
901 San Antonio Road
Palo Alto, CA 94303-4900 USA
650 960-1300 fax 650 969-9131

A Sun Microsystems, Inc. Business

S3L 2.0 User’s Guide

Part No.: 805-1557-10
Revision A, November 1997

Sun Microsystems Computer Company

Copyright 1997 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook, SunDocs, Solaris, OpenWindows, Sun HPC Software, Ultra HPC, Ultra HPC Cluster,
UltraSPARC, Sun Performance WorkShop Fortran, and Sun Performance Library are trademarks, registered trademarks, or service marks of
Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook, SunDocs, Solaris, OpenWindows, Sun HPC Software, Ultra HPC, Ultra HPC Cluster,
UltraSPARC, Sun Performance WorkShop Fortran, et Sun Performance Library sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et
sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant
les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents iii

Contents

Preface v

1. Introduction to S3L 1-1

1.1 S3L Overview 1-1

1.2 Contents of S3L 1-3

1.2.1 Core Scientific Library Routines 1-3

1.2.2 Auxiliary S3L Functions 1-5

2. S3L Arrays 2-1

2.1 Describing S3L Arrays 2-1

2.2 S3L Array Handles 2-3

2.2.1 Axis and Coordinate Numbering 2-3

2.2.2 Row/Column Axis Descriptions 2-3

2.3 Types of Array Distribution 2-5

3. S3L Data Types 3-1

3.1 Sun HPF Data Types 3-1

3.2 C and F77 Data Types 3-2

4. Multiple Instance 4-1

4.1 Defining Multiple Independent Data Sets 4-2

4.2 Rules for Data Axes and Instance Axes 4-3

iv S3L 2.0 User’s Guide • November 1997

4.3 Specifying Single-Instance vs. Multiple-Instance Operations 4-4

4.3.1 Example 1: Matrix-Vector Multiplication 4-4

4.3.2 Example 2: Fast Fourier Transforms 4-8

5. Using S3L 9

5.1 Creating a Program that Calls S3L Routines 9

5.1.1 Include the S3L Header File 10

5.1.2 Compiling and Linking 10

5.1.3 Executing S3L Programs 11

5.1.4 Restriction 11

5.2 The S3L Safety Mechanism 11

5.2.1 Synchronization 12

5.2.2 Error Checking and Reporting 12

5.3 Levels of Error Checking 12

5.4 Selecting a Safety Mechanism Level 13

5.4.1 Setting the S3L Safety Environment Variable 14

5.4.2 Setting the Safety Level from Within a Program 14

5.5 Online Sample Code and Man Pages 14

5.5.1 Sample Code Directories 14

5.5.2 Compiling and Running the Examples 15

5.5.3 Man Pages 16

A. Summary of S3L Routines A-1

Index Index-1

Preface v

Preface

This manual describes the Sun™ Scientific Subroutine Library (S3L). It is directed to
anyone developing Sun HPF applications, as well as to developers of message-
passing C or Fortran 77 programs.

Acknowledgments
The S3L dense linear algebra routines make use of the ScaLAPACK library described
in “ScaLAPACK: Linear Algebra Software for Distributed Memory Architectures,”
J. Demmel, J. Dongarra, R. van de Geijn, and D. Walker; in Parallel Computers: Theory
and Practice, Ed. by T. Casavant, P. Tvrdik, and F. Plasil. (IEEE Press, 1995,
pp. 267-282.)

For S3L applications with message-passing components, ScaLAPACK accesses the
Sun MPI library through calls to the BLACS library described in “Two-dimensional
Basic Linear Algebra Communications Subprograms,” J. Dongarra and
R. van de Geijn, in Environments and Tools for Parallel Scientific Computing, Ed. by
J. Dongarra and B. Tourancheau (Elsevier Science Publisher B.V., 1993, pp. 31-40.), in
“Basic Linear Algebra Communication Subprograms: Analysis and Implementation
Across Multiple Parallel Architectures,” R.C. Whaley.

vi S3L 2.0 User’s Guide • November 1997

Using UNIX Commands
This document may not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

■ AnswerBook™ online documentation for the Solaris™ 2.x software environment

■ Other software documentation that you received with your system

Typographic Conventions

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output.

Edit your .login file.
Use ls –a to list all files.
% You have mail .

AaBbCc123 What you type, when
contrasted with on-screen
computer output.

% su
Password:

AaBbCc123 Book titles, new words or
terms, words to be emphasized.
Command-line variable;
replace with a real name or
value.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be root to do this.
To delete a file, type rm filename.

vii

Shell Prompts

Related Documentation

Ordering Sun Documents
SunDocsSM is a distribution program for Sun Microsystems technical documentation.
Contact SunExpress for easy ordering and quick delivery. You can find a listing of

TABLE P-2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell
superuser

#

TABLE P-3 Related Documentation

Application Title Part Number

Sun HPC Software News Sun HPC Software 2.0 Release Notes 801-1562-10

Sun HPC Software
Programming

Sun HPC Software User’s Guide 801-1554-10

Sun MPI Programming Sun MPI User’s Guide 805-1556-10

Sun HPF Programming Sun HPF 1.0 Guide 805-1558-10

Prism Development
Environment

Prism User’s Guide
Prism Reference Manual

805-1552-10
805-1552-10

viii S3L 2.0 User’s Guide • November 1997

available Sun documentation on the World Wide Web.

Sun Documentation on the Web
The docs.sun.com web site enables you to access Sun technical documentation on
the World Wide Web. You can browse the docs.sun.com archive or search for a
specific book title or subject. The URL is http://docs.sun.com

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. You can email or fax your comments to us. Please include the part
number of your document in the subject line of your email or fax message.

■ Email: smcc-docs@sun.com

■ Fax: SMCC Document Feedback
1-650-786-6443

TABLE P-4 SunExpress Contact Information

Country Telephone Fax

Belgium 02-720-09-09 02-725-88-50

Canada 1-800-873-7869 1-800-944-0661

France 0800-90-61-57 0800-90-61-58

Germany 01-30-81-61-91 01-30-81-61-92

Holland 06-022-34-45 06-022-34-46

Japan 0120-33-9096 0120-33-9097

Luxembourg 32-2-720-09-09 32-2-725-88-50

Sweden 020-79-57-26 020-79-57-27

Switzerland 0800-55-19-26 0800-55-19-27

United Kingdom 0800-89-88-88 0800-89-88-87

United States 1-800-873-7869 1-800-944-0661

World Wide Web: http://www.sun.com/sunexpress/

ix

LSF Technical Support
LSF 3.0, a product of Platform Computing Corporation, is part of the Sun HPC
Software 2.0 Foundation Package. As such, it is supported by Sun as part of Sun
HPC Software 2.0.

Sun HPC Software includes LSF Base and LSF Batch. However, LSF JobScheduler
and LSF MultiCluster are not included and, therefore, not supported by Sun.

Information Sources for PVM and PETSc
TABLE P-5 lists organizations and resources for information about the publicly
available libraries PVM and PETSc. This information is subject to change.

TABLE P-5 Information Sources for PVM and PETSc

Product Contact

PVM Copyright holders: University of Tennessee, Oak Ridge National
Laboratory, Emory University
Electronic mail: pvm@msr.epm.ornl.gov
Newsgroup: comp.parallel.pvm
Web site: http://www.epm.ornl.gov/pvm/pvm_home.html

PETSc Developed and supported by the Mathematics and Computer Science
Division of the Argonne National Laboratory.

x S3L 2.0 User’s Guide • November 1997

1-1

CHAPTER 1

Introduction to S3L

This chapter contains general information about the Sun Scientific Subroutine
Library (S3L).

1.1 S3L Overview
S3L provides a set of parallel and scalable functions and tools widely used in
scientific and engineering computing. It can be used on all Sun Ultra™ HPC
Systems, from a single processor on an SMP, through multiple processors on a stand-
alone SMP, to a cluster of SMPs.

The chief advantages of S3L are summarized below.

■ S3L is optimized for Sun Ultra HPC systems.

■ S3L functions have a simple array syntax interface that is callable from Sun's
parallel Fortran language, Sun HPF, as well as from message-passing C and F77
programs.

■ S3L supports multiple instances.

■ S3L is thread safe.

■ S3L uses the Sun Performance Library™ for nodal computation.

■ S3L is supported by Sun.

■ S3L includes built-in diagnostics.

S3L provides an array syntax interface that supports both Sun HPF and message-
passing programs written in C or F77.

1-2 S3L 2.0 User’s Guide • November 1997

Sun HPF programs call S3L functions directly, passing distributed HPF arrays as
arguments. This direct interface is possible because array syntax support is built into
both Sun HPF and S3L. This means each Sun HPF call to an S3L subroutine contains
all the array layout and shape information needed by S3L to operate on the
distributed array.

Because array syntax is not inherent in C and F77, S3L uses structures called array
handles to extend its array syntax support to message-passing programs written in
these languages. The message-passing programmer simply creates and destroys
array handles in the calling program as needed. Note that S3L array handles are
analogous to the array descriptors found in the public domain packages
ScaLAPACK and PETSc.

S3L operates on multidimensional arrays of rank up to and including 31. This means
it implements the multiple-instance paradigm, where the same function is applied to
multiple, disjoint data sets concurrently.

The S3L user interface includes a communicator setup routine that allows S3L
functions to be used in multithreaded applications. This routine causes S3L to
establish an independent Sun MPI communicator and thread-safe data for each
thread from which the routine is called.

S3L routines the Sun Performance Library for nodal operations. This is a collection
of libraries for dense linear algebra and Fourier transforms based on the standard
libraries BLAS1, BLAS2, BLAS3, LINPACK, LAPACK, FFTPACK, and VFFTPACK.
Besides providing appropriate nodal support to S3L, routines from the Sun
Performance Library can be called independently from any F77 user code running
locally on a Sun Ultra HPC Server node.

Note – The Sun Performance Library is made available to S3L users as part of either
WorkShop Compilers Fortran v4.2 or Performance WorkShop Fortran v3.0.

S3L routines operate on objects of various data types. However, this information is
encoded in the array handle and is decoded at run time, allowing appropriate
branching to occur during execution. Consequently, there is no need for separate
routines with different names to implement the different data types; a single routine
suffices for all types.

An extensive set of online examples illustrate correct use of all S3L functions. These
examples can be used as templates in developing actual code. Separate examples are
provided to demonstrate Sun HPF, C (with Sun MPI), and F77 (with Sun MPI)
interfaces.

Chapter 1 Introduction to S3L 1-3

1.2 Contents of S3L
S3L consists of a set of core library functions—that is, the subroutines that perform
the linear algebra, Fourier transform, and related operations—plus a set of auxiliary
utilities.

The core library functions are introduced in Section 1.2.1 and the auxiliary utilities in
Section 1.2.2. All S3L functions and utilities are listed in Appendix A and are
described in their online man pages.

1.2.1 Core Scientific Library Routines
The S3L core routines consist of:

■ Dense-matrix operations

■ 2–Norm – The 2–norm routines compute the global 2–norm of a parallel array.

■ Inner product – The inner-product routines compute the global inner product
over all axes of two source parallel arrays. The inner product is added to the
destination. A routine that takes the conjugate of the second operand is
provided for complex data.

■ Outer product – The outer-product routines compute one or more instances of
an outer product of two vectors. The result is added to the destination. For
complex data, a routine that takes the conjugate of the second operand is
provided.

■ Matrix-vector multiplication – The matrix-vector-multiplication routines
compute one or more instances of a matrix-vector product. The result is added
to the destination, or is added to a second parallel array. For complex data, a
routine that takes the conjugate of the matrix is provided.

■ Matrix multiplication – The matrix-multiplication routines compute one or more
matrix products. Each routine add the result to the destination. Routines that
take the transpose of either or both operand matrices (or, for complex data, the
Hermitian of either matrix) are provided.

■ LU-factorization and LU-solve routines

■ LU-factorization routine – For each m x n coefficient matrix A of a, this routine
computes LU factorization using partial pivoting with row interchanges.

■ LU-solve routine – This routine uses the L and U factors produced by the LU-
factorization routine to produce solutions to the system AX=B. B may represent
one or more right-hand sides for each instance of the systems of equations.

1-4 S3L 2.0 User’s Guide • November 1997

■ LU-invert routine – For each m x m (square) instance of matrix A, this routine
computes the inverse of A using the LU-factorization results of the
S3L_lu_factor routine.

■ Parallel 1D, 2D, and 3D FFTs

■ Setup and deallocation of FFT handles – Routines are provided to initialize and
deallocate FFT handles for both complex and real data types. Separate routines
are used for the two data types.

■ Simple complex-to-complex, mixed-radix, forward and inverse FFT routines –
Performs the forward or inverse Fast Fourier Transform of a parallel array of
type complex or double complex. Supports both power-of-two and arbitrary
radix parameters.

■ Detailed complex-to-complex FFT routine – Allows independent specification
along each data axis of the transform direction in a complex-to-complex FFT.
Can improve performance over the simple FFT in some cases.

■ Simple real-to-complex and complex-to-real FFT routines – Perform the forward
(real-to-complex) and inverse (complex-to-real) FFT operations on 1-, 2-, or 3-
dimensional arrays.

■ Parallel random number generators

■ Fibonacci RNG setup and deallocation – Routines to initialize and deallocate the
state table of a lagged Fibonacci random number generator (LFG).

■ Fibonacci RNG – Uses an LFG to initialize a parallel array.

■ Random LCG setup – Routine to define the parameters used in the S3L linear
congruential random number generator (LCG).

■ Random LCG – Uses a parallel LCG to produce random numbers that are
independent of the array distribution.

■ Parallel sort – Sorts a 1D parallel array.

■ Parallel transpose – Performs a generalized transposition of a parallel array.

■ Copy array routine – Copies the elements of one array onto another.

■ Initialize (or exit) S3L environment – Sets up the S3L environment before (and
deallocates after) an application uses S3L routines.

Chapter 1 Introduction to S3L 1-5

1.2.2 Auxiliary S3L Functions
S3L also includes a variety of functions that augment use of the core routines. These
are summarized below.

■ Message-passing interface – Allows message-passing programs to use S3L routines
on parallel arrays.

■ Thread safety – Supports thread-safe use of S3L routines in multithreaded
operations.

■ Safety mechanism – The S3L safety mechanism synchronizes nodes to allow
tracking of S3L activity. It also performs error checking and reporting at different
levels of detail.

1-6 S3L 2.0 User’s Guide • November 1997

2-1

CHAPTER 2

S3L Arrays

In S3L, the programmer is presented with a single conception of an array, called the
parallel array. This term simply means that all processes executing the program in
which the array is declared have a global view of the array. That is, no matter how
the array has been distributed, S3L ensures that its layout is understood by all
participating processes.

This simplified view of S3L arrays is convenient when an application is moved from
a partition with M processes to a partition with N processes. Even though the arrays
may have drastically different physical distributions from one run to another, no
changes to the application are needed.

2.1 Describing S3L Arrays
In a multiprocess environment, where different parts of the array may be stored in
different processes, there are many ways of describing how the array is distributed.

In the most general case, two numbers are needed to describe where each element of
the array is stored:

■ The process where the element is stored
■ Its memory location in the given process

The size of such a handle would be of the order of the size of the total parallel array
and, since every process would need to know where every array element is stored,
the total memory requirements for such a handle would be of the order of the array
size times the number of processes.

For array handles to be of a practical size, the space allocated to parallel array
distributions must be restricted. In S3L, every axis (dimension) of a parallel array is
distributed along a certain number of processes. This distribution is identified by the
extent of the array along the particular axis, and the block size of the distribution.

2-2 S3L 2.0 User’s Guide • November 1997

If the array extent along a particular axis is n, then the set of array indices numbered
0 to n – 1 is partitioned into blocks. If the block size is b, block i contains the indices
i * b to (i + 1) * b – 1. There are n/b  such blocks, where  denotes truncation
toward the next larger integer.

Every block always contains b indices, except possibly for the last block, which may
contain a smaller number of indices if n is not exactly divisible by the number of
processes along the particular axis. Assume that the given axis is distributed over p
processes, identified by the numbers 0 to p – 1.

In a block-cyclic distribution, the first block (block 0) is assigned to process 0, the
second to process 1, etc. When the blocksize exceeds the number of processes along
an axis, block p is assigned to process 0. In general, block i is assigned to process
mod(n/b ,p), where mod denotes the modulo operation.

In a slightly more general case, instead of assigning block 0 to process 0, it could be
assigned, for example, to process q, 0 <= q < p. Block 1 would be assigned to process
q + 1, etc. The number of the process to which block 0 is assigned is the starting
process of the block-cyclic distribution.

By specifying the extent of the array, the block size, the number of processes, and the
starting process of the block cyclic distribution along each axis, you are fully
specifying the distribution of the array. Elements whose indices differ only along a
single axis are stored to the appropriate processes as determined by the parameters
of the block cyclic distribution along that axis.

Block-cyclic distribution is more general than a simple block distribution, where a
given array axis is partitioned into exactly p blocks, where p is the number of
processes along that axis. For an array axis whose extent is n and is to be distributed
along p processes, the block distribution is equivalent to a block-cyclic distribution
with blocksize n/ p.

The block-cyclic distribution scheme can also describe axes that are in fact local to a
process—that is, all array elements whose coordinates differ only along the
particular axis (direction) are in the same process. If the block size along an axis is
equal to the corresponding extent of the array, then this axis becomes local.

Because S3L supports block-cyclic distribution of parallel arrays, it offers
considerable flexibility in how the arrays can be distributed and in the algorithms
used to perform the various calculations. For example, to compute the LU
decomposition of a parallel array, it is more efficient to distribute the array in a
block-cyclic fashion and to set the block size to a value that depends on the process
characteristics (such as cache size). For other computations, such as FFTs, it is more
efficient to have the array distributed in a pure block fashion, with all axes except
the last being local to the processes.

Whenever it is more efficient to use a different array distribution than that of a given
array, S3L internally redistributes the array to the new distribution. After the
computation is done, S3L restores it to its original distribution.

Chapter 2 S3L Arrays 2-3

2.2 S3L Array Handles
This section explains how S3L array handles are used to characterize parallel
arrays—that is, it defines the kind of information about arrays that these handles
convey.

In S3L, a parallel array is internally described by an S3L array handle. This handle
defines the universal properties of the array—that is, a set of properties that belong
to all processes associated with the parallel array. Examples of these general
properties are type, size, and distribution.

An S3L array handle also defines a set of properties that are specific to individual
processes. These local properties include such parameters as the extents of the local
part (subgrid) of the array and its memory location within the local process.

An S3L array handle is always defined in all participating processes—that is, every
process has access to the universal information needed to perform certain operations
on the parallel array.

2.2.1 Axis and Coordinate Numbering
The Fortran and C interfaces follow different numerical-base conventions for
numbering axes and coordinates in arrays; each adheres to its respective language
conventions. Consequently, the following axis and coordinate numbering rules
apply:

■ The Fortran interface expects array-axis and coordinate numbering to be one-
based. This means the lowest number for an axis of an array is axis 1. Likewise,
the minimum value for variables that take coordinate values is 1.

■ The C interface expects zero-based axis numbers and coordinates. Therefore, the
lowest number for an axis of a C parallel array is axis 0. Likewise, variables that
take coordinate values have 0 as the minimum value.

2.2.2 Row/Column Axis Descriptions
In descriptions of Fortran and C parallel arrays, row and column axes are
distinguished as follows:

■ “The axis that counts the rows,” “the row axis,” and row_axis refer to axis 1 in
FIGURE 2-1 (Fortran) and axis 0 in FIGURE 2-2 (C).

2-4 S3L 2.0 User’s Guide • November 1997

■ “The axis that counts the columns,” “the column axis,” and column_axis refer to
axis 2 in FIGURE 2-1 (Fortran) and axis 1 in FIGURE 2-2 (C).

FIGURE 2-1 Row and Column Axes—Fortran

FIGURE 2-2 Row and Column Axes—C

column axis = axis 2

Fortran Parallel Array

row axis = axis 1

This axis counts the rows.

This axis counts the columns.

column axis = axis 1

C Parallel Array

row axis = axis 0

This axis counts the rows.

This axis counts the columns.

Chapter 2 S3L Arrays 2-5

2.3 Types of Array Distribution
Arrays passed to S3L routines by C or F77 message-passing programs can have
block, cyclic, or block-cyclic distributions. Regardless of the type of distribution
specified by the calling program, S3L will automatically select the distribution
scheme that is most efficient for the routine being called. If that means S3L changes
the distribution type internally, it will restore the original distribution scheme on the
resultant array before passing it back to the calling program.

Arrays from C and F77 message-passing programs can also be undistributed. That is,
all the elements of the array can be located on the same process—a serial array in the
conventional sense.

Within Sun HPF programs, array distribution is specified separately for each axis of
the array. Unless explicitly specified otherwise, each axis of a Sun HPF array is
distributed in block fashion over the available processes. For example, the default
distribution scheme for a 2D array is (block, block).

Currently, Sun HPF supports two alternatives to block distribution: block(N) and
collapsed.

■ A block(N) distribution is a more detailed from of block distribution. It allows the
programmer to specify the number of axis subscripts in the typical block for a
given axis. If the number of processes does not divide evenly into the number of
indices in the block(N)-distributed axis, this number will be less at the end of the
axis.

■ A collapsed axis is one that is kept in a single block rather than being partitioned
into blocks. Sun HPF replicates a collapsed axis onto every available process.
Consequently, it is regarded as a purely local axis rather than a distributed
parallel axis.

In Sun HPF documentation, an array that has all its axes collapsed is referred to as a
serial array. A Sun HPF serial array is kept intact and replicated on all the available
processes.

Note – S3L does not support serial arrays passed by Sun HPF programs. In other
words, S3L requires that at least one axis of a Sun HPF array must be block- or
block(N)-distributed.

2-6 S3L 2.0 User’s Guide • November 1997

3-1

CHAPTER 3

S3L Data Types

The C and F77 language interfaces implement different data types from those
recognized by Sun HPF. This chapter describes these differences.

Note – For C and F77 message-passing applications, data type information is
encoded in the array handle and is decoded at run time, allowing appropriate
branching to occur during execution. Consequently, there is no need for separate
routines with different names to implement the different data types. For each S3L
function, a single routine supports all types.

3.1 Sun HPF Data Types
S3L supports the following data types for Sun HPF programs:

Place the following line at the top of any Sun HPF program unit that makes an S3L
call.

#include <s3l/s3l-hpf.h>

real*4
real*8
complex*8
complex*16

3-2 S3L 2.0 User’s Guide • November 1997

3.2 C and F77 Data Types
TABLE 3-1 shows the data types supported for the C and Fortran 77 interfaces. Within
each subroutine call, elements of all array arguments must match in data type,
unless the argument descriptions indicate otherwise. In this table, complex refers to
the data type S3L_complex_t and dcomplex refers to the data type
S3L_dcomplex_t .

Place one of the following #include lines at the top of any C or F77 program unit
that makes an S3L call:

TABLE 3-1 Data Types Supported by S3L for Fortran 77 and C

#include <s3l/s3l-c.h>
#include <s3l/s3l-f.h>

C programs
F77 programs

 Data Type

Operation int float double complex dcomplex

Inner product x x x x
2–norm x x x x
Outer product x x x x
Matrix vector multiplication x x x x
Matrix multiplication x x x x
LU factor x x x x
LU solve x x x x
LU invert x x x x
FFT setup x x
FFT deallocate setup x x
Simple complex-to-complex FFT x x
Detailed complex-to-complex FFT x x
Simple real-to-complex FFT x x
Simple complex-to-real FFT x x
RNG Fibonacci x x x x x
RNG LCG x x x x x
Sort x x x
Transpose x x x x x
Copy array x x x x x

4-1

CHAPTER 4

Multiple Instance

Most S3L routines support multiple instances; that is, they allow you to perform
multiple independent operations on different data sets concurrently. TABLE 4-1 shows
which operations currently support multiple instances.

TABLE 4-1 S3L Support for Multiple Instances

Operation
Instances

Single Multiple

inner product x x

2–norm x x

outer product x x

matrix-vector multiplication x x

matrix multiplication x x

LU factor x x

LU solve x x

LU invert x x

simple complex-to-complex FFT x

detailed complex-to-complex FFT x x

inverse FFT x

simple real-to-complex FFT x

simple complex-to-real FFT x

RNG Fibonacci x

RNG LCG x

sort x

copy array x

4-2 S3L 2.0 User’s Guide • November 1997

4.1 Defining Multiple Independent Data
Sets
To perform an S3L operation on multiple independent data sets concurrently, you
must embed the multiple independent instances of each operand or result argument
in a parallel array. The axes of the shape of the parallel array fall into two distinct
groups:

■ The data axes define the geometry of the individual instances of the operand or
result.

■ The instance axes label the multiple instances.

FIGURE 4-1 illustrates this with an example of a matrix-vector-multiplication
operation in which four independent products are computed simultaneously. It
shows how the destination and source vectors and the source matrix are organized
with respect to the data and instance axes.

■ The four destination vectors are embedded in a 2D parallel array with one data
axis and one instance axis.

■ The four source vectors are similarly embedded in another parallel array. The
source matrices are embedded in a 3D parallel array.

The instances within each variable are labeled 0 through 3.

FIGURE 4-1 A Multiple-Instance Matrix-Vector Multiplication Problem

= + x
3

2
1

0

Instance Axis

Data Axis

3
2

0
1

3
2

0
1

3
2

0
1

Destination
Vector

Destination
Vector (Source Matrix Source Vector)= + x

Chapter 4 Multiple Instance 4-3

The logical unit on which the routine operates—sometimes called a cell—is defined
by the data axes. The instance axes define the geometry of the frame in which the
cells are embedded. The 3D parallel array shown in FIGURE 4-1 is a frame containing
four 2-dimensional cells.

The product of the lengths of the instance axes is the total number of instances. The
product of the lengths of the data axes is the size of the cell.

4.2 Rules for Data Axes and Instance Axes
When you organize your data to form cells and frames for a multiple-instance
operation, apply the following rules:

■ All parallel arrays involved in the operation must have the same number of
instance axes.

■ Counting up through the axes of the parallel arrays, starting with axis 0 and
excluding the data axes, corresponding instance axes must occur in the same
order in each operand or result.

■ The corresponding instance axes of the operands or results must have identical
lengths. In some cases, corresponding instance axes must also have identical
layouts. The situations where identical layouts are required are identified in the
applicable man pages.

■ The lengths of the data axes must be defined so that the operation makes sense.
For example, in matrix multiplication, the data axis lengths of the operand and
result matrices must obey the standard rules for axis lengths in matrix
multiplication. Specific requirements for data axis lengths are provided in the
applicable man pages.

■ Except where explicitly noted, S3L supports all combinations of layouts for data
axes and instance axes. Which layout will provide the best performance for any
given operation depends largely on the nature of the operation.

In most cases, however, performance is best when the cells (that is, all of the data
axes) are local to a processing element. Instance axes are typically defined as
nonlocal axes. Some man pages for S3L routines contain specific information
about optimizing layouts.

Section 4.3, “Specifying Single-Instance vs. Multiple-Instance Operations,” illustrates
these rules being applied in a matrix-vector multiplication example.

Note – Most S3L routines impose few or no restrictions on where the instance axes
can occur in a parallel array.

4-4 S3L 2.0 User’s Guide • November 1997

4.3 Specifying Single-Instance vs. Multiple-
Instance Operations
S3L routines that support multiple instances have the same calling sequence for
single-instance and multiple-instance operations. The methods for specifying single-
instance and multiple-instance operations depend on which routine you are calling.
The man pages for routines that are capable of multiple-instance operation contain
specific information for their respective routines.

Section 4.3.1, “Example 1: Matrix-Vector Multiplication,” explains the differences
between single- and multiple-instance operation for the matrix-vector-multiplication
routine. Section 4.3.2, “Example 2: Fast Fourier Transforms,” discusses use of
multiple instances in FFTs.

4.3.1 Example 1: Matrix-Vector Multiplication
When you call the matrix-vector-multiplication routine, S3L_mat_vec_mult , the
dimensionality of the arguments you supply determines whether the routine
performs a single-instance or multiple-instance operation. The HPF form of this S3L
function is

Note – The S3L_mat_vec_mult routine requires you to specify which axes you are
using as data axes for each matrix or vector argument.

4.3.1.1 Single-Instance Operation

To perform a single-instance operation, specify each vector argument as a 1D
parallel array and each matrix argument as a 2D parallel array. (Alternatively, you
can declare these arguments to have more dimensions, but all instance axes must
have length 1.)

S3L_mat_vec_mult(y , a, x , y_vector_axis , row_axis , col_axis ,

x_vector_axis , ier)

Chapter 4 Multiple Instance 4-5

For example, a single-instance operation in HPF can be performed by first defining
the block-distributed arrays

and then using

Arrays x and y are 1D; the definitions of x_vector_axis = 1 and col_axis = 2 indicate
that the product a(i , j) * x (j) will be evaluated for all values of j . These products
will be summed over the first index of a (row_axis = 1), and the result added to the
corresponding element in y. The equivalent code in F77 is

4.3.1.2 Multiple-Instance Operation

To perform a multiple-instance operation, embed the multiple instances of each
vector argument in a parallel array of rank greater than 1, and embed the multiple
instances of each matrix argument in a parallel array of rank greater than 2.

For example, the simplest multiple-instance matrix-vector multiplication involves
the definition of one instance axis.

real, dimension(p, q) :: a
real, dimension(q) :: x
real, dimension(p) :: y

!hpf$ distribute a(block, block)
!hpf$ distribute x(block)
!hpf$ distribute y(block)

call S3L_mat_vec_mult(y, a, x, 1, 1, 2, 1, ier)

do i = 1, p
 sum = 0.0
 do j = 1, q
 sum = sum + a(i, j) * x(j)
 enddo
 y(i) = y(i) + sum
enddo

real, dimension(p, q, r) :: a
real, dimension(q, r) :: x
real, dimension(p, r) :: y

!hpf$ distribute a(block, block, block)
!hpf$ distribute x(block, block)
!hpf$ distribute y(block, block)

4-6 S3L 2.0 User’s Guide • November 1997

In this code, all three arrays contain an instance axis of length r . In addition, each
instance axis is the rightmost axis in the array declaration. In other words, the order
of data axes and instance axes is the same in all three arrays. These axes definitions
produce arrays whose geometries are outlined in FIGURE 4-1. In the illustration, r = 4.
Multiplication using these arrays is then performed by

In analyzing the operations performed in this call, it is useful to define s0 , the index
along the instance axis. For a given value of s0 , the following will be evaluated:

■ The values of x_vector_axis = 1 and col_axis = 2 indicate that the product a(i, j,
s0) * x(j, s0) will be calculated for all j .

■ The above product will be summed over i , the first index of a (row_axis = 1), and
the result added to y(i , s0) .

These two operations will be performed for all 1 <= s0 <= r . In other words, the
matrix-vector multiplication will be evaluated for all instances

The order in which these instances are evaluated depends on the layouts of the
arrays. Since all arrays are block-distributed along all axes, it is possible for one set
of processes to work on the first instance

while another set of processors evaluates the Nth instance at the same time—that is,
in parallel.

The extent of parallelism depends on the details of the data layouts, particularly on
the mapping of the data and instance axes to the underlying process grid axes. The
highest degree of parallelism is achieved when all data axes are local, and all
instance axes are distributed.

The use of local data axes forces each cell (all data axes) to reside entirely in just one
process. The use of distributed instance axes spreads the collection of cells over the
process grid, resulting in better load-balancing among processes. Use of this data
layout is discussed below.

call S3L_mat_vec_mult(y , a, x , 1, 1, 2, 1, ier)

y (:, s0) = a(:, :, s0) * x (:, s0)

y (:, 1) = a(:, :, 1) * x (:, 1)

y (:, N) = a(:, :, N) * x (:, N)

Chapter 4 Multiple Instance 4-7

Multiple-instance operations are usually most efficient when each cell (all of the data
axes) resides on one process. Use of such a layout scheme is discussed in this section.
In addition, the use of several instance axes are illustrated. Declarations of arrays
containing these axes can be done as

The data axes are defined to be local to a process. Each array has three instance axes,
each of which is block distributed. Note that the order of instance axes is the same in
all three arrays.

To analyze the results of the call

we shall use s0 , s1 , and s2 to denote the index along each of the three instance axes.
For a given set of s0 , s1 , and s2 , the following will be evaluated:

■ The values of x_vector_axis = 1 and col_axis = 2 indicate that the product a(i, j,
s0, s1, s2) * x(j, s0, s1, s2) will be calculated for all j .

■ This product will be summed over i , the first index of a (row_axis = 1), and the
result added to y(i , s0 , s1 , s2) .

These two operations will be performed for all 1 <= s0 <= k , 1 <= s1 <= m, and
1 <= s2 <= n. In other words, the matrix-vector multiplication will be evaluated for
all instances

However, unlike the previous example, the data axes in this case are local. This
means that the evaluation of each instance does not involve any interprocess
communication. Each process independently works on its own set of instances,
using a purely local matrix-vector-multiplication algorithm. These local algorithms
are usually faster than their global counterparts, since no communication between
processes is involved.

Source code for these operations is in the file matvec_mult.hpf . This can be found
in the S3L examples directory examples/dense_matrix_ops-hpf/ , the location
of which is site-specific.

real, dimension(p, q, k, m, n) :: a
real, dimension(q, k, m, n) :: x
real, dimension(p, k, m, n) :: y

!hpf$ distribute a (*, *, block, block, block)
!hpf$ distribute x (*, block, block, block)
!hpf$ distribute y (*, block, block, block)

call S3L_mat_vec_mult(y , a, x , 1, 1, 2, 1, ier)

y (:, s0, s1, s2) = A(:, :, s0, s1, s2) * x (:, s0, s1, s2)

4-8 S3L 2.0 User’s Guide • November 1997

4.3.2 Example 2: Fast Fourier Transforms
When calling the detailed complex-to-complex FFT routine, S3L_fft_detailed ,
you can supply a multidimensional parallel array and specify whether you want to
perform a forward transform, an inverse transform, or no transform along each axis.
You can also specify axes along which no transform is performed, but address bits
are reversed. The axes that are transformed or bit-reversed are the data axes, and
define the cell; the axes along which you perform no transformation are the instance
axes.

Note – The simple FFT routine, S3L_fft , performs a transform along each axis of
the supplied parallel array. Consequently, it does not support multiple instances.

5-9

CHAPTER 5

Using S3L

This chapter explains how to implement calls to S3L routines into your Sun HPF,
F77, or C program. The following topics are included:

■ Creating a program that calls S3L routines

■ Restriction

■ The S3L safety mechanism

■ Online sample code and man pages

S3L documentation includes sample online programs that demonstrate how to call
each S3L routine. You are encouraged to experiment with these sample programs.
Online man pages are also included for all S3L routines. Section 5.5, “Online Sample
Code and Man Pages,” explains how to find the program examples.

5.1 Creating a Program that Calls S3L
Routines

▼ To use S3L routines in a program:
1. Place calls to S3L routines into your code.

2. Include the appropriate header file in each program unit that calls S3L routines.

See Section 5.1.1, “Include the S3L Header File,” for details.

5-10 S3L 2.0 User’s Guide • November 1997

3. Use the appropriate compiler command to compile your code; include the S3L link
switch on the command line.

See Section 5.1.2, “Compiling and Linking,” for details.

The remainder of this section describes the steps listed above more fully.

Note – S3L requires the presence of the Sun Performance Library routines and its
associated license file. This library is not installed with the S3L and other Sun HPC
Software. Instead, it is included as part of either the WorkShop Compilers Fortran
v4.2 or Performance WorkShop Fortran v3.0 languages system.

Note – Use libsunperf 1.2 instead of libsunperf 1.1. It will provide better
performance.

5.1.1 Include the S3L Header File
Place the appropriate include line at the top of any program unit that makes an S3L
call. The correct include file is shown below for each S3L language interface is

■ For S3L + Sun HPF

#include <s3l/s3l-hpf.h>

■ For S3L + Sun MPI + F77

#include <s3l/s3l-f.h>

■ For S3L + Sun MPI + C

#include <s3l/s3l-c.h>

This allows the program to access the header file that contains prototypes of the
routines and defines the symbols and data types required by the interface.

If the compiler cannot find the S3L include file, verify that a path to the directory
does exist. The standard path is

/opt/SUNWhpc/include/

If the file appears to be missing, consult your system administrator.

5.1.2 Compiling and Linking
Compile your program and link in S3L (along with any other libraries it needs).

Chapter 5 Using S3L 5-11

Note – S3L provides a link-line switch that does more than just link in S3L
subroutines. Depending on which compiler has been invoked, it also automatically
links any other libraries needed to augment S3L, greatly simplifying the link line.

■ For S3L + Sun HPF

% hpf –o program program.hpf –ls3l

■ For S3L + MPI + F77

% tmf77 –o program program.f –ls3l

■ For S3L + Sun MPI + C

% tmcc –o program program.c –ls3l

5.1.3 Executing S3L Programs
Execute a program that has been linked with S3L just as you would any other
program compiled for running on a Sun HPC System. For example, to execute the
program a.out interactively, simply enter

% tmrun a.out

Or, you can submit the program to a batch queue by entering

% tmsub a.out

Refer to the Sun HPC User’s Guide for complete instructions on program execution
on a Sun HPC System.

5.1.4 Restriction
S3L does not accept sections of parallel arrays. You cannot pass a section of an HPF
array to a S3L routine. This restriction is imposed because array sections may not be
appropriately aligned with the underlying process grid.

5.2 The S3L Safety Mechanism
The S3L safety mechanism offers two basic features: It synchronizes the parallel
processes so that you can pinpoint the area of code that generated an error. It also
performs error checking and reports errors at a user-selectable level of detail.

5-12 S3L 2.0 User’s Guide • November 1997

5.2.1 Synchronization
When an S3L application executes on multiple processes, the processes are generally
running asynchronously with respect to one another. The S3L safety mechanism
provides an interface for explicitly synchronizing the processes in relation to each
S3L call made by your code. It traps and reports errors, indicating when the errors
occurred in relation to the synchronization points.

5.2.2 Error Checking and Reporting
The safety mechanism can perform error checking and generate run-time error
information at multiple levels of detail. You can turn safety checking on at any level
during all or part of a program. One level checks for errors in the usage and
arguments of the S3L calls in your program; a more detailed level also checks for
errors generated by internal S3L routines. Examples of errors found and reported by
the safety mechanism include the following:

■ A supplied or returned data element that should be numerical is not. For
example, it is identified as a Not a Number (NaN), or as infinity. NaNs are defined
in the IEEE Standard for Binary Floating-Point Arithmetic.

■ The code generates a division by 0 (for example, because of bad data, a user error,
or an internal software problem).

5.3 Levels of Error Checking
The S3L safety mechanism has four selectable levels: 0, 2, 5, and 9. These levels are
defined in TABLE 5-1.

At levels 2, 5, and 9, some safety mechanism error messages are displayed at the
terminal when you run the program; other information appears in the backtrace
when you use a debugger such as Prism.

Chapter 5 Using S3L 5-13

TABLE 5-1 S3L Safety Mechanism Levels

5.4 Selecting a Safety Mechanism Level
You can select the desired S3L safety mechanism level in either of two ways:

■ By setting the environment variable S3L_SAFETY

■ By using the subroutine calls S3L_get_safety and S3L_set_safety in a
program

These methods are described in Section 5.4.1, “Setting the S3L Safety Environment
Variable,” and Section 5.4.2, “Setting the Safety Level from Within a Program.”

0 Turns off the safety mechanism. Explicit synchronization and error
checking are not performed. This level is appropriate for production
runs of code that has already been thoroughly tested.

2 Detects potential race conditions in multithreaded S3L operations on
parallel arrays. To avoid race conditions, an S3L function locks all
parallel array handles in its argument list before proceeding. This safety
level causes warning messages to be generated if more than one S3L
function attempts to use the same parallel array at the same time.

5 Performs explicit synchronization before and after each call and locates
each error with respect to the synchronization points. This safety level
is appropriate during program development or during runs for which a
small performance penalty can be tolerated.

9 Checks for and reports all level 2 and level 5 errors, as well as errors
generated by lower levels of code that were called from within S3L.
Performs explicit synchronization in these lower levels of code and
locates each error with respect to the synchronization points. This level
performs all implemented error checking and exacts a very high
performance price. It is appropriate for detailed debugging when a
problem occurs.

5-14 S3L 2.0 User’s Guide • November 1997

5.4.1 Setting the S3L Safety Environment Variable
The S3L_SAFETY environment variable takes a single argument, which can be the
integer 0, 2, 5, or 9. For example, to select the highest level, enter:

% setenv S3L_SAFETY 9

One advantage of using the S3L_SAFETY environment variable is that you can set or
change the safety level without recompiling your code.

5.4.2 Setting the Safety Level from Within a Program
To set the S3L safety level from within your program, include the following
subroutine call. Specify the desired level in the integer argument n:

S3L_set_safety (n);

To see what S3L safety level is currently in effect, include the following call:

n = S3L_get_safety();

The advantage of using these calls from within a program is that you can set or
obtain the safety level at any point within your code. However, you must recompile
the code each time you change these calls.

5.5 Online Sample Code and Man Pages

5.5.1 Sample Code Directories
The online sample programs are located in subdirectories of the S3L examples
directory. Separate Sun HPF, C, and F77 versions are provided. The generic relative
path for these examples is

examples/ operation_class[–language_suffix]/example_name.language

where examples is installed in a site-specific location.

operation_class is the name of the general class of S3L routines that are illustrated by
the example.

The –language_suffix is used to denote either Sun HPF or F77 language-specific
implementations of these general classes. Examples implemented in C are do not
include a –language_suffix.

Chapter 5 Using S3L 5-15

example_name.language is the name given to the example. The language extension is
.hpf , .c , or .f . For example,

examples/dense_matrix_ops–hpf/outer_prod.hpf

is the Sun HPF version of a program example that illustrates use of
s3l_outer_prod routines. The equivalent examples for C and F77 applications
are

In addition to these routine-oriented examples, S3L provides an on-line application
example as well. The directory ../examples/s3l/spectral–hpf shows the use
of S3L Fast Fourier Transform (FFT) routines to solve the Navier-Stokes equations in
two dimensions with periodic boundary conditions. A result example is provided in
a data subdirectory, and a visualization of the simulation output is provided in the
vizlab subdirectory.

5.5.2 Compiling and Running the Examples
Each example subdirectory has a makefile. Each makefile references the file
../Make.simple (for example, examples/Make.simple). If you are copying the
example sources and makefiles to one of your own subdirectories, you should also
copy Make.simple to your subdirectory’s parent directory. Make.simple contains
definitions of compilers, compiler flags and other variables that are needed to
compile and run the examples. Note that the compiler flags in this file will not
provide you with highly optimized executables. Information on optimization flags is
best obtained from the documentation for the compiler of interest.

Each makefile has several targets that are meant to simplify the compilation and
execution of examples. If you want to compile the source codes and create all
executables in a particular example directory, use the command make.

If you wish to run the executables, enter make run . This command will also
perform any necessary compilation and linking steps, so you need not issue make
before entering make run .

By default, your executables will be run on two processes. You can change this by
specifying the NPROCS variable on the command line. For example,

% make run NPROCS=4

will start your runs on 4 processes.

Executables and object files can be deleted by make clean .

examples/dense_matrix_ops/outer_prod.c (C with Sun MPI)

examples/dense_matrix_ops–f/outer_prod.f (F77 with Sun MPI)

5-16 S3L 2.0 User’s Guide • November 1997

5.5.3 Man Pages
To read the online man page for a routine, enter

% man routine_name

1

APPENDIX A

Summary of S3L Routines

This appendix lists, in alphabetical order, the routines that make up the Sun
Scientific Subroutine Library. Each listing shows the C and Fortran language syntax
for their respective argument sequences. Detailed descriptions are for all these
routines are available in their respective man pages..

Note – Some of the descriptions of linear algebra routines in the man pages include
information about numerical stability. These references imply a conventional
definition of numerical stability. That is, an algorithm is stable if the computed result
is the exact solution of a slightly different problem. For example, if A is the input
matrix, the computed result is the true result corresponding to the matrix A+E,
where E is small in norm compared with A.1 Most of the algorithms used by S3L are
numerically stable in this sense. However, a few are only conditionally stable, which
means that the numerical stability may depend on the condition number of the
problem.

1. For a more formal definition, see G.H Golub and C. F. Van Loan, Matrix Computations, 2d ed. (Baltimore: Johns
Hopkins University Press, 1989).

2 S3L 2.0 User’s Guide • November 1997

▼ 2-Norm

▼ Copy Array

▼ FFT Detailed

C Syntax

S3L_2_norm (z, x, x_vector_axis)

S3L_gbl_2_norm(a, x)

Fortran Syntax

S3L_2_norm(z, x, x_vector_axis, ier)

S3L_gbl_2_norm(a, x, ier)

C Syntax

S3L_copy_array(A, B)

Fortran Syntax

S3L_copy_array(A, B, ier)

C Syntax

S3L_fft_detailed(a, setup_id, iflag, axis)

Fortran Syntax

S3L_fft_detailed(a,setup_id,iflag,axis,ier)

Appendix A Summary of S3L Routines 3

▼ FFT Free Setup

▼ FFT Setup

▼ FFT Simple

▼ Free RNG Fibonacci

C Syntax

S3L_fft_free_setup(setup_id)

Fortran Syntax

S3L_fft_free_setup(setup_id,ier)

C Syntax

S3L_fft_setup(a, setup_id)

Fortran Syntax

S3L_fft_setup(a, setup_id, ier)

C Syntax

S3L_fft(a, setup_id)

Fortran Syntax

S3L_fft(a, setup_id, ier)

C Syntax

S3L_free_rand_fib(setup_id)

4 S3L 2.0 User’s Guide • November 1997

▼ Get Safety

▼ Inner Product

Fortran Syntax

S3L_free_rand_fib(setup_id, ier)

C Syntax

safety_level = S3L_get_safety()

Fortran Syntax

S3L_get_safety()

C Syntax

S3L_inner_prod(z, y, x_vector_axis, y_vector_axis)

S3L_inner_prod_noadd(z, x, x_vector_axis, y_vector_axis)

S3L_inner_prod_addto(z, x, y, u, x_vector_axis, y_vector_axis)

S3L_inner_prod_c1(z, x, y, x_vector_axis, y_vector_axis)

S3L_inner_prod_c1_noadd(z, x, y, x_vector_axis, y_vector_axis)

S3L_inner_prod_c1_addto(z, x, y, u, x_vector_axis,

y_vector_axis)

S3L_gbl_inner_prod(a, x, y)

S3L_gbl_inner_prod_noadd(a, x, y)

S3L_gbl_inner_prod_a, x, y, b)

S3L_gbl_inner_prod_c1(a, x, y)

S3L_gbl_inner_prod_c1_noadd(a, x, y)

S3L_gbl_inner_prod_c1_addto(a, x, y, b)

Fortran Syntax

S3L_inner_prod(z, x, y, x_vector_axis, y_vector_axis, ier)

S3L_inner_prod_noadd(z, x, y, x_vector_axis, y_vector_axis, ier)

Appendix A Summary of S3L Routines 5

▼ Inverse FFT

▼ LU Deallocate

S3L_inner_prod_addto(z, x, y, u, x_vector_axis,
y_vector_axis,ier)

S3L_inner_prod_c1(z, x, y, x_vector_axis, y_vector_axis, ier)

S3L_inner_prod_c1_noadd(z, x, y, x_vector_axis,
y_vector_axis,ier)

S3L_inner_prod_c1_addto(z, x, y, u, x_vector_axis,
y_vector_axis,ier)

S3L_gbl_inner_prod(a, x, y, ier)

S3L_gbl_inner_prod_noadd(a, x, y, ier)

S3L_gbl_inner_prod_addto(a, x, y, b, ier)

S3L_gbl_inner_prod_c1(a, x, y, ier)

S3L_gbl_inner_prod_c1_noadd(a, x, y, ier)

S3L_gbl_inner_prod_c1_addto(a, x, y, b, ier)

C Syntax

S3L_ifft(a, setup_id)

Fortran Syntax

S3L_ifft(a, setup_id, ier)

C Syntax

S3L_lu_deallocate(setup_id)

Fortran Syntax

S3L_lu_deallocate(setup_id, ier)

6 S3L 2.0 User’s Guide • November 1997

▼ LU Factor

▼ LU Invert

▼ LU Solve

▼ Matrix Multiplication

C Syntax

ier = S3L_lu_factor(a, row_axis, col_axis, setup_id)

Fortran Syntax

S3L_lu_factor(a, row_axis, col_axis, setup_id, ier)

C Syntax

S3L_lu_invert(a, setup_id)

Fortran Syntax

S3L_lu_invert(a, setup_id, ier)

C Syntax

S3L_lu_solve(b, a, setup_id)

Fortran Syntax

S3L_lu_solve(b, a, setup_id, ier)

C Syntax

S3L_mat_mult(C, A, b, row_axis, col_axis)

S3L_mat_mult_noadd(C, a, b, row_axis, col_axis)

S3L_mat_mult_addto(C, a, b, D, row_axis, col_axis)

Appendix A Summary of S3L Routines 7

S3L_mat_mult_t1(c, a, b, row_axis, col_axis)

S3L_mat_mult_t1_noadd(c, a, b, row_axis, col_axis)

S3L_mat_mult_t1_addto(c, a, b, D, row_axis, col_axis)

S3L_mat_mult_h1(C, a, b, row_axis, col_axis)

S3L_mat_mult_h1_noadd(c, a, b, row_axis, col_axis)

S3L_mat_mult_h1_addto(c, a, b, D, row_axis, col_axis)

S3L_mat_mult_t2(c, a, b, row_axis, col_axis)

S3L_mat_mult_t2_noadd(c, a, b, row_axis, col_axis)

S3L_mat_mult_t2_addto(c, a, b, D, row_axis, col_axis)

S3L_mat_mult_h2(c, a, b, row_axis, col_axis)

S3L_mat_mult_h2-noadd(c, a, b, row_axis, col_axis)

S3L_mat_mult_h2_addto(C, a, b, D, row_axis, col_axis)

S3L_mat_mult_t1_t2(c, a, b, row_axis, col_axis)

S3L_mat_mult_t1_t2_noadd(c, a, b, row_axis, col_axis)

S3L_mat_mult_t1_t2_addto(c, a, b, D, row_axis, col_axis)

Fortran Syntax

S3L_mat_mult(C, A, B, row_axis, col_axis, ier)

S3L_mat_mult_noadd(C, A, B, row_axis, col_axis, ier)

S3L_mat_mult_addto(C, A, B, D, row_axis, col_axis, ier)

S3L_mat_mult_t1(C, A, B, row_axis, col_axis, ier)

S3L_mat_mult_t1_noadd(C, A, B, row_axis, col_axis, ier)

S3L_mat_mult_t1_addto(C, A, B, D, row_axis, col_axis, ier)

S3L_mat_mult_h1(C, A, B, row_axis, col_axis, ier)

S3L_mat_mult_h1_noadd(C, A, B, row_axis, col_axis, ier)

S3L_mat_mult_h1_addto(C, A, B, D, row_axis, col_axis, ier)

S3L_mat_mult_t2(C, A, B, row_axis, col_axis, ier)

S3L_mat_mult_t2_noadd(C, A, B, row_axis, col_axis, ier)

S3L_mat_mult_t2_addto(C, A, B, D, row_axis, col_axis, ier)

S3L_mat_mult_h2(C, A, B, row_axis, col_axis, ier)

S3L_mat_mult_h2_noadd(C, A, B, row_axis, col_axis, ier)

S3L_mat_mult_h2_addto(C, A, B, D, row_axis, col_axis, ier)

8 S3L 2.0 User’s Guide • November 1997

▼ Matrix-Vector Multiplication

S3L_mat_mult_t1_t2(C, A, B, row_axis, col_axis, ier)

S3L_mat_mult_t1_t2_noadd(C, A, B, row_axis, col_axis, ier)

S3L_mat_mult_t1_t2_addto(C, A, B, D, row_axis, col_axis, ier)

C Syntax

S3L_mat_vec_mult(y, A, x, y_vector_axis, row_axis, col_axis,

x_vector_axis)

S3L_mat_vec_mult_noadd(y, A, x, y_vector_axis, row_axis,
col_axis, x_vector_axis)

S3L_mat_vec_mult_addto(y, A, x, v, y_vector_axis, row_axis,
col_axis, x_vector_axis)

S3L_mat_vec_mult_c1(y, A, x, y_vector_axis, row_axis, col_axis,
x_vector_axis)

S3L_mat_vec_mult_c1_noadd(y, A, x, y_vector_axis, row_axis,
col_axis, x_vector_axis)

S3L_mat_vec_mult_c1_addto(y, A, x, v, y_vector_axis, row_axis,
col_axis, x_vector_axis)

Fortran Syntax

S3L_mat_vec_mult(y, A, x, y_vector_axis, row_axis, col_axis,

x_vector_axis, ier)

S3L_mat_vec_mult_noadd(y, A, x, y_vector_axis, row_axis,
col_axis, x_vector_axis, ier)

S3L_mat_vec_mult_addto(y, A, x, v, y_vector_axis, row_axis,
col_axis, x_vector_axis, ier)

S3L_mat_vec_mult_c1(y, A, x, y_vector_axis, row_axis, col_axis,
x_vector_axis, ier)

S3L_mat_vec_mult_c1_noadd(y, A, x, y_vector_axis, row_axis,
col_axis, x_vector_axis, ier)

S3L_mat_vec_mult_c1_addto(y, A, x, v, y_vector_axis, row_axis,
col_axis, x_vector_axis, ier)

Appendix A Summary of S3L Routines 9

▼ Outer Product

▼ Random Fibonacci

C Syntax

S3L_outer_prod(A, x, y, row_axis, col_axis, x_vector_axis,

y_vector_axis)

S3L_outer_prod_noadd(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis)

S3L_outer_prod_addto(A, x, y, B, row_axis, col_axis,
x_vector_axis, y_vector_axis)

S3L_outer_prod_c2(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis)

S3L_outer_prod_c2_noadd(A, x, *y, row_axis, col_axis,
x_vector_axis, y_vector_axis)

S3L_outer_prod_c2_addto(A, x, y, B, row_axis, col_axis,
x_vector_axis, y_vector_axis)

Fortran Syntax

S3L_outer_prod(A, x, y, row_axis, col_axis, x_vector_axis,

y_vector_axis, ier)

S3L_outer_prod_noadd(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis, ier)

S3L_outer_prod_addto(A, x, y, B, row_axis, col_axis,
x_vector_axis, y_vector_axis, ier)

S3L_outer_prod_c2(A, x, y, row_axis, col_axis, x_vector_axis,
y_vector_axis, ier)

S3L_outer_prod_c2_noadd(A, x, y, row_axis, col_axis,
x_vector_axis, y_vector_axis, ier)

S3L_outer_prod_c2_addto(A, x, y, B, row_axis, col_axis,
x_vector_axis, y_vector_axis, ier)

C Syntax

S3L_rand_fib(a, setup_id)

Fortran Syntax

S3L_rand_fib(a, setup_id, ier)

10 S3L 2.0 User’s Guide • November 1997

▼ Random LCG

▼ Real FFT

▼ Set Safety

C Syntax

S3L_rand_lcg(a, iseed)

Fortran Syntax

S3L_rand_lcg(a, iseed, ier)

C Syntax

S3L_rc_fft_setup(a, *setup_id)

S3L_rc_fft(a, setup_id)

S3L_cr_fft(a, setup_id)

S3L_rc_fft_free_setup(setup_id)

Fortran Syntax

S3L_rc_fft_setup(a, setup_id, ier)

S3L_rc_fft(a, setup_id, ier)

S3L_cr_fft(a, setup_id, ier)

S3L_rc_fft_free_setup(setup_id, ier)

C Syntax

S3L_set_safety(n)

Fortran Syntax

S3L_set_safety(n)

Appendix A Summary of S3L Routines 11

▼ Setup Random Fibonacci

▼ Sort

▼ Transpose

C Syntax

S3L_setup_rand_fib(setup_id, seed)

Fortran Syntax

S3L_setup_rand_fib(setup_id, seed, ier)

C Syntax

S3L_sort(a)

Fortran Syntax

S3L_sort(a, ier)

C Syntax

S3L_trans(a, b, axis_perm)

Fortran Syntax

S3L_trans(a, b, axis_perm, ier)

12 S3L 2.0 User’s Guide • November 1997

Index-1

Index

NUMERICS
2-norm, thumbnail 1-3

A
array coordinate numbering

C and F77 conventions 2-3
array copy, thumbnail 1-4
array handles 1-2
auxiliary S3L functions 1-5

message-passing interface, thumbnail 1-5
safety mechanism, thumbnail 1-5
thread safety, thumbnail 1-5

axis numbering
C and F77 conventions 2-3

C
calling S3L routines

summary 9
code examples

running 15
code examples, path names 14
compiling S3L programs 10
copy array, thumbnail 1-4
core library routines 1-3

D
data types 3-1

C and F77 3-2
Sun HPF 3-1

dense matrix operations, summary 1-3

E
executing S3L programs 11

F
FFT setup and deallocation, thumbnail 1-4
FFT, detailed complex to complex, thumbnail 1-4
FFT, simple forward and inverse, thumbnail 1-4
FFT, simple real-to-complex, thumbnail 1-4
FFTs, 1D, 2D, 3D, summary 1-4
Fibonacci RNG, thumbnail 1-4

I
initialize S3L environment 1-4
inner product, thumbnail 1-3

L
LCG, setup and deallocation

thumbnail 1-4
LCG, thumbnail 1-4
linear congruential RNG, thumbnail 1-4
linking S3L 10
LU factorization, thumbnail 1-3
LU invert, thumbnail 1-4
LU routines, summary 1-3
LU solve, thumbnail 1-3

M
man pages on-line 16
matrix multiplication, thumbnail 1-3
matrix-vector multiplication, thumbnail 1-3

Index-2 S3L 2.0 User’s Guide • November 1997

message-passing interface, thumbnail 1-5
multiple instance 1-2

list of S3L functions supporting 4-1
multiple instances

cells, organizing data to form 4-3
cells, size of 4-3
cells, the basic unit 4-3
data axes, rules for 4-3
determining number of instances 4-3
frames, cells embedded in 4-3
frames, organizing data to form 4-3
how to specify 4-2
instance axes, rules for 4-3
matrix vector multiplication example

multiple instance 4-5
single instance 4-4

multithread support 1-2

O
on-line examples

running 15
on-line examples, path names 14
outer product, thumbnail 1-3

P
parallel arrays

axis and coordinate numbering 2-3
parallel sort, thumbnail 1-4
parallel transpose, thumbnail 1-4

R
random LCG

thumbnail 1-4
random number generators, summary 1-4
restrictions 11
RNG, Fibonacci, thumbnail 1-4
RNG, setup and deallocation, thumbnail 1-4
row, column axis descriptions 2-3

C and F77 conventions 2-3

S
S3L array handles 2-3
S3L header files 10

for C plus Sun MPI 10
for F77 plus Sun MPI 10
for Sun HPF 10
standard header file path 10

S3L, contents 1-3
S3L, core library 1-3
S3L, features 1-1
S3L, overview 1-1
safety mechanism

error checking 12
setting environment variable 14
setting via procedure call 14
synchronization feature 12

safety mechanism, thumbnail 1-5
sample code

running 15
sample code directory 14
single vs multiple instance

calling sequence examples 4-4
single vs multiple instance operations

calling sequence summary 4-4
Fast Fourier Transforms example 4-8
matrix vector multiplication example 4-4

sort routine, thumbnail 1-4
Sun Performance Library 1-2

T
thread safety, thumbnail 1-5
transpose routine, thumbnail 1-4

