t bother checking
its membership in bar ; it won’t be printed in any case.

Prism must evaluate a pset expression in each process at the time the command is
executed; the processes must be stopped for Prism to do this. The evaluation fails if
any of the processes being evaluated are running. Using the predefined pset
stopped on the left of an intersection expression is a useful way of ensuring that a
command applies only to stopped processes. Thus,

print x pset stopped & foo

prints x only in the members of foo that are stopped.

Specify a condition to be met. Put braces around an expression that evaluates to true or
false in each process. Processes in which the expression is true are part of the set.
Thus,

print x pset { y > 1 }

prints x in processes where y is greater than 1. And

print x pset all - { y == 1 }

prints x in all processes except those in which y is equal to 1.

Membership in a set defined with this syntax can change based on the current state
of your program; such a pset is referred to as variable. See the section “Evaluating
Variable Psets,” below, to learn how to update the membership of a variable pset.

For this syntax to work, the variable must be active in all processes in which the
expression is evaluated. If the variable isn’t active in a process, you get an error
message and the command is not executed. To ensure that the command is executed,
use the intrinsic isactive in the pset definition. The expression
isactive (variable) returns true if variable is on the stack for a process or is a
global. Thus, you could use this syntax to ensure that x is printed:

print x pset stopped && {isactive(x)}

10-12 Prism 5.0 User’s Guide • November 1997

10.3.3.2 Naming Psets

You can assign a name to a pset. This is convenient if you plan to use the set
frequently in your Prism session.

Use the syntax described above to specify the pset. You can use any name except the
names that Prism predefines; see Section 10.3.2. The name must begin with a letter;
it can contain any alphanumeric character, plus the dollar sign ($) and underscore
(_).

■ From the Psets window – Choose Define Set from the Options menu. A dialog
box is displayed that prompts for the name and definition of the pset. Click on
Create to create the pset.

■ From the command line – Issue the define pset command.

For example,

define pset odd 1:31:2

creates a pset called odd containing the odd-numbered processes between 1 and 31.

define pset xon { x .NE. 0 }

defines a pset consisting of those processes in which x is not equal to 0. Note that x
must be active in all processes for this syntax to work. As described above, you can
use the intrinsic isactive to ensure that x is active in the processes that are
evaluated. For example,

define pset xon { isactive(x) && (x .NE. 0) }

Both versions create a variable pset whose contents will change based on the value
of x . See below for more discussion of variable psets. Finally, note that all processes
must be stopped for this syntax to work. To ensure that the definition applies only to
stopped processes, use this syntax:

define pset xon stopped && { isactive(x) && (x .NE. 0) }

Dynamic user-defined psets are deleted when you reload a program. To get a list of
these psets before reloading, issue the command show psets . You can then use this
list to help reissue the define pset commands. See Section 10.3.4 for more
information about show psets .

10.3.3.3 Evaluating Variable Psets

We have already discussed how to create variable psets—sets whose contents can
change as the program executes. Prism evaluates the membership of such a set when
it is defined. If no processes meet the condition (for example, because the program is
not active), Prism prints appropriate error messages, but the set is defined.

Subsequently, you can re-evaluate the membership of the pset by issuing the eval
pset command, specifying the name of the pset as its argument. For example,

Chapter 10 MP Prism 10-13

eval pset xon

evaluates the membership of the pset xon . This causes the display for the pset to be
updated in the Psets window.

Note that this evaluation will fail if:

■ Processes are running that need to be polled in evaluating the pset; or

■ The pset’s definition contains a variable that is not active in any of the processes
being polled

For example, if you issue this command:

define pset foo { x > 0 }

you must make sure that all processes are stopped, and x is active on all processes,
when you issue the command

eval pset foo

To ensure that the evaluation succeeds, you would need to use the more complicated
syntax described above:

define pset foo stopped && { isactive(x) && (x > 0) }

This ensures that the evaluation takes place only in processes that are stopped and in
which x is active.

If an evaluation fails, the membership of the pset remains what it was before you
issued the eval pset command.

You can use the eval pset command in event actions; see Section 10.6.1.

Note the difference between dynamic and variable psets. The membership in both can
change as a program executes. Dynamic psets are predefined sets like stopped and
interrupted ; Prism automatically updates their membership as the program
executes. Variable psets are defined by the user, and the user must explicitly update
their membership by issuing the eval pset command.

10.3.4 Viewing the Contents of Psets

10.3.4.1 From the Psets Window

The easiest way to view the contents of psets is to use the Psets window.

By default, the window displays the current pset (which starts out being the
predefined pset all), and the psets break , running , and error . When you create a
new pset via the define pset command, that set is also displayed automatically.

10-14 Prism 5.0 User’s Guide • November 1997

The processes within a pset are numbered starting at the upper left, increasing from
left to right and then jumping to the next row. You can display information about
them as follows:

■ Shift-click on a cell to view the Prism ID number of the process it represents.

■ Shift-click elsewhere in the pset rectangle (for example, on a border) to display all
the ID numbers of the processes in the pset.

■ Shift-middle-click on a cell to view the process’s Solaris pid and the hostname of
the node on which it is running.

■ Shift-middle click elsewhere in the rectangle to display the entire list of pids and
hostnames for the processes in the pset.

To display a pset, choose the Show selection from the Options menu in the Psets
window This displays a list of psets; the predefined psets are at the top, followed by
any user-defined set names. Click on a set name, and that set is displayed in the
window.

To hide a pset, choose the Hide selection from the Options menu. Once again, this
displays the list of predefined and user-defined psets. Click on a set name to remove
that set from the display.

Note that hiding a pset doesn’t otherwise affect its status; it still exists and can be
used in commands.

Note also that there are choices All Sets and all in the Show and Hide submenus.
The All Sets choice refers to all psets; the all choice refers to the predefined pset all .

If you have too many psets to be shown in the display window of the Psets window,
the navigator rectangle to the right of the Cycle arrows lets you pan through the
psets. The white box in the rectangle shows the position of the display area relative
to all the psets that are to be displayed:

You can either drag the box or click at a spot in the rectangle. The box moves to that
spot, and the display window shows the psets in this area of the total display.

To display more psets at the same time, click on the Zoom up arrow to the right of
the navigator rectangle. This reduces the size of the boxes representing the psets.
Clicking on the Zoom down arrow increases the size of these boxes. By default, the
boxes are at their highest zoom setting.

10.3.4.2 From the Command Line

Use the show pset command to print the contents of the pset you specify. For
example, the command

Chapter 10 MP Prism 10-15

show pset stopped

might produce this response:

The set contains the following processes: 0:3.

The show pset command is discussed further in Section 10.3.6.

The show psets command displays the contents and status of all psets.
(prism all) show psets
foo:
 definition = 0:31:2
 members = 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30
 current process = 0
break:
 definition = break
 members = nil
 current process = (none)
done:
 definition = done
 members = 0:31
 current process = 0
interrupted:
 definition = interrupted
 members = nil
 current process = (none)
error:
 definition = error
 members = nil
 current process = (none)
running:
 definition = running
 members = nil
 current process = (none)
stopped:
 definition = stopped
 members = nil
 current process = (none)
current:
 definition = 6, 9, 12
 members = 6,9,12
 current process = 6
cycle:
 definition = 6, 9, 12
 members = 6,9,12
 current process = 6
all:
 definition = all
 members = 0:31
 current process = 12

10-16 Prism 5.0 User’s Guide • November 1997

10.3.5 Deleting Psets
You can delete named psets that you have defined. You cannot delete any predefined
pset except cycle ; see Section 10.3.8. To delete a pset:

■ From the Psets window – Choose the Delete selection from the Options menu.
This displays a list of psets that you can delete. Click on the name of the pset you
want to delete. If it is currently displayed in the Psets window, it disappears.

■ From the command line – Issue the delete pset command, using a pset
qualifier to specify the name of a user-defined pset. For example,

delete pset xon

deletes the pset named xon .

See Section 10.6.1 for a discussion of the effect of deleting a pset on events that have
been defined to affect the members of that set.

10.3.6 Current Pset
The command syntax described in Section 10.3.3 lets you apply a command to a
specific pset. If you don’t use this syntax, the command is applied to the current pset;
current is a predefined pset name in Prism. In addition, many graphical actions in
MP Prism apply only to the members of the current set.

When a program is first loaded, the current pset is the default pset, all .

You can change the current pset via the Psets window or from the command line.

■ From the Psets window – There are several ways of changing the current pset via
the Psets window:

■ If the set is displayed in the Psets window, simply double-click anywhere in
its display (for example, on its name, or in the box beneath its name).

■ Choose the Set Pset selection from the Options menu. This displays a list of
psets. Click on the name of the set you want to be current.

■ Edit the name of the pset in the box below Current Set at the top right of the
Psets window, then press Return.

When you change the current set, the new name appears in the Current Set box in
the Psets window, and the current set shown at the top left of the psets area
changes to reflect the contents of the new set.

■ From the command line – Issue the pset command. For example,

pset foo

changes the current pset to foo .

Chapter 10 MP Prism 10-17

You can also use the pset command with the pset-specification syntax described in
Section 10.3.3. For example,

pset 0:15:3

You cannot change the current pset to one that has no members. If you try to do so,
nothing happens in the Psets window, and you get a message like this one in the
history region of the command window:

Cannot set current pset to running -- it is empty.

10.3.6.1 Finding Out the Current Pset

MP Prism provides many ways of finding out the current pset:

■ As described in the previous section, the name of the current pset appears in the
Current Set box at the top right of the Psets window.

■ The name of the current pset appears in the status region in MP Prism’s main
window.

■ Issuing the pset command without arguments displays the current set.

■ The (prism) prompt on the command line and in commands-only MP Prism
identifies the current pset. For example, Prism’s response to the pset command
in the previous section would look like this:

(prism all) pset foo
(prism foo)

Note – In giving examples of MP Prism commands, the (prism) prompt is used
only when necessary to show the effect of a command.

To list the processes in the current pset, issue the show pset command without
arguments:

(prism foo) show pset
pset ’current’ is defined as ’foo’.
The set contains the following processes: 1,2.

The Psets window also displays the processes in the current pset.

10.3.6.2 Current Pset and Dynamic Psets

Section 10.3.2 described dynamic psets—predefined sets like running , stopped ,
and interrupted , whose contents Prism automatically updates during the
execution of the program.

10-18 Prism 5.0 User’s Guide • November 1997

If you choose a dynamic pset to be the current pset, you create a static pset that
consists of the processes that are members of the dynamic set at the time you issue
the pset command (or otherwise choose it to be the current set). To make this clear,
the (prism) prompt changes to list the processes that are members of this static set.
For example, if processes 0, 1, and 13 are the only processes that are stopped, the
pset command has this effect:

(prism all) pset stopped
(prism 0:1, 13)

Output of the show pset command is explicit under these circumstances:
(prism all) pset stopped
(prism 0:1. 13) show pset
The current set was created by evaluating the pset
’stopped’ once at the time when it became the current set.
The set contains the following processes: 0:1, 13.

Issuing the pset command with no arguments displays the same information.

Note that the (prism) prompt can become quite long if there are many processes in
a current pset derived from a dynamic pset. By default, the prompt length is limited
to 25 characters. You can change this default by issuing the set command with the
$prompt_length variable, specifying the maximum number of characters to
appear in the pset part of the prompt. For example, this command shortens the
prompt long_pset_name to long_pset :

(prism long_pset_name) set $prompt_length=9
(prism long_pset)

10.3.6.3 Current Pset and Variable Psets

Section 10.3.3 describes how to create variable psets—user-defined psets whose
membership can change in the course of program execution. You use the eval pset
command to update the membership of a variable pset. If you make a variable pset
your current set, its membership is determined by the most recent eval pset
command you have executed for the set. If you have not executed an eval pset
command to update the set’s membership, the membership continues to be what it
was when you created the set.

10.3.7 The Current Process
Each pset has a current process. The current process has a variety of uses in
MP Prism:

■ The source window displays the source code executing in the current process of
the current pset.

Chapter 10 MP Prism 10-19

■ The Where graph centers around the call stack of the current pset’s current
process; see Section 10.6.2.

■ The current process determines the scope used in interpreting the names of
variables; see Section 10.6.3.

By default, the current process is the lowest-numbered process in the set. You can
change this as described below.

■ From the Psets window – Use one of these methods to change the current process
via the Psets window:

■ Click on the cell representing the process in the displayed pset. The cell turns
gray (or, on color workstations, a darker shade of the color for the other
processes).

■ To change the current process in the current pset, you can also edit the number
in the box under Process at the top right of the window, then press Return.

■ From the command line – Issue the process command to specify another
current process for the current pset. For example,

(prism all) process 2
The current process is now 2.

Issue the process command without any arguments to print the current process of
the current pset.

When you change a current process, by any of the methods described above, the pset
keeps this new current process until you explicitly change it. That is, if you switch to
a different current set, then switch back to the original set, the original set will still
have the same current process.

10.3.8 The Cycle Pset
In debugging a message-passing program, you may often want to look in turn at
each individual process within a pset—for example, to see what the problem is for
each process in the error pset. The cycle pset provides you with a convenient way
of doing this.

You create a cycle pset out of an existing pset. If the existing set is dynamic, the
cycle set is statically fixed when you create it. You can then cycle through each
process in this set to examine it in turn.

By default, the cycle set is equivalent to the current set. You can set it to some other
set via the define pset command, as described in Section 10.3.3. For example,

(prism all) define pset cycle foo

copies foo into the cycle set.

You can cycle through the processes in the cycle set as follows:

10-20 Prism 5.0 User’s Guide • November 1997

■ From the Psets window – Use the Cycle arrows at the top left of the window to
cycle through the members of the cycle set. Click on the right arrow to cycle up
through the members of the set; click on the left arrow to cycle down through the
members.

Clicking on a Cycle arrow does this:

■ It advances the current process in the cycle pset to be the next member in the
set.

■ It makes the current pset consist of only this process.

■ From the command line – Use the cycle command. This has the same effect as
clicking on the right cycle arrow in the Psets window. For example, this Prism
session defines a pset, makes it the current set, and then cycles through its
members:

(prism all) define pset foo 0:3
(prism all) pset foo
(prism foo) cycle
(prism 1) cycle
(prism 2) cycle
(prism 3) cycle
(prism 0)

Note that changing the cycle pset erases any previous cycling information. For
example, if you do the following:

1. Make foo the current set and cycle partway through it.

2. Make bar the current set.

3. Once again make foo the current set.

then you start at the beginning again when you cycle through the members of foo .

From the source-window popup menu – Choose Cycle from this menu to advance
to the next member of the cycle pset.

10.3.8.1 Cycle Visualizer Window

MP Prism includes a Cycle window type for visualizing data. When you print a
variable’s value to the Cycle window, the value changes to that of the variable in the
new process whenever you cycle through the members of the cycle pset. For more
information, see Section 10.7.

Chapter 10 MP Prism 10-21

10.3.9 Using Psets in Commands
As mentioned at the beginning of Section 10.3, some commands can take a pset as a
qualifier; they are listed at the end of this section. Put this qualifier after any
arguments to the command, but before the optional on window syntax that specifies
the window in which output is to be displayed. A command with a pset qualifier
applies only to the processes in the set. If you omit the qualifier, the command
applies to the processes in the current set.

Thus,

stop at 12 pset error

sets a breakpoint at line 12 for the processes in pset error .

where pset 0:10 on dedicated

displays the Where graph for processes 0 through 10. See Section 10.6.2 for a
description of the Where graph.

trace at 12 if x > 10

creates a trace event for the members of the current pset.

Note that this last command applies only to the members of the current pset. To
apply it to all processes, use the syntax

trace at 12 if x > 10 pset all

Many commands, of course, cannot logically take a pset qualifier. You get an error
message if you try to issue one of these commands with a pset qualifier.

Here are the Prism commands that can take a pset qualifier:

address/
assign
call
catch
cont, contw
display
ignore
interrupt
next, nexti,
print
pstatus
return
step, stepi
stop, stopi
trace, tracei
wait
whatis
where

10-22 Prism 5.0 User’s Guide • November 1997

10.4 Executing a Program in MP Prism
You start execution of a program in MP Prism just as you do in DP Prism —by
issuing the run command or choosing the Run or Run (args) selection from the
Execute menu. See Section 3.4. You can also attach to an already-running program
using the attach command, as described below.

10.4.1 Attaching and Detaching
You can use the attach command in MP Prism to attach to a running task. Specify
the task’s task ID on the attach command line. Note that if you use a process ID as
an argument to attach , you will be attached to that individual process, not to the
entire task.

You can use the detach command to set a debugged task free. You can detach from
your task if you started it up with run or tmrun , and, of course, you can also detach
if you previously attached.

MP Prism only lets you detach when all the processes in the task are stopped (to
make sure we remove all breakpoints before detaching). The detach operation itself
sets them all running again, outside control of the debugger.

10.4.2 Quitting
Issuing the quit command terminates the debugging session. As mentioned above,
before quitting, MP Prism will kill your debugged process if it was started with run ,
or it will detach from it if you previously attached.

10.4.3 Stepping and Continuing Through a Program
In MP Prism, menu actions such as Step and Next apply to the processes of the
current pset.

DP Prism (like other debuggers) waits for a step , next , or cont command to finish
executing before letting you issue most other commands. This behavior is
unnecessarily restrictive in MP Prism, however; therefore, if one process or set of
processes is executing code, you can still issue commands that affect other processes.
For example, you can switch to a different pset and start or stop execution of its
processes.

Chapter 10 MP Prism 10-23

10.4.4 Interrupting and Waiting for Processes
It is useful in debugging message-passing programs to wait for a specific process or
processes to stop executing, or to be able to interrupt execution of individual
processes. MP Prism therefore provides the commands interrupt and wait .

Use the interrupt command to forcibly interrupt execution of a specified process
or processes. For example,

interrupt pset 0

interrupts execution of process 0.

interrupt pset running

interrupts all running processes.

Using the interrupt command resets the predefined pset interrupted so that it
includes the newly interrupted processes. Processes leave this pset when they
continue execution.

In MP Prism, the Interrupt selection from the Execute menu interrupts processes in
the current pset that are running.

Use the wait command to wait for a specified process or processes to stop
execution. A process is considered to have stopped if it has entered the done ,
break , interrupted , or error state.

There are two versions of the wait command:

■ Use the syntax wait or wait every to wait for every member of the specified
pset to stop. If no pset is specified, the command applies to the current pset. Thus,

(prism notx) wait every

waits for every process in the pset notx to stop. The current process will be
whatever it would normally be; see Section 10.3.6. This is the default behavior of
the wait command.

■ Use the syntax wait any to wait for any member of the specified pset to stop. If
no pset is specified, the command applies to the current pset. When the first
process stops, it becomes the current process of this pset. Thus,

wait any pset foo

waits for the first process in pset foo to stop.

There are corresponding Wait Any and Wait Every selections in MP Prism’s Execute
menu. They apply to the processes of the current set.

You can end the wait by

■ typing Ctrl-c; this does not affect processes that are running

10-24 Prism 5.0 User’s Guide • November 1997

■ choosing the Interrupt selection from the Execute menu; this stops processes
that are running, as well as ending the wait

Note that, if you prefer that step and next commands wait for processes to finish
executing before letting you issue other commands, you can issue them along with
the wait command. For example,

step; wait

This says: Execute the next line, then wait for all processes in the current pset to
finish execution.

If you use this command sequence frequently, you can provide an alias for it via the
alias command. Prism provides the default alias contw for these commands:

cont; wait

10.4.5 Execution Pointer
In DP Prism, the > symbol in the line-number region points to the next line to be
executed; see Section 2.6. In a message-passing program, there can be multiple
execution points within the program. MP Prism marks all the execution points for
the processes in the current set by a > in the line-number region (or a * if the current
source position is the same as the current execution point). Shift-click on this symbol
to display a pop-up window that shows the process(es) for which the symbol is the
execution pointer.

10.4.6 Finding Out Execution Status
Issue the pstatus command to find out the execution status of processes. Without a
pset qualifier, it displays the execution status of the members of the current set. For
example,

(prism all) pstatus
process 0: running
process 1: stopped in procedure ”pawn_moves” at ”chess.c”:49
process 2: interrupted in procedure ”construct_move” at
”chess.c”:1187
process 3: interrupted in procedure ”rook_check” at ”chess.c”:746

Use a pset qualifier to find out the execution status of the members of the specified
pset.

Chapter 10 MP Prism 10-25

10.4.7 Executing a Program in Commands-Only MP
Prism
When you issue the run command to execute a program in the commands-only
version of MP Prism, the program starts up in the background. If the program needs
to read terminal input, you must then issue the fg command at the (prism)
prompt to run the program in the foreground. You cannot execute Prism commands
while the program is executing in the foreground. To have the program run in the
background and regain the (prism) prompt, type Ctrl-z.

10.5 Combining DP and MP Prism
If you have an executable that combines data parallel and message-parallel modules,
such as an HPF program calling an EXTRINSIC (F77_LOCAL) subroutine, Prism
switches as needed between DP Prism and MP Prism when you step through your
code, set breakpoints, etc. For example, if you step from a data parallel routine into
a local message-passing routine, the user interface will change to that of MP Prism,
and you can display and manipulate psets as described in this chapter.

10.6 Debugging in MP Prism
Debugging a message-passing program can be considerably more complex than
debugging a serial or data parallel program, since you are in effect debugging
multiple individual programs concurrently. MP Prism’s concept of psets lets you
focus your debugging efforts on the processes that are of particular interest. This
section describes the following areas in which debugging in MP Prism, with its
psets, is different from debugging in DP Prism (described in Chapter 4):

■ Events — Section 10.6.1

■ The Where graph — Section 10.6.2

■ Scope — Section 10.6.3

■ Examining local process core files —Section 10.6.4

10-26 Prism 5.0 User’s Guide • November 1997

10.6.1 Events in MP Prism
Events in MP Prism can take a pset qualifier. You can specify this in an event field in
MP Prism’s event table, as shown in FIGURE 10-2.

FIGURE 10-2 Pset Field in MP Prism’s Event Table

If you don’t supply a pset qualifier, the event applies to the current pset. If you
create the event before changing the current set, the event applies to the default set,
which is all .

Thus,

stop in receive pset notx

sets a breakpoint in the receive routine for the processes in the set notx . Each
process in the set stops when it reaches this routine. It is possible, of course, that
some processes may never reach this routine. This becomes an issue when you
include actions in an event; see below.

If all the processes in the pset have stopped, you can continue them by issuing a
command like

cont pset notx

Here is another example:

stop if x > 10

This command stops execution for any process in the current pset if the process’s
value for the variable x is greater than 10.

Prism evaluates the expression in the condition locally—that is, separately for each
process. Similarly, if a and b are arrays,

stop if sum(a) > sum(b)

stops execution for a process in the current set if the sum of the values of a in that
process is greater than the sum of the values of b.

All processes that are stopped at breakpoints are members of the predefined pset
break .

Chapter 10 MP Prism 10-27

10.6.1.1 Events and Dynamic Psets

If you use a dynamic pset as a qualifier for an event, its membership is evaluated
when you issue the command defining the event. Thus, the command

stop at 10 pset interrupted

creates a breakpoint only in the processes that are interrupted at the time the
command is issued. If no processes are currently interrupted, you receive an error
message.

One result of this is that you cannot define events that involve dynamic psets before
the program starts execution.

10.6.1.2 Events and Variable Psets

If you use a user-defined variable pset as a qualifier, its membership is determined
by the most recent eval pset command you issued for that pset.

As is the case with dynamic psets, you cannot define events that involve variable
psets before the program starts execution.

10.6.1.3 Actions in Events

Events in MP Prism can take action clauses, just as they can in DP Prism. For
example,

stop at 10 {print x} pset foo

prints x for the pset foo when the members of foo are stopped at line 10.

Important – Associating an action with an event forces a global synchronization at
the breakpoint or tracepoint. In the example above, every process in pset foo must
stop at line 10 before x can be printed. If a member does not stop at line 10, the
action never takes place. In a trace event, all processes in the pset must stop at the
specified place and synchronize; the action then takes place, and the processes
automatically continue execution.

You can include an eval pset command as an event action. For example,

stop in send {eval pset sending}

evaluates the pset sending when all the members of the current pset are stopped in
send . You receive error messages if it is impossible to evaluate membership in a pset
(for example, because a variable in the set definition is not active).

Note these limitations in using event actions in MP Prism:

■ You cannot include the following commands that manipulate psets:

10-28 Prism 5.0 User’s Guide • November 1997

■ define pset
■ delete pset
■ process
■ pset

■ You cannot include a pset qualifier in the action. The command in the action
clause takes its pset from the pset of the event.

■ As in DP Prism, you cannot include commands that affect program execution,
specifically
■ cont and contw
■ run
■ step and stepi
■ next and nexti
■ wait

■ As in DP Prism, you cannot include the load , reload , return , and core
commands.

10.6.1.4 Displaying Events by Process

Issue the show events command with a process number as an argument to display
all events associated with that process. For example,

(prism all) show events 0
(1) stop at 10 pset 0
(3) stop at 575 {print x] pset all
(7) trace y pset bar

Issuing show events with no arguments has its standard behavior; that is, it prints
out all events.

10.6.1.5 Events and Deleted Psets

If you create an event that applies to a particular pset, and subsequently delete the
pset, the event continues to exist. Its printed representation, however, is changed so
that it shows the processes that were members of the pset at the time you deleted the
set.

10.6.1.6 Using the Line-Number Region

Section 2.6 describes how the line-number region displays breakpoints and
tracepoints in DP Prism. MP Prism provides a variation of this feature:

■ It displays a B next to a line number if all processes in the current pset have a
breakpoint set at that line.

Chapter 10 MP Prism 10-29

■ It displays a b if some but not all of the processes in the current pset have a
breakpoint set at that line.

■ It displays a T if all processes in the current pset have a tracepoint set at that line.

■ It displays a t if some but not all of the processes in the current pset have a
tracepoint set at that line.

If there is a mixture of breakpoints and tracepoints set on the line, Prism uses the
B-b-T-t sequence to determine what letter to display. For example, if a line has a
breakpoint set in one process and a tracepoint set in all processes, Prism displays a
b.

As in DP Prism, you can shift-click on the letter in the line-number region to display
the complete event (or events) associated with it.

10.6.2 Where Graph
In DP Prism, choosing Where from the Debug menu displays the call stack for the
program; see Section 4.5. A message-passing program, however, can have multiple
call stacks, one for each process. To show the relationships among these call stacks,
MP Prism provides a Where graph; this window displays a snapshot of the dynamic
call graph of the program. Information is displayed for all processes that are not
running.

To display the Where graph:

■ From the menu bar – Choose Where from the Debug menu.

■ From the command line – Issue the command

where on dedicated

A window like the one shown in FIGURE 10-3 is displayed.

10-30 Prism 5.0 User’s Guide • November 1997

FIGURE 10-3 Where Graph

The Where graph centers on the current process of the current pset—that is, the
processes related to it are lined up in a single column. In FIGURE 10-3, process 0 is the
current process. If you change the current process, the Where graph rearranges itself.
The default zoom level of the Where graph shows the arguments for the current
process.

At the bottom of each box are line numbers indicating where processes branch.
Thus, in FIGURE 10-3, one or more processes call malloc at line 79 of mst_reduce .

Shift-click in each function’s box to display a popup window showing the numbers
of the processes with this function in their call stack, along with their arguments.

10.6.2.1 Panning and Zooming in the Where Graph

As FIGURE 10-4 shows, the Where graph can get quite large, so MP Prism provides
methods for panning through it and zooming in and out.

The white box in the navigator rectangle at the top of the window shows the
position of the display area relative to the entire Where graph. You can either drag
the box or click at a spot in the navigator. The box moves to that spot, and the
window shows the Where graph in this area of the total display.

Chapter 10 MP Prism 10-31

To display more of the Where graph at the same time, click on the Zoom down
arrow to the right of the navigator. This reduces the size of the boxes representing
the functions and removes information. FIGURE 10-4 shows the Where graph of
FIGURE 10-3, zoomed out one level. Note that the information about the current
process’s arguments is gone.

FIGURE 10-4 Where Graph, Zoomed Out One Level

Zooming out one more level removes the line numbers, and one more level after that
removes the function names, leaving only boxes connected by lines. You can still
shift-click on a box to display information about it.

Clicking on the Zoom up arrow increases the size of the function boxes and includes
more information in them. FIGURE 10-5 shows the Where graph of FIGURE 10-3,
zoomed in. In this case, the Where graph shows, for each function, the processes that

10-32 Prism 5.0 User’s Guide • November 1997

have that function in their call stack. As in the Psets window, the processes are
represented as bitmaps of cells, numbered starting at the upper left, increasing from
left to right and then jumping to the next row.

FIGURE 10-5 Where Graph, Zoomed In

Zooming in another level shows all arguments for all processes.

10.6.2.2 Shrinking Selected Portions of the Where Graph

You can shrink selected portions of the Where graph. This is useful if you want to
see the overall structure of the graph, but in addition want to focus on certain
functions.

Middle-click on a function to iconify it and all of its children. Middle-click on an
iconified function to re-expand it and its children to the current zoom level.

Alternatively, you can click on the (De) iconify Node button next to the Zoom
arrows at the top of the Where graph. This changes the mouse pointer to a target.
You can then left-click on a function to iconify it and its children. If it is already
iconified, left-clicking on it will re-expand it and its children. To cancel the
operation, left-click anywhere outside of the boxes surrounding the functions.

Chapter 10 MP Prism 10-33

10.6.2.3 Moving Through the Where Graph

When you first display the Where graph, the main function is highlighted. You can
left-click on a function to highlight it. Or, you can move through the Where graph
via the keyboard:

■ Use the up arrow key to move to the parent of the highlighted function.

■ If line numbers are visible in the highlighted function, by default the leftmost
number is selected by having a box drawn around it. Use the left and right arrows
to select other line numbers in the function. You can then use the down arrow key
to highlight the function called at the selected line.

10.6.2.4 Making a Function the Current Pset

Pressing the spacebar while in the Where graph does the following:

■ It changes the current function to be the function that is highlighted in the Where
graph.

■ This function is displayed in the source window.

■ It creates a new current pset, with the same name as the function, and containing
the processes with this function in their call stack. The current process of this
current set is the lowest-numbered process in the set.

10.6.2.5 Issuing the where Command in MP Prism

Issuing the where command by default displays (in the history region) the call stack
consecutively for each process in the current set (or in the pset you specify via the
pset qualifier).

Issuing the command

where on dedicated

displays the Where graph, as described above.

Issuing the command

where on snapshot

puts the history-region output into a window; it does not create a Where graph.

10.6.3 Scope in MP Prism
See Section 4.5.2 for a discussion of scope in DP Prism.

10-34 Prism 5.0 User’s Guide • November 1997

In MP Prism, the scope of the current process determines the scope for resolving the
names of variables. See Section 10.3.7 for a discussion of the current process.

If a command applies to a pset other than the current set, Prism uses the scope of
that set’s current process.

It is possible that other members of the pset will have different scopes from that of
the current process, or that its scope level will not even exist in these processes. In
these cases, you receive an error message when you try to issue a command (for
example, print or display) that requires a consistent scope. To solve the problem,
you can do one of the following:

■ Restrict your pset so that it contains only members with the same scope.

■ If the current process’s scope level does not exist in other processes in the set, you
can use the up command to move up its call stack to a point where it has a scope
level that does exist in the other processes.

■ If different processes in the set have different scopes, you can issue the up and
down commands as needed to ensure that they all have the same scope.

Commands such as pset and process that affect scope print the current function
when you issue them.

10.6.4 Examining Process Core Files
You can use Prism to examine a core file created for a message-passing program. To
do this, specify the core filename on the command line, after the name of the
executable program. For example,

% prism a.out core

When Prism comes up, you can issue commands like where and print to inspect
the state of your process at the time the core dump was taken. But note these
restrictions:

■ You actually start DP Prism rather than MP Prism, since there is only one core file.
Thus, you cannot use psets or other features of MP Prism.

■ You cannot issue any execution commands (for example, run , cont , or step).

■ You cannot change the values of variables via the assign command.

Also, note that you cannot use the core command to examine a core file once you
have started MP Prism.

Finally, note that if multiple processes dumped core, the resulting core file may be
overwritten, and therefore invalid.

Chapter 10 MP Prism 10-35

10.7 Visualizing Data in MP Prism
See Chapter 5 for general information on visualizing data in Prism.

When you print or display an object in MP Prism, the data is shown for all processes
in the pset you specify (in the current pset, if you do not include a pset qualifier).
Choosing the Print or Display selection from the Debug menu prints or displays
data for processes in the current pset.

If there is only one process in the pset, the visualizer that is displayed is no different
from the visualizer you would see in DP Prism.

If there is more than one process in the pset, Prism adds a dimension to the
visualizer. The extra dimension represents the processes in the set. For example, if
the variable is scalar, Prism displays a 1-dimensional array that represents the value
of the variable in each process. If you are printing a 1-dimensional array, Prism uses
a 2-dimensional visualizer.

For C programs, axis 0 represents the processes. For Fortran 77 programs, the
highest-numbered axis represents the processes.

Prism can aggregate data from multiple processes only if the expression has the
same size and number of dimensions in each process; if it doesn’t, Prism prints an
error message.

In the example shown in FIGURE 10-6, the variable board is an 8x8 array
(representing a chess board); the current pset contains four processes. Therefore, MP
Prism displays a 3-dimensional visualizer. Axis 0 represents the processes. The
figure shows the values of board in the first process in the set. You would drag the
white bar in the slider portion of the data navigator to display the values in the
other processes in the set. (Note that, for a 2-dimensional Fortran array, where axis 3
would represent the processes, you might want to rearrange the display axes so that
axis 3 is on the slider. You can do this by clicking in the box to the left of the slider
and changing the number to a 3.)

FIGURE 10-6 Visualizer in MP Prism (Threshold Representation)

To find out the value and process number for an element, shift-click on the element.

10-36 Prism 5.0 User’s Guide • November 1997

Printing to the history region, or in commands-only Prism, works the same way.
Axis 0 represents the processes. Here is some of the history-region output for the
data shown in FIGURE 10-6:

(prism all) print board
board =
process 0
(0,0,0:4) 4 1 0 3 0 (0,0,5:7) –1 –4
(0,1,0:4) 2 1 0 0 0 (0,1,5:7) 0 –1 0
(0,2,0:4) 3 1 0 0 0 (0,2,5:7) 2 –1 –3
(0,3,0:4) 5 0 0 0 –1 (0,3,5:7) 0 0 –5
(0,4,0:4) 4 0 0 –2 0 (0,4,5:7) 0 0 –6
(0,5,0:4) 0 1 0 0 0 (0,5,5:7) 0 –1 0
(0,6,0:4) 0 1 0 0 0 (0,6,5:7) 0 –1 0
(0,7,0:4) 6 –1 0 0 0 (0,7,5:7) 0 –1 –4
process 1
(1,0,0:4) 4 1 0 3 0 (1,0,5:7) -1 0 –4
(1,1,0:4) 2 1 0 1 0 ...

Note that the elements of axis 0do not necessarily correspond to the numbers of the
processes they represent. For example, if you were visualizing a variable in pset
(1, 3, 5, 7), element 0 of axis 0 would represent process 1, element 1 would represent
process 3, etc.

MP Prism provides a Cycle visualizer window you can use to display the values of
a variable in the cycle pset; see Section 10.3.8. If you issue the command

print x on cycle

Prism displays a window containing the value of x in the current process of the
current pset. If you then issue the cycle command or otherwise cycle through the
members of the cycle pset, this window automatically updates to display the value
of x in the next member of the set. This provides a convenient way of examining a
variable in a series of processes.

10.8 Customizing MP Prism
You can customize MP Prism just as you customize DP Prism; see Chapter 9.
Changes you make in one apply to the other. Both MP Prism and DP Prism use the
same .prisminit file. This could lead to error messages if you bring up DP Prism
and the file contained MP Prism-specific commands. Therefore, Prism lets you
specify that commands in your .prisminit file are for MP Prism only by
bracketing them with #ifdef MP and #endif. For example,

Chapter 10 MP Prism 10-37

alias c cont
#ifdef MP
pset 0
alias c ”cont; wait every”
#endif

These commands define c to aliases differently in DP Prism and MP Prism, and set
the initial pset to 0 in MP Prism.

To provide this feature, Prism must preprocess the .prisminit file; by default it
does not do this. To tell Prism to preprocess the file, use the Prism resource
Prism.cppPath , specifying the path to your C preprocessor as its setting; typically,
this is /lib . Thus, you would set the resource as follows:

Prism.cppPath:/lib

See Section 9.4 for information on setting Prism resources. Note, however, that
commands-only Prism is not aware of the settings of Prism resources such as
Prism.cppPath , unless the settings are contained in the system-wide Prism
app-defaults file.

10.9 Using MP Prism With PVM Programs
You can use Prism with PVM message-passing programs, with the following
limitations:

■ All instances of the PVM program must have the same executable.

■ You must attach to a running PVM program from the Prism command line, as
described below.

■ Prism must be running on a node on which a PVM daemon is running.

■ Prism does not work with dynamic PVM programs. Prism only sees the processes
that exist when it attaches to the PVM program. You can subsequently add other
processes, but information about them will not be available in Prism.

Use the - pvm option to the prism command to specify that you are going to be
working on a PVM program.

As mentioned above, Prism support for PVM programs is limited to attaching to a
running PVM program. To attach to a PVM program, you specify the process ID
(pid) of any process in the PVM program; Prism obtains the other pids from the
PVM daemon. You can obtain the pid by issuing the ps command.

Here is an example of attaching to a PVM program:
% prism -pvm pvm_exec 652

10-38 Prism 5.0 User’s Guide • November 1997

Host Prism starts up on your login node. MP Prism attaches to the running
processes of the PVM program pvm_exec . Note that you shouldn’t typically run
Prism via the tmrun command in this situation. Prism must run on a node that has
a PVM daemon also running on it, and you cannot guarantee that this will be the
case if you execute Prism via tmrun .

Once you have attached to the PVM program, you can do anything you normally do
in Prism when working on a message-passing program.

10.10 Using MP Prism With Sun MPI Programs
You can use MP Prism with Sun MPI programs, or other C or Fortran programs that
use a library of MPI routines.

See Section 10.2.2 for information about entering MP Prism.

You can use all features of MP Prism as described in this chapter to work on your
Sun MPI program.

Note the key advantage of using Prism with a Sun MPI program: The Sun MPI
program is viewed as a single parallel program; all processes of the parallel program
are visible from within a single Prism session. You do not have to attach a separate
debugger to each Sun MPI process.

10.10.1 Setting MPI_INIT_TIMEOUT
Sun MPI has timeouts built into the software to help detect when there are problems
starting an MPI task. However, these timeouts can be triggered erroneously when
you are debugging programs, such as when using Prism, and should therefore be
disabled prior to using a debugger on a Sun MPI program. The environment
variable MPI_INIT_TIMEOUT can be used to lengthen or disable the timeout time.
When MPI_INIT_TIMEOUT is set to a positive integer, the timeout value is set to
that time in seconds. When it is set to 0 or a negative integer, the timeout is disabled.
The default value is 600 seconds (10 minutes).

For example, to disable timeouts (in a C shell):

% setenv MPI_INIT_TIMEOUT –1

Again in a C shell, to set timeouts to 5 minutes:

% setenv MPI_INIT_TIMEOUT 300

A-1

APPENDIX A

Commands-Only Prism

You can run Prism in a commands-only mode, without the graphical interface. This
is useful if you don’t have access to a terminal or workstation running X. All Prism
functionality is available in commands-only mode except features that require
graphics (for example, visualizers). See Section A.1.

If you are using an Xterm, you can also run a commands-only version of Prism that
lets you redirect the output of certain commands to X windows. This may be
preferable to users who are used to a command-line interface for debugging, but
want to take advantage of some of Prism’s graphical features. See Section A.5.

For further information on individual commands, read the sections of the main body
of this guide dealing with the commands, and read the reference descriptions in the
Prism Reference Manual.

A.1 Specifying the Commands-Only Option
To enter commands-only mode, specify the -C option on the prism command line.
You can also include other arguments on the command line; for example, you can
specify the name of a program, so that Prism comes up with that program loaded. X
toolkit options are, of course, meaningless. See Section 2.2.2, “Command-Line
Options” for more information on command-line options.

When you have issued the command

% prism –C -np 4 a.out

you receive this prompt:

(prism all)

You can issue most Prism commands at this prompt, except for commands that
apply specifically to the graphical interface; these include pushbutton , tearoff ,
and untearoff .

A-2 Prism 5.0 User’s Guide • November 1997

A.2 Issuing Commands
You operate in commands-only Prism just as you do when issuing commands on the
command line in graphical Prism; output appears below the command you type,
instead of in the history region above the command line. You cannot redirect output
using the on window syntax. You can, however, redirect output to a file using the
@filename syntax.

Commands-only Prism supports the editing key combinations supported by
graphical Prism, plus some additional combinations. Here is the entire list:

■ Ctrl-a – Moves to the beginning of the line.

■ Ctrl-b (or Ctrl-h) – Moves back one character.

■ Ctrl-c – Interrupts execution.

■ Ctrl-d – Deletes the character under the cursor.

■ Ctrl-e – Moves to the end of the line.

■ Ctrl-f – Moves forward one character.

■ Ctrl-j – (or Ctrl-m)
Done with input (equivalent to pressing the Return key).

■ Ctrl-k – Deletes to the end of the line.

■ Ctrl-l – Refreshes the screen.

■ Ctrl-n – Displays the next command in the commands buffer.

■ Ctrl-p – Displays the previous command in the commands buffer.

■ Ctrl-u – Deletes to the beginning of the line.

When printing large amounts of output, commands-only Prism displays a more?
prompt after every screenful of text. Answer y or simply press the Return key to
display another screenful; answer n or q, followed by a carriage return, to stop the
display and return to the (prism) prompt.

You can adjust the number of lines Prism displays before issuing the more? prompt
by issuing the set command with the $page_size variable, specifying the number
of lines you want displayed. For example, issue this command to display 10 lines at
a time:

(prism) set $page_size = 10

Set the $page_size to 0 to turn the feature off; Prism will not display a more?
prompt.

Appendix A Commands-Only Prism A-3

A.3 Useful Commands
This section describes some commands that are especially useful in commands-only
Prism.

Use the list command to list source lines from the current file. For example,

(prism) list 10, 20

prints lines 10 through 20 of the current file.

Use the show events command to print the events list. Use the delete command
to delete events from this list.

Use the set command with the $print_width variable to specify the number of
items to be printed on a line. The default is 1.

A.4 Leaving Commands-Only Prism
Issue the quit command to leave commands-only Prism and return to your Solaris
prompt.

A.5 Running Commands-Only Prism From
an Xterm: The -CX Option
Issue the prism command with the - CX option from an Xterm to start up a
commands-only Prism that lets you redirect the output of certain commands to X
windows. The information presented earlier in this chapter about commands-only
Prism also applies to this version, except that this version lets you redirect output
using the on window syntax.

You can redirect the following output to X windows:

■ visualizers (including structure visualizers) – print or display command

■ Where graph (MP Prism only) – where command

■ Psets window (MP Prism only) – show psets command

A-4 Prism 5.0 User’s Guide • November 1997

To redirect the output, issue the appropriate command with the on dedicated or
on snapshot syntax, just as you would in graphical Prism. For example, this
command displays a visualizer for x in a dedicated window:

(prism) print x on dedicated

In addition, you can display help windows from within windows that you pop up in
this way.

Index-1

Index

SYMBOLS
#, 9-16
', 9-16
*, 10-24
.prism_defaults, 9-8
.prisminit, 2-6, 2-17, 9-16, 10-36
/ command, 2-10
/bin/make, 7-2, 9-6
>, 10-24
? command, 2-10
@, 2-15, 6-9

A
adjustable arrays

printing, 5-3
alias command, 9-3, 9-16
aliases

creating, 9-3
ALL intrinsic function, 2-19
all pset, 10-14
ANY intrinsic function, 2-19
appdefaults file, 9-4, 9-13
arrow keys, 2-7

using to scroll through source window, 2-10
assembly code

displaying in split source window, 2-12
assign command, 5-31

not available when examining node core
files, 10-34

assigning to a variable or array, 5-31
attach command, 3-4

cantbeusedinactionsfield', 4-4

in MP Prism, 10-22
attaching

in MP Prism, 10-22
attaching to a running process, 3-4

B
base

changing for a specific value, 5-31
changing the default, 5-2
changing via the Options menu, 5-21
specifying in print or display command, 5-7

break pset, 10-9, 10-26
breakpoints

deleting, 4-9, 4-10, 4-12
in MP Prism, 10-26
setting, 4-8

using commands to set, 4-11
using the event table and Events menu to

set, 4-10
using the linenumber region to set, 4-9

browser
default for displaying help, 9-15

C
call stack

displaying, 4-15
moving through, 4-15

cd command, 2-23
CDE, 2-3
changes

Index-2 Prism 5.0 User’s Guide • November 1997

where Prism stores, 9-8
CMPLX intrinsic function, 2-19, 5-15
collection command, 6-3
Collection selection, 6-3
colormap visualizers, 1-4, 5-13

changing the colors for, 9-12
changing the size of the default spectral color

map for, 9-12
minimum and maximum values of, 5-17

colors
changing Prismsstandard', 9-12

command line, 2-14
using, 2-14

command window, 1-3
using, 2-13

commands
adding to the tearoff region, 9-3
executing from a file, 2-17
issuing, 2-8
issuing multiple, 2-14
logging, 2-16
setting up alternative names for, 9-3

Commands Reference selection, 8-2
Common Events buttons, 4-5, 5-5
compilers

supported, 2-2
compiling and linking, 2-2

from within Prism, 7-2
complex numbers, 5-12, 5-20
cont command, 3-7

in MP Prism, 10-22
context

setting via print or display command, 5-6
Continue selection, 3-7
continuing execution, 3-7
contw command, 10-24

cannot be used in event actions, 10-28
core command, 3-4

cantbeusedinactionsfield', 4-4
not available in MP Prism, 10-34

core files
associating with loaded programs, 2-5, 3-3
process

examining, 10-34
working with, 2-5

COUNT intrinsic function, 2-19
Ctrl-a, 2-8, A-2
Ctrl-b, 2-8, A-2
Ctrl-c, 2-7, 2-14, 3-7, A-2

ending a wait in MP Prism, 10-23
Ctrl-d, 2-8, A-2
Ctrl-e, 2-8, A-2
Ctrl-f, 2-8, A-2
Ctrl-h, A-2
Ctrl-j, A-2
Ctrl-k, 2-8, A-2
Ctrl-l, A-2
Ctrl-m, A-2
Ctrl-n, 2-15, A-2
Ctrl-p, 2-15, A-2
Ctrl-u, 2-8, A-2
Ctrl-x, 2-10
Ctrl-z, 10-25
current execution point

returning to, 2-10
current file, 3-9

changing, 3-9
current function, 3-9

changing, 3-10
changing via the Where graph, 10-33

current process, 10-18, 10-19
current pset, 10-16

and dynamic psets, 10-17
and variable psets, 10-18
changing via the Where graph, 10-33
finding out, 10-17
setting, 10-16

current working directory
changing and printing, 2-23

Customize selection, 9-4
Customize utility

using, 9-4
cycle command, 10-20, 10-36
cycle pset, 10-19, 10-36
Cycle window, 10-20, 10-36

D
data

modifying, 5-31
data navigator, 1-4

using, 5-8
data parallel and messagepassing code

combining, 10-25
data parallel program

loading, 2-4
data parallel programs

Index-3

and MP Prism, 10-1
loading, 10-3

dbx, 2-8
dedicated window, 2-16, 5-5
define pset command, 10-12

cannot be used in event actions, 10-28
delete command, 4-12, 4-14, A-3
delete pset command, 10-16

cannot be used in event actions, 10-28
Delete selection, 4-6, 4-14
detach command, 3-5, 10-6

and MP Prism, 10-22
cantbeusedinactionsfield', 4-4

detaching from a running process, 3-4
disable command, 4-7
display command, 5-6

redirecting output to X window, A-3
specifying the radix in, 5-7
with varfile intrinsic, 5-24

Display Data selection, 6-4
Display dialog box, 5-5
DISPLAY environment variable, 2-3
Display selection (Debug menu), 5-3

in MP Prism, 10-35
display window

using, 5-9
displaying

difference from printing, 5-1
from the command window, 5-6
from the Debug menu, 5-3
from the event table, 5-5

dither visualizers, 5-11
done pset, 10-9
down command, 4-16
Down selection, 4-16
DP Prism, 10-1
DSIZE intrinsic function, 2-19
dump command, 5-31

E
eachinst keyword, 4-4
eachline keyword, 4-4
edit command, 7-1
edit geometry, 9-6
Edit selection, 7-1, 9-6, 9-11
editing source code, 7-1
editor

specifying default, 9-11
EDITOR environment variable, 7-1, 9-6
Email selection, 9-6
enable command, 4-7
environment variables

setting and displaying, 2-23
error bell, 9-6
error messages

specifying window for, 9-11
error pset, 10-9
error window, 9-6
errors

Prismsbehaviorafter', 9-15
eval pset command, 10-12, 10-18, 10-27
event list, 4-3, 4-12
event table

description of, 4-3
using, 4-3

Event Table selection, 4-3
events

adding, 4-5
and deleted psets, 10-28
deleting, 4-6
disabling, 4-7
editing, 4-6
enabling, 4-7
in MP Prism, 10-26
maintaining across reloads, 4-7
saving, 4-7
triggering conditions for, 4-2

Events menu, 4-5
executing a program, 3-5
execution pointer, 2-13

in MP Prism, 10-24
execution status

finding out in MP Prism, 10-24
expressions

writing in Prism, 2-17

F
F1 key, 2-7, 8-1
fg command, 10-25
file command, 3-10
File menu in visualizers

Diff and Diff With selections, 5-25
Save and Save as selections, 5-22
using, 5-10

Index-4 Prism 5.0 User’s Guide • November 1997

File selection, 2-10, 3-9, 3-10, 4-9
focus, 2-7
fonts

changing the default, 9-11
Fortran intrinsic functions, 2-19
func command, 3-10
Func selection, 2-10, 2-11, 3-10, 4-9
function definition

displaying in the source window, 2-11
functions

choosing the correct, 2-18

G
-g compiler option, 2-2
Glossary selection, 8-2
graph visualizers, 5-13

field height of, 5-17
minimum and maximum of, 5-17

H
help

getting, 8-1
help command, 8-2
help system

overview of, 1-5
using, 8-1

histogram visualizers, 5-11
parameters for, 5-17

history region, 2-14
changing the default length of, 2-14
using, 2-15

Host Prism, 10-3

I
I/O, 3-6

specifying the Xterm for, 9-7, 9-14
ILEN intrinsic function, 2-19
IMAG intrinsic function, 2-19
Index selection, 8-2
infinities

detecting, 2-21
initialization file, 2-6
interrupt command, 10-23

Interrupt selection, 2-14, 3-7
ending a wait in MP Prism, 10-24
in MP Prism, 10-23

interrupted pset, 10-9, 10-13, 10-23
interrupting execution, 3-7
isactive intrinsic, 10-11, 10-12

K
keyboard accelerators, 2-9
keyboard alternatives to the mouse, 2-7

L
languages supported in Prism, 2-2
layout intrinsic, 5-26
layouts

visualizing, 5-26
leaving Prism, 2-24
linenumber region, 1-3, 2-12, 10-28
list command, A-3
load command, 3-3

cantbeusedinactionsfield', 4-4
Load Data selection, 6-10
Load selection, 3-2
loading a program, 3-1
local variables

printing names and values of, 5-31
location cursor, 2-7
log command, 2-16, 9-16
logging commands and output, 2-16

M
make command, 7-3
Make selection, 7-2
make utility, 7-2, 9-6
makefile

creating, 7-2
using, 7-2

Man Pages selection, 8-3
manual pages

viewing, 8-3
Mark Stale Data, 9-6
MAXLOC intrinsic function, 5-7
MAXVAL intrinsic function, 2-19

Index-5

memory
examining the contents of, 4-16

menu bar, 1-2
using, 2-8

menu threshold
for TM/HPF generic procedures, 9-7

messagepassing programs, 10-1
Meta key, 2-7
MINVAL intrinsic function, 2-19
Motif keyboard translations

changing, 9-14
mouse

getting help on using, 8-2
using, 2-6

MP Prism, 10-1
attaching in, 10-6
commandline options, 10-3
commandsonly version, 10-25
customizing, 10-36
debugging in, 10-25
entering, 10-2
events in, 10-26
executing a program in, 10-22
overview of, 10-2
prompt in, 10-17

shortening, 10-18
scope in, 10-33
visualizing data in, 10-35

N
names

resolving, 2-18
NaNs

detecting, 2-21
Netscape, 9-15
next command, 3-6, 3-7

in MP Prism, 10-22
Next selection, 3-6, 3-7
nexti command, 3-7

O
online documentation, 8-3

obtaining in commandsonly Prism, A-3
Options menu in visualizers

using, 5-10

output
logging, 2-16
redirecting, 2-15

in -CX version of Prism, A-3
Overview selection, 8-2

P
parallel objects

visualizing layouts of, 5-26
perf command, 6-9
perfload command, 6-11
performance data

collecting, 6-3
outside of Prism, 6-3

displaying, 6-4
displaying in the command window, 6-9
interpreting, 6-9
overhead of collecting, 6-2
what is collected, 6-1

performance data files
saving and loading, 6-10

Performance Data window, 6-5
Procedures pane, 6-7
Resources pane, 6-6
SourceLines pane, 6-8

perfsave command, 6-10
perftip command, 6-9
PRESENT intrinsic function, 2-19
print command, 5-6

redirecting output to X window, A-3
specifying the radix in, 5-7
with varfile intrinsic, 5-24

Print dialog box, 5-3
Print selection (Debug menu), 5-3

in MP Prism, 10-35
Print selection (Events menu), 5-5
printenv command, 2-24
printing

changing the default precision for, 5-17
difference from displaying, 5-1
from the command window, 5-6
from the Debug menu, 5-3
from the event table, 5-5
from the source window, 2-11, 5-4
specifying the number of items to be printed on a

line, A-3
Prism

Index-6 Prism 5.0 User’s Guide • November 1997

commandsonly, 2-5, 9-10, A-1, A-2, A-3
entering, 2-3
initializing, 9-16
languages supported in, 2-2
leaving, 2-24
look and feel of, 1-2
overview of, 1-1

prism command
-C option, 2-5, A-1
-CX option, 2-5, A-3
-np option, 10-3
-p option, 10-4
-pvm option, 10-37
-tmrun option, 10-4

Prism defaults
changing, 9-8

Prism resources
and commandsonly Prism, 9-10
table of, 9-8

Prism*fontList, 9-12
Prism*XmText.fontList, 9-11
Prism.cppPath, 10-37
Prism.dialogColor, 9-12
Prism.editGeometry, 9-11
Prism.editor, 9-11
Prism.errorBell, 9-15
Prism.errorwin, 9-11
Prism.helpBrowser, 9-15
Prism.helpUseExisting, 9-15
Prism.mainColor, 9-12
Prism.markStaleData, 9-15
Prism.procMenu, 9-16
Prism.procThresh, 9-16
Prism.spectralMapSize, 9-12
Prism.textBgColor, 9-12
Prism.textFont, 9-11
Prism.textManyFieldTranslations, 9-13
Prism.textMasterColor, 9-12
Prism.textOneFieldTranslations, 9-13
Prism.useXterm, 9-14
Prism.vizcolormap, 9-12
procedure menu

for Sun HPF generic procedures, 9-7
procedures

displaying performance data on, 6-7
process

attaching to running, 2-5
process command, 10-19, 10-34

cannot be used in event actions, 10-28

process, running
attaching to and detaching from, 3-4
loading, 2-5

processes
interrupting, 10-23
waiting for, 10-23

PRODUCT intrinsic function, 2-19
programs

executing, 3-5
loading into Prism, 3-1
reloading into Prism, 3-3
rerunning, 3-5

ps command, 3-4, 10-37
pset command, 10-16, 10-17, 10-18, 10-34

cannot be used in event actions, 10-28
pset keyword, 10-9
pset qualifier, 10-21

cannot be used in event actions, 10-28
lists of commands that accept, 10-21

psets, 10-2
cycling through the members of, 10-19
defining, 10-9

syntax for, 10-9
deleting, 10-16
dynamic, 10-9

and events, 10-27
and the current pset, 10-17
contrasted with variable psets, 10-13

naming, 10-12
predefined, 10-9
using, 10-6
using in commands, 10-21
variable, 10-11

and events, 10-27
and the current pset, 10-18
contrasted with dynamic psets, 10-13
evaluating membership in, 10-12

viewing the contents of, 10-13
Psets selection, 10-7
Psets window, 10-13

changing the current pset via, 10-16
cycling via, 10-20
using, 10-7
zooming in, 10-14

pstatus command, 10-24
pushbutton command, 9-3, 9-16, A-1
PVM programs

using MP Prism with, 10-37
pwd command, 2-23

Index-7

Q
qualified names, 2-18

using, 2-18
quit command, 2-24, A-3

in MP Prism, 10-22
Quit selection, 2-24

R
radix

changing for a specific value, 5-31
changing the default, 5-2
changing via the Options menu, 5-21
specifying in print or display command, 5-7

RANK intrinsic function, 2-19
REAL intrinsic function, 2-20
registers

examining the contents of, 4-16, 5-6
reload command, 3-3
rerun command, 3-5
resize box, 2-14
resolving names, 2-18
resources

displaying data on, 6-6
return command, 3-6

cantbeusedinactionsfield', 4-4
run command, 3-5

cantbeusedinactionsfield', 4-4
Run selection, 3-5
running pset, 10-9

S
Save Data selection, 6-10
scope

in MP Prism, 10-33
scope pointer, 2-13
serial program

loading, 2-4
set command, 9-3

$d_precision and $f_precision variables, 5-17
$history variable, 2-14
$page_size variable, A-2
$print_width variable, A-3
$prompt_length variable, 10-18
$radix variable, 4-15, 5-2

setenv command, 2-23

sh command, 2-23
Shell selection, 2-23
show events command, 4-7, 4-8, 4-12, 4-14, 10-28,

A-3
show pset command, 10-14, 10-17, 10-18
show psets command, 10-7, 10-12, 10-15

redirecting output to X window, A-3
snapshot window, 2-16, 5-5
source code

editing, 7-1
moving through, 2-10

source command, 4-8
source files

creating a directory list for, 3-11
source lines

displaying performance data on, 6-8
source window, 1-3

scrolling, 2-10
splitting, 2-11
using, 2-9

status messages, 3-7
status region, 1-3
step command, 3-6, 3-7

cantbeusedinactionsfield', 4-4
in MP Prism, 10-22

Step selection, 3-6
stepi command, 3-7
stepout command, 3-6, 3-7
Stepout selection, 3-6
stepping through a program, 3-6
Stop button, 4-10
Stop selection, 4-10
Stop selection, 4-10
stop command, 4-11
stopi command, 4-11, 4-12
stopped keyword, 4-4
stopped pset, 10-9, 10-11, 10-13
structures

visualizing, 5-26
in commandsonly Prism, A-3

SUM intrinsic function, 2-20
Sun HPF generic procedures

changing the way Prism handles, 9-16
using, 2-21

Sun HPF program
loading, 2-4

Sun MPI programs
using MP Prism with, 10-38

surface visualizers, 5-14

Index-8 Prism 5.0 User’s Guide • November 1997

field height of, 5-17
minimum and maximum of, 5-17

T
Tab, 2-7
task ID, 10-6
tearoff command, 9-2, 9-16, A-1
Tearoff dialog box, 9-2
tearoff region, 1-2, 9-1, 9-2
Tearoff selection, 9-2
text

selecting in source window, 2-10
text font, 9-7
text visualizers, 1-4, 5-11

precision of, 5-17
text widgets

changing keyboard translations in, 9-13
threshold visualizers, 1-4, 5-12

threshold of, 5-17
Tip selection, 6-9
TMPROF environment variable, 6-3
TMPROF_DATAFILE environment variable, 6-3
TMPROF_EXEC environment variable, 6-3
-tmprofile compiler option, 2-2
tmps command, 2-5, 3-4, 10-6
tmrun command, 10-3
TMRUN_FLAGS, 2-3, 10-3, 10-4
tmrunargs command, 2-4, 10-5
tmsub command, 10-3
Trace button, 4-13
Trace selection, 4-13
Trace selection, 4-13
trace command, 4-11, 4-14
Trace selection, 4-13
tracei command, 4-11, 4-14
traces

deleting, 4-14
in MP Prism, 10-26

requirement that processes synchronize, 10-
27

tracing program execution, 4-13
triggering conditions for events, 4-2
Tutorial selection, 8-2

U
unalias command, 9-3
UNIX commands

issuing, 2-23
unset command, 9-3
unsetenv command, 2-24
untearoff command, 9-2, A-1
up command, 4-16
Up selection, 4-16
use command, 3-11
Use selection, 3-3, 3-11
Using Help selection, 8-2

V
varfile intrinsic, 5-23
variables

changing the values of, 5-31
choosing the correct, 2-18
comparing values of, 5-24
printing the type of, 5-30
restoring the values of from a file, 5-23
saving the values of to a file, 5-22
setting up alternative names for, 9-3

varsave command, 5-22
vector visualizers, 5-15

minimum and maximum of, 5-17
visualization parameters, 5-16
visualizer color file

creating, 9-7
sample, 9-7

visualizers, 1-4, 5-7
closing, 5-21
comparing values in, 5-24
displaying a ruler for, 5-18
displaying from the source window, 2-11
field width of, 5-16
in MP Prism, 10-35
saving, restoring, and comparing, 5-22
setting the context for, 5-20
statistics for, 5-19
structure, 5-26
treatment of stale data in, 9-6
types of, 5-11
updating, 5-21
working with, 5-7

Index-9

W
Wait Any selection, 10-23
wait command, 10-23

any argument, 10-23
every argument, 10-23

Wait Every selection, 10-23
watchpoint, 4-2
whatis command, 5-30
Whatis selection, 5-30
when command, 4-11
where command, 4-15

in MP Prism, 10-33
MP Prism version

redirecting output to X window, A-3
Where graph, 10-29

and the current process, 10-19
moving through, 10-33
panning and zooming in, 10-30
shrinking portions of, 10-32
visualizing in commandsonly Prism, A-3

Where selection, 4-15
in MP Prism, 10-29

Where window, 4-15, 4-16
whereis command, 2-19
which command, 2-18

X
X resource database

adding Prism resources to, 9-10
X servers

supported, 2-3
X toolkit commandline options, 2-5
X Window System, 1-1
xman, 8-3
xrdb, 9-10
-xs compiler option, 2-2
Xterm

specifying for I/O, 9-14

Index-10 Prism 5.0 User’s Guide • November 1997

