
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Sun™ MPI 7.0 Software
Programming and Reference

Manual

Part No. 819-4133-10
March 2006, Revision A

http://www.sun.com/hwdocs/feedback

Please
Recycle

Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, Solaris, Sun HPC ClusterTools, Sun Performance Library, and Sun Performance Workshop
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans
les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, Solaris, Sun HPC ClusterTools, Sun Performance Library, et Sun Performance Workshop
sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développment du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive do Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d ’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Preface vii

1. Introduction to Sun MPI 1

Sun MPI Features 1

Sun MPI I/O 2

2. Sun MPI Library 3

Types of Libraries 3

Sun MPI Routines 4

Point-to-Point Communication Routines 4

One-Sided Communication Routines 5

Collective Communication Routines 11

Using the In-Place Option 13

Using Persistent Communication Requests 13

Managing Process Topologies 13

Name-Publishing Routines 14

Environmental Inquiry Routines 14

Packing and Unpacking Functions 14

Managing Communicators, Groups, and Contexts 15

Data Types 16
iii

Resource Reservation for Batch Processing 19

Programming With Sun MPI 20

Fortran Support 20

Recommendations for All-to-All and All-to-One Communication 21

Signals and MPI 22

Multithreaded Programming 22

Guidelines for Thread-Safe Programming 23

MPI_Wait(), MPI_Waitall(), MPI_Waitany(), MPI_Waitsome() 23

MPI_Cancel() 23

MPI_Probe(), MPI_Iprobe() 24

Collective Calls 24

Communicator Operations 24

Error Handlers 25

Profiling Interface 25

How the Sun MPI Profiling Interface Works 26

MPE: Extensions to the Library 28

▼ To Obtain and Build the MPE 29

3. Getting Started 31

Header Files 31

Sample Code 32

Compiling and Linking 36

Choosing a Library Path 38

Stubbing Thread Calls 38

Profiling With mpprof 39

Basic Job Execution 39

Executing With CRE 40

Executing With LSF Suite 40

Debugging 41
iv Sun™ MPI 7.0 Software Programming and Reference Manual • March 2006

Debugging with DTrace 41

Debugging With TotalView 41

Limitations 42

Related Documentation 42

Starting a New Job Using TotalView 43

Attaching to an mprun Job 44

Launching Sun MPI Batch Jobs Using TotalView 45

Debugging With MPE 47

4. Programming With Sun MPI I/O 49

Data Partitioning and Data Types 49

Definitions 50

Note for Fortran Users 51

Routines 51

File Manipulation 52

File Hints 52

File Views 53

Data Access 53

Data Access With Explicit Offsets 54

Data Access With Individual File Pointers 55

Pointer Manipulation 55

Data Access With Shared File Pointers 56

File Interoperability 57

File Consistency and Semantics 58

Sample Code 59

Partitioned Writing and Reading in a Parallel Job 59

Data Access Styles 63

Overlapping I/O With Computation and Communication 64
Contents v

A. Sun MPI and Sun MPI I/O Routines 67

B. Environment Variables 103

C. Troubleshooting 115

Index 121
vi Sun™ MPI 7.0 Software Programming and Reference Manual • March 2006

Preface

The Sun MPI Software Programming and Reference Manual describes the Sun™ MPI
library of message-passing routines and explains how to develop an MPI program
on a Sun HPC system.

For the most part, this guide does not repeat information that is available in detail in
the MPI Standard; it focuses instead on what is specific to the Sun MPI
implementation. You should be familiar with programming in C or Fortran, with
parallel programming, and with the message-passing model.

Before You Read This Book
For general information about writing MPI programs, see “Related Documentation”
on page ix. Sun MPI is part of the Sun HPC ClusterTools™ suite of software. For
more information about running Sun MPI jobs, see the Sun HPC ClusterTools Software
User's Guide. Product notes for Sun MPI are included in Sun HPC ClusterTools
Software Release Notes.

Using UNIX Commands
This document does not describe how to use basic UNIX® commands. For that type
of information, see:

■ Solaris Handbook for Sun Peripherals
■ Online documentation for the Solaris™ Operating System
■ Other software documentation that you received with your system
vii

Typographic Conventions

Shell Prompts

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
viii Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Related Documentation

A wealth of documentation on MPI is available on the World Wide Web. It includes
the following:

■ The MPI home page, with links to specifications for the MPI-2 Standard:

http://www.mpi–forum.org

■ Additional Web sites that provide links to papers, talks, the MPI Standard,
implementations, information about MPI-2, tutorials, and pointers to many other
sources:

http://www.erc.msstate.edu/mpi/

http://www.arc.unm.edu/

In addition, if you are using Platform Computing’s Load Sharing Facility (LSF)
Suite, consult the documentation available from their website:

http://www.platform.com

Sun HPC ClusterTools documentation and other Sun documentation is available
online at:

http://www.sun.com/documentation/

Application Title Part Number

Sun HPC ClusterTools
Documentation

Read Me First: Guide to Sun HPC
ClusterTools 6 Software Documentation

819-4136-10

Sun HPC ClusterTools
Software

Sun HPC ClusterTools 6 Software Release
Notes
Sun HPC ClusterTools 6 Software
Installation Guide
Sun HPC ClusterTools 6 Software
Performance Guide
Sun HPC ClusterTools 6 Software User’s
Guide
Sun HPC ClusterTools 6 Software
Administrator’s Guide

819-4129-10

819-4130-10

819-4134-10
819-4131-10

819-4132-10
ix

http://www.sun.com/documentation/

Man Pages
Man pages are also available online for all the Sun MPI and MPI I/O routines and
are accessible by means of the Solaris man command. These man pages are usually
installed in /opt/SUNWhpc/man. Ask your system administrator for their location
at your site.

Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Sun Function URL

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/
x Sun MPI 7.0 Software Programming and Reference Manual • March 2006

http://www.sun.com/hwdocs/feedback
http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com/documentation/

Please include the title and part number of your document with your feedback:

Sun MPI 7.0 Software Programming and Reference Manual, part number 819-4133-10
xi

xii Sun MPI 7.0 Software Programming and Reference Manual • March 2006

CHAPTER 1

Introduction to Sun MPI

The MPI specification was developed by the MPI Forum, a group of software
developers, computer vendors, academics, and computer-science researchers whose
goal was to develop a standard for writing message-passing programs that would be
efficient, flexible, and portable.

The outcome, known as the MPI Standard, was first published in 1993. The most
recent version (MPI-2) was published in 1997. It was well received, and several
implementations are available publicly.

Sun™ MPI is a complete library of message-passing routines, including all MPI 1.2–
compliant and MPI 2–compliant routines. Chapter 2 provides an overview of the
routines, Appendix A summarizes them, and the Sun man pages provide detailed
descriptions.

Sun MPI Features
■ Optimization for running with Sun HPC ClusterTools 6 software using C, C++,

Fortran 77, or Fortran 90.

■ Integration with the Sun HPC ClusterTools™ Runtime Environment (CRE) and
the SGE/N1GE, LSF, and PBS distributed resource-management systems.

■ Support for multithreaded programming.

■ Seamless use of various network protocols.

■ Multiprotocol support so that MPI selects the fastest available medium for each
type of connection (such as shared memory and ATM).

■ Communication by shared memory for fast performance on clusters of SMPs

■ Finely tunable shared-memory communication.

■ Optimized collectives for symmetric multiprocessors (SMPs) and clusters of
SMPs.
1

■ MPI I/O support for parallel file I/O.

■ Implicit co-scheduling, whereby the Sun HPC spind daemon enables certain
processes of a given MPI job on a shared-memory system to be scheduled at
approximately the same time as other related processes. This co-scheduling
reduces the load on the processors, thus reducing the effect that MPI jobs have on
each other.

■ Complete support of one-sided communication routines and name-publishing
routines.

■ Dynamic library support.

■ MPI-2 dynamic support.

Sun MPI and MPI I/O provide full F77, C, and C++ support, as well as Basic F90
support.

Sun MPI I/O
File I/O in Sun MPI uses MPI 2–compliant routines for parallel file I/O. Chapter 4
describes these routines. Their man pages are provided online, and the routines are
summarized in Appendix A.
2 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

CHAPTER 2

Sun MPI Library

This chapter describes the Sun MPI library:

■ “Types of Libraries” on page 3
■ “Sun MPI Routines” on page 4
■ “Managing Communicators, Groups, and Contexts” on page 15
■ “Data Types” on page 16
■ “Resource Reservation for Batch Processing” on page 19
■ “Programming With Sun MPI” on page 20
■ “Multithreaded Programming” on page 22
■ “Profiling Interface” on page 25
■ “MPE: Extensions to the Library” on page 28

Note – Sun MPI I/O is described separately, in Chapter 4.

Types of Libraries
Sun MPI contains four types of libraries, which represent two categories.

■ 32- and 64-bit libraries —If you want to take advantage of the 64-bit capabilities of
Sun MPI, you must explicitly link to the 64-bit libraries. The 32-bit libraries are
the default in each category.

■ Thread-safe and non–thread-safe libraries —For multithreaded programs, link with
the thread-safe library in the appropriate category unless the program has only
one thread calling MPI. For programs that are not multithreaded, you can link
against either the thread-safe or the default (non–thread-safe) library. However,
nonmultithreaded programs have better performance using the default library, as
it does not incur the extra overhead of providing thread safety. Therefore, use the
default libraries whenever possible for maximum performance.
3

For full information about linking to libraries, see “Compiling and Linking” on
page 36.

Sun MPI Routines
This section gives a brief description of the routines in the Sun MPI library. All the
Sun MPI routines are listed in Appendix A with brief descriptions and their C
syntax. For detailed descriptions of individual routines, see the man pages or the
MPI Standard. The routines are divided into these categories:

■ “Point-to-Point Communication Routines” on page 4
■ “One-Sided Communication Routines” on page 5
■ “Collective Communication Routines” on page 11
■ “Name-Publishing Routines” on page 14
■ “Environmental Inquiry Routines” on page 14
■ “Packing and Unpacking Functions” on page 14

Point-to-Point Communication Routines
Point-to-point communication routines include the basic send and receive routines
in both blocking and nonblocking forms and in four modes.

A blocking send blocks until its message buffer can be written with a new message.

A blocking receive blocks until the received message is in the receive buffer.

Nonblocking sends and receives differ from blocking sends and receives in that they
return immediately and their completion must be waited or tested for. It is expected
that eventually nonblocking send and receive calls will allow the overlap of
communication and computation.

The four modes for MPI point-to-point communication are as follows:

■ Standard – The completion of a send implies that the message either is buffered
internally or has been received. Users are free to overwrite the buffer that they
passed in with any of the blocking send or receive routines, after the routine
returns.

■ Buffered – The user guarantees a certain amount of buffering space.

■ Synchronous – Rendezvous semantics occur between sender and receiver; that is, a
send blocks until the corresponding receive has occurred.
4 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

■ Ready – A send can be started only if the matching receive is already posted. The
ready mode for sends is a way for the programmer to notify the system that the
receive has been posted, so that the underlying system can use a faster protocol if
it is available.

One-Sided Communication Routines

Standard MPI communication is two-sided. To complete a transfer of information,
both the sending and receiving processes must call appropriate functions. The
operation proceeds in two stages, as shown in the following figure.

This form of communication requires regular synchronization between the sending
and receiving processes. That synchronization can become complicated if the
receiving process does not know which process is sending it the data it needs. One-
sided communication was developed to solve this problem and to reduce the
amount of synchronization required even when both sending and receiving
processes know each other’s identities.

In one-sided communication, a process opens a window in memory and exposes it to
all processes that belong to a particular communicator, provided they reside on the

Process A
(sending)

Process B
(receiving)

MPI_Send()

0123

0123

Process A Process B

MPI_Recv()

0123

The sending
process sends the
data to the
receiving process.

The receiving
process accepts
the data from the
sending process.

➊

❷

Chapter 2 Sun MPI Library 5

same node. As long as that window is open, any process in the communicator and
node can put data into it and get data out of it.

The put requires no complementary operation from the process that opened the
window, and is equivalent to the combination of a send and receive operation in two-

01230123

Process A

0123

Process A Processes

MPI_Win_create()

0123 0123

A process opens a
communications
window and
exposes it to the
other processes in
the same node and
communicator.

➊

❷
Any process within
the same
communicator and
node can transfer
data directly into
or out of that
window as long as
it is open.

Process A

0123

❸
Then the original
process closes the
window.

MPI_Put()

MPI_Get()

MPI_Win_free()
6 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

sided MPI communication.

The functions used to implement one-sided MPI communication fall into three
categories and are summarized in TABLE 2-1. You can find their definitions in the MPI
Standard. Also, Appendix A of this document provides syntax summaries.

TABLE 2-1 One-Sided Communication Routines

Window Creation

MPI_Win_create() Creates a window in memory and exposes it to all processes
in the communicator and node.

MPI_Win_free() Closes the window created with MPI_Win_create().
Requires barrier synchronization.

MPI_Win_get_group() Returns a duplicate of the group of the communicator used
to create the window.

Data Transfer

MPI_Accumulate() Combines data from a process with data already in the
window. Different from MPI_Put() in that new data is
appended to existing data instead of replacing it.

MPI_Get() The calling process takes data directly from the window.
The opposite of MPI_Put(). Equivalent to the combination
of a send and receive operation originated by the receiving
process.

MPI_Put() The calling process loads its data directly into the buffer of
the target process. Equivalent to the combination of a send
and receive operation originated by the sending process.
The opposite of MPI_Get().

Synchronization

MPI_Win_fence() Blocks any process from operating on a particular window
until all operations relating to that window have
completed. Similar to MPI_Barrier(), but applies to a
window instead of a communicator.

MPI_Win_lock() Starts an RMA access epoch. While the lock is in place, only
the process whose rank is specified in the function call can
be accessed by RMA operations on the window.

MPI_Win_unlock() Closes an RMA access epoch begun with a call to
MPI_Win_lock().

MPI_Win_start() Starts an RMA access epoch for window.

MPI_Win_complete() Completes an RMA access epoch on window started by a
call to MPI_Win_start().
Chapter 2 Sun MPI Library 7

Some special considerations apply to allocating memory for one-sided
communications. For example:

■ MPI_Alloc_mem allocates memory by means of SysV shared memory. If you find
that you cannot allocate any more memory because of system-imposed limits, you
can try to preallocate a large segment and then use parts of it for your needs.

■ If the memory used for a communication window has been allocated by means of
the MPI_Alloc_mem function, the memory region specified by the base and size
parameters passed to MPI_Win_create should not exceed the limits of the
memory region allocated using a call either to malloc or to the MPI_Alloc_mem
function. If the memory has been allocated using a call to MPI_Alloc_mem, these
limits are checked internally and the call to MPI_Win_create() returns
MPI_ERR_OTHER.

Several one-sided communications routines support info keys. These keys, and their
descriptions, are listed in TABLE 2-2.

MPI_Win_post() Starts an RMA exposure epoch for the local window
associated with window.

MPI_Win_wait() Completes an RMA exposure epoch started by a call to
MPI_Win_post() on window.

MPI_Win_test() Attempts to complete an RMA exposure epoch; a
nonblocking version of MPI_Win_wait().

TABLE 2-1 One-Sided Communication Routines (Continued)
8 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

TABLE 2-2 Info Keys Supported By One-Sided Communications Routines

Routine Info Key Description

MPI_Win_create() no_locks If MPI_Win_lock is called on a
window created with this info key,
the call fails. If this info key is
present, it is assumed that the
local window is never locked,
allowing several internal checks to
be skipped, permitting a more
efficient implementation.

sun_shmeuid The effective user ID (UID) to
which the shared-memory
segment is set for memory-based
protocols, including shared
memory (SHM). Set this key only
when you anticipate connections
from programs run by other users.
Valid only for server programs
run as root.

sun_shmegid The effective GID to which the
shared-memory segment is set for
memory-based protocols,
including SHM. Set this key only
when you anticipate connections
from programs run by other users.

sun_shmperm The permissions to which the
shared-memory segment is set, in
octal, for memory-based protocols,
including SHM. Set this key only
when you anticipate connections
from programs run by other users.
Chapter 2 Sun MPI Library 9

Several one-sided communications routines support assertions. These assertions,
and their descriptions, are listed in TABLE 2-3.

MPI_Alloc_mem sun_shmeuid The effective UID to which the
shared-memory segment is set for
memory-based protocols,
including SHM. Set this key only
when you anticipate connections
from programs run by other users.
Valid only for server programs
run as root.

sun_shmegid The effective GID to which the
shared-memory segment is set for
memory-based protocols,
including SHM. Set this key only
when you anticipate connections
from programs run by other users.

sun_shmperm The permissions to which the
shared-memory segment is set, in
octal, for memory-based protocols,
including SHM. Set this key only
when you anticipate connections
from programs run by other users.

TABLE 2-3 Assertions Supported by One-Sided Communications Routines

Routine Assertion Values Description

MPI_Win_fence() MPI_MODE_NOSTORE
MPI_MODE_NOPUT
MPI_MODE_NOSUCCEED

All native Sun HPC
ClusterTools protocol
modules and generic
one-sided functions
ignore these values.
However, they are
available for use by
third-party protocol
modules

TABLE 2-2 Info Keys Supported By One-Sided Communications Routines (Continued)

Routine Info Key Description
10 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Collective Communication Routines
Collective communication routines are blocking routines that involve all processes in
a communicator and, in most cases, an intercommunicator. Collective
communication includes broadcasts and scatters, reductions and gathers, all-gathers
and all-to-alls, scans, and a synchronizing barrier call.

MPI_Win_start() MPI_MODE_NOCHECK When this value is
passed in to this call, the
library assumes that the
post call on the target
has been called and it is
not necessary for the
library to check to see if
such a call has been
made.

MPI_Win_post() MPI_MODE_NOCHECK When this value is
passed in to this call, the
library assumes that the
post call on the target
has been called and it is
not necessary for the
library to check to see if
such a call has been
made.

TABLE 2-4 Collective Communication Routines

Routine Description

MPI_Bcast() Broadcasts from one process to all others in a communicator or
intercommunicator.

MPI_Scatter() Scatters from one process to all others in a communicator or
intercommunicator.

MPI_Scatterv() Scatters from all processes to all others in a communicator or
intercommunicator.

MPI_Reduce() Reduces from all to one in a communicator or intercommunicator.

MPI_Allreduce() Reduces and then broadcasts result to all nodes in a communicator
or intercommunicator.

MPI_Allreducev() Reduces from all processes and then broadcasts result to all nodes in
a communicator or intercommunicator.

TABLE 2-3 Assertions Supported by One-Sided Communications Routines (Continued)

Routine Assertion Values Description
Chapter 2 Sun MPI Library 11

Many of the collective communication calls have alternative vector forms, with
which various amounts of data can be sent to or received from various processes. In
addition, MPI_Alltoallw() accepts a database of individual datablocks.

The syntax and semantics of these routines are basically consistent with the point-to-
point routines (upon which they are built), but there are restrictions to keep them
from becoming too complex:

■ The amount of data sent must exactly match the amount of data specified by the
receiver.

■ There is only one mode, a mode analogous to the standard mode of point-to-point
routines.

MPI_Reduce_scat
ter()

Scatters a vector that contains results across the nodes in a
communicator.

MPI_Gather() Gathers from all to one in a communicator or intercommunicator.

MPI_Gatherv() Gathers information from all processes in a communicator or
intercommunicator.

MPI_Allgather() Gathers and then broadcasts the results of the gather in a
communicator or intercommunicator.

MPI_Allgatherv() Gathers from all processes and then broadcasts the results of the
gather in a communicator or intercommunicator.

MPI_Alltoall() All processes send data to, and receive data from, all other processes
in a communicator or intercommunicator.

MPI_Alltoallv() Like MPI_Alltoall(), but user can use vector style (displacement
and element count) to specify what data to send and receive.

MPI_Alltoallw() Like MPI_Alltoallv(), but user can specify database of individual
datablocks, in addition to displacement and element count.

MPI_Scan() Scans (performs a parallel prefix) across processes in a
communicator or intercommunicator.

MPI_Exscan() Performs an exclusive prefix reduction on data distributed across
the calling processes.

MPI_Barrier() Synchronizes processes in a communicator or intercommunicator
(no data is transmitted).

TABLE 2-4 Collective Communication Routines (Continued)

Routine Description
12 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Using the In-Place Option

Several collectives can pass MPI_IN_PLACE as the value of send–buffer at the root.
When they do, sendcount and sendtype are ignored, and the contribution of the root to
the gathered vector is assumed to be already in the correct location in the receive
bugger. The collectives are as follows:

■ MPI_Gather()
■ MPI_Gatherv()
■ MPI_Scatter()
■ MPI_Scatterv()
■ MPI_Allgather()
■ MPI_Allgatherv()
■ MPI_Reduce()
■ MPI_AllReduce()
■ MPI_Reduce_scatter()
■ MPI_Scan()

Using Persistent Communication Requests

Sometimes within an inner loop of a parallel computation, a communication with
the same argument list is executed repeatedly. The communication can be slightly
improved by using a persistent communication request, which reduces the overhead
for communication between the process and the communication controller. A
persistent request can be thought of as a communication port or half-channel.

Managing Process Topologies

Process topologies are associated with communicators; they are optional attributes
that can be given to an intracommunicator (not to an intercommunicator).

Recall that processes in a group are ranked from 0 to n–1. This linear ranking often
reflects nothing of the logical communication pattern of the processes, which may
be, for instance, a two- or three-dimensional grid. The logical communication
pattern is referred to as a virtual topology (separate and distinct from any hardware
topology). In MPI, two types of virtual topologies can be created: Cartesian (grid)
topology and graph topology.

You can use virtual topologies in your programs by taking physical processor
organization into account to provide a ranking of processors that optimizes
communication.
Chapter 2 Sun MPI Library 13

Name-Publishing Routines
Name-publishing routines enable client applications to retrieve system-supplied port
names. A server calls the MPI_Publish_name() function to publish the name of
the service associated with a particular port name. A client application calls the
MPI_Lookup_name(), passing it the published service name, and in return gets its
associated port name. The server can also call the MPI_Unpublish_name()
function to stop publishing names.

Sun’s implementation of the MPI Standard does not provide a scope for the published
names and does not allow a server to publish the same service name twice. The
implementation consists of three routines:

■ MPI_Publish_name()
■ MPI_Unpublish_name()
■ MPI_Lookup_name()

Environmental Inquiry Routines
Environmental inquiry routines are used for starting up and shutting down error-
handling routines and timers.

Few MPI routines can be called before MPI_Init() or after MPI_Finalize().
Examples include MPI_Initialized() and MPI_Version(). MPI_Finalize()
can be called only if there are no outstanding communications involving that
process.

The set of errors handled by MPI depends upon the implementation. See
Appendix C for tables listing the Sun MPI error classes.

Packing and Unpacking Functions
Sun’s implementation of the MPI Standard provides functions for packing and
unpacking messages to be exchanged within an MPI implementation, and in the
external32 format used to exchange messages between MPI implementations.

■ MPI_Pack()
■ MPI_Unpack()
■ MPI_Pack_size()
■ MPI_Pack_external()
■ MPI_Unpack_external()
■ MPI_Pack_external_size()
14 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Managing Communicators, Groups, and
Contexts
A distinguishing feature of the MPI Standard is that it includes a mechanism for
creating separate worlds of communication, accomplished through communicators,
groups, and contexts.

A communicator specifies a group of processes that will conduct communication
operations within a specified context without affecting or being affected by
operations occurring in other groups or contexts elsewhere in the program. A
communicator also guarantees that, within any group and context, point-to-point
and collective communication are isolated from each other.

A group is an ordered collection of processes. Each process has a rank in the group;
the rank runs from 0 to n–1. A process can belong to more than one group; its rank
in one group has nothing to do with its rank in any other group.

A context is the internal mechanism by which a communicator guarantees safe
communication space to the group.

At program startup, two default communicators are defined:

■ MPI_COMM_WORLD, which has as a process group all the processes of the job
■ MPI_COMM_SELF, which is equivalent to an identity communicator

The process group that corresponds to MPI_COMM_WORLD is not predefined, but can
be accessed using MPI_COMM_GROUP. One MPI_COMM_SELF communicator is
defined for each process, each of which has rank zero in its own communicator. For
many programs, these are the only communicators needed.

Communicators are of two kinds: intracommunicators, which conduct operations
within a given group of processes; and intercommunicators, which conduct operations
between two groups of processes.

Communicators provide a caching mechanism, which allows an application to attach
attributes to communicators. Attributes can be user data or any other kind of
information.

New groups and new communicators are constructed from existing ones. Group
constructor routines are local, and their execution does not require interprocessor
communication. Communicator constructor routines are collective, and their
execution can require interprocess communication.

You can also create an intercommunicator from two MPI processes that are
connected by a socket. Use the MPI_Comm_join() function.
Chapter 2 Sun MPI Library 15

Note – Users who do not need any communicator other than the default
MPI_COMM_WORLD communicator—that is, who do not need any sub- or supersets of
processes—can plug in MPI_COMM_WORLD wherever a communicator argument is
requested. In these circumstances, users can ignore this section and the associated
routines. (These routines can be identified from the listing in Appendix A.)

Data Types
All Sun MPI communication routines have a data type argument. They can be
primitive data types, such as integers or floating-point numbers, or they can be user-
defined, derived data types that are specified in terms of primitive types.

Derived data types enable users to specify more general, mixed, and noncontiguous
communication buffers, such as array sections and structures that contain
combinations of primitive data types.

Fortran data types are listed in TABLE 2-5. Data types of Fortran used with the –r8
flag are listed in TABLE 2-6. C data types are listed in TABLE 2-7.

TABLE 2-5 Fortran Data Types

MPI Data Type Fortran Data Type

MPI_INTEGER INTEGER
INTEGER*4

MPI_INTEGER1 INTEGER*1 (Fortran 90 only)

MPI_INTEGER2 INTEGER*2

MPI_INTEGER4 INTEGER*4

MPI_INTEGER8 INTEGER*8

MPI_REAL REAL
REAL*4

MPI_REAL4 REAL*4

MPI_REAL8 REAL*8

MPI_REAL16 REAL*16

MPI_DOUBLE_PRECISION REAL*8
DOUBLE PRECISION
16 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

MPI_2DOUBLE_PRECISION Pair of DOUBLE PRECISION variables*

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_SIGNED_CHAR INTEGER*1

MPI_DOUBLE_COMPLEX DOUBLE COMPLEX

MPI_2REAL Pair of REALs*

MPI_INTEGER2 INTEGER*2

MPI_INTEGER4 INTEGER*4

MPI_2INTEGER Pair of INTEGERs*

MPI_BYTE no corresponding Fortran data type

MPI_PACKED no corresponding Fortran data type

* For use with MINLOC and MAXLOC

TABLE 2-6 Fortran –r8 Data Types

MPI Data Type Fortran –r8 Data Type

MPI_INTEGER INTEGER*4

MPI_INTEGER1 INTEGER*1 (Fortran 90 only)

MPI_INTEGER2 INTEGER*2

MPI_INTEGER4 INTEGER*4

MPI_INTEGER8 INTEGER
INTEGER*8

MPI_REAL REAL*4

MPI_REAL4 REAL*4

MPI_REAL8 REAL
REAL*8

MPI_REAL16 REAL*16
DOUBLE PRECISION

MPI_DOUBLE_PRECISION REAL
REAL*8

TABLE 2-5 Fortran Data Types (Continued)

MPI Data Type Fortran Data Type
Chapter 2 Sun MPI Library 17

MPI_2DOUBLE_PRECISION Pair of REAL*8*

MPI_COMPLEX COMPLEX*4

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_SIGNED_CHAR INTEGER*1

MPI_DOUBLE_COMPLEX COMPLEX

MPI_2REAL Pair of REAL*4*

MPI_INTEGER2 INTEGER*2

MPI_INTEGER4 INTEGER*4

MPI_2INTEGER Pair of INTEGER*4

MPI_BYTE No corresponding Fortran data type

MPI_PACKED No corresponding Fortran data type

* For use with MINLOC and MAXLOC

TABLE 2-7 C Data Types

MPI Data Type C Data Type

MPI_BYTE No corresponding C data type

MPI_PACKED No corresponding C data type

MPI_CHAR signed char

MPI_SIGNED_CHAR signed char

MPI_UNSIGNED_CHAR unsigned char

MPI_SHORT signed short int

MPI_UNSIGNED_SHORT unsigned short int

MPI_INT signed int

MPI_UNSIGNED unsigned int

MPI_LONG signed long int

MPI_UNSIGNED_LONG unsigned long int

TABLE 2-6 Fortran –r8 Data Types (Continued)

MPI Data Type Fortran –r8 Data Type
18 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Resource Reservation for Batch
Processing
If you plan to launch a job that uses the MPI_Comm_spawn or
MPI_Comm_spawn_multiple functions, you must first reserve the resources with
the resource manager that will run the job. As explained in the mprun.1 man page
and the Sun HPC ClusterTools Software User’s Guide, you can reserve those resources
by adding the –nr flag to the mprun command.

When you launch a job with the mprun command from within a resource manager,
the number of processes allocated for that job are stored in the environment variable
MPI_UNIVERSE_SIZE. It is the sum of the processes allocated with the mprun
command’s –np flag, and reserved with its –nr flag.

MPI_LONG_LONG_INT long long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_WCHAR wchar_t

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_2INT Pair of int*

MPI_FLOAT_INT float and int*

MPI_DOUBLE_INT double and int*

MPI_LONG_DOUBLE_INT long double and int*

MPI_LONG_INT long and int*

MPI_SHORT_INT short and int*

* For use with MINLOC and MAXLOC

TABLE 2-7 C Data Types (Continued)

MPI Data Type C Data Type
Chapter 2 Sun MPI Library 19

Programming With Sun MPI
Although there are about 190 non-I/O routines in the Sun MPI library, you can write
programs for a wide range of problems using only six routines, as described in
TABLE 2-8.

This set of six routines includes the basic send and receive routines. Programs that
depend heavily on collective communication might also include MPI_Bcast() and
MPI_Reduce().

The functionality of these routines means you can have the benefit of parallel
operations without having to learn the whole library at once. As you become more
familiar with programming for message passing, you can start learning the more
complex and esoteric routines and add them to your programs as needed.

See Appendix A for a complete list of Sun MPI routines.

Fortran Support
Sun MPI provides extended Fortran support, as described in Section 10.2 of the
MPI-2 Standard. In other words, it provides basic Fortran support, plus additional
functions that specifically support Fortran 90:

■ MPI_Type_create_f90_complex()
■ MPI_Type_create_f90_integer()
■ MPI_Type_create_f90_real()
■ MPI_Type_match_size()
■ MPI_Sizeof()

TABLE 2-8 Six Basic MPI Routines

Routine Description

MPI_Init() Initializes the MPI library.

MPI_Finalize() Finalizes the MPI library. This includes releasing resources used by
the library.

MPI_Comm_size() Determines the number of processes in a specified communicator.

MPI_Comm_rank() Determines the rank of calling process within a communicator.

MPI_Send() Sends a message.

MPI_Recv() Receives a message.
20 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Basic Fortran support provides the original Fortran bindings and an mpif.h file
specified in the MPI-1 Standard. The mpif.h file is valid for both fixed- and free-
source forms, as specified in the MPI-2 Standard.

The MPI interface is known to violate the Fortran standard in several ways, but it
causes few problems for FORTRAN 77 programs. Violations of the standard can
cause more significant problems for Fortran 90 programs, however, if you do not
follow the guidelines recommended in the standard. If you are programming in
Fortran, and particularly if you are using Fortran 90, you should consult Section 10.2
of the MPI-2 Standard for detailed information about basic Fortran support in an MPI
implementation.

Recommendations for All-to-All and All-to-One
Communication
The Sun MPI library uses the TCP protocol to communicate over a variety of
networks. Sun MPI depends on TCP to ensure reliable, correct data flow. TCP’s
reliability compensates for unreliability in the underlying network, as the TCP
retransmission algorithms handle any segments that are lost or corrupted. In most
cases, this works well with good performance characteristics. However, when doing
all-to-all and all-to-one communication over certain networks, a large number of
TCP segments can be lost, resulting in poor performance.

You can compensate for this diminished performance over TCP in these ways:

■ When writing your own algorithms, avoid flooding one node with a lot of data.

■ If you need to do all-to-all or all-to-one communication, use one of the Sun MPI
routines to do so. They are implemented in a way that avoids congesting a single
node with lots of data. The following routines fall into this category:

■ MPI_Alltoall(), MPI_Alltoallv(), and MPI_Alltoallw() – These have
been implemented using a pairwise communication pattern, so that every rank
is communicating with only one other rank at a given time.

■ MPI_Gather() and MPI_Gatherv() – The root process sends ready-to-send
packets to each nonroot-rank process to tell the processes to send their data. In
this way, the root process can regulate how much data it is receiving at any one
time. Using this ready-to-send method is associated with a minor performance
cost, however. For this reason, you can override this method by setting the
MPI_TCPSAFEGATHER environment variable to 0. (See Appendix B for
information about environment variables.)
Chapter 2 Sun MPI Library 21

Signals and MPI
When running the MPI library over TCP, nonfatal SIGPIPE signals can be
generated. To handle them, the library sets the signal handler for SIGPIPE to
ignore, overriding the default setting (terminate the process). In this way the MPI
library can recover in certain situations. You should therefore avoid changing the
SIGPIPE signal handler.

The Sun MPI Fortran and C++ bindings are implemented as wrappers on top of the C
bindings. The profiling interface is implemented using weak symbols. This means a
profiling library need contain only a profiled version of C bindings.

The SIGPIPEs can occur when a process first starts communicating over TCP. This
happens because the MPI library creates connections over TCP only when processes
actually communicate with one another. There are some unavoidable conditions
where SIGPIPEs can be generated when two processes establish a connection. If you
want to avoid any SIGPIPEs, set the environment variable MPI_FULLCONNINIT,
which creates all connections during MPI_Init() and avoids any situations that
might generate a SIGPIPE. For more information about environment variables, see
Appendix B.

Multithreaded Programming
When you are linked to one of the thread-safe libraries, Sun MPI calls are thread
safe, in accordance with basic tenets of thread safety for MPI mentioned in the MPI-2
specification. As a result:

■ When two concurrently running threads make MPI calls, the outcome is as if the
calls executed in some order.

■ Blocking MPI calls block the calling thread only. A blocked calling thread does
not prevent progress of other runnable threads on the same process, nor does it
prevent them from executing MPI calls. Thus, multiple sends and receives are
concurrent.

Use MPI_Init_thread() in place of MPI_Init() to initialize the MPI execution
environment with a predetermined level of thread support. Use the
MPI_Is_thread_main() function to find out whether a thread is the one that
called MPI_Init_thread().
22 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Guidelines for Thread-Safe Programming
Each thread within an MPI process can issue MPI calls; however, threads are not
separately addressable. That is, the rank of a send or receive call identifies a process,
not a thread, which means that no order is defined for the case in which two threads
call MPI_Recv() with the same tag and communicator. Such threads are said to be
in conflict.

If threads within the same application post conflicting communication calls, data
races will result. You can prevent such data races by using distinct communicators
or tags for each thread.

In general, adhere to these guidelines:

■ You must not have a request serviced by more than one thread. Although you can
have an operation posted in one thread and then completed in another, you
cannot have the operation completed in more than one thread.

■ A data type or communicator must not be freed by one thread while it is in use by
another thread.

■ Once MPI_Finalize() is called, subsequent calls in any thread will fail.

■ You must ensure that a sufficient number of lightweight processes (LWPs) are
available for your multithreaded program. Failure to do so can degrade
performance or even result in deadlock.

■ You cannot stub the thread calls in your multithreaded program by omitting the
threads libraries in the link line. The libmpi.so library automatically calls in the
threads libraries, which effectively override any stubs.

The following sections describe more specific guidelines that apply for some
routines. They also include some general considerations for collective calls and
communicator operations that you should be aware of.

MPI_Wait(), MPI_Waitall(), MPI_Waitany(),
MPI_Waitsome()

In a program in which two or more threads call one of these routines, you must
ensure that they are not waiting for the same request. Similarly, the same request
cannot appear in the array of requests of multiple concurrent wait calls.

MPI_Cancel()

One thread must not cancel a request while that request is being serviced by another
thread.
Chapter 2 Sun MPI Library 23

MPI_Probe(), MPI_Iprobe()

A call to MPI_Probe() or MPI_Iprobe() from one thread on a given
communicator should not have a source rank and tags that match those of any other
probes or receives on the same communicator. Otherwise, correct matching of
message to probe call might not occur.

Collective Calls

Collective calls are matched on a communicator according to the order in which the
calls are issued at each processor. All the processes on a given communicator must
make the same collective call. You can avoid the effects of this restriction on the
threads on a given processor by using a different communicator for each thread.

No process that belongs to the communicator may omit making a particular
collective call; that is, none should be left “dangling.”

Communicator Operations

Each of the communicator (or intercommunicator) functions operates
simultaneously with each of the noncommunicator functions, regardless of what the
parameters are and whether the functions are on the same or different
communicators. However, if you are using multiple instances of the same
communicator function on the same communicator where all parameters are the
same, it cannot be determined which threads belong to which resultant
communicator. Therefore, when concurrent threads issue such calls, you must ensure
that the calls are synchronized in such a way that threads in separate processes
participating in the same communicator operation are grouped together. Do this
either by using a different base communicator for each call or by making the calls in
single-thread mode before actually using them within the separate threads.

Note also these special situations:

■ If you are using multiple instances of the same function with differing parameters
and multiple threads, you must use separate communicators.

■ When using splits with multiple instances of the same function with the same
parameters, but with different threads at the split, you must use separate
communicators.

For example, you might want to produce several communicators in separate sets
of threads by performing MPI_Comm_split() on a base communicator. To
ensure proper, thread-safe operation, you should replicate the base communicator
with MPI_Comm_dup() (in the root thread or in one thread) and then perform
MPI_Comm_split() on the resulting duplicate communicators.
24 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

■ Do not free a communicator in one thread if it is still being used by another
thread.

Error Handlers
When an error occurs as a result of an MPI call, the handler might not run on the
same thread as the thread that made the error-raising call. In other words, you
cannot assume that the error handler will execute in the local context of the thread
that made the error-raising call. The error handler can be executed by another thread
on the same process, distinct from the one that returns the error code. Therefore, you
cannot rely on local variables for error handling in threads; instead, use global
variables from the process.

Profiling Interface
The Sun HPC ClusterTools software suite includes MPProf, a profiling tool to be
used with applications that call Sun MPI library routines. When enabled, MPProf
collects information about a program’s message-passing activities in a set of
intermediate files, one file per MPI process. Once the information is collected, you
can invoke the MPProf command-line utility mpprof, which generates a report
based on the profiling data stored in the intermediate files. You must enable MPProf
before starting an MPI program. You do this by setting the environment variable
MPI_PROFILE to 1.

If MPProf is enabled, it creates and initializes the intermediate files with header
information when the program’s MPI_Init call ends. It also creates an index file
that contains a map of the intermediate files. mpprof uses this index file to find the
intermediate files.

mpprof includes an interface for interacting with loadable protocol modules
(loadable PMs). If an MPI program uses a loadable PM, this interface allows MPProf
to collect profiling data that is specific to loadable PM activities.

An mpprof report contains the following classes of performance information:

■ The percentage of total execution time spent in MPI calls across all processes
■ The percentage of time each process spent in MPI calls
■ The number of calls, amount of time spent, and number of bytes sent or received

per MPI routine, averaged over all processes, with percent variation among
processes

■ Connectivity statistics (message count and volume) between processor pairs
■ The settings of environment variables that have performance implications
Chapter 2 Sun MPI Library 25

You can control aspects of mpprof behavior with the following environment
variables:

■ MPI_PROFINTERVAL – Use this environment variable to specify a data sampling
period. When this value is greater than 0, a sequence of snapshots is recorded at
the prescribed intervals. Each snapshot represents the MPI activity that occurred
since the previous snapshot. The default behavior is to record a single snapshot at
the time of the MPI_Finalize call.

■ MPI_PROFDATADIR – Use this environment variable to specify the location where
the intermediate files created for each process rank will be stored.

■ MPI_PROFINDEXDIR – Use this environment variable to specify the location
where the index file created for each profiled job will be stored.

■ MPI_PROFMAXFILESIZE – Use this environment variable to specify the
maximum size of intermediate files.

The Sun HPC ClusterTools software suite also provides a conversion utility, mpdump,
which converts the data from each intermediate file into a raw (unevaluated) user-
readable format. You can use the ASCII files generated by mpdump as input to a
report generator of your choice.

Once you’ve enabled MPProf profiling by setting MPI_PROFILE to 1 (and run a job
using mprun) you will find a file in your working directory of the following form:

mpprof.index.rm.jid

To view the profiling report, type the following command:

Further instructions for using mpprof and mpdump are provided in the Sun HPC
ClusterTools Software User’s Guide.

How the Sun MPI Profiling Interface Works
Sun MPI meets the profiling interface requirements described in Chapter 8 of the
MPI-1 Standard. This means you can write your own profiling library or choose from
a number of available profiling libraries, such as those in the multiprocessing
environment (MPE) from Argonne National Laboratory. (See “MPE: Extensions to
the Library” on page 28 for more information.) The User’s Guide for mpich, a Portable
Implementation of MPI includes more detailed information about using profiling
libraries.

FIGURE 2-1 provides a generic illustration of how the software fits together. In this
example, the user is linking against a profiling library that collects information on
MPI_Send(). No profiling information is being collected for MPI_Recv().

% mpprof mpprof.index.rm.jid
26 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

C profiling interfaces are needed even for Fortran programs. If there is profiling for
both the Fortran and C version of an MPI function, then a Fortran call will encounter
both profilings.

Be sure you make the library dynamic. A static library can experience the linker
problems described in Section 8.4.3 of the MPI 1.1 Standard.

For compiling the program, the user’s link line would look like this:

FIGURE 2-1 Sun MPI Profiling Interface

cc –llibrary–name –lmpi

MPI_Send()
{

 times_called++;
return PMPI_Send()

}

MPI_Send();
MPI_Recv();

call MPI_SEND()
call MPI_RECV()

user–program.f

profile library libmpi.so

user–program.c

Supplied by User Supplied by Sun HPC

C bindings:
MPI_Send() weak symbol
PMPI_Send()
 {
 ...
 }
MPI_Recv() weak symbol
 PMPI_Recv()

Fortran bindings:
mpi_send_() weak symbol
pmpi_send_()
{
 ...
 MPI_Send()
 ...
}
mpi_recv_() weak symbol
pmpi_recv()
{
 ...
 MPI_Recv()
 ...
}

ClusterTools software
Chapter 2 Sun MPI Library 27

To clarify the layering of PMPI profiling, users need to understand the role of weak
symbols. A weak symbol is such that, if a user defines the symbol, the user’s
definition is used. Otherwise, the associated function is used. The relation of weak
symbols to associated functions is illustrated in FIGURE 2-2.

FIGURE 2-2 Layering in PMPI Profiling

MPE: Extensions to the Library
Although the Sun MPI library does not include or support the multiprocessing
environment (MPE) available from Argonne National Laboratory (ANL), it is
compatible with MPE. If you would like to use these extensions to the MPI library,
see the following instructions for downloading them from ANL and building MPE
yourself. Note that this procedure may change if ANL makes changes to MPE.

Fortran

MPI API
MPI_WHATEVER ()

mpi_whatever_()

Is a weak
symbol for

PMPI layer
PMPI_WHATEVER ()

pmpi_whatever_()

C

MPI_Whatever ()

Is a weak
symbol forcalls

PMPI_Whatever ()
28 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

▼ To Obtain and Build the MPE
The MPE software is available from Argonne National Laboratory. The mpe.tar.gz
file is about 240 Kbytes.

1. Use ftp to obtain the file.

2. Use gunzip and tar to decompress the software.

3. Change your current working directory to the mpe directory, and execute
configure with the arguments shown.

4. Execute a make.

Note – Sun MPI does not include the MPE error handlers. You must call the debug
routines MPE_Errors_call_dbx_in_xterm() and
MPE_Signals_call_debugger() yourself.

Refer to the User’s Guide for mpich, a Portable Implementation of MPI for information on
how to use MPE. It is available at the Argonne National Laboratory web site:

http://www.mcs.anl.gov/mpi/mpich/

ftp://ftp.mcs.anl.gov/pub/mpi/misc/mpe.tar.gz

gunzip mpe.tar.gz
tar xvf mpe.tar

cd mpe
configure –cc=cc –fc=f77 –opt=–I/opt/SUNWhpc/include

make
Chapter 2 Sun MPI Library 29

30 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

CHAPTER 3

Getting Started

This chapter explains how to develop, compile and link, execute, and debug a Sun
MPI program. The chapter focuses on what is specific to the Sun MPI
implementation and does not repeat information that can be found in related
documents. Information about programming with the Sun MPI I/O routines is in
Chapter 4.

Header Files
Include syntax must be placed at the top of any program that calls Sun MPI routines.

■ For C and C++, use

#include <mpi.h>

■ For Fortran, use

INCLUDE 'mpif.h'

These lines enable the program to access the Sun MPI version of the mpi header file,
which contains the definitions, macros, and function prototypes required when
compiling the program. Ensure that you are referencing the Sun MPI include file.

The include files are usually found in /opt/SUNWhpc/include/ or
/opt/SUNWhpc/include/v9/for SPARC-based systems. For x64-based systems,
the files reside in /opt/SUNWhpc/include/amd64.If the compiler cannot find
them, verify that they exist and are accessible from the machine on which you are
compiling your code. The location of the include file is specified by the -l
compiler option (see “Compiling and Linking” on page 36).
31

Sample Code
Three simple Sun MPI programs are available in /opt/SUNWhpc/examples/mpi
and are included here in their entirety. In the same directory you will find the
Readme file, which provides instructions for using the examples, and the make file
Makefile.

CODE EXAMPLE 3-1 Simple Sun MPI Program in C: connectivity.c

/*
 * Test the connectivity between all processes.
 */

#pragma ident "@(#)connectivity.c 1.1 06/03/02"

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <netdb.h>
#include <unistd.h>

#include <mpi.h>

int
main(int argc, char **argv)
{
 MPI_Status status;
 int verbose = 0;
 int rank;
 int np; /* number of processes in job */
 int peer;
 int i;
 int j;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &np);

 if (argc>1 && strcmp(argv[1], "–v")==0)
 verbose = 1;

 for (i=0; i<np; i++) {
 if (rank==i) {
 /* rank i sends to and receives from each higher rank */
 for(j=i+1; j<np; j++) {
 if (verbose)
 printf("checking connection %4d <–> %–4d\n", i, j);
 MPI_Send(&rank, 1, MPI_INT, j, rank, MPI_COMM_WORLD);
32 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

 MPI_Recv(&peer, 1, MPI_INT, j, j, MPI_COMM_WORLD, &status);
 }
 } else if (rank>i) {
 /* receive from and reply to rank i */
 MPI_Recv(&peer, 1, MPI_INT, i, i, MPI_COMM_WORLD, &status);
 MPI_Send(&rank, 1, MPI_INT, i, rank, MPI_COMM_WORLD);
 }
 }

 MPI_Barrier(MPI_COMM_WORLD);
 if (rank==0)
 printf("Connectivity test on %d processes PASSED.\n", np);

 MPI_Finalize();
 return 0;
}

CODE EXAMPLE 3-2 Simple Sun MPI Program in Fortran: monte.f

!
! Estimate pi via Monte–Carlo method.
!
! Each process sums how many of samplesize random points generated
! in the square (–1,–1),(–1,1),(1,1),(1,–1) fall in the circle of
! radius 1 and center (0,0), and then estimates pi from the formula
! pi = (4 * sum) / samplesize.
! The final estimate of pi is calculated at rank 0 as the average of
! all the estimates.
!
 program monte

 include ’mpif.h’

 double precision drand
 external drand

 double precision x, y, pi, pisum
 integer*4 ierr, rank, np
 integer*4 incircle, samplesize

 parameter(samplesize=2000000)

 call MPI_INIT(ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, np, ierr)

! seed random number generator

CODE EXAMPLE 3-1 Simple Sun MPI Program in C: connectivity.c (Continued)
Chapter 3 Getting Started 33

 x = drand(2 + 11*rank)

 incircle = 0
 do i = 1, samplesize
 x = drand(0)*2.0d0 – 1.0d0 ! generate a random point
 y = drand(0)*2.0d0 – 1.0d0

 if ((x*x + y*y) .lt. 1.0d0) then
 incircle = incircle+1 ! point is in the circle
 endif
 end do

 pi = 4.0d0 * DBLE(incircle) / DBLE(samplesize)

! sum estimates at rank 0
 call MPI_REDUCE(pi, pisum, 1, MPI_DOUBLE_PRECISION, MPI_SUM,
 & 0 , MPI_COMM_WORLD, ierr)

 if (rank .eq. 0) then
! final estimate is the average
 pi = pisum / DBLE(np)
 print ’(A,I4,A,F8.6,A)’,’Monte–Carlo estimate of pi by ’,np,
 & ’ processes is ’,pi,’.’
 endif

 call MPI_FINALIZE(ierr)
 end

CODE EXAMPLE 3-2 Simple Sun MPI Program in Fortran: monte.f (Continued)
34 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

CODE EXAMPLE 3-3 Simple Sun MPI Program in C++: prime.cc

/*
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * Use is subject to license terms.
 *
 * Sun, Sun Microsystems, the Sun logo, Sun HPC ClusterTools, Sun PFS,
 * Sun C++, Sun MPI, Prism, Sun Prism, and all Sun-based trademarks and logos,
 * are trademarks or registered trademarks of Sun Microsystems, Inc. in
 * the United States and other countries.
 */
#pragma ident "@(#)prime.cc1.206/03/06 SMI"
#include <stdio.h>
#include <mpi++.h>
#define BUFF_SIZE 10
#define ROOT 0
/*
 * prototypes
 */
int primeset(int);
/*
 * main
 *
 * Description:Each non-root rank sends a list of numbers to root to
 * be tested if any lie in the set of prime numbers. Report
 * the results.
 */
main(int argc, char **argv)
{
int rank, size;
int list[BUFF_SIZE];
int i, j;
MPI::Status status;
MPI::Init(argc, argv);
rank = MPI::COMM_WORLD.Get_rank();
size = MPI::COMM_WORLD.Get_size();
if (rank != ROOT) {
/* create list to be tested */
for(i=0; i< BUFF_SIZE; i++)
list[i] = rank*10 + i;
/* send list to ROOT and report those numbers that are in the prime set */
MPI::COMM_WORLD.Send(list, BUFF_SIZE, MPI::INT, ROOT, 22);
MPI::COMM_WORLD.Recv(list, BUFF_SIZE, MPI::INT, ROOT, 22, status);
printf("Rank %d - prime set:: ", rank);
for (i=0; i< BUFF_SIZE; i++) {
if (list[i] > 0)

printf("%d ",list[i]);
}
printf("\n");
} else {
/* recieve from non-ROOT ranks, test list, and return modified list */
for(j=0; j< (size-1); j++) {
MPI::COMM_WORLD.Recv(list, BUFF_SIZE, MPI::INT, MPI::ANY_SOURCE,

MPI::ANY_TAG, status);
for(i=0; i< BUFF_SIZE; i++)

list[i] = primeset(list[i]);
MPI::COMM_WORLD.Send(list, BUFF_SIZE, MPI::INT, status.Get_source(),

status.Get_tag());
}
}

Chapter 3 Getting Started 35

Compiling and Linking
Sun MPI programs are compiled with ordinary C, C++, or Fortran compilers, just like
any other C, C++, or Fortran program, and linked with the Sun MPI library.

The mpf77, mpf90, mpcc, and mpCC utilities can be used to compile Fortran 77,
Fortran 90, C, and C++ programs, respectively. For example, you might use the
following entry to compile a Fortran 77 program that uses Sun MPI:

See the man pages for more information on these utilities.

For performance, the single most important compilation switch is –fast. This is a
macro that expands to settings appropriate for high performance for a general set of
circumstances. Because its expansion varies from one compiler release to another,
you might prefer to specify the underlying switches. To see what –fast expands to,
use –v for “verbose” compilation output in Fortran, and –# for C. Also, –fast
assumes native compilation, so you should compile on UltraSPARC™ processors.

The next important compilation switch is –xarch. The Sun Studio Compiler
Collection compilers set –xarch by default when you select –fast for native
compilations. If you plan to compile on one type of processor and run the program
on another type (non-native compilation), be sure to use the –xarch flag. You
should also use it to compile in 64-bit mode. To compile in 64-bit mode on
UltraSPARC processors, specify -xarch=v9. For AMD Opteron x64 processors,
specify -xarch=amd64.

For more information, see the Sun HPC ClusterTools Software Performance Guide and
the documents that came with your compiler.

The Sun Studio Compiler Collection software releases 8, 9, 10, and 11 are supported
for the Sun HPC ClusterTools 6 suite.

Sun MPI programs compiled using the Sun Studio Compiler Collection Fortran
compiler should be compiled with –xalias=actual. The
–xalias=actual workaround requires patch 111718-01 (which requires 111714-01).

This recommendation arises because the MPI Fortran binding is inconsistent with
the Fortran 90 standard in several respects. Specifically, this is documented in the
MPI 2 standard, which you can find on the World Wide Web:

http://www–unix.mcs.anl.gov/mpi/mpi–standard/
mpi–report–2.0/node19.htm#Node19

% mpf77 –fast –xarch=v9 –o a.out a.f –lmpi
36 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

This recommendation applies to the use of high levels of compiler optimization. A
highly optimizing Fortran compiler could break MPI codes that use nonblocking
operations.

The failure modes are varied and insidious and include the following:

■ Silently incorrect answers
■ Intermittent and mysterious floating-point exceptions
■ Intermittent and mysterious hangs

TABLE 3-1 Compile and Link Line Options for Sun MPI and Sun MPI I/O

Program Options

C (nonthreaded
example)

Use mpcc (below), or if you prefer:
% cc filename.c –o filename \

–I/opt/SUNWhpc/include –L/opt/SUNWhpc/lib \

–R/opt/SUNWhpc/lib –lmpi

C++

Note that x.0 represents
the version of your C++

compiler.

Use mpCC (below), or if you prefer:
% CC filename.cc –o filename \

–I/opt/SUNWhpc/include –L/opt/SUNWhpc/lib \

–R/opt/SUNWhpc/lib –L/opt/SUNWhpc/lib/SCx.0 \

–R/opt/SUNWhpc/lib/SCx.y –mt –lmpi++ –lmpi

mpcc, mpCC % mpcc –o filename filename.c –lmpi

% mpCC –o filename filename.cc –mt –lmpi

Fortran 77
(nonthreaded
example)

Use mpf77 (below), or if you prefer:
% f77 –dalign filename.f –o filename \
–I/opt/SUNWhpc/include –L/opt/SUNWhpc/lib \

–R/opt/SUNWhpc/lib –lmpi

Fortran on a 64-bit
system

% f77 –dalign filename.f –o filename \
–I/opt/SUNWhpc/include/v9 \

–L/opt/SUNWhpc/lib/sparcv9 \

–R/opt/SUNWhpc/lib/sparcv9 –lmpi

Fortran 90 Replace mpf77 with mpf90, or f77 with f90:

mpf90, mpf95 % mpf90 –o filename –dalign filename.f –lmpi

% mpf95 –o filename –dalign filename.f –lmpi

Multithreaded programs
and programs containing
nonblocking MPI I/O
routines

To support multithreaded code, replace –lmpi with –lmpi_mt.
This change also supports programs with nonblocking MPI I/O
routines.
Note that –lmpi can be used for programs containing
nonblocking MPI I/O routines, but –lmpi_mt must be used for
multithreaded programs.
Chapter 3 Getting Started 37

Note – For the Fortran interface, the –dalign option is necessary to avoid the
possibility of bus errors. (The underlying C or C++ routines in Sun MPI internals
assume that parameters and buffer types passed as REALs are double-aligned.)

Note – If your program has previously been linked to any static libraries, you must
relink it to libmpi.so before executing it.

Choosing a Library Path
The paths for the MPI libraries, which you must specify when you are compiling
and linking your program, are listed in TABLE 3-2.

Note that x.0 denotes the version of your compiler.

Stubbing Thread Calls
The libthread.so libraries are automatically linked into the respective
libmpi.so libraries. This means that any thread-function calls in your program can
be resolved by the libthread.so library. Simply omitting libthread.so from the
link line does not cause thread calls to be stubbed out; you must remove the thread

TABLE 3-2 Sun MPI Libraries

Category Description Path: /opt/SUNWhpc/lib/...

32-bit
libraries

Default, not thread-safe libmpi.so

C++ (in addition to libmpi.so) SCx.0/libmpi++.so

Thread-safe libmpi_mt.so

64-bit
libraries

Default, not thread-safe sparcv9/libmpi.so (SPARC)
amd64/libmpi.so (x64)

C++ (in addition to
sparcv9/libmpi.so)

sparcv9/SCx.0/libmpi++.so
(SPARC)
amd64/SCx.0/libmpi++.so (x64)

Thread-safe sparcv9/libmpi_mt.so (SPARC)
amd64/libmpi_mt.so (x64)
38 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

calls yourself. For more information about the libthread.so library, see its man
page. (For the location of Solaris man pages at your site, see your system
administrator.)

Profiling With mpprof
If you plan to extract MPI profiling information from the execution of a job, you
need to set the MPI_PROFILE environment variable to 1 before you start the job
execution.

If you want to set any other mpprof environment variables, you must set them also
before starting the job. See Appendix B for detailed descriptions of the mpprof
environment variables.

Basic Job Execution
The CRE environment provides close integration with batch-processing systems, also
known as resource managers. You can launch parallel jobs from a batch system to
control resource allocation, and continue to use the CRE environment to monitor job
status. For a list of currently supported resource managers, see TABLE 3-3.

% setenv MPI_PROFILE 1

TABLE 3-3 Currently Supported Resource Managers

Resource manager
Name used with
–x option to mprun Version Man page

Sun N1 Grid Engine sge N1GE 6 sge_cre.1

PBS pbs PBS 2.3.16 pbs_cre.1

pbs PBS
Professional 7.1

pbs_cre.1

LSF lsf LSF HPC 6.2 lsf_cre.1
Chapter 3 Getting Started 39

To enable the integration between the CRE environment and the supported resource
managers, you must call mprun from a script in the resource manager. Use the –x
flag to specify the resource manager, and the –np and –nr flags to specify the
resources you need. Instructions and examples for each resource manager are
provided in the Sun HPC ClusterTools Software User’s Guide.

Before starting your job, you might want to set one or more environment variables,
which are also described in Appendix B and in the Sun HPC ClusterTools Software
Performance Guide.

Executing With CRE
When using CRE software, parallel jobs are launched using the mprun command.
For example, to start a job with six processes named mpijob, use this command:

Executing With LSF Suite
Parallel jobs can be either launched by the LSF Parallel Application Manager (PAM)
or submitted in queues configured to run PAM as the parallel job starter. LSF’s bsub
command launches both parallel interactive and batch jobs. For example, to start a
batch job named mpijob on four CPUs, use this command:

To launch an interactive job, add the –I argument to the command line. For
example, to launch an interactive job named earth on a single CPU in the queue
named sun, which is configured to launch jobs with PAM, use this command:

% mprun –np 6 mpijob

% bsub –n 4 pam mpijob

% bsub –q sun –Ip –n 1 earth
40 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Debugging
Debugging parallel programs is notoriously difficult, because you are in effect
debugging a program potentially made up of many distinct programs executing
simultaneously. Even if the application is an SPMD (single-program, multiple-data)
application, each instance can be executing a different line of code at any instant.

Debugging with DTrace
The DTrace utility comes as part of the Solaris 10 OS. DTrace is a comprehensive
dynamic tracing utility that you can use to monitor the behavior of applications
programs as well as the operating system itself. You can use DTrace on live
production systems to understand those systems’ behavior and to track down any
problems that might be occurring.

For more information about the D language and DTrace, refer to the Solaris Dynamic
Tracing Guide (Part Number 817-6223). This guide is part of the Solaris 10 OS
Software Developer Collection.

Solaris 10 OS documentation can be found on the web at the following location:

http://www.sun.com/documentation

Follow these links to the Solaris Dynamic Tracing Guide:

Solaris Operating Systems -> Solaris 10 -> Solaris 10 Software Developer Collection

Debugging With TotalView
TotalView is a third-party multiprocess debugger from Etnus that runs on many
platforms. Support for using the TotalView debugger on Sun MPI applications
includes:

■ Making Sun HPC ClusterTools software compatible with the Etnus debugger
TotalView

■ Allowing Sun MPI jobs to be debugged by TotalView using the Sun N1 Grid
Engine (SGE), the Portable Batch System (PBS), and Platform Computing’s Load
Sharing Facility (LSF)

■ Displaying Sun MPI message queues
■ Allowing multiple instantiations of TotalView on a single cluster
■ Supporting TotalView in Sun HPC ClusterTools software
Chapter 3 Getting Started 41

http://www.sun.com/documentation

The following sections provide a brief description of how to use the TotalView
debugger with Sun MPI applications, including:

■ “Limitations” on page 42
■ “Related Documentation” on page 42
■ “Starting a New Job Using TotalView” on page 43
■ “Attaching to an mprun Job” on page 44
■ “Launching Sun MPI Batch Jobs Using TotalView” on page 45

Refer to your TotalView documentation for more information about using TotalView.

Limitations
■ Debuggable job restricted according to the license with Etnus. Contact the system

administrator who installed TotalView for more details.
■ TotalView 7.0.1. supports the SPARC platform only.
■ Does not support MPI_Comm_spawn and MPI_Comm_spawn_multiple function

calls.
■ Displays MPI_COMM_WORLD in the message queue graph only after MPI_Init()

has occurred. Displays neither collective communicators nor MPI_COMM_SELF.
Refer to the Etnus TotalView documentation for more information.

■ Does not display any buffer contents for unexpected messages in the message
queue window.

Related Documentation

For more information, refer to the following related documentation:

■ Sun HPC ClusterTools Software User’s Guide

■ Sun HPC ClusterTools Software Administrator’s Guide

■ Sun HPC ClusterTools software man pages

■ lsf_cre(1)
■ mpps(1M)
■ mprun(1M)
■ pbs_cre(1)
■ sge_cre(1)
■ totalview_mprun(1M)

■ Etnus TotalView documentation

Note – The example program connectivity used in this section and other sample
programs can be found in /opt/SUNWhpc/examples/mpi.
42 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Starting a New Job Using TotalView

You can start a new job from the Total View Graphical User Interface (GUI) using:

■ GUI method 1
■ GUI method 2
■ Command-line interface (CLI)

▼ To Start a New Job Using GUI Method 1

1. Type:

For example:

2. When the GUI appears, type g for go, or click Go in the TotalView window.

TotalView may display a dialog box:

3. Click Yes to open the TotalView debugger window with the Sun MPI source
window, if compiled with option -g, and to leave all processes in a traced state.

▼ To Start a New Job Using GUI Method 2

1. Type:

2. Select the menu option File and then New Program.

3. Type mprun as the executable name in the dialog box.

4. Click OK.

TotalView displays the main debug window.

5. Select the menu option Process and then Startup Parameters, which are the mprun
args.

% totalview mprun [totalview args] –a [mprun args]

% totalview mprun –bg blue –a –np 4
/opt/SUNWhpc/examples/mpi/connectivity

Process mprun is a parallel job. Do you want to stop the job now?

% totalview
Chapter 3 Getting Started 43

▼ To Start a New Job Using the CLI

1. Type:

For example:

2. When the job starts, type dgo.

TotalView displays this message:

3. Type y to start the MPI job, attach TotalView, and leave all processes in a traced
state.

Attaching to an mprun Job

This section describes how to attach to an already running mprun job from both the
TotalView GUI and CLI.

▼ To Attach to a Running Job from the GUI

1. Find the host name and process identifier (PID) of the mprun job by typing:

mprun displays the PID and host name in a similar manner to this example:

For more information, refer to the mpps(1M) man page, option -b.

2. In the TotalView GUI, select File and then New Program.

% totalviewcli mprun [totalview args] –a [mprun args]

% totalviewcli mprun –a –np 4
/opt/SUNWhpc/examples/mpi/connectivity

Process mprun is a parallel job. Do you want to stop the job now?

% mpps –b

JOBNAME MPRUN_PID MPRUN_HOST
cre.99 12345 hpc–u2–9
cre.100 12601 hpc–u2–8
44 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

3. Type the PID in Process ID.

4. Type mprun in the field Executable Name.

5. Do one of the following:

■ Leave Remote Host blank if TotalView is running on the same node as the mprun
job.

■ Enter the host name in Remote Host.

6. Click OK.

▼ To Attach to a Running Job From the CLI

1. Find the process identifier (PID) of the launched job.

See the example under the preceding GUI procedure. For more information, refer to
the mpps(1M) man page, option –b.

2. Start totalviewcli by typing:

3. Attach the executable program to the mprun PID:

For example:

Launching Sun MPI Batch Jobs Using TotalView

This section describes how to launch Sun MPI batch jobs, including:

■ TotalView’s control using the GUI only
■ Interactive sessions using the GUI
■ Interactive sessions using the CLI

This section provides examples of launching batch jobs in Sun Grid Engine (SGE).
Refer to Chapter 5 of the Sun HPC ClusterTools Software User’s Guide for descriptions
of launching batch jobs in the Load Sharing Facility (LSF) and the Portable Batch
System (PBS).

% totalviewcli

% dattach mprun mprun_pid

% dattach mprun 12601
Chapter 3 Getting Started 45

▼ To Execute Startup in Batch Mode for the TotalView GUI

Executing startup in batch mode for the TotalView CLI is not practical, because there
is no controlling terminal for input and output. This procedure describes executing
startup in batch mode for the TotalView GUI:

1. Write a batch script, which contains a line similar to the following:

2. Then submit the script to SGE for execution with a command similar to the
following:

The TotalView GUI appears upon successful allocation of resources and execution of
the batch script in SGE.

▼ To Use the Interactive Mode

The interactive mode creates an xterm window for your use, so you can use either
the TotalView GUI or the CLI.

1. Run the following, or an equivalent path, to source the SGE environment:

The system displays an xterm window.

2. Submit an interactive mode job to SGE with a command similar to the following:

% totalview mprun –a –x sge /opt/SUNWhpc/examples/mpi/connectivity

% qsub –pe cre 4 batch_script

% source <sgeroot>/default/common/settings.csh

% qsh –pe cre 4
46 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

3. Execute a typical totalview or totalviewcli command.

TotalView GUI example:

TotalView CLI example:

Debugging With MPE
The multiprocessing environment (MPE) available from Argonne National
Laboratory includes a debugger that can also be used for debugging at the thread
level. For information about obtaining and building MPE, see “MPE: Extensions to
the Library” on page 28.

% totalview mprun –a –x sge /opt/SUNWhpc/examples/mpi/connectivity

% totalviewcli mprun –a –x sge
/opt/SUNWhpc/examples/mpi/connectivity
Chapter 3 Getting Started 47

48 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

CHAPTER 4

Programming With Sun MPI I/O

File I/O in Sun MPI is fully MPI-2 compliant. MPI I/O is specified as part of that
standard, which was published in 1997. Its goal is to provide a library of routines
featuring a portable parallel file system interface that is an extension of the MPI
framework. See “Related Documentation” on page ix for more information about the
MPI-2 Standard.

MPI I/O models file I/O on message passing; that is, writing to a file is analogous to
sending a message, and reading from a file is analogous to receiving a message. The
MPI library provides a high-level way of partitioning data among processes, which
saves you from having to specify the details involved in making sure that the right
pieces of data go to the right processes. This section describes basic MPI I/O
concepts and the Sun MPI I/O routines.

Data Partitioning and Data Types
MPI I/O uses the MPI model of communicators and derived data types to describe
communication between processes and I/O devices. MPI I/O determines which
processes are communicating with a particular I/O device. Derived data types can
be used to define the layout of data in memory and of data in a file on the I/O
device. (For more information about derived data types, see “Data Types” on
page 16.) Because MPI I/O builds on MPI concepts, it’s easy for a knowledgeable
MPI programmer to add MPI I/O code to a program.

Data is stored in memory and in the file according to MPI data types. Herein lies one
of MPI and MPI I/O’s advantages: Because they provide a mechanism whereby you
can create your own data types, you have more freedom and flexibility in specifying
data layout in memory and in the file.
49

The library also simplifies the task of describing how your data moves from
processor memory to the file and back again. You create derived data types that
describe how the data is arranged in the memory of each process and how it should
be arranged in that part of the disk file associated with the process.

Three functions are provided to handle the external32 format. This format, defined
by the MPI Forum, represents data in a universal format that is useful for
exchanging data between implementations or for writing it to a file. The functions
are:

■ MPI_Pack_external()
■ MPI_Unpack_external()
■ MPI_Pack_external_size()

The Sun MPI I/O routines are described in “Routines” on page 51. But first, to be
able to define a data layout, you will need to understand some basic MPI I/O data-
layout concepts. The next section explains some of the fundamental terms and
concepts.

Definitions
The following terms are used to describe partitioning data among processes.
FIGURE 4-1 illustrates some of these concepts.

■ An elementary data type (or etype) is the unit of data access and positioning. It can
be any MPI basic or derived data type. Data access is performed in elementary-
data-type units, and offsets (defined later in this list) are expressed as a count of
elementary data types.

■ The file type (or filetype) is used to partition a file among processes; that is, a
file type defines a template for accessing the file. It is either a single elementary
data type or a derived MPI data type constructed from elementary data types. A
file type can contain “holes,” or extents of bytes that are not accessed by this
process.

■ A file displacement (or disp) is an absolute byte position counted from the
beginning of a file. The displacement defines the location where a view begins
(see FIGURE 4-1).

■ A view defines the current set of data visible and accessible by a process from an
open file in terms of a displacement, an elementary data type, and a file type. The
pattern described by a file type is repeated, beginning at the displacement, to
define the view.

■ An offset is a position relative to the current view, expressed as a count of
elementary data types. Holes in the view’s file type are ignored when calculating
this position.
50 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

FIGURE 4-1 Displacement, the Elementary Data Type, the File Type, and the View

For a more detailed description of MPI I/O, see Chapter 9, “I/O,” of the MPI-2
Standard.

Note for Fortran Users

When writing a Fortran program, you must declare the variable ADDRESS as follows:

MPI_ADDRESS_KIND is a constant defined in mpi.h. This constant defines the
length of the declared integer.

Routines
This release of Sun MPI includes all the MPI I/O routines, which are defined in
Chapter 9, “I/O,” of the MPI-2 Standard.

Code samples that use many of these routines are provided in “Sample Code” on
page 59.

INTEGER*MPI_ADDRESS_KIND ADDRESS

. . .

size of
displacement etype filetype

view: shaded regions are data visible to a process
Chapter 4 Programming With Sun MPI I/O 51

File Manipulation

MPI_File_open() and MPI_File_close() are collective operations that open
and close a file, respectively; that is, all processes in a communicator group must
together open or close a file. To achieve a single-user, UNIX-like open, set the
communicator to MPI_COMM_SELF.

MPI_File_delete() deletes a specified file.

The routines MPI_File_set_size(), MPI_File_get_size(),
MPI_File_get_group(), and MPI_File_get_amode() get and set information
about a file. When using the collective routine MPI_File_set_size() on a UNIX
file, if the size that is set is smaller than the current file size, the file is truncated at
the position defined by size. If size is set to be larger than the current file size, the file
size becomes size.

When the file size is increased this way with MPI_File_set_size(), new regions
are created in the file with displacements between the old file size and the larger,
newly set file size. Sun MPI I/O does not necessarily allocate file space for such new
regions. You can reserve file space either by using MPI_File_preallocate() or
by performing a read or write to unallocated bytes. MPI_File_preallocate()
ensures that storage space is allocated for a set quantity of bytes for the specified file;
however, its use is very “expensive” in terms of performance and disk space.

The routine MPI_File_get_group() returns a communicator group, but it does
not free the group.

File Hints
The opaque info object enables you to provide hints for optimization of your code,
making it run faster or more efficiently, for example. These hints are set for each file,
using the MPI_File_open(), MPI_File_set_view(), MPI_File_set_info(),
and MPI_File_delete() routines. MPI_File_set_info() sets new values for
the specified file’s hints. MPI_File_get_info() returns all the hints that the
system currently associates with the specified file.

When using UNIX files, Sun MPI I/O provides four hints for controlling how much
buffer space it uses to satisfy I/O requests: noncoll_read_bufsize,
noncoll_write_bufsize, coll_read_bufsize, and coll_write_bufsize.

Collective coordination Noncollective coordination

MPI_File_open()
MPI_File_close()
MPI_File_set_size()
MPI_File_preallocate()

MPI_File_delete()
MPI_File_get_size()
MPI_File_get_group()
MPI_File_get_amode()
52 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

These hints can be tuned for your particular hardware configuration and application
to improve performance for both noncollective and collective data accesses. For
example, if your application uses a single MPI I/O call to request multiple
noncontiguous chunks that form a regular strided pattern in the file, you can adjust
the noncoll_write_bufsize to match the size of the stride. Note that these hints
limit the size of MPI I/O’s underlying buffers but do not limit the amount of data a
user can read or write in a single request.

File Views
The MPI_File_set_view() routine changes the view the process has of the data in
the file, specifying its displacement, elementary data type, and file type, as well as
setting the individual file pointers and shared file pointer to 0.

MPI_File_set_view() is a collective routine; all processes in the group must pass
identical values for the file handle and the elementary data type, although the values
for the displacement, the file type, and the info object can vary. However, if you use
the data-access routines that use file positioning with a shared file pointer, you must
also give the displacement and the file type identical values. The data types passed
in as the elementary data type and the file type must be committed.

You can also specify the type of data representation for the file. See “File
Interoperability” on page 57 for information about registering data representation
identifiers.

Note – Displacements within the file type and the elementary data type must be
monotonically nondecreasing.

Data Access
The 35 data-access routines are categorized according to file positioning. Data access
can be achieved by any of these methods of file positioning:

■ Explicit offset
■ Individual file pointer
■ Shared file pointer

This section discusses each of these methods in more detail.
Chapter 4 Programming With Sun MPI I/O 53

While blocking I/O calls do not return until the request is completed, nonblocking
calls do not wait for the I/O request to complete. A separate “request complete” call,
such as MPI_Test() or MPI_Wait(), is necessary to confirm that the buffer is
ready to be used again. Nonblocking routines have the prefix MPI_File_i, where
the i stands for immediate.

All the nonblocking collective routines for data access are “split” into two routines,
each with _begin or _end as a suffix. These split collective routines are subject to the
semantic rules described in Section 9.4.5 of the MPI-2 Standard.

Data Access With Explicit Offsets

To access data at an explicit offset, specify the position in the file where the next data
access for each process should begin. For each call to a data-access routine, a process
attempts to access a specified number of file types of a specified data type (starting
at the specified offset) into a specified user buffer.

The offset is measured in elementary data type units relative to the current view;
moreover, holes are not counted when locating an offset. The data is read from (in
the case of a read) or written into (in the case of a write) those parts of the file
specified by the current view. These routines store the number of buffer elements of
a particular data type actually read (or written) in the status object, and all the other
fields associated with the status object are undefined. The number of elements that
are read or written can be accessed using MPI_Get_count().

MPI_File_read_at() attempts to read from the file by the associated file handle
returned from a successful MPI_File_open(). Similarly, MPI_File_write_at()
attempts to write data from a user buffer to a file. MPI_File_iread_at() and
MPI_File_iwrite_at() are the nonblocking versions of MPI_File_read_at()
and MPI_File_write_at(), respectively.

MPI_File_read_at_all() and MPI_File_write_at_all() are collective
versions of MPI_File_read_at() and MPI_File_write_at(), in which each
process provides an explicit offset. The split collective versions of these nonblocking
routines are listed in the preceding table.

Synchronism Noncollective coordination Collective coordination

Blocking MPI_File_read_at()
MPI_File_write_at()

MPI_File_read_at_all()
MPI_File_write_at_all()

Nonblocking or split
collective

MPI_File_iread_at()
MPI_File_iwrite_at()

MPI_File_read_at_all_begin()
MPI_File_read_at_all_end()
MPI_File_write_at_all_begin()
MPI_File_write_at_all_end()
54 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Data Access With Individual File Pointers

For each open file, Sun MPI I/O maintains one individual file pointer per process
per collective MPI_File_open(). For these data-access routines, MPI I/O implicitly
uses the value of the individual file pointer. These routines use and update only the
individual file pointers maintained by MPI I/O by pointing to the next elementary
data type after the one that most recently has been accessed. The individual file
pointer is updated relative to the current view of the file. The shared file pointer is
neither used nor updated. (For data access with shared file pointers, see the next
section.)

These routines have similar semantics to the explicit-offset data-access routines,
except that the offset is defined here to be the current value of the individual file
pointer.

MPI_File_read_all() and MPI_File_write_all() are collective versions of
MPI_File_read() and MPI_File_write(), with each process using its
individual file pointer.

MPI_File_iread() and MPI_File_iwrite() are the nonblocking versions of
MPI_File_read() and MPI_File_write(), respectively. The split collective
versions of MPI_File_read_all() and MPI_File_write_all() are listed in the
preceding table.

Pointer Manipulation
MPI_File_seek

MPI_File_get_position

MPI_File_get_byte_offset

Each process can call the routine MPI_File_seek() to update its individual file
pointer according to the update mode. The update mode has the following possible
values:

■ MPI_SEEK_SET – The pointer is set to the offset.
■ MPI_SEEK_CUR – The pointer is set to the current pointer position plus the offset.
■ MPI_SEEK_END – The pointer is set to the end of the file plus the offset.

Synchronism Noncollective coordination Collective coordination

Blocking MPI_File_read()
MPI_File_write()

MPI_File_read_all()
MPI_File_write_all()

Nonblocking or split
collective

MPI_File_iread()
MPI_File_iwrite()

MPI_File_read_all_begin()
MPI_File_read_all_end()
MPI_File_write_all_begin()
MPI_File_write_all_end()
Chapter 4 Programming With Sun MPI I/O 55

)

)

The offset can be negative for seeking backwards, but you cannot seek to a negative
position in the file. The current position is defined as the elementary data item
immediately following the last-accessed data item.

MPI_File_get_position() returns the current position of the individual file
pointer relative to the current displacement and file type.

MPI_File_get_byte_offset() converts the offset specified for the current view
to the displacement value, or absolute byte position, for the file.

Data Access With Shared File Pointers

Sun MPI I/O maintains one shared file pointer per collective MPI_File_open()
(shared among processes in the communicator group that opened the file). As with
the routines for data access with individual file pointers, you can also use the
current value of the shared file pointer to specify the offset of data accesses
implicitly. These routines use and update only the shared file pointer; the individual
file pointers are neither used nor updated by any of these routines.

These routines have similar semantics to the explicit-offset data-access routines,
except:

■ The offset is defined here to be the current value of the shared file pointer.

■ Multiple calls (one for each process in the communicator group) affect the shared
file pointer routines as if the calls were serialized.

■ All processes must use the same file view.

After a shared file pointer operation is initiated, it is updated, relative to the current
view of the file, to point to the elementary data item immediately following the last
one requested, regardless of the number of items actually accessed.

MPI_File_read_shared() and MPI_File_write_shared() are blocking
routines that use the shared file pointer to read and write files, respectively. The
order of serialization is not deterministic for these noncollective routines, so you
need to use other methods of synchronization if you want to impose a particular
order.

Synchronism Noncollective coordination Collective coordination

Blocking MPI_File_read_shared()
MPI_File_write_shared()

MPI_File_read_ordered()
MPI_File_write_ordered()
MPI_File_seek_shared()
MPI_File_get_position_shared(

Nonblocking or split
collective

MPI_File_iread_shared()
MPI_File_iwrite_shared()

MPI_File_read_ordered_begin()
MPI_File_read_ordered_end()
MPI_File_write_ordered_begin(
MPI_File_write_ordered_end()
56 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

MPI_File_iread_shared() and MPI_File_iwrite_shared() are the
nonblocking versions of MPI_File_read_shared() and
MPI_File_write_shared(), respectively.

MPI_File_read_ordered() and MPI_File_write_ordered() are the collective
versions of MPI_File_read_shared() and MPI_File_write_shared(). They
must be called by all processes in the communicator group associated with the file
handle, and the accesses to the file occur in the order determined by the ranks of the
processes within the group. After all the processes in the group have issued their
respective calls, for each process in the group, these routines determine the position
of the shared file pointer after all processes with ranks lower than this process’s rank
had accessed their data. Then data is accessed (read or written) at that position. The
shared file pointer is then updated by the amount of data requested by all processes
of the group.

The split collective versions of MPI_File_read_ordered() and
MPI_File_write_ordered() are listed in the preceding table.

MPI_File_seek_shared() is a collective routine, and all processes in the
communicator group associated with the particular file handler must call
MPI_File_seek_shared() with the same file offset and the same update mode.
All the processes are synchronized with a barrier before the shared file pointer is
updated.

The offset can be negative for seeking backwards, but you cannot seek to a negative
position in the file. The current position is defined as the elementary data item
immediately following the last-accessed data item, even if that location is a hole.

MPI_File_get_position_shared() returns the current position of the shared
file pointer relative to the current displacement and file type.

File Interoperability
MPI_Register_datarep()

MPI_File_get_type_extent()

Sun MPI I/O supports the basic data representations described in Section 9.5 of the
MPI-2 Standard:

■ native – With native representation, data is stored exactly as in memory, in other
words, in Solaris/UltraSPARC data representation. This format offers the highest
performance and no loss of arithmetic precision. It should be used only in a
homogeneous environment, that is, on Solaris/UltraSPARC nodes running Sun
HPC ClusterTools software. It also can be used when the MPI application will
perform the data type conversions itself.

■ internal – With internal representation, data is stored in an implementation-
dependent format, such as for Sun MPI.
Chapter 4 Programming With Sun MPI I/O 57

■ external32 – With external32 representation, data is stored in a portable format,
prescribed by the MPI-2 and IEEE standards.

These data representations, as well as any user-defined representations, are specified
as an argument to MPI_File_set_view().

You can create user-defined data representations with MPI_Register_datarep().
Once a data representation has been defined with this routine, you can specify it as
an argument to MPI_File_set_view(), so that subsequent data-access operations
can call the conversion functions specified with MPI_Register_datarep().

If the file data representation is anything but native, you must be careful when
constructing elementary data types and file types. For those functions that accept
displacements in bytes, the displacements must be specified in terms of their values
in the file for the file data representation being used.

You can use MPI_File_get_type_extent() to calculate the extents of data types
in the file. The extent is the same for all processes accessing the specified file. If the
current view uses a user-defined data representation, MPI_File_get_type_
extent() uses one of the functions specified in setting the data representation to
calculate the extent.

File Consistency and Semantics

The routines ending in _atomicity enable you either to set a file’s mode as atomic
or nonatomic, or to query which mode it is in. In atomic mode, all operations within
the communicator group that opens a file are completed as if sequentialized into a
serial order. In nonatomic mode, no such guarantee is made. In nonatomic mode,
MPI_File_sync() can be used to ensure weak consistency.

The default mode varies with the number of nodes you are using. If you are running
a job on a single node, a file is in nonatomic mode by default when it is opened. If
you are running a job on more than one node, a file is in atomic mode by default.

MPI_File_set_atomicity() is a collective call that sets the consistency semantics
for data-access operations. All the processes in the group must pass identical values
for both the file handle and the Boolean flag that indicates whether atomic mode is
set.

MPI_File_get_atomicity() returns the current consistency semantics for data-
access operations. Again, a Boolean flag indicates whether the atomic mode is set.

Noncollective coordination Collective coordination

MPI_File_get_atomicity() MPI_File_set_atomicity()
MPI_File_sync()
58 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Note – In some cases, setting atomicity to false can provide better performance.
The default atomicity value on a cluster is true. The lack of synchronization among
the distributed caches on a cluster can prevent your data from completing in the
desired state. In these circumstances, you might suffer performance disadvantages
with atomicity set to true, especially when the data accesses overlap.

Sample Code
This section provides sample code to get you started with programming your I/O
using Sun MPI. The first example shows how a parallel job can partition file data
among its processes. That example is then adapted to use a broad range of other I/O
programming styles supported by Sun MPI I/O. The last code sample illustrates the
use of the nonblocking MPI I/O routines.

Remember that MPI I/O is part of MPI, so be sure to call MPI_Init() before calling
any MPI I/O routines, and call MPI_Finalize() at the end of your program, even
if you use only MPI I/O routines.

Partitioned Writing and Reading in a Parallel Job
MPI I/O was designed to enable processes in a parallel job to request multiple data
items that are noncontiguous within a file. Typically, a parallel job partitions file data
among the processes.

One method of partitioning a file is to derive the offset at which to access data from
the rank of the process. The rich set of MPI derived types also makes it easy to
partition file data. For example, you could create an MPI vector type as the filetype
passed into MPI_File_set_view(). Because vector types do not end with a hole,
you would make a call to either MPI_Type_create_resized() or
MPI_Type_ub() to complete the partition. This call would lengthen the extent to
include holes at the end of the type for processes with higher ranks. You can create a
partitioned file by passing various displacements to MPI_File_set_view(). Each
of these displacements would be derived from the process’s rank. Consequently,
offsets would not need to be derived from the ranks, because only the data in the
portion of the partition belonging to the process would be visible to the process.

The following example uses the first method that derives the file offsets directly
from the rank of the process. Each process writes and reads NUM_INTS integers
starting at the offset rank * NUM_INTS. It passes an explicit offset to the MPI I/O
data-access routines MPI_File_write_at() and MPI_File_read_at(). It calls
Chapter 4 Programming With Sun MPI I/O 59

MPI_Get_elements() to find out how many elements were written or read. To
verify that the write was successful, it compares the data written and read as well as
set up an MPI_Barrier() before calling MPI_File_get_size() to verify that the
file is the size expected upon completion of all the writes of the process.

Note that MPI_File_set_view() was called to set the view of the file as
essentially an array of integers instead of the UNIX-like view of the file as an array
of bytes. Thus, the offsets that are passed to MPI_File_write_at() and
MPI_File_read_at() are indices into an array of integers and not a byte offset.

In CODE EXAMPLE 4-1, each process writes and reads NUM_INTS integers to a file using
MPI_File_write_at() and MPI_File_read_at(), respectively.

CODE EXAMPLE 4-1 Writing and Reading Integers to a File

/* wr_at.c
 *
 * Example to demonstrate use of MPI_File_write_at and MPI_File_read_at
 *
*/

#include <stdio.h>
#include "mpi.h"

#define NUM_INTS 100

void sample_error(int error, char *string)
{
 fprintf(stderr, "Error %d in %s\n", error, string);
 MPI_Finalize();
 exit(–1);
}

void
main(int argc, char **argv)
{
 char filename[128];
 int i, rank, comm_size;
 int *buff1, *buff2;
 MPI_File fh;
 MPI_Offset disp, offset, file_size;
 MPI_Datatype etype, ftype, buftype;
 MPI_Info info;
 MPI_Status status;
 int result, count, differs;

 if(argc < 2) {
60 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

 fprintf(stdout, "Missing argument: filename\n");
 exit(–1);
 }
 strcpy(filename, argv[1]);

 MPI_Init(&argc, &argv);

 /* get this processor’s rank */
 result = MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_Comm_rank");

 result = MPI_Comm_size(MPI_COMM_WORLD, &comm_size);
 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_Comm_size");

 /* communicator group MPI_COMM_WORLD opens file "foo"
 for reading and writing (and creating, if necessary) */
 result = MPI_File_open(MPI_COMM_WORLD, filename,

 MPI_MODE_RDWR | MPI_MODE_CREATE, (int)NULL, &fh);
 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_File_open");

 /* Set the file view which tiles the file type MPI_INT, starting
 at displacement 0. In this example, the etype is also MPI_INT. */
 disp = 0;
 etype = MPI_INT;
 ftype = MPI_INT;
 info = (MPI_Info)NULL;
 result = MPI_File_set_view(fh, disp, etype, ftype, (char *)NULL, info);
 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_File_set_view");

 /* Allocate and initialize a buffer (buff1) containing NUM_INTS integers,
 where the integer in location i is set to i. */
 buff1 = (int *)malloc(NUM_INTS*sizeof(int));
 for(i=0;i<NUM_INTS;i++) buff1[i] = i;

 /* Set the buffer type to also be MPI_INT, then write the buffer (buff1)
 starting at offset 0, i.e., the first etype in the file. */
 buftype = MPI_INT;
 offset = rank * NUM_INTS;
 result = MPI_File_write_at(fh, offset, buff1, NUM_INTS, buftype, &status);
 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_File_write_at");

 result = MPI_Get_elements(&status, MPI_BYTE, &count);

CODE EXAMPLE 4-1 Writing and Reading Integers to a File (Continued)
Chapter 4 Programming With Sun MPI I/O 61

 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_Get_elements");
 if(count != NUM_INTS*sizeof(int))
 fprintf(stderr, "Did not write the same number of bytes as requested\n");
 else
 fprintf(stdout, "Wrote %d bytes\n", count);

 /* Allocate another buffer (buff2) to read into, then read NUM_INTS
 integers into this buffer. */
 buff2 = (int *)malloc(NUM_INTS*sizeof(int));
 result = MPI_File_read_at(fh, offset, buff2, NUM_INTS, buftype, &status);
 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_File_read_at");

 /* Find out how many bytes were read and compare to how many
 we expected */
 result = MPI_Get_elements(&status, MPI_BYTE, &count);
 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_Get_elements");
 if(count != NUM_INTS*sizeof(int))
 fprintf(stderr, "Did not read the same number of bytes as requested\n");
 else
 fprintf(stdout, "Read %d bytes\n", count);

 /* Check to see that each integer read from each location is
 the same as the integer written to that location. */
 differs = 0;
 for(i=0; i<NUM_INTS; i++) {
 if(buff1[i] != buff2[i]) {
 fprintf(stderr, "Integer number %d differs\n", i);
 differs = 1;
 }
 }
 if(!differs)
 fprintf(stdout, "Wrote and read the same data\n");

 MPI_Barrier(MPI_COMM_WORLD);

 result = MPI_File_get_size(fh, &file_size);
 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_File_get_size");

 /* Compare the file size with what we expect */
 /* To see a negative response, make the file preexist with a larger
 size than what is written by this program */
 if(file_size != (comm_size * NUM_INTS * sizeof(int)))
 fprintf(stderr, "File size is not equal to the write size\n");

CODE EXAMPLE 4-1 Writing and Reading Integers to a File (Continued)
62 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Data Access Styles
You can adapt CODE EXAMPLE 4-1 to support the I/O programming style that best
suits your application. Essentially, there are three dimensions on which to choose an
appropriate data access routine for a particular task: file pointer type, collective or
noncollective, and blocking or nonblocking.

You need to choose which file pointer type to use: explicit, individual, or shared. The
CODE EXAMPLE 4-1 used an explicit pointer and passed it directly as the offset
parameter to the MPI_File_write_at() and MPI_File_read_at() routines.
Using an explicit pointer is equivalent to calling MPI_File_seek() to set the
individual file pointer to offset, and then calling MPI_File_write() or
MPI_File_read(), which is directly analogous to calling UNIX lseek() and
write() or read(). If each process accesses the file sequentially, individual file
pointers save you the effort of recalculating offset for each data access. A different
shared file pointer could be used in situations where all the processes needed to
cooperatively access a file in a sequential way, such as to write log files.

Collective data-access routines enable you to enforce some implicit coordination
among the processes in a parallel job when making data accesses. For example, if a
parallel job alternately reads in a matrix and performs computation on it, but cannot
progress to the next stage of computation until all processes have completed the last
stage, then a coordinated effort between processes when accessing data might be
more efficient. In CODE EXAMPLE 4-1, you could easily append the suffix _all to
MPI_File_write_at() and MPI_File_read_at() to make the accesses
collective. By coordinating the processes, you could achieve greater efficiency in the
MPI library or at the file system level in buffering or caching the next matrix. In
contrast, noncollective accesses are used when it is not evident that any benefit
would be gained by coordinating disparate accesses by each process. UNIX file
accesses are noncollective.

 result = MPI_File_close(&fh);
 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_File_close");

 MPI_Finalize();

 free(buff1);
 free(buff2);
}

CODE EXAMPLE 4-1 Writing and Reading Integers to a File (Continued)
Chapter 4 Programming With Sun MPI I/O 63

Overlapping I/O With Computation and
Communication
MPI I/O also supports nonblocking versions of each of the data-access routines—
that is, the data-access routines that have the letter i before write or read in the
routine name (i stands for immediate). By definition, nonblocking I/O routines
return immediately after the I/O request has been issued and do not wait until the
I/O request has completed. This functionality enables you to perform computation
and communication at the same time as the I/O. Because large I/O requests can take
a long time to complete, this provides a way to more efficiently utilize your
program’s waiting time.

As in the previous example, parallel jobs often partition large matrices stored in files.
These parallel jobs can use many large matrices, or matrices that are too large to fit
into memory at once. Thus, each process can access the multiple and/or large
matrices in stages. During each stage, a process reads in a chunk of data, and then
performs a computation on it (which can involve communicating with the other
processes in the parallel job). While performing the computation and
communication, the process could issue a nonblocking I/O read request for the next
chunk of data. Similarly, once the computation on a particular chunk has completed,
a nonblocking write request could be issued before performing computation and
communication on the next chunk.

The following example code illustrates the use of a nonblocking data-access routine.
Note that like nonblocking communication routines, the nonblocking I/O routines
require a call to MPI_Wait() to wait for the nonblocking request to complete, or
repeated calls to MPI_Test() to determine when the nonblocking data access has
completed. Once complete, the write or read buffer is available for use again by the
program.

In CODE EXAMPLE 4-2, each process reads and writes NUM_BYTES bytes to a file
using the nonblocking MPI I/O routines MPI_File_iread_at() and
MPI_File_iwrite_at(), respectively. Note the use of MPI_Wait() and
MPI_Test() to determine when the nonblocking requests have completed.

CODE EXAMPLE 4-2 Reading and Writing Bytes to a File

/* iwr_at.c
 *
 * Example to demonstrate use of MPI_File_iwrite_at and MPI_File_iread_at
 *
*/

#include <stdio.h>
#include "mpi.h"
64 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

#define NUM_BYTES 100

void sample_error(int error, char *string)
{
 fprintf(stderr, "Error %d in %s\n", error, string);
 MPI_Finalize();
 exit(–1);
}

void
main(int argc, char **argv)
{
 char filename[128];
 char *buff;
 MPI_File fh;
 MPI_Offset offset;
 MPI_Request request;
 MPI_Status status;
 int i, rank, flag, result;

 if(argc < 2) {
 fprintf(stdout, "Missing argument: filename\n");
 exit(–1);
 }
 strcpy(filename, argv[1]);

 MPI_Init(&argc, &argv);

 result = MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_Comm_rank");

 result = MPI_File_open(MPI_COMM_WORLD, filename,
 MPI_MODE_RDWR | MPI_MODE_CREATE,
 (MPI_Info)NULL, &fh);

 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_File_open");

 buff = (char *)malloc(NUM_BYTES*sizeof(char));
 for(i=0;i<NUM_BYTES;i++) buff[i] = i;

 offset = rank * NUM_BYTES;
 result = MPI_File_iread_at(fh, offset, buff, NUM_BYTES,

 MPI_BYTE, &request);
 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_File_iread_at");

CODE EXAMPLE 4-2 Reading and Writing Bytes to a File (Continued)
Chapter 4 Programming With Sun MPI I/O 65

 /* Perform some useful computation and/or communication */

 result = MPI_Wait(&request, &status);

 buff = (char *)malloc(NUM_BYTES*sizeof(char));
 for(i=0;i<NUM_BYTES;i++) buff[i] = i;
 result = MPI_File_iwrite_at(fh, offset, buff, NUM_BYTES,

 MPI_BYTE, &request);
 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_File_iwrite_at");

 /* Perform some useful computation and/or communication */

 flag = 0;
 i = 0;
 while(!flag) {
 result = MPI_Test(&request, &flag, &status);
 i++;
 /* Perform some more computation or communication, if possible */
 }

 result = MPI_File_close(&fh);
 if(result != MPI_SUCCESS)
 sample_error(result, "MPI_File_close");

 MPI_Finalize();

 fprintf(stdout, "Successful completion\n");

 free(buff);
}

CODE EXAMPLE 4-2 Reading and Writing Bytes to a File (Continued)
66 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

APPENDIX A

Sun MPI and Sun MPI I/O Routines

The tables in this appendix list the Sun MPI and Sun MPI I/O routines, along with
the C syntax of the routines and a brief description of each. The routines are found
in two sections:

■ “Sun MPI Routines” on page 67
■ “Sun MPI I/O Routines” on page 95

For more information about the routines, see their online man pages, usually found
in

/opt/SUNWhpc/man/

Your system administrator can tell you where they are installed at your site.

Sun MPI Routines
TABLE A-1 lists the Sun MPI routines in alphabetical order. The following sections list
the routines by functional category.
67

Point-to-Point Communication

Blocking Routines

Nonblocking Routines

Communication Buffer Allocation

Status Data Structure

MPI_Send()
MPI_Bsend()
MPI_Ssend()
MPI_Rsend()
MPI_Recv()
MPI_Sendrecv()
MPI_Sendrecv_replace()

MPI_Isend()
MPI_Ibsend()
MPI_Issend()
MPI_Irsend()
MPI_Irecv()

MPI_Buffer_attach()
MPI_Buffer_detach()

MPI_Get_count()
MPI_Get_elements()
68 Sun MPI 7.0 Programming and Reference Guide • March 2006

Persistent (Half-Channel) Communication

Completion Tests

Probing for Messages (Blocking and Nonblocking)

Packing and Unpacking Functions

MPI_Send_init()
MPI_Bsend_init()
MPI_Rsend_init()
MPI_Ssend_init()
MPI_Recv_init()
MPI_Start()
MPI_Startall()

MPI_Wait()
MPI_Waitany()
MPI_Waitsome()
MPI_Waitall()
MPI_Test()
MPI_Testany()
MPI_Testsome()
MPI_Testall()
MPI_Request_free()
MPI_Cancel()
MPI_Test_cancelled()

MPI_Probe()
MPI_Iprobe()

MPI_Pack()
MPI_Unpack()
MPI_Pack_size()
MPI_Pack_external()
MPI_Unpack_external()
MPI_Pack_external_size()
Appendix A Sun MPI and Sun MPI I/O Routines 69

Derived Data Type Constructors and Functions

One-Sided Communication

Initialization

MPI_Address(): Deprecated – Use MPI_Get_address()
MPI_Type_commit()
MPI_Type_contiguous()
MPI_Type_create_f90_complex()
MPI_Type_create_f90_integer()
MPI_Type_create_F90_real()
MPI_Type_match_size()
MPI_Type_Sizeof()
MPI_Type_create_indexed_block()
MPI_Type_create_keyval()
MPI_Type_create_resized()
MPI_Type_delete_attr()
MPI_Type_dup()
MPI_Type_free()
MPI_Type_free_keyval()
MPI_Type_get_attr()
MPI_Type_set_attr()
MPI_Type_get_contents()
MPI_Type_get_envelope()
MPI_Type_get_name()
MPI_Type_get_true_extent()
MPI_Type_set_name()
MPI_Type_hvector(): Deprecated – Use MPI_Type_create_hvector()
MPI_Type_indexed()
MPI_Type_hindexed(): Deprecated – Use MPI_Type_create_hindexed()
MPI_Type_struct(): Deprecated – Use MPI_Type_create_struct()
MPI_Type_lb(): Deprecated – Use MPI_Type_get_extent()
MPI_Type_ub(): Deprecated – Use MPI_Type_get_extent()
MPI_Type_vector()
MPI_Type_extent(): Deprecated – Use MPI_Type_get_extent()
MPI_Type_size()

MPI_Win_create()
MPI_Win_free()
MPI_Win_get_group()
70 Sun MPI 7.0 Programming and Reference Guide • March 2006

Communication Calls

Synchronization Calls

Collective Communication

Barrier

Broadcast

MPI_Put()
MPI_Get()
MPI_Accumulate()

MPI_Win_fence()
MPI_Win_lock()
MPI_Win_unlock()
MPI_Win_start()
MPI_Win_complete()
MPI_Win_post()
MPI_Win_wait()
MPI_Win_test()

MPI_Barrier()

MPI_Bcast()
Appendix A Sun MPI and Sun MPI I/O Routines 71

Processor Gather and Scatter

Global Reduction and Scan Operations

Groups and Communicators

Group Management

Group Accessors

MPI_Gather()
MPI_Gatherv()
MPI_Allgather()
MPI_Allgatherv()
MPI_Scatter()
MPI_Scatterv()
MPI_Alltoall()
MPI_Alltoallv()
MPI_Alltoallw()

MPI_Reduce()
MPI_Allreduce()
MPI_Reduce_scatter()
MPI_Scan()
MPI_Exscan()
MPI_Op_create()
MPI_Op_free()

MPI_Group_size()
MPI_Group_rank()
MPI_Group_translate_ranks()
MPI_Group_compare()
72 Sun MPI 7.0 Programming and Reference Guide • March 2006

Group Constructors

Communicator Management

Communicator Accessors

Communicator Constructors

Intercommunicators

MPI_Comm_group()
MPI_Group_union()
MPI_Group_intersection()
MPI_Group_difference()
MPI_Group_incl()
MPI_Group_excl()
MPI_Group_range_incl()
MPI_Group_range_excl()
MPI_Group_free()

MPI_Comm_size()
MPI_Comm_rank()
MPI_Comm_compare()

MPI_Comm_dup()
MPI_Comm_create()
MPI_Comm_split()
MPI_Comm_free()

MPI_Comm_test_inter()
MPI_Comm_remote_group()
MPI_Comm_remote_size()
MPI_Intercomm_create()
MPI_Intercomm_merge()
Appendix A Sun MPI and Sun MPI I/O Routines 73

Communicator Attributes

Process Topologies

Process Creation and Management

Establishing Communication

MPI_Keyval_create(): Deprecated – Use MPI_Comm_create_keyval()
MPI_Keyval_free(): Deprecated – Use MPI_Comm_free_keyval()
MPI_Attr_put(): Deprecated – Use MPI_Comm_set_attr()
MPI_Attr_get(): Deprecated – Use MPI_Comm_get_attr()
MPI_Attr_delete(): Deprecated – Use MPI_Comm_delete_attr()

MPI_Cart_create()
MPI_Dims_create()
MPI_Graph_create()
MPI_Topo_test()
MPI_Graphdims_get()
MPI_Graph_get()
MPI_Cartdim_get()
MPI_Cart_get()
MPI_Cart_rank()
MPI_Cart_coords()
MPI_Graph_neighbors()
MPI_Graph_neighbors_count()
MPI_Cart_shift()
MPI_Cart_sub()
MPI_Cart_map()
MPI_Graph_map()

MPI_Close_port()
MPI_Comm_accept()
MPI_Comm_connect()
MPI_Comm_disconnect()
MPI_Open_port()
MPI_Comm_join()
74 Sun MPI 7.0 Programming and Reference Guide • March 2006

Name Publishing

Process Manager Interface

Environmental Inquiry Functions and Profiling

Startup and Shutdown

MPI_Publish_name()
MPI_Unpublish_name()
MPI_Lookup_name()

MPI_Comm_get_parent()
MPI_Comm_spawn()
MPI_Comm_spawn_multiple()

MPI_Init()
MPI_Finalize()
MPI_Finalized()
MPI_Initialized()
MPI_Abort()
MPI_Get_processor_name()
MPI_Get_version()
Appendix A Sun MPI and Sun MPI I/O Routines 75

Error Handler Functions

Info Objects

Timers

Profiling

MPI_Add_error_class()
MPI_Add_error_code()
MPI_Add_error_string()
MPI_Comm_call_errhandler()
MPI_File_call_errhandler()
MPI_Win_call_errhandler()
MPI_Errhandler_create(): Deprecated – Use MPI_Comm_create_errhandler()
MPI_Errhandler_set(): Deprecated – Use MPI_Comm_set_errhandler()
MPI_Errhandler_get(): Deprecated – Use MPI_Comm_get_errhandler()
MPI_Errhandler_free()
MPI_Error_string()
MPI_Error_class()

MPI_Info_create()
MPI_Info_delete()
MPI_Info_dup()
MPI_Info_free()
MPI_Info_get()
MPI_Info_get_nkeys()
MPI_Info_get_nthkey()
MPI_Info_get_valuelen()
MPI_Info_set()

MPI_Wtime()
MPI_Wtick()

MPI_Pcontrol()
76 Sun MPI 7.0 Programming and Reference Guide • March 2006

Miscellaneous

Associating Information With Status

Generalized Requests

Naming Objects

Threads

MPI_Status_set_cancelled()
MPI_Status_set_elements()

MPI_Grequest_complete()
MPI_Grequest_start()

MPI_Comm_get_name()
MPI_Comm_set_name()
MPI_Type_get_name()
MPI_Type_set_name()

MPI_Query_thread()
MPI_Init_thread()
MPI_Is_thread_main()
Appendix A Sun MPI and Sun MPI I/O Routines 77

Handle Translation

Status Conversion

MPI Routines: Alphabetical Listing

MPI_Comm_c2f()
MPI_Comm_f2c()
MPI_Group_c2f()
MPI_Group_f2c()
MPI_Info_c2f()
MPI_Info_f2c()
MPI_Op_c2f()
MPI_Op_f2c()
MPI_Request_c2f()
MPI_Request_f2c()
MPI_Type_c2f()
MPI_Type_f2c()

MPI_Status_c2f()
MPI_Status_f2c()

TABLE A-1 Sun MPI Routines

Routine and C Syntax Description

MPI_Abort(MPI_Comm comm, int errorcode) Terminates MPI execution
environment.

MPI_Accumulate(void *origin_addr, int
origin_count, MPI_Datatype origin_datatype, int
target_rank, MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPI_Op op, MPI_Win
win)

Combines the contents of the origin
buffer with that of a target buffer.

MPI_Add_error_class(int *errorclass) Creates a new, local error class.

MPI_Add_error_code(int errorclass, int *errorcode) Creates a new error code and
associates it with an error class.

MPI_Add_error_string(int *errorcode, char
*string)

Creates an error string and
associates it with an error code or
an error class.
78 Sun MPI 7.0 Programming and Reference Guide • March 2006

MPI_Address(void *location, MPI_Aint *address) Deprecated: Use instead
MPI_Get_address(). Gets the
address of a location in memory.

MPI_Allgather(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

Gathers data from all processes and
distributes it to all.

MPI_Allgatherv(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int *recvcount,
int *displs, MPI_Datatype recvtype, MPI_Comm comm)

Gathers data from all processes and
delivers it to all. Each process can
contribute a different amount of
data.

MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void
*baseptr)

Allocates a specified memory
segment.

MPI_Allreduce(void *sendbuf, void *recvbuf, int
count, MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)

Combines values from all processes
and distributes the result back to
all processes.

MPI_Alltoall(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Comm comm)

All processes send data to, and
receive data from, all processes.

MPI_Alltoallv(void *sendbuf, int *sendcounts, int
*sdispls, MPI_Datatype sendtype, void *recvbuf, int
*recvcounts, int *rdispls, MPI_Datatype recvtype,
MPI_Comm comm)

All processes send data to, and
receive data from, all processes, but
user can specify different amounts
of data to send and receive.

MPI_Alltoallw(void *sendbuf, int *sendcounts, int
*sdispls, MPI_Datatype sendtypes, void *recvbuf, int
*recvcounts, int *rdispls, MPI_Datatype recvtypes,
MPI_Comm comm)

All processes send data to, and
receive data from, all other
processes, and user can specify
database of individual datablocks
of different types.

MPI_Attr_delete(MPI_Comm comm, int keyval) Deprecated: Use instead
MPI_Comm_delete_attr().
Deletes attribute value associated
with a key.

MPI_Attr_get(MPI_Comm comm, int keyval, void
*attribute_val, int *flag)

Deprecated: Use instead
MPI_Comm_get_attr(). Retrieves
attribute value by key.

MPI_Attr_put(MPI_Comm comm, int keyval, void
*attribute_val)

Deprecated: Use instead
MPI_Comm_set_attr(). Stores
attribute value associated with a
key.

MPI_Barrier(MPI_Comm comm) Blocks until all processes have
reached this routine.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
Appendix A Sun MPI and Sun MPI I/O Routines 79

MPI_Bcast(void *buffer, int count, MPI_Datatype
datatype, int root, MPI_Comm comm)

Broadcasts a message from the
process with rank root to all other
processes of the group.

MPI_Bsend(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

Basic send with user-specified
buffering.

MPI_Bsend_init(void *buf, int count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm
comm, MPI_Request *request)

Builds a handle for a buffered send.

MPI_Buffer_attach(void *buf, int size) Attaches a user-defined buffer for
sending.

MPI_Buffer_detach(void *buf, int *size) Removes an existing buffer (for use
in MPI_Bsend(), etc.).

MPI_Cancel(MPI_Request *request) Cancels a communication request.

MPI_Cart_coords(MPI_Comm comm, int rank, int
maxdims, int *coords)

Determines process coordinates in
Cartesian topology given rank in
group.

MPI_Cart_create(MPI_Comm comm_old, int
ndims, int *dims, int *periods, int reorder, MPI_Comm
*comm_cart)

Makes a new communicator to
which Cartesian topology
information has been attached.

MPI_Cart_get(MPI_Comm comm, int maxdims, int
*dims, int *periods, int *coords)

Retrieves Cartesian topology
information associated with a
communicator.

MPI_Cart_map(MPI_Comm comm, int ndims, int
*dims, int *periods, int *newrank)

Maps process to Cartesian topology
information.

MPI_Cart_rank(MPI_Comm comm, int *coords, int
*rank)

Determines process rank in
communicator given Cartesian
location.

MPI_Cart_shift(MPI_Comm comm, int direction,
int disp, int *rank_source, int *rank_dest)

Returns the shifted source and
destination ranks, given a shift
direction and amount.

MPI_Cart_sub(MPI_Comm comm, int
*remain_dims, MPI_Comm *comm_new)

Partitions a communicator into
subcommunicators that form
lower-dimensional Cartesian
subgrids.

MPI_Cartdim_get(MPI_Comm comm, int *ndims) Retrieves Cartesian topology
information associated with a
communicator.

MPI_Close_port(char *port_name) Releases the specified network
address.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
80 Sun MPI 7.0 Programming and Reference Guide • March 2006

MPI_Comm_accept(char *port_name, MPI_Info info,
int root, MPI_Comm comm, MPI_Comm *newcomm)

Establishes communication with a
client (collective).

MPI_Comm_c2f(MPI_Comm comm) Translates a C handle into a Fortran
handle.

MPI_Comm_compare(MPI_Comm comm1,
MPI_Comm comm2, int *result)

Compares two communicators.

MPI_Comm_connect(char *port_name, MPI_Info
info, int root, MPI_Comm comm, MPI_Comm
*newcomm)

Establishes communication with a
server (collective).

MPI_Comm_create(MPI_Comm comm, MPI_Group
group, MPI_Comm *newcomm)

Creates a new communicator from
a group.

MPI_Comm_create_errhandler(
MPI_Comm_errhandler_fn *function,
MPI_Errhandler *errhandler)

Creates an error handler that can
be attached to communicators.

MPI_Comm_create_keyval(
MPI_Comm_copy_attr_function *comm_copy_attr_fn,
MPI_Comm_delete_attr_function
*comm_delete_attr_fn, int *comm_keyval, void
*extra_state)

Generates a new attribute key.

MPI_Comm_delete_attr(MPI_Comm comm, int
comm_keyval)

Deletes attribute value associated
with a key.

MPI_Comm_disconnect(MPI_Comm *comm) De-allocates communicator object
and sets handle to
MPI_COMM_NULL (collective).

MPI_Comm_dup(MPI_Comm comm, MPI_Comm
*newcomm)

Duplicates an existing
communicator with all its cached
information.

MPI_Comm_f2c(MPI_Fint comm) Translates a Fortran handle into a C
handle.

MPI_Comm_free(MPI_Comm *comm) Marks the communicator object for
de-allocation.

MPI_Comm_free_keyval(int *comm_keyval) Frees attribute key for
communicator cache attribute.

MPI_Comm_get_attr(MPI_Comm comm, int
comm_keyval, void *attribute_val, int *flag)

Retrieves attribute value by key.

MPI_Comm_get_errhandler(MPI_Comm comm,
MPI_Errhandler *errhandler)

Retrieves error handler associated
with a communicator.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
Appendix A Sun MPI and Sun MPI I/O Routines 81

MPI_Comm_get_name(MPI_Comm comm, char
*comm_name, int *resultlen)

Returns the name that was most
recently associated with a
communicator.

MPI_Comm_get_parent(MPI_Comm *parent) Returns the parent
intercommunicator of current
spawned process.

MPI_Comm_group(MPI_Comm comm, MPI_Group
*group)

Accesses the group associated with
a communicator.

MPI_Comm_join(int fd, MPI_Comm *intercomm) Creates an intercommunicator from
the union of two MPI processes
connected by a socket.

MPI_Comm_rank(MPI_Comm comm, int *rank) Determines the rank of the calling
process in a communicator.

MPI_Comm_remote_group(MPI_Comm comm,
MPI_Group *group)

Accesses the remote group
associated with an
intercommunicator.

MPI_Comm_remote_size(MPI_Comm comm, int
size)

Determines the size of the remote
group associated with an
intercommunicator.

MPI_Comm_set_attr(MPI_Comm comm, int
comm_keyval, void *attribute_val)

Stores attribute value associated
with a key.

MPI_Comm_set_errhandler(MPI_Comm comm,
MPI_Errhandler *errhandler)

Attaches a new error handler to a
communicator.

MPI_Comm_set_name(MPI_Comm comm, char
*comm_name)

Associates a name with a
communicator.

MPI_Comm_size(MPI_Comm comm, int *size) Determines the size of the group
associated with a communicator.

MPI_Comm_spawn(char *command, char *argv[], int
maxprocs, MPI_Info info, int root, MPI_Comm comm,
MPI_Comm *intercomm, int array_of_errcodes[])

Spawns a number of identical
binaries.

MPI_Comm_spawn_multiple(int count, char
*array_of_commands[], char **array_of_argv[], int
array_of_maxprocs[], MPI_Info array_of_info[], int
root, MPI_Comm comm, MPI_Comm *intercomm, int
array_of_errcodes[])

Spawns multiple binaries, or the
same binary with multiple sets of
arguments.

MPI_Comm_split(MPI_Comm comm, int color, int
key, MPI_Comm *newcomm)

Creates new communicators based
on colors and keys.

MPI_Comm_test_inter(MPI_Comm comm, int
*flag)

Tests whether a communicator is
an intercommunicator.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
82 Sun MPI 7.0 Programming and Reference Guide • March 2006

MPI_Dims_create(int nnodes, int ndims, int *dims) Creates a division of processors in
a Cartesian grid.

MPI_Errhandler_create(
MPI_Handler_function *function, MPI_Errhandler
*errhandler)

Deprecated: Use instead
MPI_Comm_create_errhandler
(). Creates an MPI error handler.

MPI_Errhandler_free(MPI_Errhandler
*errhandler)

Frees an MPI error handler.

MPI_Errhandler_get(MPI_Comm comm,
MPI_Errhandler *errhandler)

Deprecated: Use instead
MPI_Comm_get_errhandler().
Gets the error handler for a
communicator.

MPI_Errhandler_set(MPI_Comm comm,
MPI_Errhandler errhandler)

Deprecated: Use instead
MPI_Comm_set_errhandler().
Sets the error handler for a
communicator.

MPI_Error_class(int errorcode, int *errorclass) Converts an error code into an
error class.

MPI_Error_string(int errorcode, char *string, int
*resultlen)

Returns a string for a given error
code.

MPI_Exscan(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm,
comm)

Performs an exclusive prefix
reduction on data distributed
across the calling processes.

MPI_Finalize() Terminates MPI execution
environment.

MPI_Finalized(int *flag) Checks whether MPI_Finalize()
has completed.

MPI_Free_mem(void *base) Frees memory that has been
allocated using MPI_Alloc_mem.

MPI_Gather(void *sendbuf, int *sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Gathers values from a group of
processes.

MPI_Gatherv(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int *recvcounts,
int *displs, MPI_Datatype recvtype, int root,
MPI_Comm comm)

Gathers into specified locations
from all processes in a group. Each
process can contribute a different
amount of data.

MPI_Get(void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank,
MPI_Aint target_disp, int target_count, MPI_Datatype
target_datatype, MPI_Win win)

Copies data from the target
memory to the origin.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
Appendix A Sun MPI and Sun MPI I/O Routines 83

MPI_Get_address(void *location, MPI_Aint
*address)

Gets the address of a location in
memory.

MPI_Get_count(MPI_Status *status, MPI_Datatype
datatype, int *count)

Gets the number of top-level
elements received.

MPI_Get_elements(MPI_Status *status,
MPI_Datatype datatype, int *count)

Returns the number of basic
elements in a data type.

MPI_Get_processor_name(char *name, int
*resultlen)

Gets the name of the processor.

MPI_Get_version(int *version, int *subversion) Returns the version of the standard
corresponding to the current
implementation.

MPI_Graph_create(MPI_Comm comm_old, int
nnodes, int *index, int *edges, int reorder, MPI_Comm
*comm_graph)

Makes a new communicator to
which graph topology information
has been attached.

MPI_Graph_get(MPI_Comm comm, int maxindex,
int maxedges, int *index, int *edges)

Retrieves graph topology
information associated with a
communicator.

MPI_Graph_map(MPI_Comm comm, int nnodes, int
*index, int *edges, int *newrank)

Maps process to graph topology
information.

MPI_Graph_neighbors(MPI_Comm comm, int
rank, int maxneighbors, int *neighbors)

Returns the neighbors of a node
associated with a graph topology.

MPI_Graph_neighbors_count(MPI_Comm
comm, int rank, int *nneighbors)

Returns the number of neighbors of
a node associated with a graph
topology.

MPI_Graphdims_get(MPI_Comm comm, int
*nnodes, int *nedges)

Retrieves graph topology
information associated with a
communicator.

MPI_Grequest_complete(MPI_Request request) Reports that a generalized request
is complete.

MPI_Grequest_start(
MPI_Grequest_query_function *query_fn,
MPI_Grequest_free_function *free_fn,
MPI_Grequest_cancel_function *cancel_fn, void
*extra_state, MPI_Request *request)

Starts a generalized request and
returns a handle to it.

MPI_Group_c2f(MPI_Group group) Translates a C handle into a Fortran
handle.

MPI_Group_compare(MPI_Group group1,
MPI_Group group2, int *result)

Compares two groups.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
84 Sun MPI 7.0 Programming and Reference Guide • March 2006

MPI_Group_difference(MPI_Group group1,
MPI_Group group2, MPI_Group *group_out)

Makes a group from the difference
of two groups.

MPI_Group_excl(MPI_Group group, int n, int
*ranks, MPI_Group *newgroup)

Produces a group by reordering an
existing group and taking only
unlisted members.

MPI_Group_f2c(MPI_Fint group) Translates a Fortran handle into a C
handle.

MPI_Group_free(MPI_Group *group) Frees a group.

MPI_Group_incl(MPI_Group group, int n, int
*ranks, MPI_Group *group_out)

Produces a group by reordering an
existing group and taking only
listed members.

MPI_Group_intersection(MPI_Group group1,
MPI_Group group2, MPI_Group *group_out)

Produces a group at the
intersection of two existing groups.

MPI_Group_range_excl(MPI_Group group, int n,
int ranges[][3], MPI_Group *newgroup)

Produces a group by excluding
ranges of processes from an
existing group.

MPI_Group_range_incl(MPI_Group group, int n,
int ranges[][3], MPI_Group *newgroup)

Creates a new group from ranges
of ranks in an existing group.

MPI_Group_rank(MPI_Group group, int *rank) Returns the rank of this process in
the given group.

MPI_Group_size(MPI_Group group, int *size) Returns the size of a group.

MPI_Group_translate_ranks(MPI_Group
group1, int n, int *ranks1, MPI_Group group2, int
*ranks2)

Translates the ranks of processes in
one group to those in another
group.

MPI_Group_union(MPI_Group group1,
MPI_Group group2, MPI_Group *group_out)

Produces a group by combining
two groups.

MPI_Ibsend(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Starts a nonblocking buffered send.

MPI_Info_c2f(MPI_Info info) Translates a C handle into a Fortran
handle.

MPI_Info_create(MPI_Info *info) Creates a new info object.

MPI_Info_delete(MPI_Info *info, char *key, char
*value)

Deletes a key/value pair from info.

MPI_Info_dup(MPI_Info info, MPI_Info *newinfo) Duplicates an info object.

MPI_Info_f2c(MPI_Fint info) Translates a Fortran handle into a C
handle.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
Appendix A Sun MPI and Sun MPI I/O Routines 85

MPI_Info_free(MPI_Info *info) Frees info and sets it to
MPI_INFO_NULL.

MPI_Info_get(MPI_Info *info, char *key, char
*value)

Retrieves key value for an info
object.

MPI_Info_get_nkeys(MPI_Info info, int *nkeys) Returns the number of currently
defined keys in info.

MPI_Info_get_nthkey(MPI_Info info, int n, char
*key)

Returns the nth defined key in info.

MPI_Info_get_valuelen(MPI_Info info, char
*key, int *valuelen, int *flag)

Retrieves the length of the key
value associated with an info object.

MPI_Info_set(MPI_Info *info, char *key, char
*value)

Adds a key/value pair to info.

MPI_Init(int *argc, char ***argv) Initializes the MPI execution
environment.

MPI_Initialized(int *flag) Indicates whether MPI_Init() has
been called.

MPI_Init_thread(int *argc, char ***argv, int
required, int *provided)

Initializes the MPI execution
environment with a predetermined
level of thread support. Thread that
calls this function becomes the
main thread. Call instead of
MPI_Init(), not in addition to.

MPI_Intercomm_create(MPI_Comm local_comm,
int local_leader, MPI_Comm peer_comm, int
remote_leader, int tag, MPI_Comm *newintercomm)

Creates an intercommunicator.

MPI_Intercomm_merge(MPI_Comm intercomm,
int high, MPI_Comm *newintracomm

Creates an intracommunicator from
an intercommunicator.

MPI_Iprobe(int source, int tag, MPI_Comm comm,
int *flag, MPI_Status *status)

Nonblocking test for a message.

MPI_Irecv(void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Request *request)

Begins a nonblocking receive.

MPI_Irsend(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Begins a nonblocking ready send.

MPI_Isend(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Begins a nonblocking send.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
86 Sun MPI 7.0 Programming and Reference Guide • March 2006

MPI_Issend(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Begins a nonblocking synchronous
send.

MPI_Is_thread_main(int *flag) Called by a thread to determine
whether it is the main thread. See
MPI_Init_thread().

MPI_Keyval_create(MPI_Copy_function
*copy_fn, MPI_Delete_function *delete_fn, int *keyval,
void *extra_state)

Deprecated: Use instead
MPI_Comm_create_keyval().
Generates a new attribute key.

MPI_Keyval_free(int *keyval) Deprecated: Use instead
MPI_Comm_free_keyval(). Frees
attribute key for communicator
cache attribute.

MPI_Lookup_name (char *service–name, MPI_Info
info, char *port–name)

Retrieves the port name associated
with a service-name published by
MPI_Publish_name().

MPI_Op_c2f(MPI_Op op) Translates a C handle into a Fortran
handle.

MPI_Op_create(MPI_User_function *function, int
commute, MPI_Op *op)

Creates a user-defined combination
function handle.

MPI_Op_f2c(MPI_Fint op) Translates a Fortran handle into a C
handle.

MPI_Op_free(MPI_Op *op) Frees a user-defined combination
function handle.

MPI_Open_port(MPI_Info info, char *port_name) Establishes a network address for a
server to accept connections from
clients.

MPI_Pack(void *inbuf, int incount, MPI_Datatype
datatype, void *outbuf, int outsize, int *position,
MPI_Comm comm)

Packs data of a given data type into
contiguous memory.

MPI_Pack_external(char *datarep, void *inbuf, int
incount, MPI_Datatype datatype, void *outbuf,
MPI_Aint outsize, MPI_Aint *position)

Packs data into the external32
format, used to exchange data
between MPI implementations, or
when writing data to a file.

MPI_Pack_external_size(char *datarep int
incount, MPI_Datatype datatype, MPI_Aint *size)

Returns the upper bound on the
amount of space necessary to pack
a message in the external32 format.

MPI_Pack_size(int incount, MPI_Datatype
datatype, MPI_Comm comm, int *size)

Returns the upper bound on the
amount of space necessary to pack
a message.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
Appendix A Sun MPI and Sun MPI I/O Routines 87

MPI_Pcontrol(int level, ...) Controls profiling.

MPI_Probe(int source, int tag, MPI_Comm comm,
MPI_Status *status)

Blocking test for a message.

MPI_Publish_name (char *service–name, MPI_Info
info, char *port–name)

Publishes the pair (service-name,
port-name) so that applications can
use MPI_Lookup_name() to find
port-name.

MPI_Put(void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank,
MPI_Aint target_disp, int target_count, MPI_Datatype
target_datatype, MPI_Win win)

Copies data from the origin
memory to the target.

MPI_Query_thread(int *provided) Returns the current level of thread
support.

MPI_Recv(void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Status *status)

Performs a standard receive.

MPI_Recv_init(void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Request *request)

Builds a persistent receive request
handle.

MPI_Reduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root,
MPI_Comm comm)

Reduces values on all processes to
a single value.

MPI_Reduce_scatter(void *sendbuf, void
*recvbuf, int *recvcounts, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

Combines values and scatters the
results.

MPI_Request_c2f(MPI_Request request) Translates a C handle into a Fortran
handle.

MPI_Request_f2c(MPI_Fint request) Translates a Fortran handle into a C
handle.

MPI_Request_free(MPI_Request *request) Frees a communication request
object.

MPI_Request_get_status(MPI_Request request,
int *flag, MPI_Status *status)

Accesses information associated
with a request without freeing the
request.

MPI_Rsend(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

Performs a ready send.

MPI_Rsend_init(void *buf, int count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm
comm, MPI_Request *request)

Builds a persistent ready send
request handle.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
88 Sun MPI 7.0 Programming and Reference Guide • March 2006

MPI_Scan(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm
comm)

Computes the scan (partial
reductions) of data on a collection
of processes.

MPI_Scatter(void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Sends data from one job to all other
processes in a group.

MPI_Scatterv(void *sendbuf, int *sendcounts, int
*displs, MPI_Datatype sendtype, void *recvbuf, int
recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

Scatters a buffer in parts to all
processes in a group.

MPI_Send(int *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Performs a standard send.

MPI_Send_init(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *request)

Builds a persistent send request
handle.

MPI_Sendrecv(void *sendbuf, int sendcount,
MPI_Datatype sendtype, int dest, int sendtag, void
*recvbuf, int recvcount, MPI_Datatype recvtype, int
source, int recvtag, MPI_Comm comm, MPI_Status
*status)

Sends and receives two messages at
the same time.

MPI_Sendrecv_replace(void *buf, int count,
MPI_Datatype datatype, int dest, int sendtag, int source,
int recvtag, MPI_Comm comm, MPI_Status *status)

Sends and receives using a single
buffer.

MPI_Size_of(x, size, ierror) Fortran only. Returns the size, in
bytes, of the datatype of variable x.

MPI_Ssend(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

Performs a synchronous send.

MPI_Ssend_init(void *buf, int count,
MPI_Datatype datatype, int dest, int tag, MPI_Comm
comm, MPI_Request *request)

Builds a persistent synchronous
send request handle.

MPI_Start(MPI_Request *request) Initiates a communication using a
persistent request handle.

MPI_Startall(int count, MPI_Request
array_of_requests[])

Starts a collection of requests.

MPI_Status_c2f(MPI_Status *c_status, MPI_Fint
*f_status)

Translates a C status into a Fortran
status.

MPI_Status_f2c(MPI_Fint *f_status, MPI_Status
*c_status)

Translates a Fortran status into a C
status.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
Appendix A Sun MPI and Sun MPI I/O Routines 89

MPI_Status_set_cancelled(MPI_Status *status,
int flag)

Sets status to indicate that a request
has been cancelled.

MPI_Status_set_elements(MPI_Status *status,
MPI_Datatype datatype, int count)

Modifies opaque part of status to
enable MPI_Get_elements() to
return count.

MPI_Test(MPI_Request *request, int *flag,
MPI_Status *status)

Tests for the completion of a send
or receive.

MPI_Test_cancelled(MPI_Status *status, int
*flag)

Tests whether a request was
canceled.

MPI_Testall(int count, MPI_Request
array_of_requests, int *flag, MPI_Status
*array_of_statuses)

Tests for the completion of all the
given communications.

MPI_Testany(int count, MPI_Request
array_of_requests[], int *index, int *flag, MPI_Status
status)

Tests for completion of any of the
given communications.

MPI_Testsome(int incount, MPI_Request
array_of_requests[], int *outcount, int *array_of_indices,
MPI_Status *array_of_statuses)

Tests for some given
communications to complete.

MPI_Topo_test(MPI_Comm comm, int *top_type) Determines the type of topology (if
any) associated with a
communicator.

MPI_Type_c2f(MPI_Datatype datatype) Translates a C handle into a Fortran
handle.

MPI_Type_commit(MPI_Datatype *datatype) Commits a data type.

MPI_Type_contiguous(int count, MPI_Datatype
oldtype, MPI_Datatype *newtype)

Creates a contiguous data type.

MPI_Type_create_darray(int size, int rank, int
ndims, int array_of_gsizes[], int array_of_distribs[], int
array_of_dargs[], int array_of_psizes[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Creates an array of data types.

MPI_Type_create_f90_complex(int p, int r,
MPI_Datatype *newtype)

Returns a bounded MPI complex
datatype.

MPI_Type_create_f90_integer(int r,
MPI_Datatype *newtype)

Returns a bounded MPI integer
datatype.

MPI_Type_create_f90_complex(int p, int r,
MPI_Datatype *newtype)

Returns a bounded MPI real
datatype.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
90 Sun MPI 7.0 Programming and Reference Guide • March 2006

MPI_Type_create_hindexed(int count, int
array_of_blocklengths, MPI_Aint
array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

Creates an indexed data type with
offsets in bytes.

MPI_Type_create_hvector(int count, int
blocklength, MPI_Aint stride, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Creates a vector (strided) data type
with offset in bytes.

MPI_Type_create_indexed_block(int count,
int blocklength, int array_of_displacements[],
MPI_Datatype oldtype, MPI_Datatype *newtype)

Creates an indexed block.

MPI_Type_create_keyval(
MPI_Type_copy_attr_function *type_copy_attr_fn,
MPI_Type_delete_attr_function *type_delete_attr_fn,
int *type_keyval, void *extra_state)

Generates a new attribute key.

MPI_Type_create_resized(MPI_Datatype
oldtype, MPI_Aint lb, MPI_Aint extent, MPI_Datatype
*newtype)

Returns a new data type with new
extent and upper and lower
bounds.

MPI_Type_create_struct(int count, int
array_of_blocklengths[], MPI_Aint
array_of_displacements[], MPI_Datatype
array_of_types[], MPI_Datatype *newtype)

Creates a struct data type.

MPI_Type_create_subarray(int ndims, int
array_of_sizes[], int array_of_subsizes[], int
array_of_starts[], int order, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Creates a data type describing a
subarray of an array.

MPI_Type_delete_attr(MPI_Datatype type, int
type_keyval)

Deletes attribute value associated
with a key.

MPI_Type_dup(MPI_Datatype type, MPI_Datatype
*newtype)

Duplicates a data type with
associated key values.

MPI_Type_extent(MPI_Datatype datatype,
MPI_Aint *extent)

Deprecated: Use instead
MPI_Type_get_extent().
Returns the extent of a data type,
the difference between the upper
and lower bounds of the data type.

MPI_Type_f2c(MPI_Fint datatype) Translates a Fortran handle into a C
handle.

MPI_Type_free(MPI_Datatype *datatype) Frees a data type.

MPI_Type_free_keyval(int *type_keyval) Frees an attribute key.

MPI_Type_get_attr(MPI_Datatype type, int
type_keyval, void *attribute_val, int *flag)

Returns the attribute associated
with a data type.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
Appendix A Sun MPI and Sun MPI I/O Routines 91

MPI_Type_get_contents(MPI_Datatype
datatype, int max_integers, int max_addresses, int
max_datatypes, int array_of_integers[], MPI_Aint
array_of_addresses[], MPI_Datatype
array_of_datatypes[])

Returns information about
arguments used in creation of a
data type.

MPI_Type_get_envelope(MPI_Datatype
datatype, int *num_integers, int *num_addresses, int
*num_datatypes, int *combiner)

Returns information about input
arguments associated with a data
type.

MPI_Type_get_extent(MPI_Datatype datatype,
MPI_Aint *lb, MPI_Aint *extent)

Returns the lower bound and
extent of a data type.

MPI_Type_get_name(MPI_Datatype type, char
*type_name, int *resultlen)

Gets the name of a data type.

MPI_Type_get_true_extent(MPI_Datatype
datatype, MPI_Aint *true_lb, MPI_Aint *true_extent)

Returns the true lower bound and
extent of a data type’s
corresponding type map, ignoring
MPI_UB and MPI_LB markers.

MPI_Type_hindexed(int count, int
*array_of_blocklengths, MPI_Aint
*array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Deprecated: Use instead
MPI_Type_create_hindexed().
Creates an indexed data type with
offsets in bytes.

MPI_Type_hvector(int count, int blocklength,
MPI_Aint stride, MPI_Datatype oldtype,
MPI_Datatype *newtype)

Deprecated: Use instead
MPI_Type_create_hvector().
Creates a vector (strided) data type
with offset in bytes.

MPI_Type_indexed(int count, int
*array_of_blocklengths, int *array_of_displacements,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Creates an indexed data type.

MPI_Type_lb(MPI_Datatype datatype, MPI_Aint
*displacement)

Deprecated: Use instead
MPI_Type_get_extent().
Returns the lower bound of a data
type.

MPI_Type_match_size(int typeclass, int size,
MPI_Datatype *type)

Returns an MPI data type of a
given type and size.

MPI_Type_set_attr(MPI_Datatype type, int
type_keyval, void *attribute_val)

Stores attribute value associated
with a key.

MPI_Type_set_name(MPI_Comm comm, char
*type_name)

Sets the name of a data type.

MPI_Type_size(MPI_Datatype datatype, int *size) Returns the number of bytes
occupied by entries in the data
type.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
92 Sun MPI 7.0 Programming and Reference Guide • March 2006

MPI_Type_struct(int count, int
*array_of_blocklengths, MPI_Aint
*array_of_displacements, MPI_Datatype
*array_of_types, MPI_Datatype *newtype)

Deprecated: Use instead
MPI_Type_create_struct().
Creates a struct data type.

MPI_Type_ub(MPI_Datatype datatype, MPI_Aint
*displacement)

Deprecated: Use instead
MPI_Type_get_extent().
Returns the upper bound of a data
type.

MPI_Type_vector(int count, int blocklength, int
stride, MPI_Datatype oldtype, MPI_Datatype
*newtype)

Creates a vector (strided) data type.

MPI_Unpack(void *inbuf, int insize, int *position,
void *outbuf, int outcount, MPI_Datatype datatype,
MPI_Comm comm)

Unpacks a data type into
contiguous memory.

MPI_Unpack_external(void *inbuf, int insize, int
*position, void *outbuf, int outcount, MPI_Datatype
datatype, MPI_Comm comm)

Unpacks into contiguous memory a
data type packed in the external32
format.

MPI_Unpublish_name (char *service–name,
MPI_Info info, char *port–name)

Removes the pair (service-name,
port-name) published by
MPI_Publish_name(), so that
applications can no longer use
MPI_Lookup_name() to find port-
name.

MPI_Wait(MPI_Request *request, MPI_Status
*status)

Waits for an MPI send or receive to
complete.

MPI_Waitall(int count, MPI_Request
array_of_requests[], MPI_Status array_of_statuses[])

Waits for all of the given
communications to complete.

MPI_Waitany(int count, MPI_Request
array_of_requests[], int *index, MPI_Status *status)

Waits for any of the given
communications to complete.

MPI_Waitsome(int incount, MPI_Request
array_of_requests[], int *outcount, int array_of_indices[
], MPI_Status array_of_statuses[])

Waits for some given
communications to complete.

MPI_Win_c2f(MPI_Win win) Translates a C handle into a Fortran
handle.

MPI_Win_create(void *base, MPI_Aint size, int
disp_unit, MPI_Info info, MPI_Comm comm, MPI_Win
*win)

Opens a communication window in
memory.

MPI_Win_create_errhandler(MPI_Win_
errhandler_fn *function, MPI_Errhandler *errhandler)

Creates an error handler that can
be attached to windows.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
Appendix A Sun MPI and Sun MPI I/O Routines 93

MPI_Win_create_keyval(MPI_Win_copy_attr_
function *win_copy_attr_fn,
MPI_Win_delete_attr_function *win_delete_attr_fn, int
*win_keyval, void *extra_state)

Creates a caching attribute that can
be associated with a window.

MPI_Win_delete_attr(MPI_Win win, int
win_keyval)

Deletes the attribute created with
MPI_Win_create_keyval.

MPI_Win_f2c(MPI_Fint win) Translates a Fortran handle into a C
handle.

MPI_Win_fence(int assert, MPI_Win win) Synchronizes RMA calls on a
window.

MPI_Win_free(MPI_Win *win) Frees the window object and
returns a null handle.

MPI_Win_free_keyval(int *win_keyval) Releases a window attribute.

MPI_Win_get_attr(MPI_Win win, int win_keyval,
void *attribute_val, int *flag)

Obtains the value of a window
attribute.

MPI_Win_get_errhandler(MPI_Win win,
MPI_Errhandler *errhandler)

Retrieves the error handler
currently associated with a
window.

MPI_Win_get_group(MPI_Win win, MPI_Group
*group)

Returns a duplicate of the group of
the communicator used to create
the window.

MPI_Win_get_name(MPI_Win win, char
*win_name, int *resultlen)

Returns the last name associated
with a window object.

MPI_Win_lock(int lock_type, int rank, int assert,
MPI_Win win)

Starts an RMA access epoch,
during which only the window at
the process with the specified rank
can be accessed.

MPI_Win_post(MPI_Group group, int assert,
MPI_Win win)

Starts an RMA exposure epoch for
the local window associated with
win.

MPI_Win_set_attr(MPI_Win win, int win_keyval,
void *attribute_val)

Associates an attribute with a
window.

MPI_Win_test(MPI_Win win, int *flag) Attempts to complete an RMA
exposure epoch; a nonblocking
version of MPI_Win_wait.

MPI_Win_set_errhandler(MPI_Win win,
MPI_Errhandler errhandler)

Attaches a new error handler to a
window.

MPI_Win_set_name(MPI_Win win, char
*win_name)

Assigns a name to a window.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
94 Sun MPI 7.0 Programming and Reference Guide • March 2006

Sun MPI I/O Routines
TABLE A-2 lists the Sun MPI I/O routines in alphabetical order. The following
sections list the routines by functional category.

MPI_Win_start(MPI_Group group, int assert,
MPI_Win win)

Starts an RMA access epoch for
win.

MPI_Win_unlock(int rank, MPI_Win win) Completes an RMA access epoch
started by a call to
MPI_Win_lock().

double MPI_Wtick() Returns the resolution of
MPI_Wtime().

double MPI_Wtime() Returns an elapsed time on the
calling processor.

TABLE A-1 Sun MPI Routines (Continued)

Routine and C Syntax Description
Appendix A Sun MPI and Sun MPI I/O Routines 95

File Manipulation

File Info

Data access

Data Access With Explicit Offsets

Data Access With Individual File Pointers

Collective coordination Noncollective coordination

MPI_File_open()
MPI_File_close()
MPI_File_set_size()
MPI_File_preallocate()

MPI_File_delete()
MPI_File_get_size()
MPI_File_get_group()
MPI_File_get_amode()

Noncollective coordination Collective coordination

MPI_File_get_info() MPI_File_set_info()

Synchronism Noncollective coordination Collective coordination

Blocking MPI_File_read_at()
MPI_File_write_at()

MPI_File_read_at_all()
MPI_File_write_at_all()

Nonblocking or split
collective

MPI_File_iread_at()

MPI_File_iwrite_at()

MPI_File_read_at_all_begin()
MPI_File_read_at_all_end()
MPI_File_write_at_all_begin()
MPI_File_write_at_all_end()

Synchronism Noncollective coordination Collective coordination

Blocking MPI_File_read()
MPI_File_write()

MPI_File_read_all()
MPI_File_write_all()

Nonblocking or split
collective

MPI_File_iread()

MPI_File_iwrite()

MPI_File_read_all_begin()
MPI_File_read_all_end()
MPI_File_write_all_begin()
MPI_File_write_all_end()
96 Sun MPI 7.0 Programming and Reference Guide • March 2006

Data Access With Shared File Pointers

Pointer Manipulation

File Interoperability

File Consistency and Semantics

Handle Translation

Synchronism Noncollective coordination Collective coordination

Blocking MPI_File_read_shared()
MPI_File_write_shared()

MPI_File_read_ordered()
MPI_File_write_ordered()
MPI_File_seek_shared()
MPI_File_get_position_shared()

Nonblocking or split
collective

MPI_File_iread_shared()

MPI_File_iwrite_shared()

MPI_File_read_ordered_begin()
MPI_File_read_ordered_end()
MPI_File_write_ordered_begin()
MPI_File_write_ordered_end()

MPI_File_seek()
MPI_File_get_position()
MPI_File_get_byte_offset()

MPI_Register_datarep()
MPI_File_get_type_extent()

MPI_File_set_atomicity()
MPI_File_get_atomicity()
MPI_File_sync()

MPI_File_f2c()
MPI_File_c2f()
Appendix A Sun MPI and Sun MPI I/O Routines 97

MPI I/O Routines: Alphabetical Listing

TABLE A-2 Sun MPI I/O Routines

Routine and C Syntax Description

MPI_File_c2f(MPI_File file) Translates a C handle into a Fortran
handle.

MPI_File_close(MPI_File *fh) Closes a file (collective).

MPI_File_create_errhandler(
MPI_File_errhandler_fn *function, MPI_Errhandler
*errhandler)

Creates an MPI-style error handler
that can be attached to a file.

MPI_File_delete(char *filename, MPI_Info info) Deletes a file.

MPI_File_f2c(MPI_File file) Translates a Fortran handle into a C
handle.

MPI_File_get_amode(MPI_File fh, int *amode) Returns mode associated with open
file.

MPI_File_get_atomicity(MPI_File fh, int *flag) Returns current consistency
semantics for data-access
operations.

MPI_File_get_byte_offset(MPI_File fh,
MPI_Offset offset, MPI_Offset *disp)

Converts a view-relative offset into
an absolute byte position.

MPI_File_get_errhandler(MPI_Comm file,
MPI_Errhandler *errhandler)

Gets the error handler for a file.

MPI_File_get_group(MPI_File fh, MPI_Group
*group)

Returns the process group of file.

MPI_File_get_info(MPI_File fh, MPI_Info
*info_used)

Returns a new info object
containing hints.

MPI_File_get_position(MPI_File fh,
MPI_Offset *offset)

Returns current position of
individual file pointer.

MPI_File_get_position_shared(MPI_File fh,
MPI_Offset *offset)

Returns current position of the
shared file pointer (collective).

MPI_File_get_size(MPI_File fh, MPI_Offset
*size)

Returns current size of file.

MPI_File_get_type_extent(MPI_File fh,
MPI_Datatype datatype, MPI_Aint *extent)

Returns the extent of the data type
in a file.

MPI_File_get_view(MPI_File fh, MPI_Offset
*disp, MPI_Datatype *etype, MPI_Datatype *filetype,
char *datarep)

Returns process’s view of data in
file.
98 Sun MPI 7.0 Programming and Reference Guide • March 2006

MPI_File_iread(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Request *request)

Reads a file starting at the location
specified by the individual file
pointer (nonblocking,
noncollective).

MPI_File_iread_at(MPI_File fh, MPI_Offset
offset, void *buf, int count, MPI_Datatype datatype,
MPI_Request *request)

Reads a file at an explicitly
specified offset (nonblocking,
noncollective).

MPI_File_iread_shared(MPI_File fh, void *buf,
int count, MPI_Datatype datatype, MPI_Request
*request)

Reads a file using the shared file
pointer (nonblocking,
noncollective).

MPI_File_iwrite(MPI_File fh, void *buf, int
count, MPI_Datatype datatype, MPI_Request *request)

Writes a file starting at the location
specified by the individual file
pointer (nonblocking,
noncollective).

MPI_File_iwrite_at(MPI_File fh, MPI_Offset
offset, void *buf, int count, MPI_Datatype datatype,
MPI_Request *request)

Writes a file at an explicitly
specified offset (nonblocking,
noncollective).

MPI_File_iwrite_shared(MPI_File fh, void
*buf, int count, MPI_Datatype datatype, MPI_Request
*request)

Writes a file using the shared file
pointer (nonblocking,
noncollective).

MPI_File_open(MPI_Comm comm, char *filename,
init amode, MPI_Info info, MPI_File *fh)

Opens a file (collective).

MPI_File_preallocate(MPI_File fh, MPI_Offset
size)

Preallocates storage space for a
portion of a file (collective).

MPI_File_read(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

Reads a file starting at the location
specified by the individual file
pointer.

MPI_File_read_all(MPI_File fh, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

Reads a file starting at the locations
specified by individual file pointers
(collective).

MPI_File_read_all_begin(MPI_File fh, void
*buf, int count, MPI_Datatype datatype)

Reads a file starting at the locations
specified by individual file
pointers; the beginning part of a
split collective routine
(nonblocking).

MPI_File_read_all_end(MPI_File fh, void *buf,
MPI_Status *status)

Reads a file starting at the locations
specified by individual file
pointers; the ending part of a split
collective routine (blocking).

TABLE A-2 Sun MPI I/O Routines (Continued)

Routine and C Syntax Description
Appendix A Sun MPI and Sun MPI I/O Routines 99

MPI_File_read_at(MPI_File fh, MPI_Offset offset,
void *buf, int count, MPI_Datatype datatype,
MPI_Status *status)

Reads a file at an explicitly
specified offset.

MPI_File_read_at_all(MPI_File fh, MPI_Offset
offset, void *buf, int count, MPI_Datatype datatype,
MPI_Status *status)

Reads a file at explicitly specified
offsets (collective).

MPI_File_read_at_all_begin(MPI_File fh,
MPI_Offset offset, void *buf, int count, MPI_Datatype
datatype)

Reads a file at explicitly specified
offsets; the beginning part of a split
collective routine (nonblocking).

MPI_File_read_at_all_end(MPI_File fh, void
*buf, MPI_Status *status)

Reads a file at explicitly specified
offsets; the ending part of a split
collective routine (blocking).

MPI_File_read_ordered(MPI_File fh, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)

Reads a file at a location specified
by a shared file pointer (collective).

MPI_File_read_ordered_begin(MPI_File fh,
void *buf, int count, MPI_Datatype datatype)

Reads a file at a location specified
by a shared file pointer; the
beginning part of a split collective
routine (nonblocking).

MPI_File_read_ordered_end(MPI_File fh, void
*buf, MPI_Status *status)

Reads a file at a location specified
by a shared file pointer; the ending
part of a split collective routine
(blocking).

MPI_File_read_shared(MPI_File fh, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)

Reads a file using the shared file
pointer (blocking, noncollective).

MPI_File_seek(MPI_File fh, MPI_Offset offset, int
whence)

Updates individual file pointers.

MPI_File_seek_shared(MPI_File fh, MPI_Offset
offset, int whence)

Updates the global shared file
pointer (collective).

MPI_File_set_atomicity(MPI_File fh, int flag) Sets consistency semantics for data-
access operations (collective).

MPI_File_set_errhandler(MPI_File file,
MPI_Errhandler errhandler)

Sets the error handler for a file.

MPI_File_set_info(MPI_File fh, MPI_Info info) Sets new values for hints
(collective).

MPI_File_set_size(MPI_File fh, MPI_Offset size) Resizes a file (collective).

MPI_File_set_view(MPI_File fh, MPI_Offset disp,
MPI_Datatype etype, MPI_Datatype filetype, char
*datarep, MPI_Info info)

Changes the process’s view of data
in file (collective).

TABLE A-2 Sun MPI I/O Routines (Continued)

Routine and C Syntax Description
100 Sun MPI 7.0 Programming and Reference Guide • March 2006

MPI_File_sync(MPI_File fh) Makes semantics consistent for
data-access operations (collective).

MPI_File_write(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

Writes a file starting at the location
specified by the individual file
pointer.

MPI_File_write_all(MPI_File fh, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

Writes a file starting at the
locations specified by individual
file pointers (collective).

MPI_File_write_all_begin(MPI_File fh, void
*buf, int count, MPI_Datatype datatype)

Writes a file starting at the
locations specified by individual
file pointers; the beginning part of
a split collective routine
(nonblocking).

MPI_File_write_all_end(MPI_File fh, void
*buf, MPI_Status *status)

Writes a file starting at the
locations specified by individual
file pointers;the ending part of a
split collective routine (blocking).

MPI_File_write_at(MPI_File fh, MPI_Offset
offset, void *buf, int count, MPI_Datatype datatype,
MPI_Status *status)

Writes a file at an explicitly
specified offset.

MPI_File_write_at_all(MPI_File fh,
MPI_Offset offset, void *buf, int count, MPI_Datatype
datatype, MPI_Status *status)

Writes a file at explicitly specified
offsets (collective).

MPI_File_write_at_all_begin(MPI_File fh,
MPI_Offset offset, void *buf, int count, MPI_Datatype
datatype)

Writes a file at explicitly specified
offsets; the beginning part of a split
collective routine (nonblocking).

MPI_File_write_at_all_end(MPI_File fh, void
*buf, MPI_Status *status)

Writes a file at explicitly specified
offsets; the ending part of a split
collective routine (blocking).

MPI_File_write_ordered(MPI_File fh, void
*buf, int count, MPI_Datatype datatype, MPI_Status
*status)

Writes a file at a location specified
by a shared file pointer (collective).

MPI_File_write_ordered_begin(MPI_File fh,
void *buf, int count, MPI_Datatype datatype)

Writes a file at a location specified
by a shared file pointer; the
beginning part of a split collective
routine (nonblocking).

TABLE A-2 Sun MPI I/O Routines (Continued)

Routine and C Syntax Description
Appendix A Sun MPI and Sun MPI I/O Routines 101

MPI_File_write_ordered_end(MPI_File fh,
void *buf, MPI_Status *status)

Writes a file at a location specified
by a shared file pointer; the ending
part of a split collective routine
(blocking).

MPI_File_write_shared(MPI_File fh, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)

Writes a file using the shared file
pointer (blocking, noncollective).

MPI_Register_datarep(char *datarep,
MPI_Datarep_conversion_function
*read_conversion_fn,
MPI_Datarep_conversion_function
*write_conversion_fn, MPI_Datarep_extent_function
*dtype_file_extent_fn, void *extra_state)

Defines data representation.

TABLE A-2 Sun MPI I/O Routines (Continued)

Routine and C Syntax Description
102 Sun MPI 7.0 Programming and Reference Guide • March 2006

APPENDIX B

Environment Variables

Many environment variables are available for fine-tuning your Sun MPI
environment. All Sun MPI environment variables are listed here with brief
descriptions. The same descriptions are also available on the MPI man page. If you
want to return to the default setting after setting a variable, simply unset it (using
unsetenv). The effects of some of the variables are explained in more detail in the
Sun HPC ClusterTools Software Performance Guide.

The environment variables are listed here in six groups:

■ “Informational Variables” on page 103
■ “General Performance Tuning” on page 104
■ “Tuning Memory for Point-to-Point Performance” on page 106
■ “Numerics” on page 108
■ “Synchronization of One-Sided Communications” on page 108
■ “MPProf” on page 109
■ “Miscellaneous” on page 111

Informational Variables

MPI_PRINTENV

When set to 1, this variable causes other environment variables and the hpc.conf
parameters associated with the MPI job to be printed. The default value is 0.
103

MPI_QUIET

If set to 1, this variable suppresses Sun MPI warning messages. The default value
is 0.

MPI_SHOW_ERRORS

If set to 1, the MPI_ERRORS_RETURN error handler prints the error message and
returns the error. The default value is 0.

MPI_SHOW_INTERFACES

When set to 1, 2, or 3, information regarding which interfaces are being used by an
MPI application is printed to stdout. Set MPI_SHOW_INTERFACES to 1 to print the
selected internode interface. Set it to 2 to print all the interfaces and their rankings.
Set it to 3 for verbose output. The default value, 0, does not print information to
stdout.

General Performance Tuning

MPI_POLLALL

When this variable is set to 1, the default value, all connections are polled for
receives, also known as full polling. When set to 0, only those connections are polled
where receives are posted. Full polling helps drain system buffers, lessening the
chance of deadlock for “unsafe” codes. Well-written codes should set MPI_POLLALL
to 0 for best performance.

Note – If MPI_POLLALL is set to 0 (zero) and your program performs an
MPI_Send/MPI_Cancel without a corresponding MPI call on the receiving process,
the MPI_Cancel may not succeed. Your program may hang.
104 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

MPI_PROCBIND

Binds each MPI process to its own processor. The system administrator can allow or
disable processor binding by setting the allow_pbind parameter in the
CREOptions section of the hpc.conf file. If this parameter is set, the
MPI_PROCBIND environment variable is disabled. Performance can be enhanced
with processor binding, but very poor performance will result if processor binding is
used for multithreaded jobs or for more than one job at a time.

By default, MPI_PROCBIND is set to 0, which turns off processor binding. To turn on
processor binding, set the value to 1. With processor binding turned on, the
processes in a job are assigned to all CPUs that are not already bound to other
processes.

You can further control CPU binding by using these values for MPI_PROCBIND:

MPI_PROCBIND {P|L|T} [list | range]

■ L – Only the first thread in each process is bound to a CPU. Any additional
threads created by the job are not bound.

■ P – Every thread created by the process is bound to a CPU.

■ T – Every thread in every process that is part of the same task is bound to a CPU.
(See the mprun –P option.)

To specify the CPUs to which the threads are bound, you use either list or range.

■ list – Provides explicit binding and can be a single CPU ID or a list of CPU IDs
separated by commas. For example, to assign a thread to the fifth CPU in a 24-
CPU node, use:

If a node had fewer CPUs than the number you specified, CRE would assign the
thread to the CPU that was the modulus of the number you specified, divided by
the number of CPUs. For example, a list of L12 in a node with only 8 CPUs would
result in the process being assigned to CPU number 3.

When you use a list, the CRE environment does not check to see whether those
CPU’s are already bound. As a result, you could have two threads bound to the
same CPU.

■ range – Provides automatic binding and assigns threads to all available (unbound)
CPUs within the range. The range is expressed as:

N–MxI

In other words, specify the range with a starting number (N), an ending number
(M), and a counting interval (I). The counting interval (I) is optional, and its
default value is 1.

% setenv MPI_PROCBIND L4
Appendix 105

For example:

The preceding setting would search through the first 12 CPUs, and assign processes
to those that are unbound. If the number of available CPUs is less than the number
of processes, the extra processes would remain unbound.

The mprun –v option (verbose) prints the CPU assignments that have been made.
You can also run pbind(1M) on each node to verify their CPU bindings.

MPI_SPIN

This variable sets the spin policy. The default value is 0, which causes MPI processes
to spin nonaggressively, allowing best performance when the load is at least as great
as the number of CPUs. A value of 1 causes MPI processes to spin aggressively,
leading to best performance if extra CPUs are available on each node to handle
system daemons and other background activities.

Tuning Memory for Point-to-Point
Performance

MPI_SHM_CPOOLSIZE

This variable represents the amount of memory, in bytes, that can be allocated to
each connection pool. When MPI_SHM_SBPOOLSIZE is not set, the default value is
24,576 bytes. Otherwise, the default value is MPI_SHM_SBPOOLSIZE.

MPI_SHM_CYCLESIZE

This variable represents the limit, in bytes, on the portion of a shared-memory
message that will be sent via the buffer list of a single postbox during a cyclic
transfer. The default value is 8192 bytes. A multiple of 1024 that is at most
MPI_SHM_CPOOLSIZE/2 must be used.

% setenv MPI_PROCBIND L0–11
106 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

MPI_SHM_CYCLESTART

Shared-memory transfers that are larger than MPI_SHM_CYCLESTART bytes are
cyclic. The default value is 24,576 bytes.

MPI_SHM_NUMPOSTBOX

This variable represents the number of postboxes dedicated to each shared-memory
connection. The default value is 16.

MPI_SHM_PIPESIZE

This variable represents the limit, in bytes, on the portion of a shared-memory
message that will be sent via the buffer list of a single postbox during a pipeline
transfer. The default value is 8192 bytes. The value must be a multiple of 1024.

MPI_SHM_PIPESTART

This variable represents the size, in bytes, at which shared-memory transfers starts
to be pipelined. The default value is 2048. Multiples of 1024 must be used.

MPI_SHM_SBPOOLSIZE

If set, this variable represents the size, in bytes, of the pool of shared-memory
buffers dedicated to each sender. A multiple of 1024 must be used. If unset, then
pools of shared-memory buffers are dedicated to connections rather than to senders.

MPI_SHM_SHORTMSGSIZE

This variable represents the size (in bytes) of the section of a postbox that contains
either data or a buffer list. The default value is 256 bytes.

Note – If MPI_SHM_PIPESTART, MPI_SHM_PIPESIZE, or MPI_SHM_CYCLESIZE is
increased to a size larger than 31,744 bytes, then MPI_SHM_SHORTMSGSIZE might
also have to be increased. See the Sun HPC ClusterTools Software Performance Guide for
more information.
Appendix 107

Numerics

MPI_CANONREDUCE

Prevents reduction operations from using any optimizations that take advantage of
the physical location of processors. This can provide more consistent results in the
case of floating-point addition, for example. However, the operation can take longer
to complete. The default value is 0, meaning that optimizations are allowed. To
prevent optimizations, set the value to 1.

Synchronization of One-Sided
Communications

MPI_USE_AGENT_THREAD

If the enviroment variable MPI_USE_AGENT_THREAD is set to 1, upon the first call to
MPI_Win_create the Sun MPI library creates one agent thread for processes that
need such a thread. (If MPI_USE_AGENT_THREAD is not set, or it is set to 0 [zero], no
such thread is created.)

The two purposes of MPI_USE_AGENT_THREAD are to ensure progress in passive
target RMA synchronization and to perform MPI RMA operations on local window
memory on behalf of other processes when those processes do not have direct
(shared-memory) access to window memory.

The agent thread does not run user code. Thread-safety in the non–thread-safe MPI
library is achieved by a monitor around MPI communication calls. If no windows
requiring the use of an agent thread are active, the agent thread is suspended If
MPI_USE_AGENT_THREAD is not set, one-sided MPI operations can be delayed till
the next synchronization call.
108 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Tuning Rendezvous

MPI_EAGERONLY

When this variable is set to 1, the default, only the eager protocol is used. When it is
set to 0, both eager and rendezvous protocols are used.

MPI_SHM_RENDVSIZE

Messages communicated by shared memory that are greater than this size use the
rendezvous protocol unless the environment variable MPI_EAGERONLY is set. The
default value is 24,576 bytes.

MPI_TCP_RENDVSIZE

Messages communicated by TCP that contain data of this size and greater use the
rendezvous protocol unless the environment variable MPI_EAGERONLY is set. The
default value is 49,152 bytes.

MPProf

MPI_PROFILE

Setting this variable to 1 enables a profiling session. When profiling is enabled,
profiling data for the MPI process ranks are written to a set of intermediate files, one
file per process rank. MPProf also creates an index file of the form:
mpprof.index.rm.jid (where rm is the resource manager and jid is the job ID) that
contains pointers to the intermediate files of the form mpprof.n.rm.jid (where n is
the process rank, rm is the resource manager, and jid is the job ID). If MPI_PROFILE
is not set, program execution proceeds without generating profiling data.
Appendix 109

MPI_PROFDATADIR

By default, the temporary files generated during MPProf profiling are located in
/usr/tmp/. Set an alternative location as a value for environment variable
MPI_PROFDATADIR.

MPI_PROFINDEXDIR

By default, the index file for MPProf profiling is located in the current directory. Set
an alternative, nondefault location as a value for MPI_PROFINDEXDIR.

MPI_PROFINTERVAL

The variable MPI_PROFINTERVAL can be used to specify a time interval for
controlling when snapshots of the profiling data will be written to the intermediate
files.

Setting MPI_PROFINTERVAL to 0 forces a snapshot for every MPI call that is made.
Setting MPI_PROFINTERVAL to Inf causes only one snapshot to be recorded at
MPI_Finalize time. If MPI_PROFINTERVAL is unset or has no value, the default
value of 60 seconds will be used.

If time intervals are used and an MPI program terminates before the MPI_Finalize
call, any snapshots that were recorded can be used by mpprof to generate a profile
of program operations up to the point of termination.

MPI_PROFMAXFILESIZE

This variable can be used to specify the maximum size, in Kbytes, that can be
written to the intermediate files.

The default intermediate file size limit files is 51,200 Kbytes (50 Mbytes). If a process
records data that exceeds the file size limit, that write operation completes, but it
cannot record additional profiling data. Other intermediate files that have not
reached the limit can continue to receive data. The file size limit can be removed
altogether by setting MPI_PROFMAXFILESIZE to unlimited.
110 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Miscellaneous

MPI_COSCHED

This variable specifies the user’s preference regarding use of the spind daemon for
coscheduling. The value can be 0 (prefer no use) or 1 (prefer use). This preference
can be overridden by the system administrator’s policy. This policy is set in the
hpc.conf file and can be 0 (forbid use), 1 (require use), or 2 (no policy). If no policy
is set and no user preference is specified, coscheduling is not used.

Note – If no user preference is specified, the value 2 is displayed when environment
variables are printed with MPI_PRINTENV.

MPI_CHECK_ARGS

When this variable is set to 1, argument checking is performed on MPI calls, and
errors are printed when they occur. The default is 0.

MPI_FLOWCONTROL

This variable limits the number of unexpected messages that can be queued from a
particular connection. Once this quantity of unexpected messages has been received,
polling the connection for incoming messages stops. The default value, 0, indicates
that no limit is set. To limit flow, set the value to an integer greater than 0.

MPI_FULLCONNINIT

This variable ensures that all connections are established during initialization. By
default, connections are established lazily. However, you can override this default by
setting the environment variable MPI_FULLCONNINIT to 1, forcing full-connection
initialization mode. The default value is 0.
Appendix 111

MPI_MAXFHANDLES

This variable represents the maximum number of Fortran handles for objects other
than requests. MPI_MAXFHANDLES specifies the upper limit on the number of
concurrently allocated Fortran handles for MPI objects other than requests. This
variable is ignored in the default 32-bit library. The default value is 1024. Users
should take care to free MPI objects that are no longer in use. There is no limit on
handle allocation for C codes.

MPI_MAXPROCS

This variable overrides the value specified by maxprocs_default in hpc.conf; it
cannot exceed the value specified by maxprocs_limit in hpc.conf. If the value
does exceed the maxprocs_limit value, the job aborts with an error when the
program calls MPI_Init.

MPI_MAXREQHANDLES

This variable representst the maximum number of Fortran request handles.
MPI_MAXREQHANDLES specifies the upper limit on the number of concurrently
allocated MPI request handles. Users must take care to free up request handles by
properly completing requests. The default value is 1024. This variable is ignored in
the default 32-bit library.

MPI_OPTCOLL

The MPI collectives are implemented using a variety of optimizations. Some of these
optimizations can inhibit performance of point-to-point messages for “unsafe”
programs. The default value of this variable, 1, indicates that optimized collectives
are used. The optimizations can be turned off by setting the value to 0.

MPI_SHM_BCASTSIZE

On SMPs, MPI_Bcast() is implemented for large messages using a double-
buffering scheme. The size of each buffer (in bytes) is settable by using this
environment variable. The default value is 32,768 bytes.
112 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

MPI_SHM_GBPOOLSIZE

This variable represents the amount of memory available, in bytes, to the general
buffer pool for use by collective operations. The default value is 20,971,520 bytes.

MPI_SHM_REDUCESIZE

On SMPs, calling MPI_Reduce() causes all processors to participate in the reduce.
Each processor works on a piece of data equal to the MPI_SHM_REDUCESIZE setting.
The default value is 256 bytes.

You must take care when setting this variable because the system reserves
MPI_SHM_REDUCESIZE * np * np memory to execute the reduce.

MPI_SPINDTIMEOUT

When coscheduling is enabled, this variable limits the length of time (in
milliseconds) a message remains in the poll waiting for the spind daemon to return.
If the timeout occurs before the daemon finds any messages, the process reenters the
polling loop. The default value is 1000 milliseconds. A default can also be set by a
system administrator in the hpc.conf file.

MPI_TCP_CONNLOOP

This variable sets the number of times MPI_TCP_CONNTIMEOUT occurs before
signaling an error. The default value for this variable is 0, meaning that the program
aborts on the first occurrence of MPI_TCP_CONNTIMEOUT.

MPI_TCP_CONNTIMEOUT

This variable sets the timeout value in seconds that is used for an accept() call.
The default value for this variable is 600 seconds (10 minutes). This timeout can be
triggered in both full- and lazy-connection initialization. After the timeout is
reached, a warning message is printed. If MPI_TCP_CONNLOOP is set to 0, then the
first timeout causes the program to abort.
Appendix 113

MPI_TCP_SAFEGATHER

This variable allows use of a congestion-avoidance algorithm for MPI_Gather()
and MPI_Gatherv() over TCP. By default, MPI_TCP_SAFEGATHER is set to 1,
which means that use of this algorithm is on. If you know that your underlying
network can handle gathering large amounts of data on a single node, you might
want to override this algorithm by setting MPI_TCP_SAFEGATHER to 0.
114 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

APPENDIX C

Troubleshooting

This appendix describes some common problem situations, resulting error messages,
and suggestions for fixing the problems. It includes the following topics:

■ “MPI Messages” on page 115
■ “MPI I/O Error Handling” on page 118

Sun MPI error reporting, including I/O, follows the MPI-2 Standard. By default,
errors are reported in the form of standard error classes. These classes and their
meanings are listed in TABLE C-1 (for non-I/O MPI) and TABLE C-2 (for MPI I/O) and
are also available on the MPI man page.

Three predefined error handlers are available in Sun MPI:

■ MPI_ERRORS_RETURN – The default; returns an error code if an error occurs.
■ MPI_ERRORS_ARE_FATAL – I/O errors are fatal, and no error code is returned.
■ MPI_THROW_EXCEPTION – A special error handler to be used only with C++.

MPI Messages
You can make changes to and get information about the error handler by using any
of the following routines:

■ MPI_Comm_call_errhandler
■ MPI_File_call_errhandler
■ MPI_Win_call_errhandler
■ MPI_Comm_create_errhandler
■ MPI_Comm_get_errhandler
■ MPI_Comm_set_errhandler
■ MPI_Add_error_class
■ MPI_Add_error_code
■ MPI_Add–error–string
115

Messages resulting from an MPI program fall into two categories:

■ Error messages – Error messages stem from within MPI. Usually an error message
explains why your program cannot complete, and the program aborts.

■ Warning messages – Warnings stem from the environment in which you are
running your MPI program and are usually sent by MPI_Init(). They are not
associated with an aborted program; that is, programs continue to run despite
warning messages.

Error Messages
Sun MPI error messages use a standard format:

[x y z] Error in function_name: errclass_string:intern(a):description:unixerrstring

Where

■ [x y z] is the process communication identifier, which is present in every error
message, and:

■ x is the job ID (or jid).

■ y is the name of the communicator if a name exists; otherwise it is the address
of the opaque object.

■ z is the rank of the process.

■ function_name is the name of the associated MPI function. It is present in every
error message.

■ errclass_string is the string associated with the MPI error class. It is present in
every error message.

■ intern is an internal function. It is optional.

■ a is a system call if one is the cause of the error. It is optional.

■ description is a description of the error. It is optional.

■ unixerrstring is the UNIX error string that describes system call a. It is optional.

Warning Messages
Sun MPI warning messages also use a standard format:

[x y z] Warning message

Where message is a description of the error.
116 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Standard Error Classes
TABLE C-1 lists the error return classes you can encounter in your MPI programs.
Error values may also be found in mpi.h (for C), mpif.h (for Fortran), and
mpi++.h (for C++).

MPI I/O messages are listed separately, in TABLE C-2.

TABLE C-1 Sun MPI Standard Error Classes

Error Code Value Meaning

MPI_SUCCESS 0 Successful return code.

MPI_ERR_BUFFER 1 Invalid buffer pointer.

MPI_ERR_COUNT 2 Invalid count argument.

MPI_ERR_TYPE 3 Invalid datatype argument.

MPI_ERR_TAG 4 Invalid tag argument.

MPI_ERR_COMM 5 Invalid communicator.

MPI_ERR_RANK 6 Invalid rank.

MPI_ERR_ROOT 7 Invalid root.

MPI_ERR_GROUP 8 Null group passed to function.

MPI_ERR_OP 9 Invalid operation.

MPI_ERR_TOPOLOGY 10 Invalid topology.

MPI_ERR_DIMS 11 Illegal dimension argument.

MPI_ERR_ARG 12 Invalid argument.

MPI_ERR_UNKNOWN 13 Unknown error.

MPI_ERR_TRUNCATE 14 Message truncated on receive.

MPI_ERR_OTHER 15 Other error; use Error_string.

MPI_ERR_INTERN 16 Internal error code.

MPI_ERR_IN_STATUS 17 Look in status for error value.

MPI_ERR_PENDING 18 Pending request.

MPI_ERR_REQUEST 19 Illegal MPI_Request() handle.

MPI_ERR_KEYVAL 36 Illegal key value.
Appendix 117

MPI I/O Error Handling
Sun MPI I/O error reporting follows the MPI-2 Standard. By default, errors are
reported in the form of standard error codes (found in
/opt/SUNWhpc/include/mpi.h). Error classes and their meanings are listed in
TABLE C-2. You can also find them in mpif.h (for Fortran) and mpi++.h (for C++).

MPI_ERR_INFO 37 Invalid info object.

MPI_ERR_INFO_KEY 38 Illegal info key.

MPI_ERR_INFO_NOKEY 39 No such key.

MPI_ERR_INFO_VALUE 40 Illegal info value.

MPI_ERR_TIMEDOUT 41 Timed out.

MPI_ERR_RESOURCES 42 Out of resources.

MPI_ERR_TRANSPORT 43 Transport layer error.

MPI_ERR_HANDSHAKE 44 Error accepting/connecting.

MPI_ERR_SPAWN 45 Error spawning.

MPI_ERR_WIN 46 Invalid window.

MPI_ERR_BASE 47 Invalid base.

MPI_ERR_SIZE 48 Invalid size.

MPI_ERR_DISP 49 Invalid displacement.

MPI_ERR_LOCKTYPE 50 Invalid lock type.

MPI_ERR_ASSERT 51 Invalid assert.

MPI_ERR_RMA_CONFLICT 52 Conflicting accesses to window.

MPI_ERR_RMA_SYNC 53 Erroneous RMA synchronization.

MPI_ERR_NO_MEM 54 Memory exhausted.

MPI_ERR_LASTCODE 55 Last error code.

TABLE C-1 Sun MPI Standard Error Classes (Continued)

Error Code Value Meaning
118 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

You can change the default error handler by specifying MPI_FILE_NULL as the file
handle with the routine MPI_File_set_errhandler(), even if no file is currently
open. Or, you can use the same routine to change a specific file’s error handler.

TABLE C-2 Sun MPI I/O Error Classes

Error Class Value Meaning

MPI_ERR_FILE 20 Bad file handle.

MPI_ERR_NOT_SAME 21 Collective argument not identical on all
processes.

MPI_ERR_AMODE 22 Unsupported amode passed to open.

MPI_ERR_UNSUPPORTED_DATAREP 23 Unsupported datarep passed to
MPI_File_set_view().

MPI_ERR_UNSUPPORTED_OPERATION 24 Unsupported operation, such as seeking
on a file that supports only sequential
access.

MPI_ERR_NO_SUCH_FILE 25 File (or directory) does not exist.

MPI_ERR_FILE_EXISTS 26 File exists.

MPI_ERR_BAD_FILE 27 Invalid file name (for example, path
name too long).

MPI_ERR_ACCESS 28 Permission denied.

MPI_ERR_NO_SPACE 29 Not enough space.

MPI_ERR_QUOTA 30 Quota exceeded.

MPI_ERR_READ_ONLY 31 Read-only file system.

MPI_ERR_FILE_IN_USE 32 File operation could not be completed,
because the file is currently open by a
process.

MPI_ERR_DUP_DATAREP 33 Conversion functions could not be
registered because a data representation
identifier that was already defined was
passed to MPI_REGISTER_DATAREP.

MPI_ERR_CONVERSION 34 An error occurred in a user-supplied
data-conversion function.

MPI_ERR_IO 35 I/O error.

MPI_ERR_INFO 37 Invalid info object.
Appendix 119

MPI_ERR_INFO_KEY 38 Illegal info key.

MPI_ERR_INFO_NOKEY 39 No such key.

MPI_ERR_INFO_VALUE 40 Illegal info value.

MPI_ERR_LASTCODE 55 Last error code.

TABLE C-2 Sun MPI I/O Error Classes (Continued)

Error Class Value Meaning
120 Sun MPI 7.0 Software Programming and Reference Manual • March 2006

Index
A
Argonne National Laboratory

and MPE, 47
array sections, 16
attributes, with communicators, 15

B
blocking routines. See routines, blocking.

C
caching, with communicators, 15
Cartesian topology. See topology, Cartesian.
code samples. See sample programs.
collective communication. See communication,

collective.
communication

buffers, 16
collective, 11, 15, 20

in multithreaded programs, 24
restrictions, 12

half-channel, 13
interprocess, 15
persistent request, defined, 13
point-to-point, 15
port, 13

communicator
default, 15
defined, 15
and MPI I/O, 49
and multithreaded programming, 24 to 25
and process topologies, 13

compiling, 36 to 38

with profiling library, 27
See also include syntax.

context, defined, 15

D
–dalign option, 38
data type

possible values for C, 18
derived (user-defined), 16, 49
possible values for Fortran, 16, 17
primitive, 16

debugging, 41 to 47
with mpe, 47

displacement (disp), 50, 53
documentation

LSF on web, ix
DTrace, 41
dynamic tracing utility (DTrace), 41

E
elementary data type (etype), 50
environmental inquiry functions, 14
error handling, 14

and MPE, 29
and multithreaded programming, 25

error messages
standard error classes (Sun MPI I/O), 118
standard error values (Sun MPI), 117

F
features, 1
121

file type (filetype), 50
Fortran

compiling with –dalign option, 38
compiling with –xalias option, 36

G
graph topology. See topology, graph.
grid topology. See topology, Cartesian.
group, defined, 15

H
header files, 31
“holes” (in an MPI I/O file type), 50, 54

I
I/O. See Sun MPI I/O, MPI I/O.
include syntax, 31
intercommunicator, defined, 15
intracommunicator, 13

defined, 15

L
libraries

libthread.so, 38, 39
linking, 36 to 38
linking with profiling library, 27

linking, 36 to 38

M
man pages

Solaris, location, 39
Sun MPI, location, x

modes for point-to-point communication, 4
MPI

Forum, URL, ix
Mississippi State University URL, ix
Standards

profiling, 26
URL, ix

University of New Mexico URL, ix
MPI I/O, 49

Sun MPI implementation.
See Sun MPI I/O.

MPI_COMM_GROUP, 15
MPI_COMM_WORLD

as default communicator, 15, 16

multiprocessing environment (MPE), 28 to 29
and debugging, 47

multithreaded programming, 22 to 25
stubbing thread calls, 38

N
nonblocking routines. See routines, nonblocking.

O
offset, 50
one-sided communication, 5
options

–dalign, 38
–xalias, 36

P
persistent communication request. See

communication, persistent request.
point-to-point

communication. See communication, point-to-
point.

routines. See routines, point-to-point.
process

relation to group, 15
process topologies, 13
profiling, 26 to 27

R
rank, of a process, 13, 15
ready mode. See modes for point-to-point

communication.
receive. See routines, receive.
routines

all-gather, 11
all-to-all, 11
blocking, 4, 11
broadcast, 11
collective, 11, 15

in multithreaded programs, 24
for constructing communicators, 15
data access (MPI I/O), 53 to 57

pointer manipulation, 55 to 56
with explicit offsets, 54
with individual file pointers, 55
with shared file pointers, 56 to 57

error-handling, 14
file consistency (MPI I/O), 58
122 Sun™ MPI 7.0 Software Programming and Reference Manual • March 2006

file manipulation (MPI I/O), 52
gather, 11
for constructing groups, 15
local, 15
nonblocking, 4
point-to-point, 4
receive, 4, 20
reduction, 11
scan, 11
scatter, 11
semantics (MPI I/O), 58
send, 4, 20
Sun MPI

listed alphabetically, 78 to 95
listed by functional category, 67 to 78

Sun MPI I/O
listed alphabetically, 98 to 101
listed by functional category, 95 to 97

S
sample programs

Sun MPI, 32 to 34
Sun MPI I/O, 59 to 66

send. See routines, send.
shutting down, 14
SPMD programs

defined, 41
standard mode. See modes for point-to-point

communication.
starting up, 14
static libraries, and relinking, 38
Sun MPI I/O, 49 to 66
synchronous mode. See modes for point-to-point

communication.

T
thread safety. See multithreaded programming.
timers, 14
topology

Cartesian, 13
graph, 13
virtual, defined, 13
See also process topologies.

V
view, 50

X
–xaliasoption, 36
Index 123

124 Sun™ MPI 7.0 Software Programming and Reference Manual • March 2006

	Sun™ MPI 7.0 Software Programming and Reference Manual
	Contents
	Introduction to Sun MPI
	Sun MPI Features
	Sun MPI I/O

	Sun MPI Library
	Types of Libraries
	Sun MPI Routines
	Point-to-Point Communication Routines
	One-Sided Communication Routines
	Collective Communication Routines
	Using the In-Place Option
	Using Persistent Communication Requests
	Managing Process Topologies

	Name-Publishing Routines
	Environmental Inquiry Routines
	Packing and Unpacking Functions

	Managing Communicators, Groups, and Contexts
	Data Types
	Resource Reservation for Batch Processing
	Programming With Sun MPI
	Fortran Support
	Recommendations for All-to-All and All-to-One Communication
	Signals and MPI

	Multithreaded Programming
	Guidelines for Thread-Safe Programming
	MPI_Wait(), MPI_Waitall(), MPI_Waitany(), MPI_Waitsome()
	MPI_Cancel()
	MPI_Probe(), MPI_Iprobe()
	Collective Calls
	Communicator Operations

	Error Handlers

	Profiling Interface
	How the Sun MPI Profiling Interface Works

	MPE: Extensions to the Library
	To Obtain and Build the MPE

	Getting Started
	Header Files
	Sample Code

	Compiling and Linking
	Choosing a Library Path
	Stubbing Thread Calls

	Profiling With mpprof
	Basic Job Execution
	Executing With CRE
	Executing With LSF Suite

	Debugging
	Debugging with DTrace
	Debugging With TotalView
	Limitations
	Related Documentation
	Starting a New Job Using TotalView
	To Start a New Job Using GUI Method 1
	To Start a New Job Using GUI Method 2
	To Start a New Job Using the CLI
	Attaching to an mprun Job
	To Attach to a Running Job from the GUI
	To Attach to a Running Job From the CLI
	Launching Sun MPI Batch Jobs Using TotalView
	To Execute Startup in Batch Mode for the TotalView GUI
	To Use the Interactive Mode

	Debugging With MPE

	Programming With Sun MPI I/O
	Data Partitioning and Data Types
	Definitions
	Note for Fortran Users

	Routines
	File Manipulation
	File Hints
	File Views
	Data Access
	Data Access With Explicit Offsets
	Data Access With Individual File Pointers
	Pointer Manipulation
	Data Access With Shared File Pointers

	File Interoperability
	File Consistency and Semantics

	Sample Code
	Partitioned Writing and Reading in a Parallel Job
	Data Access Styles
	Overlapping I/O With Computation and Communication

	Sun MPI and Sun MPI I/O Routines
	Sun MPI Routines
	Point-to-Point Communication
	Blocking Routines
	Nonblocking Routines
	Communication Buffer Allocation
	Status Data Structure
	Persistent (Half-Channel) Communication
	Completion Tests
	Probing for Messages (Blocking and Nonblocking)
	Packing and Unpacking Functions
	Derived Data Type Constructors and Functions

	One-Sided Communication
	Initialization
	Communication Calls
	Synchronization Calls

	Collective Communication
	Barrier
	Broadcast
	Processor Gather and Scatter
	Global Reduction and Scan Operations

	Groups and Communicators
	Group Management
	Communicator Management

	Process Topologies
	Process Creation and Management
	Establishing Communication
	Name Publishing
	Process Manager Interface

	Environmental Inquiry Functions and Profiling
	Startup and Shutdown
	Error Handler Functions
	Info Objects
	Timers
	Profiling

	Miscellaneous
	Associating Information With Status
	Generalized Requests
	Naming Objects
	Threads
	Handle Translation
	Status Conversion

	MPI Routines: Alphabetical Listing

	Sun MPI I/O Routines
	File Manipulation
	File Info
	Data access
	Data Access With Explicit Offsets
	Data Access With Individual File Pointers
	Data Access With Shared File Pointers
	Pointer Manipulation

	File Interoperability
	File Consistency and Semantics
	Handle Translation
	MPI I/O Routines: Alphabetical Listing

	Environment Variables
	Informational Variables
	MPI_PRINTENV
	MPI_QUIET
	MPI_SHOW_ERRORS
	MPI_SHOW_INTERFACES

	General Performance Tuning
	MPI_POLLALL
	MPI_PROCBIND
	MPI_SPIN

	Tuning Memory for Point-to-Point Performance
	MPI_SHM_CPOOLSIZE
	MPI_SHM_CYCLESIZE
	MPI_SHM_CYCLESTART
	MPI_SHM_NUMPOSTBOX
	MPI_SHM_PIPESIZE
	MPI_SHM_PIPESTART
	MPI_SHM_SBPOOLSIZE
	MPI_SHM_SHORTMSGSIZE

	Numerics
	MPI_CANONREDUCE

	Synchronization of One-Sided Communications
	MPI_USE_AGENT_THREAD

	Tuning Rendezvous
	MPI_EAGERONLY
	MPI_SHM_RENDVSIZE
	MPI_TCP_RENDVSIZE

	MPProf
	MPI_PROFILE
	MPI_PROFDATADIR
	MPI_PROFINDEXDIR
	MPI_PROFINTERVAL
	MPI_PROFMAXFILESIZE

	Miscellaneous
	MPI_COSCHED
	MPI_CHECK_ARGS
	MPI_FLOWCONTROL
	MPI_FULLCONNINIT
	MPI_MAXFHANDLES
	MPI_MAXPROCS
	MPI_MAXREQHANDLES
	MPI_OPTCOLL
	MPI_SHM_BCASTSIZE
	MPI_SHM_GBPOOLSIZE
	MPI_SHM_REDUCESIZE
	MPI_SPINDTIMEOUT
	MPI_TCP_CONNLOOP
	MPI_TCP_CONNTIMEOUT
	MPI_TCP_SAFEGATHER

	Troubleshooting
	MPI Messages
	Error Messages
	Warning Messages
	Standard Error Classes

	MPI I/O Error Handling

	Index

