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Preface vii

Preface

Sun MPI 3.0 Guide describes the Sun™ MPI library of message-passing routines and
explains how to develop, execute, and debug an MPI (message-passing interface)
program on a Sun HPC System.

For the most part, this guide does not repeat information that is available in detail
elsewhere, but rather it focuses on what is specific to the Sun MPI implementation.
References to more general source materials are provided in the “Related
Publications” section of this preface.

The reader is assumed to be familiar with programming in C or Fortran. Some
familiarity with parallel programming and with the message-passing model is also
required.

Before You Read This Book
For general information about programming on a Sun HPC System, refer to the Sun
HPC Software User’s Guide. Release notes for Sun MPI are included in the Sun HPC
Software Release Notes. For general information about writing MPI programs, refer to
any of the several MPI source documents cited in the “Related Publications” section
later in this preface.
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Related Publications
This book focuses on Sun MPI and assumes familiarity with the MPI standard. The
following materials provide useful background about using Sun MPI and about the
MPI standard.

Books

Among the documents included with Sun HPC Software, you may want to pay
particular attention to these:

In addition, you may want to consult the Prism documentation for information on
debugging your Sun MPI program, as well as the S3L documentation to learn about
using the Sun Scientific Subroutine Library

These books, which are not provided by Sun, should be available at your local
computer bookstore:

■ Using MPI: Portable Parallel Programming with the Message-Passing Interface, by
William Gropp, Ewing Lusk, and Anthony Skjellum (Cambridge: MIT Press,
1994).

■ MPI: The Complete Reference, by Marc Snir, Steve W. Otto, Steven Huss-Lederman,
David W. Walker, and Jack Dongarra (Cambridge: MIT Press, 1995).

■ Parallel Programming with MPI, by Peter S. Pacheco (San Francisco: Morgan
Kaufmann Publishers, Inc., 1997).

Application Title Part Number

Sun HPC Software Sun HPC Software 2.0 Release Notes 805-2191

Sun HPC Software Sun HPC Software 2.0 User’s Guide 805-1554

Prism Prism 5.0 User’s Guide 805-1552

Prism Prism 5.0 Reference Manual 805-1553

S3L S3L 2.0 Guide 805-1557
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Man Pages

Man pages are also available online for all the Sun MPI and MPI I/O routines and
are accessible via the Solaris™ man command. These man pages are usually installed
in /opt/SUNWhpc/man . You may need to ask your system administrator for their
location at your site.

On the World Wide Web

There is a wealth of documentation on MPI available on the World Wide Web. Here
are a few URLs for Web sites (and each of these leads you to others):

■ The MPI home page, with links to specifications for MPI-1 and MPI-2 standards:

http://www.mpi–forum.org

■ User’s Guide for mpich, a Portable Implementation of MPI, a user’s guide for the
implementation on which Sun MPI is based:

http://www.mcs.anl.gov/mpi/mpiuserguide/paper.html

A PostScript version is also available at this site:

http://www.mcs.anl.gov/mpi/mpich

■ Additional Web sites that provide links to papers, talks, the standard,
implementations, information about MPI-2, plus pointers to many other sources:

http://www.erc.msstate.edu/mpi/
http://www.arc.unm.edu/workshop/mpi/mpi.html

Using UNIX Commands
This document may not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

■ AnswerBook™ online documentation for the Solaris 2.x software environment

■ Other software documentation that you received with your system
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Typographic Conventions

Shell Prompts

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output.

Edit your .login  file.
Use ls -a  to list all files.
% You have mail .

AaBbCc123 What you type, when
contrasted with on-screen
computer output.

% su
Password:

AaBbCc123 Book titles, new words or
terms, words to be emphasized.
Command-line variable;
replace with a real name or
value.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be root  to do this.
To delete a file, type rm filename.

TABLE P-2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell
superuser

#
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Ordering Sun Documents
SunDocsSM is a distribution program for Sun Microsystems technical documentation.
Contact SunExpress for easy ordering and quick delivery. You can find a listing of
available Sun documentation on the World Wide Web.

Sun Documentation on the Web
The docs.sun.com  web site enables you to access Sun technical documentation on
the World Wide Web. You can browse the docs.sun.com  archive or search for a
specific book title or subject. The URL is http://docs.sun.com

TABLE P-3 SunExpress Contact Information

Country Telephone Fax

Belgium 02-720-09-09 02-725-88-50

Canada 1-800-873-7869 1-800-944-0661

France 0800-90-61-57 0800-90-61-58

Germany 01-30-81-61-91 01-30-81-61-92

Holland 06-022-34-45 06-022-34-46

Japan 0120-33-9096 0120-33-9097

Luxembourg 32-2-720-09-09 32-2-725-88-50

Sweden 020-79-57-26 020-79-57-27

Switzerland 0800-55-19-26 0800-55-19-27

United Kingdom 0800-89-88-88 0800-89-88-87

United States 1-800-873-7869 1-800-944-0661

World Wide Web: http://www.sun.com/sunexpress/
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Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. You can email or fax your comments to us. Please include the part
number of your document in the subject line of your email or fax message.

■ Email: smcc-docs@sun.com

■ Fax: SMCC Document Feedback
1-650-786-6443

Information Sources for PVM and PETSc
TABLE P-4 lists organizations and resources for information about the publicly
available libraries PVM and PETSc. This information is subject to change.

TABLE P-4 Information Sources for PVM and PETSc

Product Contact

PVM Copyright holders: University of Tennessee, Oak Ridge National
Laboratory, Emory University
Electronic mail: pvm@msr.epm.ornl.gov
Newsgroup: comp.parallel.pvm
Web site: http://www.epm.ornl.gov/pvm/pvm_home.html

PETSc Developed and supported by the Mathematics and Computer Science
Division of the Argonne National Laboratory.
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CHAPTER 1

Introduction to Sun MPI

1.1 What Is Sun MPI?
Sun MPI is Sun Microsystems’ implementation of MPI (message-passing interface),
the industry-standard specification for writing message-passing programs. Message
passing is a programming model that gives the programmer explicit control over
interprocess communication.

1.2 Background: The MPI Standard
The MPI specification was developed by the MPI Forum, a group of software
developers, computer vendors, academics, and computer-science researchers whose
goal was to develop a standard for writing message-passing programs that would be
efficient, flexible, and portable.

The outcome, known as the MPI Standard (MPI-1), was first published in 1993; its
most recent version was published in June 1995. It has been well received, and there
are several implementations available publicly. The MPI-2 specification was
published in July, 1997.
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1.3 The Sun MPI Library
Sun MPI is a library of message-passing routines based on the MPICH Version 1.0.13
implementation, which was written at Argonne National Laboratory (ANL) and is
MPI-1 compliant. It contains all the MPI-1 routines, that is, routines for point-to-
point communication, collective (global) communication, and routines for
environmental and process management.

Man pages for Sun MPI routines are available online, and the routines are listed in
Appendix A, “Sun MPI and Sun MPI I/O Routines.”

Sun MPI provides several advantages over MPICH and other publicly available
implementations. Chapter 2, “The Sun MPI Library,” describes the Sun MPI library
and its advantages.

1.4 Using Sun MPI
The current release of Sun MPI is optimized to run with Sun HPC Software.

Chapter 3, “Using Sun MPI,” describes developing, executing, and debugging a Sun
MPI program.

1.5 MPI I/O
I/O for Sun MPI is based on chapter 9 of the MPI-2 specification. MPI I/O is a
library of routines for parallel file I/O that was developed as an extension to the
MPI standard. Chapter 4, “Sun MPI I/O,” describes these routines. Their man pages
are provided online, and the routines are listed in Appendix A, “Sun MPI and Sun
MPI I/O Routines.”
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CHAPTER 2

The Sun MPI Library

This chapter describes the Sun MPI library:

■ Section 2.1 outlines Sun MPI’s advantages and describes the ways in which Sun
MPI differs from the MPI standard and the MPICH implementation.

■ Section 2.2 describes the Sun MPI routines.

■ Section 2.3 describes programming with Sun MPI.

■ Section 2.4 describes how to obtain and build MPE.

2.1 Sun MPI Advantages
The functionality of Sun MPI is the same as that of MPICH, but Sun MPI provides
the following advantages over publicly available implementations of MPI:

■ Multithreaded programming is supported via a thread-safe version of the Sun
MPI library.

■ Seamless use of different network protocols; for example, if you’ve compiled your
code on a Sun Ultra™ HPC System that has a Scalable Coherent Interface (SCI)
network, you can run it without change on a system that has an ATM network.

■ Multiprotocol support such that MPI picks the fastest available medium for each
type of connection (such as shared memory, SCI, or ATM)

■ Improved performance on clusters of SMPs due to communication via shared
memory.

■ The shared memory is more tunable.

■ Full integration with the run-time environment (RTE); that is, Sun MPI is fully
integrated with the batch system, load-balancing, etc.

■ Prism support; that is, users can develop, run, and debug programs in the Prism
programming environment.
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■ MPI I/O support for file I/O (see Chapter 4, “Sun MPI I/O”).

■ Sun MPI is a dynamic library.

2.2 Sun MPI Routines
This section gives a brief description of the routines in the Sun MPI library. All the
Sun MPI routines are listed in Appendix A, “Sun MPI and Sun MPI I/O Routines,”
with brief descriptions and their C syntax. For detailed descriptions of individual
routines, see the man pages. For more complete information, see the MPI standard
and the MPICH user’s guide. (Web sites for these documents are listed in “Related
Publications” on page viii.)

2.2.1 Point-to-Point Routines
Point-to-point routines include the basic send and receive routines in both blocking
and nonblocking forms and in four modes.

A blocking send blocks until its message buffer can be written with a new message.
A blocking receive blocks until the received message is in the receive buffer.

Nonblocking sends and receives differ from blocking sends and receives in that, they
return immediately and their completion must be waited for or tested for. It is
expected that eventually nonblocking send and receive calls will allow the overlap
of communication and computation.

MPI’s four modes for point-to-point communication are:

■ Standard, in which the completion of a send implies that the message either has
been received or is buffered internally. Users are free to overwrite the buffer that
they passed in with any of the blocking send or receive routines.

■ Buffered, in which the user guarantees a certain amount of buffering space.

■ Synchronous, in which rendezvous semantics occur between sender and receiver,
that is, a send blocks until the corresponding receive has occurred.

■ Ready, in which a send can be started only if the matching receive is already
posted. The ready mode for sends is a way for the programmer to notify the
system that the receive has been posted, so that the underlying system can use a
faster protocol if it is available.
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2.2.2 Collective Communication
Collective communication routines are blocking routines that involve all processes in
a communicator. Collective communication includes broadcasts and scatters,
reductions and gathers, all-gathers and all-to-alls, scans, and a synchronizing barrier
call.

Many of the collective communication calls have alternative vector forms, with
which different amounts of data can be sent to or received from different processes.

The syntax and semantics of these routines are basically consistent with the point-to-
point routines (upon which they are built), but there are restrictions to keep them
from getting too complicated:

■ The amount of data sent must exactly match the amount of data specified by the
receiver.

■ There is only one mode, a mode analogous to the standard mode of point-to-point
routines.

TABLE 2-1 Collective Communication Routines

MPI_Bcast Broadcasts from one process to all others in a communicator.

MPI_Scatter Scatters from one process to all others in a communicator.

MPI_Reduce Reduces from all to one in a communicator.

MPI_Allreduce Reduces, then broadcasts result to all nodes in a
communicator.

MPI_Reduce_scatter Scatters a vector that contains results across the nodes in a
communicator.

MPI_Gather Gathers from all to one in a communicator.

MPI_Allgather Gathers, then broadcasts the results of the gather in a
communicator.

MPI_Alltoall Performs a set of gathers in which each process receives a
specific result in a communicator.

MPI_Scan Scans (parallel prefix) across processes in a communicator.

MPI_Barrier Synchronizes processes in a communicator (no data is
transmitted).
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2.2.3 Managing Groups, Contexts, and Communicators
A distinguishing feature of the MPI standard is that it includes a mechanism for
creating separate worlds of communication, accomplished through communicators,
contexts, and groups.

A communicator specifies a group of processes that will conduct communication
operations within a specified context without affecting or being affected by
operations occurring in other groups or contexts elsewhere in the program. A
communicator also guarantees that, within any group and context, point-to-point
and collective communication are isolated from each other.

A group is an ordered collection of processes. Each process has a rank in the group;
the rank runs from 0 to n–1. A process can belong to more than one group; its rank
in one group has nothing to do with its rank in any other group.

A context is the internal mechanism by which a communicator guarantees safe
communication space to the group.

At program startup, a default communicator is defined, MPI_COMM_WORLD, which
has as a process group all the processes of the job. For many programs, this is the
only communicator needed. The process group that corresponds to
MPI_COMM_WORLD is not predefined, but can be accessed using MPI_COMM_GROUP.

Communicators are of two kinds: intracommunicators, which conduct operations
within a given group of processes; and intercommunicators, which conduct operations
between two groups of processes.

Communicators provide a caching mechanism, which allows an application to attach
attributes to communicators. Attributes can be user data or any other kind of
information.

New groups and new communicators are constructed from existing ones. Group
constructor routines are local, and their execution does not require interprocessor
communication. Communicator constructor routines are collective, and their
execution may require interprocess communication.

Note – Users who do not need any communicator other than the default
MPI_COMM_WORLD communicator — that is, who do not need any sub- or supersets
of processes — can simply plug in MPI_COMM_WORLD wherever a communicator
argument is requested. In these circumstances, users can ignore this section and the
associated routines. (These routines can be identified from the listing in Appendix A,
“Sun MPI and Sun MPI I/O Routines.”)
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2.2.4 Data Types
All Sun MPI communication routines have a data type argument. These may be
primitive data types, such as integers or floating-point numbers, or they may be
user-defined, derived data types, which are specified in terms of primitive types.

Derived data types allow users to specify more general, mixed, and noncontiguous
communication buffers, such as array sections and structures that contain
combinations of primitive data types.

The basic data types that can be specified for the data-type argument correspond to
the basic data types of the host language. Possible values of this argument for
Fortran and the corresponding Fortran types are listed in TABLE 2-2.

TABLE 2-2 Possible Values for the Data Type Argument for Fortran

MPI Data Type Fortran Data Type

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE

MPI_PACKED

MPI_DOUBLE_COMPLEX DOUBLE COMPLEX

MPI_REAL4 REAL*4

MPI_REAL8 REAL*8

MPI_INTEGER2 INTEGER*2

MPI_INTEGER4 INTEGER*4
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Possible values for MPI derived data types in C and the corresponding C types are
listed in TABLE 2-3.

The data types MPI_BYTE and MPI_PACKED have no corresponding Fortran or C
data types.

Sun MPI supports the data types listed in TABLE 2-2 and TABLE 2-3; these match the
basic data types of Fortran 77 and ANSI C. Sun MPI data types are also provided for
the following additional data types:

■ MPI_LONG_LONG_INT for 64-bit C integers declared to be of type long long
int

■ MPI_DOUBLE_COMPLEX for double-precision complex in Fortran declared to be of
type DOUBLE COMPLEX

■ MPI_REAL4 and MPI_REAL8 for Fortran REALs, declared to be of type REAL*4
and REAL*8 respectively

■ MPI_INTEGER2 and MPI_INTEGER4 for Fortran integers declared to be of type
INTEGER*2 and INTEGER*4, respectively

TABLE 2-3 Possible Values for the Data Type Argument for C

MPI Data Type C Data Type

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED
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2.2.5 Persistent Communication Requests
Sometimes within an inner loop of a parallel computation, a communication with
the same argument list is executed repeatedly. The communication can be optimized
by using a persistent communication request, which reduces the overhead for
communication between the process and the communication controller. A persistent
request can be thought of as a communication port or “half-channel.”

2.2.6 Managing Process Topologies
Process topologies are associated with communicators; they are optional attributes
that can be given to an intracommunicator (not to an intercommunicator).

Recall that processes in a group are ranked from 0 to n–1. This linear ranking often
reflects nothing of the logical communication pattern of the processes, which may
be, for instance, a 2- or 3-dimensional grid. The logical communication pattern is
referred to as a virtual topology (separate and distinct from any hardware topology).
In MPI, there are two types of virtual topologies that can be created: Cartesian (grid)
topology and graph topology.

You can use virtual topologies in your programs by taking physical processor
organization into account to provide a ranking of processors that optimizes
communications.

2.2.7 Environmental Inquiry Functions
Environmental inquiry functions include routines for starting up and shutting down,
error-handling routines, and timers.

Other than MPI_Initialized , no MPI routine may be called before MPI_Init .
MPI_Finalize  must be the last MPI routine called on each process, and may be
called only if there are no outstanding communications involving that process.

The set of errors handled by MPI is dependent upon the implementation. The Sun
MPI implementation uses the error codes and classes implemented in MPICH.

2.2.8 The Thread-Safe Library
Sun MPI comprises two versions of the library:

■ Thread-safe – libmpi_mt.so
■ Not thread-safe (default) – libmpi.so
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For multithreaded programs, the user must link with the thread-safe library,
libmpi_mt.so .

For programs that are not multithreaded, the user can link against either library.
However, non-multithreaded programs will have better performance using
libmpi.so , as it does not incur the extra overhead of providing thread-safety.
Therefore, you should use libmpi.so  whenever possible for maximum
performance.

2.2.8.1 Stubbing Thread Calls

The libthread.so  library is automatically linked into libmpi.so . This means
that any thread-function calls in your program will be resolved by the
libthread.so  library. Simply omitting libthread.so  from the link line will not
cause thread calls to be stubbed out — you must remove the thread calls yourself.
For more information about the libthread.so  library, see its man page. (For the
location of Solaris man pages at your site, see your system administrator.)

2.2.9 Profiling Interface
Sun’s version of the MPI library meets the requirements of the profiling interface
described in Chapter 8 of the MPI-1 Standard. For a more detailed description of the
profiling interface, please refer to that chapter of the standard. This section covers
some specifics of the Sun MPI implementation.

To support the profiling interface, Sun supplies two additional libraries,
libpmpi.so  and libfmpi.so .

2.2.9.1 libpmpi.so

The libpmpi.so  library provides a name-shifted interface to all the MPI functions.
All calls to MPI_ are replaced with PMPI_.

2.2.9.2 libfmpi.so

Sun implements the Fortran binding to MPI as wrappers around the C
implementation. Therefore, every Fortran MPI function ultimately calls the
corresponding C MPI function. The libfmpi.so  library provides only the Fortran
wrappers, separate from the entire MPI library. This allows a profile library–writer
to generate a single profiled library with only the C functional interface. You may
write your own profiling library or choose from a number of available profiling
libraries, such as those included with the multiprocessing environment (MPE) from
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Argonne National Laboratory. (See Section 2.4 for more information about obtaining
MPE.) The User’s Guide for mpich, a Portable Implementation of MPI, includes more
detailed information about using profiling libraries. For information about this and
other MPI- and MPICH-related publications, see the “Related Publications” section
on page viii of the preface.

FIGURE 2-1 illustrates how the software fits together. In this example, the user is
linking against a profiling library that collects information on MPI_Send() . No
profiling information is being collected for MPI_Recv() .

To compile the program, the user’s link line would look like this:

# cc ..... –l library–name –lpmpi –lmpi

FIGURE 2-1 Sun MPI Profiling Interface

MPI_Send()
{

times_called++;
PMPI_Send()
}

MPI_Send();
MPI_Recv();

C bindings:
MPI_Send()
MPI_Recv()

Fortran bindings:
mpi_send_
mpi_recv_

Internal Functions

PMPI_Send()
PMPI_Recv()

MPI_SEND()
MPI_RECV()

mpi_send_
{ MPI_Send();
}
mpi_recv_
{ MPI_Recv();
}

user–program.f

profile library

libfmpi.so

libpmpi.so

libmpi.so

user–program.c

Supplied by User Supplied by Sun HPC
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2.3 Programming With Sun MPI
Although there are about 130 routines in the Sun MPI library, you can write
programs for a wide range of problems using only six routines:

This set of six routines includes the basic send and receive routines. Programs that
depend heavily on collective communication may also include MPI_Bcast  and
MPI_Reduce .

The functionality of these routines means you can have the benefit of parallel
operations without having to learn the whole library at once. As you become more
familiar with programming for message passing, you can start learning the more
complex and esoteric routines and add them to your programs as needed.

See Section 3.6, “Sample MPI Program,” starting on page 3-7, for a sample Sun MPI
program. See Section A.1, “Sun MPI Routines,” for a complete list of Sun MPI
routines.

2.4 MPE: Extensions to the Library
Although the Sun MPI library does not include or support the multiprocessing
environment (MPE) available from Argonne National Laboratory (ANL), it is
compatible with MPE. In case you would like to use these extensions to the MPI
library, we have included some instructions for downloading it from ANL and
building it yourself. Note that these procedures may change if ANL makes changes
to MPE.

TABLE 2-4 Six Basic MPI Routines

MPI_Init Initializes the MPI library.

MPI_Finalize Finalizes the MPI library. This includes
releasing resources used by the library.

MPI_Comm_size Determines the number of processes in a
specified communicator.

MPI_Comm_rank Determines the rank of calling process
within a communicator.

MPI_Send Sends a message.

MPI_Recv Receives a message.
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▼ To Obtain and Build MPE
The MPE software is available from Argonne National Laboratory.

1. Use ftp  to obtain the file.

ftp://ftp.mcs.anl.gov/pub/mpi/misc/mpe.tar.gz

The mpe.tar.gz  file is about 240 Kbytes.

2. Use gunzip  and tar  to decompress the software.

# gunzip mpe.tar.gz

# tar xvf mpe.tar

3. Change your current working directory to the mpe directory, and execute
configure  with the arguments shown.

# cd mpe
# configure –cc=cc –fc=f77 –opt=–I/opt/SUNWhpc/include

4. Execute a make.

# make

This will build several libraries.

Note – Sun MPI does not include the MPE error handlers. You must call the debug
routines MPE_Errors_call_dbx_in_xterm()  and
MPE_Signals_call_debugger()  yourself.

Please refer to the User’s Guide for mpich, a Portable Implementation of MPI, for
information on how to use MPE. For information about this and other MPI- and
MPICH-related publications, see the “Related Publications” section on page viii of
the preface.
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CHAPTER 3

Using Sun MPI

This chapter describes developing, compiling and linking, and executing a Sun MPI
program within the Sun HPC Software environment. It includes information about
tuning shared memory allocation, guidelines for multithreaded programming, and
some tips for troubleshooting.

The chapter focuses on what is specific to the Sun MPI implementation and, for the
most part, does not repeat information that can be found in related documents. For
complete information about developing MPI programs, see some of the MPI
publications listed in the preface. For complete information about executing
programs in the Sun HPC Software environment, see the Sun HPC Software User’s
Guide.

3.1 Header Files
Include syntax must be placed at the top of any program that calls Sun MPI routines.

For C programs, use

#include <mpi.h>

For Fortran, use

INCLUDE 'mpif.h'

These lines allow the program to access the Sun MPI version of the mpi  header file,
which contains the definitions, macros, and function prototypes required when
compiling the program. Ensure that you are referencing the Sun MPI include file.

The include files are usually found in /opt/SUNWhpc/include/ . If the compiler
cannot find them, check that they exist and are accessible from the machine on
which you are compiling your code. The location of the include file is specified by a
compiler option (see Section 3.4, “Compiling and Linking”).
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3.2 Developing a Sun MPI Program
Sun MPI routines are called from within a C or Fortran 77 program that you develop
and write in the usual way. However, if you are developing a multithreaded
program, you must follow the guidelines for thread-safe programming described in
Section 3.7. See CODE EXAMPLE 3-1, starting on page 3-8, for an example of a simple
Sun MPI program, and CODE EXAMPLE 3-2, starting on page 3-11, for an example of a
multithreaded program. Some examples of MPI code and a sample makefile are also
available online in the directory /opt/SUNWhpc/examples/mpi .

Note – Do not use the characters TM, tm, MPI, or mpi as a prefix in any routine
name that you create; they are reserved for use by Sun MPI.

Caution – Do not use mmap with the MAP_FIXED flag. Using this flag could corrupt
the Sun MPI shared-memory segment, resulting in unexplained failures in your Sun
MPI program.

3.3 Logging In
If you are not already logged in to the Sun HPC System, you’ll need to log in when
you are ready to compile and link your program.

To log in, issue the tmlogin  command at your UNIX prompt. For example,

% tmlogin –p Mars Planet

logs you in to the Sun HPC partition named Mars on the Sun HPC System named
Planet. For other login methods, see the Sun HPC Software User’s Guide.

3.4 Compiling and Linking
Sun MPI programs are compiled with ordinary C, C++, or Fortran compilers, just like
any other C, C++, or Fortran program, and linked with the Sun MPI library.
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If you will be using the Prism debugger, you must compile your program with
WorkShop™ Compilers Fortran, either v4.0 or v4.2. (The v4.2 compilers are included
in the Sun Performance WorkShop™ Fortran v3.0 suite of tools.) Prism also requires
–xs –g  flags during compilation. If the code is threaded, you will not be able to
debug with Prism. (See Section 3.8, “Debugging.”)

■ To compile a nonthreaded C program myprog.c  and link with Sun MPI, enter:

% cc myprog.c –o myprog –I/opt/SUNWhpc/include \
      –L/opt/SUNWhpc/lib –R/opt/SUNWhpc/lib –lmpi

■ To compile a nonthreaded Fortran 77 program myprog.f  and link with MPI,
enter:

% f77 –dalign myprog.f –o myprog –I/opt/SUNWhpc/include \
      –L/opt/SUNWhpc/lib –R/opt/SUNWhpc/lib –lmpi

Note – For the Fortran interface, the –dalign  option is necessary to avoid the
possibility of bus errors. (The underlying C routines in Sun MPI internals assume
that parameters and buffer types passed as REALs are double-aligned.)

■ To compile a C++ program myprog.cc  and link with Sun MPI, enter:

% CC myprog.cc –o myprog –I/opt/SUNWhpc/include \
      –L/opt/SUNWhpc/lib –R/opt/SUNWhpc/lib –mt –lmpi

■ For multithreaded programs, replace –lmpi  with –lmpi_mt .

■ For programs that use MPI I/O, insert –lmpi–iof  before –lmpi .

Note – If your program has previously been linked to any static libraries, you will
have to relink it to libmpi.so  before executing it.

3.5 Executing
You can run your job interactively with tmrun  (see Section 3.5.3), or you can submit
it to a batch queue with tmsub  (see Section 3.5.4). If you’ll be using Prism to debug
your program, run the job interactively (see the discussion of Prism in Section 3.8.2,
“Debugging With Prism”).

Before running your program or submitting it to a batch queue, you can use the
command tminfo  to find out how the system is configured (see the Sun HPC
Software User’s Guide for further information).

Before executing your job, you may also need to set an environment variable to
adjust the allocation of shared memory. See Section 3.5.1 for information.
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3.5.1 Shared Memory Allocation
Sun MPI supports communication via shared memory between MPI processes
running in the same task and on the same node. This fast shared-memory
communication provides the best performance available when running on an SMP
node. During the Sun MPI initialization phase, a file is created for use as the shared
memory segment. Eventually all eligible processes attach to this file, and on-node
MPI communications take place through it.

The size of the file must be large enough to meet the needs of the task, but it should
also avoid needlessly tying up memory resources. Sun MPI specifies its size
according to the number of on-node processes participating in the MPI task. In most
cases, this default size will accomodate all MPI shared memory use. In other cases, it
will be necessary to request a shared-memory file size specific to some tasks’
requirements. Three environment variables are supported for custom size
specification: MPI_SHORTMSGSIZE, MPI_GLOBMEMSIZE and MPI_UNITMEMSIZE.

In Sun MPI, “short” messages are handled differently from “long” messages. Short
messages are passed through memory that is private to a communicating pair; long
messages are passed in memory temporarily allocated from an area common to all
eligible processes. MPI_SHORTMSGSIZE determines the transition point from short
to long messages. MPI_GLOBMEMSIZE and MPI_SHORTMSGSIZE determine the size
of the common shared memory area.

Because short messages use memory that is private to a communicating pair, they
are more efficient than long messages. Depending on the number of on-node
processes and the MPI_SHORTMSGSIZE size specified, however, memory demands
may be unacceptable. Based on a knowledge of message-size distribution and
message traffic patterns, the user can arrive at a compromise between performance
and memory use.

The following sections describe how to use these three environment variables. See
Section 3.9, “Configuration and Tuning,” for more detailed information.

Note – You may not set these environment variables to negative values. Values
should be chosen such that the shared-memory file size limits are observed. For
compatibility with all supported versions of Solaris, Sun MPI imposes a shared-
memory file size limit of 2 Gbytes. When specifying custom shared-memory sizes,
some care should be taken if the resultant file size approaches 2 Gbytes. To find out
how much memory is available for each node in your local Sun HPC System, use the
tminfo –N  command. (See the Sun HPC Software User’s Guide for more information
about tminfo .) See Section 3.9.2, “Shared Memory Configuration,” for detailed
information about calculating the size of the shared-memory file.
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3.5.1.1 Using MPI_SHORTMSGSIZE

If your program will be using many-to-many message patterns, and most of the
messages are of a similar size, the MPI_SHORTMSGSIZE variable may be the most
effective method of managing memory allocation:

■ MPI_SHORTMSGSIZE – A per-process quantity corresponding to the limit on the
size of the short-message buffer. The size of the area reserved for short messages
is defined as 3N2 * MPI_SHORTMSGSIZE, where N is the number of on-node
processes in the MPI task. If MPI_SHORTMSGSIZE is not specified, the maximum
short message size is 1024 bytes.

3.5.1.2 Using MPI_GLOBMEMSIZE and MPI_UNITMEMSIZE

Shared memory allocated for large messages can be controlled by setting the shell
environment variable MPI_GLOBMEMSIZE or MPI_UNITMEMSIZE. If both are in
effect in the same shell context, MPI_GLOBMEMSIZE takes precedence. If either is in
effect, it overrides the Sun MPI default size.

■ MPI_GLOBMEMSIZE – A global value representing the overall quantity of memory
allocated to the large-message shared memory area. It is expressed in bytes as
either a decimal or as a hexadecimal number.

■ MPI_UNITMEMSIZE – A value that can be used to specify the size of the large-
message shared memory area based on per-process memory requirements. If
MPI_UNITMEMSIZE is set, the amount of memory reserved for large message
passing will be equal to N2 * MPI_UNITMEMSIZE, where N is the number of on-
node processes in the MPI task. It is expressed in bytes as either a decimal or as a
hexadecimal number.

For example, to set the environment variable MPI_GLOBMEMSIZE to 32 Mbytes (here
in a C shell), you must first convert Mbytes to bytes (32 * 220 = 33554432). Here is the
decimal version:

% setenv MPI_GLOBMEMSIZE 33554432

and here is the hexadecimal version:

% setenv MPI_GLOBMEMSIZE 0x2000000

3.5.2 Setting MPI_SPIN_LIMIT

Sun MPI’s blocking receive routines poll aggressively for messages. This aggressive
polling, also known as “spinning,” can use up system resources uselessly, with a
detrimental effect on the performance achieved by other jobs in the Sun HPC
System. To reduce the effect of this spinning, you should set the MPI_SPIN_LIMIT
environment variable before starting your job.
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MPI_SPIN_LIMIT  limits the number of times a blocking receive routine will poll for
its message. Once the number of times the routine has polled for its message equals
the value set for MPI_SPIN_LIMIT , it will back off for a period of time, leaving the
node free to be used by other jobs during that time. The value of MPI_SPIN_LIMIT
is an integer. The default value, 0, allows a blocking receive to poll continually until
it receives its message.

To determine an appropriate value for MPI_SPIN_LIMIT , consider the extent to
which your program will be using shared memory (intranode) communication and
the extent to which it will be using network (internode) communication. In the
extreme case of using no network communication, such as you would find with an
individual SMP, polling for messages takes a relatively short time, so you can safely
set MPI_SPIN_LIMIT  to a large value to avoid negative effects on the performance
of your own program. At the other extreme, where there is no shared memory
communication (such as with networked uniprocessors), polling for messages takes
a long time, so you would set MPI_SPIN_LIMIT  to a small value. Otherwise, the
long spin cycle associated with each blocking receive could result in other jobs
stalling for a period of time.

Your situation probably falls between these two extremes. For example, if your
program is running on a cluster of eight SMP nodes, you should consider how many
of the messages will be communicated over the network and how many will be
communicated within a node, by shared memory communication.

3.5.3 tmrun

Use the tmrun  command to run your job interactively if resources are available.
For example,

% tmrun –p Dedicated –np 4 myprog

does this:

■ tmrun  submits the job to run immediately.

■ –p Dedicated  requests the partition Dedicated.

■ –np 4  indicates the number of processes wanted is 4 (meaning that your
executable will run on 4 processes and these processes will collectively define
MPI_COMM_WORLD).

Note – For Release 3.0, the number of processes in a Sun MPI job is limited to 256.

■ myprog  is the name of the executable.

If the partition you requested is not available, you receive a message telling you so,
and you can try again later. If batch queues are available, you have the option of
submitting to one of the batch queues, as shown in the next section.
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3.5.4 tmsub

Use the tmsub  command to submit your job to the batch queue for execution.
For example,

% tmsub –q Ruffian –np 4 myprog

does this:

■ tmsub  submits the job to the batch queue.

■ –q Ruffian  requests the queue Ruffian.

■ –np 4  indicates the number of processes wanted is 4 (meaning that your
executable will run on 4 processes and these processes will collectively define
MPI_COMM_WORLD).

Note – For Release 3.0, the number of processes in a Sun MPI job is limited to 256.

■ myprog  is the name of the executable.

After a successful submission, tmsub  returns with a unique job ID, or jid, that may
be used to reference the job in future operations.

% tmsub myprog
Job j12 submitted

There are many other options to the tmrun  and tmsub  commands. For complete
information, see the chapter “Executing Programs” in the Sun HPC Software User’s
Guide.

3.6 Sample MPI Program
Below is a sample MPI program that does two things:

■ Produces “Hello from process x of n” to make sure all processes are there
(MPI_Comm_rank) and to confirm the total number (MPI_Comm_size )

■ Sends a simple message from one process to another

Also see CODE EXAMPLE 3-2, starting on page 3-11, for an example of a multithreaded
program. Some examples of MPI code and a sample makefile are available online in
the directory /opt/SUNWhpc/examples/mpi .
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CODE EXAMPLE 3-1 Simple Sun MPI Program

#include <mpi.h>

main (argc, argv)
  int argc; char *argv[];
{
  int rank,size;
  int send[100],recv[100];
  int msg_len=6;
  int i;
  int source=0, dest=1;
  int tag=0;
  MPI_Status status;

  /* Initialize MPI */
  MPI_Init(&argc,&argv);

  /* Get rank of this process and process group size */
  MPI_Comm_rank(MPI_COMM_WORLD,&rank);
  MPI_Comm_size(MPI_COMM_WORLD,&size);
  printf("Hello from process %d of %d.\n",rank,size);

  /* Set up two arrays to act as message send/recv buffers */
  for ( i=0; i<msg_len; i++ ) { send[i]=i; recv[i]=0; }

  if ( rank == source ) {
    /* Source process sends a message */
    MPI_Send(send,msg_len,MPI_INT,dest,tag,MPI_COMM_WORLD);
    printf("Process %d sent:",rank);
    for ( i=0; i<msg_len; i++ ) printf (" %d", send[i]);
    printf("\n");
  }

  if ( rank == dest ) {
    /* Destination process receives a message */
    MPI_Recv(recv,msg_len,MPI_INT,source,tag,
             MPI_COMM_WORLD,&status);
    printf("Process %d got :",rank);
    for ( i=0; i<msg_len; i++ ) printf(" %d", recv[i]);
    printf(" from process %d.\n",status.MPI_SOURCE);
  }

  /* Wrap up MPI operations */
  MPI_Finalize();
  printf("Process %d is finished.\n",rank);
}
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3.7 Multithreaded Programming
When you are linked to the thread-safe library libmpi_mt.so , Sun MPI calls are
thread safe, in accordance with basic tenets of thread safety for MPI mentioned in
the MPI-2 specification1. This means that:

■ When two concurrently running threads make MPI calls, the outcome will be as if
the calls executed in some order.

■ Blocking MPI calls will block the calling thread only. A blocked calling thread will
not prevent progress of other runnable threads on the same process, nor will it
prevent them from executing MPI calls. Thus, multiple sends and receives are
concurrent.

3.7.1 Guidelines for Thread-Safe Programming
Each thread within an MPI process may issue MPI calls; however, threads are not
separately addressable. That is, the rank of a send or receive call identifies a process,
not a thread, meaning that no order is defined for the case where two threads call
MPI_Recv  with the same tag and communicator. Such threads are said to be
in conflict.

If threads within the same application post conflicting communication calls, data
races will result. You can prevent such data races by using distinct communicators
or tags for each thread.

In general, you will need to adhere to these guidelines:

■ You must not have an operation posted in one thread and then completed in
another. Similarly, you must not have a request serviced by more than one thread.

■ A data type or communicator must not be freed by one thread while it is in use by
another thread.

■ Once MPI_Finalize  has been called, subsequent calls in any thread will fail.

■ You must ensure that a sufficient number of lightweight processes (LWPs) are
available for your multithreaded program. Failure to do so may degrade
performance or even result in deadlock.

■ You cannot stub the thread calls in your multithreaded program by omitting the
threads libraries in the link line. The libmpi.so  library automatically calls in the
threads libraries, which effectively overrides any stubs.

1. Document for a Standard Message-Passing Interface. Please see the preface of this document for more information
about this and other recommended reference material.
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The following sections describe more specific guidelines that apply for some
routines. They also include some general considerations for collective calls and
communicator operations that you should be aware of.

MPI_Wait , MPI_Waitall , MPI_Waitany , MPI_Waitsome

In a program where two or more threads call one of these routines, you must ensure
that they are not waiting for the same request. Similarly, the same request cannot
appear in the array of requests of multiple concurrent wait calls.

MPI_Cancel

One thread must not cancel a request while that request is being serviced by another
thread.

MPI_Probe , MPI_Iprobe

A call to MPI_Probe  or MPI_Iprobe  from one thread on a given communicator
should not have a source rank and tags that match those of any other probes or
receives on the same communicator. Otherwise, correct matching of message to
probe call may not occur.

Collective Calls

Collective calls are matched on a communicator according to the order in which the
calls are issued at each processor. All the processes on a given communicator must
make the same collective call. You can avoid the effects of this restriction on the
threads on a given processor by using a different communicator for each thread.

No process that belongs to the communicator may omit making a particular
collective call; that is, none should be left “dangling.”

Communicator Operations

Each of the communicator functions operates simultaneously with each of the
noncommunicator functions, regardless of what the parameters are and of whether
the functions are on the same or different communicators. However, if you are using
multiple instances of the same communicator function on the same communicator,
where all parameters are the same, it cannot be determined which threads belong to
which resultant communicator. Therefore, when concurrent threads issue such calls,
you must assure that the calls are synchronized in such a way that threads in
different processes participating in the same communicator operation are grouped
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together. Do this either by using a different base communicator for each call or by
making the calls in single-thread mode before actually using them within the
separate threads.

Please note also these special situations:

■ If you are using multiple instances of the same function with differing parameters
and multiple threads, you must use different communicators. You must not use
multiple instances of the same function on the same communicator with other
differing parameters.

■ When using splits with multiple instances of the same function with the same
parameters, but with different threads at the split, you must use different
communicators.

For example, suppose you wish to produce several communicators in different
sets of threads by performing MPI_Comm_split  on some base communicator. To
ensure proper, thread-safe operation, you should replicate the base communicator
via MPI_Comm_dup (in the root thread or in one thread) and then perform
MPI_Comm_split  on the resulting duplicate communicators.

■ Do not free a communicator in one thread if it is still being used by another
thread.

Error Handlers

When an error occurs as a result of an MPI call, the handler may not run on the same
thread as the thread that made the error-raising call. In other words, you cannot
assume that the error handler will execute in the local context of the thread that
made the error-raising call. The error handler may be executed by another thread on
the same process, distinct from the one that returns the error code. Therefore, you
cannot rely on local variables for error handling in threads; instead, use global
variables from the process.

3.7.2 Sample Threaded MPI Program
CODE EXAMPLE 3-2 is a program that tests multithreaded cshifts in Sun MPI. It is an
example of a multithreaded Sun MPI program.

Also see CODE EXAMPLE 3-1, starting on page 3-8, for an example of a nonthreaded
Sun MPI program. Some examples of MPI code and a sample makefile are available
online in the directory /opt/SUNWhpc/examples/mpi .

CODE EXAMPLE 3-2 Program That Tests Multithreaded cshift s

/*
 * compile:  tmcc –D_REENTRANT mpi_mttest.c –lmpi_mt –lpthread
 * run:      tmrun –np 4 –Ns a.out 7
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 */

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <mpi.h>

#define  MAX_NTHREADS  64
#define  CSHIFT_TAG     9

/*
 * struct containing arguments for the cshift function. we need to do
 * this since the threads creation function accepts the address of
 * only one argument.
 */
typedef struct thrarg_s {
  int       thread_index; /* unique to each set of communicating
threads */
  MPI_Comm  thread_comm;  /* unique to each set of communicating
threads */
  int       nerrors;      /* keep track of the number of errors */
} thrarg_t;

/*
 * do a bunch of cshifts. this involves passing value(s) from one
 * processto the next, much like a bucket brigade. at each point we
 * make sure that we are receiving and sending the correct value(s).
 */
void *
cshifts(void *A)
{
  thrarg_t *B;
  MPI_Status status;
  int mypid, nprocs;
  int msg, new_msg;
  int i, isrc, idest, direction;

  B = (thrarg_t *) A;

  MPI_Comm_rank(B–>thread_comm, &mypid);
  MPI_Comm_size(B–>thread_comm, &nprocs);

  /*
   * note that the value being passed around is a function of the
   * thread index that we've assigned
   */
  msg = B–>thread_index + 1;
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  /* determine if we are shifting forward or backward */
  if (B–>thread_index % 2) {
    direction = 1;
  } else {
    direction = –1;
  }

  isrc  = (mypid – direction + nprocs) % nprocs;
  idest = (mypid + direction + nprocs) % nprocs;

  /*
   * cshifts: use an alternate (checkerboard) pattern of sends and
   * recvs
   */
  for (i = 0; i < nprocs; i++) {
    if (mypid % 2) {
      MPI_Recv(&new_msg, 1, MPI_INT, isrc, CSHIFT_TAG, B–>thread_comm,

       &status);
      MPI_Send(&msg, 1, MPI_INT, idest, CSHIFT_TAG, B–>thread_comm);

    } else {
      MPI_Send(&msg, 1, MPI_INT, idest, CSHIFT_TAG, B–>thread_comm);
      MPI_Recv(&new_msg, 1, MPI_INT, isrc, CSHIFT_TAG, B–>thread_comm,

       &status);
    }

    /* see if the new message has the correct value */
    if (new_msg != B–>thread_index + 1) B–>nerrors++;
    msg = new_msg;
  }

  return (NULL);
}

/*
 * main program
 *
 * optional command line argument:
 *   nthreads – number of threads per MPI process
 */
int
main(int argc, char *argv[])
{
  pthread_attr_t attr;
  pthread_t      thread_ids[MAX_NTHREADS];
  thrarg_t       mydata[MAX_NTHREADS];
  int            sumerr[MAX_NTHREADS];
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  int  mypid, nprocs, i;
  int  nthreads = 10;

  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &mypid);
  MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

  /*
   * read nthreads argument on the first process and broadcast the
   * value to the other processes
   */
  if (mypid == 0) {
    if (argc > 1) nthreads = atoi(argv [1]);

    printf("********  %d procs, %d threads  ********\n", nprocs,
nthreads);
  }

  if (nprocs > 1)
    MPI_Bcast(&nthreads, 1, MPI_INT, 0, MPI_COMM_WORLD);

  if (nthreads < 1 || nthreads > MAX_NTHREADS) {
    if (mypid == 0) fprintf(stderr, "invalid value of nthreads\n");
    MPI_Finalize();
    exit (1);
  }

  /* fill mydata, which contains argument for the threads */
  for (i = 0; i < nthreads; i++) {
    mydata[i].thread_index = i;
    MPI_Comm_dup(MPI_COMM_WORLD, &(mydata[i].thread_comm));
    mydata[i].nerrors = 0;
  }

  /*
   * create threads and pass the arguments. use OS scheduling.
   */
  pthread_attr_init(&attr);
  pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

  for (i = 0; i < nthreads; i++)
    pthread_create(&thread_ids[i], &attr, cshifts,

   (void *) &(mydata[i].thread_index));

  for (i = 0; i < nthreads; i++) {
    pthread_join(thread_ids[i], NULL);
    MPI_Comm_free(&(mydata[i].thread_comm));
  }
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  /* count errors on process 0 */
  for (i = 0; i < nthreads; i++)
    MPI_Reduce(&mydata[i].nerrors, &sumerr[i], 1, MPI_INT, MPI_SUM,

 0, MPI_COMM_WORLD);

  if (mypid == 0) {
    int totalerr = 0;

    for (i = 0; i < nthreads; i++) totalerr += sumerr[i];

    if (totalerr <= 0) {
      printf("cshifts passed\n");
    } else {
      printf("cshifts FAILED. number errors = %d\n", totalerr);
    }

    printf("MT–MPI test is done\n");
  }

  MPI_Finalize();

  return (0);
}

/* end file */

3.8 Debugging
Debugging parallel programs is notoriously difficult, since you are in effect
debugging a program potentially made up of many distinct programs executing
simultaneously. Even if the application is an SPMD one (single process, multiple
data), each instance may be executing a different line of code at any instant. Prism,
part of the optional Sun HPC Parallel Development Environment (PDE) that may be
available at your site, eases the debugging process considerably.

Prism is recommended for debugging in the Sun HPC Software environment.
However, if you need to debug multithreaded Sun MPI programs at the thread level,
you should see Section 3.8.3, “Debugging With dbx.” See also Section 3.8.4,
“Debugging With MPE,” if you are using the multiprocessing environment (MPE)
from Argonne National Laboratory.
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3.8.1 Setting MPI_INIT_TIMEOUT

Sun MPI has timeouts built into the software to help detect when there are network
interface problems while starting an MPI task. However, these timeouts can be
triggered erroneously when you are debugging programs, such as when using Prism
or dbx, and should therefore be disabled prior to using a debugger on a Sun MPI
program. The environment variable MPI_INIT_TIMEOUT  can be used to set or
disable the timeout time. When MPI_INIT_TIMEOUT  is set to a positive integer, the
timeout value is set to that time in seconds. When it is set to 0 or a negative integer,
the timeout is disabled. The default value is 600 seconds (10 minutes).

For example, to disable timeouts (in a C shell):

% setenv MPI_INIT_TIMEOUT –1

Again in a C shell, to set timeouts to 5 minutes:

% setenv MPI_INIT_TIMEOUT 300

3.8.2 Debugging With Prism
The Prism development environment, which is part of the optional Sun HPC PDE,
may be available at your site. For complete information on Prism, see the Prism
User’s Guide, especially the chapter on MP Prism. Unless you are using multiple
threads in your program, use MP Prism to debug your Sun MPI program. This
section is a brief summary of the information in that chapter.

Note – To use MP Prism to debug a Sun MPI program, the program has to be
written in the SPMD style — that is, all processes that make up a Sun MPI program
must be running the same executable.

It is possible to use Prism to debug multiprocess programs; it requires attaching a
Prism debugger to processes on individual nodes. However, organizing such a
debugging session is by no means simple.

3.8.2.1 Starting Up MP Prism

Note – To debug a Sun MPI program with MP Prism, you need to have compiled
your program using one of the compilers included in the Sun Performance
WorkShop Fortran suite of tools.

To use MP Prism, you must be logged in to the Sun HPC System (see Section 3.3).
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To start Prism on a Sun MPI program, use the –np  option to specify how many
processes you want to start (which determines how many copies of the program will
run). For example,

% prism –np 4 myprog

starts four copies of myprog . You can specify where the processes are to start by
setting the TMRUN_FLAGS environment variable; Prism also supports a subset of
tmrun  options. For example,

% prism –np 4 –p Dedicated myprog

starts the processes on the partition Dedicated.

This starts up a graphical version of Prism with your program loaded. You can then
debug and visualize data in your Sun MPI program.

Note – To run graphical Prism, you must be running Solaris 2.5.1 or 2.6 with either
OpenWindows™ or the Common Desktop Environment (CDE), and with your
DISPLAY environment variable set correctly. See the Prism User’s Guide for
information.

One important feature of MP Prism is that it lets you debug the Sun MPI program at
any level of detail. You can look at the program as a whole or at subsets of processes
within the program (for example, those that have an error condition), or at
individual processes, all within the same debugging session. For complete
information, see the Prism User’s Guide.

3.8.3 Debugging With dbx
To debug your multithreaded program at the thread level, you can use dbx. The
following example illustrates this method of debugging.

▼ To Debug Threads With dbx

1. Add a variable to block the process until you attach with dbx.

In this sample program, simple–comm , the wait_for_dbx variable is set to 1 to create
a wait loop. It is placed before the function or functions to be debugged.

CODE EXAMPLE 3-3 Debugging a Multithreaded Sun MPI Program With dbx

#include <stdio.h>
#include "mpi.h"

void
main( int argc, char **argv )
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{
  MPI_Comm comm_dup;
  int error;
  int wait_for_dbx = 1;

  if((error = (MPI_Init(&argc, &argv))) != MPI_SUCCESS) {
    printf("Bad Init\n");
    exit(–1);
  }

  while (wait_for_dbx);

  error = MPI_Comm_dup(MPI_COMM_WORLD, &comm_dup);
  if (error != MPI_SUCCESS) {
    printf("Bad Dup\n");
    exit(–1);
  }

  error = MPI_Comm_free(&comm_dup);
  if (error != MPI_SUCCESS) {
    printf("Bad Comm free\n");
    exit(–1);
  }

  MPI_Finalize();
}

2. Compile the code, then run it.

After compiling the program, run it using tmrun . (See the Sun HPC Software User’s
Guide for more information.)

% tmrun –np 4 simple–comm

3. Identify the processes to which you want to attach the debugger.

Use tmps –p  to obtain information about the processes in the task. The first line
describes the task, and the following lines describe the processes by rank, process id
(or pid), state, and the node where the process is running. (See the Sun HPC Software
User’s Guide for more about getting information about processes.)

% tmps –p

  TID  NPROC  UID       STATE  AOUT
t1387     4   tdd       RUN    simple–comm
       0  10838  RUN     dev–node31
       1  10842  RUN     dev–node31
       2  11443  RUN     dev–node30
       3  11449  RUN     dev–node30
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4. Attach the debugger to the processes that you would like to debug.

Attach the debugger to the processes. If you would like to debug only a subset of the
processes, you must set up a conditional in such a way that the while  statement is
executed in only the process(es) that you will debug.

% dbx simple–comm 10838
Attached to process 10838 with 2 LWPs
t@1 (l@1) stopped in main at line 18 in file "simple–comm.c"
   18     while (wait_for_dbx);

5. Set your variable such that it will allow the process to unblock.

At the dbx  prompt, use assign  to change the value of the variable (here
wait_for_dbx) and, hence, unblock the processes.

(dbx) assign wait_for_dbx = 0

6. Debug the processes.

After you have attached and set the instrumentation code appropriately, you can
start debugging the processes as you normally would with dbx .

3.8.4 Debugging With MPE
The multiprocessing environment (MPE) available from Argonne National
Laboratory includes a debugger that can also be used for debugging at the thread
level. For information about obtaining and building MPE, see Section 2.4, “MPE:
Extensions to the Library.”

3.9 Configuration and Tuning

3.9.1 Ratio of Processes to Processors
When running Sun MPI programs, the number of processes should be less than or
equal to the number of processors in the partition where you are running. If you run
a program with a larger number of processes than the number of processors you
have available, using the –W tag to tmrun  or tmsub  (causing the processes to wrap),
then more than one process will run on a processor, causing significant performance
degradation.
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You may find the performance achieved when wrapping processes acceptable in
some circumstances, such as in developing and debugging your program. See the
Sun HPC Software User’s Guide for more information about options to tmrun  and
tmsub .

3.9.2 Shared Memory Configuration
Sun MPI uses shared memory as a buffer zone for passing MPI messages when two
ranks on the same node are communicating. Using shared memory in these
circumstances puts system bus and memory at the disposal of communicating
processes and results in high data throughput and low communication latencies.

Shared-memory communication is coordinated through the use of mailboxes. Each
receiver has a mailbox reserved for each sender. Thus, for an N-process task, there
are N2 mailboxes. This square layout allows immediate point-to-point
communication when a mailbox is empty. The sender writes data to a reserved area
of shared memory, then sets a flag in the receivers mailbox. The receiver notices that
a message is pending, receives it, and clears the flag.

Messages themselves are passed through one of two different regions of shared
memory, depending on their size. Any message up to 1024 bytes is by default a short
message and passes through a private region bound to a mailbox. A long message
must be allocated a temporary message buffer from a shared pool of buffer space.
The allocated buffer needs to be large enough to contain the entire message in
progress. When the message has been received, the temporary buffer is returned to
the shared pool.

The size of the shared memory file is a configuration consideration. It needs to be
large enough to accommodate the needs of a Sun MPI task’s peak message-passing
activity, while at the same time recognizing that other users are also making
demands on memory resources. By default, Sun MPI creates a shared memory file
whose size should satisfy the needs of a broad range of tasks without violating
system memory requirements. For those instances where a task requires more (or
less) shared memory, a set of shell environment variables is available to tailor the
size to a particular need.

The shared memory file is split into three regions: the mailbox region, the short-
message region, and the long-message region. Each region is a different size:

■ The size of the mailbox region can be determined exactly based on the number N
of on-node processes participating in the task. It is equal to N2 * 384 bytes.

■ The default size of the short-message region is equal to N2 * 3072 bytes.

■ The default size of the long-message region is determined by a series of stepwise
functions, the slopes of which decrease at selected values of N:

■ For N = 2, the size is 34,952,448 bytes.
■ For N = 16, the size is 83,869,696 bytes.
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■ For N = 32, the size is 314,507,264.
■ For N = 64, the size is 838,598,696 bytes.
■ For N = 256, the size is 1,883,242,496 bytes.

For values of N falling between these points, the long-message region size
decreases in a linear way with N2.

When it is necessary to specify a custom shared-memory file size, the sizes of both
the short-message region and the long-message region can be varied. Changes to
either or both can be made for the same run. For versions of Solaris prior to Solaris
2.6, there is a file size limit of 2 Gbytes. When specifying custom shared-memory
sizes, some care should be taken if the resultant file size approaches 2 Gbytes.

The short-message region size is modified by setting the shell environment variable
MPI_SHORTMSGSIZE. When set, the short message region will be equal to N2 * 3 *
MPI_SHORTMSGSIZE, where N is the number of on-node processes in the task.

The long-message region size is modified by setting one of two shell environment
variables: MPI_UNITMEMSIZE or MPI_GLOBMEMSIZE. MPI_GLOBMEMSIZE is a global
value. Its setting absolutely specifies the size of the long-message region.
MPI_UNITMEMSIZE is a per-process value. It determines the long-message region
size according to the expression N2 * MPI_UNITMEMSIZE, where N is the number of
on-node processes in the task. You may set both MPI_UNITMEMSIZE and
MPI_GLOBMEMSIZE, but if you do, only MPI_GLOBMEMSIZE will have an effect. See
Section 3.5.1.2, “Using MPI_GLOBMEMSIZE and MPI_UNITMEMSIZE,” for more
details about setting these environment variables.

Another factor to consider is the amount of swap space configured. Since the shared
file is created in /tmp , it shares its backing store with swap. If the shared file takes
up too large a portion of swap, the task will exit and an error message will appear
inthe originating shell (see “Insufficient Swap Space” on page 3-23). This condition
can easily be remedied by using the swap –a  shell command to add swap space. A
reasonable rule of thumb is to use no more than 85% of the available swap space.
The shell command swap –l  will report available swap.

3.9.3 Shared Memory Performance
Under light or moderate message-passing loads, short-message transfers and long-
message transfers should show about the same nominal performance. However,
there is a tradeoff in using these two transfer modes. Because of the inherent
message-passing overhead, it is more efficient to send large messages. However, as
load increases, using a short-message buffer will provide a performance advantage.
This is because short-message buffer accesses are private and, therefore, are not
subject to the contention for shared-memory file space that can occur with long-
message buffer accesses.
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The implication of this short message–long message differential is that overall
message-passing performance will depend on message-size distribution and
message rate. Message-size distribution will determine how often a short-message
path is taken rather than a long-message path. Message-size distribution and
message rate will determine the time it takes to service a request for a buffer from
the large-message pool. In particular, the number of messages with sizes grouping
around the maximum short-message size is important. If message sizes are uniform
or tend to cluster around a size, then MPI_SHORTMSGSIZE should be set slightly
larger than the average size.

When setting MPI_SHORTMSGSIZE, overall shared-memory page size should be kept
in mind. With this consideration, an attempt should be made to understand the
message-size distribution. If the message-size distribution justifies it,
MPI_SHORTMSGSIZE should be set large enough to take advantage of the efficiencies
of large messages. For simple “ping-pong” message exchanges, an
MPI_SHORTMSGSIZE of 16 Kbytes provides a smooth performance transition
between short and long messages.

As described in the previous section and in Section 3.5.1, “Shared Memory
Allocation,” two variables are available for setting the long-message region size:
MPI_GLOBMEMSIZE and MPI_UNITMEMSIZE. Each provides a different way of
thinking about how much room will be needed for long messages. If no information
about message-size distribution is available and the default size is inadequate, using
MPI_GLOBMEMSIZE is the best way to set the size of the large-message region. An
error message (see Section 3.10.1, “Troubleshooting Shared Memory Allocation”) will
indicate the available amount of large-message memory and the size of the request
that exceeded the limit. You can use that request size to help judge how much to
increase the large-message region size.

If some information about message-size distribution and traffic patterns is available,
MPI_UNITMEMSIZE may provide a more natural way to set the size of the large-
message region. In effect, setting MPI_UNITMEMSIZE guarantees that every on-node
process will be able to send an MPI_UNITMEMSIZE-size message simultaneously to
every other on-node process without running out of large-message memory.

See Section 3.5.1.2, “Using MPI_GLOBMEMSIZE and MPI_UNITMEMSIZE,” for
more details about setting these environment variables.

3.10 Troubleshooting
This section describes some common problem situations, resulting error messages,
and suggestions for fixing the problems. TABLE 3-1 lists standard error return values
you may encounter in your Sun MPI programs. For the most recent information
about Sun MPI, see the Sun HPC Software 2.0 Release Notes.



Chapter 3 Using Sun MPI 3-23

3.10.1 Troubleshooting Shared Memory Allocation
The shared-memory segment used by Sun MPI is a static and finite resource. During
the MPI initialization phase, the size of the segment is determined based on user-set
environment variables or default settings that scale with the number of processes on
a node in the same task. Once allocated, the size of the shared-memory segment
does not change. Problems with shared memory use may occur if certain size limits
are violated or if a request for shared memory would exceed the amount available.

The 2-Gbyte Limit

In order to be compatible will all supported versions of Solaris, Sun MPI puts an
upper bound of 2 Gbytes – 1 byte on the size of a shared-memory file. In the default
case, this limit will never be reached. If, however, the user has set
MPI_GLOBMEMSIZE, MPI_UNITMEMSIZE, or MPI_SHORTMSGSIZE (or some
combination of these environment variables), it is possible to request a file larger
than the limit. If the limit is exceeded, an error message similar to the following will
be seen at the originating shell and the task will exit:

TMTL_shmem_connection_init: [node4–1]
    Sun MPI shared memory limit exceeded.
    Limit: 2147481855 (0x7ffff8ff) bytes.
    Requested: 12034954240 (0x2cd56d400) bytes.
    Adjust environment variable MPI_SHORTMSGSIZE.
    Consult the Sun MPI Guide on shared memory allocation.

If this error is seen, environment variable sizes should be reduced so that the
requested size will fall within the 2 Gbytes – 1 byte limit. See Section 3.9.2, “Shared
Memory Configuration,” for detailed information about calculating the size of the
shared-memory file.

Insufficient Swap Space

The shared-memory segment exists as a file in the tmpfs  area /tmp , which is based
on non-reserved physical memory and swap space. Space available in /tmp  for
shared memory use will vary dynamically depending on total application demand
on physical memory, how much of swap is being used as backing store, and other
temporary files resident in /tmp . If a request for a shared memory segment exceeds
the amount of memory available in /tmp , an error message similar to the following
will be seen at the originating shell and the task will exit:

 TMTL_shmem_connection_init: [node4–1]
    Not enough space left for shared memory files
    Free space available on filesystem:   1799831552 bytes
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    Free space available for shmem files: 1609656730 bytes
    Space requested:                      2000014080 bytes
    Consult the Sun MPI Guide on shared memory allocation.

If this error is seen, swap space should be increased or more RAM added. Increasing
swap space will allow the task to run, but performance may suffer. If performance is
a problem here, try adding RAM.

Insufficient Buffer Pool Space

Under stressful conditions of heavy message traffic and large message sizes, it is
possible to exhaust the memory available in the shared memory segment. If a
request under these circumstances results in this possibility, Sun MPI first backs off
from the request to give other processes a chance to free the shared memory they are
using. If after the backoff, sufficient memory is still unavailable, an error message
similar to the following will be seen at the originating shell, and the task will exit:

[node4–1] Sun MPI Error:
    Shared memory buffer pool exhausted.
    Size of the shared memory buffer pool =   10000000 bytes
    Failed for request size               =   16777216 bytes
    Insufficient buffer pool space prevents request completion.
    Use environment variables MPI_GLOBMEMSIZE or MPI_UNITMEMSIZE
    to increase buffer pool size. See the MPI(3SunMPI) man page or
    the Sun MPI Guide for more information.

If this error is seen, the shared memory segment size should be increased by setting
either MPI_GLOBMEMSIZE or MPI_UNITMEMSIZE.

Note – In some cases, you may see this error message when the reported request
size is smaller than the size of the reported shared-memory buffer pool. This results
from congestion caused by other messages still using the shared-memory buffer pool
such that there is not enough memory for the requested size. The solution is
nonetheless the same: you must increase the shared-meory segment size for your
program to run.
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3.10.2 Standard Error Values
Listed below are the error return values you may encounter in your MPI programs.
Error values may also be found in mpi_errno.h .

TABLE 3-1 Sun MPI Standard Error Values

Error Code Value Meaning

MPI_SUCCESS 0 Successful return code.

MPI_ERR_BUFFER 1 Invalid buffer pointer.

MPI_ERR_COUNT 2 Invalid count argument.

MPI_ERR_TYPE 3 Invalid datatype argument.

MPI_ERR_TAG 4 Invalid tag argument.

MPI_ERR_COMM 5 Invalid communicator.

MPI_ERR_RANK 6 Invalid rank.

MPI_ERR_ROOT 7 Invalid root.

MPI_ERR_GROUP 8 Null group passed to function.

MPI_ERR_OP 9 Invalid operation.

MPI_ERR_TOPOLOGY 10 Invalid topology.

MPI_ERR_DIMS 11 Illegal dimension argument.

MPI_ERR_ARG 12 Invalid argument.

MPI_ERR_UNKNOWN 13 Unknown error.

MPI_ERR_TRUNCATE 14 Message truncated on receive.

MPI_ERR_OTHER 15 Other error; use Error_string .

MPI_ERR_INTERN 16 Internal error code.

MPI_ERR_IN_STATUS 17 Look in status for error value.

MPI_ERR_PENDING 18 Pending request.

MPI_ERR_REQUEST 19 Illegal MPI_Request  handle.
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CHAPTER 4

Sun MPI I/O

For Sun MPI, file I/O is a subset of the routines included in the MPI-2 standard. (See
the section “On the World Wide Web” on page ix of the preface for more information
about MPI-2.) MPI I/O is specified as part of that standard, which was published in
July, 1997. Its goal is to provide a library of routines featuring a portable parallel file
system interface that is compatible with MPI.

The closest thing to a standard in file I/O is the UNIX file interface, but UNIX does
not provide efficient coordination among multiple simultaneous accesses to a file,
particularly when those accesses originate on multiple machines in a cluster.
Another drawback of the UNIX file interface is its single-offset interface, that is, its
lack of aggregate requests, which can also lead to inefficient access. The MPI I/O
library provides routines that in effect accomplish this coordination. Furthermore,
MPI I/O allows multiple simultaneous access requests to be made to take advantage
of Sun HPC’s parallel file system, PFS. It is currently the only application
programming interface through which users can access Sun HPC’s PFS.

4.1 Other Sun HPC I/O
Sun HPC provides three options for I/O:

■ If you use the Sun HPF (High Performance Fortran) compiler, your compiled
program will call Sun MPI I/O for you. For more information about how Sun
HPF uses MPI I/O, see the Sun HPF Guide.

■ You can also make file system calls to Solaris or use Solaris raw disk calls. (See
your Solaris documentation for more information.) Some file I/O considerations
are discussed in the Sun HPC Software User’s Guide.

■ The third option is to use the Sun MPI I/O library.
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Note – A direct interface to Sun HPC’s PFS (parallel file system) is not available to
the user in this release. Currently, the only way to access PFS is through Sun’s
implementation of MPI I/O, Sun HPF, or the PFS command-line utilities.

4.2 Using Sun MPI I/O
MPI I/O models file I/O on message passing; that is, writing to a file is analogous to
sending a message, and reading from a file is analogous to receiving a message. The
library provides a high-level way of partitioning data among processes, which saves
you from having to specify the details involved in making sure that the right pieces
of data go to the right processes. See Section 4.2.1, “Data Partitioning and Data
Types.”

4.2.1 Data Partitioning and Data Types
MPI I/O uses the MPI model of communicators and derived data types to describe
communication between processes and I/O devices. MPI I/O determines which
processes are communicating with a particular I/O device. Derived data types
define the layout of data in memory and of data in a file on the I/O device. (For
more information about derived data types, see Section 2.2.4, “Data Types.”) Because
MPI I/O builds on MPI concepts, it’s easy for a knowledgeable MPI programmer to
add MPI I/O code to a program.

Data is partitioned in memory and in the file according to MPI data types. Herein
lies one of MPI and MPI I/O’s advantages: Because they provide a mechanism
whereby you can create your own data types, you have more freedom and flexibility
in specifying data layout in memory and in the file.

The library also simplifies the task of describing how your data moves from
processor memory to file and back again. You create derived data types that describe
how the data is arranged in each process’s memory and how it should be arranged
in that process’s part of the disk file. Sun MPI I/O takes care of managing the
multiple reads and writes of all the processes.

The Sun MPI I/O routines are described in Section 4.2.3, “Routines.” But first, to be
able to define data layout, you will need to understand some basic MPI I/O data-
layout concepts. Section 4.2.2, “Definitions,” explains some of the fundamental terms
and concepts.
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4.2.2 Definitions
The following terms are used to describe partitioning data among processes.
FIGURE 4-1 illustrates some of these concepts.

■ An elementary data type (or etype ) is the unit of data access and positioning. It can
be any MPI basic or derived data type. Data access is performed in elementary-
data-type units, and offsets (see below) are expressed as a count of elementary
data types.

■ The file type (or filetype ) is used to partition a file among processes; that is, a
file type defines a template for accessing the file. It is either a single elementary
data type or a derived MPI data type constructed from elementary data types. A
file type may contain “holes,” or extents of bytes that will not be accessed by this
process.

■ A file displacement (or disp ) is an absolute byte position relative to the beginning
of a file. The displacement defines the location where a view begins (see below).

■ A view defines the current set of data visible and accessible by a process from an
open file in terms of a displacement, an elementary data type, and a file type. The
pattern described by a file type is repeated, beginning at the displacement, to
define the view.

■ An offset is a position relative to the current view, expressed as a count of
elementary data types. Holes in the view’s file type are ignored when calculating
this position.

FIGURE 4-1 Displacement, the Elementary Data Type, the File Type, and the View

For a more detailed description of MPI I/O, see Chapter 9, “I/O,” of the MPI-2
standard.

. . .

size of
displacement

etype filetype

view: shaded regions are data visible to a process’ view
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4.2.3 Routines
This release of Sun MPI includes 26 MPI I/O routines, all of which are defined in
Chapter 9, “I/O,” of the MPI-2 specification. (See the preface for information about
this specification.)

Code examples that use many of these routines are provided in Section 4.2.3.5,
“Sample Code,” starting on page 4-11.

4.2.3.1 File Manipulation
MPI_File_open
MPI_File_close
MPI_File_delete
MPI_File_set_size
MPI_File_get_size
MPI_File_get_group
MPI_File_get_amode

MPI_File_open  and MPI_File_close  are collective operations that open and
close a file, respectively — that is, all processes in a communicator group must
together open or close a file. To achieve a single-user, UNIX-like open, set the
communicator to MPI_COMM_SELF.

Note – The MPI_File_open  interface allows the user to pass information to MPI
I/O about data layout and usage via the info argument. Although passing such
information is not supported for this release, the info argument must be supplied for
compatibility with the MPI-2 specification. Its inclusion will allow support for
passing user-supplied information to MPI I/O in future releases.

MPI_File_delete  deletes a specified file, provided it is not currently open by any
process.

Note – For Fortran users: While using the Fortran interface to MPI I/O, if you are
working with file names that have trailing spaces, the spaces will be deleted from
them when they are acted on by the MPI_File_open  or MPI_File_delete
routine. This behavior follows Sun F77 and F90 conventions. (The C interface to MPI
I/O does not modify file names.)

The routines MPI_File_set_size , MPI_File_get_size , MPI_File_get_group ,
and MPI_File_get_amode  get and set information about a file. When using the
collective routine MPI_File_set_size  on a UNIX file, if the size that is set is
smaller than the current file size, the file is truncated at the position defined by
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size . If the size is set to be larger than the current file size, the file size becomes the
set size. When using MPI_File_set_size  on a PFS file, however, you must set the
file to length 0. No other values are supported in this release.

The routine MPI_File_get_group  returns a communicator group, but it does not
free the group.

See all the code examples in Section 4.2.3.5 for sample code using some of these
routines.

Note – For Fortran users: Because of the way Sun Performance Workshop F77
handles INTEGER*8, for the MPI I/O routines that take an
MPI_Offset(INTEGER*8) , there is an alternative Fortran interface in addition to
the standard interface. The alternative takes a REAL*8 offset and is distinguished by
the presence of a D (for double) at the start of the function name:

These D routines are available only from Fortran.

4.2.3.2 File Views
MPI_File_set_view
MPI_File_get_view

The MPI_File_set_view  routine changes the process’s view of the data in the file,
specifying its displacement, elementary data type, and file type, as well as setting
the independent file pointers and shared file pointer to 0. MPI_File_set_view  is a
collective routine; all processes in the group must pass identical values for the file
handle and the elementary data type, although the values for the displacement, the
file type, and the info object may vary. However, if you use the data-access routines
that use file positioning with a shared file pointer, you must also give the
displacement and the file type identical values. The data types passed in as the
elementary data type and the file type must be committed.

Note – Displacements within the file type and the elementary data type must be
monotonically increasing.

Conventional Name Alternative Name

MPI_File_set_size MPI_DFile_set_size

MPI_File_get_size MPI_DFile_get_size
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Note – For Fortran users: Because of the way Sun Performance Workshop F77
handles INTEGER*8, for the MPI I/O routines that take an
MPI_Offset(INTEGER*8) , there is an alternative Fortran interface in addition to
the standard interface. The alternative takes a REAL*8 offset and is distinguished by
the presence of a D (for double) at the start of the function name:

These D routines are available only from Fortran.

See the code examples in Section 4.2.3.5 for sample code using
MPI_File_set_view .

4.2.3.3 Data Access

The 14 data-access routines in this section are blocking routines. (Nonblocking MPI
I/O routines have not been implemented for this release.) The three methods of file
positioning used for data access are by:

■ Explicit offset
■ Individual file pointer
■ Shared file pointer

See the following subsections for a more detailed discussion of each of these
methods. Sample code illustrating the use of these routines can be found in
Section 4.2.3.5, “Sample Code,” starting on page 4-11.

Data Access With Explicit Offsets
MPI_File_read_at
MPI_File_read_at_all
MPI_File_write_at
MPI_File_write_at_all

To access data at an explicit offset, specify the position in the file where the next data
access for each process should begin. For each call to a data access routine, a process
attempts to access a specified number of data items of a specified data type (starting
at the specified offset) into a specified user buffer.

Conventional Name Alternative Name

MPI_File_set_view MPI_DFile_set_view

MPI_File_get_view MPI_DFile_get_view
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The offset is measured in elementary data type units relative to the current view;
moreover, “holes” are not counted when locating an offset. The data is read from (in
the case of a read) or written into (in the case of a write) those parts of the file
specified by the current view. These routines store the number of buffer elements of
a particular data type actually read (or written) in the status object, and all the other
fields associated with the status object are undefined. The number of elements that
are read or written can be accessed using MPI_Get_count .

MPI_File_read_at  attempts to read from the file via the associated file handle
returned from a successful MPI_File_open .

Similarly, MPI_File_write_at  attempts to write data from a user buffer to a file.

MPI_File_read_at_all  and MPI_File_write_at_all  are collective versions of
MPI_File_read_at  and MPI_File_write_at , in which each process provides an
explicit offset.

Note – The type signatures of the file type and the buffer type must match
(however, this is not checked).

See CODE EXAMPLE 4-1, starting on page 4-12, for sample code using some of these
routines.

Note – For Fortran users: Because of the way Sun Performance Workshop F77
handles INTEGER*8, for the MPI I/O routines that take an
MPI_Offset(INTEGER*8) , there is an alternative Fortran interface in addition to
the standard interface. The alternative takes a REAL*8 offset and is distinguished by
the presence of a D (for double) at the start of the function name:

These D routines are available only from Fortran.

Conventional Name Alternative Name

MPI_File_read_at MPI_DFile_read_at

MPI_File_read_at_all MPI_DFile_read_at_all

MPI_File_write_at MPI_DFile_write_at

MPI_File_write_at_all MPI_DFile_write_at_all
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Data Access With Individual File Pointers
MPI_File_read
MPI_File_write
MPI_File_read_all
MPI_File_write_all
MPI_File_seek
MPI_File_get_position

For each open file, Sun MPI I/O maintains one individual file pointer per process
per collective MPI_File_open . For these data-access routines, MPI I/O implicitly
uses the value of the individual file pointer. These routines use and update only the
individual file pointers maintained by MPI I/O; the shared file pointer is neither
used nor updated. (For data access with shared file pointers, please see the next
section.)

These routines have similar semantics to the explicit-offset data-access routines,
except that the offset is defined here to be the current value of the individual file
pointer.

MPI_File_read_all  and MPI_File_write_all  are collective versions of
MPI_File_read  and MPI_File_write , with each process using its individual file
pointer.

Each process can call the routine MPI_File_seek  to update its individual file
pointer according to the update mode. The update mode has the following possible
values:

■ MPI_SEEK_SET – The pointer is set to the offset.
■ MPI_SEEK_CUR – The pointer is set to the current pointer position plus the offset.
■ MPI_SEEK_END – The pointer is set to the end of the view plus the offset.

The offset can be negative for backwards seeking, but you cannot seek to a negative
position in the file. The current position is defined as the elementary data item
immediately following the last-accessed data item, even if that location is a hole.
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Note – For Fortran users: Because of the way Sun Performance Workshop F77
handles INTEGER*8, for the MPI I/O routines that take an
MPI_Offset(INTEGER*8) , there is an alternative Fortran interface in addition to
the standard interface. The alternative takes a REAL*8 offset and is distinguished by
the presence of a D (for double) at the start of the function name:

These D routines are available only from Fortran.

MPI_File_get_position  returns the current position of the individual file pointer
relative to the current displacement and file type.

See CODE EXAMPLE 4-2, starting on page 4-14, for sample code using some of these
routines.

Data Access With Shared File Pointers
MPI_File_read_ordered
MPI_File_write_ordered
MPI_File_seek_shared
MPI_File_get_position_shared

Sun MPI I/O maintains one shared file pointer per collective MPI_File_open
(shared among processes in the communicator group that opened the file). As with
the routines for data access with individual shared file pointers, you can also use the
current value of the shared file pointer to specify the offset of data accesses
implicitly. These four routines use and update only the shared file pointer
maintained by the system; the individual file pointers are neither used nor updated
by any of these routines.

These routines have similar semantics to the explicit-offset data-access routines,
except:

■ The offset is defined here to be the current value of the shared file pointer.

■ The multiple calls (one for each process in the communicator group) affect the
shared file pointer routines as if the calls were serialized.

After a shared file pointer operation is initiated, the file pointer is updated, relative
to the current view of the file, to point to the elementary data item immediately
following the last one requested, regardless of the number of items actually
accessed.

Conventional Name Alternative Name

MPI_File_seek MPI_DFile_seek

MPI_File_get_position MPI_DFile_get_position
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MPI_File_read_ordered  and MPI_File_write_ordered  are collective routines
that must be called by all processes in the communicator group associated with the
file handle. After all the processes in the group have issued their respective calls,
MPI_File_read_ordered  attempts to read from the file associated with the file
handle a specified total number of data items of a particular data type into a
specified user buffer. Similarly, MPI_File_write_ordered  attempts to write data
from a user buffer to a file. For each process, data is read (or written) at the position
where the shared file pointer would be after all processes with ranks within the
group lower than this process’s rank had read (or written) their data. These routines
return the number of elements of the particular data type read or written in the
status structure. The shared file pointer is updated by the amount of data requested
by all processes of the group.

MPI_File_seek_shared  is a collective routine, and all processes in the
communicator group associated with the particular file handler must call
MPI_File_seek_shared  with the same file offset and the same update mode. All
the processes in the communicator group are synchronized with a barrier before the
shared file pointer is updated.

The offset can be negative for backwards seeking, but you cannot seek to a negative
position in the file. The current position is defined as the elementary data item
immediately following the last-accessed data item, even if that location is a hole.

Note – For Fortran users: Because of the way Sun Performance Workshop F77
handles INTEGER*8, for the MPI I/O routines that take an
MPI_Offset(INTEGER*8) , there is an alternative Fortran interface in addition to
the standard interface. The alternative takes a REAL*8 offset and is distinguished by
the presence of a D (for double) at the start of the function name:

These D routines are available only from Fortran.

MPI_File_get_position_shared  returns the current position of the shared file
pointer relative to the current displacement and file type. It also returns the absolute
position, in bytes, of the shared file pointer, ignoring the displacement and file type.

The noncollective routines MPI_File_read_shared  and
MPI_File_write_shared  have not been implemented in this release.

See CODE EXAMPLE 4-3, starting on page 4-16, for sample code using some of these
routines.

Conventional Name Alternative Name

MPI_File_seek_shared MPI_DFile_seek_shared

MPI_File_get_position_shared MPI_DFile_get_position_shared
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4.2.3.4 File Consistency and Semantics
MPI_File_set_atomicity
MPI_File_get_atomicity
MPI_File_sync

The routines ending in _atomicity  allow you to set or query whether a file is in
atomic or nonatomic mode. In atomic mode, all operations within the communicator
group that opens a file are completed as if sequentialized into some serial order. In
nonatomic mode, no such guarantee is made. A file is in nonatomic mode by default
when it is opened. In nonatomic mode, MPI_File_sync  can be used to assure weak
consistency.

MPI_File_set_atomicity  is a collective call that sets the consistency semantics
for data-access operations, using the set of file handles created by one collective
MPI_File_open . All the processes in the group must pass identical values for both
the file handle and the Boolean flag that indicates whether atomic mode is set.

MPI_File_get_atomicity  returns the current consistency semantics for data-
access operations on the set of file handles created by one collective
MPI_File_open . Again, a Boolean flag indicates whether the atomic mode is set.

See CODE EXAMPLE 4-1, below, and CODE EXAMPLE 4-2, starting on page 4-14, for
sample code using MPI_File_set_atomicity .

4.2.3.5 Sample Code

The following code examples demonstrate the use of many of the MPI I/O routines.
In each example, each process opens a file using MPI_File_open , writes
NUM_INTS integers to that file, reads back what was just written, then closes the
file. Each of the three examples access data using a different type of file positioning:
explicit, individual, and shared.

In these examples, since we intend to only outline clearly a program with a typical
sequence of MPI I/O calls, we omit error checking for the purpose of clearer
illustration of the sequence. However, in normal usage, the program should check
whether each MPI I/O routine returns MPI_SUCCESS. If the routine does not return
MPI_SUCCESS, then, based on the error code returned, the program should
determine how to proceed.

In the first example, we open the file pfs:/users/bob/foo  by calling
MPI_File_open . The pfs:  prefix specifies that we wish to access a PFS file. After
the pfs:  prefix, we must put the absolute pathname to access a PFS file. By calling
MPI_File_set_view , we proceed to set the etype and filetype to MPI_INT  (the MPI
integer type) and the displacement to be 0.
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Next, we perform the writes and the reads explicitly. Notice the parameter offset in
the calls MPI_File_write_at  and MPI_File_read_at . Each process sets offset to
be rank * NUM_INTS so that each process in the parallel task will access a unique
segment of the file (in this case, a segment with NUM_INTS consecutive integers).
Thus, all the processes together write and read the first comm_size * NUM_INT}
integers in the PFS file pfs:/users/bob/foo .

At the end of the program, we first check to see that the data read is the same as the
data written. After that, we query the file size using MPI_File_get_size  and
check that the file size is what we expect it to be.

CODE EXAMPLE 4-1 Data Access With Explicit File Pointers

#include <stdio.h>

#include "mpi.h"
#include "mpio.h"

#define NUM_INTS 100

void
main( int argc, char **argv )
{
  int i, rank,  comm_size;
  int *buff1, *buff2;
  MPI_File fh;
  MPI_Offset disp, offset, file_size;
  MPI_Datatype etype, ftype, buftype;
  MPI_Info info;
  MPI_Status status;

  MPI_Init(&argc, &argv);

  /* get this processor's rank */
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

  /* communicator group MPI_COMM_WORLD opens file "foo"
     for reading and writing (and creating, if necessary) */
  MPI_File_open(MPI_COMM_WORLD, "pfs:/users/bob/foo",

MPI_MODE_RDWR | MPI_MODE_CREATE, (int)NULL, &fh);

  /* Set the file view which tiles the file type MPI_INT, starting
     at displacement 0.  In this example, the etype is also MPI_INT.  */
  disp = 0;
  etype = MPI_INT;
  ftype = MPI_INT;
  info = (MPI_Info)NULL;
  MPI_File_set_view(fh, disp, etype, ftype, (char *)NULL, info);
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  /* Allocate and initialize a buffer (buff1) containing NUM_INTS integers,
     where the integer in location i is set to i. */
  buff1 = (int *)malloc(NUM_INTS*sizeof(int));
  for(i=0;i<NUM_INTS;i++) buff1[i] = i;

  /* Set the buffer type to also be MPI_INT, then write the buffer (buff1)
     starting at offset 0, i.e., the first etype in the file. */
  buftype = MPI_INT;
  offset = rank * NUM_INTS;
  MPI_File_write_at(fh, offset, buff1, NUM_INTS, buftype, &status);

  /* Allocate another buffer (buff2) to read into, then read NUM_INTS
     integers into this buffer.  */
  buff2 = (int *)malloc(NUM_INTS*sizeof(int));
  MPI_File_read_at(fh, offset, buff2, NUM_INTS, buftype, &status);

  /* Check to see that each integer read from each location is
     the same as the integer written to that location. */
  for(i=0; i<NUM_INTS; i++) {
    if(buff1[i] != buff2[i])
      printf("Integer number %d differs\n", i);
  }

  MPI_File_get_size(fh, &file_size);

  if(file_size != (comm_size * NUM_INTS * sizeof(int)))
    printf("File size is not equal to the write size\n");

  MPI_File_close(&fh);

  MPI_Finalize();

  free(buff1);
  free(buff2);
}

In the second example, we access data using individual file pointers. First, we call
MPI_File_open  to open the UNIX file foo  in the current working directory. (Note
that for UNIX, we do not need to supply absolute path names. Also, for UNIX files,
you could supply an optional ufs:  prefix, but if no prefix is given, MPI_File_open
assumes that the file is a UNIX file.) After we open the file, we set atomic mode by
calling MPI_File_set_atomicity . Once again, we set the etype and ftype to be
MPI_INT  and the displacement to be 0.

Each process calls MPI_File_seek  to set the individual file pointer to be rank *
NUM_INTS, then calls MPI_File_write  to write NUM_INTS consecutive integers
starting at file position rank * NUM_INTS. Similarly, we use MPI_File_seek  and
MPI_File_read  to read back the integers into a separate buffer.
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After checking to see if the data read is the same as the data written as in the first
example, we query the individual file position by calling
MPI_File_get_position . Finally, the program concludes by closing the file by
calling MPI_File_close  and deleting the file by calling MPI_File_delete .

CODE EXAMPLE 4-2 Data Access With Individual File Pointers

#include <stdio.h>

#include "mpi.h"
#include "mpio.h"

#define NUM_INTS 100

void
main( int argc, char **argv )
{
  int i, rank;
  int *buff1, *buff2;
  MPI_File fh;
  MPI_Offset indiv_file_pos;
  MPI_Status status;

  MPI_Init(&argc, &argv);

  /* get this processor's rank */
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);

  /* communicator group MPI_COMM_WORLD opens file "foo"
     for reading and writing (and creating, if necessary) */
  MPI_File_open(MPI_COMM_WORLD, "foo", MPI_MODE_RDWR | MPI_MODE_CREATE,

(MPI_Info)NULL, &fh);

  /* Set the atomicity mode to be cautious so that a process doesn't try
     to read while another writes. */
  MPI_File_set_atomicity(fh, 1);

  /* Set the file view which tiles the file type MPI_INT, starting
     at displacement 0.  In this example, the etype is also MPI_INT.  */
  MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, (char *)NULL, (MPI_Info)NULL);

  /* Allocate and initialize a buffer (buff1) containing NUM_INTS integers,
     where the integer in location i is set to i. */
  buff1 = (int *)malloc(NUM_INTS*sizeof(int));
  for(i=0;i<NUM_INTS;i++) buff1[i] = i;

  /* Set the individual file pointer to the start of this process's section. */
  MPI_File_seek(fh, rank*NUM_INTS, MPI_SEEK_SET);
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  /* Set the buffer type to also be MPI_INT, then write the buffer (buff1)
     starting at the current value of the individual file pointer. */
  MPI_File_write(fh, buff1, NUM_INTS, MPI_INT, &status);

  /* Reset the individual file pointer to offset 0. */
  MPI_File_seek(fh, rank*NUM_INTS, MPI_SEEK_SET);

  /* Allocate another buffer (buff2) to read into, then read NUM_INTS
     integers into this buffer.  */
  buff2 = (int *)malloc(NUM_INTS*sizeof(int));
  MPI_File_read(fh, buff2, NUM_INTS, MPI_INT, &status);

  /* Check to see that each integer read from each location is
     the same as the integer written to that location. */
  for(i=0; i<NUM_INTS; i++) {
    if(buff1[i] != buff2[i])
      printf("Integer number %d differs: buff1: %d  buff2: %d\n",

     i, buff1[i], buff2[i]);
  }

  MPI_File_get_position(fh, &indiv_file_pos);
  printf("The individual file position for process %d is now %d\n",

 rank, (int)indiv_file_pos);

  MPI_File_close(&fh);

  MPI_File_delete("foo", (MPI_Info)NULL);

  MPI_Finalize();

  free(buff1);
  free(buff2);
}

In the third example, each process writes and reads the same amount of data from
the file as in the first two examples, but the writes and reads occur collectively using
the shared file pointer. Before writing or reading, we call MPI_File_seek_shared
to set the shared file pointer to be 10. Then, each process calls
MPI_File_write_ordered  to write the data. Since this routine is collective, each
process must call it. On the collective write, the write requests are satisfied in the
order of rank. That is, process 0 writes the first NUM_INTS integers, process 1 writes
the next NUM_INTS integers, and so on. Similarly, each process calls
MPI_File_seek_shared  and MPI_File_read_ordered  to read back the same
data. Finally, we call MPI_File_get_position_shared  to examine the position of
the shared file position after the read has occurred.



4-16 Sun MPI 3.0 Guide • November 1997

CODE EXAMPLE 4-3 Shared File Pointers and Collective Data Access

#include <stdio.h>

#include "mpi.h"
#include "mpio.h"

#define NUM_INTS 100

void
main( int argc, char **argv )
{
  int i, rank;
  int *buff1, *buff2;
  MPI_File fh;
  MPI_Offset shared_file_pos;
  MPI_Status status;

  MPI_Init(&argc, &argv);

  /* get this processor's rank */
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);

  /* communicator group MPI_COMM_WORLD opens file "foo"
     for reading and writing (and creating, if necessary) */
  MPI_File_open(MPI_COMM_WORLD, "foo", MPI_MODE_RDWR | MPI_MODE_CREATE,

(MPI_Info)NULL, &fh);

  /* Set the file view which tiles the file type MPI_INT, starting
     at displacement 0.  In this example, the etype is also MPI_INT.  */
  MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, (char *)NULL, (MPI_Info)NULL);

  /* Allocate and initialize a buffer (buff1) containing NUM_INTS integers,
     where the integer in location i is set to i. */
  buff1 = (int *)malloc(NUM_INTS*sizeof(int));
  for(i=0;i<NUM_INTS;i++) buff1[i] = i;

  /* Set the shared file pointer to offset 10. */
  MPI_File_seek_shared(fh, 10, MPI_SEEK_SET);

  /* Set the buffer type to also be MPI_INT, then write the buffer (buff1)
     starting at the current value of the shared file pointer.

     Note #1: upon opening or setting the view for a file, the shared file
     pointer is initially set to 0. After the previous call to
     MPI_File_seek_shared, we have set the shared file pointer to be 10.

     Note #2: since the following write and the subsequent read are
     collective operations, each process in the communicator group
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     writes/reads NUM_INTS integers from the file at offset rank * NUM_INTS
     + 10,where rank is the process's rank within the communicator group */
  MPI_File_write_ordered(fh, buff1, NUM_INTS, MPI_INT, &status);

  /* Reset the shared file pointer to offset 0. */
  MPI_File_seek_shared(fh, 10, MPI_SEEK_SET);

  /* Allocate another buffer (buff2) to read into, then read NUM_INTS
     integers into this buffer.  */
  buff2 = (int *)malloc(NUM_INTS*sizeof(int));
  MPI_File_read_ordered(fh, buff2, NUM_INTS, MPI_INT, &status);

  /* Check to see that each integer read from each location is
     the same as the integer written to that location. */
  for(i=0; i<NUM_INTS; i++) {
    if(buff1[i] != buff2[i])
      printf("Integer number %d differs: buff1: %d  buff2: %d\n",

     i, buff1[i], buff2[i]);
  }

  MPI_File_get_position_shared(fh, &shared_file_pos);
  printf("The shared file position for process %d is now %d\n", rank,

 (int)shared_file_pos);

  MPI_File_close(&fh);

  MPI_Finalize();

  free(buff1);
  free(buff2);
}

4.2.4 MPI I/O Profiling Interface
Sun MPI and MPI I/O do not provide profiling libraries, but do provide the
mechanism that permits users to write their own profiling libraries. Sun’s
implementation includes a version of each implemented MPI I/O routine with a
PMPI_ prefix in addition to an MPI_ prefix.

For C, there are both profiling and nonprofiling interfaces, as specified in the MPI
standard. For Fortran, there are wrappers. For MPI I/O, both profiling and
nonprofiling sets of interfaces are in the library –lmpi–io  (libmpi–io.so ).

For more detailed information, see Section 2.2.9, “Profiling Interface,” on page 2-8.
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4.2.5 Error Handling
For the current release, the error handling of MPI I/O is very simple. If an error
occurs, unlike the definition in MPI-2, MPI I/O routines return an error code (found
in /opt/SUNWhpc/include/mpi–io–errno.h  or in /opt/SUNWhpc/include/
mpi–errno.h ). Error classes and their meanings are listed in TABLE 4-1. They can
also be found in mpi–io–errno.h  (for C) and mpi–iof–errno.h  (for Fortran).
Note, however, that although MPI I/O makes extensive use of MPI, its method of
handling errors is different from the standard MPI method (that is, on errors, MPI
routines abort by default).

Thus, while Sun MPI I/O will not on its own abort your program if an error occurs,
your program may abort if you have not used MPI_Errhandler_set  to specify
nondefault error handling for non-I/O MPI routines.

TABLE 4-1 Sun MPI I/O Error Classes

Error Class Value Meaning

MPI_ERR_FILE 20 Bad file handle.

MPI_ERR_NOT_SAME 21 Collective argument not identical on
all processes.

MPI_ERR_AMODE 22 Unsupported amode passed to open.

MPI_ERR_UNSUPPORTED_DATAREP 23 Unsupported datarep  passed to
MPI_File_set_view .

MPI_ERR_UNSUPPORTED_OPERATION 24 Unsupported operation, such as
seeking on a file that supports only
sequential access.

MPI_ERR_NO_SUCH_FILE 25 File (or directory) does not exist.

MPI_ERR_FILE_EXISTS 26 File exists.

MPI_ERR_BAD_FILE 27 Invalid file name (e.g., path name too
long).

MPI_ERR_ACCESS 28 Permission denied.

MPI_ERR_NO_SPACE 29 Not enough space.

MPI_ERR_QUOTA 30 Quota exceeded.

MPI_ERR_READ_ONLY 31 Read-only file system.

MPI_ERR_FILE_IN_USE 32 File operation could not be completed,
as the file is currently open by some
process.
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4.2.6 For More Information
For more information on MPI I/O, refer to the documents listed in the section
“Related Publications,” on page viii of the preface.

MPI_ERR_DUP_DATAREP 33 Conversion functions could not be
registered because a data
representation identifier that was
already defined was passed to
MPI_REGISTER_DATAREP.

MPI_ERR_CONVERSION 34 An error occurred in a user-supplied
data-conversion function.

MPI_ERR_IO 35 I/O error.

MPI_ERR_LASTCLASS 35 Last error class — always at end.

TABLE 4-1 Sun MPI I/O Error Classes (Continued)

Error Class Value Meaning



4-20 Sun MPI 3.0 Guide • November 1997



A-1

APPENDIX A

Sun MPI and Sun MPI I/O Routines

The tables in this appendix list the routines and environment variables for the Sun
MPI and Sun MPI I/O routines, along with the C syntax of the routines and a brief
description of each. For more information about the routines, see their online man
pages, usually found in /opt/SUNWhpc/man . Your system administrator can tell
you where they are installed at your site.

A.1 Sun MPI Routines
TABLE A-1, starting on page A-7, lists the Sun MPI routines in alphabetical order. The
following sections list the routines by functional category.

A.1.1 Point-to-Point Communication

A.1.1.1 Blocking Routines
MPI_Send
MPI_Bsend
MPI_Ssend
MPI_Rsend
MPI_Recv
MPI_Sendrecv
MPI_Sendrecv_replace
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A.1.1.2 Nonblocking Routines
MPI_Isend
MPI_Ibsend
MPI_Issend
MPI_Irsend
MPI_Irecv

A.1.1.3 Communication Buffer Allocation
MPI_Buffer_attach
MPI_Buffer_detach

A.1.1.4 Status Data Structure
MPI_Get_count
MPI_Get_elements

A.1.1.5 Persistent (Half-Channel) Communication
MPI_Send_init
MPI_Bsend_init
MPI_Rsend_init
MPI_Ssend_init
MPI_Recv_init
MPI_Start
MPI_Startall

A.1.1.6 Completion Tests
MPI_Wait
MPI_Waitany
MPI_Waitsome
MPI_Waitall
MPI_Test
MPI_Testany
MPI_Testsome
MPI_Testall
MPI_Request_free
MPI_Cancel
MPI_Test_cancelled
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A.1.1.7 Probing for Messages (Blocking/Nonblocking)
MPI_Probe
MPI_Iprobe

A.1.1.8 Packing and Unpacking Functions
MPI_Pack
MPI_Pack_size
MPI_Unpack

A.1.1.9 Derived Data Type Constructors and Functions
MPI_Type_commit
MPI_Type_free
MPI_Type_contiguous
MPI_Type_vector
MPI_Type_hvector
MPI_Type_indexed
MPI_Type_hindexed
MPI_Type_struct
MPI_Type_lb
MPI_Type_ub
MPI_Address
MPI_Type_extent
MPI_Type_size
MPI_Type_count

A.1.2 Collective Communication

A.1.2.1 Barrier
MPI_Barrier

A.1.2.2 Broadcast
MPI_Bcast
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A.1.2.3 Processor Gather/Scatter
MPI_Gather
MPI_Gatherv
MPI_Allgather
MPI_Allgatherv
MPI_Scatter
MPI_Scatterv
MPI_Alltoall
MPI_Alltoallv

A.1.2.4 Global Reduction/Scan Operations
MPI_Reduce
MPI_Allreduce
MPI_Reduce_scatter
MPI_Scan
MPI_Op_create
MPI_Op_free

A.1.3 Groups, Contexts, and Communicators

A.1.3.1 Group Management

Group Accessors
MPI_Group_size
MPI_Group_rank
MPI_Group_translate_ranks
MPI_Group_compare

Group Constructors
MPI_Comm_group
MPI_Group_union
MPI_Group_intersection
MPI_Group_difference
MPI_Group_incl
MPI_Group_excl
MPI_Group_range_incl
MPI_Group_range_excl
MPI_Group_free
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A.1.3.2 Communicator Management

Communicator Accessors
MPI_Comm_size
MPI_Comm_rank
MPI_Comm_compare

Communicator Constructors
MPI_Comm_dup
MPI_Comm_create
MPI_Comm_split
MPI_Comm_free

Intercommunicators
MPI_Comm_test_inter
MPI_Comm_remote_group
MPI_Comm_remote_size
MPI_Intercomm_create
MPI_Intercomm_merge

Communicator Attributes
MPI_Keyval_create
MPI_Keyval_free
MPI_Attr_put
MPI_Attr_get
MPI_Attr_delete

A.1.4 Process Topologies
MPI_Cart_create
MPI_Dims_create
MPI_Graph_create
MPI_Topo_test
MPI_Graphdims_get
MPI_Graph_get
MPI_Cartdim_get
MPI_Cart_get
MPI_Cart_rank
MPI_Cart_coords
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MPI_Graph_neighbors
MPI_Graph_neighbors_count
MPI_Cart_shift
MPI_Cart_sub
MPI_Cart_map
MPI_Graph_map

A.1.5 Environmental Inquiry Functions and Profiling

A.1.5.1 Startup and Shutdown
MPI_Init
MPI_Finalize
MPI_Initialized
MPI_Abort
MPI_Get_processor_name

A.1.5.2 Error Handler Functions
MPI_Errhandler_create
MPI_Errhandler_set
MPI_Errhandler_get
MPI_Errhandler_free
MPI_Error_string
MPI_Error_class

A.1.5.3 Timers
MPI_Wtime
MPI_Wtick

A.1.5.4 Profiling
MPI_Pcontrol
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TABLE A-1 Sun MPI Routines

Routine and C Syntax Description

MPI_Abort (MPI_Comm comm, int errorcode) Terminates MPI execution
environment.

MPI_Address (void *location, MPI_Aint
*address)

Gets the address of a location in
memory.

MPI_Allgather (void* sendbuf, int sendcount,
MPI_Datatype sendtype, void * recvbuf, int
recvcount, MPI_Datatype recvtype, MPI_Comm
comm)

Gathers data from all processes and
distributes it to all.

MPI_Allgatherv (void * sendbuf, int
sendcount, MPI_Datatype sendtype, void
* recvbuf, int * recvcount, int * displs,
MPI_Datatype recvtype, MPI_Comm comm)

Gathers data from all processes and
delivers it to all. Each process may
contribute a different amount of
data.

MPI_Allreduce (void* sendbuf, void * recvbuf,
int count, MPI_Datatype datatype, MPI_Op
op, MPI_Comm comm)

Combines values from all processes
and distributes the result back to
all processes.

MPI_Alltoall (void * sendbuf, int sendcount,
MPI_Datatype sendtype, void * recvbuf, int
recvcount, MPI_Datatype recvtype, MPI_Comm
comm)

Sends data from all to all processes.

MPI_Alltoallv (void* sendbuf, int
* sendcounts, int * sdispls, MPI_Datatype
sendtype, void * recvbuf, int * recvcounts, int
* rdispls, MPI_Datatype recvtype, MPI_Comm
comm)

Sends data from all to all processes,
with a displacement. Each process
may contribute a different amount
of data.

MPI_Attr_delete (MPI_Comm comm, int
keyval)

Deletes attribute value associated
with a key.

MPI_Attr_get (MPI_Comm comm, int keyval,
void * attribute_val, int * flag)

Retrieves attribute value by key.

MPI_Attr_put (MPI_Comm comm, int keyval,
void * attribute_val)

Stores attribute value associated
with a key.

MPI_Barrier (MPI_Comm comm) Blocks until all processes have
reached this routine.

MPI_Bcast (void * buffer, int count,
MPI_Datatype datatype, int root, MPI_Comm
comm)

Broadcasts a message from the
process with rank root  to all other
processes of the group.

MPI_Bsend (void * buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Commcomm)

Basic send with user-specified
buffering.
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MPI_Bsend_init (void * buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Commcomm, MPI_Request * request)

Builds a handle for a buffered send.

MPI_Buffer_attach (void * buf, int size) Attaches a user-defined buffer for
sending.

MPI_Buffer_detach (void * buf, int * size) Removes an existing buffer (for use
in MPI_Bsend , etc.)

MPI_Cancel (MPI_Request * request) Cancels a communication request.

MPI_Cart_coords (MPI_Comm comm, int
rank, int maxdims, int * coords)

Determines process coordinates in
Cartesian topology given rank in
group.

MPI_Cart_create (MPI_Comm comm_old, int
ndims, int * dims, int * periods, int reorder,
MPI_Comm *comm_cart)

Makes a new communicator to
which topology information has
been attached.

MPI_Cart_get (MPI_Comm comm, int
maxdims, int * dims, int * periods, int
* coords)

Retrieves Cartesian topology
information associated with a
communicator.

MPI_Cart_map (MPI_Comm comm, int ndims,
int * dims, int * periods, int * newrank)

Maps process to Cartesian topology
information.

MPI_Cart_rank (MPI_Comm comm, int
* coords, int * rank)

Determines process rank in
communicator given Cartesian
location.

MPI_Cart_shift (MPI_Comm comm, int
direction, int disp, int * rank_source, int
* rank_dest)

Returns the shifted source and
destination ranks, given a shift
direction and amount.

MPI_Cart_sub (MPI_Comm comm, int
* remain_dims, MPI_Comm * comm_new)

Partitions a communicator into
subcommunicators, which form
lower-dimensional Cartesian
subgrids.

MPI_Cartdim_get (MPI_Comm comm, int
* ndims)

Retrieves Cartesian topology
information associated with a
communicator.

MPI_Comm_compare(MPI_Comm comm1,
MPI_Commcomm2, int * result)

Compares two communicators.

MPI_Comm_create (MPI_Comm comm,
MPI_Group group, MPI_Comm * newcomm)

Creates a new communicator from
a group.

MPI_Comm_dup(MPI_Comm comm, MPI_Comm
* newcomm)

Duplicates an existing
communicator with all its cached
information.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description



Appendix A Sun MPI and Sun MPI I/O Routines A-9

MPI_Comm_free (MPI_Comm * comm) Marks the communicator object for
deallocation.

MPI_Comm_group(MPI_Comm comm,
MPI_Group * group)

Accesses the group associated with
a communicator.

MPI_Comm_rank(MPI_Comm comm, int * rank) Determines the rank of the calling
process in a communicator.

MPI_Comm_remote_group (MPI_Comm comm,
MPI_Group * group)

Accesses the remote group
associated with an
intercommunicator.

MPI_Comm_remote_size (MPI_Comm comm,
int size)

Determines the size of the remote
group associated with an
intercommunicator.

MPI_Comm_size (MPI_Comm comm, int * size) Determines the size of the group
associated with a communicator.

MPI_Comm_split (MPI_Comm comm, int color,
int key, MPI_Comm * newcomm)

Creates new communicators based
on colors and keys.

MPI_Comm_test_inter (MPI_Comm comm, int
* flag)

Tests whether a communicator is
an intercommunicator.

MPI_Dims_create (int nnodes, int ndims,
int * dims)

Creates a division of processors in
a Cartesian grid.

MPI_Errhandler_create (MPI_Handler_func
tion * function, MPI_Errhandler * errhandler)

Creates an MPI error handler.

MPI_Errhandler_free (MPI_Err-handler
* errhandler)

Frees an MPI error handler.

MPI_Errhandler_get (MPI_Comm comm,
MPI_Errhandler * errhandler)

Gets the error handler for a
communicator.

MPI_Errhandler_set (MPI_Comm comm,
MPI_Errhandler errhandler)

Sets the error handler for a
communicator.

MPI_Error_class (int errorcode, int
* errorclass)

Converts an error code into an
error class.

MPI_Error_string (int errorcode, char
* string, int * resultlen)

Returns a string for a given error
code.

MPI_Finalize () Terminates MPI execution
environment.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
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MPI_Gather (void * sendbuf, int * sendcount,
MPI_Datatype sendtype, void * recvbuf, int
recvcount, MPI_Datatype recvtype, int root,
MPI_Commcomm)

Gathers values from a group of
processes.

MPI_Gatherv (void * sendbuf, int sendcount,
MPI_Datatype sendtype, void * recvbuf, int
* recvcounts, int * displs, MPI_Datatype
recvtype, int root, MPI_Comm comm)

Gathers into specified locations
from all processes in a group. Each
process may contribute a different
amount of data.

MPI_Get_count (MPI_Status * status,
MPI_Datatype datatype, int * count)

Gets the number of top-level
elements received.

MPI_Get_elements (MPI_Status * status,
MPI_Datatype datatype, int * count)

Returns the number of basic
elements in a data type.

MPI_Get_processor_name (char *name, int
* resultlen)

Gets the name of the processor.

MPI_Graph_create (MPI_Comm comm_old, int
nnodes, int * index, int * edges, int reorder,
MPI_Comm *comm_graph)

Makes a new communicator to
which graph topology information
has been attached.

MPI_Graph_get (MPI_Comm comm, int
maxindex, int maxedges, int * index, int
* edges)

Retrieves graph topology
information associated with a
communicator.

MPI_Graph_map (MPI_Comm comm, int
nnodes, int * index, int * edges, int
* newrank)

Maps process to graph topology
information.

MPI_Graph_neighbors (MPI_Commcomm, int
rank, int maxneighbors, int * neighbors)

Returns the neighbors of a node
associated with a graph topology.

MPI_Graph_neighbors_count (MPI__Comm
comm, int rank, int * nneighbors)

Returns the number of neighbors of
a node associated with a graph
topology.

MPI_Graphdims_get (MPI_Comm comm, int
* nnodes, int * nedges)

Retrieves graph topology
information associated with a
communicator.

MPI_Group_compare (MPI_Group group1,
MPI_Group group2, int * result)

Compares two groups.

MPI_Group_difference (MPI_Group group1,
MPI_Group group2, MPI_Group * group_out)

Makes a group from the difference
of two groups.

MPI_Group_excl (MPI_Group group, int n,
int * ranks, MPI_Group * newgroup)

Produces a group by reordering an
existing group and taking only
unlisted members.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
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MPI_Group_free (MPI_Group * group) Frees a group.

MPI_Group_incl (MPI_Group group, int n,
int * ranks, MPI_Group * group_out)

Produces a group by reordering an
existing group and taking only
listed members.

MPI_Group_intersection (MPI_Group
group1, MPI_Group group2, MPI_Group
* group_out)

Produces a group at the
intersection of two existing groups.

MPI_Group_range_excl (MPI_Group group,
int n, int ranges[][3], MPI_Group
* newgroup)

Produces a group by excluding
ranges of processes from an
existing group.

MPI_Group_range_incl (MPI_Group group,
int n, int ranges[][3], MPI_Group
* newgroup)

Creates a new group from ranges
of ranks in an existing group.

MPI_Group_rank (MPI_Group group, int
* rank)

Returns the rank of this process in
the given group.

MPI_Group_size (MPI_Group group, int
* size)

Returns the size of a group.

MPI_Group_translate_ranks (MPI_Group
group1, int n, int * ranks1, MPI_Group
group2, int * ranks2)

Translates the ranks of processes in
one group to those in another
group.

MPI_Group_union (MPI_Group group1,
MPI_Group group2, MPI_Group * group_out)

Produces a group by combining
two groups.

MPI_Ibsend (void * buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Commcomm, MPI_Request * request)

Starts a nonblocking buffered send.

MPI_Init (int * argc, char *** argv) Initializes the MPI execution
environment.

MPI_Initialized (int * flag) Indicates whether MPI_Init  has
been called.

MPI_Intercomm_create (MPI_Comm
local_comm, int local_leader, MPI_Comm
peer_comm, int remote_leader, int tag,
MPI_Comm *newintercomm)

Creates an intercommunicator.

MPI_Intercomm_merge (MPI_Comm intercomm,
int high, MPI_Comm * newintracomm

Creates an intracommunicator from
an intercommunicator.

MPI_Iprobe (int source, int tag, MPI_Comm
comm, int * flag, MPI_Status * status)

Nonblocking test for a message.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
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MPI_Irecv (void * buf, int count,
MPI_Datatype datatype, int source, int tag,
MPI_Commcomm, MPI_Request * request)

Begins a nonblocking receive.

MPI_Irsend (void * buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Commcomm, MPI_Request * request)

Begins a nonblocking ready send.

MPI_Isend (void * buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Commcomm, MPI_Request * request)

Begins a nonblocking send.

MPI_Issend (void * buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Commcomm, MPI_Request * request)

Begins a nonblocking synchronous
send.

MPI_Keyval_create (MPI_Copy_function
* copy_fn, MPI_Delete_func-tion * delete_fn,
int * keyval, void * extra_state)

Generates a new attribute key.

MPI_Keyval_free (
int * keyval)

Frees attribute key for
communicator cache attribute.

MPI_Op_create (MPI_User_function
* function, int commute, MPI_Op * op)

Creates a user-defined combination
function handle.

MPI_Op_free (MPI_Op * op) Frees a user-defined combination
function handle.

MPI_Pack (void * inbuf, int incount,
MPI_Datatype datatype, void * outbuf, int
outsize, int * position, MPI_Comm comm)

Packs data of a given data type into
contiguous memory.

MPI_Pack_size (int incount, MPI_Datatype
datatype, MPI_Comm comm, int * size)

Returns the upper bound on the
amount of space needed to pack a
message.

MPI_Pcontrol (int level, ...) Controls profiling.

MPI_Probe (int source, int tag, MPI_Comm
comm, MPI_Status * status)

Blocking test for a message.

MPI_Recv (void * buf, int count,
MPI_Datatype datatype, int source, int tag,
MPI_Commcomm, MPI_Status * status)

Performs a standard receive.

MPI_Recv_init (void* buf, int count,
MPI_Datatype datatype, int source, int tag,
MPI_Commcomm, MPI_Request * request)

Builds a persistent receive request
handle.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
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MPI_Reduce (void * sendbuf, void * recvbuf,
int count, MPI_Datatype datatype, MPI_Op
op, int root, MPI_Comm comm)

Reduces values on all processes to
a single value.

MPI_Reduce_scatter (void * sendbuf, void
* recvbuf, int * recvcounts, MPI_Datatype
datatype, MPI_Op op, MPI_Comm comm)

Combines values and scatters the
results.

MPI_Request_free (MPI_Request * request) Frees a communication request
object.

MPI_Rsend (void * buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Commcomm)

Performs a ready send.

MPI_Rsend_init (void * buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Commcomm, MPI_Request * request)

Builds a persistent ready send
request handle.

MPI_Scan (void * sendbuf, void * recvbuf, int
count, MPI_Datatype datatype, MPI_Op op,
MPI_Commcomm)

Computes the scan (partial
reductions) of data on a collection
of processes.

MPI_Scatter (void * sendbuf, int sendcount,
MPI_Datatype sendtype, void * recvbuf, int
recvcount, MPI_Datatype recvtype, int root,
MPI_Commcomm)

Sends data from one task to all
other processes in a group.

MPI_Scatterv (void * sendbuf, int
* sendcounts, int * displs, MPI_Datatype
sendtype, void * recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm
comm)

Scatters a buffer in parts to all
processes in a group.

MPI_Send (int * buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Commcomm)

Performs a standard send.

MPI_Send_init (void* buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Commcomm, MPI_Request * request)

Builds a persistent send request
handle.

MPI_Sendrecv (void * sendbuf, int sendcount,
MPI_Datatype sendtype, int dest, int
sendtag, void * recvbuf, int recvcount,
MPI_Datatype recvtype, int source, int
recvtag, MPI_Comm comm, MPI_Status
* status)

Sends and receives.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
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MPI_Sendrecv_replace (void * buf, int
count, MPI_Datatype datatype, int dest, int
sendtag, int source, int recvtag, MPI_Comm
comm, MPI_Status * status)

Sends and receives using a single
buffer.

MPI_Ssend (void * buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Commcomm)

Performs a synchronous send.

MPI_Ssend_init (void * buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Commcomm, MPI_Request * request)

Builds a persistent synchronous
send request handle.

MPI_Start (MPI_Request * request) Initiates a communication using a
persistent request handle.

MPI_Startall (int count, MPI_Request
array_of_requests[])

Starts a collection of requests.

MPI_Test (MPI_Request * request, int * flag,
MPI_Status * status)

Tests for the completion of a send
or receive.

MPI_Test_cancelled (MPI_Status * status,
int * flag)

Tests whether a request was
canceled.

MPI_Testall (int count, MPI_Request
array_of_requests, int * flag, MPI_Status
* array_of_statuses)

Tests for the completion of all of
the given communications.

MPI_Testany (int count, MPI_Request
array_of_requests[], int * index, int * flag,
MPI_Status status)

Tests for completion of any of the
given communications.

MPI_Testsome (int incount, MPI_Request
array_of_requests[], int * outcount, int
* array_of_indices, MPI_Status
* array_of_statuses)

Tests for some given
communications to complete.

MPI_Topo_test (MPI_Comm comm, int
* top_type)

Determines the type of topology (if
any) associated with a
communicator.

MPI_Type_commit (MPI_Datatype * datatype) Commits a data type.

MPI_Type_contiguous (int count,
MPI_Datatype oldtype, MPI_Datatype
* newtype)

Creates a contiguous data type.

MPI_Type_extent (MPI_Datatype datatype,
MPI_Aint * extent)

Returns the extent of a data type,
the difference between the upper
and lower bounds of the data type.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
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MPI_Type_free (MPI_Ddatatype * datatype) Frees a data type.

MPI_Type_hindexed (int count, int
* array_of_blocklengths, MPI_Aint
* array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype * newtype)

Creates an indexed data type with
offsets in bytes.

MPI_Type_hvector (int count, int
blocklength, MPI_Aint stride, MPI_Datatype
oldtype, MPI_Datatype * newtype)

Creates a vector (strided) data type
with offset in bytes.

MPI_Type_indexed (int count, int
* array_of_blocklengths, int
* array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype * newtype)

Creates an indexed data type.

MPI_Type_lb (MPI_Datatype datatype,
MPI_Aint * displacement)

Returns the lower bound of a data
type.

MPI_Type_size (MPI_Datatype datatype, int
* size)

Returns the number of bytes
occupied by entries in the data
type.

MPI_Type_struct (int count, int
* array_of_blocklengths, MPI_Aint
* array_of_displacements, MPI_Datatype
* array_of_types, MPI_Datatype * newtype)

Creates a struct  data type.

MPI_Type_ub (MPI_Datatype datatype,
MPI_Aint * displacement)

Returns the upper bound of a data
type.

MPI_Type_vector (int count, int blocklength,
int stride, MPI_Datatype oldtype,
MPI_Datatype * newtype)

Creates a vector (strided) data type.

MPI_Unpack (void * inbuf, int insize, int
* position, void * outbuf, int outcount,
MPI_Datatype datatype, MPI_Comm comm)

Unpacks a data type into
contiguous memory.

MPI_Wait (MPI_Request * request,
MPI_Status * status)

Waits for an MPI send or receive to
complete.

MPI_Waitall (int count, MPI_Request
array_of_requests[], MPI_Status
array_of_statuses[])

Waits for all of the given
communications to complete.

MPI_Waitany (int count, MPI_Request
array_of_requests[], int * index, MPI_Status
* status)

Waits for any of the given
communications to complete.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
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A.2 Sun MPI Environment Variables
Five environment variables allow you to fine-tune your Sun MPI environment.

MPI_Waitsome (int incount, MPI_Request
array_of_requests[], int * outcount, int
array_of_indices[], MPI_Status
array_of_statuses[])

Waits for some given
communications to complete.

double  MPI_Wtick () Returns the resolution of
MPI_Wtime .

double MPI_Wtime () Returns an elapsed time on the
calling processor.

TABLE A-2 Sun MPI Environment Variables

Environment Variable Description See Section(s)

MPI_GLOBMEMSIZE Global value representing the overall quantity of
memory allocated to the large-message shared
memory area. Expressed in bytes as either a
decimal or as a hexadecimal number. Default =
unset (Sun MPI default size calculation). When
set, overrides MPI_UNITMEMSIZE.

Section 3.5.1,
Section 3.5.1.2,
Section 3.9.2,
Section 3.9.3,
Section 3.10.1

MPI_INIT_TIMEOUT Sets or disables timeout time, in seconds. Default
= 600 seconds (10 minutes)

Section 3.8.1

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
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A.3 Sun MPI I/O Routines
TABLE A-3, starting on page A-19, lists the Sun MPI I/O routines in alphabetical
order. The following sections list the routines by functional category.

A.3.1 File Manipulation
MPI_File_open
MPI_File_close
MPI_File_delete
MPI_File_set_size
MPI_File_get_size
MPI_File_get_group
MPI_File_get_amode

MPI_SHORTMSGSIZE Per-process quantity corresponding to the limit
on the size of the short-message buffer. Size of
the area reserved for short messages = 3N2 *
MPI_SHORTMSGSIZE, where N is the number of
on-node processes in the MPI task. Default =
1024 bytes.

Section 3.5.1,
Section 3.5.1.1,
Section 3.9.2,
Section 3.9.3,
Section 3.10.1

MPI_SPIN_LIMIT Limits aggressive polling associated with
blocking receives. Set to an integer for number of
times to poll before backing off. Default = 0,
indicating no limit to polling.

Section 3.5.2

MPI_UNITMEMSIZE Specifies size of large-message shared memory
area based on per-process memory requirements.
If set, the amount of memory reserved for large
message passing = N2 * MPI_UNITMEMSIZE,
where N = number of on-node processes in the
MPI task. Expressed in bytes as either a decimal
or as a hexadecimal number. Default = unset
(Sun MPI default size calculation). Overridden
by MPI_GLOBMEMSIZE when both are set.

Section 3.5.1,
Section 3.5.1.2,
Section 3.9.2,
Section 3.9.3,
Section 3.10.1

TABLE A-2 Sun MPI Environment Variables (Continued)

Environment Variable Description See Section(s)



A-18 Sun MPI 3.0 Guide • November 1997

A.3.2 File Views
MPI_File_set_view
MPI_File_get_view

A.3.3 Data access

A.3.3.1 Data Access With Explicit Offsets
MPI_File_read_at
MPI_File_read_at_all
MPI_File_write_at
MPI_File_write_at_all

A.3.3.2 Data Access With Individual File Pointers
MPI_File_read
MPI_File_write
MPI_File_read_all
MPI_File_write_all
MPI_File_seek
MPI_File_get_position

A.3.3.3 Data Access With Shared File Pointers
MPI_File_read_ordered
MPI_File_write_ordered
MPI_File_seek_shared
MPI_File_get_position_shared



Appendix A Sun MPI and Sun MPI I/O Routines A-19

A.3.4 File Consistency and Semantics
MPI_File_set_atomicity
MPI_File_get_atomicity
MPI_File_sync

TABLE A-3 Sun MPI I/O Routines

Routine and C Syntax Description

MPI_File_close (MPI_File * fh) Closes a file (collective).

MPI_File_delete (char * filename, MPI_Info
info)

Deletes a file.

MPI_File_get_amode (MPI_File fh, int
* amode)

Returns mode associated with open
file.

MPI_File_get_atomicity (MPI_File fh, int
* flag)

Returns current consistency
semantics for data-access
operations.

MPI_File_get_group (MPI_File fh,
MPI_Group * group)

Returns process group of file.

MPI_File_get_position (MPI_File fh,
MPI_Offset * offset)

Returns current position of
individual file pointer.

MPI_File_get_position_shared (MPI_File
fh, MPI_Offset * offset)

Returns current position of the
shared file pointer (collective).

MPI_File_get_size (MPI_File fh,
MPI_Offset * size)

Returns current size of file.

MPI_File_get_view (MPI_File fh,
MPI_Offset * disp, MPI_Datatype * etype,
MPI_Datatype * filetype, char *datarep)

Returns process’s view of data in
file.

MPI_File_open (MPI_Comm comm, char
* filename, MPI_Mode amode, MPI_Info info,
MPI_File * fh)

Opens a file (collective).

MPI_File_read (MPI_File fh, void * buf,
int count, MPI_Datatype datatype,
MPI_Status * status)

Reads a file starting at the location
specified by the individual file
pointer.

MPI_File_read_all (MPI_File fh, void
* buf, int count, MPI_Datatype datatype,
MPI_Status * status)

Reads a file starting at the locations
specified by individual file pointers
(collective).

MPI_File_read_at (MPI_File fh,
MPI_Offset offset, void * buf, int count,
MPI_Datatype datatype, MPI_Status * status)

Reads a file at an explicitly
specified offset.
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MPI_File_read_at_all (MPI_File fh,
MPI_Offset offset, void * buf, int count,
MPI_Datatype datatype, MPI_Status * status)

Reads a file at explicitly specified
offsets (collective).

MPI_File_read_ordered (MPI_File fh, void
* buf, int count, MPI_Datatype datatype,
MPI_Status * status)

Reads a file at a location specified
by a shared file pointer (collective).

MPI_File_seek (MPI_File fh, MPI_Offset
offset, int whence)

Updates individual file pointers.

MPI_File_seek_shared (MPI_File fh,
MPI_Offset offset, int whence)

Updates the global shared file
pointer (collective).

MPI_File_set_atomicity (MPI_File fh, int
* flag)

Sets consistency semantics for data-
access operations (collective).

MPI_File_set_size (MPI_File fh,
MPI_Offset size)

Resizes a file (collective).

MPI_File_set_view (MPI_File fh,
MPI_Offset disp, MPI_Datatype etype,
MPI_Datatype filetype, char *datarep,
MPI_Info info)

Changes process’s view of data in
file (collective).

MPI_File_sync (MPI_File fh) Makes semantics consistent for
data-access operations (collective).

MPI_File_write (MPI_File fh, void * buf,
int count, MPI_Datatype datatype,
MPI_Status * status)

Writes a file starting at the location
specified by the individual file
pointer.

MPI_File_write_all (MPI_File fh, void
* buf, int count, MPI_Datatype datatype,
MPI_Status * status)

Writes a file starting at the
locations specified by individual
file pointers (collective).

MPI_File_write_at (MPI_File fh,
MPI_Offset offset, void * buf, int count,
MPI_Datatype datatype, MPI_Status * status)

Writes a file at an explicitly
specified offset.

MPI_File_write_at_all (MPI_File fh,
MPI_Offset offset, void * buf, int count,
MPI_Datatype datatype, MPI_Status * status)

Writes a file at explicitly specified
offsets (collective).

MPI_File_write_ordered (MPI_File fh,
void * buf, int count, MPI_Datatype
datatype, MPI_Status * status)

Writes a file at a location specified
by a shared file pointer (collective).

TABLE A-3 Sun MPI I/O Routines (Continued)

Routine and C Syntax Description
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A
ANL. See Argonne National Laboratory.
Argonne National Laboratory (ANL)

and MPE, 2-10 to 2-11, 3-19, 2-8 to 2-9
and MPICH, 1-2

array sections, 2-5
ATM network, 2-1
attributes, with communicators, 2-4

B
blocking routines. See routines, blocking.
buffered mode. See modes for point-to-point

communication.

C
caching, with communicators, 2-4
Cartesian topology. See topology, Cartesian.
code samples. See sample programs.
collective communication. See communication,

collective.
communication

buffers, 2-5
collective, 2-3, 2-4, 2-10

in multithreaded programs, 3-10
restrictions, 2-3

“half-channel”, 2-7
interprocess, 2-4
persistent request, defined, 2-7
point-to-point, 2-4, 3-20
port, 2-7

communication (cont’d)
by shared memory. See shared memory.

communicator
default, 2-4
defined, 2-4
and MPI I/O, 4-2
and multithreaded programming, 3-10 to 3-11
and process topologies, 2-7

compiling, 3-2 to 3-3
with profiling library, 2-9
See also include syntax.

context, defined, 2-4

D
–dalign  option, 3-3
data type

possible values for C, 2-6
derived (user-defined), 2-5, 4-2
possible values for Fortran, 2-5 to 2-6
primitive, 2-5

dbx, 3-17 to 3-19
and MPI_INIT_TIMEOUT , 3-16
and multithreaded programs, 3-15

debugging, 3-15 to 3-19
with mpe, 3-19
See also dbx, Prism.

displacement (disp ), 4-3, 4-5
documentation, ordering, xi
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E
elementary data type (etype ), 4-3
environment variables, 3-20, A-16 to A-17

restrictions, 3-4
TMRUN_FLAGS, 3-17
See also MPI_GLOBMEMSIZE,

MPI_INIT_TIMEOUT,
MPI_SHORTMSGSIZE,
MPI_SPIN_LIMIT, MPI_UNITMEMSIZE.

environmental inquiry functions, 2-7
error handling, 2-7

and MPE, 2-11
and multithreaded programming, 3-11
Sun MPI I/O, 4-18

error messages, 3-22 to 3-25
and shared memory, 3-23 to 3-24
standard error classes (Sun MPI I/O), 4-18 to

4-19
standard error values (Sun MPI), 3-25

execution, interactive vs. batch, 3-3

F
file type (filetype ), 4-3
file-size limit, 3-4, 3-23
Fortran

alternative MPI I/O interface, 4-5, 4-6, 4-7, 4-9,
4-10

compiling with –dalign  option, 3-3

G
graph topology. See topology, graph.
grid topology. See topology, Cartesian.
group, defined, 2-4

H
header files, 3-1
“holes” (in an MPI I/O file type), 4-3, 4-7

I
I/O. See Sun MPI I/O, MPI I/O.
include syntax, 3-1

info  argument (MPI I/O), 4-4
INTEGER*8

special handling, 4-5, 4-6, 4-7, 4-9, 4-10
intercommunicator, defined, 2-4
intracommunicator, 2-7

defined, 2-4

J
job ID (jid), 3-7

L
libraries

libfmpi.so , 2-8 to 2-9
libmpi.so , 2-7 to 2-8
libmpi_mt.so , 2-7 to 2-8, 3-9
libmpi-io.so , 4-17
libpmpi.so , 2-8 to 2-9
libthread.so , 2-8
linking, 3-2 to 3-3

linking, 3-2 to 3-3
with profiling library, 2-9

logging in to Sun HPC System, 3-2
long-message buffer, 3-4, 3-5, 3-20 to 3-21, 3-21 to

3-22

M
man pages

Solaris, location, 2-8
Sun MPI, location, ix

MAP_FIXED flag (with mmap), 3-2
mmap, 3-2
modes for point-to-point communication, 2-2
MP Prism, 3-16
MPI

Forum, URL, ix
Mississippi State University URL, ix
related publications, viii
Standards, 1-1

and profiling, 2-8
URL, ix

University of New Mexico URL, ix
See also Sun MPI.
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MPI I/O, 4-1
Sun MPI implementation.

See Sun MPI I/O.
MPI_COMM_GROUP, 2-4
MPI_COMM_WORLD, 3-6, 3-7

as default communicator, 2-4
MPI_GLOBMEMSIZE, 3-4, 3-5, 3-21, 3-22, 3-23, 3-24
MPI_INIT_TIMEOUT , 3-16
MPI_SHORTMSGSIZE, 3-4, 3-5, 3-21, 3-22, 3-23
MPI_SPIN_LIMIT , 3-5 to 3-6
MPI_UNITMEMSIZE, 3-4, 3-5, 3-21, 3-22, 3-23, 3-24
MPICH implementation, 1-2

user’s guide (URL), ix
multiprocessing environment (MPE), 2-8 to 2-9,

2-10 to 2-11
and debugging, 3-19
See also Argonne National Laboratory.

multithreaded programming, 3-9 to 3-15
debugging, 3-15
linking to thread-safe library, 3-3
sample program, 3-11 to 3-15
stubbing thread calls, 2-8
thread-safe library (libmpi_mt.so ), 2-7 to 2-8

N
networks. See ATM network, Scalable Coherent

Interface.
nonblocking routines. See routines, nonblocking.

O
offset, 4-3
options

–dalign , 3-3
–np , 3-6, 3-7
–p , 3-6
–q , 3-7
related documentation, 3-7
–w (“wrap”), 3-19

P
parallel file system (PFS), 4-1 to 4-2
partitions, 3-6

performance tuning, 3-19 to 3-22
See also shared memory.

persistent communication request. See
communication, persistent request.

PETSc support, xii
PFS. See parallel file system.
PMPI_ prefix, 2-8
PMPIO_ prefix, 4-17
point-to-point

communication. See communication, point-to-
point.

routines. See routines, point-to-point.
Prism, 3-15 to 3-17

compilers to use, 3-3
and multithreaded programs, 3-15

process
ratio to processors, 3-19
relation to group, 2-4
specifying number in batch job, 3-7
specifying number in interactive job, 3-6

process topologies, 2-7
processors, number to use, 3-19
profiling, 2-8 to 2-9

Sun MPI I/O, 4-17

R
rank, of a process, 2-4, 2-7
ready mode. See modes for point-to-point

communication.
receive. See routines, receive.
routines

all-gather, 2-3
all-to-all, 2-3
barrier, 2-3
basic six, 2-10
blocking, 2-2, 2-3, 3-5
broadcast, 2-3
collective, 2-3, 2-4

in multithreaded programs, 3-10
for constructing communicators, 2-4
data access (MPI I/O), 4-6 to 4-10

with explicit offsets, 4-6 to 4-7
with individual file pointers, 4-8 to 4-9
with shared file pointers, 4-9 to 4-10

error-handling, 2-7
file consistency (MPI I/O), 4-11
file manipulation (MPI I/O), 4-4 to 4-5



Index-4 Sun MPI 3.0 Guide • November 1997

routines (cont’d)
file views (MPI I/O), 4-5 to 4-6
gather, 2-3
for constructing groups, 2-4
local, 2-4
names, restrictions on, 3-2
nonblocking, 2-2
PMPI_, 2-8
PMPIO_, 4-17
point-to-point, 2-2
receive, 2-2, 2-10, 3-5
reduction, 2-3
scan, 2-3
scatter, 2-3
semantics (MPI I/O), 4-11
send, 2-2, 2-10
Sun MPI

listed alphabetically, A-7 to A-16
listed by functional category, A-1 to A-6

Sun MPI I/O
listed alphabetically, A-19 to A-20
listed by functional category, A-17 to A-19

S
sample programs

debugging with dbx, 3-17 to 3-19
multithreaded program, 3-11 to 3-15
online examples, 3-7
simple Sun MPI program, 3-7 to 3-8
Sun MPI I/O, 4-11 to 4-17

data access with explicit file pointers, 4-11 to
4-13

data access with individual file pointers, 4-13
to 4-15

shared file pointers & collective data
access, 4-15 to 4-17

Scalable Coherent Interface (SCI), 2-1
SCI. See Scalable Coherent Interface.
send. See routines, send.
shared memory, 3-4 to 3-5, 3-20 to 3-22

error messages, 3-23 to 3-24
mailboxes, 3-20
and performance, 3-4, 3-21 to 3-22

short-message buffer, 3-4, 3-5, 3-20 to 3-21, 3-21 to
3-22

shutting down, 2-7

SPMD programs, 3-16
defined, 3-15

standard mode. See modes for point-to-point
communication.

starting up, 2-7
static libraries, and relinking, 3-3
Sun HPC Parallel Development Environment

(PDE), 3-15
Sun HPC System, 3-16

logging in, 3-2
Sun HPF, 4-1
Sun MPI

advantages of, 2-1
contents of library, 1-2
definition, 1-1
MPI-1 compliance, 1-2
See also MPI.

Sun MPI I/O, 4-1 to 4-19
definition, 4-1
linking to library, 3-3

Sun Performance WorkShop Fortran, 3-3
Sun HPC System

and performance, 3-5
swap space, 3-21, 3-23 to 3-24
synchronous mode. See modes for point-to-point

communication.

T
thread safety. See multithreaded programming.
timers, 2-7
tminfo , 3-3, 3-4
tmlogin , 3-2
tmrun , 3-3, 3-6

–np  option, 3-6
–p  option, 3-6
–w option, 3-19

TMRUN_FLAGS, 3-17
tmsub , 3-3, 3-7

–np , 3-7
–q , 3-7
–w option, 3-19

topology
Cartesian, 2-7
graph, 2-7
virtual, defined, 2-7
See also process topologies.

type signatures, 4-7
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V
view, 4-3

W
WorkShop Compilers Fortran, 3-3



Index-6 Sun MPI 3.0 Guide • November 1997


