
Sun MPI 4.0 User’s Guide: With
CRE

901 San Antonio Road
Palo Alto, , CA 94303-4900

USA 650 960-1300 Fax 650 969-9131

Part No: 806-0296-10
June 1999, Revision A

Copyright Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers .
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, SunStore, AnswerBook2, docs.sun.com, and Solaris are trademarks, registered trademarks, or service
marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun

TM

Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.
Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303-4900 U.S.A. Tous droits réservés.
Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, SunStore, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun

TM

a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface ix

1. Introduction 1

Sun HPC ClusterTools 3.0 Software 1

Sun Cluster Runtime Environment 1

Sun MPI and MPI I/O 2

Parallel File System 2

Prism 3

Sun S3L 3

Sun Compilers 4

Solaris Operating Environment 4

Fundamental CRE Concepts 5

Cluster of Nodes 5

Partitions 5

Load Balancing 7

Jobs and Processes 7

Parallel File System 7

Using the Sun CRE 8

2. Starting Sun MPI Programs 9

Logging In 9

Contents iii

After Logging In 10

Writing Programs 10

Compiling and Linking Programs 10

Issuing CRE Commands 10

Logging Out 11

3. Executing Programs 13

Choosing Where to Execute 13

Authentication Methods 14

Specifying Default Execution Options 14

Executing Programs via mprun 16

Moving mprun Processes to the Background 16

Shell-Specific Actions 16

Core Files 17

Standard Output and Standard Error 17

File Descriptors 17

SMP Characteristics of Sun HPC clusters 18

Executing Programs 18

mprun Options 19

Specifying Where a Program Is to Run 21

Specifying the Partition 21

Specifying the Cluster 21

Controlling Process Spawning 22

Expressing More Complex Resource Requirements 23

Specifying Resource Attributes 24

Examples 28

The –R Option and MPRUN_FLAGS29

Running on the Same Node(s) as a Another Specified Job 30

Default Process Spawning 30

iv Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

Mapping MPI Ranks to Nodes 31

Using the --Z Option 31

Using RRS to Map Ranks to Nodes 31

Specifying the Behavior of I/O Streams 33

Introducing mprun I/O 33

Changing the Working Directory 40

Executing with a Different User or Group Name 40

Getting Information 40

Specifying a Different Argument Vector 41

Exit Status 41

Omitting mprun 41

Sending a Signal to a Process 42

4. Getting Information 43

mpps: Finding Out Job Status 43

Specifying the Partition 44

Displaying Process Information 45

Displaying Specific Process and Job Information 45

mpinfo : Configuration and Status 46

Overview 46

Partitions 47

Nodes 48

Cluster 51

5. Debugging Programs 53

Debugging Sun MPI Programs 54

6. Performance Tuning 55

Current Settings 55

Runtime Diagnostic Information 55

Running on a Dedicated System 56

Contents v

Safe Use of System Buffers 56

Trading Memory for Performance 57

Rendezvous or Eager Protocol? 57

Many Broadcasts or Reductions 58

Shared-Memory Point-to-Point Message Passing 58

Memory Considerations 59

Shared-Memory Collectives 59

Running over TCP 60

Remote Shared Memory (RSM) Point-to-Point Message Passing 60

Memory Considerations 61

Performance Considerations 62

A. Environment Variables 63

Informational 63

MPI_PRINTENV 63

MPI_QUIET 63

MPI_SHOW_ERRORS64

MPI_SHOW_INTERFACES64

General Performance Tuning 64

MPI_POLLALL 64

MPI_PROCBIND 64

MPI_SPIN 64

Tuning Memory for Point-to-Point Performance 65

MPI_RSM_CPOOLSIZE 65

MPI_RSM_NUMPOSTBOX65

MPI_RSM_PIPESIZE 65

MPI_RSM_SBPOOLSIZE 65

MPI_RSM_SHORTMSGSIZE65

MPI_SHM_CPOOLSIZE 66

vi Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

MPI_SHM_CYCLESIZE 66

MPI_SHM_CYCLESTART66

MPI_SHM_NUMPOSTBOX66

MPI_SHM_PIPESIZE 66

MPI_SHM_PIPESTART 66

MPI_SHM_SBPOOLSIZE 66

MPI_SHM_SHORTMSGSIZE67

Numerics 67

MPI_CANONREDUCE67

Tuning Rendezvous 67

MPI_EAGERONLY 67

MPI_RSM_RENDVSIZE 67

MPI_SHM_RENDVSIZE 68

MPI_TCP_RENDVSIZE 68

Miscellaneous 68

MPI_COSCHED 68

MPI_FLOWCONTROL68

MPI_FULLCONNINIT 68

MPI_MAXFHANDLES 69

MPI_MAXREQHANDLES69

MPI_OPTCOLL 69

MPI_RSM_MAXSTRIPE 69

MPI_SHM_BCASTSIZE 69

MPI_SHM_GBPOOLSIZE 69

MPI_SHM_REDUCESIZE 70

MPI_SPINDTIMEOUT 70

MPI_TCP_CONNLOOP70

MPI_TCP_CONNTIMEOUT70

Contents vii

MPI_TCP_SAFEGATHER70

B. Troubleshooting 71

MPI Messages 71

Error Messages 72

Warning Messages 72

Standard Error Classes 72

MPI I/O Error Handling 74

viii Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

Preface

This manual describes how to use Sun HPC ClusterTools 3.0 software to develop,
execute, and debug programs on a Sun HPC cluster that is using the Sun Cluster
Runtime Environment (CRE) 1.0 for job managment.

Note - If your cluster uses the LSF 3.2.3 workload management suite instead of the
CRE, read the Sun MPI 4.0 User’s Guide: With LSF instead of this manual.

Before You Read This Book
For information about writing MPI programs, refer to the Sun MPI 4.0 Programming
and Reference Guide. Sun MPI 4.0 is part of the Sun HPC ClusterTools 3.0 suite of
software. Product notes for Sun MPI are included in Sun HPC ClusterTools 3.0
Product Notes.

Using UNIX® Commands
This document may not contain information on basic UNIX commands and
procedures such as creating directories and copying and deleting files.

See one or more of the following for this information:

� AnswerBookTM online documentation for the Solaris
TM

2.6 or Solaris 7 software
environment

� Other software documentation that you received with your system

Preface ix

Typographic Conventions

TABLE P–1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files, and
directories; on-screen computer
output

Edit your .login file.

Use ls --a to list all files.

% You have mail .

AaBbCc123 What you type, when contrasted
with on-screen computer output

%su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

To delete a file, type rm filename.

Shell Prompts

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

x Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

Related Documentation

TABLE P–3 Related Documentation

Application Title Part Number

Sun HPC ClusterTools software Sun HPC ClusterTools 3.0 Product
Notes

805-6262-10

Sun HPC ClusterTools software Sun HPC ClusterTools 3.0
Administrator’s Guide: With CRE

806-0295-10

SCI Sun HPC 3.0 SCI Guide 805-6263-10

Installation Sun HPC ClusterTools 3.0
Installation Guide

805-6264-10

Sun MPI Programming Sun MPI 4.0 Programming and
Reference Guide

805-6269-10

Prism Prism 6.0 User’s Guide 805-6277-10

Prism Prism 6.0 Reference Manual 805-6278-10

Sun S3L Sun S3L 3.0 Programming and
Reference Guide

805-6275-10

Sun Documentation on the Web
The docs.sun.com web site enables you to access Sun technical documentation on
the Web. You can browse the docs.sun.com archive or search for a specific book
title or subject at:

http://docs.sun.com

xi

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments and
suggestions. You can email your comments to us at:

docfeedback@sun.com

Please include the part number of your document in the subject line of your email.

xii Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

CHAPTER 1

Introduction

This manual explains how to execute Sun MPI applications on a Sun HPC cluster
that is using the Sun Cluster Runtime Environment (CRE) 1.0 for job management.

Sun HPC ClusterTools 3.0 Software
Sun HPC ClusterTools 3.0 software is an integrated ensemble of parallel development
tools that extend Sun’s network computing solutions to high-end distributed-memory
applications. Sun HPC ClusterTools products can be used either with the CRE or with
LSF Suite 3.2.3, Platform Computing Corporation’s resource-management software.

Note - If you are using LSF Suite instead of the CRE for workload management, you
should be reading the Sun MPI 4.0 User’s Guide: With LSF instead of this
document.

The principal components of Sun HPC ClusterTools Software are described in “Sun
Cluster Runtime Environment” on page 1 through “Sun S3L” on page 3.

Sun Cluster Runtime Environment
The CRE is a cluster administration and job launching facility. It provides users with
an interactive command-line interface for executing jobs on the cluster and for
obtaining information about job activity and cluster resources.

The CRE also performs load-balancing for programs running in shared partitions.

1

Note - Load balancing, partitions, and other related Sun HPC cluster concepts are
discussed in “Fundamental CRE Concepts” on page 5.

Sun MPI and MPI I/O
Sun MPI is a highly optimized version of the Message-Passing Interface (MPI)
communications library. Sun MPI implements all of the MPI 1.2 standard as well as a
significant subset of the MPI 2.0 feature list. For example, Sun MPI provides the
following features:

� Support for multithreaded programming.

� Seamless use of different network protocols; for example, code compiled on a Sun
HPC cluster that has a Scalable Coherent Interface (SCI) network, can be run
without change on a cluster that has an ATM network.

� Multiprotocol support such that MPI picks the fastest available medium for each
type of connection (such as shared memory, SCI, or ATM).

� Communication via shared memory for fast performance on clusters of SMPs.

� Finely tunable shared memory communication.

� Optimized collectives for symmetric multiprocessors (SMPs).

� Prism support – Users can develop, run, and debug programs in the Prism
programming environment.

� MPI I/O support for parallel file I/O.

� Sun MPI is a dynamic library.

Sun MPI and MPI I/O provide full F77, C, and C++ support and Basic F90 support.

Parallel File System
The Sun Parallel File System (PFS) component of the Sun HPC ClusterTools suite of
software provides high-performance file I/O for multiprocess applications running in
a cluster-based, distributed-memory environment.

PFS file systems closely resemble UFS file systems, but provide significantly higher
file I/O performance by striping files across multiple PFS I/O server nodes. This
means the time required to read or write a PFS file can be reduced by an amount
roughly proportional to the number of file server nodes in the PFS file system.

PFS is optimized for the large files and complex data access patterns that are
characteristic of parallel scientific applications.

2 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

Prism
Prism is the Sun HPC graphical programming environment. It allows you to develop,
execute, debug, and visualize data in message-passing programs. With Prism you can

� Control various aspects of program execution, such as:

� Starting and stopping execution.

� Setting breakpoints and traces.

� Printing values of variables and expressions.

� Displaying the call stack.

� Visualize data in various formats.

� Analyze performance of MPI programs.

� Aggregate processes across multiprocess parallel jobs into meaningful groups,
called process sets or psets.

Prism can be used with applications written in F77, F90, C, and C++.

Sun S3L
The Sun Scalable Scientific Subroutine Library (Sun S3L) provides a set of parallel
and scalable functions and tools that are used widely in scientific and engineering
computing. It is built on top of MPI and provides the following functionality for
Sun MPI programmers:

� Vector and dense matrix operations (level 1, 2, 3 Parallel BLAS).

� Iterative solvers for sparse systems.

� Matrix-vector multiply for sparse systems.

� FFT

� LU factor and solve.

� Autocorrelation.

� Convolution/deconvolution.

� Tridiagonal solvers.

� Banded solvers.

� Eigensolvers.

� Singular value decomposition.

� Least squares.

� One-dimensional sort.

Introduction 3

� Multidimensional sort.

� Selected ScaLAPACK and BLACS application program interface.

� Conversion between ScaLAPACK and S3L.

� Matrix transpose.

� Random number generators (linear congruential and lagged Fibonacci).

� Random number generator and I/O for sparse systems.

� Matrix inverse.

� Array copy.

� Safety mechanism.

� An array syntax interface callable from message-passing programs.

� Toolkit functions for operations on distributed data.

� Support for the multiple instance paradigm (allowing an operation to be applied
concurrently to multiple, disjoint data sets in a single call).

� Thread safety.

� Detailed programming examples and support documentation provided online.

Sun S3L routines can be called from applications written in F77, F90, C, and C++.

Sun Compilers
Sun HPC ClusterTools 3.0 sofware supports the following Sun compilers:

� Sun WorkShop Compilers C/C++ v4.2 and v5.0

� Sun WorkShop Compilers Fortran v4.2 and v5.0

Solaris Operating Environment
Sun HPC ClusterTools software uses the Solaris 2.6 or Solaris 7 (32-bit or 64-bit)
operating environment. All programs that execute under Solaris 2.6 or Solaris 7
execute in the Sun HPC ClusterTools environment.

4 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

Fundamental CRE Concepts
This section introduces some important concepts that you should understand in
order to use the Sun HPC ClusterTools software in the CRE effectively.

Cluster of Nodes
As its name implies, the CRE is intended to operate in a Sun HPC cluster—that is, in
a collection of Sun SMP (symmetric multiprocessor) servers that are interconnected
by any Sun-supported, TCP/IP-capable interconnect. An SMP attached to the cluster
network is referred to as a node.

The CRE manages the launching and execution of both serial and parallel jobs on the
cluster nodes. For serial jobs, its chief contribution is to perform load balancing in
shared partitions, where multiple processes can be competing for the same node
resources. For parallel jobs, the CRE provides:

� A single job monitoring and control point.

� Load balancing for shared partitions.

� Information about node connectivity.

� Support for spawning of MPI processes.

� Support for Prism interaction with parallel jobs.

Note - A cluster can consist of a single Sun SMP server. However, executing MPI
jobs on even a single-node cluster requires the CRE to be running on that cluster.

The CRE supports parallel jobs running on clusters of up to 64 nodes containing up
to 256 CPUs.

Partitions
The system administrator can configure the nodes in a Sun HPC cluster into one or
more logical sets, called partitions.

Note - The CPUs in a Sun HPC 10000 server can be configured into logical nodes.
These domains can be logically grouped to form partitions, which the CRE uses in
the same way it deals with partitions containing other types of Sun HPC nodes.

Any job launched on a partition will run on one or more nodes in that partition, but
not on nodes in any other partition. Partitioning a cluster allows multiple jobs to be

Introduction 5

executed on the partitions concurrently, without any risk of jobs on different
partitions interfering with each other. This ability to isolate jobs can be beneficial in
various ways: For example:

� If one job requires exclusive use of a set of nodes, but other jobs also need to
execute at the same time, the availability of two partitions in a cluster would allow
both needs to be satisfied.

� If a cluster contains a mix of nodes whose characteristics differ—such as having
different memory sizes, CPU counts, or levels of I/O support—the nodes can be
grouped into partitions that have similar resources. This would allow jobs that
require particular resources to be run on suitable partitions, while jobs that are less
resource-dependent could be relegated to less specialized partitions.

If you want your job to execute on a specific partition, the CRE provides you with
the following methods for selecting the partition:

� Log in to a node that is a member of the partition.

� Set the environment variable SUNHPC_PARTto the name of the partition.

� Use the --p option to the job-launching command, mprun , to specify the partition.

Note - These methods are listed in order of increasing priority. That is, setting the
SUNHPC_PARTenvironment variable overrides whichever partition you may be
logged into. Likewise, specifying the mprun --p option overrides either of the
other methods for selecting a partition.

It is possible for cluster nodes to not belong to any cluster. If you log in to one of
these independent nodes and do not request a particular partition, the CRE will
launch your job on the cluster’s default partition. This is a partition whose name is
specified by the SUNHPC_PARTenvironment variable or is defined by an internal
attribute that the system administrator is able to set.

The system administrator can also selectively enable and disable partitions. Jobs can
only be executed on enabled partitions. This restriction makes it possible to define
many partitions in a cluster, but have only a few active at any one time.

Note - It is also possible for a node to belong to more than one partition, so long as
only one is enabled at a time.

In addition to enabling and disabling partitions, the system administrator can set and
unset other partition attributes that influence various aspects of how the partition
functions. For example, if you have an MPI job that requires dedicated use of a set of
nodes, you could run it on a partition that the system administrator has configured
to accept only one job at a time.

The administrator could configure a different partition to allow multiple jobs to
execute concurrently. This shared paritition would be used for code development or
other jobs that do not require exclusive use of their nodes.

6 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

Note - Although a job cannot be run across partition boundaries, it can be run on a
partition plus independent nodes.

Load Balancing
The CRE load-balances programs that execute in shared partitions—that is, in
partitions that allow multiple jobs to run concurrently.

When you issue the mprun command in a shared partition, the CRE first determines
what criteria (if any) you have specified for the node or nodes on which the program
is to run. It then determines which nodes within the partition meet these criteria. If
more nodes meet the criteria than are required to run your program, the CRE starts
the program on the node or nodes that are least loaded. It examines the one-minute
load averages of the nodes and ranks them accordingly.

This load-balancing mechanism ensures that your program’s execution will not be
unnecessarily delayed because it happened to be placed on a heavily loaded node. It
also ensures that some nodes won’t sit idle while other nodes are heavily loaded,
thereby keeping overall throughput of the partition as high as possible.

Jobs and Processes
When a serial program executes on a Sun HPC cluster, it becomes a Solaris process
with a Solaris process ID, or pid.

When the CRE executes a distributed message-passing program it spawns multiple
Solaris processes, each with its own pid.

The CRE also assigns a job ID, or jid, to the program. If it is an MPI job, the jid
applies to the overall job. Job IDs always begin with a j to distinguish them from
pids. Many CRE commands take jids as arguments. For example, you can issue an
mpkill command with a signal number or name and a jid argument to send the
specified signal to all processes that make up the job specified by the jid.

Parallel File System
From the user’s perspective, PFS file systems closely resemble UNIX file systems. PFS
uses a conventional inverted-tree hierarchy, with a root directory at the top and
subdirectories and files branching down from there. The fact that individual PFS files
are distributed across multiple disks managed by multiple I/O servers is transparent
to the programmer. The way that PFS files are actually mapped to the physical
storage facilities is based on file system configuration entries in the CRE database.

Introduction 7

Using the Sun CRE
The balance of this manual discusses the following aspects to using the CRE:

� Choosing a partition and logging in – see Chapter 2.

� Executing programs – see Chapter 3.

� Obtaining information – see Chapter 4.

� Debugging programs – see Chapter 5.

� Performance Tuning and Profiling – see Chapter 6.

8 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

CHAPTER 2

Starting Sun MPI Programs

This chapter explains the basic steps for starting up message-passing programs on a
Sun HPC cluster using the services provided by the CRE.

Logging In
Logging in to a Sun HPC 3.0 cluster is the same as logging in to any Sun server. That
is, to log in on your local machine, just supply your user name at the login prompt
and, if a password is required, the password. For remote logins, use rlogin .

Note - This differs from the login model found in the Sun HPC RTE 2.0
environment, which was based on two special login commands tmlogin and
tmtelnet . In that model, you were expected to specify the name of the cluster that
you wanted to be on.

You receive the standard Solaris login information, followed by a Solaris prompt:

Sun Microsystems Inc. SunOS 5.6 Generic March 1999
Users: wmitty jthurb
node0%

You are now logged in to a node whose hostname is node0 .

9

After Logging In
Once you are logged in to a Sun HPC cluster, you can issue any Solaris or Sun HPC
commands, and you can execute any programs that will execute under Solaris 2.6 or
Solaris 7 operating environments. See Chapter 3 for more information about job
execution.

Writing Programs
You can perform program development on a Sun HPC cluster node or you can do it
on any computer running a compatible Solaris operating environment.

Compiling and Linking Programs
If your program uses Sun HPC ClusterTools components, you must compile and link
your program on a cluster that contains the ClusterTools software.

If you plan to use Prism to debug your program, include the --g option when you
compile your program.

See the Sun S3L 3.0 Programming and Reference Guide and the Sun MPI 4.0
Programming and Reference Guide for information on linking in the Sun S3L and the
Sun MPI libraries.

Issuing CRE Commands
The CRE provides commands that allow you to execute programs and obtain
information about cluster resources and job activity. This section provides general
information about issuing these commands. The commands are discussed in detail in
the next two chapters.

The CRE commands are typically in the directory /opt/SUNWhpc/bin . If you are
unable to execute them, you may need to add this directory to your path; check with
your system administrator. The man pages for Sun HPC commands are in

/opt/SUNWhpc/man

If you cannot display these man pages, you may need to add this directory to your
manpath.

CRE commands take options that consist of a dash followed by one or two letters.
You can combine single-letter options that don’t take arguments so long as they
don’t create ambiguity with multiletter options. For example, the command

10 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

% mprun --B --J

can also be written as

% mprun --BJ

Logging Out
To log out of the Sun HPC cluster, issue the command

% logout

Starting Sun MPI Programs 11

12 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

CHAPTER 3

Executing Programs

This chapter describes how to issue commands to execute programs on a Sun HPC
cluster. You can execute programs on any node or nodes in any partitions to which
you have access. A major difference between the Sun HPC cluster and a collection of
workstations is that the Sun Cluster Runtime Environment (CRE) provides you with a
simple, interactive interface for specifying where and how your program should run.

All programs written for Solaris 2.6 or Solaris 7 can run without recompilation on a
Sun HPC cluster.

Note - Running parallel jobs with the CRE is supported on up to 256 processors and
up to 64 nodes.

Choosing Where to Execute
The Sun CRE provides you with considerable flexibility in choosing where you want
your program to execute. For example, you can specify

� The partition in which you want to execute your program.

� The number of processes you want to start, and how you want to map them to
nodes.

� The characteristics of the node or nodes on which you want to run — for example,
the minimum amount of memory required or the maximum acceptable load.

See “Specifying Where a Program Is to Run ” on page 21 for additional information
on specifying where a program is to run.

13

You can specify default execution criteria via the MPRUN_FLAGSenvironment
variable; see “Specifying Default Execution Options” on page 14. You can also
override these criteria via options to the mprun command.

Authentication Methods
Sun HPC Software includes two optional forms of user authentication that require
the execution of user-level commands. The two methods are Kerberos Version 4 and
DES. If one of these authentication methods is enforced on your Sun HPC cluster,
use the commands listed in Table 3–1.

TABLE 3–1 User Commands Required by Authentication Methods

Authentication
Method

Required Command

DES While DES authentication is in use, you must issue the keylogin
command before issuing any commands beginning with mp, such as
mprun or mpps.

Kerberos 4 While Kerberos Version 4 authentication is in use, you must issue a
kinit command before running any command beginning with mp, such
as mprun or mpps.

See your system administrator for details.

Specifying Default Execution Options
You can use the environment variable MPRUN_FLAGSto specify one or more default
options to the program execution command, mprun . Then, you need not specify any
option contained in MPRUN_FLAGS. mprun will be interpreted as if the options
contained in MPRUN_FLAGSwere included on the command line (preceding any
options that are on the command line).

You can override any default option by including a new value for the option on the
mprun command line.

14 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

Note - For the --R option, the interaction between MPRUN_FLAGSand mprun is
somewhat more complicated. This special relationship is “Expressing More Complex
Resource Requirements” on page 23 and “Running on the Same Node(s) as a
Another Specified Job” on page 30.

The setting of the environment variable can be any number of valid mprun options.
If you use more than one word, enclose the list in quotation marks. These options are
described in more detail in the remainder of the chapter and are listed in “mprun
Options ” on page 19.

For example, the following makes part2 the default partition to be used for mprun .

C shell

% setenv MPRUN_FLAGS "--p part2"

Bourne shell

MPRUN_FLAGS = "--p part2"; export MPRUN_FLAGS

You can check the current setting of MPRUN_FLAGSby issuing the command
printenv .

C shell

% printenv MPRUN_FLAGS

Bourne shell

printenv MPRUN_FLAGS

All MPRUN_FLAGSsettings can be overridden by specifying the corresponding option
on the mprun command line.

In addition, the default partition setting can be determined in two other ways. If -p
is not specified on the mprun command line and MPRUN_FLAGSis not set to a
default partition, the default partition is

� First, the one where you are logged in.

� Failing that, the one specified by the system administrator via the cluster
administration command mpadmin .

Executing Programs 15

Executing Programs via mprun
This section provides general information about executing programs via mprun .

Execution via mprun is similar to standard Solaris program execution. For example,

� Your environment is used as if you executed the program from a traditional shell.

� Signals are treated as they are in standard Solaris; for multiprocess programs, if
one process is killed via a signal, all processes are killed.

� You can run a program in the background:

% mprun a.out &

CRE commands do differ slightly from standard Solaris execution. These differences
are discussed in “Moving mprun Processes to the Background” on page 16 through
“SMP Characteristics of Sun HPC clusters” on page 18.

Moving mprun Processes to the Background
When you move either a process started with mprun or a script that issues mprun
commands to the background, you must do one of the following:

� Redirect stdin away from the terminal.

� Specify the --n option to mprun so that standard in will be read
from /dev/null . See “Specifying the Behavior of I/O Streams” on page 33 for a
detailed discussion of standard I/O issues.

If you do not take one of these steps, the mprun process will contend with your shell
for characters typed at the shell, leading to unexpected results.

Shell-Specific Actions
If you want to perform actions that are shell specific, such as executing compound
commands, you must first invoke the appropriate shell as part of the mprun
command. For example,

% mprun csh --c ‘echo $USER‘

16 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

or
% mprun csh --c ‘cd /foo ; bar‘

Core Files
Core files are produced as they normally are in Solaris. However, if more than one
process dumps core in a multiprocess program, the resulting core file may be invalid.

Standard Output and Standard Error
By default, mprun handles standard output and standard error the way rsh does:
The output and error streams are merged and are displayed on your terminal screen.
Note that this is slightly different from the standard Solaris behavior when you are
not executing remotely; in that case, the stdout and stderr streams are separate.
You can obtain this behavior with mprun via the --D option. You can also specify
other methods for handling I/O streams, including the three standard ones. See
“Specifying the Behavior of I/O Streams” on page 33 for additional information.

File Descriptors
If your job consists of a large number of processes, you may need to consider the
number of file descriptors the job is using and, if necessary, increase the default
number available to you.

For merged standard I/O, each process in a job requires two descriptors. For
separate stderr and stdout streams, each process requires three descriptors. You
also need three file descriptors for interacting with your terminal.

You can find out the default number of file descriptors available in your shell by
issuing the command

C shell

% limit descriptors

Bourne shell

Executing Programs 17

ulimit --n

The default for most shells is 64. This limits you to about 30 processes for merged
standard I/O and about 20 processes for separate standard I/O. If this isn’t
sufficient, you can increase your limit by issuing the command

C shell

% limit descriptors 128

Bourne shell

ulimit --n 128

Or you can set it to the maximum value

C shell

% unlimit descriptors

Bourne shell

ulimit --n ‘ulimit --Hn‘

The file descriptor maximum in Solaris 2.6 and Solaris 7 is 1024.

SMP Characteristics of Sun HPC clusters
Since your Sun HPC cluster consists of symmetric multiprocessors (SMPs), the CRE
takes into consideration the number of CPUs per node by default. In general, mprun
will assign more processes to larger SMPs. For information about how the CRE
allocates processes to CPUs, see “When Number of Processes Exceeds Number of
CPUs” on page 22 and “Default Process Spawning” on page 30.

Executing Programs
The basic format of the mprun command is

18 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

% mprun [options] [--] executable [args ...]

Note - When the name of your program conflicts with the name of an mprun option,
use the -- (dash) symbol to separate the program name from the option list.

mprun Options
The following table lists and briefly describes the mprun options. Their use is
described more fully in “Specifying Where a Program Is to Run ” on page 21 through
“Specifying the Behavior of I/O Streams” on page 33.

TABLE 3–2 Options for mprun

Option Meaning

–A aout Execute aout and use a different argument as the argv[0] argument to the
program. See “Specifying a Different Argument Vector” on page 41.

–B Send stderr and stdout output streams to files. See “Specifying the
Behavior of I/O Streams” on page 33.

–c cluster_name Run on the specified cluster. See “Specifying the Cluster” on page 21.

–C path Use the specified directory as the current working directory for the job.
See “Changing the Working Directory” on page 40.

–D Provide separate stdout and stderr streams. See “Specifying the Behavior
of I/O Streams” on page 33.

–G group Execute with the specified group ID or group name. See “Executing with
a Different User or Group Name” on page 40.

–h Display help. See “Getting Information” on page 40.

–i Standard input to mprun is sent only to rank 0, and not to all other ranks.

–I
file_descr_string

Use the specified I/O file descriptor string to control I/O stream
handling. See “Specifying the Behavior of I/O Streams” on page 33.

Executing Programs 19

TABLE 3–2 Options for mprun (continued)

Option Meaning

–j jid Run on the same node(s) as the job with job ID jid . See “Running on the
Same Node(s) as a Another Specified Job” on page 30.

–J Show the jid, cluster name, and number of processes after executing. See
“Getting Information” on page 40.

–n Read stdin from . See “Specifying the Behavior of I/O Streams” on page
33.

–N Do not open any standard I/O connections. See “Specifying the Behavior
of I/O Streams” on page 33.

-- np number Request the specified number of processes. See “Controlling Process
Spawning” on page 22.

–Ns Disable spawning of multiple processes from a job on SMPs; see “Default
Process Spawning” on page 30.

–o Prefix each output line with the rank of the process that wrote it.

-- p partition Run in the specified partition. See “Specifying the Partition” on page 21.

–R
"resource_string"

Specify conditions for choosing nodes. See “Expressing More Complex
Resource Requirements” on page 23.

–S Settle for the available number of nodes (used with –np). See
“Controlling Process Spawning” on page 22.

–U user Execute with the specified user ID or user name. See “Executing with a
Different User or Group Name” on page 40.

–V Display version information. See “Getting Information” on page 40.

–W Wrap the requested processes on the available CPUs (used with –np). See
“Controlling Process Spawning” on page 22.

–Ys Allow spawning on SMPs. See “Default Process Spawning” on page 30.

–Z rank Run processes, by groups of size rank, together on the same node.
(incompatible with –S and –W) See “Mapping MPI Ranks to Nodes” on
page 31.

20 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

Specifying Where a Program Is to Run
The mprun command provides you with considerable flexibility in specifying where
you want your job to run.

� “Specifying the Partition” on page 21 describes how to choose the partition in
which a program is to run.

� “Specifying the Cluster” on page 21 describes how to choose the cluster on which
you want your program to run.

� “Controlling Process Spawning” on page 22 describes how to specify how many
processes are to be started and how they should be mapped to nodes.

� “Expressing More Complex Resource Requirements” on page 23 describes a syntax
for specifying complex requirements that can’t be encapsulated in the basic
command-line options.

In cases where your specified requirements can be met by more than one node, the
cluster chooses the least-loaded node, unless you have specified other sorting criteria.

Specifying the Partition
Use mprun --p to specify the partition in which you want your program to run. The
partition must be in the enabled state. For example,

% mprun --p part2 a.out

specifies that a.out is to be run in the partition part2 .

The mpinfo command will tell you the names of enabled partitions in the cluster,
along with other useful information about cluster resources. See “mpinfo :
Configuration and Status” on page 46 for a description of mpinfo .

Specifying the Cluster
By default, your job will run on the cluster where you are logged in.

If you are logged in on a machine that is connected to the Sun HPC cluster on which
you want to run your job, but is not part of the cluster, use mprun --c cluster_name
to specify the cluster.

Executing Programs 21

Note - Use the hostname of the cluster’s master node as the cluster name. You can
find the cluster’s master node by running mpinfo --C on any node in the cluster.
See “Specifying the Partition” on page 44 for additional details.

Controlling Process Spawning

Specify the Number of Processes
Use the --np option to specify the number of processes you want to start; the
default is 1. This option is typically used with a Sun MPI program.

For example,

% mprun --p part2 --np 4 a.out

specifies that you want four copies of a.out to start on the nodes of the partition
named part2 .

You can also specify 0 as the --np value. The CRE will start one process per CPU on
each available CPU. Thus, if the partition part2 has six available CPUs, the
command

% mprun --p part2 --np 0 a.out

will start six copies of a.out .

Limit to One Process Per Node
Use the --Ns option to limit the number of processes to one per node. This prevents
nodes from spawning more processes regardless of the number of CPUs they have.

When Number of Processes Exceeds Number of CPUs
When you request multiple processes (via the --np option), the CRE attempts to start
one process per CPU. If you request more processes than the number of available
CPUs, you must include either the --W or --S option. Otherwise, mprun will fail.

22 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

Use the --W option if you want the processes to wrap—that is, to allocate multiple
processes to each CPU, which will execute their respective sets of processes one by
one. For example, if the partition part2 has six available CPUs and you specify

% mprun --p part2 --np 10 --W a.out

the CRE will start 10 processes on the six CPUs.

Note - When the CRE wraps processes, it distributes them according to
load-balancing rules. Therefore, you will not be able to predict where they will
execute.

If you prefer to have a certain number of processes started, but are willing to settle
for however many CPUs are available, use the --S option. The CRE will start one
process on each available CPU. Thus, if you issue the same command as above, but
substitute --S for --W :

% mprun --p part2 --np 10 --S a.out

and six CPUs are available on part2 , then six copies of a.out will start, one per
CPU.

Note - If you specify –np number, but not –np 0 , –S, or –W, and there are not enough
nodes within the partition, the CRE will look for nodes outside the partition to make
up the difference. To be elegible, an external node must be both enabled and
independent. That is, the node must not be a member of another partition that is
enabled. If you specify –np 0 , –S, or –W, the search will be restricted to the partition
you are in.

Expressing More Complex Resource
Requirements
Use the --R option to express complex node requirements that are not accessible via
the basic options discussed above.

The --R option takes a resource requirement specifier (RRS) as an argument. The RRS is
enclosed in quotation marks and provides the settings for any number of attributes
that you want to use to control the selection of nodes. You combine multiple
attribute settings using the logical & (AND) and | (OR) operators.

Executing Programs 23

The CRE parses the attribute settings in the order in which they are listed in the RRS,
along with other options you specify. The CRE merges these results with the results
of an internally specified RRS that controls load balancing.

Note - One option is an exception to this merging behavior, –j. This exception is
discussed later.

The result is an ordered list of CPUs that meet the specified criteria. If you are
starting a single process, the CRE starts the process on the CPU that’s first in the list.
If you are starting n processes, the CRE starts them on the first n CPUs, wrapping if
necessary.

Note - Unless --Ns is specified, the RRS specifies node resources but generates a list
of CPUs. If --Ns is specified, the list refers only to nodes.

Specifying Resource Attributes
Table 3–3 lists predefined attributes you can include in an RRS. Your system
administrator may also have defined attributes specific to your Sun HPC cluster. You
can see what settings these administrator-defined attributes have with the mpinfo
command.

TABLE 3–3 Standard RRS Attributes

Attribute Meaning

cpu_idle Percent of time that the CPU is idle.

cpu_iowait Percent of time that the CPU spends waiting for I/O.

cpu_kernel Percent of time that the CPU spends in the kernel.

cpu_scale Performance rating of the CPU.

cpu_swap Percent of time that the CPU spends waiting for swap.

cpu_type CPU architecture.

cpu_user Percent of time that the CPU spends running user’s program.

load1 Node’s load average for the past minute.

load5 Node’s load average for the past 5 minutes.

24 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

TABLE 3–3 Standard RRS Attributes (continued)

Attribute Meaning

load15 Node’s load average for the past 15 minutes.

manufacturer Hardware manufacturer.

mem_free Nodes’s available memory, in Mbytes.

mem_total Node’s total physical memory, in Mbytes.

name Node’s hostname.

os_max_proc Maximum number of processes allowed on the node, including cluster
daemons.

os_arch_kernel Node’s kernel architecture.

os_name Operating system’s name.

os_release Operating system’s release number.

os_release_maj The major number of the operating system’s release number.

os_release_min The minor number of the operating system’s release number.

os_version Operating system’s version.

serial_number Node’s serial number.

swap_free Node’s available swap space, in Mbytes.

swap_total Node’s total swap space, in Mbytes.

The CRE recognizes two types of attributes, value and boolean.

Value-Based Attributes
Value attributes can take a literal value or a numeric value. Or, depending on the
operator used, they may take no value.

� Attributes with a literal value take a name as a setting. Use an equal sign and the
name after the attribute to show the setting. For example,

% mprun --R "name = hpc-demo" a.out

Executing Programs 25

� Attributes with a numeric value include an operator and a value. For example,

% mprun -R "load5 < 4" a.out

specifies that you only want nodes whose individual load averages over the previous
5 minutes were less than 4.

� Attributes that use either << or >> take no value. For example,

% mprun -R "mem_total>>" a.out

specifies that you prefer nodes with the largest physical memory available.

Table 3–4 identifies the operators that can be used in RRS expressions.

TABLE 3–4 Operators Valid for Use in RRS

Operator Meaning

< Select all nodes where the value of the specified attribute is less than the
specified value.

<= Select all nodes where the value of the specified attribute is less than or
equal to the specified value.

= Select all nodes where the value of the specified attribute is equal to the
specified value.

>= Select all nodes where the value of the specified attribute is greater than
or equal to the specified value.

> Select all nodes where the value of the specified attribute is greater than
the specified value.

!= Attribute must not be equal to the specified value. (Precede with a
backslash in the C shell.)

<< Select the node(s) that have the lowest value for this attribute.

>> Select the node(s) that have the highest value for this attribute.

The operators have the following precedence, from strongest to weakest:

unary --
*, /
+, binary --

26 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

=, !=, >=, <=, >, <, <<, >>
!
&, |
?

If you use the << or >> operator, the CRE does not provide load balancing. In the
previous example, the CRE would choose the node with the most free swap space,
regardless of its load. If you use << or >> more than once, only the last use has any
effect—it overrides the previous uses. For example,

% mprun --R "mem_free>> swap_free>>" a.out

initially selects the nodes that have the most free memory, but then selects nodes that
have the largest amount of available swap space. The second selection may yield a
different set of nodes than were selected initially.

You can also use arithmetic expressions for numeric attributes anywhere. For
example,

% mprun --R "load1 / load5 < 2" a.out

specifies that the ratio between the one-minute load average and the five-minute
load average must be less than 2. In other words, the load average on the node must
not be growing too fast.

You can use standard arithmetic operators as well as the C ?: conditional operator.

Note - Because some shell programs interpret characters used in RRS arguments,
you may need to protect your RRS entries from undesired interpretation by your
shell program. For example, if you use csh , write "-R \!private " instead of
"-R !private ".

Boolean Attributes
Boolean attributes are either true or false. If you want the attribute to be true, simply
list the attribute in the RRS. For example, if your system administrator has defined
an attribute called ionode , you can request a node with that attribute:

Executing Programs 27

% mprun --R "ionode" a.out

If you want the attribute to be false (that is, you do not want a resource with that
attribute), precede the attribute’s name with ! . (Precede this with a backslash in the
C shell; the backslash is an escape character to prevent the shell from interpreting the
exclamation point as a “history” escape.) For example,

% mprun --R "\!ionode" a.out

For example,

% mprun --R "mem_free > 256" a.out

specifies that the node must have over 256 megabytes of available RAM.

% mprun --R "swap_free >>" a.out

specifies that the node picked must have the highest available swap space.

Examples
Here are some examples of the --R option in use.

The following example specifies that the program must run on a node in the
partition with 512 Mbytes of memory:

% mprun --p part2 --R "mem_total=512" a.out

28 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

The following example specifies that you want to run on any of the three nodes listed:

% mprun --R "name=node1 | name=node2 | name=node3" a.out

The following example chooses nodes with over 300 Mbytes of free swap space. Of
these nodes, it then chooses the one with the most total physical memory:

% mprun --R "swap_free > 300 & mem_total>>" a.out

The following example assumes that your system administrator has defined an
attribute called framebuffer , which is set (TRUE) on any node that has a frame
buffer attached to it. You could then request such a node via the command

% mprun --R "framebuffer" a.out

The –R Option and MPRUN_FLAGS
With the exception of the --j option, specifying --R on the command line as well as
in the MPRUN_FLAGSenvironment variable combines the two sets of values—that is,
the command line does not override the environment variable settings. For example,
if you have

% setenv MPRUN_FLAGS "--R "load1 < 1""

and issue the command

% mprun --R "load5 < 1" --R "load15 < 1" a.out

this would be the same as issuing the command

Executing Programs 29

% mprun --R "(load1<1) & (load5<1) & (load15<1)" a.out

This combining behavior does not happen with the --j option. When --j is
specified by MPRUN_FLAGSas well as on the mprun command line, the command
line use overrides the environment variable setting.

Running on the Same Node(s) as a
Another Specified Job
Use the --j option to specify that the program you want to execute should run on
the same node or nodes as a particular job ID (jid). For example, to run a.out on
the same node(s) as a job whose job ID is 85 , issue the command

% mprun --j 85 a.out

If --j follows the --np or --R option on the command line, it overrides those
options. If --np , together with --W or --S , follows --j on the command line, --j
determines which nodes to run on, while the other options determine the number of
processes to map onto these nodes.

You can use the mpps command to find out the job ID of any job.

Default Process Spawning
By default, mprun spawns multiple processes on SMPs. For example, if you have a
two-node partition in which one node has two CPUs and the other has four CPUs,
then the command

% mprun --np 6 a.out

runs six copies of a.out , two on the two-CPU node and four on the four-CPU node.

The --j and --R options override this behavior.

Alternatively, you can use the --Ns option to disable spawning of processes on
individual CPUs of a node. Instead, --Ns will cause only one process to be started
on each node.

30 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

Use the --Ys option to force spawning on nodes when used with --R . --Ys does
not override --j .

Mapping MPI Ranks to Nodes
Using the --Z Option
The --Z option causes the CRE to organize a job’s processes into subsets of a
specified size and to group all processes in a subset on the same node. You specify
the subset size with a numerical argument to --Z . For example,

% mprun --Z 3 --np 8 a.out

groups the job’s processes by threes. These groups may be distributed onto different
nodes, but there is no guarantee that they will be; two or more groups may be
started on the same CPU.

Note - The --Z option is incompatible with the --S and --W options.

Using RRS to Map Ranks to Nodes
You can construct an RRS expression (see “Expressing More Complex Resource
Requirements” on page 23) that causes mprun to distribute a specified number of
processes (MPI ranks) to a set of nodes in a specified order. The RRS expression
assigns to each node in the set a single-character alias preceded by a number, which
together make up a sequence of count/alias pairs. For example:

"[2a2b2c2d]:a.name=hpc-node0 & b.name=hpc-node1 & c.name=hpc-node2 & d.name=hpc-node3"

The number that precedes a node’s alias tells the CRE how many processes to start
on that node. In this example, it assigns two processes to each of the nodes defined
by the aliases a, b, c , and d. This number can be different for each node, but it must
not exceed the number of CPUs on that node.

The CRE distributes processes to the nodes in the order in which they are listed in
the RRS expression, starting the rank 0 process on the first node in the list. Once the
prescribed number of processes have been started on the first node, the CRE moves
to the second node and then to subsequent nodes, starting the specified number of

Executing Programs 31

processes on each node in turn. An alias cannot be repeated in the sequence, but one
node can be defined with more than one alias.

The RRS rank-mapping expression must satisfy the following conditions:

� Up to 26 node aliases can be defined; aliases are not case-sensitive. Every node
alias must be preceded by a number, which may have more than one digit.

� The number of processes assigned to a given node cannot be greater than the
number of CPUs on that node.

� The --np value cannot be greater than the total number of processes allocated by
the RRS expression. You cannot use use the --W option to get around this
restriction by wrapping the processes.

The following example shows this technique being applied on a 4x4 partition. Two
processes are started on each of four, four-CPU nodes.

% mprun --o --np 8 --R "[2a2b2c2d]:a.name=hpc-node0 & b.name=hpc-node1 & c.name=hpc-node2 & d.nam e
r0:hpc-node0
r1:hpc-node0
r2:hpc-node1
r3:hpc-node1
r4:hpc-node2
r5:hpc-node2
r6:hpc-node3
r7:hpc-node3

The --o option prepends each output line with the MPI rank of the process that
writes it. Two CPUs on each node are not participants in this job.

The next example shows different numbers of processes being allocated to each node.
One process is started on the first node, two on the second, and so forth.

% mprun --o --np 10 --R "[1a2b3c4d]:a.name=hpc-node0 & b.name=hpc-node1 & c.name=hpc-node2 & d.na m
r0:hpc-node0
r1:hpc-node1
r2:hpc-node1
r3:hpc-node2
r4:hpc-node2
r5:hpc-node2
r6:hpc-node3
r7:hpc-node3
r8:hpc-node3
r9:hpc-node3

The following example shows the error message that is returned when the number of
processes assigned to a node exceeds the number of CPUs on that node.

% mprun --o --np 6 --R "[2a1b3c]:a.name=hpc-node0 & b.name=hpc-node1 & c.name=hpc-node0" uname -- n
mprun: no_mp_jobs: No nodes in partition satisfy RRS

In this case, the node hpc-node0 is aliased twice—as 2a and 3c —so that it can be
repeated in the sequence. This use of multiple aliases is legal, but hpc-node0 has
four CPUs and the total number of processes assigned by 2a and 3c is five, which
violates the second condition listed above.

32 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

The next example shows what happens when an alias does not start with a number.
In this case, the alias for hpc-node0 violates the first condition listed above.

% mprun --o --np 6 --R "[a2b3c]:a.name=hpc-node0 & b.name=hpc-node1 & c.name=hpc-node2" uname --n
mprun: no_mp_jobs: No nodes in partition satisfy RRS

Specifying the Behavior of I/O Streams
Introducing mprun I/O
By default, all standard output (stdout) and standard error (stderr) from an
mprun -launched job will be merged and sent to mprun ’s standard output. This is
ordinarily the user’s terminal. Likewise, mprun ’s standard input (stdin) is sent to
the standard input of all the processes.

You can redirect mprun ’s standard input, output, and error using the standard shell
syntax. For example,

% mprun --np 4 echo hello > hellos

You can also change what happens to the standard input, output, and error of each
process in the job. For example,

% mprun echo hello > message

sends hello across the network from the echo process to the mprun process, which
writes it to a file called message .

The mprun command’s own options allow you to control I/O in other ways. For
example, rather than making remote processes communicate with mprun (when it
may not be necessary), you can make each process write to or read from a file on the
node on which it is running. For example, you can make each process send its
standard output or standard error to a file on its own node. In the following
example, each node will write hello to a local file called message:

Executing Programs 33

% mprun --I "1w=message" echo hello

mprun also provides options that you can use to control standard output and
standard error streams. For example, you can
� Use the --D option to make the standard error from each process go to the

standard error of mprun , instead of its standard output. For example,

% mprun --D a.out

sends standard output from a.out to the standard output of mprun and sends the
standard error of a.out to the standard error of mprun .

� Use the --B option to merge the standard output and standard error streams from
each process and direct them to files named out. jid. rank, where jid is the job ID
of the job and rank is the rank of this process within the job. The files are located
in the job’s working directory. There is no standard input stream.

� Use the --N option to shut off all standard I/O to all the processes. That is, with
this option, you specify that there are to be no stdin , stdout , and stderr
connections. Use the –N option for situations in which standard I/O is not
necessary; you can reduce the overhead incurred by establishing standard I/O
connections for each remote process and then closing those connections as each
process ends.

� Use the --n option to cause stdin to be read from /dev/null . This can be
useful when running mprun in the background, either directly or through a script.
Without --n , mprun will block in this situation, even if no reads are posted by the
remote job. When --n is specified, the user process encounters an EOFif it
attempts to read from stdin . This is comparable to the behavior of the --n
option to rsh .

Note - The set of mprun options that control stdio handling cannot be combined.
These options override one another. If more than one is given on a command line,
the last one overrides all of the rest. The relevant options are: -D , -N , -B , -n , -i ,
-o , and -I .

Creating a Custom Configuration
Use the --I option to specify a custom configuration for the I/O streams associated
with a job, including standard input, output, and error. The --I option takes as an
argument a comma-separated series of file descriptor strings. These strings specify
what is to happen with each of the job’s I/O streams.

In Solaris, each process has a numbered set of file descriptors associated with it. The
standard I/O streams are assigned the first three file descriptors:

� 0 – standard input (stdio)

34 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

� 1 – standard output (stdout)

� 2 – standard error (stderr)

The argument list to -I can include a string for each file descriptor associated with a
job; if any file descriptor is omitted, its stream won’t be connected to any device.

Restriction: If you include strings to redirect both standard output and standard
error, you must also redirect standard input. If the job has no standard input, you
can redirect file descriptor 0 to /dev/null .

The file descriptor strings in the -I argument list can be in any order. Quotation
marks around the strings are optional.

File Descriptor Attributes
The file descriptor string assigns one or more of the following attributes to a file
descriptor:

� r – File descriptor is to be read from.

� w – File descriptor is to be written to.

� p – File descriptor is to be attached to a pseudo-terminal (pty).

You must specify either r or w for each file descriptor — that is, whether the file
descriptor is to be written to or read from.

Thus, the string

5w

means that the stream associated with file descriptor 5 is to be written. And

0rp

means that the standard input is to be read from the pseudo-terminal.

If you use the p (pty) attribute, you must have one rp and one wp in the complete
series of file descriptor strings. In other words, you must specify both reading from
and writing to the pty. No other attributes can be associated with rp and wp.

The following attributes are output-related and thus can only be used in conjunction
with w:

� l – Line-buffered output.

� t – Tag the line-buffered output with process rank information.

� a – Stream is to be appended to the specified file.

Note - NFS does not support append operations.

Use the l attribute in combination with the w attribute to line-buffer the output of
multiple processes. This takes care of the situation in which output from one process
arrives in the middle of output from another process. For example,

Executing Programs 35

% mprun --np 2 echo "Hello"
HelHello
lo

With the l attribute, you ensure that processes don’t intrude on each other’s output.
The following example shows how using the l attribute could prevent the problem
illustrated in the previous example:

% mprun --np 2 --I "0r, 1wl" echo "Hello"
Hello
Hello

Use the t attribute in place of l to force line-buffering and, additionally, to prefix
each line with the rank of the process producing the output. For example,

% mprun --np 2 --I "0r, 1wt" echo "Hello"
r0:Hello
r1:Hello

The b attribute is input-related and thus can be used only in combination with r . In
multiprocess jobs, the b attribute specifies that input is to go only to the first process,
rather than to all processes, which is the default behavior.

The m attribute pertains to reading from a pseudo-terminal and thus can be used
only with rp . The mattribute in combination with rp causes keystrokes to be echoed
multiple times when multiple processes are running. The default is to display
multiple keystrokes only once.

File Descriptor String Syntax

You can direct one file descriptor’s output to the same location as that specified by
another file descriptor by using the syntax

fd attr=@other_fd

For example,

2w=@1

means that the standard error is to be sent wherever the standard output is going.
You cannot do this for a file descriptor string that uses the p attribute.

If the behavior of the second file descriptor in this syntax is changed later in the -I
argument list, the change does not affect the earlier reference to the file descriptor.
That is, the -I argument list is parsed from left to right.

You can tie a file descriptor’s output to a file by using the syntax

fd attr=filename

For example,

10w=output

36 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

says that the stream associated with file descriptor 10 is to be written to the file
output . Once again, however, you cannot use this feature for a file descriptor
defined with the p attribute.

In the following example, the standard input is read from the pty, the standard
output is written to the pty, and the standard error is sent to the file named errors :

% mprun --I "0rp,1wp,2w=errors" a.out

If you use the w attribute without specifying a file, the file descriptor’s output is
written to the corresponding output stream of the parent process; the parent process
is typically a shell, so the output is typically written to the user’s terminal.

For multiprocess jobs, each process creates its own file; the file is opened on the node
on which the process runs.

Note - If output is redirected such that multiple processes open the same file over
NFS, the processes will overwrite each other’s output.

In specifying the individual file names for processes, you can use the following
symbols:

� &J – The job ID of the job

� &R – The rank of the process within the job

The symbols will be replaced by the actual values. For example, assuming the job ID
is 15, this file descriptor string

1w=myfile.&J.&R

redirects standout output from a multiprocess job to a series of files named
myfile.15.0 , myfile.15.1 , myfile.15.2 , and so on, one file for each rank of
the job.

In the following example, there is no standard input (it comes from /dev/null),
and the standard output and standard error are written to the files out. job. rank:

% mprun --I "0r=/dev/null,1w=out.&J.&R,2w=@1" a.out

This is the behavior of the --B option. See “Introducing mprun I/O ” on page 33.
Note the inclusion in this example of a file descriptor string for standard input even
though the job has none. This is required because both standard output and standard
error are redirected.

Executing Programs 37

mprun Options versus Shell Syntax
The default I/O behavior of mprun (merged standard error and standard output) is
equivalent to

% mprun --I "0rp,1wp,2w=@1" a.out

The --D option provides separate standard output and standard error streams; it is
equivalent to:

% mprun --I "0rp,1wp,2w" a.out

You can use the --o option to force each line of output to be prepended with the
rank of the process writing it. This is equivalent to

% mprun -I "0rp,1wt,2w=@1" a.out

If you redirect output to a shared file, you must use standard shell redirection rather
than the equivalent --I formulation (--I "lwt=outfile"). The same restriction
also applies to the linebuffer formulation (--I "lwt=outfile").

For example, the following command line concatenates the outputs of the individual
processes of a job and writes them to outfile.dat :

% mprun -np 4 myprogram > outfile.dat

The following command line concatenates the outputs of the individual processes
and appends them to the previous content of the output file:

38 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

% mprun -np 4 myprogram >> outfile.dat

The following table describes three mprun command-line options that provide the
same control over standard I/O as some --I constructs, but are much simpler to
express. Their --I equivalents are also shown.

TABLE 3–5 mprun Shortcut Summary

Command Description

mprun –i Standard input to mprun is sent only to rank 0, and not to all other
ranks. Equivalent to

mprun –I "0rpb,1wp,2w=@1" a.out

mprun –B Standard output and standard error are written to the file out. job. rank.
Equivalent to mprun –I "0r=/dev/null,1w=out.&J.&R,2w=@1" a.out

mprun –o Use line buffering on standard output, prefixing each line with the rank of
the process that wrote it. Equivalent to mprun –I "0rp,1wt,2w=@1" a.out

Note - Specifying -o (forcing processes to prepend rank on output lines), or the
equivalent -I syntax (such as -I1wt) will not work if redirection is also specified
with -I (such as with -I1w=outfile). Use the standard shell redirection operator
instead.

These shortcuts are not exact substitutions. The CRE uses ptys correctly, whether the
–I option is present or absent. Also, the CRE merges standard error with standard
output when it is appropriate. If either stderr or stdout is redirected (but not
both), ptys are not used and stderr and stdout are separated. If both stderr and
stdout are redirected, ptys are still not used, but stderr and stdout are combined.

Caution Regarding the Use of --i Option
Use the -i option to mprun with caution, since the -i option provides only one
stdin connection (to rank 0). If that connection is closed, keyboard signals are no
longer forwarded to those remote processes. To signal the job, you must go to
another window and issue the mpkill command. For example, if you issue the
command mprun --np 2 --i cat and then type the Ctrl-d character (which
causes cat to close its stdin and exit), rank 0 will exit. However, rank 1 is still
running, and can no longer be signaled from the keyboard.

Executing Programs 39

Changing the Working Directory
Use the --C option to specify the path of an alternative working directory to be used
by the program. If you don’t specify --C , the default is the current working
directory. For example,

% mprun --C /home/collins/bin a.out

changes the working directory for a.out to /home/collins/bin .

Executing with a Different User or
Group Name
Use the --U option to execute with the specified user ID or user name. For example,

% mprun --U traveler a.out

executes a.out as the user traveler .

Use the --G option to execute with the specified group ID or group name.

% mprun --G qa-team a.out

executes a.out as the group qa-team .

You must have the appropriate level of permissions to use these options. For
example, you must belong to the group you specify, or be the superuser.

Getting Information
Use the --h option to display a list of mprun options and their meanings.

Use the --V option to display the command’s version number.

40 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

If you specify either --h or --V , it must be the only option on the command line.

Use the --J option to display the program’s jid, along with the name of the cluster
and the number of processes, after executing mprun .

Specifying a Different Argument Vector
By default, mprun passes the vector of a program’s command-line arguments to the
program in the standard way. For example, if you issue the command

% mprun a.out arg1 arg2

mprun passes an array in which the name of the program, a.out , is the first element
(argv[0]) , and arg1 and arg2 are the second and third elements.

In cluster-level programming, it is sometimes useful to specify an argv[0] that is
not the name of the program. You can use the --A option to do this. The argument
to --A is the name of the program to be executed. You can then follow this with an
argument of your choice in the arg0 position. For example, if you want to pass
newarg as the argv[0] to the program a.out , along with arg1 and arg2 , you
could issue the command

% mprun --A a.out newarg arg1 arg2

Exit Status
The exit status of mprun specifies the number of processes that exited with nonzero
exit status.

Omitting mprun
You can execute a serial program without using mprun . For example, you could
simply type

Executing Programs 41

% a.out

In that case, the program executes locally, on the node where you are logged in. By
doing this, however, you give up the benefits of load-balancing provided by the CRE.

Note - You cannot run Sun MPI programs in this way; you must use mprun.

Sending a Signal to a Process
The mpkill command is comparable to the Solaris kill command. You use it to
terminate all processes of the jobs with the specified job IDs running on the Sun HPC
cluster, or to send a signal to it.

You can send any standard Solaris signal. Use the --l option to obtain a list of the
supported signals, or the --d option to list them along with brief descriptions.

Specify the signal’s name or number, followed by the job ID, to send that signal to
the job. For example,

% mpkill --CONT 59

sends a SIGCONTto the processes that constitute job 59 .

Issuing mpkill without specifying a signal sends a SIGTERMto the job.

To find out a job’s job ID, use the command mpps or the --J option to mprun .

mpkill returns the following status values:

� 0 – The command executed successfully.

� 1 – An error was encountered during execution. For example, the job was not
known.

� 2 – The command was partially successful. This typically occurs when you send a
signal to a job in which one or more of the processes has already exited and
therefore could not receive the signal.

Note, this is usually not an error, since the reason you are using mpkill is most
likely to eliminate a job that has hung in this intermediate state.

42 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

CHAPTER 4

Getting Information

The CRE user interface includes two commands for obtaining information about a
Sun HPC cluster’s configuration (mpinfo) and information about jobs running on the
cluster (mpps).

mpps: Finding Out Job Status
The mpps command is comparable to the Solaris ps command. It returns information
about jobs and processes currently running on the Sun HPC cluster.

By default mpps shows basic information about the user’s jobs currently running in
the default partition. For example,

% mpps
JID NPROC UID STATE AOUT
41 3 slu RUN AAA
46 4 slu EXNG tmp
49 1 slu EXIT tmp
99 9 slu EXNG uname
100 9 slu EXNG uname

In the response,

� JID is the executing program’s job ID.

� NPROCis the number of processes in the job.

� UID is the user ID of the person who executed the program.

� STATEis the execution status of the job’s processes. (See below for a list of
possible process states.)

� AOUTis the name of the executable program.

43

Table 4–1 lists the states reported by mpps. Some states refer only to jobs, some only
to processes, and some to both. (See “Displaying Process Information” on page 45.)

TABLE 4–1 Job and Process States

State mpps Display Meaning

CORE CORE The job or process exited due to a signal and core was
dumped.

COREING CRNG The job is exiting due to a signal. The first process to
die dumped core.

EXIT EXIT The job or process exited normally.

EXITING EXNG The job is exiting. At least one process exited normally.

FAIL FAIL The job or process failed on startup or was aborted.

FAILING FLNG Initialization of the job failed, or a job abort has been
signaled.

ORPHAN ORPHAN The process has been “orphaned,” that is, the node on
which it exists has gone offline.

RUNNING RUN The job or process is running.

SEXIT SEXIT The job or process exited due to a signal.

SEXITING SEXNG The job is exiting due to a signal. The first process to
die was killed by a signal. At least one of its processes
is still in the RUN state.

SPAWNING SPAWN The job or process is being spawned.

STOP STOP The job or process is stopped.

Use the --f option to display, in addition, the start time for each job and the job’s
arguments.

Use the --e option to display information on all jobs, not just your jobs.

Specifying the Partition
To show information about jobs running in all partitions, use the --A option.

44 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

To show information about jobs running in a specific partition, use the --a option,
followed by the name of the partition.

Displaying Process Information
Use the --p option to also view information about the processes that make up the
jobs. The process information is listed below each job. For example,

% mpps --p
JID NPROC UID STATE AOUT RANK PID STATE NODE 2320 4 shaw RUN sleep 0

In this example,

� RANKis the process’s rank within the job.

� PID is the process’s process ID.

� STATEis the process’s execution status.

� NODEis the node on which the process is running.

Displaying Specific Process and Job Information
You can also use the --P option to display one or more specific process values and
the –J option to display one or more job values. Separate multiple values either with
spaces or with commas and no spaces.

Arguments to --P are

� rank – the rank of the process within the job.

� pid – the process’s process ID.

� state – the current execution state of the process.

� iod – the process ID of the I/O daemon for this process.

� load – the load on the node on which the process is executing.

� node – the name of the node on which the process is executing.

You can list these via the --lp option.

Arguments to --J are

� part – the name of the partition in which the job will run.

� jid – the job’s unique ID, which can be used as an argument to mpkill.

� nproc – the number of processes requested (the actual number of processes started
may differ if the –Wor –S flags were used with mprun).

� uid – the user on whose behalf the job will be run (normally the user who
submitted the job; see the –U flag to mprun for details).

Getting Information 45

� gid – the group on whose behalf the job will be run (normally the group of the
user who submitted the job; see the –G flag to mprun for details).

� state – there are six states:

� BUILD – The job is being submitted.

� WAIT – The job is waiting to run.

� SPAWN– The job is preparing to run.

� RUN– The job is running.

� RSTRT– The job has been killed because one of the nodes on which it was
running went down; the job will be restarted.

� running – the number of processes actually running for this job. This is not
always equal to the number of processes started for this job, since processes that
have exited are not counted.

� wkdir – the directory in which the job’s processes will be (or were) started.

� aout – the name of the program to be run.

� paout – the full path of the program to be run.

� ctime – the job creation time (when mprun was invoked for the job).

� args – the command-line arguments for the program to be run.

� stime – the time the job was started.

� prio – the job priority (higher numbers run first).

mpinfo : Configuration and Status
Use the mpinfo command to display information about the configuration of
partitions and nodes, and status information about nodes.

Overview
You can display information on all partitions or nodes, or on any subset of them. You
can either list the partitions or nodes, or you can use the --R option, along with a
resource requirement specifier (RRS), to have the CRE determine which objects should
be displayed. See “Expressing More Complex Resource Requirements” on page 23
for information on RRSs. If you specify a partition, you must include only partition
attributes in the RRS; if you specify a node, you must use only node attributes.

46 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

Use the --A option to specify an attribute whose value you want to display. If you
want to display more than one attribute, separate them by commas with no spaces.
Alternatively, you can issue multiple --A options on the same command line. If you
omit --A , mpinfo displays values for a default set of attributes.

Use the --v option to display information about all attributes for one or more
partitions or nodes. These include attributes defined by the system administrator.

When a Boolean attribute is displayed, yes indicates that the attribute is set, and no
indicates that the attribute is not set.

Partitions
Use the --P option to display information for all partitions.

Use the --p option, followed by the name of the partition, to display information
about an individual partition. To display information about multiple partitions, list
the names, either separating them with commas and no spaces or enclosing the list
in quotation marks.

Partition attributes whose settings you can view via mpinfo are shown in Table 4–2;
the heading displayed for each attribute is shown in parentheses after its description.

The following summarizes various points discussed earlier.

� You can specify one or more of these attributes via the --A option, or as part of an
RRS as an argument to the --R option. You can use either the attribute’s real name
or, in some cases, a shorter version.

� For attributes that are defined as negatives (for example, no_logins), you can
specify a positive version (for example, logins) for --A .

� You can list the settings of all attributes (including any system
administrator–defined attributes) on a per-partition basis via the --v option.

� You can list the names and brief descriptions of these attributes via the --lp
option.

TABLE 4–2 Partition attributes available via mpinfo

Attribute (mpadmin form) Description (mpinfo output heading)

enabled Set if the partition is enabled, that is, if it is ready to
accept jobs (ENA).

maxt Maximum number of simultaneously running
processes allowed on each node of the partition
(MAXT).

Getting Information 47

TABLE 4–2 Partition attributes available via mpinfo (continued)

Attribute (mpadmin form) Description (mpinfo output heading)

name Name of the partition (NAME).

login Allow logins. When login is set, LOG is set. Note that
this is the inverse of the mpadmin meaning. (LOG).

mp Allow multinode jobs. When no_mp_jobs is unset, MP
is set. Note that this is the inverse of the mpadmin
meaning. (MP).

nodes Number of nodes in the partition (NODES).

The following example illustrates the default mpinfo output for partitions:

% mpinfo --P
NAME NODES: Tot(cpu) Enb(cpu) Onl(cpu) ENA LOG MP
part10 1(4) 1(4) 1(4) no yes yes
part11 1(4) 1(4) 1(4) yes yes yes

The following example displays the names, numbers of nodes, and enabled status for
all partitions:

% mpinfo --A name,enabled,nodes --P
NAME ENA NODES: Tot(cpu) Enb(cpu) Onl(cpu)
part10 no 1(4) 1(4) 1(4)
part11 yes 1(4) 1(4) 1(4)

Nodes
Use the --N option to display information about all nodes.

Use the --n option, followed by the name(s) of one or more nodes. When listing
multiple node names, separate the names with commas without spaces.

The following table shows the node attributes that you can display via mpinfo . The
heading that is displayed for each attribute is shown in parentheses at the end of
each description.

Note these points:

� You can specify one or more of these attributes via the --A option, or as part of an
RRS as an argument to the --R option. You can use either the attribute’s real name
or, in some cases, a shorter version.

� You can list the settings of all attributes (including any system
administrator–defined attributes) on a per-node basis via the --v option.

48 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

� You can list the names and brief descriptions of these attributes via the --ln
option.

TABLE 4–3 Node attributes available via mpinfo

Attribute Short Form Description (mpinfo output heading)

cpu_idle idle Percent of time CPU is idle (IDLE).

cpu_iowait iowait Percent of time CPU spends waiting for I/O
(IWAIT).

cpu_kernel kernel Percent of time CPU spends in kernel
(KERNL).

cpu_swap swap Percent of time CPU spends waiting for
swap (SWAP).

cpu_type cpu CPU architecture (CPU).

cpu_user user Percent of time CPU spends running user’s
program (USER).

domain DNS domain.

enabled If set, node is available for spawning jobs on
it.

load1 Load average for the past minute (LOAD1).

load5 Load average for the past five minutes
(LOAD5).

load15 Load average for the past 15 minutes
(LOAD15).

manufacturer manuf Hardware manufacturer
(MANUFACTURER).

mem_free memf Node’s available RAM (in Mbytes) (FMEM).

mem_total memr Node’s total physical memory (in Mbytes)
(MEM).

name Name of the node (NAME).

Getting Information 49

TABLE 4–3 Node attributes available via mpinfo (continued)

Attribute Short Form Description (mpinfo output heading)

ncpus ncpu Number of CPU modules in the node
(NCPU).

os_arch_kernel mach Node’s kernel architecture (MACH).

os_max_proc maxproc Maximum number of processes allowed on
the node (note that this is all processes,
including cluster daemons) (MPROC).

os_name os Name of the operating system running on
the node (OS).

os_release osrel Operating system’s release number (OSREL).

os_release_maj osmaj The major number of the operating system
release number (MAJ).

os_release_min osmin The minor number of the operating system
release number (MIN).

os_version osver Operating system’s version (OSVER).

partition The partition of which the node is a member
(PARTITION).

serial_number serno Hardware serial number (SERIAL).

swap_free swapf Node’s available swap space (in Mbytes)
(FSWP).

swap_total swapr Node’s total swap space (in Mbytes) (SWAP).

The following is an example of the mpinfo output for nodes:

% mpinfo --N
node0 87 =>mpinfo --N
NAME UP PARTITION OS OSREL NCPU FMEM FSWP LOAD1 LOAD5 LOAD15
node0 y p0 SunOS 5.6 1 0.89 158.34 0.09 0.11 0.13
node1 y p0 SunOS 5.6 1 31.41 276.12 0.00 0.01 0.01
node2 y p1 SunOS 5.6 1 25.59 279.77 0.00 0.00 0.01
node3 y p1 SunOS 5.6 1 25.40 279.88 0.00 0.00 0.01

The following example shows only the names of nodes and the partition they’re in:

50 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

% mpinfo --N --A name,partition
NAME PARTITION
node0 part0
node1 part0
node2 part1
node3 part1

Cluster
Use the --C option to display information about the entire cluster. For example,

% mpinfo --C
NAME ADMINISTRATOR DEF_INTER_PART
node0 wmitty part0

where:

� NAME– The name of the cluster

� ADMINISTRATOR– The name of its administrator

� DEF_INTER_PART– The default interactive partition

Getting Information 51

52 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

CHAPTER 5

Debugging Programs

Prism is a component in the Sun HPC ClusterTools suite of software. You can use it
to debug and visualize data in serial or message-passing programs on a Sun HPC
cluster. For complete information on Prism, see the Prism 6.0 User’s Guide and Prism
6.0 Reference Manual. This chapter gives a brief overview of how to start up Prism.

To use Prism, you must first log in to the Sun HPC cluster, as described in Chapter 2.
If you are using the graphical version of Prism, you must be running Solaris 2.6 or
Solaris 7 with either OpenWindows or CDE.

You can start Prism by entering

% prism

and then loading your executable program from within Prism.

Alternatively, you can specify the program’s name on Prism’s command line. In this
case, Prism will start up with the program already loaded. For example,

% prism a.out

Once the program is loaded in Prism, you can execute it, debug it, and visualize data
in it. The program executes on the same node as Prism.

Note - Prism does not debug programs at the thread level.

53

Debugging Sun MPI Programs
If you are going to use Prism to debug a Sun MPI program, use the --np option
with mprun to specify how many processes are to be started. For example,

% prism --np 4 a.out

When you use the --np option, you can also use other Prism options, such as --p ,
to determine where the job’s processes are to run and how they are mapped onto
nodes. For example,

% prism --p part0 --np 4 a.out

starts Prism as well as the message-passing program a.out on the partition part0 .
Client Prism processes are also started with each of the a.out processes. They
receive instructions from and return information to the master Prism daemon that is
started by mprun.

You can attach to a running Sun MPI program by specifying its job ID after the name
of the executable program. For example,

% prism --np 1 a.out 462

You can find out the job ID of a program by issuing the mpps command or by using
the --J option to mprun .

The setting of the MPRUN_FLAGSenvironment variable applies to both mprun
starting Prism and to Prism starting the parallel processes. This means that the
default options are likely to be incorrect for one or the other, since you would
typically want to start Prism on one node in a shared partition, and the Sun MPI
processes on multiple nodes, possibly in a dedicated partition.

54 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

CHAPTER 6

Performance Tuning

Sun MPI uses a variety of techniques to deliver high-performance, robust, and
memory-efficient message passing under a wide set of circumstances. In certain
situations, however, applications will benefit from nondefault behaviors. The Sun
MPI environment variables discussed in this section allow you to tune these default
behaviors. A list of all Sun MPI environment variables, with brief descriptions, can
be found in Appendix A and in the MPI man page.

Current Settings
User tuning of MPI environment variables can be restricted by the system
administrator through a configuration file, hpc.conf . To determine whether such
resctrictions are in place on your local cluster use the MPI_PRINTENV (described
below) to verify settings. .

In most cases, performance will be good without tuning any environment variables.
Nevertheless, here are some performance guidelines for using MPI environment
variables. In some cases, diagnosis of whether environment variables would be
helpful is aided by Prism profiling with TNF probes, as described in the Prism User’s
Guide and the Sun MPI Programming and Reference Guide.

Runtime Diagnostic Information
Certain Sun MPI environment variables cause extra diagnostic information to be
printed out at run time:

55

% setenv MPI_PRINTENV 1
% setenv MPI_SHOW_INTERFACES 3
% setenv MPI_SHOW_ERRORS 1

Running on a Dedicated System
If your system has sufficient capacity for running your MPI job, you can commit
processors aggressively to your job. At a minimum, the CPU load should not exceed
the number of physical processors. The CPU load for your job is the number of MPI
processes in the job, but the load is greater if your job is multithreaded. The load on
the system must also be shared with any other jobs are running on the same system.
You can check the current load can be checked with the mpinfo command.

To run your job more aggressively on a dedicated system, set the MPI_SPIN and
MPI_PROCBINDenvironment variables:

% setenv MPI_SPIN 1

Use this only if you will leave at least one processor per node free to service system
daemons. Profiling with Prism introduces background daemons that cause a slight
but noticeable load, so you must be careful to avoid overloading when attempting to
profile a code with this setting.

% setenv MPI_PROCBIND 1

Set the MPI_PROCBINDvariable only if there are no other MPI jobs running and
your job is single-threaded.

Safe Use of System Buffers
In some MPI programs, processes send large volumes of data with blocking sends
before starting to receive messages. The MPI standard specifies that users must
explicitly provide buffering in such cases, perhaps using MPI_Bsend calls. In
practice, however, some users rely on the standard send routine (MPI_Send) to
supply unlimited buffering. By default, Sun MPI prevents deadlock in such

56 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

situations through general polling, which drains system buffers even when no
receives have been posted by the user code.

For best performance on typical, safe programs, you can suppress general polling
should by setting MPI_POLLALL:

% setenv MPI_POLLALL 0

Trading Memory for Performance
Depending on message traffic, performance can stall if system buffers become
congested, but it can be superior if buffers are large. Here, we examine performance
for on-node messages via shared-memory buffers.

It is helpful to think of data traffic per connection, the “path” from a particular
sender to a particular receiver, since many Sun MPI buffering resources are allocated
on a per-connection basis. A sender may emit bursts of messages on a connection,
during which time the corresponding receiver may not be depleting the buffers. For
example, a sender may execute a sequence of send operations to one receiver during
a period in which that receiver is not making any MPI calls whatsoever.

You may need to use profiling to diagnose such conditions. For more information on
profiling, see the Prism User’s Guide and the Sun MPI Programming and Reference
Guide.

Rendezvous or Eager Protocol?
Is your program sending many long, unexpected messages? Sun MPI offers message
rendezvous, which requires a receiver to echo a ready signal to the sender before data
transmission can begin. This can improve performance for the case of a pair of
processes that communicate with a different order for their sends as for their
receives, since receive-side buffering would be reduced. To allow rendezvous
behavior for long messages, set the MPI_EAGERONLYenvironment variable:

% setenv MPI_EAGERONLY 0

The threshold message size for rendezvous behavior can be tuned independently for
each protocol with MPI_SHM_RENDVSIZE, MPI_TCP_RENDVSIZE, and
MPI_RSM_RENDVSIZE.

Performance Tuning 57

Note - Rendezvous will often degrade performance by coupling senders to receivers.
Also, for some “unsafe” codes, it can produce deadlock.

Many Broadcasts or Reductions
Does your program include many broadcasts or reductions on large messages? Large
broadcasts may benefit from increased values of MPI_SHM_BCASTSIZE, and large
reductions from increased MPI_SHM_REDUCESIZE. Also, if many different
communicators are involved, you may want to increase MPI_SHM_GBPOOLSIZE. In
most cases, the default values will provide best performance.

Shared-Memory Point-to-Point Message
Passing
The size of each shared-memory buffer is fixed at 1 Kbyte. Most other quantities in
shared-memory message passing are settable with MPI environment variables.

A short message, at most MPI_SHM_SHORTMSGSIZEbytes long, is fit into one
postbox and no buffers are used. Above that size, message data is written into
buffers and controlled by postboxes.

Only starting at MPI_SHM_PIPESTARTbytes, however, are multiple postboxes used,
which is known as pipelining. The amount of buffer data controlled by any one
postbox is at most MPI_SHM_PIPESIZE bytes. By default, MPI_SHM_PIPESTARTis
well below MPI_SHM_PIPESIZE. For the smallest pipelined messages, then, a
message is broken roughly into two, and each of two postboxes controls roughly half
the message.

Above MPI_SHM_CYCLESTARTbytes, messages are fed cyclically through two sets of
buffers, each set of size MPI_SHM_CYCLESIZEbytes. During a cyclic transfer, the
footprint of the message in shared memory buffers is 2*MPI_SHM_CYCLESIZEbytes.

The postbox area consists of MPI_SHM_NUMPOSTBOXpostboxes per connection. By
default, each connection has its own pool of buffers, each pool of size
MPI_SHM_CPOOLSIZEbytes.

By setting MPI_SHM_SBPOOLSIZE, users may specify that each sender has a pool of
buffers, of MPI_SHM_SBPOOLSIZEbytes each, to be shared among its various
connections. If MPI_SHM_CPOOLSIZEis also set, then any one connection may
consume only that many bytes from its send-buffer pool at any one time.

58 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

Memory Considerations
In all, the size of the shared-memory area devoted to point-to-point messages is

n * (n -- 1
)

* (
MPI_SHM_NUMPOSTBOX *

(64 + MPI_SHM_SHORTMSGSIZE)
+ MPI_SHM_CPOOLSIZE
)

bytes when per-connection pools are used (that is, when MPI_SHM_SBPOOLSIZEis
not set) and

n * (n -- 1
) * MPI_SHM_NUMPOSTBOX *
(64 + MPI_SHM_SHORTMSGSIZE)
+
n * MPI_SHM_SBPOOLSIZE

bytes when per-sender pools are used (that is, when MPI_SHM_SBPOOLSIZEis set).

Cyclic message passing limits the size of shared memory that is needed to transfer
even arbitrarily large messages.

Shared-Memory Collectives
Collective operations in Sun MPI are highly optimized and make use of a “general
buffer pool” within shared memory.

MPI_SHM_GBPOOLSIZEsets the amount of space available on a node for the
“optimized” collectives in bytes. By default, it is set to 20971520 bytes. This space is
used by MPI_Bcast , MPI_Reduce , MPI_Allreduce , MPI_Reduce_scatter , and
MPI_Barrier , provided that two or more of the MPI processes are on the node.

When a communicator is created, space is reserved in the general buffer pool for
performing barriers, short broadcasts, and a few other purposes.

For larger broadcasts, shared memory is allocated out of the general buffer pool. The
maximum buffer-memory footprint in bytes of a broadcast operation is set by an
environment variable as

(n/4) * 2 * MPI_SHM_BCASTSIZE

where n is the number of MPI processes on the node. If less memory is needed than
this, then less memory is used. After the broadcast operation, the memory is
returned to the general buffer pool.

For reduce operations,

Performance Tuning 59

n * n * MPI_SHM_REDUCESIZE

bytes are borrowed from the general buffer pool.

The broadcast and reduce operations are pipelined for very large messages. By
increasing MPI_SHM_BCASTSIZEand MPI_SHM_REDUCESIZE, one can improve the
efficiency of these collective operations for very large messages, but the amount of
time it takes to fill the pipeline can also increase.

If MPI_SHM_GBPOOLSIZEproves to be too small and a collective operation happens
to be unable to borrow memory from this pool, the operation will revert to slower
algorithms. Hence, under certain circumstances, performance could dictate increasing
MPI_SHM_GBPOOLSIZE.

Running over TCP
TCP ensures reliable dataflow, even over lossy networks, by retransmitting data as
necessary. When the underlying network loses a lot of data, the rate of
retransmission can be very high and delivered MPI performance will suffer
accordingly. Increasing synchronization between senders and receivers by lowering
the TCP rendezvous threshold with MPI_TCP_RENDVSIZEmay help in certain cases.
Generally, increased synchronization will hurt performance, but over a lossy network
it may help mitigate catastrophic degradation.

If the network is not lossy, then lowering the rendezvous threshold would be
counterproductive and, indeed, a Sun MPI safeguard may be lifted. For reliable
networks, use

% setenv MPI_TCPSAFEGATHER 0

Remote Shared Memory (RSM)
Point-to-Point Message Passing
The RSM protocol has some similarities with the shared memory protocol, but it also
has substantial deviations, and environment variables are used differently.

The maximum size of a short message is MPI_RSM_SHORTMSGSIZEbytes, with
default value of 401 bytes. Short RSM messages can span multiple postboxes, but
they still do not use any buffers.

60 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

The most data that will be sent under any one postbox for pipelined messages is
MPI_RSM_PIPESIZE bytes. There are MPI_RSM_NUMPOSTBOXpostboxes for each
RSM connection.

If MPI_RSM_SBPOOLSIZEis unset, then each RSM connection has a buffer pool of
MPI_RSM_CPOOLSIZEbytes. If MPI_RSM_SBPOOLSIZEis set, then each process has
a pool of buffers that is MPI_RSM_SBPOOLSIZEbytes per remote node for sending
messages to processes on the remote node.

Unlike the case of the shared-memory protocol, values of the MPI_RSM_PIPESIZE,
MPI_RSM_CPOOLSIZE, and MPI_RSM_SBPOOLSIZEenvironment variables are
merely requests. Values set with the setenv or printed when MPI_PRINTENV is used
may not reflect effective values. In particular, only when connections are actually
established are the RSM parameters truly set. Indeed, the effective values could
change over the course of program execution if lazy connections are employed.

Striping refers to passing messages over multiple links to get the speedup of their
aggregate bandwidth. The number of stripes used is MPI_RSM_MAXSTRIPEor all
physically available stripes, whichever is less.

Use of rendezvous for RSM messages is controlled with MPI_RSM_RENDVSIZE.

Memory Considerations
Memory is allocated on a node for each remote MPI process that sends messages to
it over RSM. If np_local is the number of processes on a particular node, then the
memory requirement on the node for RSM message passing from any one remote
process is

np_local * (MPI_RSM_NUMPOSTBOX* 128 + MPI_RSM_CPOOLSIZE)

bytes when MPI_RSM_SBPOOLSIZEis unset, and

np_local * MPI_RSM_NUMPOSTBOX * 128 + MPI_RSM_SBPOOLSIZE

bytes when MPI_RSM_SBPOOLSIZEis set.

The amount of memory actually allocated may be higher or lower than this
requirement:

� The memory requirement is rounded up to some multiple of 8192 bytes with a
minimum of 32768 bytes.

� This memory is allocated from a 256-Kbyte (262,144-byte) segment.

� If the memory requirement is greater than 256 Kbytes, then insufficient
memory will be allocated.

� If the memory requirement is less than 256 Kbytes, some allocated memory
will go unused. (There is some, but only limited, sharing of segments.)

Performance Tuning 61

If less memory is allocated than is required, then requested values of
MPI_RSM_CPOOLSIZEor MPI_RSM_SBPOOLSIZEmay be reduced at run time. This
can cause the requested value of MPI_RSM_PIPESIZE to be overridden as well.

Each remote MPI process requires its own allocation on the node as described above.

If multiple stripes are employed, the memory requirement increases correspondingly.

Performance Considerations
The pipe size should be at most half as big as the connection pool

2 * MPI_RSM_PIPESIZE <= MPI_RSM_CPOOLSIZE

Otherwise, pipelined transfers will proceed slowly. The library adjusts
MPI_RSM_PIPESIZE appropriately.

Reducing striping has no performance advantage, but varying MPI_RSM_MAXSTRIPE
can give you insight into the relationship between application performance depends
and internode bandwidth.

For pipelined messages, a sender must synchronize with its receiver to ensure that
remote writes to buffers have completed before postboxes are written. Long
pipelined messages can absorb this synchronization cost, but performance for short
pipelined messages will suffer. In some cases, raising MPI_RSM_SHORTMSGSIZEcan
mitigate this effect.

62 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

APPENDIX A

Environment Variables

Many environment variables are available for fine-tuning your Sun MPI environment.
All 39 Sun MPI environment variables are listed here with brief descriptions. The
same descriptions are also available on the MPI man page. If you want to return to
the default setting after having set a variable, simply unset it (using unsetenv). The
effects of some of the variables are explained in more detail in Chapter 6.

The environment variables are listed here in six groups:

� “Informational” on page 63

� “General Performance Tuning” on page 64

� “Tuning Memory for Point-to-Point Performance” on page 65

� “Numerics” on page 67

� “Tuning Rendezvous” on page 67

� “Miscellaneous” on page 68

Informational
MPI_PRINTENV
When set to 1, causes the environment variables and hpc.conf parameters
associated with the MPI job to be printed out. The default is 0.

MPI_QUIET
If set to 1, suppresses Sun MPI warning messages. The default value is 0.

63

MPI_SHOW_ERRORS
If set to 1, the MPI_ERRORS_RETURNerror handler prints the error message and
returns the error. The default value is 0.

MPI_SHOW_INTERFACES
When set to 1, 2 or 3, information regarding which interfaces are being used by an
MPI application prints to stdout . Set MPI_SHOW_INTERFACESto 1 to print the
selected internode interface. Set it to 2 to print all the interfaces and their rankings.
Set it to 3 for verbose output. The default value, 0, does not print information to
stdout .

General Performance Tuning
MPI_POLLALL
When set to 1, the default value, all connections are polled for receives, also known
as full polling. When set to 0, only those connections are polled where receives are
posted. Full polling helps drain system buffers and so lessen the chance of deadlock
for “unsafe” codes. Well-written codes should set MPI_POLLALL to 0 for best
performance.

MPI_PROCBIND
Binds each MPI process to its own processor. By default, MPI_PROCBINDis set to 0,
which means processor binding is off. To turn processor binding on, set it to 1. The
system administrator may allow or disable processor binding by setting the pbind
parameter in the hpc.conf file on or off. If this parameter is set, the
MPI_PROCBINDenvironment variable is disabled. Performance can be enhanced
with processor binding, but very poor performance will result if processor binding is
used for multithreaded jobs or for more than one job at a time.

MPI_SPIN
Sets the spin policy. The default value is 0, which causes MPI processes to spin
nonaggressively, allowing best performance when the load is at least as great as the
number of CPUs. A value of 1 causes MPI processes to spin aggressively, leading to

64 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

best performance if extra CPUs are available on each node to handle system
daemons and other background activities.

Tuning Memory for Point-to-Point
Performance
MPI_RSM_CPOOLSIZE
The requested size, in bytes, to be allocated per stripe for buffers for each
remote-shared-memory connection. This value may be overridden when connections
are established. The default value is 16384 bytes.

MPI_RSM_NUMPOSTBOX
The number of postboxes per stripe per remote-shared-memory connection. The
default is 15 postboxes.

MPI_RSM_PIPESIZE
The limit on the size (in bytes) of a message that can be sent over remote shared
memory via the buffer list of one postbox per stripe. The default is 8192 bytes.

MPI_RSM_SBPOOLSIZE
If set, MPI_RSM_SBPOOLSIZEis the requested size in bytes of each RSM send buffer
pool. An RSM send buffer pool is the pool of buffers on a node that a remote process
would use to send to processes on the node. A multiple of 1024 must be used. If
unset, then pools of buffers are dedicated to connections rather than to senders.

MPI_RSM_SHORTMSGSIZE
The maximum size, in bytes, of a message that will be sent via remote shared
memory without using buffers. The default value is 401 bytes.

Environment Variables 65

MPI_SHM_CPOOLSIZE
The amount of memory, in bytes, that can be allocated to each connection pool.
When MPI_SHM_SBPOOLSIZEis not set, the default value is 24576 bytes. Otherwise,
the default value is MPI_SHM_SBPOOLSIZE.

MPI_SHM_CYCLESIZE
The limit, in bytes, on the portion of a shared-memory message that will be sent via
the buffer list of a single postbox during a cyclic transfer. The default value is 8192
bytes. A multiple of 1024 that is at most MPI_SHM_CPOOLSIZE/2 must be used.

MPI_SHM_CYCLESTART
Shared-memory transfers that are larger than MPI_SHM_CYCLESTARTbytes will be
cyclic. The default value is 24576 bytes.

MPI_SHM_NUMPOSTBOX
The number of postboxes dedicated to each shared-memory connection. The default
value is 16.

MPI_SHM_PIPESIZE
The limit, in bytes, on the portion of a shared-memory message that will be sent via
the buffer list of a single postbox during a pipeline transfer. The default value is 8192
bytes. The value must be a multiple of 1024.

MPI_SHM_PIPESTART
The size, in bytes, at which shared-memory transfers will start to be pipelined. The
default value is 2048. Multiples of 1024 must be used.

MPI_SHM_SBPOOLSIZE
If set, MPI_SHM_SBPOOLSIZEis the size, in bytes, of the pool of shared-memory
buffers dedicated to each sender. A multiple of 1024 must be used. If unset, then
pools of shared-memory buffers are dedicated to connections rather than to senders.

66 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

MPI_SHM_SHORTMSGSIZE
The size (in bytes) of the section of a postbox that contains either data or a buffer list.
The default value is 256 bytes.

Note - If MPI_SHM_PIPESTART, MPI_SHM_PIPESIZE, or MPI_SHM_CYCLESIZEis
increased to a size larger than 31744 bytes, then MPI_SHM_SHORTMSGSIZEmay also
have to be increased. See Chapter 6 for more information.

Numerics
MPI_CANONREDUCE
Prevents reduction operations from using any optimizations that take advantage of
the physical location of processors. This may provide more consistent results in the
case of floating-point addition, for example. However, the operation may take longer
to complete. The default value is 0, meaning optimizations are allowed. To prevent
optimizations, set the value to 1.

Tuning Rendezvous
MPI_EAGERONLY
When set to 1, the default, only the eager protocol is used. When set to 0, both eager
and rendez-vous protocols are used.

MPI_RSM_RENDVSIZE
Messages communicated by remote shared memory that are greater than this size
will use the rendezvous protocol unless the environment variable MPI_EAGERONLY
is set to 1. Default value is 16384 bytes.

Environment Variables 67

MPI_SHM_RENDVSIZE
Messages communicated by shared memory that are greater than this size will use
the rendezvous protocol unless the environment variable MPI_EAGERONLYis set.
The default value is 24576 bytes.

MPI_TCP_RENDVSIZE
Messages communicated by TCP that contain data of this size and greater will use
the rendezvous protocol unless the environment variable MPI_EAGERONLYis set.
Default value is 49152 bytes.

Miscellaneous
MPI_COSCHED
Specifies the user’s preference regarding use of the spind daemon for coscheduling.
Values can be 0 (prefer no use) or 1 (prefer use). This preference may be overridden
by the system administrator’s policy. This policy is set in the hpc.conf file and can
be 0 (forbid use), 1 (require use), or 2 (no policy). If no policy is set and no user
preference is specified, coscheduling is not used.

Note - If no user preference is specified, the value 2 will be shown when
environment variables are printed with MPI_PRINTENV.

MPI_FLOWCONTROL
Limits the number of unexpected messages that can be queued from a particular
connection. Once this quantity of unexpected messages has been received, polling the
connection for incoming messages stops. The default value, 0, indicates that no limit
is set. To limit flow, set the value to some integer greater than zero.

MPI_FULLCONNINIT
Ensures that all connections are established during initialization. By default,
connections are established lazily. However, you can override this default by setting
the environment variable MPI_FULLCONNINIT to 1, forcing full-connection
initialization mode. The default value is 0.

68 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

MPI_MAXFHANDLES
The maximum number of Fortran handles for objects other than requests.
MPI_MAXFHANDLESspecifies the upper limit on the number of concurrently allocated
Fortran handles for MPI objects other than requests. This variable is ignored in the
default 32-bit library. The default value is 1024. Users should take care to free MPI
objects that are no longer in use. There is no limit on handle allocation for C codes.

MPI_MAXREQHANDLES
The maximum number of Fortran request handles. MPI_MAXREQHANDLESspecifies
the upper limit on the number of concurrently allocated MPI request handles. Users
must take care to free up request handles by properly completing requests. The
default value is 1024. This variable is ignored in the default 32-bit library.

MPI_OPTCOLL
The MPI collectives are implemented using a variety of optimizations. Some of these
optimizations can inhibit performance of point-to-point messages for “unsafe”
programs. By default, this variable is 1, and optimized collectives are used. The
optimizations can be turned off by setting the value to 0.

MPI_RSM_MAXSTRIPE
Defines the maximum number of stripes that can be used during communication via
remote shared memory. The default value is the number of stripes in the cluster, with
a maximum default of 2.

MPI_SHM_BCASTSIZE
On SMPs, the implementation of MPI_Bcast() for large messages is done using a
double-buffering scheme. The size of each buffer (in bytes) is settable by using this
environment variable. The default value is 32768 bytes.

MPI_SHM_GBPOOLSIZE
The amount of memory available, in bytes, to the general buffer pool for use by
collective operations. The default value is 20971520 bytes.

Environment Variables 69

MPI_SHM_REDUCESIZE
On SMPs, calling MPI_Reduce() causes all processors to participate in the reduce.
Each processor will work on a piece of data equal to the MPI_SHM_REDUCESIZE
setting. The default value is 256 bytes. Care must be taken when setting this variable
because the system reserves MPI_SHM_REDUCESIZE* np * np memory to execute the
reduce.

MPI_SPINDTIMEOUT
When coscheduling is enabled, limits the length of time (in milliseconds) a message
will remain in the poll waiting for the spind daemon to return. If the timeout occurs
before the daemon finds any messages, the process re-enters the polling loop. The
default value is 1000 ms. A default can also be set by a system administrator in the
hpc.conf file.

MPI_TCP_CONNLOOP
Sets the number of times MPI_TCP_CONNTIMEOUToccurs before signaling an error.
The default value for this variable is 0, meaning that the program will abort on the
first occurrence of MPI_TCP_CONNTIMEOUT.

MPI_TCP_CONNTIMEOUT
Sets the timeout value in seconds that is used for an accept() call. The default
value for this variable is 600 seconds (10 minutes). This timeout can be triggered in
both full- and lazy-connection initialization. After the timeout is reached, a warning
message will be printed. If MPI_TCP_CONNLOOPis set to 0, then the first timeout
will cause the program to abort.

MPI_TCP_SAFEGATHER
Allows use of a congestion-avoidance algorithm for MPI_Gather() and
MPI_Gatherv() over TCP. By default, MPI_TCP_SAFEGATHERis set to 1, which
means use of this algorithm is on. If you know that your underlying network can
handle gathering large amounts of data on a single node, you may want to override
this algorithm by setting MPI_TCP_SAFEGATHERto 0.

70 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

APPENDIX B

Troubleshooting

This appendix describes some common problem situations, resulting error messages,
and suggestions for fixing the problems. Sun MPI error reporting, including I/O,
follows the MPI-2 standard. By default, errors are reported in the form of standard
error classes. These classes and their meanings are listed in Table B–1 (for non-I/O
MPI) and Table B–2 (for MPI I/O) and are also available on the MPI man page.

Three predefined error handlers are available in Sun MPI 4.0:

� MPI_ERRORS_RETURN– The default, returns an error code if an error occurs.

� MPI_ERRORS_ARE_FATAL– I/O errors are fatal, and no error code is returned.

� MPI_THROW_EXCEPTION– A special error handler to be used only with C++.

MPI Messages
You can make changes to and get information about the error handler using any of
the following routines:

� MPI_Comm_create_errhandler

� MPI_Comm_get_errhandler

� MPI_Comm_set_errhandler

Messages resulting from an MPI program fall into two categories:

� Error messages – Error messages stem from within MPI. Usually an error message
explains why your program cannot complete, and the program aborts.

� Warning messages – Warnings stem from the environment in which you are
running your MPI program and are usually sent by MPI_Init . They are not
associated with an aborted program, that is, programs continue to run despite
warning messages.

71

Error Messages
Sun MPI error messages use a standard format:

[x y z] Error in function_name: errclass_string:intern(a): description: unixerrstring

where

� [x y z] is the process communication identifier, and:

� x is the job id (or jid).

� y is the name of the communicator if a name exists; otherwise it is the address
of the opaque object.

� z is the rank of the process.

The process communication identifier is present in every error message.

� function_name is the name of the associated MPI function. It is present in every
error message.

� errclass_string is the string associated with the MPI error class. It is present in
every error message.

� intern is an internal function. It is optional.

� a is a system call, if one is the cause of the error. It is optional.

� description is a description of the error. It is optional.

� unixerrstring is the UNIX error string that describes system call a. It is optional.

Warning Messages
Sun MPI warning messages also use a standard format:

[x y z] Warning message

where

� message is a description of the error.

Standard Error Classes
Listed below are the error return classes you may encounter in your MPI programs.
Error values may also be found in mpi.h (for C), mpif.h (for Fortran), and
mpi++.h (for C++).

72 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

TABLE B–1 Sun MPI Standard Error Classes

Error Code ValueMeaning

MPI_SUCCESS 0Successful return code.

MPI_ERR_BUFFER 1Invalid buffer pointer.

MPI_ERR_COUNT 2Invalid count argument.

MPI_ERR_TYPE 3Invalid datatype argument.

MPI_ERR_TAG 4Invalid tag argument.

MPI_ERR_COMM 5Invalid communicator.

MPI_ERR_RANK 6Invalid rank.

MPI_ERR_ROOT 7Invalid root.

MPI_ERR_GROUP 8Null group passed to function.

MPI_ERR_OP 9Invalid operation.

MPI_ERR_TOPOLOGY 10Invalid topology.

MPI_ERR_DIMS 11Illegal dimension argument.

MPI_ERR_ARG 12Invalid argument.

MPI_ERR_UNKNOWN 13Unknown error.

MPI_ERR_TRUNCATE 14Message truncated on receive.

MPI_ERR_OTHER 15Other error; use Error_string .

MPI_ERR_INTERN 16Internal error code.

MPI_ERR_IN_STATUS 17Look in status for error value.

MPI_ERR_PENDING 18Pending request.

Troubleshooting 73

TABLE B–1 Sun MPI Standard Error Classes (continued)

Error Code ValueMeaning

MPI_ERR_REQUEST 19Illegal MPI_Request handle.

MPI_ERR_KEYVAL 36Illegal key value.

MPI_ERR_INFO 37Invalid info object.

MPI_ERR_INFO_KEY 38Illegal info key.

MPI_ERR_INFO_NOKEY 39No such key.

MPI_ERR_INFO_VALUE 40Illegal info value.

MPI_ERR_TIMEDOUT 41Timed out.

MPI_ERR_RESOURCES 42Out of resources.

MPI_ERR_TRANSPORT 43Transport layer error.

MPI_ERR_HANDSHAKE 44Error accepting/connecting.

MPI_ERR_SPAWN 45Error spawning.

MPI_ERR_LASTCODE 46Last error code.

MPI I/O message are listed separately, in Table B–2.

MPI I/O Error Handling
Sun MPI I/O error reporting follows the MPI-2 standard. By default, errors are
reported in the form of standard error codes (found in
/opt/SUNWhpc/include/mpi.h). Error classes and their meanings are listed in
Table B–2. They can also be found in mpif.h (for Fortran) and mpi++.h (for C++).

74 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

You can change the default error handler by specifying MPI_FILE_NULL as the file
handle with the routine MPI_File_set_errhandler , even no file is currently
open. Or, you can use the same routine to change a specific file’s error handler.

TABLE B–2 Sun MPI I/O Error Classes

Error Class ValueMeaning

MPI_ERR_FILE 20Bad file handle.

MPI_ERR_NOT_SAME 21Collective argument not identical on all
processes.

MPI_ERR_AMODE 22Unsupported amode passed to open.

MPI_ERR_UNSUPPORTED_DATAREP 23Unsupported datarep passed to
MPI_File_set_view .

MPI_ERR_UNSUPPORTED_OPERATION 24Unsupported operation, such as seeking on a
file that supports only sequential access.

MPI_ERR_NO_SUCH_FILE 25File (or directory) does not exist.

MPI_ERR_FILE_EXISTS 26File exists.

MPI_ERR_BAD_FILE 27Invalid file name (for example, path name
too long).

MPI_ERR_ACCESS 28Permission denied.

MPI_ERR_NO_SPACE 29Not enough space.

MPI_ERR_QUOTA 30Quota exceeded.

MPI_ERR_READ_ONLY 31Read-only file system.

MPI_ERR_FILE_IN_USE 32File operation could not be completed, as the
file is currently open by some process.

MPI_ERR_DUP_DATAREP 33Conversion functions could not be registered
because a data representation identifier that
was already defined was passed to
MPI_REGISTER_DATAREP.

Troubleshooting 75

TABLE B–2 Sun MPI I/O Error Classes (continued)

Error Class ValueMeaning

MPI_ERR_CONVERSION 34An error occurred in a user-supplied
data-conversion function.

MPI_ERR_IO 35I/O error.

MPI_ERR_INFO 37Invalid info object.

MPI_ERR_INFO_KEY 38Illegal info key.

MPI_ERR_INFO_NOKEY 39No such key .

MPI_ERR_INFO_VALUE 40Illegal info value.

MPI_ERR_LASTCODE 46Last error code.

76 Sun MPI 4.0 User’s Guide: With CRE ♦ June 1999, Revision A

