Sun™HPC Software 2.0
User’s Guide

D Sun

microsystems

THE NETWORK IS THE COMPUTER"

Sun Microsystems Computer Company
A Sun Microsystems, Inc. Business

901 San Antonio Road

Palo Alto, CA 94303-4900 USA

650 960-1300 fax 650 969-9131

Part No.: 805-1554-10
Revision A, November 1997

Copyright 1997 Sun Microsystems, Inc., 901 San Antonio Road = Palo Alto, CA 94303 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook, SunDocs, Solaris, OpenWindows, Sun HPC Software, Ultra HPC, Ultra HPC Cluster,
UltraSPARC, Sun Performance WorkShop Fortran, and Sun Performance Library are trademarks, registered trademarks, or service marks of
Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION ISPROVIDED “AS 1S” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 901 San Antonio Road = Palo Alto, CA 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook, SunDocs, Solaris, OpenWindows, Sun HPC Software, Ultra HPC, Ultra HPC Cluster,
UltraSPARC, Sun Performance WorkShop Fortran, et Sun Performance Library sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et
sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant
les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L'ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

B “

Adobe PostScript

Contents

Preface vii

Introduction 1-1

11

1.2

13

1.4

Sun HPC Software 2.0 1-1

1.1.1 Solaris Operating Environment 1-2

Sun HPC Software Foundation Package 1-2

1.2.1 Resource Management Software 1-2
122 SunMPI3.0 14

1.2.3 Parallel File System 1.0 1-4

124 PVM3311 14

Sun HPC Parallel Development Environment 1-5
131 Prism5.0 15

132 SunHPF1.0 15

133 S3L20 1-6

134 PETSc2.0.17 1-6

1.3.5 Sun Performance Workshop Fortran v3.0 1-7
Fundamental RTE Concepts 1-7

141 Partitions 1-7

1.4.2 Load-Balancing 1-8

1.43 Tasks and Processes 1-8

1.4.4 Parallel File System 1-9

Contents

iv

15 Using the Sun HPC RTE 1-9

151
1.5.2
1.5.3
154

Logging In 1-9
Executing Programs 1-10
Obtaining Information 1-10

Operating on PFS Files 1-10

2. Logging In and Issuing Commands 2-1

2.1 Logging In 2-1

2.2 After Logging In 2-2

221
2.2.2
2.2.3

Writing Programs ~ 2-2

Compiling and Linking Programs 2-3
Issuing RTE Commands 2-3

2.3 Logging Out 2-4

3. Executing Programs 3-1

3.1 Introduction 3-1

3.11
3.1.2
3.1.3

Execution Methods 3-1
Choosing Where to Execute 3-2
Authentication Methods 3-3

3.2 Specifying Default Execution Options 3-3

3.3 Executing Programs viatmrun and tmsub 3-4

3.3.1
3.3.2
3.3.3
3.34
3.35
3.3.6

Moving tmrun Processes to the Background
Shell-Specific Actions 3-5

Core Files 3-5

Standard Output and Standard Error 3-5
File Descriptors 3-6

SMP Characteristics of Sun HPC Systems 3-6

3.4 Executing Programs Interactively 3-7

3.5 Submitting Batch Jobs 3-7

3.5.1

Choosing the Queue: More Detail 3-8

3.6 tmrun andtmsub Options 3-9

Sun HPC Software 2.0 User’'s Guide * November 1997

3-5

3.7

3.8
3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

Specifying Where a Program Is to Run 3-11

3.7.1
3.7.2
3.7.3
3.7.4
3.7.5

3.7.6

Specifying the Partition 3-11

Specifying the System 3-12

Specifying the Number of Processes 3-12
Expressing More Complex Requirements 3-13

Running on the Same Node(s) as a Currently Running Task (tmrun
Only) 3-18

Running on SMPs 3-18

Specifying the Execution Environment 3-19

Specifying What to Do with Standard Input, Output, and Error 3-20

3.9.1
3.9.2

Introducing tmrun 1/0 3-20
tmsub 3-25

Restarting a Task if a Node Goes Down (tmsub Only) 3-26

Changing the Working Directory 3-26

Executing with a Different User or Group Name 3-26

Getting Information 3-27

Specifying a Different Argument Vector 3-27

Sending Mail About Job Status (tmsub Only) 3-28

Exit Status 3-28

Omitting tmrun or tmsub 3-28

Sending a Signal to a Process 3-29

3.18.1

tmkill ~ Status 3-29

Getting Information 4-1

4.1

4.2

Finding Out Task Status: The tmps Command 4-1

41.1
4.1.2
4.1.3
414

Specifying the Partition 4-2
Displaying Process Information 4-3
Displaying Specific Process, Task, and Job Information 4-3

Displaying Batch and Queue Information 4-5

Configuration and Status Information 4-5

421

Overview 4-5

Contents

vi

4.2.2 Partitions 4-6

423 Queues 4-8

424 Nodes 49

425 System 4-11
4.3 Using the tmadmin Command 4-11
4.4 Getting Help 4-12

441 Sun Online Documentation 4-12

442 Man Pages 4-12

Debugging Programs 5-1

5.1 Debugging Sun MPI and Sun HPF Programs
5.1.1 Setting MPI_INIT_TIMEOUT 5-3

5.2 Debugging PVM Programs 5-3

Parallel File System 6-1

Index Index-1

Sun HPC Software 2.0 User’'s Guide * November 1997

5-2

Preface

This manual describes how to use Sun HPC Software to develop, execute, and debug
programs.

Using UNIX Commands

This document may not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring

devices.

See one or more of the following for this information:
» AnswerBook™ online documentation for the Solaris™ 2.x software environment

= Other software documentation that you received with your system

Preface vii

Typographic Conventions

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning

Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output.

AaBbCc123 What you type, when
contrasted with on-screen
computer output.

AaBbCc123 Book titles, new words or
terms, words to be emphasized.
Command-line variable;
replace with a real name or
value.

Edit your .login file.
Usels -a to list all files.
% You have mail

% su
Password:

Read Chapter 6 in the User’s Guide.
These are called class options.

You must be root to do this.

To delete a file, type rm filename.

viii

Shell Prompts

TABLE P-2 Shell Prompts

Shell Prompt

C shell machine_name%
C shell superuser machine_name#
Bourne shell and Korn shell $

Bourne shell and Korn shell #

superuser

Sun HPC Software 2.0 User’s Guide » November 1997

Related Documentation

TABLE P-3 Related Documentation

Application Title Part Number
All Sun HPC Software 2.0 System 805-1554-10

Administrator’s Guide

All Sun HPC Software 2.0 Release Notes 805-2191-10
SClI Sun HPC SCI Guide 805-1561-10
Installation Sun HPC Software 2.0 Installation Guide 805-1562-10
Sun MPI Programming Sun MPI 3.0 Guide 805-1556-10
Prism Prism 5.0 User’s Guide 805-1552-10
Prism Prism 5.0 Reference Manual 805-1553-10
Sun HPF Programming Sun HPF 1.0 Guide 805-1558-10
S3L S3L 2.0 Guide 805-1557-10
LSF LSF User’s Guide No Sun part

LSF User’s Quick Reference

LSF Administrator’s Guide

LSF Administrator’s Quick Reference
LSF Programmer’s Guide

numbers are
associated with
LSF documentation.

Ordering Sun Documents

SunDocsSMis a distribution program for Sun Microsystems technical documentation.
Contact SunExpress for easy ordering and quick delivery. You can find a listing of
available Sun documentation on the World Wide Web.

TABLE P-4 SunExpress Contact Information

Country Telephone Fax

Belgium 02-720-09-09 02-725-88-50
Canada 1-800-873-7869 1-800-944-0661
France 0800-90-61-57 0800-90-61-58

TABLE P-4 SunExpress Contact Information (Continued)

Germany 01-30-81-61-91 01-30-81-61-92
Holland 06-022-34-45 06-022-34-46
Japan 0120-33-9096 0120-33-9097
Luxembourg 32-2-720-09-09 32-2-725-88-50
Sweden 020-79-57-26 020-79-57-27
Switzerland 0800-55-19-26 0800-55-19-27
United Kingdom 0800-89-88-88 0800-89-88-87
United States 1-800-873-7869 1-800-944-0661

World Wide Web: http://www.sun.com/sunexpress/

Sun Documentation on the Web

The docs.sun.com web site enables you to access Sun technical documentation on
the World Wide Web. You can browse the docs.sun.com archive or search for a
specific book title or subject. The URL is http://docs.sun.com

X

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments
and suggestions. You can email or fax your comments to us. Please include the part
number of your document in the subject line of your email or fax message.

= Email: smcc-docs@sun.com

» Fax: SMCC Document Feedback
1-650-786-6443

Sun HPC Software 2.0 User’s Guide *« November 1997

LSF Technical Support

LSF 3.0, a product of Platform Computing Corporation, is part of the Sun HPC
Software 2.0 Foundation Package. As such, it is supported by Sun as part of Sun
HPC Software 2.0.

Sun HPC Software includes LSF Base and LSF Batch. However, LSF JobScheduler
and LSF MultiCluster are not included and, therefore, not supported by Sun.

Information Sources for PVM and PETSc

TABLE P-5 lists organizations and resources for information about the publicly
available libraries PVM and PETSc. This information is subject to change.

TABLE P-5 Information Sources for PVM and PETSc

Product Contact

PVM Copyright holders: University of Tennessee, Oak Ridge National
Laboratory, Emory University
Electronic mail: pvm@msr.epm.ornl.gov
Newsgroup: comp.parallel.pvm
Web site: http://www.epm.ornl.gov/pvm/pvm_home.html

PETSc Developed and supported by the Mathematics and Computer Science
Division of the Argonne National Laboratory.

Xi

xii Sun HPC Software 2.0 User's Guide * November 1997

CHAPTER 1

Introduction

Sun HPC Software provides users with
= High throughput for execution of their serial programs
= Fast execution of their serial or parallel programs

= An optional suite of compilers, libraries, and programming environments that
facilitates the development of application programs

1.1

Sun HPC Software 2.0

A Sun HPC System consists of Sun HPC Software running on Sun Ultra HPC Servers
(either singly or in clusters), each server (called a node) containing 1 to 64 CPUs.
Using the SCI interconnect, Sun Ultra HPC Clusters support up to four nodes.

Note — In Sun HPC documentation, the terms system and Sun HPC System refer to
the Sun Ultra HPC Server or Servers that are running Sun HPC Software. A Sun
HPC System (or system) may consist of a cluster of servers or a single server,
depending on your local configuration.

The term used to describe an individual server (such as an SMP) within a cluster is
node

The following are valid Ultra HPC servers:

= Sun HPC 2

= Sun HPC 450
= Sun HPC 3000
= Sun HPC 4000
= Sun HPC 5000
= Sun HPC 6000

1-1

1.1.1

= Sun HPC 10000

Sun HPC Software is composed of a Foundation Package and a Parallel
Development Environment. The components of the Foundation Package are bundled
together, and the Foundation Package is required. The components of the Parallel
Development Environment (PDE) are also bundled together, and are optional.

Solaris Operating Environment

Sun HPC Software uses the Solaris 2.5.1 or 2.6 operating environment, extended (for
Prism, Sun MPI, Sun HPF, Parallel File System, and related products) by the Sun
HPC run-time environment (RTE). All programs that execute under Solaris 2.5.1 or
2.6 execute under Sun HPC Software.

Note — Sun HPC servers require Solaris 2.5.1 or 2.6 (Ultra HPC 10000 supports
Solaris 2.5.1 and later releases).

1.2

1.2.1

Sun HPC Software Foundation Package

Sun HPC Software includes a suite of resource management software, Sun MPI,
PVM, and the Parallel File System.

Resource Management Software

Sun HPC Software provides two resource managers: the Sun HPC run-time
environment (RTE), and Platform Computing’s Load Sharing Facility (LSF). Both
provide

Load-balancing

Both remote batch and interactive execution of processes
Multiple resources for host selection

Flexible resource requirement strings (RRS)

= Auto-restart of batch jobs if a node fails

The RTE provides access to parallel development software and supplies extensive
parallel process management. LSF provides sophisticated serial and batch process
management.

1-2 Sun HPC Software 2.0 User’s Guide » November 1997

1.21.1

1.2.1.2

Sun HPC Run-Time Environment 2.0

The Sun HPC run-time environment (RTE) is the resource management system that
enables you to use Sun MPI, Sun HPF, the Parallel File System (PFS), and Prism.

The RTE has three components:

= A command-line user interface, which is described in this manual. The user
interface lets users run jobs on, and obtain information about, Sun Ultra HPC
nodes.

= A daemon-based environment, which handles security and the allocation of
resources on Sun Ultra HPC nodes. For example, when a user submits a program
for execution, the run-time environment determines the best node or nodes on
which to run the program, and spawns the program on the chosen node or nodes.

= System administration tools, which allow a site to configure, manage, and
troubleshoot problems on Sun Ultra HPC nodes. See the Sun HPC System
Administrator’s Guide for information about these tools.

LSF 3.0

Load Sharing Facility (LSF) is a resource management system from Platform
Computing Corporation that provides load sharing and distributed batch queueing
on networks of UNIX systems. You can do every batch submission, configuration, or
monitoring task via a graphical user interface, complete with hypertext-based online
help.

Sun HPC Software 2.0 includes LSF Base and LSF Batch (LSF JobScheduler and LSF
MultiCluster are not included).They are described in the LSF User’s Guide, and the
LSF Programmer’s Guide.

For jobs that do not require Sun MPI, Sun HPF, the Parallel File System (PFS), or
Prism, LSF provides a sophisticated batch processing system, including

= Start and end-time controls (time windows)

= Exclusive jobs (resource reservation)

= Rerunnable (requeueable) jobs

= Job dependency controls

= Batch file transfers between nonuniform file systems

= Job scripting

= The ability to store job specifications in files for later re-use

= Job migration (on demand or by crossing threshold values)

= Transfer of jobs between queues

= Access control (both user and host)

= Varied access control parameters (such as jobs/instance, jobs/CPU, and jobs/
gueue)

Chapter 1 Introduction 1-3

1.2.2

1.2.3

1.2.4

Sun MPI 3.0

Sun MPI (message-passing interface) is an implementation of the industry-standard
MPI library. Sun MPI requires the Sun HPC run-time environment. Sun MPI has the
following advantages over the publicly available implementations of MPI:

= Thread-safety, enabling programs to exploit the multithreading and
multiprocessing features of Solaris.

= Inclusion of a subset of routines from the MPI 1/0 standard for coordinated,
collective 1/0 within an MPI program

= On-node communication by shared memory where applicable

= Integration with the run-time environment, taking advantage of load balancing,
batch processing, and other resource-management features.

= Prism support, that is, users can develop, run, and debug programs in the Prism
programming environment

Parallel File System 1.0

Sun HPC Software includes a Parallel File System (PFS). PFS closely resembles
UNIX-style file systems but provides significantly higher file /0 performance
because it reads data from and writes data to multiple disks and multiple servers in
parallel. Also, PFS supports parallel applications by allowing them to express their
high-level 170 needs more clearly than the standard UNIX API allows. PFS is
optimized for the complex data-access patterns that are common in parallel scientific
applications. See Chapter 6, “Parallel File System.”

PVM 3.3.11

PVM (Parallel Virtual Machine) is a publicly available library of routines for message
passing, and is used widely in academic and research computing. PVM is provided
at no cost to the user; it is not supported by SunService nor covered under any
maintenance agreement. For information about attaching to running PVM processes
with the Prism debugger, see Chapter 5, “Debugging.”

1-4 Sun HPC Software 2.0 User’s Guide » November 1997

1.3

1.3.1

1.3.2

Sun HPC Parallel Development
Environment

Sun HPC Software includes a suite of software development tools, Prism, Sun HPF,
S3L, and PETSc.

Prism 5.0

Prism is the Sun HPC programming environment, which allows you to develop,
execute, debug, and visualize data in programs written in Sun’s data-parallel
language, Sun HPF, and in message-passing C and Fortran programs. With Prism
you can

= Control program execution:
« Start and stop execution
« Set breakpoints and traces
« Print values of variables and expressions
« Display the call stack
= Visualize data in various formats

= Analyze Sun HPF program performance at several levels. You can display
performance data on CPU usage, 1/0 time, and communication time at the level
of:

« The entire program
« Individual procedures within the program
« Individual source lines within procedures

= Control multiple processes, aggregating processes into meaningful groups, called
process sets or psets.

Sun HPF 1.0

The Sun High Performance Fortran (Sun HPF) compiler is a data parallel program
development system offering

= Subset HPF.
= Various Fortran 90 features not in Subset HPF.

Chapter 1 Introduction 1-5

= An EXTRINSIC(F77_LOCAL) interface that supports local programming with
MPI.

= CM Fortran (CMF) back-compatibility via a switch-selectable CMF mode. This
mode allows processing of both CMF layout directives and CMF-specific syntax.

= The HPF utility library.
= Source-level debugging and program development with Prism.

Note — Sun HPF requires the Sun Fortran 77 compiler included in the Sun
Performance Workshop Fortran™ suite of tools.

1.3.3 S3L 2.0

The Sun Scientific Subroutine Library (S3L) provides a set of parallel and scalable
functions and tools used widely in scientific and engineering computing.
S3L includes:

= Vector and Dense Matrix operations
= LU factorization and solve

» FFTs

= Random number generators

= Sort

= Safety mechanism

The chief advantages of S3L are:

= Functions that have an array syntax interface callable from Sun HPF, as well as
from C and F77 programs using Sun MPI

= Support for the multiple instance paradigm (whereby the same operation can be
concurrently applied to disjoint data sets in a single call)

= Thread safety
= Use of the SunSoft Performance Library for nodal computation
= Detailed programming examples and support documentation provided online

1.3.4 PETSc 2.0.17

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an extensive
package of mathematical library routines for sparse, iterative linear and nonlinear
solvers. PETSc is provided at no cost to the user; it is not supported by SunService

1-6 Sun HPC Software 2.0 User’s Guide » November 1997

1.3.5

nor covered under any maintenance agreement. Developed and supported by the
Mathematics and Computer Science Division of the Argonne National Laboratory,
PETSc is targeted at the resolution of Partial Differential Equations.

Sun Performance Workshop Fortran v3.0

The Sun Performance Workshop Fortran is a collection of compilers, debuggers,
libraries, and tools for both single-processor and SMP systems. Packaged with Sun
HPC servers, portions of the Sun Performance Workshop are required by Sun HPC
Software.

Note — Sun HPF requires the Sun Fortran 77 compiler, either version 4.0 or 4.2.

1.4

1.4.1

Fundamental RTE Concepts

This section introduces some important concepts that you should understand in
order to use the Sun HPC RTE effectively. For information on LSF, see the LSF User’s
Guide and the LSF Programmer’s Guide.

Note — Remember, the terms system and Sun HPC System refer to either a single Sun
Ultra HPC server or cluster of servers, depending on your local configuration.

Partitions

The RTE organizes the nodes in your Sun HPC system in logical sets, called
partitions. Each partition can consist of one or more nodes (or, in the HPC 10000,
domains, which are logically equivalent to nodes). These partitions can have a variety
of attributes, which control the way they operate. Your system administrator can
configure them to meet the needs of your site. For example,

= Inashared partition, multiple programs can execute on the partition’s nodes at the
same time.

= In a dedicated partition, one program at a time has access to all the nodes of a
partition. This is particularly useful for fast execution of message-passing
programs, which need the coordinated use of multiple nodes.

= A login partition is a shared partition that accepts user logins.

Chapter 1 Introduction 1-7

1.4.2

1.4.3

Note these further points about RTE partitions:

» RTE partitions are dynamic. Your system administrator can reconfigure a partition
so that it has, for example, more nodes or different attributes.

= RTE partitions can be enabled or disabled. You can run programs only in an
enabled partition. If a partition has its enabled attribute turned off (by the system
administrator), no one can run programs in it. This distinction allows the system
administrator to swap partitions in and out. For example, there might be different
partitions (containing overlapping sets of nodes) available on nights and
weekends from those available during the day.

Note — Individual nodes can belong to at most one active partition at a time. They
can also belong to no partition, in which case they are available to any partition.

= A Sun MPI program can run only on nodes in the same partition; the program
cannot span partitions. You can, however, specify running on a node that is not in
any partition.

= A user logged in to one partition can execute a program in any active partition (or
on another Sun HPC System).

Load-Balancing

The Sun HPC run-time environment load-balances programs that execute in shared
partitions. When you issue a command to execute a program, the RTE first
determines what criteria (if any) you have specified for the node or nodes on which
the program is to run. It then determines which nodes meet these criteria within the
partition you specified. If more nodes meet the criteria than are required to run your
program, the RTE starts the program on the node or nodes that are least loaded.
(Specifically, it ranks nodes using their one-minute load averages, with an
adjustment that takes into account jobs that have started too recently to affect the
load averages.)

This load-balancing mechanism ensures that your program’s execution will not be
unnecessarily delayed because it happens to run on a heavily loaded node. It also
ensures that the overall throughput of the partition is as high as possible—some
nodes won't sit idle while other nodes are overburdened.

Tasks and Processes

When a serial application program executes on a Sun HPC System, it becomes a
Solaris process with a Solaris process ID, or pid.

1-8 Sun HPC Software 2.0 User’s Guide » November 1997

1.4.4

When parallel programs, such as message-passing programs or Sun HPF data-
parallel programs, execute, multiple Solaris processes are started, each with its own
pid.

The RTE also assigns a task ID, or tid, to the serial program, the overall message-
passing application, and the HPF program. Task IDs always begin with a t to
distinguish them from pids. Many Sun HPC Software commands take tids as
arguments. For example, you can issue a tmkill command with a signal number or
name and a tid argument to send the specified signal to all processes that make up
the task specified by the tid.

Note — A job is the entity submitted to a queue. Once spawned, the job becomes a
task. Job numbers are preceded with the letter j, task numbers with the letter t. Batch
tasks get their task ID from the job ID, keeping the same number. Only the initial
letter of the ID changes.

Parallel File System

PFS combines multiple disks and multiple 1/0 servers into a single, unified file
system that provides scalable, high-performance, parallel 1/0. Under PFS,
individual files are distributed across multiple disk storage units, each of which is
managed by a separate 1/0 server.

Distributing file systems across multiple disks with independent 1/0 channels
allows HPC processes to read and write PFS files in independent parallel streams,
one per server-disk channel. The result is higher aggregate bandwidth as well as
opportunities for masking disk access latencies.

1.5

1.5.1

Using the Sun HPC RTE

This section gives a brief overview of how to use the Sun HPC run-time
environment (RTE).

Logging In

Use tmlogin or tmtelnet to log in to a Sun HPC System. The Sun HPC RTE places
your login session on the least-loaded node of a login partition.

Logging in is described in more detail in Chapter 2.

Chapter 1 Introduction 1-9

1.5.2

1.5.3

1.5.4

Once you are logged in to the system, you can do anything you normally do in a
Solaris environment—such as write and compile programs, execute and debug
them, send email, and so forth.

All file systems in the system are visible from every node in the system.

Executing Programs

There are two methods of executing a program using the Sun HPC RTE: interactive
and batch.

= Use the tmrun command to execute a program in interactive mode. If resources
are available, the program executes immediately.

= Use the tmsub command to submit a program to a batch queue for execution. The
program executes when it reaches the front of the queue, if resources are
available.

You can include arguments to both commands to specify the resources you want to
use for executing your program—for example, the number of nodes you require, the
amount of memory, or the partition in which to execute.

These commands are described in more detail in Chapter 3.

Obtaining Information

You can use RTE commands to obtain various kinds of information:

= Use the tmps command to obtain information about currently running tasks and
processes.

= Use the tminfo command to obtain information about the configuration of the
system’s partitions, nodes, and batch queues.

These commands are discussed in more detail in Chapter 4.

Operating on PFS Files

PFS includes a collection of utilities that allow you to perform many of the same file
operations on PFS files that are commonly performed in UNIX file systems. TABLE 1-1
summarizes these utilities; see their respective man pages for detailed descriptions.

1-10 Sun HPC Software 2.0 User’s Guide ¢ November 1997

Note — All the PFS utilities that have Solaris counterparts are functionally
equivalent to those counterparts, with minor exceptions. The differences in
functionality are noted in the table. A few PFS utilities have no Solaris equivalents;
these are also identified in the table.

TABLE 1-1 PFS General Utilities

tmcd Set the PFS current working directory.

tmchgrp Change the group ownership of a PFS file or directory. Note:
tmchgrp does not support the —f and —h options provided by
chgrp .

tmchmod Change the access protection bits of a file. Note: tmchmod does not
support the —f option provided by chmod.

tmchown Change the owner of a PFS file or directory. Note: tmchown does
not support the —f and —h options provided by chown.

tmcmp Compare the contents of two PFS files.

tmecp Copy a PFS file or directory within the PFS system. Note: tmcp
does not support the —R option provided by cp.

tmimport/ Move data between PFS and Solaris file systems. Note: These

tmexport options do not have Solaris equivalents.

tmin Create a hard link to a PFS file. Note: PFS does not support
symbolic links; thus, tmin does not support the —s option
provided by In .

tmls List the contents of PFS directories. Note: tmls does not support
the —AbCdfFLmpgsx1 options provided by Is.

tmmkdir Create a PFS directory. Note: tmmkdir does not support the —p
option provided by mkdir.

tmmv Move a PFS file or directory to another location in the PFS system.
Note: tmmv does not support the —f option provided by mv.

tmpwd Print the current working directory.

tmrm Remove a PFS file. Note: tmrm does not support the —R option
provided by rm.

tmrmdir Remove a PFS directory. Note: tmrmdir does not support the —R

option provided by rmdir.

Chapter 1 Introduction 1-11

1-12 Sun HPC Software 2.0 User’s Guide ¢ November 1997

CHAPTER 2

Logging In and Issuing Commands

This chapter describes how to log in to and issue commands on a Sun HPC System.
You must be logged in to the System to issue Sun HPC Software commands.

2.1 Logging In

To log in to a Sun HPC System, use either the tmlogin or tmtelnet commands
from another Solaris system on the network.

Note — In Sun HPC documentation, the terms system and Sun HPC System refer to
the Sun Ultra HPC Server or Servers that are running Sun HPC Software. A Sun
HPC System (or system) may consist of a cluster of servers or a single server,
depending on your local configuration.

The term used to describe an individual server (such as an SMP) within a cluster is
node

You do not log in to a specific node in the system. The run-time environment (RTE)
starts your login session on the least-loaded node in a partition that is configured to
accept logins (referred to as a login partition). All file systems on the system are
visible from each node in the system, so the actual node on which you have your
session doesn’t matter.

To log in via either method, you need to know the name of the Sun HPC System. The
name of the Sun HPC System is the same as the name of the node running the RTE
master daemons. You can obtain this name from your system administrator.

The two login commands have the same format. The only difference is that tmlogin
uses the rlogin protocol to log in, and tmtelnet uses the telnet protocol.

2-1

To issue the command, type it at your Solaris prompt, specifying the name of the
system to which you want to log in:

% tmlogin Mars

You can omit the system name if you have set the SUNHPC_SYSTEBhvironment
variable to the name of the system. In a C shell, for example,

% setenv SUNHPC_SYSTEM Mars
%tmtelnet

If there is more than one login partition in the system, you can use the —p option to
specify the partition in which you want to have your login session. For example,

% tmtelnet —p Deimos

or you can set the SUNHPC_PARE&nvironment variable to the name of the partition
you want to use. If you don’t specify a partition in either of these ways, the RTE
uses a default partition.

As described above, the RTE then logs you in to a node in the login partition.
(Depending on the command you use and the way your site’s system is configured,
you may have to enter a user name and password first.) You receive the standard
Solaris login information, followed by a Solaris prompt:

Sun Microsystems Inc. SunOS 5.51 Generic November 1997
Users: georgek bowker
Phobos%

You are now logged in to one of the nodes in the Mars System. You can issue any
Solaris commands and execute programs. See Chapter 3 for more information about
executing programs.

2.2

2.2.1

After Logging In

Once you are logged in to a Sun HPC System, you can issue any Solaris or Sun HPC
commands, and you can execute any programs that will execute under Solaris 2.5.1
or 2.6. See Chapter 3 for more information about executing programs.

Writing Programs

You can log in to the Sun HPC System to do your program development, or you can
do it on any computer that contains the appropriate software.

2-2 Sun HPC Software 2.0 User’s Guide » November 1997

2.2.2

2.2.3

Compiling and Linking Programs

If you are using a Sun HPC compiler or library, you must compile and link your
program on a Sun HPC System on which the required software is loaded.

To compile your Sun HPF, Fortran 77, or C program for use with Prism, use the —g
option. If you are using a SPARCompiler (from Sun Performance Workshop Fortran,
for example), you must also include the —xs option. If you want to collect
performance data on your Sun HPF program with Prism, compile with the
—tmprofile option.

See the S3L Guide and Sun MPI Guide for information on linking in S3L or the Sun
MPI library, respectively.

Issuing RTE Commands

The Sun HPC RTE provides commands that allow you to execute programs and
obtain information. This section provides general information about issuing these
commands. The commands are discussed in detail in the next two chapters; in
particular, see Section 3.3 for further information about executing programs.

Sun HPC RTE programs are typically in the directory /opt/SUNWhpc/bin . If you
are unable to execute them, you may need to add this directory to your path; check
with your system administrator. The man pages for Sun HPC commands are in
Jopt/SUNWhpc/man. If you cannot display these man pages, you may need to add
this directory to your manpath.

You issue Sun HPC RTE commands (which all begin with tm) just as you would any
Solaris command.

RTE options consist of a dash, typically followed by one or two letters—for
example, —h, —np. You can combine single-letter options that don’t take arguments
so long as they don’t create ambiguity with multiletter options. For example, the
command

% tmrun —B —T

can also be written as
% tmrun —BT

Chapter 2 Logging In and Issuing Commands 2-3

2.3 Logging Out

To log out of the Sun HPC System and return to your local computer, issue the
command

% logout

2-4 Sun HPC Software 2.0 User’s Guide » November 1997

CHAPTER 3

Executing Programs

This chapter describes how to issue commands to execute programs on a Sun HPC
System. You can execute programs on any node or nodes in any partitions to which
you have access. A major difference between the Sun HPC System and a collection of
workstations is that the Sun HPC run-time environment (RTE) provides you with
extensive and flexible tools for specifying where and how your program should run.

All programs written for Solaris 2.5.1 or 2.6 can run without recompilation on a Sun
HPC System.

Note — Remember, the terms system and Sun HPC System refer to either a single Sun
Ultra HPC server or cluster of servers, depending on your local configuration.

3.1

3.1.1

Introduction

Execution Methods

There are two basic methods of execution: interactive and batch. The system
administrator configures each partition to accept one method or both of these
methods.

3-1

31.11

3.1.1.2

3.1.2

Interactive Execution

With interactive access, your program runs right away if the resources you specify
are available. This is particularly useful, for example, if you are using Prism to
debug the program. The drawback is that, if the resources aren’t available, you have
to keep resubmitting the program until they become available; your program isn’t
gueued for execution later.

Use the tmrun command to execute a program immediately, if resources are
available; see Section 3.4.

Batch Execution

With batch access, you submit a job to a queue, and it is run when it reaches the
front of the queue if the resources you request are available. This is usually the
preferable access method for a dedicated partition, where only one job can run at a
time, and you are therefore less likely to be able to gain access to it immediately.

Use the tmsub command to submit a job to a batch queue; see Section 3.5.

Choosing Where to Execute

The Sun HPC RTE provides you with considerable flexibility in choosing where you
want your program to execute. For example, you can specify

= The partition in which you want to execute your program

= The number of processes you want to start, and how you want them to map to
nodes

= The characteristics of the node or nodes on which you want to run—for example,
the minimum amount of memory required or the maximum acceptable load
See Section 3.7 for further information on specifying where a program is to run.

You can specify default execution criteria via the TMRUN_FLAGS8nvironment
variable; see Section 3.2. You can also override these criteria via options to the tmsub
or tmrun command.

3-2 Sun HPC Software 2.0 User’s Guide « November 1997

3.1.3

Authentication Methods

Sun HPC Software includes two optional forms of user authentication that require
the execution of user-level commands. The two methods are Kerberos Version 4
authentication and DES authentication. If one of these authentication methods is
enforced on your Sun HPC System (see your system administrator for details), use
the commands listed in TABLE 3-1 .

TABLE 3-1 User Commands Required by Authentication Methods

Authentication Method Required Command

DES While DES authentication is in use, you must issue the
keylogin command before issuing any commands beginning
with tm, such as tmrun or tmps.

Kerberos 4 While Kerberos version 4 authentication is in use, you must
issue a kinit command before running any command
beginning with tm, such as tmrun or tmps.

3.2

Specifying Default Execution Options

Use the TMRUN_FLAGS8nvironment variable to specify the default options for
tmsub or tmrun . The system interprets the contents of TMRUN_FLAGSs if they
follow the tmrun or tmsub command but precede all options on the command line.
You can override a specific default option by including a new value for the option on
the tmrun or tmsub command line. (In the case of the —R and -t options, the
interaction between TMRUN_FLAGSnd tmrun or tmsub is slightly more
complicated; see Section 3.7.4 and Section 3.7.5.)

The setting of the environment variable can be any number of valid tmrun or tmsub
options. (If you use more than one word, enclose the list in quotation marks.) These
options are described in more detail in the remainder of the chapter and are listed in
Section 3.5.1, TABLE 3-2.

For example, this C-shell command makes Deimos the default partition to be used
for tmrun and tmsub :

% setenv TMRUN_FLAGS "—p Deimos"

If you use the Bourne shell (sh), the comparable commands would be
TMRUN_FLAGS = "-p Deimos"; export TMRUN_FLAGS

Unless you specify otherwise (via the —p option), the Sun HPC RTE will execute
your programs in this partition.

Chapter 3 Executing Programs ~ 3-3

You can set both tmrun and tmsub options via TMRUN_FLAGS\ote, however, that
if you include an option that is unique to one command, issuing the other command
will fail, because it won’t recognize the option.

You can check the current setting of TMRUN_FLAGSy issuing the command
% printenv TMRUN_FLAGS

In addition, you can use the environment variable SUNHPC_PARTo0 specify the
default partition in which you want to execute your programs. Once again, you can
override this by specifying the appropriate option to tmrun or tmsub (or by
specifying the option in the TMRUN_FLAGS$nvironment variable). By default, your
programs execute in the partition where you are logged in.

Finally, your system administrator may have established a default partition in
configuring the System. You can find this out by issuing the tminfo command; see
Section 4.2. This default is used only if you are not currently in a partition on that
Sun HPC System—for example, if you are logged in to one Sun HPC System and
executing a program on another Sun HPC System.

3.3

Executing Programs via tmrun and
tmsub

This section provides general information about executing programs via tmrun and
tmsub . See also Section 2.2.3 for general information on issuing Sun HPC
commands.

Execution via tmrun and tmsub is similar to standard Solaris program execution.
For example,

= Your environment is used as if you executed the program from a traditional shell,
although you can specify options to manipulate your environment; see
Section 3.8.

= Signals are treated as they are in standard Solaris; for multiprocess programs, if
one process is Killed via a signal, all processes are killed.

= You can run a program in the background:
% tmrun a.out &

There are some differences from standard Solaris execution; they are discussed
below.

3-4 Sun HPC Software 2.0 User’s Guide « November 1997

3.3.1

3.3.2

3.3.3

3.3.4

Moving tmrun Processes to the Background

When you move to the background either a process started with tmrun or a script
that issues tmrun commands, you must do one of the following:

= Redirect stdin away from the terminal
= Specify the —n option to tmrun (See Section 3.9.1, “Introducing tmrun 1/0”)

If you do not take one of these steps, the tmrun process will contend with your shell
for characters typed at the shell, causing unexpected effects.

Shell-Specific Actions

If you want to perform actions that are shell specific, such as executing compound
commands, you must first invoke the appropriate shell as part of the tmrun or
tmsub command. For example,

% tmrun csh —c ‘echo $USER’

or
% tmrun csh —c ‘cd /foo ; bar’

Core Files

Core files are produced as they normally are in Solaris. However, if more than one
process dumps core in a multiprocess program, the resulting core file may be
invalid.

Standard Output and Standard Error

By default, tmrun handles standard output and standard error the way rsh does:
The output and error streams are merged and are displayed on your terminal screen.
Note that this is slightly different from the standard Solaris behavior when you are
not executing remotely; in that case, the stdout and stderr streams are separate.
You can obtain this behavior with tmrun via the —D option, and you can specify
other methods of handling the standard 1/0 streams; see Section 3.9.

By default, tmsub puts standard output and standard error into a file; again, for
more information, see Section 3.9.

Chapter 3 Executing Programs ~ 3-5

3.3.5

3.3.6

File Descriptors

If your task consists of a large number of processes, you may need to consider the
number of file descriptors the task is using and, if necessary, increase the default
number available to you.

For merged standard 1/0, each process in a task requires two descriptors. For
separate stderr /stdout streams, each process requires three descriptors. (See
Section 3.3.4 for more information on merged and separate standard 1/0 streams.)
You also need three file descriptors for interacting with your terminal.

You can find out the default number of file descriptors available in your shell by
issuing this command in the C shell:

% limit descriptors

The corresponding command in the Bourne shell is
ulimit —n
The default for most shells is 64. This limits you to about 30 processes for merged

standard 1/0 and about 20 processes for separate standard 1/0. If this isn’t
sufficient, you can increase your limit by issuing a C-shell command, such as

% limit descriptors 128

or a Bourne-shell command, such as

ulimit —n 128

Or you can set it to the maximum value via the C-shell command
% unlimit descriptors

or the Bourne-shell command

ulimit —n ‘ulimit —HnN*

The file descriptor maximum in Solaris 2.x is 1024.

SMP Characteristics of Sun HPC Systems

Since your Sun HPC System consists of symmetric multiprocessors (SMPs), by
default Sun HPC Software takes into consideration the number of CPUs per node. In
general, tmrun will assign more processes to larger SMPs. For information about
how the RTE allocates processes to CPUs, see Section 3.7.3.1, “Specifying How —np
Relates to the Number of Available CPUs,” and Section 3.7.6, “Running on SMPs.”

3-6 Sun HPC Software 2.0 User’s Guide * November 1997

3.4

Executing Programs Interactively

Use the tmrun command to execute a program in a partition that has been
configured for interactive access. If the resources you request are available, the
program runs. If they aren’t available, you receive an error message and should try
again later.

Recall that, in addition to specifying execution criteria via tmrun , you can also set
up default execution criteria via the TMRUN_FLAGSnvironment variable; see
Section 3.2. If you don’t have default criteria and don’t request specific resources, the
system executes the program on the least loaded-node or nodes in the partition it
chooses; once again, see Section 3.2 to learn how the system chooses the partition. If
you do request specific resources, the system executes the program on the least-
loaded node or nodes that meet the criteria you specify.

The basic format of the tmrun command is

% tmrun [options] [-] executable [args ...]

Note — The dash between the tmrun options and the name of the executable
program is optional. You must include it when the name of the program conflicts
with that of a tmrun option. TABLE 3-2 lists all tmrun and tmsub options.

3.5

Submitting Batch Jobs

Use the tmsub command to submit a job to a batch queue for execution in a
partition that has been configured for batch access. Use the —q option to specify the
gueue. For example,

% tmsub —g Demeter a.out
submits the program a.out to the queue Demeter.

When you submit a program to a queue, it is executed when it reaches the front of
the queue if the requested resources are available. If they aren’t, the system will act
based on the value of the queue policy attribute. The two possible values of this
attribute are

= block — retries executing the job periodically.
= requeue — tries to run another job before retrying the job.

Chapter 3 Executing Programs ~ 3-7

3.5.1

You can remove a job from a queue via the tmkill command; see Section 3.18. The
gueue must be enabled for you to be able to submit to it; it must be running for the
job to run once submitted.

Once a queue accepts a job, it returns a job ID that identifies that job. You can use
this job ID to find out about the job’s status via the tmps command.

To obtain information about queues, issue the command

% tminfo —Q

See Section 4.2 for more information about tminfo

TABLE 3-2 lists all tmsub options. Section 3.6 through Section 3.15 describe tmsub
options in detail. You can include tmsub options in your TMRUN_FLAGS
environment variable; see Section 3.2.

Choosing the Queue: More Detail

As discussed above, you can use tmsub —q to specify the queue to which to submit
your job. Queue names are unique within a partition. However, multiple queues in a
Sun HPC System can have the same name if they are not in the same partition.

If you specify tmsub —p a_partition -q a_queue, then the System will use a_queue in
a_partition. If there’s no such queue in the partition, the System will generate an
error.

Note — If the TMRUN_FLAGS$nvironment variable includes a - p or - g flag, that’s
equivalent to having the flag(s) on the command line.

If you specify tmsub —p a_partition, then the system will use the default queue in
a_partition. If there’s only one queue in a_partition, that’s the default queue.

If you specify tmsub -q a_queue, Sun HPC Software uses the following criteria, in
this order of precedence:

1. If there’s only one queue in the entire system called a_queue, the system will use
that queue.

2. If the default batch partition has a queue called a_queue, the system will use that
queue.

3. If the SUNHPC_PAR®e&nvironment variable is set to the name of a partition that
has a queue called a_queue, the system will use that queue.

4. If the node on which tmsub was invoked is part of a partition that has a queue
called a_gueue, the system will use that queue.

3-8 Sun HPC Software 2.0 User’s Guide * November 1997

If you specify tmsub without naming a partition or queue, Sun HPC Software uses
the following criteria, in this order of precedence:

1. If there’s only one queue in the entire system, the System will use that queue.

2. If there’s a default batch partition with a default queue, the System will use that
queue.

Note — If a partition has only one queue, that queue is treated as the default queue
for that partition.

3. If the SUNHPC_PAR®&nvironment variable is set to the name of a partition with a
default queue, the system will use that queue.

4. If the node on which tmsub was invoked is part of a partition that has a default
gueue, the system will use that queue.

To determine whether a partition has been assigned a default queue, use the tminfo
command; see Section 4.2

3.6

tmrun and tmsub Options

The tmrun and tmsub commands share most options in common. Options that are
unique to one or the other are identified as such when we discuss them. See
Section 2.2.3 for general information about options for Sun HPC commands.

Recall that the setting of the TMRUN_FLAGS®8nvironment variable may provide
default settings for tmrun and tmsub options; see Section 3.2. Specifying the option
on the command line generally overrides the setting of that option in the
environment variable..

TABLE 3-2 Options for tmrun and tmsub .

Option Meaning

—A aout Execute aout , and use a different argument as the argv[0]
argument to the program. See Section 3.14.

-B Send stderr /stdout output streams to files (Specified for tmrun
only. This is the default for tmsub). See Section 3.9.

—C path Use the specified directory as the current working directory for the
task. See Section 3.11.

Chapter 3 Executing Programs ~ 3-9

3-10

TABLE 3-2 Options for tmrun and tmsub .

Option Meaning

-D Provide separate stdout and stderr streams (tmrun only). See
Section 3.9.

—Ea envar Add the specified entry to the inherited environment. See
Section 3.8.

-Ec Remove the inherited environment. See Section 3.8.

—Ed envar Delete the specified entry from the inherited environment. See
Section 3.8.

—Em Set up a minimal environment. See Section 3.8.

-G group Execute with the specified group ID or group name. See
Section 3.12.

-h Display help. See Section 3.13.

—i Standard input to tmrun is sent only to rank 0, and not to all other
ranks (tmrun only).

—I iofds Use the specified 1/0 file descriptor string to control 1/0 stream
handling. See Section 3.9.

—Muser Send mail upon job completion to the specified user, rather than
the user who ran tmsub (tmsub only). See Section 3.15

-n Read stdin from /dev/null . See Section 3.9.

-N Do not open any standard 170 connections (tmrun only). See
Section 3.9.

—np number Request the specified number of processes. See Section 3.7.3.

—Nr Don’t restart the task if a node fails (tmsub only). See Section 3.10.

—Ns Disable spawning of multiple processes from a task on SMPs; see
Section 3.7.6.

-0 Use line buffering on standard output, prefixing each line with the
rank of the process that wrote it (tmrun only)

—p partition Run in the specified partition. See Section 3.7.1.

—P priority Run with the specified priority (tmsub only). See Section 3.9.2.

—q queue Submit to the specified queue (tmsub only). See Section 3.5.

—R " specifier" Specify conditions for choosing nodes. See Section 3.7.4.

-S Settle for the available number of nodes (used with —np). See
Section 3.7.3.

—s system Run on the specified system. See Section 3.7.2.

Sun HPC Software 2.0 User’s Guide « November 1997

TABLE 3-2 Options for tmrun and tmsub .

Option Meaning

-t tid Run on the same node(s) as the task with task ID tid (tmrun
only). See Section 3.7.5.

-T Show the tid, system name, and number of processes after
executing (tmrun only). See Section 3.13.

—U user Execute with the specified user ID or user name. See Section 3.12.

-V Display version information. See Section 3.13.

-W Wrap the requested processes on the available CPUs (used with —
np). See Section 3.7.3.

-Yr Restart the task if a node fails (tmsub only). See Section 3.10.

-Ys Allow spawning on SMPs. See Section 3.7.6.

—Z rank Run processes, by groups of size rank, together on the same node.

(incompatible with —S and —-W) See Section 3.7.6.1.

3.7

3.7.1

Specifying Where a Program Is to Run

The tmrun and tmsub commands provide you with considerable flexibility in
specifying where you want your job to run. Section 3.7.1 describes how to choose the
partition in which a program is to run; Section 3.7.2 describes how to choose the
System on which you want your program to run. Section 3.7.3 describes how to
specify how many processes are to be started and how they should be mapped to
nodes. See Section 3.7.4 for a discussion of resource requirement specifiers, which
provide a syntax for specifying complex requirements that can’t be encapsulated in
these simple command-line options.

In cases where your requirements can be met by more than one node, the system
chooses the least-loaded node, unless you have specified other sorting criteria.

Specifying the Partition

When executing programs interactively, use tmrun —p to specify the partition in
which you want your program to run. (To find out the names of enabled partitions
in your System, use the tminfo command; see Section 4.2.) For example,

% tmrun —p Deimos a.out

specifies that a.out is to be run in the partition Deimos.

Chapter 3 Executing Programs ~ 3-11

When submitting batch jobs, use tmsub —p to specify the partition associated with
the queue to which you want to submit your job. You can omit —q if this partition
has a default queue or if it has only a single queue enabled.

3.7.2 Specifying the System

For interactive program execution, use tmrun —s systemname to specify the Sun
HPC System on which you want your program to run (for RTE purposes, the system
name of a Sun HPC System is the same as the name of the node running the RTE
master daemons). By default, it runs on the System to which you are logged in.

When submitting batch jobs, use tmsub —s systemname to specify the system that
contains the queue where you want to submit your job. By default, the RTE looks on
the System where you are logged in for this queue.

3.7.3 Specifying the Number of Processes

Use the —np option to specify the number of processes you want to start; the default
is 1. This option is typically used with a Sun MPI program or a Sun HPF program. It
determines how many copies of the executable will run.

For example,

% tmrun —p Deimos —np 4 myprog

specifies that you want four copies of myprog to start on the nodes of the partition
Deimos.

You can also specify 0 as the setting of —np. This specifies one process per CPU on
each available CPU. Thus, if the partition Deimos has six available CPUs, the
command

% tmrun —p Deimos —np 0 myprog

starts six copies of myprog .

Note — If you specify the argument —Ns, tmrun starts one process per node.

3-12 Sun HPC Software 2.0 User’s Guide * November 1997

3.7.3.1

3.7.4

Specifying How —np Relates to the Number of Available
CPUs

The Sun HPC run-time environment (RTE) attempts to start one process per CPU
when you request multiple processes via the —np option. If it cannot do this, the
command fails, unless you use the —-Wor —S option to specify the behavior you want
in this situation.

Use the —Woption if you want the processes to wrap, so that more than one process
will run on a CPU. For example, if you specify

% tmrun —p Deimos —np 6 —W myprog

and there are only four CPUs available in the partition Deimos, the RTE starts six

processes on the four CPUs. All the processes are started in a load-balanced fashion,
so you can’t determine ahead of time where they will run.

Use the —S option to specify that you will settle for the available number of CPUs.
The RTE will start one process on each available CPU. Thus, if you issue the same
command as above, but substitute —S for -W

% tmrun —p Deimos —np 6 —S myprog

and four CPUs are available on Deimos, then four copies of myprog will start, one
per CPU.

Note — If a tmrun resource request does not provide you with enough nodes from
inside the partition, (controlled by the —np, -S, and —Woptions), then the search
expands to look for enabled nodes not contained within any partition. If you specify
-np 0 , =S, or -Wthe search will never go outside the partition.

Expressing More Complex Requirements

Use the —R option to express complex node requirements that aren’t accessible via
the general options discussed above.

The argument to the —R option is a resource requirement specifier (RRS). The RRS is
enclosed in quotation marks and provides the settings for any number of attributes
that you want to use to control the selection of nodes. You combine these attribute
settings using the logical & (AND) and | (OR) operators. The system parses the
attribute settings in the order they are listed in the RRS, along with other options
you specify, then merges the results with the results of an internal RRS that provides
the load balancing (with one exception discussed below). The result is an ordered
list of CPUs that meet your criteria. If you are starting a single process, the RTE

Chapter 3 Executing Programs ~ 3-13

3.74.1

starts the process on the CPU that’s first in the list. If you are starting n processes,
the run-time environment starts them on the first n CPUs, wrapping if necessary, or
settling for the number of CPUs in the list.

Note — The RRS specifies node resources but generates a list of CPUs unless —Ns is
specified. Also, your RRS is interpreted only with regard to the nodes of a single
partition—either the partition you specify on the command line or a default
partition; see Section 4.2.

Attributes

TABLE 3-3 lists predefined attributes you can include in an RRS. Your system
administrator may also have defined attributes specific to your Sun HPC System.
You can find out about these attributes via the tminfo command; see Section 3.2.
There are two types of attributes, value and boolean:

= Value attributes can have either a literal value or a numeric value.

« Attributes with a literal value take a name as a setting. Use an equal sign and
the name after the attribute to show the setting. For example,

% tmrun —R "name = telemachus" a.out

« Attributes with a numeric value take as a setting either an operator and a value
or, for << and >>, an operator without a value. For example,

% tmrun -R "os_arch_kernal > sun4c" a.out

specifies that you want to use any kernal architecture lexically greater than
sun4c. Thus, sundm and sun4u are acceptable, but not sun3c.

% tmrun -R "mem_total>>" a.out

specifies that you prefer nodes with more physical memory.

Note — You can specify a combination of attributes — for example,
-R “name < telemachus”. Also, literal and numeric attributes can be used together.

= Boolean attributes are either true or false. If you want the attribute to be true,
simply list the attribute in the RRS. For example, if your system administrator has
defined an attribute called ionode , you can request a node with that attribute:

% tmrun —R "ionode" a.out

If you want the attribute to be false (that is, you do not want a resource with that
attribute), precede the attribute’s name with ! . (Precede this with a backslash in
the C shell; the backslash is an escape character to prevent the shell from
interpreting the exclamation point as a “history” escape.) For example,

3-14 Sun HPC Software 2.0 User’s Guide * November 1997

% tmrun —R "\lionode" a.out

= The accepted operations are

Operator Meaning
< Attribute must be less than the specified value.
<= Attribute must be less than or equal to the specified value.

= Attribute must be equal to the specified value.
>= Attribute must be greater than or equal to the specified value.
> Attribute must be greater than the specified value.

1= Attribute must not be equal to the specified value. (Precede with a
backslash in the C shell.)

<< Attribute must be as low as possible.
>> Attribute must be as high as possible.
For example,

% tmrun —R "mem_free > 256" a.out

specifies that the node must have over 256 megabytes of available RAM.
% tmrun —R "swap_free >>" a.out

specifies that the node picked must have the highest available swap space.

Note — If you use the << or >> operator, the run-time environment does not
provide load balancing. In the above example, the run-time environment would
choose the node with the most free swap space, no matter what its load was. If you
use << or >> more than once, only the last use has any effect — it overrides the
previous uses. For example,

% tmrun —R "load1<2 & mem_free>>" a.out

first selects the nodes that have a one-minute load average less than 2; of these
nodes, it selects the one with the most free memory.

You can also use arithmetic expressions involving numeric attributes anywhere you
can use a numeric attribute. For example,

%tmrun —R "loadl / load5 < 2" a.out

specifies that the ratio between the one-minute load average and the five-minute
load average must be less than 2. In other words, the load average on the node must

not be growing too fast. You can use standard arithmetic operators, as well as the C
?: conditional operator.

Chapter 3 Executing Programs ~ 3-15

3-16

Note — Some shell programs interpret characters used in an RRS (for example, the
characters: >, <, and !). By using the proper syntax, you can protect your RRS from
undesired interpretation by your shell. For example, if you use csh, write

"-R \lprivate

" instead of "-R !private

The operators have the following precedence, from strongest to weakest:

unary —
*
+, binary —

ol

1= >= <=, > < <<, >>

TABLE 3-3 Standard node attributes that can be included in an RRS.

Attribute Meaning

cpu_idle Percent of time that the CPU is idle.

cpu_iowait Percent of time that the CPU spends waiting for 1/0.
cpu_kernel Percent of time that the CPU spends in the kernel.
cpu_scale Performance rating of the CPU.

cpu_swap Percent of time that the CPU spends waiting for swap.
cpu_type CPU architecture.

cpu_user Percent of time that the CPU spends running user’s program.
loadl Node’s load average for the past minute.

load5 Node’s load average for the past five minutes.

load15 Node’s load average for the past 15 minutes.
manufacturer Hardware manufacturer.

mem_free Nodes’s available RAM, in Mbytes.

mem_total Node’s total physical memory, in Mbytes.

name Node’s hostname.

0S_max_proc

os_arch_kernel

0s_name

Maximum number of processes allowed on the node, including
system daemons.

Node’s kernel architecture.

Operating system’s name.

Sun HPC Software 2.0 User’s Guide « November 1997

3.74.2

3.74.3

TABLE 3-3 Standard node attributes that can be included in an RRS.

Attribute Meaning

0s_release Operating system’s release number.

0s_release_maj The major number of the operating system’s release number.
0s_release_min The minor number of the operating system’s release number.
0s_version Operating system’s version.

serial_number Node’s serial number.

swap_free Node’s available swap space, in Mbytes.

swap_total Node’s total swap space, in Mbytes.

Examples

Here are some examples of the use of the —R option.

This example specifies that the program must run on a node in the partition Deimos
with 512 Mbytes of memory:

% tmrun —R —p Deimos "mem_total=512" a.out

This example specifies that you want to run on any of the three nodes listed:
% tmrun —R "name=nodel | name=node2 | name=node3" a.out

This example chooses nodes with over 300 Mbytes of free swap space. Of these
nodes, it then chooses the one with the most total physical memory:

% tmrun —R "swap_free > 300 | mem_total>>" a.out

The following example assumes that your system administrator has defined an

attribute called framebuffer , which is true if a node has a frame buffer attached to
it. You could then request such a node via the command

% tmrun —R "framebuffer" a.out

The —-R option and TMRUN_FLAGS

If you have included a —R option in your TMRUN_FLAGS®nvironment variable (see
Section 3.2) and also have a —R option on your tmrun or tmsub command line, the
two RRSs are combined; the command-line —R option does not override the one
specified via the environment variable. The same behavior occurs if you specify
multiple —R options on the same command line. For example, if you have

% setenv TMRUN_FLAGS '-R "loadl < 1"

and issue the command

Chapter 3 Executing Programs ~ 3-17

3.7.5

3.7.6

% tmrun —R "load5 < 1" —R "load15 < 1" a.out

this is the same as issuing the command
% tmrun —R "(load1<1) & (load5<1) & (load15<1)" a.out

If you use a —t option in TMRUN_FLAG&nd a —R option in tmrun /tmsub , the —-R
option overrides the —t option; see Section 3.7.5 for information on —t .

Running on the Same Node(s) as a Currently
Running Task (tmrun Only)

Use the —t option to tmrun to specify that the program you want to execute should
run on the same node or nodes as the task with the task ID (tid) you specify. (Use
the tmps command to obtain a task’s tid .) For example, to run a.out on the same
node(s) as t85 , issue the command

% tmrun —t t85 a.out

If -t follows —np or —R on the command line, it overrides these options. If —np
(along with —Wor -S) follows —t , -t determines which nodes to run on, and the
other options determine the number of processes to map onto these nodes.

Running on SMPs

By default, tmrun and tmsub spawn multiple processes on SMPs (symmetric
multiprocessors). For example, if you have a two-node partition in which one node
has two CPUs and the other has four CPUs, then the command

% tmrun —np 6 a.out

runs six copies of a.out , two on the two-headed node and four on the four-headed
node. The —t option (see Section 3.7.5) and —R option (see Section 3.7.4) override this
behavior. In addition, you can use the —Ns option to disable spawning of processes
on individual heads of an SMP node. By default, tmrun spawns multiple processes
on an SMP. If you specify —Ns, only one process is spawned on each SMP. For
example, in the two-node partition described above,

% tmrun —np 0 —Ns a.out
would cause two processes to run, one on each node.

Use the —Ys option to force spawning on SMPs when used with —R. —Ys does not
override —t .

3-18 Sun HPC Software 2.0 User’s Guide * November 1997

3.7.6.1

Rank-to-Node Mapping

To specify that a subgroup of a task’s processes run grouped on the same SMP node,
one process per CPU, specify the Z option with the group size. For example,

% tmrun —Z 3 —np 8 a.out

groups the task’s processes by threes.

Note — The —Z option is incompatible with the —S and —Woptions.

3.8

Specifying the Execution Environment

Use the options discussed in this section to determine the environment to be used
for the execution of your program.

Use the —Ec option to “clobber” the inherited environment—that is, to erase all
existing settings of environment variables.

Note — The —Ec option should be used with care, since some settings (for example,
HOMEUSER SHELL) are required to execute most programs properly from your
computer.

Use the —Ea option to add the environment variable you specify to your inherited
environment. For example,

% tmrun - Ea"LD_BIND_NOW =1" -np 2a.out

Use the —Ed option to delete the environment variable you specify from your
inherited environment.

Use the —Emoption to set up a minimal environment. This is comparable to —Ec, but
preserves the settings of these environment variables:

= DISPLAY
= USER
= HOME
=« TERM
= PATH

Note — The -EC and -EM options remove user-specified environment variables, such
as those set for MPI.

Chapter 3 Executing Programs ~ 3-19

3.9

3.9.1

Specifying What to Do with Standard
Input, Output, and Error

Introducing tmrun 1/0

By default, tmrun arranges for all standard output and standard error (Solaris file
descriptors 1 and 2) from all the processes in a task to be sent to tmrun ’s standard
output (Solaris file descriptor 1). Typically, this is the user’s terminal. Likewise,
tmrun ’s standard input (file descriptor 0) is sent to the standard input of all the
processes. You can redirect tmrun ’s standard input, output, and error using the
standard shell syntax. For example,

% tmrun —np 4 echo hello > hellos

You can also change what happens to the standard input, output, and error of each
process in the task. For example,

% tmrun echo hello > message

sends hello across the network from the echo process to the tmrun process, which
writes it to a file called message.

The tmrun command’s own options allow you to control 170 in several other ways.
For example, rather than making remote processes communicate with tmrun (when
it may not be necessary), you can make each process write to or read from a file on
the node on which it is running. For example, you can make each process write
hello directly to a file on its own node called message:

% tmrun —| "lw=message" echo hello

Using tmrun options, you can also

= Make the standard error from each process go to the standard error of tmrun ,
instead of its standard output. To divide standard error from standard output, use
the tmrun —D option. For example,

% tmrun -D a.out
sends standard output from a.out to the standard output of tmrun , and sends

the standard error of a.out to the standard error of tmrun .

= Make output from each process go to a file whose name includes the rank and tid
of the process. This corresponds to the tmrun -B option. Using the —B option
specifies that the I/0 streams are to operate as in a batch environment.
Specifically,

=« There is no standard input stream.

3-20 Sun HPC Software 2.0 User’s Guide * November 1997

3.9.11

« The standard error and standard output streams for a task are merged and
written to files named out. tid. rank, where tid is the task ID of the task and
rank is the rank of this process within the task. The files are located in the task’s
working directory.

= Shut off all standard 170 to all the processes. By using the tmrun —N option, you
specify that there are to be no stdin , stdout , and stderr connections. Use the
—N option for situations in which standard 1/0 is not necessary; you can reduce
the overhead incurred by establishing standard 1/0 connections for each remote
process and then closing those connections as each process ends.

= Use the —n option to cause stdin to be read from /dev/null . This is important
if you are running tmrun in the background, either directly or through a script;
without —n, tmrun will block in this situation, even if no reads are posted by the
remote task. When —n is specified, the user process encounters an EOFif it
attempts to read from stdin . This is comparable to the behavior of the —n option
to rsh .

Note — The set of tmrun (and tmsub) options that control stdio handling cannot
be combined. These options override one another. If more than one is given on a
command line, the last one overrides all of the rest. The affected options are: -D, -N,
-B,-n,-i ,-0,and -l .

Creating a Custom Configuration

Use the —I option to specify a custom configuration for standard input, output, and
error. The —I option takes as an argument a comma-separated series of file descriptor
strings. These strings specify what is to happen with each of these streams.

In Solaris, each process has a numbered set of file descriptors associated with it. The
standard 1/0 streams have these file descriptors assigned:

= 0 —standard input (stdio)
= 1 - standard output (stdout)
= 2 — standard error (stderr)

You can include a string for each of these file descriptors; if you omit one, that file
descriptor won’t be connected to any device.

The file descriptor string assigns one or more of the following attributes to a file
descriptor:

= — File descriptor is to be read from.
= W - File descriptor is to be written to.
= p — File descriptor is to be attached to a pseudo-terminal (pty).

You must specify either r or wfor each file descriptor—that is, whether the file
descriptor is to be written to or read from.

Chapter 3 Executing Programs ~ 3-21

3-22

Thus, the string
2w
means that the standard error is to be written. And
Orp
means that the standard input is to be read from the pseudo-terminal.

If you use the p (pty) attribute, you must have one rp and one wp in the complete
series of file descriptor strings. In other words, you must specify both reading from
and writing to the pty. No other attributes can be associated with rp and wp.

In addition, these attributes can only be used in conjunction with w:

= | — Line-buffered output.
= t — Tag the line-buffered output with process rank information.
= a - Stream is to be appended to the specified file.

Note — NFS does not support append operations.

Use the | attribute in combination with the w attribute to line-buffer the output of
multiple processes. This takes care of the situation in which output from one process
arrives in the middle of output from another process. For example,

% tmrun —np 2 echo "Hello"
HelHello
lo

With the | attribute, you ensure that processes don’t step on each other’s output in
this way:

% tmrun —np 2 —I "Or, 1wl" echo "Hello"

Hello

Hello

Use the t attribute to force line-buffering and, in addition, prefix each line with the
rank of the process producing the output. For example,

% tmrun —np 2 —I "0r, 1wt" echo "Hello"
rO:Hello
rl:Hello

Use the b attribute in combination with the r option in multiprocess tasks to specify
that input is to go only to the first process, rather than to all processes (the default).
This attribute provides compatibility with Release 1 of Sun HPC, in which input to
the first process only was the default.

Example — In this example, the standard input is read from the pty, the standard
output is written to the pty, and the standard error is sent to the file named errors

Sun HPC Software 2.0 User’s Guide « November 1997

% tmrun —I "Orp,1wp,2w=errors" a.out
(The quotation marks are optional.)

This attribute can be used only with r:
= b — Input only goes to the first process, rather than to all processes.

This attribute can be used only with rp :

= m- Keypresses are to be echoed multiple times when multiple processes are
running. (The default is to display them only once.)

You can direct one file descriptor’s output to the same location as that specified by
another file descriptor by using the syntax

fdattr=@other_fd
For example,
2w=@1

means that the standard error is to be sent wherever the standard output is going.
You cannot do this for a file descriptor string that uses the p attribute.

Finally, you can tie a file descriptor’s output to a file by using the syntax
fdattr=filename

For example,
1lw=output

says that the standard output is to be written to the file output . Once again,
however, you cannot use this feature for a file descriptor defined with the p
attribute.

If you use the w attribute without specifying a file, the file descriptor’s output is
written to the corresponding output stream of the parent process; the parent process
is typically a shell, so the output is typically written to the user’s terminal.

For multiprocess tasks, each process creates its own file; the file is opened on the
node on which the process runs.

Note — If multiple processes open the same file over NFS, the processes will
overwrite each other’s output.

In specifying the individual file names for processes, you can use these symbols,
which are replaced by the indicated values:

= &T — The task ID of the task
= &R - The rank of the process within the task

Chapter 3 Executing Programs ~ 3-23

3-24

In the next example, there is no standard input (it comes from /dev/null), and the
standard output and standard error are written to the file out. task. rank:

% tmrun —I "Or=/dev/null,1w=0out.&T.&R,2w=@1" a.out
This is the behavior of the —B option. See Section 3.9.1.

Here is the default behavior (merged standard error and standard output):
% tmrun —| "Orp,lwp,2w=@1" a.out

The —-D option (providing separate standard output and standard error streams) is
equivalent to:

% tmrun —I "Orp,1wp,2w" a.out

You can force each line of output (tmrun only) to be prepended with the rank of the

process writing it, using the —o option (See Section 3.9.1) , which is equivalent
to:

% tmrun - | "Orp,1lwt,2w=@1" a.out

If you redirect output to a shared file, you must use standard shell redirection rather
than the equivalent —I formulation (-l "lwt=outfile"). This restriction also
applies to the linebuffer formulation (-l "lwl=outfile").

Note — Specifying -0 (forcing processes to prepend rank on output lines), or the
equivalent -I syntax (such as -Ilwt) will not work if redirection is also specified
with -1 (such as with -11w=outfile). Use the standard shell redirection operator
instead.

Shortcuts for common tmrun -l commands are listed in TABLE 3-4

TABLE 3-4 tmrun Shortcut Summary

Command Description

tmrun —i Standard input to tmrun is sent only to rank 0, and not to all other
ranks (tmrun only). Equivalent to
tmrun -l "Orpb,1wp,2w=@1" a.out

tmrun —B Standard output and standard error are written to the file

out. task. rank. Equivalent to
tmrun —I "0Or=/dev/null,lw=0ut.&T.&R,2w=@1" a.out

tmrun —o Use line buffering on standard output, prefixing each line with the rank
of the process that wrote it (tmrun only). Equivalent to
tmrun -l "Orp,1wt,2w=@1" a.out

Sun HPC Software 2.0 User’s Guide « November 1997

3.9.2

3.9.2.1

These shortcuts are not direct substitutions. The RTE uses ptys correctly, whether the
—I option is present or absent. Also, the RTE merges standard error with standard
output when it is appropriate. If either stderr or stdout is redirected (and not
both), then ptys are not used, and stderr and stdout are separated. If both
stderr and stdout are redirected, then again ptys are not used, but stderr and
stdout are combined.

Note — Use the -i option to tmrun with caution, since the -i option provides only
one stdin connection (to rank 0). If that connection is closed, keyboard

signals are no longer forwarded to those remote processes. To signal the task, you
must go to another window and issue the tmkill command. For example, if you
issue the command tmrun —np 2 —i cat then type the Ctrl-d character (which
causes cat to close its stdin and exit), rank 0 will exit. However, rank 1 is still
running, and can no longer be signaled from the keyboard.

tmsub

By default, tmsub ’s behavior is like that of the tmrun —B option. Namely,
= There is no standard input stream.

= The standard error and standard output streams for a task are merged and
written to files named out. tid. rank, where tid is the task ID of the task and rank
is the rank of this process within the task. These files are located in the task’s
working directory.

You can use the —I option to specify a different behavior for standard output and
standard error, with the exception that you cannot use the p attribute to attach a file
descriptor to a pty. See Section 3.9.1 for more information on —I .

Setting Queue Priorities

Two factors control job priorities:

= The queue configuration, set for each queue by the system administrator
= The tmsub -P option, set for each job by the user

The system administrator can set a default priority for each queue, which is used by
the system for all jobs submitted without the tmsub —P option (the —P option takes
an integer argument, the magnitude of the integer corresponding to magnitude of
the job’s priority). The system administrator can also set a minimum and a
maximum allowed priority for each queue. If you submit a job with a priority lower
than the minimum, the job’s priority will be adjusted upwards to the minimum.
Likewise, a job submitted with a priority higher than the maximum has its priority
adjusted down to match the maximum.

Chapter 3 Executing Programs ~ 3-25

When the system schedules jobs to run, it will pick the highest-priority job across all
the queues in a partition. If multiple jobs have the same priority, it will pick the one
that was submitted first (regardless of which queue the job is in).

3.10

Restarting a Task if a Node Goes Down
(tmsub Only)

Use the —Yr option to tmsub to specify that you want your task to be restarted if a
node goes down while the task is being executed. If the task is parallel, the entire
task is aborted if it has any processes on a node that fails.

After the node goes down, the RTE immediately tries to restart the task; if it fails, it
continues periodically to attempt the restart. It chooses the node(s) on which the task
is to run in the normal way; therefore, the task won’t necessarily run on the same
node(s) on which it was running before the failure, and you don’t necessarily have
to wait for the node to come back up for your task to run.

By default, tasks do not restart. If you have specified that a job is to restart (for
example, via the setting of the TMRUN_FLAGS8nvironment variable), you can
override this setting by issuing the —Nr option.

3.11

Changing the Working Directory

Use the —C option to specify the path of an alternative working directory to be used
by the program; if you don’t specify —C, the default is the current working directory.
For example,

% tmrun —C /home/collins/bin a.out

changes the working directory for a.out to /home/collins/bin

3.12

Executing with a Different User or
Group Name

Use the —U option to execute with the specified user ID or user name. Use the -G
option to execute with the specified group ID or group name. For example,

3-26 Sun HPC Software 2.0 User’s Guide * November 1997

% tmrun —-U traveler a.out
executes a.out as the user traveler

You must have the appropriate level of permissions to use these options (for
example, you must belong to the group you specify, or be the superuser).

3.13

Getting Information

Use the —h option to display a list of tmrun or tmsub options and their meanings.
Use the -V option to display the command’s version number.
If you specify either —h or -V, it must be the only option on the command line.

Use the —T option to display the program’s tid, along with the name of the System
and the number of processes, after executing tmrun . This option is not available for
tmsub .

3.14

Specifying a Different Argument Vector

The tmrun and tmsub commands by default pass the vector of a program’s
command-line arguments to the program in the standard way. For example, if you
issue the command

% tmrun a.out argl arg2

tmrun passes an array in which the name of the program, a.out , is the first element
(argv[0]) ,and argl and arg2 are the second and third elements.

In system-level programming it is sometimes useful to specify an argv[0] that is
not the name of the program. You can use the —A option to do this. The argument to
—A is the name of the program to execute. You can then follow this with the argv[0]
argument, and any other arguments that you want to pass to the program. For
example, if you want to pass newarg as the argv[0] to the program a.out , along
with argl and arg2 , you could issue the command

% tmrun —A newarg a.out argl arg2

Chapter 3 Executing Programs ~ 3-27

3.15 Sending Mail About Job Status (tmsub
Only)

By default, tmsub sends mail to the user who submitted a job when the job is done.
You can specify that mail is to be sent to a different valid email address by including
the address as the argument to the —Moption.

3.16 Exit Status

The exit status of tmrun specifies the number of processes that exited with nonzero
exit status.

3.17 Omitting tmrun or tmsub

You can execute a serial program without using tmrun or tmsub . For example, you
could simply type

% a.out

In that case, the program executes locally, on the node where you happen to be
logged in. Doing this loses the benefits of load-balancing provided by the Sun HPC
System, since the local node may be heavily loaded, and execution will therefore
probably take longer than on the node chosen by the system. However, this might
not matter to you if it is a brief program.

Note — You cannot run Sun MPI or Sun HPF programs in this way; you must use
tmrun or tmsub.

3-28 Sun HPC Software 2.0 User’s Guide *« November 1997

3.18

3.18.1

Sending a Signal to a Process

The tmkill command is comparable to the Solaris kil command. You use it to
terminate all processes of the tasks with the specified task IDs running on the Sun
HPC System, or to send a signal to it; see Section 1.4.3 for a discussion of tasks. You
can send any standard Solaris signal; use the —| option to obtain a list of the
supported signals, or the —d option to list them along with brief descriptions.

Specify the signal’s name or number, followed by the task ID, to send that signal to
the task. For example,
% tmkill —-CONT t59

sends a SIGCONTto the processes that constitute task t59.
Issuing tmkill without specifying a signal sends a SIGTERMto the task.

Use the command tmps to obtain a task ID (see Section 4.1) or use the —T option to
tmrun (see Section 3.13).

tmkill Status

tmkill returns these status values:
= 0 - The command executed successfully.

= 1 - An error was encountered during execution. For example, the task was not
known.

= 2 — The command was partially successful. This typically occurs when you send a
signal to a task in which one or more of the processes had already exited and
therefore couldn’t receive the signal. This is usually not an error, since it is
probably the reason you’re using tmkill to eliminate the task in the first place.

Chapter 3 Executing Programs ~ 3-29

3-30 Sun HPC Software 2.0 User’s Guide * November 1997

CHAPTER 4

Getting Information

The Sun HPC RTE contains several commands for obtaining information about the
Sun HPC System, its components, and tasks running on it.

Note — In Sun HPC documentation, the terms system and Sun HPC System refer to
the Sun Ultra HPC Server or Servers that are running Sun HPC Software. A Sun
HPC System (or system) may consist of a cluster of servers or a single server,
depending on your local configuration.

The term used to describe an individual server (such as an SMP) within a cluster is
node

See Section 2.2.3 for general information on issuing Sun HPC commands.

4.1

Finding Out Task Status: The tmps
Command

The tmps command is comparable to the Solaris ps command. It gives information
about tasks, batch jobs, and processes currently running on the Sun HPC System.

By default tmps shows basic information about the user’s tasks currently running in
the default partition. For example,

% tmps
TID NPROC UID STATE AOUT
t41 3 slu RUN AAA
t46 4 slu EXNG tmp
t49 1 slu EXIT tmp
t99 9 slu EXNG uname
t100 9 slu EXNG uname

41

In the response,

= TID is the executing program’s task ID.

= NPROGs the number of processes in the task.

= UID is the user ID of the person who executed the program.

= STATEIs the execution status of the program. (See TABLE 4-1 for a list of possible
states.)

= AOUTis the name of the executable program.
TABLE 4-1 Task states.

State tmps Display Meaning

CORE CORE The task exited due to a signal, and core was
dumped.

COREING CRNG The task is exiting due to a signal. The first process
to die also dumped core.

EXIT EXIT The task exited normally.

EXITING EXNG The task is exiting. At least one process exited
normally.

FAIL FAIL The task failed on startup or was aborted.

FAILING FLNG The task’s initialization failed, or a task abort has
been signaled.

RUNNING RUN The task is running.

SEXIT SEXIT The task exited due to a signal.

SEXITING SEXNG The task is exiting due to a signal. The first process

to die died due to a signal. At least one of its
processes is still in the RUNstate.

SPAWNING SPAWN The task is being spawned.

Use the —f option to display, in addition, the start time for each task and the task’s
arguments.

Use the —e option to display information on all tasks, not just your tasks.

4.1.1 Specifying the Partition

To show information about tasks running in all partitions, use the —A option.

To show information about tasks running in a specific partition, use the —a option,
followed by the name of the partition.

4-2 Sun HPC Software 2.0 User’s Guide « November 1997

4.1.2

4.1.3

Displaying Process Information

Use the —p option to also view information about the processes that make up the
tasks. The process information is listed below each task. For example,

% tmps —p
TID NPROC UID STATE AOUT
RANK PID STATE NODE

t1 4 crawford RUN tmp
17691 RUN ultra—nodeO
23449 RUN ultra—nodel
17688 RUN ultra—nodeO
23446 RUN ultra—nodel

OFrLr NW

In this example,

= RANKis the process’s rank within the task.

= PID is the process’s process ID.

= STATEIs the process’s execution status.

= NODSHs the node on which the process is running.

Displaying Specific Process, Task, and Job
Information

In addition, you can use the —T option to display one or more specific task values,
the —P option to display one or more specific process values, the —J option to display
one or more job values. Separate multiple values either with spaces or with commas
and no spaces.

Arguments to —T are

= tid - a specific task ID

= nproc - the number of processes in the task

= uid - the user ID of the owner of the task

= gid - thegroup ID of the owner of the task

= state - the current state of the task

= wkdir - the working directory of the owner of the task
= aout - the name of the executable program

= paout - the path of the executable program

= running - the number of running processes in the task

You can list these via the —It option.

Arguments to —P are

= rank - the rank of the process within the task
= pid - the process’s process ID
= sState - the current execution state of the process

Chapter 4 Getting Information 4-3

4-4

iod - the process ID of the 1/0 daemon for this process.
load - the load on the node on which the process is executing.
node - the name of the node on which the process is executing.

You can list these via the —Ip option.

Arguments to —J are

part — the name of the partition in which the job will run.
gueue - the name of the queue to which the job was submitted.
jid —the job’s unique ID, which can be used as an argument to tmkill.

nproc — the number of processes requested (the actual number of processes
started may differ if the -Wor -S flags were used with tmsub).

uid - the user on whose behalf the job will be run (normally the user who
submitted the job, but see the —-U flag to tmsub).

gid - the group on whose behalf the job will be run (normally the group of the
user who submitted the job, but see the —-Gflag to tmsub).

state - there are six states:

« BUILD - The job is being submitted.
=« WAIT - The job is waiting to run.

« SPAWN- The job is preparing to run.
» RUN- The job is running.

« RSTRT- The job has been Killed because one of the nodes on which it was
running went down; the job will be restarted.

« SIDE - The job is at the head of its queue, but unable to run because the
resources it requires are not available; the system is looking for another job to
run while this job is waiting for its resources.

running - the number of processes actually running for this job. This is not
always equal to the number of processes started for this job, since processes that
have exited are not counted.

wkdir - the directory in which the job’s processes will be (or were) started.
aout - the name of the program to be run.

paout - the full path of the program to be run.

ctime - the job creation time (when tmsub was run).

args - the command-line arguments for the program to be run.

stime - the time the job was started.

prio - the job priority (higher numbers run first).

Sun HPC Software 2.0 User’s Guide ¢ November 1997

414

Displaying Batch and Queue Information

Use the tmps —B (Batch option) command to obtain information about the current
status of jobs in batch queues on a Sun HPC System. You can also use tmkill to
remove one or more jobs from a batch queue.

Issuing the tmps —-B command displays a list of all of your jobs in all queues,
arranged by job ID. For example,
% tmps -B

JID QUEUE UID STATE AOUT

j10 q1 igbh WAIT hostname

j11 g1 igb WAIT vi

j12 g1 igb WAIT cat /var/adm/mess

To remove a job from a queue, issue tmkill , followed by the job ID or task ID. For
example,

% tmkill j10

You can remove only your own jobs (unless you are superuser). For further
information on tmkill , see Section 3.18.

You can use the —q argument to specify the queue that you want tmps to display

% tmps —q queuename

4.2

4.2.1

Configuration and Status Information

Use the tminfo command to display information about the configuration of
partitions, queues, and nodes, and current status information about nodes (for
example, load and free memory).

Overview

You can display information on all partitions, queues, or nodes, or on any subset of
them. You can either list the partitions, queues, or nodes, or you can use the —-R
option, along with a resource requirement specifier (RRS), to have the RTE
determine which objects should be displayed. See Section 3.7.4 for information on
RRSs. If you specify a partition, you must include only partition attributes in the
RRS; if you specify a queue, you must use only queue attributes, and so on.

Chapter 4 Getting Information 4-5

4.2.2

Use the —A option to specify an attribute whose value you want to display. If you
want to display more than one attribute, separate them by commas with no spaces;
or you can issue multiple —A options on the same command line. If you omit —A,
tminfo displays values for a default set of attributes.

Use the —v option to display information about all attributes (including system
administrator—defined attributes) for one or more partitions, queues, or nodes.

In displaying the value of a Boolean attribute, yes indicates that the attribute is set,
and no indicates that the attribute is not set.

Partitions

To display information for all partitions, use the —P option.

To display information about an individual partition, use the —p option, followed by
the name of the partition. To display information about multiple partitions, separate
their names with commas and no spaces or enclose the list in quotation marks.

Partition attributes whose settings you can view via tminfo are shown in TABLE 4-2;
the heading displayed for each attribute is shown in parentheses after its
description.

Note these points:

= You can specify one or more of these attributes via the —A option, or as part of an
RRS as an argument to the —R option. You can use either the attribute’s real name
or, in some cases, a shorter version.

= For attributes that are defined as negatives (for example, no_logins), you can
specify a positive version (for example, logins) for —A. Note that the tabular
display, shown in the examples below, is in terms of the positive version. For
example, the column is labeled LOG rather than NO_LOG

= You can list the settings of all attributes (including any system administrator—
defined attributes) on a per-partition basis via the —v option.

= You can list the names and brief descriptions of these attributes via the —Ip
option.

4-6 Sun HPC Software 2.0 User’s Guide « November 1997

TABLE 4-2

Partition attributes available via tminfo

Attribute (tmadmin form) Short Form Description (tminfo output heading)
default_queue defq Default queue (DEFAULT QUEUE
enabled Set if the partition is enabled, that is, if it is
ready to accept logins, jobs, or tasks (ENA.
max_batch_procs maxb Maximum number of simultaneously
running batch processes allowed on each
node of the partition (MAXB.
max_total_procs maxt Maximum number of simultaneously

name
no_interactive_tasks
no_logins
no_mp_tasks

nodes

queues

running processes allowed on each node of
the partition (MAXT.

Name of the partition (NAME

Allow interactive tasks (INT).

Logins allowed (LOQ.

Allow multinode tasks (MB.

Number of nodes in the partition (NODE$

Number of queues in the partition (QCNTY.

The values of three tmadmin attributes are inverses of the corresponding tminfo

attributes:

= When no_interactive_tasks
= When no_logins
= When no_mp_tasks

Here is an example of the default tminfo

% tminfo —P
NAME

is unset, INT is set.
is unset, LOGis set.
is unset, MPis set.

output for partitions:

NODES ENA LOG INT MP DEFAULT QUEUE

This example displays the names, numbers of nodes, and enabled status for all

cigs 4 yes yes yes yes lonely
empty —no yes yes yes —
partitions:

% tminfo —A name,enabled,nodes —P
NAME ENA NODES

cigs yes 4

empty no -

Chapter 4 Getting Information

4.2.3 Queues

To display information about all queues, use the —Q option.

To display information about an individual queue, use the —q option, followed by
the name of the queue. To display information about multiple queues, separate their
names with commas and no spaces.

Queue attributes whose settings you can see via tminfo are shown in TABLE 4-3; the
heading displayed for each attribute is shown in parentheses after its description.

Note these points:

= You can specify one or more of these attributes via the —A option, or as part of an
RRS as an argument to the —R option. You can abbreviate the running attribute
to run (only with the —A option).

= You can list the settings of all attributes (including any system administrator—
defined attributes) on a per-queue basis via the —v option.

= You can list the names and brief descriptions of these attributes via the —Iq
option.

TABLE 4-3 Queue attributes available via tminfo

Attribute Description (tminfo output heading)

enabled Set if the queue is enabled, that is, if it is ready to accept tasks
(ENA.

name Name of the queue (NAME

partition Partition to which the queue is allowed to submit tasks
(PARTITION).

policy Determines how the run-time system is to treat jobs whose

requirements exceed currently available resources (POLICY).

running Set if the queue is running, that is, if it is submitting tasks to the
partition (RUN.

Here is a sample of tminfo output for queues:

% tminfo —Q

NAME PARTITION ENA RUN
free cigs yesyes

another cigs no no

This example displays all queues in partition cigs that are running:

% tminfo —Q —p cigs —R "running"
NAME PARTITION ENA RUN
free cigs yesyes

4-8 Sun HPC Software 2.0 User’s Guide « November 1997

4.2.4

Nodes

To display information about all nodes, use the —N option.

To display information about an individual node, use the —n option, followed by the
name of the node. To display information about multiple nodes, separate their
names with commas and no spaces.

Node attributes whose settings you can see via tminfo are shown in TABLE 4-4; the
heading displayed for each attribute is shown in parentheses after its description.
Note these points:

= You can specify one or more of these attributes via the —A option, or as part of an
RRS as an argument to the —R option. You can use either the attribute’s real name
or, in some cases, a shorter version.

= You can list the settings of all attributes (including any system administrator—
defined attributes) on a per-node basis via the —v option.

= You can list the names and brief descriptions of these attributes via the —In
option.

TABLE 4-4 Node attributes available via tminfo.

Attribute Short Form Description (tminfo output heading)

cpu_idle idle Percent of time CPU is idle (IDLE).

cpu_iowait iowait Percent of time CPU spends waiting for
170 (IWAIT).

cpu_kernel kernel Percent of time CPU spends in kernel
(KERNL).

cpu_swap swap Percent of time CPU spends waiting for
swap (SWAP.

cpu_type cpu CPU architecture (CPUY.

cpu_user user Percent of time CPU spends running user’s
program (USER.

domain DNS domain.

enabled If set, node is available for spawning tasks
on it.

loadl Load average for the past minute (LOADJ).

load5 Load average for the past five minutes
(LOADS.

Chapter 4 Getting Information 4-9

Attribute Short Form Description (tminfo output heading)

load15 Load average for the past 15 minutes
(LOAD15.

manufacturer manuf Hardware manufacturer (MANUFACTURER

mem_free memf Node’s available RAM (in Mbytes) (FMENL

mem_total memr Node’s total physical memory (in Mbytes)
(MEM

name Name of the node (NAMIE

ncpus ncpu Number of CPU modules in the node
(NCPU).

os_arch_kernel mach Node’s kernel architecture (MACH

0S_max_proc maxproc Maximum number of processes allowed on

the node (note that this is all processes,
including system daemons) (MPROL

0S_hame 0s Name of the operating system running on
the node (OS.

0s_release osrel Operating system’s release number
(OSRED.

0s_release_maj osmaj The major number of the operating system
release number (MAJ.

os_release_min osmin The minor number of the operating system
release number (MIN).

0s_version osver Operating system’s version (OSVER

partition The partition of which the node is a
member (PARTITION).

serial_number serno Hardware serial number (SERIAL).

swap_free swapf Node’s available swap space (in Mbytes)
(FSWP.

swap_total swapr Node’s total swap space (in Mbytes)
(SWAP.

Here is a sample of the tminfo output for nodes:

% tminfo —N

patton—tm 87 =>tminfo —N

NAME UP PARTITION OS OSRELNCPU FMEM FSWP LOAD1LOADS5LOAD15
lucky ypl SunOS 5.5.1 1 0.89158.34 0.09 0.11 0.13

camel ypl SunOS 5.5.1 1 31.41276.12 0.00 0.01 0.01

vantage y pl SunOS 5.5.1 1 25.59279.77 0.00 0.00 0.01

winston y p1 SunOS 5.5.1 1 25.40279.88 0.00 0.00 0.01

4-10 Sun HPC Software 2.0 User’s Guide *« November 1997

4.2.5

This example shows only the names of nodes and the partition they’re in:

% tminfo —N —A name,partition
NAME PARTITION

lucky cigs

camel cigs

vantage cigs

winston cigs

System

To display information about the entire Sun HPC System, use the tminfo command
with the —S option. For example,

% tminfo —S

NAME ADMINISTRATOR DEF_BATCH_PART DEF_INTER_PART DEF_PFS
rog simons batch general pfs2

where:

= NAME- The name of the System

= ADMINISTRATOR- The name of its administrator

= DEF_BATCH_PART The default batch partition

» DEF_INTER_PART- The default interactive partition
= DEF_PFS- The default parallel file system

4.3

Using the tmadmin Command

The tmadmin command is primarily used by the system administrator in
configuring a Sun HPC System. Users can also issue the command to view, but not
change, configurations. Typically you will not need to do this, since the same
information is available more easily via tminfo . If you are interested, however, you
can issue the command. It is in the directory /opt/SUNWhpc/etc , which is typically
not in users’ paths, so you would have to issue the command as follows:

% /opt/SUNWhpc/etc/tmadmin

This starts up an interactive interface from which you can issue tmadmin commands
such as show and list . You can also change levels within this interface to obtain
information about partitions, nodes, queues, and networks. Type help to display the
commands available to you at any level of the interface. For more information, see
the Sun HPC Software System Administrator’s Guide.

Chapter 4 Getting Information 4-11

4.4

44.1

4.4.2

Getting Help

Sun Online Documentation

To bring up online documentation for Solaris and the Sun compilers, use Sun’s
AnswerBook facility. To do this, you must be running OpenWindows or the
Common Desktop Environment (CDE).

Before starting, you must set your DISPLAY environment variable to specify the
terminal or workstation from which you are running OpenWindows or CDE. For
example, if your workstation is named Valhalla, issue this command (if you are
running the C shell):

% setenv DISPLAY valhalla:0

To start AnswerBook, issue this command:

% answerbook

Man Pages

Use the Solaris mancommand to view online manual pages for Solaris and Sun HPC
Software commands and routines. For example,

% man tmps

displays information about the tmps command.

4-12 Sun HPC Software 2.0 User’s Guide * November 1997

CHAPTER 5

Debugging Programs

Prism is a component in the Sun HPC Parallel Development Environment. You can
use it to debug and visualize data in C, HPF, or Fortran serial or message-passing
programs on a Sun HPC System. For complete information on Prism, see the Prism
User’s Guide and Prism Reference Manual. This chapter gives a brief overview of how
to start up Prism.

To use Prism, you must first log in to the Sun HPC System, as described in
Chapter 2. If you are using the graphical version of Prism, you must be running the
Solaris 2.5.1 or 2.6 with either OpenWindows or CDE, and your DISPLAY
environment variable must be set to the name of your terminal or workstation. For
example (in the C shell),

% setenv DISPLAY mysun:0

You then execute Prism as you would any other program. For example,
% prism
You can then load your executable program within Prism. Or, you can specify the

program’s name on Prism’s command line, and Prism comes up with the program
already loaded. For example,

% prism a.out

Once the program is loaded in Prism, you can execute it, debug it, and visualize data
in it. The program executes on the same node as Prism.

Note — Prism does not debug programs at the thread level.

5-1

5.1

5-2

Debugging Sun MPI and Sun HPF
Programs

Specify the —np option if you are going to use Prism to debug a Sun MPI program or
a Sun HPF program; its argument indicates how many processes are to be started.
For example,

% prism —np 4 mpi_program

or

% prism —np 4 hpf_program

The behavior here is slightly different from that of Prism when debugging a serial
program. When you use the —np option, you can also use other Prism options, such

as —p, to determine where the Sun MPI, or Sun HPF processes are to run and how
they are mapped onto nodes. For example,

% prism —p Deimos —np 4 mpi_program

or

% prism —p Deimos —np 4 hpf_program

starts Prism, and starts the Sun MPI, or Sun HPF processes in the partition Deimos.
(Actually, client Prisms are also started with each of the parallel processes; they

receive instructions from and send back information to the master Prism that is
started by tmrun)

You can attach to a running Sun MPI, or Sun HPF program by specifying its task 1D
after the name of the executable program. For example,

% prism mpi_program t462

or

% prism hpf_program t462

You can obtain the task ID of a program by issuing the tmps command or by using
the —T option to tmrun .

The setting of the TMRUN_FLAG®&nvironment variable applies to both tmrun
starting Prism and to Prism starting the parallel processes. This means that the
default options are likely to be incorrect for one or the other, since you would
typically want to start Prism on one node in a shared partition, and the Sun MPI or
Sun HPF processes on multiple nodes, possibly in a dedicated partition.

Sun HPC Software 2.0 User’s Guide ¢ November 1997

5.1.1

Setting MPI_INIT_TIMEOUT

Sun MPI has timeouts built into the software to help detect when there are problems
starting an MPI task. However, these timeouts can be triggered erroneously when
you are debugging programs, such as when using Prism, and should therefore be
disabled prior to using a debugger on a Sun MPI program. The environment
variable MPI_INIT_TIMEOUT can be used to lengthen or disable the timeout time.
When MPI_INIT_TIMEOUT is set to a positive integer, the timeout value is set to
that time in seconds. When it is set to 0 or a negative integer, the timeout is disabled.
The default value is 600 seconds (10 minutes).

For example, to disable timeouts (in a C shell):
% setenv MPI_INIT_TIMEOUT -1

Again in a C shell, to set timeouts to 5 minutes:
% setenv MPI_INIT_TIMEOUT 300

5.2

Debugging PVM Programs

You can attach to a running PVM task. Specifying the pid of one of the processes
causes Prism to attach to all of those processes in the PVM task that are running the
same executables as the specified process.

A PVM program must already be running before you can begin working with it;
once it is running, if you specify one process’s pid, Prism will attach to all of the
processes belonging to the same task as the specified process. You must run Prism
on a node that is running a PVM daemon; this typically means you would start
Prism without tmrun , since using these commands couldn’t necessarily guarantee
the node on which Prism would run. Use the —pvm option to indicate that you are
going to be working on a PVM program. Follow this with the name of the PVM
executable program, and the pid of any of the program’s processes. You can obtain
the pid via the ps command.

For example,
% prism —pvm pvm_program 652

starts Prism on your login node and attaches it to the program pvm_program .

Chapter 5 Debugging Programs 5-3

5-4 Sun HPC Software 2.0 User’s Guide » November 1997

CHAPTER 6

Parallel File System

From the user’s perspective, PFS closely resembles UNIX file systems. It uses a
conventional inverted-tree hierarchy, with a root directory at the top and
subdirectories and files branching down from there. The fact that individual PFS
files are distributed across multiple disks managed by multiple 1/0 servers is
transparent to the programmer. The way that PFS files are actually mapped to the
physical storage facilities is implementation dependent and is based on file system
configuration entries in the run-time environment (RTE) database.

The most obvious difference between PFS and Solaris file systems is in file pathname
construction. Where a full Solaris pathname begins with / (root), a PFS pathname
takes the form pfs: filesystem:/ pathname.

= The first term, pfs: , is required, except when specifying a file name in your
current working directory.

= filesystem: is the name of the file system—an arbitrary ASCII string assigned by
the system administrator when configuring the file system. It is terminated by a :
(colon). filesystem: can be omitted if there is only one PFS.

= The third term (/ pathname) is the file’s UNIX-style pathname.

For example, the PFS file /users/clovis/paris in the file system cities would
be named pfs : cities:/users/clovis/paris

PFS supports the current working directory (.) concept. That is, if the PFS file is
below the current working directory, you need only to specify that portion of the
path between . and the file. For example, if you are in /users/clovis and you
want to specify the file pfs :cities:/users/clovis/paris , simply use the file
name paris . The following example uses the tmcp command to copy a file within
the PFS system:

% tmcp paris detroit

User programs access PFS via calls to Sun MPI 170 library routines. See the Sun MPI
User’s Guide for information about the Sun MPI 170 facility. See the Sun HPF Guide
for information about the Sun HPF interface to the Sun MPI I/0 library.

6-1

PFS provides various utilities for operating on PFS files. They will all be familiar to
users of comparable Solaris file management programs. These utilities, which can be
invoked from the command line, are summarized in TABLE 6-1. See the applicable
man pages for details on their behavior.

TABLE 6-1 General PFS Utilities.

tmed Set the PFS current-working-directory.

tmchgrp Change the group of a PFS file or directory. Note: tmchgrp does
not support the - f and - h options provided by chgrp .

tmchmod Change the access protection bits of a file. Note: tmchmod does not
support the - f option provided by chmod.

tmchown Change the owner of a PFS file or directory. Note: tmchown does
not support the - f and - h options provided by chown.

tmcmp Compare the contents of two PFS files.

tmep Copy a PFS file or directory within the PFS system. Note: tmcp
does not support the - R option provided by cp.

tmimport/ Move data between PFS and Solaris file systems. Note: These

tmexport options do not have Solaris equivalents.

tmin Create a hard link to a PFS file. Note: PFS does not support
symbolic links; tmin does not support the - s option provided by
In .

tmls List the contents of PFS directories. Note: tmls does not support
the - AbCdfFLmpgsx1 options provided by Is.

tmmkdir Create a PFS directory. Note: tmmkdir does not support the - p
option provided by mkdir.

tmmv Move a PFS file or directory to another location in the PFS system.
Note: tmmv does not support the - f option provided by mv.

tmpwd Print the current working directory.

tmrm Remove a PFS file. Note: tmrm does not support the - R option

provided by rm.

tmrmdir Remove a PFS directory. Note: tmrmdir does not support the - R
option provided by rmdir.

Note — tmexport and tmimport are functionally equivalent to cp, except they
copy files or directories between PFS and Solaris file systems. Use tmimport and
tmexport to backup and restore PFS data.

PFS also provides a set of PFS administration utilities. See the Sun HPC System
Administrator’s Guide of a discussion of these utilities.

6-2 Sun HPC Software 2.0 User’s Guide » November 1997

Index

A
argument vector

specifying a different, 3-27
attributes

including in an RRS, 3-14
authentication methods

DES, 3-3

Kerberos Version 4, 3-3

B

background
running a program in, 3-4
batch execution, 1-10, 3-2

C
commands
issuing, 2-3
location of, 2-3
compiling, 2-3
compound commands
executing, 3-5
configuring 170, 3-21
core files, 3-5

D

debugging, 5-1
dedicated partition, 1-7
DES authentication, 3-3

/dev/null, 3-21

E
environment, 3-4
specifying for execution, 3-19
environment variables
SUNHPC_PART, 2-2
SUNHPC_SYTEM, 2-2
execution
general information about, 3-4
execution methods, 3-1
execution options
default, 3-3

F
file descriptors
number required, 3-6

G

group name
executing with a different, 3-26

H

help
displaying, 3-27

|
1/0 configuration, 3-21
interactive execution, 1-10, 3-2

job 1D, 3-8

K
Kerberos 4 authentication, 3-3

L
linking, 2-3
load balancing, 1-8
Load Sharing Facility, 1-2
local execution, 3-28
logging in, 1-9
general information about, 2-1
via tmlogin or tmtelnet, 2-1
logging out, 2-4
login partition, 1-7, 2-1
LSF, 1-2

M
mail
sending after batch job completes, 3-28

N
node attributes, 4-9
node failure
restarting a task after, 3-26
nodes
obtaining information about, 4-9

@)
/opt/SUNWhpc/bin, 2-3
/opt/SUNWhpc/etc, 4-11

P
Parallel File System, 1-4,1-9
partition

specifying via tmrun, 3-11
partition attributes, 4-7
partitions, 1-7

obtaining information about, 4-6
PDE, 1-2
PETSc, 1-6
PFS, 1-4,6-1

file pathname construction, 6-1
pid, 1-8
priorities

queue, 3-25
Prism, 1-5,5-1
processes

specifying the number of, 3-12
programs

compiling and linking, 2-3

writing, 2-2
PVM, 1-4
PVM programs

debugging, 5-3

Q
queue attributes, 4-8
queue priorities, 3-25
gueues
obtaining information about, 4-8

R

rank-to-node mapping, 3-19
resource management software, 1-2
resource requirement specifie, 3-13
restarting tasks, 3-26

RRS, 3-13,4-5

RTE, 1-2

run-time environment, 1-3

S

S3L, 1-6

settling, 3-13
shared partition, 1-7

Index-2 Sun HPC Software 2.0 User’s Guide ¢ November 1997

shell-specific actions, 3-5

signals

treatment of, 3-4
SMPs

running on, 3-18
Solaris, 1-2

standard error

treatment of, 3-20
standard input

treatment of, 3-20
standard output

treatment of, 3-20
Sun HPC Run-time Environment, 1-2
Sun HPC Software

Foundation Package, 1-2

Parallel Development Environment, 1-2
Sun HPC System default, 2-2
Sun HPF, 1-5
Sun MPI programs, 1-4

debugging, 5-2
Sun Performance Workshop, 1-7
Sun Scientific Subroutine Library, 1-6
Sun Ultra HPC Servers, 1-1
SUNHPC_PART, 2-2
SUNHPC_SYSTEM, 2-2
system

name of, 2-1

T
task

running on the same node(s) as, 3-18
task ID, 1-9
task states, 4-2
tasks, 1-8
tid, 1-9

displaying after execution, 3-27
tmadmin, 4-11
tminfo, 1-10, 4-5

-A option, 4-6

-N option, 4-9

-n option, 4-9

-P option, 4-6

-p option, 4-6

-Q option, 4-8

-q option, 4-8

-R option, 4-5

-S option, 4-11

-v option, 4-6
tmkill, 1-9, 3-29

status returned by, 3-29
tmlogin, 2-1
tmps, 1-10, 4-1

-A option, 4-2

-a option, 4-2

-e option, 4-2

-f option, 4-2

-Ip option, 4-4

-It option, 4-3

-P option, 4-3, 4-4

-p option, 4-3

-T option, 4-3
tmrun, 1-10, 3-7

-A option, 3-27

-B option, 3-20

-C option, 3-26

-Ea option, 3-19

-Ec option, 3-19

-Ed option, 3-19

-Em option, 3-19

exit status of, 3-28

-G option, 3-26

general information about options, 3-9

-h option, 3-27

-1 option, 3-21

-N option, 3-21

-n option, 3-21

-np option, 3-12

-Ns option, 3-18

-p option, 3-11

-R option, 3-13

and TMRUN_FLAGS, 3-17

-S option, 3-13

-s option, 3-12

-T option, 3-27

-t option, 3-18

-U option, 3-26

-V option, 3-27

-W option, 3-13

-Ys option, 3-18
tmrun background processes, 3-5
tmrun -l commands, 3-24
tmrun 170, 3-20
TMRUN_FLAGS, 3-3,3-7,3-9

and Prism, 5-2

and -R option, 3-17
tmsub, 1-10, 3-7

Index-3

-A option, 3-27
-C option, 3-26
-Ea option, 3-19
-Ec option, 3-19
-Ed option, 3-19
-Em option, 3-19
exit status of, 3-28
-G option, 3-26
general information about options, 3-9
-h option, 3-27
-1 option, 3-25
-M option, 3-28
-np option, 3-12
-Nr option, 3-26
output from, 3-25
-p option, 3-12
-q option, 3-7
-R option, 3-13
and TMRUN_FLAGS, 3-17
-S option, 3-13
-s option, 3-12
-U option, 3-26
-V option, 3-27
-W option, 3-13
-Yr option, 3-26
tmtelnet, 2-1

U

user name
executing with a different, 3-26

\%

version number
displaying, 3-27

W
where a program is to run
specifying, 3-11
working directory
specifying for execution, 3-26
wrapping, 3-13

Index-4 Sun HPC Software 2.0 User’s Guide ¢ November 1997

