
901 San Antonio Road
Palo Alto, CA 94303-4900 USA
650 960-1300 fax 650 969-9131

A Sun Microsystems, Inc. Business

Sun™ HPF 1.0 Guide

Part No.: 805-1558-10
Revision A, November 1997

Sun Microsystems Computer Company

Copyright 1997 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook, SunDocs, Solaris, OpenWindows, Sun HPC Software, Ultra HPC, Ultra HPC Cluster,
UltraSPARC, Sun Performance WorkShop Fortran, and Sun Performance Library are trademarks, registered trademarks, or service marks of
Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook, SunDocs, Solaris, OpenWindows, Sun HPC Software, Ultra HPC, Ultra HPC Cluster,
UltraSPARC, Sun Performance WorkShop Fortran, et Sun Performance Library sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et
sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant
les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents iii

Contents

Preface vii

1. Introduction 1-1

2. Getting Started with Sun HPF 2-1

2.1 Preliminary Notes 2-1

2.1.1 Parallel and Serial Arrays 2-1

2.1.2 Array Distribution 2-3

2.1.3 Distribute Directive Overview 2-4

2.2 Example of F77 to HPF Transition 2-8

2.3 Using the DISTRIBUTE Directive 2-11

3. Compiling and Linking Sun HPF Programs 3-1

3.1 hpf Command Basics 3-1

3.1.1 Command Syntax 3-1

3.1.2 File Name Extensions 3-2

3.1.3 Linking Libraries with hpf 3-2

3.2 hpf in Action 3-5

3.2.1 Compiling and Linking 3-7

3.2.2 Compiling CMF Programs into Sun HPF Executables 3-7

3.2.3 Using the cpp Preprocessor 3-8

iv Sun HPF 1.0 Guide • November 1997

3.2.4 Compiling Incrementally 3-8

3.2.5 Program Debugging and Profiling 3-8

3.2.6 Command-Line Arguments 3-9

3.3 Summary of Optional Switches 3-10

4. Program Development Tools 4-1

4.1 Timing a Program 4-1

4.1.1 Hints on Using the Timing Utility 4-4

4.1.2 Synchronization Considerations 4-4

4.2 The C Language Preprocessor 4-5

4.2.1 Used with –D 4-5

5. File Systems and File System I/O 5-1

5.1 Introduction 5-1

5.2 PFS File Path Names 5-2

5.3 Programming Examples 5-3

6. Performance Notes 6-1

6.1 Use Parallel Language Expressions 6-1

6.1.1 Array Assignments 6-1

6.1.2 Intrinsic Functions Applied to Arrays or Array Expressions 6-3

6.2 Minimize Communication 6-4

6.3 Be Explicit 6-4

6.4 Map Arrays Explicitly 6-5

6.5 Avoid Passing Array Sections 6-6

6.6 Operate on Whole Arrays 6-8

6.7 Ratio of Processes to Processors 6-9

6.8 Avoid Expensive Operations 6-9

6.9 Use S3L Functions 6-10

6.10 Use Simple Constructs 6-11

6.11 Avoid General Communications 6-11

Contents v

6.12 Compiler Switches 6-11

6.13 Shared Memory Environment Variables 6-13

6.14 Performance Analysis 6-13

6.14.1 Do Repeated Timing Runs 6-13

6.14.2 Use –Xlist to Analyze Communication 6-13

6.14.3 Examine the .f File (for advanced users) 6-14

6.14.4 Profile the Code 6-14

7. Sun HPF Summary 7-1

7.1 Fortran 90 Features in Sun HPF 7-1

7.2 HPF Directives and Language Extensions 7-4

7.2.1 Summary of HPF 1.1 Subset 7-4

7.2.2 Sun HPF Restrictions 7-4

7.3 Additional Fortran 90 Features 7-5

8. F77_LOCAL Interface 8-1

8.1 Introduction 8-1

8.2 Processor Synchronization 8-2

8.3 Linking for F77_LOCAL 8-2

8.4 Debugging F77_LOCAL Code with Prism 8-2

8.5 Argument Passing 8-2

8.6 HPF-Style Utilities 8-4

8.7 Subgrid-Inquiry Utilities 8-5

8.7.1 TMHPF_SUBGRID_INFO 8-5

8.7.2 F77_SUBGRID_INFO 8-6

8.8 Programming Examples 8-6

8.8.1 Using MAP_TO(F77_ARRAY) 8-7

8.8.2 Using MAP_TO(NO_CHANGE)8-9

9. HPF Intrinsic Functions and the HPF Library 9-1

9.1 HPF Intrinsic Functions 9-1

vi Sun HPF 1.0 Guide • November 1997

9.1.1 System Inquiry Intrinsic Functions 9-1

9.1.2 Elemental Intrinsics Function 9-2

9.1.3 Array Location Intrinsic Functions 9-2

9.2 The HPF Library 9-2

9.2.1 Bit Manipulation Functions 9-2

9.2.2 Mapping Inquiry Subroutines 9-2

9.2.3 Array Reduction Functions 9-3

9.2.4 Array Combining Scatter Functions 9-3

9.2.5 Array Prefix and Suffix Functions 9-3

9.2.6 Array Ranking Functions 9-4

9.2.7 Array Sorting Functions 9-4

9.3 HPF Library Exceptions and Other Notes 9-4

10. The HPF/CMF Utility Library 10-1

A. IOSTAT Message Summary A-1

Index Index-1

Preface vii

Preface

This manual is directed toward developers of High Performance Fortran (HPF)
programs and explains how to use the Sun HPF compiler. It also describes the
principal language features of Sun HPF, including an EXTRINSIC(F77_LOCAL)
interface and a CMF back-compatibility mode.

Using UNIX Commands
This document does not describe basic UNIX® commands and procedures such as
shutting down the system, booting the system, and configuring devices.

See the following for this information:

■ AnswerBook™ online documentation for the Solaris 2.x software environment.

viii Sun HPF 1.0 Guide • November 1997

Typographic Conventions

Shell Prompts

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output.

Edit your .login file.
Use ls –a to list all files.
% You have mail .

AaBbCc123 What you type, when
contrasted with on-screen
computer output.

% su
Password:

AaBbCc123 Book titles, new words or
terms, words to be emphasized.
Command-line variable;
replace with a real name or
value.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be root to do this.
To delete a file, type rm filename.

TABLE P-2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell
superuser

#

ix

Related Publications

Books
Among the documents included with Sun HPC Software, you may want to pay
particular attention to these:

This book, which is not available from Sun, should be available at your local
computer bookstore:

■ The High Performance Fortran Handbook. Charles H. Koelbel et al. Cambridge, MA.:
MIT Press, 1994.

On the Internet
■ The High Performance Fortran Language Specification, Version 2.0, is available online

via anonymous ftp:

ftp://ftp.cs.rice.edu/public/HPFF/draft/

■ The High Performance Fortran Forum maintains a web site:

http://www.crpc.rice.edu/HPFF/

TABLE P-3 Related Documentation

Application Title Part Number

All Sun HPC Software 2.0 Release Notes 805-2191-10

Prism Prism 5.0 User’s Guide 805-1552-10

Prism Prism 5.0 Reference Manual 805-1553-10

S3L S3L 2.0 Guide 805-1557-10

Sun MPI Programming Sun MPI 3.0 Guide 805-1556-10

x Sun HPF 1.0 Guide • November 1997

Ordering Sun Documents
SunDocsSM is a distribution program for Sun Microsystems technical documentation.
Contact SunExpress for easy ordering and quick delivery. You can find a listing of
available Sun documentation on the World Wide Web.

Sun Documentation on the Web
The docs.sun.com web site enables you to access Sun technical documentation on
the World Wide Web. You can browse the docs.sun.com archive or search for a
specific book title or subject. The URL is http://docs.sun.com

TABLE P-4 SunExpress Contact Information

Country Telephone Fax

Belgium 02-720-09-09 02-725-88-50

Canada 1-800-873-7869 1-800-944-0661

France 0800-90-61-57 0800-90-61-58

Germany 01-30-81-61-91 01-30-81-61-92

Holland 06-022-34-45 06-022-34-46

Japan 0120-33-9096 0120-33-9097

Luxembourg 32-2-720-09-09 32-2-725-88-50

Sweden 020-79-57-26 020-79-57-27

Switzerland 0800-55-19-26 0800-55-19-27

United Kingdom 0800-89-88-88 0800-89-88-87

United States 1-800-873-7869 1-800-944-0661

World Wide Web: http://www.sun.com/sunexpress/

xi

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. You can email or fax your comments to us. Please include the part
number of your document in the subject line of your email or fax message.

■ Email: smcc-docs@sun.com

■ Fax: SMCC Document Feedback
1-650-786-6443

LSF Technical Support
LSF 3.0, a product of Platform Computing Corporation, is part of the Sun HPC
Software 2.0 Foundation Package. As such, it is supported by Sun as part of Sun
HPC Software 2.0.

Sun HPC Software includes LSF Base and LSF Batch. However, LSF JobScheduler
and LSF MultiCluster are not included and, therefore, not supported by Sun.

Information Sources for PVM and PETSc
TABLE P-5 lists organizations and resources for information about the publicly
available libraries PVM and PETSc. This information is subject to change.

TABLE P-5 Information Sources for PVM and PETSc

Product Contact

PVM Copyright holders: University of Tennessee, Oak Ridge National
Laboratory, Emory University
Electronic mail: pvm@msr.epm.ornl.gov
Newsgroup: comp.parallel.pvm
Web site: http://www.epm.ornl.gov/pvm/pvm_home.html

PETSc Developed and supported by the Mathematics and Computer Science
Division of the Argonne National Laboratory.

xii Sun HPF 1.0 Guide • November 1997

1-1

CHAPTER 1

Introduction

The Sun HPF compiler is the product of more than a decade of experience in
developing advanced data parallel compilers and run-time systems for high-
performance parallel architectures. It is a key component of the Sun Ultra HPC
software environment.

Sun HPF 1.0 supports the following functionality:

■ Subset HPF

■ Fortran 90 free source form

■ HPF library

■ Various features from Fortran 90 not in Subset HPF

■ Source-level debugging and program development with Prism

■ An EXTRINSIC(F77_LOCAL) mechanism that supports local programming with
MPI message passing

■ Routines from the CM Fortran utility library (for back-compatibility when a CM
Fortran routine is more efficient than its equivalent in HPF)

1-2 Sun HPF 1.0 Guide • November 1997

2-1

CHAPTER 2

Getting Started with Sun HPF

This chapter introduces some of the features that distinguish HPF from traditional
Fortran. It is not intended to be a comprehensive overview of the HPF language, but
simply an introduction. It uses a few basic HPF features to illustrate key HPF
programming concepts.

The introduction to basic HPF features and programming concepts begins in
Section 2.2, “Example of F77 to HPF Transition.” Before proceeding to that section,
however, take time to read Section 2.1.1, “Parallel and Serial Arrays,” which
provides an overview of how Sun HPF arrays can be distributed across processes.

Chapter 7 of this manual provides a summary of the set of HPF features that
constitute Sun HPF, as well as an overview of extensions it includes. For a
comprehensive description of the HPF language, refer to the High Performance
Fortran Language Specification, Version 2.0. See the section “Related Publications” of
the preface for information about accessing this document on the Internet.

2.1 Preliminary Notes

2.1.1 Parallel and Serial Arrays
The Sun HPF compiler implements each array in a program unit as either a parallel
array or a serial array. This has the following consequences for data distribution:

■ Parallel arrays are both nonsequential and distributed. This means the compiler
assumes that the parallel array does not involve any sequence association. It also
means the compiler will divide the array into blocks and distribute the blocks
across multiple memory units.

2-2 Sun HPF 1.0 Guide • November 1997

■ Serial arrays are both sequential and nondistributed. The compiler keeps a serial
array intact and replicates it on every memory unit. Serial arrays can be used in
Fortran 77-style sequence and storage association.

Parallel arrays are the cornerstone of HPF programming. Because they are
distributed across multiple processes, operations on the array elements can be
performed in parallel, effectively multiplying execution speed for that program
block by the number of processes engaged in the parallel operation.

An array can be implemented as a parallel array either implicitly or explicitly.

An array is implicitly parallel when it is referenced in an array operation using F90
array syntax, as in the following examples:

A = B ! assignment

A(:,:) = C(:,:,5) ! subscript triplet notation

A = cshift(B,1,1) ! F90 intrinsic operation

WHERE (A > B) C = D ! WHERE statement or construct

The most direct method for explicitly making an array parallel is to use the compiler
directive DISTRIBUTE, which tells the compiler to distribute one or more of the
array’s dimensions onto a set of abstract processes.

There are other explicit directives that force an array to be parallel, including use of
the ALIGN directive to align it with a parallel array.

Note – You are likely to find the DISTRIBUTE directive to be the most effective HPF
feature for use in performance tuning your HPF applications. Consequently, it is the
principal focus of this chapter.

If an array is neither implicitly nor explicitly treated as a parallel array, the Sun HPF
compiler treats it as serial. Consequently, Sun HPF arrays are sequential by default.
Note that this is contrary to the HPF recommendation.

Serial arrays are useful for those data operations where elements must be accessed
sequentially or where every process needs to access the same data elements.

The DISTRIBUTE directive can be used to make an array explicitly serial by
distributing it onto a scalar processor arrangement or by collapsing all its
dimensions. To collapse an array dimension means to replicate the entire dimension
on every participating process.

Chapter 2 Getting Started with Sun HPF 2-3

2.1.2 Array Distribution
Like all optimizing compilers, the Sun HPF compiler looks for clues in the source
code that imply opportunities for generating more efficient output code.

In HPF programs, the most critical efficiency clues are implicitly provided by the use
of parallel language constructions in parallel expressions. The F90 array syntax used
to express parallel array operations tells the compiler that the referenced arrays can
be distributed to multiple processes for parallel execution of the operations.

These parallel constructions are essential for parallelization to take place. That is, if a
parallel language construction is not used to express an operation on an array, the
compiler will treat the operation as serial and wil not divide the operations among
the available processes.

These implicit clues can be augmented by explicit instructions to the compiler in the
form of HPF compiler directives. These directives, which take the form of comments
in the source code, give the compiler additional information about how the arrays
should be mapped for optimal execution efficiency.

Sun HPF supports all the compiler directives included in the Subset HPF 1.1
specification. These are:

■ DISTRIBUTE — Tells the compiler how each dimension of an array or template
should be distributed across the participating processes. See Section 3.3 of the
High Performance Fortran Language Specification, Version 2.0, for a detailed
description of the DISTRIBUTE directive.

■ PROCESSORS — Defines a rectilinear processor configuration that has a user-
assigned name, some number of dimensions (its rank), and a specified length for
each dimension. This abstract processor arrangement can then be named as the
set of processors to which an array is distributed. See Section 3.6 of the High
Performance Fortran Language Specification, Version 2.0, for a detailed
description of the PROCESSORS directive.

■ ALIGN — Tells the compiler how one or more arrays should be aligned with each
other or with some predefined array template. Note that an array cannot be both
an alignee and a distributee in the same program unit. See Section 3.4 of the High
Performance Fortran Language Specification, Version 2.0, for a detailed
description of the ALIGN directive.

■ TEMPLATE — Defines an abstract array that has no content, but provides a set of
indexed positions to which actual arrays can be aligned. The user specifies the
template’s name and its extent or range of indices for each dimension. See Section
3.7 of the High Performance Fortran Language Specification, Version 2.0, for a
detailed description of the TEMPLATE directive.

■ SEQUENCE — Declares an array to be explicitly sequential. A NO SEQUENCE
directive is also provided to allow the user to explicitly specify an array to be
nonsequential. Note that this is never needed if a mapping directive such as

2-4 Sun HPF 1.0 Guide • November 1997

DISTRIBUTE or ALIGN is given for the same array. See Section 3.8.2 of the High
Performance Fortran Language Specification, Version 2.0, for a detailed
description of the SEQUENCE directive.

■ INDEPENDENT — Tells the compiler that the operations in the DO-loop or FORALL
statement immediately following are independent of each other, for each value of
the DO loop variable or each combination of the FORALL indices, and so can be
performed in any order. See Section 5.1 of the High Performance Fortran
Language Specification, Version 2.0, for a detailed description of the
INDEPENDENT directive

Note – The Sun HPF compiler accepts the INDEPENDENT directive, but takes no
action based on it.

The rest of this discussion will focus on the DISTRIBUTE directive, which is the
simplest and most effective HPF directive you can use to help the compiler generate
highly optimized code. See the section “Related Publications” of the preface for
information about accessing the High Performance Fortran Language Specification,
Version 2.0, on the Internet.

2.1.3 Distribute Directive Overview
The DISTRIBUTE directive allows you to specify how each dimension of an array
should be mapped to a set of abstract processors. Any one of three types of
distribution can be specified: block, block(N), or collapsed. The main features of
these distribution types are summarized below.

Note – The HPF language also allows cyclic and cyclic(N) distribution. The current
Sun HPF compiler converts these into block distribution.

2.1.3.1 Block Distribution

When the compiler does block-style distribution of an array dimension, it partitions
that dimension into blocks of roughly equal number of indices and distributes the
blocks across the corresponding dimension of an abstract rectilinear processor
arrangement. This arrangement can be either explicitly declared by the user or
formed at run time from the available processes. At most one abstract processor can
be associated with each physical process.

Chapter 2 Getting Started with Sun HPF 2-5

This distribution produces a set of subarrays (called subgrids) residing on the
participating processes. Each subgrid may be viewed as a rectilinear block of
contiguous elements of the distributed array, resulting from partitioning it along one
or more of its dimensions.

The run-time system will attempt to make the blocks as small as possible. In other
words, it will try to distribute the array onto as many processes as possible to
maximize the degree of parallelism and, therefore, the aggregate speed of execution.

The subgrids for an array distributed onto more than one process will be smaller
versions of the distributed array. That is, they will have the same number of
dimensions, but the block-distributed dimensions will typically be smaller (will
contain fewer indices). If the run-time system cannot distribute the array evenly
across all the processes, some subgrids will be smaller than their siblings.

FIGURE 2-1 shows examples of a 16-element 2D array (A) being distributed onto two
processes and onto four processes. Another example of this directive in use is
provided in Section 2.3, “Using the DISTRIBUTE Directive.”

2.1.3.2 Block(N) Distributions

This is a more detailed form of block distribution. It allows the programmer to
specify the number of dimension subscripts in each (typical) block for a given
dimension.

A block(N) distribution for a dimension means that the array's dimension should be
broken into chunks of size N (or smaller, at the end of the axis) and distributed in
this fashion across the corresponding abstract processor dimension. For example,

!hpf$ distribute (block(M),block(N)) :: C

means that each typical subgrid of C will have shape M by N, although some may be
smaller.

2.1.3.3 Collapsed Dimensions

A collapsed dimension is one that is kept in a single block rather than being
partitioned into smaller ones. It is considered a purely local (or serial) dimension
rather than a distributed, parallel dimension, and it will not be mapped onto any
abstract processor dimension.

In the DISTRIBUTE directive, collapsed dimensions are specified using an "*" rather
than "block". For example:

real D(N, M), E(L1,L2, N)

!hpf$ distribute (block,*) :: D

!hpf$ distribute (*,*,block) :: E

2-6 Sun HPF 1.0 Guide • November 1997

means that D and E will be partitioned only along their sole block dimension of
extent N, and also that they will be mapped onto 1D rather than 2D or 3D processor
arrangements.

Note that for Sun HPF, it is also safe to assume that the parallel dimension of D or E
is distributed like other block-distributed arrays in the same program having exactly
one parallel dimension of extent N. In particular, array sections of the form D(:,I)
and E(J,K,:) will be implicitly aligned.

Chapter 2 Getting Started with Sun HPF 2-7

FIGURE 2-1 Examples of Block Distribution

Processes

Processes

distributed to
two processes

2D array A
distributed to
four processes

Processes

two processes

2D array A
distributed to

2D array A

NOTE: The following is an example of the DISTRIBUTE directive
used to produce these block distributions.

!HPF$ distribute (block, block) :: A

Other examples of this directive are provided in Section 2.3, “Using
the DISTRIBUTE Directive.”

2-8 Sun HPF 1.0 Guide • November 1997

2.2 Example of F77 to HPF Transition
The introduction to HPF programming begins with the sample F77 program,
CONVOLVE_F77, which is shown in FIGURE 2-2.

CONVOLVE_F77 operates on two 2D arrays, P and Q, making use of elements of a 1D
array, F. The 2D arrays are the same size and shape, 512 x 512 elements. The 1D
array has 16 elements.

The computational tasks in CONVOLVE_F77 are based on two sets of nested DO
loops. One loop shifts the first dimension of P. Following the shift, the second loop
completes the convolution, storing the result in Q.

The first change required for making the transition to an HPF program is to replace
the F77-style code with array operations employing F90-based array syntax. To do
this example, use array assignment operations and a FORALL statement to initialize
and update P and Q. The array assignment statements cause the compiler to assume
that P and Q (but not F) should be parallel arrays. The result of this transformation is
shown in FIGURE 2-3.

Note – A FORALL statement is an HPF parallel array assignment. It expresses
assignments to array elements in arbitrary order over a specified range of index
variables.

Chapter 2 Getting Started with Sun HPF 2-9

FIGURE 2-2 F77 Program Example — CONVOLVE_F77

program CONVOLVE_F77
 integer NX, NT, NFP
 parameter (NX=512, NT=512, NFP=16)
 integer I, IFP
 real F(NFP)
 real P(NT,NX), Q(NT,NX)

C Initialize P and Q
 do I = 1, NX
 do J = 1, NT
 P(J,I) = J
 Q(J,I) = 0.0
 end do
 end do

C Initialize F
 do I = 1, NFP
 F(I) = I
 end do

C Shift array P by one over the first dimension
C Compute Q after the shift on P

 do IFP = 1, NFP
 do I = 1, NX
 do J = NT–1, 1, –1
 P(J+1,I) = P(J,I)
 end do
 P(1,I) = 0.0
 end do

 do I = 1, NX
 do J = 1, NT
 Q(J,I) = Q(J,I) + P(J,I) * F(IFP)
 end do
 end do
 end do

2-10 Sun HPF 1.0 Guide • November 1997

FIGURE 2-3 CONVOLVE_F77 Example becomes CONVOLVE_F90

These changes allow the compiler to implement CONVOLVE_F90 using parallel
operations, which are spread out across the available processes.

However, although this conversion from serial to parallel execution will yield
significant performance gains by itself, you can also use the DISTRIBUTE directive
to further assist the compiler in optimizing the program. This technique is described
in the next section.

program CONVOLVE_F90
 integer NX, NT, NFP
 parameter (NX=512, NT=512, NFP=16)
 integer I, IFP
 real F(NFP)
 real P(NT,NX), Q(NT,NX)

C Initialize P and Q
FORALL(J=1:NT, I=1:NX) P(J,I) = J
Q = 0.0

C Initialize F
do I = 1, NFP

 F(I) = I
 end do

C Shift array P by one over the first dimension
C Compute Q after the shift on P

do IFP = 1, NFP
P(2:NT,:) = P(1:NT–1,:)
P(1,:) = 0.0
Q = Q + P * F(IFP)

end do

Chapter 2 Getting Started with Sun HPF 2-11

2.3 Using the DISTRIBUTE Directive
Assume that CONVOLVE_F90 will be compiled to run on eight processes. By default,
the Sun HPF run-time system would distribute P, Q, and F across eight processes in
the following manner:

Without instructions to do otherwise, the compiler would distribute P and Q in
(block, block) fashion onto a 2x4 process grid.

However, since the array assignment statement

P(2:NT,:) = P(1:NT-1,:)

in CONVOLVE_F90 shifts data along the first dimension of P while keeping the
second dimension unchanged (e.g., copies each I th row P(I,:) into the I +1st row
P(I+1,:), and since the array assignment

P(1,:) = 0.0

operates only on the first row of P, it would be more efficient to distribute only the
second axis of P across processes, while keeping the first axis of P local by giving it
a collapsed distribution.

Thus, a (*,block) distribution would be more efficient for these operations than a
(block, block) distribution. You can think of a (*,block)-distributed 2D array P as a
collection of rows P(I,:) , each of which is distributed in the same fashion across
processes and each of which may be accessed independently of the others. Their
resulting alignment allows corresponding elements to be copied between rows with
maximal efficiency, like whole array operations on 1D arrays of the same shape and
distribution.

This would make all operations on those elements local to the respective processes,
thereby avoiding interprocess communication.

To tell the compiler that you want the first dimension of P to be collapsed, add the
following directive to the declaration section of CONVOLVE_F90.

!HPF$ distribute (*, block) :: P

Array, dimension Distribution Block Size

P, first block 256

P, second block 128

Q, first block 256

Q, second block 128

F collapsed Full array is replicated on all processes.

2-12 Sun HPF 1.0 Guide • November 1997

In this context, the * tells the compiler to collapse the first dimension of P,
replicating it on every process. The block entry specifies block distribution for the
second dimension of P.

Since you will also want P and Q to have the same distribution, add Q to the list of
arrays to receive the (*,block) distribution. These additions are shown in FIGURE 2-4.

!hpf$ distribute (*, block) :: P,Q

Note – See Chapter 6 for additional discussion of the use of DISTRIBUTE, as well as
other notes on enhancing the performance HPF programs.

FIGURE 2-4 Adding the DISTRIBUTE Directive to Produce CONVOLVE_HPF

 program CONVOLVE_HPF
 integer NX, NT, NFP
 parameter (NX=512, NT=512, NFP=16)
 integer I, IFP
 real F(NFP)
 real P(NT,NX), Q(NT,NX)
!hpf$ distribute (*, block) :: P,Q

C Initialize P and Q using F90 assignments
FORALL(J=1:NT, I=1:NX) P(J,I) = J
Q = 0.0

C Initialize F
do IFP = 1, NFP

 F(I) = I
 end do

C Shift array P by one over the first dimension
C Compute Q after the shift on P

do IFP = 1, NFP
P(2:NT,:) = P(1:NT-1,:)
P(1,:) = 0.0
Q = Q + P * F(IFP)

end do

3-1

CHAPTER 3

Compiling and Linking Sun HPF
Programs

This chapter explains how to create Sun HPF executable (a.out) files using the
compile/link command hpf .

The hpf command operates in much the same manner as the Sun command f77 .
Experienced users of f77 will find many familiar features in hpf .

3.1 hpf Command Basics

3.1.1 Command Syntax
The hpf command syntax is:

hpf [switches] filename ...

One or more optional Solaris-style switches can be specified to control hpf behavior.
These switches are described in the hpf man page. Examples of their use are
presented throughout this chapter. Each filename argument specifies a source or
object file to be compiled or linked.

Switches and file names are separated by blank spaces. The command line

% hpf –tmprofile –o mill mill.hpf

passes the source file mill.hpf to the Sun HPF compiler and causes it to generate
an executable file named mill , while instrumenting the executable file for use by
the Prism performance analysis tool. If the –o switch were not used, the executable
would be given the default name, a.out .

3-2 Sun HPF 1.0 Guide • November 1997

3.1.2 File Name Extensions
The source file’s file name extension indicates the type of file it is, which tells hpf
how to handle it. TABLE 3-1 identifies the file name extensions that hpf recognizes
and summarizes the action taken for each.

3.1.3 Linking Libraries with hpf

At link time, hpf links into the executable all files with a .o , .so , or .a extension.
The various libraries that may be linked into a Sun HPF program are listed below
and discussed in the following subsections.

■ HPF library
■ F77_LOCAL interface
■ S3L
■ CM Fortran utilities

TABLE 3-1 Sun HPF File Name Extensions

.hpf Subset HPF source — invokes the Sun HPF compiler.

.HPF Subset HPF source for cpp — invokes the preprocessor cpp ,
followed by the Sun HPF compiler.

.fcm CM Fortran source — invokes the Sun HPF compiler (in CMF
compatibility mode).

.FCM CM Fortran source for cpp — invokes the preprocessor cpp ,
followed by the Sun HPF compiler.

.s Sun assembler source — passes the source file directly to the fbe
assembler.

.S Sun assembler source for cpp — invokes the preprocessor cpp and
then passes the cpp output to the fbe assembler.

.f Sun Fortran source — invokes the f77 compiler.

.for Sun Fortran source — same as .f .

.F Sun Fortran source for cpp — invokes the preprocessor cpp ,
followed by the f77 compiler.

.FOR Sun Fortran source for cpp — same as .F .

.o Object file — passed to linker. These files may be from a previous
invocation of hpf . They may also be the output of the f77 compiler.

.so Shared object file — passed to the linker.

.a Object library file — passed to the linker.

Chapter 3 Compiling and Linking Sun HPF Programs 3-3

Note – The header files for these utilities are in /opt/SUNWhpc/include .

3.1.3.1 HPF Library

The HPF library extends F90 array intrinsics with support for several classes of
parallel operations. It requires the entry –lhpf on the hpf link line. For example:

% hpf –o mill mill.hpf –lhpf

Program units that call HPF library procedures must either include header files for
every HPF library function called by the program unit or include the HPF library’s
top-level include file, hpflib.h . For example, if a program unit has calls to the
iall and iany reduction functions, it must include either

INCLUDE 'tmc/iall.h'
INCLUDE 'tmc/iany.h'

or

INCLUDE 'tmc/hpflib.h'

Note – The top-level HPF library include file (hpflib.h) is very large and will
greatly increase compilation time. If possible, you should avoid including the full
library header file.

TABLE 3-1 provides a complete list of the individual HPF include files.

3.1.3.2 F77_LOCAL Library

The F77_LOCAL subroutines provide an interface between Sun HPF applications and
local f77 message-passing code. To link the F77_LOCAL interface library you need
to include –lf77local on the hpf link line. For example:

% hpf –o mill mill.hpf –lf77local

Sun HPF program units that use the F77_LOCAL interface must include the header
file tmhpflib.h . Use the relative path:

INCLUDE 'tmc/tmhpflib.h'

3-4 Sun HPF 1.0 Guide • November 1997

FIGURE 3-1 HPF Library Include Files.

! HPF Inquiry functions
INCLUDE 'tmc/hpf_alignment.h' INCLUDE 'tmc/hpf_distribuition.h'
INCLUDE 'tmc/hpf_template.h'

! HPF Reduction functions
INCLUDE 'tmc/iall.h' INCLUDE 'tmc/iparity.h'
INCLUDE 'tmc/iany.h' INCLUDE 'tmc/parity.h'

! HPF Sort functions
INCLUDE 'tmc/grade_up.h' INCLUDE 'tmc/sort_up.h'
INCLUDE 'tmc/grade_down.h' INCLUDE 'tmc/sort_down.h'

! HPF Scatter functions
INCLUDE 'tmc/all_scatter.h' INCLUDE 'tmc/iparity_scatter.h'
INCLUDE 'tmc/any_scatter.h' INCLUDE 'tmc/maxval_scatter.h'
INCLUDE 'tmc/copy_scatter.h' INCLUDE 'tmc/minval_scatter.h'
INCLUDE 'tmc/count_scatter.h' INCLUDE 'tmc/parity_scatter.h'
INCLUDE 'tmc/iall_scatter.h' INCLUDE 'tmc/product_scatter.h'
INCLUDE 'tmc/iany_scatter.h' INCLUDE 'tmc/sum_scatter.h'

! HPF Prefix functions
INCLUDE 'tmc/all_prefix.h' INCLUDE 'tmc/iparity_prefix.h'
INCLUDE 'tmc/any_prefix.h' INCLUDE 'tmc/maxval_prefix.h'
INCLUDE 'tmc/copy_prefix.h' INCLUDE 'tmc/minval_prefix.h'
INCLUDE 'tmc/count_prefix.h' INCLUDE 'tmc/parity_prefix.h'
INCLUDE 'tmc/iall_prefix.h' INCLUDE 'tmc/product_prefix.h'
INCLUDE 'tmc/iany_prefix.h' INCLUDE 'tmc/sum_prefix.h'

! HPF Suffix functions
INCLUDE 'tmc/all_suffix.h' INCLUDE 'tmc/iparity_suffix.h'
INCLUDE 'tmc/any_suffix.h' INCLUDE 'tmc/maxval_suffix.h'
INCLUDE 'tmc/copy_suffix.h' INCLUDE 'tmc/minval_suffix.h'
INCLUDE 'tmc/count_suffix.h' INCLUDE 'tmc/parity_suffix.h'
INCLUDE 'tmc/iall_suffix.h' INCLUDE 'tmc/product_suffix.h'
INCLUDE 'tmc/iany_suffix.h' INCLUDE 'tmc/sum_suffix.h'

Chapter 3 Compiling and Linking Sun HPF Programs 3-5

3.1.3.3 S3L

S3L is a library of highly optimized mathematical functions that are used to
manipulate and perform computations on parallel arrays. To use these functions,
you need to include the entry –ls3l on the hpf link line. For example:

% hpf –o mill mill.hpf –ls3l

Program units that call S3L routines must include its header file, s3l–hpf.h . Use
the relative path:

INCLUDE 's3l/s3l–hpf.h'

3.1.3.4 CM Fortran Library

hpf automatically links the CM Fortran (CMF) utility library when it is needed to
provide back compatibility to CM Fortran code. Program units that call procedures
from this library must include its header file, CMF_defs.h . Use the relative path:

INCLUDE 'cm/CMF_defs.h'

Note – Sun HPF does not support the use of CM Fortran Library’s CMF_FILE_
routines to perform serial file operations.

3.1.3.5 CM and TM Timer Routines

hpf supports calls to both TM_timer_* and CM_timer_* routines. Program units
that implement these timing interfaces must include one of the timer–fort.h
header files.

INCLUDE 'tmc/timer–fort.h'

or

INCLUDE 'cm/timer–fort.h'

The TM_timer_* and CM_timer_* routines are discussed more fully in Chapter 4.

3.2 hpf in Action
This section illustrates some of the most commonly used features of the hpf
command. For experienced F77 users, most of these operations will be well known.
For many, in fact, the chief lesson to be learned in the following pages is how closely
the hpf command adheres to tradition.

3-6 Sun HPF 1.0 Guide • November 1997

TABLE 3-2 shows the main stages of an hpf compile/link sequence. The actual start
and end points in the sequence depend on the source file’s file name extension and
on whether certain optional switches are used. The diagram includes a summary of
its main points. These will also be covered in the following discussions.

FIGURE 3-2 The hpf Compile/Link Sequence

hpf

.f

f77

.o

ld

a.out

.so
System

.f

.for

.o

.a

.hpf

.fcm

.F

.FOR

The following summarizes how Sun HPF
handles source and object files, according to
their file name extensions:
• .o .a , or .so — Object file is passed directly

to the linker.
• .HPF or .FCM — Invoke the preprocessor

(cpp) first; its output is passed to the Sun
HPF compiler. The HPF compiler output is
passed to the Sun F77 compiler.

• .hpf or .fcm — Invoke Sun HPF compiler.
• .S , .F , or .FOR — Invoke cpp first; its
output

is passed to the Sun F77 compiler.
• .s , .f , or .for — Invoke Sun F77 compiler,

bypassing the Sun HPF compiler.

• Linker (ld) links .o object file(s) generated
by the assembler with Solaris, run-time, and
user libraries to produce an executable file
with the default name a.out .

.HPF

.FCM

src|
obj

.a |

.s

cpp

.S

Libraries

.so

Chapter 3 Compiling and Linking Sun HPF Programs 3-7

3.2.1 Compiling and Linking
This section demonstrates compiling and linking under hpf with a simple example
that uses two optional switches:

In the following example, two source files, mill.hpf and grist.hpf , are compiled
and linked with the Sun Scientific Subroutine Library (S3L) to generate an
executable output file named flour .

% hpf –o flour mill.hpf grist.hpf –ls3l

Because hpf is being passed.hpf source files, it invokes the Sun HPF compiler
directly (without going through the cpp preprocessor). This compiler generates
mill.f and grist.f , which are passed to the native f77 compiler, which produces
mill.o and grist.o .

In the final stage, the object files are linked with S3L, as well as with various other
libraries, to produce an executable output file named flour . If the optional –o
switch had not been used, the executable would have been given the default name
a.out .

Use the –temp= dir switch to specify where the driver should create temporary
intermediate files. This switch is useful if the default location /tmp has insufficient
space.

3.2.2 Compiling CMF Programs into Sun HPF
Executables
hpf accepts source files with .fcm and .FCM extensions, which means applications
written in CM Fortran (CMF) can be compiled directly by hpf .

% hpf –o flour mill.fcm grist.fcm –ls3l

As can be seen in this example, hpf does not require any special command-line
switches to handle a .fcm or .FCM source file. Simply specify the CM Fortran source
file as you would a Sun HPF source file; hpf will understand from the file name
extension how to proceed.

Note – When hpf is passed .hpf or .HPF source files that contain CM Fortran
code, use the optional switch –cmf_compatible . This switch is on by default when
compiling .fcm or .FCM source files.

–o filename Renames the executable output to filename.

–l library Links the library library.

3-8 Sun HPF 1.0 Guide • November 1997

3.2.3 Using the cpp Preprocessor
The hpf command driver accepts files with (uppercase) extensions of .HPF, .FCM,
.F , .FOR, and .S and invokes the C language preprocessor cpp on each file before
passing it on to the appropriate compiler. For files with a .S extension, the f77
compiler immediately invokes the assembler.

3.2.4 Compiling Incrementally
Four optional switches permit control over when the compilation sequence
terminates.

The –F77 switch permits developers of Sun HPF programs to quickly check for
syntactic and semantic errors without waiting for a full compilation pass to
complete. The –c switch is useful in development of large projects that involve
many source files. The –F and –S switches are provided for advanced users who
want the option of evaluating every intermediate stage of the compilation sequence.

3.2.5 Program Debugging and Profiling
hpf provides two debugging switches (–g and –gf77) and a profiling switch
(–tmprofile).

Each debugging switch produces additional symbol table information for use by the
Prism debugger. The –g switch supplies information at the HPF source level, while
–gf77 provides information about the generated f77 source.

The –g switch suppresses certain optimization steps usually performed by the hpf
compiler. Ordinarily, the compiler fuses multiple parallel statements together to
increase execution speed. The –g switch puts each parallel statement in its own
parallel code block so that debugger output can relate to specific lines of source code

–F Preprocessor — Output from the preprocessor (cpp) is placed in a .hpf file
and the sequence terminates. This switch has meaning only for source files
with uppercase file name extensions (.HPF, .FCM, .F , or .FOR).

–F77 Fortran 77 — The Sun HPF compiler generates an f77 output file and
terminates the compilation sequence.

–S Assembler — The compilation sequence terminates after the f77 compiler
generates a .s output file.

–c Compilation only — An object file is generated for each source file, and then
the compilation sequence terminates.

Chapter 3 Compiling and Linking Sun HPF Programs 3-9

more effectively. The –g switch is, of course, intended for use only during
application development, since suppressing optimization steps can degrade program
performance significantly,

Note – If you suspect a program error exists that the Prism debugger is unable to
locate, try compiling with both –g and the run-time safety switch set to the highest
safety level, –safety=10 . Since run-time safety checking degrades performance
even further, programmers usually avoid using it on the unoptimized code
produced by –g . However, the combination of switches is sometimes useful in
finding especially subtle bugs.

The -tmprofile switch causes performance analysis data to be generated,
characterizing program behavior at multiple levels—across the entire program,
procedure-by-procedure, and at individual source lines. The programmer can then
examine this information within the Prism environment, looking for bottleneck
conditions or imbalances in resource use.

Note – The -g , -gf77 , and -tmprofile options are all incompatible with the
optimization switches, -On and -xO n.

3.2.6 Command-Line Arguments
You can write a routine to get command-line arguments by using operating system
interfaces from the Sun F77 library—namely, the function IARGC() and subroutine
GETARG(I, NAME). FIGURE 3-3 shows an example of such a routine.

3-10 Sun HPF 1.0 Guide • November 1997

FIGURE 3-3 Sample Command-Line Argument Routine

3.3 Summary of Optional Switches
TABLE 3-2 lists the switches that are available to control hpf behavior. Switches are
applied from left to right. In most cases, if a particular switch is specified more than
once on the command line, the rightmost setting or value is used.

Note – Abbreviation of compiler switches is not currently supported.

PROGRAM LOOP
IMPLICIT NONE
INTEGER N1, N2, N3, N4, IARGC
CHARACTER*80 ARGUMENT

IF (4 .NE. IARGC()) THEN
PRINT *, 'Usage : LOOP N1 N2 N3 N4'
STOP

END IF

CALL GETARG(1, ARGUMENT)
READ (UNIT=ARGUMENT, FMT='(i6)') N1

CALL GETARG(2, ARGUMENT)
READ (UNIT=ARGUMENT, FMT='(i6)') N2

CALL GETARG(3, ARGUMENT)
READ (UNIT=ARGUMENT, FMT='(i6)') N3

CALL GETARG(4, ARGUMENT)
READ (UNIT=ARGUMENT, FMT='(i6)') N4

PRINT *, IARGC(), N1, N2, N3, N4

STOP
END

Chapter 3 Compiling and Linking Sun HPF Programs 3-11

See the hpf man page for a more detailed description of the compiler command.

TABLE 3-2 Summary of hpf Switches.

–Bx Prefer dynamic or require static library linking. The default
is dynamic.

–c Compile only; do not make executable file.

–cmf_compatible Interpret source code using CMF syntax rules (that is,
accept CMF code file) and ignore any HPF directives.

–cmf_directives Accept CMF directives embedded in .hpf or .HPF source
code.

–common_initialized Use when program units contain distributed arrays that
are initialized via BLOCK_DATA.

continuations[= number] Specify the maximum number of continuation lines in a
statement.

–dalign Double-align; allow double-word load/store.

–dbl_align_all=y Force alignment of all data on 8-byte boundaries. Note:
This switch is available only with f77 Version 4.2.

–depend Analyze loops for data dependencies.

–d_lines Accept lines beginning with D in column 1 as ordinary
statements.

–double_precision Interpret REAL declarations as DOUBLE PRECISION.

–dryrun Show commands built by the driver but do not execute
(debugging switch).

–e Extend source line maximum length to 132 characters.

–F Invoke the source file preprocessor but do not compile.

–f Align on 8-byte boundaries.

–F77 Stop compilation after generating an intermediate .f file
for each source file.

–fast Select the combination of options that optimizes for speed.

–fixed Expect fixed form source.

–flags Synonym for –help .

–fnonstd Initialize floating-point hardware to nonstandard
preferences.

–fns Select nonstandard floating point.

–free Expect free form source.

3-12 Sun HPF 1.0 Guide • November 1997

–fround=r Select the IEEE rounding mode in effect at startup. Choices
are: nearest , tozero , negative , positive .

–fsimple[= n] Select floating-point optimization preferences.

–ftrap= t Set floating-point trapping mode.

–G Build a dynamic shared library.

–g Support debugging in Prism at the HPF source level.

–gf77 Support debugging in Prism at the f77 source level.

–h name Specify the name of the generated dynamic shared library.

–help Show a list of command-line options.

–I dir Add dir to the include file search path.

–implicit_none Inhibit implicit typing of variable, constant, and function
names.

–inline= rl Request inlining of the specified user-written routines,
named in the list rl.

–Kpic Synonym for –pic .

–KPIC Synonym for –PIC .

–Ldir Add dir to the list of directories to search for libraries.

–l x Link with the library lib x.a (or lib x.so).

–libmil Inline selected libm math library for optimization.

–misalign Allow for misaligned data in memory.

–mt Link with multithread libraries.

–native Optimize for the host system.

–nodepend Turn off loop-dependence analysis.

–nodir_warnings Suppress warnings about HPF or CMF directives.

–nof77localsync Disable control synchronization around an f77 local call.

–nolib Do not link with system libraries.

–nolibmil Cancel –libmil on the command line.

–noqueue Disable license queueing.

–norunpath Do not build a run-time library search path into the
executable.

–O[n] Specify optimization level.

–o name Specify the name of the executable file to be written.

TABLE 3-2 Summary of hpf Switches.

Chapter 3 Compiling and Linking Sun HPF Programs 3-13

–p Compile for profiling with prof .

–pg Compile for profiling with gprof .

–pic Compile position-independent code for shared library.

–PIC Similar to –pic , but with 32-bit addresses.

–qp Synonym for –p .

–Qoption pr ls Pass option list ls to the compilation phase pr.

–Rlist Build library search paths into executable.

–S Compile and only generate assembly code.

–s Strip the symbol table from the executable file.

–safety= number Generate code that performs some level of run-time
checking.

–silent Suppress compiler messages.

–temp= dir Define directory for temporary files.

–time Show execution time for each compilation phase.

–tmprofile Build an executable that can be used with Prism to profile
the code.

–V Show name and version of each compilation phase.

–v Verbose mode; show compilation details.

–xarch= a Specify the target architecture instruction set.

–xcache= c Define cache for optimizer.

–xchip= c Specify target processor for optimizer.

–xdepend Synonym for –depend .

–xhelp=flags Show options summary.

–xinline= rl Synonym for –inline= rl.

–xlibmil Synonym for –libmil .

–xlibmopt Use library of optimized math routines.

–xlicinfo Show license server user IDs.

–Xlist Produce listings and do global program checking.

–XlistI Same as –Xlist , plus checks include files as well.

–XlistL Listings only (no xref).

–XlistX xref only (no listings).

TABLE 3-2 Summary of hpf Switches.

3-14 Sun HPF 1.0 Guide • November 1997

–xnolib Synonym for –nolib .

–xnolibmil Synonym for –nolibmil .

–xnolibmopt Cancel –xlibmopt .

–xO[n] Synonym for –O[n] .

–xpg Synonym for –pg .

–xregs= r Specify register usage.

–xs Allow debugging by dbx without .o files.

–xsafe= mem Assume no memory-based traps.

–xspace Do not increase code size.

–xtarget= t Specify system for optimization.

–xtime Synonym for –time .

–ztext Make no library with relocations.

TABLE 3-2 Summary of hpf Switches.

4-1

CHAPTER 4

Program Development Tools

This chapter describes the support Sun HPF provides for timing program activity
and for invoking the C language preprocessor, cpp .

hpf is also closely integrated with Sun Microsystems graphical programming and
debugging environment, Prism. When hpf is invoked with -g (debugging switch) or
–tmprofile (performance analysis switch), the resulting executable may be
processed with Prism. See the Prism documentation set for information about

■ Debugging
■ Performance analysis
■ Data visualization

In addition, various othe HPF utilities are managed with compiler switches; these
are described in the hpf man page:

■ Run-time safety checking (using the switch –safety)
■ Listing the kinds of communication being generated (using the switch –Xlist)
■ Locating symbols and line labels (using the switch –XlistX)

4.1 Timing a Program
A timing facility provided for use by Sun HPF programs allows you to determine how
much time any part of a program takes to execute. This facility has the following
features:

■ A timer calculates total time the processing nodes were active.

■ Multiple timers can be active at the same time.

■ Timers can be nested. This allows you, for example, to start one timer that will
time the entire program, while using other timers to determine how different
parts of the program contribute to the overall time.

4-2 Sun HPF 1.0 Guide • November 1997

Note – The Sun HPF timing facility supports the CM timer call syntax to simplify
the porting of CM Fortran programs to the Sun Ultra HPC System environment.
While the interface to these routines has not changed, some CM timer behavior has,
as described in this section.

You can have up to 64 timers running in a program. Individual timers are referenced
by unsigned integers (from 0 to 63, inclusive) used as arguments to the timing
instructions. Timing instructions affect only those timers whose numbers are used as
arguments to the instruction.

To start timer 0, for example, put a call to the TM_timer_start routine in your
program, with 0 as an argument:

TM_timer_start(0);

To stop a timer, call TM_timer_stop with the number of the timer specified. For
example, to stop timer 0 enter

TM_timer_stop(0);

This function stops the timer and updates the values for total elapsed time and total
node idle time being held by the timer. You can then restart timer 0 at a later point
by calling TM_timer_start again. Timing starts at the values currently held in the
timer. This is useful for measuring how much time is spent in a frequently called
subroutine. The timer keeps track of the number of times it has been restarted.

You can start or stop other timers while timer 0 is running; each timer runs
independently.

To get the results from any timer, call the TM_timer_print routine after you have
called TM_timer_stop . For example, to print timer 0 results, enter

TM_timer_print(0);

TM_timer_print reports timing information to stdout using Solaris parameters,
such as user and system . An example of this output is

TMRTS timer 0: State is Stopped, 1 starts.
User time: 0.901456198
System time: 0.000267869
Trap time: 0.000492248
Elapsed time: 3.850932740

Chapter 4 Program Development Tools 4-3

The various components of the TM_timer_print report are explained below.

These routines return specific information from the timer for use in a program:

■ TM_timer_read_starts returns an integer that represents the number of times
the specified timer has been started.

■ TM_timer_read_elapsed returns a double-precision value that represents the
total elapsed time (in seconds) for the specified timer. Elapsed time refers to
process time, not wallclock time.

■ TM_timer_read_run_state returns 1 if and only if the specified timer is
running. Otherwise, the routine returns 0.

If you use any of these TM_timer_read_ xxx routines, include the file tmc/timer-
fort.h.

In addition, TM_timer_set_starts takes a timer number and an integer as
arguments. It sets the number of starts for the specified timer to the specified value.
This is useful if you want to write a function that can query a running timer without
changing the number of starts. Not changing the number of starts is important if you
want to know how many times a large chunk of code was called, but you also want
to get sub-timings within that block.

To clear the values maintained by a timer, call TM_timer_clear . For example, to
clear the value maintained by timer 0, put this call in your program:

TM_timer_clear(0);

This zeroes the total elapsed time, the total node idle time, and the number of starts
for this timer.

Note – CM Fortran users, versions of these timing routines, which begin with a CM_
prefix, are available for back compatibility with CM Fortran. Include the header file
cm/timer-fort.h at the beginning of any program unit that uses CM_ routines.

User time The time accounted to the user process in user mode between the
last start/stop pair.

System time The additional time accounted to system operations called via
syscall on behalf of the user process between the last start/stop
pair.

Trap time The additional time accounted to other system operations (such as
breakpoint traps) on behalf of the user process between the last
start/stop pair.

Elapsed time The amount of wallclock time elapsed between the last start/stop
pair.

4-4 Sun HPF 1.0 Guide • November 1997

4.1.1 Hints on Using the Timing Utility
The elapsed time reported by a timer includes time when the process is swapped out
on a node. The more processes that are running, the more distorted this figure will be.
Therefore, we recommend that you use nodes that are as unloaded as possible.

If you can’t guarantee that you will have exclusive use of the nodes, try to run the
process several times; the minimum elapsed time reported will be the most accurate.

In addition, we recommend that you avoid stopping a process that is being timed.

Note that the inclusion of calls to the timer functions can change the generated code
somewhat and, therefore, can itself affect performance.

Finally, note that if you are using Prism to analyze the performance of a program that
includes timer calls, Prism performance data will include the overhead assigned to
these calls; thus, the elapsed time reported by Prism will be somewhat greater than the
elapsed time reported by the timing routines.

Note – The dbx debugger is incompatible with programs that call tm_timer .

4.1.2 Synchronization Considerations
Some timer calls, such as TM_timer_ (clear,start,stop), do not synchronize the
local processor with other processors in the partition—that is, they only take effect
locally. This means they can be used more freely without concern for undesired
nonlocal consequences. It also means, however, that application developers should
include processor synchronization in their code at the beginning of a timing run. An
example of this is shown below.

! clear the timers
 call TM_timer_clear(0)
 call TM_timer_clear(1)

! do some preliminary IO
 write(6,*)'data array:', (x(i,i=1,n)

! start timing
 dummy = TM_timer_read_elapsed(0)
 call TM_timer_start(0)

! loop
 do iter = 1, niter

! communications
 call TM_timer_start(1)
 call communications()
 call TM_timer_stop(1)

Chapter 4 Program Development Tools 4-5

! computations
 call computations()

end do

! stop timing
 call TM_timer_stop(0)

! report timing
 write(6,*) 'overall time:'
 call TM_timer_print(0)
 write(6,*) 'computation time only:'
 call TM_timer_print(1)

Note that a dummy TM_timer_read_elapsed() call was introduced just before
the timing was started. The results of this call are not of interest—only its
synchronizing side effect is. If this call were not introduced, many of the processors
could start their timers even though the partition as a whole would not be ready to
start the run. In such a case, one of the processors would still be busy with the
preliminary I/O. However, no unneeded synchronization is introduced within the
loop because it would perturb the timing results.

4.2 The C Language Preprocessor
The Sun HPF command driver accepts files with (uppercase) extensions of .HPF,
.FCM, .F , .FOR, and .S and invokes the C language preprocessor cpp on each file
before passing it on to the appropriate compiler. For files with a .S extension, the f77
compiler immediately invokes the assembler.

The online man page for cpp describes the program switches and preprocessor
command lines in detail, including a facility for defining macros with arguments.

4.2.1 Used with –D

The C preprocessor can provide a useful conditional compilation facility for Sun
HPF or CM Fortran source code when used with the hpf command line switch
–D, which is described in the hpf man page. For example, the following program
contains preprocessor control lines that conditionally define a parameter N, which is
used in the declaration of a matrix A.

PROGRAM CPP
#if ASIZE > 0 && ASIZE < 10

PARAMETER (N = ASIZE)
#else

PARAMETER (N = 9)

4-6 Sun HPF 1.0 Guide • November 1997

#endif
CHARACTER*10 FMT
INTEGER A(N,N)
A = 0
FORALL (I = 1:N, J=1:N) A(I,J) = I*10 + J
WRITE (FMT, 10) N

10 FORMAT("(1X,", I2.2, "I3)")
PRINT FMT, TRANSPOSE(A)
END

In this example, the preprocessor control lines (those beginning with the character #)
test whether the value of the symbol ASIZE is in the range 1 to 9 and, if so, select
the first PARAMETER statement for compilation, otherwise the second. The control
lines themselves are filtered from the file that is passed to the compiler, along with
the unselected PARAMETER statement. The value for ASIZE is substituted for all
occurrences of the symbol ASIZE in the program; the value of symbol ASIZE can be
defined in the source code, on the command line, or it can be left undefined (in
which case it assumes the value zero). If the program is in the file cpp.HPF , then the
command line

% hpf –DASIZE=7 cpp.HPF

causes the matrix A to be declared as a 7x7 array.

The following example, on the other hand, does not supply a value to the symbol
ASIZE .

% hpf –DASIZE cpp.HPF

In this case, the value of ASIZE is assumed to be 1, causing the matrix to be declared
as a 1x1 array. If no definition of ASIZE is supplied on the command line or in the
source file, its value is taken as zero, and so the second PARAMETER statement is
compiled, making it equal to the default value of 9.

5-1

CHAPTER 5

File Systems and File System I/O

5.1 Introduction
All Sun HPF I/O operations—both serial and parallel—are carried out through
intrinsic Fortran I/O statements. Unformatted I/O statements are routed through
the MPI I/O library.

The MPI I/O layer passes serial I/O requests to the Solaris operating environment
and parallel I/O requests to PFS, Sun HPC’s parallel file system facility. See the Sun
MPI User’s Guide for more information about the MPI I/O facility.

FIGURE 5-1 Sun HPF I/O Facilities.

MPI I/O

PFS

Solaris (UNIX)

Raw Disk I/O

Sun HPF

Unformatted read/write statements

5-2 Sun HPF 1.0 Guide • November 1997

PFS combines multiple disks and multiple I/O servers into a single, unified file
system. Each PFS file is subdivided into blocks, and the blocks are distributed across
all the disks in the file system. This arrangement provides multiple, independent
I/O channels, which allow each PFS file to be read and written in multiple parallel
streams.

From the programmer’s perspective, PFS closely resembles Solaris file systems. It
uses a conventional inverted-tree hierarchy, with a root directory at the top and
subdirectories and files branching down from there. The fact that individual PFS
files are distributed across multiple disks managed by multiple I/O servers is
transparent to the programmer. How PFS files are actually mapped files to the
physical storage facilities is implementation dependent and is based on file system
configuration entries in the run-time environment (RTE) database.

5.2 PFS File Path Names
The most obvious difference between PFS and UNIX file systems is in file path name
construction. Where a full UNIX path name begins with / (root), a PFS path name
takes the form pfs: filesystem:/ pathname.

■ pfs: identifies this as a parallel file system—this prefix is required.

■ filesystem: is the name of the file system—this is an arbitrary ASCII string assigned
by the system administrator when configuring the file system. It is terminated by
a : (colon). If there is only one Parallel File System or when your current working
directory is contained in filesystem, this path name component is optional. If there
are multiple Parallel File Systems and your current working directory is not on
filesystem, the filesystem: component is required.

■ The third term, / pathname, is the file’s Solaris-style path name.

For example, the PFS file /users/clovis/paris in the file system cities would
be named pfs:cities:/users/clovis/paris .

Serial files follow Solaris naming conventions. If you wish, you can add the prefix
ufs: to a serial file name as an explicit indicator of its serial nature. For example,
ufs:/payroll/march. ufs: stands for UNIX file sSystem. The ufs: prefix is
optional.

Chapter 5 File Systems and File System I/O 5-3

5.3 Programming Examples
Use standard hpf unformatted I/O statements to open, close, read, and write files.
The only difference between parallel and serial operations is the form of the name
specified in the OPEN statement. As described in Section 5.2, “PFS File Path
Names,” parallel file names include a pfs: prefix. If there are multiple parallel file
systems, they also include the file system name. Serial file names may include the
optional ufs: prefix.

A simple program example is presented below, illustrating the various I/O
operations that might be requested by a Sun HPF program. Both serial and parallel
file operations are represented.

integer ap, as

dimension ap(10), as(10)

!hpf$ distribute as(*)

!hpf$ distribute ap(:)

forall (i=1:10) ap(i) = i

do i=1,10

 as(i) = i

end do

! This unit can be used for any unformatted I/O.

! All I/O on this unit will be serialized –– that is,

! it will be performed by a single process.

open(1,file=' filename',form='unformatted')

! This unit can be used for any formatted I/O.

! All I/O on this unit will be serialized, that is,

! will be performed by a single process.

open(2,file=' filename')

! This unit can only be used for unformatted I/O.

! I/O on this unit will be executed in parallel.

open(3,file='pfs: filename',form='unformatted')

5-4 Sun HPF 1.0 Guide • November 1997

! All participating nodes send data to the

! appropriate positions of the file.

write(3) AP

! The data in AS is distributed across the physical

! processes upon which the HPF program is executing.

! The resulting parallel array is written to the

! PFS file as each participating node independently

! sends its data to the appropriate positions of the

! file.

write(3) AS

! This creates a distributed array consisting of one

! element. This case is included for illustration

! only. It is *not* a practical example and should

! not be implemented.

write(3) AS(1)

write(3) AP(1)

! This will serialize the data in AP –– that is, it

! will copy the entire array to sequential locations

! in the memory of a single processor, which

! processor will perform the formatting and the

! I/O.

write(2,*)AP

! This will serialize the data in AP –– that is, copy

! the entire array to sequential locations in the

! memory of a single processor, which processor will

! perform the unformatted I/O.

write(1,*)AP

! This should fail at run time, aborting the

! program. Currently, PFS files cannot be opened in

! formatted mode.

open(4,file='pfs: filename')

Chapter 5 File Systems and File System I/O 5-5

! This is illegal; a run–time error will occur,

! aborting the program. Formatted I/O cannot be

! performed on a unit that was opened for

! unformatted I/O.

write(3,*)AP

C not reached

close(1)

close(2)

close(3)

close(4)

stop

end

5-6 Sun HPF 1.0 Guide • November 1997

6-1

CHAPTER 6

Performance Notes

This chapter contains advice on how to improve the performance of your Sun HPF
applications. It also offers suggestions for better performance analysis—tips on how
to gain better insight into your program’s behavior and how to determine which
areas of the code are the best candidates for improving performance.

6.1 Use Parallel Language Expressions
Parallel operations must be expressed in parallel syntax. Otherwise the compiler will
treat them as serial operations, computing only one value at a time. Examples of
using parallel syntax for array assignment statements and for intrinsic functions
applied to arrays or array expressions.

6.1.1 Array Assignments
When you want an operation to assign values to multiple array elements in parallel,
use the HPF language’s array assignment constructs rather than a DO loop. For
example, Sun HPF would implement the following serially, even if it were preceded
by an INDEPENDENT directive.

do i=2,N1
do j=2,N1

mask(i,j)=.TRUE.
endo

endo

6-2 Sun HPF 1.0 Guide • November 1997

To indicate that this operation should be parallelized, use either of the following
expressions instead:

or

The former expression will always be parallelized; the latter will be parallelized as
long as MASK is a distributed array.

The Sun HPF compiler currently assumes that DO loops are reserved for operations
that, for whatever reason, are best performed in a serial loop, one step at a time,
rather than aggregated in a single parallel operation. Of course, array operations
such as the parallel assignments to array MASK shown above, can themselves be
included as steps in a serial loop.

Similarly, the following code

can be parallelized if the array assignment is expressed in either of the following
forms:

or

Note – Since explicit index variables are not necessary to describe the array
assignments shown above, the first (simpler) replacements are somewhat preferable.

mask(2:N1,2:N1)=.TRUE.

forall (i=2:N1, j=2:N1) mask(i,j) = .TRUE.

real a(N1,N1), P1
logical mask(N1,N1)
do i=1,N1
 do j=1,N1
 if (mask(i,j)) a(i,j) = P1 * a(i,j)
 end do
end do

where (mask) a = P1*a

forall (i=1:N1,j=1:N1, mask(i, j)) a(i,j) = P1 * a(i,j)

Chapter 6 Performance Notes 6-3

6.1.2 Intrinsic Functions Applied to Arrays or Array
Expressions
All standard Fortran 77 numeric intrinsic functions can be applied in parallel to
array expressions. These elemental functions act pointwise on corresponding elements
of same-shape array or scalar arguments to produce an array of results of the same
shape as any array arguments. For example, the following code

would be performed one element at a time, regardless of the number of processes
available. The equivalent HPF array operation

would, however, be carried out in parallel on the parallel instances of a and b.

Other intrinsic functions applied to arrays or array expressions can be parallelized.
For example, the following serial code for computing the maximum value of an
array a,

can be parallelized if it is rewritten in the following form

real a(N1,N1), b(N1,N1)
do i = 1,N1
 do j = 1,N1
 b(i,j) = cos(a(i,j))
 end do
end do

b = cos(a)

M = a(1,1)
do i = 1,N1
 do j = 1,N1
 if (a(i,j) > M) M = a(i,j)
 end do
end do

M = maxval(a)

6-4 Sun HPF 1.0 Guide • November 1997

6.2 Minimize Communication
The previous section advises the use of parallel language constructs wherever
possible so as much of your program will be executed in parallel as possible. While
the steps described in Section 6.1, “Use Parallel Language Expressions” are essential
to realizing the benefits of parallel execution, by its nature, parallelism introduces
the potential for interprocess communication.

Interprocess communication is often the largest barrier to high perfomance in a
parallel application. This is particularly true for communication across a network.
Interprocess communication within an SMP, while costly, is less expensive than
communication over a network.

This means that minimizing communication should be a primary goal in developing
parallel applications. When communication cannot be avoided, a secondary goal
should be to keep the communication within SMPs as much as possible.

Note – If you compile with the –Xlist option, the compiler generates a list file that
identifies, among othere things, which source lines invoke communication routines.
This option is a key tool for understanding which parts of a program are most
communication-intensive.

Subsequent sections discuss a few specific techniques for achieving this goal, such as
using HPF data mapping directives to guide the compiler in its optimization task.

6.3 Be Explicit
Give the compiler as much explicit information about how to optimize your
program as possible.

Like all optimizing compilers, Sun HPF follows a set of built-in rules for generating
efficient code. Hard-coded rules cannot, however, be expected to generate optimal
code for every possible code construction. It is therefore a good practice to supply
the compiler with as much explicit guidance as possible. For example,

■ Use the DISTRIBUTE directive to tell the compiler how to map parallel arrays.

■ Avoid assumed-shape declarations.

■ Avoid transcriptive mappings.

■ Whenever it is practical, use parameters rather than variables.

Chapter 6 Performance Notes 6-5

■ Use the compile-line switches to specify the desired optimization behavior.

Note – Refer to the High Performance Fortran Language Specification, Version 2.0, for
detailed information on the language features referred to in this chapter. See the
section “Related Publications” of the preface for information about accessing this
document on the Internet.

6.4 Map Arrays Explicitly
One of the most important factors affecting the performance of data parallel
programs is how efficiently a program’s arrays are mapped. In this context, efficiency
means avoiding costly interprocess communication during array operations.

You can usually improve the performance of your HPF programs by explicitly
mapping arrays in a way that maximizes data locality—that is, in a way that locates
operationally related array elements in the same process.

Since default mapping choices made by the compiler may not be consistent across
program units, it is preferable to use explicit directives to indicate how array
variables should be distributed across processes. Generally this is done by using
either the DISTRIBUTE directive (for parallel arrays) or the SEQUENCE directive (for
non-parallel) arrays.

Note – The compile-time switch –safety=n , with n=1 or higher, will generate run-
time warnings when mappings are inconsistent across program units.

The default mapping for a parallel array chosen by the compiler will be block-
distribution along all dimensions, which results in a minimal allocation of array
elements per process. This is generally the preferred distribution for all whole array
operations.

However, many special uses of array sections can be optimized with the
DISTRIBUTE directive by making one or more (but not usually all) of the array's
dimensions collapsed. The goal in these cases would be to improve locality with
respect to other arrays or other sections of the same array. After initial
parallelization, this is often the single most important optimization you can perform.
Examples of how such mappings can improve efficiency are presented later in this
section.

Other ways to customize mappings include controlling the shapes of abstract
processor arrangements onto which you want arrays to be mapped. This is done
using the PROCESSORS directive and an ONTO clause in a DISTRIBUTE directive.

6-6 Sun HPF 1.0 Guide • November 1997

Additionally, you can use BLOCK(N) for distributed dimensions. This more detailed
version of BLOCK offers full control of what sets of elements are mapped to each
process. However, it is often better to defer this more fine-grained control until you
are tuning an application to run on a particular partition of a specific size or with
known characteristics.

6.5 Avoid Passing Array Sections
It is possible to pass arbitrary array sections to subprograms as array arguments, but
it is generally inefficient to do so unless the data can be passed in place. In the
following example, Sun HPF would, by default, copy the data from each array
section A(1:2,:) , B(201 :400), and C(:,3) into temporary arrays with default
distributions before passing control to the subroutine being called.

After returning from the subroutine, preparation would also be made for copying
changed data back from the temporary array into the parent array (A, B, or C) in case
the argument was altered by the subroutine. Thus, two potentially expensive
communication operations will be generated for each call.

This extra communication results from Fortran arguments being interpreted by
default as both input and output arguments, or INTENT(INOUT) arguments, in
Fortran 90 language. One technique to reduce such communication is to inform the
calling program when an argument is being used as an INTENT(IN) (input only) or
an INTENT(OUT) (output only) argument. This is done with the aid of an explicit
interface block for each routine, analogous to function prototypes in C.

real A(100,200), B(400), C(300,3)
call foo(A(1:2,:))
call bar(B(201:400))
call baz(C(:,3))
end

Chapter 6 Performance Notes 6-7

For example:

With the explicit interfaces shown above, the array A(1:2,:) is being passed in as
an input argument only, so no copy out communication operation will be generated
by the compiler—that is, only one copy operation will be needed.

Similarly, since B(201:400) is being used exclusively as an output argument, no
initial communication of data from that array section to a temporary array is
required, and a copy in communication operation can be avoided.

However, as the array argument C(:,3) is used for both input and output, no
reduction in communication results from the third interface block, and two
communication operations will be generated for the call to baz .

In certain special cases, Sun HPF can pass an array section in place, with no
communication required either on entry or exit. This occurs only when the array
section is allocated as a contiguous block of memory across all processes, with all the
block-distributed dimensions of the parent array passed in full.

These conditions can be met if only the right-most collapsed axes are restricted to
single subscripts, or if one collapsed axis has a limited range of subscripts and all
those to the right are further restricted to a single value.

real A(100,200), B(400), C(200,3)

interface
subroutine foo(X)
real, intent(in), dimension(200) :: X
end subroutine foo
end interface

interface
subroutine bar(X)
real, intent(out), dimension(200) :: X
end subroutine bar
end interface

interface
subroutine baz(X)
real, intent(inout), dimension(200) :: X
end subroutine baz
end interface

call foo(A(1:2,:))
call bar(B(201:400))
call baz(C(:,3))
end

6-8 Sun HPF 1.0 Guide • November 1997

In the following examples, all of the conditions for passing an array section in place
are met. Note that all the collapsed dimensions must lie to the right of the block-
distributed dimensions for this particular optimization.

6.6 Operate on Whole Arrays
For distributed arrays, it is usually more efficient to operate on the entire array,
rather than on array sections.

References to individual array elements, such as p(3,1,1) , implies dereferencing
that is more complicated than in F77. It may also require communication, since all
processes may not have copies of that element.

References to array sections may also be inefficient. This is because operations are
performed on the full array even when only a portion of an array is referenced. For
example, p(2:4)= 0 will reference the entire array, even though only three
elements are actually written.

However, array sections that restrict the full range of the array only along collapsed
axes can typically be accessed without operating on the full array. Thus, operations
such as the following:

can be maximally efficient if the arrays C, D, E, and F are distributed as follows:

real C(200,3), D(200,100),E(40,50,10,3,3)
!hpf$ distribute C(block,*)
!hpf$ distribute D(block,*)
!hpf$ distribute E(block,block,*,*,*)

call sub1(C(:,3))
call sub2(D(:,1:50))
call sub3(E(:,:,:,1:2,1))
end

C(:,K,:) = X
D(2:N1:2, :) = D(1:N1:2, :)
E(:,J,K1:K2) = F(:)

!hpf$ distribute C(block,*,block)
!hpf$ distribute D(*,block)
!hpf$ distribute E(block,*,*)
!hpf$ distribute F(block)

Chapter 6 Performance Notes 6-9

6.7 Ratio of Processes to Processors
When running Sun HPF programs, the number of processes should be less than or
equal to the number of processors in the partition where you are running.

It is possible to run a program where the number of processes exceeds the number of
available processors. This is done by invoking tmrun or tmsub with the –W switch,
which causes the processes to wrap. When processes are allowed to wrap, more than
one process may run on a given processor, essentially time-sharing that processor,
with reduction of performance as a likely consequence.

There may be some circumstances where the performance losses due to process
wrapping are acceptable, particularly when developing and debugging your
program.

6.8 Avoid Expensive Operations

Note – The tips described in this section are not specific to Sun HPF programming.
They apply in general to the performance-tuning of any Fortran program.

Some expensive operations can be replaced by more functional equivalents that are
more efficient. Prime examples of this include

■ Square roots – Replace square root operations when possible. For example,
assuming X is not negative, replace

with

■ Divides – Replace divide-by operations when possible. For example, replace

IF (X .GT. SQRT(Y)) THEN

IF (X*X .GT. Y) THEN

XARRAY(:) = XARRAY(:) / SCALAR

6-10 Sun HPF 1.0 Guide • November 1997

with

■ Modulo operations – Replace modulo operations when possible. For example,
replace

with

6.9 Use S3L Functions
S3L is a thread-safe, parallel library of scalable routines that are widely used in
scientific and engineering computing. These routines are optimized for execution on
Sun HPC Systems and should be called from any Sun HPF program that involves

■ Dense-matrix operations

■ LU-factorization and LU-solve routines

■ 1D, 2D, and 3D FFTs

■ Parallel random number generators

■ Matrix inversion

■ Parallel sorting

■ Parallel transpose

■ Array copying

XARRAY(:) = XARRAY(:) * (1 / SCALAR)

IX_EAST = MOD(IX + 1, NX)

IX_EAST = IX + 1; IF (IX_EAST .EQ. NX) IX_EAST = 0

Chapter 6 Performance Notes 6-11

6.10 Use Simple Constructs
Sometimes a general construct can be replaced with a simpler one that may be more
efficient. For example, replace

with

6.11 Avoid General Communications
Where possible, replace statements that indirectly imply communications with more
specific constructs. For example, replace

with

6.12 Compiler Switches
The compiler provides several switches that control its optimization behavior in
various ways. The following combination is recommended for compiling most Sun
HPF applications.

FORALL (I=1:M,J=1:N) X(I,J) = 0

X = 0

FORALL (I=1:N,J=1:N) Y(I,J) = X(J,I)

Y = TRANSPOSE(X)

–fast –fsimple=2

6-12 Sun HPF 1.0 Guide • November 1997

Note – If no other architecture is specified via –xtarget or –xarch , then
–xarch=v8plusa will be used by default.

These recommended performance options are discussed briefly below.

–fast Optimize compilation using a selection of options.
Select the combination of options that optimizes for speed
of execution without excessive compilation time. This
option provides close to the maximum performance for
many realistic applications.
For some critical routines, it may be better to try for more
optimization with the –fast –xO5 combination. If you do
not specify an optimization level with –fast , the default
is –xO4.
This is a convenience option. and it chooses:
- The –native hardware target.
- The –xO4 optimization level..
- The –fsimple=1 option.
- The –dalign option.
- The –xlibmopt option.
- The –depend option.
- The –fns option.
- The –ftrap=%none option.

–fsimple[= n] Select floating-point optimization preferences.
Allow the optimizer to make simplifying assumptions
concerning floating-point arithmetic.
If n is present, it must be 0, 1, or 2.
Set n to 2 to permit aggressive floating-point
optimizations.

–xarch= a Specify the target architecture instruction set. For Sun
Ultra HPC Systems, this must be set to xarch=v8plusa .

–xO[n] Use this switch to specify an optimization level for
compilation. See the hpf man page for details. If –xO is
used without specifying an optimization level n and
–fast is not specified, level 3 optimization is selected by
default.

Chapter 6 Performance Notes 6-13

6.13 Shared Memory Environment Variables
Communication between Sun HPF processes uses the Sun MPI message-passing
library and a shared-memory facility. If your HPF program involves significant
communication, its level of performance will depend to some extent on how much
shared memory is allocated for its message passing requirements.

See Section 3.5.1 in the Sun MPI User’s Guide for more information on allocation of
MPI shared memory buffers.

6.14 Performance Analysis
This section offers tips on how to analyze your HPF program to find opportunities
for improving performance.

6.14.1 Do Repeated Timing Runs
When timing sections of your program, run the program for many passes. The set of
data points this will generate will be much more useful than the information you
would have after a single run. There are many chance-related factors that can skew
the results of a single run. Multiple timing runs provide more reliable results.

Note – Section 4.1, “Timing a Program” describes the Sun HPF timing facility.

6.14.2 Use –Xlist to Analyze Communication
The –Xlist switch causes the compiler to generate a list file with a .lis extension.
This file contains, for each program unit, a section labeled COMMUNICATION
ROUTINES, which identifies by source-line number where communication operations
are invoked. This information can help you decide how to revise the program to
reduce the communication overhead.

6-14 Sun HPF 1.0 Guide • November 1997

For example, if the file foo.hpf contains the following code,

executing the command

will produce the list file foo.lis , which will contain

This shows that the array assignment p = q involves a communication operation.
Because the arrays were made assumed-shape, the compiler had less explicit
information about the arrays than it needed to generate maximally efficient code.
The BLOCKMOVE operation could have been avoided by giving the arrays p and q the
same explicit shapes.

6.14.3 Examine the .f File (for advanced users)
Since the compiler effectively generates F77 nodal code with message-passing calls,
advanced users may wish to examine the F77 source code by compiling with –F77 .
This shows how the compiler is handling your Sun HPF source code.

This intermediate output can be difficult to read. For this reason you may want to
isolate the HPF code fragments of interest and compile only those isolated
subroutines with –F77 .

6.14.4 Profile the Code
The Prism graphical programming and debugging environment provides a powerful
array of tools for profiling and debugging HPF programs. To use Prism’s profiling
capabilities, compile with the –tmprofile switch. This instruments the code with

subroutine sub(p, q)
real p(:), q(:)

!hpf$ distribute (block) :: p, q
p = q
end

% hpf -c -Xlist foo.hpf

COMMUNICATION ROUTINES
Name Line Number (number of times)
BLOCKMOVE 4

Chapter 6 Performance Notes 6-15

timer operations. To generate profiling information, you must then execute the code
under Prism with performance data collection turned on. For example, load Prism
and your executable code as follows:,

In the resulting graphical user interface generated by Prism, pull down the
Performance menu and click on Collection to turn on the collection tool. This enables
Prism to collect profiling information as a.out executes. Then click on Run on the
Execute menu to run a.out .

You can then use Prism’s various graphical display and analysis tools to study the
profiling data. For example:

■ Select Display Data on the Performance menu.

■ In the resulting performance window, select Sort By —> Time from the Options
menu.

This will sort the performance data, listing the most time-consuming resources and
program units first.

Note – Optimized code cannot be profiled.

Refer to the Prism 5.0 User’s Guide and Prism 5.0 Reference Manual for complete
instructions on using Prism.

% prism -np n a.out

6-16 Sun HPF 1.0 Guide • November 1997

7-1

CHAPTER 7

Sun HPF Summary

Sun HPF 1.0 compiler is an implementation of the Subset HPF language.

Sun HPF supports CM Fortran (CMF) backward compatibility with a switchable
CMF mode. This mode allows the processing of both CMF layout directives and
CMF-specific syntax, such as DO TIMES and nested WHEREs.

Sun HPF also provides an EXTRINSIC(F77_LOCAL) interface that allows a global
Sun HPF program to contain node-level programming sections.

Sun HPF supports the Prism debugging and data visualization tool. In addition, the
output code can be instrumented for performance analysis with Prism.

Note – Subset HPF is defined in Annex C of the High Performance Fortran
Language Specification, Version 2.0. For convenience, the relevant portion of the
HPF 2.0 document is reproduced (almost verbatim) in Section 7.1, “Fortran 90
Features in Sun HPF.” and Section 7.1, “Fortran 90 Features in Sun HPF.” See the
section “Related Publications” of the preface for information about accessing this
document on the Internet.

7.1 Fortran 90 Features in Sun HPF
The F90 features that are contained in the Subset HPF language are listed below. For
cross-referencing convenience, the section numbers from the Fortran 90 standard are
given along with the related syntax rule numbers.

■ All Fortran 77 standard conforming features, except for storage and sequence
association.

■ The Fortran 90 definitions of MIL-STD-1753 features:

■ DO WHILE statement (8.1.4.1.1 / R821)

7-2 Sun HPF 1.0 Guide • November 1997

■ END DO statement (8.1.4.1.1 / R825)

■ IMPLICIT NONE statement (5.3 / R540)

■ INCLUDE line (3.4)

■ Scalar bit manipulation intrinsic procedures: IOR, IAND, NOT IEOR, ISHFT,
ISHFTC, BTEST, IBSET, IBCLR, IBITS , MVBITS (13.13)

■ Binary, octal and hexadecimal constants for use in DATA statements
(4.3.1.1 / R407 and 5.2.9 / R533)

■ Arithmetic and logical array features:

■ Array sections (6.2.2.3 / R618–621)

- Subscript triplet notation (6.2.2.3.1)

- Vector-valued subscripts (6.2.2.3.2)

■ Array constructors limited to one level of implied DO (4.5 / R431)

■ Arithmetic and logical operations on whole arrays and array sections (2.4.5 and
7.1)

■ Array assignment (2.4.5, 7.5, 7.5.1.4, and 7.5.1.5)

■ Masked array assignment (7.5.3)

- WHERE statement (7.5.3 / R738)

- Block WHERE . . . ELSEWHERE construct (7.5.3 / R739)

■ Array-valued external functions (12.5.2.2)

■ Automatic arrays (5.1.2.4.1)

■ ALLOCATABLE arrays and the ALLOCATE and DEALLOCATE statements
(5.1.2.4.3, 6.3.1 / R622 and 6.3.3 / R631)

■ Assumed-shape arrays (5.1.2.4.2 / R516)

■ Intrinsic procedures:

The list of intrinsic functions and subroutines presented below is a combination of
two types of routines: those that are entirely new to Fortran and routines that
have always been part of Fortran, but have now been extended to new argument
and result types.

The new or extended definitions of these routines are part of the subset. If a
Fortran 77 routine is not included in this list, only the original Fortran 77
definition is part of the subset.

For all intrinsics that have the optional argument DIM, only actual argument
expressions for DIM that are initialization expressions and therefore deliver a
known shape at compile time are part of the subset. Intrinsics with this constraint
are marked with ** in the list below.

■ The argument presence inquiry function: PRESENT (13.10.1)

Chapter 7 Sun HPF Summary 7-3

■ All the numeric elemental functions: ABS, AIMAG, AINT, ANINT, CEILING ,
CMPLX, CONJG, DBLE, DIM, DPROD, FLOOR, INT , MAX, MIN, MOD, MODULO, NINT,
REAL, SIGN (13.10.2)

■ All mathematical elemental functions: ACOS, ASIN, ATAN, ATAN2, COS, COSH,
EXP, LOG, LOG10, SIN , SINH, SQRT, TAN, TANH (13.10.3)

■ All bit manipulation elemental functions: BTEST, IAND, IBCLR, IBITS , IBSET,
IEOR, IOR, ISHFT, ISHFTC, NOT (13.10.10)

■ All vector and matrix multiply functions: DOT_PRODUCT, MATMUL (13.10.13)

■ All array reduction functions: ALL**, ANY**, COUNT**, MAXVAL**, MINVAL**,
PRODUCT**, SUM** (13.10.14)

■ All array inquiry functions: ALLOCATED, LBOUND**, SHAPE, SIZE **, UBOUND**
(13.10.15)

■ All array construction functions: MERGE, PACK, SPREAD**, UNPACK (13.10.16)

■ The array reshape function: RESHAPE (13.10.17)

■ All array manipulation functions: CSHIFT**, EOSHIFT**, TRANSPOSE (13.10.18)

■ All array location functions: MAXLOC**, MINLOC** (13.10.19)

■ All intrinsic subroutines: DATE_AND_TIME, MVBITS, RANDOM_NUMBER,
RANDOM_SEED, SYSTEM_CLOCK (3.11)

■ Declarations:

■ Type declaration statements, with all forms of type–spec except: kind–selector
and TYPE(type–name), and all forms of attr–spec except access–spec, TARGET, and
POINTER. (5.1 / R501-503, R510)

■ Attribute specification statements: ALLOCATABLE, INTENT, OPTIONAL,
PARAMETER, SAVE (5.2)

■ Procedure features:

■ INTERFACE blocks with no generic–spec or module–procedure–stmt (12.3.2.1)

■ Optional arguments (5.2.2)

■ Keyword argument passing (12.4.1 /R1212)

■ Syntax improvements:

■ Long (31 character) names (3.2.2)

■ Lowercase letters (3.1.7)

■ Use of _ in names (3.1.3)

■ ! initiated comments, both full line and trailing (3.3.2.1)

7-4 Sun HPF 1.0 Guide • November 1997

7.2 HPF Directives and Language
Extensions

7.2.1 Summary of HPF 1.1 Subset
The following directives and language extensions to Fortran 90 were incorporated
into the High Performance Fortran, Version 1.1 Subset. The Sun HPF compiler
recognized and parsed by the Sun HPF compiler:

■ The static data distribution and alignment directives: ALIGN, DISTRIBUTE,
PROCESSORS, and TEMPLATE

■ The forall–statement (but not the forall–construct)

■ The INDEPENDENT directive

■ The SEQUENCE and NO SEQUENCE directives

■ The system inquiry intrinsic functions NUMBER _OF_PROCESSORS and
PROCESSORS_SHAPE

■ The computational intrinsic functions ILEN , and the HPF extended Fortran
intrinsics MAXLOC and MINLOC, with the restriction that any actual argument
expression corresponding to an optional DIM argument must be an initialization
expression

7.2.2 Sun HPF Restrictions
Note that, while the Sun HPF compiler treats all these HPF 1.1 Subset features as
valid source-file code elements, it does not implement the following functionality:

■ Only BLOCK and collapsed distributions are implemented, not cyclic or block-
cyclic distributions. The compiler converts these other distributions to an
appropriate BLOCK distribution.

■ Complex alignments (transposed, collapsed, or replicated axes, and arbitrary
linear alignments).

■ Prescriptively mapped dummy arguments without an explicit interface. If
mapping of a dummy argument (either prescriptive or descriptive) in a
subprogram differs from that of the actual argument, the Sun HPF programmer
must supply an explicit interface for the data to be correctly remapped at the
procedure boundary. Since such dummy arguments are typically declared as
assumed-shape arrays, Fortran 90 rules require an explicit interface in most, but
not all, such cases.

Chapter 7 Sun HPF Summary 7-5

(This is a limitation relative to HPF 1.1 only; Sun HPF is consistent with HPF 2.0
on this issue.)

■ The array location functions, MINLOC and MAXLOC, do not support the optional
DIM argument.

7.3 Additional Fortran 90 Features
Sun HPF supports the Fortran 90 features from Subset HPF. The following additional
standard Fortran 90 features are supported as well. (Fortran 90 references are
included.)

■ CYCLE, EXIT (8.1.4.4 / R834,R835)

■ The construct for integer cases, SELECT CASE ... CASE ... END SELECT (8.1.3.1/
R808-811)

■ Construct names for:

■ IF (8.1.2.1 / R802-R806)

■ SELECT CASE (8.1.3.1 / R808-811)

■ DO, EXIT , CYCLE (8.1.4.1–8.1.4.4.4 / R819-825)

■ Named END statements:

■ END PROGRAMprogram-name (11.1 / R1103)

■ END FUNCTIONfunction-name (12.5.2.2 / R1218)

■ END SUBROUTINEsubroutine-name (12.5.2.3 / R1222)

■ List-directed I/O to internal files

■ KIND support, KIND= in declarations and typed constants for real and integer
values (4.3.1.1–2, 5.1)

■ The functions SELECTED_INT_KIND and
SELECTED_REAL_KIND (13.10.6).

■ Numeric inquiry functions: DIGITS , EPSILON, HUGE, MAXEXPONENT,
MINEXPONENT, PRECISION, RADIX, RANGE, TINY (13.10.8)

■ The function BIT_SIZE (13.13.16)

■ The following specifiers on OPEN and INQUIRE: ACTION= ,
POSITION=, DELM=, PAD= (9.3.4.x, 9.6.1.x)

■ Free source form

■ NAMELIST I/O

Note, however, that Sun HPF does not support modules or derived types.

7-6 Sun HPF 1.0 Guide • November 1997

Sun HPF supports CMF features that are not part of standard Fortran 90 in back-
compatibility mode:

■ DO (N) TIMES

■ Nested WHERE statements

■ The intrinsic functions DIAGONAL, REPLICATE, FIRSTLOC, LASTLOC, PROJECT

■ CMF-type array constructors (repeat factors and triplet-style sequences of
integers)

Note – Triplet-style array constructors are also incorporated into the default (that is,
HPF) mode.

Sun HPF provides two compile-time switches for back compatibility with CMF code:

■ –cmf_compatible enables the compiler to accept CMF syntax, including CMF
directives.

■ –cmf_directives enables the compiler to accept CMF directives in place of
HPF directives so that these may be used together with standard HPF syntax for
nondirectives. Note that CMF and HPF directives may not be mixed in the same
program unit.

Sun HPF supports some extensions to standard Fortran 90 that are in common use:

■ The DOUBLE COMPLEX data type, and the DCMPLX type conversion function.

■ The alternate method indicating KIND via the *N type suffix, as in REAL*8.

■ The floating-point type-checking function ISNAN

8-1

CHAPTER 8

F77_LOCAL Interface

8.1 Introduction
F77_LOCAL is a global/local interface that allows global HPF programs to call local
f77 subroutines. It can be used to perform operations such as system calls on just a
subset of the processors involved in a computation, or to combine message-passing
code with HPF data-parallel code.

The F77_LOCAL interface follows the same HPF rules that apply to all EXTRINSIC
subroutine calls. In particular, local subroutines must be declared as EXTRINSIC
(F77_LOCAL) subroutines in HPF INTERFACE blocks. They must also follow other
HPF guidelines for local subroutines—such as those prescribed for control flow and
data layout.

Message passing via Sun MPI is supported for F77_LOCAL subroutines. However,
no MPI_Init() or MPI_Finalize() calls should appear in F77_LOCAL
subroutines.

All data sharing between global Sun HPF and F77_LOCAL program units is
performed through argument passing. No COMMON blocks may be shared between
global and local routines. Each instance of an F77 subroutine sees a local slice of the
parallel data passed through the F77_LOCAL interface.

8-2 Sun HPF 1.0 Guide • November 1997

8.2 Processor Synchronization
Any HPF call to extrinsic, local subroutines should behave as though all processors
were synchronized before entry to and after exit from the extrinsic procedure. The
–nof77localsync compilation switch disables explicit synchronization before and
after an f77 local call. Synchronization around these calls is enabled by default.

8.3 Linking for F77_LOCAL
If your Sun HPF program uses the F77_LOCAL interface, link with –lf77local .
See Chapter 3 for a discussion of compile/link switches.

8.4 Debugging F77_LOCAL Code with
Prism
Code that uses F77_LOCAL subroutines may still be debugged with Prism, which
will switch between data parallel mode and message-passing mode as appropriate
when crossing the F77_LOCAL boundary. When F77 subroutines are compiled using
Sun’s F77 compiler directly, rather than using the HPF driver, the –xs flag must be
used in conjunction with -g to make sure that the local code is debuggable by Prism.
Compiling local code by using theSun HPF driver is recommended.

8.5 Argument Passing
Nondistributed arguments, such as SEQUENCE arrays, arrays with only collapsed
axes, and scalars, are always passed by reference.

To determine how a distributed-array argument will be passed to an F77_LOCAL
subroutine it is necessary to give the argument a MAP_TO() attribute, by using a
!TMHPF$ directive in the subroutine’s interface block. The syntax for this attribute
resembles the syntax used in DISTRIBUTE, ALIGN, etc. It may appear only in
EXTRINSIC(F77_LOCAL) declarations in INTERFACE blocks. For example:

Chapter 8 F77_LOCAL Interface 8-3

INTERFACE
EXTRINSIC (F77_LOCAL) SUBROUTINE SUB(X,Y,Z,W)
REAL, DIMENSION(:) :: X, Y, Z, W

!HPF$ DISTRIBUTE (BLOCK) :: X, Y, Z, W
!TMHPF$ MAP_TO X(F77_ARRAY)
!TMHPF$ MAP_TO Y(LAYOUT=NO_CHANGE)
!TMHPF$ MAP_TO (HPF_ARRAY) :: Z, W

END SUBROUTINE SUB
END INTERFACE

The three ways of passing distributed-array arguments are:

■ MAP_TO([LAYOUT=]F77_ARRAY)

In the HPF model for local subroutines, each physical processor contains a subset
of array elements that can be locally arranged in a rectangular configuration. If
MAP_TO(F77_ARRAY) is used, this rectangular configuration of these elements—
and these elements only—is locally arranged to have Fortran 77 sequence
association, and this data is passed by reference to the local subroutine. If no
MAP_TO() attribute is specified, then MAP_TO(F77_ARRAY) is assumed.

In short, MAP_TO(F77_ARRAY) causes the local subroutine to see the local slice of
the HPF array as if it were an F77 array of the same rank.

■ MAP_TO([LAYOUT=]NO_CHANGE)

In this case, the local data corresponding to the global array is passed by reference
to the local Fortran 77 subroutine. There is no local rearrangement of the data.
The local programmer must know how the global HPF compiler stores array
elements in memory.

In particular, the subgrid enquiry utilities described in Section 8.7, “Subgrid-
Inquiry Utilities,” must be used by the local subroutine to find the local data.

■ MAP_TO([LAYOUT=]HPF_ARRAY)

In this case, an array descriptor for the global HPF array is passed by reference to
the local subroutine. The local programmer may not directly manipulate the array
descriptor or the array data via this mechanism but may only pass the descriptor
on to HPF-style utilities described in Section 8.6, “HPF-Style Utilities.” In order to
access array data and to use HPF-style utilities, the programmer must pass the
array in question to the F77_LOCAL subroutine twice: once using
MAP_TO(HPF_ARRAY), and once using either MAP_TO(F77_ARRAY) or
MAP_TO(NO_CHANGE).

8-4 Sun HPF 1.0 Guide • November 1997

8.6 HPF-Style Utilities
A global HPF program can always call standard HPF array-inquiry routines and
intrinsics. At the local level, Fortran 77 versions of particular HPF intrinsics and
HPF_LOCAL_LIBRARY routines are supported. Since these routines must be called
from Fortran 77 and not HPF, the following distinctions between the two approaches
must be understood:

■ The prefix F77_ is prepended to the utility name.

■ All arguments are required. None are optional. The effect of omitting an optional
DIM or PROC argument may be attained by specifying a value of –1 for that
argument.

■ Arguments are Fortran 77 sequence associated.

■ The utilities are subroutines—none are functions. When the HPF analogs are
functions, the F77_ counterparts return values in a new argument that is
prepended to the argument list.

■ Arguments corresponding to global arrays should use dummy arguments passed
in from the HPF caller by MAP_TO(HPF_ARRAY).

Otherwise, these routines should behave the same as their counterparts, without the
F77_ prefaces, would in HPF. The set of locally supported Fortran 77 HPF-style
routines consists of the following:

F77_GLOBAL_ALIGNMENT, F77_GLOBAL_DISTRIBUTION, F77_GLOBAL_TEMPLATE

F77_ABSTRACT_TO_PHYSICAL, F77_PHYSICAL_TO_ABSTRACT,
F77_LOCAL_TO_GLOBAL, F77_GLOBAL_TO_LOCAL

F77_LOCAL_BLKCNT, F77_LOCAL_LINDEX, F77_LOCAL_UINDEX

F77_GLOBAL_SHAPE, F77_GLOBAL_SIZE

F77_SHAPE, F77_SIZE

F77_MY_PROCESSOR

See Annex G, “The FORTRAN 77 Local Library,” in the High Performance Fortran
Language Specification, Version 2.0, for detailed descriptions of these subroutines. See
the section “Related Publications” of the preface for information about accessing this
document on the Internet.

Chapter 8 F77_LOCAL Interface 8-5

8.7 Subgrid-Inquiry Utilities
The subgrid-inquiry utilities provide information about each processor’s subgrid of
a distributed array. This information may be obtained in the HPF code using
TMHPF_SUBGRID_INFO and passed to the F77_LOCAL code, or obtained in the
F77_LOCAL code using F77_SUBGRID_INFO. The former approach makes it easier
to declare the subgrids as arrays in the local code, while the latter approach keeps
the HPF code from being cluttered with details of F77_LOCAL programming.To use
the subgrid-inquiry utility, include the file tmc/tmhpflib.h .

8.7.1 TMHPF_SUBGRID_INFO

The format of the HPF subgrid-inquiry utility is

TMHPF_SUBGRID_INFO

(ARRAY, IERR, DIM, LB, UB, STRIDE, LB_EMBED, UB_EMBED, AXIS_MAP)

The arguments to TMHPF_SUBGRID_INFO are described in TABLE 8-1.

On any processor, LB and UB return the lower bound(s) and upper bound(s) of the
array section that is mapped to the processor. Bounds are described in terms of the
global indices of the HPF array, assuming such indices are one-based.

If MAP_TO(NO_CHANGE) is used to pass a distributed array to an F77_LOCAL
subroutine, then the local programmer must know how the global compiler stores
array elements in local memory. One model for local storage is that the local array

TABLE 8-1 TMHPF_SUBGRID_INFO Argument Descriptions

ARRAY A distributed array of any type, size, or shape.

IERR An error-status return variable, which is zero upon successful
return and nonzero otherwise.

DIM An optional argument indicating the axis along which the
parameters are desired — if no axis is specified, parameters are
returned for all axes.

LB, UB, STRIDE,
LB_EMBED,
UB_EMBED,
AXIS_MAP

All optional, INTENT (OUT) , integer arrays.
1. If a DIM argument is given, they are rank-one arrays of size

NUMBER_OF_PROCESSORS() and BLOCK distribution.
2. If no DIM argument is given, each of them has a second,

collapsed axis whose extent is at least the rank of the global
array.

8-6 Sun HPF 1.0 Guide • November 1997

section is “embedded” in an array that is sequence associated in local memory. If
LB_EMBED and UB_EMBED are specified, then they return the lower and upper
bounds of the embedding array.

The IERR argument returns a nonzero value if an error is encountered. For example,
it is an error if the DIM argument exceeds the rank of ARRAY, or if LB_EMBED or
UB_EMBED are specified when local storage of the subgrid cannot be expressed in
terms of an embedding array.

Note – The STRIDE and AXIS_MAP arguments return information that is not
interesting for the range of distributions supported by this release of the compiler.
They are included for possible future use.

8.7.2 F77_SUBGRID_INFO

The locally callable version of subgrid-inquiry routine is

F77_SUBGRID_INFO
(ARRAY, IERR1, IERR2, DIM, LB, UB, STRIDE, LB_EMBED, UB_EMBED,
AXIS_MAP)

This routine follows the conventions of the other F77_ routines except that two error
arguments appear instead of the one that appears in the global version. At the local
level, IERR1 indicates the error status for LB and UB (and STRIDE) while IERR2
indicates the error status for LB_EMBED and UB_EMBED (and AXIS_MAP).

8.8 Programming Examples
This section provides examples of two implementations of the F77_LOCAL interface
in a Sun HPF program.

Each of these can be compiled and linked using

hpf –c global.hpf
hpf –c local.f
hpf global.o local.o –lf77local

Chapter 8 F77_LOCAL Interface 8-7

8.8.1 Using MAP_TO(F77_ARRAY)

The first example uses the default MAP_TO(F77_ARRAY) attribute. It also shows the
MAP_TO(HPF_ARRAY)attribute used for inquiry routines at the local level. We show
the interface block separately in the file interface.hpf . The two local subroutines
are declared EXTRINSIC(F77_LOCAL) and the MAP_TO attribute is used to describe
how the arguments are to be passed. In the interface to local_sum we see that the
default method of MAP_TO(F77_ARRAY) is also used.

The global program includes the interface block, sums the array in the usual HPF
style, determines the extents of the local subgrids, and calls the two local
subroutines.

The first local subroutine, local_init , uses the distributed array’s descriptor to get
the global size of the first dimension, which is then used in the computation of the
array elements. Notice that the array is declared as a two-dimensional local f77
array, and indexed as such.

The second subroutine, local_sum , treats the local array as a one-dimensional
array, as is allowed with f77 arrays.

interface.hpf interface
 extrinsic(f77_local) subroutine local_init
 & (lb1, ub1, lb2, ub2, x, descrx)

 integer, dimension(:) :: lb1, ub1, lb2, ub2
 real x(:,:), descrx(:,:)

!hpf$ distribute(block) :: lb1, ub1, lb2, ub2
!hpf$ distribute(block,block) :: x, descrx
!tmhpf$ map_to(f77_array) :: x ! not needed (default)
!tmhpf$ map_to(hpf_array) :: descrx
 end
 extrinsic(f77_local) subroutine local_sum(n,x,r)
 integer n(:)
 real x(:,:), r(:)
!hpf$ distribute n(block)
!hpf$ distribute x(block,block)
!hpf$ distribute r(block)
 end
 end interface

8-8 Sun HPF 1.0 Guide • November 1997

global.hpf program global
 call example1()
 end program global

 subroutine example1()
 include 'tmc/tmhpflib.h'
! declare the data array and a verification copy
 integer, parameter :: nx = 24, ny = 24
 real, dimension(nx,ny) :: x, y
!hpf$ distribute(block,block) :: x, y
 real partial_sum(number_of_processors())
!hpf$ distribute partial_sum(block)

! local subgrid parameters are declared per processor
! for a rank–two array
 integer, dimension(number_of_processors(),2) ::
 & lb, ub, number
!hpf$ distribute(block,*) :: lb, ub, number

! define interfaces
 include 'interface.hpf'

! determine result using only global HPF
 ! initialize values
 forall (i=1:nx,j=1:ny) x(i,j) = i + (j–1) * nx
 ! determine and report global sum
 print *, 'global HPF result: ',sum(x)

! determine result using local subroutines
 ! initialize values
 call TMHPF_subgrid_info(y, ierr, lb=lb, ub=ub)
 if (ierr.ne.0) stop 'error!'
 call local_init(lb(:,1), ub(:,1), lb(:,2), ub(:,2),
 & y, y)
 ! determine and report global sum
 number = ub – lb + 1
 call local_sum(number(:,1)*number(:,2),
 & y, partial_sum)
 print *, 'F77_LOCAL result #1 : ',sum(partial_sum)
 end subroutine test1

Chapter 8 F77_LOCAL Interface 8-9

8.8.2 Using MAP_TO(NO_CHANGE)

The second example illustrates an alternate way to perform the initialization part of
the first example. It demonstrates use of the MAP_TO(NO_CHANGE) attribute as well
as the addressing of data with respect to embedding arrays.

Notice that this time the call to HPF_SUBGRID_INFO obtains embedding array
information, which is also passed to the local procedure, local_embedded . This
information is used to declare the array in the local subroutine, but the actual extents
are used for subgrid looping.

local.f :
local_init()

 subroutine local_init(lb1, ub1, lb2, ub2, x, descrx)
 integer lb1, ub1, lb2, ub2
 real x (lb1 : ub1, lb2 : ub2)
 integer descrx (*)
! get the global extent of the first axis
! HPF_LOCAL's GLOBAL_SIZE with an "F77_" prefix
 call F77_global_size (nx, descrx, 1)
! initialize elements of the array
 do j = lb2, ub2
 do i = lb1, ub1
 x(i,j) = i + (j–1) * nx
 end do
 end do
 end

local.f :
local_sum()

 subroutine local_sum(n, x, r)
! correspondence to the global indices is not important
! only the total size of the subgrid is passed in
 real x(n)
 r = 0.
 do i = 1, n
 r = r + x(i)
 end do
 end

8-10 Sun HPF 1.0 Guide • November 1997

interface.hpf interface
 extrinsic(f77_local) subroutine local_embedded(
 & lb1, ub1, lb_embed1, ub_embed1,
 & lb2, ub2, lb_embed2, ub_embed2, x, descx)
 integer, dimension(:) ::
 & lb1, ub1, lb_embed1, ub_embed1,
 & lb2, ub2, lb_embed2, ub_embed2
 real, dimension(:,:) :: x, descx
!hpf$ distribute (block) :: lb1, ub1, lb_embed1, ub_embed1
!hpf$ distribute (block) :: lb2, ub2, lb_embed2, ub_embed2
!hpf$ distribute (block,block) :: x, descx
!tmhpf$ map_to x(no_change)
!tmhpf$ map_to descx(hpf_array)
 end
 end interface

Chapter 8 F77_LOCAL Interface 8-11

global.hpf program global
 call example2()
 end program global

 subroutine example2()
! This example performs only the initialization part of the
! first example. It illustrates use of the MAP_TO(NO_CHANGE)
! attribute and the addressing of data in terms of "embedding
! arrays."
 include 'tmc/tmhpflib.h'
 integer, parameter :: nx = 24, ny = 24
 real, dimension(nx,ny) :: y
!hpf$ distribute(block,block) :: y
! local subgrid parameters are declared per processor
! for a rank–two array
 integer, dimension(number_of_processors(),2) ::
 & lb, ub, lb_embed, ub_embed
!hpf$ distribute(block,*) :: lb, ub, lb_embed, ub_embed
! define interfaces
 include 'interface.hpf'
! initialize values
 call TMHPF_subgrid_info(y, ierr,
 & lb=lb, lb_embed=lb_embed,
 & ub=ub, ub_embed=ub_embed)
 if (ierr.ne.0) stop 'error!'
 call local_embedded(
 & lb(:,1), ub(:,1), lb_embed(:,1), ub_embed(:,1),
 & lb(:,2), ub(:,2), lb_embed(:,2), ub_embed(:,2),
 & y, y)

 end subroutine example2

8-12 Sun HPF 1.0 Guide • November 1997

local.f subroutine local_embedded(
 & lb1, ub1, lb_embed1, ub_embed1,
 & lb2, ub2, lb_embed2, ub_embed2,
 & x, descx)
 integer lb1, ub1, lb_embed1, ub_embed1
 integer lb2, ub2, lb_embed2, ub_embed2
! the subgrid has been passed in its "embedded" form
 real x (lb_embed1 : ub_embed1, lb_embed2 : ub_embed2)
! we have also passed its descriptor
 integer descx(*)
! get the global extent of the first axis
! HPF_LOCAL's GLOBAL_SIZE with an "F77_"prefix
 call F77_global_size(nx,descx,1)
! otherwise, initialize elements of the array
! loop only over actual array elements
 do j = lb2, ub2
 do i = lb1, ub1
 x(i,j) = i + (j–1) * nx
 end do
 end do
 end

interface.hpf interface
 extrinsic(f77_local) subroutine local_init
 & (lb1, ub1, lb2, ub2, x, descrx)

 integer, dimension(:) :: lb1, ub1, lb2, ub2
 real x(:,:), descrx(:,:)

!hpf$ distribute(block) :: lb1, ub1, lb2, ub2
!hpf$ distribute(block,block) :: x, descrx
!tmhpf$ map_to(f77_array) :: x ! not needed (default)
!tmhpf$ map_to(hpf_array) :: descrx
 end
 extrinsic(f77_local) subroutine local_sum(n,x,r)
 integer n(:)
 real x(:,:), r(:)
!hpf$ distribute n(block)
!hpf$ distribute x(block,block)
!hpf$ distribute r(block)
 end
 end interface

9-1

CHAPTER 9

HPF Intrinsic Functions and the
HPF Library

9.1 HPF Intrinsic Functions

9.1.1 System Inquiry Intrinsic Functions

9.1.1.1 Integer Function PROCESSORS_SHAPE()

This function generally returns a rank-one array of implementation-dependent size.
Current implementation returns an array of one element equal to the value returned
by NUMBER_OF_PROCESSORS (see below).

9.1.1.2 Integer Function NUMBER_OF_PROCESSORS(DIM)

The DIM argument is optional.The result will be the same as returned by
CMF_NUMBER_OF_PROCESSORS. Also, any value of DIM other than 1 will be an
error, since PROCESSORS_SHAPE() has extent one.

9-2 Sun HPF 1.0 Guide • November 1997

9.1.2 Elemental Intrinsics Function
ILEN(I)

Takes an integer (scalar or array) argument I, and returns a (scalar or conformable
array) integer result representing the minimum number of bits to represent the given
value as a 2’s complement binary number.

9.1.3 Array Location Intrinsic Functions
MAXLOC(ARRAY, DIM, MASK)
MINLOC(ARRAY, DIM, MASK)

9.2 The HPF Library
Sun HPF supports the full HPF Library, which consists of the following functions
and subroutines.

9.2.1 Bit Manipulation Functions
LEADZ(I) , POPCNT(I) , POPPAR(I)

9.2.2 Mapping Inquiry Subroutines
HPF_ALIGNMENT(ALIGNEE, LB, UB, STRIDE, AXIS_MAP, IDENTITY_MAP,
DYNAMIC, NCOPIES)

HPF_TEMPLATE(ALIGNEE, TEMPLATE_RANK, LB, UB, AXIS_TYPE, AXIS_INFO,
NUMBER_ALIGNED, DYNAMIC)

HPF_DISTRIBUTION(DISTRIBUTEE, AXIS_TYPE, AXIS_INFO,
PROCESSORS_RANK, PROCESSORS_SHAPE)

All arguments but the first are optional.

Chapter 9 HPF Intrinsic Functions and the HPF Library 9-3

9.2.3 Array Reduction Functions
In the following functions, ARRAY is an array of integer type; the arguments DIM
and MASK are optional.

ALL(ARRAY, DIM, MASK) Bitwise AND reduction applied to integer data.
IANY(ARRAY, DIM, MAS) Bitwise OR reduction applied to integer data.
IPARITY(ARRAY, DIM, MASK) Bitwise EOR reduction applied to integer data.

In the following function, MASK is an array of logical type; the argument DIM is
optional.

PARITY(MASK, DIM) Logical EOR reduction.

9.2.4 Array Combining Scatter Functions
In the following functions, all arguments are required.

FUNCTIONXXX_SCATTTER(MASK, BASE, INDX1, ..., INDXn)
where XXX = ALL, ANY, COUNT, PARITY.

In the following functions, the argument MASK is optional.

FUNCTIONYYY_SCATTTER(ARRAY, BASE, INDX1, ..., INDXn, MASK)
where YYY = COPY, IALL , IANY, IPARITY , MAXVAL, MINVAL, PRODUCT, or SUM.

These functions return arrays of the same data type, kind, and shape as input
argument BASE. The number n of INDX arrays must equal the rank of array BASE
and the result.

9.2.5 Array Prefix and Suffix Functions
In the following functions, the arguments DIM and SEGMENT are optional. They
both return arrays of the same data type, kind, and shape as input argument ARRAY.

FUNCTIONXXX_PREFIX/SUFFIX(ARRAY, DIM, SEGMENT)
where XXX = COPY.

In the following functions, the arguments DIM, MASK, SEGMENT, and EXCLUSIVE
are optional. All return arrays of the same data type, kind, and shape as input
argument ARRAY.

FUNCTIONYYY_PREFIX/SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
where YYY = IALL , IANY, IPARITY , MAXVAL, MINVAL, PRODUCT, SUM.

9-4 Sun HPF 1.0 Guide • November 1997

In the following functions, the arguments DIM, SEGMENT, and EXCLUSIVE are
optional. Except for COUNT, which returns an array of type INTEGER, these
functions return arrays of type LOGICAL.

FUNCTIONZZZ_PREFIX/SUFFIX(MASK, DIM, SEGMENT, EXCLUSIVE)
where ZZZ = ALL, ANY, COUNT, or PARITY.

9.2.6 Array Ranking Functions
In the following functions, ARRAY must be of integer, real, or double-precision type;
the argument DIM is optional.

FUNCTION GRADE_UP(ARRAY, DIM)
FUNCTION GRADE_DOWN(ARRAY, DIM)

When DIM is present, the result array is of the same type and shape as the argument
ARRAY.

When DIM is not present, the result array is of the same type as the argument
ARRAY, but is two-dimensional, with shape (/ r, s/), where r is the rank of ARRAY,
and s is the number of elements of ARRAY.

9.2.7 Array Sorting Functions
In the following functions, ARRAY must be of integer, real, or double-precision type;
the argument DIM is optional.

FUNCTION SORT_UP(ARRAY, DIM)
FUNCTION SORT_DOWN(ARRAY, DIM)

These functions return an array containing the same elements as ARRAY, but
reordered into increasing or decreasing numerical sequence either:

■ Within sections parallel to the DIM axis

■ Throughout the array, following array element order

The result array is of same type and same shape as the argument ARRAY.

9.3 HPF Library Exceptions and Other Notes
This section identifies a few Sun HPF exceptions to the HPF Library. It also indicates
some related notes of interest.

Chapter 9 HPF Intrinsic Functions and the HPF Library 9-5

■ The HPF Library supports arrays of up to rank 7, the maximum supported by the
HPF standard.

■ The library subroutine HPF_TEMPLATE has three optional arguments for
which we provide only default results: LB, UB, and NUMBER_ALIGNED.
A warning will be given at run time if any of these outputs are requested.

■ All of the routines currently expect array arguments of arbitrary size to
be distributed parallel arrays rather than serial ones. The following
exceptions currently apply to rank one array arguments that need to have at most
seven elements for the mapping inquiry functions:

■ HPF_ALIGNMENT:

Optional arguments LB, UB, STRIDE, and AXIS_MAP must be serial arrays.

■ HPF_DISTRIBUTION:

Optional arguments AXIS_TYPE, AXIS_INFO, and PROCESSORS_SHAPE
must be serial arrays.

■ HPF_TEMPLATE:

Optional arguments LB, UB, AXIS_TYPE, and AXIS_INFO must be serial
arrays.

Additionally, the following routines require the indicated arguments to be
distributed parallel arrays, where the current HPF standard allows any array or
scalar arguments.

■ HPF_ALIGNMENT

ALIGNEE must be a parallel array.

■ HPF_DISTRIBUTION

DISTRIBUTEE must be a parallel array.

■ HPF_TEMPLATE

ALIGNEE must be a parallel array.

For the {ALL/ANY/COPY/COUNT/IALL /IANY/IPARITY /MAXVAL/MINVAL/
PARITY/PRODUCT/SUM}_SCATTER routines, the INDX(I) arguments must be
parallel arrays.

9-6 Sun HPF 1.0 Guide • November 1997

10-1

CHAPTER 10

The HPF/CMF Utility Library

A supplementary library of compatible CM Fortran utility routines is supplied with
the Sun HPF compiler as part of the compiler ’s support for CMF-legacy programs.
The routines contained in this supplementary library are listed in TABLE 10-1.

You are encouraged to replace calls to these routines with equivalent Sun HPF code
wherever possible. For example replace a call to CMF_FE_ARRAY_TO_CM(A,B) with
the array assignment statement A = B for a parallel array A and a serial array B. In
many cases, HPF library routines offer equivalent functionality to those in the CMF
utility library.

TABLE 10-1 CMF Utility Library Routines Supported by Sun HPF

CMF Utility Library Routines Equivalent Sun HPF Routine or Code

cmf_allocate_table Table lookup utilities should be replaced
with FORALL loops (see note).

cmf_architecture Use a site-dependent substitute.

cmf_aref_1d Table lookup utilities should be replaced
with FORALL loops (see note).

cmf_aset_1d Table lookup utilities should be replaced
with FORALL loops (see note).

cmf_cm_array_from_file Use Fortran unformatted reads and writes.

cmf_cm_array_from_file_so Use Fortran unformatted reads and writes.

cmf_cm_array_to_file Use Fortran unformatted reads and writes.

cmf_cm_array_to_file_so Use Fortran unformatted reads and writes.

10-2 Sun HPF 1.0 Guide • November 1997

cmf_deallocate_table Table lookup utilities should be replaced
with FORALL loops (see note).

cmf_deposit_grid_coordinate First remove send addresses from the code
and then use array indices.

cmf_describe_array Use HPF_DISTRIBUTION, if possible.

cmf_describe_array_geometry Use HPF_DISTRIBUTION, if possible.

cmf_fe_array_from_cm B = A , where B is serial.

cmf_fe_array_to_cm B = A , where A is serial.

cmf_file_close Use Fortran CLOSE.

cmf_file_lseek No known substitute.

cmf_file_open Use Fortran OPEN, perhaps with
FORM=PHYSICAL.

cmf_file_open_readonly Use Fortran OPEN, perhaps with
FORM=PHYSICAL.

cmf_file_rewind Use Fortran REWIND.

cmf_file_truncate No known substitute.
Note: When truncating to nonzero,
smaller size may give error.

cmf_file_unlink Use Fortran CLOSE with STATUS=DELETE.

cmf_lookup_in_table Table lookup utilities should be replaced
with FORALL loops and replicated table
(see note).

cmf_make_send_address First remove send addresses from the code
and then use array indices.

cmf_my_send_address First remove send addresses from the code
and then use array indices.

cmf_order Use GRADE_UP, if possible.

cmf_random Use RANDOM_NUMBER or S3L random
number generator functions.

TABLE 10-1 CMF Utility Library Routines Supported by Sun HPF (Continued) (Continued)

CMF Utility Library Routines Equivalent Sun HPF Routine or Code

Chapter 10 The HPF/CMF Utility Library 10-3

cmf_randomize Use RANDOM_SEED or S3L random
number generator functions.

cmf_rank No known substitute.

cmf_scan_add Use SUM_PREFIX or SUM_SUFFIX if
possible.

cmf_scan_copy Use COPY_PREFIX or COPY_SUFFIX if
possible.

cmf_scan_iand Use IALL_PREFIX or IALL_SUFFIX if
possible.

cmf_scan_ieor Use IPARITY_PREFIX or
IPARITY_SUFFIX if possible.

cmf_scan_ior Use IANY_PREFIX or IANY_SUFFIX if
possible.

cmf_scan_max Use MAXVAL_PREFIX or MAXVAL_SUFFIX
if possible.

cmf_scan_min Use MINVAL_PREFIX or MINVAL_SUFFIX
if possible.

cmf_send_add First remove send addresses from the code
and then use SUM_SCATTER.

cmf_send_iand First remove send addresses from the code
and then use IALL_SCATTER.

cmf_send_ieor First remove send addresses from the code
and then use IPARITY_SCATTER.

cmf_send_ior First remove send addresses from the code
and then use IANY_SCATTER.

cmf_send_max First remove send addresses from the code
and then use MAXVAL_SCATTER.

TABLE 10-1 CMF Utility Library Routines Supported by Sun HPF (Continued) (Continued)

CMF Utility Library Routines Equivalent Sun HPF Routine or Code

10-4 Sun HPF 1.0 Guide • November 1997

Note – Replacing table lookup utilities with FORALL loops may not improve
performance significantly, but does contribute to making the CMF program conform
more closely to HPF specifications.

cmf_send_min First remove send addresses from the code
and then use MINVAL_SCATTER.

cmf_send_overwrite First remove send addresses from the code
and then use COPY_SCATTER.

cmf_sort Use S3L sort routine, if possible. Or
GRADE_UP with code to permute the
result, if possible.

TABLE 10-1 CMF Utility Library Routines Supported by Sun HPF (Continued) (Continued)

CMF Utility Library Routines Equivalent Sun HPF Routine or Code

A-1

APPENDIX A

IOSTAT Message Summary

TABLE A-1 lists the Fortran I/O status messages.

TABLE A-1 Fortran I/O Status Message Summary

Error
Number

Error
Code Decription

-1 FI_IOSTAT_ENDFIL end of file

00 FI_IOSTAT_NOTERR no error

01 FI_IOSTAT_NOTFORSPE not FORTRAN-specific error

02 FI_IOSTAT_NOTIMP not implemented

03 FI_IOSTAT_IGNORED ignored requested disposition

04 FI_IOSTAT_IGNNOTDEL ignored requested
disposition, file not
deleted.

17 FI_IOSTAT_SYNERRNAM syntax error in NAMELIST
input.

18 FI_IOSTAT_TOOMANVAL too many values for NAMELIST
variable

19 FI_IOSTAT_INVREFVAR invalid reference to variable

20 FI_IOSTAT_REWERR REWIND error

21 FI_IOSTAT_DUPFILSPE duplicate file specifications

22 FI_IOSTAT_INPRECTOO input record too long

23 FI_IOSTAT_BACERR BACKSPACE error

24 FI_IOSTAT_ENDDURREA end-of-file during read

25 FI_IOSTAT_RECNUMOUT record number outside range

26 FI_IOSTAT_OPEDEFREQ OPEN or DEFINE FILE required

A-2 Sun HPF 1.0 Guide • November 1997

27 FI_IOSTAT_TOOMANREC too many records in I/O
statement

28 FI_IOSTAT_CLOERR close error

29 FI_IOSTAT_FILNOTFOU file not found

30 FI_IOSTAT_OPEFAI open failure

31 FI_IOSTAT_MIXFILACC mixed file access modes

32 FI_IOSTAT_INVLOGUNI invalid logical unit number

33 FI_IOSTAT_ENDFILERR ENDFILE error

34 FI_IOSTAT_UNIALROPE unit already open

35 FI_IOSTAT_SEGRECFOR segmented record format error

36 FI_IOSTAT_ATTACCNON attempt to access non-
existent record

37 FI_IOSTAT_INCRECLEN inconsistent record length

38 FI_IOSTAT_ERRDURWRI error during write

39 FI_IOSTAT_ERRDURREA error during read

40 FI_IOSTAT_RECIO_OPE recursive I/O operation

41 FI_IOSTAT_INSVIRMEM insufficient virtual memory

42 FI_IOSTAT_NO_SUCDEV no such device

43 FI_IOSTAT_FILNAMSPE file name specification error

44 FI_IOSTAT_INCRECTYP inconsistent record type

45 FI_IOSTAT_KEYVALERR keyword value error

46 FI_IOSTAT_INCOPECLO inconsistent OPEN/CLOSE
parameters

47 FIO_DEF(FI_IOSTAT_WRIREAFIL write to READONLY file

48 FIO_DEF(FI_IOSTAT_INVARGFOR invalid argument for IO
library

49 FIO_DEF(FI_IOSTAT_INVKEYSPE invalid key specification

50 FIO_DEF(FI_IOSTAT_INCKEYCHG inconsistent or duplicate key

51 FIO_DEF(FI_IOSTAT_INCFILORG inconsistent file
organization

52 FIO_DEF(FI_IOSTAT_SPERECLOC specified record locked

53 FIO_DEF(FI_IOSTAT_NO_CURREC no current record

54 FIO_DEF(FI_IOSTAT_REWRITERR REWRITE error

TABLE A-1 Fortran I/O Status Message Summary (Continued)

Appendix A IOSTAT Message Summary A-3

55 FIO_DEF(FI_IOSTAT_DELERR DELETE error

56 FIO_DEF(FI_IOSTAT_UNLERR UNLOCK error

57 FIO_DEF(FI_IOSTAT_FINERR FIND error

59 FIO_DEF(FI_IOSTAT_LISIO_SYN list-directed I/O syntax
error

60 FIO_DEF(FI_IOSTAT_INFFORLOO infinite format loop

61 FIO_DEF(FI_IOSTAT_FORVARMIS format/variable-type mismatch

62 FIO_DEF(FI_IOSTAT_SYNERRFOR syntax error in format

63 FIO_DEF(FI_IOSTAT_OUTCONERR output conversion error

64 FIO_DEF(FI_IOSTAT_INPCONERR input conversion error

66 FIO_DEF(FI_IOSTAT_OUTSTAOVE output statement overflows
record

67 FIO_DEF(FI_IOSTAT_INPSTAREQ input statement requires
too much data

68 FIO_DEF(FI_IOSTAT_VFEVALERR variable format expression
value error

70 FIO_DEF(FI_IOSTAT_INTOVF integer overflow

71 FI_IOSTAT_INTDIV integer divide by zero

72 FI_IOSTAT_FLTOVF floating overflow

73 FI_IOSTAT_FLTDIV floating/decimal divide by
zero

74 FI_IOSTAT_FLTUND floating underflow

77 FI_IOSTAT_SUBRNG subscript out of range

80 FI_IOSTAT_WRONUMARG wrong number of arguments

81 FI_IOSTAT_INVARGMAT invalid argument to math
library

82 FI_IOSTAT_UNDEXP undefined exponentiation

83 FI_IOSTAT_LOGZERNEGF logarithm of zero or
negative value

84 FI_IOSTAT_SQUROONEG SQUROONEG square root of
negative value

87 FI_IOSTAT_SIGLOSMAT significance lost in math
library

88 FI_IOSTAT_FLOOVEMAT floating overflow in math
library

TABLE A-1 Fortran I/O Status Message Summary (Continued)

A-4 Sun HPF 1.0 Guide • November 1997

89 FI_IOSTAT_FLOUNDMAT floating underflow in math
library

93 FI_IOSTAT_ADJARRDIM adjustable array dimension
error

94 FI_IOSTAT_NEGVEC negative vector length in
array math function

95 FI_IOSTAT_DOMERR invalid argument to array
math function

96 FI_IOSTAT_OVEEXE floating point overflow in
array math function

97 FI_IOSTAT_SIGLOS loss of significance in
array math function

98 FI_IOSTAT_DENNUM denormalized floating
pointnumber detected in array
math function

99 FI_IOSTAT_NOTCM Formatted IO is not
supported on PFS files

TABLE A-1 Fortran I/O Status Message Summary (Continued)

Index-1

Index

A
ALIGN directive, 2-3
array combining scatter functions

XXX_SCATTER, 9-3
array location intrinsic functions

MAXLOC, 9-2
MINLOC, 9-2

array prefix and suffix functions
XXX_PREFIX, 9-3
XXX_SUFFIX, 9-3

array ranking functions
GRADE_DOWN, 9-4
GRADE_UP, 9-4

array reduction functions
ALL, IANY, IPARITY, PARITY, 9-3

array syntax, 2-3
arrays

default treatment, 2-2
distributed, 2-1
nondistributed, 2-2
nonsequential, 2-1
sequential, 2-2

B
bit manipulation functions

LEADZ, 9-2
POPCNT, 9-2
POPPAR, 9-2

C
C preprocessor

used with -D switch, 4-5
CM Fortran library

header files, 3-5
linking, 3-5

CMF extensions not in F90
DO N TIMES, 7-6

CMF extensions to F90, 7-6
DCMPLX type conversion, 7-6
DOUBLE COMPLEX data type, 7-6
KIND *N support, 7-6
type checking function ISNAN, 7-6

CMF extensions to Subset HPF
CMF-style array constructors, 7-6
intrinsic functions DIAGONAL, REPLICATE,

FIRSTLOC, LASTLOC, PROJECT, 7-6
layout directives in CMF mode, 7-6
nested WHERE statements, 7-6

CMF utility library, 10-1, A-1
collapsed dimensions, 2-5
compiler directives

Subset HPF 1.1 list, 2-3
compiling

incrementally, 3-8
simple example, 3-7
using the cpp preprocessor, 3-8, 4-5

compiling CMF sources
directly to HPF, 3-7

D
debugging, 3-8

F77 souce level, 3-8
HPF source level, 3-8

directives. See compiler directives
DISTRIBUTE directive

block distribution, 2-4
block(N) distribution, 2-5
brief definition, 2-3
collapsed dimensions, 2-5
types of data mapping available, 2-4
use in F77 to HPF transformation example, 2-11

Index-2 Sun HPF 1.0 Guide • November 1997

E
elemental intrinsics function

ILEN, 9-2

F
F77 to F90 transformation example, 2-8 to 2-10
F77 to HPF transformation example, 2-8 to 2-12
F77_LOCAL interface, 8-1

argument passing, 8-2
array-inquiry utilities, 8-4
MAP_TO([LAYOUT=]F77_ARRAY, 8-3
MAP_TO([LAYOUT=]HPF_ARRAY), 8-3
MAP_TO([LAYOUT=]NO_CHANGE), 8-3
MAP_TO(F77_ARRAY) program example, 8-7
MAP_TO(NO_CHANGE) program example, 8-

9
processor synchronization, 8-2
program example, 8-6
subgrid-inquiry utilities, 8-5

F77_LOCAL library
linking, 3-3

F90 additions to Subset HPF, 7-5
construct name support, 7-5
CYCLE, EXIT, 7-5
free source form, 7-5
function BIT_SIZE, 7-5
functions SELECTED_INT_KIND, 7-5
functions SELECTED_REAL_KIND, 7-5
integer case construct, 7-5
KIND support, 7-5
listdirected I/O to internal files, 7-5
named END statements, 7-5
NAMELIST I/O, 7-5
numeric inquiry functions, 7-5

F90 feature summary
arithmetic and logical features, 7-2
declarations, 7-3
F77 support, 7-1
intrinsic procedures, 7-2
MILSTD1753 support, 7-1
procedure features, 7-3
syntax improvements, 7-3

filename extensions, list, 3-2

H
header file directory, 3-3
header files

CM Fortran library, 3-5
HPF library, 3-3
S3L, 3-5
timer routines, 3-5

hpf
command syntax, 3-1
source file filename extensions, 3-2

HPF intrinsic functions, 9-1
system inquiry, 9-1

HPF library
header files, 3-3
how to link, 3-3

HPF library exceptions
default HPF_TEMPLATE arguments, 9-5
exceptions to arbitrary size array arguments, 9-5

HPF library support, 9-2
array combining scatter functions, 9-3
array prefix and suffix functions, 9-3
array ranking functions, 9-4
array reduction functions, 9-3
bit manipulation functions, 9-2
mapping inquiry subroutines, 9-2

HPF library, linking, 3-3

I
INDEPENDENT directive, 2-4

L
-lhpf switch, 3-3
linking

CM Fortran library, 3-5
F77_LOCAL library, 3-3
HPF library, 3-3
simple example, 3-7

Index-3

M
mapping inquiry subroutines

HPF_ALIGNMENT, 9-2
HPF_DISTRIBUTING, 9-2
HPF_TEMPLATE, 9-2

maximum array rank, 9-5

O
optimization

explicit guides for compiler, 2-3
implicit clues for compiler, 2-3

optimization tips
avoid array sections, 6-8
avoid expensive operations, 6-9
avoid general communications, 6-11
map arrays explicitly, 6-5
minimize communication, 6-4
provide compiler with explicit directions, 6-4
use optimization switches, 6-11
use parallel language constructions, 6-1
use S3L functions, 6-10

optimiztion tips
use simple constructs, 6-11

P
parallel arrays

block distribution of dimensions, 2-4
collapsed dimensions, 2-5
explicitly parallel, 2-2
implicitly parallel, 2-2
nonsequential and distributed, 2-1
role in Sun HPF, 2-2
using DISTRIBUTE directive on, 2-2

parallel file systems. See PFS
parallel language constructions, 2-3
performance analysis tips

analyze Fortran output, 6-14
repeat timing runs, 6-13
use .lis file, 6-13
use -tmprofile switch, 6-14

PFS
brief definition, 5-2
file path names, 5-2
programming example, 5-3

printing timer results, 4-2
processor synchronization, 4-4
PROCESSORS directive, 2-3

S
S3L

header files, 3-5
SEQUENCE directive, 2-3
serial arrays

sequential and nondistributed, 2-2
Sun HPF I/O, 5-1
Sun HPF restrictions

complex alignments, 7-4
cyclic and blockcyclic distributions, 7-4
prescriptive mapping, 7-4

switches, 3-10
system inquiry intrinsic functions, 9-1

NUMBER_OF_PROCESSORS, 9-1
PROCESSORS_SHAPE, 9-1

T
TEMPLATE directive, 2-3
timer routines, 3-5

header files, 3-5
timer-fort.h, 4-3
timing utility, 4-1

getting results, 4-2
starting timers, 4-2
stopping timers, 4-2
synchronization issues, 4-4
tips on using, 4-4

Index-4 Sun HPF 1.0 Guide • November 1997

