
Sun S3L 3.0 Programming and
Reference Guide

901 San Antonio Road
Palo Alto, , CA 94303-4900

USA 650 960-1300 Fax 650 969-9131

Part No: 805-6275-10
June 1999, Revision A

Copyright Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers .
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunStore, AnswerBook2, docs.sun.com, and Solaris are trademarks, registered trademarks, or service
marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun

TM

Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.
Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303-4900 U.S.A. Tous droits réservés.
Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, SunStore, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun

TM

a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface xi

1. Introduction to Sun S3L 1

Sun S3L Overview 1

Contents of Sun S3L 2

Sun S3L Toolkit Functions 3

Core Scientific Library Routines 4

2. Sun S3L Arrays 7

Overview 7

S3L Array Attributes 7

S3L Array Handles 8

Processes and Process Grids 8

Defining Process Grids 10

Declaring S3L Arrays 11

Deallocating S3L Arrays 13

Distributing S3L Arrays 13

Examining the Contents of S3L Arrays 17

Printing S3L Arrays 17

Visualizing Distributed S3L Arrays With Prism 19

3. Sun S3L Performance Guidelines 21

Contents iii

Introduction 21

S3L Array Layout and Performance 21

Functions That Benefit From Cyclic Distributions 22

Distributing Only the Last Axis 23

Allocating Arrays in Shared Memory 24

Numbers of Processes 24

Function-Specific Guidelines 25

S3L FFT (Fast Fourier Transform) 25

Dense Singular Value Decomposition (SVD) 29

Sorting and Ranking S3L Arrays 29

Dense Linear Systems Solvers 30

Banded Solvers 30

Sparse Linear Systems Solvers 31

Sparse matrix utilities 32

Dense Matrix Operations 32

Convolution, Deconvolution, Correlation, Autocorrelation 33

4. Sun S3L Data Types 35

5. Multiple Instance 41

Defining Multiple Independent Data Sets 42

Rules for Data Axes and Instance Axes 43

Specifying Single-Instance vs. Multiple-Instance Operations 44

Example 1: Matrix-Vector Multiplication 44

Example 2: Fast Fourier Transforms 49

6. Using Sun S3L 51

Creating a Program that Calls Sun S3L Routines 51

H To use Sun S3L routines in a program: 51

Include the Sun S3L Header File 52

Compiling and Linking 53

iv Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Executing Sun S3L Programs 53

The Sun S3L Safety Mechanism 54

Synchronization 54

Error Checking and Reporting 54

Levels of Error Checking 55

Selecting a Safety Mechanism Level 56

Setting the Sun S3L Safety Environment Variable 56

Setting the Safety Level from Within a Program 57

Online Sample Code and Man Pages 57

Sample Code Directories 57

Compiling and Running the Examples 58

Man Pages 59

7. Sun S3L Toolkit Routines 61

Setting Up a Sun S3L Environment 63

S3L_init 63

Leaving a Sun S3L Environment 65

S3L_exit 65

Declaring Parallel Arrays 67

S3L_declare 67

S3L_declare_detailed 71

S3L_DefineArray 75

Parallel Process Grids 78

S3L_set_process_grid 78

S3L_free_process_grid 81

Deallocating Parallel Arrays 82

S3L_free 82

S3L_UnDefineArray 84

Performing Operations on S3L Parallel Arrays 86

Contents v

S3L_array_op1 86

S3L_array_op2 88

S3L_array_scalar_op2 91

S3L_cshift 93

S3L_forall 96

S3L_reduce 99

S3L_reduce_axis 101

S3L_set_array_element ,
S3L_get_array_element , S3L_set_array_element_on_proc ,
and S3L_get_array_element_on_proc 104

S3L_zero_elements 107

Extracting Information About S3L Parallel Arrays 109

S3L_describe 109

S3L_get_attribute 111

Reading Data Into and Printing From S3L Parallel Arrays 116

S3L_read_array and S3L_read_sub_array 116

S3L_print_array and S3L_print_sub_array 119

S3L_write_array and S3L_write_sub_array 121

Copy Array 124

S3L_copy_array 124

Converting Between ScaLAPACK Descriptors and S3L Array Handles 126

S3L_from_ScaLAPACK_desc 126

S3L_to_ScaLAPACK_desc 129

Performing Miscellaneous S3L Control Functions 131

S3L_thread_comm_setup 132

S3L_set_safety 134

S3L_get_safety 137

8. Sun S3L Core Library Functions 139

Dense Matrix Routines 142

vi Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

S3L_2_norm and S3L_gbl_2_norm 142

S3L_inner_prod and S3_gbl_inner_prod 146

S3L_mat_mult 152

S3L_mat_vec_mult 158

S3L_outer_prod 163

Sparse Matrix Operations 167

S3L_declare_sparse 167

S3L_free_sparse 171

S3L_rand_sparse 173

S3L_matvec_sparse 176

S3L_read_sparse 179

S3L_print_sparse 184

Gaussian Elimination for Dense Systems 187

S3l_lu_factor 187

S3l_lu_invert 190

S3l_lu_solve 193

S3l_lu_deallocate 196

Fast Fourier Transforms 198

S3L_fft 198

S3L_fft_detailed 201

S3L_ifft 204

S3L_rc_fft and S3L_cr_fft 207

S3L_fft_setup 212

S3L_rc_fft_setup 214

S3L_fft_free_setup 217

S3L_rc_fft_free_setup 218

Structured Solvers 220

S3L_gen_band_factor 220

Contents vii

S3L_gen_band_free_factors 224

S3L_gen_band_solve 225

S3L_gen_trid_factor 229

S3L_gen_trid_free_factors 232

S3L_gen_trid_solve 234

Dense Symmetric Eigenvalue Solver 237

S3L_sym_eigen 237

Parallel Random Number Generators 241

S3L_setup_rand_fib 241

S3L_free_rand_fib 243

S3L_rand_fib 245

S3L_rand_lcg 247

Least Squares Solver 249

S3L_gen_lsq 249

Dense Singular Value Decomposition 252

S3L_gen_svd 252

Iterative Solver 256

S3L_gen_iter_solve 256

Autocorrelation 263

S3L_acorr_setup 263

S3L_acorr_free_setup 265

S3L_acorr 267

Convolution/Deconvolution 270

S3L_conv_setup 270

S3L_conv_free_setup 273

S3L_conv 275

S3L_deconv_setup 278

S3L_deconv_free_setup 280

viii Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

S3L_deconv 282

Multidimensional Sort and Grade 286

S3L_grade_down , S3L_grade_up , S3L_grade_down_detailed ,
S3L_grade_up_detailed 286

S3L_sort , S3L_sort_up , S3L_sort_down ,
S3L_sort_detailed_up , S3L_sort_detailed_down 292

Parallel Transpose 297

S3L_trans 297

A. S3L Array Checking Errors 301

Contents ix

x Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Preface

This manual describes the Sun
TM

Scalable Scientific Subroutine Library (Sun S3L). It is
directed to anyone developing message-passing C, C++, F77, or F90 programs.

Acknowledgments
The Sun S3L dense linear algebra routines make use of the ScaLAPACK library
described in “ScaLAPACK: Linear Algebra Software for Distributed Memory
Architectures,” J. Demmel, J. Dongarra, R. van de Geijn, and D. Walker; in Parallel
Computers: Theory and Practice, Ed. by T. Casavant, P. Tvrdik, and F. Plasil. (IEEE
Press, 1995, pp. 267-282.)

ScaLAPACK routines access the Sun MPI library through calls to the BLACS library
described in “Two-dimensional Basic Linear Algebra Communications Subprograms,”
J. Dongarra and R. van de Geijn, in Environments and Tools for Parallel Scientific
Computing, Ed. by J. Dongarra and B. Tourancheau (Elsevier Science Publisher B.V.,
1993, pp. 31-40.), in “Basic Linear Algebra Communication Subprograms: Analysis
and Implementation Across Multiple Parallel Architectures,” R.C. Whaley.

Using UNIX Commands
This document may not contain information on basic UNIX® commands and
procedures.

See one or more of the following for such information:

Preface xi

� AnswerBook
TM

online documentation for the Solaris
TM

2.x software environment

� Other software documentation that you received with your system

Typographic Conventions

TABLE P–1 Typographic Conventions

Typeface or
Symbol

Meaning Examples

AaBbCc123 The names of commands, files, and
directories; on-screen computer
output.

Edit your .login file.

Use ls --a to list all files.

% You have mail .

AaBbCc123 What you type, when contrasted
with on-screen computer output.

% ls -a

AaBbCc123 Book titles, new words or terms,
words to be emphasized.

Command-line variable; replace
with a real name or value.

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be root to do this.

To delete a file, type rm filename.

Shell Prompts

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

xii Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE P–2 Shell Prompts (continued)

Shell Prompt

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Related Documentation

TABLE P–3 Related Documentation

Application Title Part Number

All Sun HPC ClusterTools 3.0 Product Notes 805-6262-10

Sun MPI
Programming

Sun MPI 4.0 Programming and Reference
Guide

805-6269-10

Sun MPI
Programming

Sun MPI 4.0 User’s Guide: With CRE 806-0296-10

Sun MPI
Programming

Sun MPI 4.0 User’s Guide: With LSF 805-7230-10

Prism Prism 6.0 User’s Guide 805-6277-10

Prism Prism 6.0 Reference Manual 805-6278-10

LSF LSF Batch User’s Guide 805-6258-10

LSF LSF Batch Programmer’s Guide 805-6260-10

xiii

xiv Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CHAPTER 1

Introduction to Sun S3L

This chapter contains general information about the Sun Scalable Scientific
Subroutine Library (Sun S3L).

Sun S3L Overview
Sun S3L provides a set of parallel and scalable functions and tools widely used in
scientific and engineering computing. It can be used on all Sun HPC Systems, from a
single processor on an SMP, through multiple processors on a stand-alone SMP, to a
cluster of SMPs.

The chief advantages offered by Sun S3L are summarized below.

� Sun S3L is optimized for Sun HPC Systems.

� Sun S3L functions have a simple array syntax interface that is callable from
message-passing programs written in C, C++, F77, or F90.

� Sun S3L supports multiple instances.

� Sun S3L is thread safe.

� Sun S3L uses the Sun Performance Library
TM

for nodal computation.

� Extensive and detailed programming examples are provided online.

� Sun S3L is supported by Sun.

� Sun S3L includes built-in diagnostics.

Sun S3L uses array handles to provide array syntax support to message-passing
programs. Array handles, which are closely analogous to the array descriptors found
in the public domain packages ScaLAPACK and PETSc, facilitate argument passing
by encapsulating information about distributed arrays.

1

Sun S3L operates on multidimensional arrays of up to 32 dimensions. This means it
implements the multiple-instance paradigm, where the same function is applied to
multiple, disjoint data sets concurrently.

The Sun S3L user interface includes a communicator setup routine that allows Sun
S3L functions to be used in multithreaded applications. This routine causes Sun S3L
to establish an independent Sun MPI communicator and thread-safe data for each
thread from which the routine is called.

Sun S3L routines implement the Sun Performance Library for nodal operations. This
is a collection of libraries for dense linear algebra and Fourier transforms based on
the standard libraries BLAS, LINPACK, LAPACK, FFTPACK, and VFFTPACK.
Besides providing appropriate nodal support to Sun S3L, routines from the Sun
Performance Library can be called independently from any user codes running
locally on a Sun Ultra HPC Server node.

Note - The Sun Performance Library is available to Sun S3L users as part of
WorkShop Compilers Fortran or Performance WorkShop Fortran, v4.2 and v5.0.

Sun S3L routines operate on objects of various data types. However, this information
is encoded in the array handle and is decoded at run time, allowing appropriate
branching to occur during execution. Consequently, there is no need for separate
routines with different names to implement the different data types; a single routine
suffices for all types.

An extensive set of online examples illustrate correct use of all Sun S3L functions.
These examples can be used as templates in developing actual code. Separate
examples are provided to demonstrate C and Fortran interfaces.

Contents of Sun S3L
Sun S3L consists of a set of core library functions—that is, subroutines that perform
the linear algebra, Fourier transform, and other scientific computations—plus a set of
auxiliary utilities, referred to as the toolkit functions.

The toolkit functions are introduced in “Sun S3L Toolkit Functions” on page 3, with
detailed descriptions provided in Chapter 7. The core library functions are
introduced in “Core Scientific Library Routines” on page 4, with detailed
descriptions in Chapter 8. They are also described in their online man pages.

Many of the Sun S3L core routines support the corresponding ScaLAPACK
application programming interfaces (APIs). Table 1–1 lists the ScaLAPACK APIs that
are supported.

2 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE 1–1 Supported ScaLAPACK APIs

Category Routine

PBLAS 1,2,3 p{s,d}dot , p{c,z}dotu , p{s,d}nrm2 , p{sc,dz}nrm2 , p{s,d}ger ,
p{c,z}geru , p{s,d,c,z}gemv , p{s,d,c,z}gemm

LU factor, solve,
inverse

p{s,d,c,z}getrf,p{c,d,c,z}getrs,p{c,d,c,z}getri

Tridiagonal
solvers

p{s,d,c,z}dttrf, p{s,d,c,z}dttrs

Banded solvers p(s,d,c,z)gbsv, p(s,d,c,z)gbtrf, p(s,d,c,z)gbtrs

Symmetric
eigensolver

p{s,d}syevx, p{c,z}heevx

Singular Value
Decomposition

p{s,d,c,z}geqrf

Least Squares
Solver

p{s,d,c,z}gels

Sun S3L Toolkit Functions
Sun S3L includes an extensive set of functions that enable Sun MPI programmers to
perform a variety of auxiliary tasks, such as:

� Initializing and exiting from the S3L environment.

� Creating and destroying S3L array handles for defining parallel arrays.

� Creating and destroying S3L process grid handles for defining process grids.

� Performing operations on array elements.

� Extract information about parallel arrays and array subgrids.

� Reading a file into all or part of an S3L parallel array.

� Writing all or part of an S3L parallel array into a file.

� Printing all or part of an S3L parallel array to standard output.

� Converting ScaLAPACK descriptors into S3L array handles and S3L array handles
into ScaLAPACK descriptors.

� Creating Sun MPI communicators to allow thread-safe operation of S3L functions.

� Controlling the S3L safety mechanism.

Introduction to Sun S3L 3

Core Scientific Library Routines
The Sun S3L core routines consist of:

� Dense matrix operations

� 2–Norm – Compute the global 2–norm of a parallel array.

� Inner product – Compute the global inner product over all axes of two source
parallel arrays. The inner product is added to the destination. A routine that
takes the conjugate of the second operand is provided for complex data.

� Outer product – Compute one or more instances of an outer product of two
vectors. The result is added to the destination. For complex data, a routine that
takes the conjugate of the second operand is provided.

� Matrix-vector multiplication – Compute one or more instances of a
matrix-vector product. The result is added to the destination, or is added to a
second parallel array. For complex data, a routine that takes the conjugate of
the matrix is provided.

� Matrix multiplication – Compute one or more matrix products. Each routine
add the result to the destination. Routines that take the transpose of either or
both operand matrices (or, for complex data, the Hermitian of either matrix)
are provided.

� LU-factorization and LU-solve routines

� LU-factorization routine – For each m x n coefficient matrix A of a, computes
LU factorization using partial pivoting with row interchanges.

� LU-solve routine – Uses the L and U factors produced by the LU-factorization
routine to produce solutions to the system AX=B. B may represent one or more
right-hand sides for each instance of the systems of equations.

� LU-invert routine – For each m x m (square) instance of matrix A, computes the
inverse of A using the LU-factorization results of the S3L_lu_factor routine.

� Parallel 1D, 2D, and 3D FFTs

� Setup and deallocation of FFT handles – Initialize and deallocate FFT handles
for both complex and real data types. Separate routines are used for the two
data types.

� Simple complex-to-complex, mixed-radix, forward and inverse FFT routines –
Performs forward or inverse Fast Fourier Transform of a parallel array of type
complex or double complex. Supports both power-of-two and arbitrary radix
parameters.

4 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� Detailed complex-to-complex FFT routine – Allows independent specification
along each data axis of the transform direction in a complex-to-complex FFT.
Can improve performance over the simple FFT in some cases.

� Simple real-to-complex and complex-to-real FFT routines – Perform the
forward (real-to-complex) and inverse (complex-to-real) FFT operations on 1-,
2-, or 3-dimensional arrays.

� Structured solver

� Tridiagonal solver – Solves collections of tridiagonal linear systems of
equations using Gaussian elimination with pivoting.

� Banded solver – Solves collections of banded linear systems of equations using
Gaussian elimination with pivoting.

� Dense symmetric eigenvalue solver – Computes selected eigenvalues and,
optionally, engenvectors of hermitian matrices.

� Dense Singular Value Decomposition (SVD) – Computes the singular value
decomposition of an M x N matrix and, optionally, the left and right singular
vectors.

� Sparse routines

� Declare array handle for a sparse matrix.

� Read data from a file into a distributed matrix, with support for both COO and
CSR sparse storage formats.

� Compute the product of a sparse matrix with a dense vector.

� Iterative solver – Solves a general sparse linear system of equations using iterative
methods, with or without preconditioning.

� Convolution/Deconvolution

� Convolve – Computes 1D or 2D convolution of one array with another.

� Deconvolve – Deconvolves an array into a vector.

� Iterative eigensolver – Computes selected eigenpairs of dense or sparse matrices,
with optional specification of eigenpair properties.

� Autocorrelation – Computes 1D or 2D autocorrelation of a signal.

� Sort and grade – Sort and grade arrays.

� Parallel random number generators

Introduction to Sun S3L 5

� Fibonacci RNG setup and deallocation – Initializes and deallocates the state
table of a lagged Fibonacci random number generator (LFG).

� Fibonacci RNG – Uses an LFG to initialize a parallel array.

� LCG RNG setup – Defines the parameters used in the Sun S3L linear
congruential random number generator (LCG).

� LCG RNG – Uses a parallel LCG to produce random numbers that are
independent of the array distribution.

� Parallel sort – Sorts a 1D parallel array.

� Parallel transpose – Performs a generalized transposition of a parallel array.

� Copy array routine – Copies the elements of one array onto another.

� Zero array elements – Replaces all elements in an array with zero.

6 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CHAPTER 2

Sun S3L Arrays

Overview
In Sun S3L, arrays are distributed in blocks across multiple processes, allowing S3L
operations to be performed in parallel on different sections of the array. These arrays
are referred to in this manual as S3L arrays and, more generically, as parallel arrays.

Arrays passed to Sun S3L routines by C or F77 message-passing programs can have
block, cyclic, or block-cyclic distributions. Regardless of the type of distribution
specified by the calling program, Sun S3L will automatically select the distribution
scheme that is most efficient for the routine being called. If that means Sun S3L
changes the distribution method internally, it will restore the original distribution
scheme on the resultant array before passing it back to the calling program.

Arrays from C and F77 message-passing programs can also be undistributed. That is,
all the elements of the array can be located on the same process—a serial array in the
conventional sense.

The balance of this chapter describes S3L arrays in more detail.

S3L Array Attributes
A principal attribute of S3L arrays is rank—the number of dimensions an array has.
For example, an S3L array with three dimensions is called a rank-three array. S3L
arrays can have up to 31 dimensions.

7

An S3L array is also defined by its extents, its length along each dimension of the
array and its type, which reflects the data type of its elements. S3L arrays can be of
the following types:

� S3L_integer (4-byte integer)

� S3L_long_integer (8-byte integer)

� S3L_float (4-byte floating point number)

� S3L_double (8-byte double precision floating point number)

� S3L_integer (4-byte integer)

� S3L_complex (8-byte complex number)

� S3L_double_complex (16-byte complex number)

The C and Fortran equivalents of these array data types are described in Chapter 4.

S3L Array Handles
When an S3L array is declared, it is associated with a unique array handle. This is an
S3L internal structure that fully describes the array. An S3L array handle contains all
the information needed to define both the global and local characteristics of an S3L
array. For example, an array handle includes

� global features, such as the array’s rank and information about how the array is
distributed

� local features, such as its extents and its location in memory on the process

By describing both local and global features of an array, an array handle makes it
possible for any process to easily access data in array sections that are on other
processes, not just data in its local section. That is, no matter how an array has been
distributed, the associated S3L array handle ensures that its layout is understood by
all participating processes.

In C programs, S3L array handles are declared as type S3L_array_t and in Fortran
programs as type integer*8.

Processes and Process Grids
In a Sun MPI application, each process is identified by a unique rank. This is an
integer in the range 0 to np-1, where np is the total number of processes associated
with the application.

8 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Note - This use of rank is totally unrelated to references to S3L array ranks. Process
ranks correspond to MPI ranks as used in interprocess communication. Array ranks
indicate the number of dimensions an array has.

Sun S3L maps each S3L array onto a logical arrangement of processes, referred is to
as a process grid. A process grid will have the same number of dimensions as the
S3L array with which it is associated. Each S3L array section that is distributed to a
particular process is called a subgrid.

Sun S3L controls the ordering of the np processes within the n-dimensional process
grid. Figure 2–1through Figure 2–3 illustrate this with examples of how Sun S3L
might arrange eight processes in one- and two-dimensional process grids.

In Figure 2–1, the eight processes form a one-dimensional grid.

Figure 2–1 Eight Processes Arranged as a 1x8 Process Grid

Figure 2–2 and Figure 2–3 show the eight processes organized into rectangular 2x4
process grids. Although both have 2x4 extents, the array process grids differ in their
majorness attribute. This attribute determines the order in which the processes are
distributed onto a process grid’s axes or local subgrid axes. The two possible modes
are:

� Column major – Processes are distributed along column axes first; that is, the
process grid’s row indices increase fastest.

� Row major – Processes are distributed along row axes first; the process grid’s
column indices increase fastest.

In Figure 2–2, subgrid distribution follows a column-major order. In Figure 2–3,
process grid distribution is in row-major order.

Sun S3L Arrays 9

Figure 2–2 Eight Processes Arranged as a 2x4 Process Grid: Column-Major Order

Figure 2–3 Eight Processes Arranged as a 2x4 Process Grid: Row-Major Order

Note - In these examples, axis numbers are one-based (Fortran-style). For the
C-language interface, reduce each value by 1.

Defining Process Grids
When an S3L array is defined, the programmer has the choice of either defining a
process grid explicitly, using the S3L_set_process_grid function, or letting S3L
define one using an internal algorithm. The following F77 example how to specify a
two-dimensional process grid that is defined over a set of eight processes having
MPI ranks 0 through 7. The process grid has extents of 2x4 and is assigned
column-major ordering.

10 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CODE EXAMPLE 2–1

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_free(a)

S3L_array_t *a
include ‘s3l/s3l-f.h’
integer*8 pg
integer*4 rank
integer*4 pext(2),process_list(8)
integer*4 i,ier

rank = 2
pext(1) = 2
pext(2) = 4
do i=1,8

process_list(i)=i-1
end do
call s3l_set_process_grid(pg,rank,S3L_MAJOR_COLUMN,

pext,8,process_list,ier)

A process grid can be defined over the full set of processes being used by an
application or over any subset of those processes. This flexibility can be useful when
circumstances call for setting up a process grid that does not include all available
processes.

For example, if an application will be running in a two-node cluster where one node
has 14 CPUs and the other has 10, better load balancing may be achieved by defining
the process grid to have 10 processes in each node.

For more information about explicitly defining process grids, see
“S3L_set_process_grid ” on page 78 or the S3L_set_process_grid(3) man page.

Declaring S3L Arrays
Sun S3L provides two subroutines for declaring S3L arrays: S3L_declare and
S3L_declare_detailed. The library also includes the S3L_DefineArray interface, which
maintains compatibility with the Sun HPC 2.0 release of Sun S3L.

S3L_declare and S3L_declare_detailed perform the same function, except that
S3L_declare_detailed provides additional arguments that allow more detailed control
over the array features. Both require the programmer to specify

� The array’s rank

Sun S3L Arrays 11

� The array’s extents

� The array’s type

� Which axes will be distributed and which will be local (kept in a single block on
one process).The method by which the array is to be allocated.

In addition, S3L_declare_detailed allows the programmer to specify the following
array features:

� The starting address of the local subgrid. This value is used only if the
programmer elects to allocate array subgrids explicitly by disabling automatic
array allocation. The block size to be used in distributing the array along each
axis. The programmer has the option of letting Sun S3L choose a default
blocksize.Which processes contain the start of each array axis. Again, the
programmer can let Sun S3L specify default processes. To use this option, the
programmer must specify a particular process grid, rather than using one
provided by Sun S3L.

The following F77 example allocates a 100 x 100 x 100 double-precision array.

CODE EXAMPLE 2–2

integer*8 a,pg_a
integer*4 ext_a(3), block_a(3), local_a(3)
ext_a(1) = 100
ext_a(2) = 100
ext_a(3) = 100
local_a(1) = 1
local_a(2) = 0
local_a(3) = 0
call s3l_declare_detailed(a,0,3,ext_a,S3L_double,block_a,

-1,local_a,pg_a,S3L_USE_MALLOC,ier)

The S3L array a is distributed along each axis of the process grid. The block sizes for
the three axes are specified in block_a . Because local_a is set to 1, the first axis of
a will be local to the first process in the process grid’s first axis. The second and
third axes of a are distributed along the corresponding axes of the process grid.

If local_a had been set to 0 instead, all three array axes would be distributed along
their respecitive process grid axes.

For more information about this function see “S3L_declare_detailed ” on page
71 or the S3L_declare_detailed(3) man page.

The simpler and more compact S3L_declare involves fewer parameters and
always block-distributes the arrays. The following C program example allocates a
one-dimensional, double-precision array of length 1000.

12 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CODE EXAMPLE 2–3

#include <s3l/s3l-c.h>
int local,ext,ier:
S3L_array_t A;
local = 0:
ext = 1000:
ier = S3L_declare(&A,1,&ext,S3L_double,&local,S3L_USE_MALLOC);

This example illustrates use of the array_is_local parameter. This parameter
consists of an array containing one element per axis. Each element of the array is
either 1 or 0, depending on whether the corresponding array axis should be local to
a process or distributed. If array_is_local(i) is 0, the array axis i will be
distributed along the corresponding axis of the process grid. If it is 1, array axis i
will not be distributed. Instead, the extent of that process grid axis will be regarded
as 1 and the array axis will be local to the process.

In this S3L_declare example, the array has only one axis, so array_is_local
has a single value, in this case 0. If the program containing this code is run on six
processes, Sun S3L will associate a one-dimensional process grid of length 6 with the
S3L array A. It will set the block size of the array distribution to ceiling (1000/
6)=167. As a result, processes 0 though 4 will have 167 local array elements and
process 5 will have 165.

If array_is_local had been set to 1, the entire array would have been allocated to
process 0.

Deallocating S3L Arrays
When S3L arrays are not needed anymore, they should be deallocated so the
memory resources associated with them will be made available for other uses. S3L
arrays are deallocated with S3L_free .

Distributing S3L Arrays
Sun S3L distributes arrays in a block cyclic fashion. This means each array axis is
partitioned into blocks of a certain block size and the blocks are distributed onto the
processes in a cyclic fashion.

Sun S3L Arrays 13

Block cyclic distribution is a superset of simple block distribution, a more commonly
used array distribution scheme. Figure 2–4 through Figure 2–6 illustrate block and
block cyclic distributions with a sample 8x8 array distributed onto a 2x2 process grid.

In Figure 2–4 and Figure 2–5, block size is set to 4 along both axes and the resulting
blocks are distributed in pure block fashion. As a result, all the subgrid indices on
any given process are contiguous along both axes.

The only difference between these two examples is that process grid ordering is
column-major in Figure 2–4 and row-major in Figure 2–5.

Figure 2–4 An 8x8 S3L Array Distributed on a 2x2 Process Grid Using Pure Block
Distribution: Column-Major Order

14 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Figure 2–5 An 8x8 S3L Array Distribution on a 2x2 Process Grid Using Pure Block
Distribution: Row-Major Ordering of Processes

Figure 2–6shows block cyclic distribution of the same array. In this example, the
block size for the first axis is set to 4 and the block size for the second axis is set to 2.

Sun S3L Arrays 15

Figure 2–6 An 8x8 S3L Array Distributed on a 2x2 Process Grid Using Block-Cyclic
Distribution: Column-Major Order

When no part of an S3L array is distributed—that is, when all axes are local—all
elements of the array are on a single process. By default, this is the process with MPI
rank 0. The programmer can request that an undistributed array be allocated to a
particular process via the S3L_declare_detailed routine.

Although the elements of an undistributed array are defined only on a single process,
the S3L array handle enables all other processes to access the undistributed array.

16 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Examining the Contents of S3L Arrays
Printing S3L Arrays
The Sun S3L utilities S3L_print_array and S3L_print_sub_array can be used to print
the values of a distributed S3L array to standard output.

S3L_print_array prints the whole array, while S3L_print_sub_array prints a section of
the array that is defined by programmer-specified lower and upper bounds.

The values of array elements will be printed out in column-major order; this is
referred to as Fortran ordering, where the leftmost axis index varies fastest.

Each element value is accompanied by the array indices for that value. This is
illustrated by the following example.

a is a 4 x 5 x 2 S3L array, which has been initialized to random double-precision
values via a call S3L_rand_lcg. A call to S3L_print_array will produce the following
output:

CODE EXAMPLE 2–4

call s3l_print_array(a)
(1,1,1) 0.000525
(2,1,1) 0.795124
(3,1,1) 0.225717
(4,1,1) 0.371280
(1,2,1) 0.225035
(2,2,1) 0.878745
(3,2,1) 0.047473
(4,2,1) 0.180571
(1,3,1) 0.432766
...

When an S3L array is large, S3L_print_array, it is often a good idea to print only a
section of the array, rather than the entire array. This not only reduces the time it
takes to retrieve the data, but it can be difficult to locate useful information in
displays of large amounts of data. By printing selected sections of a large array can
make the task of finding data of interest much easier. This can be done using the
function S3L_print_sub_array. The following example shows how to print only the
first column of the array shown in the previous example:

Sun S3L Arrays 17

CODE EXAMPLE 2–5

integer*4 lb(3),ub(3),st(3)

c specify
the lower and upper bounds
c along
each axis. Elements whose coordinates
c are
greater or equal to lb(i) and less or
c equal
to ub(i) (and with stride st(i)) are
c printed
to the output

lb(1) = 1
ub(1) = 4
st(1) = 1
lb(2) = 1
ub(2) = 1
st(2) = 1
lb(3) = 1
ub(3) = 1
st(3) = 1
call s3l_print_sub_array(a,lb,ub,st,ier)

The following output would be produced by this call

(1,1,1) 0.000525
(2,1,1) 0.795124
(3,1,1) 0.225717
(4,1,1) 0.371280

If a stride argument other than 1 is specified, only elements at the specified stride
locations will be printed. For example, the following sets the stride for axis 1 to 2

st(1) = 2

which results in the following output:

18 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

(1,1,1) 0.000525
(3,1,1) 0.225717

Visualizing Distributed S3L Arrays With Prism
S3L arrays can be visualized with Prism, the debugger that is part of Sun HPC
ClusterTools 3.0. Before S3L arrays can be visualized, however, the programmer must
instruct Prism that a variable of interest in an MPI code describes an S3L array.

For example, if variable a has been declared in a Fortran program to be of type
integer*8 and a corresponding S3L array of type S3L_float has been allocated by a
call to an S3L array allocation function, the programmer should enter the following
at the prism command prompt:

type float a

Once this is done, Prism can print values of the distributed array:

print a(1:2,4:6)

Or it can assign values to it:

assign a(2,10)=2.0

or visualize it

print a on dedicated

Sun S3L Arrays 19

20 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CHAPTER 3

Sun S3L Performance Guidelines

Introduction
This chapter provides a few guidelines for making best use of the performance
benefits offered by Sun S3L. The range of topics covered include

� Sun S3L functions that benefit from cyclic distribution

� Sun S3L functions that benefit from distributing only the last axis

� Using shared memory

� Performance guidelines specific to FFT routines

� Performance guidelines specific to dense SVD routines

� Performance guidelines specific to dense linear system solvers

� Performance guidelines specific to banded solvers

� Performance guidelines specific to sparse linear systems solvers

� Performance guidelines specific to dense matrix operations

� Support for convolution, deconvolution, correlation, and autocorrelation

S3L Array Layout and Performance
Most Sun S3L functions perform best when their operand arrays are
block-distributed along all axes. But there are exceptions to this generalization. This
section discusses those exceptions.

21

Functions That Benefit From Cyclic Distributions
Functions that focus their operations on discrete subparts of an S3L array rather
across the full array are likely to provide better load balancing and performance
when their array operands are distributed cyclically rather than in simple block
fashion. This is particularly true for the LU decomposition (S3L_lu_factor and
S3L_lu_solve) and Singular Value Decomposition (S3L_gen_svd) functions.

This is illustrated by the examples shown in Figure 3–1 and Figure 3–2, which show
a 16x16 array being distributed across a 1x4 process grid, first in simple block
fashion and next in block cyclic fashion.

In Figure 3–1, a block size of 4 is used for the second axis. This means that the
second array axis will be distributed in one pass across the process grid’s second
axis—in other words, it will be block-distributed.

Figure 3–1 Block Distribution of a 16x16 S3L Array on a 1x4 Process Grid

If the nature of the operation is such that every process will compute the sum of
elements in the lower triangular part of the array (shaded portion) and send the
results to the next processor, this distribution pattern will result in serious load
imbalance among the processes. Since process 0 must perform many more iterations
than the other processes, especially than process 3, overall computational time will
be greater than it would be if better load balancing could be achieved.

In Figure 3–2, a block size of 2 is chosen for second axis. Although process 0 still has
a larger section of the array operand than the other processes, cyclic distribution
reduces the load differences significantly.

22 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Figure 3–2 Block-Cyclic Distribution of a 16x16 S3L Array on a 1x4 Process Grid

Note that there is usually a limit to the load balancing gains that block-cyclic
distribution can provide. In other words, setting block size to 1 is not likely to
maximize performance, even for operations like the one just described. This limit
results from a trade-off between the gains in load balancing that are provided by
small block sizes and the gains in cache blocking efficiency that are achieved by
loading array elements with consecutive indices into cache.

In addition to this trade-off, most of the nodal codes that underlay Sun S3L
implement simple block distribution. Their optimal block size has to be matched to
the optimal partitioning of the Sun S3L array.

In algorithms that are naturally load balanced—that is, where the amount of data
each process has to process is approximately equal— block-cyclic distribution has
little effect on execution efficiency.

Distributing Only the Last Axis
The performance of some S3L functions can be enhanced by block-distributing only
the last axis of the S3L array and making all other axes local. This rule applies to the
FFT, sorting, and banded solver functions.

These functions are all optimized for operating on S3L arrays that are distributed in
this manner. If an array that has a different type of distribution is being passed in as
an argument, these functions automatically redistribute the array, perform the
parallel computation and then restore it to its original form. Since this data

Sun S3L Performance Guidelines 23

redistribution introduces extra overhead, it is a good practice to ensure that S3L
arrays passed to these functions follow this distribution plan.

Allocating Arrays in Shared Memory
Sun S3L supports the allocation of S3L arrays in shared memory. When an MPI
program runs on a cluster of nodes, processes collocated on the same node can
allocate their local array parts in that node’s shared memory. Storing array sections
in shared memory allows collocated processes to access each others array elements
without going through MPI. This can yield significant performance improvements.

Note - A special case of this would be an MPI application running on a single node.
In this case, the entire S3L array could be allocated in shared memory.

Several Sun S3L functions are optimized for shared-memory accesses. That is, they
employ different, more efficient algorithms when S3L arrays have been allocated in
shared memory. These functions include the single and multidimensional parallel
FFTs, as well as array transpose and sparse solver routines.

Use the S3L_declare or S3L_declare_detailed functions to allocate a parallel
array in shared memory. For the type of allocation, specify either:

� S3L_USE_MMAP, which uses mmap() to allocate the S3L array

� S3L_USE_SHMGET, which uses shmget() (System V shared memory) to obtain
Intimate Shared Memory. This is a form of shared memory in which data is always
kept resident in physical memory and is never paged out.

Note - Since physical memory is locked up by an application using Intimate Shared
Memory, S3L_USE_SHMGETshould only be used when the S3L array is small and
the system is not being shared with other users.

Numbers of Processes
Many Sun S3L routines employ a serial algorithm when called from an application
running on a single process and a different, parallel algorithm when called from a
multiprocess application. When those Sun S3L routines are executed on a small
number of processes—two or three—they are likely to be slower than the serial
version running on a single process. This is because the higher overhead involved in
the parallel process can overshadow any gains resulting from parallelization of the
operation.

This means that, in general, MPI applications that call Sun S3L routines should be
executing on at least four processes.

24 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Function-Specific Guidelines
This section discusses performance-tuning for specific S3L functions. It does not
cover all Sun S3L functions.

S3L FFT (Fast Fourier Transform)

Complex to Complex FFTs
Sun S3L provides two functions for computing the forward and backward Fourier
transforms of one-, two-, and three-dimensional complex arrays: S3L_fft and
S3L_ifft .

Note - In Sun S3L, the term forward FFT is used for operations with a negative sign
in the exponential factors.

Before calling either of these functions, however, an FFT setup must be computed,
using S3L_fft_setup . This setup will contain the FFT twiddle factors and other
internal data specific to the algorithm that will be used in the FFT computation.

The setup data depend only on the size, type and layout of the S3L array.
Consequently, once they are computed they can be applied in the FFT computation
of any other S3L arrays that have the same size, type and layout.

The S3L array must already have been allocated before calling S3L_fft_setup . The
setup routine specifies the S3L array of interest by using its array handle, which was
returned by a previous call to S3L_declare or S3L_declare_detailed .

The following code example shows S3L_fft_setup being used to create a setup for
the S3L array a.

CODE EXAMPLE 3–1

c
integer*4 setup_id, ier
integer*8

c
c compute an FFT setup for a parallel
c S3L array identified by a.
c
c Note that a must have been properly allocated via

(continued)

Sun S3L Performance Guidelines 25

(Continuation)

c a call to S3L_declare or 3L_declare_detailed.
c

cakk s3l_fft_setup(a,setup_id,ier)

S3L_fft_setup returns a value of type integer*4 (F77/F90) or int (C/C++) in
setup_id . Subsequent calls to S3L_fft and S3L_ifft use the setup_id value to
reference the FFT setup of interest.

Use S3L_fft to compute a forward FFT.

call s3l_fft(a,setup_id,ier)

Use S3L_ifft to compute the inverse FFT.

call s3l_ifft(a,setup_id,ier)

Note that the same setup can be used for both the forward and the inverse FFT.
S3L_fft does not scale the results, so a forward FFT followed by an inverse FFT
results in the original data being scaled by the product of the array extents.

Note also that, for one-dimensional FFTs, there are certain requirements regarding
the size of the FFT and the number of processes used to compute it. For details, see
“S3L_fft ” on page 198 and “S3L_ifft ” on page 204 or the S3L_fft and
S3L_ifft man pages.

S3L_fft and S3L_ifft can be used to compute the Discrete Fourier Transform of
arrays of up to three dimensions.

When arrays with more than three dimensions are to be transformed or, when more
control over how the FFTs are applied to the array dimensions is desired, use
S3L_fft_detailed . This function uses the same setup_id as S3L_fft and
S3L_ifft , but accepts additional parameters. S3L_fft_detailed allows the
programmer to specify

� the axis along which the transform is to be applied

� the direction of the FFT (1 for forward, -1 for inverse)

Once the FFT computations have completed, the resources associated with that FFT
setup should be freed by calling S3L_fft_free_setup , as in the following F77
example.

26 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

call s3l_fft_free_setup(setup_id,ier)

Sun S3L FFT Optimizations
The Sun S3L FFT is optimized for use by message-passing applications. It works for
S3L arrays with arbitrary distributions a multiprocess process grid. For certain data
distributions, maximum efficiency can be obtained.

For example, the algorithm used for a two-dimensional complex-to-complex parallel
FFT is optimized for arrays distributed along their second dimension, where the
number of processes is a power of two. For maximum efficiency, both axes of the
array must be divisible by the number of processes.

When the array distribution allows fast algorithms to be used, the two-dimensional
FFT consists essentially of multiple one-dimensional FFTs performed along the array
columns local to the process. It then transposes the array in such a way that each
process has a number of local rows. This is followed by a second set of local
one-dimensional FFTs. Finally, the data are transposed back to the original
distribution.

This sequence is illustrated by the diagrams in Figure 3–3 through Figure 3–5.

Figure 3–3 Phase 1 of Two-Dimensional FFT Performing Independent
One-Dimensional FFT

Sun S3L Performance Guidelines 27

Figure 3–4 Phase 2 of Two-Dimensional FFT Performing Local Transpositions

Figure 3–5 Phase 3 of Two-Dimensional FFT Performing Global Transpositions

When the data are distributed in suboptimal ways— for example, along both
dimensions on a rectangular process-grid—a global communication step is usually
performed first to redistribute the data to its optimal distribution and then the
optimized FFT is performed. This redistribution step increases execution overhead.

28 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Dense Singular Value Decomposition (SVD)
Sun S3L includes routines for performing the singular value decomposition of real
single- or double-precision arrays. These routines include options for computing only
the singular values or the right and/or left singular eigenvectors.

For the S3L_gen_svd function, optimal performance is achieved when block-cyclic
distribution is used on the S3L array operand. S3L_gen_svd works best on large
arrays. Performance is also better when S3L_gen_svd executes on a small number
of processes.

Sorting and Ranking S3L Arrays
Sun S3L includes sorting routines for parallel sorting of one-dimensional arrays or
multidimensional arrays along a user-specified axis. It also includes routines for
computing the grade (rank) of the elements of an array.

The sorting and grading routines are most efficient when the arrays are block
distributed. For multidimensional sorts and grades, performance is best when the
axis to be sorted or graded is local to a process.

The sort routines use a variation of the sample sort algorithm. In a coordinated
operation, all processors extract a random sample of the data. The distribution of this
sample should match as closely as possible the distribution of the data to be sorted.
Based on this sample, all processes split their data into np packets, each destined for
a particular process. A global interprocess communication stage then collects the
packets into the appropriate processes. Each process then independently sorts its
own data using a quicksort algorithm. Finally, all the processes coordinate to restore
the data to its original distribution.

The first communication stage, where packets of data are sent to the appropriate
processes, is more intensive than the operation that restores the original distribution.
This is because the second communication stage only involves exchanges between
processes with neighboring ranks.

In general, the parallel S3L sort routines exhibit good scaling characteristics. While
some data distribution patterns can affect the quality of load balancing and the
performance of local sorts, the internal parameters of the parallel algorithm have
been chosen to achieve good performance for most cases of data distribution.

Sorting single-precision floating-point numbers is faster than sorting double-precision
floating-point numbers. Also, sorting 64-byte integers can be slower than sorting
64-byte floating-point numbers.

Sun S3L Performance Guidelines 29

Dense Linear Systems Solvers
Sun S3L includes dense linear systems solvers that provide solutions to linear
systems of equations for real and complex general matrices.

LU operations are carried out in two stages. First, one or more matrices A are
decomposed into their LU factors using Gaussian elimination with partial pivoting.
This is done using S3L_lu_factor . Then, the generated LU factors are used by
S3L_lu_solve to solve the linear system AX=B or by S3L_lu_invert to compute
the inverse of A.

The LU decomposition routine, which is derived from the ScaLAPACK
implementation, uses a parallel block-partitioned algorithm. The Sun S3L routine
exploits the optimized nodal libraries, consisting primarily of a specialized
matrix-matrix multiply routine, to speed up the computation. In addition, an
optimized communication scheme is used to reduce the total number of interprocess
communication steps.

The LU decomposition algorithm used in Sun S3L is aware of the size of the external
cache memory and other CPU parameters and selects the most efficient methods
based on that information.

The S3L LU decomposition routine is particularly efficient when factoring 64-bit
(double-precision) floating-point matrices that have been allocated using the
S3L_USE_MEMALIGN64option so that their local subgrids are in 64-byte aligned
memory addresses. Performance is best in such cases when a block size of 24 or 48 is
used.

As mentioned in Chapter 2, block-cyclic distribution should be used for LU
factorization and solution routines.

Also, process grids having the form 1 x np, where np is the total number of
processes, provide best performance when the number of processes and the size of
the arrays is relatively small. However, when the size of the array to be factored is
very large, it is better to specify rectangular process grids of the form nq x np, rather
than square process grids.

Banded Solvers
S3L includes both a tridiagonal and a general banded linear solver.

The tridiagonal solver does not perform pivoting, so it should be used only for
systems that are known to be stable, such as diagonally dominant tridiagonal
systems.

The banded solver performs partial pivoting, so it exhibits better stability than the
tridiagonal solvers.

30 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Both solvers will perform optimally when the LHS arrays are block-distributed along
their last axis, the RHS arrays are block-distributed along their first axis, and the
same block size is used for both distributions.

The S3L_gen_trid_factor function is used to factor a tridiagonal system of
equations, where the main diagonal, upper subdiagonal and lower subdiagonal are
given in three S3L arrays, D, U, and L.

S3L_gen_trid_solve , is used to solve a tridiagonal system of equations whose
RHS matrix is given in an S3L array B, using the factorization results from a
previous call to S3L_gen_trid_factor .

The banded solvers have linear complexity and their interprocess communication
requirements are not great. Consequently, these banded solvers can deliver
performance on clusters of small nodes that is similar to what would be achieved on
a single node with many CPUs.

Sparse Linear Systems Solvers
Given a general square sparse matrix A and an RHS vector b,
S3L_gen_iter_solve solves the linear system of equations Ax = b using an
iterative algorithm, with or without preconditioning.

S3L_gen_iter_solve implements several different algorithms, which the
programmer can select. These include

� BiConjugate Gradient Stabilized (BiCGSTAB)

� Conjugate Gradient (CG)

� Conjugate Gradient Squared (CGS)

� Conjugate Residuals (CR)

� Restarted Generalized Minimum Residual (GMRES)

� Quasi-Minimal Residual (QMR)

� Richardson method

If preconditioning is used, the programmer can choose point Jacobi or incomplete LU
as the method. S3L_gen_iter_solve also allows the programmer to specify a
number of other algorithm-specific parameters, including

� the convergence/divergence criteria

� the initial guess

� the maximum number of iterations

Sun S3L Performance Guidelines 31

Sparse matrix utilities
Sun S3L includes a set of utilities for declaring and initializing sparse matrices. Other
utilities for operating on sparse matrices are provided as well.

S3L_declare_sparse declares an S3L sparse array and allocates all required
memory to store its elements and sparsity pattern representation.

S3L_rand_sparse creates a random sparse matrix with a random sparsity pattern
in either the Coordinate (COO) format or the Compressed Sparse Row (CSR) format.
Upon successful completion, it returns an S3L array handle representing this random
sparse matrix.

S3L_read_sparse reads a sparse array from a data file. Similarly,
S3L_write_sparse writes a sparse S3L array to a file. S3L_print_sparse prints
a sparse array to standard output.

S3L_matvec_sparse multiplies a sparse array with a dense vector.

Dense Matrix Operations
Sun S3L includes optimized parallel functions for performing the following dense
matrix operations:

� matrix-matrix and matrix-vector multiplication

� inner product computation

� outer product computation

� 2-norm computation

These functions have been optimized for various multiprocess configurations and
array sizes.They implement different algorithms according to the particular
configuration. Among the algorithms that these functions may employ are the
Broadcast-Multiply-Roll, Cannon, and Broadcast-Broadcast Multiply.

The source data to be used by the dense matrix operations should be aligned so that
no extra redistribution costs are imposed. For example, if rectangular matrix A, which
is distributed along the last axis of a 1 x np process grid, will be multiplied with an
n x 1 vector x , the vector multiplier should be distributed onto np processes with the
same block size as is used for the distribution of A along the second axis.

In general the performance of dense matrix operations is similar for both pure block
and block-cyclic distributions.

If both operand arrays in a dense matrix function do not have the same type of
distribution—that is, one is pure block-distributed and the other block-cyclic—the
dense matrix multiplication routine will automatically redistribute as necessary to
properly align the arrays. However, this redistribution can add considerable
overhead to the operation, so it is best if the application ensures that they have like
distributions beforehand.

32 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

In general, the dense matrix parallel algorithm is more efficient when the matrices
being multiplied are large. This is because the large matrices take advantage of the
dominance of the O(N3) computational complexity over the O(N2) communication
requirements.

The benefit of larger matrices can be offset, however, when the matrices are so large
that they occupy nearly all of total system memory. Because additional internal data
structures are allocated for the parallel algorithm, swapping out of memory may be
required, which can degrade performance.

When the multiple instance capability of the dense matrix functions is used,
performance can be significantly aided by making the instances local.

Convolution, Deconvolution, Correlation,
Autocorrelation
Sun S3L includes functions for performing various signal processing computations,
such as convolving or deconvolving two one- or two-dimensional arrays and for
computing the correlation or autocorrelation of a signal. These functions are based on
the Sun S3L FFT functions. These functions have been optimized to eliminate
unnecessary computations.

For example, the convolution of the two-dimensional arrays (images) A and B can be
achieved by

� Computing the two-dimensional FFT of A

� Computing the two-dimensional FFT of B

� Finding the pointwise product of the result

� Computing the inverse two-dimensional FFT of the previous result

Sun S3L Performance Guidelines 33

34 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CHAPTER 4

Sun S3L Data Types

Data type information is encoded in the S3L array handle for both C and Fortran
interfaces and is decoded at run time. This allows appropriate branching to occur
during execution, which makes it unnecessary to maintain separate routines with
different names for each language interface.

Table 4–1 shows the data types supported for the various Sun S3L routines. Table 4–2
lists the C and Fortran language-specific data type equivalents.

Within each subroutine call, elements of all array arguments must match in data
type, unless the argument descriptions indicate otherwise.

Place one of the following include lines at the top of any C or Fortran program unit
that makes an S3L call:

C and C++ Programs

#include <s3l/s3l-c.h>

F77 and F90 Programs

include ’s3l/s3l-f.h’

35

Note - For Sun S3L 2.0, the S3L array handles for the F77 interfaces are of type
integer*4 and for Sun S3L 3.0, they are of type integer*8 . Therefore, when
porting F77 programs from Sun S3L 2.0 to Sun S3L 3.0, be sure to change the array
handle data type definitions accordingly. If you want your F77 program to be
compatible with both Sun S3L 2.0 and Sun S3L 3.0, you should insert #ifdef
statements in appropriate places in the code.

TABLE 4–1 Array Data Types Supported for C/C++ and F77/F90

Operation int long
integer

float double complex dcomplex

2-norm x x x x

Autocorrelation x x x x

Convolve x x x x

Copy array x x x x x x

Circular shift x x x x x x

Declare array x x x x x x

Deconvolve x x x x

Define array x x x x x x

Describe array x x x x x x

Exit – N/A –

FFT, simple and
detailed

complex-to-complex

x x

FFT, inverse x x

FFT, simple
real-to-complex

x x

FFT, simple
complex-to-real

x x

Forall x x x x x x

36 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE 4–1 Array Data Types Supported for C/C++ and F77/F90 (continued)

Operation int long
integer

float double complex dcomplex

Free array handle x x x x x x

General band solver x x x x

General iterative
solver

x x x x

General least squares x x x x

General singular
value decomposition
(SVD)

x x x x

General tridiagonal x x x x

Get array elements x x x x x x

Get array attributes x x x x x x

Grade up/down x x x x x x

Initialize S3L
environment

– N/A –

Inner product x x x x

LU factor x x x x

LU solve x x x x

LU invert x x x x

Matrix multiplication x x x x

Matrix vector
multiplication

x x x x

Matrix vector sparse x x x x

Outer product x x x x

Print array x x x x x x

Print sparse array x x x x

Sun S3L Data Types 37

TABLE 4–1 Array Data Types Supported for C/C++ and F77/F90 (continued)

Operation int long
integer

float double complex dcomplex

Read array x x x x x x

Read sparse array x x x x

Reduce x x x x x x

Reduce axis x x x x x x

RNG, lagged
Fibonacci

x x x x x x

RNG, linear
congruential

x x x x x x

RNG, sparse matrix x x x x

Set array elements x x x x x x

Set process grid – N/A –

Set safety – N/A –

Sort x x x x

Thread
communicator setup

– N/A –

Symmetric
eigenvalues,
eigenvectors

x x x x

Transpose x x x x x x

Write array x x x x x x

Zero elements x x x x x x

38 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE 4–2 Equivalent S3L, Fortran, and C Array Data Types

S3L Data Types F77/F90 Data
Types

C/C++ Data Types

S3L_integer INTEGER*4 int

S3L_long_integer INTEGER*8 long long

S3L_float REAL*4 float

S3L_double REAL*8 double

S3L_complex COMPLEX*8 typedef struct

{ float real;

float imag;

} S3L_cmpx8

S3L_double_complex COMPLEX*16 typedef struct cmpx16_s

{ float double real;

float double imag;

} S3L_cmpx16

Sun S3L Data Types 39

40 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CHAPTER 5

Multiple Instance

Most Sun S3L routines support multiple instances; that is, they allow you to perform
multiple independent operations on different data sets concurrently. The routines
that support multiple instance operations are listed below:

� S3L_2_norm

� S3L_fft_detailed

� S3L_gen_band_solve

� S3L_gen_iter_solve

� S3L_gen_lsq

� S3L_gen_svd

� S3L_gen_trid_solve

� S3L_inner_prod

� S3L_mat_mult

� S3L_mat_vec_mult

� S3L_outer_prod

� S3L_lu_invert

� S3L_lu_solve

� S3L_sym_eigen

41

Defining Multiple Independent Data
Sets
To perform a Sun S3L operation on multiple independent data sets concurrently, you
must embed the multiple independent instances of each operand or result argument
in a parallel array. The axes of the shape of the parallel array fall into two distinct
groups:

� The data axes define the geometry of the individual instances of the operand or
result.

� The instance axes label the multiple instances.

Figure 5–1 illustrates this with an example of a matrix-vector-multiplication
operation in which four independent products are computed simultaneously. It
shows how the destination and source vectors and the source matrix are organized
with respect to the data and instance axes.

� The four destination vectors are embedded in a 2D parallel array with one data
axis and one instance axis.

� The four source vectors are similarly embedded in another parallel array. The
source matrices are embedded in a 3D parallel array.

The instances within each variable are labeled 0 through 3.

Figure 5–1 A Multiple-Instance Matrix-Vector Multiplication Problem

The logical unit on which the routine operates—sometimes called a cell—is defined
by the data axes. The instance axes define the geometry of the frame in which the

42 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

cells are embedded. The 3D parallel array shown in Figure 5–1 is a frame containing
four 2-dimensional cells.

The product of the lengths of the instance axes is the total number of instances. The
product of the lengths of the data axes is the size of the cell.

Rules for Data Axes and Instance Axes
When you organize your data to form cells and frames for a multiple-instance
operation, apply the following rules:

� All parallel arrays involved in the operation must have the same number of
instance axes.

� Counting up through the axes of the parallel arrays, starting with axis 0 and
excluding the data axes, corresponding instance axes must occur in the same order
in each operand or result.

� The corresponding instance axes of the operands or results must have identical
lengths. In some cases, corresponding instance axes must also have identical
layouts. The situations where identical layouts are required are identified in the
applicable man pages.

� The lengths of the data axes must be defined so that the operation makes sense.
For example, in matrix multiplication, the data axis lengths of the operand and
result matrices must obey the standard rules for axis lengths in matrix
multiplication. Specific requirements for data axis lengths are provided in the
applicable man pages.

� Except where explicitly noted, Sun S3L supports all combinations of layouts for
data axes and instance axes. Which layout will provide the best performance for
any given operation depends largely on the nature of the operation.

In most cases, however, performance is best when the cells (that is, all of the data
axes) are local to a processing element. Instance axes are typically defined as
nonlocal axes. Some man pages for Sun S3L routines contain specific information
about optimizing layouts.

“Specifying Single-Instance vs. Multiple-Instance Operations” on page 44 illustrates
these rules being applied in a matrix-vector multiplication example.

Note - Most Sun S3L routines impose few or no restrictions on where the instance
axes can occur in a parallel array.

Multiple Instance 43

Specifying Single-Instance vs.
Multiple-Instance Operations
Sun S3L routines that support multiple instances have the same calling sequence for
single-instance and multiple-instance operations. The methods for specifying
single-instance and multiple-instance operations depend on which routine you are
calling. The man pages for routines that are capable of multiple-instance operation
contain specific information for their respective routines.

“Example 1: Matrix-Vector Multiplication” on page 44 explains the differences
between single- and multiple-instance operation for the matrix-vector-multiplication
routine. “Example 2: Fast Fourier Transforms” on page 49 discusses use of multiple
instances in FFTs.

Example 1: Matrix-Vector Multiplication
When you call the matrix-vector-multiplication routine, S3L_mat_vec_mult , the
dimensionality of the arguments you supply determines whether the routine
performs a single-instance or multiple-instance operation. The F77 form of this Sun
S3L function is

S3L_mat_vec_mult(y, a, x, y_vector_axis, row_axis, col_axis, x_vector_axis,
ier)

Note - The S3L_mat_vec_mult routine requires you to specify which axes you are
using as data axes for each matrix or vector argument.

Single-Instance Operation
To perform a single-instance operation, specify each vector argument as a 1D parallel
array and each matrix argument as a 2D parallel array. (Alternatively, you can declare
these arguments to have more dimensions, but all instance axes must have length 1.)

For example, a single-instance operation in F77 can be performed by first defining
the block-distributed arrays:

44 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

integer*8 a, x, y
integer*4 ext(2), axis_is_local(2)
integer*4 ier

axis_is_local(1) = 0
axis_is_local(2) = 0

ext(1) = p
ext(2) = q

call s3l_declare(a, 2, ext, S3L_float, axis_is_local,
$ S3L_USE_MALLOC, ier)

call s3l_declare(x, 2, ext, S3L_float, axis_is_local,
$ S3L_USE_MALLOC, ier)

call s3l_declare(y, 2, ext, S3L_float, axis_is_local,
$ S3L_USE_MALLOC, ier)

and then using

call S3L_mat_vec_mult(y, a, x, 1, 1, 2, 1, ier)

Arrays x and y are 1D; the definitions of x_vector_axis = 1 and col_axis = 2
indicate that the product a(i , j) * x (j) will be evaluated for all values of j . These
products will be summed over the first index of a (row_axis = 1), and the result
added to the corresponding element in y . The equivalent code is

do i = 1, p
sum = 0.0
do j = i, q

sum =
sum + a(i, j) * x(j)

enddo
enddo

Multiple Instance 45

Multiple-Instance Operation

To perform a multiple-instance operation, embed the multiple instances of each
vector argument in a parallel array of rank greater than 1, and embed the multiple
instances of each matrix argument in a parallel array of rank greater than 2.

For example, the simplest multiple-instance matrix-vector multiplication involves the
definition of one instance axis.

integer*8 a, x, y
integer*4 ext(3), axis_is_local(3)
integer*4 ier

axis_is_local(1) = 0
axis_is_local(2) = 0
axis_is_local(3) = 0

ext(1) = p
ext(2) = q
ext(2) = r

call s3l_declare(a, 3, ext, S3L_float, axis_is_local,
$ S3L_USE_MALLOC, ier)

ext(1) = q
ext(2) = r

call s3l_declare(x, 2, ext, S3L_float, axis_is_local,
$ S3L_USE_MALLOC, ier)

ext(1) = p
ext(2) = r

call s3l_declare(y, 2, ext, S3L_float, axis_is_local,
$ S3L_USE_MALLOC, ier)

In this code, all three arrays contain an instance axis of length r . In addition, each
instance axis is the rightmost axis in the array declaration. In other words, the order
of data axes and instance axes is the same in all three arrays. These axes definitions
produce arrays whose geometries are outlined in Figure 5–1. In the illustration, r =
4. Multiplication using these arrays is then performed by

call S3L_mat_vec_mult(y, a, x, 1, 1, 2, 1, ier)

In analyzing the operations performed in this call, it is useful to define s0 , the index
along the instance axis. For a given value of s0 , the following will be evaluated:

46 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� The values of x_vector_axis = 1 and col_axis = 2 indicate that the product
a(i, j, s0) * x(j, s0) will be calculated for all j .

� The above product will be summed over i , the first index of a (row_axis = 1),
and the result added to y(i, s0) .

These two operations will be performed for all 1 <= s0 <= r . In other words, the
matrix-vector multiplication will be evaluated for all instances

y(:, s0) * a(:, :, s0) * x(:, s0)

The order in which these instances are evaluated depends on the layouts of the
arrays. Since all arrays are block-distributed along all axes, it is possible for one set
of processes to work on the first instance

y(:, 1) = a(:, :, 1) * x(:< 1)

while another set of processors evaluates the Nth instance at the same time—that is,
in parallel .

y(:, N) = a(:, :, N) * x(:, N)

The extent of parallelism depends on the details of the data layouts, particularly on
the mapping of the data and instance axes to the underlying process grid axes. The
highest degree of parallelism is achieved when all data axes are local, and all
instance axes are distributed.

The use of local data axes forces each cell (all data axes) to reside entirely in just one
process. The use of distributed instance axes spreads the collection of cells over the
process grid, resulting in better load-balancing among processes. Use of this data
layout is discussed below.

Multiple-instance operations are usually most efficient when each cell (all of the data
axes) resides on one process. Use of such a layout scheme is discussed in this section.
In addition, the use of several instance axes are illustrated. Declarations of arrays
containing these axes can be done as

integer*8 a, x, y
integer*4 mat_ext(5), mat_axis_is_local(5)
integer*4 vec_ext(4), vec_axis_is_local(4)
integer*4 ier

(continued)

Multiple Instance 47

(Continuation)

mat_axis_is_local(1) = 1
mat_axis_is_local(2) = 1
mat_axis_is_local(3) = 0
mat_axis_is_local(4) = 0
mat_axis_is_local(5) = 0

mat_ext(1) = p
mat_ext(2) = q
mat_ext(2) = k
mat_ext(4) = m
mat_ext(5) = n

call s3l_declare(a, 5, mat_ext, S3L_float, mat_axis_is_local,)
$ S3L_USE_MALLOC, ier

vec_axis_is_local(1) = 1
vec_axis_is_local(2) = 1
vec_axis_is_local(3) = 0
vec_axis_is_local(4) = 0
vec_axis_is_local(5) = 0

vec_ext(1) = q
vec_ext(2) = k
vec_ext(2) = m
vec_ext(4) = n

call s3l_declare(x, 4, vec_ext, S3L_float, vec_axis_is_local,)
$ S3L_USE_MALLOC, ier

vec_ext(1) = p
vec_ext(2) = k
vec_ext(2) = m
vec_ext(4) = n

call s3l_declare(y, 4, vec_ext, S3L_float, vec_axis_is_local,)
$ S3L_USE_MALLOC, ier

The data axes are defined to be local to a process. Each array has three instance axes,
each of which is block distributed. Note that the order of instance axes is the same in
all three arrays.

To analyze the results of the call

call S3L_mat_vec_mult(y, a, x, 1, 1, 2, 1, ier)

48 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

s0 , s1 , and s2 are used to denote the index along each of the three instance axes.
For a given set of s0 , s1 , and s2 , the following will be evaluated:

� The values of x_vector_axis = 1 and col_axis = 2 indicate that the product
a(i , j , s0 , s1 , s2) * x(j , s0 , s1 , s2) will be calculated for all j .

� This product will be summed over i , the first index of a (row_axis = 1), and the
result added to y(i, s0, s1, s2) .

These two operations will be performed for all 1 <= s0 <= k , 1 <= s1 <= m, and 1 <=
s2 <= n. In other words, the matrix-vector multiplication will be evaluated for all
instances

y(:, s0, s1, s2) = A(:, :, s0, s1, s2) * x(:, s0, s1,
s2)

However, unlike the previous example, the data axes in this case are local. This
means that the evaluation of each instance does not involve any interprocess
communication. Each process independently works on its own set of instances, using
a purely local matrix-vector-multiplication algorithm. These local algorithms are
usually faster than their global counterparts, since no communication between
processes is involved.

Source code for these operations is in the file matvec_mult.f . This can be found in
the S3L examples directory examples/s3l/dense_matrix_ops-f/ , the location
of which is site-specific.

Example 2: Fast Fourier Transforms
When calling the detailed complex-to-complex FFT routine, S3L_fft_detailed ,
you can supply a multidimensional parallel array and specify whether you want to
perform a forward transform, an inverse transform, or no transform along each axis.
You can also specify axes along which no transform is performed, but address bits are
reversed. The axes that are transformed or bit-reversed are the data axes, and define
the cell; the axes along which you perform no transformation are the instance axes.

Note - The simple FFT routine, S3L_fft , performs a transform along each axis of
the supplied parallel array. Consequently, it does not support multiple instances.

Multiple Instance 49

50 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CHAPTER 6

Using Sun S3L

This chapter explains how to implement calls to S3L routines into your F77, F90, C or
C++ program. The following topics are included:

� Creating a program that calls Sun S3L routines

� Restriction

� The Sun S3L safety mechanism

� Online sample code and man pages

Sun S3L documentation includes sample online programs that demonstrate how to
call each Sun S3L routine. You are encouraged to experiment with these sample
programs. Online man pages are also included for all Sun S3L routines. “ Online
Sample Code and Man Pages ” on page 57explains how to find the program
examples.

Creating a Program that Calls Sun S3L
Routines

To use Sun S3L routines in a program:

1. Place calls to Sun S3L routines into your code.

51

2. Include the appropriate header file in each program unit that calls Sun S3L
routines.

See “ Include the Sun S3L Header File” on page 52for details.

3. Use the appropriate compiler command to compile your code; include the Sun
S3L link switch on the command line.

See “ Compiling and Linking” on page 53for details.

The remainder of this section describes the steps listed above more fully.

Sun S3L requires the presence of the Sun Performance Library routines and its
associated license file. This library is not installed with Sun S3L and other Sun HPC
ClusterTools components. Instead, it is included as part of the following compiler
suites:

� Sun WorkShop Compilers Fortran 4.2 (also included in Sun Performance
WorkShop Fortran 3.0).

� Sun Performance WorkShop Fortran 5.0.

Note - If possible, use libsunperf versions later than 1.1 for better performance.

Include the Sun S3L Header File
Place the appropriate include line at the top of any program unit that makes an S3L
call. The correct include files are shown below for both C and Fortran language
interfaces:

� C or C++

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>

� F77 or F90

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’

The first line allows the program to access the header file containing prototypes of
the routines and defines the symbols and data types required by the interface. The
second line includes the header file containing error codes the routines might return.

52 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

If the compiler cannot find the Sun S3L include file, verify that a path to the
directory does exist. The standard path is

/opt/SUNWhpc/includ/

If the file appears to be missing, consult your system administrator.

Compiling and Linking
Compile your program and link in Sun S3L (along with any other libraries it needs).

The link-line switch --ls3l does more than just link in Sun S3L subroutines.
Depending on which compiler has been invoked, it also automatically links any
other libraries needed to augment Sun S3L, greatly simplifying the link line.

� F77

% tmf77 --dalign --o program program.f --ls3l

� F90

% tmf90 --dalign --o program program.f90 --ls3l

� C

% tmcc --dalign --o program program.c --ls3l

� C++

% tmCC --dalign --o program program.cc --ls3l

Note - The –dalign option is needed because libs3l and libsunperf libraries are
compiled with it.

Executing Sun S3L Programs
Execute a program that has been linked with Sun S3L just as you would any other
program compiled for running on a Sun HPC System.

To submit such an application to the LSF Batch system, use the LSF bsub command.
For example,

Using Sun S3L 53

% bsub --q hpc --n 4 hpc.job

submits the executable hpc.job to the batch queue hpc and requests that it run on
four processors. The LSF Batch system will launch hpc.job as soon as it reaches the
top of the queue and all required resources become available.

Refer to the Sun MPI 4.0 User’s Guide: With LSF and the LSF Batch User’s Guide for
complete instructions on submitting Sun HPC jobs to the LSF Batch system.

To submit hpc.job to the Sun HPC Cluster Runtime Environment (CRE), use the
mprun command. For example,

% mprun --np 4 hpc.job

submits hpc.job to the CRE and requests that it run on four processes.

Refer to the Sun MPI 4.0 User’s Guide: With CRE for additional information.

The Sun S3L Safety Mechanism
The Sun S3L safety mechanism offers two basic features: It synchronizes the parallel
processes so that you can pinpoint the area of code that generated an error. It also
performs error checking and reports errors at a user-selectable level of detail.

Synchronization
When a Sun S3L application executes on multiple processes, the processes are
generally running asynchronously with respect to one another. The Sun S3L safety
mechanism provides an interface for explicitly synchronizing the processes to each
Sun S3L call made by your code. It traps and reports errors, indicating when the
errors occurred relative to the synchronization points.

Error Checking and Reporting
The safety mechanism can perform error checking and generate run-time error
information at multiple levels of detail. You can turn safety checking on at any level
during all or part of a program. One level checks for errors in the usage and
arguments of the Sun S3L calls in your program; a more detailed level also checks

54 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

for errors generated by internal Sun S3L routines. Examples of errors found and
reported by the safety mechanism include the following:

� A supplied or returned data element that should be numerical is not. For
example, it is identified as a Not a Number (NaN), or as infinity. NaNs are defined
in the IEEE Standard for Binary Floating-Point Arithmetic.

� The code generates a division by 0 (for example, because of bad data, a user error,
or an internal software problem).

Note - For performance reasons, Sun S3L conducts most of its argument checking
and error handling independently on each process. Consequently, when the safety
mechanism is enabled and an error is detected, different processes may return
different error values.

Levels of Error Checking
The Sun S3L safety mechanism has four selectable levels: 0, 2, 5, and 9. These levels
are defined in Table 6–1.

At levels 2, 5, and 9, some safety mechanism error messages are displayed at the
terminal when you run the program; other information appears in the backtrace
when you use a debugger such as Prism.

Using Sun S3L 55

TABLE 6–1 S3L Safety Mechanism Levels

0 Turns off the safety mechanism. Explicit synchronization and error
checking are not performed. This level is appropriate for production runs
of code that has already been thoroughly tested.

2 Detects potential race conditions in multithreaded S3L operations on
parallel arrays. To avoid race conditions, an S3L function locks all parallel
array handles in its argument list before proceeding. This safety level
causes warning messages to be generated if more than one S3L function
attempts to use the same parallel array at the same time.

5 Detects and reports all level-2 errors. In addition, level 5 performs explicit
synchronization before and after each call and locates each error with
respect to the synchronization points. This safety level is appropriate
during program development or during runs for which a small
performance penalty can be tolerated.

9 Checks for and reports all level 2 and level 5 errors, as well as errors
generated by lower levels of code that were called from within S3L.
Performs explicit synchronization in these lower levels of code and locates
each error with respect to the synchronization points. This level performs
all implemented error checking and exacts a very high performance price.
It is appropriate for detailed debugging when a problem occurs.

Selecting a Safety Mechanism Level
You can select the desired S3L safety mechanism level in either of two ways:

� By setting the environment variable S3L_SAFETY

� By using the subroutine calls S3L_get_safety and S3L_set_safety in a
program

These methods are described in “ Setting the Sun S3L Safety Environment Variable”
on page 56and “ Setting the Safety Level from Within a Program” on page 57.

Setting the Sun S3L Safety Environment Variable
The S3L_SAFETY environment variable takes a single argument, which can be the
integer 0, 2, 5, or 9. For example, to select the highest level, enter:

56 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

% setenv S3L_SAFETY 9

One advantage of using the S3L_SAFETYenvironment variable is that you can set or
change the safety level without recompiling your code.

Setting the Safety Level from Within a Program
To set the Sun S3L safety level from within your program, include the following
subroutine call. Specify the desired level in the integer argument n:

� For C Programs

S3L_set_safety(n)

� For Fortran Programs

S3L_set_safety(n)

To see what Sun S3L safety level is currently in effect, include the following call.
Again, specify the level of interest in the integer argument n:

� For C Programs

n = S3L_get_safety

� For Fortran Programs

call S3L_set_safety()

The advantage of using these calls from within a program is that you can set or
obtain the safety level at any point within your code. However, you must recompile
the code each time you change these calls.

Online Sample Code and Man Pages
Sample Code Directories

The online sample programs are located in subdirectories of the S3L examples
directory. Separate C and F77 versions are provided. The generic relative path for
these examples is

examples/s3l/operation_class[–language_suffix]/example_name.language

Using Sun S3L 57

where examples/s3l is installed in a site-specific location.
operation_class is the name of the general class of Sun S3L routines that are illustrated
by the example.

The –language_suffix is used to denote F77 implementations. Examples implemented
in C do not include the –language_suffix.

example_name.language is the name given to the example. The language extension is
.c , or .f . For example,

examples/s3l/dense_matrix_ops–f/outer_prod.f

is the F77 version of a program example that illustrates use of s3l_outer_prod
routines. The equivalent examples for C applications is

examples/s3l/dense_matrix_ops/outer_prod.c

Compiling and Running the Examples
Each example subdirectory has a makefile. Each makefile references the file
../Make.simple . If you are copying the example sources and makefiles to one of
your own subdirectories, you should also copy Make.simple to your subdirectory’s
parent directory. Make.simple contains definitions of compilers, compiler flags and
other variables that are needed to compile and run the examples. Note that the
compiler flags in this file will not provide you with highly optimized executables.
Information on optimization flags is best obtained from the documentation for the
compiler of interest.

Each makefile has several targets that are meant to simplify the compilation and
execution of examples. If you want to compile the source codes and create all
executables in a particular example directory, use the command make.

If you wish to run the executables, enter make run . This command will also perform
any necessary compilation and linking steps, so you need not issue make before
entering make run .

By default, your executables will be run on two processes. You can change this by
specifying the NPROCSvariable on the command line. For example,

58 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

%make run NPROCS=4

will start your runs on four processes.

Executables and object files can be deleted by make clean .
Man Pages

To read the online man page for a Sun S3L routine, enter

% man routine_name

Chapter 7 and Chapter 8 also describe the Sun S3L routines. Chapter 7 covers the set
of toolkit routines and Chapter 8 describes the core (computational) routines.

Using Sun S3L 59

60 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CHAPTER 7

Sun S3L Toolkit Routines

Sun S3L provides an extensive subset of auxiliary routines, referred to as the toolkit
functions, which enable you to do the following.

� Set up the proper environment to support calls to Sun S3L subroutines:

� S3L_init – See “S3L_init ” on page 63

� Exit the Sun S3L environment once use of the library is over:

� S3l_exit – See “Leaving a Sun S3L Environment” on page 65

� Set up parallel arrays and allocate memory for them:

� S3L_declare – See “S3L_declare ” on page 67

� S3L_declare_detailed – See “S3L_declare_detailed ” on page 71

� S3L_DefineArray – See “S3L_DefineArray ” on page 75

� Defining and freeing parallel process grids:

� S3L_set_process_grid – See “S3L_set_process_grid ” on page 78

� S3L_free_process_grid – See “S3L_free_process_grid ” on page 81

� Undefine a parallel array:

� S3L_free – See “S3L_free ” on page 82

� S3L_UnDefineArray – See “S3L_UnDefineArray ” on page 84

� Perform operations on elements of parallel arrays:

61

� S3L_array_op1 – See “S3L_array_op1 ” on page 86

� S3L_array_op2 – See “S3L_array_op2 ” on page 88

� S3L_array_scalar_op2 – See “S3L_array_scalar_op2 ” on page 91

� S3L_cshift – See “S3L_cshift ” on page 93

� S3L_forall – See “S3L_forall ” on page 96

� S3L_reduce – See “S3L_reduce ” on page 99

� S3L_reduce_axis – See “S3L_reduce_axis ” on page 101

� S3L_set_array_element – See “S3L_set_array_element ,
S3L_get_array_element , S3L_set_array_element_on_proc , and
S3L_get_array_element_on_proc ” on page 104

� S3L_set_array_element_on_proc – “S3L_set_array_element ,
S3L_get_array_element , S3L_set_array_element_on_proc , and
S3L_get_array_element_on_proc ” on page 104

� S3L_get_array_element – See “S3L_set_array_element ,
S3L_get_array_element , S3L_set_array_element_on_proc , and
S3L_get_array_element_on_proc ” on page 104

� S3L_get_array_element_on_proc – See “S3L_set_array_element ,
S3L_get_array_element , S3L_set_array_element_on_proc , and
S3L_get_array_element_on_proc ” on page 104

� S3L_zero_elements – See “S3L_zero_elements ” on page 107

� Extract various kinds of information about parallel arrays and subgrids:

� S3L_describe – See “S3L_describe ” on page 109

� S3L_get_attribute – See “S3L_get_attribute ” on page 111

� Read a file into a parallel array, write all or part of a parallel array to a file, and
print all or part of a parallel array to standard out:

� S3L_read_array – See “S3L_read_array and S3L_read_sub_array ” on
page 116

� S3L_read_sub_array – See “S3L_read_array and
S3L_read_sub_array ” on page 116

62 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� S3L_print_array – See “S3L_print_array and S3L_print_sub_array ”
on page 119

� S3L_print_sub_array – See “S3L_print_array and
S3L_print_sub_array ” on page 119

� S3L_write_array – See “S3L_write_array and S3L_write_sub_array ”
on page 121

� S3L_write_sub_array – See “S3L_write_array and
S3L_write_sub_array ” on page 121

� Copy the contents of one parallel array into another:

� S3L_copy_array – See “S3L_copy_array ” on page 124

� Convert ScaLAPACK descriptors to S3L arrays and vice versa:

� S3L_from_ScaLAPACK_desc – See “S3L_from_ScaLAPACK_desc ” on page
126

� S3L_to_ScaLAPACK_desc – See “S3L_to_ScaLAPACK_desc ” on page 129

� Miscellaneous general control functions:

� S3L_thread_comm_setup – See “ S3L_thread_comm_setup ” on page 132

� S3L_set_safety – See “S3L_set_safety ” on page 134

� S3L_get_safety – See “S3L_get_safety ” on page 137

Setting Up a Sun S3L Environment
S3L_init

Description
Before an application can start using Sun S3L functions, every process involved in
the application must call S3L_init to initialize the S3L environment. S3L_init
initializes the BLACS environment as well.

Sun S3L Toolkit Routines 63

S3L_init also initializes the Sun MPI layer if the user has not done so. If
S3L_init calls MPI_Init internally, subsequent use of S3L_exit will also result
in an internal call to MPI_Finalize .

S3L_init tests the MPI library to verify that it is Sun MPI. If not, it returns an error
message and terminates.

If the MPI layer is Sun MPI, S3L_init proceeds to initialize the S3L environment,
the BLACS environment, and if not already initialized, the Sun MPI environment. It
also enables the Prism library to access Sun S3L operations.

Syntax
The C and Fortran syntax for S3L_init are illustrated below.

C/C++ Syntax

CODE EXAMPLE 7–1

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_init()

F77/F90 Syntax

CODE EXAMPLE 7–2

include ‘s3l/s3l-f.h’
include s3l/s3l_errno-f.h’
subroutine
S3L_init(ier)

integer*4 ier

Input
S3L_init takes no input arguments.

64 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Output
When called from a Fortran program, S3L_init returns error status in ier .

Error Handling
On successful completion, S3L_init returns S3L_SUCCESS.

S3L_init tests to see if the MPI library is Sun MPI. If not, it returns the following
error message and terminates.

S3L error: invalid
MPI. Please use Sun HPC MPI.

Examples

../examples/s3l/utils/copy_array.c

../examples/s3l/utils/copy_array.f

Related Functions

S3L_exit (3)

Leaving a Sun S3L Environment
S3L_exit

Description
When an application is finished using Sun S3L functions, it must call S3L_exit to
perform various cleanup tasks associated with the current S3L environment.

S3L_exit checks to see if the S3L environment is in the initialized state—S3L_init
has been called more recently than S3L_exit . If not, S3L_exit returns the error
message S3L_ERR_NOT_INIT and exits.

Sun S3L Toolkit Routines 65

Syntax
The C and Fortran syntax for S3L_exit are illustrated below.

C/C++ Syntax

CODE EXAMPLE 7–3

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_exit()

F77/F90 Syntax

CODE EXAMPLE 7–4

include ‘s3l/s3l-f.h’
include s3l/s3l_errno-f.h’
subroutine
S3L_exit(ier)

integer*4 ier

Input
S3L_exit takes no input arguments.

Output
When called from a Fortran program, S3L_exit returns error status in ier .

Error Handling
On successful completion, S3L_exit returns S3L_SUCCESS.

The following condition will cause S3L_exit to terminate and return the associated
error value:

� S3L_ERR_NOT_INIT – S3L has not been initialized.

66 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Examples

../examples/s3l/dense_matrix_ops/inner_prod.c

../examples/s3l/dense_matrix_ops-f/inner_prod.f

../examples/s3l/utils/copy_array.f

Related Functions

S3L_init (3)

Declaring Parallel Arrays
The Sun S3L toolkit functions described in this section share a common
purpose—they all enable you to define parallel arrays that can then be operated on
by other Sun S3L routines. Each of these routines returns an S3L array handle, which
the application uses to reference the parallel array in subsequent S3L calls.

Each array declaring routine is described separately below.

� Declare a parallel array – See “S3L_declare ” on page 67.

� Declare a parallel array with detailed control over attributes – See
“S3L_declare_detailed ” on page 71

� Define a parallel array – “S3L_DefineArray ” on page 75.

Sun S3L also provides a routine for declaring a sparse matrix. This routine, called,
S3L_declare_sparse is described in “S3L_declare_sparse ” on page 167.

S3L_declare

Description
S3L_declare creates an S3L array handle that describes an S3L parallel array . It
supports calling arguments that enable the user to specify

� the array’s rank (number of dimensions)

Sun S3L Toolkit Routines 67

� the extent of each axis

� the array’s data type

� which axes, if any, will be distributed locally

� how memory will be allocated for the array

Based on the argument-supplied specifications, a process grid size is internaly
determined to distribute the array as evenly as possible.

Note - An array subgrid is the set of array elements that is allocated to a particular
process.

The axis_is_local argument specifies which array axes (if any) will be local to
the process. It consists of an integer vector whose length is at least equal to the rank
(number of dimensions) of the array. Each element of the vector indicates whether
the corresponding axis is local or not: 1 = local, 0 = not local.

When axis_is_local is ignored, all array axes except the last will be local. The
last axis will be block distributed.

For greater control over array distribution, use S3L_declare_detailed() .

Upon successful completion, S3L_declare returns an S3L array handle, which
subsequent S3L calls can use as an argument to gain access to that array.

Syntax
The C and Fortran syntax for S3L_declare are shown below.

C/C++ Syntax

CODE EXAMPLE 7–5

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_declare(A, rank, extents, type, axis_is_local, atype)

S3L_array_t *A
int rank
int *extents
S3L_data_type type
S3L_boolean_t *axis_is_local
S3L_alloc_type atype

68 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

F77/F90 Syntax

CODE EXAMPLE 7–6

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_declare(A, rank, extents, type, axis_is_local, atype, ier)

integer*8 A
integer*4 rank
integer*4 extents(*)
integer*4 type
integer*4 axis_is_local(*)
integer*4 atype
integer*4 ier

Input
� extents – An integer vector whose length is equal to the number of dimensions

in the array. Each element in extents specifies the extent of the corresponding
array axis. Note that axis indexing is zero-based for the C interface and one-based
for the Fortran interface, as follows:

� When called from a C or C++ application, the first element of extents
corresponds to axis 0, the second element to axis 1, and so forth.

� When called from an F77 or F90 application, the first element corresponds to
axis 1, the second to axis 2, and so forth.

� type – Specifies the array’s data type; this must be a type supported by Sun S3L.
See Chapter 4 for a complete list of supported data types.

� axis_is_local – An integer vector whose length equals the array’s rank. Each
element of axis_is_local controls the distribution of the corresponding array
axis as follows:

� If axis_is_local[i] = 0, axis[i] of the array will be block-distributed along
axis [i] of the process grid.

� If axis_is_local[i] = 1, axis[i] will not be distributed.

If axis_is_local is NULL (C/C++) or if its first integer value is negative
(F77/F90), this argument will be ignored.

� atype – Use one of the following predefined values to specify how the array will
be allocated:

Sun S3L Toolkit Routines 69

� S3L_USE_MALLOC– Uses malloc() to allocate the array subgrids.

� S3L_USE_MEMALIGN64– Uses memalign() to allocate the array subgrids and
to align them on 64-bit boundaries.

� S3L_USE_MMAP– Uses mmap() to allocate the array subgrids. Array subgrids
on the same node will be in shared memory.

� S3L_USE_SHMGET– Uses shmget() to allocate the array subgrids. Array
subgrids on the same node will be in intimate shared memory.

Output
S3L_declare uses the following arguments for output:

� A – S3L_declare returns the array handle in A.

� ier (Fortran only) – When called from a Fortran program,
S3L_declare_detailed returns error status in ier .

Error Handling
On successful completion, S3L_declare returns S3L_SUCCESS.

S3L_declare applies verious checks to the arrays it accepts as arguments. If an array
argument fails any of these checks, the function returns an error code indicating the
kind of error that was detected and terminates. See Appendix A of this manual for a
list of these error codes.

In addition, the following conditions will cause S3L_declare to terminate and
return the associated error value:

� S3L_ERR_ARG_RANK– The rank specified is invalid.

� S3L_ERR_ARG_EXTENTS– One or more of the array extents is less than 1.

� S3L_ERR_ARG_BLKSIZE – One or more blocksizes is less than 1.

� S3L_ERR_ARG_DISTTYPE– axis_is_local has one or more invalid values.
See the description of axis_is_local in the Input section for details.

Notes
When S3L_USE_MMAPor S3L_USE_SHMGETis used on a 32-bit platform, the part of
an S3L array owned by a single SMP cannot exceed 2 gigabytes.

When S3L_USE_MALLOCor S3L_USE_MEMALIGN64is used, the part of the array
owned by any single process can not exceed 2 gigabytes.

70 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

If these size restrictions are violated, an S3L_ERR_MEMALLOCwill be returned. On
64-bit platforms, the upper bound is equal to the system’s maximum available
memory.

Examples

../examples/s3l/transpose/ex_trans1.c

../examples/s3l/grade-f/ex_grade.f

Related Functions

S3L_declare_detailed(3)
S3L_free(3)

S3L_declare_detailed

Description
This subroutine offers the same functionality as S3L_declare , but supports the
additional input argument, addr_a , which gives the user additional control over
array distribution.

Syntax
The C and Fortran syntax for S3L_declare_detailed are shown below.

Sun S3L Toolkit Routines 71

C/C++ Syntax

CODE EXAMPLE 7–7

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_declare_detailed(A, addr_a, rank, extents, type, blocksizes, proc_src,
axis_is_local, pgrid, atype)

S3L_array_t *A
void *addr_a

int rank
int *extents
S3L_data_type type
int *blocksizes
int *proc_src
S3L_boolean_t *axis_is_local
S3L_pgrid_t pgrid
S3L_alloc_type atype

F77/F90 Syntax

CODE EXAMPLE 7–8

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_declare_detailed(A, addr_a, rank, extents, type, blocksizes, proc_src,
axis_is_local, pgrid, atype, ier)

integer*8 A
<type> array(1)
pointer (addrr_a,array)
integer*4 rank
integer*4 extents(*)
integer*8 type
integer*4 *blocksizes
integer*4 *proc_src
integer*4 axis_is_local(*)
integer*8 pgrid
integer*4 atype
integer*4 ier

where <type> is one of: integer*4 , integer*8 , real*4 , real*8 , complex*8 ,
or complex*16 .

72 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Input
S3L_declare_detailed accepts the following arguments as input:

� addr_a – If the atype argument is set to S3L_DONOT_ALLOCATE, addr_a is
taken as the starting address of the local (per process) portion of the parallel array
A. If atype is not equal to S3L_DONOT_ALLOCATE, addr_a will be ignored.

� rank – Specifies the number of dimensions the array will have. The range of legal
values for rank is 1 <= rank <= 31.

� extents – An integer vector whose length is equal to the number of dimensions
in the array. Each element in extents specifies the extent of the corresponding
array axis. Note that axis indexing is zero-based for the C interface and one-based
for the Fortran interface, as follows:

� When called from a C or C++ application, the first element of extents
corresponds to axis 0, the second element to axis 1, and so forth.

� When called from an F77 or F90 application, the first vector element
corresponds to axis 1, the second to axis 2, and so forth.

� type – Specifies the array’s data type; this must be a type supported by Sun S3L.
See Chapter 4 for a complete list of supported data types.

� blocksizes – Specifies the blocksize to be used in a block cyclic distribution
along each axis. If blocksizes is NULL (C/C++) or if its first element is equal to
–1 (F77/F90), default blocksizes will be chosen by the system.

� proc_src – Vector of length at least equal to the rank. The indices of the
processes contain the start of the array–that is, the first element along the
particular axis. If this argument is a NULL pointer (C/C++) or if its first element is
less than zero (F77/F90), default values will be used. Along each axis, the process
whose process grid coordinate along that axis is equal to 0 contains the first array
element. If present, the pgrid argument (process grid) should also be present.
Otherwise an error code will be returned.

� axis_is_local – An integer vector whose length equals the number of
dimensions in the array. Each element of axis_is_local controls the
distribution of the corresponding array axis as follows:

� If axis_is_local[i] = 0, axis[i] of the array will be block-distributed along
axis [i] of the process grid.

� If axis_is_local[i] = 1, axis[i] will not be distributed.

The axis_is_local argument is used only if a pgrid is not specified. If it is
NULL (C/C++) or if its first integer value is negative (F77/F90),
axis_is_local will be ignored.

Note - A process grid is the array of processes onto which the data is distribued.

Sun S3L Toolkit Routines 73

� pgrid -- An S3L process grid handle that was obtained by calling either S3L_set_process_ g
for the array.

� atype – Use one of the following predefined values to specify how the array will
be allocated:

� S3L_USE_MALLOC– Uses malloc() to allocate the array subgrids.

� S3L_USE_MEMALIGN64– Uses memalign() to allocate the array subgrids and
to align them on 64-bit boundaries.

� S3L_USE_MMAP– Uses mmap() to allocate the array subgrids. Array subgrids
on the same SMP will be in shared memory.

� S3L_USE_SHMGET– Uses shmget() to allocate the array subgrids. Array
subgrids on the same SMP will be in shared memory.

Output
� A – S3L_declare_detailed returns the array handle in A.

� ier (Fortran only) – When called from a Fortran program,
S3L_declare_detailed returns error status in ier .

Error Handling
On successful completion, S3L_declare_detailed returns S3L_SUCCESS.

S3L_declare_detailed applies various checks to the arrays it accepts as
arguments. If an array argument fails any of these checks, the function returns an
error code indicating the kind of error that was detected and terminates. See
Appendix A of this manual for a list of these error codes.

In addition, the following conditions will cause S3L_declare_detailed to
terminate and return the associated error value:

� S3L_ERR_ARG_RANK– The rank specified is invalid in one of the following ways:

� If called from a C/C++ program, it is negative or greater than 31

� If called from an F77/F90 program, it is zero or greater than 32.

� S3L_ERR_ARG_EXTENTS– One or more of the array extents is less than 1.

� S3L_ERR_ARG_BLKSIZE – One or more blocksizes is less than 1.

� S3L_ERR_ARG_DISTTYPE– axis_is_local has one or more invalid values.
See the description of axis_is_local in the Input section for details.

74 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Notes
When S3L_USE_MMAPor S3L_USE_SHMGETis used on a 32-bit platform, the part of
an S3L array owned by a single SMP cannot exceed 2 gigabytes.

When S3L_USE_MALLOCor S3L_USE_MEMALIGN64is used, the part of the array
owned by any single process cannot exceed 2 gigabytes.

If these size restrictions are violated, an S3L_ERR_MEMALLOCwill be returned. On
64-bit platforms, the upper bound is equal to the system’s maximum available
memory.

Examples

../examples/s3l/utils/copy_array.c

../examples/s3l/utils-f/copy_array.f

../examples/s3l/utils/get_attribute.c

../examples/s3l/utils-f/get_attribute.f

../examples/s3l/utils/scalapack_conv.c

../examples/s3l/utils-f/scalapack_conv.f

Related Functions

S3L_declare (3)
S3L_free (3)
S3L_get_process_grid(3)
S3L_set_process_grid(3)

S3L_DefineArray

Description
S3L_DefineArray associates an internal S3L array handle to a user-distributed
parallel array. The array must be distributed in such a manner that it can be expressed
as a block cyclic distribution. The array handle returned by S3L_DefineArray can
then be used in subsequent calls by Sun MPI programs to S3L functions.

S3L_DefineArray does not allocate the memory required to store the local (process
specific) part on the array. The user must allocate sufficient memory on each process
to hold the local part of the parallel array before calling this function.

Sun S3L Toolkit Routines 75

Syntax
The C and Fortran syntax for S3L_DefineArray are shown below.

C/C++ Syntax

CODE EXAMPLE 7–9

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
S3L_array_t
S3L_DefineArray(address, rank, type, extents, blocks, sprocs, p_ext)

void address
int rank
int type
int *extents
int *blocks
int *sprocs
int *p_ext

F77/F90 Syntax

CODE EXAMPLE 7–10

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
integer*8 function
S3L_DefineArray(address,
rank, type, extents, blocks, sprocs, p_ext)

<type> array(1)
integer*4 rank
pointer (addrr_a,array)
integer*4 rank
integer*4 type
integer*4 extents(*)
integer*4 blocks(*)
integer*4 sprocs(*)
integer*4 p_ext(*)

Input
S3L_DefineArray accepts the following arguments as input:

• address – The starting address of the local (within the process) portion of a
parallel array. In C, the user must allocate this local memory (for example, via the

76 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

malloc function). In F77, the address is defined as a pointer to a local storage
area.

� rank – Specifies the number of dimensions the array will have. The range of legal
values for rank is 1 <= rank <= 31.

� type – Denotes the parallel array’s data type. In C, it is a variable of type
S3L_data_type . In F77, it is a variable of type integer*4 .

� extents – Specifies the extents of the parallel array.

� blocks – Specifies the blocksizes of the block cyclic distribution of the parallel
array along each axis. Note that, block cyclic distribution is a general classification
that includes other distribution types, such as CYCLIC(1) and BLOCK(n)
distribution.

� sprocs – The starting processes of the block cyclic array distributions. If
sprocs[i] = j , block 0 of the block cyclic distribution of the array along axis
[i] is located in process j .

� p_ext – The extents of the process grid upon which the array is distributed. If, for
example, p_ext[0] = 2, p_ext[1] = 3, p_ext[2] = 4, the three-dimensional
parallel array will be distributed on a 2 x 3 x 4 process grid.

Note that process ordering within the process grid is always column major (F77
major) and that the product of the extents of the process grid must equal the total
number of processes participating in the computation (that is, must equal the size of
MPI_COMM_WORLD).

Error Handling
On success, S3L_DefineArray returns an S3L array handle that can be used for
subsequent calls to other Sun S3L functions.

On error, it returns 0.

Examples

../examples/s3l/api

../examples/s3l/api-f

Sun S3L Toolkit Routines 77

Related Functions

S3L_UnDefineArray (3)

Parallel Process Grids
S3L_set_process_grid

Description
S3L_set_process_grid allows the user to define various aspects of an internal
process grid. It returns a process grid handle, which subsequent calls to other Sun
S3L functions can use to refer to that process grid.

Syntax
The C and Fortran syntax for S3L_DefineArray are shown below.

C/C++ Syntax

CODE EXAMPLE 7–11

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_set_process_grid(pgrid,
rank, majorness, grid_extents, plist_length, process_list)

S3L_pgrid_t *pgrid
int rank
int majorness
int *grid_extents
int plist_length
int *process_list

78 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

F77/F90 Syntax

CODE EXAMPLE 7–12

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_set_process_grid(pgrid,
rank, majorness, grid_extents, plist_length, process_list, ier)

integer*8 pgrid
integer*4 rank
integer*4 majorness
integer*4 grid_extents(*)
integer*4 plist_length
integer*4 process_list(*)
integer*4 ier

Input
S3L_set_process_grid accepts the following arguments as input:

� rank – Specifies the number of dimensions the array will have. The range of legal
values for rank is 1 <= rank <= 31.

� majorness – Use one of the following predefined values to specify the order of
loop execution:

� S3L_MAJOR_ROW– Rightmost axis varies fastest.

� S3L_MAJOR_COLUMN– Leftmost axis varies fastest.

� grid_extents – Integer array whose length equals the rank of the process grid.
It contains a list of process grid extents. Each element in the array specifies the
extent of the corresponding process grid axis. Note that axis indexing is zero-based
for the C/C++ interface and one-based for the F77/F90 interface, as follows:

� When called from a C or C++ application, the first element of grid_extents
corresponds to axis 0, the second element to axis 1, and so forth.

� When called from an F77 or F90 application, the first element corresponds to
axis 1, the second to axis 2, and so forth.

� plist_length – Specifies the length of the process. In C/C++ programs, if the
process_list argument is a NULL pointer, plist_length must be 0.

� process_list – Integer array whose length equals the number of processes in
the grid. It contains a list of processes. For C/C++ programs, if process_list is
a NULL pointer, plist_length must be 0.

Sun S3L Toolkit Routines 79

Output
S3L_set_process_grid uses the following arguments for output:

� pgrid – The process grid handle returned by the function.

� ier (Fortran only) – When called from a Fortran program,
S3L_set_process_grid returns error status in ier .

Error Handling
On success, S3L_set_process_grid returns S3L_SUCCESS.

S3L_set_process_grid performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code indicating which value of the array handle
was invalid is returned. See Appendix A of this manual for a detailed list of these
error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code.

� S3L_ERR_ARG_RANK– Invalid rank.

� S3L_ERR_ARG_MAJOR– Invalid majorness.

� S3L_ERR_PGRID_EXTENTS– Grid size (calculated as product of process grid
extents) is less than 1.

� S3L_ERR_ARRTOOSMALL– plist_length is greater than 0 but less than the size
of the grid (calculated from the product of process grid extents).

� S3L_ERR_ARG_NULL– In a C/C++ program, plist_length is greater than 0 but
process_list is a NULL pointer.

Examples

../examples/s3l/utils/scalapack_conv.c

../examples/s3l/utils-f/scalapack_conv.f

Related Functions

S3L_declare_detailed (3)
S3L_free_process_grid (3)

80 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

S3L_free_process_grid

Description
S3L_free_process_grid frees the process grid handle returned by a previous call
to S3L_set_process_grid .

Syntax
The C and Fortran syntax for S3L_DefineArray are shown below.

C/C++ Syntax

CODE EXAMPLE 7–13

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_free_process_grid

S3L_pgrid_t *pgrid

F77/F90 Syntax

CODE EXAMPLE 7–14

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_free_process_grid(pgrid, ier)

integer*8 pgrid
integer*4 ier

Input
S3L_free_process_grid accepts the following arguments as input:

� pgrid – The process grid handle returned by a previous call to
S3L_set_process_grid .

Sun S3L Toolkit Routines 81

Output
S3L_free_process_grid uses the following arguments for output:

� ier (Fortran only) – When called from a Fortran program,
S3L_free_process_grid returns error status in ier .

Error Handling
On success, S3L_free_process_grid returns S3L_SUCCESS.

On error, the following error code may be returned:

� S3L_PGRID_ERR_NULL– An invalid process grid argument was supplied.

Examples

../examples/s3l/utils/scalapack_conv.c

../examples/s3l/utils-f/scalapack_conv.f

Related Functions

S3L_set_process_grid (3)

Deallocating Parallel Arrays
S3L_free

Description
S3L_free deallocates the memory reserved for a parallel S3L array and undefines
the associated array handle.

82 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Note - If memory was allocated for the array by the user rather than by S3L,
S3L_free destroys the array handle, but does not deallocate the memory. This
situation can arise when S3L_declare_detailed() is invoked with the atype
option set to S3L_DONOT_ALLOCATE.

Syntax
The C and Fortran syntax for S3L_free are shown below.

C/C++ Syntax

CODE EXAMPLE 7–15

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_free(a)

S3L_array_t *a

F77/F90 Syntax

CODE EXAMPLE 7–16

include ‘s3l/s3l-f.h
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_free(a, ier)

integer*8 a
integer*4 ier

Input
S3L_free accepts the following argument as input:

� a – Handle for the parallel S3L array that is to be deallocated. This handle was
returned by a previous call to S3L_declare , S3L_declare_detailed .

Sun S3L Toolkit Routines 83

Output
S3L_free uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, S3L_free returns
error status in ier .

Error Handling
On success, S3L_free returns S3L_SUCCESS.

On error, the following error code may be returned:

� S3L_ERR_ARG_ARRAY– a is a NULL pointer (C/C++) or 0 (F77/F90).

Examples

../examples/s3l/io/ex_print1.c

../examples/s3l/io-f/ex_print1.f

Related Functions

S3L_declare (3)
S3L_declare_detailed (3)

S3L_UnDefineArray

Description
S3L_UnDefineArray frees the array handle and the associated memory that were
set up by a previous call to S3L_DefineArray .

Note - S3L_UnDefineArray does not free the local (process-resident) memory,
where the local part of a parallel array is stored. The user is responsible for
deallocating local memory assigned to the parallel array before the parallel program
exits.

84 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Syntax
The C and Fortran syntax for S3L_UnDefineArray are shown below.

C/C++ Syntax

CODE EXAMPLE 7–17

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_UnDefineArray(a)

S3L_array_t a

F77/F90 Syntax

CODE EXAMPLE 7–18

include ‘s3l/s3l-f.h
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_UnDefineArray(a)

integer*8 a

Input
S3L_UnDefineArray accepts the following argument as input:

� a – Handle for the parallel S3L array that is to be deallocated. This handle was
returned by a previous call to S3L_DefineArray .

Error Handling
S3L_UnDefineArray does not return any value.

Sun S3L Toolkit Routines 85

Examples

../examples/s3l/api

../examples/s3l/api.f

../examples/s3l/array_utils

Related Functions

S3L_DefineArray (3)
S3L_declare (3)
S3L_declare_detailed (3)
S3L_free (3)

Performing Operations on S3L Parallel
Arrays
The toolkit functions described in this section enable the user to apply various kinds
of operations on a parallel array’s elements.

S3L_array_op1

Description
S3L_array_op1 applies a predefined unary (single-operand) operation to each
element of an S3L parallel array. The S3L array handle argument, a, identifies the
parallel array to be operated on and the op argument specifies the operation to be
performed. The value of op must be:

� S3L_OP_ABS– Replaces each element in a with its absolute value.

� S3L_OP_MINUS– Replaces each element in a with its negative value.

� S3L_OP_EXP– Replaces each element in the real or complex array a with its
exponential.

86 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Syntax
The C and Fortran syntax for S3L_array_op1 are shown below.

C/C++ Syntax

CODE EXAMPLE 7–19

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_array_op1(a, op)

S3L_array_t a
int op

F77/F90

CODE EXAMPLE 7–20

include ‘s3l/s3l-f.h
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_array_op1(a, op, ier)

integer*8 a
integer*4 op
integer*4 ier

Input
S3L_array_op1 accepts the following arguments as input:

� a – S3L array handle for the parallel array on which the operation will be
performed.

� op – Predefined constant specifying the operation to be applied. See the
Description section for details.

Output
S3L_array_op1 uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, S3L_array_op1
returns error status in ier .

Sun S3L Toolkit Routines 87

Error Handling
On success, S3L_array_op1 returns S3L_SUCCESS.

S3L_array_op1 performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code indicating which value of the array handle was invalid
is returned. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following condition will cause the function to terminate and return
the associated error code.

� S3L_ERR_ARG_DTYPE– op is equal to S3L_OP_EXPbut a is of integer type.

Examples

../examples/s3l/fft/ex_fft1.c

../examples/s3l/deconv-f/ex_deconv.f

Related Functions

S3L_array_op2 (3)
S3L_array_scalar_op2 (3)
S3L_reduce_scalar (3)

S3L_array_op2

Description
S3L_array_op2 applies the operation specified by op to elements of parallel arrays
a and b, which must be of the same type and have the same distribution. The
parameter op can be one of the following:

� S3L_OP_MUL -- a equals a .* b

� S3L_OP_CMUL -- a equals a .* conjg(b)

� S3L_OP_DIV -- a equals a ./ b

� S3L_OP_MINUS -- a equals a - b

� S3L_OP_PLUS -- a equals a + b

88 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Note - The operators ".* " and "./ " denote pointwise multiplication and division of
the elements in arrays a and b.

S3L_OP_MULreplaces each element in a with the elementwise product of
multiplying a and b.

S3L_OP_CMULperforms the same operation as S3L_OP_MUL, except it multiplies
each element in a by the conjugate of the corresponding element in b.

S3L_OP_DIV performs elementwise division of a by b, overwriting a with the
integer (truncated quotient) results.

S3L_OP_MINUSperforms elementwise subtraction of b from a, overwriting a with
the differences.

S3L_OP_PLUSperforms elementwise addition of a with b, overwriting a with the
sum.

Syntax
The C and Fortran syntax for S3L_array_op2 are shown below.

C/C++ Syntax

CODE EXAMPLE 7–21

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_array_op2(a, b, op)

S3L_array_t a
S3L_array_t b
int op

Sun S3L Toolkit Routines 89

F77/F90 Syntax

CODE EXAMPLE 7–22

include ‘s3l/s3l-f.h
include ‘s3l/s3l_errno-f.h’

subroutine
S3L_array_op2(a, b, op, ier)

integer*8 a
integer*8 b
integer*4 op

integer*4 ier

Input
S3L_array_op2 accepts the following arguments as input:

� a – S3L array handle for one of two parallel arrays to which the operation will be
applied.

� b – S3L array handle for the second of two parallel arrays to which the operation
will be applied.

� op – Predefined constant specifying the operation to be applied. See the
Description section for details.

Output
S3L_array_op2 uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, S3L_array_op2
returns error status in ier .

Error Handling
On success, S3L_array_op2 returns S3L_SUCCESS.

S3L_array_op2 performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code indicating which value of the array handle was invalid
is returned. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

� S3L_ERR_MATCH_HOME– Both arrays are local but not on the same process.

90 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� S3L_ERR_MATCH_ALIGN– The arrays do not have the same subgrid sizes.

� S3L_ERR_ARG_OP– An illegal operation was requested.

Examples

../examples/s3l/fft/ex_fft1.c

../examples/s3l/fft-f/ex_fft1.f

Related Functions

S3L_array_op1 (3)
S3L_array_scalar_op2 (3)
S3L_reduce_scalar (3)

S3L_array_scalar_op2

Description
S3L_array_scalar_op2 applies a binary operation to each element of an S3L
array that involves the element and a scalar.

op determines which operation will be performed. It can be one of:

� S3L_OP_MULT– pointwise multiplication.

� S3L_OP_DIV – pointwise division.

� S3L_OP_PLUS– pointwise addition.

� S3L_OP_MINUS– pointwise subtraction.

� S3L_OP_ASSIGN– assignment.

Syntax
The C and Fortran syntax for S3L_array_scalar_op2 are shown below.

Sun S3L Toolkit Routines 91

C/C++ Syntax

CODE EXAMPLE 7–23

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_array_scalar_op2(a, scalar,
op)

S3L_array_t a
void *scalar
int op

F77/F90 Syntax

CODE EXAMPLE 7–24

include ‘s3l/s3l-f.h
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_array_scalar_op2(a, scalar, op, ier)

integer*8 a
<type> scalar
integer*4 op
integer*4 ier

where <type> is one of: integer*4 , integer*8 , real*4 , real*8 , complex*8 ,
or complex*16 .

Input
S3L_array_scalar_op2 accepts the following arguments as input:

� a – S3L array handle for the parallel array to which the operation will be applied.

� scalar – Scalar value used as an operand in the operation applied to each
element of a.

� op – Predefined constant specifying the operation to be applied. See the
Description section for details.

92 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Output
S3L_array_scalar_op2 uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program,
S3L_array_scalar_op2 returns error status in ier .

Error Handling
On success, S3L_array_scalar_op2 returns S3L_SUCCESS.

S3L_array_scalar_op2 performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code indicating which value of the array handle
was invalid is returned. See Appendix A of this manual for a detailed list of these
error codes.

In addition, the following condition will cause the function to terminate and return
the associated error code:

� S3L_ERR_ARG_OP– op is not one of: S3L_OP_MUL, S3L_OP_DIV,
S3L_OP_PLUS, S3L_OP_MINUS, or S3L_OP_ASSIGN

Examples

../examples/s3l/fft/ex_fft1.c

../examples/s3l/fft-f/ex_fft1.f

Related Functions

S3L_array_op1 (3)
S3L_array_op2 (3)
S3L_reduce_scalar (3)

S3L_cshift
S3L_cshift performs a circular shift of a specified amount along a specified axis of
the parallel array associated with array handle A. The argument axis indicates the
dimension to be shifted, and index prescribes the shift distance.

Shift direction is upwards for positive index values and downward for negative
index values.

Sun S3L Toolkit Routines 93

For example, if A denotes a one-dimensional array of length n before the cshift, B
denotes the same array after the cshift, and index is equal to 1, the array A will be
circularly shifted upwards, as shown below:

For C Programs

B[1:n-1]=A[0:n-2], B[0]=A[n-1]

For Fortran Programs

B(2:n)=A(1:n-1), B(1)=A(n)

Syntax
The C and Fortran syntax for S3L_cshift are shown below.

C/C++ Syntax

CODE EXAMPLE 7–25

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_cshift(A, axis, index)

S3L_array_t A
void axis
int index

F77/F90 Syntax

CODE EXAMPLE 7–26

include ‘s3l/s3l-f.h
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_cshift(A, axis, index,
ier)

integer*8 A
integer*4 axis
integer*4 index
integer*4 ier

94 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

Input
S3L_cshift accepts the following arguments as input:

� A – Array handle for the parallel array to be shifted.

� axis – Specifies the axis along which the shift is to take place. This value must
assume zero-based axis indexing when S3L_cshift is called from a C or C++
application and one-based indexing when called from an F77 or F90 application.

� index – Specifies the shift distance. If the extent of the axis being shifted is N,
legal values for index are: -N < index < N.

Output
S3L_cshift uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, S3L_cshift returns
error status in ier .

Error Handling
On success, S3L_cshift returns S3L_SUCCESS.

S3L_cshift performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code indicating which value of the array handle was invalid
is returned. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following condition will cause the function to terminate and return
the associated error code:

� S3L_ERR_ARG_AXISNUM– Invalid axis value.

� S3L_ERR_INDX_INVALID – index value is out of range.

Sun S3L Toolkit Routines 95

Examples

../examples/s3l/utils/cshift_reduce.c

../examples/s3l/utils-f/cshift_reduce.f

Related Functions

S3L_reduce
S3L_reduce_axis

S3L_forall

Description

S3L_forall applies a user-defined function to elements of a parallel Sun S3L array.
and sets its values accordingly. Three different function types are supported. These
types are described in Table 7–1.

TABLE 7–1 User-Defined Function Types for S3L_forall

fn_type C Prototype Fortran Interface

S3L_ELEM_FN1 void user_fn(void *elem_addr); subroutine user_fn(a)

<type> a

end user_fn

S3L_ELEM_FNN void user_fn(void *elem_addr, int
n);

subroutine user_fn(a,n)

<type> a

integer*4 n

end user_fn

S3L_ELEM_FN void user_fn(void *elem_addr,

int *coord);

subroutine user_fn(a, coord)

<type> a

Here, <type> is one of: integer*4 , integer*8 , real*4 , real*8 , complex*8, or
complex*16 and rank is the rank of the array.

For S3L_ELEM_FN1, the user function is applied to each element in the array.

96 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

For S3L_ELEM_FNN, the user function is supplied the local subgrid address and
subgrid size and iterates over subgrid elements. This form delivers the highest
performance because the looping over the elements is contained within the function
call.

For S3L_INDEX_FN, the user function is applied to each element in the subarray
specified by the triplets argument to S3L_forall . If the triplets argument is NULL
in C/C++ or has a leading value of 0 in F77/F90, the whole array is implied. The
user function may involve the global coordinates of the array element; these are
contained in the coord argument. Global coordinates of array elements are 0-based
for C programs and 1-based for Fortran programs.

Note - When a Fortran program uses triplets, the length of first axis of the triplets
must equal the rank of the array. Failure to meet this requirement can produce
wrong results or a segmentation violation.

Note - A subgrid is the portion of the parallel array that is owned by a process. A
subarray is the portion of the parallel array that is described by a lower bound, an
upper bound, and a stride in each dimension.

Syntax
The C and Fortran syntax for S3L_cshift are shown below.

C/C++ Syntax

CODE EXAMPLE 7–27

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_forall(a, user_fn, fn_type, triplets)

S3L_array_t a
void (*user_fn)()
int fn_type
int triplets[rank][3]

where rank is the rank of the array.

Sun S3L Toolkit Routines 97

F77/F90 Syntax

CODE EXAMPLE 7–28

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_forall(a, user_fn, fn_type, triplets, ier)

integer*8 a
<external> user_fn
integer*4 fn_type
integer*4 triplets(rank,3)
integer*4 ier

where rank is the rank of the array.

Input
S3L_forall accepts the following arguments as input:

� a – Parallel array to which the function will be applied.

� user_fn – Pointer to the user-defined function.

� fn_type – Predefined value specifying the class of functions to which the
function belongs. See the Description section for a list of valid fn_type entries.

� triplets – An integer vector that is used to restrict the function to a range of
elements. A triplet takes the form:

inclusive lower bound inclusive upper bound stride

for each axis of the array. The stride must be positive. To apply the function to all the
elements in the array, set triplets to NULL (C/C++) or to 0 (F77/F90).

Output
S3L_forall uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, S3L_forall returns
error status in ier .

Error Handling
On success, S3L_forall returns S3L_SUCCESS.

98 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

S3L_forall performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code indicating which value of the array handle was invalid
is returned. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following condition will cause the function to terminate and return
the associated error code:

� S3L_ERR_FORALL_INVFN– User-specified function is invalid. fn_type is not
one of:

� S3L_ELEM_FN1

� S3L_ELEM_FNN

� S3L_INDEX_FN

� S3L_ERR_INDX_INVALID – fn_type is S3L_INDEX_FN and one or more of the
elements in the triplets argument has an invalid value.

Examples

../examples/s3l/forall/ex_forall.c

../examples/s3l/forall/ex_forall2.cc

../examples/s3l/forall-f/ex_forall.f

S3L_reduce

Description
S3L_reduce performs a predefined reduction function over all elements of a parallel
array. The array is described by the S3L array handle argument A. The argument op
specifiesthe type of reduction operations, which can be one of the following:

� S3L_OP_SUM– Finds the sum of all the elements.

� S3L_OP_MIN – Finds the smallest value among all the elements.

� S3L_OP_MAX– Finds the largest value among all the elements.

Syntax
The C and Fortran syntax for S3L_reduce are shown below.

Sun S3L Toolkit Routines 99

C/C++ Syntax

CODE EXAMPLE 7–29

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_reduce(A, op, res)

S3L_array_t A
S3L_op_type op
void *res

F77/F90 Syntax

CODE EXAMPLE 7–30

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_reduce(A, op, res, ier)

integer*8 A
integer*4 op
<type> res
integer*4 ier

where <type> is one of: real*4 , real*8 , complex*8 , or complex*16 .

Input
S3L_reduce accepts the following arguments as input:

� A – Array handle for the parallel array to be reduced.

� op – Specifies the type of operation to be performed; it can be one of:

� S3L_OP_SUM

� S3L_OP_MIN

� S3L_OP_MAX

100 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Output
S3L_reduce uses the following arguments for output:

� res – Contains the result of the reduction function.

� ier (Fortran only) – When called from a Fortran program, S3L_reduce returns
error status in ier .

Error Handling
On success, S3L_reduce returns S3L_SUCCESS.

S3L_reduce performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code indicating which value of the array handle was invalid
is returned. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code.

� S3L_ERR_ARG_OP– Requested operation is not supported.

� S3L_ERR_ARG_DTYPE– Invalid data type.

Examples

../examples/s3l/utils/cshift_reduce.c

../examples/s3l/utils-f/cshift_reduce.f

Related Functions

S3L_reduce_axis (3)

S3L_reduce_axis

Description
S3L_reduce_axis applies a predefined reduction operation along a given axis of a
parallel S3L array. If n is the rank (number of dimensions) of a, the result b is a
parallel array of rank n-1. The argument op specifies the operation to be performed.
The value of op must be one of:

Sun S3L Toolkit Routines 101

� S3L_OP_SUM– The sum reduction operation is applied.

� S3L_OP_MIN – The minimum reduction operation is applied.

� S3L_OP_MAX– The maximum reduction operation is applied.

Syntax
The C and Fortran syntax for S3L_reduce_axis are shown below.

C/C++ Syntax

CODE EXAMPLE 7–31

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_reduce_axis(a, op, axis,
b)

S3L_array_t a
S3L_op_type op
int axis
S3L_array_t b

F77/F90 Syntax

CODE EXAMPLE 7–32

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_reduce_axis(a, op, axis, b, ier)

integer*8 a
integer*4 op
integer*4 axis
integer*8 b
integer*4 ier

Input
S3L_reduce_axis accepts the following arguments as input:

� a – S3L array handle for the parallel array on which the operation will be applied.

102 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� op – Predefined constant specifying the operation to be applied.

� axis – Specifies the axis along which the reduction will be performed. When
S3L_reduce_axis is called from a C program, this value must reflect zero-based
indexing of the array axes. If called from a Fortran program, it must reflect
one-based indexing.

Output
S3L_reduce_axis uses the following arguments for output:

� b – S3L array handle for the parallel array that will contain the result of the
reduction.

� ier (Fortran only) – When called from a Fortran program, S3L_reduce_axis
returns error status in ier .

Error Handling
On success, S3L_reduce_axis returns S3L_SUCCESS.

S3L_reduce_axis performs generic checking of the validity of the arrays it accepts
as arguments. If an array argument contains an invalid or corrupted value, the
function terminates and an error code indicating which value of the array handle
was invalid is returned. See Appendix A of this manual for a detailed list of these
error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

� S3L_ERR_ARG_OP– An illegal operation was requested.

� S3L_ERR_MATCH_EXTENTS– The extents of a and b do not match. For
example, if a is a 4D array with extents n1 x n2 x n3 x n4, and axis is equal to 2
(Fortran interface), b must be a 3D array with extents n1 x n3 x n4.

� S3L_ERR_MATCH_RANK– The rank of b is not equal to rank of a minus 1.

� S3L_ERR_ARG_AXISNUM– The axis specified is not valid; that is, it is either
larger than the rank of the array or smaller than 1 (Fortran interface). For the C
interface, the axis value would be equal to or larger than the rank of the array or
smaller than 0.

Examples

../examples/s3l/utils/cshift_reduce.c

../examples/s3l/utils-f/cshift_reduce.f

Sun S3L Toolkit Routines 103

(Continuation)

Related Functions

S3L_reduce (3)

S3L_set_array_element ,
S3L_get_array_element , S3L_set_array_element_on_pro c
and S3L_get_array_element_on_proc

Description
The four subroutines described in this section enable the user to alter (set) and
retrieve (get) individual elements of an array. Two of these subroutines also allow the
user to know which process will participate in the set/get activity.

S3L_set_array_element assigns the value stored in val to a specific element of a
distributed S3L array, whose global coordinates are specified by coor . The val
variable is colocated with the array subgrid containing the target element.

Note - Because an S3L array is distibuted across a set of processes, each process has
a subsection of the global array local to it. These array subsections are also referred
to as array subgrids.

For example, if a parallel array is distributed across four processes, P0 – P3, and
coor specifies an element in the subgrid that is local to P2, the val that is located on
P2 will be the source of the value used to set the target element.

S3L_get_array_element is similar to S3L_set_array_element , but operates in
the opposite direction. It assigns the value stored in the element specified by coor to
val on every process. Since S3L_get_array_element broadcasts the element value
to every process, upon completion, every process contains the same value in val .

S3L_set_array_element_on_proc specifies which process will be the source of
the value to be assigned to the target element. That is, the argument pnum specifies
the MPI rank of a particular process. The value of the variable val on that process
will be assigned to the target element—that is, the element whose coordinates are
specified by coor .

104 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Note - The MPI rank of a process is defined in the global communicator
MPI_COMM_WORLD.

S3L_get_array_element_on_proc updates the variable val on the process
whose MPI rank is supplied in pnum, using the element whose indices are given in
coor as the source for the update.

Syntax
The C and Fortran syntax for S3L_set_array_element and its related routines are
shown below.

C/C++ Syntax

CODE EXAMPLE 7–33

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_set_array_element(a, coor, val)
S3L_get_array_element(a, coor, val)
S3L_set_array_element_on_proc(a, coor, val, pnum)
S3L_get_array_element_on_proc(a, coor, val, pnum)

S3L_array_t a
int coor
void val
int pnum

F77/F90 Syntax

CODE EXAMPLE 7–34

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_set_array_element(a, coor, val, ier)
S3L_get_array_element(a,
coor, val, ier)
S3L_set_array_element_on_proc(a, coor, val, pnum, ier)
S3L_set_array_element_on_proc(a, coor, val, pnum, ier)

integer*8 a

(continued)

Sun S3L Toolkit Routines 105

(Continuation)

integer*4 coor
<type> val
integer*4 pnum
integer*4 ier

where <type> is one of: integer*4 , real*4 , real*8 , complex*8 , or
complex*16 .

Input
S3L_set_array_element and S3L_get_array_element accept the following
arguments as input:

� a – Array handle describing the parallel array containing the element of interest.

� coor – Integer vector specifying the coordinates of an element of the distributed
array a. This value follows zero-based notation for C/C++ programs and
one-based notation for F77/F90 programs.

� val – Variable that holds the value to be assigned to an element of an array or
that accepts the value of that element.

� pnum – Integer variable specifying the MPI rank of a process to supply or accept
the value val . pnum is only used with S3L_set_array_element_on_proc and
S3L_get_array_element_on_proc.

Output
These functions use the following argument for output:

� ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier .

Error Handling
On success, these functions return S3L_SUCCESS.

In addition, the following conditions will cause these functions to return the
associated error code and terminate.

� S3L_ERR_ARG_DTYPE – The data type of array a is not one of:

� S3L_integer

106 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� S3L_float

� S3L_double

� S3L_complex

� S3L_double_complex

� S3L_ERR_ARG_COOR– The supplied coordinates are not valid; that is, they do
not specify an element of a.

Examples

../examples/s3l/utils/cshift_reduce.c

../examples/s3l/utils-f/cshift_reduce.f

S3L_zero_elements

Description
S3L_zero_elements sets to zero all elements of the S3L array whose array handle
is A.

Syntax
The C and Fortran syntax for S3L_zero_elements are illustrated below.

C/C++ Syntax

CODE EXAMPLE 7–35

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_zero_elements(A)

S3L_array_t A

(continued)

Sun S3L Toolkit Routines 107

(Continuation)

F77/F90 Syntax

CODE EXAMPLE 7–36

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_zero_elements(A, ier)

integer*8 A
integer*4 ier

Input
� A – S3L internal array handle for the parallel array that is to be initialized to zero.

Output
This function uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_zero_elements returns S3L_SUCCESS.

S3L_zero_elements checks the arrays it accepts as argument. If the array
argument contains an invalid or corrupted value, the function terminates and an
error code indicating which value of the array handle was invalid is returned. See
Appendix A of this manual for a detailed list of these error codes.

In addition, the following condition will cause the function to terminate and return
the associated code:

� S3L_ERR_ARG_DTYPE– The data type of A is invalid.

108 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Examples

../examples/s3l/utils/zero_elements.c

../examples/s3l/utils-f/zero_elements.f

Extracting Information About S3L
Parallel Arrays
The functions described in this section allow users to retrieve information about
parallel arrays for which an array handle exists.

S3L_describe

Description
S3L_describe prints information about a parallel array or a process grid to
standard output. If an array handle is supplied in argument A, the parallel array is
described. If a process grid is supplied in A, the associated process grid is described.
The info_node argument specifies the MPI rank of the process on which the
subgrid of interest is located.

If A is an S3L array handle, the following is provided:

� Information on the rank extents and the data type of the array, as well as the
starting address in memory of its subgrid.

Note: If the entire array fits on the process specified by info_node , all parts of the
S3L_describe output apply to the full array. Otherwise, some parts of the output,
such as subgrid size, will apply only to the portion of the array that is on process
info_node .

� A description of the underlying grid of processes to which data is mapped.

If A is a process grid handle, S3L_describe provides only a description of the
underlying grid of processes to which data is mapped.

To determine what value to enter for info_node , run MPI_Comm_rank on the
process of interest.

Sun S3L Toolkit Routines 109

Syntax
The C and Fortran syntax for S3L_describe are shown below.

C/C++ Syntax

CODE EXAMPLE 7–37

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_describe(A, info_node)

S3L_array_t A
int info_node

F77/F90 Syntax

CODE EXAMPLE 7–38

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_zero_elements(A, ier)

integer*8 A
integer*4 info_node
integer*4 ier

Input
S3L_describe accepts the following arguments as input:

� A – May be a parallel array handle or a process grid handle.

� info_node – Scalar integer variable that specifies the index or rank of the process
from which the information will be gathered. Note that certain array parameters,
such as the subgrid size and addresses, will vary from process to process.

Output
S3L_describe uses the following argument for output:

110 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� ier (Fortran only) – When called from a Fortran program, S3L_describe
returns error status in ier .

Error Handling
On success, S3L_describe returns S3L_SUCCESS.

S3L_describe performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code indicating which value of the array handle was invalid
is returned. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following condition will cause the function to terminate and return
the associated error code.

� S3L_ERR_ARG_ARRAY– A is not a valid parallel array or process grid handle.

Examples

../examples/s3l/utils/scalapack_conv.c

../examples/s3l/utils-f/scalapack_conv.f

Related Functions

MPI_Comm_rank(3)
S3L_declare(3)
S3L_declare_detailed(3)
S3L_set_process_grid(3)

S3L_get_attribute

Description
S3L_get_attribute returns a requested attribute of an S3L dense array or sparse
matrix. The user specifies one of a set of predefined req_attr values and, on
return, the integer value of the requested attribute is stored in attr . For attributes
associated with array axes—such as the extents or blocksizes of an array—the user
specifies the axis as well.

The req_attr entry must be one of the following:

Sun S3L Toolkit Routines 111

� S3L_ELEM_TYPE– Retrieves in attr the S3L type of the elements of an S3L
dense array or sparse matrix as they are defined in s3l-c.h or s3l-f.h .

� S3L_ELEM_SIZE – Retrieves in attr the size (in bytes) of the elements of an S3L
dense array or sparse matrix.

� S3L_RANK– Retrieves in attr the rank (number of dimensions) of an S3L dense
array or sparse matrix.

� S3L_EXTENT– If a is an S3L array handle, S3L_EXTENTretrieves in attr the
extent of an S3L dense array or sparse matrix along the dimension given in axis .
If a is an S3L process grid handle, it returns in attr the number of processes over
which a given axis of an array is distributed.

� S3L_BLOCK_SIZE – Retrieves in attr the block size of the block-cyclic
distribution of an S3L dense array along the dimension given in axis .

� S3L_BLOCK_START– Retrieves in attr the index of the starting process of the
block-cyclic distribution of an S3L dense array along the dimension given in axis .

� S3L_SGRID_SIZE – Retrieves in attr the subgrid size of the block-cyclic
distribution of an S3L dense array along the dimension given in axis .

� S3L_AXIS_LOCAL – Assigns 0 to attr if the axis is not distributed and 1 if it is.

� S3L_SGRID_ADDRESS– Returns in attr the starting address of the local subgrid
(local per-process part) of an S3L dense array.

� S3L_MAJOR– If a is an S3L dense array, S3L_MAJORreturns in attr the
majorness of the elements in the local part of the array. It can be either
S3L_MAJOR_COLUMN(F77 major) or S3L_MAJOR_ROW(C major). If a is an S3L
process grid descriptor, it returns in attr the majorness (F77 or C) of the internal
process grid associated with an S3L process grid.

� S3L_ALLOC_TYPE– Returns in attr one of the predefined allocation types for
dense S3L arrays. The user can use this option to determine, for example, whether
the array has been allocated in shared memory, whether the local (per-process)
parts of the array are 64-bit aligned, and so forth.

� S3L_SHARED_ADDR– For dense S3L arrays that have been allocated in shared
memory (single SMP case), S3L_SHARED_ADDRreturns in attr the global starting
address of the array. All processes can directly access all elements of such arrays
without the need for explicit intperprocess communication.

� S3L_PGRID_DESC– Returns in attr the process grid descriptor associated with
an S3L dense array or sparse matrix.

� S3L_SCALAPACK_DESC– For 1D and 2D S3L dense arrays,
S3L_SCALAPACK_DESCreturns in attr the ScaLAPACK array descriptor
associated with the distribution of that array.

� S3L_NONZEROS– For an S3L sparse matrix, S3L_NONZEROSreturns in attr the
number of nonzero elements of that matrix.

� S3L_RIDX_SGRID_ADDR– For an S3L sparse matrix stored in the
S3L_SPARSE_COOformat, S3L_RIDX_SGRID_ADDRreturns in attr the starting

112 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

address of an array of index sets containing the local row numbers that comprise
each local submatrix (per-process).

For an S3L sparse matrix stored in the S3L_SPARSE_CSRformat,
S3L_RIDX_SGRID_ADDRreturns in attr the starting address of an array containing
the pointers to the beginning of each row of the local submatrix (per-process).

Note: Users must not change the data returned in attr . It is created for internal use
only.

� S3L_CIDX_SGRID_ADDR– For an S3L sparse matrix, S3L_CIDX_SGRID_ADDR
returns in attr the starting address of an array of index sets containing the global
column numbers that comprise each local submatrix (per-process).

Note: User must not change the data returned in attr . It is created for internal use
only.

� S3L_NRZS_SGRID_ADDR– For an S3L sparse matrix, S3L_NZRS_SGRID_ADDR
returns in attr the starting address of an array containing nonzero elements of
the local submatrix (per-process).

� S3L_RIDX_SGRID_SIZE – For an S3L sparse matrix stored in the
S3L_SPARSE_COOformat, S3L_RIDX_SGRID_SIZE returns in attr the size of
an array of index sets containing the local row numbers that comprise each local
submatrix (per-process).

For an S3L sparse matrix stored in the S3L_SPARSE_CSRformat,
S3L_RIDX_SGRID_SIZE returns in attr the size of an array containing the pointers
to the beginning of each row of the local submatrix (per-process).

� S3L_CIDX_SGRID_SIZE – For an S3L sparse matrix, S3L_CIDX_SGRID_SIZE
returns in attr the size of an array of index sets containing the global column
numbers that comprise each local submatrix (per-process).

� S3L_NRZS_SGRID_SIZE – For an S3L sparse matrix, S3L_NZRS_SGRID_SIZE
returns in attr the size of an array containing nonzero elements of the local
submatrix (per-process).

� S3L_COORD– It returns in attr the coordinate of the calling process in an S3L
process grid, along the dimension given in axis.

� S3L_ON_SINGLE_SMP– It returns 1 in attr if an S3L process grid is defined on a
single SMP and 0 if not.

Syntax
The C and Fortran syntax for S3L_get_attribute are shown below.

Sun S3L Toolkit Routines 113

C/C++ Syntax

CODE EXAMPLE 7–39

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_S3L_get_attribute(a, req_attr, axis, attr)

S3L_array_t a
int req_attr
int axis
void *attr

F77/F90 Syntax

CODE EXAMPLE 7–40

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_get_attribute(a, req_attr, axis, attr, ier)

integer*8 a
integer*4 req_attr
integer*4 axis
<type> attr
integer*4 ier

where <type> is either of integer*4 type or of pointer type. When attr is an
address, it should be of type pointer. In all other cases, it should be of type
integer*4 .

Input
S3L_get_attribute accepts the following arguments as input:

� a – Pointer to a descriptor of an unknown type.

� req_attr – A predefined value that specifies the attribute to be retrieved. See the
Description section for a list of valid req_attr entries.

� axis – Scalar integer variable. To retrieve axis-specific attributes, such as, extents
or blocksizes, use this parameter to specify the axis of interest.

114 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� attr – Pointer to a variable of the appropriate type that will hold the retrieved
attribute value.

Output
S3L_get_attribute uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, S3L_get_attribute
returns error status in ier .

Error Handling
On success, S3L_get_attribute returns S3L_SUCCESS.

S3L_get_attribute performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code indicating which value of the array handle
was invalid is returned. See Appendix A of this manual for a detailed list of these
error codes.

In addition, the following condition will cause the function to terminate and return
the associated error code:

� S3L_ERR_ATTR_INVALID – Invalid attribute; the supplied descriptor does not
have the requested attribute type.

Examples

../examples/s3l/utils/get_attribute.c

../examples/s3l/utils-f/get_attribute.f

Related Functions

S3L_set_array_element(3)
S3L_set_array_element_on_proc(3)

Sun S3L Toolkit Routines 115

Reading Data Into and Printing From
S3L Parallel Arrays
The toolkit functions described in this section allow the user to read data from a file
into a parallel array, to write data from a parallel array into a local file, and to print
data from a parallel array to standard output.

S3L_read_array and S3L_read_sub_array
S3L_read_array causes the process with MPI rank 0 to read the contents of a
distributed array from a local file and distribute them to the processes that own the
parts (subgrids) of the array. The local file is specified by the filename argument.

S3L_read_sub_array reads a specific section of the array, within the limits
specified by the lbounds and ubounds arguments. The strides argument
specifies the stride along each axis; it must be greater than zero. The format
argument is a string that specifies the format of the file to be read. It can be either
"ascii " or "binary ".

The values of lbounds and ubounds should refer to zero-based indexed arrays for
the C interface and to one-based indexed arrays for the Fortran interface.

Syntax
The C and Fortran syntax for S3L_read_array and S3L_read_sub_array are
shown below.

C/C++ Syntax

CODE EXAMPLE 7–41

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_read_array(a, filename, format)
S3L_read_sub_array(a, lbounds, ubounds, strides, filename, format)

S3L_array_t a
int *lbounds
int *ubounds

(continued)

116 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

int *strides
char *filename
char *format

F77/F90 Syntax

CODE EXAMPLE 7–42

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_read_array(a, filename, format, ier)
S3L_read_sub_array(a, lbounds, ubounds, strides, filename, format, ier)

integer*8 a
integer*4 lbounds(*)
integer*4 ubounds(*)
integer*4 strides(*)
character*1 filename(*)
character*1 format(*)
integer*4 ier

Input
S3L_read_array and S3L_read_sub_array accept the following arguments as
input:

� a – S3L array handle for the parallel array to be read. This array handle was
returned when the array was declared.

� lbounds – Integer vector specifying the lower bounds of the indices of a along
each of its axes.

� ubounds – Integer vector specifying the upper bounds of the indices of a along
each of its axes.

� strides – Integer vector specifying the strides on the indices of a along each of
its axes.

� filename – Scalar character variable specifing the name of the file from which
the parallel array will be read.

� format – Scalar character variable specifing the format of the data to be read. The
value can be either "ascii " or "binary ".

Sun S3L Toolkit Routines 117

Output
S3L_read_array and S3L_read_sub_array use the following argument for
output:

� ier (Fortran only) – When called from a Fortran program, S3L_read_array and
S3L_read_sub_array return error status in ier .

Error Handling
On success, S3L_read_array and S3L_read_sub_array return S3L_SUCCESS.

S3L_read_array and S3L_read_sub_array perform generic checking of the
validity of the arrays they accept as arguments. If an array argument contains an
invalid or corrupted value, the function terminates and an error code indicating
which value of the array handle was invalid is returned. See Appendix A of this
manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

� S3L_ERR_ARG_RANGE_INV– The given range of indices is invalid:

� A lower bound is less that the the smallest index of the array.

� An upper bound is greater than the largest index of an array along the given
axis.

� A lower bound is larger than the corresponding upper bound.

� A stride is negative or zero.

� S3L_ERR_FILE_OPEN– Failed to open the file with the file name provided.

� S3L_ERR_EOF– Encountered EOFwhile reading an array from a file.

� S3L_ERR_IO_FORMAT– Format is not one of "ascii " or "binary ".

� S3L_ERR_IO_FILENAME– The file name is equal to the NULL string (C/C++) or
to an empty string (F77/F90).

Examples

../examples/s3l/io/ex_io.c

../examples/s3l/io-f/ex_io.f

118 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Related Functions

S3L_print_array(3)
S3L_write_array(3)

S3L_print_array and S3L_print_sub_array
S3L_print_array causes the process with MPI rank 0 to print the parallel array
represented by the array handle a to standard output.

S3L_print_sub_array prints a specific section of the parallel array. This array
section is defined by the lbounds , ubounds , and strides arguments. lbounds
and ubounds specify the array section’s lower and upper index bounds. strides
specifies the stride to be used along each axis; it must be greater than zero.

Note - The values of lbounds and ubounds should refer to zero-based indexed
arrays for the C interface and to one-based indexed arrays for the Fortran interface.

Syntax
The C and Fortran syntax for S3L_print_array and S3L_print_sub_array are
shown below.

C/C++ Syntax

CODE EXAMPLE 7–43

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_print_array(a)
S3L_print_sub_array(a, lbounds, ubounds, strides)

S3L_array_t a
int *lbounds
int *ubounds
int *strides

Sun S3L Toolkit Routines 119

F77/F90 Syntax

CODE EXAMPLE 7–44

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_print_array(a, ier)
S3L_print_sub_array(a, lbounds, ubounds, strides, ier)

integer*8 a
integer*4 lbounds(*)
integer*4 ubounds(*)
integer*4 strides(*)
integer*4 ier

Input
S3L_print_array and S3L_print_sub_array accept the following arguments as
input:

� a – S3L array handle for the parallel array to be printed. This array handle was
returned when the array was declared.

� lbounds – Integer vector specifying the lower bounds of the indices of a along
each of its axes.

� ubounds – Integer vector specifying the upper bounds of the indices of a along
each of its axes.

� strides – Integer vector specifying the strides on the indices of a along each of
its axes.

Output
S3L_print_array and S3L_print_sub_array use the following argument for
output:

� ier (Fortran only) – When called from a Fortran program, S3L_print_array
and S3L_print_sub_array return error status in ier .

Error Handling
On success, S3L_print_array and S3L_print_sub_array return S3L_SUCCESS.

S3L_print_array and S3L_print_sub_array perform generic checking of the
validity of the arrays they accept as arguments. If an array argument contains an
invalid or corrupted value, the function terminates and an error code indicating

120 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

which value of the array handle was invalid is returned. See Appendix A of this
manual for a detailed list of these error codes.

In addition, the following condition will cause the function to terminate and return
the associated error code:

� S3L_ERR_ARG_RANGE_INV– The given range of indices is invalid:

� A lower bound is less that the the smallest index of the array.

� An upper bound is greater than the largest index of an array along the given
axis.

� A lower bound is larger than the corresponding upper bound.

� A stride is negative or zero.

Examples

../examples/s3l/io/ex_print1.c

../examples/s3l/io/ex_io.c

../examples/s3l/io-f/ex_io.f

Related Functions

S3L_read_array(3)
S3L_write_array(3)

S3L_write_array and S3L_write_sub_array
S3L_write_array causes the process with MPI rank 0 to write the parallel array
represented by the array handle a into a file specified by the filename argument.
The file filename resides on the process with rank 0.

S3L_write_sub_array writes a specific section of the parallel array to filename.
This section is defined by the lbounds , ubounds , and strides arguments.
lbounds and ubounds specify the array section’s lower and upper index bounds.
strides specifies the stride along each axis; it must be greater than zero.

Note - The values of lbounds and ubounds should refer to zero-based indexed
arrays for the C interface and to one-based indexed arrays for the Fortran interface.

Sun S3L Toolkit Routines 121

Syntax

The C and Fortran syntax for S3L_write_array and S3L_write_sub_array are
shown below.

C/C++ Syntax

CODE EXAMPLE 7–45

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_write_array(a, filename, format)
S3L_write_sub_array(a, lbounds, ubounds, strides, filename, format)

S3L_array_t a
int *lbounds
int *ubounds
int *strides
char *filename
char *format

F77/F90 Syntax

CODE EXAMPLE 7–46

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_write_array(a, filename, format, ier)
S3L_write_sub_array(a, lbounds, ubounds, strides, filename, format,
ier)

integer*8 a
integer*4 lbounds(*)
integer*4 ubounds(*)
integer*4 strides(*)
character*1 filename(*)
character*1 format(*)
integer*4 ier

Input

S3L_write_array and S3L_write_sub_array accept the following arguments as
input:

122 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� a – S3L array handle for the parallel array to be written. This array handle was
returned when the array was declared.

� lbounds – Integer vector specifying the lower bounds of the indices of a along
each of its axes.

� ubounds – Integer vector specifying the upper bounds of the indices of a along
each of its axes.

� strides – Integer vector specifying the strides on the indices of a along each of
its axes.

� filename – Scalar character variable specifying the name of the file to which the
parallel array will be written.

� format – Scalar character variable specifying the format of the data to be written.
The value can be either "ascii " or "binary ".

Output
S3L_write_array and S3L_write_sub_array use the following argument for
output:

� ier (Fortran only) – When called from a Fortran program, S3L_write_array
and S3L_write_sub_array return error status in ier .

Error Handling
On success, S3L_write_array and S3L_write_sub_array return S3L_SUCCESS.

S3L_write_array and S3L_write_sub_array perform generic checking of the
validity of the arrays they accept as arguments. If an array argument contains an
invalid or corrupted value, the function terminates and an error code indicating
which value of the array handle was invalid is returned. See Appendix A of this
manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

� S3L_ERR_ARG_RANGE_INV– The given range of indices is invalid:

� A lower bound is less that the the smallest index of the array.

� An upper bound is greater than the largest index of an array along the given
axis.

� A lower bound is larger than the corresponding upper bound.

� A stride is negative or zero.

� S3L_ERR_FILE_OPEN– Failed to open the file with the file name provided.

Sun S3L Toolkit Routines 123

� S3L_ERR_IO_FORMAT– Format is not one of "ascii " or "binary ".

� S3L_ERR_IO_FILENAME– The file name is equal to the NULL string (C/C++) or
to an empty string (F77/F90).

Examples

../examples/s3l/io/ex_io.c

../examples/s3l/io-f/ex_io.f

Related Functions

S3L_print_array(3)
S3L_read_array(3)

Copy Array
S3L_copy_array

Description
S3L_copy_array copies the contents of array A into array B, which must have the
same rank, extents and data type as A.

Syntax
The C and Fortran syntax for S3L_copy_array are illustrated below.

124 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

C/C++ Syntax

CODE EXAMPLE 7–47

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_write_array(a, filename, format)

S3L_array_t A
S3L_array_t B
char *format

F77/F90 Syntax

CODE EXAMPLE 7–48

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_copy_array(A, B, ier)

integer*8 A
integer*8 B
integer*4 ier

Input
� A – S3L_array handle for the parallel array to be copied.

Output
This function uses the following arguments for output:

� B – S3L array handle for a parallel array of the same rank, extents, and data type
as A. On successful completion, B contains a copy of the contents of A.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_copy_array returns S3L_SUCCESS.

Sun S3L Toolkit Routines 125

S3L_copy_array checks the arrays it accepts as arguments. If an array argument
contains an invalid or corrupted value, the function terminates and an error code
indicating which value of the array handle was invalid is returned. See Appendix A
of this manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated code:

� S3L_ERR_MATCH_RANK– The ranks of A and B do not match.

� S3L_ERR_MATCH_EXTENTS– The extents of A and B do not match.

� S3L_ERR_MATCH_DTYPE– The data types of A and B do not match.

� S3L_ERR_ARG_DTYPE– The data type of A and/or B is invalid.

Examples

../examples/s3l/utils/copy_array.c

../examples/s3l/utils-f/copy_array.f

Converting Between ScaLAPACK
Descriptors and S3L Array Handles
The functions described in this section make it possible to convert ScaLAPACK
descriptors to S3L array handles and vice versa.

S3L_from_ScaLAPACK_desc

Description
S3L_from_ScaLAPACK_desc converts the ScaLAPACK descriptor and subgrid
address specified by scdesc and address into an S3L array handle, which is
returned in s3ldesc .

126 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Syntax
The C and Fortran syntax for S3L_from_ScaLAPACK_desc are shown below.

C/C++ Syntax

CODE EXAMPLE 7–49

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_from_ScaLAPACK_desc(s3ldesc, scdesc, data_type, address)

S3L_array_t *s3ldesc
int *scdesc
S3L_data_type data_type
void *address

F77/F90 Syntax

CODE EXAMPLE 7–50

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_from_ScaLAPACK_desc(s3ldesc, scdesc, data_type, address, ier)

integer*8 s3ldesc
integer*4 scdesc(*)
integer*4 data_type
pointer address
integer*4 ier

Input
S3L_from_ScaLAPACK_desc accepts the following arguments as input:

� scdesc – ScaLAPACK descriptor for a parallel array.

� data_type – Specifies the data type of the S3L array. It must specify a data type
supported by Sun S3L.

� address – This input argument holds the starting address of an existing array
subgrid.

Sun S3L Toolkit Routines 127

Note - In Fortran programs, address should either be a pointer (see the Fortran
documentation for details) or the starting address of a local array, as determined
by the loc(3F) function.

Output
S3L_from_ScaLAPACK_desc uses the following arguments for output:

� s3ldesc – S3L array handle that is the output of S3L_from_ScaLAPACK_desc .

� ier (Fortran only) – When called from a Fortran program,
S3L_from_ScaLAPACK_desc returns error status in ier .

Error Handling
On success, S3L_from_ScaLAPACK_desc returns S3L_SUCCESS.

S3L_from_ScaLAPACK_desc performs generic checking of the validity of the
arrays it accepts as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code indicating which value of the array
handle was invalid is returned. See Appendix A of this manual for a detailed list of
these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

� S3L_ERR_ARG_NULL– The scdesc argument is a NULL pointer (C/C++) or 0
(F77/F90).

� S3L_ERR_NOT_SUPPORT– The ScaLAPACK descriptor data type is not supported
by Sun S3L.

� S3L_ERR_PGRID_NOPROCS– The ScaLAPACK descriptor has an invalid BLACS
context.

Examples

../examples/s3l/utils/scalapack_conv.c

../examples/s3l/utils-f/scalapack_conv.f

128 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Related Functions

S3L_to_ScaLAPACK_desc(3)

S3L_to_ScaLAPACK_desc

Description
S3L_to_ScaLAPACK_desc converts the S3L array handle specified by s3ldesc
into a ScaLAPACK array descriptor and subgrid address, which are returned in
scdesc and address , respectively.

The array referred to by s3ldesc must be two-dimensional; that is, it must be a
rank 2 array.

Syntax
The C and Fortran syntax for S3L_to_ScaLAPACK_desc are shown below.

C/C++ Syntax

CODE EXAMPLE 7–51

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_to_ScaLAPACK_desc(s3ldesc, scdesc, data_type, address)

S3L_array_t *s3ldesc
int *scdesc
int data_type
void **address

Sun S3L Toolkit Routines 129

F77/F90 Syntax

CODE EXAMPLE 7–52

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_to_ScaLAPACK_desc(s3ldesc, scdesc, data_type, address, ier)

integer*8 s3ldesc
integer*4 scdesc(*)
integer*4 data_type
pointer address
integer*4 ier

Input
S3L_to_ScaLAPACK_desc accepts the following arguments as input:

� s3ldesc – Contains the S3L array handle that is provided as input to
S3L_to_ScaLAPACK_desc .

Output
S3L_to_ScaLAPACK_desc uses the following argument for output:

� scdesc – Contains the ScaLAPACK descriptor output generated by
S3L_to_ScaLAPACK_desc .

� data_type – Contains the data type of the S3L array. It must specify a data type
supported by Sun S3L.

� address – This argument will hold the starting address of an existing array
subgrid.

� ier (Fortran only) – When called from a Fortran program,
S3L_from_ScaLAPACK_desc returns error status in ier .

Error Handling
On success, S3L_to_ScaLAPACK_desc returns S3L_SUCCESS.

S3L_to_ScaLAPACK_desc performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code indicating which value of the array handle
was invalid is returned. See Appendix A of this manual for a detailed list of these
error codes.

130 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

In addition, the following conditions will cause the function to terminate and return
the associated error code:

� S3L_ERR_ARG_NULL– The s3ldesc argument is a NULL pointer (C/C++) or 0
(F77/F90).

� S3L_ERR_ARG_RANK– The S3L array handle refers to an array with a rank not
equal to 2.

� S3L_ERR_PGRID_NOPROCS– The ScaLAPACK descriptor has an invalid BLACS
context.

Examples

../examples/s3l/utils/scalapack_conv.c

../examples/s3l/utils-f/scalapack_conv.f

Related Functions

S3L_from_ScaLAPACK_desc(3)

Performing Miscellaneous S3L Control
Functions
This section describes three toolkit functions that support the following tasks:

� Enabling thread-safe operation of Sun S3L routines.

� Checking the current safety level.

� Setting the safety level.

Sun S3L Toolkit Routines 131

S3L_thread_comm_setup

Description
S3L_thread_comm_setup establishes the appropriate internal MPI communicators
and data for thread-safe operation of S3L functions. It should be called from each
thread in which S3L functions will be used.

Only S3L_init can be called before S3L_thread_comm_setup .

The argument commspecifies an MPI communicator, which should be congruent
with, but not identical to, MPI_COMM_WORLD.

A unique communicator must be used for each thread or set of cooperating threads.
The term "cooperating threads” refers to a set of threads that will be working on the
same data. For example, one thread can initialize a random number generator, obtain
a setup ID, and pass this to a fellow cooperating thread, which will then use the
random number generator.

In such cases, the user must ensure that the threads within a cooperating set are
properly synchronized.

A unique communicator is required because S3L performs internal communications.
For example, when S3L_mat_mult is called from a multithreaded program, the
thread on one node needs to communicate with the appropriate thread on another
node. This can be done only if a communicator that is unique to these threads has
been previously defined and passed to the communications routines within S3L.

S3L_thread_comm_setup need not be invoked if S3L functions are called from
only one thread in the user’s program.

Note - S3L_thread_comm_setup is useful when a user performs explicit
multithreading via threads library functions. Since threads library functions are not
available in F77, the F77 interface for S3L_thread_comm_setup is not provided.

Syntax
The C and Fortran syntax for S3L_thread_comm_setup are shown below.

C/C++ Syntax

CODE EXAMPLE 7–53

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>

132 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

int
S3L_thread_comm_setup(comm)

MPI_Comm comm

F77/F90 Syntax

CODE EXAMPLE 7–54

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_thread_comm_setup(comm, ier)

integer*4 comm
integer*4 ier

Input
S3L_thread_comm_setup accepts the following argument as input:

� comm– An MPI communicator that is congruent with, but not identical to,
MPI_COMM_WORLD.

Output
S3L_thread_comm_setup uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program,
S3L_thread_comm_setup returns error status in ier .

Error Handling
On success, S3L_thread_comm_setup returns S3L_SUCCESS.

S3L_thread_comm_setup performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and an error code indicating which value of the array handle

Sun S3L Toolkit Routines 133

was invalid is returned. See Appendix A of this manual for a detailed list of these
error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

� S3L_ERR_ARG_NULL– The commargument is a NULL pointer (C/C++) or 0 (F77/
F90)

� S3L_ERR_COMM_INVAL– The commargument is not congruent to
MPI_COMM_WORLD.

� S3L_ERR_THREAD_UNSAFE– The application program is using libraries that are
not thread-safe.

Examples
See the following C and Fortran 77 program examples for illustrations of
S3L_thread_comm_setup in use:

../examples/s3l/dense_matrix_ops/inner_prod_mt.c

../examples/s3l/dense_matrix_ops/matmult_mt.c

Related Functions
The following may be of related interest.

MPI_Comm_dup(3)
S3L_set_safety(3)
threads(3T)
Also, "Multithreaded Programming" is a relevant section in the Sun MPI
User’s Guide

S3L_set_safety

Description
The S3L safety mechanism offers two types of services:

� It performs error checking and reporting during execution of S3L routines.

� It synchronizes S3L processes so that, when an error is detected, the section of
code associated with the error can be more readily identified.

The S3L safety mechanism can be set to operate at ony one of four levels, which are
described in Table 7–2.

134 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE 7–2 S3L Safety Levels

Safety Level Description

0 Turns the safety mechanism off. Explicit synchronization and
errorchecking are not performed. This level is appropriate for
productionruns of code that have already been thoroughly tested.

2 Detects potential race conditions in multithreaded S3L operations on
parallel arrays. To avoid race conditions, an S3L function locks all parallel
array handles in its argument list before proceeding. This safety level
causes warning messages to be generated if more than one S3L function
attempts to use the same parallel array at the same time.

5 In addition to checking for and reporting level 2 errors, performsexplicit
synchronization before and after each call and locates eacherror with
respect to the synchronization points. This safety level isappropriate
during program development or during runs for which a small
performance penalty can be tolerated.

9 Checks for and reports all level 2 and level 5 errors, as well as
errorsgenerated by any lower levels of code called from within S3L.
Performs explicit synchronization in these lower levels of code and
locates each error with respect to the synchronization points. This level is
appropriate for detailed debugging following the occurrenceof a problem.

The S3L safety mechanism can be controlled in either of two ways:

� By setting the environment variable S3L_SAFETY.

� By using the calls S3L_set_safety and S3L_get_safety in a program.

To set the S3L safety level using the S3L_SAFETYenvironment variable, issue the
command:

setenv S3L_SAFETY
{ 0 | 2 | 5 | 9 }

Syntax
The C and Fortran syntax for S3L_set_safety are shown below.

Sun S3L Toolkit Routines 135

C/C++ Syntax

CODE EXAMPLE 7–55

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_set_safety(n)

int n

F77/F90 Syntax

CODE EXAMPLE 7–56

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_set_safety(n, ier)

integer*4 n
integer*4 ier

Input
S3L_set_safety accepts the following argument as input:

� n – An integer specifying one of four safety levels: 0, 2, 5, and 9. See the
Description section for details.

Output
S3L_set_safety uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, S3L_set_safety
returns error status in ier .

Error Handling
On success, S3L_set_safety returns S3L_SUCCESS.

On error, the following condition will cause the function to return the associated
error code and terminate:

136 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� S3L_ERR_SAFELEV_INVAL– Safety level has an invalid value.

Examples

../examples/s3l/utils/copy_array.c

../examples/s3l/utils-f/copy_array.f

Related Functions

S3L_get_safety(3)

S3L_get_safety

Description
When S3L_get_safety is called from within an application, the value it returns
indicates the current setting of the S3L safety mechanism. The possible return values
are listed and their meaning explained in Table 7–2.

Syntax
The C and Fortran syntax for S3L_set_safety are shown below.

C/C++ Syntax

CODE EXAMPLE 7–57

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_get_safety()

Sun S3L Toolkit Routines 137

F77/F90 Syntax

CODE EXAMPLE 7–58

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_get_safety(ier)

integer*4 ier

Input
S3L_get_safety takes no input arguments.

Output
S3L_get_safety returns the S3L safety level. When called by a Fortran program, it
uses the following argument for output:

� ier – When called from a Fortran program, S3L_get_safety returns error
status in ier .

Examples

../examples/s3l/utils/copy_array.c

../examples/s3l/utils-f/copy_array.f

Related Functions

S3L_set_safety(3)

138 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CHAPTER 8

Sun S3L Core Library Functions

This chapter describes the set of computational functions, which form the core of the
scientific subroutine library. These descriptions are organized as follows:

� Dense Matrix Routines

� S3L_2_norm – See “S3L_2_norm and S3L_gbl_2_norm ” on page 142

� S3L_inner_prod – See “S3L_inner_prod and S3_gbl_inner_prod ” on
page 146

� S3L_mat_mult – See “S3L_mat_mult ” on page 152

� S3L_mat_vec_mult – See “S3L_mat_vec_mult ” on page 158

� S3L_outer_prod – See “S3L_outer_prod ” on page 163

� Sparse Matrix Routines

� S3L_declare_sparse – See “S3L_declare_sparse ” on page 167

� S3L_free_sparse – See “S3L_free_sparse ” on page 171

� S3L_rand_sparse – See “S3L_rand_sparse ” on page 173

� S3L_matvec_sparse – See “S3L_matvec_sparse ” on page 176

� S3L_read_sparse – See “S3L_read_sparse ” on page 179

S3L_print_sparse – See “S3L_print_sparse ” on page 184

� Gaussian Elimination for Dense Systems

139

� S3L_lu_factor – See “S3l_lu_factor ” on page 187

� S3L_lu_invert – See “S3l_lu_invert ” on page 190

� S3L_lu_solve – See “S3l_lu_solve ” on page 193

� S3L_lu_deallocate – See “S3l_lu_deallocate ” on page 196

� Fast Fourier Transforms

� S3L_fft – See “S3L_fft ” on page 198

� S3L_fft_detailed – See “S3L_fft_detailed ” on page 201

� S3L_ifft – See “S3L_ifft ” on page 204

� S3L_rc_fft – See “S3L_rc_fft and S3L_cr_fft ” on page 207

� S3L_cr_fft – See “S3L_rc_fft and S3L_cr_fft ” on page 207

� S3L_fft_setup – See “S3L_fft_setup ” on page 212

� S3L_rc_fft_setup – See “S3L_rc_fft_setup ” on page 214

� S3L_fft_free_setup – See “S3L_fft_free_setup ” on page 217

� S3L_rc_fft_free_setup – See “S3L_rc_fft_free_setup ” on page 218

� Structured Solvers

� S3L_gen_band_factor – See “S3L_gen_band_factor ” on page 220

� S3L_gen_band_free_factors – See “S3L_gen_band_free_factors ”
on page 224

� S3L_gen_band_solve – See “S3L_gen_band_solve ” on page 225

� S3L_gen_trid_factor – See “S3L_gen_trid_factor ” on page 229

� S3L_gen_trid_free_factors – See “S3L_gen_trid_free_factors ”
on page 232

� S3L_gen_trid_solve – See “S3L_gen_trid_solve ” on page 234

� Dense Symmetric Eigenvalue Solve

� S3L_sym_eigen – See “S3L_sym_eigen ” on page 237

140 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� Parallel Random Number Generators

� S3L_setup_rand_fib – See “S3L_setup_rand_fib ” on page 241

� S3L_free_rand_fib – See “S3L_free_rand_fib ” on page 243

� S3L_rand_fib – See “S3L_rand_fib ” on page 245

� S3L_rand_lcg – See “S3L_rand_lcg ” on page 247

� Least Squares Solver

� S3L_gen_lsq – See “S3L_gen_lsq ” on page 249

� Dense Singular Value Decomposition

� S3L_gen_svd – See “S3L_gen_svd ” on page 252

� Iterative Solver

� S3L_gen_iter_solve – See “S3L_gen_iter_solve ” on page 256

� Auto-correlation

� S3L_acorr_setup – See “S3L_acorr_setup ” on page 263

� S3L_acorr_free_setup – See “S3L_acorr_free_setup ” on page 265

� S3L_acorr – See “S3L_acorr ” on page 267

� Convolution/Deconvolution

� S3L_conv_setup – See “S3L_conv_setup ” on page 270

� S3L_conv_free_setup – see “S3L_deconv_free_setup ” on page 280

� S3L_conv – See “S3L_conv ” on page 275

� S3L_deconv_setup – See “S3L_deconv_setup ” on page 278

� S3L_deconv_free_setup – See “S3L_deconv_free_setup ” on page 280

� S3L_deconv – See “S3L_deconv ” on page 282

� Multidimensional Sort and Grade

Sun S3L Core Library Functions 141

� S3L_grade_up – See “S3L_grade_down , S3L_grade_up ,
S3L_grade_down_detailed , S3L_grade_up_detailed ” on page 286

� S3L_grade_down – See “S3L_grade_down , S3L_grade_up ,
S3L_grade_down_detailed , S3L_grade_up_detailed ” on page 286

� S3L_grade_detailed_up – See “S3L_grade_down , S3L_grade_up ,
S3L_grade_down_detailed , S3L_grade_up_detailed ” on page 286

� S3L_grade_detailed_down – See “S3L_grade_down , S3L_grade_up ,
S3L_grade_down_detailed , S3L_grade_up_detailed ” on page 286

� S3L_sort – See “S3L_sort , S3L_sort_up , S3L_sort_down ,
S3L_sort_detailed_up , S3L_sort_detailed_down ” on page 292

� S3L_sort_up – See “S3L_sort , S3L_sort_up , S3L_sort_down ,
S3L_sort_detailed_up , S3L_sort_detailed_down ” on page 292

� S3L_sort_down – See “S3L_sort , S3L_sort_up , S3L_sort_down ,
S3L_sort_detailed_up , S3L_sort_detailed_down ” on page 292

� S3L_sort_detailed_up – See “S3L_sort , S3L_sort_up ,
S3L_sort_down , S3L_sort_detailed_up , S3L_sort_detailed_down ”
on page 292

� S3L_sort_detailed_down – See “S3L_sort , S3L_sort_up ,
S3L_sort_down , S3L_sort_detailed_up , S3L_sort_detailed_down ”
on page 292

� Parallel Transpose

� S3L_trans – See “S3L_trans ” on page 297

Dense Matrix Routines
S3L_2_norm and S3L_gbl_2_norm

Description
Multiple-Instance 2-norm – The multiple-instance 2-norm routine, S3L_2_norm ,
computes one or more instances of the 2-norm of a vector. The single-instance
2-norm routine, S3L_gbl_2_norm , computes the global 2-norm of a parallel array.

142 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

For each instance z of z , the multiple-instance routine S3L_2_norm performs the
operation shown in Table 8–1.

TABLE 8–1 S3L Multiple-Instance 2-norm Operations

Operation Data Type

z = (xTx)1/2 = ||x||(2) real

z = (xHx)1/2 = ||x||(2) complex

Upon successful completion, S3L_2_norm overwrites each element of z with the
2-norm of the corresponding vector in x .

Single-Instance 2-norm – The single-instance routine S3L_gbl_2_norm routine
performs the operations shown in Table 8–2.

TABLE 8–2 S3L Single-Instance 2-norm Operations

Operation Data Type

a = (xTx)1/2 = ||x||(2) real

a = (xHx)1/2 = ||x||(2) complex

Upon successful completion, S3L_gbl_2_norm overwrites a with the global 2-norm
of x .

Syntax
The C and Fortran syntax for S3L_2_norm and S3L_gbl_2_norm are shown below.

C/C++ Syntax

CODE EXAMPLE 8–1

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int

(continued)

Sun S3L Core Library Functions 143

(Continuation)

S3L_2_norm(z, x, x_vector_axis)
S3L_gbl_2_norm(a, x)

S3L_array_t a
S3L_array_t z
S3L_array_t x
int x_vector_axis

F77/F90 Syntax

CODE EXAMPLE 8–2

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_2_norm(z, x, ier)
S3L_gbl_2_norm(a, x, ier)

integer*8 a
integer*8 z
integer*8 x
integer*4 x_vector_axis
integer*4 ier

Input
� x – Array handle for an S3L parallel array. For calls to S3L_2_norm

(multiple-instance routine), x must represent a parallel array of rank >= 2, with at
least one nonlocal instance axis. The variable x contains one or more instances of
the vector x whose 2-norm will be computed.

For calls to S3L_gbl_2_norm (single-instance routine), x must represent a
parallel array of rank >= 1, with any instance axes declared to have length 1.

� x_vector_axis – Scalar variable. Identifies the axis of x along which the vectors
lie.

Output
These functions use the following argument for output:

� z – Array handle for the S3L parallel array that will contain the results of the
multiple-instance 2-norm routine. The rank of z must be one less than that of x .

144 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

The axes of z must match the instance axes of x in length and order of declaration.
Thus, each vector x in x corresponds to a single destination value z in z .

� a – Pointer to a scalar variable. Destination for the single-instance 2-norm routine.

� ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier .

Error Handling
On success, S3L_2_norm and S3L_gbl_2_norm return S3L_SUCCESS.

S3L_2_norm and S3L_gbl_2_norm perform generic checking of the validity of the
arrays they accept as arguments. If an array argument contains an invalid or
corrupted value, the function terminates and an error code indicating which value of
the array handle was invalid is returned. See Appendix A of this manual for a
detailed list of these error codes.

In addition, the following conditions will cause the functions to terminate and return
the associated error code.

� S3L_ERR_ARG_RANK– x has invalid rank.

� S3L_ERR_ARG_AXISNUM– (S3L_2_norm only) x_vector_axis is a bad axis
number. For C program calls, this parameter must be >= 0 and less than the rank
of x . For Fortran program calls, it must be >= 1 and not exceed the rank of x .

� S3L_ERR_MATCH_RANK– z does not have a rank of one less than that of x .

Examples

../examples/s3l/dense_matrix_ops/norm2.c

../examples/s3l/dense_matrix_ops-f/norm2.f

Related Functions

S3L_inner_prod(3)
S3L_outer_prod(3)
S3L_mat_vec_mult(3)
S3L_mat_mult(3)

Sun S3L Core Library Functions 145

S3L_inner_prod and S3_gbl_inner_prod

Description
Multiple-Instance Inner Product – Sun S3L provides six multiple-instance inner
product routines, all of which compute one or more instances of the inner product of
two vectors embedded in two parallel arrays. The operations performed by the
multiple-instance inner product routines are shown in Table 8–3.

TABLE 8–3 S3L Multiple-Instance Inner Product Operations

Routine Operation Data Type

S3L_inner_prod z = z + x Ty real or complex

S3L_inner_prod_noadd z = x Ty real or complex

S3L_inner_prod_addto z = u + x Ty real or complex

S3L_inner_prod_c1 z = z + x Hy complex only

S3L_inner_prod_c1_noadd z = x Hy complex only

S3L_inner_prod_c1_addto z = u + x Hy
complex only

For these multiple-instance operations, array x contains one or more instances of the
first vector in each inner-product pair, x . Likewise, array y contains one or more
instances of the second vector in each pair, y .

Note - The array arguments x , y , and so forth. actually represent array handles that
describe S3L parallel arrays. For convenience, however, this discussion ignores that
distinction and refers to them as if they were the arrays themselves.

x and y must be at least rank 1 arrays, must be of the same rank, and their
corresponding axes must have the same extents. Additionally, x and y must both be
distributed arrays—that is, each must have at least one axis that is nonlocal.

Array z , which stores the results of the multiple-instance inner product operations,
must be of rank one less than that of x and y . Its axes must match the instance axes
of x and y in length and order of declaration and it must also have at least one axis
that is nonlocal. This means each vector pair in x and y corresponds to a single
destination value in z .

146 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

For S3L_inner_prod and S3L_inner_prod_c1 , z is also used as the source for a
set of values, which are added to the inner products of the corresponding x and y
vector pairs.

Finally, x , y , and z must match in data type and precision.

Two scalar integer variables, x_vector_axis and y_vector_axis , specify the
axes of x and y along which the constituent vectors in each vector pair lie.

Note - When specifying values for x_vector_axis and y_vector_axis, keep in
mind that Sun S3L functions employ zero-based array indexing when they are called
via the C/C++ interface and one-based indexing when called via the F77/F90
interface.

The array handle u describes an S3L parallel array that is used by
S3L_inner_prod_addto and S3L_inner_prod_c1_addto . These routines add
the values contained in u to the inner products of the corresponding x and y vector
pairs.

Upon successful completion of S3L_inner_prod or S3L_inner_prod_c1 , the
inner product of each vector pair x and y in x and y , respectively, is added to the
corresponding value in z .

Upon successful completion of S3L_inner_prod_noadd or
S3L_inner_prod_c1_noadd , the inner product of each vector pair x and y in x
and y , respectively, overwrites the corresponding value in z .

Upon successful completion of S3L_inner_prod_addto or
S3L_inner_prod_c1_addto , the inner product of each vector pair x and y in x
and y respectively, is added to the corresponding value in u, and each resulting sum
overwrites the corresponding value in z .

Note - If the instance axes of x and y—that is, the axes along which the inner
product will be taken—each contains only a single vector, either declare the axes to
have an extent of 1 or use the comparable single-instance inner product routine, as
described below.

Single-Instance Inner Product – Sun S3L also provides six single-instance inner
product routines, all of which compute the inner product over all the axes of two
parallel arrays. The operations performed by the single-instance inner product
routines are shown in Table 8–4.

Sun S3L Core Library Functions 147

TABLE 8–4 S3L Single-Instance Inner Product Operations

Routine Operation Data Type

S3L_gbl_inner_prod a = a + x Ty real or complex

S3L_gbl_inner_prod_noadd a = x Ty real or complex

S3L_gbl_inner_prod_addto a = b + xTy real or complex

S3L_gbl_inner_prod_c1 a = a + x Hy complex only

S3L_gbl_inner_prod_c1_noadd a = x Hy complex only

S3L_gbl_inner_prod_c1_addto a = b + x Hy complex only

For these single-instance functions, x and y are S3L parallel arrays of rank 1 or
greater and with the same data type and precision.

a is a pointer to a scalar variable of the same data type as x and y . This variable
stores the results of the single-instance inner product operations.

For S3L_gbl_inner_prod and S3L_gbl_inner_prod_c1 , a is also used as the
source for a set of values, which are added to the inner product of x and y .

b is also a pointer to a scalar variable of the same data type as x and y . It contains a
set of values that S3L_gbl_inner_prod_addto and
S3L_gbl_inner_prod_c1_addto add to the inner product of x and y .

Upon successful completion of S3L_gbl_inner_prod or
S3L_gbl_inner_prod_c1 , the global inner product of x and y is added to a.

Upon successful completion of S3L_gbl_inner_prod_noadd or
S3L_gbl_inner_prod_c1_noadd , the global inner product of x and y overwrites
a.

Upon successful completion of S3L_gbl_inner_prod_addto or
S3L_gbl_inner_prod_c1_addto , the global inner product of x and y is added to
b, and the resulting sum overwrites a.

Note - Array variables must not overlap.

148 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Syntax
The C and Fortran syntax for S3L_inner_prod and S3L_gbl_inner_prod are
shown below.

C/C++ Syntax

CODE EXAMPLE 8–3

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_inner_prod(z, x, y, x_vector_axis, y_vector_axis)
S3L_inner_prod_noadd(z, x, y, x_vector_axis, y_vector_axis)
S3L_inner_prod_addto(z, x, y, *u, x_vector_axis, y_vector_axis)
S3L_inner_prod_c1(z, x, y, x_vector_axis, y_vector_axis)
S3L_inner_prod_c1_noadd(z, x, y, x_vector_axis, y_vector_axis)
S3L_inner_prod_c1_addto(z, x, y, *u, x_vector_axis, y_vector_axis)
S3L_gbl_inner_prod(a, x, y)
S3L_gbl_inner_prod_noadd(a, x, y)
S3L_gbl_inner_prod_addto(a, x, y, b)
S3L_gbl_inner_prod_c1(a, x, y)
S3L_gbl_inner_prod_c1_noadd(a, x, y)
S3L_gbl_inner_prod_c1_addto(a, x, y, b)

S3L_array_t z
S3L_array_t x
S3L_array_t y
S3L_array_t u
S3L_array_t a
S3L_array_t b
int x_vector_axis
int y_vector_axis

F77/F90 Syntax

CODE EXAMPLE 8–4

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_inner_prod(z, x, y, x_vector_axis, y_vector_axis, ier)
S3L_inner_prod_noadd(z, x, y, x_vector_axis, y_vector_axis, ier)
S3L_inner_prod_addto(z, x, y, *u, x_vector_axis, y_vector_axis, ier)
S3L_inner_prod_c1(z, x, y, x_vector_axis, y_vector_axis, ier)
S3L_inner_prod_c1_noadd(z, x, y, x_vector_axis, y_vector_axis, ier)
S3L_inner_prod_c1_addto(z, x, y, *u, x_vector_axis, y_vector_axis, ier)

(continued)

Sun S3L Core Library Functions 149

(Continuation)

S3L_gbl_inner_prod(a, x, y, ier)
S3L_gbl_inner_prod_noadd(a, x, y)
S3L_gbl_inner_prod_addto(a, x, y, b)
S3L_gbl_inner_prod_c1(a, x, y)
S3L_gbl_inner_prod_c1_noadd(a, x, y)
S3L_gbl_inner_prod_c1_addto(a, x, y, b)

S3L_array_t z
S3L_array_t x
S3L_array_t y
S3L_array_t u
S3L_array_t a
S3L_array_t b
int x_vector_axis
int y_vector_axis
int ier

Input
� z – Array handle for an S3L parallel array, which S3L_inner_prod and

S3L_inner_prod_c1 use as a source of values to be added to the inner products
of the corresponding x and y vector pairs. z is also used for output; see the Output
section for details.

� x – Array handle for an S3L parallel array that contains the first vector in each
vector pair for which an inner product will be computed.

� y – Array handle for an S3L parallel array that contains the second vector in each
vector pair for which an inner product will be computed.

� u – Array handle for an S3L parallel array whose rank is one less than that of x
and y . S3L_inner_prod_addto and S3L_inner_prod_c1_addto add the
contents of u to the inner products of the corresponding vector pairs of x and y .

� a – Pointer to a scalar variable, which S3L_gbl_inner_prod and
S3L_gbl_inner_prod_c1 use as source of values to be added to the inner
product of x and y . a is also used for output; see the Output section for details.

� b – Pointer to a scalar variable, which S3L_gbl_inner_prod_addto and
S3L_gbl_inner_prod_c1_addto use as source of values to be added to the
inner product of x and y .

� x_vector_axis – Scalar variable. Identifies the axis of x along which the vectors
lie.

� y_vector_axis – Scalar variable. Identifies the axis of y along which the vectors
lie.

150 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Output
These functions use the following arguments for output:

� z – Array handle for the S3L parallel array that will contain the results of the
multiple-instance 2-norm routine.

� a – Pointer to a scalar variable, which is the destination for the single-instance
inner product routines.

� ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier .

Error Handling
On success, S3L_inner_prod and S3L_gbl_inner_prod return S3L_SUCCESS.

S3L_inner_prod and S3L_gbl_inner_prod perform generic checking of the
validity of the arrays they accept as arguments. If an array argument contains an
invalid or corrupted value, the function terminates and an error code indicating
which value of the array handle was invalid is returned. See Appendix A of this
manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

� S3L_ERR_MATCH_RANK– x and y do not have the same rank.

� S3L_ERR_MATCH_EXTENTS– Axes of x and y do not have the same extents.

� S3L_ERR_MATCH_DTYPE– The arguments are not all of the same data type and
precision.

� S3L_ERR_CONJ_INVAL– Conjugation was requested, but data supplied was not
of type S3L_complex_t or S3L_dcomplex_t .

Examples

../examples/s3l/dense_matrix_ops/inner_prod.c

../examples/s3l/dense_matrix_ops-f/inner_prod.f

Related Functions

S3L_2_norm(3)
S3L_outer_prod(3)
S3L_mat_vec_mult(3)
S3L_mat_mult(3)

Sun S3L Core Library Functions 151

S3L_mat_mult

Description
Sun S3L provides 18 matrix multiplication routines that compute one or more
instances of matrix products. For each instance, these routines perform the operations
listed in Table 8–5.

Note - In these descriptions, AT and AH denote A transpose and A Hermitian,
respectively.

TABLE 8–5 S3L Matrix Multiplication Operations

Routine Operation Data Type

S3L_mat_mult
C = C + AB real or complex

S3L_mat_mult_noadd
C = AB real or complex

S3L_mat_mult_addto
C = D + AB real or complex

S3L_mat_mult_t1
C = C + ATB real or complex

S3L_mat_mult_t1_noadd
C = ATB real or complex

S3L_mat_mult_t1_addto
C = D + ATB real or complex

S3L_mat_mult_h1
C = C + AHB complex only

S3L_mat_mult_h1_noadd
C = AHB complex only

S3L_mat_mult_h1_addto
C = D + AHB complex only

S3L_mat_mult_t2 C = C + AB T real or complex

S3L_mat_mult_t2_noadd
C = ABT

real or complex

S3L_mat_mult_t2_addto
C = D + ABT real or complex

S3L_mat_mult_h2
C = C + ABH complex only

152 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE 8–5 S3L Matrix Multiplication Operations (continued)

Routine Operation Data Type

S3L_mat_mult_h2_noadd
C = ABH complex only

S3L_mat_mult_h2_addto
C = D + ABH complex only

S3L_mat_mult_t1_t2 C = C + ATBT real or complex

S3L_mat_mult_t1_t2 C = C + ATBT real or complex

S3L_mat_mult_t1_t2_noadd
C = ATBT

real or complex

S3L_mat_mult_t1_t2_addto
C = D + ATBT real or complex

The algorithm used depends on the axis lengths of the variables supplied.

For calls that do not transpose either matrix A or B, the variables conform correctly
with the axis lengths for row_axis and col_axis shown in Table 8–6.

TABLE 8–6 Recommended row_axis and col_axis Values When Matrix
A and Matrix B Are Not Transposed

Variable row_axis Length col_axis Length

A p q

B q r

C p r

D p r

For calls that transpose the matrix A (AT), the variables conform correctly with the
axis lengths for row_axis and col_axis shown in Table 8–7.

TABLE 8–7 Recommended row_axis and col_axis Values When Matrices Are

Sun S3L Core Library Functions 153

TABLE 8–7 Recommended row_axis and col_axis Values When Matrices Are
Transposed (continued)

Transposed

Variable row_axis Length col_axis Length

A q p

B q r

C p r

D p r

For calls that transpose the matrix B (BT), the variables conform correctly with the
axis lengths for row_axis and col_axis shown in Table 8–8.

TABLE 8–8 Recommended row_axis and col_axis Values When Matrix B Is Transposed

Variable row_axis Length col_axis Length

A q q

B r q

C p r

D p r

For calls that transpose both A and B (ATBT), the variables conform correctly with
the axis lengths for row_axis and col_axis shown in Table 8–9.

TABLE 8–9 Recommended row_axis and col_axis Values When Both Matrix A and
Matrix B Are Transposed

Variable row_axis Length col_axis Length

A q p

B r q

154 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE 8–9 Recommended row_axis and col_axis Values When Both Matrix A and
Matrix B Are Transposed (continued)

Variable row_axis Length col_axis Length

C p r

D p r

The algorithm is numerically stable.

Syntax
The C and Fortran syntax for S3L_mat_mult are shown below.

C/C++ Syntax

CODE EXAMPLE 8–5

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_mat_mult(C, A, B, row_axis, col_axis)
S3L_mat_mult_noadd(C, A, B, row_axis, col_axis)
S3L_mat_mult_addto(C, A, B, D, row_axis, col_axis)
S3L_mat_mult_t1(C, A, B, row_axis, col_axis)
S3L_mat_mult_t1_noadd(C, A, B, row_axis, col_axis)
S3L_mat_mult_t1_addto(C, A, B, D, row_axis, col_axis)
S3L_mat_mult_h1(C, A, B, row_axis, col_axis)
S3L_mat_mult_h1_noadd(C,
A, B, row_axis, col_axis)
S3L_mat_mult_h1_addto(C, A, B, D, row_axis, col_axis)
S3L_mat_mult_t2(C, A, B, row_axis, col_axis)
S3L_mat_mult_t2_noadd(C, A, B, row_axis, col_axis)
S3L_mat_mult_t2_addto(C, A, B, D, row_axis, col_axis)
S3L_mat_mult_h2(C, A, B, row_axis, col_axis)
S3L_mat_mult_h2_noadd(C, A, B, row_axis, col_axis)
S3L_mat_mult_h2_addto(C, A, B, D, row_axis, col_axis)
S3L_mat_mult_t1_t2(C, A, B, row_axis, col_axis)
S3L_mat_mult_t1_t2_noadd(C,
A, B, row_axis, col_axisb)
S3L_mat_mult_t1_t2_addto(C, A, B, D, row_axis, col_axis)

S3L_array_t C
S3L_array_t A
S3L_array_t B

(continued)

Sun S3L Core Library Functions 155

(Continuation)

S3L_array_t D
int row_axis
int col_axis

F77/F90 Syntax

CODE EXAMPLE 8–6

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_mat_mult(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_noadd(C, A,
B, row_axis, col_axis, ier)
S3L_mat_mult_addto(C, A, B, D, row_axis, col_axis, ier)
S3L_mat_mult_t1(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_t1_noadd(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_t1_addto(C, A, B, D, row_axis, col_axis, ier)
S3L_mat_mult_h1(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_h1_noadd(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_h1_addto(C, A, B, D, row_axis, col_axis, ier)
S3L_mat_mult_t2(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_t2_nodto(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_t2_addto(C, A, B, D, row_axis, col_axis, ier)
S3L_mat_mult_h2(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_h2_noadd(C, A, B, row_axis, col_axis, ier)
S3L_mat_mult_h2_addto(C, A, B, D, row_axis, col_axis, ier)
S3L_mat_mult_t1_t2(C, A,
B, row_axis, col_axis, ier)
S3L_mat_mult_t1_t2_noadd(C, A, B, row_axis, col_axisb, ier)
S3L_mat_mult_t1_t2_addto(C, A, B, D, row_axis, col_axis, ier)

integer*8 C
integer*8 A
integer*8 B
integer*8 D
integer*4 row_axis
integer*4 col_axis
integer*4 ier

Input

� C – Array handle for an S3L parallel array of rank >= 2. C is the destination array
for all matrix multiplication operations (as discussed in the Output section). Some
of these operations also use C as an input argument, adding the contents of C to

156 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

their respective matrix multiplication products. The operations shown in Table 8–5
that include some variation of C + ABbelong to this class.

� A – Array handle for an S3L parallel array of the same rank as C and B. This array
contains one or more instances of the left-hand factor array A, defined by axes
row_axis (which counts the rows) and col_axis (which counts the columns).
Axis col_axis of A must have the same length as axis row_axis of B. The
contents of A are not changed during execution.

� B – Array handle for an S3L parallel array of the same rank as C and A. This array
contains one or more instances of the right-hand factor array B, defined by axes
row_axis (which counts the rows) and col_axis (which counts the columns).
The contents of B are not changed during execution.

� D – Parallel array of the same shape as C. This argument is used only in the calls
whose names end in _addto . It contains one or more instances of the array D that
is to be added to the array product, defined by axes row_axis (which counts the
rows) and col_axis (which counts the columns). The contents of D are not
changed during execution, unless D and C are the same variable.

� row_axis – The axis of C, A, and B that counts the rows of the embedded array or
arrays. Must be nonnegative and less than the rank of C.

� col_axis – The axis of C, A, and B that counts the columns of the embedded
array or arrays. Must be nonnegative and less than the rank of C.

Note: The argument can be identical with the argument C in all matrix multiply
_addto routines except _t1_t2_addto .

Output
These functions use the following arguments for output:

� C – Array handle for an S3L parallel array, which is a destination array for all
matrix multiplication operations. Upon successful completion, each array instance
within C is overwritten by the result of the array multiplication call.

� ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier .

Error Handling
On success, the S3L_mat_mult routines return S3L_SUCCESS.

The S3L_mat_mult routines perform generic checking of the validity of the arrays
they accept as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code indicating which value of the array
handle was invalid is returned. See Appendix A of this manual for a detailed list of
these error codes.

Sun S3L Core Library Functions 157

In addition, the following conditions will cause these functions to terminate and
return the associated error code:

� S3L_ERR_MATCH_RANK– The parallel arrays do not have the same rank.

� S3L_ERR_MATCH_EXTENTS– The lengths of corresponding axes do not match.

� S3L_ERR_MATCH_DTYPE– The arguments are not all of the same data type and
precision.

� S3L_ERR_ARG_AXISNUM– row_axis and/or col_axis contains a bad axis
number. For C program calls, each of these parameters must be >= 0 and less than
the rank of C. For Fortran calls, they must be >= 1 and <= the rank of C.

� S3L_ERR_CONJ_INVAL– Conjugation was requested, but data supplied was not
of type S3L_complex_t or S3L_dcomplex_t .

Examples

../examples/s3l/dense_matrix_ops/matmult.c

../examples/s3l/dense_matrix_ops-f/matmult.f

Related Functions

S3L_inner_prod(3)
S3L_2_norm(3)
S3L_outer_prod(3)
S3L_mat_vec_mult(3)

S3L_mat_vec_mult

Description
Sun S3L provides six matrix vector multiplication routines, which compute one or
more instances of a matrix vector product. For each instance, these routines perform
the operations listed in Table 8–10.

Note - In these descriptions, conj[A] denotes the conjugate of A.

158 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

TABLE 8–10 S3L Matrix Vector Multiplication Operations

Routine Operation Data Type

S3L_mat_vec_mult y = y + Ax real or complex

S3L_mat_vec_mult_noadd y = Ax real or complex

S3L_mat_vec_mult_addto y = v + Ax real or complex

S3L_mat_vec_mult_c1 y = y + conj[A]x complex only

S3L_mat_vec_mult_c1_noadd y = conj[A]x complex only

S3L_mat_vec_mult_c1_noadd y = v + conj[A]x complex only

Syntax
The C and Fortran syntax for S3L_mat_vec_mult are shown below.

C/C++ Syntax

CODE EXAMPLE 8–7

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_mat_vec_mult(y, A, x, y_vector_axis, row_axis, col_axis, x_vector_axis)
S3L_mat_vec_mult_noadd(y, A, x, y_vector_axis, row_axis, col_axis, x_vector_axis)
S3L_mat_vec_mult_addto(y, A, x, v, y_vector_axis, row_axis, col_axis,
x_vector_axis)
S3L_mat_vec_mult_c1(y, A, x, y_vector_axis, row_axis, col_axis, x_vector_axis)
S3L_mat_vec_mult_c1_noadd(y, A, x, y_vector_axis, row_axis, col_axis,
x_vector_axis)
S3L_mat_vec_mult_c1_addto(y, A, x, v, y_vector_axis, row_axis, col_axis,
x_vector_axis)

S3L_array_t y
S3L_array_t A
S3L_array_t x
S3L_array_t v
int y_vector_axis
int row_axis

(continued)

Sun S3L Core Library Functions 159

(Continuation)

int col_axis
int x_vector_axis

F77/F90 Syntax

CODE EXAMPLE 8–8

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_mat_vec_mult(y, A, x, y_vector_axis, row_axis, col_axis, x_vector_axis,
ier)
S3L_mat_vec_mult_noadd(y, A, x, y_vector_axis, row_axis, col_axis, x_vector_axis,
ier)
S3L_mat_vec_mult_addto(y, A, x, v, y_vector_axis, row_axis, col_axis,
x_vector_axis, ier)
S3L_mat_vec_mult_c1(y, A, x, y_vector_axis, row_axis, col_axis, x_vector_axis,
ier)
S3L_mat_vec_mult_c1_noadd(y, A, x, y_vector_axis, row_axis, col_axis,
x_vector_axis, ier)
S3L_mat_vec_mult_c1_addto(y, A, x, v, y_vector_axis, row_axis, col_axis,
x_vector_axis, ier)

integer*8 y
integer*8 A
integer*8 x
integer*8 v
integer*4 y_vector_axis
integer*4 row_axis
integer*4 col_axis
integer*4 x_vector_axis
integer*4 ier

Input
� y – Array handle for an S3L parallel array of rank >= 1. Two matrix vector

multiplication routines, S3L_mat_vec_mult and S3L_mat_vec_mult_c1 add the
contents of this array to the product of Ax. All matrix vector multiplication
routines use y as the destination array, as described in the Output section.

� A – Array handle for an S3L parallel array of rank one greater than that of y . It
contains one or more instances of the matrix A, defined by axes row_axis (which
counts the rows) and col_axis (which counts the columns).

160 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

The remaining axes must match the instance axes of y in length and order of
declaration. Thus, each matrix in A corresponds to a vector in y . The contents of A
are not changed during execution

� x – Array handle for an S3L parallel array of the same rank as y . It contains one or
more instances of x , the vector that will be multiplied by the matrix A, embedded
along axis x_vector_axis .

Axis x_vector_axis of x must have the same length as axis col_axis of A.
The remaining axes of x must match the instance axes of y in length and order of
declaration. Thus, each vector in x corresponds to a vector in y . The contents of x
are not changed during execution.

� v – Array handle for an S3L parallel array of the same rank and shape as y . This
argument is used only in the S3L_mat_vec_mult_addto and
S3L_mat_vec_mult_c1_addto calls. It contains one or more instances of the
vector v , which will be added to the matrix vector product, embedded along axis
y_vector_axis . The contents of v are not changed during execution, unless v is
the same variable as y .

Note: For S3L_mat_vec_mult_addto and S3L_mat_vec_mult_c1_addto , the
argument v can be identical to the argument y .

� y_vector_axis – Scalar integer variable that specifies the axis of y and v along
which the elements of the embedded vectors lie. For C/C++ programs, this
argument must be nonnegative and less than the rank of y . For F77/F90 programs,
it must be greater than zero and less than or equal to the rank of y .

� row_axis – Scalar integer variable. It counts the rows of the embedded matrix or
matrices. For C/C++ programs, this argument must be nonnegative and less than
the rank of A. For F77/F90 programs, it must be greater than zero and less than or
equal to the rank of A.

� col_axis – Scalar integer variable that counts the columns of the embedded
matrix or matrices. For C/C++ programs, this argument must be nonnegative and
less than the rank of A. For F77/F90 programs, it must be greater than zero and
less than or equal to the rank of A.

� x_vector_axis – Scalar integer variable that specifies the axis of x along which
the elements of the embedded vectors lie. For C/C++ programs, this argument
must be nonnegative and less than the rank of y . For F77/F90 programs, it must
be greater than zero and less than or equal to the rank of x .

Output
These functions use the following arguments for output:

� y – Array handle for an S3L array of rank >= 1. This array contains one or more
instances of the destination vector y embedded along the axis y_vector_axis .
This axis must have the same length as axis row_axis of A. Upon completion,
each vector instance is overwritten by the result of the matrix vector multiplication
call.

Sun S3L Core Library Functions 161

� ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier .

Error Handling
On success, the S3L_mat_vec_mult routines return S3L_SUCCESS.

The S3L_mat_vec_mult routines perform generic checking of the validity of the
arrays they accept as arguments. If an array argument contains an invalid or
corrupted value, the function terminates and an error code indicating which value of
the array handle was invalid is returned. See Appendix A of this manual for a
detailed list of these error codes.

In addition, the following conditions will cause these functions to terminate and
return the associated error code:

� S3L_ERR_MATCH_RANK– The parallel arrays do not have the same rank.

� S3L_ERR_MATCH_EXTENTS– The lengths of corresponding axes do not match.

� S3L_ERR_MATCH_DTYPE– The arguments are not all of the same data type and
precision.

� S3L_ERR_ARG_AXISNUM– row_axis and/or col_axis contains a bad axis
number. For C/C++ program calls, each of these parameters must be nonnegative
and less than the rank of A. For F77/F90 calls, they must be greater than zero and
less than or equal to the rank of A.

� S3L_ERR_CONJ_INVAL– Conjugation was requested, but the data supplied was
not of type S3L_complex_t or S3L_dcomplex_t .

Examples

../examples/s3l/dense_matrix_ops/matvec_mult.c

../examples/s3l/dense_matrix_ops-f/matvec_ mult.f

Related Functions

S3L_inner_prod(3)
S3L_2_norm(3)
S3L_outer_prod(3)
S3L_mat_mult(3)

162 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

S3L_outer_prod

Description
Sun S3L provides six outer product routines which compute one or more instances of
an outer product of two vectors. For each instance, the outer product routines
perform the operations listed in Table 8–11.

Note - In these descriptions, yT and yH denote y transpose and y Hermitian,
respectively

TABLE 8–11 S3L Outer Product Operations

Routine Operation Data Type

S3L_outer_prod A = A + xy T real or complex

S3L_outer_prod_noadd A = xyT
real or complex

S3L_outer_prod_addto
A = B + xyT real or complex

S3L_outer_prod_c2
A = A + xyH

complex only

S3L_outer_prod_c2_noadd
A = xyT complex only

S3L_outer_prod_c2_noadd
A = B + xyT complex only

In elementwise notation, for each instance S3L_outer_prod computes

A(i,j) = A(i,j) + x(i) * y(j)

and S3L_outer_prod_c2 computes

A(i,j) = A(i,j) + x(i) * conj[y(j)]

where conj[y(j)] denotes the conjugate of y(j).

Sun S3L Core Library Functions 163

Syntax
The C and Fortran syntax for S3L_outer_prod are shown below.

C/C++ Syntax

CODE EXAMPLE 8–9

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_outer_prod(A, x, y, row_axis, col_axis, x_vector_axis, y_vector_axis)
S3L_outer_prod_noadd(A, x, y, row_axis, col_axis, x_vector_axis, y_vector_axis)
S3L_outer_prod_addto(A, x, y, B, row_axis, col_axis, x_vector_axis,
y_vector_axis)
S3L_outer_prod_c2(A, x, y, row_axis, col_axis, x_vector_axis, y_vector_axis)
S3L_outer_prod_c2_noadd(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis)
S3L_outer_prod_c2_addto(A, x, y, B, row_axis, col_axis, x_vector_axis,
y_vector_axis)

S3L_array_t A
S3L_array_t x
S3L_array_t y
S3L_array_t B
int row_axis
int col_axis
int x_vector_axis
int y_vector_axis

F77/F90 Syntax

CODE EXAMPLE 8–10

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_outer_prod(A, x, y, row_axis, col_axis, x_vector_axis, y_vector_axis,
ier)
S3L_outer_prod_noadd(A, x, y, row_axis, col_axis, x_vector_axis, y_vector_axis,
ier)
S3L_outer_prod_addto(A, x, y, B, row_axis, col_axis, x_vector_axis,
y_vector_axis, ier)
S3L_outer_prod_c2(A, x, y, row_axis, col_axis, x_vector_axis, y_vector_axis,
ier)
S3L_outer_prod_c2_noadd(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis, ier)

(continued)

164 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

S3L_outer_prod_c2_addto(A, x, y, B, row_axis, col_axis, x_vector_axis,
y_vector_axis, ier)

S3L_array_t A
S3L_array_t x
S3L_array_t y
S3L_array_t B
int row_axis
int col_axis
int x_vector_axis
int y_vector_axis
int ier

Input
� A – Array handle for an S3L parallel array of rank greater than or equal to 2. Two

S3L outer product routines, S3L_outer_prod and S3L_outer_prod_c2 , add
the contents of this array to the product of xy . All outer product routines use A as
the destination array, as described in the Output section.

� x – Array handle for an S3L parallel array of rank one less than that of A. It
contains one or more instances of the first source vector, x , embedded along axis
x_vector_axis .

Axis x_vector_axis of x must have the same length as axis row_axis of A.
The remaining axes of x must match the instance axes of A in length and order of
declaration. Thus, each vector in x corresponds to a vector in A.

� y – Array handle for an S3L parallel array of rank one less than that of A. It
contains one or more instances of the second source vector, x , embedded along
axis y_vector_axis .

y_vector_axis must have the same length as axis col_axis of A. The remaining
axes of y must match the instance axes of A in length and order of declaration.
Thus, each vector in y corresponds to a vector in A.

Note: The argument y can be identical to the argument x .

� B – Parallel array of the same shape as A. It contains one or more embedded
matrices B defined by axes row_axis (which counts the rows) and col_axis
(which counts the columns). The remaining axes must match the instance axes of A
in length and order of declaration. Thus, each matrix in B corresponds to a matrix
in A.

This argument is used only in the S3L_outer_prod_addto and
S3L_outer_prod_c2_addto calls, which add each outer product to the
corresponding matrix within B and place the result in the corresponding matrix

Sun S3L Core Library Functions 165

within A. The contents of B are not changed by the operation (unless B and A are
the same variable).

Note: For S3L_outer_prod_addto and S3L_outer_prod_c2_addto , the
argument B can be identical to the argument A.

� row_axis – Scalar integer variable. The axis of A and B that counts the rows of
the embedded matrix or matrices. For C/C++ programs, this argument must be
nonnegative and less than the rank of A. For F77/F90 programs, it must be greater
than zero and less than or equal to the rank of A.

� col_axis – Scalar integer variable. The axis of A and B that counts the columns
of the embedded matrix or matrices. For C/C++ programs, this argument must be
nonnegative and less than the rank of A. For F77/F90 programs, it must be greater
than zero and less than or equal to the rank of A.

� x_vector_axis – Scalar integer variable that specifies the axis of x along which
the elements of the embedded vectors lie. For C/C++ programs, this argument
must be nonnegative and less than the rank of y . For F77/F90 programs, it must
be greater than zero and less than or equal to the rank of x .

� y_vector_axis – Scalar integer variable that specifies the axis of y and v along
which the elements of the embedded vectors lie. For C/C++ programs, this
argument must be nonnegative and less than the rank of y . For F77/F90 programs,
it must be greater than zero and less than or equal to the rank of y .

Output
These functions use the following arguments for output:

� A – Array handle for an S3L parallel array of rank greater than or equal to 2,
which contains one or more instances of the destination matrix A, defined by axes
row_axis (which counts the rows) and col_axis (which counts the columns).
Upon successful completion, each matrix instance is overwritten by the result of
the outer product call.

� ier (Fortran only) – When called from a Fortran program, these functions return
error status in ier .

Error Handling
On success, the S3L_outer_prod routines return S3L_SUCCESS.

The S3L_outer_prod routines perform generic checking of the validity of the
arrays they accept as arguments. If an array argument contains an invalid or
corrupted value, the function terminates and an error code indicating which value of
the array handle was invalid is returned. See Appendix A of this manual for a
detailed list of these error codes.

In addition, the following conditions will cause these functions to terminate and
return the associated error code:

166 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� S3L_ERR_MATCH_RANK– The parallel arrays do not have the same rank.

� S3L_ERR_MATCH_EXTENTS– The lengths of corresponding axes do not match.

� S3L_ERR_MATCH_DTYPE– The arguments are not all of the same data type and
precision.

� S3L_ERR_ARG_AXISNUM– row_axis and/or col_axis contains a bad axis
number. For C/C++ program calls, each of these parameters must be nonnegative
and less than the rank of A. For F77/F90 calls, they must be greater than zero and
lessthan or equal to the rank of A.

� S3L_ERR_CONJ_INVAL– Conjugation was requested, but the data supplied was
not of type S3L_complex_t or S3L_dcomplex_t .

� S3L_ERR_ARG_RANK– Rank of A is less than 2.

Examples

../examples/s3l/dense_matrix_ops/outer_prod.c

../examples/s3l/dense_matrix_ops-f/outer_prod.f

Related Functions

S3L_inner_prod(3)
S3L_2_norm(3)
S3L_mat_vec_mult(3)
S3L_mat_mult(3)

Sparse Matrix Operations
S3L_declare_sparse

Description
S3L_declare_sparse creates an internal S3L array handle that describes a sparse
matrix. The sparse matrix may be represented in either the Coordinate format or the
Compressed Sparse Row (CSR) format. Upon successful completion,

Sun S3L Core Library Functions 167

S3L_declare_sparse returns an S3L array handle in A that describes the
distributed sparse matrix.

The Coordinate format consists of three arrays: a, r , and c . Array a stores the
nonzero elements of the sparse matrix in any order. r and c are integer arrays that
hold the corresponding row and column indices of the sparse matrix, respectively.

The contents of r , c , and a are supplied by the arguments row , col , and val ,
respectively. row , col , and val are all rank 1 parallel arrays.

The CSR format stores the sparse matrix in arrays ia , ja, and a. As with the
Coordinate format, array a stores the nonzero elements of the matrix. ja , an integer
array, contains the column indices of the nonzeros as stored in the array a. ia , also
an integer array, contains pointers to the beginning of each row in arrays a and ja .

The ia , ja , and a arrays take their contents from the row , col , and val arguments,
respectively. As with the Coordinate format, row , col , and val are all rank 1
parallel arrays.

Note - Because row , col , and val are copied to working arrays, they can be
deallocated immediately following the S3L_declare_sparse call.

S3L_declare_sparse assumes that the row and column indices of the sparse
matrix are stored using zero-based indexing when called by C or C++ applications
and one-based indexing when called by F77 or F90 applications. See
“S3L_read_sparse ” on page 179 for a discussion of S3L_read_sparse .

Syntax
The C and Fortran syntax for S3L_declare_sparse are noted next.

C/C++ Syntax

CODE EXAMPLE 8–11

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_declare_sparse(A, spfmt, m, n, row, col, val)

S3L_array_t *A
S3L_sparse_storage_t spfmt
int m
int n
int row
int col

(continued)

168 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

int val

F77/F90 Syntax

CODE EXAMPLE 8–12

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_declare_sparse(A, spfmt, m, n, row, col, val, ier)

integer*8 *A
integer*8 spfmt
integer*4 m
integer*4 n
integer*4 row
integer*4 col
integer*4 val
integer*4 ier

Input
� spfmt – Indicates the sparse storage format used for representing the sparse

matrix. Use S3L_SPARSE_COO to specify the Coordinate format and
S3L_SPARSE_CSR for the Compressed Sparse Row format.

� m– Indicates the total number of rows in the sparse matrix.

� n – Indicates the total number of columns in the sparse matrix.

� row – Integer parallel array of rank 1. Its length and content can vary, depending
on the sparse storage format used.

� S3L_SPARSE_COO– row is of the same size as arrays col and val . and
contains row indices of the nonzero elements in array val .

� S3L_SPARSE_CSR– row is of size m+1 and contains pointers to the beginning
of each row in arrays col and val .

� col – Integer global array of rank 1 with the same length as array val . It contains
column indices of the corresponding elements stored in array val .

Sun S3L Core Library Functions 169

� val – Parallel array of rank 1, containing the nonzero elements of the sparse
matrix. For S3L_SPARSE_COO, nonzero elements can be stored in any order. For
S3L_SPARSE_CSR, they should be stored row by row, from the first row to the
last. The length of val for both S3L_SPARSE_COOand S3L_SPARSE_CSRis, nnz ,
the total number of nonzero elements in the sparse matrix. The data type of array
elements can be real or complex (single- or double-precision).

Output
This function uses the following arguments for output:

� A – Upon return, A contains an S3L internal array handle for the global general
sparse matrix. This handle can be used in subsequent calls to other S3L sparse
array functions.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_declare_sparse returns S3L_SUCCESS.

The S3L_declare_sparse routine performs generic checking of the validity of the
arrays it accepts as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code indicating which value of the array
handle was invalid is returned. See Appendix A of this manual for a detailed list of
these error codes.

In addition, the following conditions will cause these functions to terminate and
return the associated error code:

� S3L_ERR_SPARSE_FORMAT– Invalid storage format. It must be either
S3L_SPARSE_COOor S3L_SPARSE_CSR.

� S3L_ERR_ARG_EXTENTS– Invalid m or n. Each must be > 0.

� S3L_ERR_ARG_NULL– Invalid arrays row , col , or val . They must all be
preallocated S3L arrays.

� S3L_ERR_MATCH_RANK– Ranks of arrays row , col , and val are mismatched.
They all must be rank 1 arrays.

� S3L_ERR_MATCH_DTYPE– Arrays row and col data types do not match. They
must be of type S3L_integer .

� S3L_ERR_MATCH_EXTENTS– The lengths of arrays row , col , and val are
mismatched. For S3L_SPARSE_COO, they all must be of the same size. For
S3L_SPARSE_CSR, the length of array col must be equal to that of array val and
array row must be of size m+1.

170 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Examples

../examples/s3l/sparse/ex_sparse2.c

../examples/s3l/dense_matrix_ops-f/outer_prod.f

Related Functions

S3L_matvec_sparse(3)
S3L_rand_sparse(3)
S3L_read_sparse(3)

S3L_free_sparse

Description
S3L_free_sparse deallocates the memory reserved for a sparse matrix and the
associated array handle.

Syntax
The C and Fortran syntax for S3L_free_sparse are shown below.

C/C++ Syntax

CODE EXAMPLE 8–13

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_free_sparse(A)

S3L_array_t *A

Sun S3L Core Library Functions 171

F77/F90 Syntax

CODE EXAMPLE 8–14

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_free_sparse(A ier)

integer*8 *A
integer*4 ier

Input
S3L_free_sparse accepts the following argument as input:

� A – Handle for the parallel S3L array that was allocated via a previous call to
S3L_declare_sparse , S3L_read_sparse , or S3L_rand_sparse .

Output
S3L_free_sparse uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, S3L_free_sparse
returns error status in ier .

Error Handling
On success, S3L_free_sparse returns S3L_SUCCESS.

On error, the following error code may be returned:

� S3L_ERR_ARG_ARRAY– A is a NULL pointer (C/C++) or 0 (F77/F90).

Examples

../examples/s3l/sparse/ex_sparse.c

../examples/s3l/sparse/ex_sparse2.c

../examples/s3l/iter/ex_iter.c

../examples/s3l/sparse-f/ex_sparse.f

../examples/s3l/iter-f/ex_iter.f

172 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Related Functions

S3L_declare_sparse(3)
S3L_read_sparse(3)
S3L_rand_sparse(3)

S3L_rand_sparse

Description
S3L_rand_sparse creates a random sparse matrix with random sparsity pattern in
either the Coordinate format or the Compressed Sparse Row format. Upon successful
completion, it returns an S3L array handle in A representing this random sparse
matrix.

Syntax
The C and Fortran syntax for S3L_rand_sparse are shown below.

C/C++ Syntax

CODE EXAMPLE 8–15

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_rand_sparse(A, spfmt, stype, m, n, density, type, seed)

S3L_array_t *A
S3L_sparse_storage_t spfmt
sparse_rand_t stype
int m
int m
real4 density
S3L_data_type type
int seed

Sun S3L Core Library Functions 173

F77/F90 Syntax

CODE EXAMPLE 8–16

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_rand_sparse(A, spfmt, stype, m, n, density, type, seed, ier)

integer*8 A
integer*4 spfmt
integer*4 stype
integer*4 m
integer*4 n
real*4 density
integer*4 type
integer*4 seed
integer*4 ier

Input
� spfmt – Indicates the sparse storage format used for representing the sparse

matrix. Use S3L_SPARSE_COOto specify the Coordinate format and
S3L_SPARSE_CSRfor the Compressed Sparse Row format.

� stype – A character string that specifies the type of random pattern to be used, as
follows:

� S3L_SPARSE_RAND– A random pattern.

� S3L_SPARSE_DRND– A random pattern with guaranteed nonzero diagonal.

� S3L_SPARSE_SRND– A random symmetric sparse array.

� S3L_SPARSE_DSRN– A random symmetric sparse array with guaranteed
nonzero diagonal.

� m– Indicates the total number of rows in the sparse matrix.

� n – Indicates the total number of columns in the sparse matrix.

� density – Positive parameter less than or equal to 1.0, which suggests the
approximate density of the array. For example, if density = 0.1, approximately
10% of the array elements will have nonzero values..

� type – The type of the sparse array, which must be one of: S3L_integer ,
S3L_float , S3L_double , S3L_complex , or S3L_dcomplex .

� seed – An integer that is used internally to initialize the random number
generators. It affects both the pattern and the values of the array elements. The

174 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

results are independent of the number of processes on which the function is
invoked.

Note: The number of nonzero elements generated will depend primarily on the
combination of the density argument value and the array extents given by mand
n. The following guidelines provide additional detail:

Usually, the number of nonzero elements will approximately equal
m*n*density .The behavior of the algorithm may cause the actual number of
nonzero elements to be somewhat smaller than m*n*density .Regardless of the
value supplied for the density argument, the number of nonzero elements will
always be >= m.

Output
This function uses the following arguments for output:

� A – On return, contains an S3L internal array handle for the distributed random
sparse matrix. The handle can be used in subsequent calls to some other S3L
sparse array functions.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_rand_sparse returns S3L_SUCCESS.

The S3L_rand_sparse routine performs generic checking of the validity of the
arrays it accepts as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code indicating which value of the array
handle was invalid is returned. See Appendix A of this manual for a detailed list of
these error codes.

In addition, the following conditions will cause this function to terminate and return
the associated error code:

� S3L_ERR_SPARSE_FORMAT– Invalid storage format. It must be either
S3L_SPARSE_COOor S3L_SPARSE_CSR.

� S3L_ERR_ARG_EXTENTS– Invalid mor n. Each must be > 0.

� S3L_ERR_DENSITY– Invalid density value. It must be 0.0 < density <= 1.0.

� S3L_ERR_ARG_OP– Invalid random pattern. It must be one of:
S3L_SPARSE_RAND, S3L_SPARSE_DRND, S3L_SPARSE_SRND, or
S3L_SPARSE_DSRN.

� S3L_ERR_ARRNOTSQ– Invalid matrix size. When stype does not equal
S3L_SPARSE_RAND, mmust equal n.

Sun S3L Core Library Functions 175

Examples

../examples/s3l/iter/ex_iter.c

../examples/s3l/iter-f/ex_iter.f

Related Functions

S3L_declare_sparse(3)
S3L_matvec_sparse(3)
S3L_read_sparse(3)

S3L_matvec_sparse

Description
S3L_matvec_sparse computes the product of a global general sparse matrix with
a global dense vector. The sparse matrix is described by the S3L array handle A. The
global dense vector is described by the S3L array handle x . The result is stored in the
global dense vector described by the S3L array handle y .

The array handle A is produced by a prior call to one of the following routines:

� S3L_declare_sparse

� S3L_read_sparse

� S3L_rand_sparse

Syntax
The C and Fortran syntax for S3L_matvec_sparse are shown below.

176 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

C/C++ Syntax

CODE EXAMPLE 8–17

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_matvec_sparse(y, A, x)

S3L_array_t y
S3L_array_t A

S3L_array_t x

F77/F90 Syntax

CODE EXAMPLE 8–18

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_matvec_sparse(y, A, x, ier)

integer*8 y
integer*8 A
integer*4 x
integer*4 ier

Input

� A – S3L array handle for the global general sparse matrix

� x – Global array of rank 1, with the same data type and precision as A and y and
with a length equal to the number of columns in the sparse matrix.

Output
These functions use the following arguments for output:

� y – Global array of rank 1, with the same data type and precision as A and x and
with a length equal to the number of rows in the sparse matrix. Upon completion,
y contains the product of the sparse matrix A and x .

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Sun S3L Core Library Functions 177

Error Handling
On success, S3L_matvec_sparse returns S3L_SUCCESS.

The S3L_matvec_sparse routines perform generic checking of the validity of the
arrays they accept as arguments. If an array argument contains an invalid or
corrupted value, the function terminates and an error code indicating which value of
the array handle was invalid is returned. See Appendix A of this manual for a
detailed list of these error codes.

In addition, the following conditions will cause this function to terminate and return
the associated error code:

� S3L_ERR_ARG_NULL– Invalid array x or y or sparse matrix A. x and y must be
preallocated S3L arrays and A must be a preallocated sparse matrix.

� S3L_ERR_ARG_RANK– Invalid rank for arrays x and y . They must be rank 1
arrays.

� S3L_ERR_MATCH_RANK– The ranks of x and y do not match.

� S3L_ERR_MATCH_DTYPE– Arrays x , y , and A do not have the same data type.

� S3L_ERR_MATCH_EXTENTS– The lengths of x and y are mismatched with the
size of sparse matrix A. The length of x must be equal to the number of columns
in A and the length of y must be equal to the number of rows in A.

Examples

../examples/s3l/sparse/ex_sparse.c

../examples/s3l/sparse-f/ex_sparse.f

../examples/s3l/iter/ex_iter.c

../examples/s3l/iter-f/ex_iter.f

Related Functions

S3L_declare_sparse(3)
S3L_read_sparse(3)
S3L_rand_sparse(3)

178 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

S3L_read_sparse

Description
S3L_read_sparse reads sparse matrix data from an ASCII file and distributes the
data to all participating processes. Upon successful completion, S3L_read_sparse
returns an S3L array handle in A that represents the distributed sparse matrix.

S3L_read_sparse supports the following sparse matrix storage formats:

� S3L_SPARSE_COO– Coordinate format.

� S3L_SPARSE_CSR– Compressed Sparse Row format.

These two formats are described below.

S3L_SPARSE_COO– Coordinate Format
S3L_SPARSE_COOfiles consist of three sections, which are illustrated below and
described immediately after.

% <comments>
%
%
m n nnz
i1 j1 a(i1, j1)
i1 j1 a(i1, j1)
i1 j1 a(i1, j1)
i1 j1 a(i1, j1)

: : :
innz jnnz a(innz, jnnz)

The first section can be used for comments. It consists of one or more lines, each of
which begins with the percent "%" character.

The second section consists of a single line containing three integers, shown above as
m, n, and nnz . mand n indicate the number of rows and columns of the matrix,
respectively, and nnz indicates the total number of nonzero values in the matrix.

The third section lists all nonzero values in the matrix, one value per line. The first
two entries on a line are the row and column indices for that value and the third
entry is the value itself.

Note - S3L_read_sparse assumes that row and column indices are stored using
zero-based indexing when called by C or C++ applications and one-based indexing
when called by F77 or F90 applications.

Sun S3L Core Library Functions 179

This is illustrated by the following 4x6 sample matrix.

3.14 0 0 20.04 0 0
0 27 0 0 -0.6 0
0 0 -0.01 0 0 0

-0.031 0 0 0.08 0 314.0

This sample matrix could have the S3L_SPARSE_COOfiles consist of three sections,
which are below and described immediately after.

% Example: 4x6 sparse matrix in an S3L_SPARSE_COO file,

% row-major order, zero-based indexing:
%
%
4 6 8
0 0 3.140e+00
0 3 2.004e+01
1 1 2.700e+01
1 4 -6.000e-01
2 2 -1.000e-02
3 0 -3.100e-02
3 3 8.000e-02
3 5 3.140e+02

The layout used for this example is row-major, but any order is supported, including
random. The next two examples show this same 4x6 matrix stored in two
S3L_SPARSE_COO files, both in random order. The first example illustrates
zero-based indexing and the second one-based indexing.

% Example: 4x6 sparse matrix in an S3L_SPARSE_COO file,

% random-major order, zero-based indexing:
%
%
4 6 8
3 5 3.140e+02
1 1 2.700e+01
0 3 2.004e+01
3 3 8.000e-02
2 2 -1.000e-02
0 0 3.140e+00
1 4 -6.000e-01
3 0 -3.100e-02

180 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

% Example: 4x6 sparse matrix in an S3L_SPARSE_COO file,

% random-major order, one-based indexing:
%
%
4 6 8
4 4 8.000e-02
2 2 2.700e+01
1 1 3.140e+00
4 1 -3.100e-02
3 3 -1.000e-02
4 6 3.140e+02
1 4 2.004e+01
2 5 -6.000e-01

MatrixMarket Notes

Under S3L_SPARSE_COOformat, S3L_read_sparse can also read data supplied in
either of two Coordinate formats distributed by MatrixMarket
(http://gams.nist.gov/MatrixMarket/). The two supported MatrixMarket
formats are real general and complex general.

MatrixMarket files always use one-based indexing. Consequently, they can only be
used directly by Fortran programs, which also implement one-based indexing. For a
C or C++ program to use a MatrixMarket file, it must call the F77 application
program interface. The program example ex_sparse.c illustrates an F77 call from a
C program. See the Examples section for the path to this sample program.

S3L_SPARSE_CSR– Compressed Sparse Row Format

The S3L_SPARSE_CSRfiles also consist of three sections. The first two sections are
the same as in S3L_SPARSE_COOfiles. The third section stores the sparse matrix in
the arrays a, ja , and ia . As with S3L_SPARSE_COO, array a stores the nnz
elements of the matrix. ja , an integer array, contains the column indices of the
nonzeros and ia , also an integer array, contains pointers to the beginning of each
row in arrays a and ja .

For example, the same 4x6 sparse matrix used in previous examples could be stored
under S3L_SPARSE_CSRin the manner shown in (using zero-based indexing).

% Example: 4x6 sparse matrix in an S3L_SPARSE_CSR file,
% zero-based indexing:
%
%
4 6 8
0 2 4 5 8

(continued)

Sun S3L Core Library Functions 181

(Continuation)

0 3 4 1 2 0 5 3
3.140000 200.400000 -0.600000 27.000000
-0.010000 -0.031000 314.000000 0.080000

Syntax
The C and Fortran syntax for S3L_read_sparse are shown below.

C/C++ Syntax

CODE EXAMPLE 8–19

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_read_sparse(A, spfmt, m, n, nnz, type, fname, dfmt)

S3L_array_t *A
S3L_sparse_storage_t spfmt
sparse_rand_t stype
int m
int m
int nnz
S3L_data_type type
char *fname
char *dfmt

F77/F90 Syntax

CODE EXAMPLE 8–20

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_read_sparse(A, spfmt, m, n, nnz, type, fname, dfmt, ier)

integer*8 A
integer*4 spfmt
integer*4 m
integer*4 n
integer*4 nnz
integer*4 type

182 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

character*1 fname
character*1 dfmt
integer*4 ier

Input
� spfmt – Specifies the sparse storage format used for representing the sparse

matrix. The supported formats are S3L_SPARSE_COO and S3L_SPARSE_CSR.

� m– Indicates the total number of rows in the sparse matrix.

� n – Indicates the total number of columns in the sparse matrix.

� nnz – Indicates the total number of nonzero elements in the sparse matrix.

� type – The type of the sparse array, which must be one of: S3L_float ,
S3L_double , S3L_complex , or S3L_dcomplex .

� fname – Scalar character variable that names the ASCII file containing the sparse
matrix data.

� dfmt – Specifies the format of the data to be read from the data file. The
supported format is ASCII.

Output
This function uses the following argument for output:

� A – S3L internal array handle for the global general sparse matrix output.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_read_sparse returns S3L_SUCCESS.

The S3L_read_sparse routine performs generic checking of the validity of the
arrays it accepts as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code indicating which value of the array
handle was invalid is returned. See Appendix A of this manual for a detailed list of
these error codes.

In addition, the following conditions will cause this function to terminate and return
the associated error code:

Sun S3L Core Library Functions 183

� S3L_ERR_ARG_EXTENTS– Invalid m, n, or nnz . These arguments must all be > 0.

� S3L_ERR_SPARSE_FORMAT– Invalid storage format. It must be either
S3L_SPARSE_COOor S3L_SPARSE_CRS.

� S3L_ERR_ARG_DTYPE– Invalid data type. It must be S3L_float , S3L_double ,
S3L_complex , or S3L_dcomplex .

� S3L_ERR_IO_FILENAME– Invalid file name.

� S3L_ERR_IO_FORMAT– Invalid data file format. The error could be either of the
following:

� The dfmt value supplied was not ’ascii ’.

� An unsupported MatrixMarket format was supplied. When a MatrixMarket file
is used, the first line of its comment section must contain either the words
’real general ’ or ’complex general ’.

� S3L_ERR_FILE_OPEN– Failed to open the data file; the file either does not exist
or the name is specified incorrectly.

� S3L_ERR_EOF– The input data ends before expected.

Examples

../examples/s3l/sparse/ex_sparse.c

../examples/s3l/sparse-f/ex_sparse.f

Related Functions

S3L_declare_sparse(3)
S3L_matvec_sparse(3)
S3L_rand_sparse(3)

S3L_print_sparse

Description
S3L_print_sparse prints all nonzero values of a global general sparse matrix and
their corresponding row and column indices to standard output.

For example, the following 4x6 sample matrix

184 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

3.14 0 0 20.04 0 0
0 27 0 0 -0.6 0
0 0 -0.01 0 0 0

-0.031 0 0 0.08 0 314.0

could be printed by a C program in the following manner.

4 6 8
0 0 3.14000
0 3 200.040000
1 1 27.000000
1 4 -0.600000
2 2 -0.010000
3 0 -0.031000
3 3 0.080000
3 5 314.000000

Note that, for C-language applications, zero-based indices are used. When
S3L_print_sparse is called from a Fortran program,one-basedindices are used, as
shown below.

4 6 8
1 1 3.14000
1 4 200.040000
2 2 27.000000
2 5 -0.600000
3 3 -0.010000
4 1 -0.031000
4 4 0.080000
4 6 314.000000

Syntax
The C and Fortran syntax for S3L_print_sparse are shown below.

Sun S3L Core Library Functions 185

C/C++ Syntax

CODE EXAMPLE 8–21

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_print_sparse(A)

S3L_array_t A

F77/F90 Syntax

CODE EXAMPLE 8–22

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_print_sparse(A, ier)

integer*8 A
integer*4 ier

Input
� A – S3L internal array handle for the global general sparse matrix that is produced

by a prior call to one of the following sparse routines:

� S3L_declare_sparse

� S3L_read_sparse

� S3L_rand_sparse

Output
S3L_print_sparse uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, S3L_print_sparse
returns error status in ier .

186 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Error Handling
On success, S3L_print_sparse returns S3L_SUCCESS.

The S3L_print_sparse routine performs generic checking of the validity of the
arrays it accepts as arguments. If an array argument contains an invalid or corrupted
value, the function terminates and an error code indicating which value of the array
handle was invalid is returned. See Appendix A of this manual for a detailed list of
these error codes.

On error, it returns the following code.

� S3L_ERR_ARG_NULL– The value specified for A is invalid; no such S3L sparse
matrix has been defined.

Examples

../examples/s3l/sparse/ex_sparse.c

../examples/s3l/sparse/ex_sparse2.c

../examples/s3l/sparse-f/ex_sparse.f

Related Functions

S3L_declare_sparse(3)
S3L_read_sparse(3)
S3L_rand_sparse(3)

Gaussian Elimination for Dense Systems
S3l_lu_factor

Description
For each M x N coefficient matrix A of a, S3L_lu_factor computes the LU
factorization using partial pivoting with row interchanges.

Sun S3L Core Library Functions 187

The factorization has the form A = P x L x U, where P is a permutation matrix, L is
lower triangular with unit diagonal elements (lower trapezoidal if M > N), and U is
upper triangular (upper trapezoidal if M < N). L and U are stored in A.

In general, S3L_lu_factor performs most efficiently when the array is distributed
using the same block size along each axis.

S3L_lu_factor behaves somewhat differently for 3D arrays, however. In this case,
it applies nodal LU factorization on each M x N coefficient matrix across the instance
axis. This factorization is performed concurrently on all participating processes.

You must call S3L_lu_factor before calling any of the other LU routines. The
S3L_lu_factor routine performs on the preallocated parallel array and returns a
setup ID. You must supply this setup ID in subsequent LU calls, as long as you are
working with the same set of factors.

Be sure to call S3L_deallocate_lu when you have finished working with a set of
LU factors. See “S3l_lu_deallocate ” on page 196 for details.

The internal variable setup_id is required for communicating information between
the factorization routine and the other LU routines. The application must not modify
the contents of this variable.

Syntax
The C and Fortran syntax for S3L_lu_factor are shown below.

C/C++ Syntax

CODE EXAMPLE 8–23

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_lu_factor(a, row_axis, col_asix, setup_id)

S3L_array_t A
int row_axis
int col_axis
int *setup_id
S3L_data_type type
char *fname
char *dfmt

188 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

F77/F90 Syntax

CODE EXAMPLE 8–24

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_lu_factor(a, row_axis, col_asix, setup_id, ier)

integer*8 a
integer*4 row_axis
integer*4 col_axis
integer*4 setup_id
integer*4 ier

Input
� a – Parallel array of rank greater than or equal to 2. This array contains one or

more instances of a coefficient matrix A to be factored. Each A is assumed to be
dense with dimensions M x N with rows counted by axis row_axis and columns
counted by axis col_axis.

� row_axis – Scalar integer variable. Identifies the axis of a that counts the rows of
each matrix A. For C program calls, row_axis must be >= 0 and less than the rank
of a; for Fortran program calls, it must be >= 1 and not exceed the rank of a. In
addition, row_axis and col_axis must not be equal.

� col_axis – Scalar integer variable. Identifies the axis of a that counts the
columns of each matrix A. For C program calls, col_axis must be >= 0 and less
than the rank of a; for Fortran program calls, it must be >= 1 and not exceed the
rank of a. In addition, row_axis and col_axis must not be equal.

Output
This function uses the following arguments for output:

� a – Upon successful completion, each matrix instance A is overwritten with data
giving the corresponding LU factors.

� setup_id – Scalar integer variable returned by S3L_lu_factor. It can be used
when calling other LU routines to reference the LU-factored array.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_lu_factor returns S3L_SUCCESS.

Sun S3L Core Library Functions 189

S3L_lu_factor performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and returns an error code indicating which value was invalid. See
Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause the function to terminate and return the
associated error code:

� S3L_ERR_ARG_RANK– Invalid rank; must be >= 2.

� S3L_ERR_ARG_BLKSIZE– Invalid blocksize; must be >= 1.

� S3L_ERR_ARG_DTYPE– Invalid data type. It must be real or complex (single- or
double-precision).

� S3L_ERR_ARG_NULL– Invalid array. a must be preallocated.

� S3L_ERR_ARG_AXISNUM– row_axis or col_axis is invalid. This condition can
be caused by either an out-of-range axis number (see row_axis and col_axis
argument definitions) or row_axis equal to col_axis .

� S3L_ERR_FACTOR_SING– A singular factor U is returned. If it is used by
S3L_lu_solve , division by zero will occur.

Examples

../examples/s3l/lu/lu.c

../examples/s3l/lu/ex_lu1.c

../examples/s3l/lu/ex_lu2.c

../examples/s3l/lu-f/lu.f

../examples/s3l/lu-f/ex_lu1.f

Related Functions

S3L_lu_deallocate(3)
S3L_lu_invert(3)
S3L_lu_solve(3)

S3l_lu_invert

Description
S3L_lu_invert uses the LU factorization generated by S3L_lu_factor to
compute the inverse of each square (M x M) matrix instance A of the parallel array a.

190 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

This is done by inverting U and then solving the system A-1L = U-1 for A-1, where
A-1 and U-1 denote the inverse of A and U, respectively.

In general, S3L_lu_invert performs most efficiently when the array is distributed
using the same block size along each axis.

For arrays with rank > 2, the nodal inversion is applied on each of the 2D slices of a
across the instance axis and is performed concurrently on all participating processes.

The internal variable setup_id is required for communicating information between
the factorization routine and the other LU routines. The application must not modify
the contents of this variable.

Syntax
The C and Fortran syntax for S3L_lu_invert are shown below.

C/C++ Syntax

CODE EXAMPLE 8–25

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_lu_invert(a, setup_id)

S3L_array_t a
int setup_id

F77/F90 Syntax

CODE EXAMPLE 8–26

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_lu_invert(a, setup_id, ier)

integer*8 a
integer*4 setup_id
integer*4 ier

Sun S3L Core Library Functions 191

Input
� a – Parallel array that was factored by S3L_lu_factor, where each matrix instance

A is a dense M x M square matrix. Supply the same value a that was used in
S3L_lu_factor.

� setup_id – Scalar integer variable. Use the value returned by the corresponding
S3L_lu_factor call for this argument.

Output
This function uses the following arguments for output:

� a – Upon successful completion, each matrix instance A is overwritten with data
giving the corresponding LU factors.

� setup_id – Scalar integer variable returned by S3L_lu_factor. It can be used
when calling other LU routines to reference the LU-factored array.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_lu_invert returns S3L_SUCCESS.

S3L_lu_invert performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and returns an error code indicating which value was invalid. See
Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause the function to terminate and return the
associated error code:

� S3L_ERR_ARG_NULL– Invalid array; must be the same value returned by
S3L_lu_factor .

� S3L_ERR_ARG_SETUP– Invalid setup_id .

� S3L_ERR_FACTOR_SING– a contains singular factors; its inverse could not be
computed.

Examples

../examples/s3l/lu/lu.c

../examples/s3l/lu/ex_lu1.c

../examples/s3l/lu/ex_lu2.c

(continued)

192 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

../examples/s3l/lu-f/lu.f

../examples/s3l/lu-f/ex_lu1.f

Related Functions

S3L_lu_factor(3)
S3L_lu_invert(3)
S3L_lu_solve(3)

S3l_lu_solve

Description
For each square coefficient matrix A of a, S3L_lu_solve solves a system of
distributed linear equations AX = B, with a general M x M square matrix instance A,
using the LU factorization computed by S3L_lu_factor .

Note - Throughout these descriptions, L-1 and U-1 denote the inverse of L and U,
respectively.

A and B are corresponding instances within a and b, respectively. To solve AX = B,
S3L_lu_solve performs forward elimination:

Let UX = C
A = LU implies that AX = B is equivalent to C = L -1B

followed by back substitution:

X = U-1C = U-1(L -1B)

To obtain this solution, the S3L_lu_solve routine performs the following steps:

1. Applies L-1 to B.

Sun S3L Core Library Functions 193

2. Applies U-1 to L-1B.

Upon successful completion, each B is overwritten with the solution to AX = B.

In general, S3L_lu_solve performs most efficiently when the array is distributed
using the same block size along each axis.

S3L_lu_solve behaves somewhat differently for 3D arrays, however. In this case,
the nodal solve is applied on each of the 2D systems AX=B across the instance axis of
a and is performed concurrently on all participating processes.

The input parallel arrays a and b must be distinct.

The internal variable setup_id is required for communicating information between
the factorization routine and the other LU routines. The application must not modify
the contents of this variable.

Syntax
The C and Fortran syntax for S3L_lu_solve are shown below.

C/C++ Syntax

CODE EXAMPLE 8–27

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_lu_solve(b, a, setup_id)

S3L_array_t b
S3L_array_t a
int setup_id

F77/F90 Syntax

CODE EXAMPLE 8–28

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_lu_solve(b, a, setup_id, ier)

integer*8 b
integer*8 a

194 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

integer*4 setup_id
integer*4 ier

Input
� b – Parallel array of the same type (real or complex) and precision as a. Must be

distinct from a. The instance axes of b must match those of a in order of
declaration and extents. The rows and columns of each B must be counted by axes
row_axis and col_axis, respectively (from the S3L_lu_factor call). For the
two-dimensional case, if b consists of only one right-hand side vector, you can
represent b as a vector (an array of rank 1) or as an array of rank 2 with the
number of columns set to 1 and the elements counted by axis row_axis.

� a – Parallel array that was factored by S3L_lu_factor, where each matrix instance
A is a dense M x M square matrix. Supply the same value a that was used in
S3L_lu_factor.

� setup_id – Scalar integer variable. Use the value returned by the corresponding
S3L_lu_factor call for this argument.

Output
This function uses the following arguments for output:

� b – Upon successful completion, each matrix instance B is overwritten with the
solution to AX = B.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_lu_solve returns S3L_SUCCESS.

S3L_lu_solve performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and returns an error code indicating which value was invalid. See
Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause the function to terminate and return the
associated error code:

� S3L_ERR_ARG_NULL– Invalid array. b must be preallocated and the same value
returned by S3L_lu_factor must be supplied in a.

Sun S3L Core Library Functions 195

� S3L_ERR_ARG_RANK– Invalid rank. For cases where rank >= 3, rank(b) must
equal rank(a). For the two-dimensional case, rank(b) must be either 1 or 2.

� S3L_ERR_ARG_DTYPE– Invalid data type; must be real or complex (single- or
double-precision).

� S3L_ERR_ARG_BLKSIZE– Invalid block size; must be >= 1.

� S3L_ERR_MATCH_EXTENTS– Extents of a and b are mismatched along the row or
instance axis.

� S3L_ERR_MATCH_DTYPE– Unmatched data type between a and b.

� S3L_ERR_ARRNOTSQ– Invalid matrix size; each coefficient matrix must be square.

� S3L_ERR_ARG_SETUP– Invalid setup_id value. It does not match the value
returned by S3L_lu_factor .

Examples

../examples/s3l/lu/lu.c

../examples/s3l/lu/ex_lu1.c

../examples/s3l/lu/ex_lu2.c

../examples/s3l/lu-f/lu.f

../examples/s3l/lu-f/ex_lu1.f

Related Functions

S3L_lu_deallocate(3)
S3L_lu_factor(3)
S3L_lu_invert(3)

S3l_lu_deallocate

Description
S3L_lu_deallocate invalidates the specified setup ID, which deallocates the
memory that has been set aside for the S3L_lu_factor routine associated with that
ID. Attempts to use a deallocated setup ID will result in errors.

When you finish working with a set of factors, be sure to use S3L_lu_deallocate
to free up the associated memory. Repeated calls to S3L_lu_factor without
deallocation can cause you to run out of memory.

196 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Syntax
The C and Fortran syntax for S3L_lu_deallocate are shown below.

C/C++ Syntax

CODE EXAMPLE 8–29

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_lu_deallocate(setup_id)

int setup_id

F77/F90 Syntax

CODE EXAMPLE 8–30

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_lu_deallocate(setup_id,
ier)

integer*4 setup_id
integer*4 ier

Input
� setup_id – Scalar integer variable. Use the value returned by the corresponding

S3L_lu_factor call for this argument.

Output
This function uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Sun S3L Core Library Functions 197

Error Handling
On success, S3L_lu_deallocate returns S3L_SUCCESS.

The following condition will cause the function to terminate and return the
associated error code.

� S3L_ERR_ARG_SETUP– Invalid setup_id value. It does not match the value
returned by S3L_lu_factor .

Examples

../examples/s3l/lu/lu.c

../examples/s3l/lu/ex_lu1.c

../examples/s3l/lu/ex_lu2.c

../examples/s3l/lu-f/lu.f

../examples/s3l/lu-f/ex_lu1.f

Related Functions

S3L_lu_factor(3)
S3L_lu_solve(3)
S3L_lu_invert(3)

Fast Fourier Transforms
S3L_fft

Description
S3L_fft performs a simple FFT on the complex parallel array a. The same FFT
operation is performed along all axes of the array.

Both power-of-two and arbitrary radix FFTs are supported. The 1D parallel FFT can
be used for sizes that are a multiple of the square of the number of processes. The 2D
and 3D FFTs can be used for arbitrary sizes and distributions.

The S3L_fft routine computes a multidimensional transform by performing a
one-dimensional transform along each axis in turn.

198 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

The sign of the twiddle factor exponents determines the direction of an FFT. Twiddle
factors with a negative exponent imply a forward transform, and twiddle factors
with positive exponents are used for an inverse transform.

For the 2D FFT, a more efficient transpose algorithm will be used if the blocksizes
along each dimension are equal to the extents divided by the number of processes,
resulting in significant performance improvements.

S3L_fft (and S3L_ifft) can only be used for complex and double complex data
types. To compute a real-data forward FFT, use S3L_rc_fft . This performs a
forward FFT on the real data, yielding packed representation of the complex results.
To compute the corresponding inverse FFT, use S3L_cr_fft , which will perform an
inverse FFT on the complex data, overwriting the original real array with real-valued
results of the inverse FFT.

The floating-point precision of the result always matches that of the input.

Note - S3L_fft and S3L_ifft do not perform any scaling. Consequently, when a
forward FFT is followed by an inverse FFT, the original data will be scaled by the
product of the extents of the array.

Syntax
The C and Fortran syntax for S3L_fft are shown below.

C/C++ Syntax

CODE EXAMPLE 8–31

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_fft(a, setup_id)

S3L_array_t a
int setup_id

Sun S3L Core Library Functions 199

F77/F90 Syntax

CODE EXAMPLE 8–32

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’

subroutine
S3L_fft(a, setup_id, ier)

integer*8 a
integer*4 setup_id
integer*4 ier

Input
� a – Parallel array that is to be transformed. Its rank, extents, and type must be the

same as the parallel array (a) supplied in the S3L_fft_setup call.

� setup_id – Scalar integer variable. Use the value returned by the S3L_fft_setup
call for this argument.

Output
This function uses the following arguments for output:

� a – The input array a is overwritten with the result of the FFT.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_fft returns S3L_SUCCESS.

S3L_fft performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and returns an error code indicating which value was invalid. See
Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause the function to terminate and return the
associated error code.

� S3L_ERR_FFT_RANKGT3– The rank of the array a is larger than 3.

� S3L_ERR_ARG_NCOMPLEX– Array a is not complex.

� S3L_ERR_FFT_EXTSQPROCS– Array a is 1D but its extent is not divisible by the
square of the number of processes.

200 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� S3L_ERR_ARG_SETUP– The setup_id supplied is not valid.

Examples

../examples/s3l/fft/fft.c

../examples/s3l/fft/ex_fft1.c

../examples/s3l/fft/ex_fft2.c

../examples/s3l/fft-f/fft.f

Related Functions

S3L_fft_setup(3)
S3L_fft_free_setup(3)
S3L_ifft(3)
S3L_fft_detailed(3)
S3L_cr_fft(3)
S3L_rc_fft(3)
S3L_rc_fft_setup(3)

S3L_fft_detailed

Description
S3L_fft_detailed computes the in-place forward or inverse FFT along a specified
axis of a complex or double complex parallel array, a. FFT direction and axis are
specified by the arguments iflag and axis , respectively. Both power-of-two and
arbitrary radix FFTs are supported. Upon completion, a is overwritten with the FFT
result.

A 1D parallel FFT can be used for array sizes that are a multiple of the square of the
number of processes. Higher dimensionality FFTs can be used for arbitrary sizes and
distributions.

For the 2D FFT, a more efficient transpose algorithm is employed when the
blocksizes along each dimension are equal to the extents divided by the number of
processes. This yields significant performance benefits.

S3L_fft_detailed can only be used for complex and double complex data types.
To compute a real-data forward FFT, use S3L_rc_fft . This performs a forward FFT
on the real data, yielding packed representation of the complex results. To compute
the corresponding inverse FFT, use S3L_cr_fft , which will perform an inverse FFT
on the complex data, overwriting the original real array with real-valued results of
the inverse FFT.

Sun S3L Core Library Functions 201

The floating-point precision of the result always matches that of the input.

Note - S3L_fft_detailed and S3L_ifft do not perform any scaling.
Consequently, when a forward FFT is followed by an inverse FFT, the original data
will be scaled by the product of the extents of the array.

Syntax
The C and Fortran syntax for S3L_fft_detailed are shown below.

C/C++ Syntax

CODE EXAMPLE 8–33

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_fft_detailed(a, setup_id, iflag, axis)

S3L_array_t a
int setup_id
int iflag
int axis

F77/F90 Syntax

CODE EXAMPLE 8–34

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_fft_detailed(a, setup_id, iflag, axis, ier)

integer*8 a
integer*4 setup_id
integer*4 iflag
integer*4 axis
integer*4 ier

202 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Input
� a – Parallel array that is to be transformed. Its rank, extents, and type must be the

same as the parallel array (a) supplied in the S3L_fft_setup call.

� setup_id – Scalar integer variable. Use the value returned by the S3L_fft_setup
call for this argument.

� iflag – Determines the transform direction. Set iflag to 1 for forward FFT; set to
-1 for inverse FFT.

� axis – Determines the axis along which the FFT is to be computed.

Output
This function uses the following arguments for output:

� a – The input array a is overwritten with the result of the FFT.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_fft_detailed returns S3L_SUCCESS.

S3L_fft_detailed performs generic checking of the validity of the arrays it
accepts as arguments. If an array argument contains an invalid or corrupted value,
the function terminates and returns an error code indicating which value was
invalid. See Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause the function to terminate and return the
associated error code.

� S3L_ERR_ARG_NCOMPLEX– Array a is not complex.

� S3L_ERR_FFT_EXTSQPROCS– Array a is 1D but its extent is not divisible by the
square of the number of processes.

� S3L_ERR_ARG_SETUP– The setup_id supplied is not valid.

� S3L_ERR_FFT_INVIFLAG – The iflag argument is invalid.

Examples

../examples/s3l/fft/fft.c

../examples/s3l/fft/ex_fft1.c

(continued)

Sun S3L Core Library Functions 203

(Continuation)

../examples/s3l/fft/ex_fft2.c

../examples/s3l/fft-f/fft.f

Related Functions

S3L_fft_setup(3)
S3L_fft_free_setup(3)
S3L_ifft(3)
S3L_fft(3)
S3L_cr_fft(3)
S3L_rc_fft(3)
S3L_rc_fft_setup(3)

S3L_ifft

Description
Run S3L_ifft to compute the inverse FFT of the complex or double complex
parallel array a. Use the setup ID returned by S3L_fft_setup to specify the array
of interest.

Both power-of-two and arbitrary radix FFT are supported. The 1D parallel FFT can
be used for sizes that are a multiple of the square of the number of nodes; the 2D
and 3D FFTs can be used for arbitrary sizes and distributions.

Upon completion, a is overwritten with the result. The floating-point precision of the
result always matches that of the input.

For the 2D FFT, if the blocksizes along each dimension are equal to the extents
divided by the number of processes, a more efficient transpose algorithm is
employed, which yields significant performance improvements.

S3L_ifft can only be used for complex and double complex data types. To
compute a real-data forward FFT, use S3L_rc_fft . This performs a forward FFT on
the real data, yielding packed representation of the complex results. To compute the
corresponding inverse FFT, use S3L_cr_fft , which will perform an inverse FFT on
the complex data, overwriting the original real array with real-valued results of the
inverse FFT.

204 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Note - S3L_fft and S3L_ifft do not perform any scaling. Consequently, when a
forward FFT is followed by an inverse FFT, the original data will be scaled by the
product of the extents of the array.

Syntax
The C and Fortran syntax for S3L_ifft are shown below.

C/C++ Syntax

CODE EXAMPLE 8–35

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_ifft(a, setup_id)

S3L_array_t a
int setup_id

F77/F90 Syntax

CODE EXAMPLE 8–36

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_ifft(a, setup_id, ier)

integer*8 a
integer*4 setup_id
integer*4 ier

Input
� a – S3L array handle for a parallel array that will be transformed. Its rank, extents,

and type must be the same as the parallel array (a) supplied in the S3L_fft_setup
call.

� setup_id – Scalar integer variable. Use the value returned by the S3L_fft_setup
call for this argument.

Sun S3L Core Library Functions 205

Output
This function uses the following arguments for output:

� a – The input array a is overwritten with the result of the FFT.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_ifft returns S3L_SUCCESS.

S3L_ifft performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and returns an error code indicating which value was invalid. See
Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause the function to terminate and return the
associated error code.

� S3L_ERR_FFT_RANKGT3– The rank of the array a is larger than 3.

� S3L_ERR_ARG_NCOMPLEX– Array a is not complex.

� S3L_ERR_FFT_EXTSQPROCS– Array a is 1D but its extent is not divisible by the
square of the number of processes.

� S3L_ERR_ARG_SETUP– The setup_id supplied is not valid.

Examples

../examples/s3l/fft/fft.c

../examples/s3l/fft-f/fft.f

Related Functions

S3L_fft_setup(3)
S3L_fft_free_setup(3)
S3L_fft_detailed(3)

206 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

S3L_rc_fft and S3L_cr_fft

Description
S3L_rc_fft and S3l_cr_fft are used for computing the Fast Fourier Transform
of real 1D, 2D, or 3D arrays. S3L_rc_fft performs a forward FFT of a real array
and S3l_cr_fft performs the inverse FFT of a complex array with certain
symmetry properties. The result of S3l_cr_fft is real.

S3L_rc_fft accepts as input a real (single- or double precision) parallel array and,
upon successful completion, overwrites the contents of the real array with the
complex Discrete Fourier Transform (DFT) of the data in a packed format.

S3L_cr_fft accepts as input a real array, which contains the packed representation
of a complex array.

S3L_rc_fft and S3l_cr_fft have been optimized for cases where the arrays are
distributed only along their last dimension. They also work, however, for any
CYCLIC(n) array layout.

For the 2D FFT, a more efficient transposition algorithm is used when the blocksizes
along each dimension are equal to the extents divided by the number of processors.
This arrangement can result in significantly higher performance.

The algorithms used are non-standard extensions of the Cooley-Tuckey factorization
and the Chinese Remainder Theorem. Both power-of-two and arbitrary radix FFTs
are supported.

The nodal FFTs upon which the parallel FFT is based are mixed radix with prime
factors 2, 3, 5, 7, 11, and 13. The parallel FFT will be more efficient when the size of
the array is a product of powers of these factors. When the size of an array cannot be
factored into these prime factors, a slower DFT is used for the remainder.

Supported Array Sizes
One Dimension: The array size must be divisible by 4 x p2, where p is the number
of processors.

Two Dimensions: Each of the array lengths must be divisible by 2 x p, where p is
the number of processors.

Three Dimensions: The first dimension must be even and must have a length of at
least 4. The second and third dimensions must be divisible by 2 x p, where p is the
number of processors.

Scaling
The real-to-complex and complex-to-real S3L parallel FFTs do not include scaling of
the data. Consequently, for a forward 1D real-to-complex FFT of a vector of length n,

Sun S3L Core Library Functions 207

followed by an inverse 1D complex-to-real FFT of the result, the original vector is
multiplied by n/2.

If the data fits in a single process, a 1D real-to-complex FFT of a vector of length n,
followed by a 1D complex-to-real FFT results in the original vector being scaled by n.

For a real-to-complex FFT of a 2D real array of size n x m, followed by a
complex-to-real FFT, the original array is scaled by n x m.

Similarly, a real-to-complex FFT applied to a 3D real array of size n x mx k , followed
by a complex-to-real FFT, results in the original array being scaled by n x m x k.

Complex Data Packed Representation
1D Real-to-Complex Periodic Fourier Transforms: The periodic Fourier Transform of
a real sequence x[i], i=0,...,N-1 is Hermitian (exhibits conjugate symmetry around its
middle point).

If X[i],i=0,...,N-1 are the complex values of the Fourier Transform, then

CODE EXAMPLE 8–37

X[i] = conj(X[N-i]), i=1,...,N-1 (eq. 1)

Consider for example the real sequence:

CODE EXAMPLE 8–38

X =

0
1
2
3
4
5
6
7

Its Fourier Transform is:

208 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CODE EXAMPLE 8–39

X =

28.0000
-4.0000 + 9.6569i
-4.0000 + 4.0000i
-4.0000 + 1.6569i
-4.0000
-4.0000 - 1.6569i
-4.0000 - 4.0000i
-4.0000 - 9.6569i

As you can see:

CODE EXAMPLE 8–40

X[1] = conj(X[7])
X[2] = conj(X[6])
X[3] = conj(X[5])
X[4] = conj(X[4]) (i.e.,

X[4] is real)
X[5] = conj(X[3])
X[6] = conj(X[2])
X[7] = conj(X[1])

Because of the Hermitian symmetry, only N/2+1 = 5 values of the complex sequence
X need to be calculated and stored. The rest can be computed from (1).

Note that X[0] and X[N/2] are real valued so they can be grouped together as one
complex number. In fact S3L stores the sequence X as:

CODE EXAMPLE 8–41

X[0] X[N/2]
X[1]
X[2]

or

X =
28.0000 - 4.0000i
-4.0000 + 9.6569i

(continued)

Sun S3L Core Library Functions 209

(Continuation)

-4.0000 - 4.0000i
-4.0000 + 1.6569i

The first line in this example represent the real and imaginary parts of a complex
number.

To summarize, in S3L, the Fourier Transform of a real-valued sequence of length N
(where N is even), is stored as a real sequence of length N. This is equivalent to a
complex sequence of length N/2.

2D Fourier Transform: The method used for 2D FFTs is similar to that used for
1D FFTs. When transforming each of the array columns, only half of the data is
stored.

3D Real to Hermitian FFT: As with the 1D and 2D FFTs, no extra storage is required
for the 3D FFT of real data, since advantage is taken of all possible symmetries. For
an array a(M,N,K), the result is packed in complex b(M/2,N,K) array. Hermitian
symmetries exist along the planes a(0,:,:) and a(M/2,:,:) and along dimension 1.

See the rc_fft.c and rc_fft.f program examples for illustrations of these
concepts. The paths for these online examples are provided at the end of this section.

Syntax
The C and Fortran syntax for S3L_rc_fft and S3L_cr_fft are shown below.

C/C++ Syntax

CODE EXAMPLE 8–42

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_rc_fft(a, setup_id)
S3L_cr_fft(a, setup_id)

S3L_array_t a
int setup_id

210 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

F77/F90 Syntax

CODE EXAMPLE 8–43

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_rc_fft(a, setup_id, ier)
S3L_cr_fft(a, setup_id, ier)

integer*8 a
integer*4 setup_id
integer*4 ier

Input
� a – S3L array handle for a parallel real array. For S3L_rc_fft, the contents of a are

real values. For S3L_cr_fft, they are the packed representation of a complex array.
Upon successful completion, both routines overwrite a with the results of the
forward or inverse FFT. See the Output section for a discussion of the use of a for
output.

� setup_id – Scalar integer variable. Use the value returned by the
S3L_rc_fft_setup call for this argument.

Output
These functions use the following arguments for output:

� a – S3L array handle for a parallel real array. Upon successful completion,
S3L_rc_fft overwrites a with the packed representation of the complex result of the
forward FFT. S3L_cr_fft overwrites a with the real result of the inverse FFT.

� ier (Fortran only) – When called from a Fortran program, ese functions return
error status in ier .

Error Handling
On success, S3L_rc_fft and S3L_cr_fft return S3L_SUCCESS.

The following condition will cause these functions to terminate and return the
associated error code.

� S3L_ERR_ARG_SETUP– The setup_id supplied is not valid.

Sun S3L Core Library Functions 211

Examples

../examples/s3l/rc_fft/rc_fft.c

../examples/s3l/rc_ fft-f/rc_ fft.f

Related Functions

S3L_rc_ fft_setup(3)
S3L_rc_ fft_free_setup(3)

S3L_fft_setup

Description
A call to S3L_fft_setup is the first step in executing Sun S3L Fast Fourier
Transforms. You supply it with the parallel array (a) that is to be transformed. It
returns a setup value in setup_id , which you use in subsequent calls to other S3L
FFT routines.

When calling S3L_fft_setup , you may supply arbitrary values in a; the setup
routine neither examines nor modifies the contents of this parallel array. It simply
uses its size and type to create the setup object.

The setup ID computed by the S3L_fft_setup call can be used for any parallel
arrays that have the same rank, extents, and type as the a argument supplied in the
S3L_fft_setup call—but only for such parallel arrays. If a transform is to be
performed on two parallel arrays, a and b, identical in rank, extents, and type, then
one call to the setup routine suffices, even if transforms are performed on different
axes of the two parallel arrays. But if a and b differ in rank, extents, or type, a
separate setup call is required for each.

You may have more than one setup ID active at a time; that is, you may call the
setup routine more than once before deallocating any setup IDs. For this reason, be
careful that you specify the correct setup ID for calls to S3L_fft , S3L_ifft ,
S3L_fft_detailed , and S3L_fft_free_setup .

The time required to compute the contents of an FFT setup_id structure is
substantially longer than the time required to actually perform an FFT. For this
reason, and because it is common to perform FFTs on many parallel variables with
the same rank, extents, and type, Sun S3L keeps the setup phase and transform
phases distinct.

When a is no longer needed, call S3L_fft_free_setup to deallocate the FFT
setup_id .

212 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Syntax
The C and Fortran syntax for S3L_fft_setup are shown below.

C/C++ Syntax

CODE EXAMPLE 8–44

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_fft_setup(a, setup_id)

S3L_array_t a
int setup_id

F77/F90 Syntax

CODE EXAMPLE 8–45

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_fft_setup(a, setup_id, ier)

integer*8 a
integer*4 setup_id
integer*4 ier

Input
� a – S3L array handle for a parallel array that will be the subject of subsequent

transform operations.

Output
This function uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

� setup_id – On output, it contains an integer value that can be used in
subsequent calls to S3L_fft, S3L_ifft, S3L_fft_detailed, and S3L_fft_free_setup.

Sun S3L Core Library Functions 213

Error Handling
On success, S3L_fft_setup returns S3L_SUCCESS.

S3L_fft_setup performs generic checking of the validity of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code indicating which value of the array handle was invalid
is returned. See Appendix A of this manual for a detailed list of these error codes.

The following conditions will cause S3L_fft_setup to terminate and return the
associated error code:

� S3L_ERR_FFT_RANKGT3– The rank of array a is larger than 3.

� S3L_ERR_ARG_NCOMPLEX– a is not of type S3L_complex or
S3L_double_complex .

� S3L_ERR__FFT_EXTSQPROCS– a is a 1D array, but its extent is not a multiple of
the square of the number of processes over which it was defined.

Examples

../examples/s3l/fft/fft.c

../examples/s3l/fft/ex_fft1.c

../examples/s3l/fft/ex_fft2.c

../examples/s3l/fft-f/fft.f

../examples/s3l/fft-f/ex_fft1.f

Related Functions

S3L_fft(3)
S3L_fft_free_setup(3)
S3L_ifft(3)
S3L_fft_detailed(3)

S3L_rc_fft_setup

Description
S3L_rc_fft_setup allocates a real-to-complex FFT setup that includes the twiddle
factors necessary for the computation and other internal structures. This setup
depends only on the dimensions of the array whose FFT needs to be computed, and
can be used both for the forward (real-to-complex) and inverse
(complex-to-real) FFTs. Therefore, to compute multiple real-to-complex or

214 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

complex-to-real Fourier transforms of different arrays whose extents are the same,
the S3L_rc_fft_setup function has to be called only once.

Syntax
The C and Fortran syntax for S3L_rc_fft_setup are shown below.

C/C++ Syntax

CODE EXAMPLE 8–46

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_rc_fft_setup(a, setup_id)

S3L_array_t a
int setup_id

F77/F90 Syntax

CODE EXAMPLE 8–47

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_rc_fft_setup(a, setup_id, ier)

integer*8 a
integer*4 setup_id
integer*4 ier

Input
� a – S3L array handle for a parallel array that will be the subject of subsequent

transform operations.

Output
This function uses the following argument for output:

Sun S3L Core Library Functions 215

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

� setup_id – On output, it contains an integer value that can be used in
subsequent calls to S3L_rc_fft, S3L_cr_fft, and S3L_rc_fft_free_setup calls.

Error Handling
On success, S3L_rc_fft_setup returns S3L_SUCCESS.

The following conditions will cause S3L_rc_fft_setup to terminate and return the
associated error code:

� S3L_ERR_ARG_RANK– The rank of array a is not 1, 2, or 3.

� S3L_ERR_ARG_NREAL– The data type of a is not real .

� S3L_ERR_ARG_NEVEN– Some of the extents of a are not even.

� S3L_ERR_ARG_EXTENTS– The extents of a are not correct for the rank of a and
the number of processors over which a is distributed. This relationship is
summarized below:

� If a is 1D, its length must be divisible by 4*sqr(np) where np is the number of
processes over which the a is distributed.

� If a is 2D, its extents must both be divisible by 2*np

� If a is 3D, its first extent must be even and its last two extents must both be
divisible by 2*np.

Examples

../examples/s3l/rc_fft/rc_fft.c

../examples/s3l/rc_ fft-f/rc_ fft.f

Related Functions

S3L_rc_fft(3)
S3L_cr_fft(3)
S3L_rc_fft_free_setup(3)

216 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

S3L_fft_free_setup

Description
S3L_fft_free_setup deallocates internal memory associated with setup_id by a
previous call to S3L_fft_setup .

Syntax
The C and Fortran syntax for S3L_fft_free_setup are shown below.

C/C++ Syntax

CODE EXAMPLE 8–48

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_fft_free_setup(setup_id)

int setup_id

F77/F90 Syntax

CODE EXAMPLE 8–49

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_fft_free_setup(setup_id, ier)

integer*4 setup_id
integer*4 ier

Input
� setup_id – Scalar integer variable. Use the value returned by the S3L_fft_setup

call for this argument.

Sun S3L Core Library Functions 217

Output
This function uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_fft_free_setup returns S3L_SUCCESS.

The following condition will cause S3L_fft_free_setup to terminate and return
the associated error code:

� S3L_ERR_ARG_SETUP– The setup_id supplied does not correspond to a valid
FFT setup.

Examples

../examples/s3l/fft/fft.c

../examples/s3l/fft/ex_fft1.c

../examples/s3l/fft/ex_fft2.c

../examples/s3l/fft-f/fft.f

../examples/s3l/fft-f/ex_fft1.f

Related Functions

S3L_fft_setup(3)
S3L_fft(3)
S3L_ifft(3)
S3L_fft_detailed(3)

S3L_rc_fft_free_setup

Description
S3L_rc_fft_free_setup deallocates internal memory associated with setup_id
by a previous call to S3L_rc_fft_setup .

218 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Syntax
The C and Fortran syntax for S3L_rc_fft_free_setup are shown below.

C/C++ Syntax

CODE EXAMPLE 8–50

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_rc_fft_free_setup(setup_id)

int setup_id

F77/F90 Syntax

CODE EXAMPLE 8–51

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_rc_fft_free_setup(setup_id, ier)

integer*4 setup_id
integer*4 ier

Input
� setup_id – Scalar integer variable. Use the value returned by the

S3L_rc_fft_setup call for this argument.

Output
This function uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_rc_fft_free_setup returns S3L_SUCCESS.

Sun S3L Core Library Functions 219

The following condition will cause S3L_rc_fft_free_setup to terminate and
return the associated error code:

� S3L_ERR_ARG_SETUP– The setup_id supplied does not correspond to a valid
S3L_rc_fft_setup .

Examples

../examples/s3l/rc_fft/rc_fft.c

../examples/s3l/rc_ fft-f/rc_ fft.f

Related Functions

S3L_rc_fft_setup(3)
S3L_rc_fft(3)

Structured Solvers
S3L_gen_band_factor

Description
S3L_gen_band_factor performs the LU factorization of an n x n general banded
array with lower bandwidth bl and upper bandwidth bl. The non-zero diagonals of
the array should be stored in an S3L array a of size [2*bl+2*bu+1,n].

In the more general case, a can be a multidimensional array, where axis_r and
axis_d denote the array axes whose extents are 2*bl+2*bu+1 and n respectively. The
format of the array a is described in the following example:

Example:
Consider a 7 x 7 (n=7) banded array with bl = 1, bu = 2. c is the main diagonal, b is
the first superdiagonal and a the second. d is the first subdiagonal. The contents of
the composite array a used as input to S3L_gen_band_factor should have the
following organization:

220 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CODE EXAMPLE 8–52

* * * * * * *
* * * * * * *
* * * * * * *
* * a0 a1 a2 a3 a4
* b0 b1 b2 b3 b4 b5

c0 c1 c2 c3 c4 c5 c6
d0 d1 d2 d3 d4 d5 *

Note that, items denoted by ’*’ are not referenced.

If a is two-dimensional, S3L_gen_band_factor is more efficient when axis_r is
the first axis, axis_d is the second axis, and array a is block-distributed along the
second axis. For C programs, the indices of the first and second axes are 0 and 1,
respectively. For Fortran programs, the corresponding indices are 1 and 2.

If a has more than two dimensions, S3L_gen_band_factor is most efficient when
axes axis_r and axis_d of a are local (that is, are not distributed).

Syntax
The C and Fortran syntax for S3L_gen_band_factor are shown below.

C/C++ Syntax

CODE EXAMPLE 8–53

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_band_factor(a, bl, bu, factors, axis_r, axis_d)

S3L_array_t a
int bl
int bu
int *factors
int axis_r
int axis_d

Sun S3L Core Library Functions 221

F77/F90 Syntax

CODE EXAMPLE 8–54

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_band_factor(a, bl, bu, factors, axis_r, axis_d, ier)

integer*4 a
integer*4 bl
integer*4 bu
integer*4 factors
integer*4 axis_r
integer*4 axis_d
integer*4 ier

Input
� a – S3L array handle for a real or complex parallel array of size [1+2*bl+2*bl,N].

� bl – Lower bandwidth of a.

� bu – Upper bandwidth of a.

� axis_r – Specifies the row axis along which factorization will occur.

� axis_d – Specifies the column axis along which factorization will occur.

Output
This function uses the following arguments for output:

� a – Upon successful completion, S3L_gen_band_factor stores the factorization
results in a.

� factors – Pointer to an internal structure that holds the factorization.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_gen_band_factor returns S3L_SUCCESS.

S3L_gen_band_factor performs generic checking of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code indicating which value of the array handle was invalid
is returned. See Appendix A of this manual for a detailed list of these error codes.

222 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

In addition, the following conditions will cause the function to terminate and return
the associated error code:

� S3L_ERR_ARG_DTYPE– The type of a is not one of: real, double, complex or
double complex.

� S3L_ERR_INDX_INVALID – bl or bu value is invalid for either of the following
reasons:

� Less than 0 (C/C++) or less than 1 (F77/F90).

� Greater than the extent of a along axis_d .

� S3L_ERR_ARG_EXTENTS– The extent of a along axis axis_r is not equal to
2*bl+2*bu+1.

� S3L_ERR_ARRTOOSMALL– The extents of a along axis axis_d are such that the
block size in a block distribution is less than bu + bl + 1.

� S3L_ERR_ARG_AXISNUM– An axis argument is invalid; that is, it is either:

� It is less than 0 (C/C++) or less than 1 (F77/F90).

� It is greater than the rank of the referenced array.

� axis_d is equal to axis_r .

� S3L_ERR_BAND_FFAIL– The factorization could not be completed.

Examples

../examples/s3l/band/ex_band.c

../examples/s3l/band-f/ex_band. f

Related Functions

S3L_gen_band_solve(3)
S3L_gen_band_free_factors(3)

Sun S3L Core Library Functions 223

S3L_gen_band_free_factors

Description
S3L_gen_band_free_factors frees internal memory associated with a banded
matrix factorization.

Syntax
The C and Fortran syntax for S3L_gen_band_free_factors are shown below.

C/C++ Syntax

CODE EXAMPLE 8–55

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_band_free_factors(factors)

int *factors

F77/F90 Syntax

CODE EXAMPLE 8–56

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_band_free_factors(factors, ier)

integer*4 factors
integer*4 ier

Input
� factors – Pointer to the internal structure that will be freed.

224 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Output
This function uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_gen_band_free_factors returns S3L_SUCCESS.

The following condition will cause S3L_gen_band_free_factors to terminate
and return the associated error code:

� S3L_ERR_ARG_SETUP– The factors value is invalid.

Examples

../examples/s3l/band/ex_band.c

../examples/s3l/band-f/ex_band .f

Related Functions

S3L_gen_band_solve(3)
S3L_gen_band_factor(3)

S3L_gen_band_solve

Description
S3L_gen_band_solve solves a banded system whose factorization has been
computed by a prior call to S3L_gen_band_factor .

The factored banded matrix is stored in array a, whose dimensions are 2*bu + 2*bl
+ 1 x n. The right-hand-side is stored in array b, whose dimensions are n x nrhs.

If a and b have more than two dimensions, axis_r and axis_d refer to those axes
of a whose extents are 2*bu + 2*bl + 1 and n, respectively. Likewise, axis_row and
axis_col refer to the axes of b with extents n and nrhs.

Sun S3L Core Library Functions 225

Array Layout Guidelines
Two-Dimensional Arrays: If a and b are two-dimensional, S3L_gen_band_solve
is more efficient when axis_r = 0, axis_d = 1, array a is block distributed along
axis 1, axis_row = 0, axis_col = 1 and array b is block distributed along axis 0.

Note that the values cited in the previous paragraph apply to programs using the C/
C++ interface—that is, they assume zero-based array indexing. When
S3L_gen_band_solve is called from F77 or F90 applications, these values must be
increased by one. Therefore, when a and b are two-dimensional and
S3L_gen_band_solve is called by a Fortran program, the solver is more efficient
when axis_r = 1, axis_d = 2, array a is block distributed along axis 2, axis_row
= 1, axis_col = 2 and array b is block distributed along axis 1.

When a and b are two-dimensional and nrhs is greater than 1, the size of a must be
such that n is divisible by the number of processors.

Arrays With More Than Two Dimensions: If a and b have more than two
dimensions, S3L_gen_band_solve is more efficient when axes axis_r and
axis_d of a and axes axis_row and axis_col are local (not distributed).

Syntax
The C and Fortran syntax for S3L_gen_band_solve are shown below.

C/C++ Syntax

CODE EXAMPLE 8–57

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_band_solve(a, bl, bu, factors, axis_r, axis_d, b, axis_row,
axix_col)

S3L_array_t a
int bl
int bu
int *factors
int axis_r
int axis_d
S3L_array_t b
int axis_row
int axis_col

226 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

F77/F90 Syntax

CODE EXAMPLE 8–58

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_band_solve(a, bl, bu, factors, axis_r, axis_d, b, axis_row,
axis_col, ier)

integer*4 a
integer*4 bl
integer*4 bu
integer*4 factors
integer*4 axis_r
integer*4 axis_d
integer*8 b
integer*4 axis_row
integer*4 axis_col
integer*4 ier

Input
� a – S3L array handle for a real or complex parallel array of size [1+2*bl+2*bu,n].

� bl – Lower bandwidth of a.

� bu – Upper bandwidth of a.

� factors – Pointer to an internal structure that holds the factorization results.

� axis_r – Specifies the axis of array a whose extent is 1+2*bl +2*bu+1

� axis_d – Specifies the axis of array a whose extent is n.

� b – S3L array handle containing the right-hand side of the matrix equation ax=b.

Output
This function uses the following argument for output:

� b – On output, b is overwritten by the solution to the matrix equation ax=b .

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_gen_band_solve returns S3L_SUCCESS.

Sun S3L Core Library Functions 227

S3L_gen_band_solve performs generic checking of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code indicating which value of the array handle was invalid
is returned. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

� S3L_ERR_ARG_DTYPE– The type of a is not one of: real, double, complex or
double complex.

� S3L_ERR_INDX_INVALID – bl or bu value is invalid for either of the following
reasons:

� It is less than 0 (C/C++) or less than 1 (F77/F90).

� It is greater than the extent of a along axis_d .

� S3L_ERR_ARG_EXTENTS– The extent of a along axis axis_r is not equal to
2*bl +2*bu+1.

� S3L_ERR_ARRTOOSMALL– The extents of a along axis axis_d are such that the
block size in a block distribution is less than bu + bl + 1.

� S3L_ERR_ARG_AXISNUM– An axis argument is invalid; that is, it is either:

� Less than 0 (C/C++) or less than 1 (F77/F90).

� Greater than the rank of the referenced array

� axis_d is equal to axis_r .

� S3L_ERR_MATCH_RANK– The rank of a is not the same as that of b.

� S3L_ERR_ARG_SETUP– The factors value does not correspond to a valid setup.

� S3L_ERR_MATCH_EXTENTS– The extents of a along axis_d do not equal the
extents of b along axis_row or some of the other extents of a and b do not match.

Examples

../examples/s3l/band/ex_band.c

../examples/s3l/band-f/ex_band. f

228 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Related Functions

S3L_gen_band_factor(3)
S3L_gen_band_free_factors(3)

S3L_gen_trid_factor

Description
S3L_gen_trid_factor factors a tridiagonal matrix, whose diagonal is stored in
vector D. The first upper subdiagonal is stored in U, and the first lower subdiagonal
in L.

On return, the integer factors contains a pointer to an internal setup structure that
holds the factorization. Subsequent calls to S3L_gen_trid_solve use the value in
factors to access the factorization results.

The contents of the vectors D, U, and L may be altered. These altered vectors, along
with the factors parameter, have to be passed to a subsequent call to
S3L_gen_trid_solve to produce the solution to a tridiagonal system.

D, U, and L must have the same extents and type. If they are one-dimensional, all
three must be of length n. The first n-1 entries of U contain the elements of the
superdiagonal. The last n-1 entries of L contain the elements of the first subdiagonal.
The last element of U and the first element of L are not referenced and can be
initialized arbitrarily.

If D, U and L have more than one dimension, axis_d is the axis along which the
multidimensional arrays are factored. If they are one-dimensional, axis_d must be 0
in C/C++ programs and 1 in F77/F90 programs.

S3L_gen_trid_factor is based on the ScaLAPACK routines pxdttrf , where x is
single, double, complex, or double complex. It does no pivoting; consequently, the
matrix has to be positive definite for the factorization to be stable.

For one-dimensional arrays, the routine is more efficient when D, U, and L are block
distributed. For multiple dimensions, the routine is more efficient when axis_d is a
local axis.

Syntax
The C and Fortran syntax for S3L_gen_trid_factor are shown below.

Sun S3L Core Library Functions 229

C/C++ Syntax

CODE EXAMPLE 8–59

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_trid_factor(D, U, L, factors, axis_d)

S3L_array_t D
S3L_array_t U
S3L_array_t L
int *factors
int axis_d

F77/F90 Syntax

CODE EXAMPLE 8–60

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_trid_factor(D, U, L, factors, axis_d, ier)

integer*8 D
integer*8 U
integer*8 L
integer*4 factors
integer*4 axis_d
integer*4 ier

Input
� D – Vector containing the diagonal for the matrix being factored.

� U – Vector containing the first upper diagonal for the matrix being factored.

� L – Vector containing the first lower diagonal for the matrix being factored.

� axis_d – When D, U, and L are one-dimensional, axis_d must be 0 (C/C++
programs) or 1 (F77/F90 programs). For multidimensional arrays, axis_d
specifies the axis along which the arrays are factored.

Output
This function uses the following arguments for output:

230 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� D – On output, D is overwritten with the partial result of the factorization.

� U – On output, U is overwritten with the partial result of the factorization.

� L – On output, L is overwritten with the partial result of the factorization.

� factors – Upon completion, factors points to the internal data structure
containing the factorization results.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_gen_trid_factor returns S3L_SUCCESS.

S3L_gen_trid_factor performs generic checking of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code indicating which value of the array handle was invalid
is returned. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

� S3L_ERR_MATCH_DTYPE– The arrays are not the same data type.

� S3L_ERR_MATCH_RANK– The arrays do not have the same rank.

� S3L_ERR_MATCH_EXTENTS– The arrays do not have the same extents.

� S3L_ERR_ARG_DTYPE– The array type cannot be operated on by the routine (that
is, it is integer or long long).

� S3L_ERR_ARRTOOSMALL– The array extent is too small, making the length of the
main diagonal less than two times the number of processes.

� S3L_ERR_ARG_AXISNUM– An axis argument is invalid; that is, it is either:

� Less than 0 (C/C++) or less than 1 (F77/F90).

� Greater than the rank of the referenced array.

� S3L_ERR_FACTOR_FAIL– The tridiagonal matrix could not be factored for some
reason. For example, it might not be diagonally dominant.

Examples

../examples/s3l/trid/ex_trid.c

../examples/s3l/trid-f/ex_trid. f

(continued)

Sun S3L Core Library Functions 231

(Continuation)

Related Functions

S3L_gen_trid_solve(3)
S3L_gen_trid_free_factors(3)

S3L_gen_trid_free_factors

Description
S3L_gen_trid_free_factors frees the internal memory setup that was reserved
by a prior call to S3L_gen_trid_factor . The factors argument contains the
value returned by the earlier S3L_gen_trid_factor call.

Syntax
The C and Fortran syntax for S3L_gen_trid_free_factors are shown below.

C/C++ Syntax

CODE EXAMPLE 8–61

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_band_free_factors(factors)

int *factors

232 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

F77/F90 Syntax

CODE EXAMPLE 8–62

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_band_free_factors(factors, ier)

integer*4 factors
integer*4 ier

Input
� factors – Pointer to the internal structure that will be freed.

Output
This function uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_gen_trid_free_factors returns S3L_SUCCESS.

The following condition will cause S3L_gen_trid_free_factors to terminate
and return the associated error code:

� S3L_ERR_ARG_SETUP– The factors value is invalid.

Examples

../examples/s3l/trid/ex_trid.c

../examples/s3l/trid-f/ex_trid .f

Sun S3L Core Library Functions 233

Related Functions

S3L_gen_trid_solve(3)
S3L_gen_trid_factor(3)

S3L_gen_trid_solve

Description
S3L_gen_trid_solve solves a tridiagonal system that has been previously
factored via a call to S3L_gen_trid_factor .

If D, U, and L are of length n, B (the right-hand side of the tridiagonal system) must be
of size n x nrhs. If D, U, and L are multidimensional, axis_d is the axis along which
the system is solved. The rank of B must be one greater than the rank of D, U, and L.

If the rank of B is greater than 2, row_b and col_b specify the axes whose
dimensions are n and nrhs, respectively. The extents of all other axes must be the
same as the corresponding axes of D, U, and L.

When computing multiple tridiagonal systems in which only the right-hand-side
matrix changes, the factorization routine S3L_gen_trid_factor need only be
called once, before the first call to S3l_gen_trid_solve . Then,
S3L_gen_trid_solve can be called repeatedly without calling
S3L_gen_trid_factor again.

Syntax
The C and Fortran syntax for S3L_gen_trid_solve are shown below.

C/C++ Syntax

CODE EXAMPLE 8–63

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_trid_solve(D, U, L, factors, B, row_b, col_b)

S3L_array_t D
S3L_array_t U
S3L_array_t L
int *factors

(continued)

234 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

S3L_array_t B
int axis_d
int axis_d
int row_b

F77/F90 Syntax

CODE EXAMPLE 8–64

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_trid_solve(D, U, L, factors, B, axis_d, row_b, col_b, ier)

integer*8 D
integer*8 U
integer*8 L
integer*4 factors
integer*8 B
integer*4 axis_d
integer*4 row_b
integer*4 col_b
integer*4 ier

Input
� D – Vector containing the diagonal for the matrix being factored.

� U – Vector containing the first upper subdiagonal for the matrix being factored.

� L – Vector containing the first lower subdiagonal for the matrix being factored.

� factors – Pointer to an internal structure that holds the factorization results.

� B – The right-hand side of the tridiagonal system to be solved.

� axis_d – When D, U, and L are one-dimensional, axis_d must be 0 (C/C++
programs) or 1 (F77/F90 programs). For multidimensional arrays, axis_d
specifies the axis along which factorization was carried out.

� row_b – Indicates the row axis of the right-hand side array, B. The value of row_b
depends on the following:

� When B is two-dimensional and its sides are n x nrhs, row_b is 0 (C/C++) or 1
(F77/F90).

Sun S3L Core Library Functions 235

� When B is two-dimensional and its sides are nrhs x n, row_b is 1 (C/C++) or 2
(F77/F90).

� When B has more than two dimensions, row_b identifies the side of B with an
extent of n. For C/C++ programs, the row_b value is zero-based and for F77/
F90 programs, it is one-based.

� col_b – Indicates the column axis of the right-hand side array, B that has an
extent of nrhs. The value of col_b is determined as follows:

� When B is two-dimensional and its sides are n x nrhs, col_b is 1 (C/C++)
or 2 (F77/F90).

� When B is two-dimensional and its sides are nrhs x n, col_b is 0 (C/C++)
or 1 (F77/F90).

� When B has more than two dimensions, col_b identifies the side of B with
an extent of nhrs. For C/C++ programs, the col_b value is zero-based and
for F77/F90 programs, it is one-based.

Output
This function uses the following argument for output:

� B – On output, B is overwritten with the solution to the tridiagonal system.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_gen_trid_solve returns S3L_SUCCESS.

S3L_gen_trid_solve performs generic checking of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code indicating which value of the array handle was invalid
is returned. See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code.

� S3L_ERR_MATCH_DTYPE– The arrays are not the same data type.

� S3L_ERR_MATCH_RANK– The arrays do not have compatible rank.

� S3L_ERR_MATCH_EXTENTS– The arrays do not have compatible extents.

� S3L_ERR_ARG_DTYPE– The array type cannot be operated on by the routine (that
is, it is integer or long long).

� S3L_ERR_ARRTOOSMALL– The array extent is too small, making the length of the
main diagonal less than two times the number of processes.

236 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� S3L_ERR_ARG_AXISNUM– An axis argument is invalid; that is, it is either:

� Less than 0 (C/C++) or less than 1 (F77/F90).

� Greater than the rank of the referenced array.

� row_b is equal to col_b .

� S3L_ERR_ARG_SETUP– The factors value does not correspond to a valid setup.

Examples

../examples/s3l/trid/ex_trid.c

../examples/s3l/trid-f/ex_trid. f

Related Functions

S3L_gen_trid_factor(3)
S3L_gen_trid_free_factors(3)

Dense Symmetric Eigenvalue Solver
S3L_sym_eigen

Description
S3L_sym_eigen finds selected eigenvalues and, optionally, eigenvectors of
Hermitian matrices. The eigenvalues and eigenvectors can be selected by specifying a
range of values or a range of indices for the desired eigenvalues/vectors.

Syntax
The C and Fortran syntax for S3L_sym_eigen are shown below.

Sun S3L Core Library Functions 237

C/C++ Syntax

CODE EXAMPLE 8–65

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_sym_eigen(A, axis1, axis2, E, V, J, job, range, limits, tolerances)

S3L_array_t A
int axis1
int axis2
S3L_array_t E
S3L_array_t V
S3L_array_t J
int job
int range
void *limits
void *tolerances

F77/F90 Syntax

CODE EXAMPLE 8–66

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_sym_eigen(A, axis1, axis2, E, V, J, job, range, limits, tolerances,
ier)

integer*8 A
integer*4 axis1
integer*4 axis2
integer*8 E
integer*8 V
integer*8 J
integer*4 job
integer*4 range
<type_lim> limits(2)
<type_tol> tolerances(2)
integer*4 ier

where <type_lim> is either integer*4 or real*4 and <type_tol> is either
real*4 or real*8 .

238 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Input
� A – S3L array handle describing a real or complex parallel array. On entry, A

contains one or more two-dimensional Hermitian matrices, b, each of which is
assumed to be dense and square. The axes of b are identified by the arguments
axis1 and axis2 .

� axis1 – Integer variable denoting the axis of A that contains the rows of each
Hermitian matrix, b.

� axis2 – Integer variable denoting the axis of A that contains the columns of each
Hermitian matrix, b. axis2 must be greater than axis1 .

� job – Integer variable indicating whether or not eigenvectors are to be computed.
A value of 0 indicates that only eigenvalues are desired. Otherwise, both
eigenvalues and eigenvectors are calculated.

� range – Integer variable indicating the range of eigenvalues to be computed, as
follows:

� 0 – Return all eigenvalues.

� 1 – Compute all eigenvalues within the specified interval.

� 2 – Return a range of eigenvalue indices (when eigenvalues are sorted in
ascending order).

� limits – Defines the eigenvalue interval when the value of range is 1 or 2.
Specifically, when range equals:

� 0 – limits is not used.

� 1 – limits must be a scalar real vector of length 2. Its values bracket the
interval in which eigenvalues are requested—that is, all eigenvalues in the
interval [limits(1) , limits(2)] will be found.

� 2 – limits must be a scalar integer vector of length 2. For eigenvalues sorted
in ascending order, eigenvalues corresponding to limits(1) through
limits(2) will be found.

� tolerances – Real vector of length 2. Its precision must match that of A. That is,
if A is of type S3L_float or S3L_complex , tolerances must be single-precision.
If A is of type S3L_double or S3L_double_complex , tolerances must be
double-precision.

tolerances(1) gives the absolute error tolerance for the eigenvalues. If
tolerances(1) is less than or equal to zero, the value eps * norm(b) will be used
in its place, where eps is the machine tolerance and norm(b) is the 1-norm of the
tridiagonal matrix obtained by reducing b to tridiagonal form.

Sun S3L Core Library Functions 239

tolerances(2) controls the reorthogonalization of eigenvectors. Eigenvectors
corresponding to eigenvalues that are within tolerances(2) * norm(b) of each
other will be reorthogonalized. If tolerances(1) is less than or equal to zero, the
value 1.0e-03 will be used in its place.

Output
This function uses the following arguments for output:

� A – Upon exit, the contents of A are destroyed.

� E – S3L array handle describing a real parallel array with rank(E) = rank(A) -1.
axis1 of E must have the same extent as axis1 of A. The remaining axes are
instance axes matching those of A in order of declaration and extents. Thus, each
vector f within E corresponds to a matrix b within A.

On return, each f contains the eigenvalues of the corresponding matrix b.

� V – S3L array handle describing a parallel array with the same rank, extents, and
data type as A. For each instance matrix b within A, there is a corresponding
two-dimensional array, w, within V. axis1 denotes the axis of V that contains the
rows of w; axis2 denotes the axis of V that contains the columns of w.

On return, each column of w will contain an eigenvector of w.

� J – S3L array handle describing an integer parallel array with rank(J) = rank(A) -
1. axis1 of J should have an extent of 2. The remaining axes are instance axes
matching those of A in order of declaration and extents. Thus, J will contain
vectors of length 2 corresponding to the matrices b embedded within A.

On return, the first element of each vector will contain the number of eigenvalues
found. The second element of each vector will contain the number of eigenvectors
found.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_sym_eigen returns S3L_SUCCESS.

S3L_sym_eigen performs generic checking of the arrays it accepts as arguments. If
an array argument contains an invalid or corrupted value, the function terminates
and an error code indicating which value of the array handle was invalid is returned.
See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code.

� S3L_ERR_ARG_AXISNUM– Invalid value of axis1 or axis2 .

� S3L_ERR_MATCH_RANK– Ranks of the parallel arrays do not match.

240 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� S3L_ERR_ARRNOTSQ– The two-dimensional arrays in A are not square.

� S3L_ERR_MATCH_EXTENTS– The extents of the parallel arrays do not match.

� S3L_ERR_MATCH_DTYPE– The arguments are not all of the same data type and
precision.

� S3L_ERR_ARG_RANGE_INV– Invalid value used for range or limits .

� S3L_ERR_ARG_NULL– Value of range is 1 or 2 but limits is a NULL pointer
(C/C++) or 0 (F77/F90).

Examples

../examples/s3l/eigen/eigen.c

../examples/s3l/eigen-f/engen. f

Parallel Random Number Generators
S3L_setup_rand_fib

Description
S3L_setup_rand_fib initializes the Lagged-Fibonacci random number generator’s
(LFG’s) state table with the fixed parameters: l = 17, k = 5, m = 32.

The state table is initialized in a manner that ensures that the random numbers
generated for each node are from a different period of the LFG. A Linear
Multiplicative Generator (LMG) is used to initialize the noncritical elements of the
state table.

Use S3L_free_rand_fib to deallocate an LFG setup.

Syntax
The C and Fortran syntax for S3L_setup_rand_fib are shown below.

Sun S3L Core Library Functions 241

C/C++ Syntax

CODE EXAMPLE 8–67

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_setup_rand_fib(setup_id, seed)

int *setup_id
int seed

F77/F90 Syntax

CODE EXAMPLE 8–68

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_setup_rand_fib(setup_id, seed, ier)

integer*4 setup_id
integer*4 seed
integer*4 ier

Input
� setup_id – Integer index used to access the state table associated with a

particular LFG.

� seed – An integer value used to initialize the LMG that initializes the noncritical
elements of the LFG’s state table.

Output
This function uses the following argument for output:

� setup_id – On output, setup_id contains an index that can be used as input to
S3L_rand_fib.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

242 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Error Handling
On success, S3L_setup_rand_fib returns S3L_SUCCESS.

Examples

../examples/s3l/ rand_fib/rand_fib.c

../examples/s3l/rand_fib-f/rand_fib.f

Related Functions

S3L_free_rand_fib(3)
S3L_rand_fib(3)

S3L_free_rand_fib

Description
S3L_free_rand_fib frees the state table associated with a particular
Lagged-Fibonacci random number Generator (LFG).

Syntax
The C and Fortran syntax for S3L_free_rand_fib are shown below.

C/C++ Syntax

CODE EXAMPLE 8–69

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L__rand_fib(setup_id)

int *setup_id

Sun S3L Core Library Functions 243

F77/F90 Syntax

CODE EXAMPLE 8–70

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_rand_fib(setup_id, ier)

integer*4 setup_id
integer*4 ier

Input
� setup_id – Integer index that has been initialized by a call to

S3L_setup_rand_fib and is used to identify a particular LFG setup.

Output
This function uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_setup_rand_fib returns S3L_SUCCESS.

On error, the following error code may be returned:

� S3L_ERR_ARG_SETUP– The setup_id value does not correspond to a valid
setup.

Examples

../examples/s3l/ rand_fib/rand_fib.c

../examples/s3l/rand_fib-f/rand_fib.f

244 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Related Functions

S3L_rand_fib(3)
S3L_setup_rand_fib(3)

S3L_rand_fib

Description
S3L_rand_fib initializes a parallel array using a Lagged-Fibonacci random number
generator (LFG). The LFG’s parameters are fixed to l = 17, k = 5, and m = 32.

Random numbers are produced by the following iterative equation:

x[n] = (x[n-e]
+ x[n-k]) mod 2m

The result of S3L_rand_fib depends on how the parallel array a is distributed.

When the parallel array is of type integer, its elements are filled with nonnegative
integers in the range 0 . . . 231 -1. When the parallel array is single- or
double-precision real, its elements are filled with random nonnegative numbers in
the range 0 . . . 1. For complex arrays, the real and imaginary parts are initialized to
random real numbers.

Syntax
The C and Fortran syntax for S3L_rand_fib are shown below.

Sun S3L Core Library Functions 245

C/C++ Syntax

CODE EXAMPLE 8–71

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_rand_fib(a, setup_id, seed)

S3L_array_t a
int setup_id

F77/F90 Syntax

CODE EXAMPLE 8–72

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_rand_fib(a, setup_id, seed, ier)

integer*8 a
integer*4 setup_id
integer*4 ier

Input
� a – S3L array handle that describes the parallel array to be initialized by the LFG.

� setup_id – Integer index used to access the state table associated with the array
referenced by a.

Output
This function uses the following argument for output:

� a – On output, a is a randomly initialized array.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_rand_fib returns S3L_SUCCESS.

S3L_rand_fib checks the validity of the arrays it accepts as arguments. If an array
argument contains an invalid or corrupted value, the function terminates and an

246 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

error code indicating which value of the array handle was invalid is returned. See
Appendix A of this manual for a detailed list of these error codes.

In addition, the following condition will cause the function to terminate and return
the associated error code.

� S3L_ERR_ARG_SETUP– The setup_id value does not correspond to a valid
setup.

Examples

../examples/s3l/ rand_fib/rand_fib.c

../examples/s3l/rand_fib-f/rand_fib.f

Related Functions

S3L_free_rand_fib(3)
S3L_setup_rand_fib(3)

S3L_rand_lcg

Description
S3L_rand_lcg initializes a parallel array a, using a Linear Congruential random
number generator (LCG). It produces random numbers that are independent of the
distribution of the parallel array.

Arrays of type S3L_integer (integer4) are initialized to random integers in the
range 0 . . . 231-1. Arrays of type S3L_long_integer are initialized with integers in
the range 0 . . . 263-1. Arrays of type S3L_float or S3L_double are initialized in
the range 0 . . . 1. The real and imaginary parts of type S3L_complex and
S3L_double_complex are also initialized in the range 0 . . . 1.

The random numbers are initialized by an internal iterative equation of the type:

Sun S3L Core Library Functions 247

x[n] = a*x[n-1]
+ c

Syntax
The C and Fortran syntax for S3L_rand_lcg are shown below.

C/C++ Syntax

CODE EXAMPLE 8–73

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_rand_lcg(a, iseed)

S3L_array_t a
int iseed

F77/F90 Syntax

CODE EXAMPLE 8–74

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_rand_lcg(a, iseed, ier)

integer*8 a
integer*4 iseed
integer*4 ier

Input
� a – S3L array handle that describes the parallel array to be initialized by the LCG.

� iseed – An integer. If positive, this value is used as the initial seed for the LCG. If
zero or negative, the call to S3L_rand_lcg produces a sequence of random
numbers, which is a continuation of a sequence generated in a previous call to
S3L_rand_lcg .

Output
This function uses the following argument for output:

248 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� a – On output, a is a randomly initialized array.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_rand_lcg returns S3L_SUCCESS.

S3L_rand_lcg checks the validity of the arrays it accepts as arguments. If an array
argument contains an invalid or corrupted value, the function terminates and an
error code indicating which value of the array handle was invalid is returned. See
Appendix A of this manual for a detailed list of these error codes.

In addition, the following condition will cause the function to terminate and return
the associated error code.

� S3L_ERR_ARG_RANK– Invalid rank of a.

Examples

../examples/s3l/ rand_lcg /rand_lcg .c

../examples/s3l/rand_lcg -f/rand_lcg .f

Related Functions

S3L_free_rand_fib(3)
S3L_setup_rand_fib(3)

Least Squares Solver
S3L_gen_lsq

Description
If m >= n, S3L_gen_lsq finds the least squares solution of an overdetermined
system. That is, it solves the least squares problem:

Sun S3L Core Library Functions 249

CODE EXAMPLE 8–75

minimize || B - A*X ||

On output, the first n rows of B hold the least squares solution X.

If m < n, S3L_gen_lsq finds the minimum norm solution of an underdetermined
system:

CODE EXAMPLE 8–76

A * X = B(1:m,:)

On output, B holds the minimum norm solution X.

Syntax
The C and Fortran syntax for S3L_gen_lsq are shown below.

C/C++ Syntax

CODE EXAMPLE 8–77

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_lsq(A, B, axis1, axis2)

S3L_array_t A
S3L_array_t B
int axis1
int axis1

250 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

F77/F90 Syntax

CODE EXAMPLE 8–78

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’

subroutine
S3L_gen_lsq(A, B, axis1, axis2, ier)

integer*8 A
integer*8 B
integer*4 axis1
integer*4 axis2
integer*4 ier

Input
� A – S3L array handle that describes a parallel array of dimensions m x n. On

output, its contents may be destroyed.

� B – S3L array handle that describes a parallel array of dimensions max(m,n) x
nrhs. On output, its contents may be destroyed.

� axis1 – If A and B have more than two dimensions, axis1 denotes the
dimension of A with extent m. Otherwise, it has to be 0 for C/C++ programs or 1
for F77/F90 programs.

� axis2 – If A and B have more that two dimensions, axis2 denotes the dimension
of A with extent n. Otherwise, it has to be 0 for C/C++ programs or 1 for F77/F90
programs.

Output
This function uses the following argument for output:

� B – On output, B is overwritten by the result of the least squares problem.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_gen_lsq returns S3L_SUCCESS.

S3L_gen_lsq checks the validity of the array arguments. If an array argument is
found to be corrupted or invalid, an error code is returned. See Appendix A of this
manual for a detailed list of these error codes.

Sun S3L Core Library Functions 251

In addition, the following conditions will cause the function to terminate and return
the associated error code.

� S3L_ERR_ARG_AXISNUM– An axis argument is invalid; that is, it is either:

� Less than 0 (C/C++) or less than 1 (F77/F90).

� Greater than the rank of the referenced array.

� axis1 is equal to axis2 .

� S3L_ERR_MATCH_DTYPE– The array arguments are not all of the same type, as
required.

� S3L_ERR_MATCH_RANK– Corresponding ranks of the array arguments do not
match.

� S3L_ERR_MATCH_EXTENTS– The extents of the arrays are not compatible.

� S3L_ERR_ARG_DTYPE– The array arguments are not float or double, complex, or
double precision complex.

Examples

../examples/s3l/ lsq/ex_lsq.c

../examples/s3l/lsq-f/ex_lsq.f

Dense Singular Value Decomposition
S3L_gen_svd

Description
S3L_gen_svd computes the singular value of a parallel array A and, optionally, the
right and/or left singular vectors. On exit, S contains the singular values. If
requested, U and V contain the left and right singular vectors, respectively.

If A, U, and V are two-dimensional arrays, S3L_gen_svd is more efficient when A, U
and V are allocated on the same process grid and the same block size is used along

252 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

both axes. When A, U, and V have more than two dimensions, S3L_gen_svd is more
efficient when axis_r , axis_c and axis_s are local (that is, are not distributed).

Syntax
The C and Fortran syntax for S3L_gen_svd are shown below.

C/C++ Syntax

CODE EXAMPLE 8–79

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_svd(A, U, S, V, jobu, jobv, axis_r, axis_c, axis_s)

S3L_array_t A
S3L_array_t U
S3L_array_t S
S3L_array_t V
char jobu
char jobv
int axis_r
int axis_c
int axis_s

F77/F90 Syntax

CODE EXAMPLE 8–80

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_svd(A, U, S, V, jobu, jobv, axis_r, axis_c, axis_s, ier)

integer*8 A
integer*8 U
integer*8 S
integer*8 V
character*1 jobu
character*1 jobv
integer*4 axis_r
integer*4 axis_c
integer*4 axis_s
integer*4 ier

(continued)

Sun S3L Core Library Functions 253

(Continuation)

Input
� A – S3L array handle describing a parallel array of type S3L_double or

S3L_float . In the 2D case, A is an m x n array. If A has more than two
dimensions, axis_r and axis_c correspond to the axes of A whose extents are m
and n, respectively.

� U – If jobu = V, U is a parallel array of dimensions m x min(m,n). Otherwise, U is
not referred to. If U has more than two dimensions, axis_r and axis_c
correspond to the axes of U whose extents are m and n, respectively. On output, U
is overwritten with the left singular vectors (see the Output section).

� S – S3L array handle describing a parallel array (vector) of length min(m,n). If S is
multidimensional, axis_s corresponds to the axis of S whose extent is min(m,n).

� V – If jobu = V, this is an S3L array handle describing a parallel array of
dimensions min(m,n) x n. Otherwise, V is not referenced. If V has more than two
dimensions, axis_r and axis_c correspond to the axes of V whose extents are m
and n, respectively. On output, V is overwritten with the right singular vectors (see
the Output section).

� jobu – Specifies options for computing all or part of the matrix U, as follows:

� jobu = V – The first min(m,n) columns of U (the left singular vectors) are
returned in the array U.

� jobu = N – No columns of U (no left singular vectors) are computed.

� jobv – Specifies options for computing all or part of the matrix V, as follows:

� jobv = V – The first min(m,n) rows of V (the right singular vectors) are
returned in the array V.

� jobv = N – No rows of V (no right singular vectors) are computed.

� axis_r – This is the axis of arrays A, U, and V such that the extent of array A
along axis_r is m, the extent of array U along axis_r is m, and the extent of
array V along axis_r is min(m,n).

� axis_c – This is the axis of arrays A, U, and V such that the extent of array A
along axis_c is n, the extent of array U along axis_c is min(m,n), and the extent
of array V along axis_c is n.

� axis_s – This is the axis of array S along which the length is equal to min(m,n).

254 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Output
This function uses the following arguments for output:

� U – On output, U is overwritten with the left singular vectors.

� S – On output, S is overwritten with the singular values.

� V – On output, V is overwritten with the right singular vectors.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_gen_svd returns S3L_SUCCESS.

S3L_gen_svd performs generic checking of the arrays it accepts as arguments. If an
array argument contains an invalid or corrupted value, the function terminates and
an error code indicating which value of the array handle was invalid is returned. See
Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions will cause the function to terminate and return
the associated error code:

� S3L_ERR_ARG_AXISNUM– An axis argument is invalid; that is, it is either:

� Less than 0 (C/C++) or less than 1 (F77/F90).

� Greater than the rank of the referenced array.

� axis_r is equal to axis_c .

� S3L_ERR_MATCH_DTYPE– The arrays are not the same data type.

� S3L_ERR_MATCH_RANK– The arrays are not the same rank.

� S3L_ERR_MATCH_EXTENTS– The extents of the arrays are not compatible.

� S3L_ERR_ARG_DTYPE– The data types of the array arguments are not float or
double.

� S3L_ERR_ARG_OP– jobv is not one of V or N.

� S3L_ERR_SVD_FAIL – The svd algorithm failed to converge.

Examples

../examples/s3l/svd/ex_svd.c

../examples/s3l/svd-f/ex_svd. f

Sun S3L Core Library Functions 255

(Continuation)

Iterative Solver
S3L_gen_iter_solve

Description
Given a general square sparse matrix A and a right-hand side vector b,
S3L_gen_iter_solve solves the linear system of equations Ax = b, using an
iterative algorithm, with or without preconditioning.

The first three arguments to S3L_gen_iter_solve are S3L internal array handles
that describe the global general sparse matrix A, the rank 1 global array b, and the
rank 1 global array x .

The sparse matrix A is produced by a prior call to one of the following sparse
routines:

� S3L_declare_sparse

� S3L_read_sparse

� S3L_rand_sparse

The global rank 1 arrays, b and x , have the same data type and precision as the
sparse matrix A and both have a length equal to the order of A.

Two local rank 1 arrays, iparm and rparm , provide user control over various
aspects of S3L_gen_iter_solve behavior, including:

� Choice of algorithm to be used.

� Type of preconditioner to use on A.

� Flags to select the initial guess to the solution.

� Maximum number of iterations to be taken by the solver.

� If restarted GMRES algorithm is chosen, selection of the size of the Krylov
subspace.

� Tolerance values to be used by the stopping criterion.

� If the Richardson algorithm is chosen, selection of the scaling factor to be used.

256 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

iparm is an integer array and rparm is a real array. The options supported by these
arguments are described in the subsections titled: “Algorithm,” “Preconditioning,”
“Initial Guess,” “Maximum Iterations,” “Krylov Subspace,” “Stopping Criterion
Tolerance,” and “Richardson Scaling Factor.” The “Iteration Termination” subsection
identifies the conditions under which S3L_gen_iter_solve will terminate
anoperation.

Note - iparm and rparm must be preallocated and initialized before
S3L_gen_iter_solve is called. To enable the default condition for any parameter,
set it to 0. Otherwise, initialize them with the appropriate parameter values, as
described in the following subsections.

Algorithm
S3L_gen_iter_solve attempts to solve Ax = b using one of the following iterative
solution algorithms. The choice of algorithm is determined by the value supplied for
the parameter iparm[S3L_iter_solver] . The various options available for this
parameter are listed and described in Table 8–12

TABLE 8–12 iparm[S3L_iter_solver] Options

Option Description

S3L_bcgs BiConjugate Gradient Stabilized (Bi-CGSTAB)

S3L_cgs Conjugate Gradient Squared (CGS)

S3L_cg Conjugate Gradient (CG)

S3L_cr Conjugate Residuals (CR)

S3L_gmres Generalized Minimum Residual (GMRES) – default

S3L_qmr Quasi-Minimal Residual (QMR)

S3L_richardson Richardson method

Sun S3L Core Library Functions 257

Preconditioning
S3L_gen_iter_solve implements left preconditioning. That is, preconditioning is
applied to the linear system Ax = b by

CODE EXAMPLE 8–81

Q-1 A = Q-1 b

where Q is the preconditioner and Q-1 denotes the inverse of Q. The supported
preconditioners are listed in Table 8–13.

TABLE 8–13 iparm[S3L_iter_pc] Options

Option Description

S3L_none No preconditioning will be done (default).

S3L_jacobi Point Jacobi preconditioner will be used.

S3L_ilu Use a simplified ILU(0); the Incomplete LU factorization of level zero
preconditioner. This preconditioner modifies only diagonal nonzero
elements of the matrix.

Convergence/Divergence Criteria

The iparm[S3L_iter_conv] parameter selects the criterion to be used for
stopping computation. Currently, the single valid option for this parameter is
S3L_r0 , which selects the default criterion for both convergence and divergence. The
convergence criterion is satisfied when:

err = ||rj ||_2 / ||r0 ||_2 < epsilon

and the divergence criterion is met when

err = ||rj ||_2 / ||r0 ||_2 > 10000.0

where:

� rj and r0 are the residuals obtained at iterations j and 0.

� ||.||_2 is the 2-norm.

� epsilon is the desired convergence tolerance stored in rparm[S3L_iter_tol] .

� 10000.0 is the divergence tolerance, which is set internally in the solver.

258 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Initial Guess
The parameter iparm[S3L_iter_init] determines the contents of the initial guess
to the solution of the linear system as follows:

� 0 – Applies zero as the initial guess. This is the default.

� 1 – Applies the value contained in array x as the initial guess. For this case, the
user must initialize x before calling S3L_gen_iter_solve .

Maximum Iterations
On input, the iparm[S3L_iter_maxiter] parameter specifies the maximum
number of iterations to be taken by the solver. Set to 0 to select the default, which is
10000.

On output, iparm[S3L_iter_maxiter] contains the total number of iterations
taken by the solver at the time of termination.

Krylov Subspace
If the restarted GMRES algorithm is selected, iparm[S3L_iter_kspace] specifies
the size of the Krylov subspace to be used. The default is 30.

Stopping Criterion Tolerance
On input, rparm[S3L_iter_tol] specifies the tolerance values to be used by the
stopping criterion. Its default is 10-8.

On output, rparm[S3L_iter_tol] contains the computed error, err , according to
the convergence criteria. See the iparm[S3L_iter_conv] description for details.

Richardson Scaling Factor
If the Richardson method is selected, rparm[S3L_rich_scale] specifies the
scaling factor to be used. The default value is 1.0.

Iteration Termination
S3L_gen_iter_solve terminates the iteration when one of the following
conditions is met.

� The computation has satisfied the convergence criterion.

� The computation has diverged.

� An algorithmic breakdown has occurred.

Sun S3L Core Library Functions 259

� The number of iterations has exceeded the supplied value.

Syntax
The C and Fortran syntax for S3L_gen_iter_solve are shown below.

C/C++ Syntax

CODE EXAMPLE 8–82

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_gen_iter_solve(A, b, x, iparm, rparm)

S3L_array_t A
S3L_array_t b
S3L_array_t x
int *iparm
<type> *rparm

F77/F90 Syntax

CODE EXAMPLE 8–83

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_gen_iter_solve(A, b, x, iparm, rparm, ier)

integer*8 A
integer*8 b
integer*8 x
integer*4 iparm(*)
<type> rparm(*)
integer*4 ier

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Input
� A – S3L internal array handle for the global general sparse matrix. It is produced

by a prior call to one of the following sparse routines:

260 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� S3L_declare_sparse

� S3L_read_sparse

� S3L_rand_sparse

� b – Global array of rank 1, with the same data type and precision as A and x and a
length equal to the order of the sparse matrix. b contains the right-hand side
vector of the linear problem.

� x – Global array of rank 1, with the same data type and precision as A and b and a
length equal to the order of the sparse matrix. On input, x contains the initial
guess for the solution to the linear system. Upon successful completion, x contains
the converged solution (see the Output section).

� iparm – Integer local array of rank 1 and length s3l_iter_iparm_size , where:

� iparm[S3l_iter_solver] – Specifies the iterative algorithm to be used. Set
it to 0 to use the default solver GMRES. See the Desctription sectino for details.

� iparm[S3l_iter_pc] – Specifies the preconditioner to be used. Set it to 0 to
use the default option, S3L_none .

� iparm[S3l_iter_conv] – Selects the criterion to be used for stopping the
computation.

� rparm – Specifies options for computing all or part of the matrix U.

Output
This function uses the following arguments for output:

� x – Upon successful completion, x contains the converged solution. If the
computation breaks down or diverges, x will contain the solution produced by the
most recent iteration.

� iparm[S3L_iter_maxiter] – On output, contains the total number of
iterations taken by the solver at the time of termination.

� rparm[S3L_iter_tol] – On output, contains the computed error, err ,
according to the convergence criteria. See the iparm[S3L_iter_conv]
description for details..

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_gen_iter_solve returns S3L_SUCCESS.

Sun S3L Core Library Functions 261

S3L_gen_iter_solve performs generic checking of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code indicating which value of the array handle was invalid
is returned. See Appendix A of this manual for a detailed list of these error codes.

On error, it returns one of the following codes, which are organized by error type.

Input Errors

� S3L_ERR_ARG_NULL– Invalid array x or b or sparse matrix A. They all must be
preallocated S3L arrays or sparse matrix.

� S3L_ERR_ARRNOTSQ– Invalid matrix size. Matrix A must be square.

� S3L_ERR_ARG_RANK– Invalid rank for arrays x and b. Both must be rank 1
arrays.

� S3L_ERR_MATCH_DTYPE– x , b, and A do not have the same data type.

� S3L_ERR_MATCH_EXTENTS– The lengths of x and b do not match the size of
sparse matrix A. Both must be equal to the order of A.

� S3L_ERR_PARAM_INVALID– Invalid input for iparm or rparm . Both must be
preallocated and initialized with the predefined values described in the
Description section or set to 0 for the default value.

Computational Errors

� S3L_ERR_ILU_ZRPVT– Encountered a zero pivot in the course of ILU
preconditioning.

� S3L_ERR_JACOBI_ZRDIAG– Encountered a zero diagonal in the course of Jacobi
preconditioning.

� S3L_ERR_DIVERGE– Computation has diverged.

� S3L_ERR_ITER_BRKDWN– A breakdown has occurred.

� S3L_ERR_MAXITER– The number of iterations has exceeded the value supplied
in iparm[S3L_iter_maxiter] .

Examples

../examples/s3l/iter/ex_iter.c

../examples/s3l/iter-f/ex_iter. f

262 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Related Functions

S3L_declare_sparse(3)
S3L_read_sparse(3)
S3L_rand_sparse(3)

Autocorrelation
S3L_acorr_setup

Description
S3L_acorr_setup sets up the initial conditions necessary for computation of the
autocorrelation C = acorr(A). It returns an integer setup value that can be used by
subsequent calls to S3L_acorr and S3L_acorr_free_setup .

Syntax
The C and Fortran syntax for S3L_acorr_setup are shown below.

C/C++ Syntax

CODE EXAMPLE 8–84

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_acorr_setup(a, c, setup_id)

S3L_array_t a
S3L_array_t c
int setup_id
<type> *rparm

Sun S3L Core Library Functions 263

F77/F90 Syntax

CODE EXAMPLE 8–85

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_acorr_setup(a, c, setup_id, ier)

integer*8 a
integer*8 c
integer*4 setup_id
integer*4 ier

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Input
� a – S3L internal array handle for the parallel 1D or 2D array of real or complex

type whose autocorrelation is to be computed.

� c – S3L internal array handle for the parallel 1D or 2D array of the same type as A,
used to store the result of the autocorrelation. Its extents along each axis must be
at least equal to two times the corresponding extent of A minus 1.

Output
This function uses the following arguments for output:

� setup – Integer value retuned by this function. Use this value for the setup_id
argument in subsequent calls to S3_acorr and S3L_acorr_free_setup .

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_acorr_setup returns S3L_SUCCESS.

S3L_acorr_setup performs generic checking of the arrays it accepts as arguments.
If an array argument contains an invalid or corrupted value, the function terminates
and an error code indicating which value of the array handle was invalid is returned.
See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions cause the function to terminate and return one
of the following codes:

264 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� S3L_ERR_ARG_DTYPE– The data type of one of the array arguments is invalid. It
must be one of:

� S3L_float

� S3L_double

� S3L_complex

� S3L_double_complex

� S3L_ERR_MATCH_DTYPE– The array arguments are not all of the same type.

� S3L_ERR_MATCH_RANK– The array arguments are not all of the same rank.

� S3L_ERR_ARG_RANK– The rank of one of the array arguments is not 1 or 2.

� S3L_ERR_ARG_EXTENTS– The extents of c are less than the extents of a.

Examples

../examples/s3l/acorr/ex_acorr.c

../examples/s3l/acorr-f/ex_acorr. f

Related Functions

S3L_acorr(3)
S3L_acorr_free_setup(3)

S3L_acorr_free_setup

Description
S3L_acorr_free_setup invalidates the ID specified by the setup_id argument.
This deallocates the internal memory that was reserved for the autocorrelation
computation associated with that ID.

Syntax
The C and Fortran syntax for S3L_acorr_free_setup are shown below.

Sun S3L Core Library Functions 265

C/C++ Syntax

CODE EXAMPLE 8–86

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_acorr_free_setup(setup_id)

int *setup_id

F77/F90 Syntax

CODE EXAMPLE 8–87

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_acorr_free_setup(setup_id, ier)

integer*4 setup_id
integer*4 ier

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Input
� setup_id – Valid autocorrelation setup ID as returned from a previous call to

S3L_acorr_setup .

Output
This function uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_acorr_free_setup returns S3L_SUCCESS.

In addition, the following condition causes the function to terminate and return the
associated code:

266 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� S3L_ERR_ARG_SETUP– Invalid setup_id value.

Examples

../examples/s3l/acorr/ex_acorr.c

../examples/s3l/acorr-f/ex_acorr. f

Related Functions

S3L_acorr (3)
S3L_acorr _setup(3)

S3L_acorr

Description
S3L_acorr computes the 1D or 2D autocorrelation of a signal represented by the
parallel array described by S3L array handle a. The result is stored in the parallel
array described by the S3L array handle c .

a and c are of the same real or complex type.

For the 1D case, if a is of length ma, the result of the autocorrelation will be of
length 2*ma-1. In the 2D case, if a is of size [ma,na], the result of the autocorrelation
is of size [2*ma-1,2*na-1].

The size of c has to be at least equal to the size of the autocorrelation for each case,
as described above. If it is larger, the excess elements of c will contain zero or
non-significant entries.

The result of the autocorrelation of a is stored in wrap-around order along each
dimension. If the extent of c along a given axis is lc, the autocorrelation at zero lag is
stored in c(0) , the autocorrelation at lag 1 in c(1) , and so forth. The
autocorrelation at lag -1 is stored in c(lc-1) , the autocorrelation at lag -2 is stored
in c(lc-2) , and so forth.

Side Effects
Following calculation of the autocorrelation of a, a may be destroyed, since it is used
internally as auxiliary storage. If its contents will be reused after autocorrelation is
performed, first copy it to a temporary array.

Sun S3L Core Library Functions 267

Note - S3L_acorr is most efficient when all arrays have the same length and when
this length is one that can be computed efficiently via S3L_fft , or S3L_rc_fft . See
“S3L_fft ” on page 198 and “S3L_rc_fft and S3L_cr_fft ” on page 207 for
more information about execution efficiency.

Restriction
The dimensions of array c must be such that a 1D or 2D complex-to-complex FFT or
real-to-complex FFT can be computed.

Syntax
The C and Fortran syntax for S3L_acorr are shown below.

C/C++ Syntax

CODE EXAMPLE 8–88

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_acorr(a, c, setup_id)

S3L_array_t a
S3L_array_t c
int setup_id

F77/F90 Syntax

CODE EXAMPLE 8–89

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_acorr(a, c, setup_id, ier)

integer*8 a
integer*8 c
integer*4 setup_id
integer*4 ier

(continued)

268 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Input
� a – S3L internal array handle for the parallel array upon which the autocorrelation

will be performed. a is of size ma (1D case) or ma x na (2D case).

� setup_id – Integer value returned by a previous call to S3L_acorr_setup .

Output
This function uses the following arguments for output:

� c – S3L internal array handle for the parallel array that contains the results of the
autocorrelation. Its length must be at least 2*ma-1 (1D case) or 2*ma-1 x 2*na-1 (2D
case).

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_acorr_setup returns S3L_SUCCESS.

S3L_acorr_setup performs generic checking of the arrays it accepts as arguments.
If an array argument contains an invalid or corrupted value, the function terminates
and an error code indicating which value of the array handle was invalid is returned.
See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions cause the function to terminate and return one
of the following codes:

� S3L_ERR_ARG_DTYPE– The data type of one of the array arguments is invalid. It
must be one of:

� S3L_float

� S3L_double

� S3L_complex

� S3L_double_complex

Sun S3L Core Library Functions 269

� S3L_ERR_MATCH_DTYPE– The array arguments are not of the same data type.

� S3L_ERR_MATCH_RANK– The array arguments are not of the same rank.

� S3L_ERR_ARG_RANK– The rank of one of the array arguments is not 1 or 2 as
required.

� S3L_ERR_ARG_EXTENTS– The extents of c are smaller than 2*ma-1 (1D case) or
2*ma-1 x 2*na-1 (2D case).

In addition, since S3L_fft or S3L_rc_fft is used internally to compute the
autocorrelation, if the dimensions of c are not suitable for S3L_fft or S3L_rc_fft ,
an error code indicating this unsuitability is returned. For more details, refer to the
man pages for S3L_fft and S3L_rc_fft .

Examples

../examples/s3l/acorr/ex_acorr.c

../examples/s3l/acorr-f/ex_acorr. f

Related Functions

S3L_acorr_setup(3)
S3L_acorr_free_setup(3)

Convolution/Deconvolution
S3L_conv_setup

Description
S3L_conv_setup sets up the initial conditions necessary for computation of the
convolution C = A conv B. It returns an integer setup value that can be used by a
subsequent call to S3L_conv .

S3L array handles A, B, and C each describe a parallel array that can be either one- or
two-dimensional. The extents of C along each axis i , must be such that they are

270 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

greater than or equal to two times the sum of the corresponding extents of A and B,
minus 1.

Syntax
The C and Fortran syntax for S3L_conv_setup are shown below.

C/C++ Syntax

CODE EXAMPLE 8–90

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_conv_setup(A, B, C, setup_id)

S3L_array_t A
S3L_array_t B
S3L_array_t C
int *setup_id

F77/F90 Syntax

CODE EXAMPLE 8–91

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_conv_setup(A, B, C, setup_id, ier)

integer*8 A
integer*8 B
integer*8 C
integer*4 setup_id
integer*4 ier

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Input
� A – S3L array handle describing a parallel array of size ma (1D case) or ma x na

(2D) case. A contains the input signal that will be convolved.

� B – S3L array handle describing a parallel array that contains the convolution filter.

Sun S3L Core Library Functions 271

� C – S3L array handle describing a parallel array in which the convolved signal is
stored. Its length must be at least ma+mb-1 (1D case) or ma+mb-1 x na+nb-1 (2D
case).

Output
This function uses the following arguments for output:

� setup_id – Integer value retuned by this function. Use this value for the
setup_id argument in subsequent calls to S3_conv and
S3L_conv_free_setup .

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_conv_setup returns S3L_SUCCESS.

S3L_conv_setup performs generic checking of the arrays it accepts as arguments.
If an array argument contains an invalid or corrupted value, the function terminates
and an error code indicating which value of the array handle was invalid is returned.
See Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions cause the function to terminate and return one
of the following codes:

� S3L_ERR_ARG_RANK– The rank of one of the array arguments is not 1 or 2.

� S3L_ERR_MATCH_RANK– The array arguments are not all of the same rank.

� S3L_ERR_MATCH_DTYPE– The array arguments are not all of the same type.

� S3L_ERR_ARG_EXTENTS– The extents of c are less two times the sum of the
corresponding extents of A and B minus 1.

Examples

../examples/s3l/conv/ex_conv.c

../examples/s3l/conv-f/ex_conv. f

272 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Related Functions

S3L_conv(3)
S3L_conv_free_setup(3)

S3L_conv_free_setup

Description
S3L_conv_free_setup invalidates the ID specified by the setup_id argument.
This deallocates the internal memory that was reserved for the convolution
computation represented by that ID.

Syntax
The C and Fortran syntax for S3L_conv_free_setup are shown below.

C/C++ Syntax

CODE EXAMPLE 8–92

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_conv_free_setup(setup_id)

int *setup_id

Sun S3L Core Library Functions 273

F77/F90 Syntax

CODE EXAMPLE 8–93

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_conv_free_setup(setup_id, ier)

integer*4 setup_id
integer*4 ier

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Input
� setup_id – Integer value returned by a previous call to S3L_conv_setup .

Output
This function uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_conv_free_setup returns S3L_SUCCESS.

In addition, the following condition causes the function to terminate and return the
associated code:

� S3L_ERR_ARG_SETUP– Invalid setup value.

Examples

../examples/s3l/conv/ex_conv.c

../examples/s3l/conv-f/ex_conv. f

274 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Related Functions

S3L_conv (3)
S3L_conv _setup(3)

S3L_conv

Description
S3L_conv computes the 1D or 2D convolution of a signal represented by a parallel
array using a filter contained in a second parallel array. The result is stored in a third
parallel array. These parallel arrays are described by the S3L array handles: a (signal),
b (filter), and c (result). All three arrays are of the same real or complex type.

For the 1D case, if the signal a is of length ma and the filter b of length mb, the
result of the convolution, c , will be of length ma + mb - 1. In the 2D case, if the
signal is of size [ma,na] and the filter is of size [mb,nb], the result of the convolution
is of size [ma+mb-1,na+nb-1].

Side Effects
Because a and b are used internally for auxiliary storage, they may be destroyed
after the convolution calculation is complete. If the contents of a and b must be used
after the convolution, they should first be copied to temporary arrays.

Note - S3L_conv is most efficient when all arrays have the same length and when
this length can be computed efficiently via S3L_fft , or S3L_rc_fft . See
“S3L_fft ” on page 198 and “S3L_rc_fft and S3L_cr_fft ” on page 207 for
additional information.

Restriction
The dimensions of the array c must be such that the 1D or 2D complex-to-complex
FFT or real-to-complex FFT can be computed.

Syntax
The C and Fortran syntax for S3L_conv are shown below.

Sun S3L Core Library Functions 275

C/C++ Syntax

CODE EXAMPLE 8–94

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_conv(a, b, c, setup_id)

S3L_array_t a
S3L_array_t b
S3L_array_t c
int *setup_id

F77/F90 Syntax

CODE EXAMPLE 8–95

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_conv(a, b, c, setup_id, ier)

integer*8 a
integer*8 b
integer*8 c
integer*4 setup_id
integer*4 ier

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Input
� a – S3L array handle describing a parallel array of size ma (1D case) or ma x na

(2D) case. a is the input signal that will be convolved.

� b – S3L array handle describing the parallel array that contains the filter.

� setup_id – Valid convolution setup ID as returned from a previous call to
S3L_conv_setup .

Output
This function uses the following arguments for output:

� c – S3L array handle describing a parallel array containing the convolved signal.
Its length must be at least ma+mb-1 (1D case) or ma+mb-1 x na+nb-1 (2D case).

276 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_conv returns S3L_SUCCESS.

S3L_conv performs generic checking of the arrays it accepts as arguments. If an
array argument contains an invalid or corrupted value, the function terminates and
an error code indicating which value of the array handle was invalid is returned. See
Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions cause the function to terminate and return one
of the following codes:

� S3L_ERR_MATCH_DTYPE– a, b, and c do not have the same data type.

� S3L_ERR_MATCH_RANK– a, b, and c do not have the same rank.

� S3L_ERR_ARG_RANK– The rank of an array argument is larger than 2.

� S3L_ERR_ARG_DTYPE– The data type of one of the array arguments is invalid. It
must be one of:

� S3L_float

� S3L_double

� S3L_complex

� S3L_double_complex

� S3L_ERR_ARG_EXTENTS– The extents of c are smaller than two times the sum of
the corresponding extents of a and b minus 1.

Examples

../examples/s3l/conv/ex_conv.c

../examples/s3l/conv-f/ex_conv. f

Sun S3L Core Library Functions 277

Related Functions

S3L_conv _setup(3)
S3L_conv _free_setup(3)

S3L_deconv_setup

Description
S3L_deconv_setup sets up the initial conditions required for computing the
deconvolution of A with B. It returns an integer setup value that can be used by
subsequent calls to S3L_deconv or S3L_deconv_free_setup .

Syntax
The C and Fortran syntax for S3L_deconv_setup are shown below.

C/C++ Syntax

CODE EXAMPLE 8–96

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_deconv_setup(A, B, C, setup_id)

S3L_array_t A
S3L_array_t B
S3L_array_t C
int *setup_id

278 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

F77/F90 Syntax

CODE EXAMPLE 8–97

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_deconv_setup(A, B, C, setup_id, ier)

integer*8 A
integer*8 B

integer*8 C
integer*4 setup_id
integer*4 ier

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Input
� A – S3L internal array handle for the parallel array that contains the input signal to

be deconvolved.

� B – S3L internal array handle for the parallel array that contains the vector.

� C – S3L internal array handle for the parallel array that will store the deconvolved
signal.

Output
This function uses the following arguments for output:

� setup_id – Integer value retuned by this function. Use this value for the
setup_id argument in subsequent calls to S3_deconv and
S3L_deconv_free_setup .

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_deconv_setup returns S3L_SUCCESS.

S3L_deconv_setup performs generic checking of the arrays it accepts as
arguments. If an array argument contains an invalid or corrupted value, the function
terminates and an error code indicating which value of the array handle was invalid
is returned. See Appendix A of this manual for a detailed list of these error codes.

Sun S3L Core Library Functions 279

In addition, the following conditions cause the function to terminate and return one
of the following codes:

� S3L_ERR_ARG_RANK– The rank of one of the array arguments is not 1 or 2.

� S3L_ERR_MATCH_RANK– The array arguments are not all of the same rank.

� S3L_ERR_MATCH_DTYPE– The array arguments are not all of the same type.

� S3L_ERR_ARG_EXTENTS– The extents of C are less than the corresponding
extents ext(A) - ext(B) + 1, or the extents of A are less than the corresponding
extents of B.

Examples

../examples/s3l/deconv/ex_deconv.c

../examples/s3l/deconv-f/ex_deconv. f

Related Functions

S3L_deconv(3)
S3L_deconv_free_setup(3)

S3L_deconv_free_setup

Description
S3L_deconv_free_setup invalidates the ID specified by the setup_id argument.
This deallocates internal memory that was reserved for the deconvolution
computation represented by that ID.

Syntax
The C and Fortran syntax for S3L_deconv_free_setup are shown below.

280 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

C/C++ Syntax

CODE EXAMPLE 8–98

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_deconv_free_setup(setup_id)

int *setup_id

F77/F90 Syntax

CODE EXAMPLE 8–99

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_deconv_free_setup(setup_id, ier)

integer*4 setup_id
integer*4 ier

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Input
� setup_id – Integer value returned by a previous call to S3L_deconv_setup .

Output
This function uses the following argument for output:

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_deconv_free_setup returns S3L_SUCCESS.

In addition, the following condition causes the function to terminate and return the
associated code:

� S3L_ERR_ARG_SETUP– Invalid setup value.

Sun S3L Core Library Functions 281

Examples

../examples/s3l/deconv/ex_deconv.c

../examples/s3l/deconv-f/ex_deconv. f

Related Functions

S3L_deconv (3)
S3L_deconv _setup(3)

S3L_deconv

Description
If a can be expressed as the convolution of an unknown vector c with b,
S3L_deconv deconvolves the vector b out of a. The result, which is returned in c , is
such that conv(c ,b)=a.

In the general case, c will only represent the quotient of the polynomial division of a
by b.

The remainder of that division can be obtained by explicitly convolving with b and
subtracting the result from a.

If ma, mb, and mc are the lengths of a, b, and c respectively, ma must be at least
equal to mb. The length of mc will be such that mc+mb-1=ma or, equivalently,
mc=ma-mb+1.

Note - S3L_deconv is most efficient when all arrays have the same length and
when this length is such that it can be computed efficiently by S3L_fft or
S3L_rc_fft . See “S3L_fft ” on page 198 and “S3L_rc_fft and S3L_cr_fft ”
on page 207 for additional information.

Restriction
The dimensions of the array c must be such that the 1D or 2D complex-to-complex
FFT or real-to-complex FFT can be computed.

282 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Scaling
The results of the deconvolution are scaled according to the underlying FFT that is
used. In particular, for multiple processes, if a and b are real 1D, the result is scaled
by n/2, where n is the length of c . For single processes, it is scaled and by n. In all
other cases, the result is scaled by the product of the extents of c .

Side Effects
Because a and b are used internally for auxiliary storage, they may be destroyed
after the deconvolution calculation is complete. If a and b must be used after the
deconvolution, they should first be copied to temporary arrays.

Syntax
The C and Fortran syntax for S3L_deconv are shown below.

C/C++ Syntax

CODE EXAMPLE 8–100

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_deconv(a, b, c, setup_id)

S3L_array_t a
S3L_array_t b
S3L_array_t c
int *setup_id

F77/F90 Syntax

CODE EXAMPLE 8–101

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_deconv(a, b, c, setup_id, ier)

integer*8 a
integer*8 b
integer*8 c

(continued)

Sun S3L Core Library Functions 283

(Continuation)

integer*4 setup_id
integer*4 ier

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Input
� a – S3L array handle describing a parallel array that contains the convolution of

an unknown vector c with b. Its length must be at least ma+mb-1 (1D case) or
ma+mb-1 x na+nb-1 (2D case).

� b – S3L array handle describing the parallel array that contains the vector.

� setup_id – Valid convolution setup ID as returned from a previous call to
S3L_deconv_setup .

Output
This function uses the following arguments for output:

� c – S3L array handle describing a parallel array. Its length must be at least
ma+mb-1 (1D case) or ma+mb-1 x na+nb-1 (2D case). Upon successful completion,
the results of deconvolving a will be stored in c .

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, S3L_deconv returns S3L_SUCCESS.

S3L_deconv performs generic checking of the arrays it accepts as arguments. If an
array argument contains an invalid or corrupted value, the function terminates and
an error code indicating which value of the array handle was invalid is returned. See
Appendix A of this manual for a detailed list of these error codes.

In addition, the following conditions cause the function to terminate and return one
of the following codes:

� S3L_ERR_MATCH_DTYPE– a, b, and c do not have the same data type.

� S3L_ERR_MATCH_RANK– a, b, and c do not have the same rank.

� S3L_ERR_ARG_RANK– The rank of an array argument is larger than 2.

284 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

� S3L_ERR_ARG_DTYPE– The data type of one of the array arguments is invalid. It
must be one of:

� S3L_float

� S3L_double

� S3L_complex

� S3L_double_complex

� S3L_ERR_ARG_EXTENTS– The extents of c are smaller than two times the sum of
the corresponding extents of a and b minus 1.

In addition, since S3L_fft or S3L_rc_fft is used internally to compute the
deconvolution, if the dimensions of c are not appropriate for using S3L_fft or
S3L_rc_fft , an error code indicating the unsuitability is returned. See “S3L_fft ”
on page 198 and “S3L_rc_fft and S3L_cr_fft ” on page 207 for more details.

Examples

../examples/s3l/deconv/ex_deconv.c

../examples/s3l/deconv-f/ex_deconv. f

Related Functions

S3L_deconv _setup(3)
S3L_deconv _free_setup(3)

Sun S3L Core Library Functions 285

Multidimensional Sort and Grade
S3L_grade_down , S3L_grade_up ,
S3L_grade_down_detailed ,
S3L_grade_up_detailed

Description
The S3L_grade family of functions computes the grade of the elements of a parallel
array A. Grading is done in either descending or ascending order and is done either
across the whole array or along a specified axis. The graded elements are stored in
array G, using zero-based indexing when called from a C or C++ program and
one-based indexing when called from an F77 or F90 program.

S3L_grade_down and S3L_grade_up

These two functions grade the elements across the entire array A and store the
indices of the elements in descending or ascending order (S3L_grade_down or
S3L_grade_up , respectively).

If A is an array of rank n and the product of its extents is l, G is a two-dimensional
array whose extents are n x l.

Upon return of the function, every j-th column of array G is set to the indices of the
j-th smallest (S3L_grade_down) or largest (S3L_grade_up) element of array A.

For example, if A is the 3 x 3 array

CODE EXAMPLE 8–102

_ _
| 6 2 4 |
| |
| 1 3 8 |
| |
| 9 7 5 |

- -

and S3L_grade_down is called from a C program, it will store the following values
in G.

286 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CODE EXAMPLE 8–103

_ _
| 2 1 2 0 2 0 1 0 1 |
| |
| 0 2 1 0 2 2 1 1 0 |

- -

For the same array A, S3L_grade_up would store the following values in G (again,
using zero-based indexing).

CODE EXAMPLE 8–104

_ _
| 1 0 1 0 2 0 2 1 2 |
| |
| 0 1 1 2 2 0 1 2 0 |

- -

When called by a Fortran program (F77/F90) each value in G would be one greater.
For example, S3L_grade_up would store the following set of values.

CODE EXAMPLE 8–105

_ _
| 2 1 2 1 3 1 3 2 3 |
| |
| 1 2 2 3 3 1 2 3 1 |

- -

S3L_grade_detailed_down and S3L_grade_detailed_up

The S3L_grade_detailed_down and S3L_grade_detailed_up functions differ
from S3L_grade_down and S3L_grade_up in two respects:

� Both grade along a single axis of A, as specified by the axis argument.

� Both store a set of indices, but these indices do not indicate element positions
directly. Instead, each stored index indicates the index of the corresponding
element of A that has either

Sun S3L Core Library Functions 287

� The j-th smallest value along the specified axis – S3L_grade_detailed_down

� The j-th largest value along the specified axis – S3L_grade_detailed_up

This means G is an integer array whose rank and extents are the same as those of A.

Repeating the 3 x 3 sample array shown above,

CODE EXAMPLE 8–106

_ _
| 6 2 4 |
| |
| 1 3 8 |
| |
| 9 7 5 |

- -

if S3_grade_detailed_down is called from a C program with the axis argument
= 0, upon completion, G will contain the following values:

CODE EXAMPLE 8–107

_ _
| 1 2 2 |
| |
| 2 1 0 |
| |
| 0 0 1 |

- -

If, instead, axis = 1, G will contain

CODE EXAMPLE 8–108

_ _
| 0 2 1 |
| |
| 2 1 0 |
| |
| 0 1 2 |

- -

288 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

If S3L_grade_detailed_up is called from a C program with axis = 0, G will
contain

CODE EXAMPLE 8–109

_ _
| 1 0 0 |
| |
| 0 1 2 |
| |
| 2 2 1 |

- -

If S3L_grade_detailed_up is called from a C program with axis = 1, G will
contain

CODE EXAMPLE 8–110

_ _
| 2 0 1 |
| |
| 0 1 2 |
| |
| 2 1 0 |

- -

For F77 or F90 calls, each index value in these examples, including the axis
argument, would be increased by 1.

Syntax
The C and Fortran syntax for these functions are shown below.

Sun S3L Core Library Functions 289

C/C++ Syntax

CODE EXAMPLE 8–111

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_grade_up(A, grade)
S3L_grade_down(A, grade)
S3L_grade_up_detailed(A, grade, axis)
S3L_grade_down_detailed(A, grade, axis)

S3L_array_t A
S3L_array_t grade
S3L_array_t axis

F77/F90 Syntax

CODE EXAMPLE 8–112

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_grade_up(A, grade, ier)
S3L_grade_down(A, grade, ier)
S3L_grade_up_detailed(A, grade, axis, ier)
S3L_grade_down_detailed(A, grade, axis, ier)

integer*8 A
integer*8 grade
integer*8 axis
integer*4 ier

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Input
� A – S3L internal array handle for the array to be graded. Its type can be real,

double, integer, or long integer.

� axis – The axis along which S3L_grade_detailed_down or
S3L_grade_detailed_up is to be computed. It may not be used in
S3L_grade_down or S3L_grade_up calls.

290 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Output
These functions use the following arguments for output:

� grade – S3L internal array handle for an integer array. Upon successful
completion, grade contains the indices of the order of the elements.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, these functions return S3L_SUCCESS.

These functions perform generic checking of the arrays they accept as arguments. If
an array argument contains an invalid or corrupted value, the function terminates
and an error code indicating which value of the array handle was invalid is returned.
See Appendix A of this manual for a detailed list of these error codes.

In addition, the following condition will cause the functions to terminate and return
the associated code:

� S3L_ERR_ARG_AXISNUM– The axis argument has an invalid value. The correct
values for axis are

� 0 <= axis < rank of a (C/C++)

� 0 < axis <= rank of a (F77/F90)

Examples

../examples/s3l/grade/ex_grade.c

../examples/s3l/grade-f/ex_grade. f

Related Functions

S3L_sort(3)
S3L_sort_detailed_up(3)
S3L_sort_detailed_down(3)

Sun S3L Core Library Functions 291

S3L_sort , S3L_sort_up , S3L_sort_down ,
S3L_sort_detailed_up ,
S3L_sort_detailed_down

Description
The S3L_sort function sorts the elements of a one-dimensional array in ascending
order.

S3L_sort_up and S3L_sort_down sort the elements of one-dimensional or
multidimensional array in ascending and descending order, respectively.

Note - S3L_sort is a special case of S3L_sort_up .

When A is one-dimensional, the result is a vector that contains the same elements as
A, but arranged in ascending order (S3L_sort or S3L_sort_up) or descending
order. For example, if A contains

CODE EXAMPLE 8–113

_ _
| 7 2 4 3 1 8 6 9 5 |

- -

calling S3L_sort or S3L_sort_up would produce the result

CODE EXAMPLE 8–114

_ _
| 1 2 3 4 5 6 7 8 9 |

- -

If A is multidimensional, the elements are sorted into an index-based sequence,
starting with the first row-column index and progressing through the row indices
first before advancing to the next column index position.

For example if A contains

292 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

CODE EXAMPLE 8–115

_ _
| 6 2 7 |
| |
| 1 4 3 |
| |
| 9 5 8 |

- -

S3L_sort_up would produce the result

CODE EXAMPLE 8–116

_ _
| 1 4 7 |
| |
| 2 5 8 |
| |
| 3 6 9 |

- -

and S3L_sort_down would produce the result

CODE EXAMPLE 8–117

_ _
| 9 6 3 |
| |
| 8 5 2 |
| |
| 7 4 1 |

- -

S3L_sort_detailed_up and S3L_sort_detailed_down sort the elements of
one-dimensional or multidimensional arrays in ascending and descending order
along the axis specified by the axis argument.

Sun S3L Core Library Functions 293

Note - The value of the axis argument is language dependent. For C/C++
applications, it must be zero-based and for F77/F90 applications, it must be
one-based.

If the array referenced by A contains

CODE EXAMPLE 8–118

_ _
| 6 2 7 |
| |
| 1 4 3 |
| |
| 9 5 8 |

- -

and a C program calls S3L_sort_detailed_up with axis = 0, upon completion, A
will contain

CODE EXAMPLE 8–119

_ _
| 1 2 3 |
| |
| 6 4 7 |
| |
| 9 5 8 |

- -

Or, if a C program calls S3L_sort_detailed_up with axis = 1, upon completion,
A will contain

_ _
| 2 6 7 |
| |
| 1 3 4 |
| |
| 5 8 9 |

- -

294 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

If these calls were made from an F77 or F90 program, the axis values would need
to be one greater (that is, 1 and 2, respectively) to achieve the same results.

Syntax

The C and Fortran syntax for these functions are shown below.

C/C++ Syntax

CODE EXAMPLE 8–120

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_sort(A)
S3L_sort_up(A)
S3L_sort_down(A)
S3L_sort_detailed_up(A, axis)
S3L_sort_detailed_down(A, axis)

S3L_array_t A
int axis

F77/F90 Syntax

CODE EXAMPLE 8–121

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_sort(A, ier)
S3L_sort_up(A, ier)
S3L_sort_down(A, ier)
S3L_sort_detailed_up(A, axis, ier)
S3L_sort_detailed_down(A, axis, ier)

integer*8 A
integer*4 axis
integer*4 ier

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Sun S3L Core Library Functions 295

Input
� A – For S3L_sort , A must be a one-dimensional array. For S3L_sort_up ,

S3L_sort_down , S3L_sort_detailed_up , and S3L_sort_detailed_down ,
A can be one-dimensional or multidimensional.

� axis – Used with S3L_sort_detailed_up and S3L_sort_detailed_down to
specify which axis of A is to be sorted. If A is one-dimensional, axis must be zero
(for C/C++) or 1 (for F77/F90). It may not be used in S3L_sort , S3L_sort_up ,
or S3L_sort_down calls.

Output
These functions use the following arguments for output:

� A – On output, A contains the sorted array.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

Error Handling
On success, these functions return S3L_SUCCESS.

These functions all check the arrays they accept as arguments. If an array argument
contains an invalid or corrupted value, the function terminates and an error code
indicating which value of the array handle was invalid is returned. See Appendix A
of this manual for a detailed list of these error codes.

In addition, the following condition will cause the functions to terminate and return
the associated code:

� S3L_ERR_ARG_DTYPE– The type of the array is invalid. It must be one of:
S3L_integer , S3L_long_integer , S3L_float or S3L_double .

� S3L_ERR_ARG_AXISNUM– The axis argument has an invalid value. The correct
values for axis are

� 0 <= axis < rank of a (C/C++)

� 0 < axis <= rank of a (F77/F90)

Examples

../examples/s3l/sort/sort1.c

../examples/s3l/sort/ex_sort2.c

(continued)

296 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

(Continuation)

../examples/s3l/sort-f/sort1. f

Related Functions

S3L_grade_up(3)
S3L_grade_detailed_down(3)
S3L_grade_detailed_up(3)

Parallel Transpose
S3L_trans

Description
S3L_trans performs a generalized transposition of a parallel array. A generalized
transposition is defined as a general permutation of the axes. The array axis_perm
contains a description of the permutation to be performed.

The distribution characteristics of a and b must be compatible—that is, they must
have the same rank and type and corresponding axes must be of the same length.

A faster algorithm is used in the 2D case when the array meets the following
conditions:

� The first axis of the array is local.

� The second axis of the array is global.

� The size of each dimension is divisible by the number of processes.

� The blocksizes are equal to the result of the division.

Syntax
The C and Fortran syntax for S3L_trans are shown below.

Sun S3L Core Library Functions 297

C/C++ Syntax

CODE EXAMPLE 8–122

#include <s3l/s3l-c.h>
#include <s3l/s3l_errno-c.h>
int
S3L_trans(a, b, axis_perm)

S3L_array_t a
S3L_array_t b
int *axis_perm

F77/F90 Syntax

CODE EXAMPLE 8–123

include ‘s3l/s3l-f.h’
include ‘s3l/s3l_errno-f.h’
subroutine
S3L_trans(a, b, axis_perm, ier)

integer*8 a
integer*8 b
integer*4 axis_perm
integer*4 ier

where <type> is real*4 or real*8 for both C/C++ and F77/F90.

Input
� a – S3L_array handle for the parallel array to be transposed.

� axis_perm – A vector of integers that specifies the axis permutation to be
performed.

Output
These functions use the following arguments for output:

� b – S3L_array handle for a parallel array. Upon successful completion, S3L_trans
stores the transposed array in b.

� ier (Fortran only) – When called from a Fortran program, this function returns
error status in ier .

298 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

Error Handling
On success, S3L_trans returns S3L_SUCCESS.

S3L_trans checks the arrays it accepts as arguments. If an array argument contains
an invalid or corrupted value, the function terminates and an error code indicating
which value of the array handle was invalid is returned. See Appendix A of this
manual for a detailed list of these error codes.

In addition, the following condition will cause the function to terminate and return
the associated code:

� S3L_ERR_MATCH_RANK– The ranks of a and b do not match.

� S3L_ERR_MATCH_EXTENTS– The extents of a and b are not compatible with the
transpose operation requested. That is, the following relationship is not satisfied
for all array axes i .

ext(a,axis_perm[i])=ext(b,i)

� S3L_ERR_TRANS_PERMAX– The supplied permutation is not valid (every axis
must appear exactly once).

� S3L_ERR_ARG_AXISNUM– The axis argument has an invalid value. The correct
values for axis are

� 0 <= axis < rank of the array (C/C++)

� 0 < axis <= rank of the array (F77/F90)

Examples

../examples/s3l/transpose/transp.c

../examples/s3l/transpose/ex_trans1.c

../examples/s3l/transpose-f/transp. f

Sun S3L Core Library Functions 299

300 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

APPENDIX A

S3L Array Checking Errors

Sun S3L interfaces do generic checking of the validity of the array handles that are
passed as arguments to them. If such an array handle contains an invalid or
corrupted value, the function terminates and one of the following error codes is
returned:.

TABLE A–1 Return Codes Associated With Array Handle Errors

Error Code Definition

S3L_ERR_ARG_DTYPE The data type specified for an array is not supported
by Sun S3L.

S3L_ERR_ARG_ELEMSIZE An array argument includes an invalid element size.

S3L_ERR_ARG_RANK An invalid rank is specified for an array; it is either
negative or larger than 32 (the largest supported array
rank).

S3L_ERR_ARG_EXTENTS An array argument includes a negative extent.

S3L_ERR_ARG_BLKSIZE An array argument includes a negative blocksize.

S3L_ERR_ARG_BLKSTART For a block-cyclic array distribution, an invalid starting
process is specified; it is either negative or is larger
than the extent of the corresponding process grid axis.

S3L_ERR_ARG_SFSIZE An array argument includes an invalid subgrid size; it
is either negative or is larger than the extent along the
corresponding array axis.

301

TABLE A–1 Return Codes Associated With Array Handle Errors (continued)

Error Code Definition

S3L_ERR_ARG_MAJOR An array argument includes an invalid majorness
value.

S3L_ERR_ARG_PGRID_EXTENTS An array argument includes an invalid process grid
extent; it is either negative or larger than the total
number of processes over which the array is defined.

S3L_ERR_ARG_PGRID_RANK The rank of a process grid does not equal the rank of
the corresponding array.

S3L_ERR_ARG_PGRID_MAJOR An array argument specifies an invalid majorness
value for a process grid.

S3L_ERR_ARG_PGRID_COOR An array argument specifies a process grid coordinate
that is either negative or larger than the process grid
extent along that axis.

302 Sun S3L 3.0 Programming and Reference Guide ♦ June 1999, Revision A

