ORAC L

Agile Product Lifecycle Management

SDK Developer Guide - Using Agile APIs
v9.3.1.1

Part No. E8638-01
May 2011

SDK Developer Guide - Using Agile APIs

Oracle Copyright

Copyright © 1995, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,

reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or
display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject
to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications
which may create a risk of personal injury. If you use this software in dangerous applications, then
you shall be responsible to take all appropriate fail-safe, backup, redundancy and other measures
to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. Other names
may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third party content, products and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third party content, products or services. The RMW product
includes software developed by the Visigoth Software Society.

i Agile Product Lifecycle Management

CONTENTS

L@ =Tl =T @ o] oY/ 1 | | PP ii
NEW IN REIEASE 9.3. 1.1 .ottt ettt e e e e e st bt et e e e e e e e s e abbbbeeeaaaeesaanbnbeeaaeeaaanne Xviii
] Ao Lo [Tox A T o S PSPPI 1
ADOUL TS GUIE ...ttt e e e e e sttt e et e e e e e e aan b b et e e e e e e e e s aanbeeeeaaeeeannbnenes 1
AGIIE APIS ...ttt ettt e ettt bR a R bR R bR R R e AR st bRttt n et enaes 2
SDK COMPONENTS ...ttt en e e e e e ae e e s 2
ClIENt-SIAE COMPONENES.cuevieireisiieiieesissseee st se s et b st es s bbb b es et b s s b s et se s e s b et en bbb s bbb bt s e b b en st s s e 2
SEIVET-SIUE COMPONENLSvuviceiieeieecee ettt et s et ses e s b e e b se s ee e s sttt b et s e 3
ST QY (o] 11 (=1 U= PRSP RPP 3
SYSIEM REQUIFEMIENTS ...ttt e e e e e s bbbttt e e e e e e e s aab bt e e e e ae e e s e annbbeeeaeaeesaanbbbneeaaaaeas 4
A7 W = To [T =10 0 T=T o] £ PE 4
Java Virtual Memory Parameters (JVM) to Prevent Out of Memory EXCEPLIONS........covvvrieniiernireensesesseresssessessesenns 4
Agile SDK INStallation FOIAEIScuiiii i e e e e e e e e s st e e e e e e e e e srnanereaaeeas 5
Checking YOoUr AgIle PLM SYSEEMcoiiiiiiiiiiie ittt ettt s et e nnens 5
AQile PLM BUSINESS ODJECLSeiiiiiiiiiee ettt ettt ettt e e e e e e s s s b et e e e e e e e e e nnbaeeeaaaeeannreeeeas 5
Getting Started With Agile AP ... e 7
F e 1L AN o B O YT 4T PR 7
Types of Agile API ClasSes and INEEIMACEScceviriirriirrreieersees s e s s snsesssesenns 7
NEIWOTK ClaSS LOAING. ... ceuvereeiireiires ettt ettt et ses bbb bbb bbb bbb 8
Single-Threaded versus Multi-Threaded APPlICALIONS........c.cveeieeririrrreer e 9
Packaging an AGIlE APIPIOGIAMc.c.o ettt ee st b bbb bbb b ettt bbbt 9
DiStrIDULING AGIIE APTFIIES ...ttt et n s 9
SAMPIE PIOGIAMS ... ettt ettt ettt bbb bbb £ bR b bbb bbbttt 9
Starting an Agile APT PTOGIAIMuiiiiiiiie ittt ettt et e e e e b e e e s nnbe e e annnes
Setting the Class Path for the Agile API Library
IMPOTING AGIIE API CIASSES ..vuvuivviucriieieeeissseisisssetssseseese st sssees et ssss s st ea s s e s s st s e s s an st s s e en s b s nnes s nns
Creating @ SeSSION and LOGGING 1N ..ottt bbbttt 11
Creating a Session by Accessing a Password ProteCted URL.........cocovvverricrnninniersnneessssssesessssssessssessnssssssssseseenes 12
Creating a Session from an Agile WED SEIVICE. ...t 13
Creating a Session in @ CIUStEr ENVIFONMENL..........cveriieireceseesiseess s ssss s ssssess s ssssessssssesnsssssssssesesnes 13
Loading and Creating Agile PLM ODJECLScciiiiiiiiiiiiiiie et ree e e e e 14
0= Lo o T 1ot PP 15
SPECITYING ODJECE TYPES ..eeiiiie ittt e e e e s s et r e e e e e s e aanbeeeeeeaeessennnreeeeeas 15
Specifying ODJECt PAraMEtEISeiiiiii et e e e e e e e e eneeees 15
Loading Different TYPes Of ODJECLSeiiiii i 16

v9.3.1.1 ii

SDK Developer Guide - Using Agile APIs

L0 =T 100 [0] a7l RPN 19
WOrking With AQIle PLIM ClaSSES.....cciuuiiiiiiiiiee ittt ettt ettt et e e snneeeeee 20
Creating Objects of User-Defined SUDCIASSES.........ccuvvieiieiii i 21
USING AULONUIMDETS ..ottt e e nnees 22
Setting the RequIred FIElASoooiiiii e 24
Creating Different Types Of ODJECEScoiuiiiiiiiiiie e 26

Checking the State Of AGIlE PLM ODJECES.ciiiiiiiiiiisicisissieisssses st ssssesssssssesssssns 30

Propagating Values to REIAIEA ODJECLS.........viiririciririeeies ettt 30

Saving an OBJECE 10 @ NEW ODJECL......c.ieriiceiiee e b e bbbt n st n et 31

SNAMNG AN ODJECL ... vttt et es bbbttt R bbbt 31

Deleting and UndelBting OBJECESciiieiicicieriei sttt bbb bbb 32

ClOSING @ SESSION.....vurueeieriieicseesise et sere e ettt et st b bt s bRt e s bbbttt n s 34

Creating and LOading QUETTES. e ittt e e eans 35
Y o To 10 A @ 1H =T 4 =SSR 35
CreatiNg 8 QUEIY ...ttt ittt ettt e oottt e e e e s bt e e oot bt e e oo b bt e e e ek b et e e ek b et e e e anbe e e e e anbe e e anbe e e e annres 35
Saving @ QUENY 10 @ FOIAENeeiiiiiiiee ettt e e e e e et e e e e e e e e s enbeeeaaaeeas 36
Generating Ordered (sorted) or Unordered QUEery RESUILS.........ccovivciiiiiiiiee e 37
Creating a ParameteriZead QUETYuueiiiiie ettt ettt et e e e e ettt e e e e e e s e st e e e e eeaeeseasannbsaeaaeeas 38
Specifying Query Attributes when Creating @ QUEY..........occuiiiiiiie et sirree e e e sanrraeeeee s 39
SPECITYING SEAICH CIILEITA. ... teee ettt et e e et e e ebbe e e e annees 40

SBAMCH CONAIIONS ...ttt bbb bbb bbbttt 40

QUETY LANGUAGE KEYWOIUSvevvecreessesiseseiees et seseeesssssesssess st sss s s sesssasssssss s ssasesessasessssnsesassssesasnnsesnssesesassesasnns 41

SPECITYING SEAICH ALIDULESveiiceiieeer ettt bbb ettt 41

Retrieving SEarchable AfHDULES ..ot 42

USING REIAHONAI OPEIALOISoucveiriierieieire ettt ettt bbb bbb bbb bbbt bbbt 43
Using UNIicOde ESCAPE SEOUENCEScccuvviieiiiiiieeiiiiieessiitiee s sttt e e sitae e e s sntaeeessnbeeaesnnsaeeesaneees 44
Using Between, Not Between, In, and NOt In Operators........cccccccveeeieicevieiieeee e cciieeeeee e 44
Using the Nested Criteria to Search for Values in Object LiStS...........occcviveeieeeiniiiciiiieeeeeeen 45
Using Criteria Selected from Criteria Library in SDK QUENES.........ccovvcvviieeeieeeieiciiieeeeeeeen 46
Using Relationships and Content in SDK QUETIESocuuiiiiiiiiieeiiiiie e 46
Searching for Words or Phrases Contained in Attachments..........ccccceevviiiiiiiieiee e, 47

Formatting Dates iN QUETY CHIEEIIA.c.eurureurrrieeirireieirireteire ettt bbb bbb bbb

Using Logical Operators........cocveerieesrrereenmsreensnens

Using Wildcard Characters with the Like Operator

Using Parentheses iN SEAICH CHItEIIAvuevieiuriieiieirireee ettt 49

Setting Search Criteria for Lists Containing Large NUmber of ODJECLSccceieiiiencieses s 50

Using SQL Syntax for S@Arch CrItEIIaA.oii it a e e e e e e aanes 50

USING SQL WIIHCAIUS ... vttt bbbt bbb bbbttt 52

Sorting Query ReSUIS USING SQL SYNMEAXvvrurrrireiieirireieieisiseesiseseesesessssesessesssesssssssssssesessssessssssessssssssesssssssssssesessssesns 52

iv Agile Product Lifecycle Management

Contents

Setting Result Attributes fOr @ QUEIYuuiiiie i e e s e s e e e e e e e snnrreeeaees 53
SPECITYING RESUIE ALITIULES. ...ttt 59
Retrieving CTO OFgINALOr NAITIEc..vcuiiiiiieriieceieetsessiss et se s bbb s bbbt s bt s et n s et en st n s s s s aes 60
Duplicate Results for Site-Related ODJECS AN AMLS ..ot sasessssens 61

WOorking With QUEIY RESUILSeeiieiiiii e e e e s e e e e e e e e e s er e e e e e enneneeees 61
SOMING QUETY RESUILS ...ttt ettt es bR s n st 61
QUETY RESUIE DAALYPEScvcvvviecriscieisiseeisse st ess sttt s st bbb st b sttt n s bbb en bbb s bbbt s et b n et nans 61
Managing Large QUETY RESUILS.........c.cverruriieeeirirrieirtei ettt sse st es s bbb s b s s 62
QUETY PEIOIMMEAINCEvvvvii ettt bbbt s s e ettt et st e e Rt s e s s 62

Creating @ Where-USEO QUEIYcooii e e ettt ettt e e e e e sttt e e e e e e e s nb et e e e e e e e e e s annnbeaaeeas 62

(I T= To [1o = T 11 1= VR 63

DIETING @ QUETY...eei ittt ettt ettt ettt ettt ettt e e skttt e okt et e e sabb et e e sabb et e e aabbe e e e s bbn e e anbb e e e e nnnree s 64

SiIMple QUETY EXAMPIESuiiiiiiiee it e e e e e e e e st e e e e e e s e s stbraeeeeeeeeesanrareeaaeeas 64

WOrking With Tables e 67

F Ao o101 1= o] PO OTRRPPTRPR 67

REtIEVING 8 TADIE ...ttt e s e e e st b e e e e e e e saneee s 68

Accessing the New and Merged Relationships Tables...........ccccoiieii e, 69
Accessing the RelationShiPS TADIE........cccciiiieiiieic et ea bbbt b s s 69
ACCESSING the MEIGEA TADIES ...ttt bbb bbbttt 69

Accessing the Merged Relationships.AffectedBy Table.............cccceiviiiiiiiiiiiii e 69
Accessing the Merged Relationships.Affects table ..o, 70
Accessing the Merged Relationships.References Table..........ccccoocviiieiiiei e, 70
WOrking With REAU-0NIY TADIES......c.cviieeriiieisieesieis sttt sttt 71

Retrieving the Metadata of @ TaBIEooiiiiiii e 71

Yo (o [T aTo I IF-T o F= N L 1S SRS 71
Adding an Item t0 the BOM TabIEc.cuiiiiiirrieis ettt bbb 72
Adding an Attachment to the AtACHMENLS TADIEc.cvvieiirieerc e e 72
Adding a Manufacturer Part to the Manufacturers TabIE...........occriririniircene e 72
Adding an Item to the Affected EEMS TADIEvvverceieeececs e s 73
Adding a Task to the SChedUIE TADIE ... 73

Adding and Updating Multiple Table ROWS ...t 74
Adding Multiple Team Members to the Team Table 0f @ PIOJECEccvririierieiree s 74
Adding Multiple 1tems t0 the BOM TaBIE......c.cvvvriieiiriceriees et e 75
Updating MUILIPIE BOM ROWS......c.cuiiiieiriciririeieiseieieieiei ettt bbbt bbb bbbt 76

[terating OVEr TabIE ROWS......coi ittt e e e e e e s s b b e e e e e e e s e e anbbeeeeaaesanneeaeeas 77
Updating Objects in Query Results with Multiple Page TabIEScooirrirrerreeeessere e 78

Updating Table Rows when Iterating Large Query ReSUltSocccvviviiiiie i, 79

v9.3.1.1 v

SDK Developer Guide - Using Agile APIs

Yo 11T I 1= 1] (ST 0TSSP 79
REMOVING TADIE ROWS ...ttt e e e e et e e e e e e s st eb e e e e e e snneeaeeas 80
Retrieving the Referenced ObJECt TOr @ ROW..........coiciiiiiiiie e e 81
Checking Status FIags Of @ ROWcoocuiiiiiiiiiie e 85
Working with Page 1, Page 2, anNd PAgE 3ooiiiiiiiiiiiieeee ettt e e e e e e s sannra e e e e e e s s nannnees 86
=T {11011 T PR 87
Removing RedliNE ChanQES.uuiiiiiiiiiiiiii ettt e e et e e e e e e e e st b e e e e e e e e e e aaeeaeeas 89

Removing Redling Changes in BUIK MOTE ..ottt sss s 89
Identifying Redlined Rows and Redlined CellSoueiiiiiiiiii e 90

USING ICEILGELOIAVAIUEoeceice ettt bbbttt bbbt 90
Working With Data Cells ... e 91
ADOUL DALA CIIS.....ueiieie ettt ettt e e st e e e sttt e e e sbb e e e e e abbeeeestbeeeesanbeeeenn 91
Dz U= B DY o LT S PP PP PP PPPPPPPPPP 91
Checking User's DiSCOVEIY PriVIIEOE.uuiiii ittt e e e e e s e e e e e e e e snnaraeeae s 92
Checking if the Cell is @ Read-Only Celloooiiiiiiiiiiie e 93
LCT= a1 g To Y= 1TSS 93

Understanding SDK Date Formats and USEr PIEfEIENCEScovuviirrricniireisisesi s s ssse s sessssssesessseens 95
LCT= a1 To Y= 1T SRR 95
Y=] o T 2= 11 1= PR 97

Catching EXCeptions for LOCKEA OBJECLS ... vttt 98
Getting and Setting LISt ValUESccueeiiiiiie ettt e e e e e e e e e e et e e e e e e s e s snaneeeeaee s 98

Getting and Setting Values for SINGIELISt CeIIS........c.vrriireenrereei st 98

Getting and Setting Values for MUILILISt CEIISccvveuiriiiriieiess et ssse s ses s 99

Getting and Setting Values for CasCadiNg LISISvovrierriiniirereeisesse st ssesesnes 100
Using Reference DeSigNator CeIISuiiii ittt sr e e e e e s e e e e e e s s snnrnaeeeeeeenns 101
WOrKing WIth FOIAEISce e e e e e 103
Y o To 10] 0 [T SRR 103

Using Level Separation Characters in Folder and ObJECt NAMEScviiriiinininecs e 104
[oT=To 1ol IF= W o] o 1= GRS PP PO PRT T PPPPP 105
(01 ¢=T: 11 oo Jr= W o] [0 T TR 105
Y= u o TR A= o] o [T G 1Y/ o1 S 106
Adding and Removing Folder EIEMENTS..........coii e a e e 106

AQAING FOIABT EIBMENTScitiieei ettt bbb bbb 107

REMOVING FOIUET EIBMENTSeviviceisecieiiets sttt et st es st e s e 107
Getting FOIder EIBMENES.uiiiiiiie e e e e e s e s e e e e e e e s e e aab b e e e e e e e e s saraaeeeeeas 107
DEIEtING @ FOIUET ...ttt ettt e et e e st e e s et b e s ennb e e e e eneee 110

vi Agile Product Lifecycle Management

Contents

Working with Items, BOMS, @Nd AMLS......couiiiie e 111
WOTKING WIth TEEIMIS ... e e e e e e s e e e e e e e s s e e a b e e e e e eeessasannraeaeeesennnneens 111
Getting and Setting the REVISION Of AN HEMcccvviieiiccce e sae s 111
Changing the Incorporated Status 0f @ REVISION ..o 113
WOTKING WItN BOMS ...ttt ettt e ettt e e s bt e e s bbbt e e s bt e e e e s enbe e e snnneeas 114
AddiNg aN M 10 8 BOM ...ttt ettt 115
EXPANAING @ BOM ...ttt bbb bbb bbb bbbttt sttt na et 115
Copying one BOM int0 @nOthEr BOM.........ccieiiieirieiririeieisissisinseis sttt ssss sttt ssess s ssssessssssesnes 116
Creating BOM-Related ProdUCt REPOIScccieueiiiiiriiieisicis ettt sss st ss s st sss s ssssenans 117
REAINING 8 BOM ...ttt bbb b bbb bbb bbbttt 119
Getting a Released ASSEMDIY ITEMoiiiiiiiiii e 119
Creating @ ChanQge OFUENooo it e e e e e e e e s st re e e e e e e e e snnrnreees 120
Adding an Item to the Affected Items tab of a Change Order..........cccccceeeeiiiiiiiiieeeeee i, 120
Modifying the Redline BOM Table.........uuuiiiiiiiiiiiieee et e e e e e e 121
WOIKING WILN AIMLS ...ttt ettt e e e e e e s bbb et e e e e e e e s e abbbe e e e e e e e e s e nbnbeeeee e e nnnneeee 122
Adding an Approved Manufacturer to the Manufacturers Table.........ccocveiriiniinne s 122
REAINING QN AML ...ttt sttt E ettt 123
Accessing PLM Metadata with APIName Field.................ccooi, 125
ADOUL APINGME FIEI ... ittt e e st e e st e e e snb e e e e s nbaeesnneeeas 125
Assigning Names to0 APINGME FIEIASooiiiiiiiiiiiii e 126
APINamMe Validation RUIESooi ettt e e et e e e e e e e ae e e e e e e e aaas 126
Accessing Metadata Using the APIName Field ... 127
APIs that SUppOrt the APINAME FIEIHccvrveeiciie et s
SDK APIs that Get the APINGME FIEI.........ccoiirineriieestie e
API Names of Root Administrator Nodes
APl Name EXamplescccoveevrerneicnnneeneennenn,
Subscribing to Agile PLM ODBjJECESonin e 139
ADOUL USEI SUDSCIIPTIONSeeiiiteiee ettt ettt ettt ettt et e st et e e snb e e e e sabnneesnneeeas 139
SUDSCIIPHION EVENES......tviiisiieteieieisi ettt ettt ses et eb bbb s ettt sttt 139
SUDSCIIDE PIIVIIEGE ... ettt ettt bbb R bbbt b b s st bbb s st n et nas 140
SUDSCHPHON NOTICALIONS ...ttt bbbttt 140
Sending Notifications With SDKuiiiiiiiiic et sraee e 140
Deleting SUDSCHNEA ODJECESvveviierrercieiieis e s s st 141
Getting Subscriptions for @n ODJECT..........uuiiii i e s 142
Modifying the Subscriptions for an ODJECT.........cuuiiiii e 143
Making Attributes Available for SUDSCIIPHON ... 144
Parent and CRild ADULES. ..o bbbttt 145
Working with SUDSCHPLION TADIESoooeeeeeeee e 146

v9.3.1.1 vii

SDK Developer Guide - Using Agile APIs

Managing ManufaCctUring SITES i 149
ADbOUt ManNUFACIUINING SIESiiiiiiiie et r e e e e s s e e e e e s s s bt e e e e e e e s s sntaareeeeeeeeasnreees 149
(7o) gl o] [Tple I AV oot =TT (o IR | (=TS 149
Creating @ ManUFaCTUINNG STcoiiiiuiiiiiiii e e e e e e e e e e e e s s nnbeeaeeas 150
Loading @ ManuUfacCtUriNg SIte..........uuuriiieeiiiiiiiiieee e e e s s e e e e s s e e e e e e s s s e e e e e e e s e annrnaeeeeseanns 150
Retrieving the Sites Table for an [eM...........ii e 151
Adding a Manufacturing Site to the Sites Table ... 151
Selecting the Current Manufacturing Site for an Item ... 152
DISADING @ SILE....eiiiiii ittt e e e e e e b et e e e e e e e e e e b bbb e e e e e e e e eabnbeeeeaaaeaaan 154
WOFKING WITR LISTS ...ttt et et e e e e e e e eaeeen 155
Yoo U | B T £ PR 155
TS o] TSR 155
SINGIELISE LISES ...vvcvvrieetieietet ettt e s bbb bbbttt 156
L0 1Yo o 110 T T £SO 157
IVIUEILISE LISES ...ttt bbb bbbttt bbbt 158
MEthOAS that USE TAGIELISE.........cereererecieiricesise et ee sttt s s nnnns 158
Y= (= Tox 1] o = B S A 2= 11 1= S 159
Working With LIFECYCIE PRASE CEIIS.......ccvvieiiciiiecir sttt sns 161
WOrKING WIth DYNAMIC LISES..........cueuerieeirieeiireeie ettt ettt bbb 162
Enumerable and Non-Enumerable LiStScooviiiiiiiiiii e 162
NON-ENUMETabIE PG&EC LiSTS.....ciiiiiiiiiiiiiiiiiiiie ettt snbee e e 163
Selecting a List from the LiSt LIDIarycoo e 163
(O =T 11 Lo L OLU) (o0 0 I (=R 165
Creating @ SIMPIE LIStvvieeerirecieiieeisi et s s bbb e ee s s s st nnas 165
Automatically Creating New Lists by Modifying EXISHNG LISES.........oeirririeirienreee it 167
Creating @ CaSCAING LIStveueurireesiieriiresie et s st se st bbb et e e s nn st enas
Creating @ Criteria-BaSEU LISTceuriiuiriiieiets ettt bbb bbbt
Checking the Data TYPE OF & LIStccciiiiiiiiiiiiie ettt
Y71 o 11371 o = N) PP PPRRR
N o 1o T R TR (oI) T
MaKING LiSt VAIUES ODSOIBLE ...ttt bbb
Setting the List Name and DESCTIPIONcv.veviierrecnsireisiere e es s ssssssssssess s ssssessssssesnes
Setting Level Names for a Cascading List
ENabling or DISADING @ LIST........ceviiririireisicisiss sttt s sas st ses s e
DEIBLING @ LISE. ... ceteeiee ettt bbb R bbb bbb
Modifying and REMOVING LISt VAIUEScvveeiericieiricirirecins et ssss st ssssss s asesssssssssssssssnsessnssnens
Printing Contents of IAQIIELISt ODJECES..........uiiiiiiie e e e e 176

viii Agile Product Lifecycle Management

Contents

Working with Attachments and File Folder ObjJectsccociiiiiiiiiiiii e 177
About Attachments and File FOIAEISuuiiiiiiiie e 177
WOrKing With File FOIAEIS ..ot e e e e e s et e e e e e e e e e e e e e e e annnnees 178
File Folder Classes and SUDCIASSESceuiiuiririniiieiritreiri ettt st ses st snsesesnssesns 178
File Folder Tables and CONSIANES.v it ss bbb s bbbt 179
Creating File FOIABT ODJECES......ccuiieieiieirirereie ettt 179
Creating File Folder Objects by Adding Rows to Attachments Table..........ccccvveieieiiciniice s 182
Working with the Files Table 0f & File FOIAEEcveiieceeceres et 182
Accessing Files in Agile PLM File Vault with IAGtaChMENLFIIEc.ceviiceics s 183
Working with Attachments Table of an ODbjJECtc.vvveiiiiii e 184
Checking In and Checking Out Files with ICheCKOULADIE...........c.cc.ceviiieice e 185
Specifying the REVISION Of tN8 TBM ...t s 186
Checking whether the Revision IS INCOMPOTALEA..........ccciviuriieriissseese et 186
(01Tt (T aTo @ U1 A= W i1 (=T o] o = S 187
Canceling a File Folder ChECKOULuuiiiiiii e e e e r e e e e s snnnnaaeees 187
Adding Files and URLS to the Attachments Table ... 188
Deep Cloning Attachments and Files from One Object t0 ANONET ... 190
Specifying the File Folder Subclass When Adding ABChMENTS ..o e 191
REtHEVING AACHMENT FIIES.......ciiiiiiciriceiicts e ettt bbbt en st s 192
Deleting Attachments and File FOIUEIS.vvirccr st st 193
Working With THUMBNAIIScvcvieeiiiceiics et bbb bbb bbb 193
ACCESSING TAUMDNAIIS. ...t bb e e s reneeee s 194
Regenerating TRUMDBNAIIScoooiiiiiiic e r e e e 194
Setting Master ThUMDNAIIS..........ooiiiii e 195
Replacing ThUMBNAIIScooiiiiii e e 195
Sequencing THUMDNAIISooiiiiii et ee e 196
Generating Thumbnails while Adding Files to Attachments Tab...........cooociiiiiiiiniiiiiiee. 197
WOrKING WIth DESIGN ODJECES.vevuiviieirieriieieiseeiet sttt ettt bbbttt sttt
Adding and Loading DESIGN ODJECESvvuiuriiieirieirreieis sttt st
Managing Version Specific Relationships between Design Objects
Adding Relationships for Specific Versions of Design ObjectScccccveeviivciviiieeee e 198
Removing Relationships for Specific Versions of Design ObjectScccccceevviiciiiiinieeennnns 198
Getting Relationships for Specific Versions of Design ObjectS........cccvvccvivieeieee e 199
Editing Relationships for Specific Versions of Design Objectsccccccvveeiiiiiciiiiieeneeenn. 199
Purging Specific Versions 0f DESIGN ODJECLSvuirirririiriiieriinireieisesseeissssessssssssesssssssessssssessssssse s sssssssesssssssesssses

Searching Design Object Deployments with Where-Used Queries

v9.3.1.1 ix

SDK Developer Guide - Using Agile APIs

Importing and Exporting Data With SDKcciiiiiii e 201
About Importing and EXPOrting Datal...........uuueiiieiiiiiiiiiiiiee et r e e e s e e e e e e e e 201
Validating Import Data and IMporting Datacccuureiiieeeiiiiiiiieer e e e e e e e s s e e e e e e e sennnes 201
Validating Data and Importing Data With SDK..........ccccuueriiriieesseees e ssessssens 202
Exporting Data from the SDKouiiiiiii oo e e e s e e e e e e ee e 204
INVOKING SDK'S EXPOIt FUNCHOMNcvvirtieiiciire ettt 205
ManNaging WOFKTIOW e e e ans 207
ADOUE WOTKFIOW .ottt sttt e e sttt e e st e e e s bt e e e annb e e e e ssteeeesnneeeas 207
The Change CONMIOI PIOCESSccuivuiieiiieriieseieissse s st ss s sa bbb s st bbb s st s bbbt en bbb bbb s b s 207
Dynamics of WOrKAOW FUNCHONAIIEYevveerericeisicirnccn sttt 208
How the Status of a Change Affects Workflow Functionalityccccoevvviiiiieiniine e, 208

How User Privileges Affect Workflow Functionality............cccovvveevee i 209
Y= (= Tox 1] o = AT Lo {01 PSSO 209
Adding and REMOVING ADPPIOVETS.uiiiiieieieiiteeeeiatieeeessteeeessteeeessssseeesassaeeesasseeessnssseessnssseeesassees 210
Setting the “Signoff User Dual Identification” PrEfEr&NCEcvv v 212
Approving a Routable OBJECL.........c..eiiiiii e 212
Rejecting a ROULADIE ODJECT......coiuiiiieiiiii e 214
Adding User Groups of Approvers and Users to Approve Routable Objects....................... 215
Approving a Routable Object by Users on behalf of “Transferred from Users” 216
Adding Active Escalations for the Current User to Approve a Routable Object................... 217
Specifying a Second Signature to Approve a Routable Object...........ccoooiuiiiiiiiieiiiiiiiiiieen. 218
Adding User ID as Second Signature to Approve a Routable Object...........cccccvveeeeeeeiiinnns 219
Approving or REJECHING ChANQE ...ueviiii it e e e e a e e e s s e et e e e e e e e e sneees 220
Approving or Rejecting a Change Without Password ..o 221
(07e] 000 a=T o 111 o o =T O o =TT [SRR 222
E Lo L1 1] [o = W @1 g = T To = TP TP UTPPPRRTT 222
Changing the Workflow Status of @an ODJECTocuiiiiiiiiii s 223
Sending an Agile Object t0 Selected USEISuuiiiiiiiiiiiee e 226
Sending an Agile ODJECt 10 USEr GIrOUPSuviiiiiiiiieeiiiiee ettt ssttee et e st e e s e e e s snnaee e s snneee s 226
Managing and Tracking QUAality ... e 229
Y o To 18 1A @ 10 = 111 Y2 o o1 o) SR 229
QUAitY-REIALEA API ODJECES ... cuvieieiieesisercie et sess st en st s s s nnn s s s s 229
Quality-Related ROIES AN PIIVIIEGES ..ottt et nae st 230
WOrKiNG WIth CUSTOMEIS ...ttt ettt e e e e ettt e e e e e s e bbbb e e e e e e e e e aannbbbeeeeaaeeanneeees 230
AADOUL CUSEOMETS ..ottt ettt ettt b 8 e £ b bbb £ bbbttt bbbt 230
L0 1= T g0 I W OS] (0] 01 PSSR 230
LOAAING A CUSIOMETvviieieiicieiiets sttt bbb st bbb st b bbbt b b s bbb en st s s e 231
Saving @ CUStOMEr @S ANOtNET CUSIOMETcuivrieierirririrtieisi et esesee sttt bbbttt 231

X Agile Product Lifecycle Management

Contents

Working with Product SErviCe REQUESESueeiiieiiiiiiiiieieee e e e sttt ee e e e e e s s e e e e e e e s nnnnrenereeeeesnnnnes 232
ADOUL PrODIBM REPOIMS ...ttt ettt sttt n b 232
AbOUt NONCONTOTMANCE REPOMSv.vviveiiiciiecieitie ettt bbb bbb bbbt et en bbb bbb 232
Creating @ ProduCt SEIVICE REAUESEcvv ittt 232
Assigning a Product Service Request to @ QUAlity ANAIYSLcccoviiiricinicrcen s 233
Adding Affected Items to @ ProdUCt SEIVICE REGUESL........c.ciiruriieieirirrinieiriersiss e ses 233
Adding Related PSRS t0 @ ProdUCt SEIVICE REGUESEc.cveueiiicieiirieieiee et ss s ssss s saees 234

Working with Quality Change REQUESTS........ccuiiii ittt e e e e e e enes 235
Creating a Quality ChanQ REGUESE........cvurierireieiiriss ettt ssse s b s bbbt s bbb s st b s enas 235
Assigning a Quality Change Request to a Quality AAMINISIIALOrccorierrierrreeeiesne s 236
Saving a Quality Change ReqUESt @S @ ChANQEcccvciriiieiriisssee ettt sse s sssenas 236

Using Workflow Features with PSRS and QCRS.........ooiiiiiiiiiiii et 237
Selecting Workflows for PSRS @nd QTRSc.cvcuiiiiiiieiieiss et ss st ssse st sssssess st ssssssssssenans 237

Creating and Managing PrOJECTS.ot e e e e e e e e e 239

About Projects and ProjeCts ODJECES..........uii i e 239

Differences in the Behavior of Projects ODJECLS............uuiiiiiiiiiie e 240

(O =T 11 o T =d (0] = ox £SO 240

Adding RUIES fOFr PPIM ODJECLSuuiiiiiiiiie ittt ettt e e e e st e e e e e e s s annbaeeeeaaesaans 242

(I T= Vo [1aTo TN =d (o] [=Tox (= PSP PPRRR 243

Adding "FileFolder" to Project's Content Tabccuiiiiiiiii e 243

USING ProjECtS TEMPIALES ...eeviiieeiiiiiiiiiie ettt e e et e e e e e st e e e e e e e s s eabb e e e e e aeeeessnnanreeeeenanns 245
Creating New Projects USING TEMPIALES.........ccoiiiiiniieeice ettt sbs s e ssss s s st sssesessssenans 245
Creating Projects and Changing OWNETSNIPS.......c.cverruriiieiririririeisiseseeseesesssssesesesessssessssssssessssesssssse s ssssessssssessssssesnes 246
SAVING PrOJECES 8S TEMPIALEScvcvvieeiierciriscreisiers s et seseis et sess st a e es s e ee st s s s s s ne s enas 248

Yol o= To [W][TaTo [N = o] [=Tox £ U 249

Setting Start and End Timestamps for PPM Date Attributesooccivieveee e, 251

Working With Projects BAsS@IINESoooiiiiiiiiiiie e 252

Delegating Ownership of a Projects t0 ANOther USET..........cooiiiiiiiiiiiee e e e 253

Adding Resources to a ProjecCts TEAIM........cooiiiiiiiiiiii et 254

SUDSHULING ProjECIS RESOUICES ...ttt st e e e s e e e e e e e e s s e st e e e e e e e s s e snnnraeeeas 256

Locking Or UNIOCKING PrOJECTSeiiiiiiiiie ittt ettt ettt e et e e s 257

WOrKING WIth DISCUSSIONS........itiiieiiiee ettt e ettt e e e e e s bbbt e e e e e e e s nbbbeeeeaaeeeaannbbsneeeaaeaaannneees 257

Creating a Discussion
Replying to a Discussion

JOINING @ DISCUSSION...v.vuvvvierettesetesseee sttt es st sse b st b s bt es st s s e bbb s bbb b e b b s bbbt en b s st n st n e bn s

Creating @N ACHON IEBM ... ittt bbbttt 262
Working with Product COSt ManagemeENTveuiiuiiniii e 265
OVBIVIBW. ...ttt ettt etttk h e et e e h et ek e e e ek bt e 4R et e sh b e e ek et ean b e e e b b e e aab e e e abe e e sabeesnneesnneeennne e 265

v9.3.1.1 Xi

SDK Developer Guide - Using Agile APIs

WOorking With PriCE ODJECLSeiiiiiiiii et e e e e e e e e e s s eeeeeennnneees
Y/ F= T = VoL aTo I d € (ox o o FO PP UPT PP PPRRRT

CreatiNg @ PrICE ODJECE ...ttt bbb bbb bbbt bbbttt

D] = 10 £ PRSP
SPeCifying HEM REVISIONccoi i e e e e s s e e e e e e e snnnnreees
Creating @ PUDIIShed PriCe ... e

LOAAING 8 PIICE ODJECE.....vvvveiriieisieeeiriee ettt sttt s b
AQAING PrICE LINES...uivitieieiscte ittt ss bbbt bbbttt n bbb bbbt b
Creating @ PriCe ChaNnGe OFUEN ..ottt bbbt bbbttt
WOTKING WIth SUPPIIEIS ...ttt e e et e e s b e e sneeeas
LOAAING 8 SUPPHE ...ttt ettt n e
MOGITYING SUPPHET DALAcocvvvcveiiicieiierceieets e ettt bbbttt b st b s b en st s s e
WOrking With SOUICING PrOJECES......cciiiiiiiiiiie ittt e e e e e s e e e e e e eaeeees
SUPPOIE APIIMEINOASocvvieiicei et bbb bbbt b bbbt nas
Loading an EXiSting SOUCING PIOJECEScuveuiiriieieirireisieeisi ettt sttt
Creating Sourcing Projects by Quantity Breaks
Creating Sourcing Projects by Quantity Breaks and Price Periods

Accessing and Modifying Objects, Tables, and AtHDULES.ccvrerrrcines e
Setting Cover Page Values for Sourcing Projects
Understanding Nested TablES iN PCM ...ttt
Sourcing Projects’ Parent Table and Nested Child Table Constants...........cccccccoeovivivvinnnn. 278
Accessing and Modifying Nested Tables in Sourcing Projects or RFQccccceeeeeeiiinnneee. 278
Accessing and Modifying the Status of Sourcing Projects..........occcvvvevveie v 279
Managing Data in SOUICING PIOJECS .. .v.vvevieiririeieirieisint ettt sttt sab st 279
Setting Quantity for Items in SOUrcing ProjeCtS........c..uuviiiiiiiiiiiiiieee e 279
Adding Items to Sourcing Projects with BOM Filters.........cccccceeiiiiiiiiiiiiie e 280
Performing Quantity Rollup in SOUrcing ProjectScccoiiiiiiiiieiie e 282
Performing Cost Rollup in SOUrcing ProjECESuuuiiiieiiiiiciieeee e 282
Performing Price LOOKUP in SOUICING PrOJECES.......uuuiiiieiiiiiiiiiieeee e 283
Generating the Assembly Cost Report for Sourcing Projectscvveevvvccvvieeieeee e 288
Modifying the Target Price for Items in Sourcing Projectsccccccvvvivviieeeee e iscciiieeeee e 290
Setting the Best Response for [tems in Sourcing Projects...........ccovvvveeeiiiieei e 290
Setting Partners in @ SOUICiNG PrOJECES........cciiiiiiiiiiiiiie ittt 292
WOTKING WILN RFQS. ...ttt bbb bbb bbb bbb 293
ST 0] o] ool t=To VAN od I =7 1 oo £ RSUR 294
Creating RFQS fOr SOUICING PrOJECESevviiiiiiee it ee et e e a e e e s 294
o= To [T To T bS] 1] T T S 295
Loading RFQs from Sourcing Projects' RFQ Tableccccviiviiee e 295
Accessing and Modifying RFQ Objects, Tables, Nested Tables, and Attributes 296
Performing Price LOOKUP IN RFQS......ciiuiiiiiiiiie ettt 297
Working with RFQ RESPONSES ...ttt e s e e e e e e e anes 298
Managing Product Governance & COmMpPlianCe.........c.ovuiiiiiiiiiiiiiii e 301
About Agile Product Governance and COmMPlIANCE.........ceeeiiiiiiiiiieiie e e e 301
Agile PG&C Interfaces and ClIaSSes...........ccovviiiiiiiiiniiiici s 302

Xii Agile Product Lifecycle Management

Contents

o 1= = T O = L] = SR 302
Creating Declarations, Specifications, and SUDSIANCESciiiiiiiiiiiiii e 303
CrEatiNg DECIAIALIONSvveeiieeeieiei ettt ettt bbbt st bbbttt 303
Creating SPECITICALIONSc.iviei et bbb bbbt 304
CrEALING SUDSIANCESvuveieeicetrieiee ettt ettt bbb bbb bbbttt 305
Creating @ SUDPAIToooiiiii e e 305
(01 g=T- 11 aTo T BT U] o 15] ¢= L [o TN €] o 11 o F S 306
(O =T 11 oo = W1 - =1 £ T- | RS 306
Creating @ SUDSTANCEuiii et et e et e e e ee e 307
Adding Items, Manufacturer Parts, and Part Groups to Declarations...........ccccccoevcvviveeee e, 307
Adding SUbStanNces t0 DECIATAIONSueiiiiiiiie it eeeeas 308
SrUCtUre Of Bill Of SUDSIANCEScvveeeicieis et 309
RUIES fOr AQING SUDSIANCESocvviicieiiciericieis ettt sss st b bbb bbbt bbbt en st s e 310
Adding Subparts and Materials that DO NOE EXIStcoviiririnrieniieneeisesss s ssees 310
Adding EXAMPIES 10 SUDSIANCES......cvuieeiiiercieiiieisiersirs et ss s es s s s s 311
Adding Substances to Manufacturer Part Composition Table of Homogeneous Material
D= Tod P = 110 1 RSP PPRRR 311
Adding Substances to Manufacturer Part Composition Table of Substance Declarations.. 313
Adding Substances to a SPECIfICALIONuuviiieiiiiiee e 314
Adding Specifications t0 & DECIArAtION............cuuiiiiiiiiie e 315
Rules for AAdiNG SPECITICALIONSc.curu ettt 315
ROULING DECIAIALIONS ..ottt ettt et e s s bbbt e e enb bt e e s anbb e e e enbbeeeeennee 316
(fe] gal o] L=t il To Jr- W D= Tor F= = 11T] o IS 318
Submitting Declarations to ComplianCe MaNAGEIScccuvviiiiiiee e e e e 318
PUDIIShING @ DECIAIALION.cciii ittt e e e e e sttt e e e e e e e e e sanbeeaaaeeeanns 319
Getting and Setting Weight VAIUESeeiiiiiiiiieee st e e e e e 319
Adding Substance Compositions for Manufacturer Partseeeeiiiiiiiiiiieeee e 320
ROIIING UP ComMPlIANCe DAtaccvviiiiieie ettt e e e s s e e e e e e s e st ae e e e e e e e e s e snnrnneeeeeeanns 323
Understanding the IPGCROIUP INEEIMACEveveieririciriricsrseis s et ssss s seens 323
Passing the Date Parametercooiiiiiiiiiieee et s et r e e e e e e nnnreeeeeee s 323
USING the IPGCRONUP INTEITACEceereeeieiieer ettt bbb bbbt 324
Rolling Up Assembled Data 0N [eMS........coiiiiiiiiiiiie e 324
Rolling Up Assembled Data 0N MPNS..........coiiiiiiiiiriec e e e e e e snvnrreene e e 325
Setting Values in the Calculated Compliance Field for Item Objects........cccccccvveeiviiciiinnenn. 325
Setting Values in the Calculated Compliance Field for Declaration Objects.............cc.vee..... 326
L F= L Lo | TTa Yo TN = (=T o i Lo o 1= 329
ADOUL EXCEPLIONS. ..ttt ettt ettt e e e e e oottt et e e e e e s e ek abe e e e e e e e e e e e annbbeeeeeaaeeaaannreeeaaaeaaanns 329
EXCEPLION CONSLANESuviiiiiiiiee ettt e e e e e s s st e e e e e e e s e st e e e ee e e s e s saatraaeeeaeessesastaraeeeeeeaesannraeeaaeessns 330
GEtENG EITOr COUES ...ttt ettt b bt e e s st e e s et bt e e s sabe e e e s sabeeessnbeeeeea 330
Disabling and Enabling Error Codes With BUIK APIScccoiiiiiiiiiiieicce e eesinree e 330
(7= a0 Y LTS TST= To = 331

v9.3.1.1 Xiii

SDK Developer Guide - Using Agile APIs

Disabling and Enabling Warning MESSAQES........cccuiiiuriiiiiieeeieisiiiieeeee e e s s snteaeeer e e e s s s snnanneeseeeeeeanns 332
Checking if APIException is Warning and NOt EITOrcocuuiiiiiiiaiiiiieieeee e 333
of Saving and Restoring State Enabled and Disabled Warnings..........ccccccceveeiiiiiiiiiieeec e 333
Deleting Warnings Automatically Disabled by Agile API..........cciiii e 334

Performing AAministrative TasKsS.........cii i 335

About Agile PLM AdMINISTIALIONeiiiiiiiiie ittt e e e e e e e e sneeas
Privileges Required to Administer AQIle PLM...........cccuiiiiiiiee et e e e e e e e
AdMINISTratiVe INEITACESooi e e e e e e e e e ee e e e eneeees
Getting an TAAMIN INSTANCEeuiiiii et e e e e e e s et e e e e e e e s e aanreeaaeas
LAY T T TR 7L I LT [PR
WOrKing With the ClaSSES NOUE........c. it ettt ettt bbb
Managing Agile PLM CIaSSESuuuiiiiieeiiiiiiiieei e e e s seettte et e e e e e e s ee e e e e e s sssanbaeeeaaeeessansnraneneeaeeans
CONCIEte ANG ADSIFACE ClASSESvuvrvierrireriieisiees sttt et b sttt ns bt
REFEIBNCING CIASSESvcvviieieiicieiicts sttt bbb bbb bbbt bbb b bbbt sttt ena et an e
Identifying the Target TYPE OF @ CIASS......ciiiriiririeirrteis ettt s e
WOrKING WIith AtIHIDULESeeee e e e e e e e e e s s e e e e e e e s s srnreeeeeeannnnneees
REFEIENCING AITDULES ... ettt bbbttt bbb
RELHIEVING ATIDULES ..ottt bbb bbb bbbttt s bbb n st s e
Retrieving INAIVIAUAT ALHOULESeervrereieiicissees bbbttt
Editing the Property 0f @n AMHOULE ..o bbbt sb st
Working With USer-DefiNed AtHIUIES.cucveririeiscer st
Working with Properties of Administrative NOAESccoveeiiiiiiiiiiiirie e
1Y/ F= T b= Lol To I U =] £ PP PPPUTPPPRRTT
GBELING All USEIS.....e ettt ettt bbb bbb et bbb bbbttt
L0 1=T 11T = LU - PSSR
Creating Users and Requiring Password Modification at Login
CreatiNg @ SUPPIET USEIcuiieirieieeriseieiseseie sttt ese sttt se bbbt bbbttt s et
SAVING 8 USET 10 8 NEBW USEIoviiiieiiciisece ettt s bbb bbb s s bbb bbb a st
Checking fOr EXPIFEA PASSWOITS.c.vvuiurereieiireessereinseseiseseis st sese s ssesess et s sttt sssesessssesssssesssssessssesesnes
CONfIGUING USEE SEBHINGS. ...cvvuvveveiereiieisissseie et s st b et e a bbbt bbb bR b s et s bbb s st bbb s st b s et enas
RESEHING USEE PASSWOITSvvvvriseeirereieisireisises sttt sesss sttt ettt b bttt en st sees
DBIBLING @ USE ..uievieieiiei ettt ettt bbb bbb bbb e Rt bbbt e bbb n Rt
MANAGING USEI GIOUPS ..etteetiieeaiiiitteeete e e e e e s ittt et e e e e e s s e aaebbeeeeeae e e s s aassbeeeeaaaeaaaansbeseeaeaeesaaannbbeeeaaaeaanns
GELLING All USEIS GIOUPS.....vvuvieveriseeesssettissstsssesessssss s sessssssessssesessssssssassesassssessssssessssesssassssessassesassssesssssesassssesassssesns
CrEALING @ USEI GIOUP 1.vuvevuerereiiirtresesetsietstsssete s asees e assss s s es s s es s s st et s s s s b ae st b e s bbbt st st ennes
Adding a User Group to the User's USEr GIoUP TabIEcccviieiieniieinneeiseisss e e sssessssssess s sesssesesaees
Listing Users in a User Group

Xiv Agile Product Lifecycle Management

Contents

Mapping Agile PLM Client Features to Agile APT ... 361
LOGIN FRAMUIES.ei i i ettt e et e e e e e et e e e e e e s e ettt e e e e eeeeesssaatbaeeeeaeeesesasstataeeeaeesesrnrnneeaaenninns 361
GENEIAI FRALUIES.eii i itiiee ettt et s bttt e e sttt e e sttt e e e abbe e e e e aabe e e e e snbaeeeesnbeeeeeabeeesanbeeeenas 362
SEAICH FRALUIES ...ttt ettt e et e e e e e e e bbbt e e e e e e e e e sanbbe b e e e e e e snnbnreeeaans 362
ALACHMENT FEAIUMNES ...ttt ettt e e e sttt e e s bt e e e e s bbb e e e snbe e e e s anbbeeesnneeeas 363
WOIKFIOW FEALUIES ... 363
ManUfaCturiNg SItE FEAUIESuviiiiiiee e et ee e e e e s e e e e e e s e st e e e e e e e s s e satbareeeeeeesesranrnreeeeeeanns 364
(0] o LT g o (U] (=Y PP 364
PrOJECIS FRALUIES ... ettt e e oo ettt e e e e e e e s bbbttt e e e e e e e s e nbbbe et e aaeeeeaannreeeaaaeeaanns 365
AdMINISTFALIVE FEAIUIES......iiiiiiiiie ettt e e s e e s snb b e e e snbbe e e snneeeas 365
Migrating Release 9.2.1 and Older Table Constants to Release 9.2.2 or Later 367
Mapped Pre-Release 9.2.2 Table Constants to 9.2.2 Table Constants.........ccccccevvviciiiieiieeeeeiinnns 367
Removed Pre-Release 9.2.2 Table CONSANTS.........ooiuuiiiiiiiaae e e e 370

v9.3.1.1 XV

Preface

Oracle's Agile PLM documentation set includes Adobe® Acrobat PDF files. The Oracle Technology
Network (OTN) Web site http://www.oracle.com/technetwork/documentation/agile-085940.html
contains the latest versions of the Agile PLM PDF files. You can view or download these manuals
from the Web site, or you can ask your Agile administrator if there is an Agile PLM Documentation
folder available on your network from which you can access the Agile PLM documentation (PDF)
files.

Note To read the PDF files, you must use the free Adobe Acrobat Reader version 9.0 or later.
This program can be downloaded from the Adobe Web site http://www.adobe.com.

The Oracle Technology Network (OTN) Web site
http://www.oracle.com/technetwork/documentation/agile-085940.html can be accessed through Help
> Manuals in both Agile Web Client and Agile Java Client. If you need additional assistance or
information, please contact My Oracle Support (https://support.oracle.com) for assistance.

Note Before calling Oracle Support about a problem with an Agile PLM manual, please have
the full part number, which is located on the title page.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the
United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398.
Outside the United States, call +1.407.458.2479.

Readme

Any last-minute information about Agile PLM can be found in the Readme file on the Oracle
Technology Network (OTN) Web site http://www.oracle.com/technetwork/documentation/agile-
085940.html.

Agile Training Aids

Go to the Oracle University Web page
http://www.oracle.com/education/chooser/selectcountry _new.html for more information on Agile
Training offerings.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise empty line;
however, some screen readers may not always read a line of text that consists solely of a bracket or
brace.

This documentation may contain links to Web sites of other companies or organizations that Oracle
does not own or control. Oracle neither evaluates nor makes any representations regarding the
accessibility of these Web sites.

Xvi Agile Product Lifecycle Management

http://www.oracle.com/technetwork/documentation/agile-085940.html
http://www.adobe.com/
http://www.oracle.com/technetwork/documentation/agile-085940.html
https://support.oracle.com/
http://www.oracle.com/technetwork/documentation/agile-085940.html
http://www.oracle.com/technetwork/documentation/agile-085940.html
http://www.oracle.com/education/chooser/selectcountry_new.html

v9.3.1.1 XVii

New in Release 9.3.1.1

The following new features and enhancements are implemented in this release:

o Adding "FileFolder" to the Content Tab of a Project — This release, supports adding FileFolder to the
Content Tab of a Project using the IProgram API. See Adding "FileFolder" to the Content Tab
of a Project on page 243.

= Adding Multiple Team members to a Project — The SDK supports using the Bulk APIs to add Multiple
Team members to a Project's Team Table. See Adding Multiple Team Members to the Team
Table of a Project on page 74.

@ The following entry is no longer applicable and is removed from Selecting a List from the List
Library on page 163.

"Cascading lists are only used for SingleList attributes and not for MultiList attributes"
New in Release 9.3.1 Rev 3

There are no new features or enhancements implemented in this release of the Agile SDK APIs.
Changes listed below, only apply to this document.

Missing Content

The missing entries that appeared under "The Agile PLM system provides the following redline
tables" are restored in this revision of the Guide. See Redlining on page 86.

Publishing Agile APIs and PLM Extensions in Separate Books

Starting with this release, the SDK Developer Guide which was published as a single book in
previous releases, is divided and published in two complimentary books as follows:

o SDK Developer Guide - Using Agile APIs — This book consists of the first twenty chapters of the
SDK Developer Guide Release 9.3.1 Rev 2 and applicable Appendices.

o SDK Developer Guide - Developing PLM Extensions — The contents of this book are the Process
Extensions, Web Services Extensions, Dashboard Management Extensions, and Event
Framework chapters of the SDK Developer Guide Release 9.3.1 Rev 2 and applicable
Appendices.

This change is necessary because the SDK Developer Guide which is posted on the Oracle
Technology Network (OTN), has more than 500 pages, and OTN rejects submissions that exceed
this page limit.

New in Release 9.3.1 Rev 2

The SDK_samples.zip file is moved from
http://www.oracle.com/technology/sample code/products/agile/9.3/index.html

to https://codesamples.samplecode.oracle.com/servlets/tracking/id/S614.

Note Oracle recommends using the Internet Explorer to access these site.

Xviii Agile Product Lifecycle Management

http://www.oracle.com/technology/sample_code/products/agile/9.3/index.html
https://codesamples.samplecode.oracle.com/servlets/tracking/id/S614

New in Release 9.3.1

The following new features and enhancements are implemented in this release:

o Creating Agile sessions in cluster environments — The SDK exposes three new APIs to overcome
the proxy server URL issue during down time when creating an Agile sessions in a cluster
environment. See Creating a Session in a Cluster Environment on page 13.

@ Creating Criteria-based lists — The SDK supports creating, loading, and modifying Criteria-based
lists which are Dynamic lists defined by the criteria selected from the Agile Criteria library when
the lists are created. See Creating a Criteria-Based List on page 169.

@ Creating Users and Requiring Password Modification at Login — Using the SDK you can create and
configure a user with a temporary password and requiring the new user to change his or her
password at login. See Creating Users and Requiring Password Modification at Login on page
353.

o Checking for expired passwords — The text and example in Managing Users on page 351 that
checks for Agile API errors related to expired passwords is changed in this release. See
Checking for Expired Passwords on page 354.

o Approving or rejecting change without password — PLM's Java Client provides the option to approve
or reject a Change with or without typing a password. The SDK exposes the necessary APIs to
programmatically perform this function. See Approving or Rejecting a Change Without
Password on page 221.

@ Adding Items from Product Collaboration to Sourcing Projects — The Agile Web Client supports adding
PC Items to Sourcing Projects by applying the BOM filter to multiple attributes with different
operators from the UIl. This release enhances the applicable APIs to perform this task using the
SDK. See Adding Items to Sourcing Projects Using BOM Filters on page 280.

o Generating a project's Assembly Cost Report — The Agile Web Client supports generating Assembly
Cost Reports using the UL. In this release, the IProductReport .execute () APl was
enhanced to perform this task using the SDK. See Generating Assembly Cost Reports for
Sourcing Projects on page 288.

o Setting Start and End timestamps for PPM Date attributes — This release enables specifying the Start
and End times for PPM's Schedule, Estimated, and Actual Date attributes when creating or
editing scheduled PPM tasks. See Setting Start and End Timestamps for PPM Date Attributes
on page 251.

= New Variant Management Interfaces — The following Variant Management specific interfaces are
implemented in com.agile.px package:

® TIUniqueld

® TIConfigurationGraph
® IConfigurationOption
® TIModelOptionBOM

® TIModelOptionBOMItem

v9.3.1.1 XiX

= Working with Variant Management Events — This release provides SDK support for Variant
Management Events. You can find the necessary background and procedural information in the
following sections of this guide:

* Event Information Objects — Lists the new Event Types and the corresponding Information
Object Interface (IVMEventObj) that enable supporting Variant Management using the
SDK

* Event Script Objects — Lists the new Event Types and the corresponding Script Object
Interface (IVMScriptObj) that enable supporting Variant Management using the SDK

* Working with Variant Management Actions — Describes working with Variant Management
Actions — Java PX and Variant Management Actions — Script PX

* Variant Management Configuration Graph Schema — Describes the structure of a Variant
Management XML graph schema

New in Release 9.3.0.2

The following new features and enhancements were implemented in this release:

o Checking for expired passwords — The example in Managing Users on page 351 that checks for
Agile API errors related to expired passwords is changed in this release. See Checking for
Expired Passwords on page 354.

= Improving query performance for lists containing large number of objects — A new section that
shows how to set the search criteria to improve performance for lists containing large number
of objects is added in this release. See Setting Search Criteria for Lists Containing Large
Number of Objects on page 50.

= Deploying dependent/shared libraries in Weblogic server — Applicable procedures to deploy
the dependent JAR files are modified in this release. See Deploying the Dependent JAR Files.

@ Creating a Session and Logging In — A note describing JVM parameter settings when LDAP users
log in to Agile PLM running on Weblogic servers. See Creating a Session and Logging In on
page 11.

New in Release 9.3.0.1 Rev 2

The SiteMinder and SAP portal references that appeared in Using Single Sign-On Cookies for
Client-Server are removed in this revision.

New in Release 9.3.0.1

New features and enhancements implemented in this release address using the SDK to create and
load queries and work with tables. These changes, summarized below, are documented in Chapter
3, Creating and Loading Queries on page 35 and Chapter 4, Working with Tables on page 67.

o SDK support for workflow-related queries — This release supports using workflow attributes to
prepare queries that check the status of a workflow in the PLM process. See Specifying
Workflow Queries.

o SDK support to use the Nested Criteria to perform object list searches — This release provides an
enhancement in the behavior and performance of this feature. See Using the Nested Criteria
to Search for Values in Object Lists on page 45.

o SDK support for Relationships/Content queries — As a result of enhancements made to the IQuery

XX Agile Product Lifecycle Management

interface, you can use the SDK to prepare queries listed below. For information and usage
examples, see Using Relationships and Content in SDK Queries on page 46.

* An object's Relationships attribute
* A Program object's Content attribute
* A Transfer Order object's Selected Content attribute
o SDK support to query using criterion selected from PLM's Criteria Library — Thls feature was supported

in earlier releases of the SDK. In this release, the examples is modified. See Using Criteria
Selected from Criteria Library in SDK Queries on page 46.

o SDK support for bulk removal of redline changes — A new interface called IRedlinedTable
supports this operation, See Removing Redline Changes in Bulk Mode on page 89.

Note The PG&C constants and the relationships table functionality in AgileAPI.jar
Release 9.2.2 and subsequent releases of Agile PLM are incompatible with the ones in
the earlier versions of AgileAPI.jar.

v9.3.1.1 XXi

Chapter 1
Introduction

This chapter includes the following:

ADOUL TNIS GUIAR ...t bbb
SDK COMPONENES ...ttt bbb bbbttt bbbttt b bbbttt
SDK ATCRIEECIUIEvve ettt bbbt bbbttt
System Requirements
JAVA REGUITBIMENEScviviicviiescietste ittt bbb bbb bbb R bbbt e s s bbb b an bbb

Agile SDK INStAllAtion FOIAETSvcvevrreeeiieeisiereiss e sese s st sass s ssss s snsesesssesasnnns 5
Checking YOUr AQIle PLIM SYSBIM......cciiiiiriieeeiiesciesseisisersiss s e ssssssssssssssssssssssesessssessssssessssnssssssesesnes 5
AQile PLM BUSINESS ODJECS.....coevieierireieinisireisissieesi st eesssees s ase s sssssss et ssssssssss s ssssssessssesssssesassssesasnnes 5

About this Guide

Oracle's Agile Software Development Kit (SDK) is a collection of Java application programming
interfaces (APIs), sample applications, and documentation that enable building custom applications
to access, or extend the functionalities of the Agile Application Server. Using the SDK, you can
create programs that extend the functionality of the Agile product lifecycle management system
(PLM) and can perform tasks against the PLM system.

The SDK enables the following operations:

u]

m]

m]

u]

Integrate the Agile PLM system with enterprise resource planning (ERP) applications or other
custom applications

Develop applications to process product data
Perform batch operations against the Agile Application Server

Extend the functionality of the Agile PLM system

This release marks the partition of the SDK Developer Guide which was published as a single book
prior to this release, into the following two books.

u]

SDK Developer Guide - Using the APIs — This component of the SDK Developer Guide provides
information to develop batch operations against the PLM Server, integrate the PLM with other
application, and process PLM data. This information is described and documented in this book.

SDK Developer Guide - Developing Extensions — This component of the SDK Developer Guide
provides background and procedural information to create additional PLM clients (extend Agile
PLM functionalities) and work with PLM Frameworks. This information is described and
documented in the SDK Developer Guide - Developing Extensions.

v9.3.1.1 1

SDK Developer Guide - Using Agile APIs

Agile APIs

This component of the SDK Developer Guide provides referential and procedural information to get
started with the APIs and use the APIs to develop applications that programmtically perfrom batch
operations against the Agile Application Server to execute tasks such as:

u]

m]

m]

Querying PLM databases

Loading data into PLM databases

Importing and exporting data to and from the PLM

Processing product data

Interacting with PLM modules such as Product Cost Management, Projects, and others
Managing workflow

Perfroming administrative functions

SDK Components

The Agile SDK has the following Client-side and sever-side components:

Client-Side Components

The contents of the Agile SDK Client-side components are:

Documentation

m]

u]

SDK Developer Guide (this manual)

API Reference files (these are the Javadoc generated HTML files that document the API
methods)

Sample applications

Note The APl HTML reference files and Sample applications are in the SDK_samples.zip

folder. This folder is found in the Oracle Agile PLM's Event and Web Services Samples
Web site https://www.samplecode.oracle.com/tracker/tracking/id/S751/linkid/prpl1004.
For more information and procedures to access its contents, contact your system
administrator, or refer to your PLM installation guide.

Installation

u]

m]

m]

Agile APl library (AgileAPI.jar)
Java Process Extensions API library (pxapi . jar)

Apache Axis library (axis.jar)

Agile Product Lifecycle Management

https://www.samplecode.oracle.com/tracker/tracking/id/S751/linkid/prpl1004

Chapter 1: Introduction

Server-Side Components

Oracle's Agile Application Server contains the following SDK server-side components:
o Agile APl implementation classes
= Java and Scripting process extensions framework

8 Web service extensions frameworks

SDK Architecture

The SDK facilitates developing many types of programs to connect to the Agile Application Server.
If you are using only the Agile API, you can develop programs that connect directly to the server. If
you are using WSX to develop Web service extensions, you can deploy the Web services inside the
Agile Application Server container. You can locate the Web server used for WSX either inside or
outside the company’s demilitarized computing zone (DMZ) or perimeter network. When the Agile
PLM Client initiates a custom action, it either runs a program deployed on the server, or it connects
to an external resource or URL, WSX, Java PX, and Script PX extensions can also use the Agile
API. It's a tool available to all Agile SDK development projects. You can also develop extensions
using APIs that are not provided by Agile.

Figure 1: Agile SDK architecture

Agile Application Server

PR Framework Event Framewark

AgIE AP WX Custam PX_ 1 .
Implementation : Jawva | [Script —

Classes Framewark Tash _Dard iy Py
Extensions

HTTP(3)
Agile API
C'ES:;;?E Web Server Other
(AgileAP! jar) Applications
Agile AP WWED Server WED SErvices
Programs (JSP Programs) Client
Agile PLM Clients
i I (Web or Java)
¥
r
I
Other
Applications —
y—Ny——— N —

Note Agile API programs connect to the Agile Application Server using non-secure means.
Consequently, Agile API programs should be run only from within the corporate firewall.
Web service Clients, however, can connect to the server through the corporate firewall
using standard HTTP(S) technology.

v9.3.1.1 3

SDK Developer Guide - Using Agile APIs

System Requirements

For Agile SDK system requirements, refer to PLM Capacity Planning and Deployment Guide.

Java Requirements

The Agile API must be compatible with the version of Java that the application server supports. To
avoid problems, an Agile API Client must use the same version of Java that the connecting
application server is using. Oracle Application Server 10g must use Sun Java Runtime Environment
(JRE) 1.5.0_06 and Oracle WebLogic Server 10.3 must use Sun Java Runtime Environment (JRE)
1.6 for interoperability and 2007 Daylight Saving Time compliance.

The following table lists the recommended Java Runtime Environment (JRE) to use with Agile API
Clients on different application servers that Agile PLM supports.

Application Server

Operating System

Required Java Version for Agile API
clients

Oracle Application Server 10g

Windows 2003

SunJRE 1.5.0

Oracle WebLogic Server 10.3

Windows 2003

Sun JRE 1.6

Java Virtual Memory Parameters (JVM) to Prevent Qut of Memory

Exceptions

To prevent out of memory errors, add the following JVM options in the indicated locations.

Note This workaround is only applicable to single-threaded SDK programs.

= If the Client is a standalone SDK Client, add the JVM option as shown below:
java -Ddisable.agile.sessionID.generation=true pk.sample

= If the Client is a PX and out of memory occurs in Agile Server, add the JVM option in
<OAS_HOME>/opmn/conf /opmn.xml

<category id="start-parameters">
<data id="java-options" value="-Xrs -server -
XX:MaxPermSize=256M -msl280M -mx1280M -XX:NewSize=256M -
XX :MaxNewSize=256M -XX:AppendRatio=3 -
Doracle.xdkjava.compatibility.version=10.1.0 -
Djava.security.policy=$ORACLE HOME/j2ee/home/config/java2.policy -
Dagile.log.dir=SORACLE HOME/j2ee/home/log -
Dcom. sun.management . jmxremote -
Dcom. sun.management . jmxremote.port=9899 -
Dcom. sun.management . jmxremote.authenticate=false -
Dcom. sun.management . jmxremote.ssl=false -Djava.awt.headless=true -
Dhttp.webdir.enable=false -Duser.timezone=GMT -
Ddisable.agile.sessionlD.generation=true"/>
<data id="oc4j-options" value="-verbosity 10 -

userThreads" />
</category>

Agile Product Lifecycle Management

Chapter 1: Introduction

= If the Client is a URL PX, add the following JVM option in the Server Start up (similar to
catalina.bat in Tomcat):

-Ddisable.agile.sessionID.generation=true

Agile SDK Installation Folders

The Agile SDK files use the following folder structure on your computer:

lib —The \agile home\integration\sdk\1lib folder contains the following libraries:

Important Do not include the axis . jar file and AgileAPl jar file in the same classpath. The
SDK classpath does not support this setting and the SDK will not function properly.

B AgileAPI.jar — Agile API library, which contains Agile API classes and interfaces

B axis.jar - An Oracle-modified version of the Apache Axis library required for Web service
Clients

o pxapi.jar — PX API library, which contains interfaces used to develop custom autonumber
sources and custom actions

Checking Your Agile PLM System

Before trying to run the Agile SDK Clients on your Agile PLM system, make sure the system is
configured and working properly. In particular, make sure the HTTP ports for your application server
are set correctly. For more information, refer to the Agile PLM Installation Guide.

Agile PLM Business Objects

With any enterprise software system, you work with business objects to manage the company’s
data. The following table lists the Agile PLM business objects and their related Agile APl interfaces.

Object Related Agile API Interface
Changes IChange
Customers ICustomer
Declarations IDeclaration
Design IDesign
Discussions IDiscussion
File Folders IFileFolder
Items ITtem
Manufacturer parts IManufacturerPart
Manufacturers IManufacturer

v9.3.1.1 5

SDK Developer Guide - Using Agile APIs

Object Related Agile API Interface
Packages IPackage
Part Groups (Commodity or Part Family) ICommodity
Prices IPrice
Product Service Request IServiceRequest
Projects IProgram
Sourcing Project IProject

Quality Change Request

IQualityChangeRequest

Reports

IProductReport

Requests for Quote (RFQ)

IRequestForQuote

RFQ Responses ISupplierResponse*
Sites IManufacturingSite
Specifications ISpecification
Substances ISubstance

Suppliers ISupplier

Transfer Order ITransferOrder

User Groups IUserGroup

Users IUser

* Agile does not support the API interfaces in the current release of the software.

The business objects that you can view and actions that you can perform on these objects are
determined by the server components installed on your Agile Application Server and the roles, and
assigned privileges. Privilege levels can vary from field to field. In addition to Users and User
Groups, Agile PLM administrators work with administrative objects, such as administrative nodes

and Agile PLM classes.

Note

Not all Agile PLM business objects are exposed in the Agile API. For example, some

Report objects are not accessible via the Agile API.

Agile Product Lifecycle Management

Chapter 2
Getting Started with Agile API

This chapter includes the following:

I o 1 N o IO YT P 7
= Starting an Agle APLPIOGIAMc.c.iieiieirieisiseeeiseets ettt ssss st s sas e ss s s en s sesasessnnes 10
= Loading and Creating Agile PLM ODJECESvvirurieiireieiesieisinseis st sse s esssessnees 14

Agile APl Overview

This section provides an overview of the functionality provided by the Agile API. Topics covered
include:

= Types of Agile API classes and interfaces
@ Loading Agile API classes

o How the Agile API is thread-safe

= Packaging your Agile API applications

= Finding the sample programs

Types of Agile API Classes and Interfaces

The Agile API contains several different classes and interfaces in the AgileAPI. jar library.
These files are further classified into the following groups according to functions that they support:

o Aggregate interfaces — These interfaces aggregate the applicable functional interfaces for a
particular object type. For example, the IItem interface extends IDataObject,
IRevisioned, IManufacturingSiteSelectable, IAttachmentContainer,
IHistoryManager, and IReferenced. Most SDK functionalities fall within these interfaces.
The Agile API's underlying implementation classes, which are not exposed, implement these
interfaces.

@ Functional Unit Interfaces — These interfaces hold units of functionality that are extended to other
interfaces. For example, IAttachmentContainer provides a convenient way to access the
attachments table for any object. Other interfaces in this group such as IChange and IItem
extend the IAttachmentContainer interface. IRoutable is another class that serves as a
functional unit; it provides methods for any object that you can route to another Agile PLM user;
IChange, IPackage, and ITransferOrder all extend IRoutable.

@ Metadata interfaces — This group of classes defines the metadata (and meta-metadata) for the
Agile Application Server. Metadata is simply data that describes other data. The metadata
interfaces include classes such as IAgileClass, INode, IRoutableDesc,
ITableDesc, and IWorkflow.

v9.3.1.1 7

SDK Developer Guide - Using Agile APIs

o Factory classes — AgileSessionFactory is a factory class thatis used to create a session
(IAgileSession) and access transaction management. IAgileSession is also a factory
object allowing you to instantiate other objects. Many Agile API objects, in turn, are factory
objects for tables or other referenced objects. Tables, in turn, are factories for rows.

= Exception classes — There’s only one Exception class, APTException.

o Constants — These classes contain IDs for attributes, tables, classes, and so on. All classes
containing only constants have class hames that end with “Constants,” for example,
ChangeConstants, ItemConstants, UserConstants, and soon.

Network Class Loading

The Agile API has two main software components:
o Client-side library, AgileAPI.jar
@ Server-side implementation classes

The server-side implementation classes are installed automatically with every instance of the Agile
Application Server.

The Agile API Client-side library is composed almost entirely of interfaces; it's essentially a class
loader. When you run an Agile APl program, it connects to the Agile Application Server and
automatically downloads whatever implementation classes it needs. For example, if your program
uses methods of IItem, it downloads an implementation of IItem at run time.

Figure 2: Agile API architecture

Agile Application Server

Agile API Imylemenmﬁon
Classes

Internet
Agile API
Client-side Library (AgileAPl.jar)

A~

h i

Agile API-Program

Network class loading provides many benefits, including the ability to update client implementation
classes by automatically downloading them from a server. Any Agile API classes that are
downloaded from the server are automatically cached to a local disk. When an Agile APl program
needs to load a particular class, it retrieves it from the cache rather than downloading it again from
the network. The cache results in faster loading of classes and reduced network load.

8 Agile Product Lifecycle Management

Chapter 2: Getting Started with Agile API

If the network class loader detects that its cache is stale, that is, its classes are older than the
classes on the server, it invalidates the cache and reloads the necessary classes from the server.
This allows you to update Agile SDK Clients to use the latest implementation classes without
redeploying applications throughout the enterprise.

Single-Threaded versus Multi-Threaded Applications

The Agile API has been certified thread-compatible. It can be used for both Single-Threaded and
Multi-Threaded application development. You can safely use Agile API calls concurrently, by
surrounding each method invocation (or sequence of method invocations) with external
synchronization.

Packaging an Agile API Program

After you develop a program that makes calls to the Agile API, you'll need to package its files so
that you or other users can install it. Many development environments include tools for packaging
and deploying applications.

You can also choose to package your program manually. If you choose to do this, you'll need to
know the dependencies your project has. Again, many development environments include tools for
generating dependency files. A dependency file lists the runtime components that must be
distributed with your program’s project files.

Distributing Agile API Files

You can freely distribute any Java applications or applets that you create that make calls to the
Agile APIL. You can include the Agile API library, AgileAPI.jar, when you package your
application’s files.

Your development environment may require you to distribute other class files or libraries with your
program. Check the documentation for your development environment to see which runtime files
you must distribute with your program. Consult the applicable license agreement of the
manufacturer for each of the files you plan to distribute to determine whether you are authorized to
distribute the files with your application.

Sample Programs

The Agile SDK provides several sample programs that demonstrate how to use its APIs. These
sample programs are in the api, dx, px, and wsx folders. You can find them in the SDK_samples
(ZIP file). To access this file, see the Note in Client-Side Components on page 2.

Each sample program has its own Readme . txt file. Be sure to review the Readme . txt document
before trying to run a sample program.

v9.3.1.1 9

SDK Developer Guide - Using Agile APIs

Starting an Agile APl Program

When you create a program using the Agile API, follow this general approach for structuring your
program:

1. Atthe top of each class file, add an import statement to import Agile API classes:
import com.agile.api.k
2. Get an instance of the Agile Application Server.
3. Create an Agile session.
4. Complete one or more business processes. This is where most of your program code goes.
5

Close the Agile session.

Setting the Class Path for the Agile API Library

When Java looks for a class referenced in your source, it checks the directories specified in the
CLASSPATH variable. To create Agile APl programs, you must include AgileAPI.jar inthe
class path.

If you are using a Java development environment, you usually can modify the class path for each
project. If you don't let your development environment know where the Agile API library is located, it
is not able to build the application.

Importing Agile API Classes

The only Java package your program has access to automatically is java. lang. To refer to Agile
API classes, you should import the com.agile.api package at the beginning of each class file:

import com.agile.api.*;

Rather than importing the com.agile.api package, you can also refer to Agile API classes by
their full package name, for example:

com.agile.api.Iltem source =
(com.agile.api.IItem)m session.getObject (com.agile.api.IItem.OBJECT TYP
E, "1000-02");

As you can see, if you don’t import the com.agile.api package, it's cumbersome to type the full
package name whenever you refer to one of its classes. Also, when you don’t import the
com.agile.api package, or reference the Agile API classes by full package name, the Java
compiler will return an error when you try to build your program.

10 Agile Product Lifecycle Management

Chapter 2: Getting Started with Agile API

Creating a Session and Logging In

Note Use the JVM parameter called disable.agile.sessionID.generation=true to

create a session when the login user is a LDAP user. This is applicable only when Agile
runs on Weblogic server. If the Client is a standalone SDK Client, add the JVM option
java -Ddisable.agile.sessionID.generation=true pk.sample
Alternatively you can set the parameter in the code as follows:

System.setProperty("disable.agile.sessionID.generation", "true");
HashMap params = new HashMap() ;

params.put (AgileSessionFactory.USERNAME, USERNAME) ;

params.put (AgileSessionFactory.PASSWORD, PASSWORD) ;
AgileSessionFactory factory =
AgileSessionFactory.getInstance (URL) ;

TagileSession session = factory.createSession (params) ;

To start an Agile API program, you must complete the following two tasks:

1.

Get an instance of the Agile Application Server.

Use the AgileSessionFactory.getInstance () method to get an instance of the Agile
server. You must specify a connection URL for the server. The URL you specify depends on
whether you connect directly to the Agile server or through a proxy Web server.

®* To connect directly to the Agile server, type this URL: http://appserver:port/virtualPath

®* To connect to the Agile server through a proxy Web server, type this URL:
protocol://webserver:port/virtualPath

where
* appserver is the name of the Agile server computer.
* webserver is the name of the Web server computer.

* virtualPath is the virtual path for your Agile PLM server. The default value is Agile. The
virtual path is specified when the Agile PLM system is installed. For more information, refer
to the Agile PLM Installation Guide.

® protocol is either HTTP or HTTPS.

* portis the port number used for the specified protocol. The port is needed only if a
nonstandard port number is being used. Otherwise, you can omit it.

Create a session for the Agile PLM server instance.

Use the AgileSessionFactory.createSession () method to create a session. For the
params parameter of createSession (), specify a Map object containing the login
parameters (username and password).

The following example shows how an Agile API program creates a session and logs into the Agile
PLM server.

Example: Creating a session and logging in

private IAgileSession login(String username, String password) throws
APIException ({

//Create the params variable to hold login parameters

HashMap params = new HashMap () ;

v9.3.1.1 11

http://appserver:port/virtualPath

SDK Developer Guide - Using Agile APIs

//Put username and password values into params
params.put (AgileSessionFactory.USERNAME, username) ;
params.put (AgileSessionFactory.PASSWORD, password):;

//Get an Agile server instance. ("agileserver" is the name of the Agile
proxy server,

and "virtualPath" is the name of the virtual path used for the Agile
system.)

AgileSessionFactory instance =
AgileSessionFactory.getInstance
("http://<agileserver>/<virtualPath>");
//Create the Agile PLM session and log in
return instance.createSession (params) ;
}

Your Oracle Agile PLM agreement determines the maximum number of concurrent open sessions
to the Agile Application Server per user account. If you exceed this maximum number, the server
prevents you from logging in. Therefore, it is important to use the TAgileSession.close ()
method to properly log out and close a session when your program is finished running. If the Agile
PLM system is hosted on Oracle Application Servers, you are limited to only one session per
thread.

Creating a Session hy Accessing a Password Protected URL

To provide additional security for users accessing Agile PLM across a firewall, the proxy server may
have a password-protected URL. If so, the normal method of obtaining a server instance and then
creating a session will not work. Instead, you must use the
AgileSessionFactory.createSessionEx () method to specify the username, password, and
URL parameters needed to log in. The login code is simpler if you use createSessionEx ()
because you don’t need to call the method AgileSessionFactory.getInstance () firstto
obtain a server instance. The createSessionEx () method obtains the server instance and
creates the session in one call as shown in the following example.

Example: Creating a session by accessing a password-controlled URL

private IAgileSession securelogin(String username, String password)
throws APIException

//Create the params variable to hold login parameters
HashMap params = new HashMap () ;
//Put username, password, and URL values into params
params.put (AgileSessionFactory.USERNAME, username) ;
params.put (AgileSessionFactory.PASSWORD, password) ;

params.put (AgileSessionFactory.URL,
"http://agileserver.agilesoft.com/Agile") ;

//Create the Agile PLM session and log in
return AgileSessionFactory.createSessionEx (params) ;

}

The createSessionEx () method also works for URLs that are not password-protected, so you
can use it instead of createSession () if you prefer.

12 Agile Product Lifecycle Management

http://<agileserver>/<virtualPath
http://agileserver.agilesoft.com/Agile

Chapter 2: Getting Started with Agile API

Creating a Session from an Agile Web Service

If you developed a web service using web service extensions and deployed it in the same container
as Agile PLM, you can take advantage of the Agile API to access Agile PLM server functionality
from within the web service. To get an Agile PLM server instance for your web service, use the
AgileSessionFactory.getInstance () method, but pass anull value for the url
parameter.

Once you have retrieved an AgileSessionFactory object, you can also create a session. The
web service request provides user authentication, so you don’'t need to specify a username or
password when you create an Agile API session. Therefore, make sure you specify a null value
for the params parameter of AgileSessionFactory.createSession().

AgileSessionFactory factory = AgileSessionFactory.getlnstance(null);
IAgileSession session = factory.createSession (null) ;

If you pass a null value for the params parameter of createSession (), the user authentication
that took place when the Agile PLM server intercepted the web service request is reused for the
Agile API session. You don't need to log in again. Do not attempt to close the session using
IAgileSession.close (); the authorization handler will automatically close the session.

Specifying a null parameter for the createSession () method creates an IAgileSession
corresponding to the session created by the authorization handler. If your web service doesn't use
the authorization handler, or if you want to create a session for a different user than the one used
for the authorization handler, you can still use createSession (params) to create a session. For
the params parameter, specify a Map object containing the login parameters (username and
password). If you don’t use the authorization handler to create a session, you are responsible for
closing it. Call the TAgileSession.close () method to close the session. For more information
about web service extensions, see Developing Web Service Extensions.

Creating a Session in a Cluster Environment

The AgileSessionFactory.getInstance () and
AgileSessionFactory.createSession ()that you use to create an instance of the
AgileSessionFactory, cache the Agile server properties to get the instance. Because of this
caching, the getInstance () method retrieves the same instance of AgileSessionFactory
anytime it is invoked.

While retrieving the same instance of AgileSessionFactory is not an issue in single server
environments, it can be problematic in Agile cluster environments when the cached server is down.
This is due to the following facts:

1. When AgileSessionFactory is created with a proxy URL, a specific server in the cluster is
cached and is used to create the session

2. When the cached server is down, AgileSessionFactory.createSession () continues to
establish connection with the server and fails to create a session because the server is down

v9.3.1.1 13

SDK Developer Guide - Using Agile APIs

To overcome this issue, the Agile SDK exposes the following APIs to refresh the
AgileSessionFactory instance for Agile cluster environments. These new APIs clear the
cached server details and create a new instance of the AgileSessionFactory.

8 AgileSessionFactory.refreshInstance (String url)
B AgileSessionFactory.refreshInstanceEx (Map params)
B AgileSessionFactory.refreshSessionEx (Map params)

The following examples use these APIs to create Agile sessions in cluster environments

Example: Creating a session with public static AgileSessionFactory refreshinstance(String
url)
AgileSessionFactory factory =
AgileSessionFactory.refreshInstance (URL) ;
HashMap params = new HashMap() ;
params.put (AgileSessionFactory.USERNAME, USERNAME) ;
params.put (AgileSessionFactory.PASSWORD, PASSWORD) ;
IAgileSession lsession = factory.createSession(params) ;
Example: Creating a session with public static AgileSessionFactory refreshinstanceEx (Map
map)
HashMap params = new HashMap () ;
params.put (AgileSessionFactory.URL, URL) ;
params.put (AgileSessionFactory.USERNAME, USERNAME) ;
params.put (AgileSessionFactory.PASSWORD, PASSWORD) ;
AgileSessionFactory factory =
AgileSessionFactory.refreshInstanceEx (params) ;
IAgileSession lsession = factory.createSession (params) ;
Example: Creating a session with public static IAgileSession refreshSessionEx(Map
params)
HashMap params = new HashMap() ;
params.put (AgileSessionFactory.URL, URL) ;
params.put (AgileSessionFactory.USERNAME, USERNAME) ;
params.put (AgileSessionFactory.PASSWORD, PASSWORD) ;
IAgileSession lsession =
AgileSessionFactory.refreshSessionEx (params) ;

Loading and Creating Agile PLM Objects

With every Agile API program, a basic requirement is the ability to get and create objects. The
following interfaces map to objects that you can work with in the Agile API:

= IChange = IManufacturer o IRequestForQuote
s ICommodity s IManufacturerPart s IServiceRequest

s ICustomer s IManufacturingSite s ISpecification

o IDeclaration = TPackage s ISubstance

s IDesign s IPrice s ISupplier

s IDiscussion s IProgram s ISupplierResponse
= IFileFolder = IProject s ITransferOrder

o IFolder s IQualityChangeRequest o IUser

o TItem @ TQuery @ TUserGroup

14 Agile Product Lifecycle Management

Chapter 2: Getting Started with Agile API

To load and create these Agile PLM objects, you must first get an instance of the
AgileSessionFactory object and then create an Agile PLM session. Then use
IAgileSession.getObject () to load Agile PLM objects and
IAgileSession.createObject () to create objects.

For more information about creating queries and folders, see Creating and Loading Queries on
page 35 and Working with Folders on page 103.

Loading Objects

To load an Agile PLM object, use one of the TAgileSession.getObject () methods.

B IAgileObject getObject (Object objectType, Object params)

B IAgileObject getObject (int objectType, Object params)

Note If not specified by the user, objects will always load according to their base class which
are derived from the subclass or class. Objects will also load correctly when the object's
derived base class is correct. However, the SDK will load an object even if an invalid

subclass is passed for that object when the derived base class of the invalid class and
that of the object are both the same.

Specifying Object Types

The two getObject () methods let you specify the objectType parameter using these values:
o An IAgileClass instance that represents one of the Agile PLM classes.

@ Aclass ID (for example, ItemConstants.CLASS PART corresponds to the Part class).
Predefined class IDs are available in the various *Constants files provided with the Agile API.

® An OBJECT TYPE constant, such as IItem.OBJECT TYPE or IChange.OBJECT TYPE

@ Aclass name (for example, “Part”). However, Oracle does not recommend using class names
to instantiate objects because the class names can be modified and are not guaranteed to be
unique.

Note When you use the getObject () method to load an object, you can specify abstract or
concrete Agile PLM classes. For more information, see Concrete and Abstract Classes
on page 344.

Specifying Object Parameters

The params parameter for the getObject() method can be a Map or String. If you specify a Map
object for the params parameter, it must contain attributes (either attribute IDs or IAttribute objects)
and their corresponding values. The Map must contain all identification related information. For
example, when you load an IManufacturerPart, both the Manufacturer Name and Manufacturer Part
Number must be specified.

If the Map object you specify for the params parameter contains additional attributes other than the
identifying information, those attributes are ignored. The server uses only identifying information to
retrieve an object. For a complete list of attributes used to uniquely identify Agile PLM objects, see

v9.3.1.1 15

SDK Developer Guide - Using Agile APIs

"Identifying Attributes for Agile PLM Classes" in SDK Developer Guide - Developing PLM
Extensions.

This example shows how to load part 1000-02 using a Map parameter that specifies the attribute
(ItemConstants.ATT TITLE BLOCK NUMBER) and a value.

Example: Loading a part using a Map
try {
Map params = new HashMap () ;

params.put (ItemConstants.ATT TITLE BLOCK_ NUMBER,
"1000-02") ;

ITtem item = (IItem)m session.getObject(ltemConstants.CLASS_PART,
params) ;
} catch (APIException ex) {
System.out .println (ex) ;

}

If the object you're loading has a single attribute that serves as a unique identifier, you can enter the
String value for that attribute as the params parameter. For example, the unique identifier for a
part is a part number. Therefore, you can enter the part number as the parameter to load the object.

Note Not all objects have one attribute that serves as a unique identifier. For example, a
manufacturer part is identified by both its manufacturer name and manufacturer part
number. Therefore, to load a manufacturer part you must specify values for at least
those two attributes.

This example shows how to load part 1000-02 by specifying a unique String identifier.
Example: Loading a part using a String

try {
ITtem item = (IItem)m session.getObject(ltemConstants.CLASS_PART,
"1000-02");
} catch (APIException ex) {
System.out.println (ex) ;

}
Loading Different Types of Objects

The following example shows how to load different types of Agile PLM objects.

try
//Load a change

IChange change = (IChange)m session.getObject(1Change.OBJECT_TYPE,
*C00002™) ;

System.out.println("Change : " + change.getName()) ;
//Load a commodity

ICommodity comm =
(ICommodity)m session.getObject(1Commodity.OBJECT_TYPE, ""Res™);

System.out.println ("Commodity : " + comm.getName()) ;
//Load a customer

16 Agile Product Lifecycle Management

Chapter 2: Getting Started with Agile API

ICustomer cust =
(ICustomer)m session.getObject(ICustomer . OBJECT_TYPE,
""CUSTO0006'") ;
System.out.println("Customer : " + cust.getName()) ;
//Load a declaration
IDeclaration dec =
(IDeclaration)m session.getObject(lDeclaration.OBJECT_TYPE,
"*'MDO0001");
System.out.println("Declaration : " + dec.getName()) ;
//Load a discussion
IDiscussion discussion =
(IDiscussion)m session.getObject(IDiscussion.OBJECT_TYPE,
"*'DO0002™) ;
System.out.println("Discussion : " + discussion.getName()) ;
//Load a file folder
IFileFolder ff =
(IFileFolder)m session.getObject(IFileFolder.OBJECT_TYPE,
""FOLDER00133');
System.out.println("File Folder : " + ff.getName()) ;
//Load a folder
IFolder folder =
(IFolder)m session.getObject(lFolder.OBJECT_TYPE, "/Personal
Searches/MyTemporaryQueries');
System.out.println("Folder : " + folder.getName()) ;
//Load an item
ITtem item = (IItem)m session.getObject(lltem.OBJECT_TYPE, "*1000-
02");
System.out.println("Item : " + item.getName()) ;
//Load a manufacturer
Map params = new HashMap () ;
params.put (ManufacturerConstants.ATT GENERAL INFO NAME, "World
Enterprises") ;
IManufacturer mfr =
(IManufacturer)m session.getObject(IManufacturer _OBJECT_TYPE,
params);
System.out.println ("Manufacturer : " + mfr.getName()) ;

//Load a manufacturer part

params.clear () ;
params.put (ManufacturerPartConstants.ATT GENERAL INFO MANUFACTURE
R_NAME, "World Enterprises");
params.put (ManufacturerPartConstants.ATT GENERAL INFO MANUFACTURE
R_PART NUMBER, "WE10023-45");
IManufacturerPart mfrPart =
(IManufacturerPart)m session.getObject(IManufacturerPart.OBJECT_T
YPE, params); System.out.println("ManufacturerPart : " +
mfrPart.getName ()) ;

//Load a manufacturing site

IManufacturinmporting and Exporting DtagSite siteHK =
(IManufacturingSite)m session.getObject(ManufacturingSiteConstant
s.CLASS _SITE, "Hong Kong'™);

System.out.println ("ManufacturingSite : " + siteHK.getName()) ;

//Load a package

v9.3.1.1 17

SDK Developer Guide - Using Agile APIs

IPackage pkg =
(IPackage)m session.getObject(PackageConstants.CLASS_PACKAGE,
""PKGO0010™) ;
System.out.println ("Package : " + pkg.getName()) ;
//Load a price
IPrice price =
(IPrice)m session.getObject(IPrice.OBJECT_TYPE, "PRICE10008™");
System.out.println("Price : " + price.getName()) ;
//Load a program
IProgram program =
(IProgram)m session.getObject(IProgram.OBJECT_TYPE, *"PGM10008™);
System.out.println ("Program : " + program.getName ()) ;
//Load a PSR
IServiceRequest psr =
(IServiceRequest)m session.getObject(lServiceRequest.OBJECT_TYPE,
""NCR01562") ;
System.out.println("PSR : " + psr.getName()) ;
//Load a QCR
IQualityChangeRequest gcr =
(IQualityChangeRequest)m session.getObject(1QualityChangeRequest.
OBJECT_TYPE, '"CAPA02021');
System.out.println("QCR : " + gcr.getName()) ;
//Load a query
IQuery query =
(IQuery)m session.getObject(1Query.OBJECT_TYPE,
"/Personal Searches/Part Numbers Starting with P'™);
System.out.println("Query : " + query.getName()) ;
//Load an RFQ
IRequestForQuote rfqg =
IRequestForQuote)m session.getObject(lRequestForQuote.OBJECT_TYPE,
""RFQ01048™) ;
System.out.println("RFQ : " + rfqg.getName()) ;
//Load an RFQ response
paramg.clear () ;

params.put (SupplierResponseConstants.ATT COVERPAGE RFQ NUMBER,
"RFQ01048") ;

params.put (SupplierResponseConstants.ATT COVERPAGE SUPPLIER,
"SUP20013") ;

ISupplierResponse rfgResp =
(ISupplierResponse)m session.getObject(ISupplierResponse.OBJECT_TYPE

, params);
System.out.println ("RFQ Response : " + rfgResp.getName()) ;
//Load Sourcing Projects
IProject prj =
(IProject)m _session.getObject(IProject.OBJECT_TYPE, "PRJACME_110");
System.out.println ("Project : " + prj.getName()) ;
//Load a specification
ISpecification spec =

18 Agile Product Lifecycle Management

Chapter 2: Getting Started with Agile API

(ISpecification)m session.getObject(ISpecification.OBJECT_TYPE,
IIWEEEII) ;

System.out.println("Specification : " + spec.getName()) ;

//Load a substance

ISubstance sub =
(ISubstance)m session.getObject(ISubstance.OBJECT_TYPE, "Cadmium™™);

System.out.println ("Substance : " + sub.getName()) ;
//Load a supplier

ISupplier supplier =
(ISupplier)m session.getObject(ISupplier.OBJECT_TYPE, *SUP20013");

System.out.println ("Supplier : " + supplier.getName()) ;

//Load a transfer order

ITransferOrder to =
(ITransferOrder)m session.getObject(TransferOrderConstants.CLASS _CTO
, '456602');

System.out.println ("TransferOrder : " + to.getName()) ;

//Load a user

paramg.clear () ;

params.put (UserConstants.ATT GENERAL INFO USER ID, "OWELLES");

IUser user =
(IUser)m session.getObject(lUser . OBJECT_TYPE, params);

System.out.println("User : " + user.getName()) ;

//Load a user group

paramg.clear () ;

params.put (UserGroupConstants.ATT GENERAL INFO NAME, "Designers");

IUserGroup group =
(IUserGroup)m session.getObject(lUserGroup.OBJECT_TYPE, params);

System.out.println ("UserGroup : " + group.getName ()) ;
} catch (APIException ex) {
System.out.println (ex) ;

}
Creating Objects

To create an Agile PLM object, use one of the IAgileSession.createObject () methods:
B IAgileObject createObject (Object objectType, Object params)

B IAgileObject createObject (int objectType, Object params)

Note The SDK does not support setting the Life Cycle Phase (LCP)/Workflow status attribute
of an object while you are creating that object. The reason is that the necessary settings
for LCP are not available until after the object is created. The same is also applicable in
the Ul. For example, IChange will not get any LCP values until a Workflow is selected.
However, you can use the SDK to create objects, and then set and modify the
LCP/Workflow status attribute. Also, you cannot get a list of values for this field, until the
object is created, and the relevant actions are performed on the object.

v9.3.1.1 19

SDK Developer Guide - Using Agile APIs

The objectType and params parameters are identical to those used in the
IAgileSession.getObject () methods; for more information, see Loading Objects on page 15.
Except for IFolder and IQuery objects, you must specify a concrete class for the objectType
parameter. For example, if you are creating a part, you can't specify

ItemConstants.CLASS PARTS CLASS because that class is an abstract class that can't be
instantiated. However, you can specify the class ID of any predefined or user-defined concrete
class, such as ItemConstants.CLASS PART.

If you are creating an object of a user-defined subclass, the objectType parameter of
createObject () should be an Integer object corresponding to the subclass ID. You may wish
to define constants for all user-defined subclasses available on your Agile PLM system.

In addition to a Map or String type, the params parameter for
IAgileSession.createObject () can also be an INode object representing an autonumber
source for the particular object class. The Agile Application Server queries the autonumber source
for the next number in its sequence, and that number is used as the unique identifier.

Note You cannot specify an INode object for the params parameter for objects that don’t
have their autonumber sources available.

The following example shows how to create part 1000-02 using a Map parameter that specifies an
attribute (ItemConstants.ATT TITLE BLOCK NUMBER) and a value.
Example: Creating a part using a Map
try {
Map params = new HashMap () ;
params.put (ItemConstants.ATT TITLE BLOCK NUMBER, "1000-02");
ITtem item = (IItem)m session.createObject(ltemConstants.CLASS_PART,
params);
} catch (APIException ex) {
System.out.println (ex) ;

}

The following example shows how to create part 1000-02 by specifying a unique String identifier.
Example: Creating a part using a String

try {
ITtem item = (IItem)m session.createObject(ltemConstants.CLASS_PART,
"1000-02");

} catch (APIException ex) {
System.out .println (ex) ;

}
Working with Agile PLM Classes

Because classes are customized for each Agile Application Server, you should avoid hard-coding
references to class names, particularly if your program is going to be used on multiple Agile
Application Servers or in different locales. Instead, you can retrieve the classes for each object type
at run time. Your program can then provide a user interface to allow the user to select a class from
the list.

20 Agile Product Lifecycle Management

Chapter 2: Getting Started with Agile API

The following example shows how to retrieve the list of classes for a particular object type at run
time.
Example: Getting classes
try {
//Get the IAdmin interface for this session
IAdmin m_admin = m_session.getAdminlnstance();
//Get the Item base class
IAgileClass itemClass =
m_admin.getAgileClass(ltemConstants.CLASS_ITEM_BASE_CLASS);
// Clear the Item Type combo box
comboItemType.removeAllItems () ;
// Get the Item subclass names and populate the Item Type combo box
IAgileClass[] subclasses = itemClass.getSubclasses();
for (int i = 0; i < subclasses.length; ++i) {
comboItemType.addItem(subclasses[i] .getName ()) ;
}
} catch (APIException ex) {
System.out.println (ex) ;

}

Creating Objects of User-Defined Subclasses

User-defined subclasses are classes created specifically for your Agile PLM system. Consequently,
the Agile API doesn’t provide predefined class ID constants for them. To specify a user-defined
subclass for the objectType parameter of createObject (), pass an Integer corresponding to
the class ID. To get the class ID for a user-defined class, use the IAgileClass.getId () method.

The following example shows how to create a Resistor object. In this example, Resistor is a user-
defined subclass of the Parts class.

Example: Creating an object of a user-defined subclass

try {

//Define a variable for the Resistor subclass
Integer classResistor = null;

//Get the Resistor subclass ID

IAgileClass([] classes =
m_admin.getAgileClasses(1Admin.CONCRETE);

for (int i = 0; i < classes.length; i++) {
if (classes[i] .getName().equals(‘'Resistor')) {
classResistor = (Integer)classes[i].getld();
break;

}
}

//Create a Resistor object
if (classResistor != null) {
IItem resistor =

v9.3.1.1 21

SDK Developer Guide - Using Agile APIs

(ITtem)m session.createObject(classResistor, '""R10245™);
}
} catch (APIException ex) {
System.out.println (ex) ;

}

Of course, you can also reference a user-defined subclass by name, as in the following example.
However, class names are not necessarily unique. If there are two subclasses with the same name,
the Agile APl matches the first one found, which may not be the one you intended.

Creating an object by referencing the subclass name try ({

ITtem resistor = (IItem)m session.createObject(‘'Resistor’, "R10245");
} catch (APIException ex) {

System.out.println (ex) ;

}
Using AutoNumbers

An Agile PLM class can have one or more AutoNumber sources. An AutoNumber source is a
predefined sequence of numbers that automatically number an object. AutoNumber sources are
defined in the administrative functionality of Agile Java Client.

Note The Manufacturers and Manufacturer Parts classes, and their user-defined subclasses,
do not support automatic numbering.

You must configure your Agile Application Server to use AutoNumber when you create an object
of a particular class. The IAgileClass. isAutoNumberRequired () method determines if
automatic numbering is required for the object. However, this method is deprecated because the
Agile API does not enforce automatic numbering of objects, even when it is required for a particular
class. If your environment requires this capability, you must develop the necessary routine. Thus, if
you develop a GUI program that allows users to create Agile PLM objects, make sure the user
interface enforces automatic numbering when it is required. For an example of how a client program
enforces automatic numbering, create a few objects using Agile Web Client and note how the user
interface works.

To get the next available AutoNumber in the sequence:

Use the TAutoNumber .getNextNumber (IAgileClass) method to assign the next available
AutoNumber in the sequence. This method will check to ensure the number is not used by another
object. It will continue this process until it finds and returns the first available AutoNumber for the
specified Agile subclass. This method will throw an exception if it fails to get the next available
AutoNumber. The IAutoNumber . getNextNumber () method will not check and skip if the
number is already used by another object.

The following example shows how to create a part using the next AutoNumber.
Example: Getting the next available AutoNumber
private void createPart (String partNumber) throw APIException (
IAdmin admin;
IAgileClass cls;
ITItem part;
IAutoNumber [] numSources;

22 Agile Product Lifecycle Management

Chapter 2: Getting Started with Agile API

String nextAvailableAutoNumber;

//Get the Admin instance
admin = session.getAdminInstance() ;
//Get the Part class
cls = admin.getAgileClass (ItemConstants.CLASS PART) ;
//Check if AutoNumber is required
if (isAutoNumberRequired(cls)) {
// Get AutoNumber sources for the Part class
numSources = cls.getAutoNumberSources();
// Get the next available AutoNumber using the first autonumber source
nextAvailableAutoNumber = numSources [0] .getNextNumber(cls);
// Create the part using the available AutoNumber
part =
(ITtem) session.createObject(ltemConstants.CLASS PART,
nextAvai lableAutoNumber) ;
} else {
// Create the part using the specified number

// (if AutoNumber is not required)
part = (IItem)session.createObject (ItemConstants.CLASS PART,

partNumber) ;

}

public boolean isAutoNumberRequired(IAgileClass cls) throws
APIException (

if (cls.isBAbstract()) {
return false;

}

IProperty p =
((INode) cls) -getProperty(PropertyConstants.PROP_AUTONUMBER_REQUIRED) ;

if (p != null) {
IAgilelList value = (IAgilelList)p.getValue() ;
return ((Integer) (value.getSelection() [0]) .getId()) .intValue() ==
1;

}

return false;

}

To get the next AutoNumber in the sequence:

Use the TAutoNumber .getNextNumber (IAgileClass) method to increment or find the next
AutoNumber in the sequence. This method generates the next AutoNumber, but does not check its
availability. That is, if it is not used by another Agile object. The method will throw an exception if it
fails to get the next AutoNumber.

For example, if you want to assign the next AutoNumber without checking its availability, modify
Example 10 as follows:

o Replace Sstring nextAvailableAutoNumber with String nextAutoNumber

o Replace nextAvailableAutoNumber = numSources [0] .getNextNumber (cls); with

v9.3.1.1 23

SDK Developer Guide - Using Agile APIs

nextAutoNumber = numSources [0] .getNextNumber ();

o Replace part = (IItem)session.createObject (ItemConstants.CLASS PART,
nextAvailableAutoNumber); with part =
(ITtem) session.createObject (ItemConstants.CLASS PART, nextAutoNumber);

Setting the Required Fields

A class can be defined with several required attributes. To make a particular attribute mandatory,
the Agile PLM administrator sets the Visible and Required properties for the attribute to Yes. If you
try to create an object in Agile Java Client or Agile Web Client without completing the required
fields, the Client does not allow you to save the object until you set the values for all required fields.

Although the Agile PLM administrator can define whether an attribute is required for a class, the
Agile API doesn’t automatically enforce required fields when you set values. Consequently, you can
use the API to create and save an object even if values aren’t set for all required fields. If you want
to enforce required fields in your Client program and make them behave the way they do in Agile
Web and Java Clients, you have to write that code.

To check for required fields:

1. CalliTable.getAttributes () or ITableDesc.getAttributes () to get the list of
attributes for a table.

2. For each attribute, call
IAttribute.getProperty (PropertyConstants.PROP_REQUIRED) .getValue () to
get the value for the Required property.

The following example shows how to get the array of required attributes for Page One, Page Two,
and Page Three for a class.
Example: Getting required attributes for a class
/* *
* Returns true 1f the specified attribute is required and visible.
*/
public boolean isRequired(IAttribute attr) throws APIException ({
boolean result = false;

IProperty required =
attr.getProperty (PropertyConstants.PROP_REQUIRED) ;

if (required != null) ({
Object value = required.getValue() ;
if (value != null) {

result = value.toString() .equals("Yes");

}
}

IProperty visible = attr.getProperty (PropertyConstants.PROP_VISIBLE) ;
if (visible != null) {
Object value = visible.getValue() ;
if (value != null) {
result &= value.toString() .equals("Yes");

}
}

24 Agile Product Lifecycle Management

Chapter 2: Getting Started with Agile API

return result;

}
/**

* Returns an array containing the required attributes for the
specified class.

*/
public IAttribute[] getRequiredAttributes (IAgileClass cls)

APIException
//Create an array list for the results

ArrayList result = new ArrayList();

throws

//Check if the class is abstract or concrete
if (!cls.isBbstract()) {

IAttribute[] attrs = null;

//Get required attributes for Page One

ITableDesc pagel =
cls.getTableDescriptor (TableTypeConstants.TYPE PAGE ONE) ;

if (pagel != null) {
attrs = pagel.getAttributes() ;
for (int i = 0; i < attrs.length; i++) {
IAttribute attr = attrs[i];
if (isRequired(attr)) {
result.add(attr) ;

}

//Get required attributes for Page Two

ITableDesc page2 =
cls.getTableDescriptor (TableTypeConstants.TYPE PAGE TWO) ;

if (page2 != null) {
attrs = pagel.getAttributes() ;
for (int i = 0; i < attrs.length; i++) {
IAttribute attr = attrs[i];
if (isRequired(attr)) {
result.add(attr) ;

}

//Get required attributes for Page Three

ITableDesc page3 =
cls.getTableDescriptor (TableTypeConstants.TYPE PAGE THREE) ;

if (page3 != null) {
attrs = pagel3.getAttributes|() ;
for (int i = 0; i < attrs.length; i++) {
IAttribute attr = attrs[i];
if (isRequired(attr)) {
result.add(attr) ;

v9.3.1.1

SDK Developer Guide - Using Agile APIs

}
}
}
}

return (IAttribute([])result.toArray(new IAttribute[0]) ;

}

Note Primary key fields that are used to create an object are required regardless of the setting
for the Required property. For example, for items the [Title Block.Number] field
must be specified to create a new item regardless whether the field is required.

Creating Different Types of Objects

The following example shows several different ways to create various types of Agile PLM objects.
To simplify the code, AutoNumbers are not used.

Example: Creating different types of objects

try {
//Create a Map object to store parameters
Map params = new HashMap () ;

//Create a change

IChange eco =
(IChange)m session.createObject(ChangeConstants.CLASS_ECO,

"*C00002™) ;
System.out.println("Change : " + eco.getName()) ;

//Create a commodity

ICommodity comm =
(ICommodity)m session.createObject(CommodityConstants.CLASS_COMMODIT

Y,"RES™);
System.out.println ("Commodity : " + comm.getName()) ;
//Create a customer
params.clear () ;

params.put (CustomerConstants.ATT GENERAL INFO CUSTOMER NUMBER,
"CUST00006") ;

params.put (CustomerConstants.ATT GENERAL INFO CUSTOMER NAME, "Western
Widgets") ;

ICustomer customer =
(ICustomer)m session.createObject(CustomerConstants.CLASS_CUSTOMER,

params);
System.out.println("Customer : " + customer.getName ()) ;
//Create a declaration
params.clear () ;

ISupplier supplier =
(ISupplier)m session.getObject (ISupplier.OBJECT TYPE, "SUP20013");

params.put (DeclarationConstants.ATT COVER PAGE NAME, "MD000O1l");
params.put (DeclarationConstants.ATT COVER PAGE SUPPLIER, supplier);

IDeclaration dec = (IDeclaration)
m_session.createObject(DeclarationConstants.CLASS_SUBSTANCE_DECLARAT

ION, params);
System.out.println("Declaration : " + dec.getName()) ;

26 Agile Product Lifecycle Management

Chapter 2: Getting Started with Agile API

//Create a discussion
params.clear() ;
params.put (DiscussionConstants.ATT COVER_ PAGE NUMBER, "D000201");

params.put (DiscussionConstants.ATT COVER PAGE SUBJECT, "Packaging

issues") ;

IDiscussion discussion =
(IDiscussion)m_session.createObject(DiscussionConstants.CLASS_DISCUS
SION, params);

System.out.println("Discussion : " + discussion.getName()) ;

//Create a file folder

IFileFolder ff =
(IFileFolder)m session.createObject(FileFolderConstants.CLASS_FILE_F
OLDER, "FOLDER00133"™);

System.out.println("File Folder : " + ff.getName()) ;
//Create a folder
params.clear () ;

IFolder parentFolder =
(IFolder)m session.getObject (IFolder.OBJECT TYPE, "/Personal
Searches") ;

params.put (FolderConstants.ATT FOLDER NAME, "MyTemporaryQueries");
params.put (FolderConstants.ATT PARENT FOLDER, parentFolder);

IFolder folder = (IFolder)m session.createObject(IFolder.OBJECT_TYPE,
params);
System.out.println("Folder : " + folder.getName()) ;

//Create an item

ITtem part =
(ITtem)m session.createObject(ltemConstants.CLASS_PART, '"1000-02'");

System.out.println("Item : " + part.getName()) ;
//Create a manufacturer

params.put (ManufacturerConstants.ATT GENERAL INFO_NAME, "World
Enterprises") ;

IManufacturer mfr =
(IManufacturer)m session.createObject(ManufacturerConstants.CLASS_MA
NUFACTURER, params);
System.out.println ("Manufacturer : " + mfr.getName()) ;
//Create a manufacturer part
params.clear () ;

params.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER_NAME
"World Enterprises");

params.put (ManufacturerPartConstants.ATT GENERAL INFO MANUFACTURER PART
_NUMBER, "WE10023-45");

IManufacturerPart mfrPart =

(IManufacturerPart)m session.createObject
(ManufacturerPartConstants.CLASS _MANUFACTURER_PART, params);
System.out.println ("ManufacturerPart : " + mfrPart.getName()) ;
//Create a manufacturing site

IManufacturingSite siteHK =
(IManufacturingSite)m session.createObject(ManufacturingSiteConstant
s.CLASS_SITE, "Hong Kong'™);

v9.3.1.1 27

SDK Developer Guide - Using Agile APIs

System.out.println ("ManufacturingSite : " + siteHK.getName()) ;

//Create a package
IPackage pkg =

(IPackage)m session.createObject(PackageConstants.CLASS PACKAGE,

"PKG00010™) ;

System.out.println ("Package : " + pkg.getName()) ;

//Create a price
params.clear() ;

params.put (PriceConstants
"PRICE10008") ;

params.put (PriceConstants
"CUST00006") ;

params.put (PriceConstants
02") ;

params.put (PriceConstants

params.put (PriceConstants
"PROGRAM0023") ;

params.put (PriceConstants
"San Jose") ;

params.put (PriceConstants
"SUP20013") ;

IPrice price =

.ATT GENERAL INFORMATION NUMBER,
.ATT_ GENERAL INFORMATION CUSTOMER,
.ATT_GENERAL_ INFORMATION ITEM NUMBER, "1000-

.ATT GENERAL INFORMATION ITEM REV, "B");
.ATT_GENERAL_ INFORMATION_ PROGRAM,

.ATT_GENERAL_ INFORMATION MANUFACTURING SITE,

.ATT GENERAL INFORMATION SUPPLIER,

(IPrice)m session.createObject(PriceConstants.CLASS_PUBLISHED_PRICE,

params);

System.out.println("Price : " + price.getName()) ;

//Create a program
DateFormat df =

new SimpleDateFormat ("MM/dd/yy") ;

IAttribute attr =

m_admin.getAgileClass (ProgramConstants.CLASS PROGRAM) .getAttribute (P
rogramConstants.ATT GENERAL INFO DURATION TYPE) ;

IAgileList list = attr.getAvailableValues() ;
list.setSelection(new Object[] {"Fixed"});

params.clear() ;

params.put (ProgramConstants.ATT GENERAL INFO NAME, "Wingspan Program") ;
params.put (ProgramConstants.ATT GENERAL INFO SCHEDULE START DATE,

df .parse("06/01/05")) ;

params.put (ProgramConstants.ATT GENERAL INFO_ SCHEDULE END DATE,

df .parse("06/30/05")) ;

params.put (ProgramConstants.ATT GENERAL INFO DURATION_ TYPE, list);

IProgram program =

(IProgram)m_session.createObject(ProgramConstants.CLASS_PROGRAM,

params) ;

System.out.println ("Program : " + program.getName ()) ;

//Create a PSR
IServiceRequest psr =

(IServiceRequest)m session.createObject(ServiceRequestConstants.CLAS

S_NCR, "NCR01562™);
System.out.println ("PSR
//Create a QCR

" + psr.getName()) ;

28

Agile Product Lifecycle Management

Chapter 2: Getting Started with Agile API

IQualityChangeRequest gcr =
(IQualityChangeRequest)m_ session.createObject(

QualityChangeRequestConstants.CLASS_CAPA, ""CAPA02021™);
System.out.println("QCR : " + gcr.getName()) ;

//Create a query

paramg.clear () ;

IFolder parent =
(IFolder)m session.getObject (IFolder.OBJECT TYPE, "/Personal
Searches") ;

String condition =
"[Title Block.Number] starts with 'P'";

params.put (QueryConstants.ATT CRITERIA CLASS,
ItemConstants.CLASS ITEM BASE CLASS) ;

params.put (QueryConstants.ATT CRITERIA STRING, condition);
params.put (QueryConstants.ATT PARENT FOLDER, parent);
params.put (QueryConstants.ATT QUERY NAME, "Part Numbers Starting with
P");
IQuery query =
(IQuery)m session.createObject(1Query.OBJECT_TYPE, params);

System.out.println("Query : " + query.getName()) ;
//Create a specification
ISpecification spec = (ISpecification)
m_session.createObject(SpecifTicationConstants.CLASS_SPECIFICATION,
"WEEE') ;
System.out.println("Specification : " + spec.getName()) ;

//Create a substance

ISubstance sub =
(ISubstance)m session.createObject(SubstanceConstants.CLASS SUBSTANC

E, "Cadmium™);
System.out.println ("Substance : " + spec.getName()) ;
//Create a transfer order

ITransferOrder to =
(ITransferOrder)m session.createObject(TransferOrderConstants.CLASS

CTO, '456602');
System.out.println ("TransferOrder : " + to.getName()) ;
//Create a user
params.clear () ;
params.put (UserConstants.ATT GENERAL INFO USER_ID, "OWELLES");
params.put (UserConstants.ATT LOGIN_ PASSWORD, “agile”);

IUser user =
(IUser)m session.createObject(UserConstants.CLASS_USER, params);

System.out.println(“*User : “ + user.getName()) ;
//Create a user group
params.clear () ;
params.put (UserGroupConstants.ATT GENERAL INFO NAME, “Designers”) ;

IUserGroup group =
(IUserGroup)m _session.createObject(UserGroupConstants.CLASS_USER_GRO
UP, params);

System.out.println (“UserGroup : “ + group.getName()) ;

v9.3.1.1 29

SDK Developer Guide - Using Agile APIs

} catch (APIException ex) {
System.out.println (ex) ;

}

Note You cannot use the Agile API to create a SupplierResponse.

Checking the State of Agile PLM Objects

The Istateful interface supports Agile objects that have either Agile Workflow status or Agile life
cycle states. Objects that support this interface are Item and routable objects.

Routable objects are:

o IChange

B IDeclaration

= IFileFolder

o IPackage

o IProgram

o IQualityChangeRequest
= IServiceRequest

o ITransferOrder

The following example returns an array that shows all states of the object, or null when they are not
defined.

Example: Getting the array that defines the different states of an object
public interface IStateful ({

public IStatus[] getStates()

throws APIException;

}

The following example returns the current state of the object, or null if it is not defined.
Example: Getting the current state of the object

public interface IStateful ({

public IStatus getStatus()

throws APIException;

}
Propagating Values to Related Objects

Several objects in Agile PLM have related objects. For example, problem reports and
nonconformance reports have a Related PSR table. On the Related PSR table, you can specify that
a Workflow event should trigger a particular result in a related object, such as another problem
report or noncomformance report. The triggered result does not occur instantaneously. In fact, there
may be a noticeable delay—perhaps several seconds—in the time it takes Agile PLM to propagate
values to related objects.

30 Agile Product Lifecycle Management

Chapter 2: Getting Started with Agile API

Saving an Object to a New Object

The Agile API lets you save an existing object as a new object. For example, in addition to a Save
button, a dialog box in your program may have a Save As button, which saves the data to a new
object. When you use the IDataObject.saveAs () method, you must specify the subclass that
you are using to save the object and the object number. If the subclass supports it, you can use an
AutoNumber.

This example shows how to save the current object to a new object using the next AutoNumber for
the specified subclass.
Example: Saving an object as a new object
private void saveAsObject (IDataObject obj, IAgileClass sub)
String nextNum;
try {
// Get the next autonumber for the sublass
IAutoNumber [] numSources = sub.getAutoNumberSources () ;
nextNum = numSources [0] .getNextNumber () ;
// Save the object
obj.saveAs(sub, nextNum);
} catch (APIException ex) {
System.out.println (ex) ;

}
}

Sharing an Object

The Ishareable interface is implemented by every Agile PLM business object that the Agile API
exposes. Therefore, every business object can be shared. Sharing lets you grant one or more of
your roles to another Agile PLM user or user group for a specific object. The roles you can assign
when you share an object include your assigned or permanent roles and any roles assigned to you
from membership in a user group.

Users that have been shared an object can perform actions permitted by the roles for that object
only. They don't acquire the roles in a global fashion.

The Ishareable interface has only two methods, getUsersAndRoles () and
setUsersAndRoles (). The getUsersAndRoles () method returns a Map object. Each user in
the Map has an associated array of roles. The setUsersAndRoles () method has one parameter,
a Map object, which, like the Map returned by getUsersaAndRoles (), maps each user to an array
of roles. Each user can be assigned a different selection of roles.

Example: Sharing an object
private void getDataForSharing() throws Exception ({
//Get item

Iltem item =
(ITtem)m session.getObject (ItemConstants.CLASS ITEM BASE CLASS,

"pP10011"M) ;
//Get users

IUser userl = (IUser)m session.getObject (UserConstants.CLASS USER,
"albertl") ;

v9.3.1.1 31

SDK Developer Guide - Using Agile APIs

IUser user2 = (IUser)m session.getObject (UserConstants.CLASS USER,
"peterl") ;

IUser[] users = new IUser[]{userl, user2};
//Get roles

INode nodeRoles =
(INode)m_ session.getAdminInstance () .getNode (NodeConstants.NODE ROLES) ;

IRole rolel = (IRole)nodeRoles.getChildNode ("Component Engineer") ;
IRole role2 = (IRole)nodeRoles.getChildNode ("Incorporator") ;
IRole[] roles = new IRolel[]{rolel, role2};

//Share the item

shareItem(item, users, roles);

}

private void shareItem(IItem item, IUser[] users, IRole[] roles) throws
Exception {

Map map = new HashMap() ;

for (int i = 0; i < users.length; i++) {
map.put (users[i], roles);

}

IShareable shareObj = (IShareable)item;

shareObj.setUsersAndRoles (map) ;

}

Note Each user and user group has a Share table that lists objects that have been shared and
which roles have been granted for those objects.

Deleting and Undeleting Objects

The Agile API, like Agile Web Client, lets you delete and undelete objects. To delete and undelete
an object, you must have Delete and Undelete privileges, respectively, for the particular object type.

The Agile API supports “soft” and “hard” deletes. The first time you delete an object, it is “soft-
deleted.” Though it is marked “Deleted” in the database, it is not permanently removed. You can still
retrieve a soft-deleted object; for example, you could use the IAgileSession.getObject ()
method to get a deleted object. When you run a query, soft-deleted objects are not included in the
query results. However, Agile provides predefined queries (such as the Deleted Items query in the
Change Analyst Searches folder) that let you find deleted objects.

To remove an object permanently, you delete it a second time, which is a “hard” delete. Once you
hard-delete an object, you cannot restore it using the IDataObject.undelete () method.

Not all Agile PLM objects can be deleted. For example, the following objects cannot be deleted. If
you attempt to delete one of these objects, the delete () method throws an exception.

= Anitem with a pending change
= An item with a revision history

= An item with a canceled change
@ Anitem with an AML

= Areleased change

32 Agile Product Lifecycle Management

Chapter 2: Getting Started with Agile API

= A manufacturer part currently used on the Manufacturers tab of another object

= A manufacturer with one or more manufacturer parts

If you try to delete an Item that is used on the BOM tab of another item, the Agile PLM server
throws an exception whose ID is ExceptionConstants.APDM DELETECOMPINUSE WARNING.
The following example shows how to disable this warning and delete the item.
Example: Deleting an ltem
private void deleteItem(IDataObject obj) {
try {
// Delete the Item
obj.delete();
} catch (APIException ex) {
// Check for "Item is Used" warning

if (ex.getErrorCode() ==
ExceptionConstants.APDM DELETECOMPINUSE WARNING) {

int i = JOptionPane.showConfirmDialog(null, "This Item is used by
another Item. " +

"Would you still like to delete it?", "Item is Used Warning",
JOptionPane.YES NO OPTION) ;

}
if (i == 0) {

try {
// Disable "Item is Used" warning

m_session.disableWarning(ExceptionConstants.APDM_DELETECOMP INUSE_WARNIN
G);

// Delete the object

obj.delete();

// Enable "Item is Used" warning

m_session.enableWarning(ExceptionConstants.APDM_DELETECOMPINUSE_WARNING
)i
} catch (APIException exc) {
System.out .println (exc) ;
}
} else {
System.out.println (ex) ;
}
}
}

To restore an object that has been soft-deleted, use the IDataObject .undelete () method.
Once again, to undelete an object, the user must have Undelete privileges for that object type.
However, soft-deleted changes that have items on the Affected Items tab cannot be restored,
regardless of the user’s privileges. The following example shows how to undelete an object that has
been deleted.

Example: Undeleting an object
private void undeleteObject (Object obj) throws APIException {

v9.3.1.1 33

SDK Developer Guide - Using Agile APIs

// Make sure the object is deleted before undeleting it
if (obj.isDeleted()) {

// Restore the object

obj.undelete();

}
}

Closing a Session

Each Agile PLM user can open up to three concurrent sessions. Therefore, each session that you
open using the Agile API should be closed properly. If you fail to close a session properly, you may
not be able to log in with a new session until one of the concurrent sessions time out.
Example: Closing a session
public void disconnect (IAgileSession m_session) {
m_session.close() ;

}

34 Agile Product Lifecycle Management

Chapter 3
Creating and Loading Queries

This chapter includes the following:

ADOUL QUETIES ...evevevetiteteteist it e ettt ettt es s et bbbttt e bbb et bbb b s s b bbb bbb e s e s s b bt eb et bbb s e st ebine
CrEatiNG 8 QUETY ...e.veeiieeiereieieie ittt ettt Rttt
SAVING 8 QUETY 10 @ FOIUBT ..ottt
Generating Ordered (sorted) or Unordered Query Results
Creating a Parameterized QUETYcovieuiiieiis ettt ssss et bbb b st n st enas
Specifying Query Attributes when Creating @ QUETYc.v.ceevereeeiereesiereirseesssssesessesss s s ssssessssssessssssssesnes
SPECITYING SEAICH CIEEIIA ...vvvurveviiereiriireiseereiss et sas s ee et ea e e s nn s enns
Using SQL Syntax for Search Criteria
Setting Result AttribULES fOr @ QUETYc.cuiiiieiieeeireerets ettt
Working With QUETY RESUILSccvuiuiuiiiriieiiieisiees et bbb e s
Creating @ WHere-USBA QUETYc.cuiiriieieicens ettt st s st st s st enas
Loading a Query
Deleting a Query
SIMPIE QUETY EXBMPIESrivvieiireeiei ettt ettt

About Queries

An IQuery is an object that defines how to search for Agile PLM data. It defines a search similar
to the searches that you can use in Agile Web Client. The search can have multiple search criteria
(like an Advanced Search in Agile Web Client), or it can be a simple search that specifies only one
criterion.

Creating a Query

To create and execute a query, you must first create an IQuery object. As with other Agile API
objects, you create the object using the IAgileSession.createObject () method.

In its simplest form, the parameters that you pass with the createObject () method to create a
query are the IQuery object type and the query class used in the search. In the following example,
the query class is the Item class.

Example: Creating a query

try {
IQuery query =
(IQuery) session.createObject(1Query.OBJECT_TYPE,
ItemConstants.CLASS ITEM_BASE_CLASS);
query.setCaseSensitive (false) ;
query.setCriteria(""[Title Block.Number] starts with "P"");
ITable results = query.execute();

v9.3.1.1 35

SDK Developer Guide - Using Agile APIs

} catch (APIException ex) {
System.out.println (ex) ;

}

The query class you specify with the createObject () method also includes objects from all of its
subclasses. For example, if you search for objects in the Item class, the results include parts and
documents. If you search for objects in the Change class, the results include objects from all
Change subclasses (Deviation, ECO, ECR, MCO, PCO, SCO, and Stop Ship). If you want to search
only a specific subclass, you should explicitly specify that class.

The following example shows how to create a query that searches for objects in a subclass named
Foobar:

Example: Specifying the query class

IAdmin admin = m_session.getAdminlInstance() ;

IAgileClass cls = admin.getAgileClass(''Foobar'™);

IQuery query = (IQuery)m session.createObject(1Query.OBJECT_TYPE, cls);

Saving a Query to a Folder

After you name a query using the IQuery.setName () method, you can add it to a folder. The
following example shows how to name a query and add it to the Personal Searches folder. You can
retrieve the query from the folder later to reuse it.
Example: Naming a query and adding it to a folder
try {
IQuery query =
(IQuery) session.createObject(1Query.OBJECT TYPE,
ItemConstants.CLASS ITEM_BASE CLASS);
query.setCaseSensitive (false) ;
query.setCriteria (" [Title Block.Number] starts with 'P'");
query-setName("'Items Whose Number Starts with P");
IFolder folder =
(IFolder)m session.getObject (IFolder.OBJECT TYPE,
"/Personal Searches") ;
folder.addChild(query);
} catch (APIException ex) {
System.out.println (ex) ;

}

You can also use the IQuery.saveas () method to name a query and save it to a folder.
Example: Using IQuery.saveAs() to save a query to a folder
try {
IQuery query = (IQuery)session.createObject (IQuery.OBJECT TYPE,
ItemConstants.CLASS ITEM BASE CLASS) ;
query.setCaseSensitive (false) ;
query.setCriteria (" [Title Block.Number] starts with 'P'");

IFolder folder = (IFolder)m session.getObject (IFolder.OBJECT TYPE,
"/Personal Searches") ;

36 Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

query.saveAs("'Items Whose Number Starts with P", folder);

} catch (APIException ex) {
System.out.println (ex) ;

}

Note Any query that you create without explicitly saving it to a folder is considered a temporary
query. The Agile Application Server will automatically delete all temporary queries when
the user session is closed.

Generating Ordered (sorted) or Unordered Query Results

As shown in examples for Creating a Query on page 35, executing IQuery.execute () and
IQuery.execute (Object [] params) methods returns an ordered query result in ITable.

To improve query performance, the SDK provides the following methods to return results that are
not sorted in the default order. However, if the query criteria has the starts with condition, then
results are always sorted on that attribute and passing skipOrdering as true in

execute (boolean) will not skip ordering.

Note To sort query results by other than the default order, see Sorting Query Results on page
61.

B IQuery.execute (boolean skipOrdering)
B IQuery.execute (Object[] params, boolean skipOrdering)

To skip or perform ordering, set the boolean skipOrdering to true or false as shown in the
following example.
Example: Skip ordering in query results
try {
IQuery query =
(IQuery) session.createObject(1Query.OBJECT_TYPE,
ItemConstants.CLASS ITEM_BASE_CLASS);
query.setCaseSensitive (false) ;
query.setCriteria("[Title Block.Number] starts with "P"");
// The boolean is set to true to skip ordering
ITable results = query.execute(true);
} catch (APIException ex) {
System.out.println (ex) ;

v9.3.1.1 37

SDK Developer Guide - Using Agile APIs

Creating a Parameterized Query

When you specify criteria for a query, you can use a number preceded by a percent sign (%) to
indicate a parameter placeholder. The parameter value is specified later, for example at runtime.
Parameters provide a convenient way to pass values to a query, and they can save time and
reduce extra coding. Parameterized queries can be saved and reused later.

Note The right hand operand query parameter supports one placeholder per each query
operator, so if the query criteria have three query operators, then the query can have a
total of three placeholders corresponding to the three operators. The between and not
between query operations are different. For example, [2091] contains none of
(%0,%1) ;is not allowed, but [2091] contains none of (%0) ; is allowed, and
query.execute (new Object[] {new Object[]{"B", "c"}}); is not allowed.

Indexes for query parameters are 0-based. Parameters are numbered 0, 1, 2, and so on. Always
enumerate the parameters in ascending order. The following example shows a query with three
parameters whose values are specified using the IQuery.execute (Object [1) method.
Example: Parameterized query using IQuery.execute(Object[])

public ITable runParameterizedQuery() throws Exception ({

String condition = "[Title Block.Number] starts with %0 and" +
"[Title Block.Part Category] == %l and" +
"[Title Block.Description] contains %2";

IQuery query = (IQuery)m session.createObject (IQuery.OBJECT TYPE,

ItemConstants.CLASS PART) ;
query.setCriteria(condition) ;

ITable table = qguery.execute(new Object[] {"1', "Electrical",
"Resistor'});

return table;

}

You can also specify query parameters using IQuery.setParams () shown in the following
example. Make sure you set the query parameter values before calling IQuery.execute ().
Otherwise, when you run the query it will use previous parameter values. If parameters have not
been set, the query uses null values. Similarly, if you do not pass any parameters to a query, then
the IQuery.getParams () method returns null.

Example: Parameterized query using IQuery.setParams()
public ITable runParameterizedQuery() throws Exception ({

String condition = "[Title Block.Number] starts with %0 and" +
"[Title Block.Part Categoryl] == %l and" +
"[Title Block.Description] contains %2";

IQuery query = (IQuery) m session.createObject (IQuery.OBJECT TYPE,

ItemConstants.CLASS PART) ;
query.setCriteria(condition) ;
query.setParams(new Object[] {"1", "Electrical', "Resistor'});
ITable table = query.execute() ;
return table;

38 Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

Do not use quote characters around parameterized queries because they will create a set of values
(more than one element) for the query when parameters can only refer to a given value. The
following examples show the proper use of quote characters when creating parameterized queries:

Example: Correct use of quote characters in a parameterized search query
String criteria = "[NUMBER] == %O0';

query.execute(new Object[]{''P1000-02"});

String criteria = "[P2.LISTO1] in %0";

query.execute(new Object[]1{new Object[]{"Al", "B2"}});

Specifying Query Attributes when Creating a Query

Instead of passing only the query class when you create a query, you can use a more advanced
form of the createObject () method and pass a Map object containing one or more attribute
values. The QueryConstants class contains several constants for query attributes that you can
set when you create a query. These are virtual attributes that do not exist in the Agile PLM
database, but that can be used to define the query at run time.

Attribute Constant Description

ATT CRITERIA CLASS Query class.

ATT_CRITERIA_PARAM | Search condition parameter value (for a parameterized search condition).

ATT_CRITERIA_STRIN | Search condition string.

G
ATT_PARENT_FOLDER Parent folder where the query resides.
ATT QUERY NAME Query name.

The following example shows how to set the query class, search condition, parent folder, and query
name when you create the query.

Example: Specifying query attributes when you create a query

try {
String condition = "[Title Block.Number] starts with 'P'";
IFolder parent = (IFolder)m session.getObject (IFolder.OBJECT TYPE,

" /Personal Searches") ;
HashMap map = new HashMap () ;

map.put (QueryConstants.ATT CRITERIA CLASS,
ItemConstants.CLASS ITEM BASE CLASS) ;

map.put (QueryConstants.ATT CRITERIA STRING, condition) ;
map.put (QueryConstants.ATT PARENT FOLDER, parent);

map.put (QueryConstants.ATT QUERY NAME, "Part Numbers Starting with
P");

IQuery query = (IQuery)m session.createObject (IQuery.OBJECT TYPE,
map) ;
ITable results = query.execute() ;

} catch (APIException ex) {
System.out.println (ex) ;

}

v9.3.1.1 39

SDK Developer Guide - Using Agile APIs

Specifying Search Criteria

You can narrow the number of objects returned from a search by specifying search criteria. If you
don't specify search criteria, the query returns references to all objects in the specified query class.
It's a good idea to limit the search criteria as much as possible, as the amount of data returned may
be excessively large, resulting in decreased performance.

There are three different setCriteria () methods you can use to specify query criteria:

B getCriteria(ICriteria criteria) — Sets the query criteria from data stored in the
Criteria administrative node. The Criteria administrative node defines reusable criteria for the
Workflow, but the nodes can also be used as ordinary search criteria.

Note Workflow query is not supported in the current Release of the SDK.

B getCriteria(java.lang.String criteria) — Sets the search criteria from a specified
String.

B setCriteria(java.lang.String criteria, java.lang.Object[] params) -—
Sets the search criteria from a specified String that references one or more parameters.

Unless you use the first setCriteria () method, which takes an ICriteria object for its
parameter, the Agile API parses the search criteria as a String.

Search Conditions

The Agile API provides a simple yet powerful query language for specifying search criteria. The
query language defines the proper syntax for filters, conditions, attribute references, relational
operators, logical operators, and other elements.

Search criteria consist of one or more search conditions. Each search condition contains the
following elements:

1. Left operand - The left operand is always an attribute enclosed in brackets, such as [Title
Block.Number]. You can specify the attribute as an attribute name (fully qualified name or
short name) or attribute ID number. The attribute specifies which characteristic of the object to
use in the search.

2. Relational operator — The relational operator defines the relationship that the attribute has to the
specified value, for example, “equal to” or “not equal to.”

3. Right operand — The matching value for the specified attribute in the left operand. The right
operand can be a constant expression or a set of constant expressions. A set of constant
expressions is needed if the relational operator is “between,” “not between,

in,” or “not in.”
Following is an example of a search condition:
[Title Block.Description] == 'Computer'

This is another example where the right operand is a set of constant expressions:
[Page Two.Numeric0l] between ('1000', '2000")

40 Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

Query Language Keywords

When you specify a search condition, you must use proper keywords to construct the statement.
The following keywords are available:

and does less or to
asc equal like order union
between from minus phrase where
by greater none select with
contain in not start word
contains intersect null starts words
desc is of than

Query language keywords are not localized. You must use English keywords, regardless of locale.
You can use the keywords in lower case or upper case. In addition to keywords, you can use Agile
PLM variables such as $USER (for current user) and $TODAY (for today’s date) in Agile API queries.

Note The "in" operator does not support MultiList in (set) query criteria.

Specifying Search Attributes

Every Agile PLM object that you can search for also has an associated set of attributes, which are
inherent characteristics of the object. You can use these attributes as the left operand of a search
condition. The right operand of the search condition specifies the attribute’s value(s).

A search attribute must be enclosed within brackets, for example, [Title Block.Number]. The
brackets are needed because many attribute names have spaces. If a search attribute is not
enclosed within brackets, your query will fail.

You can specify a search attribute in the following ways:

Attribute reference Example
attribute 1D number [1001]
fully-qualified attribute name [Title Block.Number]
short attribute name [Number]

Note Because attribute names can be modified, Agile recommends referencing attributes by
ID number or constant. However, many of the examples in this chapter reference
attributes by name simply to make them more readable. If you choose to reference
attributes by name, use the fully-qualified attribute name instead of the short name. Short
attribute names are not guaranteed to be unique and could therefore cause your query to
fail or produce unexpected results.

Attribute names, whether you use the long or short form, are case-insensitive. For example,
[Title Block.Number] and [TITLE BLOCK.NUMBER] are both allowed. Attribute names are

v9.3.1.1 41

SDK Developer Guide - Using Agile APIs

also localized. The names of Agile PLM attributes vary based on the locale of your Agile Application
Server. If you are creating a query that is going to be used on servers in different locales, you
should reference attributes by ID number (or the equivalent constant) instead of by name.

Note The APIName field, described in Accessing PLM Metadata with APIName Field on page
125, does not support specifying search attributes.

If the attribute name contains special characters, such as quotes or backslashes, you can type
these characters using the backslash (\) as an escape character. For example, to include a quote
character in your string, type \'. If you want to write a backslash, type two of them together (\\). If the
attribute name contains square brackets, enclose the entire name in quotes:

['Page Two.Unit of Measure [g or oz]']

There are other less intuitive ways to specify attributes. For example, you can pass in an
IAttribute reference using a parameter of the setCriteria () method. In the following
example, ‘%0’ references the attribute in the Object array parameter.

query.setCriteria (" [%$0] == 'Computer'", new Object[] { attr });
You can also use String concatenation to reference an attribute constant:

query.setCriteria("[“ + ItemConstants.ATT TITLE BLOCK DESCRIPTION + “]
== 'Computer'”) ;

Retrieving Searchable Attributes

The searchable attributes for a query depend on the specified query class or subclass. However,
the searchable attributes for a subclass can differ greatly from searchable attributes for its parent
class.

Due to database considerations, not all attributes are searchable. Generally, a few select Page One
attribute (namely: Title Page, Cover Page, and General Info attributes) are searchable for each
class.

If a tab is not configured in Java Client to be visible, you can still search for an attribute on that tab
in the Agile SDK. However, you must search for the Table name that corresponds to the Tab name.

Note Because you use the table name to setup IQuery, it does not matter if an Agile
administrator changes a Tab name from the name specified in Agile Java Client. Tab
name changes do not affect SDK table names.

To find the searchable attributes for a query, use the IQuery.getSearchableAttributes ()
method.

Note Even though an attribute may not be searchable, it can still be included as a column in
the query results. For more information, see Setting Result Attributes for a Query on
page 53.

42 Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

Using Relational Operators

Table below lists relational operators that are supported by the Agile APl query language.

English operator

Notation

Description

equal to

Finds only an exact match with the specified value.

not equal to

Finds any value other than an exact match with the specified
value.

greater than

Finds any value greater than the specified value.

greater than or equal
to

Finds any value greater than or equal to the specified value.

less than

Finds any value less than the specified value.

less than or equal to

Finds any value less than or equal to the specified value.

contains, contains
all

Finds any value that includes the specified value.

does not contain,
does not contain all

Finds any value that does not include the specified value.

contains any

Finds any value that includes the specified value.

does not contain any

Finds any value that does not include the specified value.

contains none of

Finds any value that includes none of the specified values.

does not contain none
of

Behaves the same as does not contain any.

starts with

Finds values that begin with characters in the specified value.

does not start with

Finds values that do not begin with characters in the specified
value.

is null

Finds objects where the selected attribute contains no value.

is not null

Finds objects where the selected attribute contains a value.

like Performs a wildcard search, finding objects that match a single
character or any string.

not like Performs a wildcard search, finding objects that do not match a
single character or any string.

between Finds objects that fall between the specified values.

not between

Finds objects that do not fall between the specified values.

in

Finds objects that match any of the specified values.

not in

Finds objects that do not match any of the specified values.

contains phrase

Finds objects with files that contain the specified phrase.

contains all words

Finds objects with files that contain all of the specified words.

v9.3.1.1

43

SDK Developer Guide - Using Agile APIs

English operator

Notation

Description

contains any word

Finds objects with files that contain any of the specified words.

contains none of

Finds objects with files that contain none of the specified words.

Relational operators are not localized. You must use English keywords, regardless of locale. As
with other query language keywords, you can use them in lower case or upper case.

Using Unicode Escape Sequences

Agile SDK Query language supports Unicode escape sequences.

The primary usage of Unicode

escape sequences in a query string is to search for nonburnable or foreign local character sets. A
Unicode character is represented with the Unicode escape sequence \uxxxx, where xxxx is a

sequence of four hexadecimal digits.

For example, to search for an item with Unicode 3458, use the foll

Select * from [Items] where [Description]

owing query:

contains '\u3458'

There is another query operation for “contains’ usage in the case of MultiList.

Using Between, Not Between, In, and Not In Operators

The ‘between’, ‘not between’, ‘in’, and ‘not in’ relational operators are not supported directly by Agile
PLM Java and Web Clients. These relational operators provide a convenient shorthand method for

specifying ‘equal to’, ‘not equal to’, ‘greater than or equal to’, or ‘le
with a set of values.

ss than or equal to’ operations

Short form Equivalent long form

[Number] between ('1','6") [Number] >= 'l' and [Number] <= '6'

[Number] not between [Number] < 'l' and [Number] > '6'

(ll 1 , l6 1)

[Number] in [Number] == 'l' or [Number] == '2' or [Number] ==

(r1','2','3'",'4',5','6") '3' or [Number] == '4' or [Number] == '5' or
[Number] == '6"'

[Number] not in [Number] != '1l' and [Number] != '2' and [Number] !=

(riv,r2r, '3, 14, "5 1) '3'" and [Number] != '4' and [Number] != '5' and
[Number] != '6'

As shown in the preceding table, when you use the ‘between’, ‘not between’, ‘in’, and ‘not in’
relational operators, each value in the set of values must be enclosed in quotes and delimited by

commas. Here are more criteria examples that use ‘between’ and

[Title Block.Number]

in

('1000-02",

'1234-01",

‘in’ relational operators:
'4567-89")

(101/01/2001",

101/01/2002")

[Title Block.Effectivity Date] between

[Page Two.NumericO0l] between ('1000', '2000")

Note
SDK.

The relational operators any , all, none of, and not all are not supported in the

44

Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

Using the Nested Criteria to Search for Values in Object Lists

Several lists in Agile PLM contain business objects, such as Agile PLM users. To search for an
object in such a dynamic list, you can specify nested query criteria. Nested criteria are enclosed in
parentheses and separated from each other by a logical AND (&&) or OR (||) operator. A comma
can also be used to separate nested criteria; it's equivalent to a logical OR.

The following criteria find a user with the first name Christopher OR the last name Nolan.

[Page Two.Create User] in ([General Info.First Name] == 'Christopher',
[General Info.Last Name] == 'Nolan')

The following criteria find a user with the first name Christopher AND the last name Nolan.

[Page Two.Create User] in ([General Info.First Name] == 'Christopher'
&&
[General Info.Last Name] == 'Nolan')

If Part .Page Three.List01 is enabled and setto Part Families list, the following criteria
finds a Part Family with the name PartFamily 01

[Page Three.List01] in ([General Info.Name] == ‘PartFamily 01’)

The parameter query is not supported in nested queries and multiple values for one placeholder in
query parameters must be specified in two dimensional arrays as shown in the example below.

Example: Correct and incorrect parameter query in nested query criteria
o The parameter query specified in the following nested query criteria will fail to execute:

[Page Two.Userl] in ([General Info.First Name] == %0)
= However, when it is explicitly specified as a string value, instead of the placeholder, it will
succeed:
[Page Two.Userl] in ([General Info.First Name] == ‘Christopher’)

v9.3.1.1 45

SDK Developer Guide - Using Agile APIs

Using Criteria Selected from Criteria Library in SDK Queries

Criteria nodes in Java or Web Client's Criteria library are ICriteria objects that you can use in
SDK queries. To view a listing in Java Client as shown below, select Admin > Settings > Data Settings >
Criteria.

Figure 3: Criteria nodes in Java Client's Criteria library

2 Agile Product Lifecycle Management (PLM) |Z”E|E|

File Edit Wiew Tools Settings Window Help
e e I [ocean @)@ S @ ¥ a4
|[B ciiteda |
Search | Analtics and Reports | Admin | N I Criteria BEE]
n S R s & e Total Mumber of record(s): 243
4t settings
). 2 Data Settings Filker By ‘Nama v | Matech IF |Show Al v | Value ‘ | [Apply]
- %8 Classes Mame & |Object Type Description APT Mame
- ob" Character Sets &1l Active RFGs Requests for quote &l RFQs that are in the Draft, Open or Locked LiF.., |[AlActiveRF(A
- ;'; Lists Al Ackive Sourding Project Sourcing projects Al Sourcing Prajects in the Draft or Open Lifecycle. .. AlActiveSoL :
Process Extensions All Activities Activities Al Activities Allactivities
Ao tohumbers Al Activities Created By Me Activities Al Activities Created By Me Allactivities
(7] All Activities Tam Owner of Ackivitizs Al Activities T.am Owner of AllactivitiesT
{54] ‘Workflow Settings All Administrator Reports Adrinistrator Report All Administrator Reports AllAdministr:
{=] User Settings Al Audits Audits Al Audits Allsudits
{4] System Settings All Audits Created By Me Audits Al audits Created By Me AllauditsCre
{54] Server Settings All Automated Transfer Orders Automated Transfer Orders All Autamated Transfer Orders Allaukomate
{1] Examples Il Automated Transfer Orders Created By Me Automated Transfer Orders Al utamated Transfer Orders Craatad By Me allautomate
all Cancelled Projects Projects All Cancelled Programs AllCancelled
All Cancelled Projects T am Cwner of Projects All Cancelled Programs T am Owner of AllCancelled
Al Cancelled Projects, Programs, Phases, Tasks and G... |Projects All Cancelled Programs, Phases, Tasks and Gates |allCancelled
Al Cancelled Projects, Programs, Phases, Tasks and G... |Projects All Cancelled Programs, Phases, Tasks and Gates ... |alCancelled
Al CAPAs Corrective and Preventive Actions Al CAPAS AllCAPAS &
<) ¥
Refrash Close
[| administrator fadmin} | armisjftabibza-gx280.agile. aglesoft.comfagile | 9.3 (Guild 44) |

The following example gets a Criteria node from the Criteria library and loads and sets it as the SDK
query criteria.

Example: Using criteria from the Criteria Library in SDK queries

IQuery query = (IQuery) session.createObject (IQuery.OBJECT TYPE,
ItemConstants.CLASS ITEM BASE CLASS) ;
IAdmin admin = session.getAdminInstance () ;
// Get the Criteria Library node
INode criterialLibrary =
admin.getNode(NodeConstants.NODE_CRITERIA_ LIBRARY);
// Load the Criteria relevant to the query class (For example it is

Items base class)
ICriteria criteria = (ICriteria) criteriaLibrary.getChild("All

Released Items™);

// Set the ICriteria in SDK Query Criteria
query.setCriteria(criteria);

Using Relationships and Content in SDK Queries

Agile SDK provides APIs to perform the Relationships and Content Search using the IQuery
interface. The query criteria can contain the attributes of both the base search class and the related
class.

46 Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

To search using an object's Relationships:

1. SetsearchType t0 QueryConstants.RELATIONSHIPS using
IQuery.setSearchType (int searchType).

2. Setthe related class using IQuery.setRelatedContentClass (Object

relatedClass).
Example: Using an object's Relationships as the query criteria
IQuery queryl = (IQuery) session.createObject (IQuery.OBJECT TYPE,

ItemConstants.CLASS PART) ;
queryl.setSearchType (QueryConstants.RELATIONSHIPS) ;
queryl.setRelatedContentClass ("Substance"); // ID or API Name
queryl.setCriteria (" [Relationships.Name] Is Not Null and [Title
Block.Number] equals ‘'P00001’ and [Relationships.Substance.General
Info.Name] Is Not Null");

To search using a Project object's Content:

1. SetsearchType t0 QueryConstants.RELATIONSHIPS using
IQuery.setSearchType (int searchType).

2. Setthe related class using IQuery.setRelatedContentClass (Object

relatedClass).
Example: Using a Project object's Content as the query criteria
IQuery queryl = (IQuery) session.createObject (IQuery.OBJECT TYPE,

ProgramConstants.CLASS ACTIVITIES CLASS) ;
queryl.setSearchType (QueryConstants.RELATIONSHIPS) ;
queryl.setRelatedContentClass ("ECO") ; // ID or API Name
queryl.setCriteria (" [Content.Criteria Met] Is Not Null and
[Content .ECO.Cover Page.Originator] in ([General Info.First Name] ==
‘admin’)

To search using a Transfer Orders object's Selected Content:

1. SetsearchType t0 QueryConstants.TRANSFER ORDER SELECTED CONTENT using
IQuery.setSearchType (int searchType).

2. Setthe related class using IQuery.setRelatedContentClass (Object

relatedClass).
Example: Using a Transfer Orders object's Selected Content as the query criteria
IQuery queryl = (IQuery) session.createObject (IQuery.OBJECT TYPE,

TransferOrderConstants.CLASS CTO) ;
queryl.setSearchType (QueryConstants.TRANSFER _ORDER SELECTED CONTENT)

queryl.setRelatedContentClass ("ECR"); // ID or API Name
queryl.setCriteria (" [Selected Content.ECR.Cover Page.Number] equal
to 'cooo1'");

Searching for Words or Phrases Contained in Attachments

Two special attributes, [Attachments.File Document Text] and [Files.Document
Text], are used to index the content of files stored on the Agile file management server. If you are
hosting your database on Oracle, you can take advantage of a feature that lets you search for
words or phrases contained in attachments. When you create search criteria that use either of these
attributes. There are four additional relational operators you can use:

8 contains phrase

v9.3.1.1 47

SDK Developer Guide - Using Agile APIs

a contains all words
8 contains any word

o contains none of

The following table shows several search conditions that search for words or phrases in

attachments.

Search Condition

Finds

[Attachments.File Document Text] contains
phrase 'adding new materials'

Objects in which any of their attachments contain the
phrase “adding new materials.”

all [Attachments.File Document Text]
contains all words 'adding new materials'

Objects in which all their attachments contain the words
“adding,” “new,” and “materials.”

none of [Attachments.File Document Text]
contains any word 'containers BOM return

output'

Objects in which none of their attachments contain any
of the words “containers,” “BOM,” “return,” or “output.”

[Attachments.File Document Text] contains
none of 'containers BOM output'

Objects in which any of their attachments do not contain
the words “containers,” “BOM,” or “output.”

Formatting Dates in Query Criteria

Several types of queries require date values. To pass a date as a String, use the
IAgileSession.setDateFormats () method to specify a date format. The
setDateFormats () method also applies to all Agile API values that you specify with

setValue () methods.

Note If you don't set date formats explicitly using the setDateFormats () method, the Agile
API uses the user’s date format for the Agile PLM system. To see your date format in
Agile Web Client, choose Settings > User Profile and then click the Preferences tab.

Example: Setting the date format for a query

m session.setDateFormats(new DateFormat[] {new

SimpleDateFormat(""MM/dd/yyyy'™)}) ;

query.setCriteria (" [Title Block.Rev Release Date] between” +

\\(l9/2/2001', '9/2/2003')");

query.setCriteria (" [Title Block.Rev Release Datel]

between (%0,%1)", new Stringl[] {"9/2/2001",

"9/2/2003"});

Of course, if you use the setCriteria (String criteria, Object[] params) method, you

can pass Date objects as parameters to the method.

Example: Passing Date objects as parameters of setCriteria()

DateFormat df = new SimpleDateFormat ("MM/dd/yyyy") ;

query.setCriteria (" [Title Block.Rev Release Date] between (%0,%1)",
)

new Object[] { df.parse("9/2/2001"), df.parse("9/2/2003") }

7

48

Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

Using Logical Operators

You can use logical operators to combine multiple search conditions into a complex filter. When you
have two or more conditions defined in a set of query criteria, the relationship between them is
defined as either ‘and’ or ‘or’.

= and narrows the search by requiring that both conditions are met. Each item in the results must
match both conditions. The ‘and’ logical operator can also be specified using two ampersands,
‘&&'.

o or broadens the search by including any object that meets either condition. Each item in the
results table needs to match only one of the conditions, but may match both. The ‘or’ logical
operator can also be specified using two vertical bars, ‘||'.

Logical operators are case-insensitive. For example, ‘and’ or ‘AND’ are both allowed.

The following query criteria finds parts that have both a part category equal to Electrical and a
lifecycle phase equal to Inactive.

[Title Block.Part Category] == 'Electrical' and

[Title Block.Lifecycle Phase] == 'Inactive'
If you replace the ‘and’ operator with ‘or’, the query locates all parts with either a part category of
Electrical or a lifecycle phase of Inactive, which could be a large number of parts.

[Title Block.Part Category] == 'Electrical' or
[Title Block.Lifecycle Phase] == 'Inactive'

Note The Agile API provides three where-used set operators. For more information, see
Creating a Where-Used Query on page 62.
Logical operators, including the where-used set operators, are not localized. You must
use English keywords, regardless of locale.

Using Wildcard Characters with the Like Operator

If you define a search condition using the ‘like’ operator, you can use two wildcard characters: the
asterisk (*) and question mark (?). The asterisk matches any string of any length, so *at finds cat,
splat, and big hat. For example, [Title Block.Description] like '*book*' returns all
objects that contain the word “book,” such as textbook, bookstore, books, and so on.

The question mark matches any single character, so ?at finds hat, cat, and fat, but not splat. For
example, [Title Block.Description] like '?al*' matches any word containing “al” that
is preceded by a single letter, such as tall, wall, mall, calendar, and so on.

Using Parentheses in Search Criteria

Where-used, set operators have higher priority than and and or logical operators, as shown by the
following table.

v9.3.1.1 49

SDK Developer Guide - Using Agile APIs

Priority Operator(s)

1 @ union
= intersection
@ minus

2 = and
o or

Therefore, search conditions joined by union, intersection, and minus operators are evaluated before
conditions joined by and or or.

If you use where-used set operators (‘union’, ‘intersect’, or ‘minus’) in search criteria, you can use
parentheses to change the order that criteria are evaluated. If only ‘and’ or ‘or’ logical operators are
used in a search criteria, additional parentheses aren’t needed because they don't change the
result of criteria evaluation.

The following two criteria, although they contain the same search conditions, provide different
results because parentheses are placed differently:

([Title Block.Part Category] == 'Electrical' and
[Title Block.Description] contains 'Resistor') union
([Title Block.Description] contains '400' and
[Title Block.Product Line(s)] contains 'Taurus')
[Title Block.Part Category] == 'Electrical' and
([Title Block.Description] contains 'Resistor' union
[Title Block.Description] contains '400') and
[Title Block.Product Line(s)] contains 'Taurus'

Setting Search Criteria for Lists Containing Large Number of Objects

When using the SDK to query lists that contain a large number of objects, you can improve
performance if you use the object ID in the query criteria to set the value for the list

For example, you can replace this routine:

query.setCriteria (" [Page Three.List25] equal to 'Administrator
(admin) '") ;

with the following for better performance:

IUser user = (IUser)session.getObject (IUser.OBJECT TYPE, "admin");
query.setCriteria (" [Page Three.List25] equal to
"+user.getObjectId()) ;

Using SQL Syntax for Search Criteria

In addition to its standard query language, the Agile API also supports SQL-like syntax for search
criteria. If you're familiar with how to write SQL statements, you may find this extended query
language easier to work with, more flexible, and more powerful. It combines in one operation the
specification of the query result attributes, the query class, the search condition, and the sort
column(s).

50 Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

This is a simple example that demonstrates the syntax:

o Query result attributes: SELECT [Title Block.Number], [Title
Block.Description]

= Query class: FROM [Items]

B Search condition: WHERE [Title Block.Number] starts with 'P'

@ Sort column(s): ORDER BY 1 asc

To improve readability, it's recommended that SQL key words such as SELECT and FROM are all
typed using capital letters and each part of the statement appears on a separate line. This is merely
a convention, not a requirement. SQL key words are not case-sensitive, and you can write the
entire query string on one line if you prefer.

The best way to demonstrate the advantages of SQL syntax is to compare the code for a query that
uses standard Agile API query syntax for search criteria with one that uses SQL syntax. The
following example shows a query created using the standard Agile APl query syntax:

Example: Query using standard Agile APl query syntax
try {

IQuery query = (IQuery)m session.createObject (IQuery.OBJECT TYPE,
"Ttems") ;

query.setCriteria (" [Page Two.Nummeric01l] between (1000, 2000)");

//Set result attributes

String[] attrs = { "Title Block.Number", "Title Block.Description",
"Title Block.Lifecycle Phase" };

query.setResultAttributes (attrs) ;

//Run the query

ITable results = query.execute() ;

} catch (APIException ex) {
System.out .println (ex) ;

}

This example shows the same query rewritten in SQL syntax. Although the example doesn’t have
fewer lines of code, you may find that it's more readable than Agile APl query syntax, particularly if
you're familiar with SQL.

Example: Query using SQL syntax

try {
IQuery query = (IQuery)m session.createObject (IQuery.OBJECT TYPE,

"“"SELECT " +
"[Title Block_.Number],[Title Block.Description], ™ +
"[Title Block.Lifecycle Phase] " +
"FROM " +
"[ltems] " +
"WHERE " +
"[Title Block.Number] between (1000, 2000)"
)
//Run the query
ITable results = query.execute() ;

v9.3.1.1 51

SDK Developer Guide - Using Agile APIs

} catch (APIException ex) {
System.out.println (ex) ;

}

The following example shows a query written with SQL syntax that specifies the search criteria
using the ATT CRITERIA STRING query attribute. For more information about how to use query
attributes, see Specifying Query Attributes when Creating a Query on page 39.

Example: Using SQL syntax to specify query attributes
try {
String statement =
"SELECT " +
"[Title Block.Number], [Title Block.Description] " +
"FROM " +
"[Items] " +
"WHERE " +
"[Title Block.Description] 1like %0";
HashMap map = new HashMap () ;
map.put (QueryConstants.ATT CRITERIA STRING, statement) ;
map .put (QueryConstants.ATT CRITERIA PARAM, new Object[] { "Comp*" }
) ;
IQuery query = (IQuery)m session.createObject (IQuery.OBJECT TYPE,
map) ;

ITable results = query.execute() ;
} catch (APIException ex) {
System.out.println (ex) ;

}

Note Remember, the FROM part of the search condition specifies the query class. If you use
the ATT CRITERIA CLASS attribute to also specify a query class, the query class
specified in the SQL search condition takes precedence.

Although you can use the IQuery.setCriteria () method to specify a search condition in SQL
syntax, the IQuery.getCriteria () method always returns the search condition in the standard
Agile API query syntax.

Using SQL Wildcards

You can use both the asterisk (*) and question mark (?) wildcards in a query that uses SQL syntax.
As in standard Agile API query language, the asterisk matches any string and the question mark
matches any single character. You can use wildcards in the SELECT statement (the specified query
result attributes) and the WHERE statement (the search condition). For example, "SELECT *"
specifies all available query result attributes.

Sorting Query Results Using SQL Syntax

If you specify search criteria using SQL syntax instead of the standard Agile API query language,
you can use the ORDER BY keyword to sort the query results. You can sort the results in
ascending or descending order by any attributes specified in the SELECT statement.

52 Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

In the ORDER BY statement, refer to attributes by the one-based numerical order in which they
appear in the SELECT statement. To specify whether to sort in ascending or descending order, type
“asc” or “desc” after the attribute number. If “asc” or “desc” is omitted, ascending order is used by
default.

Example Description
ORDER BY 1 Sort by the first SELECT attribute in ascending order (the default)
ORDER BY 2 desc Sort by the second SELECT attribute in descending order

ORDER BY 1 asc, 3 desc Sort by the first SELECT attribute in ascending order and the third SELECT attribute in
descending order

Attributes not specified in the SELECT statement cannot be used to sort query results. Also, if you
use "SELECT *" to select all available result attributes, the results cannot be sorted because the
attribute order is undefined.

The following example sorts results in ascending order by [Title Block.Number] and [Title
Block.Sites], the first and third attributes in the SELECT statement.
Example: Using SQL syntax to sort query results
IQuery query = (IQuery)m session.createObject (IQuery.OBJECT TYPE,
"SELECT " +
"[Title Block.Number], [Title Block.Description], " +
"[Title Block.Sites], [Title Block.Lifecycle Phase] " +
"FROM " +
"[Items] " +
"WHERE " +
"[Title Block.Number] between (1000, 2000)" +
"ORDER BY " +
n1, 3"
) ;

Setting Result Attributes for a Query

When you run a query, it returns several output fields, which are also called result attributes. By
default, there are only a few result attributes for each query class. You can add or remove result
attributes using the IQuery.setResultAttributes () method.

The following table shows the default query result attributes for each predefined Agile PLM class.

v9.3.1.1 53

SDK Developer Guide - Using Agile APIs

Query class Default result attributes
Changes Cover Page.Change Type
Change Orders Cover Page.Number
ECO Cover Page.Description
Change Requests
ECR Cover Page.Status
Deviations Cover Page.Workflow
Deviation
Manufacturer Orders
MCO
Price Change Orders
PCO
Sites Change Orders
SCO
Stop Ships
Stop Ship
Customers General Info.Customer Type
Customers General Info.Customer Number
Customer

General Info.Customer Name
General Info.Description

General Info.Lifecycle Phase

Declarations

Homogeneous Material
Declarations
Homogeneous Material
Declaration

IPC 1752-1 Declarations

IPC 1752-1 Declaration
IPC 1752-2 Declarations

IPC 1752-2 Declaration
JGPSSI Declarations

JGPSSI Declaration
Part Declarations

Part Declaration
Substance Declarations

Substance Declaration

Supplier Declarations of
Conformance

Cover Page.Name

Cover Page.Description

Cover Page.Supplier

Cover Page.Status

Cover Page.Workflow

Cover Page.Compliance Manager
Cover Page.Due Date

Cover Page.Declaration Type

54

Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

Query class Default result attributes
Supplier Declaration of
Conformance
Discussions Cover Page.Subject
Discussions Cover Page.Status
Discussion Cover Page.Priority
Cover Page.Type
File Folders Title Block.Type
File Folders Title Block.Number
File Folder Title Block.Description
Title Block.Lifecycle Phase
ltems Title Block.ltem Type
Parts Title Block.Number
Part . .
Title Block.Description
Documentation i .
Document Title Block.Lifecycle Phase
Title Block.Rev
Manufacturers General Info.Name
Manufacturers General Info.City
Manufacturer

General Info.State
General Info.Lifecycle Phase
General Info.URL

v9.3.1.1

55

SDK Developer Guide - Using Agile APIs

Query class

Default result attributes

Manufacturer Parts

Manufacturer Parts
Manufacturer Part

General Info.Manufacturer Part Number

General Info.Manufacturer Name
General Info.Description

General Info.Lifecycle Phase

Packages

Packages
Package

Cover Page.Package Number
Cover Page.Description

Cover Page.Assembly Number
Cover Page.Status

Cover Page.Workflow

Part Groups

Part Groups
Commaodity
Part Family

General Info.Name

General Info.Description
General Info.Lifecycle Phase
General Info.Commodity Type

General Info.Overall Compliance

Prices

Published Prices
Contracts
Published Price

Quote History
Quote History

General Info.Price Number
General Info.Description
General Info.Rev

General Info.Price Type
General Info.Lifecycle Phase
General Info.Projects
General Info.Customer

General Info.Supplier

Product Service Requests

Non-Conformance Reports
NCR

Problem Reports
Problem Report

Cover Page.PSR Type
Cover Page.Number
Cover Page.Description
Cover Page.Status

Cover Page.Workflow

56

Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

Query class Default result attributes
Projects General Info.Name
Activities General Info.Description
Phase General Info.Status
Program General Info.Health
Project General Info.Owner
General Info.Root Parent
Task General Info.Workflow
Gates Gate General Info.Type

Sourcing Projects

Sourcing projects
Sourcing Projects

General Info.Project Type
General Info.Number

General Info.Description
General Info.Manufacturing Site
General Info.Ship To Location
General Info.Projects

General Info.Customer

General Info.Lifecycle Phase

Quality Change Requests

Corrective Action/Preventive

Cover Page.QCR Type
Cover Page.QCR Number

Action -
CAPA Cover Page.Description
Audits Cover Page.Status
Audit Cover Page.Workflow
RFQ Responses Cover Page.RFQ Number
RFQ Responses Cover Page.RFQ Description
RFQ Response

Cover Page.Lifecycle Phase
Cover Page.Requested
Cover Page.Completed

Cover Page.Due Date

v9.3.1.1

57

SDK Developer Guide - Using Agile APIs

Query class Default result attributes
RFQs Cover Page.RFQ Number
RFQs Cover Page.RFQ Description
RFQ Cover Page.MFG Site
Cover Page.Ship-To Location
Cover Page.Projects
Cover Page.Customer
Cover Page.Lifecycle Phase
Cover Page.RFQ Type
Sites General Info.Name
Sites General Info.Contact
Site General Info.Phone
Specifications General Info.Name
Specifications General Info.Description
Specification General Info.Lifecycle Phase
General Info.Jurisdictions
General Info.Validation Type
General Info.Specification Type
Substances General Info.Name
Materials General Info.Description
Material General Info.CAS Number
Subparts Subpart General Info.Lifecycle Phase
Substance Groups General Info.Substance Type
Substance Group
Substances
Substance
Suppliers General Info.Supplier Type
Suppliers General Info.Number
Manufacturer Component General Info.Name
Cpnt_ract Manufacturer General Info.Description
I\D/II;::J?:::(t)Lrer Rep General Info.Status
58 Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

Query class Default result attributes
Transfer Orders Cover Page.Transfer Order Type (See Retrieving CTO
Content Transfer Orders Originator Name on page 60)
CT0 Cover Page.Transfer Order Number
Automated Troansfer Orders Cover Page.Description
AT

Cover Page.Status

Cover Page.Workflow

Specifying Result Attributes

If you run a query and find that the resulting ITable object does not contain the attributes you
expected, it's because you didn’t specify result attributes. The following example shows how to
specify the result attributes for a query.
Example: Setting query result attributes
private void setQueryResultColumns (IQuery query) throws APIException {
// Get Admin instance
IAdmin admin = m session.getAdminInstance () ;

// Get the Part class
IAgileClass cls = admin.getAgileClass ("Part") ;

// Get some Part attributes, including Page Two and Page Three
attributes

IAttribute attrl =
cls.getAttribute (ItemConstants.ATT TITLE BLOCK NUMBER) ;

IAttribute attr2 =
cls.getAttribute (ItemConstants.ATT TITLE BLOCK DESCRIPTION) ;

IAttribute attr3 =
cls.getAttribute (ItemConstants.ATT TITLE BLOCK LIFECYCLE PHASE) ;

IAttribute attr4 =
cls.getAttribute (ItemConstants.ATT PAGE TWO_TEXTO1) ;

IAttribute attr5 =
cls.getAttribute (ItemConstants.ATT PAGE TWO NUMERICO1) ;

IAttribute attré =
cls.getAttribute (ItemConstants.ATT PAGE THREE TEXTO01) ;

// Put the attributes into an array

IAttribute[] attrs = {attrl, attr2, attr3, attr4, attr5, attré6};
// Set the result attributes for the query
query.setResultAttributes(attrs);

}

The IQuery.setResultAttributes () method takes an Object [1 value for the attrs
parameter, supporting String, Integer,,or IAttribute arrays. Therefore, instead of
specifying an array of IAttribute objects, you can also specify an array of attribute names (such

v9.3.1.1 59

SDK Developer Guide - Using Agile APIs

as {"Title Block.Description", "Title Block.Number"}) or attribute ID constants.
The following example shows how to specify result attributes using ID constants.
Example: Setting query result attributes by specifying ID constants
private void setQueryResultColumns (IQuery query) throws APIException {
// Put the attribute IDs into an array
Integer[] attrs = { ItemConstants.ATT TITLE BLOCK NUMBER,
ItemConstants.ATT TITLE BLOCK DESCRIPTION,
ItemConstants.ATT TITLE BLOCK LIFECYCLE PHASE,
ItemConstants.ATT PAGE TWO TEXTO01,
ItemConstants.ATT PAGE TWO NUMERICO1,
ItemConstants.ATT PAGE THREE TEXTO1l };
// Set the result attributes for the query
query.setResultAttributes(attrs);

}

When you use the setResultAttributes () method, make sure you specify valid result
attributes. Otherwise, the setResultAttributes () method will fail. To get an array of available
result attributes that can be used for a query, use getResultAttributes (), as shown in the
following example.

Example: Getting the array of available result attributes

private IAttribute[] getAllResultAttributes (IQuery query) throws
APIException

IAttribute[] attrs = query.getResultAttributes(true);
return attrs;

}
Retrieving CTO Originator Name

The Cover Page of the Content Transfer Order (CTO) includes the Originator field which specifies
roles and site assignments of users who originate CTOs. To retrieve the user name, you can not
query this field directly and need to retrieve data in UserConstants. For example, the following
statement which attempts to retrieve the user name directly, will not work:

QueryString = (" [Cover Page.Originator] equal to '<Last name>,
<First name>'");

But the following statements which also specify the data in UserConstants will work:

QueryString = " [Cover Page.Originator] in
(["+UserConstants.ATT GENERAL INFO USER ID+"]=='<UserID>')";
Or,
QueryString = "[Cover Page.Originator] in
(["+UserConstants.ATT_ GENERAL INFO LAST NAME+"]=='<Last name>'"+
n &&

["+UserConstants.ATT GENERAL INFO FIRST NAME+"]=='<First name>') ;

The query criteria for any innumerable attribute type such as IItem, IChange, and so on, must be
in a nested form. This applies to the Originator attribute which points to Agile All users.

60 Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

Duplicate Results for Site-Related Objects and AMLs

The manufacturing sites functionality of the Agile Application Server can have unintended results
when you search for items or changes. If you search for items or changes and include a sites
attribute— [Title Block.Site] foritems and [Cover Page.Site(s)] for changes—in the
result attributes, the query results include duplicate objects for each site associated with the object.
Similarly, if you search for items and include an AML attribute—such as [Manufacturers.Mfr.
Part Number]—in the result attributes, the query results include duplicate items for each
manufacturer part listed on an item’s Manufacturers table.

For example, a part with the number 1000-02 has five sites associated with it. If you search for that
part and include Title Block.Site in the result attributes, the resulting ITable object returned
by the IQuery.execute method contains five rows, not one. Each row references the same
object, part number 1000-02, but the Site cell has a different value. If you use
ITable.getReferentIterator to iterate through referenced objects in the search results, the
duplicate objects would be more apparent; in this example, you would iterate over the same item
five times.

Working with Query Results

When you run a query, the Agile API returns an ITable object, which extends
java.Util.Collection. You can use the methods of ITable and of
java.Util.Collection to work with the results. For example, the following code shows how to
use the Collection.iterator () method

Iterator it = query.execute() .iterator();

The ITwoWaylterator interface lets you traverse the list of rows in
either direction using the next () and previous() methods.
ITwoWayIterator it = query.execute () .getTablelterator() ;
ITwoWayIterator it = query.execute () .getReferentlIterator() ;

For more information about using ITwoWayIterator, see Iterating Over Table Rows on page 77.

Sorting Query Results

Unlike other Agile API tables, you cannot create a sorted iterator for query results using the
ITable.ISortBy interface. To sort query results, use SQL syntax and specify an ORDER BY
statement with the search criteria. For more information, see Using SQL Syntax for Search Criteria
on page 50.

Query Result Datatypes

Values in a query results table have the same datatype as their attributes. That is, if an attribute’s
datatype is an Integer, its value in a query results table is also an Integer.

Important Remember that in Agile 9.0 SDK, all values in a query results table are strings. In post
Agile 9.2, these values are integers.

v9.3.1.1 61

SDK Developer Guide - Using Agile APIs

Managing Large Query Results

Agile PLM has a system preference named Maximum Query Results Displayed that sets a limit on
the maximum number of rows that can be returned from any query. However, that preference
doesn't affect Agile SDK Clients. Queries that you run from an Agile SDK Client always return all
results.

Although you can access the entire query result set with the returned ITable object, the Agile API
internally manages retrieving partial results as necessary. For example, let's say a particular query
returns 5000 records. You can use the ITable interface to access any of those 5000 rows. You
don’t need to worry about how many of the 5000 rows the Agile API actually loaded into memory.

Note Searches that you run from other Agile PLM Clients, such as Agile Web Client, adhere to
the limit imposed by the Maximum Query Results Displayed preference.

Query Performance

The response time for running queries can be the biggest bottleneck in your Agile APl program. To
improve performance, you should try to construct queries that return no more than a few hundred
results. A query that returns more than a 1000 results can take several minutes to finish processing.
Such queries also eat up valuable processing on the Agile Application Server, potentially slowing
down your server for all users.

Creating a Where-Used Query

Previous sections of this chapter described how to create queries that search for Agile PLM objects,
for example, items or changes. You can also create where-used queries. In a where-used query,
the search conditions define the items that appear on the BOMs of objects. You can use a where-
used query to find the assemblies on which a particular part is used.

The interface for a where-used query is similar to a standard object query. With minor changes, you
can turn an object query into a where-used query as long as the query class is an Item class.

Note Where-used queries are only defined for Item classes.

To define a where-used query, use the IQuery.setSearchType () method. You can also use
the following logical operators, also called where-used set operators, to further define the
relationships between grouped sets of search conditions. Only one logical operator can be used for
each search condition.

Where Used set Description
operator
intersect Produces records that appear in both result sets from two different groups of search conditions.
minus Produces records that result from the first group of search conditions but not the second.
union Produces records that are the combination of results from two groups of search conditions.

62 Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

Note Where-used set operators have higher priority than other logical operators. Therefore,
search conditions joined by where-used set operations are evaluated before those joined

by ‘and’ or ‘or’ operators.

Example: Where-used query

void btnFind actionPerformed (ActionEvent e) ({
try {

// Create the query

IQuery wuquery =
(IQuery)m session.createObject (IQuery.OBJECT TYPE,
ItemConstants.CLASS ITEM BASE CLASS) ;

// Set the where-used type

wuquery . setSearchType (QueryConstants.WHERE USED ONE LEVEL LATEST RELEAS
ED) ;
// Add query criteria

wuquery.setCriteria(
"[Title Block.Part Category] == "Electrical™" +
"and [Title Block.Description] contains "Resistor™" +
"union [Title Block.Description] contains 400" +
"and [Title Block.Product Line(s)] contains "Taurus®'™);

// Run the query
ITable results = wuquery.execute();

// Add code here to display the results

}

catch (APIException ex) {System.out.println(ex);}

Loading a Query

There are two ways to load a query:
o Usethe IangileSession.getObject () method to specify the full path of a query.

o Usethe IFolder.getChild () method to specify the location of a query relative to a folder.

The following example shows how to load a query by specifying its full path.
Example: Loading a query using IAgileSession.getObject()
try

//Load the "Changes Submitted to Me" query

IQuery query =
(IQuery)m session.getObject(1Query.OBJECT_TYPE,

"/Workflow Routings/Changes Submitted To Me');

} catch (APIException ex) {
System.out .println (ex) ;

}

v9.3.1.1 63

SDK Developer Guide - Using Agile APIs

The following example shows how to load a query by specifying its path relative to a folder, in this
case the user’s Public In-box folder.
Example: Loading a query using IFolder.getChild()
try
//Get the Workflow Routings folder
IFolder folder =

(IFolder)m session.getObject (IFolder.OBJECT TYPE, "/Workflow
Routings") ;

//Load the "Changes Submitted to Me" query
IQuery query =
(IQuery) folder.getChild(*"Changes Submitted To Me");

} catch (APIException ex) {
System.out.println (ex) ;
}

Deleting a Query

To delete a saved query, use the IQuery.delete () method. Temporary queries, that is, queries
that are created but not saved to a folder are automatically deleted after the user session is closed.

For lengthy sessions, you can use the delete () method to explicitly delete a temporary query after
you're finished running it.

Example: Deleting a query

void deleteQuery(IQuery query) throws APIException
query.delete();

Simple Query Examples

Figure below depicts an example of dialog box that performs a simple query.
Figure 4: Simple Query dialog box

E‘%Simple Query Hi=E3

ltem # m Find |
Iterm # Itern Description

1232-M 180wy POWER SUPPLY

1232-02 2300 POWWER SUPPLY

MAI1232 COMPUTER ASSY INSTRUCTIONS

4 | 2l

The Simple Query dialog box lets the user specify an item number to search for. When the user
clicks the Find button, the program constructs a query to find all items that contain the specified text

inthe Item Number field. This example shows the code that runs the query when the user clicks
the Find button.

64 Agile Product Lifecycle Management

Chapter 3: Creating and Loading Queries

Example: Simple Query code
void btnFind actionPerformed (ActionEvent e) ({
try {
// Create the query
IQuery query = (IQuery)m session.createObject(1Query.OBJECT_TYPE,
ItemConstants.CLASS ITEM BASE_CLASS);
// Turn off case-sensitivity
query.setCaseSensitive(false);

// Specify the criteria data

query.setCriteria("[Title Block.Number] contains (%0)",
new String[] { this.txtltemNum.getText().toString() 1});
// Run the query

ITable queryResults = query-execute();

Iterator i = queryResults.iterator();

// If there are no matching items, display an error message.

if (!i.hasNext()) {
JOptionPane.showMessageDialog(null, "No matching items.", "Error",
JOptionPane.ERROR_MESSAGE);
return;

// Define arrays for the table data

final String[] names = {"Item Number", "Item Description"};
final Object[] [] data = new Object[resultCount] [names.length];
int j = 0;
while (i.hasNext()) ({
IRow row = (IRow)i.next();
datal[j] [0] =
row.getValue (ItemConstants.ATT TITLE BLOCK NUMBER) .toString() ;
datalj] [1] =
row.getValue (ItemConstants.ATT TITLE BLOCK DESCRITPION) .toString() ;
J++;

}

catch (APIException ex) ({
System.out .println (ex) ;

}

// Create a table model
TableModel newDataModel = new AbstractTableModel ()
// Add code here to implement the table model

}i

// Populate the table with data from the table model
myTable.setModel (newDataModel) ;

v9.3.1.1 65

SDK Developer Guide - Using Agile APIs

66 Agile Product Lifecycle Management

Chapter 4
Working with Tables

This chapter includes the following:

B ADOUE TADIES. ...ttt 67
B REBVING 8 TADIE. ...ttt bRt 68
= Accessing the New and Merged Relationships TaDIES.........coevirriniinceres e 69
= Retrieving the Metadata 0f @ TADIE.ccriiicee bbb e 71
B AAAING TADIE ROWS......o.cieiiiciiiicie sttt sttt s bbbt bbbttt s e s s e s 71
= Adding and Updating MUltiple Table ROWS.......cccveuriiriniieiessses s sssssss s ssnsssssssesssnnes 74
= |terating Over Table Rows

B SOMING TADIE ROWS ..ottt ettt bbb

5 REMOVING TADIE ROWS......iuiuiiiiiiiietsiete ettt bbb as bbb bbbt bbbt

= Retrieving the Referenced OBJECE FOr @ ROWcocuiiiiiice et 81
= Checking Status Flags 0f @ ROW.......cccciieiiiiiiceies st ssse bbb 85
= Working with Page 1, Page 2, and PAgE 3.......cccverieiriierirssiesns st s sesssessssessnnes 86
N (-0 113710 TP 86
= RemMOVING REAINE CRANGES ..ottt bbbt bbbt 89
= |dentifying Redlined Rows and RedNEd CellS ...t 90

Abhout Tables

Whenever you work with an Agile PLM object in your program, you inevitably need to get and
display the object’s data. The data is contained in one or more tables. In Agile Web Client, these
tables are equivalent to the separate tabs in a window, such as the Manufacturers and BOM tabs.

The following figure shows the BOM tab for an item in Agile Web Client.
Figure 5: BOM tab for Item

Title Block Changes @ BOM @ hanufacturers Sites @ Prices Guality Complisnce Suppliers Relationships Where Used Attachments

Effective From: .10 ..

Mutilevel. ¥ Go To. Selacted: 00112 |4 4 Page: [1 =] af2 b M
C & @: @ Rem Humber tem Deseription oty Ref Des ... tem Rev Effective
MAI1 250 Computer Assy Instructions REF iy Privilegy
MTI1 ooo Computer Test Instructions REF Mo Priviled
QAT2321 Computer FCC Test Resutts REF Mo Privileg
[Ev R . PV Midd-Size Case il B 23478 R Privile
& @ 698?5-01 IDE Hard Disk Controller 1 Mo Priviled
Presa.o 1.0GB IDE Hard Disk 1 Mo Priviley
B & B [P—— D Power Cable 3 £ 23450 M Priviieg
@ 55542_01 3.5" Floppy Disk Drive 1 Mo Privileg
B Barsem 2B Video Carc 1 o Priviien
| Fosa.m 2% Speed CO-ROM Drive 1 o Privileg
4] | 1]
IR (e m 14 4 Page: m |

In some cases, a tab in Agile Web Client contains multiple tables. For example, the Changes tab for

v9.3.1.1 67

SDK Developer Guide - Using Agile APIs

an item contains the Pending Changes table and the Change History table. The tabs and the tables
that they contain is not always the same for different Agile products. Also, they are not the same for
each Agile PLM Dataobject. For example, tables for Parts objects are different from tables for
Manufacturers objects. See Retrieving a Table on page 68.

To work with data in an Agile PLM table, follow these basic steps:

1. Create or get an object (for example, an item or a change order).

2. Retrieve a table (for example, the BOM table).

3. lterate through the table rows to retrieve a row.

4. Get or set one or more attribute values for the selected row.

ITable, like IFolder, extends java.util.Collection and supports all the methods provided

by that superinterface. This means that you can work with an ITable object as you would any Java
Collection.

Interface Inherited methods
java.util.Collecti add(), addall(), clear(), contains(), containsaAll(),
on equals (), hashCode(), isEmpty (), iterator(), remove(),
removeAll (), retainAll (), size(), toArray (), toArray/()

Retrieving a Table

After you create or get an object, you can use the IDataObject.getTable () method to retrieve
a particular Agile PLM table. IDataObject is a general-purpose object that represents any Agile
PLM object that contains tables of data. It is a superinterface of several other objects, including
IItem, IChange, and IUser.

Note When retrieving PG&C'’s Supplier Declaration of Conformance (SDOC) tables,
IDataObject.getTable () retrieves all 14 SDOC tables belonging to this base class.
However, six of these tables (Items, Manufacturer Parts, Part Groups, Item Composition,
Manufacturer Part Composition, Part Group Composition) are not enabled.

Tables vary for each Agile PLM dataobject. Tables for change objects are different from tables for
items. Each table for a particular dataobject is identified by a constant in the constants class for that
dataobject. Item constants are contained in the ItemConstants class, change constants are
contained in the ChangeConstants class, and so on.

For information to use these tables, refer to the following Agile product administration documents:
o Getting Started with Agile PLM

= Agile PLM Administrator Guide

o Agile PLM Product Governance & Compliance User Guide

o Agile PLM Product Portfolio Management User Guide

68 Agile Product Lifecycle Management

Chapter 4: Working with Tables

Accessing the New and Merged Relationships Tables

In Release 9.2.2, the following tables were merged into a single table called the Relationships
table.

B Relationships.AffectedBy
B Relationships.Affects

B Relationships.Reference

In addition, the constants that are used by these tables (TABLE REFERENCES,
TABLE RELATIONSHIPSAFFECTS, and TABLE RELATIONSHIPSAFFECTEDBY) were also
removed. If you need these constants, you must rewrite them in your routines.

Note For a complete list of table constants that are merged and mapped into a single
constants, or mapped into a new constant, see Migrating Release 9.2.1 and Older
Table Constants to Release 9.2.2 on page 367.

For information to use these tables, refer to the following Agile documents:

o To use these tables in Agile PLM products, refer to Getting Started with Agile PLM and Agile
PLM Administrator Guide

o To use these tables in Agile PPM products, refer to Agile PLM Product Portfolio Management
User Guide

Accessing the Relationships Table

The IRelationshipContainer interface was implemented to access this table. Any Agile
business object that contains the Relationships table implements this interface. You can access this
table using IRelationshipContainer, or IDataObject .getTable () with
CommonConstants.TABLE RELATIONSHIPS constant.
IRelationshipContainer container = (IRelationshipContainer) object;
ITable relationship = container.getRelationship() ;

Accessing the Merged Tables

If you used these tables in previous releases of Agile PLM, and require the functionalities that they
provided, modify your code as shown below.

Accessing the Merged Relationships.AffectedBy Table

o Code used in Release 9.2.1.x and earlier releases:

ITable affectedBy =
object.getTable (ChangeConstants.TABLE RELATIONSHIPSAFFECTEDBY) ;

B Code recommended for this release:

ITable affectedBy =
object.getTable (CommonConstants.TABLE RELATIONSHIPS)
.where (" [2000007912] == 1", null);

v9.3.1.1 69

SDK Developer Guide - Using Agile APIs

Accessing the Merged Relationships.Affects table

o Code used in Release 9.2.1.x and earlier releases:
ITable affects =
object .getTable (ChangeConstants.TABLE RELATIONSHIPSAFFECTS) ;

o Code recommended for this release:
ITable affects =
object.getTable (CommonConstants.TABLE RELATIONSHIPS)
.where (" [2000007912] == 2", null);

Accessing the Merged Relationships.References Table

o Code used in Release 9.2.1.x and earlier releases:

ITable references =

object.getTable (ChangeConstants.TABLE RELATIONSHIPS REFERENCES) ;
8 Code recommended for this release:

ITable references =
object.getTable (CommonConstants.TABLE RELATIONSHIPS)
.where (" [2000007912] == 3", null);

Important The ITable.where () method is certified for deployment with these three tables
only, and it may fail if it is used to access other tables from the SDK.

The following example shows how to retrieve and print the BOM table for an item.
Example: Retrieving the BOM table

//Load an item

private static IItem loadPart (String number) throws APIException ({

ITtem item = (IItem)m session.getObject (ItemConstants.CLASS PART,
number) ;

return item;
}
//Get the BOM table
private static void getBOM(IItem item) throws APIException ({
IRow row;
ITable table = item.getTable(ltemConstants.TABLE BOM);
Iterator it = table.iterator () ;
while (it.hasNext()) {
row = (IRow)it.next();
//Add code here to do something with the BOM table
}
}

70 Agile Product Lifecycle Management

Chapter 4: Working with Tables

Working with Read-only Tables

Several Agile PLM tables store history information or data about related objects. These tables are
read-only and as such, you cannot modify these tables. When you write code to access a table, use
the ITable.isReadOnly () method to check if the table is read-only.

Retrieving the Metadata of a Table

The ITableDesc is an interface that represents the metadata of a table which is the underlying

data that describes a table’s properties. ITableDesc is related to ITable in the same way that

IAgileClass is related to IDataObject. At times you may need to identify the attributes for a

particular table, its ID, or its table name without loading a dataobject. The following example shows

how to use the ITableDesc interface to retrieve the collection of all attributes (including ones that

aren'’t visible) for a table.

Example: Retrieving the metadata of a table

private IAttribute[] getBOMAttributes() throws APIException ({

IAgileClass cls = admin.getAgileClass (ItemConstants.CLASS PART) ;
ITableDesc td = cls.getTableDescriptor(ltemConstants.TABLE_BOM);
IAttribute[] attrs = td.getAttributes();

return attrs;

You can also use the API Name field to identify a table's name or ID. For information to use this
field, see Accessing PLM Metadata with APIName Field on page 125. For information to use the
Agile API to work with metadata, see Performing Administrative Tasks on page 335.

Adding Table Rows

To create a table row, use the ITable.createRow (java.lang.Object) method, which creates
a new row and initializes it with the data specified in the param parameter. The param parameter
of createRow is available to pass the following data:

o a set of attributes and values for the row’s cells
o files or URLs to add to the Attachments table

o an Agile PLM object (such as an IItem) to add to the table

When you add a row to a table, it's not necessarily added at the end of the table.

Note There is also a deprecated, parameter-less version of the createRow () method, which
creates an empty row. Avoid using that method because it may not be supported in
future Agile PLM releases. You must initialize a row with data when you create it.

You can also add table rows in batch format with ITable.createRow (). See Adding and
Updating Multiple Table Rows on page 74.

v9.3.1.1 71

SDK Developer Guide - Using Agile APIs

Adding an Item to the BOM Table

The following example shows how to use the ITable.createRow () method to add an itemto a
BOM table.

Example: Adding arow and setting values
private static void addToBOM(String number) throws APIException {

ITtem item = (IItem)m session.getObject (ItemConstants.CLASS PART,
number) ;

ITable table = item.getTable(ItemConstants.TABLE_ BOM) ;

Map params = new HashMap () ;

params.put (ItemConstants.ATT BOM ITEM NUMBER, "1543-01");
params.put (ItemConstants.ATT BOM QTY, "1");
item.setManufacturingSite (ManufacturingSiteConstants.COMMON SITE) ;
IRow row = table.createRow(params);

}

Note To add a site-specific row to the BOM table, use

IManufacturerSiteSelectable.setManufacturingSite () to select a specific
site before calling ITable.createRow ().

Adding an Attachment to the Attachments Table

The following example shows how to use the ITable.createRow (java.lang.Object)
method to add a row to the Attachments table. The code adds a row to the table and initializes it
with the specified file. After adding the row, the code also sets the value of the File Description field.

Example: Adding arow to the Attachments table
private static void addAttachmentRow (String number) throws APIException

File file = new File("d:/MyDocuments/1543-01.dwg") ;

ITtem item = (IItem)m session.getObject (ItemConstants.CLASS PART,
number) ;

ITable table = item.getTable(ItemConstants.TABLE ATTACHMENTS) ;
IRow row = table.createRow(file);

}
Adding a Manufacturer Part to the Manufacturers Table

The following example shows how to use the ITable.createRow (java.lang.Object) method

to add a row to the Manufacturers table of an item. The code adds a row to the table and initializes

it with the specified IManufacturerPart object.

Example: Adding arow to the Manufacturers table

private static void addMfrPartRow(String number) throws APIException ({
HashMap info = new HashMap () ;

info.put (ManufacturerPartConstants.ATT GENERAL INFO MANUFACTURER PART N
UMBER, "TPS100-256");

72 Agile Product Lifecycle Management

Chapter 4: Working with Tables

info.put (ManufacturerPartConstants.ATT GENERAL INFO MANUFACTURER NAME,
"TPS_POWER") ;

IManufacturerPart mfrPart = (IManufacturerPart)m session.getObject (
ManufacturerPartConstants.CLASS MANUFACTURER PART, info
) ;

ITtem item = (IItem)m session.getObject (ItemConstants.CLASS PART,
number) ;

item.setManufacturingSite (ManufacturingSiteConstants.COMMON SITE) ;
ITable table = item.getTable(ItemConstants.TABLE MANUFACTURERS) ;
IRow row = table.createRow(mfrPart);

}

Note To add a site-specific row to the Manufacturers table, use
IManufacturerSiteSelectable.setManufacturingSite () to select a specific
site before calling ITable.createRow ().

Adding an Item to the Affected Items Table

The following example shows how to use the ITable.createRow (java.lang.Object) method
to add a row to the Affected Items table of a change order. The code adds a row to the table and
initializes it with the specified IItem object.
Example: Adding arow to the Affected Items table

private static void addItemRow(String number) throws APIException {

ITtem item = (IItem)m session.getObject (ItemConstants.CLASS PART,
"P522-103") ;

IChange change =
(IChange)m session.getObject (ChangeConstants.CLASS ECO, number) ;

ITable table = change.getTable (ChangeConstants.TABLE AFFECTEDITEMS) ;
IRow row = table.createRow(item) ;

}

Because the BOM table also references IItem objects, you can use code similar to those in
Example 49 to add a row to a BOM table.

Adding a Task to the Schedule Table

The following example shows how to use the ITable.createRow(java.lang.Object) method to add a
row to the Schedule table of a Project. The code adds a row to the table and initializes it with the
specified IProgram object.

Example: Adding arow to the Schedule table

private static void addTaskRow (IProgram program, IProgram task) throws
APIException {

// Get the Schedule table of the program

ITable table = program.getTable (ProgramConstants.TABLE SCHEDULE) ;
// Add the task to the schedule

IRow row = table.createRow(task);

v9.3.1.1 73

SDK Developer Guide - Using Agile APIs

Adding and Updating Multiple Table Rows

The ITable interface provides two convenient methods for adding and updating multiple table rows
with one API call:

o ITable.createRows ()

B ITable.updateRows ()

Because these methods group multiple table rows in one API call, they can improve performance by
reducing the number of Remote Procedure Calls (RPCs), particularly if you are connecting to the
server across a Wide Area Network (WAN). However, these methods do not result in efficient batch
operations on the Agile Application Server, which simply iterates through each row being added or
updated.

Important The ITable.createRows () and ITable.updateRows () methods are supported
only when you are adding or updating multiple rows on the BOM table of items, or the
Affected Items table of Changes.

Adding Multiple Team Members to the Team Table of a Project

The following example shows how the ITable.createRows () method supports the Team Table
of a Project.

Example: Adding Multiple Team members to a Program using the Bulk API

private static void createTeamRows (String[] addTeamMembers) throws
APIException
//Get the Project
IProgram program = (IProgram)session.getObject (IProgram.OBJECT TYPE,
programNumber) ;
//Get the Team Table
ITable teamTable = program.getTable (ProgramConstants.TABLE TEAM) ;
IAgileList attrRolesValues =
teamTable.getAvailableValues (ProgramConstants.ATT TEAM ROLES) ;
attrRolesValues.setSelection (new Object [] {"Change
Analyst", "Program Team Member"});
//Collect team members already on Team Table
Set presentMembers = new HashSet ()
Iterator it = teamTable.iterator ()
while (it.hasNext ()) {
IRow row = (IRow)it.next () ;
IUser user = (IUser)row.getReferent () ;
presentMembers.add (user) ;

I
1

//Validate new team members and filter out existing members to
and to Team Table

IUser user = null;

IUser[] newUsers= new IUser [addTeamMembers.length] ;

int usrCount = 0;

for(int i =0; i<addTeamMembers.length; i++) {

74 Agile Product Lifecycle Management

Chapter 4: Working with Tables

user = (IUser)session.getObject (IUser.OBJECT TYPE,
addTeamMembers [i]) ;
if (!presentMembers.contains (user) || user==null) ({

newUsers [usrCount++] =user;

}
}

//Using createRows () API to add all Team members at onece
//In this bulk approach, make sure each map in array is complete
by it self to create a new row in Team Table.
List<Map> newTeam=new ArrayList<Map> () ;
for (int 1=0; i<usrCount; 1i++)
Map teamMap = new HashMap () ;
teamMap.put (ProgramConstants.ATT TEAM NAME, newUsers([i]);
teamMap.put (ProgramConstants.ATT TEAM ROLES,
attrRolesValues) ;
teamMap.put (ProgramConstants.ATT TEAM ALLOCATION, O0);
newTeam.add (teamMap) ;

}

teamTable.createRows (newTeam. toArray (new Object [0])) ;

}
Adding Multiple Items to the BOM Table

The following example shows how to use the ITable.createRows () method to add multiple
items to a BOM table.
Example: Adding multiple rows and setting values

private static void createBOMRows (String partNumber) throws
APIException

ITtem[] child = new IItem [3];
IItem parent = null;
ITable tab = null;

// Get the parent item

parent = (IItem) m session.getObject (IItem.OBJECT TYPE, partNumber) ;
// Get the BOM table

tab = parent.getTable (ItemConstants.TABLE BOM) ;

// Create child items

child[0] = (IItem) m session.createObject (ItemConstants.CLASS PART,
partNumber + "-1");

child[1] = (IItem) m session.createObject (ItemConstants.CLASS PART,
partNumber + "-2");

child[2] = (IItem) m session.createObject (ItemConstants.CLASS PART,

partNumber + "-3");
// Create a row array
IRow[] rowArray = new IRow[3];

// Add the items to the BOM

v9.3.1.1 75

SDK Developer Guide - Using Agile APIs

rowArray = tab.createRows (new Object[]{child[o], child[1],
child[2]1});

}

Note To add a site-specific row to the BOM table, use
IManufacturerSiteSelectable.setManufacturingSite () to select a specific
site before calling ITable.createRow ().

Updating Multiple BOM Rows

To update multiple rows, use the ITable.updateRows () method. This method batches together
multiple update operations into a single call. Instead of calling IRow.setValues () for multiple
rows in a table, this API updates an entire table in one method call.

The rows parameter of updateRow () can be used to pass a Map containing IRow instances as
keys with instances for values. The value Map objects should have attribute IDs as keys and
replacement data for values.

Example: Updating multiple BOM rows

private static void updateBOMRows (String partNumber) throws
APIException {

IItem parent = null;

ITable tab = null;

HashMap[] mapx = new HashMap[3];
Map rows = new HashMap() ;

IRow([] rowArray = new IRow[3];

// Get the parent item

parent = (IItem) m session.getObject (IItem.OBJECT TYPE, partNumber) ;
// Get the BOM table

tab = parent.getTable (ItemConstants.TABLE BOM) ;

// Create three items

ITtem childl = (IItem)
m_session.createObject(ItemConstants.CLASS_PART, partNumber + "-1");
ITtem child2 = (IItem)
m_session.createObject (ItemConstants.CLASS PART, partNumber + "-2");
IItem child2 = (IItem)

m_session.createObject (ItemConstants.CLASS PART, partNumber + "-3");

// Add these items to BOM table rowArray = tab.createRows (new
Object []{childl, child2, child3});

// New values for child[O0]

mapx [0] = new HashMap () ;

mapx [0] .put (ItemConstants.ATT BOM_ FIND NUM, new Integer(1l));
mapx [0] .put (ItemConstants.ATT BOM _QTY, new Integer(3));

mapx [0] .put (ItemConstants.ATT BOM REF DES, "Al-A3");
rows.put (rowArray [0], mapx[0]) ;

// New values for child[1]

mapx [1] = new HashMap () ;

76 Agile Product Lifecycle Management

Chapter 4: Working with Tables

mapx [1] .put (ItemConstants.ATT BOM FIND NUM, new Integer(2));
mapx [1] .put (ItemConstants.ATT BOM QTY, new Integer(3)) ;
mapx[1] .put (ItemConstants.ATT BOM_REF DES, "B1-B3");

rows .put (rowArray [1], mapx[1l]) ;

// new values for child[2]

mapx [2] = new HashMap () ;

String strA = "BOM-Notes" + System.currentTimeMillis() ;

mapx [2] .put (ItemConstants.ATT BOM BOM NOTES, strA);

mapx [2] .put (ItemConstants.ATT BOM_ FIND NUM, new Integer(3));
rows.put (rowArray[2], mapx[2]);

// Update the BOM table rows

tab.updateRows (rows) ;

Iterating Over Table Rows

When you use the Agile API to get a table, such as a BOM table, your program often needs to
browse the rows contained in the table. To access an individual row, you first have to get an iterator
for the table. You can then iterate over each row to set cell values.

The Agile API does not support random access of rows in a table. This means that you can't
retrieve a specific row by index number and then update it. When you add or remove a row, the
entire table is resorted and the existing table iterator is no longer valid.

To browse the data in table, create an iterator for the table using one of these methods:

B ITable.iterator () —returns an Iterator object, allowing you to traverse the table from
the first row to the last.

o ITable.getTablelIterator () —returns an ITwoWayIterator object, allowing you to
traverse the table rows forwards or backwards. You can also use ITwoWayIterator to skip a
number of rows. ITwoWaylterator is preferred over Iterator if your program displays table rows
in a user interface.

= ITable.getTablelterator (ITable.ISortBy[]) —returns a sorted ITwoWayIterator
object.
B ITable.getReferentIterator () —returns an ITwoWayIterator object for the objects

referenced in the table.

When you work with an iterator for a table, you don’t need to know the total number of rows in the
table. Instead, you work with one row at a time. Although the ITable interface provides a size ()
method, which calculates the total number of rows in the table, it's considered a resource extensive
operation performance-wise and as such, is not recommended for large tables, particularly if your
code already uses an iterator to browse the table.

The following example demonstrates how to get an iterator for a table and use ITwoWayIterator
methods to traverse forwards and backwards over the table rows.

Example: lIterating over table rows

try {
// Get an item

v9.3.1.1 77

SDK Developer Guide - Using Agile APIs

ITtem item = (IItem)m session.getObject (ItemConstants.CLASS PART,
"1000-02") ;

// Get the BOM table
ITable bom = item.getTable (ItemConstants.TABLE BOM) ;
ITwoWayIlterator i = bom.getTablelterator();
// Traverse forwards through the table
while (i.hasNext()) {
IRow row = (IRow)i.next();
// Add code here to do something with the row

}

// Traverse backwards through the table
while (i-hasPrevious()) {
IRow row = (IRow)i.previous();
// Add code here to do something with the row

}

} catch (APIException ex) {
System.out.println (ex) ;

}

The ITwoWayIterator object allows a user interface to display table rows on multiple pages,
which is perhaps more practical than the use of ITwoWayIterator shown inthe preceding
example. For example, instead of displaying a single scrolling page of several hundred BOM items,
you can break the table into pages displaying 20 BOM items per page. To navigate from page to
page, your program should provide navigation controls such as those shown in the figure below.

Figure 6: Navigation controls in the Agile Web Client

M 4Page: [12] of 2} M
Updating Objects in Query Results with Multiple Page Tables

When you invoke getReferentIterator to update objects in search results tables that contain
more than 200 results, getReferent Iterator will not update all the objects that are returned by
the query. For example, when you run a query to match a value in a field, and then edit the same
value while iterating through the results with getReferentIterator, the query completes the first
page with no problem. However, when it queries the remaining pages, some table rows are not
updated. There are several ways to overcome this limitation. The following is one such example.

Example: Updating all table rows when iterating large query results

1. Increase the table page size for this query so that it can contain the results in a single page.
2. Run the query several times and keep updating the results until query results are empty.

3. Do not query on the same field that you are updating.

78 Agile Product Lifecycle Management

Chapter 4: Working with Tables

Updating Table Rows when Iterating Large Query Results

Follow steps in the following example.

To update all table rows when iterating large query results:
1. Increase the table page size for this query so that it can contain the results in a single page.
2. Run the query several times and keep updating the results until query results are empty.

3. Do not query on the same field that you are updating.

Sorting Table Rows

To sort the rows in a table by a particular attribute, use

getTablelterator (ITable.ISortBy[]) toreturn a sorted iterator. The ISortBy parameter
of getTableIterator () is an array of ITable.ISortBy objects. To create an ISortBy object,
use createSortBy (IAttribute, ITable.ISortBy.Order). The order parameter of
createSortBy () isone of the ITable.ISortBy.Order constants either ASCENDING or
DESCENDING.

Note The Agile API allows you to sort a table by only one attribute. Therefore, the ISortBy
array that you specify for the ISortBy parameter of getTableIterator () must
contain only one ISortBy object.

The following example sorts the BOM table by the BOM | Item Number attribute.
Example: Sorting atable iterator
try {
// Get an item

ITtem item = (IItem)m session.getObject (ItemConstants.CLASS PART,
"1000-02") ;

// Get the BOM table

ITable bom = item.getTable (ItemConstants.TABLE BOM) ;
// Get the BOM | Item Number attribute

IAgileClass cls = item.getAgileClass() ;

IAttribute attr =
cls.getAttribute (ItemConstants.ATT BOM_ ITEM NUMBER) ;

// Specify the sort attribute for the table iterator

ITable.ISortBy sortByNumber = bom.createSortBy(attr,
ITable.1SortBy.Order.ASCENDING) ;

// Create a sorted table iterator

ITwoWayIlterator i = bom.getTablelterator(new ITable.l1SortBy[]
{sortByNumber});

// Traverse forwards through the table
while (i.hasNext()) {
IRow row = (IRow)i.next();
// Add code here to do something with the row

v9.3.1.1 79

SDK Developer Guide - Using Agile APIs

}

} catch (APIException ex) {
System.out.println (ex) ;

}

The following Product Sourcing and Projects Execution objects load tables a bit differently and
therefore cannot be sorted using the getTableIterator (ITable.ISortBy[]) method. For
any tables of these objects, create an unsorted iterator using the iterator () or
getTableIterator () methods.

B IDiscussion

8 IPrice

o IProgram

8 IProject

B IRequestForQuote
8 ISupplier

B TISupplierResponse

The ITable.ISortBy interface is not supported for query result tables. To sort query results, use
SQL syntax and specify an ORDER BY statement with the search criteria. For more information, see
Using SQL Syntax for Search Criteria on page 50.

Removing Table Rows

To remove a row from a table, use the ITable.removeRow () method, which takes one
parameter, an IRow object. You can retrieve a row by iterating over the table rows.

If a table is read-only, you can’t remove rows from it. For more information, see Working with Read-
only Tables on page 70. If you are working with a released revision of an item, you can’t remove a
row from the item’s tables until you create a change order for a new revision.

Example: Removing a table row
try
// get an item

IItem item = (IItem)m session.getObject (ItemConstants.CLASS PART,
"1000-02") ;

// get the BOM table
ITable bom = item.getTable (ItemConstants.TABLE BOM) ;
ITwoWayIterator i = bom.getTableIterator () ;
// find the bom component 6642-01 and remove it
while (i.hasNext()) {

IRow row = (IRow)i.next();

String bomitem =
(String) row.getValue (ItemConstants.ATT BOM ITEM NUMBER) ;

if (bomitem.equals("6642-01")) {
bom. removeRow(row) ;
break;

80 Agile Product Lifecycle Management

Chapter 4: Working with Tables

}
}

} catch (APIException ex) {
System.out.println (ex) ;

}

Because ITable implements the Collection interface, you can use Collection methods to
remove table rows. To remove all rows in a table, use Collection.clear ().
Example: Clearing atable
public void clearAML (IItem item) throws APIException
// Get the Manufacturers table
ITable aml = item.getTable (ItemConstants.TABLE MANUFACTURERS) ;
// Clear the table
aml.clear();

Retrieving the Referenced Object for a Row

Several Agile PLM tables contain rows of information that reference other Agile PLM objects. For
example, the BOM table lists all items that are included in a Bill of Material. Each row of the BOM
table represents an item. While working with a row on a BOM table, your program can allow the
user to open the referenced item to view or modify its data.

Table below lists Agile PLM tables that reference other Agile PLM objects. All Agile PLM objects are
referenced by number (for example, Item Number, Change Number, or Manufacturer Part Number).

Object Table Referenced Object(s)
IChange Affected Items ITtem
Affected Prices IPrice
Attachments IAttachmentFile
Relationships Multiple object types
ICommodity Attachments IAttachmentFile
Compositions IDeclaration
Parts ITtem
Specifications ISpecification
ISubstance
Substances
. ISupplier
Suppliers
ICustomer Attachments IAttachmentFile
Related PSR IServiceRequest

v9.3.1.1 81

SDK Developer Guide - Using Agile APIs

Object Table Referenced Object(s)
IDeclaration Attachments IAttachmentFile
ltem Composition ISubstance
ltems ITtem
Manufacturer Part Composition ISubstance
IManufacturerPart
Manufacturer Parts
. ISubstance
Part Group Composition .
ICommodity
Part Groups . .
_ _ Multiple object types
Relationships ISpecification
Specifications
IDiscussion Attachments IAttachmentFile
Where Used Not supported
IFileFolder Files IAttachmentFile
Relationships Multiple object types
Where Used Multiple object types
ITtem Attachments IAttachmentFile
BOM ITtem
Change History IChange
Compositions IDeclaration
IManufacturerPart
Manufacturers
) ITItem
Pending Change Where Used
) IChange
Pending Changes IPrice
Prices IServiceRequest or
Quality IQualityChangeRequest
Redline BOM Titem

. IManufacturerPart
Redline Manufacturers

IManufacturingSite

Sites
. ISpecification
Specifications
ISubstance
Substances ITtem
Where Used

82 Agile Product Lifecycle Management

Chapter 4: Working with Tables

Object Table Referenced Object(s)
IManufacturerPart Attachments IAttachmentFile
Compositions IDeclaration
Prices IPrice
Specifications ISpecification
ISubstance
Substances
) ISupplier
Suppliers
ITtem
Where Used
IManufacturer Attachments IAttachmentFile
Where Used IManufacturerPart
IManufacturingSit Attachments IAttachmentFile
e
IPackage Attachments IAttachmentFile
IPrice Attachments IAttachmentFile
Change History IChange
Pending Changes IChange
IProgram Attachments IAttachmentFile
Deliverables - Affected By Multiple object types
Deliverables - Affects Multiple object types
Dependencies - Dependent IProgram
Upon IProgram
Dependencies - Required For IDiscussion
Discussion Multiple object types
Links IProgram
Schedule IUser and IUserGroup
Team
IProject Attachments IAttachmentFile
BOM ITtem
ltem Changes IChange
ITtem
Items
IManufacturerPart
Manufacturer Items
) IChange
Pending Change .
ISupplierResponse
Responses IRequestForQuote
RFQs
v9.3.1.1 83

SDK Developer Guide - Using Agile APIs

Object Table Referenced Object(s)
IQualityChangeReq | Affected Items IItem
uest Attachments IAttachmentFile
PSR ltems tltem
Relationships Multiple object types
IRequestForQuote Attachments IAttachmentFile
IServiceRequest Affected Items ITtem
Attachments IAttachmentFile
Related PSR IServiceRequest
Relationships Multiple object types
ISpecification Attachments IAttachmentFile
Substances ISubstance
ISubstance Attachments IAttachmentFile
Composition ISubstance
Where Used Multiple object types
ISupplierResponse Attachments IAttachmentFile
ISupplier Attachments IAttachmentFile
Manufacturers IManufacturer
PSRs IServiceRequest
ITransferOrder Attachments IAttachmentFile
Selected Objects Multiple object types
IUser Attachments IAttachmentFile
Subscription Multiple object types
User Group IUserGroup
IUserGroup Attachments IAttachmentFile
Users IUser

The following example shows how to retrieve the referenced IChange object from the Pending
Changes table for an item.
Example: Retrieving a referenced Change object

void getReferencedChangeObject (ITable changesTable) throws APIException

Iterator i = changesTable.iterator () ;

while (i.hasNext()) ({
IRow row = (IRow)i.next();
IChange changeObj = (IChange)row.getReferent () ;
if (changeObj != null) {

84 Agile Product Lifecycle Management

Chapter 4: Working with Tables

//Add code here to do something with the IChange object
}

}
}

The following example shows how the code in Example 57 can be simplified by using the
ITable.getReferentIterator () method to iterate through the table’s referenced objects.
Example: Iterating through referenced objects

void iterateReferencedChangeObjects (ITable changesTable) throws
APIException (

Iterator i = changesTable.getReferentlterator();

while (i.hasNext()) {
IChange changeObj = (IChange)i.next();
if (changeObj != null) {

//Add code here to do something with the IChange object

}
}
}

Checking Status Flags of a Row

Sometimes you may want to perform an action on an object only if it meets certain status criteria.
For example, if the selected object is a released change order, your program may not allow the user
to modify it. To check the status of an object, use the IRow. isFlagSet () method. The
isFlagSet () method returns a boolean value true or false.

Status flag constants are defined in the following classes:
o CommonConstants — Contains status flag constants common to Agile PLM objects.
B ChangeConstants — Contains status flag constants for IChange objects.

B TItemConstants — Contains status flag constants for ITtem objects.

The following example shows how to use the isFlagSet () method to determine whether an item
has attachments.

Example: Checking the status flag of an object
private static void checkAttachments (IRow row) throws APIException (

try {
boolean b;

b = row.isFlagSet(CommonConstants.FLAG_HAS ATTACHMENTS);

if (1b) |
JOptionPane.showMessageDialog(null, "The specified row does not
have attached files.", "Error", JOptionPane.ERROR MESSAGE) ;

}

} catch (Exception ex) {}

}

v9.3.1.1 85

SDK Developer Guide - Using Agile APIs

Working with Page 1, Page 2, and Page 3

Page One (that is, Title Block, Cover Page, and General Info pages), Page Two, and Page Three
contain a single row of data and are therefore not tabular in format. All other tables contain multiple
rows. Consequently, the data on Page One, Page Two, and Page Three is directly accessible. To
get and set values for these pages, you don’t need to get a table and then select a row. Instead, get
a specified cell, and then use the getvalue () and setValue () methods to display or modify the
data.

If you prefer accessing data cells in a consistent way throughout your program, you can still use the
Page One, Page Two, and Page Three tables to get and set values. The following example shows
two methods that edit the values for several Page Two fields for an item. The first method retrieves

the Page Two table and then sets the values for several cells. The second method accesses the

Page Two cells directly by calling the IDataObject.getCell () method. Either approach is valid,

but you can see that the second approach results in fewer lines of code.

Example: Editing Page Two cells
// Edit Page Two cells by first getting the Page Two table
private static void editPageTwoCells (IItem item) throws Exception ({

}

ICell cell = null;

DateFormat df = new SimpleDateFormat ("MM/dd/yy") ;
ITable table = item.getTable(ItemConstants.TABLE PAGETWO) ;
Iterator it = table.iterator();

IRow row = (IRow)it.next();

cell = row.getCell (ItemConstants.ATT PAGE TWO TEXTO01) ;
cell.setValue ("Aluminum clips") ;

cell = row.getCell (ItemConstants.ATT PAGE TWO MONEYO01) ;
cell.setValue (new Money (new Double(9.95), "USD"));

cell = row.getCell (ItemConstants.ATT PAGE TWO DATEO1l) ;
cell.setValue (df.parse("12/01/03"));

// Edit Page Two cells by calling IDataObject.getCell ()
private static void editPageTwoCells2 (IItem item) throws Exception ({

ICell cell = null;

DateFormat df = new SimpleDateFormat ("MM/dd/yy") ;

cell = item.getCell (ItemConstants.ATT PAGE TWO TEXTO01) ;
cell.setValue ("Aluminum clips") ;

cell = item.getCell (ItemConstants.ATT PAGE TWO MONEYO1) ;
cell.setValue (new Money (new Double(9.95), "USD")) ;

cell = item.getCell (ItemConstants.ATT PAGE TWO DATEOL) ;
cell.setValue (df .parse("12/01/03")) ;

86

Agile Product Lifecycle Management

Chapter 4: Working with Tables

Redlining

When you issue a change for a released item or a price agreement, the Agile API lets you redline
certain tables affected by the change. In the Agile PLM Clients, redline tables visually identify
values that have been modified from the previous revision. Red underlined text—thus the term
“redline"—indicates values that have been added, and red strikeout text indicates values that have
been deleted. People responsible for approving the change can review the redline data.

The Agile PLM system provides the following redline tables:
@ Redline BOM

@ Redline Manufacturers (AML)

o Redline Price Lines

o Redline Title Block

Note The Web Client supports redlining the Item's Cover Page, Page Two, and Page Three
tables together. However, in the SDK, these operations are performed separately, using
different tables for each each page.

To redline BOM, Manufacturers, or Price Lines tables:

1. Get areleased revision of an item or price object.

2. Create a new change, such as an ECO, MCO, SCO, or PCO

* ECOs lets you modify an item’s BOM or Manufacturers tables

®* MCO:s lets you modify an item’s Manufacturers table

® SCOs let you modify an item'’s site-specific BOM, Manufacturers

®* PCOs lets you modify a price’s Price Lines table

Add the item or price to the Affected Items or Affected Prices table of the change.
For ECOs and PCOs, specify the new revision for the change.

SCOs and MCOs do not affect an item’s revision.

Modify a redline table, such as the Redline BOM, Redline Manufacturers (AML), Redline Price
Lines.

o g M w

To redline the Manufacturers table of an item:

This example shows how to redline the Manufacturers table (AML) of an item.
Example: Redlining the Manufacturers table of an item
private void redlineAML () throws APIException {

IAttribute attrPrefStat = null;
IAgileList listvalues = null;

Map params = new HashMap () ;

// Get a released item

v9.3.1.1 87

SDK Developer Guide - Using Agile APIs

ITtem item = (IItem)m session.getObject ("Part", "1000-02");
// Get the Preferrred status value
IAgileClass cls = item.getAgileClass() ;

attrbPrefStat =
Cls.getAttribute(ItemConStants.ATT_MANUFACTURERS_PREFERRED_STATUS);

listvalues = attrPrefStat.getAvailableValues() ;
listvalues.setSelection(new Object[] { "Preferred" });
// Create an MCO

IChange change =
(IChange)m session.createObject (ChangeConstants.CLASS MCO, "M000024") ;

// Set the Workflow ID of the MCO
change.setWorkflow (change.getWorkflows () [0]) ;

// Get the Affected Items table

ITable affectedItems =
change.getTable (ChangeConstants.TABLE AFFECTEDITEMS) ;

// Add a new row to the Affected Items table IRow affectedItemRow =
affectedItems.createRow (item) ;

// Get the Redline Manufacturers table

ITable redlineAML =
item.getTable(ItemConstants.TABLE_REDLINEMANUFACTURERS);

// Add a manufacturer part to the table
params.put (ItemConstants.ATT MANUFACTURERS MFR NAME, "AMD") ;

params.put (ItemConstants.ATT MANUFACTURERS MFR PART NUMBER, "1234-
009") ;

params.put (ItemConstants.ATT MANUFACTURERS PREFERRED STATUS,
listvalues) ;

redlineAML.createRow (params) ;
// Add another manufacturer part to the table
params.clear () ;

params.put (ItemConstants.ATT MANUFACTURERS MFR NAME, "DIGITAL
POWER") ;

params.put (ItemConstants.ATT MANUFACTURERS MFR PART NUMBER,
"355355") ;

params.put (ItemConstants.ATT MANUFACTURERS PREFERRED STATUS,
listvalues) ;

redlineAML.createRow (params) ;

To redline the Title Block table of an item:

The following is an example of redlining the Title Block table of the item. It assumes Item.Page_Two
and

the attribute Text01 are visible and Text01 is change controlled.

Example: Redlining the Title Block table of an item
ITable page2Tab = item.getTable (ItemConstants.TABLE REDLINEPAGETWO) ;
Iterator it = page2Tab.getTablelterator();
IRow redPage2Row = (IRow)it.next () ;
ICell cell =
redPage2Row.getCell (CommonConstants.ATT PAGE TWO TEXTO01) ;

88 Agile Product Lifecycle Management

Chapter 4: Working with Tables

System.out.println("old value, before update: " +
cell.getOldvalue()) ;
redPage2Row.getCell (CommonConstants.ATT PAGE TWO TEXTO01) .setValue("u

pda
ted Text0l")

Removing Redline Changes

When you make redline changes to a table such as a BOM table, you may want to undo the
changes for a row and restore it to its original state. You can use the
IRedlinedRow.undoRedline () method to undo any redline changes to a row.

If you undo the redlines for a row, any cells that are modified are restored to their original values. A
redlined row can also be one that was added or deleted. If you undo the redlines for a row that was
added, the entire row is removed from that revision. If you undo the redlines for a row that was
deleted, the entire row is restored.

Example: Removing redline changes from the BOM table

private static undoBOMRedlines (IItem item, String rev) throws
APIException

item.setRevision(rev) ;
ITable redlineBOM = item.getTable (ItemConstants.TABLE REDLINEBOM) ;

Iterator it = redlineBOM.iterator () ;
while (it.hasNext()) {
IRedlinedRow row = (IRedlinedRow)it.next () ;

row.undoRedline();

}
}

Removing Redline Changes in Bulk Mode

Removing Redline Changes in Bulk Mode

Agile SDK enables removing (undoing) redlines with the aid of IRed1inedTable. This interface
provides the API to perform bulk redline undos as shown below.

IRedlinedTable.undoRedline (Collection rows) ;
IRedlinedTable.undoAllRedline () ;

Note See Redlining on page 86.

Example: Typecasting Redline tables to IRedlinedTable interface

ITtem item = (IItem) session.getObject (ItemConstants.CLASS PART,
"PART 001") ;
item.setRevision("B"); // Unreleased change

ITable bomTable = item.getTable (ItemConstants.TABLE REDLINEBOM) ;
Iterator it = bomTable.iterator () ;
List rows = new ArrayList () ;
while (it.hasNext ()) {
IRow row = (IRow) it.next();
if (((IRedlined)row) .isRedlineModified())
rows.add (row) ;

v9.3.1.1 89

SDK Developer Guide - Using Agile APIs

// Only Redline tables can be typecasted to IRedlinedTable interface

// Case 1:
((IRedlinedTable)bomTable) .undoRedline(rows);

// Case 2:
((IRedlinedTable)bomTable) .undoAllIRedline();

Identifying Redlined Rows and Redlined Cells

The IRedlined interface is designed to identify redlined rows and redlined cells. It is only
supported on redlined tables. The interface works in conjunction with the isRedlineModified ()
method to show if objects are redlined. The interface typecasts TRow and ICell objects as
follows:

a IRow indicates if the row is redline modified

o 1Icell indicates if the cell is redline modified.
Example: Identifying redlined rows and cells
public interface IRedlined {

public boolean isRedlineModified()
throws APIException;

}

The IRedlined.isRedlineModified () method returns a boolean value. This value is TRUE
when cells or rows are redlined.

Note IRedlined.isRedlineModified () returns a FALSE value for all cells on redline
added or redline removed rows.

Using ICell.getOldValue

With the introduction of the IRedlined interface, the ICell.get0Oldvalue () method is no
longer defined for redline added and redline removed rows. The ICell.get0Oldvalue () method
has a meaningful result only when FLAG IS REDLINE MODIFIED is true for the row.

Note Do not call this method for redline added or redlined removed rows.

90 Agile Product Lifecycle Management

This chapter includes the following:

Chapter 5
Working with Data Cells

= About Data Cells

5 Data TYPES .o
= Checking User's Discovery Privilege
= Checking if the Cell is a Read-Only Cell
= Getting Values - 9.3.1 Rev 3.................

= Getting Values
= Setting Values

= Getting and Setting List Values
= Using Reference Designator Cells

About Data Cells

An 1Cell objectis a data field for an Agile PLM object that you have loaded or created in your
program. A cell can correspond to a field on a tab in Agile Web Client or a single cell on a table. The
ICell object consists of several properties that describe the current state of a cell. Most of the data
manipulation your Agile API programs perform will involve changes to the value or properties of

cells.

Data Types

The type of objects associated with the getvalue () and setvalue () methods depends on the
cell's data type. Table below lists the object types of cell values for getvalue () and setValue ()

methods.
DataTypeConstants Object type associated with getValue and setValue
TYPE DATE Date
TYPE DOUBLE Double
TYPE INTEGER Integer
TYPE MONEY Money
TYPE MULTILIST IAgileList
TYPE_OBJECT Object
TYPE SINGLELIST IAgileList
TYPE STRING String
TYPE TABLE Table
v9.3.1.1 91

SDK Developer Guide - Using Agile APIs

Note There are other Agile PLM datatypes, such as TYPE WORKFLOW, but they are not used
for cell values.

Checking User's Discovery Privilege

The Discovery privilege is the most basic Agile PLM privilege. It allows users that an object exists. If
you do not have the Discovery privilege for an object, you won't be able to view it.

For example, if a user does not have the Discovery privilege for Manufacturer Parts, your program
will not allow the user to view several cells on the Manufacturers table. You can use the
ICell.hasDiscoveryPrivilege () method to check if the user has the Discovery privilege for a
particular cell, as shown in the following example.

Note When you get the value for a cell for which you don’t have the Discovery privilege, the
Agile API returns a null string (""). This behavior is different with other Agile PLM Clients.
For example, Agile Web Client displays the value “No Privilege” when you try to view a
field for which you don't have the necessary viewing privileges.

Example: Checking Discovery privilege

Object v;

Integer attrID = ItemConstants.ATT MANUFACTURERS_ MFR NAME;
try {

// Get the Manufacturers table

ITable aml =
item.getTable (ItemConstants.TABLE MANUFACTURERS) ;

// Get the first row of the Manufacturers table

IIterator iterator =
aml.getTableIterator () ;

if (iterator.hasNext()) {

IRow amlRow =
(IRow) iterator.next () ;

}

// Get the value for the Mfr. Name field.

// If the user does not have Discovery privilege, the value is a null
String.

v = amlRow.getValue (attrID) ;

txtMfrName.setText (v.toString()) ;
// If the user does not have the Discovery privilege
// for the cell, make its text color red.

ICell cell =
amlRow.getCell (attrID) ;

if (cell.hasDiscoveryPrivilege()==false) {
txtMfrName.setForeground (Color.red) ;
}

} catch (APIException ex) {
System.out.println (ex) ;

}

92 Agile Product Lifecycle Management

Chapter 5: Working with Data Cells

Checking if the Cell is a Read-Only Cell

Roles and privileges assigned to a user by Agile PLM administrators, determine the level of access
the user has to Agile PLM objects and their underlying data. For example, users with only ReadOnly
privileges can view Agile PLM objects but not modify them.

Whenever your program displays a value from a cell, you should check whether the cell is read-only
for the current user. If it is, your program must not allow the user to edit the value. If a user tries to
set a value for a read-only cell, the Agile API throws an exception
Example: Checking whether afield is read-only

// ID for "Title Block.Description"

Integer attrID = ItemConstants.ATT TITLE BLOCK DESCRIPTION;

// Set the value for the Description text field.

try {

txtDescription.setText (item.getValue (attrID) .toString()) ;

// Get the ICell object for "Title Block.Description" ICell cell =
item.getCell (attrID) ;

// If the cell is read-only, disable it

if (cell.isReadOnly(Q)) {
txtDescription.setEnabled(false) ;
txtDescription.setBackground (Color.lightGray) ;

}

else
txtDescription.setEnabled (true) ;
txtDescription.setBackground (Color.white) ;

}

} catch (APIException ex) {
System.out.println (ex) ;

}

Getting Values

The following table lists Agile APl methods for getting values for cells.

Method Description
ICell.getValue () Gets a cell value
IRow.getValue () Gets a cell value contained within a row
IRow.getValues () Gets all cell values contained within a row
I(l)DataObj ect.getValue Gets a cell value on Page One, Page Two, or Page Three

Before working with a cell's value, you must select the cell. Agile PLM cells are instances of
attributes. To specify the attribute for a cell, specify either the attribute’s ID constant, it's fully
qualified name (such as “Title Block.Description”), or an IAttribute object. For more information
about referencing attributes, see Referencing Attributes in SDK Developer Guide - Developing PLM
Extensions.

v9.3.1.1 93

SDK Developer Guide - Using Agile APIs

Note You can use ICell getAPIName () to access Data Cell attribute values. For
information to use this field, see Accessing PLM Metadata with APIName Field on page
125.

The following example shows how to reference a cell by attribute ID constant.
Example: Specifying a cell by ID
Object v;
Integer attrID = ItemConstants.ATT TITLE BLOCK NUMBER;
try {
v = item.getValue(attrliD);
} catch (APIException ex) {
System.out .println (ex) ;

}

The following example shows how to reference a cell by fully a qualified attribute name.
Example: Specifying a field by fully qualified name
Object v;
String attrName = "Title Block.Number";
try {
v = item.getValue(attrName);
} catch (APIException ex) {
System.out .println (ex) ;

}

The method that you use to get a cell value depends on the current object in use by your program.
Use the ICell.getValue () method if you have already retrieved an I1Cell object and want to
retrieve a value.

Example: Getting a value using ICell.getValue()

private static Object getCellVal (ICell cell) throws APIException (
Object v;
v = cell.getValue(Q);

return v;
}

Quite often, your program will first retrieve an object, such as an item, and then use the
IDataObject.getValue (java.lang.Object cellId) method to retrieve values for it.

Example: Getting a value using IDataObject.getValue(Object celllD)
private static Object getDescVal (IItem item) throws APIException (

Integer attrID = ItemConstants.ATT TITLE BLOCK DESCRIPTION;
Object v;
v = item.getValue(attrliD);

return v;
}

The object returned by the getvalue () method is of the same data type as the Agile PLM
attribute. For more information about data types, see Data Types on page 91.

9 Agile Product Lifecycle Management

Chapter 5: Working with Data Cells

Note All cells in a table returned by a query contain String values regardless of the
datatypes associated with those cells. For more information about query result tables,
see Working with Query Results on page 61.

If you are iterating over rows in an Agile PLM table, you can use the IRow.getValues () method
to retrieve a Map object containing all cell values for a particular row in the table. The returned Map
object maps attribute ID keys to cell values.

Understanding SDK Date Formats and User Preferences

In SDK, date is available as a Java Date object and does not format the date according to User
Preferences. However, end users can convert it to their preferred format in GUI's User Preferences.

Important End users must use the GMT date format for PPM dates. For more information, refer
to the Agile PLM Product Portfolio Management User Guide.

Getting Values

The following table lists Agile APl methods for getting values for cells.

Method Description
ICell.getValue () Gets a cell value
IRow.getValue () Gets a cell value contained within a row
IRow.getValues () Gets all cell values contained within a row
I(l)DataObj ect.getValue Gets a cell value on Page One, Page Two, or Page Three

Before working with a cell's value, you must select the cell. Agile PLM cells are instances of
attributes. To specify the attribute for a cell, specify either the attribute’s ID constant, it's fully
qualified name (such as “Title Block.Description”), or an IAttribute object. For more information
about referencing attributes, see Referencing Attributes.

Note You can use ICell getAPIName () to access Data Cell attribute values. For
information to use this field, see Accessing PLM Metadata with APIName Field on page
125.

The following example shows how to reference a cell by attribute ID constant.
Example: Specifying a cell by ID

Object v;

Integer attrID = ItemConstants.ATT TITLE BLOCK NUMBER;

try {
v = item.getValue(attrliD);
} catch (APIException ex) {
System.out.println (ex) ;

}

v9.3.1.1 95

SDK Developer Guide - Using Agile APIs

The following example shows how to reference a cell by fully a qualified attribute name.
Example: Specifying a field by fully qualified name
Object v;
String attrName = "Title Block.Number";
try {
v = item.getValue(attrName);
} catch (APIException ex) {
System.out .println (ex) ;

}

The method that you use to get a cell value depends on the current object in use by your program.
Use the ICell.getValue () method if you have already retrieved an ICell object and want to
retrieve a value.

Example: Getting a value using ICell.getValue()

private static Object getCellVal (ICell cell) throws APIException (
Object v;
v = cell.getValue(Q);
return v;

}

Quite often, your program will first retrieve an object, such as an item, and then use the
IDataObject.getValue (java.lang.Object cellId) method to retrieve values for it.

Example: Getting a value using IDataObject.getValue(Object celllD)
private static Object getDescVal (IItem item) throws APIException (

Integer attrID = ItemConstants.ATT TITLE BLOCK DESCRIPTION;
Object v;
v = item.getValue(attrliD);

return v;
}

The object returned by the getvalue () method is of the same data type as the Agile PLM
attribute. For more information about data types, see Data Types on page 91.

Note All cells in a table returned by a query contain String values regardless of the
datatypes associated with those cells. For more information about query result tables,
see Working with Query Results on page 61.

If you are iterating over rows in an Agile PLM table, you can use the IRow.getValues () method
to retrieve a Map object containing all cell values for a particular row in the table. The returned Map
object maps attribute ID keys to cell values.

96 Agile Product Lifecycle Management

Chapter 5: Working with Data Cells

Setting Values

The following table lists Agile APl methods for setting values for cells.

Method Description
ICell.setValue () Sets a cell value
IRow.setValue () Sets a cell value contained within a row
IRow.setValues () Sets multiple cell values contained within a row
)IDataObj ect.setValue (Sets a cell value on Page One, Page Two, or Page Three
I(l)DataObj ect.setValues Sets multiple cell values on Page One, Page Two, or Page Three

The method you use to set a value depends on the current object in use by your program.

Use the ICell.setValue () method if you've already retrieved a ICell object and want to set its
value.
Example: Setting a value using ICell.setValue()

private static void setDesc(ICell cell, String text) throws
APIException {

cell.setValue(text);

}

If your program has already retrieved an object, such as a part, you can use the
IDataObject.setValue () method to set values for it.

Example: Setting a value using IDataObject.setValue()
private void setDesc(IItem item, String text) throws APIException {

Integer attrID = ItemConstants.ATT TITLE BLOCK DESCRIPTION;
item.setValue(attriD, text);

}

If you are iterating over rows in an Agile PLM table, you can use the IRow. setValues () method
to set the cell values for an entire row. You can also use the IDataObject.setValues () method
to set multiple cell values on Page One, Page Two, or Page Three of an object. The Map parameter
you specify with setvalues () maps attributes to cell values.
Example: Setting multiple values in a row using IRow.setValues()

private void setBOMRow (IRow row) throws APIException

Map map = new HashMap () ;

map.put (ItemConstants.ATT BOM_ ITEM NUMBER, "23-0753");
map.put (ItemConstants.ATT BOM QTY, "1");

map.put (ItemConstants.ATT BOM FIND NUM, "O");

row.setValues(map) ;

v9.3.1.1 97

SDK Developer Guide - Using Agile APIs

When you set an Agile PLM value, you must know the cell’'s data type. If you try to set a cell’s value
using an object of the wrong data type, the method fails. You may need to cast the object to another
class before using it to set a value.

Note If you don't explicitly demarcate transactional boundaries in your code, every
setValue () operation your program performs is treated as a separate transaction.

Catching Exceptions for Locked Objects

If someone else is modifying an object, it is temporarily locked by that user. If you try to set the
value for a cell when another user has the object locked, your program will throw an exception.
Therefore, whenever your program sets values of cells, make sure you catch the following Agile
exceptions related to locked objects:

o ExceptionConstants.APDM ACQUIRE DBLOCK FAILED
o ExceptionConstants.APDM RELEASE DBLOCK FAILED
o ExceptionConstants.APDM OBJVERSION MISMATCH

You should also catch exception 813, which is related to locked objects.

The typical exception message that Agile PLM returns for a locked object is “Someone is working
on this object. Please try again later.”

For more information about how to handle exceptions, see Handling Exceptions on page 329.

Getting and Setting List Values

There are two different datatypes for list cells. One for SingleList and one for MultiList cells. When
you get the value for a SingleList or MultiList cell, the object returned is an IAgileList object. For
that reason, list cells are slightly more complicated to work with than other cells. The TagileList
interface provides methods for getting and setting the current list selection. This section provides
examples showing how to get and set values for different types of Agile PLM lists, including
cascading lists.

When you use ICell.getAvailablevValues () to get the available values for a list cell, the
returned IAngileList object may include obsolete list values. Your program should not permit
users to set the value for a list cell to an obsolete value. For information on how to check whether a
list value is obsolete, see Making List Values Obsolete on page 173.

When a list contains String values, the values are case-sensitive. This means that whenever you
set the value for a list cell you must ensure that the value is the right case.

Getting and Setting Values for SingleList Cells

A SingleList cell allows you select one value from the list. When you get the value for a SingleList
cell, the object returned is an IAgileList. From that IAgileList object, you can determine
what the currently selected value is. The following example shows how to get and set values for the
“Title Block.Part Category” cell for an item.

98 Agile Product Lifecycle Management

Chapter 5: Working with Data Cells

Example: Getting and setting the value for a SingleList cell
private static String getPartCatValue (IItem item) throws APIException ({

// Get the Part Category cell

ICell cell =
item.getCell(ItemConstants.ATT_TITLE BLOCK_PART_CATEGORY);

// Get the current IAgilelList object for Part Category IAgilelList cl
= (IAgileList)cell.getValue();

// Get the current value from the list

String value = null;

IAgileList[] selected = cl.getSelection();

if (selected != null && selected.length > 0) {
value = (selected[0].getValue()) .toString() ;

}

return value;

}

private static void setPartCatValue(IItem item) throws APIException
// Get the Part Category cell

ICell cell =
item.getCell(ItemConstants.ATT_TITLE BLOCK_PART_CATEGORY);

// Get available list values for Part Category
IAgileList values = cell.getAvailableValues();

// Set the value to Electrical
values.setSelection(new Object[] { "Electrical"” });

cell.setValue(values);

}
Getting and Setting Values for MultiList Cells

A MultiList cell behaves very similar to a SingleList cell except that it allows you to select multiple
values. A MultiList cell cannot be a cascading list. The following example shows how to get and set
values for a MultiList cell, “Title Block.Product Line(s)” for an item.
Example: Getting and setting the value for a MultiList cell

private static String getProdLinesValue (IItem item) throws APIException

String prodLines;
// Get the Product Lines cell

ICell cell =
item.getCell(ItemConstants.ATT_TITLE BLOCK_ PRODUCT_LINES);

// Get the current IAgileList object for Product Lines IAgileList
list = (IAgileList)cell.getValue();

// Convert the current value from the list to a string prodLines =
list.toString(Q);

return prodLines;

}

v9.3.1.1 99

SDK Developer Guide - Using Agile APIs

private static void setProdLinesValue (IItem item) throws APIException ({
// Get the Product Lines cell
ICell cell =

item.getCell(ItemConstants.ATT_TITLE BLOCK_ PRODUCT_LINES);

// Get available list values for Product Lines
IAgileList values = cell.getAvailableValues();

// Set the Product Lines values
values.setSelection(new Object[] {"Saturn',"Titan",' " Neptune'});
cell.setValue(values);

}
Getting and Setting Values for Cascading Lists

A SingleList cell can be configured to be a cascading list. A cascading list presents a list in multiple
hierarchical levels, letting you drill down to a specific value in the list hierarchy. For more
information about working with cascading lists, see Working with Lists on page 155.

When you get the value for a cascading list cell, a vertical bar (also called a piping character)
separates each level in the cascading list. To select the value for a cascading list, use the
IAgileList.setSelection () method. You can specify either an array of IAgileList leaf
nodes or a String array containing one string delimited by vertical bars. After you select the
value, save it using one of the setvalue () methods.

The following example shows how to get and set the value for a cascading list.
Example: Getting and setting the value for a cascading list
private String getCascadeValue (IItem item) throws APIException ({

String value = null;
// Get the Page Two.ListO0l value
IAgileList clist =
(IagileList) item.getValue(ltemConstants.ATT_PAGE_TWO_ LISTO1);

// Convert the current value from the list to a string value =
clist.toString();

return value;
private void setCascadeValue (IItem item) throws APIException ({
String value = null;
// Get the Page Two ListO0l cell
ICell cell = item.getCell (ItemConstants.ATT PAGE TWO LISTO01) ;

// Get available list values for Page Two List0l IAgileList values =
cell.getAvailableValues();

// Set the value to "North America|United States|San Jose"

values.setSelection(new Object[] {"North America]United States|San
Jose"});

cell.setValue(values);

100 Agile Product Lifecycle Management

Chapter 5: Working with Data Cells

Although the previous example shows one way to set the value for a cascading list, there’s another
longer form you can use that illustrates the tree structure of the list. Instead of specifying a single
String to represent a cascading list value, you can set the selection for each level in the list. The
following example selects a value for a cascading list with three levels: continent, country, and city.
Example: Setting the value for a cascading list (long form)

private void setCascadeValue (IItem item) throws APIException({

String value = null;

// Get the Page Two List01l cell

ICell cell = item.getCell(CommonConstants.ATT_PAGE_TWO LISTO1l);
// Get available list values for Page Two List01l

IAgileList values = cell.getAvailableValues() ;

// Set the continent to "North America"

IAgileList continent = (1AgileList)values.getChildNode(*'North
America');

// Set the country to "United Statesg"

IAgileList country = (IAgileList)continent.getChildNode(*'United
States');

// Set the city to "San Jose"

IAgileList city = (IAgileList)country.getChildNode(*'San Jose™);

values.setSelection (new Object []{city});
// Set the cell value
cell.setValue(values) ;

}

Using Reference Designator Cells

You can control how to use reference designator cells with Agile 9 SDK. You can make reference
designator cells render collapsed or expanded depending on your system setting. The
IReferenceDesignatorCell interface contains three public APIs that allow the end user to
retrieve reference designator information in three formats:

o Collapsed—for example A1-A3; use getCollapsedvalue ()
= Expanded-Al, A2, A3; use getExpandedvalue ()
o Array of individual reference designators—[Al, A2, A3]; use getReferenceDesignators []

The following table lists Agile APl methods for retrieving reference designator values for cells.

Method Description

IReferenceDesignatorCel Gets a collapsed representation of the reference designators. For
1l.getCollapsedvalue () example, “A1,A2,A3" would be represented as “A1-A3". Note that the

(R

range separator, (“-") is defined as part of the system preferences.

IReferenceDesignatorCel Gets an expanded value of a reference designator. For example, for *Al-
1.getExpandedvalue () A3” the string, “AL, A2, A3” would be returned.

v9.3.1.1 101

SDK Developer Guide - Using Agile APIs

Method Description

IReferenceDesig natorCel Gets the individual reference designators as an array of strings. For
l.getReferenceDesignato example, for “A1-A3" an array of these three strings, [‘A1”, “A2”, “A3"]

rs() would be returned.

Note In previous releases of Agile SDK, the value of a reference designator was a comma-
delimited list of reference designators. Because the functionality of cell.getvalue ()
for a reference designator will depend on the system setting controlling reference
designator presentation, the SDK user should not use cell.getValue () or
row.getValue (). We recommend that you get the cell and cast it into an
IReferenceDesignatorCell; then call the method that corresponds to your desired
data structure for processing or display reference designator information.

102 Agile Product Lifecycle Management

Chapter 6
Working with Folders

This chapter includes the following:

ADOUL FOIABIS ...ttt
LOBAING 8 FOIURT ...ttt
CrEAIING 8 FOIUBT ... ettt ettt
Setting the Folder TYPecoceviervereenrieirs

Adding and Removing Folder Elements
Getting Folder Elements........cccocoveevvvrrvninnnen,

D 4T U oL TS

Ahout Folders

An IFolder is a general purpose container used to hold IQuery and IFolder objects as well
as any of the main Agile PLM objects (IChange, IItem, IManufacturer,
IManufacturerPart, and IPackage). Folders are used to organize queries, or searches.

Note A file folder is different from a folder. It is a subset of a folder and has its own interface

called the IFolder. Files in a file folder holds can be referenced from the Attachments
table of other objects. For more information about file folders, see Working with
Attachments and File Folders on page 177.

There are several types of Agile PLM folders:

u]

Private — Folders that are accessible only to the user that created them. Users can create or
delete their own Private folders.

Public — Folders that are accessible to all Agile PLM users. Only users with the GlobalSearches
privilege can create, delete, and modify Public folders.

System — Predefined folders that ship with the Agile PLM system. Most users cannot modify or
delete System folders.

My Bookmarks (or Favorites) — A predefined folder containing each user’s bookmarks to Agile PLM
objects. You cannot delete the My Bookmarks folder.

Home — The predefined Agile PLM home folder. You cannot delete the Home folder.

Personal Searches — The predefined parent folder for each user’s personal searches. You cannot
delete the Personal Searches folder.

Recently Visited — A predefined folder containing links to recently visited objects. The SDK does
not populate this folder. It is only populated by Client applications. If required, you specify this
in your application.

v9.3.1.1 103

SDK Developer Guide - Using Agile APIs

Note The recently visited folder is only flushed to the database periodically. Therefore,
secondary connections like process extensions with portals, or standalone SDK
applications will not see the same information that the user’s GUI displays.

o Report — A folder containing reports. Although you cannot use the Agile API to create, modify, or
delete report folders, you can create, modify, or delete them in Agile PLM Clients.

Note FolderConstants also includes a constant named
TYPE MODIFIABLE CONTENTS, butitis currently unused.

Each user’s selection of folders may vary. However, every user has a Home folder. From each
user’s Home folder, you can construct various subfolders and browse public and private queries. To
retrieve the Home folder for a user, use the

IUser.getFolder (FolderConstants.TYPE HOME) method

Folders are subject to the same transactional model as other Agile API objects. If you do not set a
transaction boundary for a folder, it is automatically updated as soon as you add anything to, or
remove anything from the folder.

IFolder extends java.util.Collection and ITreeNode support all the methods that are
provided by those Superinterfaces. That is, you can work with an IFolder object as you would
any Java Collection. Methods of ITreeNode allow you to deal with the hierarchical structure of
a folder by adding and removing children, getting children, and getting the parent folder.

Interface Inherited methods
java.util.Collection add (), addall(), clear(), contains(),
containsAll (), equals(), hashCode(), isEmpty (),
iterator (), remove(), removeAll(), retainAll(),

size (), toArray (), toArray()

ITreeNode addChild (), getChildNode (), getChildNodes(),
getParentNode (), removeChild ()

Using Level Separation Characters in Folder and Object Names

The SDK supports level separation characters ‘| and ‘/’ when naming ITreeNode objects as
follows:

o Y"in IAgileList object names

@ ‘" in folder names

This feature primarily affects inherited ITreeNode methods shown in the table above. To use these
characters, it is necessary to explicitly prefix them with the backslash character (*)).

|:|\|
0V

Note To use the backslash character in Java string constants defined in SDK applications, you
must specify it twice (“\\").

104 Agile Product Lifecycle Management

Chapter 6: Working with Folders

Loading a Folder

There are two ways to load a folder:
@ Usethe TAgileSession.getObject () method to specify the full path of a folder.

B Usethe IFolder.getChild () method to specify the relative path of a subfolder.

Folder and query names are not case-sensitive. Therefore, you can specify a folder path using
upper or lower case. For example, to load the Personal Searches folder, you can specify
/Personal Searches or /PERSONAL SEARCHES.

The following example shows how to load a folder by specifying the full path to the folder.
Example: Loading afolder using IAgileSession.getObject()

try {
//Load the Personal Searches folder
IFolder folder = (IFolder)m session.getObject (IFolder.OBJECT TYPE,

"/Personal Searches") ;
} catch (APIException ex) {
System.out.println (ex) ;

}

The following example shows how to load a folder by specifying its path relative to another folder, in
this case the user's Home Folder.

Example: Loading a folder using IFolder.getChild()
try {
//Get the Home Folder

IFolder homeFolder =
m_session.getCurrentUser () .getFolder (FolderConstants.TYPE HOME) ;

//Load the Personal Searches subfolder

IFolder folder = (IFolder)homeFolder.getChild('Personal Searches");
} catch (APIException ex) {

System.out.println (ex) ;

}
Creating a Folder

To create a folder, use the 1Agi leSession.createObject() method. When you create a
folder, you must specify the folder's name and its parent folder. The following example shows how
to create a folder named “MyTemporaryQueries” in the Personal Searches folder.
Example: Creating a new folder
try {
//Get an Admin instance
IAdmin admin = m session.getAdminInstance() ;

//Load the Personal Searches folder

v9.3.1.1 105

SDK Developer Guide - Using Agile APIs

IFolder parentFolder =
(IFolder)m_session.getObject (IFolder.OBJECT_TYPE, "/Personal
Searches") ;
//Create parameters for a new folder
Map params = new HashMap () ;
params.put (FolderConstants.ATT FOLDER NAME, "MyTemporaryQueries") ;
params.put (FolderConstants.ATT PARENT FOLDER, parentFolder) ;
//Create a new folder
IFolder folder = (IFolder)session.createObject(lFolder.OBJECT_TYPE,
params) ;
} catch (APIException ex) {
System.out.println (ex) ;

Setting the Folder Type

By default, all new folders that you create are private folders unless otherwise specified. To change
a private folder to a public folder, use the IFolder.setType () method. You must have the
GlobalSearches privilege to be able to change a private folder to a public folder.

The two folder type constants you can use to set a folder’s type are
FolderConstants.TYPE PRIVATE and FolderConstants.TYPE PUBLIC. You cannot set a
folder to any other folder type.
Example: Setting the folder type
try {
//Get an Admin instance
IAdmin admin = m session.getAdminInstance() ;

//Load the My Cool Searches folder

IFolder folder = (IFolder)m session.getObject (IFolder.OBJECT TYPE,
"/Personal Searches/My Cool Searches");

//Make the folder public

folder.setFolderType(FolderConstants.TYPE PUBLIC);
} catch (APIException ex) {

System.out.println (ex) ;

Adding and Removing Folder Elements

An Agile PLM folder can contain IFolder objects (subfolders), IQuery objects, and any kind of
dataobject, such as IChange, IItem, IManufacturer, and IManufacturerPart objects. Use
the ITreeNode.addChild () method to add objects to a folder.

106 Agile Product Lifecycle Management

Chapter 6: Working with Folders

Adding Folder Elements

The following example shows how to add objects to a table.

Example: Adding objects to a folder
public void addFolderItem(IFolder folder, Object obj) {
try {
folder.addChild (obj) ;
} catch (APIException ex) {
System.out .println (ex) ;

}
}

Removing Folder Elements

To remove a single folder element, use the ITreeNode . removeChild () method. To clear all
folder elements, use the java.util.Collection.clear () method.
Example: Removing objects from a Folder
void removeFolderElement (IFolder folder, Object obj)
try {
folder.removeChild(obj);
} catch (APIException ex) {
System.out.println (ex) ;

}
}
void clearFolder (IFolder folder) {
try {
folder.clear();
} catch (APIException ex) {
System.out.println (ex) ;

}
}

Getting Folder Elements

All objects contained in a folder, including subfolders, can be loaded by name. To retrieve an object
from a folder, use the IFolder.getChild () method. Remember, the object type for folder
elements can vary. Depending on the object, you could be getting a subfolder, a query, or a
dataobject, such as an TItem.
Example: Getting a folder element
public void getFolderChild(IFolder folder, String name) {
try {

IAgileObject object = folder.getChild(name);

//If the object is a query, run it

if (object.getType ()==IQuery.OBJECT TYPE)

IQuery query = (IQuery)object;

v9.3.1.1 107

SDK Developer Guide - Using Agile APIs

ITable results = query.execute() ;

//Add code here to do something with the query results
}
} catch (APIException ex) {
System.out.println (ex) ;

}
}

The following example shows how to use the IFolder.getChildren () method to return an
IAgileObject array. In this case, the code checks the object type for each object in the array and
then prints the object’'s name.
Example: Getting folder children
private void browseFolder (int level, IFolder folder) throws
APIException {
IAdmin admin = m_session.getAdminInstance() ;

Collection subObjects = folder.getChildNodes();

for (Iterator it = subObjects.iterator();it.hasNext();) {
IAgileObject obj = (IAgileObject)it.next();
System.out.println (indent (level * 4));

switch (obj.getType()) {

case IItem.OBJECT_TYPE:
System.out.println ("ITEM: " + obj.getName()) ;
break;

case IFolder.OBJECT TYPE:
System.out.println ("FOLDER: " + obj.getName()) ;
browseFolder (level + 1, (IFolder)obj);
break;

case IQuery.OBJECT TYPE:

System.out.println ("QUERY: " + obj.getName()) ;
break;
default:
System.out.println (
"UNKNOWN TYPE: " + obj.getType() + ":" + obj.getName()) ;

}
}
}

private String indent (int level) {
if (level <= 0) {
return "";

}

char c¢[] = new char[level*2];
Arrays.fill(c, ' ');
return new String(c) ;

108 Agile Product Lifecycle Management

Chapter 6: Working with Folders

}

private String indent (int level) {
if (level <= 0) {
return "";
}
char c¢[] = new char[level*2];
Arrays.fill(c, ' ');
return new String(c) ;

}

Another way to get a folder’s children is to iterate over the folder elements, moving from one end of
the folder to the other. To create an iterator for an IFolder object, use the
java.util.Collection.iterator () method.

Note If you need to traverse the folder contents both forward and backward, use the
IFolder.getFolderIterator () method to return an ITwoWayIterator object.
ITwoWayIterator provides previous (), next (), and skip () methods, among
others.

Example: Iterating over folder elements

try {
//Load the Project X folder
IFolder folder = (IFolder)m session.getObject (IFolder.OBJECT TYPE,

"/Personal Searches/Project X");

//Create a folder iterator
Iterator it = folder.iterator();

if (it.hasNext()) {
//Get the next folder element
Object obj = it.next();

//Write code here to display each folder
//element in your program’s UI
}
} catch (APIException ex) {
System.out .println (ex) ;

}

v9.3.1.1 109

SDK Developer Guide - Using Agile APIs

Deleting a Folder

To delete a folder, use the IFolder.delete () method. You can delete folders that are empty
and that are not predefined Agile PLM system folders (such as the Global Searches and My Inbox
folders).

Unlike other dataobjects, folders are not “soft-deleted” the first time you delete them. When you
delete a folder, it is removed permanently from the system.
Example: Deleting a folder
void deleteFolder (IFolder folder) throws APIException
folder.delete() ;

}

110 Agile Product Lifecycle Management

Chapter 7
Working with ltems, BOMs, and AMLs

This chapter includes the following:

I 1o (10 AT T T 01T 111
B WOTKING WIth BOIMS ..ottt sttt 114
B WOTKING WItN AMLS ..ottt 122

Working with Items

An item is an object that helps define a product. Parts and documents are examples of types of
items. A part is shipped as part of a product and has costs associated with it. A part can also be an
assembly. A bill of material, or BOM, lists the separate components that make up the assembly. A
document generally is an internal document, drawing, or procedure that references a part.

Items are different from other Agile PLM objects because they:
= Have a revision history, with a set of data for each revision.
@ Can be incorporated, or locked from future changes.

@ Can have site-specific BOMs or approved manufacturers lists (AMLS).

Getting and Setting the Revision of an ltem

The revision for an item is a special type of Agile PLM attribute. The revision is always paired with
another value, the number of its associated change object (such as an ECO). When you load an
item, it's always loaded with the latest released revision.

Unlike other attributes, the “Title Block.Rev” field (whose ID constant is
ItemConstants.ATT TITLE BLOCK REV) for an item is not directly accessible. This means that
you can't retrieve or set a revision value using getvalue () and setVvalue () methods. For
example, the revvalue variable in the following code is always a null String.
Example: Failing to get a revision by accessing the Title Block.Rev field
ITtem item = (IItem)m session.getObject (IItem.OBJECT TYPE, "1000-02");
IAgileList listRevValue =
(IAgileList) item.getValue (ItemConstants.ATT TITLE BLOCK REV) ;
String revValue = listRevValue.toString() ;
if (revValue==null) {
System.out.println("Failed to get the revision.");

}

The correct way to get and set the revision for an item is to use methods of the TRevisioned
interface, as shown in the following example, which loads an item and then iterates through the
item’s revisions.

v9.3.1.1 111

SDK Developer Guide - Using Agile APIs

Example: Getting and setting the revision of an item
try {

// Get an item
ITtem item = (IItem)m session.getObject (IItem.OBJECT TYPE, "1000-

o2");

}

// Print the item’s current revision
System.out.println("current rev : " + item.getRevision());
// Get all revisions for the item

Map revisions = item.getRevisions();

// Get the set view of the map
Set set = revisions.entrySet () ;

// Get an iterator for the set
Iterator it = set.iterator() ;

// Iterate through the revisions and set each revision value

while (it.hasNext()) {

Map.Entry entry = (Map.Entry)it.next();

String rev = (String)entry.getValue() ;
System.out.println("Setting rev : " + rev + "....");
item.setRevision(rev);

System.out.println("current rev : " + item.getRevision());

catch (APIException ex) {
System.out.println (ex) ;

}

The IRevisioned.setRevision () method accommodates several different ways to specify a
revision. The change parameter of the setRevision () method can be any of the following types
of objects:

m]

a null object to specify an Introductory revision:
item.setRevision(null);

an IChange object associated with a particular revision:

item.setRevision(changeObject);

a change number (a String) associated with a particular revision:
item.setRevision(''C00450™);

revision identifier (a String such as “Introductory”, “A”, “B”, “C”,
and so on): item.setRevision("A");

a String containing both a revision identifier and a change number separated by eight spaces
(“A 234507):

item.setRevision('A C00450");

112

Agile Product Lifecycle Management

Chapter 7: Working with Iltems, BOMs, and AMLs

The last type of String object that you can specify for the change parameter allows you to pass
the same value used in other Rev cells in Agile PLM tables. For example, the “BOM.Iltem Rev” cell,
unlike “Title Block.Rev,” is directly accessible. If you get the value for the cell, it returns a String

containing the revision identifier and a change number separated by eight spaces.
Example: Setting the revision using “BOM.ltem Rev”

try {

// Get an item

ITtem item = (IItem)m session.getObject (IItem.OBJECT TYPE, "1000-
02");

// Get the BOM table
ITable bomTable = item.getTable (ItemConstants.TABLE BOM) ;
// Get part 1543-01 in the BOM
ITwoWayIterator it = bomTable.getTablelterator() ;
while (it.hasNext()) {
IRow row = (IRow)it.next();

String num =
(String) row.getValue (ItemConstants.ATT BOM ITEM NUMBER) ;

if (num.equals("1543-01")) {
// Get the revision for this BOM item
// (bomRev = revID + 8 spaces + changeNumber)

String bomRev =
(String) row.getValue(ltemConstants.ATT_BOM_ITEM REV);

// Load the referenced part
ITtem bomItem = (IItem)row.getReferent () ;

// Set the revision

System.out.println("Setting rev : " + bomRev + "....");
bomItem.setRevision(bomRev);

System.out.println("current rev : " + bomItem.getRevision()) ;
break;

}
}

} catch (APIException ex) {
System.out .println (ex) ;

}

Note If an item has no released revisions and no pending changes, the
IRevisioned.getRevision () method returns a null String and the
IRevisioned.getRevisions () method returns an empty Map object.

Changing the Incorporated Status of a Revision

Each revision of an item can be incorporated. When you incorporate the revision of an item, all
attachments for that revision are locked and cannot be checked out. After an item is incorporated,
you can still use Agile Web Client to view the item’s attachments, but you cannot modify them

unless you submit a new Change.

v9.3.1.1

113

SDK Developer Guide - Using Agile APIs

To incorporate or unincorporate an item, use the

IAttachmentContainer.setIncorporated () method. Special Agile PLM privileges are
required to incorporate and unincorporate Items. If a user does not have the appropriate privileges,
the setIncorporated () method throws an exception.

Only items that have revision numbers can be incorporated. Therefore, a preliminary item that has
not been released cannot be incorporated. Once an ECO is submitted for that item and a pending
revision number is specified, the revision can then be incorporated. Example 7-4 shows how to
change the incorporated status of an item.

Example: Changing the incorporated status of an Item

try {

// Get an item

ITtem item = (IItem)m session.getObject (IItem.OBJECT TYPE, "1000-
02") ;

// Incorporate the item, or unincorporate it,
// depending on its current state
item.setlIncorporated(litem.islncorporated());
} catch (APIException ex) {
System.out.println (ex) ;

}
Working with BOMs

A bill of material, or BOM, shows the components that make up a product. Each item that is listed
on a BOM can be a single item or an assembly of several items.

The BOM table, like other Agile PLM tables, consists of columns, or fields, of data. Each column
represents an Agile PLM attribute, such as “BOM.Item Number.” Each row of the BOM table
represents a separate item, either a part, a document, or a user-defined subclass.

In addition to the BOM table, there is also a redline BOM, which records redline changes to a BOM.
When you load a BOM table using the DataObject.getTable () method, make sure you specify
the correct table ID constant.

BOM Table ID Constant
Current BOM table ItemConstants.TABLE BOM
Redline BOM table ItemConstants.TABLE REDLINEBOM

For an example showing how to retrieve a BOM table, see Retrieving a Table on page 68.

114 Agile Product Lifecycle Management

Chapter 7: Working with Iltems, BOMs, and AMLs

Adding an Item to a BOM

Before adding an item to the BOM table, specify the manufacturing site. A BOM item is either site-
specific or common to all sites. Use the
IManufacturingSiteSelectable.setManufacturingSite () method to specify the site. To
add an item to the common BOM, use ManufacturingSiteConstants.COMMON SITE
Otherwise, specify a specific site, such as the user’s default site.

Note You can't add rows to a BOM if the parent item is currently set to display all sites. Before
adding a row to a BOM, make sure the item’s site is not set to
ManufacturingSiteConstants.ALL SITES. Otherwise, the API throws an
exception.

Example: Adding items to a BOM
//Add an item to the common BOM

public void addCommonBOMItem (IItem item, String bomnumber) throws
APIException (

HashMap map = new HashMap () ;
map.put (ItemConstants .ATT BOM_ITEM_ NUMBER, bomnumber) ;
item.setManufacturingSite(ManufacturingSiteConstants.COMMON_SITE);
item.getTable(ltemConstants.TABLE BOM).createRow(map);

}

//Add a site-specific item to the BOM using the user’s default site

public void addSiteBOMItem(IItem item, String bomnumber) throws
APIException (

HashMap map = new HashMap () ;
map.put (ItemConstants.ATT BOM ITEM NUMBER, bomnumber) ;

item.setManufacturingSite(((lIAgileList)m_session.getCurrentUser() .getva

lueQ)

UserConstants.ATT_GENERAL_INFO_DEFAULT_SITE)).getSelection()[0] -getValu
e0):

)

item.getTable(ltemConstants.TABLE_BOM) .createRow(map) ;

}

For more information about manufacturing sites, see Managing Manufacturing Sites on page 149.

Expanding a BOM

The BOM table can be viewed as a table containing multiple levels even though the API doesn’t
present it that way. By default, the BOM table contains only top-level items. To expand a BOM to
show its hierarchy, you need to recursively load each BOM item and its subassemblies. The
following example shows how to print multiple levels of a BOM.

Example: Printing multiple levels of a BOM
private void printBOM(IItem item, int level) throws APIException ({
ITable bom = item.getTable (ItemConstants.TABLE BOM) ;

v9.3.1.1 115

SDK Developer Guide - Using Agile APIs

Iterator i = bom.getReferentIterator() ;
while (i.hasNext()) {
ITtem bomItem = (IItem)i.next();

System.out.print (indent (level)) ;
System.out .println (bomItem.getName ()) ;
printBOM (bomItem, level + 1);

}
}

private String indent (int level) {
if (level <= 0) {
return "";
}
char c[] = new char[level*2];
Arrays.fill(c, ' ');
return new String(c);

}
Copying one BOM into another BOM

Quite often the BOMSs of two items will be very similar. Instead of creating a BOM from scratch, it is
often easier to copy a BOM from one item to another and then make slight changes. The
Collection.addAll () method can be used to copy the contents of one table into a target table.
The addall () method does not set a new revision for the item.

Note If you copy a BOM from one item to another, the target item must have the same
associated manufacturing sites as the source item.

Example: Copying a BOM using Collection.addAll()

private static void copyBOM(IItem source, IItem target) throws
APIException (

// Get the source BOM

ITable sourceBOM = source.getTable (ItemConstants.TABLE BOM) ;
// Get the target BOM

ITable targetBOM = target.getTable (ItemConstants.TABLE BOM) ;
// Add all rows from the source BOM to the target BOM
targetBOM.addAl I (sourceBOM);

}
Another way to copy a BOM is to iterate through the rows of a source BOM and copy each row to a
target BOM.
Example: Copying a BOM by iteration

private static void copyBOM1 (IItem source, IItem target) throws
APIException {

// Get the source BOM

ITable sourceBOM = source.getTable (ItemConstants.TABLE BOM) ;
// Get an iterator for the source BOM

Iterator 1 = sourceBOM.iterator () ;

116 Agile Product Lifecycle Management

Chapter 7: Working with Iltems, BOMs, and AMLs

// Get the target BOM
ITable targetBOM = target.getTable (ItemConstants.TABLE BOM) ;
// Copy each source BOM row to the target BOM
while (i.hasNext()) ({
targetBOM.createRow(i.next());

}
}

Creating BOM-Related Product Reports

The SDK provides the TProductReport API with constants defined in
ProductReportConstants to prepare the following BOM-related product reports. These reports
are produced in the XML format.

o BOM Explosion reports - The BOM Explosion report displays the items that are in the bill of
Material(BOM) for the one or more specified assembly, up to the desired number of levels.

= BOM Comparison reports - The BOM Comparison XML reports is the result of comparing two
different BOMs up to the specified number of levels.

For example, when a base BOM compared with the target BOM the comparison will show:
= dshownin BOM node - indicates only base assembly has the BOM

= ashown in BOM node — indicates only target assembly has the BOM

@ ushown in BOM node — indicates both root assemblies have the same BOM

o mshown in BOM node — indicates both root assemblies have the BOM but with some
differences

All first level BOMs of both base and target assembly are categorized into another node BOMs. BOM
nodes under BOMs are first sorted by FindNum and then by ItemNumber

There are several use cases for these reports. For example, archiving or comparative analysis with
outputs of ERP systems.

To create a product report, you must use the IAgileSession object. The following examples
show how to use IAgileSession and ProductReportConstants to prepare BOM Explosion
and BOM Comparison reports.

Example: Creating an Agile Session
AgileSessionFactory factory =
AgileSessionFactory.getInstance ("http://agileServer/virtualPath") ;
Map params = new HashMap () ;
params.put (AgileSessionFactory.URL,
"http://agileServer/virtualPath") ;
params.put (AgileSessionFactory.USERNAME, "username") ;
params.put (AgileSessionFactory.PASSWORD, "pwd") ;

IAgileSession session = factory.createSession (params) ;

v9.3.1.1 117

http://agileserver/virtualPath
http://agileserver/virtualPath

SDK Developer Guide - Using Agile APIs

Example: Preparing a BOM Comparison report
Map param = new HashMap () ;
param. put(ProductReportConstants REPORTPARAM REPORT_TYPE,
ProductReportConstants.REPORT BOM COMPARISON)
param. put(ProductReportConstants REPORTPARAM_ITEMREVSITE,
"iteml;item2") ;
param.put (ProductReportConstants.BOMCOMP BOM ATTRS,
ProductReportConstants.BOM _ATT ITEM NUM +”;" +
ProductReportConstants.BOM ATT FIND NUM)
param.put (ProductReportConstants. BOMCOMP_BOMLEVEL, "4");
IProductReport report = (IProductReport)
session.createObject (IProductReport.OBJECT TYPE, "My BOM Comparison
Report") ;
String xmlReport = report.execute (param) ;

If the value for ProductReportConstants.BOMCOMP BOM ATTRS is not specified, then it is
assumed to be "Find Num; Item Number;Sites".

Example: Preparing a BOM Explosion report
Map param = new HashMap () ;
param. put(ProductReportConstants REPORTPARAM REPORT_TYPE,
ProductReportConstants.REPORT BOM EXPLOSION) ;
param. put(ProductReportConstants BOMEXP_OBJTYPE, "Document ; Part;") ;
param.put (ProductReportConstants.REPORTPARAM ITEMREVSITE, "MM75-
01|23450|India;");
param.put (ProductReportConstants.BOMEXP MAXLEVEL, "5");
IProductReport report = (IProductReport)
session.createObject (IProductReport.OBJECT TYPE, "My BOM Explosion
Report") ;
String xmlReport = report.execute (param) ;

In BOM Explosion reports, the value for
ProductReportConstants.REPORTPARAM ITEMREVSITE can be as follows:

B <Item number>|<Change numbers|<Site number> where <Change Numbers> and
<Site numbers> are optional if:

®* <Change_ numbers is not specified it is assumed to be the Latest revision
® <Site numbers is not specified it is assumed as Common Sites

= The value can have one or more Items delimited by semicolon
O Tteml;Item2;Item3 arethe Latestrevision of Iteml, Item2 and Item3 for Common Sites

OB Iteml|ECOLl;Item2;Item3 (Iteml with ECO1 revision and latest revision of Item2,
Item3)

D Iteml|ECOLl|Sitel;Item2|ECO2 (Iteml with ECO1 revision with Sitel Specific BOM and
Item2 with ECO2 revision)

o Iteml|Sitel;Item2 (Iteml with Sitel Specific BOM and Latest revision of Item2 with
Common Sites)

118 Agile Product Lifecycle Management

Chapter 7: Working with Iltems, BOMs, and AMLs

In BOM Comparison reports, the value for
ProductReportConstants.REPORTPARAM ITEMREVSITE can be as follows:

B <Item numbers>|<Change numbers>|<Site number> where <Change Number> and
<Site numbers> are optional when:

® <Change_number> is not specified, then it is assumed as Latest revision.
* <Site_number> is not specified, it is assumed as Common Sites.

@ The value must have two Items delimited by a semicolon
B Iteml;Item2 (Latestrevision of Iteml and Item2 and all Sites)
o Iteml|ECOLl;Item2 (Iteml with ECO1 revision and Latest revision of Item2)

OB Iteml|ECOLl|Sitel;Item2|ECO2 (Iteml with ECO1 revision with Sitel Specific BOM and
Item2 with ECO2 revision)

D Tteml|Sitel;Item2 (Iteml with Sitel Specific BOM and Latest revision of Item2 with
Common Sites)

Redlining a BOM

To redline a BOM table, follow these steps:
1. Getareleased assembly item.
2. Create a new Change Order, such as an ECO, for the item.

3. Add the item to the Affected Items table of the ECO. Also, specify the new revision for the
change and set the item’s revision to the associated change.

4. Modify the item’s Redline BOM table.

In the following sections, there are code examples for each of these steps.

Note You can remove redlines from a row of the BOM table. See Removing Redline Changes
on page 89.

Getting a Released Assembly ltem

The following example shows how to load an assembly item from the Part subclass. Make sure the
Part you specify is released and has a BOM.
Example: Getting a released assembly

// Load a released assembly item

private static IItem loadItem(IAgileSession myServer, Integer
ITEM NUMBER) throws APIException ({

ITtem item = (IItem)myServer.getObject ("Part", ITEM NUMBER) ;
if (item != null) {
//Check if the item is released and has a BOM
if (item.getRevision().equals("Introductory") ||
litem.isFlagSet (ItemConstants.FLAG HAS BOM)) {
System.out.println("Item must be released and have a BOM.") ;

v9.3.1.1 119

SDK Developer Guide - Using Agile APIs

item = null;
}

return item;

}
Creating a Change Order

To redline a BOM, you must create a Change Order, such as an ECO. Example below shows how
to create an ECO and select a Workflow for the selected ECO.
Example: Creating an ECO

private static IChange createChange (IAgileSession myServer, Integer
ECO_NUMBER)

throws APIException

IChange change =
(IChange) myServer.createObject (ChangeConstants.CLASS ECO, ECO NUMBER) ;

// Set the Workflow ID
change.setWorkflow (change.getWorkflows () [0]) ;
return change;

}
Adding an Item to the Affected ltems tab of a Change Order

After you create an ECO, you can add the Part you loaded to the Affected Items table of the ECO.
Every ECO is associated with a revision. The following example shows how to specify the new
revision for the ECO, and then set the revision for the Part to the one associated with the ECO.
Example: Adding an item to the Affected Items table of a change order

private static void addAffectedItems (IAgileSession myServer, IItem
item, IChange change)

throws APIException (
// Get the Affected Items table

ITable affectedItems =
change.getTable (ChangeConstants.TABLE AFFECTEDITEMS) ;

// Create a Map object to store parameters
Map params = new HashMap () ;

// Set the value of the item number by specifying the item object
params.put (ChangeConstants.ATT AFFECTED_ITEMS_ ITEM NUMBER, item);

// Specify the revision for the change
params.put (ChangeConstants.ATT AFFECTED ITEMS NEW REV, "B");

// Add a new row to the Affected Items table IRow affectedItemRow =
affectedItems.createRow (params) ;

// Select the new revision for the part
item.setRevision (change) ;

120 Agile Product Lifecycle Management

Chapter 7: Working with Iltems, BOMs, and AMLs

Modifying the Redline BOM Table

After the Part has been added to the Affected Items table of an ECO and a revision has been
specified, you can begin to modify the Part’'s Redline BOM table. The following example shows how
to get the Redline BOM table, add and remove rows, and set specific cell values.

Example: Modifying the Redline BOM table
private static void modifyRedlineBOM(IAgileSession myServer, IItem
item) throws APIException
// Get the Redline BOM table
ITable redlineBOM = item.getTable (ItemConstants.TABLE REDLINEBOM) ;
// Create two new items, 1000-002 and 1000-003
ITtem iteml (IItem) myServer.createObject (ItemConstants.CLASS PART,
"1000-002") ;
ITtem item2 = (IItem) myServer.createObject (ItemConstants.CLASS PART,
"1000-003") ;
// Add item 1000-002 to the table
IRow redlineRow = redlineBOM.createRow (iteml) ;
redlineRow.setValue (ItemConstants.ATT BOM QTY, new Integer (50)) ;
redlineRow.setValue (ItemConstants.ATT BOM_FIND NUM, new
Integer (777)) ;
// Add item 1000-003 to the table
redlineRow = redlineBOM.createRow (item2) ;
redlineRow.setValue (ItemConstants.ATT BOM QTY, new Integer(50)) ;
redlineRow.setValue (ItemConstants.ATT BOM_FIND NUM, new
Integer(778)) ;
// Remove item 1000-003 from the table

IRow delRow;
String itemNumber;
Iterator it = redlineBOM.iterator () ;
while (it.hasNext()) {
delRow = (IRow)it.next () ;
itemNumber =
(String)delRow.getValue (ItemConstants.ATT BOM ITEM NUMBER) ;
if (itemNumber.equals("1000-003")) {
redlineBOM.removeRow (delRow) ;
break;

// Change the Qty wvalue for item 1000-002
IRow modRow;
it = redlineBOM.iterator () ;

while (it.hasNext()) {
modRow = (IRow)it.next () ;
itemNumber =
(String) modRow.getValue (ItemConstants.ATT BOM ITEM NUMBER) ;
if (itemNumber.equals("1000-002")) {

v9.3.1.1 121

SDK Developer Guide - Using Agile APIs

modRow.setValue (ItemConstants.ATT BOM QTY, new Integer (123));

}
}
}

Working with AMLs

The Manufacturers table for an item is also called the approved manufacturers list, or AML. It lists
manufacturers that have been approved to supply a particular item. The list identifies the
manufacturer part for that item. The Manufacturers table consists of columns, or fields, of data.
Each column represents an Agile PLM attribute, such as “Manufacturers.Mfr. Name.” Each row of
the Manufacturers table references a separate manufacturer part.

In addition to the Manufacturers table, there is also a redline Manufacturers table, which records
redline changes. When you load a Manufacturers table using the
DataObject.getTable () method, make sure you specify the correct table ID constant.

BOM Table ID Constant
Current Manufacturers table ItemConstants.TABLE MANUFACTURERS
Redline Manufacturers table ItemConstants.TABLE REDLINEMANUFACTURERS

Adding an Approved Manufacturer to the Manufacturers Table

Similar to the BOM Table, the Manufacturers Table requires that you specify the manufacturing site
before adding a new row to the table. An approved manufacturer is either site-specific or common
to all sites. Use the IManufacturingSiteSelectable.setManufacturingSite () method to
specify the site. To add an approved manufacturer to the common Manufacturers table, use
ManufacturingSiteConstants.COMMON SITE. Otherwise, select a specific site, such as the
user’s default site.

Note You can’'t add rows to an AML if the parent item is currently set to display all sites.
Before adding a row to an AML, make sure the item'’s site is not set to
ManufacturingSiteConstants.ALL SITES. Otherwise, the API throws an
exception.

Example: Adding approved manufacturers to an AML
//Add a MfrPart to the common AML

public void addCommonApprMfr (IItem item, String mfrName, String
mfrPartNum) throws APIException (

HashMap map = new HashMap () ;

map.put (ManufacturerPartConstants.ATT GENERAL INFO MANUFACTURER_ PART NU
MBER, mfrPartNum) ;

map.put(ManufacturerPartConstants.ATT_GENERAL_INFO_MANUFACTURER_NAME,
mfrName) ;

IManufacturerPart mfrPart = (IManufacturerPart)m session.getObject (
ManufacturerPartConstants.CLASS MANUFACTURER_ PART, map

)

item.setManufacturingSite(ManufacturingSiteConstants.COMMON_SITE);

122 Agile Product Lifecycle Management

Chapter 7: Working with Iltems, BOMs, and AMLs

item.getTable(ltemConstants. TABLE MANUFACTURERS) .createRow(mfrPart);
}
//Add a site-specific MfrPart to the AML using the user’s default site

public void addSitelApprMfr (IItem item, String mfrName, String
mfrPartNum) throws APIException {

HashMap map = new HashMap () ;

map.put (ManufacturerPartConstants.ATT GENERAL INFO MANUFACTURER PART NU
MBER, mfrPartNum) ;
map .put (ManufacturerPartConstants.ATT GENERAL INFO MANUFACTURER_NAME,
mfrName) ;
IManufacturerPart mfrPart = (IManufacturerPart)m session.getObject (
ManufacturerPartConstants.CLASS MANUFACTURER_ PART, map

)
item.setManufacturingSite(((IAgileList)m _session.getCurrentUser() .getva

lue(
UserConstants.ATT_GENERAL_INFO_DEFAULT_SITE)).getSelection()[0]

)i
item.getTable(ltemConstants. TABLE MANUFACTURERS) .createRow(mfrPart);

}

For more information about manufacturing sites, see Managing Manufacturing Sites on page 149.

Redlining an AML

Once an item is released, you can change the Manufacturers table only by issuing a new change
order. The change order allows you to redline the Manufacturers table.

Note You can remove redlines from a row of the Manufacturers table. See Removing Redline
Changes on page 89.

To redline a Manufacturers table:
1. Get areleased revision of an item.
2. Create a new ECO, MCO, or SCO.
®* ECOs lets you modify an item’s BOM or Manufacturers tables.
®* MCO:s lets you modify an item’s Manufacturers table.
® SCOs let you modify an item'’s site-specific BOM or Manufacturers tables.
3. Add the item to the Affected Items table of the change.

4. For ECOs, specify the new revision for the change. SCOs and MCOs do not affect an item’s
revision.

5. Modify the Redline Manufacturers table.

v9.3.1.1 123

Chapter 8
Accessing PLM Metadata with APIName Field

This chapter includes the following:

= ADOUL APINAME FIBIUovcvviice e 125
= Assigning Names t0 APINAME FIEIAS ..o 126
= APINGME VAlidAtION RUIES ...t 126
= Accessing Metadata Using the APINAME FIEl0 ..ot 127

About APIName Field

The primary purpose of the APIName field is to facilitate SDK developers' access to internal Agile
metadata when developing SDK applications. Prior to introduction of this field, display names or
numeric IDs defined in the SDK Constants file are used to access Agile internal/metadata of objects
in Classes, Tables, Attributes, Lists, and so on. The negative aspect of this approach is that
numbers are difficult to remember and display hames can change. Other hand, an object's
APIName is unique, it is easier to remember, and unlike DisplayName it is not subject to change
which can break your code.

For example, your SDK application can use "AuditResult" which is the APIName of the List instead
of its ID which is 6820, or its display name which is "Audit Result" to look up its internal value.

Figure 7: Accessing attribute value via APl Name field

[Buss =101
CERr. | 2y = Tokal Mumber of recordis): 128
Filter By IName LI Match IF IShow All LI Walue I Apply ||
(] Tame 4 |Diescription AP Mame Enabled Editable Cascade Disp

4682 ArtachType List ArtachT i artachTypelist Yes Yes Mo Lisk
fudit Result BuditResult ¥ i

5934 Buyer Buyer Buyer Yes Yes Mo Lisk
2000001019 |Calculated Compliance Calculated Compliance CalculatedCompliance VEs Mo Mo List .

Refresh Cloze

The following paragraphs describe the rules that assign a name to APIName fields and SDK
interfaces that you can in your SDK applications to access internal data with the APIName field.

Note When upgrading to Release 9.3, it is possible to have duplicate APINames assigned to
previously user defined fields. For example, if you have the user defined field "Foo" on
P2 and P3, the upgrade tool will assign the APIName Foo to both fields. To avoid these
duplications, change the APIName for one of these fields in the Java Client.

v9.3.1.1 125

SDK Developer Guide - Using Agile APIs

Assigning Names to APIName Fields

Names are automatically assigned to APIName fields by the PLM application when authorized
users create new data objects in Java Client. Objects that support APIName have the additional
"APIl Name" field in their Create dialog boxes which PLM immediately populates once a name is
typed in the object's "Name" field.

The PLM assigned APIName converts the contents of the "Name" field using the CamelCase
naming convention. The CamelCase convention is adhered to by Java JDK for all core APIs and
closely resembles the name of the API. For example, the class “Manufacturer Parts” is converted to
“ManufacturerParts" and the list "My new list" is converted to "MyNewList".

Figure 8: APl name field
x|

Mame IMy new list

APTMame phyNewList A

Description ||

Enabled IEnabIed

L] L

Cascade IND

Cancel |

APIName Validation Rules

The APIName naming convention must adhere to the following rules:
@ It can contain only characters such as Unicode or multi-byte characters are not allowed

@ |t must be a valid Java/XML identifier
* Allowed characters are a-z, A-Z, 0-9, and _ (underscore)

o It must be between 1 and 255 characters long
o |tis case-sensitive.

o It must be unigue within a context, for example:

* The attribute “Number” can exist in the cover page table for classes “Parts” as well as
“Changes” (Different context, Parts & Changes)

* Two attributes with APIName “Number” cannot exist in the cover page table of “Parts”
(Same context, Parts cover page).

* Two attributes with APIName "Number" cannot exist in Cover Page, Page Two and Page
Three (Cover Page, Page Two and Page Three are a single context)

126 Agile Product Lifecycle Management

Chapter 8: Accessing PLM Metadata with APIName Field

Accessing Metadata Using the APIName Field

You can use the APl name of the Agile Metadata to:

= Access the metadata of Agile PLM (Node, Class, Attribute)

@ Access/manipulate the value of the metadata (attributes and table attributes) of a data object

You can view the APl name of Nodes, Classes, and Attributes in Java Client. SDK interfaces that
support the APIName field are listed in the following tables.

APIs that Support the APIName Field

APl

Example

IAdmin

|IAdmin

getAgileClass (Object id)

getAgileClass ("Parts™")

getNode (Object id)

getNode ("Part.TitleBlock")

IAgileClass

getAttribute (Object key)

getAttribute ("TitleBlock.number")

or,
getAttribute ("number")

getTableAttributes (Object
tableId)

getTableAttributes ("TitleBlock")

getTableDescriptor (Object id)

getTableDescriptor ("TitleBlock")

isSubclassOf (Object cls)

isSubclassOf ("Parts")

IAgileList

getChild (Object child)

getChild ("UNITED STATES")

UNITED_ STATES is the APIName for
entry 'United States' in 'Country'
list

getChildNode (Object child)

getChildNode ("UNITED STATES")

setSelection (Object (]
childNodes)

setselection (new Object []

{"UNITED STATES" , "INDIA"})

IAgileSession

createObject (Object objectType,
Object params)

Map map = new HashMap () ;

v9.3.1.1

127

SDK Developer Guide - Using Agile APIs

String partNumber = "P00001"
map.put ("TitleBlock.number",
partNumber) ;

IDataObject dObj = (IDataObject)

(m_session.createObject ("Part",
map)) ;

createObject (int objectType,
Object params)

Map map = new HashMap () ;
String partNumber = "P0O00O1"
map.put ("number", partNumber) ;

IDataObject dObj = (IDataObject)
(m_session.createObject ("Part",
map)) ;

getObject (Object objectType,
Object params)

Map map = new HashMap () ;

map.put ("TitleBlock.number", "1000-
o1");
IDataObject dObj = (IDataObject)

(m_session.getObject ("Part", map));

getObject (int objectType, Object
params)

Map map = new HashMap () ;
map.put ("TitleBlock.number", "1000-
o1m");

IDataObject dObj =
(IDataObject) (m_session.getObject (II
tem.OBJECT TYPE, map)) ;

IDataObject

getCell (Object key)

getCell ("PageTwo.listll") or
getCell ("listl1l™")

getTable (Object tableId)

getTable ("AffectedItems")

getValue (Object attribute)

getValue ("PageTwo.listll") or
getvValue ("listl1l")

setValue (Object key,Object wvalue)

setValue ("PageTwo.text01l", "test")

saveAs (Object type,Object params)

Map params = new HashMap () ;
params.put ("number", number) ;

ITtem part2 = (IItem)
part.savelAs ("Document", params) ;

setValues (Map map)

Map map = new HashMap () ;

map.put ("TitleBlock.number", "1000-
01");

part.setValues (map) ;

ILibrary

128

Agile Product Lifecycle Management

Chapter 8: Accessing PLM Metadata with APIName Field

getAdminList (Object listId)

getAdminList ("ActionStatus")

createAdminList (Map map)

map .put (TAdminList .ATT NAME, "My
List");

map.put (IAdminList .ATT APINAME,
"MyList") ;

map.put(IAdminList.ATT_DESCRIPTION,
"My desc") ;

map.put (IAdminList .ATT ENABLED, new
Boolean(false)) ;

(
(
map.put (IAdminList .ATT CASCADED, new
Boolean (false)) ;

IAdmin admin =
m_session.getAdminInstance () ;

IListLibrary listLibrary =
admin.getListLibrary () ;

IAdminList newList =
listLibrary.createAdminList (map) ;

INode

getChild (Object child)

IAdmin admin =
m_session.getAdminInstance () ;

INode node =
admin.getNode (NodeConstants.NODE AGI
LE_CLASSES) ;

INode partsClass =
node.getChild ("Parts") ;

getChildNode (Object child)

IAdmin admin =
m_session.getAdminInstance () ;

INode node =
admin.getNode ("AgileClasses") ;

INode partsClass =
node.getChildNode ("Parts") ;

IProgram

saveAs (Object type, Object[]
tablesToCopy, Object params)

HashMap map = new HashMap () ;
map.put ("name", new number) ;

(
map.put ("scheduleStartDate", new
Date()) ;

Object [] objects = new
Object [] {"PageTwo", "PageThree",
"Team" } ;

IProgram program2 =

(IProgram) program. saveAs ("Program",

v9.3.1.1

129

SDK Developer Guide - Using Agile APIs

objects, map);

saveAs (Object type,
Object []tablesToCopy, Object

params, boolean applyToChildren)

HashMap map = new HashMap () ;
map.put ("name", new number) ;

(
map.put ("scheduleStartDate", new
Date()) ;

Object [] objects = new
Object [] {"PageTwo", "PageThree",
"Team" };

IProgram program2 =

(IProgram) program. saveAs ("Program",
objects, map, true);

IProject

assignSupplier (Object HashMap map = new HashMap () ;

supplierParams) .
map.put ("Responses.itemNumber",
item.getName ()) ;
map.put ("Responses.supplier",
supplier.getName ()) ;
rfg.assignSupplier (map) ;

1Query

setResultAttributes (Object[]
attrs)

String[] attrs = new String[3];

attrs[0] = "TitleBlock.number";
attrs[1l] = "TitleBlock.description";
attrs[2] =

"TitleBlock.lifecyclePhase";
query.setResultAttributes (attrs) ;

IRequestForQuote
assignSupplier (Object HashMap map = new HashMap () ;
lierP

supplierParams) map.put ("Responses.itemNumber",
item.getName ()) ;
map.put ("Responses.supplier",
supplier.getName ()) ;
rfg.assignSupplier (map) ;

ITable

createRow (Object param)

HashMap params = new HashMap () ;
params.put ("itemNumber", "P0OO0O1");

130

Agile Product Lifecycle Management

Chapter 8: Accessing PLM Metadata with APIName Field

params.put ("newRev", "A");

ITable affectedItems =
change.getTable ("AffectedItems") ;
IRow affectedItemRow =

affectedItems.createRow (params) ;

createRows (Object [] rows)

getAvailableValues (Object attr) getAvailableValues ("PageTwo.list01")

updateRows (Map rows) HashMap [] mapx = new HashMap [5] ;

Map rows = new HashMap () ;

mapx[0] = new HashMap () ;

mapx [0] .put ("newRev", "A");

mapx [0] .put ("text0l", "sdk testl");
rows.put (rowArray [0], mapx[0]) ;
mapx [1] = new HashMap () ;
mapx[1] .put ("newRev", "A");

mapx [1] .put ("text0l", "sdk test2");

rows.put (rowArray[1l], mapx[1l]) ;

tab.updateRows (rows) ;

ITableDesc
getAttribute (Object key) getAttribute ("number")
SDK APIs that Get the APIName Field

Interface Method
IAdminList getAPIName ()
IAgileClass getAPIName ()
IAgileList getAPIName ()

addChild (Object child, String apiName)

IAttribute getAPIName ()
ICell getAPIName ()
INode getAPIName ()
IProperty getAPIName ()
ITableDesc getAPIName ()

v9.3.1.1 131

SDK Developer Guide - Using Agile APIs

APl Names of Root Administrator Nodes

The following table lists the APl names of the top level Administrator nodes which are not exposed
in Agile Java Client. Top Level Admin Nodes are Admin Nodes that exist on their own. That is, no
other Admin Node must exist in order for these Admin nodes to exist. For example, Class and Roles
are top level nodes, but Life Cycle Phases and Attributes are not because they belong to another
Admin Node. Similarly, Workflow Statuses are not top level nodes because they belong to
Workflow.

Root Node APl Name
ACS Responses ACSResponses
Account Policy AccountPolicy
Activity Statuses ActivityStatuses
ActivityHealths ActivityHealths
Agile Classes AgileClasses
Agile Workflows AgileWorkflows
Agile eHubs AgileEHubs
Attachment Purge Setting AttachmentPurgeSetting
AutoNumbers AutoNumbers
Catchers Catchers
Character Set CharacterSet
Cluster Cluster
Company Profile CompanyProfile
Criteria Library Criterialibrary
Dashboard Management DashboardManagement
Default Role Settings DefaultRoleSettings
Destinations Destinations
Event Handler Types EventHandlerTypes
Event Handlers EventHandlers
Event Subscribers EventSubscribers
Event Types EventTypes
Events Events
Example Role/Privilege ExampleRolePrivilege
Filters Filters
Full Text Search Settings FullTextSearchSettings
Import Preference Setting ImportPreferenceSetting

132 Agile Product Lifecycle Management

Chapter 8: Accessing PLM Metadata with APIName Field

LDAPConfig LDAPConfig
LifeCycle Phases LifeCyclePhases
My Assignments MyAssignments

Notification Templates

NotificationTemplates

PGC SmartRules PGCSmartRules
Package File Types PackageFileTypes
Portals Portals

Preferences Preferences
Privileges Privileges

Process eXtension Library

ProcessEXtensionLibrary

Query Cleanup QueryCleanup

RFQ Terms and Conditions RFQTermsAndConditions
Reports Reports

Roles Roles

Server Location ServerLocation
Sign Off Message SignOffMessage
SmartRules SmartRules
Subscribers Subscribers

Task Configuration TaskConfiguration
UOM Families UOMFamilies

Viewer and Files ViewerAndFiles
wCM Servers WCMServers

APl Name Examples

The following example shows how to log in to an Agile PLM server, create two parts, enable Page
Two text 01 and List 20, set values for them, and then add the second part to the BOM Table of the

first part.

Example: Using the APIName field to access metadata

import com.agile.api.*;

import java.util.*;

/**

* This sample code shows how to use the API name.
* It uses some of the SDK APIs with the API name.

* For a list of API names for attributes and classes,

* refer to Agile Java Client.

v9.3.1.1

133

SDK Developer Guide - Using Agile APIs

* Some API names in Agile Java Client may differ from the ones
* in this example. This is because a duplicate conflict
* was detected in the API name in the same context.
* If detect this conflict, be sure change the API name
in this sample before compiling and executing the code.

*/

public class APIName

{

public static final String USERNAME = "admin";
public static final String PASSWORD = "agile";
public static final String URL =
"http://localhost:<>/Agile";
public static IAgileSession session = null;
public static IAdmin admin = null;
public static AgileSessionFactory factory = null;
public static IListLibrary listLibrary = null;

/**

* @param args

*/
public static void main(String[] args) {

try

// Create an IAgileSession instance
session = connect (session) ;

admin = session.getAdminInstance() ;
listLibrary = admin.getListLibrary() ;

// Create two parts

ITtem itemParent = createltem(getAutonumber()) ;
ITtem itemChild = createltem(getAutonumber()) ;
// enable Page Two tab for Part

enableP2 () ;

// enable Page Two Text 01 and set value
setP2Text (itemParent) ;

// create a new AdminList
createAdminList () ;

// enable Page Two List 20 and set value

setP2List (itemParent) ;

// Add the child part to the BOM table of the parent part
ITable bomTable = addBOM(itemParent, itemChild) ;

}

catch (Exception e) ({
e.printStackTrace () ;

}

finally {
session.close() ;

}

}

/**
* @throws APIException
*/

134 Agile Product Lifecycle Management

http://localhost:<>/Agile

Chapter 8: Accessing PLM Metadata with APIName Field

private static void createAdminList () throws APIException ({
Map listParams = new HashMap () ;
listParams.put (IAdminList .ATT APINAME, "MY LIST"); // Specify

the API name of the List
listParams.put (IAdminList .ATT NAME, "My List");
listParams.put (IAdminList .ATT ENABLED, new Boolean (true)) ;

IAdminList myList = listLibrary.createAdminList (listParams) ;
IAgilelList values = myList.getValues() ;
values.addChild("vValue A", "VAL A"); // Specify the API name
along with the wvalue

values.addChild("Value B", "VAL B");

values.addChild("Value C", "VAL C");

myList.setValues (values) ;
System.out.println ("Created Admin List " + myList.getName()) ;

}

/**
* @throws APIException
*/
private static void enableP2() throws APIException (
INode p2 = admin.getNode ("Part.PageTwo"); // Fully qualified
APT name
IProperty visible =
p2.getProperty (PropertyConstants.PROP_VISIBLE) ;
IAgilelList values = visible.getAvailableValues() ;
values.setSelection (new Object[]{ "Yes" });
visible.setValue (values) ;
System.out.println ("Page two enabled for Part class");
/**

* @param itemParent
* @throws APIException
*/

private static void setP2Text (IItem itemParent) throws APIException

IAgileClass clazz = itemParent.getAgileClass() ;

ITableDesc p2TableDesc = clazz.getTableDescriptor ("PageTwo") ;
// 'PageTwo' is the API name of the Page Two tab
IAttribute text0l = p2TableDesc.getAttribute ("texto0l"); //
'text01l' is the API name of the Text0l field

IProperty visible =

text0l.getProperty (PropertyConstants.PROP_VISIBLE) ;
IAgilelList values = visible.getAvailableValues() ;
values.setSelection (new Object[]{ "Yes" });
visible.setValue (values) ;

itemParent.setValue ("PageTwo.text01l", "SDK test"); //
'PageTwo.text01l' is the fully qualified APIName for
ItemConstants.ATT PAGE TWO TEXTO1

System.out.println("Set P2 Text0l " +

itemParent.getValue ("PageTwo.text01") + " for Part " +
itemParent .getName ()) ;

}
/**

* @param itemParent
* @throws APIException

*/

v9.3.1.1 135

SDK Developer Guide - Using Agile APIs

private static void setP2List(IItem itemParent) throws APIException

IAgileClass clazz = itemParent.getAgileClass() ;

ITableDesc p2TableDesc = clazz.getTableDescriptor ("PageTwo") ;
// 'PageTwo' is the API name of the Page Two tab

IAttribute text0l1 = p2TableDesc.getAttribute("list20"); //
'list20' is the API name of the List20 field

IProperty visible =

text0l.getProperty (PropertyConstants.PROP_VISIBLE) ;
IAgilelList values = visible.getAvailableValues() ;
values.setSelection (new Object[]{ "Yes" });
visible.setValue (values) ;

IAdminList myList = listLibrary.getAdminList ("MY LIST"); //
MY LIST is the API name of the List 'My List'

IAgileList listValues = myList.getValues() ;
listValues.setSelection(new Object[] { "VAL B" }); // VAL B
is the API name of the list wvalue 'Value B'
itemParent.setValue ("PageTwo.list20", listValues); //
'PageTwo.list20' is the fully qualified APIName for
ItemConstants.ATT PAGE TWO TEXTO1

System.out.println("Set P2 List20 " +
listValues.getSelection() [0] .getValue() + " for Part " +
itemParent .getName ()) ;

}
/**

* <p> Create an IAgileSession instance </p>

* @param session

* @return IAgileSession

* @throws APIException

*/

private static IAgileSession connect (IAgileSession session)
throws APIException (

factory = AgileSessionFactory.getInstance (URL) ;
HashMap params = new HashMap () ;
params.put (AgileSessionFactory.USERNAME, USERNAME) ;
params.put (AgileSessionFactory.PASSWORD, PASSWORD); session =
factory.createSession (params) ;
return session;

}
/**

* <p> Create a part </p>

* @param parent

* @return ITtem

* @throws APIException

*/

private static IItem createltem(String number) throws APIException (

HashMap map = new HashMap () ;
map.put ("TitleBlock.number", number);// 'number' or
'TitleBlock.number' is the APIName for
ItemConstants.ATT TITLE BLOCK NUMBER
map.put ("description", "test"); // 'description'
or 'TitleBlock.description' is the APIName for
ItemConstants.ATT TITLE BLOCK DESCRIPTION
String p = "P" + System.currentTimeMillis() ;
ITtem item = (IItem)session.createObject ("Part",map); //
'Part' is the API name of the Part class
System.out.println ("Created Part " + number) ;
return item;

136 Agile Product Lifecycle Management

Chapter 8: Accessing PLM Metadata with APIName Field

<p> Add the child parts to the BOM table of the parent part </p>
@param itemParent
@param itemChildl
@param itemChild2
@return ITable
* @throws APIException
*/
private static ITable addBOM(IItem itemParent, IItem itemChild)
throws APIException

* % ok ok X

ITable table = itemParent.getTable ("BOM") ;
// '"BOM' is APIName for ItemConstants.TABLE BOM
IRow rowl = table.createRow /() ;

String number =

(String)itemChild.getValue ("TitleBlock.number") ;
rowl.setValue ("itemNumber", number) ;

// 'itemNumber' is APIName for 'Item Number' on BOM Table
System.out.println("Added Part " + itemChild.getName() + " to
BOM of the Part " + itemParent.getName()) ;

return table;

}
/**

* @return
* @throws APIException
*
/
private static String getAutonumber () throws APIException({
IAgileClass cls = admin.getAgileClass ("Part") ;
// 'Part' is the API name of the Part class
IAutoNumber auto[] = cls.getAutoNumberSources () ;
String number = null;
if (auto != null && auto.length > 0)
number = auto[0] .getNextNumber () ;
else
number = "PART" + System.currentTimeMillis() ;
return number;

v9.3.1.1 137

Chapter 9
Subscribing to Agile PLM Objects

This chapter includes the following:

ADOUL USEI SUBSCHIPLIONS ...v.vvvcievieceiiecieiseseesesesees et ee s sse s sss s ea s sas et s s s ens s nsesssnns
Getting SUbSCTIPtoNS fOr @N ODJECE......c.vivrieieiceiree st
Modifying the Subscriptions for an ODJECLcovierirrce e
Making Attributes Available for Subscription
Working With SUDSCTIPHON TADIES......cucvuieiiieiet ittt

About User Subscriptions

When you load an Agile PLM business object, such as an item or change, you can then subscribe
to that object. Once you subscribe to the object, you will receive a Notification whenever a triggering
event occurs for that object. You can specify which events trigger a Notification. Subscription events
can be a lifecycle change, a change to attachment files, or a change to the value of any cell that is
made available for subscription.

You can subscribe to both routable and nonroutable objects. The Agile API provides an interface
called I1Subscribable, which enables retrieving and modifying all subscriptions for an object. All

objects that a user has subscribed to are listed on the user’'s Subscription table.

Subscription Events

Subscription events vary per object class. The full set of events you can subscribe to are listed in

the following table.

Subscription Event

SubscriptionConstants

Status Change (for routable objects)

EVENT STATUS CHANGE

Lifecycle Phase Change (for nonroutable objects)

EVENT LIFECYCLE CHANGE

Field Change EVENT FIELD CHANGE
Add File EVENT ADD FILE
Delete File EVENT DELETE FILE
Checkin File EVENT CHECKIN FILE

Checkout File

EVENT CHECKOUT_ FILE

Cancel Checkout File

EVENT CANCELCHECKOUT FILE

Note There are additional subscription events for Projects Execution objects that are not

supported by the Agile API.

v9.3.1.1

139

SDK Developer Guide - Using Agile APIs

Although most routable and nonroutable objects support the subscription events listed in the table
above, there are some exceptions:

o User objects do not support the Lifecycle Change subscription event.

o File Folder objects do not support the Add File and Cancel Checkout File subscription events.

The Field Change subscription event is related to any attribute whose Available To Subscribe
property has been set to “Yes.” Consequently, each class and subclass can have a different set of
subscribable attributes.

Subscribe Privilege

To subscribe to an object, you must have the Subscribe privilege for that class. Many predefined
Agile PLM roles, such as Creator, already have the Subscribe privilege for several object classes.
To change your roles and privileges, see the administrator of your Agile PLM system.

Subscription Notifications

Subscription events trigger two types of Agile PLM Notifications:

= Email — Email Notifications are sent only if the user's Receive Email Notification preference is
set to Yes. For information on user and system preferences, refer to Agile PLM Administrator
Guide.

= Inbox — Inbox Notifications occur automatically regardless of user preferences

A user with Administrator privileges can create and configure these Notifications in Java Client
which provides two very similar dialogs for this purpose. The reason for the two dialogs is due to the
fact that there are two sets of Email and Inbox Notifications:

= Those that the "To" field is grayed out

= Those that the administrator user can select recipients who are notified when the subscription
event is triggered

Sending Notifications with SDK

Notifications are briefly described in the SDK Guide under Event Notifications. SDK exposes the
following API to send Notifications to designated notifiers with the specified template for Agile PLM
objects. For information about Notifications, refer to Agile PLM Administrator Guide.

sendNotification (IDataObject object Object the Notification is issued for
String template Name of Notification template
Collection notifiers List of notifiers
boolean urgent True for urgent
String comments Comments about the Notification

) throws APIException

140 Agile Product Lifecycle Management

Chapter 9: Subscribing to Agile PLM Objects

These parameters are defined as follows:
= object - object on which Notification is to be issued
o template - name of the Notification template

o notifiers —a collection containing list of users as individual IDataObjects such as
IUser and IUserGroup

= urgent - value of true indicates send urgently, set to false otherwise

o comments — comments about the Notification

For more information about these parameters and the API, refer to Javadoc generated HTML files
that document the SDK code. You can find them in the HTML folder in SDK_samples (ZIP file). To
access this file, see the Note in Client-Side Components on page 2.

The following example uses sendNotification to send a Notification from ECO C0001 to userl
and user2 with Notification Comment and template
Example: Sending a Notification with Agile SDK

IAgileSession session =
AgileSessionFactory.createSessionEx (loginParams) ;

List notifyList =
new ArrayList () ;

IDataObject user =
(IDataObject) session.getObject (com.agile.api.IUser.OBJECT TYPE, "John

Doen") ;

notifyList.add (user) ;

user =
(IDataObject) session.getObject (com.agile.api.IUser.OBJECT TYPE, "Jane
Doe") ;

notifyList.add (user) ;

IDataObject agileObject =
(IDataObject) session.getObject (com.agile.api.IChange.OBJECT TYPE,'CO
001") ;

boolean urgent = true;

String comment =

"Add ECO approver, Notify CA";

String template =
"Automated SDK process added ECO approver';

session.sendNotification (obj, templateName,notifyList,urgent, comment) ;
Deleting Subscribed Objects

You can delete any Agile PLM business object using the IDataObject.delete () method.
However, you can’t delete an object until its subscriptions are removed. Users can remove their
own subscriptions, but not the subscriptions of other users.

v9.3.1.1 141

SDK Developer Guide - Using Agile APIs

Getting Subscriptions for an Object

To retrieve the current subscriptions for an object, use ISubscribable.getSubscriptions (),
which returns an array of all ISubscription objects, both enabled and disabled. The following
example shows how to get subscriptions for an object.

Example: Getting subscriptions for an object
public void getSubscriptionStatus (IAgileObject obj) throws APIException

ISubscription[] subs =
((ISubscribable)obj) .getSubscriptions();

for (int i = 0; i < subs.length; ++i) {

if (subs[i] .getId() .equals (SubscriptionConstants.EVENT ADD FILE)) {
if (subs[i].isEnabled()) {

System.out.println("Add File subscription is enabled");
}

}

else if

(subs[i] .getId () .equals (SubscriptionConstants.EVENT CANCELCHECKOUT F
ILE)) {

if (subs[i].isEnabled()) ({

System.out.println("Cancel Checkout File subscription is enabled");
}

b

else if

(subs[i] .getId() .equals (SubscriptionConstants.EVENT CHECKIN FILE)) ({

if (subs[i].isEnabled()) ({

System.out.println("Checkin File subscription is enabled");
}

b

else if

(subs[i] .getId () .equals (SubscriptionConstants.EVENT CHECKOUT FILE))

if (subs[i].isEnabled()) {

System.out.println ("Checkout File subscription is enabled");
}

}

else if
(subs[i] .getId() .equals (SubscriptionConstants.EVENT DELETE FILE)) {
if (subs[i].isEnabled()) {

System.out.println ("Delete File subscription is enabled");
}
}

?éigskg].getId().equals(SubscriptionConstants.EVENT_FIELD_CHANGE)) {
if (subs[i].isEnabled()) {
IAttribute attr = subs[i].getAttribute();
if (attr != null) {

String attrName = attr.getFullName () ;
System.out.println("Field Change subscription

142

Agile Product Lifecycle Management

Chapter 9: Subscribing to Agile PLM Objects

is enabled for " + attrName) ;

}
}
}

else if
(subs[i] .getId() .equals (SubscriptionConstants.EVENT LIFECYCLE CHANGE))

if (subs[i].isEnabled())
System.out.println("Lifecycle Change subscription is enabled");

else if
(subs[i] .getId () .equals (SubscriptionConstants.EVENT STATUS CHANGE))

if (subs[i].isEnabled())
System.out.println
("Status Change subscription is enabled");
}

else
System.out.println ("Unrecognized subscription event: " +
subs [i] .getId()) ;

}
}

Modifying the Subscriptions for an Object

You can use the Agile APl to modify subscriptions for the current user only. If you change your
subscriptions for a particular business object, other users’ subscriptions for that object remain
unaffected.

The list of subscription events for any object is set at the server and cannot be modified by the Agile
API. However, you can select the fields (attributes) you want subscribed. If you have Administrator
privileges, you can also modify classes to define which fields are available for subscription. For
more information, see the next section.

To work with a subscription, use the following ISubscription methods:
o enable (boolean) — Enables or disables the subscription

B getAttribute() — Returnsthe IAttribute object associated with a subscription. Only
Field Change subscriptions have associated attributes

o isEnabled () — Returns true if the subscription is enabled, false otherwise

o getId() — Returns the subscription ID, which is equivalent to one of the
SubscriptionConstants

ISubscription is a value object interface. Consequently, when you make changes to a
subscription (for example, by enabling it), it's not changed in the Agile PLM system until you call
ISubscribable.modifySubscriptions ().

v9.3.1.1 143

SDK Developer Guide - Using Agile APIs

The following example shows how to enable the Lifecycle Change and Field Change subscription
events and subscribe to two Page Two fields. All other subscription events are disabled.
Example: Enabling and disabling subscriptions for an object
public void setSubscriptions (IAgileObject obj) throws APIException ({

ISubscription[] subs = ((ISubscribable)obj).getSubscriptions();

for (int i = 0; i < subs.length; ++i) {
// Enable the Status Change subscription event
if (subs[i] .getId() .equals (SubscriptionConstants.EVENT_STATUS CHANGE))

subs [i] .enable(true);

}

// Enable the Field Change subscription event for Page Two.Text01l
and Page Two.ListO1l

else if
(subs [i] .getId() .equals (SubscriptionConstants.EVENT_FIELD_CHANGE)) {
if (subs[i] .getAttribute() != null)

System.out.println(subs[i] .getAttribute() .getFullName () + ": " +
subs[i] .getAttribute () .getId()) ;

if ((subs[i].getAttribute() != null) &&
((subs[i] .getAttribute() .getId() .equals (CommonConstants.ATT PAGE_TWO
_LI1sTO01l)) ||
(subs [i] .getAttribute () .getId() .equals (CommonConstants.ATT PAGE TWO_
TEXTO01))))

subs [i] .enable(true);
else

subs [i] .enable(false);
}
// Disable all other subscription events
else
subs [i] .enable(false);

}

((ISubscribable)obj) .modifySubscriptions(subs);

Making Attributes Available for Subscription

The attributes that are subscribable vary per Agile PLM class. In general, most Page One (Title
Page, Cover Page, and General Info) attributes are subscribable and can therefore be made
available for subscription. All Page Two attributes, except for ATT PAGE TWO CREATE USER, and
all Page Three attributes are also subscribable.

When an attribute’s Available To Subscribe property is set to Yes, users can subscribe to the
attribute. When you call I1Subscribable.getSubscriptions () for an object, the returned
ISubscription([] array includes an ISubscription object for each subscription event.
Although there is only one Field Change event—whose constant is

SubscriptionConstants.EVENT FIELD CHANGE—each subscribed attribute is treated as a
separate event that can trigger a subscription Notification. Depending on how your Agile PLM
system has been configured, there could be dozens of attributes available for subscription for a
particular object.

144 Agile Product Lifecycle Management

Chapter 9: Subscribing to Agile PLM Objects

If an attribute isn’t visible, it also isn’t subscribable even if its Available To Subscribe property has
been set to Yes. Therefore, before setting the Available To Subscribe property to Yes, make sure the
Visible property is also set to Yes. The following example shows how to make all Page Two
attributes for ECOs available for subscription.
Example: Making Page Two attributes available for subscription

try {

// Get the ECO subclass
IAgileClass classECO = m_admin.getAgileClass ("ECO") ;

// Get Page Two attributes
IAttribute[] attr =
classECO.getTableAttributes(ChangeConstants.TABLE_PAGETWO) ;

// Make all visible Page Two attributes subscribable
for (int i = 0; i < attr.length; ++i) {

IProperty prop = null;

IAgilelList listValues = null;

String strval = "";

// Check if the attribute is visible
prop = attr[i] .getProperty (PropertyConstants.PROP _VISIBLE) ;
listValues = (IAgilelList)prop.getValue() ;
strval = listValues.toString() ;

// If the attribute is visible, make it subscribable
if (strval.equals("Yes")) {

prop =
attr[i] .getProperty(PropertyConstants.PROP_AVAILABLE_FOR_SUBSCRIBE) ;

if (prop != null) {
listValues = prop.getAvailablevalues();
listvValues.setSelection(new Object[] { '"'Yes" });
prop-setValue(listValues);

}
}
}

} catch (APIException ex) {
System.out.println (ex) ;

}
Parent and Child Attributes

Several read-only attributes have a child relationship with a parent attribute. Child attributes derive
values from their parent attribute. Consequently, parent attributes are available for subscription, but
child attributes are not. Examples of child attributes include BOM table attributes like BOM. Item
List02 and BOM.Item TextOl.

v9.3.1.1 145

SDK Developer Guide - Using Agile APIs

Working with Subscription Tables

A user’s Subscription table lists all subscriptions the user has made. The Subscription table offers
limited editing capabilities. For example, you can’t add new rows to the table; the only way to add
subscriptions using the Agile APl is to call ISubscribable.modifySubscriptions () fora
dataobject. However, you can remove subscriptions from the table.

The following example shows how to retrieve the Subscription table for the current user. It also
shows how to remove a subscription for a part with the number 1000-02.

Example: Removing a subscription

try {
// Get the current user
IUser user = m_session.getCurrentUser () ;

// Get the Subscription table
ITable tblSubscriptions =
user.getTable (UserConstants.TABLE SUBSCRIPTION) ;
Iterator i = tblSubscriptions.iterator() ;

// Stop subscribing to part 1000-02

while (i.hasNext()) {
IRow row = (IRow)i.next();
String n =
(String) row.getValue (UserConstants.ATT SUBSCRIPTION NUMBER) ;
if (n.equals("1000-02")) {

tblSubscriptions.removeRow (row) ;
break;

}
}

} catch (APIException ex) {
System.out.println (ex) ;

}

In addition to removing individual rows from the Subscription table, you can also use the
Collection.clear () method to clear the table.
Example: Clearing the Subscription table

public void clearSubscriptionTable (IUser user) throws APIException

// Get the Subscription table
ITable tblSubscriptions =
user.getTable(UserConstants.TABLE_SUBSCRIPTION) ;
// Clear the table

tblSubscriptions.clear();
}

The Subscription table doesn't list the events you've subscribed to for each object. To find that
information, you need to open each referenced object. The following example shows how to use
ITable.getReferentlterator() to iterate through the referenced objects in the table.

146 Agile Product Lifecycle Management

Chapter 9: Subscribing to Agile PLM Objects

Example: Getting objects referenced in the Subscription table

try {
// Get the current user
IUser user = m_session.getCurrentUser() ;

// Get the Subscription table
ITable tblSubscriptions =
user.getTable(UserConstants.TABLE_SUBSCRIPTION) ;
Iterator i = tblSubscriptions.getReferentlterator();
// Get each object referenced in the table

while (i.hasNext()) {
IAgileObject obj = (IAgileObject)i.next () ;

if (obj instanceof ISubscribable) ({
ISubscription[] subscriptions =
((ISubscribable)obj) -getSubscriptions();

for (int j = 0; j < subscriptions.length; j++) {

ISubscription subscription =
subscriptions[j];

System.out.println (subscription.getName ()) ;
// Add code here to handle each subscription

}

System.out.println (obj.getName ()) ;

}
}

} catch (APIException ex) {
System.out .println (ex) ;

}

v9.3.1.1 147

Chapter 10
Managing Manufacturing Sites

This chapter includes the following:

Y oo TV 1Y T U o 00 ST 149
5 CONTONlING ACCESS 10 SIES ..vvuvrieiirririsi ettt es sttt en s 149
= Creating @ ManUFACUNNG SIEv vttt 150
= L0ading @ ManUFACTUNING SIEEcvivueeiiieeriecietse ettt bbb 150
= Retrieving the Sites Table fOr an HEMc.cciiieics s 151
= Adding a Manufacturing Site to the SIiteS TADIE........c.ccvrivericrrer s 151
= Selecting the Current Manufacturing Site for an IHeM..........ccovevriienieirce s 152
B DISADING @ SIEE cvuvveeeeeeieiieisse et Rttt 153

About Manufacturing Sites

Companies that practice distributed manufacturing use several different manufacturing sites for their
products. Agile PLM site objects allow companies to maintain site-specific information for a
product’s parts. For example, the various manufacturing locations may have different effectivity
dates for new revisions, different manufacturing instructions due to location, or different
manufacturers from whom they buy components, due to location.

Changes can affect all manufacturing sites of an item or a specific site. The Affected Items table for
a change lets you select the manufacturing sites that are affected. ltems may have different
effectivity dates and dispositions at each site. You specify effectivity dates and dispositions on the
Affected Items tab of an ECO or SCO. To create a new revision when you assign the new effectivity
date or disposition, use an ECO. To assign site-specific effectivity dates and dispositions without
incrementing the revision, use an SCO.

For a more detailed overview of Agile PLM’s manufacturing sites functionality, refer to the Agile
PLM Product Collaboration Guide.

Controlling Access to Sites

In order to use manufacturing sites in your organization, the Sites module must be enabled in Agile
Administrator. Your organization's agreement with Oracle determines the modules that are enabled
in Agile PLM.

A user's access to manufacturing sites is controlled by his/her assigned roles and privileges and the
Sites property in the user's profile. Your organization can create an unlimited number of
manufacturing sites, however a user will not have access to every site unless all sites are specified
in his user profile Sites property. Your organization may have implemented the Agile PLM system in
such a way that users can access only the information pertaining to certain sites, as determined by
their user profile Sites property.

v9.3.1.1 149

SDK Developer Guide - Using Agile APIs

To create a site-specific BOM for an item, the item’s subclass must have the Site-specific BOM
property set to Allow. Otherwise, items of that subclass have BOMs that are common to all sites. For
information on Sites and enabling sites, refer to the Agile PLM Administrator Guide.

Creating a Manufacturing Site

Manufacturing sites are identified uniquely by name. To create a manufacturing site, use the
IAgileSession.createObject method, specifying both the class and the site name.

All users cannot create manufacturing sites. Only users who have the Create privilege for
manufacturing site objects can create manufacturing sites.

Note When you create a manufacturing site, its Lifecycle Phase is set to Disabled by default.
To use the site, make sure you enable it.

Example: Creating and enabling a manufacturing site
try {
// Create a manufacturing site
HashMap params = new HashMap () ;

params.put (ManufacturingSiteConstants.ATT GENERAL INFO NAME,
"Taipei") ;

IManufacturingSite mfrSite =
(IManufacturingSite)m session.createObject(
ManufacturingSiteConstants.CLASS_SITE,
params) ;
// Enable the manufacturing site
ICell cell = mfrSite.getCell(
ManufacturingSiteConstants.ATT_GENERAL_INFO_LIFECYCLE_PHASE);
IAgileList values = cell.getAvailablevValues();
values.setSelection(new Object[] { "Enabled" });
cell.setValue(values);
} catch (APIException ex) {
System.out.println (ex) ;

Loading a Manufacturing Site

To load an IManufacturingSite object, use one of the TAgileSession.getObject ()
methods. The following example shows three different ways to specify the object type for a
manufacturing site.

Example: Loading a manufacturing site
try {
// Load the Hong Kong site

IManufacturingSite siteHK =
(IManufacturingSite)m session.getObject(ManufacturingSiteConstants.C
LASS SITE, "Hong Kong");

150 Agile Product Lifecycle Management

Chapter 10: Managing Manufacturing Sites

// Load the Taipei site

IManufacturingSite siteTaipei =
(IManufacturingSite)m session.getObject(IManufacturingSite. OBJECT_TY
PE, "Taipei');

// Load the San Francisco site
IManufacturingSite siteSF =
(IManufacturingSite)m session.getObject('Site™, "San Francisco™);

} catch (APIException ex) {
System.out.println (ex) ;

}

Retrieving the Sites Table for an ltem

Each item has a Sites table that lists the manufacturing sites where that item can be used. To
retrieve the Sites table for an item, use the DataObject.getTable () method.
Example: Retrieving the Sites table
//Get the Sites table
private static void getSites(IItem item) throws APIException ({
TRow row;
ITable table = item.getTable(ltemConstants.TABLE SITES);
ITwoWayIterator it = table.getTableIterator() ;
while (it.hasNext()) {
row = (IRow)it.next();
//Add code here to do something with the Sites table

}
}

To determine the manufacturing sites associated with an item, use the
IManufacturingSiteSelectable.getManufacturingSites () method. Of course, you can
also iterate over the Sites table to get the same information, but using the
getManufacturingSites () method is easier and faster. See Selecting the Current
Manufacturing Site for an Item on page 152 for an example that uses
getManufacturingSites ().

Adding a Manufacturing Site to the Sites Table

Each row of the Sites table references a different IManufacturingSite object. To add a
manufacturing site to the Sites table, use the ITable.createRow () method.

If a manufacturing site is not listed on an item’s Sites table, then that item cannot be included in a
parent item’s BOM specific to that manufacturing site. For example, to add item P1001 to another
item’s Taipei-specific BOM, P1001 must have the Taipei site listed on its Sites table.
Example: Adding arow to the Sites table
private static void addSite (String itemNumber, IManufacturingSite site)
throws APIException (
//Load the item

v9.3.1.1 151

SDK Developer Guide - Using Agile APIs

ITtem item = (IItem)session.getObject (IItem.OBJECT TYPE,
itemNumber) ;

//Get the Sites table

ITable table = item.getTable(ItemConstants.TABLE SITES) ;
//Add the manufacturing site to the table

IRow row = table.createRow(site);

Selecting the Current Manufacturing Site for an Item

BOM and Manufacturers tables (or AMLS) can be different for each manufacturing site used for an
assembly. When you retrieve a BOM or Manufacturers table for an item, you can display
information for all sites or for a specific site. If you choose a specific site, only that site’s information
is included in the table.

The IManufacturingSiteSelectable interface provides methods for getting and setting the
manufacturing site for an item. To get the current manufacturing site selected for an item, use the
IManufacturingSiteSelectable.getManufacturingSite () method.
Example: Getting the currently selected manufacturing site for an item
private static IManufacturingSite getCurrentSite(IItem item)
throws APIException (
IManufacturingSite site = item.getManufacturingSite();
return site;

}

The IManufacturingSiteSelectable.getManufacturingSites () method retrieves all
available manufacturing sites that have been added to an item’s Sites table.
Example: Getting all manufacturing sites associated with an item
private static void getItemSites(IItem item)
throws APIException (
IManufacturingSite[] sites = item.getManufacturingSites();
//Print the name of each site
for (int i = 0; i < sites.length; ++1i) {
String siteName = (String)sites[i].getValue (
ManufacturingSiteConstants.ATT GENERAL INFO_ NAME
) ;
System.out.println (siteName) ;
}
}

The IManufacturingSiteSelectable.setManufacturingSite () method sets the current
manufacturing site for an item. You can specify that an item has a specific manufacturing site, is not
site-specific, or uses All Sites. To specify that an item is not site-specific, use
ManufacturingSiteConstants.COMMON_SITE. To specify All Sites, pass the
ManufacturingSiteConstants.ALL SITES value.

When you set the manufacturing site for an item, the item is updated to reflect site-specific
information. Consequently, your program should update the BOM and Manufacturers tables by
iterating over the rows again to refresh them.

152 Agile Product Lifecycle Management

Chapter 10: Managing Manufacturing Sites

Example: Setting the current manufacturing site for an item

try {
// Load sites
IManufacturingSite siteSF =

(IManufacturingSite)m session.getObject ("Site", "San Francisco") ;
IManufacturingSite siteHK =

(IManufacturingSite)m session.getObject ("Site", "Hong Kong") ;
// Load an item
IItem item = (IItem)m session.getObject ("Part", "1000-02");

// Set the Hong Kong site
item.setManufacturingSite(siteHK);

String desc =
(String) item.getValue (ItemConstants.ATT TITLE BLOCK DESCRIPTION) ;

System.out.println ("Hong Kong description = " + desc);
// Set the San Francisco site
item.setManufacturingSite(siteSF);

desc =
(String) item.getValue (ItemConstants.ATT TITLE BLOCK DESCRIPTION) ;
System.out.println("San Francisco description = " + desc);

// Set the item to use all sites
item.setManufacturingSite(ManufacturingSiteConstants.ALL_SITES);

desc =
(String) item.getValue (ItemConstants.ATT TITLE BLOCK DESCRIPTION) ;
System.out.println("All Sites description = " + desc);

// Set the item to be common site (the item is not site-specific)
item.setManufacturingSite(ManufacturingSiteConstants.COMMON_SITE);

desc =
(String) item.getValue (ItemConstants.ATT TITLE BLOCK DESCRIPTION) ;
System.out.println ("Global description = " + desc);

// Set the item to use the user's default site

item.setManufacturingSite(((IAgileList)m _session.getCurrentUser() .getva

lue(
UserConstants.ATT_GENERAL_INFO_DEFAULT_SITE)).getSelection()[0] -getValu
eQ);
desc =
(String) item.getValue (ItemConstants.ATT TITLE BLOCK DESCRIPTION) ;
System.out.println("User's Default Site description = " + desc);

} catch (APIException ex) {
System.out.println (ex) ;

v9.3.1.1 153

SDK Developer Guide - Using Agile APIs

Disabling a Site

A manufacturing site can have one of two lifecycle phases, enabled or disabled. If a site is disabled,
it can no longer be used to create site-specific BOMs, AMLs, and changes.

To disable a manufacturing site, set the value for the Lifecycle Phase attribute to Disabled.
Example: Disabling a manufacturing site
private static void disableSite (IManufacturingSite site)

throws APIException {

// Get the Lifecycle Phase cell

ICell cell = site.getCell(

ManufacturingSiteConstants.ATT GENERAL INFO LIFECYCLE PHASE
)

// Get available list values for Lifecycle Phase
IAgileList values = cell.getAvailableValues() ;

// Set the value to Disabled
values.setSelection(new Object[] { ""Disabled” });
cell.setValue(values);

154 Agile Product Lifecycle Management

Chapter 11
Working with Lists

This chapter includes the following:

B ADOUE LISES ..ottt
= Selecting a List Value

= Selecting @ List from the LISt LIDIAIY.........cceiirieiercrse sttt sses s 163
B Creating CUSIOM LISESviueueieseeiceetsieieise ettt ettt bbb bbbt 165
= Checking the Data TYPE Of @ LISt......cccvieriiiiseceseis et ettt n s 171
I 1100111714 T ST 171
= Printing Contents of IAGIELISt OBJECLSc.cvveiereiieiricerrecr s e es s 176

Ahout Lists

Many attributes in the Agile PLM system are configured as lists. Agile provides two datatypes to
support list fields:

= SingleList — a list in which only one value can be selected.

= MultiList— a list in which multiple values can be selected.

Attributes, properties, and cells can all be lists. The Agile API provides methods for working with
lists in the IAgileList interface, a generalized data structure used for all Agile lists. Because
IAgileList represents a tree structure of available list values, it extends the ITreeNode
interface.

You can use ITreeNode.addChild () to add values to a list. All list values must be unique. After
adding a list value, you can prevent its selection by making it obsolete.

List Library

In Agile Java Client, administrators can define custom lists that can be used for Page Two and
Page Three list attributes. You can also use the Agile API to define custom lists. The
IListLibrary interface provides functionality equivalent to the list library in Agile Java Client. You
can use the IAdminList interface to modify the values or properties of a list.

To retrieve the list library, use the IAdmin.getListLibrary () method. You can then use the
IListLibrary interface to create new custom lists and work with existing lists.
AdminlListConstants provide IDs for each list in the list library.

v9.3.1.1 155

SDK Developer Guide - Using Agile APIs

Note The Agile API provides support for several internal Agile lists that are not exposed in the
list library in Agile Java Client.

Figure 9: List Library

=1
i X | by Total Mumnber of record(s): 127
Filker By IName - I Makch I IShnw all ;I ialue I

(u] Marne A |Description APT Marne Enabled |Editable |Cascade |Display Tvpe
15414 Ackion Status Ackion Status AckionStakus [Yes Mo Mo Lisk -
2000003545 Agile Script Log Leve... AgileScriptL... [Yes Yes Mo Lisk =
2249 AML Preferred Skatus |AML Preferred Skatus |(AMLPreferre. .. |Yes e Mo Lisk

4652 AttachTvpe List AttachTvpe List AttachTvpelist|Yes Ves Mo Lisk

G320 Audit Resulk Audit Resulk AuditResult |ves e Mo Lisk
5934 Biyyer Biyyer Biyyer Yes Yes Mo Lisk

2000001019 Calculated Compliance (Calculated Compliance [CalculatedC... [Yes Mo Mo Lisk

2000011160 Zas Mumber Match ... (Cas Mumber Match F... (CasMumber... |Yes 1] Mo Lisk

FEZ4820 Cascadel Cascadel Cascadel e e e Lisk

2000000192 Cakegory 10 List Cakegory 10 List Categoryl0... [Yes Yes Mo Lisk

2000000159 Caktegory 7 List Caktegory 7 List Category7List |Yes Yes Mo Lisk -
< T
“

SingleList Lists

A SingleList attribute or cell presents a list from which only one value can be selected. The following
figure shows a SingleList cell for Part Types in Agile Web Client.

Figure 10: SingleList cell in the Agile Web Client

* Part Type: iC R4
Capacitor
Connectar
Diode
Fuse
Hard Disk
Hardware

Inductor

Part

Resistor

Resiztor Metwork
Socket

Switch
Tranzistar

156 Agile Product Lifecycle Management

Chapter 11: Working with Lists

Cascading Lists

In Agile Java Client, you can configure a SingleList attribute to have multiple hierarchical levels. A
list with multiple hierarchical levels is called a cascading list. The following figure shows the
Location list, a cascading list, being configured in Agile Java Client. The list has separate levels for
continent, country, and city.

Figure 11: Configuring a cascading list in the Agile Java Client
g List:Location
>

General Inﬁ:urmatinnl LiSTl YWhere Usedl Histnrj,rl
+ B X

Mamme Description Active
Location

Africa
Asia
Afghanistan
Armenia
Azarbaijan
Bahrain
Bangladesh
Bhutan
Cambaodia
China
Anhui
Beijing

Chongging Chongging

Note The Location list is the only cascading list that ships with Agile PLM. However, you can
define your own cascading lists.

v9.3.1.1 157

SDK Developer Guide - Using Agile APIs

MultiList Lists

A MultiList attribute or cell presents a list from which multiple values can be selected. In Agile Web
Client, you can select values for a MultiList cell using the Multiple Value Selection dialog, shown in
the following figure.

Figure 12: Multiple Value Selection window in the Agile Web Client

®

Searches

Filter:

Hame +

Description -

Change Analyat Searches
Campliance Searches
Component Engineer Searches
Cartert Mansger Searches

Change &nalyst
Camplisnce
Component Engineer
Cantent Manager

Price Searches Price Aralyat

Program Searches Pragram

Gualty Searches Cuality

Recycle Bin Searches Recycle Bin

Sourcing Searches Sourcing B
Supplier RFC Searches RF LI

Methods that Use IAgileList

The IagileList interface provides the necessary methods to get and set the selected value(s) of
alist. The IAgileList interface represents a value object with a tree structure, which is why the
interface extends ITreeNode.

The following Agile API methods return an IAgileList object (or an array of TAgileList
objects):

B TAdminList.getValues ()

B TAdminList.setValues (IAgilelList)

B TAttribute.getAvailableValues()

B IAttribute.setAvailableValues (IAgileList)

B IAgilelList.getSelection()

B ICell.getAvailableValues()

8 IListLibrary.createAdminList (java.util.Map)
8 IListLibrary.getAdminList (java.lang.Object)
8 IListLibrary.getAdminLists()

8 IProperty.getAvailableValues ()

158 Agile Product Lifecycle Management

Chapter 11: Working with Lists

The following methods either return an IAgileList or require an IAgileList parameter when
the related attribute, cell, or property is a list (the datatype is SingleList or MultiList):

B ICell.getValue () — For SingleList and MultiList cells, the returned Object is an
IAgileList.

B ICell.setValue(java.lang.Object value) — For SingleList and MultiList cells, value
isan IAgileList.

B IProperty.getValue () — For SingleList and MultiList properties, the returned Object is an
IAgileList.

B IProperty.setValue(java.lang.Object value) — For SingleList and MultiList
properties, value is an IAgileList.

o IRow.getValue (java.lang.Object cellId) — For SingleList and MultiList cells, the
returned Object isan IAgileList.

B IRow.getValues () — For each SingleList or MultiList cell in the row, the returned Map object
contains an TAgileList.

B IRow.setValue(java.lang.Object cellId, java.lang.Object value) —If
cellID specifies a SingleList or MultiList cell, value is an IAgileList.

B IRow.setValues(java.util.Map map) — For each SingleList or MultiList cell in the row,
map contains an IAgilelList.

Selecting a List Value

To select a list value, whether it is a SingleList or MultiList list, you must first get the available
values for the list. You can then set the selected value. After selecting the list value, save the
selection by setting the value for the cell or property.

The following example shows how to change the value of the Visible property of an attribute. The
Visible property is a SingleList property with two possible values, No and Yes (or O and 1).

Note You can use IAgileList getAPIName () to getthe available values of a list. For
information, see Accessing PLM Metadata with APIName Field on page 125.

Example: Changing the Visible property of an attribute

try {
// Get the Admin instance

IAdmin admin = m_session.getAdminInstance() ;
// Get part sub-class

IAgileClass partClass = admin.getAgileClass (ItemConstants.CLASS PART) ;
// Get the "Page Two.List03" attribute

IAttribute attr =
partClass.getAttribute (ItemConstants.ATT PAGE_TWO_LISTO03) ;

// Get the Visible property

IProperty propVisible =
attr.getProperty (PropertyConstants.PROP_VISIBLE) ;

v9.3.1.1 159

SDK Developer Guide - Using Agile APIs

// Get all available values for the Visible property IAgileList
values = propVisible.getAvailablevValues();

// Set the selected list value to "Yes"
values.setSelection(new Object[] { "Yes"™ });

// Instead of setting the selection to "Yes", you could also //
specify the corresponding list value ID, as in the following line:

// values.setSelection(new Object[] { new Integer(1)});
// Set the value of the property
propVisible.setValue(values);
} catch (APIException ex) {
System.out .println (ex) ;

}

When you use the TAgileList.setSelection () method, you can specify String[],
Integer[], or IAgileList [] values for the childNodes parameter. When you select a value
from the IAgileList object, you can use its String representation or its Integer ID.

To get the currently selected value for a list, use the IaAgileList .getSelection () method. For
a SingleList cell or property, getSelection () returns an array containing one IAgileList
object. For a MultiList cell or property, getSelection () returns an array containing one or more
IAgilelList objects.

The following example demonstrates how to use several IAgilelList methods, including
getSelection().
Example: Getting the current list value for the Visible property

try {
// Get the Admin instance

IAdmin admin = m_session.getAdminlInstance() ;
// Get the Parts class

IAgileClass partClass =
admin.getAgileClass (ItemConstants.CLASS PARTS CLASS) ;
// Get the "Page Two.List03" attribute

IAttribute attr =
partClass.getAttribute (ItemConstants.ATT PAGE TWO LISTO03) ;
// Get the Visible property

IProperty propVisible =
attr.getProperty (PropertyConstants.PROP_VISIBLE) ;

// Get the current value of the Visible property IAgileList value =
(IAgilelist)propVisible.getValue () ;
// Print the current value

System.out.println(value); // Prints "Yes"
// Print the list wvalue ID
System.out.println(value.getSelection()[0].getld()); // Prints 1
// Print the list value

System.out.println(value.getSelection()[0].getvValue()); // Prints
n YeS n

} catch (APIException ex) {
System.out.println (ex) ;

}

160 Agile Product Lifecycle Management

Chapter 11: Working with Lists

Lists can be reused for several attributes, even for attributes of different classes. The following
example reuses the list of available values for a Page Two attribute to set the list of available values
for a Page Three list attribute.
Example: Reusing list values for different attributes
try {
// Get the Admin instance
IAdmin admin = m session.getAdminInstance() ;

// Get the Parts class

IAgileClass partClass =
admin.getAgileClass (ItemConstants.CLASS PARTS CLASS) ;

// Get the "Page Two.List01l" attribute

IAttribute attrl =
partClass.getAttribute (ItemConstants.ATT PAGE TWO LISTO01) ;

// Get the "Page Three.List01" attribute

IAttribute attr2 =
partClass.getAttribute (ItemConstants.ATT PAGE THREE LISTO01) ;

// Set the available values for the list, using values from "Page
Two.List01"

attr2.setAvailablevValues(attrl._getAvailableValues());
} catch (APIException ex) {
System.out.println (ex) ;

}
Working with Lifecycle Phase Cells

The Lifecycle Phase attribute is a SingleList datatype. Each subclass in the Agile PLM system can
be defined with different lifecycle phases. Therefore, you must get a Lifecycle Phase cell for a
subclass before you can retrieve the available values for its list. If you use
IAttribute.getAvailablevValues () to retrieve the available values for a Lifecycle Phase
attribute instead of a subclass-specific cell, the method returns an empty IAgileList object. The
following example highlights how to work with Lifecycle Phase cells.
Example: Working with Lifecycle Phase cells
private static void setLifecyclePhase(IItem item) throws APIException {
// Get the Lifecycle Phase cell
ICell cell =
item.getCell(1temConstants.ATT_TITLE_BLOCK_LIFECYCLE_PHASE);
// Get available list values for Lifecycle Phase IAgileList values =
cell.getAvailableValues();
// Set the value to the second phase
values.setSelection(new Object[] { new Integer(1)});

cell.setValue(values);

v9.3.1.1 161

SDK Developer Guide - Using Agile APIs

Working with Dynamic Lists

The Agile server has both static lists and dynamic lists. Static lists contain a selection of values that
do not change at run time. Dynamic lists contain a selection of values that are updated at run time.
Users with administrator privileges can modify static lists and add new values and make current
values obsolete. Dynamic lists cannot be modified; consequently, the Editable property of dynamic
lists is set to No.

Several dynamic lists are capable of containing thousands of value objects. Items, Changes, and
Users lists are examples of such lists. Although you can use these lists for Page Two and Page
Three fields, you can not enumerate values for these lists.

Enumerable and Non-Enumerable Lists

As such, Agile SDK object lists are either enumerable, or non-enumerable. If a specific list is
enumerable, you can read the contents of that list. If it is non-enumerable, you cannot access the
list directly. For non-enumerable lists, query the Agile class that the object list uses to get the
objects that are referenced by the list. The enumeration property for an object is hard coded on the
server and cannot be changed.

To determine if the values for a dynamic list can be enumerated, use
IAgileList.getChildNodes () as shown in the following example. If getChildNodes ()
returns null, the list values cannot be enumerated. However, this does not prevent you from
selecting a value for the list.
Example: Checking whether values for a dynamic list are enumerable

private void setPageTwolListValue(IItem item) throws APIException (

// Get the "Page Two.List01l" cell
ICell cell = item.getCell (CommonConstants.ATT PAGE TWO LISTO1) ;

// Get available values for the list IAgileList values =
cell.getAvailableValues() ;

// If the list cannot be enumerated, set the selection to the current
user

if (values.getChildNodes() == null) {
values.setSelection(new Object[]{m session.getCurrentUser(});
cell.setValue(values);

}
}

private void setPageTwoMultilistValue (IItem item) throws APIException ({
// Get the "Page Two.MultilistOl" cell
ICell cell = item.getCell (CommonConstants.ATT PAGE TWO MULTILISTO1) ;

// Get available values for the list IAgileList values =
cell.getAvailableValues () ;

// If the list cannot be enumerated, set the selection to an array of
users

if (values.getChildNodes() == null) {

IAgileClass cls = cell.getAttribute() .getListAgileClass() ;
if (cls != null) {

IUser userl = (IUser)m session.getObject(cls, "hhawkes");

162 Agile Product Lifecycle Management

Chapter 11: Working with Lists

IUser user2 = (IUser)m session.getObject(cls, "ahitchcock");
IUser user3 = (IUser)m session.getObject(cls, "jhuston");
Object[] users = new Object[] {userl, user2, user3};
values.setSelection(users);

cell.setValue(values);

}
}
}

Non-Enumerable PG&C Lists

The following PG&C lists that were enumerable in earlier releases of the SDK, are no longer
enumerable in this release.

= Declarations

o Substances

o Specifications
o Part Families

B Part Families Commodities

Selecting a List from the List Library

The IListLibrary interface enables working with the library of Agile lists. You can load an
existing list, or create a new one. To load an existing list, use IListLibrary.getAdminList ().
You can specify the string name of a list, such as “Disposition.” You can also specify a list, by its ID,
or by an AdminListConstants, such as LIST DISPOSITION SELECTION. Before you attempt
to use a list from the list library, make sure the list is enabled.

The following example shows how to configure a Page Two list attribute to use a list called Users.
Example: Configuring an attribute to use an Agile list
try {
IAgilelList values = null;
// Get the Admin instance
IAdmin admin = m session.getAdminInstance () ;
// Get the List Library
IListLibrary listLib = admin.getListLibrary();
// Get the Parts class

IAgileClass partClass =
admin.getAgileClass (ItemConstants.CLASS PARTS CLASS) ;

// Get the "Page Two.List01l" attribute

IAttribute attr =
partClass.getAttribute (ItemConstants.ATT PAGE TWO LISTO01) ;

// Make the list visible

IProperty propVisible =
attr.getProperty (PropertyConstants.PROP _VISIBLE) ;

values = propVisible.getAvailableValues() ;

v9.3.1.1 163

SDK Developer Guide - Using Agile APIs

values.setSelection(new Object[] { "Yes" });
propVisible.setValue (values) ;

// Change the name of the attribute to "Project Manager"
IProperty propName = attr.getProperty (PropertyConstants.PROP_NAME) ;
propName.setValue ("Project Manager") ;
// Get the list property
IProperty propList = attr.getProperty(PropertyConstants.PROP_LIST);
// Use the Users list from the list library.

IAdminList users =
listLib.getAdminList(AdminListConstants.LIST _USER_OBJECTS);

if (users != null) {
if (users.isEnabled()) {
propList.setValue(users);
} else {
System.out.println ("Users list is not enabled.");
}
}

// Specify the Default Value to the current user

IProperty propDefValue =
attr.getProperty(PropertyConstants.PROP_DEFAULTVALUE) ;

values = propDefValue.getAvailableValues();
values.setSelection(new Object[]{m session.getCurrentUser(});
propDefVvalue.setValue(values);

} catch (APIException ex) {
System.out .println (ex) ;

}

When you select a user-defined list using IListLibrary.getAdminList (), you can specify the
list by name or ID. All list names must be unique. The following example shows how to select an
Agile list called Colors.

Example: Selecting a list named Colors

private void selectColorsList (IAttribute attr, IListLibrary
m_listLibrary) throws APIException

// Get the List property
IProperty propList = attr.getProperty(PropertyConstants.PROP_LIST);
// Use the Colors list
IAdminList listColors = m listLibrary.getAdminList('Colors™™);
if (listColors != null) {
if (listColors.isEnabled()) {
propList.setValue(listColors);
} else {
System.out.println("Colors list is not enabled.");
}
}

164 Agile Product Lifecycle Management

Chapter 11: Working with Lists

Creating Custom Lists

The Agile API lets you modify list attributes for different classes and configure custom list attributes
for Page Two and Page Three. You can customize these list attributes to create simple lists or
multilists. You can also configure a list to be cascading, that is, have multiple levels.

In Agile Java Client, administrators can configure a library of custom lists by choosing Admin > Data
Settings > Lists. In the Agile API, the IListLibrary interface provides functionality equivalent to
Admin > Data Settings > Lists. The IAdminList interface provides functionality for configuring and
customizing each list.

Creating a Simple List

To create a new list, use the IListLibrary.createAdminList () method, which takes a map
parameter. The map that you pass with createAdminList () must contain values for the following
IAdminList fields

o ATT NAME — the String name of the list. This is a required field. The list name must be unique.

B ATT DESCRIPTION — the String description of the list. This is an optional field; the default
value is an empty string.

@ ATT ENABLED — a Boolean value specifying whether the list is enabled. This is an optional
field; the default value is false.

® ATT_CASCADED — a Boolean value specifying whether the list contains multiple levels. This is
an optional field; the default value is false. The ATT CASCADED value cannot be changed
after the list is created.

Once the list is created, you can use the IaAdminList interface to enable or disable the list and set
values for it.

The following example shows how to create a new list called Colors. This list is a simple list with
only one level.

Example: Creating a simple list
try {
// Get the Admin instance
IAdmin admin = m session.getAdminInstance() ;
// Get the List Library
IListLibrary listLib = admin.getListLibrary();
// Create a new Admin list
HashMap map = new HashMap () ;
String name = "Colors";
map . put(TAdminList_ATT_NAME, name);
map . put(TAdminList.ATT_DESCRIPTION, name);
map . put(TAdminList.ATT_ENABLED, new Boolean(true));
map . put(TAdminList.ATT_CASCADED, new Boolean(false));

IAdminList listColors = listLib.createAdminList(map);

v9.3.1.1 165

SDK Developer Guide - Using Agile APIs

// Add values to the list

IAgileList list = listColors.getValues(); //The list is empty at this

point.

list.
.addChild("'Blue™);
list.
list.
list.
.addChild("'White™);
listColors.setValues(list);

list

list

addChild(''Black™);

addChild("'Green);

addChild(""Purple'™);

addChi ld("'Red") ;

} catch (APIException ex)
System.out .println (ex) ;

}

Lists that contain String values are case-sensitive. This means that a list can contain uppercase,
lowercase, and mixed-case variations of the same value, which may not be desirable. For example,
the following code snippet adds three variations of each color value to the Colors list.

Example: Adding case-sensitive values to a list
IAgileList list = listColors.getValues() ;

//The list is empty at this

point.
list.addChild("Black") ;
list.addChild ("BLACK") ;
list.addChild("black") ;
list.addChild ("Blue") ;
list.addChild ("BLUE") ;
list.addChild("blue") ;
list.addChild ("Green") ;
list.addChild ("GREEN") ;
list.addChild ("green") ;
list.addChild ("Purple") ;
list.addChild ("PURPLE") ;
list.addChild ("purple") ;
list.addChild ("Red") ;
list.addChild ("RED") ;
list.addChild ("red") ;
list.addChild ("White") ;
list.addChild ("WHITE") ;
list.addChild ("white") ;
166 Agile Product Lifecycle Management

Chapter 11: Working with Lists

Automatically Creating New Lists by Modifying Existing Lists

Each list attribute must reference an Agile list for its values. If you retrieve an Agile list and modify
its values without saving the list and then use those values for a list attribute, the Agile API
automatically creates a new list. In the following example, the Colors list is retrieved, but before it is
used to populate the values for a list field a new value, “Violet,” is added to the list. When
IAttribute.setAvailableValues () is called, a new list is created.

Note Lists that are created automatically by the Agile API have a prefix “SDK” followed by a
random number. You can rename such lists, if you prefer.

Example: Creating a new list automatically by modifying an existing list

try {
// Get the Colors list
IAdminList listColors = m listLibrary.getAdminList(*'Colors™™);
// Get the Parts class

IAgileClass partsClass =
admin.getAgileClass (ItemConstants.CLASS PARTS CLASS) ;

// Get the "Page Two.List01l" attribute

IAttribute attr =
partsClass.getAttribute (ItemConstants.ATT PAGE TWO LISTO01) ;

// Get the color values
IAgileList values = listColors.getValues();

// Add a new color
values .addChild("Violet");

// Set the available list values for "Page Two.List01". Because the
list

// was modified, a new AdminList is created automatically.
attr.setAvailableValues(values);

} catch (APIException ex) {
System.out.println (ex) ;

}
Creating a Cascading List

A cascading list is a list with multiple levels. You can configure SingleList attributes and cells using
a cascading list instead of a simple list

Note Once you set a list to be cascading, you can’t change it to a flat list. You cannot change
the value of IAdminList .ATT CASCADED after the list is created.

v9.3.1.1 167

SDK Developer Guide - Using Agile APIs

The following example shows how to create a new cascading list called “Field Office.” The list has
two levels.

Important When setting level names for cascading lists, always start with the index 0 for the first

level and increment the index subsequent levels as shown in the following two
examples below.

Example: Creating a cascading list
try {

// Get the Admin instance
IAdmin admin = m_session.getAdminInstance() ;

// Get the List Library
IListLibrary listLib = admin.getListLibrary();

// Create a new Admin list

HashMap map = new HashMap () ;

String name = "Field Office";

map . put(TAdminList.ATT_NAME, name);

map . put(TAdminList.ATT_DESCRIPTION, name);

map . put(TAdminList.ATT_ENABLED, new Boolean(true));
map . put(TAdminList.ATT_CASCADED, new Boolean(true));
IAdminList 1listFO = listLib.createAdminList(map);

// Get the empty list

IAgileList list = listFo.getValues();

// Add the list of countries

IAgileList india = (IAgileList)list.addChild("India");

IAgileList china = (IAgileList)list.addChild(*'China™);
IAgileList usa = (IAgileList)list.addChild("'USA™);

IAgileList australia = (IAgileList)list.addChild("Australia");

// Add the list of cities
india.addChild(*'Bangalore™);
china.addChild(**Hong Kong');
china.addChild("'Shanghai™);
china.addChild(*'Suzhou');
usa.addChild('San Jose™);
usa.addChild("'Milpitas™);
usa.addChild("'Seattle');
usa.addChild("'Jersey City");
australia.addChild(*'Sidney");

// Save the list values
listFo.setValues(list);

168

Agile Product Lifecycle Management

Chapter 11: Working with Lists

// Set level names starting with index 0 for level 1.
list.setLevelName(0, "Field Office Country™);
list.setLevelName(l, "'Field Office City"'");

} catch (APIException ex) {
System.out.println (ex) ;

}

In cascading lists, level names used by the list must be unique and you cannot share them between
lists. The level names are stored internally, but Agile Java Client and Web Client currently don’t
display them. The level names are needed only if you want to show them in a cascading list Ul that
you created.

After you call the TAdminList.setValues () method, a valid ID is assigned to each list value
Only leaf nodes, that is, nodes on the lowest level of a cascading list, have valid IDs. In the previous
example, the city nodes are leaf nodes. All other nodes have a null ID. You can use the ID to set the
selection of the IaAgileList object.

You can add a list value and its parent nodes in one statement instead of adding the parent node
and then its subnodes. Use the | character to separate nodes, which represent levels, in the string.
The following example replaces a portion of the code in the example; it shows how to add the same
list values as in the following example, but using fewer lines of code.

Example: Adding parent nodes and subnodes to a cascading list
// Get the list values
IAgileList list = listFo.getValues(); // The list is empty at this
point.
// Add nodes
list.addChild(*India]Bangalore™);
list.addChild(*“Hong Kong|Hong Kong’);
list.addChild(“China]Suzhou™);
list.addChild(**‘USA]San Jose™);
list.addChild(“USA|Milpitas™);
list.addChild(*“USA]Jersey City”);
list.addChild(*“Australia]Sidney™);

// Save the list values
listrFo.setValues(list);

// Set level names
list.setLevelName (0, “Field Office Country”);
list.setLevelName(1l, “Field Office City”);

v9.3.1.1 169

SDK Developer Guide - Using Agile APIs

Creating a Criteria-Based List

Criteria-based lists are dynamic lists whose values are defined by the criteria selected from the
Agile Criteria library. These lists are created in Java Client's Create List dialog by selecting the
"Dynamic" List Type in the drop-down list which opens the Agile Criteria library to select the
applicable Criteria.

Figure 13: Creating criteria-based lists in Java Client

& Lists

x| e
Filker By | Mame v | Match If | Starts with Mame | | ply
jo] IMame tia
| APL Mame |]|
Description | |
Enabled | Enabled v |
List Type | Dynamic b |
Critetia J [F1]
Find: :\ =
All Active RFQs ~
All Active Sourcing Project —
All Activities —
All Activities Created By Me
All Activities T am Owner of
All Administrator Reports v
4 =|
S I

Agile SDK supports creating, loading, and modifying Criteria-based lists by exposing the necessary
APIs to:

1. Get the Criteria
2. Create the Criteria-based list
3. Load the Criteria-based list

4. Replace the Criteria-based list

The following examples use the respective APIs to perform these tasks.

Example: Getting the Criteria from the Agile Criteria library
IListLibrary library = m admin.getListLibrary() ;
INode lib = m_admin.getNode (NodeConstants.NODE_ CRITERIA LIBRARY)
ICriteria criteria = (ICriteria)lib.getChild("All Change Orders"
Example: Creating the Criteria-based list
HashMap params = new HashMap () ;
String name = "SDKlist" + System.currentTimeMillis() ;
params.put (IAdminList .ATT APINAME, name.toUpperCase()) ;
params.put (IAdminList .ATT NAME, name.toUpperCase()) ;
params.put (IAdminList .ATT DESCRIPTION, name.toLowerCase()) ;
params.put (IAdminList .ATT ENABLED, true);
params.put (IAdminList .ATT CRITERIA, criteria);
ICriteriaBasedList list =
(ICriteriaBasedList) library.createDynamicAdminList (params) ;
System.out.println("Created list: "+list.getName()) ;
System.out.println("Criteria:
"+ ((ICriteriaBasedList)list) .getCriteria() .toString()) ;

)

170 Agile Product Lifecycle Management

Chapter 11: Working with Lists

Example: Loading the Criteria-based list
ICriteriaBasedList 1list =
(ICriteriaBasedList)m admin.getListLibrary () .getAdminList (name.toUpp
erCase()) ;
System.out.println("Loaded list: "+list.getName()) ;
Example: Replacing the Criteria - Modifying the Criteria-based list
ICriteria criteria = (ICriteria)lib.getChild("All Designs") ;
list.setCriteria(criteria) ;
System.out.println("New Criteria:
"+ ((ICriteriaBasedList)list) .getCriteria() .toString()) ;

Checking the Data Type of a List

A list can contain objects of any Agile datatype. Therefore, before getting or setting a list value, you
should determine the data type of objects in the list. If you are working with a cascading list, the
data type can vary with each level. There are several ways to determine the data type of a list:

= For predefined lists in the List Library, use IAdminList.getListDataType () to get the
data type.

o For SingleList and MultiList attributes that have only one list level, use the
IAttribute.getListDataType () method to get the data type for the entire list.

= For a level within a cascading list, use the IAgilelList.getLevelType () method to get the
data type for a particular level.
Example: Checking the data type of a list
public void setDefaultValue() throws APIException ({
// Get the Parts class

IAgileClass partClass =
m_admin.getAgileClass (ItemConstants.CLASS PARTS CLASS) ;

// Get the "Page Two.List01l" attribute

IAttribute attr =
partClass.getAttribute (ItemConstants.ATT PAGE TWO LISTO01) ;

switch (attr.getListDataType())
case DataTypeConstants.TYPE OBJECT:
//Add code here to handle Object values
break;

case DataTypeConstants.TYPE STRING:
//Add code here to handle String values
break;

default:
//Add code here to handle other datatypes

v9.3.1.1 171

SDK Developer Guide - Using Agile APIs

Modifying a List

Once a list has been created, you can modify it in the following ways:
o Add values to a list

o Make list values obsolete

o Set the list name and description

o Setlevel names for a cascading list

@ Enable or disable a list

o Delete a list

= Modify or remove values added to a list

Adding a Value to a List

The following example shows how to add several values to a list. Before adding a value to a list,
use the ITreeNode.getChildNode () method to make sure the value doesn'’t already exist.
Example: Adding values to alist
private static void updateProductLinesList () throws APIException ({

// Get the Admin instance

IAdmin admin = m session.getAdminInstance() ;

// Get the List Library
IListLibrary listLib = admin.getListLibrary();

// Get the Product Lines list

IAdminList listProdLine = listLib.getAdminList('Product Line"™);
// Add values to the list

IAgileList listValues = listProdLine.getValues();

addToList (listValues, "Saturn");

addToList (listValues, "Titan") ;

addToList (1listValues, "Neptune") ;
listProdLine.setValues(listvalues);

}

private static void addTolList (IAgilelList list, String value) throws
APIException {

if (list.getChildNode(value) == null) {
list.addChild(value);

172 Agile Product Lifecycle Management

Chapter 11: Working with Lists

Making List Values Obsolete

You can prevent the selection of a list value by making the list entry obsolete. However, when you

invoke the IProperty.getAvailableValues () method, the returned IAgileList object can
include obsolete list values. This is due to the fact that when the list value is marked obsolete, the

server continues to maintain the value in its obsolete list values for existing objects that use these

values.

The following example shows how to check whether a list value is obsolete and how to make it
obsolete.
Example: Making alist value obsolete
public void checkIfObsolete (IAgileList list) throws APIException ({
if (list != null) {
if (list.isObsolete() == false) {
System.out.println(list.getValue()) ;

}
}
}

public void setObsolete (IAgilelList list, String value) throws
APIException (

if (list != null) {
list.setObsolete(true);
System.out.println(list.getValue() + " is now obsolete.");

}
}

Setting the List Name and Description

To create a list, you must specify a unique name for it. Therefore, when you use
IListLibrary.createAdminList (), you must pass a value for the IAdminList .ATT NAME
field. Other IadminList fields, such as ATT DESCRIPTION, are optional. After the list is created,
you can modify it's name and description. The following example shows how to set the name and
description of a list.
Example: Setting the list name and description
try {
IAdminList list = m_listLibrary.getAdminList ("Packaging Styles");
list.setName("'Packaging Color Codes™);
list.setDescription(*'Color codes for product packaging');

} catch (APIException ex) {
System.out.println (ex) ;
}

v9.3.1.1 173

SDK Developer Guide - Using Agile APIs

Setting Level Names for a Cascading List

Like list names, the level names for a list must be unique. You can'’t reuse the level name used by
another cascading list. To check if the list with a given name already exists, use
IListLibrary.getAdminList (). Use one of the following methods to set the level name of a
cascading list:

B IAgilelList.setLevelName (int, String) — Sets the level name for a specified level.

B IAgileList.setLevelName (String) — Sets the level name of the current level.

For an example showing how to set the level names of a cascading list, see Creating a Cascading
List on page 167.

Note Level names for cascading lists are not displayed in Agile Java Client or Web Client.
However, you can choose to display them in Clients you create with the Agile SDK.

Enabling or Disabling a List

When you create a custom list, you can use the IAdminList .ATT ENABLED field to specify
whether it's enabled. If you omit this field, the list is disabled by default. The following example
shows how to enable and disable a list after it has been created.
Example: Enabling and disabling a list
public void enableList (IAdminList list) throws APIException
list.enable(true);
System.out.println("List " + list.getName() + " enabled.");
}
public void disableList (IAdminList list) throws APIException
list.enable(false);
System.out.println("List " + list.getName() + " disabled.");

}
Deleting a List

If a list is not read-only and is not currently being used by an Agile dataobject, you can delete it.
Otherwise, the TAdminList .delete () method throws an exception. Once you delete a list, it is
removed permanently. You cannot undo the deletion.

The following example shows how to delete a list.
Example: Deleting a list
public void deleteList (IAdminList list) throws APIException ({
// Make sure the list is not read-only
if (!list.isReadOnly(Q)) {
// Delete the list
list.delete();
System.out.println("List " + list.getName() + " deleted.");
} else {

174 Agile Product Lifecycle Management

Chapter 11: Working with Lists

System.out.println("List " + list.getName() + " is read-only.");

}
}

Modifying and Removing List Values

The SDK provides the following methods to modify String element entries, or remove an entry in an
Agile list:

B The IAgileList.setValue (Object) method to modify String list element entries in an
Agile Admin list.

Note This method only applies to String values. You can only use this method to modify String
entries and not object entries.

o The IAgilelist.clear () and ITree.removeChild (Object) methods to remove any
Agile list entry that is not restricted by the applicable business rules.

The following example uses these methods to modify and clear values in an Agile list.

Example: Renaming and removing Admin list entries
public void exampleClearList () throws Exception (
IAdmin admin = m session.getAdminInstance () ;
IListLibrary listLibrary = admin.getListLibrary() ;
HashMap map = new HashMap () ;
String name = "Color";
String desc "Example";
map.put (IAdminList .ATT NAME, name) ;
map.put (IAdminList .ATT DESCRIPTION, desc) ;
map.put (IAdminList .ATT ENABLED, new Boolean(true)) ;
map.put (IAdminList .ATT CASCADED, new Boolean(false)) ;
IAdminList newlList = listLibrary.createAdminList (map) ;
IAgileList list = newList.getValues() ;
list.addChild ("RED") ;
list.addChild ("GREEN") ;
list.addChild ("BLUE") ;
newList.setValues (list) ;
list = newList.getValues() ;

// Removing the selection

IAgilelList aglList = (IAgileList)list.getChild("BLUE") ;
Object errorCode = null;
try

list.removeChild(agList);
}catch (APIException e) {
errorCode = e.getErrorCode () ;

}

// Clear the list

v9.3.1.1 175

SDK Developer Guide - Using Agile APIs

list = newList.getValues();

list.clear() ;
newList.setValues(list);

// Clean up
newList.delete() ;

}
Printing Contents of IAgileList Objects

When working with an TAgilelList object, particularly one with several levels, it's helpful to print
the entire hierarchy of the list. The following code prints the list nodes contained within an
IAgileList object.
Example: Printing list nodes in an IAgileList object

private void printList (IAgileList list, int level) throws APIException

if (list != null) {
System.out.println (indent (level*4) + list.getLevelName() + ":" +
list.getValue() + ":" + list.getId());

Object[] children = list.getChildren() ;

if (children != null) {
for (int i = 0; i < children.length; ++i) {

printList ((IAgileList)children([i], level + 1);

}

}

}
}

private String indent (int level) {
if (level <= 0) {
return "";

}

char c[] = new char[level*2];
Arrays.fill(c, ' ');
return new String/(c) ;

176 Agile Product Lifecycle Management

Chapter 12
Working with Attachments and File Folder Objects

This chapter includes the following:

= About Attachments and File FOIAEIS ..ot 177
5 WOrKiNG WIth FilE FOITEIS ...ttt 178
= Working with Attachments Table 0f @n OBJECL........ccoiirirrre s 184
= Checking OUL @ Fil FOIITcoiireeir sttt bbb 187
= Canceling a File FOlAEr ChECKOUL.........ccvcueiiiieiceics ettt 187

Adding Files and URLS t0 the AttaChments TabIcccovvrrieririniessees s 188

Ahout Attachments and File Folders

Attachments to objects contain information about the object or a manufacturing process. You can
attach files and URLSs by referencing them in a File Folder object. The File Folder object holds
pertinent content, or Attachments. Most primary Agile API objects, such as IItem, IChange,
IManufacturer, IManufacturerPart, IPackage, ITransferOrder, IUser, and
IUserGroup, have an Attachments table (or tab in the Java Client) that lists indirect references to
the files or URLSs that are in separate file folders. Each row in an Attachments table can refer to one
file or to all files from a referenced file folder.

The following figure is an example of the way files or URLs contained in a file folder are referenced
indirectly from the Attachments table of multiple business objects, in this case an item and a
change.

Figure 14: How Attachments table rows refer indirectly to File Folder files or URLs

Item Change
Attachment Attachment

File Falder ohject

File1
File2
URL1
URLZ

The Agile API does not provide support for viewing or printing an attachment. However, after you
download a file, you can use another application to view, edit, or print the attachment.

v9.3.1.1 177

SDK Developer Guide - Using Agile APIs

A File Folder is a business object that specifies one or more files or URLSs that are stored in the file
PLM server vault. In addition, a file folder has its own set of tables. This means that you can create
and load an independent file folder and add one or more files to its Files table. You can also search
for a file folder, just as you would search for an Item or Change.

Important Before you try to add Agile PLM attachments and work with file folders, make sure the
File Manager Internal Locator property is set in Agile Java Client. Choose Admin > Settings
> Server Settings > Locations > File Manager > Advanced > File Manager Internal Locator. The
format for the value is
<protocol>://<machinename>:<port>/<virtualPath>/services/FileServer. For example,
http://aqileserver.agile.agilesoft.com:8080/Filemar/services/FileServer is a valid value.
For more information about Agile PLM server settings, refer to the Agile PLM
Administrator Guide.

Working with File Folders

Similar to Attachments, the SDK exposes APIs to perform File Folders-related task such as
checking-in and checking-out files associated with objects in the rows of an Attachments table,
adding files and URLSs to an Attachments table, and deleting attachments. This section lists and
describes these features, and provides the necessary procedures to use the SDK to perform these
tasks.

File Folder Classes and Subclasses

The File Folder Base Class has two Classes and each of these classes have their own respective
Subclasses. The figure below lists the File Folders Base Class, Classes, and Subclasses. The Agile
PLM administrator can define new file folder subclasses.

Figure 15: File Folders Classes and Subclasses

= Classes
e
Mame De=scription
File Folders File Folder Base Class S
Designs Design Class
Design Desian Subclass —
File folders File Folders Class
File Folder File Folder Subclass
Markup Markup Subclass "
£ | >

A description of these classes and objects appears in the table below.

178 Agile Product Lifecycle Management

http://agileserver.agile.agilesoft.com:8080/Filemgr/services/FileServer

Chapter 12: Working with Attachments and File Folder Objects

Base Class Class Subclass Description
File Folders Designs Design Objects that permit building model structures in CAD
File folders File Folder Objects that include files or URLS; this class includes all
Markup file folder objects except historical report file folders.

For information about routing these objects, see Checking the State of Agile PLM Objects on page
30.

File Folder Tables and Constants

The File Folder object supports the following tables and corresponding constants:

Table Constant Read/Write Mode

Title Block TABLE TITLEBLOCK Read/Write
Page Two TABLE PAGETWO Read/Write
Page Three TABLE_PAGETHREE Read/Write
Files TABLE FILES Read/Write
Structure TABLE STRUCTURE Read/Write
Routing Slip/Workflow TABLE_WORKFLOW Read/Write
Relationships TABLE RELATIONSHIPS Read-only

History TABLE HISTORY Read-only

Where Used TABLE WHEREUSED Read/Write
Where Used Design TABLE WHEREUSEDDESIGN Read-only

Creating File Folder Objects

IFileFolder is the interface that corresponds to the file folder business object. The following
example shows how to create a file folder.

Example: Creating a file folder

public void createFileFolder () throws Exception (

IAgileClass attClass =
m_admin.getAgileClass (FileFolderConstants.CLASS FILE FOLDER) ;

IAutoNumber an = cls.getAutoNumberSources () [0] ;

String attNumber = an.getNextNumber () ;
IFileFolder ff = (
IFileFolder)m session.createObject(attClass, attNumber);

ff.checkOutEx () ;

v9.3.1.1 179

SDK Developer Guide - Using Agile APIs

Note When you add a file or a URL to the row of the Attachments table of a business object,
you will automatically create automatically a new file folder object that contains the
associated file or URL. See Creating File Folder Objects by Adding Rows to
Attachments Table on page 182.

The File Folders Design class is similar to the File folder class with the additional Structures table
(Tab in the Java Client Ul) for CAD objects. The following examples show how to create a Design
object, adding a Design object to a the Structure tree, and loading a structure table.

Example: Creating a Design object

// autoNum is autoNumber as usual
IFileFolder obj = (IFileFolder) m_session.createObject (
FileFolderConstants.CLASS DESIGN, autoNum) ;
Example: Adding Design objects to a Structure tree
IFileFolder obj = // some Design object
IFileFolder childObjl = // some Design object
IFileFolder childObj2 = // some Design object
obj.checkOutEx () ;

ITable table = obj.getTable(FileFolderConstants.TABLE STRUCTURE) ;
// add row

Object[] vers = childObjl.getVersions() ;
IRow row = table.createRow(childObjl) ;

row.setValue (FileFolderConstants.ATT STRUCTURE LABEL,
"label modified by creating row 1");

row = table.createRow(childObj2) ;

row.setValue (FileFolderConstants.ATT STRUCTURE LABEL,
"label modified by creating row 2");

obj.checkIn() ;
Example: Loading a Structure table

public void testLoadingDesignStructureTable() throws Exception {

addCaseInfo ("Design Object", "load Structure table", "");
// assuming Design object Design00004 existed with some data in
Structure

IFileFolder obj = (IFileFolder) m_ session.getObject (
FileFolderConstants.CLASS DESIGN, "Design00004") ;
IAgileClass agileClass = obj.getAgileClass();

// load Structure table

ITable table = obj.getTable(FileFolderConstants.TABLE STRUCTURE) ;
Integer tableId = (Integer) table.getTableDescriptor () .getId() ;
// ITable performs related tasks

Example: Loading a Structure table as a tree
public void testLoadingDesignStructureTree ()
throws Exception

{addCaseInfo("Design Object", "load Structure tree", "");
// assuming Design object Design00004 existed with some data in
Structure

IFileFolder obj = (IFileFolder) m session.getObject (

FileFolderConstants.CLASS_DESf@N, "Design00004") ;
IAgileClass agileClass = obj.getAgileClass() ;
// load Structure table

180 Agile Product Lifecycle Management

Chapter 12: Working with Attachments and File Folder Objects

ITable table = obj.getTable(FileFolderConstants.TABLE STRUCTURE) ;
Integer tableId = (Integer) table.getTableDescriptor () .getId();
ITreeNode root = (ITreeNode) table;
Collection topLevelChildren = root.getChildNodes() ;
Iterator it;
ITreeNode row;
if (topLevelChildren != null) {
it = topLevelChildren.iterator () ;
int level = 0;
while (it.hasNext()) {

row = (ITreeNode) it.next () ;
if (row instanceof IRow) ({
IRow aRow = (IRow) row;
IDataObject referent =
aRow.getReferent () ;
if (referent != null) {
System.out.println
"Row Referent Object ID/row:
"+ referent.getObjectId()+ " / "
+ referent.getName ()) ;

}
}

iterateTreeNode (agileClass, true,
tablelId, (ITreeNode) row) ;
count++;

}

System.out.println ("The number of rows in top level is " + count) ;

private void iterateTreeNode (IAgileClass agileClass, boolean print,
Integer tableId, ITreeNode node) throws APIException
Collection childNodes = node.getChildNodes() ;
printRow(agileClass, print, tableId, (IRow) node);
if (childNodes == null || childNodes.size() <= 0) {
return;

}

Iterator it = childNodes.iterator() ;
ITreeNode childNode;
IRow row;

while (it.hasNext()) {
childNode = (ITreeNode) it.next () ;
if (childNode instanceof IRow) {
row = (IRow) childNode;
if (row instanceof IRow)
IDataObject referent =
row.getReferent () ;
if (referent != null) {

System.out.println

v9.3.1.1 181

SDK Developer Guide - Using Agile APIs

("Row Referent Object ID/row:
"+ referent.getObjectId()+ " / "
+ referent.getName ()) ;

}
}
iterateTreeNode (agileClass, print, tablelId, (ITreeNode) childNode) ;
}
}
}

Creating File Folder Objects by Adding Rows to Attachments Table

When you add a file or a URL to the row of the Attachments table of a business object, you
automatically create a new file folder that contains the associated file or URL. You can load the
referenced file folder using the IRow.getReferent () method, as shown in the following example.
Example: Creating a file folder by adding a row to the Attachments table
public IFileFolder addRowToltemAttachments

(ITtem item, File file) throws Exception

{ITable attTable = item.getTable (ItemConstants.TABLE ATTACHMENTS) ;

IRow row = attTable.createRow(file);

IFileFolder ff = (IFileFolder)row.getReferent();

return ff;

}
Working with the Files Table of a File Folder

The Files table of a file folder lists the files and URLs associated with the object. To edit the table,
you must first check out the file folder. You cannot add files or URLSs to the Files table or delete
them unless the file folder is checked out.

The following example shows how to check out a file folder and then add files and URLSs to the Files
table.
Example: Adding files and URLs to the Files table of afile folder

public void addFiles(IFileFolder ff, File[] files, URL[] urls) throws
Exception {

// Check out the file folder
ff.checkOutEx () ;

// Get the Files table

ITable filesTable = ff.getTable(FileFolderConstants.TABLE FILES) ;

// Add files to the Files table

for (int i = 0; i < files.length; ++1i) {
filesTable.createRow(files[i]) ;

}

// Add URLs to the Files table

for (int i = 0; i < urls.length; ++i) {
filesTable.createRow (urls[i]) ;

182 Agile Product Lifecycle Management

Chapter 12: Working with Attachments and File Folder Objects

}

// Check in the file folder
ff.checkIn();

}
Accessing Files in Agile PLM File Vault with IAttachmentFile

IAttachmentFile is the interface that provides generalized access to files stored in the Agile
PLM file vault. This interface is supported by the following Agile API objects:
o File folder — you can class cast IFileFolder to IAttachmentFile.

= Arow of the Files table of a file folder — you can class cast IRow from the Files table to
IAttachmentFile.

= Arow of the Attachments table of a business object — you can class cast IRow from the Attachments
table to IAttachmentFile.

IAttachmentFile provides the following methods for working with attachments:
B getFile()

o isSecure ()

Note IAttachmentFile also has a setFile () method that lets you change the file(s) for
an attachment, but it is supported only for rows of the Attachments table.

The results returned from IAttachmentFile methods vary depending on the object you're
working with, as shown in the following table.

Calling object getFile() return value isSecure() return value
Row from the Attachments table of Returns either a single file InputStreamif | true if the referenced file is not URL, or
any business object the row refers to a specific file from the file all the files are not URLSs.

folder or a zipped InputStream with all
the files from the file folder.

FileFolder object Returns a zipped InputStream with all true if all the files contained in the file
files from the file folder. folder are not URLSs.

Row from the Files table of a file Returns a single file InputStream that refers to true if the referenced file is not a URL.

folder a specific file from the file folder.

Note To read files in a zipped InputStream, use methods of the
java.util.zip.ZipInputStream class.

v9.3.1.1 183

SDK Developer Guide - Using Agile APIs

The following example shows how to use IAttachmentFile.isSecure () and
IAttachmentFile.getFile () from the row of an Attachments table for an item.
Example: Using isSecure() and getFile()
public InputStream getItemAttachment (IItem item) throws Exception ({
InputStream content = null;
ITable attachments = item.getTable (ItemConstants.TABLE ATTACHMENTS) ;

IRow row = (IRow)attachments.iterator () .next();
if (((IAttachmentFile)row) .isSecure())
content = ((IAttachmentFile)row).getFile();

return content;

Working with Attachments Table of an Object

To work with the Attachments table of an object, follow this sequence.
1. Getthe object that has the attachment you want.

For example, you can use the IAgileSession.getObject () method to get a particular
object, or you can create a query to return objects.

2. Getthe Attachments table. Use the IDataObject .getTable () or
IAttachmentContainer.getAttachments () methods to get the table.

3. Select a row in the Attachments table.

Create an iterator for the table, and then select a particular row. You can use the
ITable.getTableIterator () method to get a bidirectional iterator for the table.

The following example below shows how to retrieve an item, get the Attachments table for the item,
and then select the first attachment.

Example: Getting an attachment for an Item
try {
// Get Item P1000
Map params = new HashMap () ;
params.put (ItemConstants.ATT TITLE BLOCK NUMBER, "P1000");
ITtem item = (IItem)m session.getObject (IItem.OBJECT TYPE, params) ;
// Get the attachment table for file attachments
ITable attTable = item.getAttachments();
// Get a table iterator
ITwoWayIterator it = attTable.getTablelterator();
// Get the first attachment in the table

if (it.hasNext()) {
IRow row = (IRow)it.next();
// Read the contents of the stream
InputSteam stream = ((IAttachmentFile)row) .getFile() ;
}
else {
JOptionPane.showMessageDialog(null, "There are no files listed.",

184 Agile Product Lifecycle Management

Chapter 12: Working with Attachments and File Folder Objects

"Error", JOptionPane.ERROR_MESSAGE) ;

}

} catch (APIException ex) {
System.out.println (ex) ;

}
Checking In and Checking Out Files with ICheckoutable

The ICheckoutable is an interface that you can use to check in and check out files that are
associated with an object. This applies only to rows of the Attachments table. You can class cast
IRow from the Attachments table to ICheckoutable.

ICheckoutable provides the following methods for working with attachments:
o cancelCheckout ()

o checkIn()

o checkOutEx ()

B isCheckedout ()

This example shows how to use the ICheckoutable interface to check out and check in a file

from a row of the Attachments table.

Example: Using ICheckoutable methods to check out and check in an attached file
public InputStream checkOutRow(IRow row) throws APIException {

// Check out the attachment
((ICheckoutable) row) .checkOutEx();

// Read the contents of the stream
InputStream stream = ((IAttachmentFile)row).getFile();
return stream;
}
public checkInRow (IRow row, String filePath) throws APIException (
if (row.isCheckedOut()) {
// Set the new file
((IAttachmentFile) row) .setFile(new File(filePath)) ;
// Check in the file
((ICheckoutable) row) .checkIn();
}
else {

JOptionPane.showMessageDialog (null, "The attachment is not checked
out.",

"Error", JOptionPane.ERROR_ MESSAGE) ;

}
}

v9.3.1.1 185

SDK Developer Guide - Using Agile APIs

Specifying the Revision of the ltem

When you are working with items, each revision can have different attachments. If an item has
multiple revisions, your program should allow the user to select a revision. For information about
specifying the revision, see Getting and Setting the Revision of an Item on page 111.

Checking whether the Revision Is Incorporated

When the revision for an item is released, the revision is also incorporated. The attachments for an
incorporated item are locked and cannot be checked out.

However, you can still view incorporated attachments, but you cannot modify them. To modify an
incorporated attachment, you must either un-incorporate the attachment, or submit a new changes
order to create new revision as shown in the examples below. For more information about checking
whether a revision is incorporated, see Changing the Incorporated Status of a Revision on page
113.

Example: Incorporating Attachments

class Incorporateltem implements ICustomAction {
public ActionResult doAction(IAgileSession session, INode

actionNode,
IDataObject affectedObject) {
try {
System.out.println ("Workflow action kicked off....");
ITtem object = (IItem)affectedObject;
System.out.println ("Incorporating...");
ITtem loItem = (IItem) session.getObject (IItem.OBJECT TYPE,

object.getName ()) ;
//this will get the latest version. Make sure the latest is against
a MCO

loItem.setIncorporated (true) ;
//incorporate the attachment

System.out.println ("Attachment added.");

String message = ("Incorporated "+object) ;

return new ActionResult (ActionResult.STRING, message) ;

} catch (APIException ae)
ae.printStackTrace () ;
return new ActionResult (ActionResult.EXCEPTION, ae);

Example: Un-incorporating Attachments

class Incorporateltem implements ICustomAction {
public ActionResult doAction(IAgileSession session, INode
actionNode,
IDataObject affectedObject) {
try {
System.out.println ("Workflow action kicked off....");
ITtem object = (IItem)affectedObject;
System.out.println ("Incorporating...");
ITtem loItem = (IItem) session.getObject (IItem.OBJECT TYPE,
object.getName ()) ;
//this will get the latest released version

186 Agile Product Lifecycle Management

Chapter 12: Working with Attachments and File Folder Objects

loItem.setIncorporated(false) ;
//Unincorporate the attachment
System.out.println ("Attachment added.");
String message = ("Incorporated "+object) ;
return new ActionResult (ActionResult.STRING, message) ;
} catch (APIException ae)
ae.printStackTrace() ;
return new ActionResult (ActionResult.EXCEPTION, ae) ;

Checking Out a File Folder

Before you can add, delete, or modify the files contained in a file folder, you must check out the file
folder. With the appropriate privileges, you can check out a file folder as long as it is not already
checked out by another user. Once a file folder is checked out, no one else can check it out or

modify it.
The user who checked out a file folder, as well as other users who are change analysts or

component engineers, can check it in. If the file folder was checked out to a location on the network,
or to a shared drive or directory, anyone who has access to that network location or to that shared

directory can check in the file folder.

The following example shows how to check out a file folder.

Example: Checking out afile folder
void checkOutFileFolder (IFileFolder ff) throws Exception

ff.checkOutEx(Q);
}

Note You can also use ICheckoutable.checkOutEx () to check out a row of the
Attachments table. See Checking In and Checking Out Files on page 185.

Canceling a File Folder Checkout

If you check out a file folder and then decide that you don’t want to modify it, or you want to discard
your changes and revert to the original file folder, you can cancel the checkout. When you cancel a
checkout, you also make the file folder available for other users to check out.

Note Only the user who checked out a file folder can cancel the checkout.

This example shows how to cancel a checkout of a file folder.
Example: Canceling checkout of afile folder
void cancelCheckOut (IFileFolder f£f) (
// Show a confirmation dialog box
int i1 = JOptionPane.showConfirmDialog(null,
"Are you sure you want to cancel checkout?",
"Cancel Checkout", JOptionPane.YES NO OPTION) ;

v9.3.1.1 187

SDK Developer Guide - Using Agile APIs

// If the user clicks Yes, cancel checkout
try {
if (4 == 0) {
ff.cancelCheckout();
}
} catch (APIException ex) {
System.out .println (ex) ;

}
}

Note You can also use ICheckoutable.cancelCheckout () to cancel checkout of a row
of the Attachments table. See Checking In and Checking Out Files on page 185.

Adding Files and URLs to the Attachments Table

The Agile API lets you add files and URLSs to the Attachments table of many types of objects, such
as IItem, IChange, IManufacturerPart, and IManufacturer. An attachment is one or more
physical files or an Internet address (URL). A file is considered a secured attachment because it is
physically stored in the Agile PLM file vault. A URL, on the other hand, is an unsecured attachment.

When you add a file or a URL to the Attachments table of a business object, the server
automatically creates a new file folder containing the associated file or URL. The new row on the
Attachments table references the new file folder.

When you add a URL attachment, the server stores a reference to the Internet location but does not
upload a file. Therefore, you cannot download a URL attachment. The Agile API validates URL
strings that you attempt to check in as an attachment. If a URL is invalid, the Agile API considers
the string a filename instead of a URL.

You cannot add a file or URL to the Attachments table of an item if
@ The current revision has a pending or released MCO.
o The current revision is incorporated.

When you use the ITable.createRow (java.lang.Object) method to add a row to the
Attachments table, the param method can be any of the following object types:

B String — adds one file attachment specified by a local path.

B string[] - adds multiple file attachments specified by an array of local paths.
o File — adds one file attachment.

o File[] —adds multiple file attachments.

o InputStream— adds one file attachment.

B InputStream[] —adds multiple file attachments.

B URL - adds one URL attachment.

188 Agile Product Lifecycle Management

Chapter 12: Working with Attachments and File Folder Objects

URL [] — adds multiple URL attachments.
IRow (of the Attachments or Files tables) — adds a file or URL attachment.
IFileFolder — adds all files and URLSs for the specified file folder.

Map — adds one or more files specified by a hash table containing Attachment parameters.

Note The File object type performs best when adding attachments.

When you add a file or a URL to the row of the Attachments table of a business object, you
automatically create a new file folder that contains the associated file or URL. You can load the
referenced file folder using the IRow.getReferent () method, as shown in the following example.
Example: Creating a file folder by adding a row to the Attachments table

public IFileFolder addRowToltemAttachments

}

(ITtem item, File file) throws Exception

{ITable attTable = item.getTable (ItemConstants.TABLE ATTACHMENTS) ;
IRow row = attTable.createRow(file);

IFileFolder ff = (IFileFolder)row.getReferent();

return ff;

This example uses several instances of the addAttachment () methods to illustrate the different
ways you can add rows to an Attachments table.

Example: Adding files to the Attachments table

// Add a single file to the Attachments table row by specifying a file
path

public static IRow addAttachment (ITable attTable, String path) throws
APIException (

}

IRow row = attTable.createRow(path);

return row;

// Add a single file to the Attachments table

public static IRow addAttachment (ITable attTable, File file) throws
APIException

}

IRow row = attTable.createRow(file);

return row;

// Add multiple files to the Attachments table

public static IRow addAttachment (ITable attTable, File[] files) throws
APIException (

}

IRow row = attTable.createRow(files);

return row;

// Add a URL attachment to the Attachments table

public static IRow addAttachment (ITable attTable, URL url) throws
APIException {

IRow row = attTable.createRow(url);

return row;

v9.3.1.1 189

SDK Developer Guide - Using Agile APIs

}

// Add a file folder to the Attachments table

public static IRow addAttachment (ITable attTable, IFileFolder ff)
throws APIException

IRow row = attTable.createRow(ffF);
return row;

}

// Add an FileFolder.Files row object or a [BusinessObject] .Attachments
row object

// to the Attachments table. The Agile API validates the row object at
run time to

// determine if it is from a valid table (Files or Attachments) .

public static IRow addAttachment (ITable attTable, IRow filesRow) throws
APIException

IRow row = attTable.createRow(filesRow);
return row;

}

// Add a file folder to the Attachments table and specify the version
for all files

public static IRow addAttachmentWithVersion (ITable attTable,
IFileFolder ff) throws APIException {

ff.setCurrentVersion(new Integer(l));
IRow row = attTable.createRow(ffF);

return row;

}
Deep Cloning Attachments and Files from One Object to Another

To simplify copying file attachments from one object to another, use the
CommonConstants.MAKE DEEP COPY virtual attribute as a Boolean parameter of
ITable.createRow (Object). This parameter allows your program to create a new copy of the
file in the Agile File Manager vault instead of referencing the old file.
Example: Deep cloning an Attachments table row

// Clone an attachment table row and its file from one item to another

public static cloneAttachment (ITtem iteml, IItem item2, File file)
throws APIException

// Get the attachments tables of iteml and item2 ITable tblAttachl =
iteml.getAttachments () ; ITable tblAttach2 = item2.getAttachments() ;

// Prepare params for the first row
HashMap params = new HashMap () ;
params.put (CommonConstants.ATT ATTACHMENTS CONTENT, file);

// Add the file to the attachments table of iteml

IRow rowl = tblAttachl.createRow (params) ;

// Prepare params for the second row

params.clear () ;
params.put(CommonConstants.ATT_ATTACHMENTS CONTENT, rowl);
params.put(CommonConstants.MAKE_DEEP_COPY, Boolean.TRUE);

190 Agile Product Lifecycle Management

Chapter 12: Working with Attachments and File Folder Objects

// Add the same file to the attachments table of item2 IRow row2 =
tblAttach2.createRow(params) ;

Example: Deep cloning the Files table row of a File Folder
// Clone a Files table row and its file from one File Folder to another

public static cloneFilesRow (IFileFolder folderl, IFileFolder folder2,
File file) throws APIException ({

// Check out folderl and folder2
folderl.checkOutEx () ;
folder2.checkOutEx () ;

// Get the Files tables of folderl and folder2

ITable tblFilesl = folderl.getTable(FileFolderConstants.TABLE FILES) ;
ITable tblFiles2 = folder2.getTable (FileFolderConstants.TABLE FILES) ;
// Prepare params for the first row

HashMap params = new HashMap () ;

params.put (CommonConstants.ATT ATTACHMENTS CONTENT, file);

// Add the file to the attachments table of folderl

IRow rowl = tblFilesl.createRow (params) ;

// Prepare params for the second row

params.clear() ;
params.put(CommonConstants.ATT_ATTACHMENTS CONTENT, rowl);
params.put(CommonConstants.MAKE_DEEP_COPY, Boolean.TRUE);

// Add the same file to the Files table of folder2 IRow row2 =
tblFiles2.createRow(params);

// Check in folderl and folder2
folderl.checkIn() ;
folder2.checkIn() ;

}
Specifying the File Folder Subclass When Adding Attachments

You can set up your Agile PLM system with multiple file folder subclasses. If so, when you add a file
folder to the Attachments table of a business object, you may want to specify which file folder
subclass to use. If you don't specify a subclass, the Agile APl uses the default File Folder subclass.
The virtual attribute CommonConstants. ATT_ATTACHMENTS_ FOLDERCLASS makes it easier to
specify the required file folder subclass. It enables you to set the attribute to any file folder subclass.

The following example shows how to use the ATT_ATTACHMENTS_FOLDERCLASS attribute to
specify a subclass when you add a file folder to the Attachments table.
Example: Specifying the file folder subclass when adding attachments
IAgileClass ffclass = m_admin.getAgileClass ("MyFileFolder") ;
// init item
ITtem item = (IItem)session.createObject (ItemConstants.CLASS PART,
"P0O001") ;
// get attachments table
ITable tab_ attachment = item.getAttachments();

v9.3.1.1 191

SDK Developer Guide - Using Agile APIs

// prepare map

HashMap map = new HashMap () ;

map .put (CommonConstants.ATT ATTACHMENTS CONTENT, new
File("files/file.txt")) ;

map - put(CommonConstants.ATT_ATTACHMENTS_FOLDERCLASS, ffclass);

// add file
IRow row = tab attachment.createRow(map);

Retrieving Attachment Files

If a file folder is checked out by another user, you can still retrieve a copy of the file folder file(s) and
save it to your local machine. The IAttachmentFile.getFile () method returns the file stream
associated with a row of the Attachments table. The file stream can be for one file or it can be a
zipped file stream for multiple files, depending on how many files the associated file folder has. You
can also use IAttachmentFile.getFile () to get one or more files directly from a file folder
instead of accessing the Attachments table of another business object. If you call getFile () from
the file folder object, you return the zipped file stream for all files listed on the Files table. If you call
getFile () from arow of the Files table of a file folder, you return a file stream for the specific file

associated with that row.

Note When you use IAttachmentFile.getFile (), only file attachments are included in
the returned file stream. URL attachments don’t have files associated with them.

This example shows how to retrieve a copy of an attached file.

Example: Getting attachment files

// Get one or more files associated with the row of an Attachments
table or a Files table

public InputStream getAttachmentFile (IRow row) throws APIException ({

InputStream content = ((IAttachmentFile)row).getFile();

return content;
}
// Get all files associated with a file folder
public InputStream getAttachmentFiles (IFileFolder ff) throws
APIException (
InputStream content = ((IAttachmentFile)ff).getFile();

return content;

}
If you use IFileFolder.getFile () to return a zipped file stream for all files contained in a file
folder, you can extract files from the zipped InputStream using methods of the
java.util.zip.ZipInputStream class, as shown in the following example.
Example: Extracting files from a zipped file stream
static void unpack (InputStream zippedStream) throws IOException
ZipInputStream izs = new ZipInputStream(zippedStream) ;
ZipEntry e = null;
while ((e = izs.getNextEntry()) != null) {
if (l!e.isDirectory()) {

192 Agile Product Lifecycle Management

Chapter 12: Working with Attachments and File Folder Objects

FileOutputStream ofs = new FileOutputStream(e.getName ()) ;
byte[] buf = new byte[1024];
int amt;
while ((amt = izs.read(buf)) != -1) {
ofs.write(buf, 0, amt);
}
ofs.close() ;
}
}
zippedStream.close () ;

}

The Agile API provides no direct method for opening an attachment file. However, you can retrieve
a file and then have your program open it in a separate application or display it in a browser
window.

Deleting Attachments and File Folders

To delete a file folder, which may contain multiple files, use the IDataObject.delete () method.
You must have the Delete privilege for file folders to be able to delete them. For more information
about deleting objects, see Deleting and Undeleting Objects on page 32.

Note Deleting a file folder does not automatically remove its associated files from the file
server. The Agile PLM administrator is responsible for purging deleted files.

To delete a row from the Attachments table of a business object, use the ITable.removeRow ()
method. For more information, see Removing Table Rows on page 80. Removing a row from the
Attachments table does not delete the associated file folder. You cannot delete a row from the
Attachments table in the following situations:

@ The parent object is an Item whose revision is incorporated.

o The selected attachment is currently checked out.

Working with Thumbnails

Agile PLM supports adding small static graphical images (thumbnails) to key objects which either
represent graphical objects or require images. For example, documents attached as files such as
Excel worksheets, text files, PDF files, CAD files and so on. Thumbnails display scaled down
versions of these files and in case of Part objects, show how they relate to each other.

The SDK supports the following Thumbnail-related functions:
= Regenerating Thumbnails

= Sequencing Thumbnails

o Setting Master Thumbnails

o Generating Thumbnails while adding Files to Attachments tab

v9.3.1.1 193

SDK Developer Guide - Using Agile APIs

Accessing Thumbnails

Agile SDK provides the ITThumbnailContainer interface for generalized access to thumbnail-
related operations for file folder and business objects. This interface is supported by the following
API objects:

o IFileFolder object
= ITtem object

= IManufacturerPart object

For IFileFolder objects, set the applicable version using IFileFolder.setCurrentVersion
before calling the above APIs. The default version is LATEST VERSION. For IItem or
IManufacturerPart objects, use the revision that is already set on these objects.

The following example gets thumbnail details from TitleBlock of an IItemor IFileFolder
object .

Example: Getting thumbnail details from TitleBlock of litem or IFileFolder objects
Iltem dataObj =
(ITtem) session.getObject (IItem.OBJECT TYPE, "P0001l5");
ITable titleBlockTable =
this.itemObj.getTable (TableTypeConstants.TYPE PAGE ONE) ;
Iterator 1 =
titleBlockTable.getTablelterator () ;
while (i.hasNext()) ({
IRow row = (IRow)i.next();
Object thumbnaillDDetails =
row.getValue (ThumbnailConstants.ATT THUMBNAIL ATTACHMENT TAB)

IAgileList[] nodes =
((IAgileList) thumbnaillDDetails) .getSelection() ;
for (int ii=0; ii<nodes.length; ii++) {
IAgileList childNode = nodes[ii];
IThumbnailID thumbnailID = (IThumbnailID)childNode.getValue() ;

}
Regenerating Thumbnails

Regenerating a thumbnail means generating a thumbnail for an existing (generated) thumbnail for
file folder and item objects. This feature is of particular interest in assembly structures where a
change in the child of the assembly structure is reflected in the thumbnail after the thumbnail is
regenerated.

Agile SDK provides the IThumbnailContainer.generateThumbnail (IThumbnailID) API
for this purpose. When invoked, it will generate and return a new thumbnail. In case of
IFileFolder objects, API will use the current version that of the object. For IItem or
IManufacturerPart objects, it will use the current revision of the object. An APiException is
thrown when the API fails to regenerate the thumbnail for the specified thumbnailID parameter.

Example: Regenerating a thumbnail for an IFileFolder object
IFileFolder ff =

194 Agile Product Lifecycle Management

Chapter 12: Working with Attachments and File Folder Objects

(IFileFolder) session.getObject (IFileFolder.OBJECT TYPE,
"FOLDEROOO37") ;

ff.setCurrentVersion (new Integer (1)) ;

IThumbnailID oldThumbnailID = "";

//get this id from row of supported tables like Title Block
ff.generateThumbnail (oldThumbnaillD) ;

Example: Regenerating a thumbnail for an litem object

Iltem itemObj =
(ITtem) session.getObject (IItem.OBJECT TYPE, "P0001l5");

IThumbnailID oldThumbnaillD = "";
//get this id from row of supported tables like Title Block
itemObj.generateThumbnail (oldThumbnaillD) ;

Setting Master Thumbnails

In Agile PLM, a file folder object is represented by a thumbnail file which can contain several files in
its Files tab. Using SetMasterThumbnail, a user can decide which row in Files tab will represent
the selected thumbnail's file folder.

SDK provides the void setMasterThumbnail (IRow masterRow) throws
APIException APIto set master thumbnails on file folder objects. An exception thrown if the
function fails to set the master thumbnail represented by the parameter masterRow.
Example: Setting a master thumbnail

IFileFolder ff =
(IFileFolder) session.getObject (IFileFolder.OBJECT TYPE,
"FOLDEROOO037") ;

ff.setCurrentVersion (new Integer (1)) ;

ITable attachmentTable =
ff.getTable (FileFolderConstants.TABLE FILES) ;

Iterator 1 =
attachmentTable.getTablelterator () ;

while (i.hasNext()) {
IRow row = (IRow)i.next();

IRow masterRow = null;
//set one of the rows as the master row

ff.setMasterThumbnail (masterRow) ;

Replacing Thumbnails

You can replace an Agile PLM generated thumbnail with user provided image for file folder and item
objects. The SDK provides the following API for this purpose.

IThumbnailID replaceThumbnail (IThumbnailID oldThumbnailID, byte[] bytes)
throws APIException

This API will replace the thumbnail referred to in o1dThumbnailID with the image file referred to in
the input stream. That is, it will return the thumbnailID of the replaced thumbnail.

v9.3.1.1 195

SDK Developer Guide - Using Agile APIs

For IFileFolder objects, the API will use the version that is already set on the object. For IItem
or IManufacturerPart objects, it will use the revision that is already set on the object. An
APiException is thrown if it fails to replace the thumbnail specified in the c1dThumbnailID
parameter.

Example: Replacing a thumbnail for an IFileFolder object

IFileFolder ff =
(IFileFolder) session.getObject (IFileFolder.OBJECT TYPE,
"FOLDEROOO37") ;

ff.setCurrentVersion (new Integer (1)) ;

IThumbnailID oldThumbnailID = "";

//get this id from row of supported tables like Title Block

String filePath = "C:\\Earth.bmp";

File filel tmp = new File(filePath);

bytel[]l bl = new byte[(int)filel tmp.length()];

FileInputStream fileInputStream = new FileInputStream(filel tmp) ;

fileInputStream.read(bl) ;

IThumbnailID newThumbnailID = FFf.replaceThumbnail(oldThumbnaillD, bl);
Example: Replacing a thumbnail for an litem object

Iltem itemObj =
(ITtem) session.getObject (IItem.OBJECT TYPE, "P00015");

IThumbnailID oldThumbnailID = "";

//get this id from row of supported tables like Title Block
String filePath = "C:\\Earth.bmp";

File filel tmp = new File(filePath) ;

bytel[]l bl = new byte[(int)filel tmp.length()];

FileInputStream fileInputStream = new FileInputStream(filel tmp) ;
fileInputStream.read (bl) ;

IThumbnailID newThumbnailID = itemObj.replaceThumbnail (oldThumbnaillD,
bl);

Sequencing Thumbnails

When Web Client users add attachment files to business objects, they can also set the order
(sequence) of their appearance in the Thumbnail Navigator. Agile PLM provides the void
setThumbnailSequence (IThumbnailID[] thumbnailIDs) throws APIException API
to enable this feature in the SDK. For IItem or IManufacturerPart objects, the API will use
the revision that is already set on the object. The API will sort (sequence) the order of appearance
using the thumbnailIDs parameter. An exception thrown if the function fails to set the master
thumbnail.

Example: Sequencing thumbnails

ITtem itemObj =
(ITtem) session.getObject (IItem.OBJECT TYPE, "P0001l5");

IThumbnailID[] thumbnailIDs = null;

//get this id from row of Title Block table
IThumbnailID[] newSeqOfThumbnailIDs = null;
//generate new order using thumbnail IDs

itemObj .setThumbnailSequence (newSeqOfThumbnailIDs) ;

196 Agile Product Lifecycle Management

Chapter 12: Working with Attachments and File Folder Objects

Generating Thumbnails while Adding Files to Attachments Tab

There are no APIs specifically for this purpose. When you add a file in Attachments tab of Item, a
thumbnail is generated for that file provided thumbnail support is enabled in the Web Client.

Working with Design Objects

A Design object is a business object that specifies one or more URLSs or files stored in Agile PLM's
File Management Server. It contains information about the binary files attached to it. Similar to other
Agile PLM business objects, Design objects appear in Agile PLM's class hierarchy as a separate
base class.

Designs class objects are used with Agile PLM's Engineering Collaboration (EC) module which is
used to manage CAD data in Agile PLM. Objects created in this class have many of the same
properties and behaviors of File folders. Users with administrator privileges enable opening and
working with Design objects in Java Client and Agile PLM users can the access and work
exclusively with these objects in Web Client.

Agile SDK support the following Design object-related functions:

= Managing (adding, removing, getting, and editing) version specific Relationships between two
Design objects

= Using where-used queries for Design object deployments in Agile PLM Class structures. For
information about where-used queries, see Creating a Where-Used Query on page 62.

Adding and Loading Design Objects

To create or get an IDesign object, you can use IAgileSession.createObject () or
IAgileSession.getObject (). The following examples show the different methods provided by
the SDK to create and get Design objects.

Example: Creating a Design by class name

IDesign des = (IDesign)
m_session.createObject ("Design", "DESIGN0OO0133");
Example: Creating a Design by class ID
IDesign des = (IDesign)
m_session.createObject (FileFolderConstants.CLASS DESIGN,
"DESIGNQ0O0133") ;
Example: Creating a Design by IAgileClass reference:
IDesign des = (IDesign)

m_session.createObject (desClass, "DESIGN00133");
Example: Loading a Design object

IDesign des = (IDesign)
m_session.getObject (IDesign.OBJECT TYPE, "DESIGN(0O0133");

v9.3.1.1 197

SDK Developer Guide - Using Agile APIs

Managing Version Specific Relationships between Design Objects

Agile SDK supports the following version specific Relationships functions between Design objects:
Note These version specific functions only apply to Design objects.

o Adding version specific relationships between Design objects
= Removing version specific relationships between Design objects
o Getting version specific relationships for specific versions of Design objects

= Editing version specific relationship for Design objects
Adding Relationships for Specific Versions of Design Objects

The SDK provides the following API to add relationships between two specific versions of Design
objects:

IDesign.addVersionSpecificRelationship (Object versionNum, IDesign
relatedDesign, Object relatedVersionNum)

The parameters are:
= versionNum — This an integer showing the version number of this Design object.
o relatedDesign — The Design object you are creating the Relationships for.

= relatedVersionNum — This an integer showing the version number of the Design object you
are creating the Relationship for.

An APIException is thrown if the version specific relationship between the two Design objects was
not created.

Alternatively, you can load the object's RelationshipsTable and call createRow (Object
params) with the following params:

HashMap params = new HashMap () ;

params.put (DesignConstants.ATT RELATIONSHIPS REV VERSION, versionNum) ;
params.put (DesignConstants.ATT RELATIONSHIPS NAME, relatedDesign);
params.put (DesignConstants.ATT DESIGN VERSION, relatedVersionNum) ;

Removing Relationships for Specific Versions of Design Objects

To remove Version Specific Relationships for IDesign:
IDesign desl = (IDesign)session.getObject (IFileFolder.OBJECT TYPE,
"DESIGNOOQOO1") ;
desl.setCurrentVersion (new Integer (4)) ;
ITable relationshipTable = desl.getRelationship() ;
relationshipTable.removeRow (row) ;

198 Agile Product Lifecycle Management

Chapter 12: Working with Attachments and File Folder Objects

Getting Relationships for Specific Versions of Design Objects

To get the Relationships for a specific version of IDesign:

IDesign desl = (IDesign)session.getObject(IFileFolder.OBJECT TYPE,
"DESIGNOQOOQOO1") ;
desl.setCurrentVersion (new Integer(4)); //set desired version

ITable relationshipTable = desl.getRelationship() ;

Editing Relationships for Specific Versions of Design Objects

To edit the Relationships for a specific version of the IDesign object.

IDesign desl = (IDesign)session.getObject (IFileFolder.OBJECT TYPE,
"DESIGNQOOOO1") ;

desl.setCurrentVersion (new Integer (4)) ;

ITable relationshipTable = desl.getRelationship() ;

HashMap mapForUpdate=new HashMap () ;

HashMap rowUpdateMap = new HashMap () ;

rowUpdateMap.put (DesignConstants.ATT DESIGN VERSION, new Integer(l));
mapForUpdate.put (rowl, rowUpdateMap) ;

relationshipTable.updateRows (mapForUpdate) ;

Purging Specific Versions of Design Objects

The SDK provides the IDesign.purgeVersions (Object [] versions) API for purging
specific versions of Design objects and relevant versions of its child objects. The versions
parameter, an integer value, specifies the version number you want purged. An exception is thrown
if the API fails to purge the object.

Searching Design Object Deployments with Where-Used Queries

The Structure tab for Design objects enables users to create structures of different Design objects
having different versions. The SDK supports searching for Design object usage in Agile PLM Class
Structures for the latest checked in versions and all checked in versions with the following queries
and query constants:

O WHERE USED IN STRUCTURE ONE LEVEL LATEST CHECKEDIN — This WHERE USED query
returns the LATEST version of the immediate parent of the Design object which uses the input

Design object as a child in the design structure. The constant
QueryConstants.WHERE USED IN STRUCTURE ONE LEVEL LATEST CHECKEDIN

supports this search.

® WHERE USED IN STRUCTURE ALL LEVEL LATEST CHECKEDIN — This WHERE USED query
returns ALL versions of the immediate parent of the Design object which uses the input Design
object as a child in the design structure. The constant
QueryConstants.WHERE USED IN STRUCTURE ONE LEVEL ALL CHECKEDIN Supports
this search

v9.3.1.1 199

SDK Developer Guide - Using Agile APIs

You can find code samples using QueryConstants in SDK_samples.zip folder. To access this file,

see the Note in Client-Side Components on page 2. These are the Javadoc generated HTML files in
the documentation folder.

The two searches and their respective results are explained with the aid of the following illustration.
It shows the Design objects and level one structures. The search parameter Title

Block.Number includes the number 11.
DESIGRO001 2 I
“ersion: 3

Figure 16: Design objects and search results

DESIGNO001 2 DESIGNO001 2

& ANy YErsion

Yarsion: 1 Wersion: 2
% / Latestwversion
Asywarsian Anywersion
CESIGMO0011 /‘
Wersion: 1

DESIGHO00T 1 DESIGNO0011

wersion: 1 Version: 2
CESIGNOD01 0
Warsion: 1
DESIGMO0D4 5
“ersion: 2 Latestversion
DESIGNO0045 Anyversion
Warsion: 1 ‘
DESIGMOOD3T
DESIGND0D37 |, version: 2«
Wersion: 1 ANy version
H
/ -DESIGNOO0T1
- DESIGEMO0011 Wersion: 2
Wersion: 1
DESIGMOOD1 0 DESIGMOODT 0
Warsion: 1 Wersion: 2

Search Objectives and settings

Search for: Designs

Searchtype: Where-used in structure one level forthe latest checked in version only
Searchtype: Wehere-used in structure ane level farthe all checked in version anly
Search parameters: Title Block.Number contains 11

Search results Searchresults

LATEST checked inversions ALL checked inversion s

Ohbject found Wersion Ohjectfound Wersion

DESIGHMO001 2 3 DESIGHO001 2 1

DESIGHMO003T 2 DESIGHO001 2

DESIGNOO01 2
DESIGNOOD37
DESIGNOOD37

[SRR TR I)

200 Agile Product Lifecycle Management

Chapter 13
Importing and Exporting Data with SDK

This chapter includes the following:

= About Importing and EXPOItiNG DAa.........ccccveeeureereiierreeenssesisssesesssessssseesssssssssssssssessssssessssssessssnsesssssesssnnes 201
= Validating Import Data and IMPOrtiNg DAta...........ccevieerriiniinirrenisessesese s eessesssees 201
= EXporting Data from the SDK ...ttt 204

About Importing and Exporting Data

You can use the SDK to import and export data from external databases into the PLM system. The
source can be an Agile database, a third party Product Data Management (PDM) system, or an
Enterprise Resource Planning (ERP) system. The following paragraphs provide background
information, procedures, and examples to perform these tasks using the agile SDK.

Validating Import Data and Importing Data

When you import data, you have the option to validate the data, or ignore this step. The purpose of
import validation is to check the data for compliance with applicable server rules such as length
tolerances, allowable values, and other constraints. The validation process informs you the data
that will fail to import before initiating the process.

The SDK exposes two methods to programmatically perform the following import-related tasks: .

o The IImportManager.validateData (byte[], String, bytell, bytell,
String[], List) method to validate the imported data for compliance with server business
rules. This action is performed before importing the data to identify the invalid items in the input
source data.

o The IImportManager.importData (byte[], String, bytell, bytel[l, Stringl],
List) method supports importing data into the PLM databases. This action is performed after
running the IImportManager.validateData () method to select the data that meets the
server business rules and is importable into the PLM system.

For more information about importing data, refer to Agile Integration Services Developer Guide and
Agile Import and Export Guide.

The following example uses these methods to validate the imported data for compliance and import
it into the PLM system upon validation.

v9.3.1.1 201

SDK Developer Guide - Using Agile APIs

Validating Data and Importing Data with SDK

Example: Validating and Importing Data into PLM
import com.agile.api.*;

import java.util.*;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.io.InputStream;

import java.util.ArrayList;

import java.util.List;

public class ImportClient ({
public static IAgileSession session = null;
public static AgileSessionFactory factory;
public static void main(String[] args) {

try

String url="http://localhost/Agile";
String user="admin";
String pwd="agile";
String srcFilePath="bom.txt";

/* Supported file types: aXML,IPC2571, ExcelFile,
* The value of "-f" parameter is the same
* in Import AIS sample command

String srcFileType="DelimitedTextFile";

// Null implies loading the default mapping
String mappingPath="NewMapFile.xml";

// Null implies do not transform
String transformPath=null;

/* The value used by operations is the

DelimitedTextFile

same as the value of the "-t" parameter in the import AIS sample

command .
all supported

operations:"items.bom", "items.aml", "items.attachments",

"items.relationships", "manufacturers",
"manufacturers.relationships",

"manufacturers.attachments", "manufacturerParts",

"manufacturerParts.relationships™",
"manufacturerParts.attachments" "partgroups",
"partgroups.relationships",

"partgroups.attachments", "productServiceRequests"

"productServiceRequests.affectedItems",
"productServiceRequests.relatedPSR"
"productServiceRequests.relationships™"

"productServiceRequests.attachments" "qualityChangeRequests"

"qualityChangeRequests.affectedItems"
"qualityChangeRequests.relationships"
"qualityChangeRequests.attachments"

202

Agile Product Lifecycle Management

http://localhost/Agile

Chapter 13: Importing and Exporting Data with SDK

*/

String [] operations=new String[]{"items", "items.bom","items.aml"};
/* The value used by options is the
* same as the "-n" parameter in the import AIS sample command
*/
List options=new ArrayList () ;
options.add ("BusinessRuleOptions |ChangeMode=Authoring") ;
options.add ("BusinessRuleOptions |BehaviorUponNonExistingObjects=Acce
ptll),.
String output="log.xml";
FileOutputStream fop=new FileOutputStream(_ output) ;
// Create an instance of IAgileSession
session = connect(_url, user, pwd);
ITmportManager imgr = (IImportManager)
session.getManager (IImportManager.class) ;
byte[] logData=null;
/* Sample code to import data

* Remove comments to run the importData example.

* byte[]logData=imgr. importData (stream2byte
(new FileInputStream(srcFilePath)),
srcFileType, convertFiletoStream(mappingPath),
convertFiletoStream(transformPath),
operations, options);

* Sample code to validate data

* Remove comments to run the validateData example

* logData=imgr.validateData (stream2byte
(new FileInputStream(srcFilePath)),
srcFileType, convertFiletoStream(mappingPath),
convertFiletoStream(transformPath), * operations, options);
byte buf []=new byte[1024*4];

* % F %

* ok X F

int n=0;
InputStream logStream=byte2stream(logData) ;
while ((n=logStream.read (buf)) !=-1) {

fop.write(buf, 0, n);
fop.close();
catch (Exception e) {e.printStackTrace() ;

finally {session.close();

/*
* <p> Create an IAgileSession instance </p>
*
* @return IAgileSession
* @throws APIException
*/

private static IAgileSession connect (String url,String user,String
_pwd) throws APIException

factory = AgileSessionFactory.getinstance(_url);

HashMap params = new HashMap () ;

params.put (AgileSessionFactory.USERNAME, user) ;

params.put (AgileSessionFactory.PASSWORD, pwd) ;

v9.3.1.1 203

SDK Developer Guide - Using Agile APIs

session = factory.createSession (params) ;
return session;

private static byte[] stream2byte (InputStream stream) throws
IOException {

ByteArrayOutputStream outStream=new ByteArrayOutputStream() ;
byte buf []=new byte[1024%*4];

int n=0;

while ((n=stream.read (buf)) !=-1) {

outStream.write (buf, 0, n);

byte[] data=outStream.toByteArray() ;
outStream.close() ;
return data;

private static InputStream byte2stream(byte[] data) throws
IOException(

ByteArrayInputStream stream=new ByteArrayInputStream(data) ;
return stream;

private static byte[] convertFiletoStream(String path) throws
IOException{

if (path==null || path.equals(""))

return null;

return stream2byte (new FileInputStream(path)) ;

}

Exporting Data from the SDK

The SDK exposes the exportData () method to programmatically export data from PLM
databases. This method is designed to overcome performance and memory issues that are
encountered when loading large BOMs into the SDK programs. To overcome this issue, you can
invoke the export functionality to load the BOM. The SDK programs can then read and export the
data from the extracted XML files.

For more information about exporting data, refer to the Agile Integration Services Developer Guide
and Agile Import and Export Guide.

204 Agile Product Lifecycle Management

Chapter 13: Importing and Exporting Data with SDK

Invoking SDK's Export Function

Use the following call to invoke the export function of the SDK.
public byte[] exportData (Object[], Integer, Stringl])

In this call,

o exportData — Is the method that returns the exported data in an array bytes. The byte array
represents a ZIP file that contains the export XML file in aXML or PDX formats and any file
attachments that are included in the exported package

o Object []1-Is the array of objects that are exported from the PLM to the external system.
These objects are passed as IDataObject objects.

B Integer — Is the indicator (constants that are provided in ExportConstants.java) to
identify whether the output export format should be aXML or PDX. These are the two formats
that the SDK supports.

o String[] —Is the array of ACS filter names that are used for the export. The filter names are
not case sensitive and must match the names of filters defined by the Admin tool for ACS.

The conditions that wil cause the exportData method to throw an exception and the respective
exceptions are:

@ Invalid Data Format — The method was called with an unrecognized value for the export data
format. Only aXML (provide constant label) and PDX (provide constant label) values are valid.

= No Filter Specified — The method was called but no filters were specified. At least one valid filter
must be provided.

o Specified Filter Not Found — The method was called with specified filter which was not found in the

system
Example: Exporting data from PLM using the SDK
//
IItem item = (IItem) session.getObject (IItem.OBJECT TYPE, "P0OOO1l");
if (item == null) {

// throw an error, the part wasn't found

}
IDataObject [] expObjs = {item};
String[] filters = {"Default Item Filter"};

IExportManager eMgr = (IExportManager)
session.getManager (IExportManager.class) ;
try {

byte[] exportData = eMgr.exportData (expObjs,
ExportConstants.EXPORT FORMAT PDX, filters);

if (exportData != null)
String fileName = createOutputFileName();

v9.3.1.1 205

SDK Developer Guide - Using Agile APIs

FileOutputStream outputFile = new FileOutputStream(fileName) ;
outputFile.write (exportData) ;
outputFile.close() ;
System.out.println("Data exported to file: " + fileName) ;
}
} catch (Throwable t) ({
// error handling

206 Agile Product Lifecycle Management

Chapter 14
Managing Workflow

This chapter includes the following:

ADOUL WOTKIIOW. ..ot
SEIECHNG & WOTKIIOW ..ottt
Adding and REMOVING APPIOVETSuvvreeerirriretreesisesetsesereesessesssesesssssesssssssssssesesssssssssssesssssssssssesessssssesessssesasens
ApProving or REJECHNG ChaNGE ..ottt bbb
Approving or Rejecting a Change Without Password
(0701110117 L0 WO T 0 PSP
Auditing 2 Changeccoovvvvevreerniesseeerennn,

Changing the Workflow Status of an Object
Sending an Agile ODJECE 10 SEIECIEA USEIS......cuiiiuiiriiiririeirreee et
Sending an Agile ODJECE 10 USEI GIOUPSciuriereiireieieietssieseisseisssssess s sesssssssssssesesss st ssssesesssesesssssssssssssesnns

About Workflow

Agile has electronic routing, Notification, and signoff capabilities, thus automating the change
control process and providing a simplified but powerful Workflow mechanism. With these Workflow
features, you can

o Route changes automatically to the users who need to approve or observe the change.

= Send email alerts automatically to approvers and observers to notify them that a change has
been routed to them.

o Approve or reject changes online.

@ Attach comments to changes.

The Change Control Process

The change control process can vary for each Workflow defined for a routable object. The table
below lists the sequences for the default Workflows for each type of routable object. For changes
the first four steps in the sequence are identical and only the final step is different.

Workflow Default sequence
Default Activities Not Started > In Process > Complete
Default Attachments Review
Default Audits Prepared > Initiated >.Audited >.Issued >.Corrected > Validated >.Closed
Default CAPAs Identified > Acknowledged > Investigated > Implemented > Validated > Closed
Default Change Orders Pending > Submitted > CCB > Released > Implemented
Default Change Requests Pending > Submitted > CCB > Released > Closed

v9.3.1.1 207

SDK Developer Guide - Using Agile APIs

Workflow

Default sequence

Default CTOs

Pending> Review > Released > Complete

Default Declarations

Pending > Open to Supplier > Submit to Manager > Review > Released > Implemented

Default Deviations

Pending > Submitted > CCB > Released > Expired

Default Gates

Closed > In Review > Open

Default Manufacturer Orders

Pending > Submitted > CCB > Released > First Article Complete

Default Non-Conformance Reports

Pending > Submitted > Review > Released > Closed

Default Packages

Pending > Submitted > Review > Accepted > Closed

Default Price Change Orders

Pending > Submitted > Price Review > Released > Implemented

Default Problem Reports

Pending > Submitted > Review > Released > Closed

Default Sites Change Orders

Pending > Submitted > CCB > Released > Implemented

Default Stop Ships

Pending > Submitted > CCB > Released > Resumed

Dynamics of Workflow Functionality

The Workflow functionality available to each user for a particular routable object depends on the
status of the routable object and the user’s privileges. Your Agile API program should take these
Workflow dynamics into account and, where possible, adjust your program accordingly.

How the Status of a Change Affects Workflow Functionality

The Workflow actions available for a pending change are different from those for a released
change. To check the status of a change to determine whether it's pending or released, use the
IRoutable.getStatus () method. The getStatus () method returns an IStatus object for
the Workflow status. IStatus extends the INode interface and provides helpful methods for
working with status nodes. The following example shows how to use getStatus () to determine
whether a change is released.

Example: Getting the status of a change object

private static boolean isReleased(IChange change) throws APIException {
return
(change.getStatus() .getStatusType() -equals(StatusConstants.TYPE_RELE

ASED) ;

208 Agile Product Lifecycle Management

Chapter 14: Managing Workflow

How User Privileges Affect Workflow Functionality

Agile privileges determine the types of Workflow actions a user can perform on a change. The Agile
system administrator assigns roles and privileges to each user. Table below lists privileges needed
to perform Workflow actions.

Privilege Related API
Change Status IRoutable.changeStatus ()
Comment IRoutable.comment ()
Send DataObject.send()

To determine at run time whether a user has the appropriate privileges to perform an action, use the
IUser.hasPrivilege () method. You can adjust your program’s Ul based on the user’'s
privileges. The following example shows how to check whether a user has the privilege to change
the status of a change before calling the IRoutable.changeStatus () method.

Example: Checking the privileges of a user before changing the status of a change

private void goToNextStatus (IChange change, IUser user) throws
APIException {
// Check if the user can change status
if (user.hasPrivilege(UserConstants.PRIV_CHANGESTATUS, change)) {
IUser[] approvers = new IUser[] { user };
IStatus nextStatus = change.getDefaultNextStatus();
change.changeStatus(nextStatus, true, ", true, true, null,
approvers, null, false);
} else {

System.out.println("Insufficient privileges to change status.");

Selecting a Workflow

When you create a hew change, package, product service request, or quality change order, you
must select a Workflow. Otherwise, the object is in an unassigned state and cannot progress
through a Workflow process. Your Agile system can have multiple Workflows defined for each type
of routable object. To retrieve the valid Workflows for an object, use the
IRoutable.getWorkflows () method. If a routable object has not been assigned a Workflow
yet, you can use the TRoutable.getWorkflows () method to select a Workflow.

As long as a change is in the Pending status, you can select a different Workflow. Once a change
moves beyond the Pending status, you can’t change the Workflow.
Example: Selecting a Workflow
private IChange createECO(IAgileSession session) throws APIException {
// Get an Admin instance
IAdmin admin = session.getAdminInstance() ;

// Create a change

IAgileClass ecoClass =
admin.getAgileClass (ChangeConstants.CLASS ECO) ;

v9.3.1.1 209

SDK Developer Guide - Using Agile APIs

IAutoNumber [] autoNumbersPart = ecoClass.getAutoNumberSources() ;

IChange change = (IChange)m session.createObject (ecoClass,
autoNumbersPart [0]) ;

// Get the current Workflow (a null object,
// since the Workflow has not been set yet)
IWorkflow wf = change.getWorkflow();

// Get all available Workflows
IWorkflow[] wfs = change.getWorkflows();

// Set the change to use the first Workflow
change .setWorkflow(wfs[0]);

// Set the change to use the second Workflow
change .setWorkflow(wfs[1]);

return change;

If a change is still in the Pending status type, you can deselect a Workflow to make the change
“unassigned.” To make a change unassigned, use the TRoutable.setWorkflow () method and
specify null for the Workflow parameter.

Example: Making a change unassigned
private void unassign(IChange change) throws APIException ({
change.setWorkflow(null);

Adding and Removing Approvers

After a change is routed and the online approval process is initiated, it is sometimes necessary to
add or remove people from the list of approvers or observers. To add or remove approvers or
observers, a user must have the Route privilege.

You don't need to load the Workflow table to modify the list of approvers. Once you have a routable
object, such as an ECO, you can modify its list of approvers using the
IRoutable.addApprovers () and IRoutable.removeApprovers () methods. When you
use addApprovers () Or removeApprovers (), you specify the lists of approvers and observers,
whether the Notification is urgent, and an optional comment. The Agile API provides overloaded
addapprovers () and removeApprovers () methods for adding or removing a user or a user
group from the list of approvers. For more information, refer to the API Reference files at Oracle®
E-Delivery Web site (http://edelivery.oracle.com/).

If any users you select as approvers or observers do not have appropriate privileges to view a
change, your program throws an APIException. To avoid the possible exception, check the
privileges of each user before adding him to the approvers or observers list.

210 Agile Product Lifecycle Management

http://edelivery.oracle.com/

Chapter 14: Managing Workflow

The following example shows how to add and remove approvers for a change.

Example: Adding and removing approvers and observers
public void modifyApprovers (IChange change) {

try {

// Get current approvers for the change

IDataObject [] currApprovers =
change .getApproversEx(change.getStatus()) ;

// Get current observers for the change

IDataObject [] currObservers =
change . getObserverskEx(change.getStatus()) ;

// Add hhawkes to approvers

IUser user = (IUser)m session.getObject (IUser.OBJECT TYPE,
"hhawkes") ;

IUser[] approvers = new IUser[]{user};

// Add flang to observers user =
(IUser)m_session.getObject (IUser.OBJECT TYPE, "flang");

IUser[] observers = new IUser[]{user};

// Add approvers and observers

change .addApprovers(change.getStatus(), approvers, observers, true,
"Adding jsmith to approvers and jdoe to observers'™);

// Add skubrick to approvers user =

(IUser)m session.getObject (IUser.OBJECT TYPE, "skubrick"); approvers[0]
= user;

// Add kwong to observers user =
(IUser)m_session.getObject (IUser.OBJECT TYPE, "kwong"); observers[0] =
user;

// Remove skubrick from approvers and kwong from observers
change . removeApprovers(change.getStatus(), approvers, observers,
"Removing skubrick from approvers and kwong from observers™);
} catch (APIException ex) {

System.out .println (ex) ;

}
}

If you want to modify only the list of approvers or the list of observers for a change, you can pass a
null value for the parameter you don’t want to change. The following example shows how to add
the current user to the approvers list without changing the list of observers.
Example: Adding approvers without changing observers

public void addMeToApprovers (IChange change) {

try {
// Get the current user

IUser user = m_session.getCurrentUser();

// Add the current user to the approvers list for the change
IUser[] approvers = new IUser[] {user};

v9.3.1.1 211

SDK Developer Guide - Using Agile APIs

change.addApprovers(change.getStatus(), approvers, null, true,
"Adding current user to approvers list");

} catch (APIException ex) {
System.out.println (ex) ;

}
}

Setting the “Signoff User Dual Identification” Preference

The “Signoff User Dual Identification” feature is a systemwide preference that controls whether
approval/rejection signoff requires a dual identification, or a “second signoff.” This feature is
required by FDA-regulated companies and can benefit companies with a corporate policy requiring
double authentication of user identity when approving or rejecting change orders. For more
information, refer to the latest release of the Agile PLM Administrator Guide.

The following paragraphs list and describe the APIs that support the Signoff User Dual Identification
feature and provide code samples that use these methods.

Approving a Routable Object

This method informs users the object is approved by the approver, or when the approver is
approving the object on behalf of one or more user groups. You can also use this method to specify
the secondSignature, escalations, transfers, or signoffForSelf parameters as they
are set in server’s Preferences settings.

// RApproving a user
/*
Parameters:
password: User's approval password
secondSignature: User's second signature for approval

comment: A character string for user comments (4000 characters
maximum)

notifyList: List of users and user groups to notify
approveForGroupList: List of user groups to approve for

escalations: Escalated from other users and user groups to approve
for

transfers: From other users and user groups to approve for
signoffForSelf: True to signoff for self and False otherwise
APIException:
Thrown if the method fails to approve the routable object
*/
public void approve (String password, String secondSignature,
String comment, Collection notifyList,
Collection approveForGroupList, Collection escalations,
Collection transfers, boolean signoffForSelf)
throws APIException;

212 Agile Product Lifecycle Management

Chapter 14: Managing Workflow

The following code example approves a routing object requiring Dual identification. Other conditions
are:

o Display User ID when Sever Settings > Preferences Signoff User Dual Identification is selected.

o Set the Workflow Settings for Workflow Status CCB: Default Change Orders Dual Identification
Required to Yes.

@ Create a change object and add a user, for example admin as approver to the CCB Status
and the Released Status.

Example: Approving a routable object

// Admin approves the change by supplying approval password and "User
// ID" as the second signature

IWorkflow [] wfs = chg.getWorkflows() ;

IWorkflow wf = wfs[0];

chg.setWorkflow (wf) ;

// Advance ECO to submitted state

IStatus [] sts;

sts = wf.getStates(StatusConstants.TYPE SUBMIT) ;
IStatus submit = sts[0];

// Change status to submit
m_session.disableWarning (new Integer (553)) ;
m_session.disableWarning (new Integer(574)) ;

Object [] nullObjectList = null;

chg.changeStatus (submit, false, null, false, false, nullObjectList,
nullObjectList, nullObjectList, Ffalse);

// Add approvers to CCB status and to Released status

IUser usr = (IUser) m_session.getObject (IUser.OBJECT TYPE, "admin");
Object [] apprList = new IUser [] {usr};

sts = wf.getStates(StatusConstants.TYPE REVIEW) ;

IStatus ccb = sts([0];

chg.addApprovers (ccb, apprList, nullObjectList, false,
"ADDAPPROVER OBSERVER") ;

// Change it to CCB status

chg.changeStatus (ccb, false, null, false, false, nullObjectList,
nullObjectList, nullObjectList, Ffalse);
m_session.enableWarning (new Integer (553)) ;
m_session.enableWarning (new Integer (574)) ;

// Admin approves the change by supplying approval password and "User
// ID" as the second signature
String userName = session.getCurrentUser () .getName () ;

chg.approve ("agile", userName, "OK, Approved", null, null, null, null,
true) ;

v9.3.1.1 213

SDK Developer Guide - Using Agile APIs

Rejecting a Routable Object

This method informs users that the routable object is rejected by the approver, or when the
approver is rejecting the object on behalf of one or more user groups. You can also use this method
to specify the secondSignature, escalations, transfers, or SignoffForSelf parameters
as they are set in server's Preferences settings.

// Rejecting a user
/*
Parameters
password: User's approval password
secondSignature: User's second signature for approval
comment: A character string for user comments
(4000 characters maximum)
notifyList: List of users and user groups to notify
approveForGroupList: List of user groups to approve for
escalations: Escalated from other users and user groups
to approve for
transfers: From other users and user groups to approve for
signoffForSelf: True to signoff for self and False otherwise

APIException
Thrown if the method fails to approve the routable object

*

/

public void reject (String password, String secondSignature,
String comment, Collection notifyList,
Collection approveForGrouplList, Collection escalations,
Collection transfers, boolean signoffForSelf)

throws APIException;

The following code sample requires Dual identification to reject a routing object. Other conditions
are:

o Display User ID when Sever Settings > Preferences Signoff User Dual Identification is selected.

o Set the Workflow Settings for Workflow Status CCB: Default Change Orders Dual Identification Required
to Yes.

@ Create a change object and add a user, for example admin as an approver of the CCB Status
and the Released Status.
Example: Rejecting a routable object
// Admin rejects the change by supplying approval password and "User
// ID" as the second signature
IChange chg;
String chgNo;

IUser curUser = session.getCurrentUser () ;
String userName = curUser.getName () ;

chg = (IChange) session.getObject (ChangeConstants.CLASS ECO, chgNo) ;

chg.reject ("agile", userName, "Rejected", null, null, null, null,
true) ;

214 Agile Product Lifecycle Management

Chapter 14: Managing Workflow

Adding User Groups of Approvers and Users to Approve Routable Objects

This method is designed to retrieve an array of user groups that is added as approvers for a
particular Workflow status and the current user/approver is also a group member.

/*

Parameters
status: A node corresponding to the desired Workflow status. You can
retrieve the current status using getStatus (). To retrieve the

default next status, use getDefaultNextStatus() .
APIExceptions and Returns
- throws APIException if the method fails

- returns an array of IlUserGroup objects
*/
public IDataObject[] getPossibleUserGroupsForSignoff (IStatus status)
throws APIException;
The following code sample adds a user group that approves the ECO at the CCB status and

contains the current user as its member. In addition to Dual identification, the following conditions
are also required:

o Display User ID when Sever Settings > Preferences Signoff User Dual Identification is selected.

o Set the Workflow Settings for Workflow Status CCB: Default Change Orders Dual Identification Required
to Yes.
Example: Adding User Groups of Approvers with Current User as a Member of the “User
Group”

// IChange change;

//Set Workflow

IWorkflow[] wfs=change.getWorkflows () ;

IWorkflow workflow = wfs[0];

change.setWorkflow (workflow) ;

//Add the User Group as approver for CCB
Object [] appr=new Object[] {user group};
IStatus current=change.getStatus() ;
StatusConstants type=current.getStatusType() ;

m_session.disableWarning(new Integer(574)) ;
while (! (type == (StatusConstants.TYPE REVIEW)))
IStatus nextstatus=change.getDefaultNextStatus() ;

change.changeStatus (nextstatus, true,'" ,true,true, (Object []1)null, (
Object [1)null, (Object [1)null,false) ;

current=change.getStatus () ;
type=change.getStatus () .getStatusType () ;

}

m_session.enableWarning (new Integer (574)) ;
change.addApprovers (current, appr, (Object [])null, false, "");

v9.3.1.1 215

SDK Developer Guide - Using Agile APIs

IDataObject [] u = change.getPossibleUserGroupsForSignoff (status) ;
/* APPROVE */
Collection gl = new ArrayList () ;

//Group list

gl.add(ul01);

change.approve ("agile", session.getCurrentUser () .getName (),
"ESIGN-FIRST", null, gl, null, null, false);

Approving a Routable Object by Users on behalf of “Transferred from Users”

This method is designed to retrieve an array of users that is added as transfer authorities for the
current user and for a particular Workflow status.

/*

Parameters
status: A node corresponding to the desired Workflow status. You can
retrieve the current status using getStatus(). To retrieve the

default next status, use getDefaultNextStatus().

APIExceptions and Returns
- throws APIException if the method fails
- returns an array of IUserGroup objects

*/
public IDataObject[] getPossibleTransferredFromUsers (IStatus status)
throws APIException;

The following code sample set up a Transfer Authority from user A to another user B, creates an
ECO, and adds user A as an approver of the CCB status.

Note The getPossibleTransferredFromUsers (IStatus status) return value for
user B 's CCB status is the array of Users whose Sign-off authority is transferred to user
B.

In addition to Dual identification, the following conditions are also required:
o Display User ID when Sever Settings > Preferences Signoff User Dual Identification is selected.

o Set the Workflow Settings for Workflow Status CCB: Default Change Orders Dual Identification Required
to Yes.

Example: Setting up a Transfer of Authority from one user to another user

Log in and execute the following code as User B

IDataObject [] usrs = chg.getPossibleTransferredFromUsers (status) ;

// Prepare the collection

Collection col = new ArrayList () ;

for (int i=0; i < usrs.length; i++){
col.add (usrs[il);

}

// approve the change

216 Agile Product Lifecycle Management

Chapter 14: Managing Workflow

chg.approve (“agile”, userName, “0OK, Approved”, null, null, null, col,
false) ;

Adding Active Escalations for the Current User to Approve a Routable Object

This method is designed to retrieve an array of users that serve as active escalations for the current
user for a particular Workflow status. This method will override the settings in the Allow Escalation
Designation Approval attribute on the user’s cover page.

/*

Parameters
status: A node corresponding to the desired Workflowstatus. You can
retrieve the current status using getStatus (). To retrieve the

default next status, use getDefaultNextStatus() .

APIExceptions and Returns
- throws APIException if the method fails
- returns an array of IUser and IUserGroup objects

*/
public IDataObject[] getPossibleEscalatedFromUsers (IStatus status)
throws APIException;

The following code sample sets up an Escalation from user A to user, B creates an ECO, and adds
user A as an approver of the CCB status.

Note The getPossibleEscalatedFromUsers (IStatus status) for user B for the CCB
status will return the array of Users whose escalations are set to user B.

In addition to Dual identification, the following conditions are also required:
o Display User ID when Sever Settings > Preferences Signoff User Dual Identification is selected.

o Set the Workflow Settings for Workflow Status CCB: Default Change Orders Dual Identification Required
to Yes.
Example: Setting up an escalation for a user
// Log in and execute the following code as “User B”

IDataObject [] usrs = chg. getPossibleEscalatedFromUsers (IStatus
status) ;

// Prepare the collection
Collection col = new ArrayList ();

for (int i=0; i < usrs.length; i++){
col.add(usrs[i]) ;

// approve the change
chg.approve ("agile", userName, "OK, Approved", null, null, null, col,
false) ;

v9.3.1.1 217

SDK Developer Guide - Using Agile APIs

Specifying a Second Signature to Approve a Routable Object

This method is designed to verify if a second signature is required to approve a routable object. Use
this with methods in combination with the methods documented in Adding User ID as Second
Signature to Approve a Routable Object on page 219 which also has the secondSignature
parameter and Approving a Routable Object on page 212 and Rejecting a Routable Object on
page 214.

Examples
/*

Parameters
Status: The status (IStatus) of the object checked for the next
Workflowstatus.

Returns
true if a second signature is required, false otherwise

*/
public boolean isSecondSignatureRequired(IStatus status)
throws APIException;

The following code sample creates an ECO chg (change order). The
chg.isSecondSignatureRequired (IStatus status) for the CCB status will return true.

In addition to Dual identification, the following conditions are also required:
o Display User ID when Sever Settings > Preferences Signoff User Dual Identification is selected.

o Set the Workflow Settings for Workflow Status CCB: Default Change Orders Dual Identification Required
to Yes.

Example: Specifying a second signature to approve a routable object

// set the “Signoff User Dual Identification Type” preferences Node

IAdmin admin = session.getAdminInstance() ;

INode node = admin.getNode (NodeConstants.NODE PREFERENCES) ;

// Node Properties

IProperty propSecondSignature = node.getProperty(“Signoff User Dual
Identification Type”) ;

IAgilelList 1lst = propSecondSignature.getAvailableValues() ;
lst.setSelection(new Object [] {“User ID"});
propSecondSignature.setValue (lst) ;

// set the “Dual Identification Required” property for “Workflow Status
CCB: Default Change Orders” to “Yes”

IAdmin admin = session.getAdminInstance() ;
INode root=admin.getNode (NodeConstants.NODE_AGILE WORKFLOWS) ;

INode CCBStatus=(INode)root.getChildNode (“*Default Change Orders/Status
List/CCB”) ;

IProperty propDualldentification = CCBStatus.getProperty (“Dual
Identification Required”) ;

IAgileList 1lst = propDualldentification.getAvailableValues() ;
lst.setSelection(new Object [] {“Yes”});
propDualIldentification.setValue (1lst) ;

218 Agile Product Lifecycle Management

Chapter 14: Managing Workflow

// Get and print the “Second Signature Required Property” for the
// various states of a workflow

IWorkflow [] wfs = chg.getWorkflows() ;

IWorkflow wf = wfs[0];

chg.setWorkflow (wf) ;

IStatus [] sts = wf.getStates();

boolean secondSigReqd;

for (int i=0; i< sts.length; i++) {
IStatus st = sts[i];

System.out.println(“*Status Name =" + st.getName()) ;

System.out.println("IS Second Signature Regd = "+
chg.isSecondSignatureRequired(st)) ;

System.out.println("IS Second Signature UserId = " +

chg.isSecondSignatureUserId(st)) ;

secondSigReqgd = chg.isSecondSignatureRequired(st) ;

}
Adding User ID as Second Signature to Approve a Routable Object

This method is designed to set the user's ID as the second signature to approve a routable object.
Use this method in combination with methods documented in Specifying a Second Signature to
Approve a Routable Object on page 217. These methods have the secondSignature
parameter. See Approving a Routable Object on page 212 and Rejecting a Routable Object on
page 214.

/*
Parameters

Status: The status (IStatus) of the object checked for the next
Workflow status.

Returns
true if a second signature required is User ID, false otherwise

*/
public boolean isSecondSignatureUserId(IStatus status)
throws APIException;

The following code sample creates an ECO chg (change order). The
chg.isSecondSignatureRequired (IStatus status) for the CCB status will return true

In addition to Dual identification, the following conditions are also required:
= Display User ID when Sever Settings > Preferences Signoff User Dual Identification Type is selected.

o Set the Workflow Settings for Workflow Status CCB: Default Change Orders Dual Identification Required
to Yes.

Example: Speechifying User ID as the second signature
boolean secondSigUserID;
secondSigUserID = chg.isSecondSignatureUserId (status);

v9.3.1.1 219

SDK Developer Guide - Using Agile APIs

Approving or Rejecting Change

After a change is routed to a group of approvers, the online approval process begins. Users listed in
the Workflow table for a change can approve or reject the change.

When you approve a change, the Agile system records the approval on the Workflow table. When
all approvers have approved the change, the system sends an email Natification to the change
analyst or component engineer indicating that the change is ready to be released.

Note To approve or reject a change, users must have either a Create And Manage or Request
And Approve privileges. For more information, refer to Agile PLM Administrator Guide.

When you use the IRoutable.approve () method, you specify the user’'s approval password and
an optional comment. Overloaded approve () methods allow you to specify a Notification list and a
collection of user groups for which you're approving; refer to the APl Reference files at Oracle® E-
Delivery Web site (http://edelivery.oracle.com/) for details.

The following paragraphs documents approving or rejecting a given routable object. The APIs that
support approving or rejecting a PC change object when a second signature is required are
described in detail in Setting the “Signoff User Dual Identification” Preference on page 212

The following example shows how to approve a change.
Example: Approving a change
public void approveChange (IChange change)
try {
change.approve(''agile', "Looks good to me');
} catch (APIException ex) {
System.out.println (ex) ;

}
}

If a change has a fundamental flaw, users listed on the Workflow table may reject it. When you
reject a change, the system records the rejection on the Workflow tab for the change and sends an
email Notification to the change analyst or component engineer. The change analyst or component
engineer may decide to return the rejected change to the originator, thus reverting its status to
Pending.

When you use the IRoutable.reject () method, you must specify the userNotifications
approval password and optional comments. An overloaded reject () method allows you to
specify a Notification list and a collection of user groups for which you’re approving; refer to the API
Reference files at Oracle® E-Delivery Web site (http://edelivery.oracle.com/) for more information.

The following example shows how to reject a change.
Example: Rejecting a change
public void rejectChange (IChange change)

try

change.reject(*agile’™, "Incorrect replacement part!');
} catch (APIException ex) {

System.out.println (ex) ;

220 Agile Product Lifecycle Management

http://edelivery.oracle.com/
http://edelivery.oracle.com/

Chapter 14: Managing Workflow

Approving or Rejecting a Change Without Password

Agile PLM's Java Client provides the option to configure Workflow Settings to enable the approval
or rejection of a change with or without typing a password. Users with the Administrator role and
privileges configure this option by selecting the Yes or No option in the Password Required field shown
in the following illustration.

Figure 17: Configuring workflow settings without a password

< Agile Product Lifecycle Management (PLM)
File Edt View Tooks Settings Window Help

R EA Y 1T D [acenn 0] [O B2 s @ 4

D statusBased .. IF wodlowbet.. | DF wontlon Stat... |

Search | Analytics and Reparts | Admin | * » Workflow Status:CCB

n
EREL are [5 &
4t Settings
=5 Data Settings APIName |CCE 17
- %8 Classes)
" Character Sets Status Type Review
. %Llsts Status Stamp Color [glue v
Process Extensions
458 autohumbers IF No Criteria Apply At Exit, Moty BCHANGEANALYST £
B criteria
) 0 Workfiow Settings Manual Valid hext Status [Canceled;Hold;Pending; Released &
e vorkdlows Autopromote 1o v]
+ [User Settings
stem Settings If AutoPromate Fails, Motify BCHANGEANALYST [
+ [Server Settings
- (=] Examples Ad Hoc ApproversfObservers |ye; V‘
IF Rejected, set Status ko | 9‘
If Rejected, Notify [FCHANGEANALYST [

Reminder Period (in hours) [+ ‘

Review Escalation Period {in hours) |95 ‘

Comments for Approval | alowed v
Comments Far Rejection |AHnwad V‘
Dual Identification Required |y’es 9‘

Passward Required |\('g§ Y
v
Save Refrech Close

[| administrator, Joe | £3://Blu=OneUPK, qa agilesoft. comi7001 | 3.3.1 (Buid 40) |

The following example uses the Agile SDK to programmatically configure this requirement.
Example: Approving or rejecting change without a password

// Workflow settings - Password Required
Tadmin admin = session.getAdminInstance () ;
INode root = admin.getNode (NodeConstants.NODE AGILE WORKFLOWS) ;
INode CCBStatus = (INode)root.getChildNode ("Default Change
Orders/Status List/CCB/Status Properties");
IProperty PwdReq =
CCBStatus.getProperty (PropertyConstants. PROP_WORKFLOW_PASSWORD_ REQUT
RED) ;
PwdReq.setValue (“No”) ;

// Approve change without passing password
change.approve (null, null, "Approve", null, null, null, null, true);

v9.3.1.1 221

SDK Developer Guide - Using Agile APIs

Commenting a Change

When you comment a change, you send a comment to other CCB reviewers during the online
approval process. In addition to the comment, you can specify whether to notify the originator, the
change analyst, and the change control board. An overloaded comment () method allows you to
specify a Notification list. For more information, refer to the API Reference files at Oracle® E-
Delivery Web site (http://edelivery.oracle.com/).

The following example shows how to comment a change.
Example: Commenting a change
public void commentChange (IChange change)
try {
change.comment(true, true, true, '"'Change flagged for transfer to
ERP."™);
} catch (APIException ex) {
System.out.println (ex) ;

}
}

Auditing a Change

At any point in a change’s lifecycle you can audit it to determine if any required entry cells are not
completed or if the change violates any Agile SmartRules. When you use the

IRoutable.audit () method, the method returns a Map object containing I1Cell objects as
keys and a List of APIException objects as values. The 1Ccell key can be null if there are no
problems with the change. The APIException object describes a problem with the associated
entry cell.

The Map object returned by the audit () method may also contain null objects as keys. The
APIException object associated with a null object describes a problem unrelated to data cells.

The following example shows how to audit a change.
Example: Auditing a change
public void auditChange (IChange change) {

try
// Audit the release

Map results = change.audit();

// Get the set view of the map
Set set = results.entrySet();

// Get an iterator for the set
Iterator it = set.iterator();

222 Agile Product Lifecycle Management

http://edelivery.oracle.com/

Chapter 14: Managing Workflow

// Iterate through the cells and print each cell name and exception
while (it.hasNext()) {
Map.Entry entry = (Map.Entry)it.next();
ICell cell = (ICell)entry.getKey() ;
if(cell != null) {
System.out.println("Cell : " + cell.getName()) ;
} else {
System.out.println("Cell : No associated data cell");
}
//Iterate through exceptions for each map entry.
// (There can be multiple exceptions for each data cell.)

Iterator jt = ((Collection)entry.getValue()) .iterator() ;
while (jt.hasNext()) {
APIException e = (APIException)jt.next();
System.out.println ("Exception : " + e.getMessage());

}
}

} catch (APIException ex) {
System.out .println (ex) ;

}
}

Changing the Workflow Status of an Object

The IRouteable.changeStatus () method is a general purpose method for changing the status
of an Agile object. For example, you can use changeStatus () to submit, release, or cancel a
change. In instances such as failed audits, it throws the compound exception
ExceptionConstants.API_SEE MULTIPLE ROOT CAUSES. You can disable this exception by
modifying the code that caught the exception. See the example below.

Example: Throwing compound exception s
while (true) ({

try {
change.changeStatus (

wf .getStates (expectStatus) [0],

false,

"comment",

false,

false,

null,

null,

null,

false

)
} catch (APIException ae) ({

v9.3.1.1 223

SDK Developer Guide - Using Agile APIs

try {
if
(ae.getErrorCode () .equals (ExceptionConstants.API_SEE MULTIPLE_ROOT_CAUS
ES)) {
Throwable[] causes = ae.getRootCauses() ;
for (int i = 0; i < causes.length; i++) {
m_session.disableWarning(
(Integer) ((APIException)causes[i]) .getErrorCode ()
)
}
} else {
m_session.disableWarning ((Integer)ae.getErrorCode()) ;

}

} catch (Exception e) ({
throw ae;

}

continue;

}

break;

}

In general, you release a change after it is signed off by CCB members. In addition to modifying the
status of a change, you can also use changeStatus () to specify a Notification list, optional
comments, and whether to notify the originator and change control board.

Depending on the overloaded changeStatus () method you use, the notifyList parameter is
an array of ITUser or IUserGroup objects that should be notified about the change in status;
refer to the API Reference files at Oracle® E-Delivery Web site (http://edelivery.oracle.com/).for
details. To use the default Notification list for the Workflow status, specify a null value. To
indicate that no users should be notified, specify an empty array.

For both the approvers and observers parameters of the changeStatus () method, you
must explicitly pass an array of users or user groups. If you pass null, no approvers or observers
are used. To get the default approvers and observers for a particular Workflow status, use
getApproversEx () and getObserversEx (), respectively.

The following example shows how to check the Workflow status of a change.
Example: Checking the status of a change
void checkStatus (IChange change)
try {
// Get current workflow status (an IStatus object)
IStatus status = change.getStatus();
System.out.println("Status name = " + status.getName()) ;
// Get next available Workflow statuses
IStatus[] nextStatuses = change.getNextStatuses();
for (int i = 0; i < nextStatuses.length; i++) {
System.out.println ("nextStatuses[" + 1 +"] = " +
nextStatuses[i] .getName()) ;

}

224 Agile Product Lifecycle Management

http://edelivery.oracle.com/).for

Chapter 14: Managing Workflow

// Get next default Workflow status
IStatus nextDefStatus = change.getDefaultNextStatus();

System.out.println ("Next default status = " +
nextDefStatus.getName()) ;

} catch (APIException ex) {
System.out.println (ex) ;

}
}

The following example shows how to change the status of a change.
Example: Changing the status of a change
public void nextStatus (IChange change, IUser[] notifyList,
IUser[] approvers, IUser[] observers) {
try {
// Check if the user has privileges to change to the next status
IStatus nextStatus = change.getDefaultNextStatus();

if (nextStatus == null) {
System.out.println("Insufficient privileges to change status.");
return;

}

// Change to the next status
else {
change.changeStatus(nextStatus, true, ', true, true, notifyList,
approvers, observers, false);
}
} catch (APIException ex) {
System.out.println (ex) ;

}
}
The following example shows how to use the default approvers and observers when you change
the status of a routable object.
Example: Changing the status and routing to the default approvers and observers

public void changeToDefaultNextStatus (IChange change) throws
APIException {

// Get the next status of the change

IStatus nextStatus = change.getDefaultNextStatus();

// Get default approvers for the next status

IDataObject [] defaultApprovers = change.getApproverseEx(nextStatus);
// Get default observers for the next status

IDataObject [] defaultObservers = change.getObserversEx(nextStatus);
// Change to the next status

change.changeStatus(nextStatus, false,
defaultApprovers,

defaultObservers, false);

, False, false, null,

v9.3.1.1 225

SDK Developer Guide - Using Agile APIs

Sending an Agile Object to Selected Users

You can send any Agile object to a selected group of users. When you send an object, such as an
ECO, there is no signoff required. The selected recipients receive an email message with an
attached link to the object. When you use the IDataObject.send () method, you can specify an
array of Agile users and an optional comment. Unlike other Workflow commands, the send ()
method is not limited to routable objects. You can use it to send any type of Agile dataobject,
including an item.

The following example shows how to send an object to all users.
Example: Sending an Agile object to selected users
public void sendToAll (IDataObject object) ({

try {
// Get all users
IQuery g = (IQuery)m session.createObject (IQuery.OBJECT TYPE,

"select * from [Users]");
ArrayList userList = new ArrayList();
Iterator i = g.execute () .getReferentIterator() ;
while (i.hasNext()) {
userList.add (i.next ()) ;
}
IUser[] users = nNew IUser [userList.size()];
System.arraycopy (userList.toArray (), 0, users, 0, userList.size());
// Send the object to all users
object.send(users, '""Please read this important document.');
} catch (APIException ex) {
System.out .println (ex) ;

Sending an Agile Object to User Groups

You can send an Agile change object or an item object to a user group. When you send an object,
such as an ECO, there is no signoff required. The selected recipients receive an email message
with an attached link to the object. When you use the IDataObject .send (IDataObject [] to,
String Comment) method, you can specify an array of Agile User Groups and an optional
comment. The IDataObject parent interface represents the IUserGroup Agile object. Unlike
other Workflow commands, the send () method is not limited to routable objects. You can use it to
send any type of Agile dataobject, including an item.

The following example shows how to send an object to all User Groups.
Example: Sending an Agile object to selected user groups
public void sendToAll (IDataObject[] object) {

try {
// Get all user groups

226 Agile Product Lifecycle Management

Chapter 14: Managing Workflow

IQuery g = (IQuery)m session.createObject (IQuery.OBJECT TYPE,
"select * from [UserGroupl");

ArrayList userList = new ArrayList();

Iterator i = g.execute () .getReferentIterator () ;

while (i.hasNext()) {
usergrouplList.add(i.next()) ;

}

IUserGroup[] group = (IUserGroup[]) (usergrouplList.tolArray()) ;

// Send the object to all user groups

object.send(usergroups, ''‘Please read this important document.');

catch (APIException ex) {
System.out.println (ex) ;

v9.3.1.1

227

Chapter 15
Managing and Tracking Quality

This chapter includes the following:

I oo TV @ 101 O o] (o] R 229
B WOTKING WIth CUSIOMEIS....evieieeeiiietsie ettt ettt bttt 230
= Working With Product SErVICE REQUESES.......cvuririieirieirreiein et 232
= Working with Quality Change REGUESESc.curer ittt 235
= Using Workflow Features with PSRS and QCRSccoiiniieinicnsiessse s e ssss s sanes 237

About Quality Control

The Agile PLM system provides tools that allow companies to track and manage the following
quality-related items:

o customer complaints
= product and manufacturing quality issues

= enhancement and corrective action requests

The corrective action process in the Agile PLM system is flexible and can be implemented in many
different ways. For example, one way to customize the Agile PLM system is to use the Agile API to
integrate the system with a Customer Relationship Management (CRM) system.

Quality-Related API Objects

The Agile API includes the following new interfaces:

B ICustomer - interface forthe Customer class. A customer is anyone that uses a company'’s
product(s). In some Agile PLM implementations, customers and problem reports will be
imported directly from Customer Relationship Management (CRM) systems.

B IServiceRequest —interface forthe ServiceRequest class. IServiceRequest isa
subinterface of IRoutable; it lets you create two types of service requests, problem reports
and nonconformance reports (NCRS).

B IQualityChangeRequest - interface for the QualityChangeRequest class, which is
similar to an ECR and other types of change requests. It represents a closed loop Workflow
process that addresses quality problems. Audit and CAPA (Corrective Action/Preventive
Action) are subclasses of QualityChangeRequest.

v9.3.1.1 229

SDK Developer Guide - Using Agile APIs

Quality-Related Roles and Privileges

To create, view, and modify problem reports, issues, NCRs, CAPAs, and QCRs, you must have the
appropriate privileges. The Agile PLM system has two default user roles that provide users with
privileges to work with these quality-related objects:

= Quality Analyst — role for users who manage problem reports, issues, and NCRs.

@ Quality Administrator — role for users who manage audits and CAPAs.

For more information about roles and privileges, refer to the Agile PLM Administrator Guide.

Working with Customers

This section describes how to create, load, and save ICustomer objects.

About Customers

The ICustomer object stores contact information about a customer. What role does a customer
have in the Agile PLM system? Customers provide feedback on your company’s products, alerting
you to quality issues or problems they encounter.

This object can originate in another system, such as a CRM system. You can use the Agile API to
import customer data and problem reports from CRM systems into the Agile PLM system.

Creating a Customer

To create a customer, use the IAgileSession.createObject () method. At a minimum, you
should specify values for the General Info.Customer Name and General Info.Customer
Number attributes.

Example: Creating a customer

try {
//Create a Map object to store parameters
Map params = new HashMap () ;

//Initialize the params object

params.put (CustomerConstants.ATT GENERAL INFO_ CUSTOMER NUMBER,
"CUST00006") ;

params.put (CustomerConstants.ATT GENERAL INFO_ CUSTOMER NAME, "Western
Widgets") ;

//Create a new customer

ICustomer custl =
(ICustomer)m session.createObject(CustomerConstants.CLASS_CUSTOMER,
params) ;

} catch (APIException ex) {

System.out.println (ex) ;

}

230 Agile Product Lifecycle Management

Chapter 15: Managing and Tracking Quality

Loading a Customer

To load a customer, use the IAgileSession.getObject () method. To uniquely identify a
customer, specify the value for the General Info | Customer Number attribute.

Example: Loading a customer
try {
// Load a customer by specifying a CustomerNumber

ICustomer cust =
(ICustomer)m session.getObject(lCustomer.0OBJECT_TYPE, "CUSTO0006') ;

} catch (APIException ex) {
System.out.println (ex) ;

}
Saving a Customer as Another Customer

To save a customer as another customer, use the IDataObject.saveAs () method, which has
the following syntax:
public IAgileObject saveAs(java.lang.Object type, java.lang.Object
params)

For the params parameter, specify the General Info | Customer Name and General Info | Customer
Number attributes.

Example: Saving a customer to another customer
try
// Load an existing customer

ICustomer custl =
(ICustomer)m session.getObject (ICustomer.OBJECT TYPE, "CUST00006") ;

//Create a Map object to store parameters
Map params = new HashMap () ;

//Initialize the params object

params.put (CustomerConstants.ATT GENERAL INFO CUSTOMER NUMBER,
"CUSTO00007") ;

params.put (CustomerConstants.ATT GENERAL INFO CUSTOMER NAME, "Wang
Widgets") ;
// Save the customer

ICustomer cust2 =
(ICustomer) custl.saveAs(CustomerConstants.CLASS _CUSTOMER, params);

} catch (APIException ex) {
System.out.println (ex) ;

}

v9.3.1.1 231

SDK Developer Guide - Using Agile APIs

Working with Product Service Requests

This section describes how to work with the two classes of Product Service Requests, Problem
Reports and Nonconformance Reports.

About Problem Reports

A problem report describes a problem or an issue that occurred with a product from the customer’s
perspective. A problem report can be submitted by a customer, sales representative, or customer
service representative.

Because a problem report usually originates with a customer, it may not accurately describe the
actual cause of the problem. To understand the root cause of a problem, a Quality Analyst must
investigate the problem.

Problem reports can be routed for investigation. The investigating team, consisting of Quality
Analysts, determines the root cause of the problem and decides whether to escalate the problem
into an issue.

About Nonconformance Reports

A nonconformance report (NCR) is used to report material damages, failure modes, or defects in a
product received by a customer or supplier. An NCR is typically identified when a product shipment
is inspected after receipt from a supplier. A product is nonconforming if it does not meet customer
requirements or specifications. Such products are generally rejected or segregated to await
disposition. A nonconformance report may require that a Quality Analyst investigate the problem
and determine whether corrective action is required.

NCRs can be routed for review. Typically, the review is used for additional information gathering
rather than approval and rejection.

Creating a Product Service Request

To create a problem report or nonconformance report, use the
IAgileSession.createObject () method. The only required attribute value you must specify is
the object’'s number. Example 12-4 shows how to create problem reports and NCRs.

Example: Creating a problem report or NCR
public IServiceRequest createPR(String strNum) throws APIException (
IServiceRequest pr = (IServiceRequest)m session.createObject(
ServiceRequestConstants.CLASS PROBLEM_REPORT, strNum);
return pr;

}

public IServiceRequest createNCR(String strNum) throws APIException
IServiceRequest ncr = (IServiceRequest)m session.createObject(
ServiceRequestConstants.CLASS NCR, strNum);

return ncr;

}

232 Agile Product Lifecycle Management

Chapter 15: Managing and Tracking Quality

Assigning a Product Service Request to a Quality Analyst

To assign a problem report or NCR to a Quality Analyst, set the value for the Cover Page | Quality
Analyst field, which is a list field. The available values for the list field consists of Agile PLM users.
The following example shows how to set the value for the Cover Page.Quality Analyst field
for a problem report or NCR.
Example: Assigning a problem report or nonconformance report
void assignServiceRequest (IServiceRequest sr) throws APIException {
Integer attriID;

//Set attrID equal to the Quality Analyst attribute ID attrID =
ServiceRequestConstants.ATT_COVER_PAGE_QUALITY_ANALYST;

//Get the Cover Page.Quality Analyst cell
ICell cell = sr.getCell (attrID);

//Get available list values for the list
IAgileList values = cell.getAvailableValues();

//Set the value to the current user

IUser user = m_session.getCurrentUser();
values.setSelection(new Object[] { user });
cell.setValue(values);

}
Adding Affected Items to a Product Service Request

To associate a problem report or nonconformance report with one or more items, you add items to
the Affected Items table. Each Product Service Request can be associated with many items.

Note If Product Service Requests have been added to the Related PSR table, the Affected
Items table cannot be modified.

Example: Adding an affected item to a Product Service Request

void addAffectedItem(IServiceRequest sr, String strItemNum) throws
APIException (

//Get the class
IAgileClass cls = sr.getAgileClass();

//Attribute variable
IAttribute attr = null;

//Get the Affected Items table

ITable affItems =
sr.getTable(ServiceRequestConstants. TABLE_AFFECTEDITEMS) ;

//Create a HashMap to store parameters
HashMap params = new HashMap () ;

//Set the Item Number value

v9.3.1.1 233

SDK Developer Guide - Using Agile APIs

params.put (ServiceRequestConstants.ATT AFFECTED_ ITEMS_ ITEM NUMBER,
strItemNum) ;

//Set the Latest Change value

attr =

cls.getAttribute (ServiceRequestConstants.ATT AFFECTED ITEMS LATEST CHAN
GE) ;

IAgileList listvalues = attr.getAvailableValues() ;
listvalues.setSelection(new Object[] { new Integer(0)});

params.put(ServiceRequestConstants.ATT_AFFECTED_ITEMS_LATEST_CHANGE,
listvalues) ;

//Set the Affected Site value

attr =

cls.getAttribute (ServiceRequestConstants.ATT AFFECTED ITEMS AFFECTED SI
TE) ;

IAgileList listvalues = attr.getAvailablevValues() ;
listvalues.setSelection((new Object[] { "Hong Kong" });

params.put (ServiceRequestConstants.ATT AFFECTED ITEMS AFFECTED SITE,
listvalues) ;

//Create a new row in the Affected Items table
IRow row = affItems.createRow(params);

}
Adding Related PSRs to a Product Service Request

A Product Service Request can be used to aggregate multiple problem reports or NCRs into one
master. To do this, create a new Product Service Request and don’t add items to the Affected Items
table. Instead, select the Related PSR table and add a row for each related Product Service
Request.

Note If items have been added to the Affected ltems table, the Related PSR table cannot be
modified.

Example: Adding related PSRs to a Product Service Request

void addRelatedPSRs (IServiceRequest sr, String[] psrNum) throws
APIException {

//Get the Related PSR table

ITable relPSR =
sr.getTable(ServiceRequestConstants. TABLE RELATEDPSR);

//Create a HashMap to store parameters
HashMap params = new HashMap () ;

//Add PSRs to the Related PSR table
for (int 1 = 0; 1 < psrNum.length; i++)
{

//Set the PSR Number value

params.put (ServiceRequestConstants .ATT RELATED PSR PSR _NUMBER,
psrNum[i]) ;

//Create a new row in the Related PSR table
IRow row = relPSR.createRow(params);

234 Agile Product Lifecycle Management

Chapter 15: Managing and Tracking Quality

//Reset parameters
params = null;

}
}

Working with Quality Change Requests

A Quality Change Request, or QCR, allows a Quality Analyst to manage quality records that contain
aggregated problems related to products, documents, suppliers, and customers. You can route the
QCR for review and approval, driving the issue(s) to closure using corrective or preventive action.
This may result in changes to a product, process, or supplier by initiating an ECO or MCO. QCRs
also provide an audit trail between problems, corrective and preventive actions, and engineering
changes.

Agile PLM provides two classes of Quality Change Requests:

@ CAPA - Stands for Corrective Action/Preventive Action, which addresses defects that
(generally) surfaced from problem reports. By the time a problem reaches the CAPA stage, the
team has figured out which specific items must be fixed. Consequently, the affected item for a
CAPA may be different from the affected item of its related problem report. For example, say a
customer reported a problem with a DVD-ROM drive. A CAPA is initiated and the root-cause is
identified to be a defect in the IDE controller. Therefore, the CAPA and its related problem
report have different affected items.

o Audit — Systematic, independent and documented processes for obtaining evidence and
evaluating it objectively to determine the extent to which criteria are fulfilled. Audits can be
initiated against items for which no problems have been reported.

Creating a Quality Change Request

To create a QCR, use the IAgileSession.createObject () method. The only required
attribute value you must specify is the object’'s number. Example below shows how to create both
CAPA and Audit QCRs.

Example: Creating a QCR

public IQualityChangeRequest createCAPA(String strNum) throws
APIException

IQualityChangeRequest capa =
(IQualityChangeRequest)m session.createObject(

QualityChangeRequestConstants.CLASS CAPA, strNum);
return capa;

}

public IQualityChangeRequest createAudit (String strNum) throws
APIException {

IQualityChangeRequest audit =
(IQualityChangeRequest)m_ session.createObject(

QualityChangeRequestConstants.CLASS_AUDIT, strNum);
return audit;

v9.3.1.1 235

SDK Developer Guide - Using Agile APIs

}
Assigning a Quality Change Request to a Quality Administrator

To assign a QCR to a Quality Administrator, you set the value for the Cover Page | Quality
Administrator field. This process is similar to the way you assign a Product Service Request to a
Quality Analyst.
Example: Assigning a QCR
void assignQCR(IQualityChangeRequest gcr) throws APIException
Integer attriID;
//Set attrID equal to the Quality Administrator attribute ID

attrID =
QualityChangeRequestConstants.ATT COVER_PAGE QUALITY ADMINISTRATOR;

//Get the Cover Page.Quality Administrator cell
ICell cell = gcr.getCell (attrID) ;

//Get available list values for the list
IAgileList values = cell.getAvailableValues();

//Set the value to the current user

IUser user = m_session.getCurrentUser();
values.setSelection(new Object[] { user });
cell.setValue(values);

}
Saving a Quality Change Request as a Change

You can use the IDataObject.savelAs () method to save a QCR as another QCR or as an ECO
(or another type of change order). When you save a QCR as an ECO, the items affected by the
QCR are not automatically transferred to the Affected Items tab of the ECO. If you want to transfer
affected items from the QCR to the ECO, you must write the code in your program to provide that
functionality. Workflow is a required input parameter for using saveas () on QCRs.

Note If you try to save a QCR to an object that is not a subclass of either the Quality Change
Request or Change superclasses, the Agile API throws an exception.

Example: Saving a QCR as an ECO
public IChange saveQCRasECO(IAgileSession session,
IQualityChangeRequest gcr) throws APIException

// Get the ECO class
IAgileClass cls = m_admin.getAgileClass (ChangeConstants.CLASS ECO) ;

// Get autonumber sources for the ECO class
IAutoNumber [] numbers = cls.getAutoNumberSources() ;

// Get Workflow for the ECO class
IWorkflow ecoWf =
((IRoutableDesc) session.getAdminInstance () .getAgileClass (ChangeConst
ants.CLASS ECO)) .getWorkflows () [0] ;

// Save the QCR as an ECO
HashMap map = new HashMap () ;

236 Agile Product Lifecycle Management

Chapter 15: Managing and Tracking Quality

map .put (ChangeConstants.ATT COVER_PAGE NUMBER, numbers[0]) ;
map.put (ChangeConstants.ATT COVER_PAGE WORKFLOW, ecoWf) ;
IChange eco = (IChange)dgcr.saveAs (ChangeConstants.CLASS ECO, map) ;

// Add code here to copy affected items from the QCR to the ECO
return eco;
}

Using Workflow Features with PSRs and QCRs

PSRs and QCRs derive all Workflow functionality from the IRoutable interface. The following
table lists the Workflow commands you can use to manage product quality objects.

Feature Equivalent API(s)
Audit a PSR or QCR IRoutable.audit ()
Change the status of a PSR or QCR IRoutable.changesStatus ()
Send a PSR or QCR to another user IDataObject.send ()
Approve a PSR or QCR IRoutable.approve ()
Reject a PSR or QCR IRoutable.reject ()
Comment on a PSR or QCR IRoutable.comment ()
Add or remove approvers for a PSR or IRoutable.addApprovers ()
QCR IRoutable.removeApprovers ()

Selecting Workflows for PSRs and QCRs

When you create a new Product Service Request or a Quality Change Request, you must select a
workflow. Your Agile PLM system can have multiple workflows defined for each type of Product
Service Request and Quality Change Request. To retrieve the valid workflows for an object, use
IRoutable.getWorkflows (). If a Workflow has not been assigned yet, you can use
IRoutable.getWorkflows () to select a workflow, as shown in the following example.
Example: Selecting a workflow

public static IServiceRequest createPSR() throws APIException {

// Create a problem report

IAgileClass prClass =
admin.getAgileClass (ServiceRequestConstants.CLASS PROBLEM REPORT) ;

IAutoNumber [] numbers = prClass.getAutoNumberSources () ;

IServiceRequest pr =
(IServiceRequest)m session.createObject (prClass, numbers([0]) ;

// Get the current Workflow (a null object, since the Workflow has
not been set yet)

IWorkflow wf = pr.getWorkflow();
// Get all available workflows
IWorkflow[] wfs = pr.getWorkfFlows();

v9.3.1.1 237

SDK Developer Guide - Using Agile APIs

}

// Set the problem report to use the first workflow
pr.setWorkflow(wfs[0]);

return pr;

You can also set the Workflow for a Product Service Request or a Quality Change Request by
selecting a value for the Cover Page.Workflow field, as shown in the following example.

Example: Selecting a Workflow by setting the value of the “Cover Page.Workflow” attribute
void selectWorkflow(IServiceRequest psr) throws APIException ({

int nAttrID;

//Set nAttrID equal to the Workflow attribute ID

nAttrID = ServiceRequestConstants.ATT COVER PAGE WORKFLOW;
//Get the Workflow cell

ICell cell = psr.getCell (nAttrID);

//Get available list values for the list
IAgileList values = cell.getAvailableValues();

//Select the first workflow
values.setSelection(new Object[] {new Integer(0));

cell.setValue(values);

238

Agile Product Lifecycle Management

Chapter 16
Creating and Managing Projects

This chapter includes the following:

= About Projects and ProjeCts ODJECESccivieriieirieesssees s s sess s s ssss s s ssnsssessssessanes 239
= Differences in the Behavior of ProOjeCtS ODJECESc.cvvrieriieeirirreereis s 240
N O (- 1o o (0] 1= TSRS 240
= Adding RUIES fOr PPM ODJECESoiueiiieiiieieise ettt 242
N T o {10 o (0] 1= TR 243
= Adding "FileFolder" to Project's CONtENt TaD........ccoveriirice e ssess s 243
N U] 140 (0 =Tt =T 0] 245
B SCREAUING PrOJECESvvivveieiiseeie ettt et 249
= Setting Start and End Timestamps for PPM Date AHOUIESccriieiricnrerneeeseei e 251
= Working With ProjeCtS BASEIINES........cocvicveiiiieseisies ettt aen s 252
= Delegating Ownership of a Projects t0 ANOINET USETcccuicirieniicsssce s sssese s 253
= Adding ReSources to @ PrOJECES TEAMc.c.cvvvvrirririceririeers st ers s en s sssessanes 254
5 SUDSHEULING PrOJECES RESOUICESveeeriieeiiersiseeieisisetsise et sess st sas s es sttt s s es s 256
= Locking OF UNIOCKING PrOJECESc.viiuiuiiieisiicieise ettt bbbt 257
B WOrKING WIth DISCUSSIONSvvueiceicatitietsi ettt et bbb bbbttt 257

Note In Release 9.3, the name of the Program Base Class was changed to Projects and
Projects to Sourcing Projects. However the interface for the Projects Base Class is still
called IProgram in the SDK Guide and in Javadoc references.

About Projects and Projects Objects

You can use the project management features of Agile Product Portfolio Management (PPM) to
define a project and its associated elements such as activity schedules, deliverables, and
discussions. These capabilities enable you to determine the availability of the required resources,
assigning resources to tasks, identifying bottlenecks, and responding to over- and under-allocated
resource conditions. You can also create and reuse project templates.

The Projects object is used to schedule and execute projects. Each project, in addition to schedule
information, contains attachments, discussions and actions items, resources and roles, and history
and content of related activities. For management visibility, data is rolled up to higher levels by rules
and parent-child relationships.

The Agile API provides support for creating, loading, and working with Projects. The IProgram
interface represents all Projects objects, including programs, phases, tasks, and gates.

Similar to other Agile PLM business objects, the IProgram interface implements IRoutable,
which means it uses the same IRouteable.changeStatus () method to change a Projects’
Workflow status and to route it to other users. For more information, see Changing the Workflow
Status of an Object on page 223.

v9.3.1.1 239

SDK Developer Guide - Using Agile APIs

Differences in the Behavior of Projects Objects

The IProgram interface implements several interfaces commonly used by other Agile PLM
objects. However, it also provides the following distinct functionality that separates Projects objects
from other objects.

o The Projects object is a container of other underlying Projects objects, such as Phases, Tasks,
and Gates. The underlying Projects objects are related to the parent object, usually the
Projects, through the Schedule table.

o Projects have baselines that allow you to track changes in the schedule. Therefore, the
IProgram interface provides methods that let you create, get, or remove a baseline.

= Projects can be archived. If you archive the root Projects, the entire Projects tree is soft-deleted
from the system.

@ Projects can be locked or unlocked.

Creating Projects

Use the IAgileSession.createObject () method to create Projects. When you specify the
Projects parameters, you must specify the Projects subclass (for example, Program, phase, task, or
gate). For Programs, phases, and tasks, you must also specify following required Projects
attributes:

B General Info.Name

B General Info.Schedule Start Date
B General Info.Schedule End Date

B General Info.Duration Type

For gates, only two attributes are required, General Info.Name and General Info.Schedule
End Date.

The following example shows how to create new Projects and specify the required attributes.
Example: Creating Projects
try {

// Create a Map object to store parameters
Map params = new HashMap () ;

// Set Projects name
String name = "APOLLO PROJECTS";

// Set Projects start date
Date start = new Date() ;
start.setTime (1) ;

// Set Projects end date
Date end = new Date() ;
end.setTime (1 + 2*24*60*60%*1000) ;

240 Agile Product Lifecycle Management

Chapter 16: Creating and Managing Projects

// Set Projects duration type

IAttribute attr =
m_admin.getAgileClass (ProgramConstants.CLASS PROGRAM) .
getAttribute (ProgramConstants.ATT GENERAL INFO DURATION TYPE) ;

IAgilelList avail = attr.getAvailableValues() ;
avail.setSelection (new Object[] {"Fixed"});

// Initialize the params object
params.put (ProgramConstants.ATT GENERAL INFO NAME, name) ;

params.put (ProgramConstants.ATT GENERAL INFO SCHEDULE START DATE,
start) ;

params.put (ProgramConstants.ATT GENERAL INFO SCHEDULE END DATE, end);
params.put (ProgramConstants.ATT GENERAL INFO DURATION TYPE, avail);
// Create Projects

IProgram program =
(IProgram)m_session.createObject(ProgramConstants.CLASS_PROGRAM,
params) ;

} catch (APIException ex) {
System.out.println (ex) ;

}

Projects contain other types of activities, such as phases, tasks, and gates. A gate is a special
milestone—a task with an end date but no duration—that denotes the completion of a set of related
phases, tasks, or Projects. The following figure shows the hierarchy of Projects objects.

Figure 18: Program hierarchy

Program

Phase

Task

Task

Gate

You can use the IAgileSession.createObject () method to create phases, tasks, and gates
in the same way that you create other Projects objects. Once you create these different types of
activities, you can add them to the Schedule table of a Projects object. For more information, see
Scheduling Projects on page 249.

v9.3.1.1 241

SDK Developer Guide - Using Agile APIs

Adding Rules for PPM Objects

In PLM, any object that is assigned a lifecycle phase or a Workflow, can be added as a deliverable.
The only exceptions are Discussions, Users, and User groups.

Rules in PPM ensure an activity will not complete before the completion of the preceding activity as
set in the workflow, or lifecycle phase. For example, if you want to ensure the completion of an
activity before a Gate is opened, you can add that activity as a deliverable for the Gate to open. You
can even restrict one Gate from opening before another adding the prior Gate as a deliverable for
the subsequent Gate to open. For more information, refer to the Agile PLM Product Portfolio
Management User Guide.

The SDK supports this function with IProgram interface as shown in the following example.
Example: Setting rules for PPM objects

try{

//Get Program

IProgram pgm =

(IProgram) session.getObject
(ProgramConstants.CLASS_PROGRAM,"PGM00239");

//Get Object and add as relationship under Content tab
IChange eco = (IChange)session.getObject

(ChangeConstants.CLASS ECO, "C00060") ;
ITable table = pgm.getTable

(ProgramConstants.TABLE RELATIONSHIPS) ;
IRow row = table.createRow(eco) ;
//Get the Control object status
IStateful state = (IStateful)pgm;
IStatus[] statuses = state.getStates();
IStatus ctl status = null;
for (int i=0; i<statuses.length; i++)

if(statuses[i] .getName () .equals ("In Process"))
ctl status = statuses|[i];
break;

}

//Get the Affected object status

state = (IStateful)eco;

statuses = state.getStates();

IStatus aff status = null;

for (int i=0; i<statuses.length; i++){

if(statuses[i] .getName () .equals ("Submitted")) {

aff status = statuses|[i];
break;

}
}

//Add Rule

HashMap map = new HashMap () ;

map .put (CommonConstants.ATT RELATIONSHIPS RULE CONTROLOBJECT, pgm) ;

map .put (CommonConstants.ATT RELATIONSHIPS RULE AFFECTEDOBJECT, eco);
map .put (CommonConstants.ATT RELATIONSHIPS RULE CONTROLOBJECTSTATUS,

ctl status) ;

map .put (CommonConstants.ATT RELATIONSHIPS RULE AFFECTEDOBJECTSTATUS,
aff status) ;

242 Agile Product Lifecycle Management

Chapter 16: Creating and Managing Projects

row.setValue (CommonConstants.ATT RELATIONSHIPS RULE, map) ;
System.out.println (row.getCell

(CommonConstants.ATT RELATIONSHIPS RULE)) ;

}Jcatch (APIException ex) {
System.out.println (ex) ;
}

Loading Projects

To load Projects, use the IAgileSession.getObject () method. To uniquely identify the
Projects object, specify the value for the General Info.Number attribute. You can also load a
Projects object by searching for it by name, and then selecting it from the search results.

Note The IProgram.getName () method actually returns the value of the General
Info.Number attribute, not General Info.Name.

Example: Loading Projects
public IProgram loadProgram(String number) throws APIException (

IProgram program =
(IProgram)m session.getObject(I1Program.OBJECT_TYPE, number);

return program;

}

Note The News table for Projects is disabled by default. To enable it, log in to the Java Client
as an Administrator and make the News tab visible.

Adding "FileFolder" to Project's Content Tab

You can add FielFolder to the Content tab of a Project using the TProgram API. The following
example shows how to perform this task.
Example: Adding FileFolder to the Content tab of a Project
import java.io.File;
import java.net.MalformedURLException;
import java.net.URL;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;

import com.agile.api.*;
public class Sample {
public static void main(String[] args) {
try{
Sample sample = new Sample () ;
String url = "http://localhost:8888/web";

v9.3.1.1 243

http://localhost:8888/web

SDK Developer Guide - Using Agile APIs

String userName = "admin";
String password = "agile";

AgileSessionFactory instance =
AgileSessionFactory.getInstance (url) ;

HashMap params = new HashMap () ;
params.put (AgileSessionFactory.USERNAME, userName) ;
params.put (AgileSessionFactory.PASSWORD, password) ;

IAgileSession session =
instance.createSession (params) ;

IFileFolder ff = createFileFolder (session);
System.out.println(ff.getName()) ;

// Add file to Files table
addFile2FileFolder (session, £ff) ;

// Add filefolder to contents tab

sample.uploadFile (session, ff.getName()) ;
}catch (Throwable th)
th.printStackTrace () ;

/**
* Upload attachment to Contents tab of a Program
*
* @param session
* @throws APIException
*/
private void uploadFile(IAgileSession session,String foldname)
throws APIException

IProgram program = (IProgram)
session.getObject (IProgram.OBJECT TYPE, "PGM00041") ;
IFileFolder ff = (IFileFolder)

session.getObject (IFileFolder.OBJECT TYPE, foldname) ;
//Upload filefolder to Conents table

ITable table =
program.getTable (ProgramConstants.TABLE RELATIONSHIPS) ;

table.createRow (ff) ;

/**
* Upload attachment to FileFolder

* @param session
* @param foldername
* @throws APIException

*/

244 Agile Product Lifecycle Management

Chapter 16: Creating and Managing Projects

private static void addFile2FileFolder (IAgileSession session,
IFileFolder ff) throws APIException ({

ff.checkOut () ;

ITable table = ff.getTable(FileFolderConstants.TABLE FILES) ;
String path = "C:\\temp\\out3.txt";

File file = new File(path);

table.createRow (file) ;
ff.checkIn() ;
System.out.println ("Finish") ;

private static IFileFolder createFileFolder (IAgileSession session)
throws APIException {

IAgileClass objClass =
session.getAdminInstance () .getAgileClass (

FileFolderConstants.CLASS FILE FOLDER) ;
IAutoNumber autoNumber = objClass.getAutoNumberSources () [0];
IFileFolder obj = (IFileFolder)session.createObject (

FileFolderConstants.CLASS FILE FOLDER,
autoNumber) ;

return obj;

Using Projects Templates

Projects templates make it easy to define a new Projects object, activity, or task. A template is a
Projects with the General Info.Template attribute setto “Template”. You can use a template to
create a new Projects by loading it and then using the TProgram. saveAs () method.

This special version of the saveAs () method enables to use the SDK to:
o Create a new Projects from a template and specify the tables that you want copied over
o Change the owner of the Projects and the owner of the children

= Create a new Projects template by saving a Projects as a template

Creating New Projects Using Templates

You can use this special version of the saveas () method to specify the Projects tables that you
want to copy from the original Projects to the new Projects. You don’t need to specify all tables. The
General Info, Schedule, Dependencies - Dependent Upon, Dependencies - Required For, and
Workflow tables are copied automatically. The Discussion, News, and History tables cannot be
copied. Generally, you should copy Page Two, Page Three (if it's used), and the Team table, as
shown in the example below.

v9.3.1.1 245

SDK Developer Guide - Using Agile APIs

Example: Creating a new Projects from a template
try {
// Get the Projects template whose number is PGM00004

IProgram template =
(IProgram)m_session.getObject (IProgram.OBJECT TYPE, "PGM00004") ;

if (template != null) {
// Create a hash map of the program attributes to use for the new
program HashMap map = new HashMap (); String name = "Scorpio Program";

IAttribute att =
m_admin.getAgileClass (ProgramConstants.CLASS PROGRAM) .getAttribute(

ProgramConstants.ATT GENERAL INFO TEMPLATE) ;
IAgilelList templatelList = att.getAvailableValues() ;

// Note: Available values for the Template attribute are Active,
Proposed, and Template

templateList.setSelection(new Object[] {"Active"});
map.put (ProgramConstants.ATT GENERAL INFO NAME, name) ;

map.put (ProgramConstants.ATT GENERAL INFO SCHEDULE START DATE, new
Date()) ;

map.put (ProgramConstants.ATT GENERAL INFO TEMPLATE, templateList);

// Define the tables to copy to the new program from the template
Integer pagetwo = ProgramConstants.TABLE PAGETWO;

Integer pagethree = ProgramConstants.TABLE PAGETHREE;
Integer team = ProgramConstants.TABLE TEAM;
Object[] tables = new Object[]{pagetwo, pagethree, team};
// Save the template as a new program
IProgram program =
(IProgram) template.saveAs(ProgramConstants.CLASS PROGRAM,
tables, map);
}
} catch (APIException ex) {
System.out.println (ex) ;

}
Creating Projects and Changing Ownerships

When you create a Projects from a template using the saveas () API call, you can change the
ownership of the Projects and propagate the change to the children of the Projects. In SDK, the
exposed API is:

public IAgileObject saveAs (Object type, Object[] tablesToCopy,Object
params, boolean applyToChildren)

throws APIException;
This is done by specifying a value for both the ProgramConstants and the OWNER attributes. The

value for the OWNER attribute is required in order to change the Projects ownership. Set the
Boolean applyToChildren to true if you want to apply the OWNER value to all children

246 Agile Product Lifecycle Management

Chapter 16: Creating and Managing Projects

In the Ul, when you create a Projects from a template, you have the option to change ownership of
the Projects and applying the change to the children. In this situation, the SDK mirrors the Ul.
However, the original Projects must be a Template to create a Projects from a template via SDK's
saveAs () API.

Note In the SDK, a Projects is a template when the value of the General Info.Template
attribute in the original program is set to Template.

Example: Creating a Projects from a template, change owner, and propagate change

public IProgram saveTemplateAndSetOwner (IProgram template, String
userID, boolean applyToChildren) throws APIException
/* "template" is a program template
userID -- The "userID" of the user that
is specified as the owner of the Saved program object
applyToChildren -- true or false.
If "true" the "specified owner" will be the owner of the entire
program tree

If "false", the specified owner will be the owner of the Root Parent
object only
*/

HashMap map = new HashMap () ;

String newPgmName =
"PROG" + System.currentTimeMillis() ; // Generate a random name for
the Saved Program object

IUser user =
session.getObject (UserConstants.CLASS USER, userID) ;
map.put (ProgramConstants.ATT GENERAL INFO NAME, newPgmName) ;
map.put (ProgramConstants.ATT GENERAL INFO OWNER, User) ;
map .put (ProgramConstants.ATT GENERAL INFO SCHEDULE START DATE, new
Date()) ;

// Define the tables to copy from the template

// If you do not want any tables to be copied,

// specify "null" for the "tables" param

Integer pageTwo = ProgramConstants.TABLE PAGETWO ;
Integer pageThree = ProgramConstants.TABLE PAGETHREE ;
Integer team = ProgramConstants.TABLE TEAM ;

Object [] tables =
pageTwo, pageThree, team } ;

IProgram pgm =
(IProgram) root.saveAs (ProgramConstants.CLASS PROGRAM, tables, map,

applyToChildren) ;
System.out.println

("New Program Number = " + pgm.getName()) ;
System.out.println

("Owner Value = " +

pgm.getValue (ProgramConstants.ATT GENERAL INFO OWNER) .toString())
return pgm ;

}

v9.3.1.1 247

SDK Developer Guide - Using Agile APIs

Saving Projects as Templates

When you create a Projects, you can specify that it's a template by setting the value of the
Template attribute (ProgramConstants.ATT GENERAL INFO TEMPLATE) to “Template”. You
can only do this when you create a Projects or when you save it as a new Projects. Existing
Projects cannot be changed from the “Active” or “Proposed” state to “Template”.

The following example shows how to open a Projects object and save it as a template.
Example: Saving a Projects object as a template

try

// Get the program whose number is PGM00005

IProgram program =
(IProgram)m session.getObject (IProgram.OBJECT TYPE, "PGM0O00O05") ;

if (program != null) {

// Create a hash map of the program attributes to use for the new
program

HashMap map = new HashMap () ;
String name = "Rapid Development") ;

IAttribute att =
m_admin.getAgileClass (ProgramConstants.CLASS PROGRAM) .getAttribute (P
rogramConstants.ATT GENERAL INFO TEMPLATE) ;

IAgileList templatelList =
att.getAvailableValues () ;

// Note: Available values for the Template attribute
are Active, Proposed, and Template

templateList.setSelection(new Object[] {"Template"});
map.put (ProgramConstants.ATT GENERAL INFO NAME, name) ;
map.put (ProgramConstants.ATT GENERAL INFO SCHEDULE START DATE, new
Date());
map.put (ProgramConstants.ATT GENERAL INFO TEMPLATE, templateList);

//Define the tables to copy to the template

Integer pagetwo =
ProgramConstants.TABLE PAGETWO;

Integer pagethree =
ProgramConstants.TABLE PAGETHREE;

Integer team =
ProgramConstants.TABLE TEAM;

Object[] tables =
new Object [] {pagetwo, pagethree, team};

// Save the program as a template
IProgram program =
(IProgram) template.saveAs(ProgramConstants.CLASS PROGRAM,
tables, map);
}
} catch (APIException ex) {
System.out.println (ex) ;

248 Agile Product Lifecycle Management

Chapter 16: Creating and Managing Projects

Scheduling Projects

To schedule Projects, edit the Schedule table, which lets you add, edit, and remove schedule items.
To add a new row to the Schedule table, use the ITable.createRow () method and specify an
IProgram oObject for the parameter.
Example: Modifying the Schedule table
try {
// Define a row variable IRow row = null;
// Set the date format
DateFormat df = new SimpleDateFormat ("MM/dd/yy") ;

// Get a Projects
IProgram program =
(IProgram)m_session.getObject (ProgramConstants.CLASS PROGRAM,
"PGM00012") ;
if (program != null) {
// Get the Schedule table
ITable schedule =
program.getTable(ProgramConstants.TABLE SCHEDULE) ;

Iterator 1 = schedule.iterator() ;
// Find task T000452 and remove it
while (i.hasNext()) {

row = (IRow)i.next () ;
String num =
(String) row.getValue (ProgramConstants.ATT GENERAL INFO NUMBER) ;

if (num.equals("T000452")) {
schedule.removeRow(row) ;
break;

}

// Add a phase

HashMap info = new HashMap () ;

info.put (ProgramConstants.ATT GENERAL INFO NAME, "Specifications
phase") ;

info.put (ProgramConstants.ATT GENERAL INFO SCHEDULE START DATE,
df .parse("06/01/05")) ;

info.put (ProgramConstants.ATT GENERAL INFO_ SCHEDULE END DATE,
df .parse("06/10/05")) ;

IAttribute attr =
m_admin.getAgileClass (ProgramConstants.CLASS PHASE) .

getAttribute (ProgramConstants.ATT GENERAL INFO DURATION TYPE) ;
IAgilelList list = attr.getAvailableValues() ;
list.setSelection(new Object[] {"Fixed"});
info.put (ProgramConstants.ATT GENERAL INFO DURATION TYPE, list);
IProgram phase =
(IProgram)m session.createObject (ProgramConstants.CLASS PHASE,
info) ;
row = schedule.createRow(phase);

// Add a task info = null; list = null;
info.put (ProgramConstants.ATT GENERAL INFO NAME, "Write
specifications") ;
info.put (ProgramConstants.ATT GENERAL INFO NUMBER, "T000533");

v9.3.1.1 249

SDK Developer Guide - Using Agile APIs

info.put (ProgramConstants.ATT GENERAL INFO SCHEDULE START DATE,
df .parse("06/01/05")) ;
info.put (ProgramConstants.ATT_GENERAL_ INFO_SCHEDULE END_DATE,
df .parse("06/05/05")) ;
attr = m_admin.getAgileClass (ProgramConstants.CLASS TASK) .
getAttribute (ProgramConstants.ATT GENERAL INFO DURATION_TYPE) ;
list = attr.getAvailableValues() ;
list.setSelection(new Object[] {"Fixed"});
info.put (ProgramConstants.ATT GENERAL INFO DURATION TYPE, list);
IProgram task =
(IProgram)m_ session.createObject (ProgramConstants.CLASS TASK, info);
row = schedule.createRow(task);
// Add a gate info = null;
info.put (ProgramConstants.ATT GENERAL INFO NAME, "Specifications
complete") ;
info.put (ProgramConstants.ATT GENERAL INFO SCHEDULE END DATE,
df .parse("06/10/05")) ;
IProgram gate =
(IProgram)m session.createObject (ProgramConstants.CLASS GATE, info);
row = schedule.createRow(gate);

}

} catch (APIException ex) {
System.out.println (ex) ;

}

Once a Projects' schedule is defined, you can reschedule it using the IProgram. reschedule ()
method. The reschedule () method takes a couple of parameters, the IProgram.RESCHEDULE
constant and the new value for that schedule option. Here are the list of IProgram.RESCHEDULE
constants you can use:

B STARTDATE - This moves the scheduled start date to the specified date.
o ENDDATE - This moves the scheduled end date to the specified date.
o BACKWARDDAYS — This moves the schedule backward by the specified number of days.

o FORWARDDAYS — This moves the schedule forward by the specified number of days.
Example: Rescheduling Projects

try {
// Get a Projects
IProgram program = (IProgram)m session.getObject (IProgram.OBJECT TYPE,
"PGMO00012") ;
if (program != null) {
// Define new start and end dates String startDate = "02/01/2005
GMT"; String endDate = "06/01/2005 GMT";

SimpleDateFormat df = new SimpleDateFormat ("MM/dd/yyyy z");
Date start = df.parse(startDate) ;
Date end = df.parse(endDate) ;

// Change the schedule start date
program. reschedule(1Program.RESCHEDULE . STARTDATE, start);
// Change the schedule end date
program. reschedule(1Program.RESCHEDULE .ENDDATE, end);
// Move the schedule backward three days

250 Agile Product Lifecycle Management

Chapter 16: Creating and Managing Projects

program. reschedule(1Program.RESCHEDULE .BACKWARDDAYS, new Integer(3d));
// Move the schedule forward two days

program. reschedule(1Program.RESCHEDULE . FORWARDDAYS, new
Integer(2));

}

} catch (Exception ex) {
System.out.println (ex) ;

}

Setting Start and End Timestamps for PPM Date
Attributes

Start and End timestamps are automatically set for PPM Date attributes when the end user creates
or edits a scheduled PPM task. You can schedule PPM tasks in Working Time, which is
configurable in the agile.properties file. When creating or editing PPM objects, the end user
must specify a valid date for Working Time within the Start and End values set in
agile.properties file for the following PPM Date attributes:

o Schedule
o Estimated

o Actual

Note If the specified time for the above Date attributes is not within the Start and End values
setin agile.properties, PPM will not complete the end user's operation. For
example, if the Start and End values in agile.properties are 8:00 AM and 6:00 PM
and those specified by the user are different, PPM will not complete the applicable
operation.

The environment variable (flag) called ppm.date . appendtime automatically sets the appropriate
time for PPM's Schedule, Estimated, or Actual dates before sending these values to the Agile
server to update the Date attribute. When the flag is turned on, the existing time in the date value
for Schedule, Estimated, or Actual dates is ignored and is automatically set according to the
following rules:

o [f the attribute is Schedule Start Date, Estimated Start Date or Actual Start Date, then the start
working time of the day set in agile.properties is appended. For example, if the working
time in agile.properties is configured as 8:00:00-12:00:00, 13:00:00-17:00:00, then the
start working time for the day is 8 AM. The time portion in the date value for start date attributes
is setto 8 AM

o If the attribute is Schedule End Date, Estimated End Date or Actual End Date, then the end
working time of the day set in agile.properties is appended. For example, if the working
time in agile.properties is configured as 8:00:00-12:00:00, 13:00:00-17:00:00, then the
end working time for the day is 5 PM. The time portion in the date value for end date attributes
is setto 5 PM.

By default, the value of the ppm.date.appendtime flag is set to True. This is to ensure backward
compatibility of PPM SDK so that SDK Clients compiled in earlier releases can execute without

v9.3.1.1 251

SDK Developer Guide - Using Agile APIs

recompilation.
Example: To set timestamp for PPM date attributes in SDK Client:

You have the following options:

o Setthe ppm.date.appendtime flag to False using syntax such as java -
Dppm.date.appendtime=false <SDK Program Name>

OR,

o Setan environment variable called ppm.date.appendtime and execute the SDK program.

Note This is a global setting and the setting will apply to all SDK programs that are running on
the given platform.

Working with Projects Baselines

Projects baselines allow you to compare actual progress with your original plans. When you create
a baseline, a snapshot of your Projects' schedule is preserved. The original estimates contained in
the baseline are permanent reference points against which you can compare the updated task
structure, schedule, and actual dates.

Baselines can be created only for the root Projects object. You can save multiple baselines, and
retrieve them later for comparison. The IProgram interface provides the following methods for
creating, retrieving, and removing baselines:

8 createBaseline(java.lang.Object)
B getBaseline()

B getBaselines()

B removeBaseline(java.lang.Object)

B selectBaseline(java.lang.Object)
Example: Creating and retrieving baselines
try {
// Get a Projects

IProgram program =
(IProgram)m session.getObject (IProgram.OBJECT TYPE, "PGM00012") ;

if (program != null) {
// Create a baseline
Object baseline = program.createBaseline("august 8 baseline");
// Get all baselines
Map map = program.getBaselines();

// Get the first baseline

Set keys = map.keySet () ;
Object[] objs = keys.toArray();
baseline = map.get (objs[0]) ;

252 Agile Product Lifecycle Management

Chapter 16: Creating and Managing Projects

// Remove the first baseline
program. removeBaseline(baseline);

// Get all baselines again
map = program.getBaselines();

// Select the first baseline
If (map.size() > 0) {
keys = map.keySet () ;
objs = keys.toArray() ;
baseline = map.get (objs[0]) ;
program.selectBaseline(baseline);

}
}

} catch (APIException ex) {
System.out.println (ex) ;

}

Delegating Ownership of a Projects to Another User

The owner or manager of a Projects object can assign the ownership of the Projects to other users
by delegating it. The delegated user receives a request that he can accept or decline. If he accepts,
the delegated user becomes owner of the task. A delegated owner is automatically given the
Projects Manager role for the delegated Projects object.

To delegate ownership of a Projects, use the IProgram.delegateOwnership () method. When
you delegate ownership of a Projects, you automatically update the Delegated Owner field, which is
read-only. The delegateOwnership () method lets you specify whether delegated ownership
also applies to the Projects’ children.

Example: Delegating ownership of a Projects object
try {

// Get the task whose number is T00012

IProgram task = (IProgram)m session.getObject (IProgram.OBJECT TYPE,
"T00012") ;
if (task != null) {
// Get a user
IUser userl = (IUser)m session.getObject (UserConstants.CLASS USER,
"kkieslowski") ;
if (userl != null) {

// Delegate the task to the user
task.delegateOwnership(userl, false);

}
}

} catch (APIException ex) {
System.out.println (ex) ;

}

v9.3.1.1 253

SDK Developer Guide - Using Agile APIs

Adding Resources to a Projects Team

The Team table lets you manage the team member list for a Projects object. You can add or
remove team members, change team members’ roles, and change their allocation. You must have
the appropriate privileges to modify a Projects’ Team table.

When you add a resource to the Team table, you specify what roles the user or user group has for
that Projects object. The roles available are not the complete set of Agile PLM roles; they are roles
specifically related to Projects Execution functionality. Here is the list of roles you can assign to
team members:

o Executive

@ Change Analyst

= Program Team Member
= Program Manager

@ Resource Pool Owner

= Program Administrator
For a description of each of these roles, refer to the Agile PLM Administrator Guide.

The Team table has two attributes that require special mention:
o ProgramConstants.ATT TEAM NAME

B ProgramConstants.ATT TEAM ROLES

These are SingleList and MultiList attributes, respectively. To get the available values for these
attributes, use ITable.getAvailablevValues () instead of
IAttribute.getAvailableValues (). Otherwise, the IAgileList object returned from the
method may contain invalid list values.

Example: Adding resources to a Projects’ team
try {
// Get users

IUser userl = (IUser)session.getObject (UserConstants.CLASS USER,
"daveo") ;

IUser user2 = (IUser)session.getObject (UserConstants.CLASS USER,
"yvonnec") ;

IUser user3 = (IUser)session.getObject (UserConstants.CLASS USER,
"albertl") ;

IUser user4 = (IUser)session.getObject (UserConstants.CLASS USER,
"brians") ;

// Get a resource pool (user group)

IUserGroup pool =
(IUserGroup) session.getObject (IUserGroup.OBJECT TYPE, "Development") ;

// Add all four users to the resource pool

ITable usersTable =
pool.getTable (UserGroupConstants.TABLE USERS) ;

usersTable.createRow (userl) ;

254 Agile Product Lifecycle Management

Chapter 16: Creating and Managing Projects

usersTable.createRow (user2) ;
usersTable.createRow (userl) ;
usersTable.createRow (user4d) ;

// Get a Projects

IProgram program =
(IProgram) session.getObject (IProgram.OBJECT TYPE, "PGM02423");

if (program != null) {

// Get the Team table of the program

ITable teamTable = program.getTable (ProgramConstants.TABLE TEAM) ;
// Get Roles attribute values (use ITable.getAvailableValues)

IAgileList attrRolesValues =
teamTable.getAvailableValues (ProgramConstants.ATT_TEAM_ROLES) ;

// Create a hash map to hold values for row attributes
Map map = new HashMap () ;
// Add the first user to the team

attrRolesValues.setSelection(new Object [] {"Change
Analyst", "Projects Manager"}) ;

map.put (ProgramConstants.ATT TEAM NAME, userl) ;

map .put (ProgramConstants.ATT TEAM ROLES, attrRolesValues) ;
IRow rowl = teamTable.createRow (map) ;

// Add the second user to the team

attrRolesValues.setSelection (new Object []{"Projects
Administrator"}) ;

map .put (ProgramConstants.ATT TEAM NAME, user2);
IRow row2 = teamTable.createRow (map) ;

// Add the resource pool to the team
attrRolesValues.setSelection(new Object [] {"Projects Team Member"}) ;
map.put (ProgramConstants.ATT TEAM NAME, pool) ;

IRow row3 = teamTable.createRow (map) ;

}

In Agile Web Client, when you add a resource pool to the Team table, you can replace the pool with
one or more resources contained within it. In other words, instead of assigning the entire resource
pool, you can assign select users from the pool. The IProgram.assignUsersFromPool ()
method reproduces this functionality. To use assignUsersFromPool (), you must specify a user
group that has already been added to the Projects’ Team table.
Example: Assigning users from aresource pool

public void replaceUserGroupWithUser (IProgram program) throws Exception

// Get the Team table

ITable teamTable = program.getTable (ProgramConstants.TABLE TEAM) ;
// Get a table iterator

Iterator it = teamTable.iterator() ;

// Find a user group and replace it with one of its members, kwong
while (it .hasNext ()) {
IRow row = (IRow)it.next();

v9.3.1.1 255

SDK Developer Guide - Using Agile APIs

IDataObject object = row.getReferent () ;
if (object instanceof IUserGroup)
IUserGroup ug = (IUserGroup)object;
ITable users = ug.getTable (UserGroupConstants.TABLE USERS) ;
Iterator ref it = users.getReferentIterator();
while (ref it.hasNext ()) {

IUser user = (IUser)ref it.next();

if (user.getName () .equals ("kwong")) {
program.assignuUserskFromPool (new lUser[]{user}, ug, true);
break;

Substituting Projects Resources

A resource’s availability can frequently change due to overloading, reassignments, vacation, and
illness. You can substitute an existing resource for another resource. The current resource’s role is
assigned to the substituted resource, but only for that Projects. To substitute Projects resources,
use the IProgram. substituteResource () method

When you substitute resources, you can specify users as well as user groups. You can also specify
whether the resource assignment applies to the Projects’ children.

Example: Substituting Projects resources
try {
// Get a Projects
IProgram program =
(IProgram)m session.getObject (IProgram.OBJECT TYPE, "PGM00012") ;
if (program != null) {
// Get users
IUser ul =
(IUser)m session.getObject (UserConstants.CLASS USER, "akurosawa") ;
IUser u2 =
(IUser)m session.getObject (UserConstants.CLASS USER, '"creed");
IUser u3 =
(IUser)m session.getObject (UserConstants.CLASS USER, "dlean");
IUser u4 =
(IUser)m session.getObject (UserConstants.CLASS USER, "jford");
// Get a user group
IUserGroup ug =
(IUserGroup)m_session.getObject (IUserGroup.OBJECT TYPE,

"Directors") ;
// Substitute ul with u3 and do not apply to children
program.substituteResource (ul, u3, false);
// Substitute u2 with u4 and apply to children
program.substituteResource (u2, u4, true);

256 Agile Product Lifecycle Management

Chapter 16: Creating and Managing Projects

// Substituete u4 with a user group, and apply to children
program.substituteResource (u4, ug, true);

}

} catch (APIException ex) {
System.out.println (ex) ;
}

Locking or Unlocking Projects

The owner of Projects can lock or unlock the Projects object. When a Projects is locked, its
schedule cannot be modified. To lock or unlock a Projects, use the IProgram. setLock ()
method.

Note Projects are automatically locked when you use the Gantt Chart or the Microsoft Project
integration functionality in Agile Web Client.

Example: Locking Projects

try {
// Get a Program
IProgram program =
(IProgram)m session.getObject (IProgram.OBJECT TYPE, "PGM00012") ;
if (program != null) {
// Lock it
program.setLock (true) ;

}

} catch (APIException ex) {
System.out.println (ex) ;

}

Working with Discussions

During the course of a project, issues arise that require users to collaborate and exchange
information. Agile PLM provides threaded discussion functionality that allows team members to
reply with their feedback, providing a record of their thoughts and ideas. Discussions are
asynchronous; that is, they do not require a simultaneous connection from all discussion
participants. People can reply to any thread of the discussion independently. To close issues, action
items can be assigned to team resources. The Discussion object is used to manage both threaded
discussions and the action items related to them.

Discussion objects, unlike Projects, are not routable objects. Therefore, discussions do not have
workflows associated with them.

Note The Action Items, Cover Page, and Replies tables appear on the Discussion tab in Agile
PLM clients. The Page Two table appears on the Details tab in Agile PLM clients. The
Where Used table is not supported, its functionality is replaced by General
Info.Related To field.

v9.3.1.1 257

SDK Developer Guide - Using Agile APIs

Creating a Discussion

To create a discussion, use the IAgileSession.createObject () method. When you specify
discussion parameters, you must specify the discussion subclass and the following required
discussion attributes:

o Cover Page.Number

= Cover Page.Subject

In addition, you must also specify data for the Cover Page.Notify List and Cover Page.Message attributes.
Otherwise, the discussion does not have a Notification list, or a message that users can respond to.

The following example shows how to create a new discussion and add it to the Discussion table of a
Projects.

Example: Creating a discussion

try {
// Create a hash map variable
Map map = new HashMap () ;

// Set the Number field

IAgileClass discussionClass =
m_session.getAdminInstance () .getAgileClass (

DiscussionConstants.CLASS DISCUSSION) ;

String number =
discussionClass.getAutoNumberSources () [0] .getNextNumber () ;

// Set the Subject field
String subject = "Packaging issues";

// Make the Message field visible

IAttribute attr =
discussionClass.getAttribute (DiscussionConstants.ATT COVER_PAGE MESSAGE
)

IProperty propVisible =
attr.getProperty (PropertyConstants.PROP_VISIBLE) ;

IAgileList list = propVisible.getAvailableValues() ;
list.setSelection(new Object[] { "Yes" });
// Set the Message field

String message = "We still have problems with the sleeves and
inserts." +

"Let's resolve these things at the team meeting on
Friday.";
// Set the Notify List field
IUser userl = m_session.getCurrentUser() ;
IUser user2 = (IUser)m session.getObject (UserConstants.CLASS USER,
"jdassin") ;
attr =

discussionClass.getAttribute (DiscussionConstants.ATT COVER PAGE NOTIFY
LIST) ;

list = attr.getAvailablevValues() ;

258 Agile Product Lifecycle Management

Chapter 16: Creating and Managing Projects

list.setSelection(new Object[] {userl, user2});

// Put the values into the hash map

map.put (DiscussionConstants.ATT COVER PAGE NUMBER, number) ;

map.put (DiscussionConstants.ATT COVER PAGE SUBJECT, subject);

map.put (DiscussionConstants.ATT COVER PAGE MESSAGE, message) ;

map.put (DiscussionConstants.ATT COVER PAGE NOTIFY LIST, list);

// Create a Discussion object

IDiscussion discussion = (IDiscussion)m session.createObject(
DiscussionConstants.CLASS DISCUSSION, map);

// Get a Projects

IProgram program =
(IProgram)m_session.getObject (IProgram.OBJECT TYPE, "PGM00012") ;

if (program != null) {
// Get the Discussion table

ITable discTable =
program.getTable(ProgramConstants.TABLE DISCUSSION);

// Add the new discussion to the table
discTable.createRow(discussion);

} catch (APIException ex) {
System.out.println (ex) ;

}
Replying to a Discussion

Team members or notified users—that is, users listed in the Cover Page.Notified List field of a
discussion—can reply to discussions. When you reply to a discussion, you create another nested
table in the Replies table.
Example: Replying to a discussion
private void replyToDiscussion() throws Exception (

Iterator it;

IDiscussion discussion;

// Get a Projects

IProgram program =
(IProgram)m session.getObject (IProgram.OBJECT TYPE, "PGM00012") ;

// Get the Discussion table

ITable discTable =
program.getTable (ProgramConstants.TABLE DISCUSSION) ;

// Get the first Discussion listed
if (discTable.size() !=0) {
it = discTable.iterator() ;
if (it.hasNext()) {
IRow row = (IRow)it.next();
discussion = (IDiscussion)row.getReferent () ;

v9.3.1.1 259

SDK Developer Guide - Using Agile APIs

}

// Get the Replies table

ITable repliesTable =
discussion.getTable (DiscussionConstants.TABLE REPLIES) ;

// Iterate to the only row of the Replies table and send a reply it
= repliesTable.iterator() ;

if (it.hasNext()) {
IRow row = (IRow)it.next();
IMessage message = (IMessage)row;

HashMap response = new HashMap () ;

// Set the Subject field (use the same Subject as the parent)

response.put (MessageConstants.ATT COVERPAGE SUBJECT,
row.getValue (DiscussionConstants.ATT REPLIES SUBJECT)) ;

// Make the Message field visible

IAgileClass discussionClass =
m_session.getAdminInstance () .getAgileClass (DiscussionConstants.CLASS
_DISCUSSION) ;

IAttribute attr =
discussionClass.getAttribute (DiscussionConstants.ATT COVER PAGE MESS
AGE) ;

IProperty propVisible =
attr.getProperty (PropertyConstants.PROP_VISIBLE) ;

IAgileList list =
propVisible.getAvailableValues () ;

list.setSelection(new Object[] { "Yes" });
// Set the Message field

response.put (MessageConstants.ATT COVERPAGE MESSAGE,
"The spec needs to be updated to reflect the latest decisions.");

// Send a reply
message.reply(response);

}
}

The previous example showed how to reply to the root discussion. But what if a discussion has
several replies and you want to reply to the latest one? That is a little more complicated, and
requires further understanding of the Replies table.

The Replies table of a discussion is different from other Agile PLM tables. It contains only one row,
even if there are multiple replies. If the discussion has multiple replies, they are contained within a
series of nested tables. To select the latest reply, expand the Replies table to its last nested table.
The following figure shows an expanded Replies table in Agile Web Client.

Figure 19: Expanded Replies table
' Subject | Creator

___|¥ stress testing Casszin, Jules [jdassin)
] RE: Stress testing Hitchecock, alfred [ahitchecock)
R = RE: Stress testing Reed, Carol (creed)
] =l RE: Stress testing Hustan, John [jhuston)
RE: Stress testing Casszin, Jules [jdassin)

260 Agile Product Lifecycle Management

Chapter 16: Creating and Managing Projects

You can use a recursive method (one that calls itself) to expand all levels of the Replies table, as
shown in the following example. Subsequent levels of the Replies table are obtained by getting the
value of the Child Table attribute (DiscussionConstants.ATT REPLIES CHILD TABLE).

Example: How to expand the Replies table
// Read the Replies table

public void readRepliesTable (IDiscussion discussion) throws Exception {
ITable replies =
discussion.getTable (DiscussionConstants.TABLE REPLIES) ;
browseReplies (0, replies);

}

// Recursively browse through all levels of the Replies table
void browseReplies (int indent, ITable replies) throws Exception ({

Iterator i = replies.iterator();
while (i.hasNext()) {
IRow row = (IRow) i.next();
System.out.print (indent (indent*4)) ;
readRow (row) ;
System.out.println() ;
ITable followup =
(ITable) row.getValue (DiscussionConstants.ATT REPLIES CHILD TABLE) ;
browseReplies (indent + 1, followup) ;

}
}
// Read each cell in the row and print the attribute name and value
static protected void readRow (IRow row) throws Exception (
ICell[] cells = row.getCells();
for (int j = 0; j < cells.length; ++3j) {
Object value = cells[j].getValue() ;

System.out.print ("\t" + cells[j].getAttribute () .getName() + "="+
value) ;

}
}

// Indent text

private String indent (int level) {
if (level <= 0) {

return "";

char c[] = new char[level*2];
Arrays.fill(c, ' ');
return new String(c);

}
Joining a Discussion

Agile Web Client allows users to join a discussion by clicking the Discussion tab of a Projects, and
then clicking the Join button. When you join a discussion, your username is added to the Notify List
field of the Discussion object. To join a discussion using the Agile API, simply add yourself to the
Notify List field. You can join a discussion only if you are a team member of the Projects.

v9.3.1.1 261

SDK Developer Guide - Using Agile APIs

Note If you are not on the Notify List of a Discussion object, you cannot read the replies.
However, anyone listed on the Team table of a Projects can join a discussion associated
with that Projects.

Example: Joining a discussion
try {
// Get a Projects

IProgram program =
(IProgram)m_ session.getObject (ProgramConstants.CLASS PROGRAM,
"PGM00012") ;
if (program != null) {
// Get the Discussion table

ITable discTable =
program.getTable (ProgramConstants.TABLE DISCUSSION) ;

// Get the first discussion

TIRow row =
(IRow)discTable.iterator () .next () ;

IDiscussion discussion =
(IDiscussion)row.getReferent () ;

// Add yourself and another user to the Notify List field

IUser userl =
m_session.getCurrentUser () ;

IUser user2 =
(IUser)m session.getObject (UserConstants.CLASS USER, "owelles");

ICell cell =
discussion.getCell(DiscussionConstants.ATT_COVER _PAGE NOTIFY_LIST);

IAgileList list =
(IAgileList)cell.getAvailableValues();
list.setSelection(new Object[] {userl, user2});

}
} catch (APIException ex) {
System.out.println (ex) ;

}
Creating an Action ltem

Action items can be created as part of a Discussion object. If a discussion raises an issue that
requires someone to perform an action, you can assign that action to another user. Action items
have a subject, status, due date, and an assigned user. When you create an action item, it appears
in the Notifications & Requests Inbox of the assigned user.

To create an action item, use the ITable.createRow () method to add a row to the Action Items
table of a Projects object. Make sure the map object used to initialize the row contains parameters
for the Subject, Assigned To, and Due Date fields.
Example: Creating an action item
private void replyToDiscussion() throws Exception (
// Get a Projects

IProgram program =
(IProgram)m_ session.getObject (IProgram.OBJECT TYPE, "PGM00012") ;

if (program != null) {

262 Agile Product Lifecycle Management

Chapter 16: Creating and Managing Projects

// Create a hash map for Action Item parameters

HashMap map = new HashMap () ;

// Set the Subject field

String subj = "Update packaging requirements';

map .put (ProgramConstants.ATT ACTION ITEMS SUBJECT, subj) ;

// Set the Assigned To field

IUser userl = (IUser)m session.getObject (UserConstants.CLASS USER,

"akurosawa') ;

IAttribute attr = m session.getAdminInstance() .getAgileClass (
ProgramConstants.CLASS PROGRAM) .getAttribute (
ProgramConstants.ATT ACTION ITEMS ASSIGNED_ TO) ;

IAgilelList list = attr.getAvailableValues() ;

list.setSelection (new Object[] {userl});

map .put (ProgramConstants.ATT ACTION ITEMS ASSIGNED TO, list);

// Set the Due Date field

DateFormat df = new SimpleDateFormat ("MM/dd/yy") ;

map . put (ProgramConstants.ATT ACTION ITEMS DUE DATE,

df .parse("03/30/05")) ;

// Get the Action Items table

Table table = program.getTable(ProgramConstants.TABLE ACTIONITEMS);
// Add the new Action Item to table

table.createRow(map);

}

} catch (APIException ex) {
System.out.println (ex) ;
}

v9.3.1.1 263

Chapter 17
Working with Product Cost Management

This chapter includes the following:

OVBIVIBW ...t s
WOrKING With PrICE ODJECEScvevieeiirieieisceisie ettt
MANAGING PIICING ...t vveveeseieiieisteeee ettt s bbbt s bbbt
Working With SUPPIIEFSceevreereerieirreieienn,

Working with Sourcing Projects

Overview

The Product Sourcing module of the Agile PLM supports, enhances, and simplifies the handling of
all product cost-related data throughout the product lifecycle. This enables you to effectively
manage and manipulate Sourcing content, collaborate with suppliers to establish new Sourcing
content, and analyze the data. Product Sourcing supports the following functions:

o Create Sourcing Projects

@ Gather and prepare product content

o Leverage pricing contracts and history

o Create RFQs

= Manage supplier RFQ responses and negotiate pricing (Not supported by PCM SDK)
= Conduct Sourcing Projects analysis

The Agile API supports the following Product Sourcing objects:

B IChange - Thisis interface for the Change class, which includes Price Change Orders
(PCOs).

B IPrice - Thisis interface for the Price class, which handles both published prices and
historical prices.

B IProject — Thisis interface for the Sourcing Projects class, which is the container used
for product Sourcing data.

B IRequestForQuote — Thisis interface for the RequestForQuote class, which represents
an RFQ for a Sourcing Projects.

B ISupplier - Thisis interface for the Supplier class.

Except for the ISupplierResponse object, the Agile API allows you to read and modify all
Product Sourcing objects. The following table lists the create, read, and modify rights for Product
Sourcing objects.

v9.3.1.1 265

SDK Developer Guide - Using Agile APIs

Object Create Read Modify
IChange (including PCO) Ves Ves Ves
IPrice Yes Yes Yes
IPI‘O] ect Yes Yes Yes
IRequestForQuote Ves Ves Ves
I Supp 1 i er Yes Yes Yes

Working with Price Objects

Agile PLM’s price management solution replaces inefficient manual systems, where prices are often
stored in files, spreadsheets, or databases in disparate locations. The Agile PLM system allows you
to create and centrally manage prices and terms for items and manufacturer parts.

There are two out-of-the-box Price classes provided with the system:

u]

Historical Quotes — This is a historical Quote object that contains price quotes from previous
Sourcing projects or legacy data.

Published Prices — This is a historical Published Price that contains published prices or contract
prices on current items and manufacturer parts.

These are the basic steps used to define pricing for an item or manufacturer part:

1.

Users with the appropriate role can create a new Price object, specifying the Number,
Description, Item or Manufacturer Part, Supplier, Site, and Customer.

After creating a Price object, users can build out a price/terms matrix for each associated item
or manufacturer part. The price and terms matrix includes Effectivity Dates, Quantity, Price,
and Cancellation Windows.

The Price object is submitted and goes through a Workflow approval process. Other users can
approve or reject the object.

Users with the appropriate role can create a Price Change Order (PCO) to modify a Price
object that has been released. The updated Price object is again submitted for approval.

Managing Pricing

Agile PLM’s price management solution replaces inefficient manual systems, where prices are often
stored in files, spreadsheets, or databases in disparate locations. The Agile PLM system allows you
to create and centrally manage prices and terms for items and manufacturer parts.

266

Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

There are two out-of-the-box Price classes provided with the system:

@ Historical Quotes — This is a historical Quote object that contains price quotes from previous
Sourcing projects or legacy data.

o Published Prices — This is a historical Published Price that contains published prices or contract
prices on current items and manufacturer parts.

These are the basic steps used to define pricing for an item or manufacturer part:

1. Users with the appropriate role can create a new Price object, specifying the Number,
Description, Item or Manufacturer Part, Supplier, Site, and Customer.

2. After creating a Price object, users can build out a price/terms matrix for each associated item
or manufacturer part. The price and terms matrix includes Effectivity Dates, Quantity, Price,
and Cancellation Windows.

3. The Price object is submitted and goes through a Workflow approval process. Other users can
approve or reject the object.

4. Users with the appropriate role can create a Price Change Order (PCO) to modify a Price
object that has been released. The updated Price object is again submitted for approval.

Creating a Price Object

There are several steps to create a Price object. First, specify the object class and the unique
identifying attributes, and then use IAgileSession.createObject () to return the new Price
object.

Price objects are more complex than other Agile API objects because they have several key
attributes that must be specified. Most other Agile API objects have only one key object, such as the
object’s number. With a Price object, you must specify a number, customer, item or manufacturer
part, revision (for items), Program, site, and supplier. If any one of these attributes is missing, an
exception will be thrown and the Price object won't be created.

Note If you are not dealing with site-specific information, specify the Global site for the
Manufacturing Site attribute.

After you create a Price object, you can further define it by setting values for Cover Page, Page
Two, and Page Three fields. To define prices and terms for items and manufacturer parts, add rows
to the Price Lines table. If there are files or documents to attach, add them to the Attachments table.

Defaults

To create a price with Program==A11 and Customer==Al1l, you do not need to pass values for
PriceConstants.ATT GENERAL INFORMATION CUSTOMER and

PriceConstants.ATT GENERAL INFORMATION Program during price creation. By default, the
price will be created with Progam==211 and Customer==A11.

v9.3.1.1 267

SDK Developer Guide - Using Agile APIs

Specifying ltem Revision

When you specify the item revision during price creation, you need to pass the change number,
instead of the revision number.

Example: Specifying Item Revision by Passing the Change Number
//Pass the change number

params.put (Priceconstants.ATT_GENERAL_INFORMATION_ITEM_REV, "'CO-
35884") ;

//Instead of the revision number
params.put (PriceConstants.ATT GENERAL INFORMATION ITEM REV, "B")

Creating a Published Price

The following example shows how to create a published price.
Example: Creating a published price

public void createPublishedPrice (ICustomer customer, ISupplier
supplier) throws Exception ({
HashMap params = new HashMap () ;

IAgileClass cls =
m_admin.getAgileClass (PriceConstants.CLASS PUBLISHED PRICE) ;

TAutoNumber an =

cls.getAutoNumberSources () [0];

params.put (PriceConstants.ATT GENERAL INFORMATION NUMBER, an);

params.put (PriceConstants.ATT GENERAL INFORMATION CUSTOMER,

customer) ;

params.put (PriceConstants.ATT GENERAL INFORMATION ITEM NUMBER,

"1000-02") ;

params.put (PriceConstants.ATT GENERAL INFORMATION ITEM REV, "CO-

35884") ;

params.put (PriceConstants.ATT GENERAL INFORMATION PROGRAM,

"PROGRAMO0023") ;

params.put (PriceConstants.ATT GENERAL INFORMATION MANUFACTURING SITE
"San Jose") ;

params.put (PriceConstants.ATT_ GENERAL INFORMATION SUPPLIER,

supplier) ;

IPrice price = (IPrice)m _session.createObject(cls, params);

}
Loading a Price Object

To load a Price object, use the TaAgileSession.getObject () method. To uniquely identify a
Price object, specify the value for the Title Block | Number attribute.

Example: Loading a Price object

public IPrice getPrice() throws Exception ({
IPrice price = (IPrice)m session.getObject (IPrice.OBJECT TYPE,
"PRICE10008") ;

return price;

}

268 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

For a list of Price object tables, refer to the Javadoc generated HTML files that document the SDK
code. You can find them in the HTML folder in SDK_samples (ZIP file). To access this file, see the
Note in Client-Side Components on page 2.

Adding Price Lines

The Price Lines table of a Price object is where you define the prices and terms for the related item
or manufacturer part. When you add a row to the Price Lines table, you must initialize the row with
values. At a minimum, you must specify values for the following attributes:

o ATT PRICE LINES SHIP FROM

o ATT PRICE LINES SHIP TO

o ATT PRICE LINES PRICE EFFECTIVE FROM DATE
o ATT PRICE LINES PRICE EFFECTIVE TO DATE

o ATT PRICE_LINES QTY

If you fail to specify a value for one of these attributes, the Price Lines row won't be created.
Example: Adding price lines
public void addPricelLines (IPrice price) throws Exception
DateFormat df = new SimpleDateFormat ("MM/dd/yy") ;
IAgileClass cls = price.getAgileClass() ;
ITable table = price.getTable (PriceConstants.TABLE PRICELINES) ;
IAttribute attr = null;
IAgileList listvalues = null;
HashMap params = new HashMap () ;

//Set Ship-To Location (List field)

attr = cls.getAttribute (PriceConstants.ATT PRICE LINES SHIP TO) ;
listvalues = attr.getAvailablevValues() ;
listvalues.setSelection(new Object[] { "San Jose" });

params.put (PriceConstants.ATT PRICE LINES SHIP TO, listvalues) ;

//Set Ship-From Location (List field) attr =
cls.getAttribute (PriceConstants.ATT PRICE LINES SHIP FROM); listvalues
= attr.getAvailableValues(); listvalues.setSelection (new Object[] {
"Hong Kong" }); params.put (PriceConstants.ATT PRICE LINES SHIP FROM,
listvalues) ;

//Set Effective From (Date field)

params.put (PriceConstants. ATT PRICE LINES PRICE EFFECTIVE FROM DATE,
df .parse("10/01/03")) ;

//Set Effective To (Date field)

params.put (PriceConstants.ATT PRICE LINES PRICE EFFECTIVE TO DATE,
df .parse("10/31/03")) ;

//Set Quantity (Number field)
params.put (PriceConstants.ATT PRICE LINES QTY, new Integer(1000)) ;

//Set Currency Code (List field) attr =
cls.getAttribute (PriceConstants.ATT PRICE LINES CURRENCY CODE) ;
listvalues = attr.getAvailableValues(); listvalues.setSelection (new

v9.3.1.1 269

SDK Developer Guide - Using Agile APIs

Object [l { "usD" });
params.put (PriceConstants.ATT PRICE LINES CURRENCY CODE, listvalues);

//Set Total Price (Money field)

params.put (PriceConstants.ATT PRICE LINES TOTAL PRICE, new Money (new
Double(52.95), "USD")) ;

//Set Total Material Price (Money field)

params.put (PriceConstants.ATT PRICE LINES TOTAL MATERIAL PRICE, new
Money (new Double (45.90), "USD"));

//Set Total Non-Materials Price (Money field)

params.put (PriceConstants.ATT PRICE LINES TOTAL NON MATERIAL PRICE,
new Money (new Double (7.05),

IIUSDII)) ;

//Set Lead Time (Number field)
params.put (PriceConstants.ATT PRICE LINES LEAD TIME, new Integer(5));

//Set Transportation Time (List field)

attr =
Cls.getAttribute(PriceConStants.ATT_PRICE_LINES_TRANSPORTATION_TIME);

listvalues = attr.getAvailableValues() ;

listvalues.setSelection(new Object[] { "FOB" });

params.put (PriceConstants.ATT PRICE LINES TRANSPORTATION TIME,
listvalues) ;

//Set Country of Origin (List field)

attr =

cls.getAttribute (PriceConstants.ATT PRICE LINES COUNTRY OF ORIGIN) ;
listvalues = attr.getAvailableValues() ;
listvalues.setSelection(new Object[] { "United States" });

params.put (PriceConstants.ATT PRICE LINES COUNTRY OF ORIGIN,
listvalues) ;

//Create a new Price Lines row and initialize it with data IRow row =
table.createRow (params) ;

}
Creating a Price Change Order

Price objects such as published prices and contracts have a revision history. If a Price object is
released, it can’'t modified it without first creating a Price Change Order (PCO) and adding the Price
object to the Affected Prices table. The PCO is then submitted for approval. Any changes made to
the Price object take effect when the PCO completes its Workflow approval process.

A PCO is similar to other Change objects, such as ECOs and ECRs. You can create a PCO using
the IAgileSession.createObject () method
Example: Creating a PCO
public void createPCO(IPrice price) throws Exception {
//Get the PCO class
IAgileClass cls = m_admin.getAgileClass (ChangeConstants.CLASS PCO) ;

//Get autonumber sources for the PCO class IAutoNumber[] numbers =
cls.getAutoNumberSources () ;

//Create the PCO

IChange pco =
(IChange)m session.createObject(ChangeConstants.CLASS_PCO, numbers[0]);

270 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

//Get the Affected Prices table

ITable affectedPrices =
pco.getTable (ChangeConstants.TABLE AFFECTEDPRICES) ;

//Add the Price object to the Affected Prices table IRow row =
affectedPrices.createRow(price);

}

Working with Suppliers

The Agile PLM system comes with five out-of-the-box supplier classes:
o Broker

= Component Manufacturer

@ Contract Manufacturer

o Distributor

= Manufacturer Rep

There are two primary key attributes that uniquely identify each supplier: GENERAL INFO NUMBER
and GENERAL INFO NAME.

Loading a Supplier

To load a supplier, use the IAgileSession.getObject () method. To uniquely identify the
supplier, specify the General Info | Number attribute.

Example: Loading a supplier
public ISupplier getSupplier() throws APIException ({

ISupplier supplier =
(ISupplier)m session.getObject(ISupplier.OBJECT_TYPE, 'SUP20013");

return supplier;

}

Note The Agile API does not support adding new rows to Supplier tables.

Modifying Supplier Data

The Agile API lets you read and update all read/write Supplier fields. For General Info, Page One,
and Page Three fields, you can access the cells directly. To access cells on multirow tables like the
Contact Users table, you must first load the table and select a particular row.

Example: Modifying supplier data
public void updateSupplierGenInfo (ISupplier supplier) throws Exception

ICell cell = null;
IAgileList listvalues = null;

//Update Name (Text field)

v9.3.1.1 271

SDK Developer Guide - Using Agile APIs

cell = supplier.getCell(SupplierConstants.ATT_GENERAL_ INFO_NAME);
cell.setValue("'Global Parts™);

//Update URL (Text field)

cell = supplier.getCell(SupplierConstants.ATT_GENERAL_INFO_URL);
cell.setValue("http://wwww.globalpartscorp.com™);

//Update Corporate Currency (List field)

cell =
supplier.getCell (SupplierConstants_ATT_GENERAL_INFO_CORPORATE_CURRENCY)

I

listvalues = cell.getAvailablevValues() ;
listvalues.setSelection(new Object[] { "EUR" });
cell.setValue(listvalues);

}

public void updateSupplierContactUsers (ISupplier supplier) throws
Exception (

ICell cell = null;
IAgileList listvalues = null;

//Load the Contact Users table

ITable contactusers =
supplier.getTable(SupplierConstants. TABLE_CONTACTUSERS);

//Get the first row

ITwoWayIterator i = contactusers.getTablelterator();

IRow row = (IRow)i.next();

//Update Email (Text field)

cell = row.getCell(SupplierConstants.ATT_CONTACT_USERS EMAIL);
cell.setValue(*'wangsh@globalpartscorp.com™);

}

Working with Sourcing Projects

A Sourcing Projects is where you prepare content for Sourcing tasks, such as Requests for Quotes
(RFQs) and Sourcing analysis. Sourcing Projects is a centralized, collaborative solution. Multiple
users can add data to a Sourcing Projects and perform analysis of Sourcing results. Because
Sourcing projects serve as the home for all Sourcing activities, they are linked to many classes of
objects, including Supplier, RequestForQuote (RFQ), and SupplierResponse.

You can use the Agile API to:

u]

u]

m]

Load an existing Sourcing Projects

Create Sourcing Projects by quantity breaks
Create Sourcing Projects by price periods
Open and close a Sourcing Projects

Add items, including AMLs to Sourcing Projects items

272 Agile Product Lifecycle Management

http://wwww.globalpartscorp.com/
mailto:wangsh@globalpartscorp.com

Chapter 17: Working with Product Cost Management

= Access and modify objects, tables, and attributes in Sourcing Projects
= Access and modify Sourcing Projects status

= Update Sourcing Projects AMLs

= Update Page 1, Page 2, and Page 3 in Sourcing projects

o Read and update a nested Pricing table in Sourcing projects

@ Sets quantity for an item in Sourcing Projects

= Updates the target price for items in Sourcing Projects

o Sets partners for items in Sourcing Projects

= Performs quantity Rollups in Sourcing Projects

o Sets a response designated as best in Sourcing Projects

Unlike the Web Client which provides additional functionality for Sourcing projects, the Agile API
exposes Sourcing projects for simple data extraction and updating. Consequently, the Agile API
does not support the following functions:

@ Validation for items, commodities, or manufacturer parts.
= Filter Sourcing Projects tables

= Modify the price scenario for Sourcing Projects (change quantity breaks and effectivity periods)

Supported APl Methods

The SDK supports the following API methods for Sourcing projects. For information on these
interfaces, rrefer to the Javadoc generated HTML files that document the SDK code. You can find
them in the HTML folder in SDK_samples (ZIP file). To access this file, see the Note in Client-Side

Components on page 2.

8 IAgileSession.createObject (Object, Object)
B IAgileSession.createObject (int, Object)

o IAgileSession.getObject (Object, Object)

B IAgileSession.getObject (int, Object)

B IProject.assignSupplier (Object partnerParams)
8 IProject.Costrollup()

B IProject.lookupPrices()

8 IProject.rollupQuantity ()

8 IProject.getName ()

= IProject.changeStatusToOpen ()

B IProject.changeStatusToClose ()

8 IProject.getTable (Object)

v9.3.1.1 273

SDK Developer Guide - Using Agile APIs

8 IRow.getValue (Object)

8 TIRow.setValue (Object, Object)
B ITable.iterator()

= ITable.getName ()

= ITable.getTableDescriptor ()

B ITable.size()

= ITable.createRow (Object)

Note The PCM SDK does not support the TRow.getReferent () method.

Loading an Existing Sourcing Projects

To load existing Sourcing Projects, use the IAgileSession.getObject () method. To uniquely
identify the Sourcing Projects, specify the value for the Cover Page | Number attribute.

Example: Loading Sourcing Projects
public IProject getProject () throws APIException {

String prjnum = "PRJACME 110";
IProject prj = (IProject)m session.getObject(lProject.OBJECT_TYPE,
prjnum) ;

return prj;

}
Creating Sourcing Projects by Quantity Breaks

Defining Sourcing projects uses the generic IAgileSession method.
Example: Creating Sourcing Projects

IAgileObject createObject (Object objectType, Object params)
throws APIException;

Creating Sourcing Projects requires specifying one of the following set of parameters:

B Sourcing Projects number and quantity breaks

Or,

B Sourcing Projects number, quantity breaks, and price period information

Note Quantity breaks is a required parameter and is always specified. Example below creates
a Sourcing Projects using the quantity break parameter.

Example: Creating Sourcing Projects by quantity breaks

IAgileClass agClass =
m_admin.getAgileClass (ProjectConstants.CLASS SOURCING PROJECT) ;

IAutoNumber number = agClass.getAutoNumberSources () [0];
HashMap map = new HashMap () ;
map.put (ProjectConstants.ATT_GENERAL_INFORMATION_NUMBER, number);

274 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

map .put (ProjectConstants.ATT_GENERAL_INFORMATION_NUMBER_OF_QTY_BREAKS,
new Integer(4));

IProject prj = (IProject) m_session.createObject (agClass, map) ;
Important Do not pass numbers that are greater than two digits to the QUANTITY BREAK
attribute.

Creating Sourcing Projects by Quantity Breaks and Price Periods

Alternatively, you can create Sourcing Projects by specifying quantity breaks and price period
information such as the number of periods, period type, and start date. Example below creates a
Sourcing Projects using these parameters.

Note When you create a Sourcing Projects with price period information set to period type,
you must specify the Period Type attribute. The supported values are Monthly,
Quarterly, Semi-Annually, and Yearly. However, Period Type is not correctly returned
afterwards when you check the value of period type, for example, by invoking
getValue (ProjectConstants.ATT_GENERAL_INFORMATION_PERIOD_TYPE).
That is, instead of returning the value that you set when creating the Sourcing Projects,
the future returned value is always “Week1ly”. This is not an error. It is normal SDK
behavior and the specified period type value is not altered, because it is for internal use
only.

Example: Creating a Sourcing Projects by quantity breaks and price periods

/*

Descriptions
ATT GENERAL INFORMATION PERIOD TYPE is described in ProjectConstants
Name: Period Type
Description: Period Type indicates the recurrence of price periods
in a Sourcing Projects.
Type: List
List: Period Type List
List Id: 4565
List Valid Values: {Monthly, Quarterly, Semi-Annually, Yearly}
Restrictions: Required, Read Only. Used only when creating Sourcing
Projects. Internal use only. Not available through Agile UI clients.
ATT GENERAL_ INFORMATION PERIOD START DATE is described in
ProjectConstants
Name: Period Start Date
Description: Period Start Date indicates the start date for price
periods in a Sourcing Projects
Type: Date
Valid Values: any Date object.
Restrictions: Required, Read only, Used only when creating Sourcing
Projects, Internal use only /Not available through Agile UI clients

*/

IAgileClass agClass =
m_admin.getAgileClass (ProjectConstants.CLASS SOURCING PROJECT) ;
IAutoNumber number =
agClass.getAutoNumberSources () [0] ;

HashMap map =
new HashMap () ;
map.put (ProjectConstants.ATT_GENERAL INFORMATION_NUMBER, number) ;

v9.3.1.1 275

SDK Developer Guide - Using Agile APIs

map.put (ProjectConstants.ATT_GENERAL_INFORMATION_NUMBER_OF_QTY_BREAK
S, new Integer(4));
map .put (ProjectConstants.ATT_GENERAL__INFORMATION_NUMBER_OF_PERIODS,
new Integer(4));

IAgileList list =
agClass.getAttribute(PERIODTYPE) .getAvailableValues();

String TYPE = “Monthly”;

list.setSelection (new Object []{TYPE}) ;
map.put (ProjectConstants.ATT_GENERAL_ INFORMATION_PERIOD_TYPE, list);
map .put (ProjectConstants.ATT_GENERAL_INFORMATION_PERIOD_START_DATE,
(new GregorianCalendar()) .getTime()) ;
IProject prj =
(IProject) m_session.createObject (agClass, map) ;

Accessing and Modifying Objects, Tables, and Attributes

You can use the generic IDataObject method with standard calls such as getObject,
getTable, getValue, setValue to access and subsequently modify objects, tables, and
attributes as follows:

u]

m]

m]

u]

u]

Read Page 1 or Cover Page, Page 2, Page 3, Items, AML, Analysis, and nested pricing tables
Update Page 1 or Cover Page, Page 2, Page 3, and AML tables

Add items including AML to Items table

Read RFQ table

Load RFQ table

The com.agile.api.ProjectConstants.java file contains information about classes, tables,
and attributes.

The PCM does not support the following table operations:

m]

Sourcing Projects class

* Sorting PCM specific tables that have a default sorting order. These tables are Sourcing
Project Item, Sourcing Project AML, Sourcing Project Changes, Sourcing Project Analysis,
and Sourcing Project RFQ, RFQ Response, RFQ Changes, Supplier Response, and
Supplier Changes.

Request for quote and RFQ responses classes
®* Responses and Changes tables

Removing items from RFQ Response and Sourcing Projects tables because the PCM SDK
does not support ITable.clear () or ITable.removeRow ()

276 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

Setting Cover Page Values for Sourcing Projects

You can read and update all read/write Sourcing Projects cells. The following example updates the
cells on a Sourcing project’'s Cover Page (Page 1).
Example: Setting values for a Sourcing project’s Cover Page

public void updateProjectGenInfo (IProject project) throws Exception {

ICell cell = null;
IAgilelList listvalues = null;

//Update Customer (List field)

cell =
project.getCell(ProjectConstants.ATT_GENERAL_ INFORMATION_CUSTOMER);

listvalues =
cell.getAvailableValues () ;
listvalues.setSelection(new Object[] { "CUST00010" });
cell.setValue(listvalues);

//Update Description (Text field)

cell =
project.getCell(ProjectConstants.ATT_GENERAL_INFORMATION_DESCRIPTION
)i
cell.setValue(''Sourcing Projects for Odyssey 111');

//Update Manufacturing Site (List field)

cell =
project.getCell(ProjectConstants.ATT_GENERAL__INFORMATION_MANUFACTURI
NG_SITE);

listvalues =
cell.getAvailableValues () ;
listvalues.setSelection(new Object[] { "Global" });

cell.setValue(listvalues);
//Update Ship To Location (List field)
cell =
project.getCell(ProjectConstants.ATT_GENERAL_ INFORMATION_SHIP_TO LOC
ATION) ;
listvalues =

cell.getAvailablevValues () ;
listvalues.setSelection(new Object[] { "San Jose" });

cell.setValue(listvalues);

}
Understanding Nested Tables in PCM

A nested table is a table within a table. They are used to accesses and modify data in multi-level
objects such as BOMs and Items with AMLs. The way the SDK fulfills this function is to treat the cell
values in a nested table as a table. For example, when the SDK finds the next level in a cell in a
BOM table, it treats and processes the cell as a table. Nested tables are unique to the PCM SDK.

v9.3.1.1 277

SDK Developer Guide - Using Agile APIs

Sourcing Projects’ Parent Table and Nested Child Table Constants

The list of parent Sourcing Projects table and the corresponding nested child table constants
appear in the Parent Sourcing Projects Tables and the Corresponding Nested Sourcing Projects
Tables.

Parent Table Constant Nested Child Table Constant Read/Write Mode
TABLE ITEMS ATT ITEMS AML Read/Write
TABLE ITEMS ATT ITEMS PRICING Read/Write
TABLE AML ATT AML PRICETABLE Read/Write
TABLE ITEM ATT ITEM PRICE TABLE Read/Write
TABLE ITEM ATT ITEM BOM TABLE Read
TABLE ANALYSIS ATT ANALYSIS AML Read
TABLE ANALYSIS ATT ANALYSIS PRICING Read

Accessing and Modifying Nested Tables in Sourcing Projects or RFQ

Example below is a Read example that accesses a nested table. To modify/update a nested table,
see the Example entitled "Nested RFQ table update" in RFQ Parent Table and Nested Child Table
Constants on page 296.

Note The Money type attribute in nested PCM Pricing tables always use the “USD” as the
default currency unit. This applies even if the buyer specifies a different currency unit. In
this case, the “United State Dollar” is the default and only supported currency.

Example: Accessing a nested table
Row row = (IRow) table.iterator.next () ;

ITable nested table =
(ITable) row.getValue(ProjectConstants.ATT_ITEMS _AML);

Viewing Updates after Modifying a Nested Table

After modifying a nested table, it is necessary to reload the table as in the following example for
changes to take effect. If you only reiterate the table, as in example 14-14, the old data will
reappear and the new values are not displayed.

Example: Reiterating a nested table
/*
* In nested AML table, make modifications.

* For example, insert a row, assign suppliers
*

*/
row.getValue(attribute);

278 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

Accessing and Modifying the Status of Sourcing Projects

Because Sourcing projects do not have a Workflow connected to them, their status change is
controlled internally. They control their status with a set of methods. This is a special case for some
PCM objects such as Sourcing Projects and Request for Quote. This release supports changing the
status of a Sourcing Projects from Draft to Open and Open to Close.

You can access the status of Sourcing Projects using the standard IDataObject method for the
lifecycle phase field on the Cover Page (Page 1). You can modify the status of Sourcing Projects
with IProject methods which enables you to open, modify, and close Sourcing Projects. You
must set the ship to location parameter to open Sourcing Projects as shown in the following
example.
Example: Setting values for a Sourcing project’s Cover Page
// add ship To //
String sj = “San Jose”;
IAgileList ship2List =
(IAgileList)prj.getValue (ProjectConstants.ATT GENERAL INFORMATION SH
IP_TO_ LOCATION) ;
ship2List.setSelection(new Object[]{sj});
prj.setValue (ProjectConstants.ATT GENERAL INFORMATION SHIP TO LOCATION,
ship2List) ;
// open Sourcing Project //
prj .changeStatusToOpen() ;

// close Sourcing Project //
prj.changeStatusToClose();

Managing Data in Sourcing Projects

The following paragraphs provide descriptions and examples to prepare a Souring project to issue
an RFQ. You can then use the SDK to complete the RFQ-related tasks.

Note The Sourcing Projects Start date that you specify is converted to the GMT format for

storage in the PLM database. Due to this conversion, the date value returned by
IProject.getValue (ProjectConstants.ATT GENERAL INFORMATION PERIOD
_START_DATE) is not guaranteed to be the same that the user may expect.

Setting Quantity for ltems in Sourcing Projects

You can use the SDK to set the required quantity for the Item object in Sourcing projects. The code
sample below sets this value in the Item table, under the Items tab for a single price target. The end
user can specify the target price using the displayed name which is QuantityBreak2 in the
following example.

v9.3.1.1 279

SDK Developer Guide - Using Agile APIs

Example: Setting quantity for Items

// Setting Quantity for an Item //

ITable tab_item = dObj.getTable (ProjectConstants.TABLE ITEM) ;
IRow row = (IRow) tab item.iterator () .next ()

ITable priceTable =
row.getValue (ProjectConstants.ATT_ITEM_PRICE_TABLE) ;

for (Iterator iterator = priceTable.iterator(); iterator.hasNext();) {
IRow row = (IRow) iterator.next () ;
String name = row.getName () ;
if (name.equals ("QuantityBreak2")) {

row.setValue(ProjectConstants.ATT_PRICEDETAILS_QUANTITY, new
Double (123)) ;

}
}

Note For items, quantity is only set at the root level. Thus, if an item is not a root, the
exception: ExceptionConstants.PCM_PROJECT ITEM IS NOT_ ROOT is thrown.

In addition, because priceTable is a nested table, you must reload the table to get the updated
value of Quantity. This is shown in the following example.
Example: Reloading a nested table to get an updated value
// Getting the updated value //
priceTable = row.getValue (ProjectConstants.ATT ITEM PRICE TABLE) ;
for (Iterator iterator = priceTable.iterator(); iterator.hasNext();) {
IRow iRow = (IRow) iterator.next() ;
String name = iRow.getName () ;
if (name.equals ("QuantityBreak2")) {

Object gty =
row.getValue (ProjectConstants.ATT PRICEDETAILS QUANTITY)) ;

}
}

Adding ltems to Sourcing Projects with BOM Filters

The PLM Web Client supports setting up BOM filters to selectively add Items to Sourcing Projects.
This filtering applies to all enabled attributes on the Cover page, P2, and BOM tabs of the Item
object and includes the Parts and Documents fields in the Cover page. These attributes are enabled
using the Java Client. For background information and procedures on BOM filtering, refer to Agile
PLM Product Cost Management User Guide. To enable Item object attributes, refer to Agile PLM
Administrator Guide.

The SDK enables replicating this Web Client feature programmatically. SDK filter operators that
support this feature are implemented in the OperatorConstants class. The following code
samples show how BOM filters are applied to Item object's numeric, multilist, money, and mass
attributes. As indicated above, these attributes must be enabled in the Java Client by an Admin
user.

280 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

Example: Applying BOM filter operators located in the OperatorConstants class

IProject prj = (IProject)m session.getObject (IProject.OBJECT TYPE,
"PRJO0001") ;

IItem assembly = (IItem)m session.getObject (IItem.OBJECT TYPE,
"PO0O0O0O1") ;

//Applying BOM filter to numeric attributes
ProjectItemFilter itemfilter = new ProjectItemFilter();
itemfilter.addCriteria(ItemConstants.ATT BOM_BOM NUMERICO03,
OperatorConstants.RELOP_EQ, new Integer(10));
itemfilter.addCriteria(ItemConstants.ATT BOM BOM NUMERICO04,
OperatorConstants.RELOP_GE, new Integer (100)) ;
Map params = new HashMap () ;
params.put (ProjectConstants.ATT ITEM NUMBER, assembly) ;
params.put (ProjectConstants.ATT ITEM FILTER, itemfilter);
ITable ITEM = prj.getTable (ProjectConstants.TABLE ITEM) ;
IRow row = ITEM.createRow (params) ;

//Applying BOM filter to multilist attributes
ProjectItemFilter itemfilter = new ProjectItemFilter();
IAttribute 1ist03 =
m_session.getAdminInstance () .getAgileClass (ItemConstants.CLASS PARTS
CLASS) .getAttribute (ItemConstants.ATT PAGE TWO MULTILISTO1) ;
IAgileList 1list3 = list03.getAvailableValues/() ;
list3.setSelection (new Object [] {"Austria","India"});
itemfilter.addCriteria(ItemConstants.ATT PAGE TWO MULTILISTO1,
OperatorConstants.RELOP_ CONTAINS ALL VALUE, 1list3);
Map params = new HashMap () ;
params.put (ProjectConstants.ATT ITEM NUMBER, assembly) ;
params.put (ProjectConstants.ATT ITEM FILTER, itemfilter);
ITable ITEM = prj.getTable (ProjectConstants.TABLE ITEM) ;
IRow row = ITEM.createRow (params) ;

//Applying BOM filter to money attributes
Money mny = new Money (new Double (15.3), "USD");
ProjectItemFilter itemfilter = new ProjectItemFilter();
itemfilter.addCriteria(ItemConstants.ATT PAGE TWO MONEYO1,
OperatorConstants.RELOP_EQ, mny) ;
Map params = new HashMap () ;
params.put (ProjectConstants.ATT ITEM NUMBER, assembly);
params.put (ProjectConstants.ATT ITEM FILTER, itemfilter);
ITable ITEM = prj.getTable (ProjectConstants.TABLE ITEM) ;
IRow row = ITEM.createRow (params) ;

//Applying BOM filter to mass attributes
IUnitOfMeasureManager uomm
= (IUnitOfMeasureManager)m session.getManager (IUnitOfMeasureManager.c
lass) ;
IUnitOfMeasure uom = uomm.createUOM(10.1, "Gram") ;
ProjectItemFilter itemfilter = newProjectItemFilter() ;
itemfilter.addCriteria(ItemConstants.ATT TITLE BLOCK MASS, OperatorCo
nstants.RELOP_NEQ, uom) ;
Map params = new HashMap () ;
params.put (ProjectConstants.ATT ITEM NUMBER, assembly) ;
params.put (ProjectConstants.ATT ITEM FILTER, itemfilter);
ITable ITEM = prj.getTable (ProjectConstants.TABLE ITEM) ;
IRow row = ITEM.createRow (params) ;

v9.3.1.1 281

SDK Developer Guide - Using Agile APIs

Performing Quantity Rollup in Sourcing Projects

Quantity rollups generate data related the quantity values for the selected Item in a Sourcing
Projects. In the SDK, you can use the following API to invoke a Quantity rollup in Sourcing Projects.

public void rollupQuantity () throws APIException, RemoteException,
Exception;

This code sample uses rollupQuantity () to do a Quantity rollup.
Example: Quantity Rollup
IProject prj =

(IProject)m session.getObject (ProjectConstants.CLASS SOURCING PRO
JECT, "PRJ0O0001") ;

prj.rollupQuantity();

Note To get the updated value of Quantity, it is necessary to invoke rollupQuantity () on
the Sourcing Project similar to the example in Modifying Spplier Data on page 271. This
is necessary because getvalue () does not return the updated value of the affected
item after setting Quantity.

Performing Cost Rollup in Sourcing Projects

Cost Rollup (Rollup cost) generates an Assembly Cost Report (ACR) based on available prices. In
this process, it picks up the lowest costs from filtered data, performs Set as Best (on user defined or
default parameters) and costed BOM rollup (aggregation) to generate the ACR. In the Ul, Rollup
cost provides an intuitive mechanism for non PCM users to cost a BOM without going through PCM
steps.

Note Cost Rollup runs on existing Sourcing Projects prices. If Cost Rollup needs to run on
looked up prices, 1lookupPrices () must be invoked prior to running costRollup ().
If there are no assemblies in Sourcing Projects, the
ExceptionConstants.PCM NO ASSEMBLY IN PROJECT is thrown.

The PCM SDK supports the Cost Rollup function with the following API.

public void costRollup ()

throws APIException, RemoteException, Exception;
Example: Using the costRollup API

IProject prj = (IProject)

m_session.getObject (ProjectConstants.CLASS SOURCING PROJECT,
"PRJO001") ;

prj.costRollup();

Note If you need to run quantity rollup immediately after cost rollup, be sure to provide some
delay (For example as in Thread.currentThread () .sleep(10000) ;) to allow the
results of the cost rollup to be refreshed in the database.

282 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

Performing Price Lookup in Sourcing Projects

You can use the SDK to verify the existence of a price scenario for a specified period and quantity
in the Item Master. You can either use the price information of the Item, or modify the price
information and send the RFQ to suppliers for requote.

In Agile PCM, there are three types of price objects:

@ Contracts — Predefined agreements with suppliers for Item prices over a specified time period

o Published Prices — The Item price information that has been published from other Sourcing
projects

@ Quote Histories — Quoted prices that were previously received for an Iltem

For information about price objects and price lookups in Sourcing projects,, refer to the Agile PLM
Product Cost Management User Guide.

Price Lookup API and Price Lookup Options
= Supported API

The SDK supports price lookups with the following API in IProject.
public void lookupPrices (Object lookupParams)
throws APIException, RemoteException, Exception;

= Price lookup options

This API performs price lookups from Price history and Price lookups from another Sourcing
Projects.

Note lookupPrices () looks for an Item or an MPN one object at a time. To run lookup
for multiple Items/MPNSs, you must run the API one Item or one MPN at a time.

The following examples show price lookups from the Sourcing Projects History and from another
Sourcing Projects. In addition, applicable parameters are grouped and listed as those that are
specific to the price lookup type and necessary in the price lookup type.

Parameters for Price Lookup from History or Another Sourcing Projects

This example shows a price lookup from Sourcing Projects History and from another Sourcing
Projects. It provides a list of specific and required parameters for the two price lookups.
Example: Price lookup from History and another Sourcing Projects

ArrayList priceTypes = new ArayList();

priceTypes.add (PriceConstants.CLASS PUBLISHED PRICE) ;
priceTypes.add (PriceConstants.CLASS QUOTE HISTORY) ;
priceTypes.add (PriceConstants.CLASS CONTRACT) ;

ArrayList suppliers = new ArrayList();
suppliers.add(supplierl) ;

suppliers.add(supplier2) ;

//supplierl, supplier2 are objects of ISupplier or String

ArrayList customers = new ArrayList();

v9.3.1.1 283

SDK Developer Guide - Using Agile APIs

customers.add (customerl) ;
customers.add (customer?2) ;

//customerl, customer2 are objects of ICustomer or String

ArrayList programs = new ArrayList();
programs.add (programl) ;

programs.add (program2) ;

//programl, program2 are objects of String

String shipTo = "berlin";
HashMap itemMap = new HashMap () ;

itemMap.put ("IPN1", "REV1") ;//itemMap.put("IPN1", null) if no revision

or
itemMap.put(item); //item is an object of lltem

HashMap mpnMap = new HashMap () ;
mpnMap.put ("MPN1", "MFR1") ;
or

mpnMap.put(mfrPart); //mfrPart is and object of IManufacturerPart

IProject srcPrj = (IProject)

m_session.getObject (ProjectConstants.CLASS SOURCING PROJECT,

"PRJ SRC") ;
Boolean isLookupFromPrice = new Boolean(false);
String priceScenario = null;
Map priceScenarios = new HashMap () ;
//1if lookup from price history

priceScenario = "QuantityBreakl";
//1f lookup from Sourcing project
String destPricePointl = "QuantityBreakl";
String destPricePoint2 = "QuantityBreak2";
String srcPricePointl = "QuantityBreakl";
String srcPricePoint2 = "QuantityBreak2";

priceScenarios.put (destPricePoint2, srcPricePointl) ;

priceScenarios.put (destPricePointl, srcPricePoint?2) ;

Boolean ignoreQtyRange = new Boolean (true) ;
Double gtyPercentRange new Double (15) ;

Boolean ignoreDateRange = new Boolean (true) ;
Integer dateRange = new Integer (20) ;

HashMap map = new HashMap () ;

map.put (PriceConstants.ATT GENERAL INFORMATION PRICE TYPE,priceTypes) ;

map.put

(

map.put (ProjectConstants.ATT ANALYSIS SUPPLIER, suppliers) ;
(ProjectConstants.ATT GENERAL INFORMATION CUSTOMER, customers) ;
(

map.put (ProjectConstants.ATT GENERAL INFORMATION PROGRAM,programs) ;

284

Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

map.put(ProjectConstants.ATT_GENERAL_INFORMATION_SHIP_TO_LOCATION,shipT
o) ;

map.put (ProjectConstants.ATT ITEMS NUMBER, itemMap) ;

map.put (ProjectConstants.ATT ITEMS AML,mpnMap) ;

map.put (ProjectConstants.ATT GENERAL INFORMATION NUMBER, srcPrj) ;

map . put (LookupConstants.FLAG IGNORE ITEM REVISION, ignoreltemRevV) ;

map . put (LookupConstants.FLAG CONSIDER BEST PRICES, considerBestPrices) ;
map .put (LookupConstants.FLAG ALL PRICE SCENARIOS,allPriceScenarios) ;
map .put (LookupConstants.FIELD PRICE SCENARIO,priceScenario) ;
map .put (LookupConstants.FIELD PRICE SCENARIOS,priceScenarios) ;
map .put (LookupConstants.FLAG IGNORE QUANTITY, ignoreQtyRange) ;
map .put (LookupConstants.FIELD QUANTITY RANGE, gtyPercentRange) ;
map .put (LookupConstants.FLAG IGNORE DATE RANGE, ignoreDateRange) ;
map .put (LookupConstants.FIELD DATE RANGE, dateRange) ;

map .put (LookupConstants.FIELD SELECT RESPONSE BY,
LookupConstants.OPTION LOWEST PRICE) ;

map . put (LookupConstants.FIELD LOOKUP_ TYPE,
LookupConstants.OPTION LOOKUP FROM PRICE) ;

prj - lookupPrices(map);

Parameters specific to price lookups from price history

PriceConstants.ATT GENERAL INFORMATION PRICE TYPE
ProjectConstants.ATT_GENERAL_ INFORMATION CUSTOMER
ProjectConstants.ATT GENERAL INFORMATION PROGRAM
ProjectConstants.ATT_ GENERAL_ INFORMATION SHIP TO LOCATION
LookupConstants.FLAG_ALL_ PRICE_SCENARIOS
LookupConstants.FIELD PRICE SCENARIO
LookupConstants.FLAG IGNORE QUANTITY
LookupConstants.FIELD QUANTITY RANGE
LookupConstants.FLAG_IGNORE DATE_RANGE
LookupConstants.FIELD DATE_ RANGE
LookupConstants.FIELD SELECT_ RESPONSE_BY

Parameters specific to price lookups from Sourcing Projects

ProjectConstants.ATT GENERAL INFORMATION NUMBER
LookupConstants.FLAG ALL PRICE SCENARIOS
LookupConstants.FLAG_IGNORE ITEM REVISION
LookupConstants.FLAG CONSIDER BEST PRICES

Note The remaining parameters are common to both cases.

v9.3.1.1 285

SDK Developer Guide - Using Agile APIs

Parameters required for price lookups from price history

PriceConstants.ATT GENERAL INFORMATION PRICE TYPE
ProjectConstants.ATT ITEMS NUMBER or ProjectConstants.ATT ITEMS AML

LookupConstants.FIELD QUANTITY RANGE if
LookupConstants.FLAG IGNORE QUANTITY is ‘false’

LookupConstants.FIELD DATE RANGE if
LookupConstants.FLAG IGNORE DATE RANGE is ‘false’

LookupConstants.FIELD PRICE SCENARIO if
LookupConstants.FLAG ALL PRICE_SCENARIOS is ‘false’

Parameters required for price lookups from Sourcing Projects

ProjectConstants.ATT_GENERAL_ INFORMATION NUMBER
LookupConstants.FLAG_ALL_PRICE_SCENARIOS
ProjectConstants.ATT_ITEMS NUMBER or ProjectConstants.ATT_ITEMS_AML

Note Parameters that not required in one of the price lookups, for example, History, may be
optional in price lookup from another Sourcing Projects. Comparing the list of required
parameters above, the LookupConstants.FLAG ALL PRICE SCENARIOS parameter
is optional when performing a price lookup from History. You can either omit the optional
parameters, or set them to null.

Setting the price lookup from History or Sourcing Projects

Set LookupConstants.FIELD LOOKUP_TYPE for lookup from history or Sourcing Projects as
follows:

® For lookup from price history — LookupConstants.OPTION LOOKUP_FROM PRICE

= For lookup from an existing Sourcing Project —
LookupConstants.OPTION LOOKUP_FROM PROJECT

Settings for Quantity Breaks in price lookups

You can set quantity breaks in a price lookup by cost, date, or leadtime by setting
LookupConstants.FIELD SELECT RESPONSE BY as follows:

© For break tie by cost — LookupConstants.OPTION LOWEST PRICE
@ For break tie by date — LookupConstants.OPTION MOST RECENT RESPONSE

o For break tie by leadtime— LookupConstants.OPTION SHORTEST LEAD TIME

Impact of improper parameter settings

If the following parameters are not set, or are improperly set, the API will take the following actions:

® LookupConstants.FIELD LOOKUP_TYPE will default to
LookupConstants.OPTION LOOKUP_FROM PRICE which corresponds to the lookup from
price history

o LookupConstants.FLAG IGNORE QUANTITY oOr
LookupConstants.FLAG IGNORE DATE RANGE will default to true.

286 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

FIELD SELECT RESPONSE BY will default to
OPTION LOWEST PRICE which corresponds to the break tie by cost

8 LookupConstants.
LookupConstants.

8 LookupConstants.
LookupConstants.

FLAG_IGNORE_ITEM REVISION oOr
FLAG_CONSIDER BEST PRICES will defaultto false

B LookupConstants.LookupConstants.FLAG ALL PRICE_ SCENARIOS is not set it will be

defaulted to ‘true’.

B ExceptionConstants.APDM ADMIN MISSINGREQUIREDFIELD exception is thrown when
a required parameter is missing

B ExceptionConstants.API INVALID PARAM exception is thrown when the datatype, or
the value of a parameter is incorrectly set

For RFQ lookup:

The settings are similar to Sourcing Projects lookup from price history. Following is a code sample.

HashMap map new HashMap () ;

map.put (PriceConstants.ATT GENERAL INFORMATION PRICE TYPE,priceTypes) ;
map.put (ProjectConstants.ATT GENERAL INFORMATION CUSTOMER, customers) ;
map.put (ProjectConstants.ATT GENERAL INFORMATION PROGRAM,programs) ;

map .put (ProjectConstants.ATT GENERAL INFORMATION SHIP TO LOCATION, shipT
o) ;

—~ o~ o~ —~

map
map
map
map
map
map
map
map

.put (ProjectConstants
.put (ProjectConstants
.put (LookupConstants.
.put (LookupConstants.

.put (LookupConstants.
.put (LookupConstants.
.put (LookupConstants.

.ATT_ ITEMS NUMBER, itemMap) ;

.ATT_ITEMS_AML, mpnMap) ;

FLAG_ALL_ PRICE_SCENARIOS,allPriceScenarios) ;
FIELD PRICE_SCENARIO,priceScenario) ;

FLAG IGNORE QUANTITY, ignoreQtyRange) ;
FIELD_QUANTITY_RANGE,qtyPercentRange);

FLAG IGNORE DATE RANGE, ignoreDateRange) ;
FIELD_DATE_RANGE, dateRange) ;

(
(
(
(
.put (LookupConstants.
(
(
(
(

map . put (LookupConstants.
_LOWEST PRICE) ;

map . put (LookupConstants.

rfqg.lookupPrices (map) ;

FIELD SELECT RESPONSE BY, LookupConstants.OPTION

FLAG EXCLUDE AUTH SUPPLIER, excludeAuthSupplier)

Following is the list of the required parameters for the RFQ lookup:

PriceConstants.ATT GENERAL INFORMATION PRICE TYPE
ProjectConstants.ATT ANALYSIS SUPPLIER, suppliers
ProjectConstants.ATT ITEMS NUMBER or ProjectConstants.ATT ITEMS AML

LookupConstants.FIELD QUANTITY RANGE if
LookupConstants.FLAG IGNORE QUANTITY is ‘false’
LookupConstants.FIELD DATE RANGE if
LookupConstants.FLAG_IGNORE DATE RANGE is ‘false’
LookupConstants.FIELD PRICE SCENARIO if
LookupConstants.FLAG ALL PRICE SCENARIOS is ‘false’

v9.3.1.1 287

SDK Developer Guide - Using Agile APIs

Note If you do not set the value of LookupConstants.FLAG EXCLUDE AUTH SUPPLIER, it
will default to false.

Generating the Assembly Cost Report for Sourcing Projects

The PLM Web Client supports generating the Assembly Cost Report to help understand the total
cost of a BOM, including the material and non-material costs. To simplify this operation, the Web
Client provides a wizard to locate and select the required Sourcing Project, including the necessary
parameters. See Understanding Assembly Cost Report Parameters on page 289 for a description
of these parameters.

A sample report is shown in the following screen shot. Once the report is prepared, the PLM user
can invoke the Export command and send the data from the PLM to an external device in a
supported format, for example, to an Excel worksheet.

Figure 20: Assembly Cost Repot for Sourcing Projects

" Save || Print || Export + — 188 /3 | b

A~

ORACLE Assembly Cost (Sourcing Project) Page 10f3
Project lame: PRIOOO 1
Assembly Lines: POOODT
Suppliers: Best of Supplier,EMS1-EMS1 COMPONENT SUPPLIER
Currency: USD(United States Dollar)
Summary Section
CuantityBreak1
suppliers.lame Assembly oPA Material Price Total Materials Teotal llon-Materials Material Price
Price Price Adder 1
POOOOT 1 123.00 000
POODOY 1 123.00 000
The highlight for tolal unt cost indicates that the rollup is incomplete

Created By: Administrator (admin)
Create Time: 06162010 07:51:05 AMWST v

The SDK supports this Web Client feature by enhancing the ProductReport .execute () API.
The extent of the SDK operation does not include invoking the Export command. The following is a
code sample uses the ProductReport.execute () APl and the required parameters to
programmatically generate this report

Example: Generating Assembly Cost Reports

String[] items = new String[1l];

items[0] = "P0OOOOL";

String[] suppliers = new Stringl2];

suppliers[0] = "-101"; //to include data for best suppliers
suppliers[1l] = "EMS1 COMPONENT SUPPLIER";

String[] priceScenarios = new Stringl[l];

priceScenarios[0] = "QuantityBreakl";

Boolean doCostRollup = new Boolean (true) ;

HashMap map = new HashMap () ;
map .put (ProductReportConstants.REPORTPARAM REPORT TYPE, ProductReport
Constants.REPORT PROJECT ASSEMBLY COST) ;
map.put (ProductReportConstants.REPORTPARAM REPORT CATEGORY, "data") ;

288 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

map .put (ProductReportConstants.PROJECT NUMBER, "PRJOOO0O1") ;

map .put (ProductReportConstants.PROJECT ITEMS, items);

map .put (ProductReportConstants.PROJECT SUPPLIERS, suppliers);

map .put (ProductReportConstants.PROJECT PRICEPOINTS, priceScenarios) ;
map .put (ProductReportConstants.PROJECT DO COST ROLLUP,
doCostRollup) ;

try{

IProductReport report =

(IProductReport)m session.createObject (IProductReport.OBJECT TYPE, "My
Reports") ;

String result =report.execute (map) ;

catch (Exception e){
e.printStackTrace () ;

Note The returned value of the ProductReport .execute () API represents either the XML
data of the Assembly Cost Report or the XML schema. To get the schema, you must set
the values of the first two parameters in the map where the value of the parameter
REPORTPARAM REPORT CATEGORY iS setto “schema”.

Understanding Assembly Cost Report Parameters

The Assembly Cost Report parameters supported by ProductReport . execute () are defined as
follows:

o items — The array of top level assembly items: "<itemNumbers>: : <revNumber>" if there is a
revision, and "<itemNumbers>" if there are no revisions.

o suppliers — The array of supplier names along with the optional indicators for the "Best of
Suppliers": "-101" orthe “Best Of Suppliers/Partners"

B pricescenarios - This the array of price scenarios names

B doCostRollup — The flag to run the cost Rollup option for the report

If you want to generate a report data for all assemblies, all suppliers/partners, or all price scenarios
without specifying their names, you must provide the following corresponding parameters:

B String[] items = new String[1];
items[0] = "all";

B String[] suppliers = new Stringl[2];
suppliers[0] = "-101";
suppliers([1] = “all";

B String[] priceScenarios = new Stringl[0];

priceScenarios[0] = "all";

v9.3.1.1 289

SDK Developer Guide - Using Agile APIs

Modifying the Target Price for ltems in Sourcing Projects

Target Price is the market cost per unit of the item or the manufacturer part. It is specified when
items are ordered. For each Item, For each Pricepoint, Target Price is set in the Items table, under
the AML tab. A Pricepoint is the Target price quoted for a given quantity for an Item. For example,
price quoted for X number of tires, which can be different for Y number of the same tires.

Note The Target price is always a positive number. Setting a hegative value for Target price
will throw the ExceptionConstants.PCM NEGATIVE TARGET PRICE exception.

Target Price are set at Item level only. You can't set a Target Price the AML level. The end user
specifies a Pricepoint using the name displayed for the Pricepoint. For example, QuantityBreak2
in the following example.
Example: Setting the Target price in Sourcing Projects

ITable tab item = dObj.getTable (ProjectConstants.TABLE ITEMS) ;
IRow row = (IRow) tab item.iterator() .next();

ITable priceTable = row.getValue (ProjectConstants.ATT ITEMS_ PRICING) ;
for (Iterator iterator = priceTable.iterator(); iterator.hasNext();) {
IRow row = (IRow) ilterator.next () ;
String name = row.getName () ;
if (name.equals ("QuantityBreak2")) {
row.setValue (ProjectConstants. ATT PRICEDETAILS TARGET COST,
new Money (new Double(1.23), "USD"));

}

Because priceTable is a nested table, you must reload this table to get the updated value of the
Target price as shown in the following example. This is similar to the example in Setting Quantity
for Items in Sourcing Projects on page 279.
Example: Reloading the priceTable to get the updated value of the target price
priceTable = row.getValue (ProjectConstants. ATT ITEMS PRICING) ;
for (Iterator iterator = priceTable.iterator(); iterator.hasNext();) {
IRow iRow = (IRow) iterator.next () ;
String name = iRow.getName () ;
if (name.equals ("QuantityBreak2")) {

Object gty =
row.getValue (ProjectConstants.ATT PRICEDETAILS TARGET COST)) ;

}

}
Setting the Best Response for ltems in Sourcing Projects

The Best Response is set in the Analysis table under the Analysis tab for both the Item and
Manufacturer Part number objects. The end user specifies three of these parameters: Lowest Cost,
Lowest Cost Within Lead Time Constraint, Shortest Lead Time, Supplier Rating, and AML Preferred
status. For more information, refer to Agile Product Lifecycle Management - Product Cost
Management Supplier Guide.

290 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

You can use the SDK to find the best response for an Item Part Number (IPN), a Manufacturer Part
Number (MPN), and for an IPN and an MPN as shown in the following code samples.
Example: Setting the Best Response for an IPN

//set best response for ipn //

ITable table analysis = prj.getTable(ProjectConstants.TABLE ANALYSIS) ;

Iterator it = table analysis.iterator();
while (it.hasNext ()) {
IRow row = (IRow) it.next();

String itemName =
row.getValue (ProjectConstants.ATT ANALYSIS NUMBER) ;

String suppName =
row.getValue (ProjectConstants.ATT ANALYSIS SUPPLIER) ;

if (itemName.equals("IPN1") && suppName.equals ("suppNamel
(suppNumberl) ")) {

row.setValue (ProjectConstants.ATT ANALYSIS BEST RESPONSE

, “Yes") ;

}

Example: Setting the Best Response for an MPN
ITable table aml =
(ITable) row.getValue (ProjectConstants.ATT ANALYSIS AML) ;
Iterator it =
table aml.iterator() ;
while (it.hasNext ()) {
String itemName =
row.getValue (ProjectConstants.ATT ANALYSIS NUMBER) ;
String suppName =
row.getValue (ProjectConstants.ATT ANALYSIS SUPPLIER) ;
String mfrName = row.getValue (ProjectConstants.
ATT ANALYSIS MANUFACTURER) ;

if (itemName.equals ("MPN1") && suppName.equals ("suppNamel
(suppNumberl) "

&& mfrName.equals ("MFR1")))
row.setValue (ProjectConstants.ATT ANALYSIS BEST RESPONSE, "Yes");

Note Because you can only set the Best Response to Yes, if you pass any value other than
Yes, the ExceptionConstants.API INVALID PARAM exception is thrown.

Example: Getting the Best Response for an IPN and an MPN

String bResp =
row.getValue (ProjectConstants.ATT ANALYSIS BEST RESPONSE) .toString() ;

v9.3.1.1 201

SDK Developer Guide - Using Agile APIs

Setting Partners in a Sourcing Projects

Partners can view complete Sourcing Projects BOMs in RFQs. You can assign partners to an item
in the Sourcing Projects when you add the item to the RFQ that will be sent to the partners. If
multiple partners are selected, you can split the quantity among the partners by specifying what
percentage of an item you want to receive from each supplier. For example, if two partners supply
the same item, you can add both partners to the list and then assign a certain percentage to each,
for example, 50%-50%, or 60%-40%, and so on.

In the SDK, the following API is used to set partners for an item in Sourcing Projects and split the
percentages among the partners.

public void assignSupplier (Object partnerParams) throws APIException,
RemoteException, Exception;

The behavior of this APl and its use cases are similar to
IRequestForQuote.assignSupplier (). However, when you add new partners for an item
with this API, you will override the existing ones. Thus, to avoid removing existing partners, it is
necessary to once again add the existing partners and set the split (Percentage for each) level for
each one. This only occurs in the SDK and the GUI does not require adding the existing partners
when you add new partners. You can’'t remove a partner for an item, but assigning a split = 0,
(Percentage of ownership/participation) will remove the partner. For more information on the GUI
behavior, refer to the latest release of Agile Product Lifecycle Management - Product Cost
Management Supplier Guide.

The following code sample sets partners and splits the percentages among the assigned partners.
Example: Setting partners and splitting percentages among partners

HashMap map = new HashMap () ;

HashMap supplierSplit = new HashMap () ;

HashMap partnerMap = new HashMap () ;

map.put (ProjectConstants.ATT ITEM NUMBER, item);

Double splitl =
new Double (55) ;

Double spllit2 =
new Double (75) ;

supplierSplit.put (supplierl, splitl);

supplierSplit.put (supplier2, split2);

partnerMap.put (ProjectConstants.ATT PARTNERS PARTNER, supplierSplit);
map.put (ProjectConstants.ATT ITEM PARTNER TABLE, partnerMap) ;
prj.assignSupplier (map) ;
An item or supplier canbean IItem object, a ISupplier object, ora String object.
Partners can be assigned to any Item Part Number (IPN), but not a Manufacturer Part Number

(MPN). If the item is not in Sourcing Projects, the
ExceptionConstants.PCM ERROR INVALID PROJECT ITEM is thrown.

Split percentages can be any object representing a number. If it is not a number, the
ExceptionConstants.API INVALID PARAM exception is thrown.

292 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

To get data on a given partner, you can use the Iltems or AML tabs as shown in .

Example: Getting partner data using Iltem or AML

ITable tab item =
prj.getTable (ProjectConstants.TABLE ITEMS) ;

IRow row = (
IRow) tab item.iterator() .next () ;

ITable partnerTable =
(ITable) row.getValue (ProjectConstants.ATT ITEMS PARTNERS) ;
Or,
ITable tab item =
prj.getTable (ProjectConstants.TABLE ITEM) ;

IRoOw row =
(IRow) tab item.iterator() .next();

ITable partnerTable =
(ITable) row.getValue (ProjectConstants.ATT ITEM PARTNER TABLE) ;

for (Iterator iterator =
partnerTable.iterator () ; iterator.hasNext();) {

IRow iRow =
(IRow) iterator.next () ;

String partner =
iRow.getValue (ProjectConstants.ATT_PARTNERS_ PARTNER) .toString() ;

String split =
iRow.getValue (ProjectConstants.ATT_ PARTNERS_ PARTNER SPLIT) .toString(
)i

)
Working with RFQs

Requests for Quotes (RFQs) allow users to request pricing information from suppliers. RFQs serve
as the instrument to negotiate pricing and terms for items or manufacturer parts. RFQs are defined
for Sourcing projects. Thus, to define an RFQ, you must first create the Sourcing Projects and then
create the required RFQs for that Sourcing Projects.

A single Sourcing Projects can generate several RFQs. RFQs support a one-to-many relationship
with suppliers. That is, one RFQ may generate several responses from suppliers.

The Agile API supports the following RFQ-related tasks.

o Create an RFQ for Sourcing Projects

o Load and modify RFQ objects, tables, and attributes

= Access and modify Page 1, Page 2, and RFQ Response table

= Add items to RFQ Response tables from the RFQ’s Sourcing Projects

o Read and update nested tables in Page 1, Page 2, and RFQ response table
= Assign supplier to items or manufacturer parts in RFQ response table

For a list of API methods that support these RFQ functions, see Supported APl Methods on page
294,

v9.3.1.1 293

SDK Developer Guide - Using Agile APIs

Note The PCM SDK RFQ objects do not have a Page three and no Page three RFQ constant
is supported. Do not invoke these constants because the RFQ will not produce the
expected result.

Supported APl Methods

The SDK supports the following APIs for RFQs. For information on these interfaces, For information
on these interfaces, rrefer to the Javadoc generated HTML files that document the SDK code. You
can find them in the HTML folder in SDK_samples (ZIP file). To access this file, see the Note in
Client-Side Components on page 2.

B TAgileSession.createObject (Object, Object)
B TAgileSession.createObject (int, Object)
B TAgileSession.getObject (Object, Object)
B TAgileSession.getObject (int, Object)

B IRequestForQuote.getName ()

B IRequestForQuote.assignSupplier (Object)
B IRequestForQuote.getTable (Object)

B IRequestForQuote.lookupPrices (Object)

B ITable.iterator()

8 ITable.getTableDescriptor ()

B ITable.size()

8 ITable.createRow (Object)

o IRow.getValue (Object)

o IRow.setValue (Object, Object)
Creating RFQs for Sourcing Projects

RFQs are defined for a specific Sourcing Projects. Creating an RFQ uses the generic
IAgileSession method.

Similar to Sourcing projects (see Creating RFQs for Sourcing Projects on page 294), you can use
IDataObject with standard calls such as getObject, getTable, getValue, setValue to
access and modify objects, tables, and attributes as follows:

@ Read Page 1 or Cover Page and Page 2 tables

= Update Page 1 or Cover Page and Page 2 tables

Example: Creating an object
IAgileObject createObject (Object objectType, Object params)
throws APIException;

294 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

To create an RFQ, you must open the Sourcing Projects. However, to open the Sourcing Projects, it
is necessary to first set the ship to location. See the code example in Accessing and Modifying the
Status of Sourcing Projects on page 278.

You cannot create an RFQ by specifying the Sourcing Projects number only. You must also specify
the related Sourcing Projects as this is a required parameter. This is shown in the example below.
Example: Creating an RFQ for Sourcing Projects

IAgileClass rfgClass =
m_admin.getAgileClass (RequestForQuoteConstants.CLASS RFQ) ;

IAutoNumber rfgNumber = rfgClass.getAutoNumberSources()[0];

HashMap map = new HashMap () ;
map.put (RequestForQuoteConstants.ATT COVERPAGE RFQ NUMBER, rfgNumber) ;
map .put (RequestForQuoteConstants.ATT COVERPAGE PROJECT NUMBER,
pnumber) ;

IRequestForQuote rfqg =
(IRequestForQuote) m session.createObject (rfgClass, map) ;

Loading Existing RFQs

You can load an existing RFQ using the IAgileSession.getObject () method, or select it from
the RFQ table of Sourcing Projects object.

To load an RFQ, use the TAgileSession.getObject () method. To uniquely identify an RFQ,
specify the value for the Cover Page | RFQ Number attribute.
Example: Loading an RFQ

public IRequestForQuote getRFQ() throws APIException ({

IRequestForQuote rfqg =
(IRequestForQuote)m session.getObject(IRequestForQuote.OBJECT_TYPE,

""RFQ01004™) ;
return rfq;

}
Loading RFQs from Sourcing Projects' RFQ Table

In addition to loading an RFQ using IAgileSession.getObject (), you can also select an RFQ
from the RFQ table of Sourcing Projects object.
Example: Loading an RFQ from the Sourcing Projects RFQs table

ITable table = prj.getTable (ProjectConstants.TABLE RFQS) ;

Iterator it = table.iterator () ;

IRow rowl = (IRow) it.next();

IDataObject objl = (IDataObject)
m_session.getObject (IRequestForQuote.OBJECT TYPE,

rowl.getValue (ProjectConstants.ATT RFQS RFQ NUMBER)) ;

Note The getReferent () method does not support the PCM SDK, including the RFQ
tables. A list of supported RFQ tables appears in the table below.

v9.3.1.1 295

SDK Developer Guide - Using Agile APIs

Supported RFQ Tables

The supported RFQ tables and their respective constants are listed in the table below.
Table Constant Read/Write Mode

Cover Page TABLE COVERPAGE Read/Write

Page Two TABLE_PAGETWO Read/Write

Responses TABLE_RESPONSES Read/Write

Note The Agile API does not support adding new rows to RFQ tables. However, you can add
new rows to the RFQ response table.

Accessing and Modifying RFQ Objects, Tables, Nested Tables, and Attributes

You can access RFQ objects, tables, and attributes using the generic IAgileSession and
IDataObject methods and standard calls such as getObject, getvValue, setValue.
Information about these classes, tables, and attributes is provided in the
com.agile.api.RequestForQuoteConstants.java file.

RFQ Parent Table and Nested Child Table Constants

The list of parent RFQ table and the corresponding nested child table constants appears in the
table below.

Parent Table Constant Nested Child Table Read/Write Mode
Constant
TABLE RESPONSES ATT RESPONSES AML Read/Write
TABLE RESPONSES ATT RESPONSES PRICING Read/Write

Similar to Sourcing Projects, nested RFQ tables are accessed by treating their cell value as a table.
See Accessing and Modifying Nested Tables in Sourcing Projects or RFQ on page 278. The
following examples updates a nested table.

Note Do not use Project .ATT RFQ RFQ STATE to get the status of an RFQ, because it is
not exposed to the SDK and will not render the correct value of the RFQ row. To get the
status of an RFQ, you must first load the RFQ, and then get the status from the RFQ
itself.

Example: Nested RFQ table update

ITable subtabl =
(ITable) row.getValue (RequestForQuoteConstants.ATT RESPONSES PRICING)

IRow pricingl =
(IRow) subtabl.iterator () .next () ;

Integer nest =
ProjectConstants.ATT PRICEDETAILS MATERIAL PRICE;

Object nre =
pricingl.getValue (nest) ;

Money tc =

296 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

new Money (new Integer (100), “USD”);
pricingl.setValue (nest, (Object)tc);

Note You must assign the supplier before updating an RFQ response table entry.

Performing Price Lookup in RFQs

Similar to Performing Price Lookup in a Sourcing Project on page 282, you can verify the existence
of a price scenario for a specified period and quantity for RFQs. If they exist, you do not have to
create an RFQ for the specified item. You can either use the price information of the item, or you
can modify the price information and send the RFQ to suppliers for requote. This is shown in the
following code sample.
Example: Price lookup from history and from another Sourcing Projects

HashMap map = new HashMap () ;

map.put (PriceConstants.ATT GENERAL INFORMATION PRICE TYPE,priceTypes) ;
map.put (ProjectConstants.ATT ANALYSIS SUPPLIER, suppliers) ;
(
(

map.put (ProjectConstants.ATT GENERAL INFORMATION CUSTOMER, customers) ;
map.put (ProjectConstants.ATT GENERAL INFORMATION PROGRAM,programs) ;

map.put (ProjectConstants.
ATT GENERAL INFORMATION SHIP TO LOCATION, shipTo) ;

map.put (ProjectConstants.ATT ITEMS NUMBER, itemMap) ;

map.put (ProjectConstants.ATT ITEMS AML,mpnMap) ;

map .put (LookupConstants.FLAG ALL PRICE SCENARIOS,allPriceScenarios) ;
map .put (LookupConstants.FIELD PRICE SCENARIO,priceScenario) ;

map .put (LookupConstants.FLAG IGNORE QUANTITY, ignoreQtyRange) ;

map .put (LookupConstants.FIELD QUANTITY RANGE, gtyPercentRange) ;

map . put (LookupConstants.FLAG IGNORE DATE RANGE, ignoreDateRange) ;

map .put (LookupConstants.FIELD DATE RANGE, dateRange) ;

map .put (LookupConstants.
FIELD SELECT RESPONSE BY, LookupConstants.OPTION LOWEST PRICE) ;

map .put (LookupConstants.FLAG EXCLUDE AUTH SUPPLIER, excludeAuthSupplier)

rfq. lookupPrices(map);

Required parameters for an RFQ price lookup

PriceConstants.ATT GENERAL INFORMATION PRICE TYPE
ProjectConstants.ATT ANALYSIS SUPPLIER, suppliers
ProjectConstants.ATT ITEMS NUMBER or ProjectConstants.ATT ITEMS AML

LookupConstants.FIELD QUANTITY RANGE if
LookupConstants.FLAG IGNORE QUANTITY is ‘false’

LookupConstants.FIELD DATE RANGE if
LookupConstants.FLAG IGNORE DATE RANGE is ‘false’

LookupConstants.FIELD PRICE SCENARIO if
LookupConstants.FLAG ALL PRICE SCENARIOS is ‘false’

v9.3.1.1 297

SDK Developer Guide - Using Agile APIs

Impact of Improper parameter settings

LookupConstants.FLAG EXCLUDE AUTH SUPPLIER will defaultto false if not set
Working with RFQ Responses

The PCM SDK supports the following operations for RFQ responses, nested table of items
responses, and Child AML responses:

o Read RFQ tables with different views (price scenarios, currency modes)

This is supported through generic SDK API.
o Add items to RFQs

o Add Response lines (Assign Suppliers)

PCM RFQ provides the following method for assigning suppliers to items or manufacturer
parts.
public void assignSupplier (Object supplierParams)

throws APIException, RemoteException, Exception;

You can assign supplier data such as Manufacturer Part Number (mpn) or supplier name as a
String or an Object to the RFQ response.
Example: Adding supplier data as String constants

IRequestForQuote dObj =
(IRequestForQuote)m session.getObject (RequestForQuoteConstants.CLASS
_RFQ, number) ;

ITable tab =
dObj .getTable (RequestForQuoteConstants.TABLE RESPONSES) ;

Map mp = new HashMap () ;
mp.put (ProjectConstants.ATT RESPONSES NUMBER, “P00007”);
mp .put (ProjectConstants.ATT RESPONSES SUPPLIER, “SDKSUP”) ;
dObj .assignSupplier (mp) ;

Example: Adding supplier data as Objects

You can also add an item as an IItem object as shown below.
mp.put (ProjectConstants.ATT RESPONSES NUMBER, itemObject) ;

If you are assigning supplier to an mpn, you must specify the mpn as an IManufacturerPart
Object, or as a pair of Objects. One for the mpn name and one for mfr name.

mp . put (RequestForQuoteConstants.ATT RESPONSES NUMBER, mpnObject) ;
Or,

mp . put (RequestForQuoteConstants.ATT RESPONSES NUMBER, mpnName) ;
mp .put (RequestForQuoteConstants.ATT RESPONSES MANUFACTURER, mfrName) ;

298 Agile Product Lifecycle Management

Chapter 17: Working with Product Cost Management

Caution

When you invoke RequestForQuote.TABLE RESPONSE to assign suppliers to item
components, the table size may change if there is more than one supplier for that item
component. That is, if an item has a single supplier, each item and the corresponding
supplier will occupy their own distinct separate rows in the TABLE RESPONSE table.
However, if the item has more than one supplier, then the row for this item component
is split into the number of suppliers, thus changing TABLE RESPONSE by increasing
the number of rows in the table. It is therefore necessary to immediately reload the
ITERATOR to reflect the change in TABLE RESPONSE table. This is not an SDK
defect and is due to SUN J2SE ITERATOR behavior.

= Update Response Lines

The PCM SDK supports the RFQ response table through generic SDK API. It does not support
the RFQ Response Class or Supplier Response.

Note

The response currency in the RFQ response line is determined by the response
currency attribute. This causes the server to ignore the currency parameter in the
material price. Buyers can modify the response currency in the response line and it
will be applied to all pricing attributes in the response line. The supplier RFQ
response currency is set to your RFQ currency preference and cannot be modified
in the supplier responses. Once the response line is opened to suppliers, the
response line must be locked before buyers can modify them.

v9.3.1.1

299

Chapter 18
Managing Product Governance & Compliance

This chapter includes the following:

About Agile Product Governance and COMPHANCEccveeiivrrireensieesssess s sesssssssssssssesssssssssssssessssens
Agile PG&C INtErfaces aN0 CIASSESvuvvirririireeriieisireeieisieis s ssses st sssss s ess s sesssesassnns
AGIIE PGEC ROIESoveiceisiseieiiei sttt ettt
Creating Declarations, Specifications, and SUDSLANCESc.ocererniennesr e,

Adding Items, Manufacturer Parts, and Part Groups to Declarations
Adding SUDSEANCES 10 DECIATALIONSveveecerireeee e s s s s e s s s s s
Adding Substances to a Specification
Adding Specifications to a Declaration
ROULING DECIATALIONScocveiieiiieiciicie ettt e bbbt
COoMPIEtiNG @ DECIATALIONcvcvuvecviieicieiie ettt b a bbb b b st s st enas
Submitting Declarations to Compliance Managers
PUBIIShING @ DECIAIALIONvu ettt e
Getting and Setting Weight Values
Adding Substance Compositions for Manufacturer Parts
ROIING UP COMPLIANCE DALA.........erceeeieeiireieieieieisieie ettt bbbt

About Agile Product Governance and Compliance

Agile Product Governance & Compliance (PG&C) addresses the growing number of environmental
regulations and corporate environmental policies that impact product definition and the import,
export, and disposal of restricted substances. Agile PG&C is designed to help OEM manufacturers
audit the amount of regulated substances used in their products, and show that they responsibly
dispose of, recycle or reuse electronics containing those substances.

Agile PG&C allows companies to cost-effectively comply with environmental regulations.
Companies can use Agile PG&C to obtain compliance data for parts from their suppliers. This
allows companies to

o Meet substance restrictions
o Satisfy reporting requirements for regulations
= Design recyclable products
= Minimize compliance costs

@ Eliminate noncompliance on future products

Agile PG&C is a communication vehicle between the Compliance Manager and suppliers. The
Compliance Manager ensures that a company’s products adhere to government regulations and
company policy. At the supplier, the Material Provider completes and signs off on material
declarations, thereby disclosing which hazardous substances are contained within the components
and subassemblies it provides.

v9.3.1.1 301

SDK Developer Guide - Using Agile APIs

For a more detailed overview of Agile PG&C features, refer to the Product Governance &
Compliance User Guide.

Agile PG&C Interfaces and Classes

The following table lists Agile PG&C-related interfaces and classes:

Object Interface Constants Class
Declaration IDeclaration DeclarationConstants
Specification ISpecification SpecficationConstants
Substance ISubstance SubstanceConstants
Part Groups ICommodity PartGroupConstants

Items, Manufacturer Parts, and Part Groups are objects that are also related to Agile PG&C. They
have Specifications, Compositions, and Substances tables that are populated with data when
declarations are released. For Manufacturer Parts, you can edit the Compositions and Substances
tables directly without submitting a declaration.

Note The terms “part group” and “commodity” are used interchangeably in this guide to refer
to any ICommodityobject. ICommodity represents the Part Group base class, which
includes Commodity and Part Family subclasses.

Of course, other common Agile API interfaces, such as ITable, IDataObject, and ICell, are
also used to work with Agile PG&C obijects.

Agile PG&C Roles

Agile PLM provides two out-of-the-box roles designed for Agile PG&C users:

= Compliance Manager — This provides privileges needed to create and manage Agile PG&C
objects, such as Declarations, Substances, and Specifications, and run Agile PG&C reports.
Compliance Managers are responsible for routing material declarations to suppliers.

o (Restricted) Material Provider — This provides privileges needed to create and modify declarations,
as well as read all other types of Agile PG&C objects. This role is typically assigned to supplier
users, who have restricted access to the Agile PLM system. Material Providers are responsible
for completing and signing off on material declarations.

To use Agile PG&C APIs mentioned in this chapter, make sure you log in as a user assigned either
the Compliance Manager role, or the (Restricted) Material Provider role. For more information about
Agile PLM roles, refer to the Agile PLM Administrator Guide.

302 Agile Product Lifecycle Management

Chapter 18: Managing Product Governance & Compliance

Note The Discover Change privilege mask is not included in the Compliance Manager role. If
you only have the Compliance Manager role, then you do not have sufficient privileges to
use the API to set the calculated compliance of a part, in a Declaration, and pass the
Change Number to the SDK call. To pass the Change Number in the SDK call, you must
have the Discover Change privilege mask for that object in the Change Orders class. For
more information, see Setting Values in the Calculated Compliance Field for Declaration
Objects on page 326.

Creating Declarations, Specifications, and Substances

The following paragraphs provide definitions and procedures to define and mange these PG&C
classes.

Creating Declarations

A Declaration object is the main record of Agile PG&C. It tracks the substances and materials that
are used for items, manufacturer parts, and part groups. When you release a declaration, the
information gathered from it is published to the product record, thereby updating the Composition
data contained within the items, manufacturer parts, and part groups listed by the declaration.

There are seven declaration subclasses provided with Agile PLM:

@ Homogeneous Material Declaration — A homogeneous material composition declaration that
uses material-level specifications.

o |PC 1752-1 Declaration — A material composition declaration for electronic products that
conforms to IPC standards and uses only one part-level specification.

o |PC 1752-2 Declaration — A homogeneous material composition declaration for electronic
products that conforms to IPC standards and uses only one material-level specification.

o JGPSSI Declaration — A material composition declaration that follows the Japanese Green
Procurement (JGP) standard and uses part-level specifications.

o Part Declaration — A material composition declaration that uses part-level or material-level
specifications.

o Substance Declaration — A material composition declaration for each substance within part-
level specifications.

o Supplier Declaration of Conformance — A questionnaire to assess supplier compliance with
specifications from customers and government agencies. The survey addresses compliance at
a general company level. Can be used for CSR type declarations.

The procedure for creating a declaration is the same for all declaration subclasses. You must
specify the declaration subclass as well as values for the Cover Page.Name and Cover Page.Supplier
attributes. Other declaration attributes are optional.

By default, the Cover Page.Name field uses an Autonumber format with the prefix “MD” (for “Material
Declaration”). Although the Autonumber format isn’t required, it makes sense to use the same prefix
for all declarations to make it easier to search for them.

v9.3.1.1 303

SDK Developer Guide - Using Agile APIs

Note The case required for the Cover Page.Name field depends on the selected character set for
the field.

Supplier users with the (Restricted) Material Provider role can also create declarations. However,
only the Cover Page.Name attribute is required to create the object. The Cover Page.Supplier attribute is
filled in automatically with the user’s supplier organization.

The following example shows how to create a JGPSSI declaration.
Example: Creating a JGPSSI Declaration

public void CreatedGPSSIDeclaration(String num, ISupplier supplier)
throws Exception ({

// Create a Map object to store parameters
Map params = new HashMap () ;

// Initialize the params object

params.put (DeclarationConstants.ATT COVER PAGE NAME, num) ;
params.put (DeclarationConstants.ATT COVER PAGE SUPPLIER, supplier);
// Get the JGPSSI Declaration subclass

IAgileClass declClass = m_session.getAdminInstance () .getAgileClass(

DeclarationConstants.CLASS JGPSSI_DECLARATION) ;
// Create a new JGPSSI declaration

IDeclaration object =
(IDeclaration)m session.createObject(declClass, params);

}
Creating Specifications

Specifications are used to state the criteria that a product is expected to meet or exceed. They are
generally used to limit the amount of restricted substances contained in a product. Specifications
can be internal documents issued by a company or industry, or, more commonly, they are
regulations issued by a governing body. Here are some examples of government regulations:

o Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic
Equipment (RoHS) Directive, issued by the European Union

o Waste Electrical and Electronic Equipment (WEEE) Directive, issued by the European Union.

o Food Allergen Labeling and Consumer Protection Act (FALCPA), issued by the U.S.A. Food
and Drug Administration (FDA)

A specification defines a list of substances, the parts-per-million (PPM) threshold for each
substance, and whether a particular substance is restricted. Compliance Managers can use
specifications to pre-populate material declarations with appropriate substances to ensure
compliance.

The only required attribute you must specify when you create a specification is General Info.Name.
The name must be unique. The name is case-insensitive, which means “ROHS” is treated the same
as “Rohs”.

304 Agile Product Lifecycle Management

Chapter 18: Managing Product Governance & Compliance

The General Info.Validation Type attribute is important because it determines whether the specification
is Part Level (the default) or Homogeneous Material Level, which affects the types of declarations
that can be used with the specification. Another optional attribute is General Info.Lifecycle Phase.
When you create a specification, the default lifecycle phase is Active. To make the specification
obsolete, change the value of its lifecycle phase attribute to Obsolete.

Example: Creating a specification

public void createSpecification(String name) throws Exception
ISpecification spec =
(ISpecification)
m_session.createObject(SpecificationConstants.CLASS_SPECIFICATION,
name) ;

}
Creating Substances

There are four substance subclasses provided with Agile PLM:

o Subpart — a subunit of a component manufacturer part. The Composition table of a subpart can
have other subparts, materials, substance groups, and substances.

= Material — a compound consisting of several substances. The Composition table of a material
can have substance groups or substances.

o Substance Group — a group of substances. The Composition table of a substance group can
have only substances.

B Substance — a single element, such as lead, chromium, or cadmium. Substances do not have a
Composition table.

These substance subclasses comprise the hierarchy of objects that can appear on a Composition
table, also known as the Bill of Substances.

Creating a Subpart

A subpart object is a subunit of a component that is tracked in Agile PLM. Subparts are parts
without a part number that are used to create a bill of material of manufacturer parts or parts within
a composition.
Example: Creating a subpart

public void createSubpart (String num) throws Exception ({

// Create a Map object to store parameters
Map params = new HashMap () ;

// Initialize the map object
params.put (SubstanceConstants.ATT GENERAL INFO NAME, num) ;

// Get the Subpart subclass

IAgileClass subsClass =
m_session.getAdminInstance () .getAgileClass (SubstanceConstants.CLASS
SUBPART) ;

// Create a new Subpart

ISubstance sub =

(ISubstance)m session.createObject(class, params);

v9.3.1.1 305

SDK Developer Guide - Using Agile APIs

Creating a Substance Group

A substance group object is a group of multiple substances tracked in Agile PLM that have a
common base substance. Every substance within the group has a conversion factor used to convert
the weight of the base substance of the group.

Example: Creating a substance group

public void createSubstanceGroup (String num, ISubstance sub) throws
Exception {

// Create a Map object to store parameters
Map params = new HashMap () ;

// Initialize the map object
params.put (SubstanceConstants.ATT GENERAL INFO_NAME, num) ;
params.put (SubstanceConstants.ATT GENERAL INFO BASE SUBSTANCE, sub);

// Get the Substance Group subclass

IAgileClass subsClass =
m_session.getAdminInstance () .getAgileClass (SubstanceConstants.CLASS
SUBSTANCE_GROUP) ;

// Create a new Substance Group
ISubstance sub =
(ISubstance)m session.createObject(class, params);

}
Creating a Material

When you create a material object, the only attribute you need to specify is the General Info.Name
attribute, which is equivalent to the substance number. After you create a material object, you can
add substances to its Composition table.

Example: Creating a material object

public void createMaterial (String num, ISubstance[] substances) throws
Exception (

// Create a Map object to store parameters
Map params = new HashMap () ;

// Initialize the params object
params.put (SubstanceConstants.ATT GENERAL INFO NAME, num) ;

// Create a new material

ISubstance material =
(ISubstance)m session.createObject(SubstanceConstants.CLASS_MATERIAL

, params);
// Get the Composition table

ITable composition =
material .getTable(SubstanceConstants.TABLE _COMPOSITION);

// Add substances to the Composition table

for (int i = 0; i < substances.length; ++i) {
IRow row = composition.createRow(substances[i]);

}
}

306 Agile Product Lifecycle Management

Chapter 18: Managing Product Governance & Compliance

Creating a Substance

Like material objects, the only attribute you need to specify to create a substance is the General
Info.Name attribute, which is equivalent to the substance number. You can also specify other optional
attributes, such as General Info.CAS Number.

Example: Creating a substance

public void createSubstance (String num, String casNumber) throws
Exception {

// Create a Map object to store parameters
Map params = new HashMap () ;

// Initialize the params object

params.put (SubstanceConstants.ATT GENERAL INFO_NAME, num) ;
params.put (SubstanceConstants.ATT GENERAL INFO CAS NUMBER,
casNumber) ;

// Get the Substance subclass

IAgileClass subsClass =
m_session.getAdminInstance () .getAgileClass (SubstanceConstants.CLASS
SUBSTANCE) ;

// Create a new substance

ISubstance substance =
(ISubstance)m session.createObject(subsClass, params);

Adding Items, Manufacturer Parts, and Part Groups to
Declarations

Each declaration has separate tables for items, manufacturer parts, and part groups. Each of these
also has an associated composition table: Item Composition, Manufacturer Part Composition, and
Part Group Composition.

When you add an item to the Items table of a declaration, the latest released revision of the item is
used. If the item does not have a released revision, the Introductory revision is used.

The following example shows how to add items, manufacturer parts, and part groups to a
declaration.
Example: Adding items, manufacturer parts, and part groups to a declaration
public void addDecObjects (IDeclaration dec) throws APIException {
try {

HashMap params = new HashMap () ;
//Add an Item to the Items table

ITable tblItems =
dec.getTable (DeclarationConstants.TABLE ITEMS) ;
params.clear() ;
params.put (DeclarationConstants.ATT ITEMS ITEM NUMBER, "1000-02");
IRow rowlItems =
tblItems.createRow(params);

//Add a Manufacturer Part to the Manufacturer Parts table

v9.3.1.1 307

SDK Developer Guide - Using Agile APIs

ITable tblMfrParts =

dec.getTable (DeclarationConstants.TABLE MANUFACTURERPARTS) ;
paramg.clear () ;

params.put (DeclarationConstants.ATT MANUFACTURER PARTS MFR_PART NUMB
ER, "Widgetl03");
params.put (DeclarationConstants.ATT MANUFACTURER PARTS MFR_NAME,
"ACME™") ;
IRow rowMfrParts = tblMfrParts.createRow(params);

//Add a Commodity to the Part Groups table

ITable tblPartGroups =
dec.getTable (DeclarationConstants.TABLE PARTGROUPS) ;
params.clear () ;
params.put (DeclarationConstants.ATT PART GROUPS NAME, "RES") ;
IRow rowPartGroups =
tblPartGroups.createRow(params) ;
} catch (APIException ex) {

System.out.println (ex) ;

}
}

Adding Substances to Declarations

You can add substances to the Item Composition, Manufacturer Part Composition, and Part Group
Composition tables contained within a declaration. To publish substances into items, manufacturer
parts, and part groups, you release the declaration. When the declaration is released, the
substances get added automatically to the Substances tables of the corresponding items,
manufacturer parts, and part groups.

The composition tables for a declaration are mapping tables; they map parts to their substances. If
there are no substances for the parent object, the composition table has no rows.

To add a row to the composition tables of a declaration, use the ITable.createRow () method.
Because the composition tables are mapping tables, you cannot pass an ISubstance objectto
create the row. Instead, specify a Map object containing attribute-value pairs.

Important The Substances and Composition tables for items and part groups are read-only.
They get populated with data only when declarations are released.

To add a substance to one of the Composition tables of a declaration:

1. Add an item, manufacturer part, or part group to the Items, Manufacturer Parts, or Part Groups
tables of a declaration, respectively.

2. Add a substance row to the Composition table that references the parent row on the Items,
Manufacturer Parts, or Part Groups table. Use the virtual attribute
DeclarationConstants.ATT PARENT ROW to specify the parent row. When you add a
substance, specify the substance name and substance type.

Important For the Agile SDK, Composition tables for declarations list all parent objects
contained in the Items, Manufacturer Parts, and Part Groups tables. Agile Web
Client represents Composition tables differently. It shows a separate
Composition table for each parent object.

308 Agile Product Lifecycle Management

Chapter 18: Managing Product Governance & Compliance

When you create a row in the Composition tables, you pass a Map object containing attribute-value
pairs. The following table lists the attributes the Map object must contain:

Composition Required Attributes DeclarationConstants
Table
Item Composition ltem Row ATT_PARENT ROW
Substance Name ATT ITEM COMPOSITION SUBSTANCE NAME
Manufacturer Part Manufacturer Part Row ATT_PARENT ROW
Composition Substance Name ATT MANUFACTURER PART COMPOSITION SUBSTANCE N
AME
Part Group Part Group Row ATT_PARENT_ROW
Composition Substance Name ATT PART GROUP_ COMPOSITION SUBSTANCE NAME

Structure of Bill of Substances

When you add substances to the Composition tables of a declaration, you can structure them in
multiple levels. The number of levels you can use depends on the type of declaration.

= Homogeneous Materials Declaration — You can create a multilevel Bill of Substances with
subparts, materials, substance groups, and substances. The composition must contain either a
subpart or a material as a direct child. It can also include substances and substance groups,
but they must be attached to a subpart or material.

o Substance Declaration/JGPSSI Declaration — Users can add substances or substance groups
to the Composition tables.

= Part Declaration/Supplier Declaration of Conformance — These declarations do not have
Composition tables.

The following figure shows the hierarchy for a Bill of Substances (Composition) with four child
levels.

Part 1
Parent Level

Subpart 1

Child Level 0

Material 1

Child Level 1

Substance Group 1
Child Level 2

Substance 1
Child Level 3

v9.3.1.1 309

SDK Developer Guide - Using Agile APIs

Rules for Adding Substances

Follow these rules when adding substances to a Composition table:
o Parent objects must be added before their children.

o Subparts can have the following children: other Subparts, Materials, Substance Groups, or
Substances.

* A Subpart cannot contain Subparts, Materials, Substance Groups, and Substances all at
the same level.

* A Subpart can contain other Subparts and Material at the same level.
®* A Subpart can contain Substance Groups and Substances at the same level.

@ Material can have the following children: Substance Groups or Substances.

o Substance Groups can have the following children; Substances only.

Adding Subparts and Materials that Do Not Exist

When you add substances to a Composition table of a declaration, you can specify “dummy”
subparts and materials that do not exist in the Agile PLM system. Such subparts and materials will
be visible only within the Composition table. When you add “dummy” subparts and materials to the
Composition table, you must specify the Substance Type attribute:

o ATT ITEM_COMPOSITION_SUBSTANCE TYPE
= ATT MANUFACTURER PART COMPOSITION SUBSTANCE TYPE

o ATT PART GROUP COMPOSITION SUBSTANCE TYPE

The following example shows how to add a dummy subpart or material to the Manufacturer Part
Composition table. Because the Substance Type field is a list field, the value passed for it is an
IAgileList.
Example: Adding a dummy subpart or material to the Manufacturer Part Composition table
public IRow addDummy (IDeclaration dec, IRow parentRow,
String dummyName, IAgileList subtype)
throws APIException

try {
HashMap params = new HashMap() ;

ITable tblMfrPartComp =
dec.getTable (DeclarationConstants.TABLE MANUFACTURERPARTCOMPOSITION)

params.put (DeclarationConstants.ATT PARENT ROW, parentRow) ;
params.put (DeclarationConstants.ATT MANUFACTURER_ PART COMPOSITION_ SU
BSTANCE NAME, dummyName) ;

params.put (DeclarationConstants.ATT MANUFACTURER PART COMPOSITION_ SU
BSTANCE TYPE, subtype) ;

IRow dummyRow = tblMfrPartComp.createRow (params) ;

return dummyRow;
} catch (APIException ex) {
System.out.println (ex) ;

}

310 Agile Product Lifecycle Management

Chapter 18: Managing Product Governance & Compliance

}
Adding Examples to Substances

The following examples show how to add:

o Substances to the Manufacturer Part Composition Table of a Homogeneous Material
Declaration

o Substances to the Manufacturer Part Composition Table of a Substance Declaration

Adding Substances to Manufacturer Part Composition Table of Homogeneous
Material Declarations

The following example shows how to add substances to a Manufacturer Part Composition table of a
Homogeneous Material Declaration. The table has four levels: subparts, materials, substance
groups, and substances. When you add a substance row to the table, we recommend that you pass
a substance object (ISubstance) instead of a substance name (String) as the input parameter.

Example: Adding Homogeneous Material Level substances to a Manufacturer Part
Composition table
public void addHomogeneousMaterialComp (IAgileSession m_session) throws
APIException

try {
HashMap params = new HashMap() ;

// Create a Declaration

String num =
"MDTESTOO01";
ISupplier supplier =
(ISupplier)m session.getObject (ISupplier.OBJECT TYPE,
"DISTRIBUTOR0O0007") ;
params.put (DeclarationConstants.ATT COVER PAGE NAME, num) ;
params.put (DeclarationConstants.ATT COVER PAGE SUPPLIER, supplier);
IAgileClass declClass =
m_session.getAdminInstance () .getAgileClass (DeclarationConstants.CLAS
S HOMOGENEOUS MATERIAL DECLARATION) ;
IDeclaration dec =
(IDeclaration)m session.createObject (declClass, params) ;
// Add a Homogeneous Material Level spec to the Specifications
table
ITable tblSpec =
dec.getTable (DeclarationConstants.TABLE SPECIFICATION) ;

params.clear() ;

ISpecification spec =

(ISpecification)m session.getObject (ISpecification.OBJECT_ TYPE,
"Lead Homogeneneous Material Level");

IRow rowSpec = tblSpec.createRow (spec) ;

// Add a Manufacturer Part to the Manufacturer Parts table

ITable tblMfrParts =
dec.getTable (DeclarationConstants.TABLE MANUFACTURERPARTS) ;
params.clear () ;
params.put (DeclarationConstants.ATT MANUFACTURER PARTS MFR_PART_ NUMB
ER, "Widget103");

v9.3.1.1 31

SDK Developer Guide - Using Agile APIs

params.put (DeclarationConstants.ATT MANUFACTURER PARTS MFR NAME,
"ACME™") ;

IManufacturerPart mfrPart =
(IManufacturerPart) m_session.
getObject (IManufacturerPart .OBJECT TYPE, params) ;

IRow rowMfrParts =
tblMfrParts.createRow (mfrPart) ;

// Add a subpart to the Composition table

ITable tblMfrPartComp =
dec.getTable (DeclarationConstants.TABLE MANUFACTURERPARTCOMPOSITION)
ISubstance subpart =
(ISubstance)m session.getObject (SubstanceConstants.CLASS SUBPART,
"Steel Casing") ;
params.clear () ; params.put (DeclarationConstants.ATT PARENT ROW,
rowMfrParts) ;
params.put (DeclarationConstants.ATT MANUFACTURER PART COMPOSITION SU
BSTANCE NAME, subpart) ;

IRow rowSubpart =
tblMfrPartComp.createRow (params) ;

// Add a material

ISubstance material =
(ISubstance)m session.getObject (SubstanceConstants.CLASS MATERIAL,
"Steel") ;
params.clear() ;
params.put (DeclarationConstants.ATT PARENT ROW, rowSubpart) ;
params.put(DeclarationConstants.ATT_MANUFACTURER_PART_COMPOSITION_SU
BSTANCE NAME, material) ;
IRow rowMaterial =
tblMfrPartComp.createRow (params) ;

// Add a substance group

ISubstance sg =
(ISubstance)m session.getObject (SubstanceConstants.CLASS SUBSTANCE G
ROUP, "Lead Componds") ;
params.clear(); params.put (DeclarationConstants.ATT PARENT ROW,
rowMaterial) ;
params.put (DeclarationConstants.ATT MANUFACTURER PART COMPOSITION_ SU
BSTANCE _NAME, sg) ;

IRow rowSubGroup =
tblMfrPartComp.createRow (params) ;
// Add a substance
ISubstance sub =
(ISubstance)m session.getObject (SubstanceConstants.CLASS SUBSTANCE, "
Lead") ;
params.clear () ;
params.put (DeclarationConstants.ATT PARENT ROW, rowSubGroup) ;
params.put (DeclarationConstants.ATT MANUFACTURER PART COMPOSITION_ SU
BSTANCE NAME, sub) ;
IRow rowSubs =
tblMfrPartComp.createRow (params) ;

} catch (APIException ex) {
System.out .println (ex) ;

312 Agile Product Lifecycle Management

Chapter 18: Managing Product Governance & Compliance

Adding Substances to Manufacturer Part Composition Table of Substance
Declarations

The following example shows how to add substances to a Manufacturer Part Composition table of a
Substance Declaration. The table has two levels: substance groups and substances.

Example: Adding Part Level substances to a Manufacturer Part Composition table
public void addSubstanceComp (IAgileSession m _session) throws
APIException

try
HashMap params = new HashMap () ;

//Create a Declaration
String num =
"MDTESTOO01";
ISupplier supplier =
(ISupplier)m session.getObject (ISupplier.OBJECT TYPE,
"DISTRIBUTOROO0OO0Q7") ;
params.put (DeclarationConstants.ATT COVER PAGE NAME, num) ;
params.put (DeclarationConstants.ATT COVER_PAGE SUPPLIER, supplier);
IAgileClass declClass =
m_session.getAdminInstance () .getAgileClass (DeclarationConstants.CLAS
S SUBSTANCE DECLARATION) ;
IDeclaration dec =
(IDeclaration)m session.createObject (declClass, params) ;

//Add a Specification to the Specifications table

ITable tblSpec =
dec.getTable (DeclarationConstants.TABLE SPECIFICATION) ;

params.clear() ;
// Part Level
ISpecification spec =
(ISpecification)m session.getObject (ISpecification.OBJECT TYPE,
"Lead Part Level");
IRow rowSpec =
tblSpec.createRow (spec) ;

//Add a Manufacturer Part to the Manufacturer Parts table

ITable tblMfrParts =
dec.getTable (DeclarationConstants.TABLE MANUFACTURERPARTS) ;
params.clear () ;
params.put (DeclarationConstants.ATT MANUFACTURER PARTS MFR_PART NUMB
ER, "Widget103");
params.put (DeclarationConstants.ATT MANUFACTURER PARTS MFR NAME,
"ACME™") ;

IManufacturerPart mfrPart =
(IManufacturerPart)
m_session.getObject (IManufacturerPart.OBJECT TYPE, params) ;

IRow rowMfrParts =
tblMfrParts.createRow (mfrPart) ;

//Add a substance group
ITable tblMfrPartComp

dec.getTable (DeclarationConstants.TABLE MANUFACTURERPARTCOMPOSITION)

1

v9.3.1.1 313

SDK Developer Guide - Using Agile APIs

ISubstance sg =

(ISubstance)m session.getObject (SubstanceConstants.CLASS SUBSTANCE G
ROUP, "Lead Componds") ;

params.clear() ;

params.put (DeclarationConstants.ATT PARENT ROW, rowMfrParts) ;
params.put (DeclarationConstants.ATT MANUFACTURER_ PART COMPOSITION_ SU
BSTANCE NAME, sg) ;

IRow rowSubGroup =
tblMfrPartComp.createRow (params) ;

//Add a substance

ISubstance sub =

(ISubstance)m session.getObject (SubstanceConstants.CLASS SUBSTANCE, "
Lead") ;

params.clear() ;
params.put (DeclarationConstants.ATT PARENT ROW, rowSubGroup) ;
params.put (DeclarationConstants.ATT MANUFACTURER PART COMPOSITION_ SU
BSTANCE NAME, sub) ;
IRow rowSubs =

tblMfrPartComp.createRow (params) ;

} catch (APIException ex) {
System.out.println (ex) ;

Adding Substances to a Specification

The Substances table of a specification is important to Agile PG&C because it identifies which
substances are restricted and their threshold mass parts per million (PPM). Only substances and
substance groups can be added to Substances table of Specification. To add a substance to the
Substances table, use the ITable.createRow () method. You can pass an ISubstance ora
Map object to create the new row.

Example: Adding a substance to a specification

public void addSubstanceToSpec (ISpecification spec, ISubstance
substance)

throws Exception ({
IRow row = null;
//Add a substance to the Substances table

ITable tableSub =
spec.getTable(SpecificationConstants.TABLE_SUBSTANCES);

row = tableSub.createRow(substance);
if (row!=null) {
//Set value of Restricted

ICell cell =
row.getCell(SpecificationConstants.ATT_SUBSTANCES_RESTRICTED);
IAgileList list = (IAgileList)cell.getAvailableValues();

list.setSelection(new Object[] {"Yes"});
cell.setValue(list);

//Set value of Threshold Mass PPM

314 Agile Product Lifecycle Management

Chapter 18: Managing Product Governance & Compliance

row.setValue(SpecificationConstants.ATT_SUBSTANCES_THRESHOLD_MASS_PPM,
new Integer(10));

}
}

Adding Specifications to a Declaration

The Specifications table of a declaration lists specifications related to the items, manufacturer parts,
and part groups contained in the declaration. The purpose of a declaration is the ensure that
suppliers comply with any restrictions stated in the specifications.

Rules for Adding Specifications

Specifications are optional for declarations. If you submit a declaration without a specification, it
means you intend to collect raw data (mass or PPM) at the substance level. The supplier must
provide information on all materials and substances.

If you add a specification to a declaration, note that declaration classes support different types of
specifications. The following table lists the specification requirements for each type of declaration:

Declaration Type Supported Specification Validation Types

Homogeneous Material Declaration Homogeneous Material Level

IPC 1752-1 Declaration Part Level

IPC 1752-2 Declaration Homogeneous Material Level

JGPSSI Declaration Part Level

Part Declaration Part Level and Homogeneous Material Level

Substance Declaration Part Level

Supplier Declaration of Conformance Part Level and Homogeneous Material Level

Specifications may concern many substances, including those not used by the parts contained in
the declaration. When the declaration is opened to the supplier, any relevant substances from the
specifications are automatically added to the Item Composition, Manufacturer Part Composition,
and Part Group Composition tables. This ensures that you are properly tracking any restricted
substances contained in parts listed in the declaration.

Example: Adding specifications to the Specification table

private void addSpecifications (IDeclaration dec, ISpecification(]
specs) throws Exception ({

ITable tableSpecs =
dec.getTable(DeclarationConstants.TABLE_SPECIFICATION);

for (int i = 0; i < specs.length; ++1i) {
ISpecification spec = specs[i];
IRow row = tableSpecs.createRow(spec);

v9.3.1.1 315

SDK Developer Guide - Using Agile APIs

Routing Declarations

The Default Declarations Workflow follows a straightforward process flow, as shown in the following
figure.

Figure 21: Default Declarations workflow

| BRUBEIRIGRS) Submitto | Review — Released —F Implemented

Pending Supplier Manager

EEE— Hold

—¥ Canceled

The following table describes each status in the Default Declarations workflow.

Status Description

Pending The Compliance Manager creates a new declaration, adding new items, manufacturer parts, or
part groups. He also adds specifications to the declaration.

Open To Supplier The Compliance Manager opens the declaration to the supplier, asking him to confirm whether
parts comply with specifications.

When the Workflow status of a declaration is changed from “Pending” to “Open To Supplier,”
the Agile PLM server automatically populates the declaration’s Substances tables with any
substances listed on its specifications.

Submit to Manager The supplier electronically “signs” and submits the declaration back to the Compliance
Manager.

Review The Compliance Manager and other reviewers verify and approve the contents of the
declaration.

Released The Compliance Manager releases the declaration, thereby publishing the materials into the

product record.

Implemented Once the parts are manufactured and disseminated in the field, the Compliance Manager
implements the declaration, thereby completing the workflow.

Before you can route a declaration, you should set values for the following three Cover Page
fields:

B Cover Page.Compliance Manager
o Cover Page.Workflow

o Cover Page.Due Date

Technically, only the Compliance Manager and Workflow fields are required to route the
declaration. The Due Date field is optional but should be specified for tracking purposes. The

316 Agile Product Lifecycle Management

Chapter 18: Managing Product Governance & Compliance

following example shows how to set values for these three fields.

Example: Setting values for the Compliance Manager, Workflow, and Due Date fields

public void setFieldsNeededForRouting (IDeclaration dec) throws
Exception {

//Set the Compliance Manager field

IUser user = m_session.getCurrentUser() ;

dec.setValue(DeclarationConstants.ATT_COVER_PAGE_COMPLIANCE_MANAGER,
user);

//Set the Workflow field

IWorkflow workflow = dec.getWorkflows () [0];

dec.setWorkflow(workflow);

//Set the Due Date field
DateFormat df = new SimpleDateFormat ("MM/dd/yy") ;
dec.setValue(DeclarationConstants.ATT_COVER PAGE DUE_DATE,
df.parse(*'05/01/05™));
}

To change the status of a declaration, use the IRoutable.changeStatus () method. Once a
declaration is opened to a supplier, only the supplier’'s contact users can edit it. For other users,
including the Compliance Manager, the declaration becomes read-only. The following example
shows how the Compliance Manager can change the status of a declaration to “Open To Supplier.”
Example: Opening a declaration to a supplier
public void openToSupplier (IDeclaration dec) throws Exception

IStatus status = null;

// Get the Open to Supplier status type

IStatus[] stats = dec.getNextStatuses();

for (int i = 0; i < stats.length; i++) {
if (stats[i].toString().equals(*'Open To Supplier™)) {
status = stats[i];
break;

}
}

// Change to the Open to Supplier status

dec.changeStatus(status, false, null, false, false, null, null, null,
false);

}

For more information about Agile APIs that support Workflow processes, see Managing Workflow
on page 207.

v9.3.1.1 317

SDK Developer Guide - Using Agile APIs

Completing a Declaration

When a declaration is opened to a supplier, the supplier is responsible for completing the
declaration and disclosing if any restricted substances are contained in the components and
subassemblies it provides and whether those substances comply with specifications. To complete
and sign off on declarations, one or more contact users for the supplier must be assigned the
(Restricted) Material Provider role.

The Material Provider user should do the following to complete a declaration:

= Fillin the Mass, Declared PPM, and Declared Compliance fields for every substance listed on the
Item Composition, Manufacturer Part Composition, and Part Group Composition tables,
particularly for substances that are restricted by specifications.

o Complete other flex fields on the Composition tables as necessary.

@ Add or remove substances from the declaration.

When the declaration is complete, the Material Provider user can sign off and submit the declaration
to the Compliance Manager, described below.

Submitting Declarations to Compliance Managers

When the supplier changes the status of the declaration from “Open to Supplier” to “Submitted to
Compliance Manager,” he must sign-off on the declaration. Therefore, he must use the
changeStatus () method that has an additional password parameter:

changeStatus (IStatus newStatus, boolean auditRelease, String comment,
boolean notifyOriginator, boolean notifyCCB, Object[] notifyList,
Object [] approvers, Object[] observers, boolean urgent, String
password)

The following example shows how the supplier can sign off and submit the declaration to the

Compliance Manager.

Example: Signing off and submitting a declaration to the Compliance Manager
public void submitToCM(IDeclaration dec) throws Exception ({

IStatus status = null;
// Get the Submitted to Compliance Manager status type
IStatus[] stats = dec.getNextStatuses();

for (int i = 0; i < stats.length; i++) {
if (stats[i].toString().equals('Submit To Manager')) {
status = stats[i];
break;

}
}

// Change to the Submitted to Compliance Manager status (signoff
password is "agile™")

dec.changeStatus(status, false, null, false, false, null, null, null,
false, "agile');

}

318 Agile Product Lifecycle Management

Chapter 18: Managing Product Governance & Compliance

Publishing a Declaration

The Agile API does not provide a method to publish a material declaration to the product record.
Instead, a declaration is automatically published when it is released. Therefore, as far as the APl is
concerned, the substances table for an item, manufacturer part, or part group always reflects the
last released declarations. However, Agile Web Client allows you to select an earlier declaration
and publish it, thereby updating the substances information in the product record.

Getting and Setting Weight Values

Unit of Measure fields have been implemented in Agile PLM to support mass (weight) values for
Agile PG&C objects. The Unit of Measure datatype is a compound datatype that includes a numeric
value and a unit, for example, grams or ounces.

You can configure and manage weight fields using the following interfaces:
o IMeasure

B IUnit

o IUnitOfMeasure

o IUnitOfMeasureManager

Although the Agile PLM administrator can define new measures from the UOM node in Agile Java
Client, the Agile API supports only the Weight measure for Agile PG&C objects. You cannot use the
Agile API to define new measures.

In Agile 9.2.1, the Title Block.Weight field for items was changed to Title Block.Mass.
However, the Agile API constant for the field is still ItemConstants.TITLE BLOCK WEIGHT.

The following example shows how to get and set values for the Title Block.Mass field of an item.
Example: Getting and setting the mass (weight) value for an item
private IUnitOfMeasure getMassValue(IItem item) throws APIException ({

IUnitOfMeasure uom =
(IUnitOfMeasure) item.getValue(ltemConstants.ATT _TITLE_BLOCK WEIGHT);

System.out.println("Value: " + uom.getValue(Q));
System.out.println("Unit: " + uom.getUnit().toString(Q)) ;
return uom;

}

private void setMassValue (IItem item, double value, String unit) throws
APIException (

IUnitOfMeasure uom = null;

IUnitOfMeasureManager uomm =
(IUnitOfMeasureManager)m session.getManager(

v9.3.1.1 319

SDK Developer Guide - Using Agile APIs

IUnitOfMeasureManager.class);
uom = uomm.createUOM(value, unit);
item.setValue(ltemConstants.ATT_TITLE_BLOCK_WEIGHT, uom);
System.out.println("Value: " + uom.getValue(Q));
System.out.println("Unit: " + uom.getUnit().toString(Q));

}

If you create a query to search for items by mass, only the numeric value is searched, not the unit.
The server converts mass values to the standard unit before returning query results. For example,
the following query returns all items whose mass value is between 1.0 and 2.0 grams (the default
standard unit). Items with a mass between 1000 and 2000 milligrams would also be included in the
search results.

Example: Searching for items by mass
try {
IQuery query = (IQuery)m session.createObject (IQuery.OBJECT TYPE,
"select * from [lItems] where [Title Block.Weight] between (1.0,
2.0)"
) ;
ITable results = query.execute() ;
} catch (APIException ex) {
System.out.println (ex) ;

Adding Substance Compaositions for Manufacturer Parts

With appropriate privileges, you can modify the Specifications, Compositions, and Substances
tables of a manufacturer part directly without submitting a declaration. This feature is useful for
manufacturing partners that want to specify composition information for their parts. To add a row to
the Specifications, Compositions, and Substances tables, use the ITable.createRow (Object)
method.

Note Once a row has been added to the Compositions and Substances tables of a
Manufacturer Part, you cannot update or remove it.

The procedure for adding rows to the Substances table of a Manufacturer Part is similar to the way
you add rows to the composition tables for a declaration. Follow these steps to add substance
compositions into a manufacturer part:

1. Optionally, add a specification to the Specifications table.

2. Add a row to the Compositions table. You must specify a value for the
ManufacturerPartConstants.ATT COMPOSITIONS COMPOSITION TYPE attribute.

3. Add one or more rows to the Substances table. Each row must reference the parent row from
the Compositions table. Use the virtual attribute
ManufacturerPartConstants.ATT PARENT ROW to specify the parent row. When you add
a substance, specify the substance name and substance type.

For additional rules about adding substances to the Substances table, see Rules for Adding
Substances on page 310.

320 Agile Product Lifecycle Management

Chapter 18: Managing Product Governance & Compliance

The Composition Type attribute for the parent row determines the types of substances you can add
to the Substances table. There are three possible Composition Type values:

= Homogeneous Material Composition — You can create a multilevel Bill of Substances with subparts,
materials, substance groups, and substances. The composition must contain either a subpart
or a material as a direct child. It can also include substances and substance groups, but they
can only be attached to a subpart or material.

= Substance Composition — The Substances table can contain only substance groups and
substances.

@ Part Composition — You can't add rows to the Substances table.

Specifications that you reference in a row in the Compositions table must match the Composition
Type attribute for that row. For example, if the Composition Type for the row is Homogeneous
Material Composition, the validation type for a specification referenced in that row must be
Homogeneous Material Level.

The following example shows how to define a Homogeneous Material composition for a
manufacturer part. The Substances table has four levels: subparts, materials, substance groups,
and substances.

Example: Adding specifications, compositions, and substances to a Manufacturer Part
public void addMfrPartSubs (IAgileSession m_session) throws APIException

try {
// Create a Manufacturer Part

HashMap params = new HashMap () ;
params.put (ManufacturerPartConstants.ATT GENERAL INFO MANUFACTURER P
ART NUMBER, "Widget") ;
params.put (ManufacturerPartConstants.ATT GENERAL INFO MANUFACTURER N
AME, "ACME") ;

IManufacturerPart mfrPart =
(IManufacturerbPart)
m_session.createObject (ManufacturerPartConstants.CLASS MANUFACTURER
PART, params) ;

// Add a Specification to the Specifications table
ITable tblSpec =
mfrPart.getTable (ManufacturerPartConstants.TABLE SPECIFICATIONS) ;
ISpecification spec =
(ISpecification)m session.getObject (ISpecification.OBJECT TYPE, "Lead
Spec") ;
// Homogeneous Material Level
IRow rowSpec =
tblSpec.createRow (spec) ;

// Get the Compositions table

ITable tblComp =
mfrPart.getTable (ManufacturerPartConstants.TABLE COMPOSITIONS) ;
// Add a row to the Compositions table that references the
specification params.clear() ;
params.put (ManufacturerPartConstants.ATT COMPOSITIONS SPECIFICATION,
spec.getName ()) ;
params.put (ManufacturerPartConstants.ATT COMPOSITIONS COMPOSITION_ TY
PE,
"Homogeneous Material Composition") ;

v9.3.1.1 321

SDK Developer Guide - Using Agile APIs

IRow rowComp =
tblComp.createRow (params) ;
// Get the Substances table
ITable tblSubs =
mfrPart.getTable (ManufacturerPartConstants.TABLE SUBSTANCES) ;
// Add a subpart

ISubstance subpart =
(ISubstance)m session.

getObject (SubstanceConstants.CLASS SUBPART,
"Steel Casing") ;
params.clear () ;
params.put (ManufacturerPartConstants.ATT PARENT ROW, rowComp) ;
params.put (ManufacturerPartConstants.ATT SUBSTANCES SUBSTANCE NAME,
subpart) ;
IRow rowSubpart =
tblSubs.createRow (params) ;

// Add a material

ISubstance material =
(ISubstance)m session.getObject (SubstanceConstants.CLASS MATERIAL,
"Steel") ;
params.clear() ;
params.put (ManufacturerPartConstants.ATT PARENT_ROW, rowSubpart) ;
params.put (ManufacturerPartConstants.ATT SUBSTANCES SUBSTANCE NAME,
material) ;
IRow rowMaterial =
tblSubs.createRow (params) ;

// Add a substance group

ISubstance sg =
(ISubstance)m session.getObject (SubstanceConstants.CLASS SUBSTANCE G
ROUP, "Lead Componds") ;
params.clear () ;
params.put(ManufacturerPartConstants.ATT_PARENT_ROW, rowMaterial) ;
params.put (ManufacturerPartConstants.ATT SUBSTANCES SUBSTANCE NAME,
sg) ;
IRow rowSubGroup =
tblSubs.createRow (params) ;

// Add a substance

ISubstance sub =
(ISubstance)m session.getObject (SubstanceConstants.CLASS SUBSTANCE, "
Lead") ;
params.clear () ;
params.put (ManufacturerPartConstants.ATT PARENT ROW, rowSubGroup) ;

params.put (ManufacturerPartConstants.ATT SUBSTANCES SUBSTANCE NAME,
sub) ;

IRow rowSubs =
tblSubs.createRow (params) ;

} catch (APIException ex) {
System.out.println (ex) ;

322 Agile Product Lifecycle Management

Chapter 18: Managing Product Governance & Compliance

Rolling Up Compliance Data

After gathering compliance data for items, manufacturer parts, and part groups, compliance
managers review the completed declarations to determine if the data is ready for publication into the
product record. Once declarations are published with the data written through to parts and part
groups on BOMs, compliance managers must examine and test BOMs to ensure the assemblies
and products are compliant. This process is called compliance validation and is fulfilled through
compliance rollups. Rollups are built into the system. They are easy to use and rollup results are
available on the Ul. For more information on rolling up compliance data and the business logic
behind this process, refer to the Agile Product Governance & Compliance User Guide.

The SDK supports calling the PG&C Rollup function on the server side. This is the same rollup
function that is called by the Ul. The IPGCRo11up interface in ITtem supports this feature.

Understanding the IPGCRollup Interface

The IPGCRollup interface provides the following methods to support rolling up compliance data:
B rollup()
8 rollup (Date)

One of these methods has no parameters and the other has Date as a parameter. The Date
parameter in the rollup API is used by the system to set the timestamp for the rollup, when it is
done.
Example: IPGCRollup methods
public interface IPGCRollup
public void rollupQ
throws APIException;

public void rollup(Date rollupDate)
throws APIException;

Note After invoking rollup (Date), it is necessary to call IDataObject.refresh () to
make sure the rollup function is taken effect. Otherwise, the system will display the
results obtained in the previous rollup if the timestamp of the recent rollup is the same as
the Date parameter.

Passing the Date Parameter

If you do not pass the date, the system will use the current time provided by the system. When a
rollup is performed on a set of items, if the timestamp of the recent rollup on an item is the same as
the passed Date parameter, the system will not repeat the rollup process on that item. Instead, it will
display the results obtained in the previous rollup. You may want to use this date feature if there is a
large number of items to rollup and you want to use the SDK to call all of them. In this case, you will
get the current date first, and then the pass that date for the subsequent SDK Rol1lup (Date) call.
For example, you want to use the SDK to roll up data for Assembly 1 and Assembly 2. In this case,
the SDK is called twice. The first instance, to roll up data for Assembly 1, and the second instance,
to rollup data for Assembly 2. With the date parameter already inside the rollup when performing the
rollup on Assembly 2, the system will reuse the previous rollup data obtained for Item1.

v9.3.1.1 323

SDK Developer Guide - Using Agile APIs

Assembly 1
Iteml

Iitem2

Assembly 2
Iteml

Item3

Using the IPGCRollup Interface

The following examples roll up the assembled data on Item and Manufacturer Part
= Item (latest released ECO or MCO)
@ MPN (latest released ECO or MCO)

Rolling Up Assembled Data on ltems

This example calls an existing API using the SDK to identify the top level parent of a given Item (its
latest released ECO or MCO). Next, it will call the rollup API on the top level parent returned by the
previous API to ensure the assemblies and products are compliant.

Example: ldentifying the top level parent for and ltem
public void itemRollup(String itemStr) throws Exception({

try {

IItem item =
(ITtem)m session.getObject (IItem.OBJECT TYPE, itemStr);

IQuery query =
(IQuery)m session.createObject (IQuery.OBJECT TYPE,
ItemConstants.CLASS ITEM BASE CLASS) ;

// IQuery query = (IQuery)

m_session.createObject (IQuery.OBJECT TYPE, ItemConstants.CLASS PART) ;
query.setSearchType (QueryConstants.WHERE USED TOP_ LEVEL) ;
query.setCriteria (" [1001] Equal To '"+item.getName ()+"'");

//

query.setCriteria (" ["+SDKWrapper.getString ("TITLE BLOCK") +"."+SDKWrappe
r.getString ("IQuery Number")+"] Equal To '"+item.getName()+"'");
ITable results=query.execute() ;
if (results.size() > 0) {
Iterator it =
results.getReferentIterator() ;
if (it.hasNext()) {
ITtem obj =
(IItem)it.next () ;

ITtem tlaltem =
IItem)m session.getObject (IItem.OBJECT TYPE, obj.getName()) ;

tlaltem.rollup () ;

}
}

else {

324 Agile Product Lifecycle Management

Chapter 18: Managing Product Governance & Compliance

item.rollup() ;

}

} catch (APIException e) ({
throw e;

}

return;

}
Rolling Up Assembled Data on MPNs

This example calls an existing API using the SDK to identify the top level parent of a given MPN (its
latest released ECO or MCO). Next, it will call the rollup API on the top level parent returned by the
previous API to ensure the assemblies and products are compliant.
Example: Identifying the top level parent for an MPN

public void testMfrPartRollup() throws Exception(

IManufacturerPartmfrp =
(IManufacturerPart)
m_session.getObject (IManufacturerPart.OBJECT TYPE,
"HARRIS: :IS82C55A96") ;//

ITable whereused =
mfrp.getTable (ManufacturerPartConstants.TABLE WHEREUSED) ;

Iterator it =
whereused.iterator () ;

while (it .hasNext ())

{

IRow r = (IRow)it.next () ;
// read item number

String itemStr =
r.getValue (ManufacturerPartConstants.ATT WHERE USED ITEM NUMBER) .toS
tring() ;

try {
itemRollup (itemStr) ;
} catch (APIException e) ({
int error =
((Integer)e.getErrorCode ()) .intValue () ;

}

return;

}
Setting Values in the Calculated Compliance Field for ltem Objects

Use the following API to set the value of the Calculated Compliance field on Specifications table, for
Item and ManufacturerPart objects:

Public void setCalculatedComplianceForPartSpec (Object specName, Object
complianceEntryValue) throws APIException

v9.3.1.1 325

SDK Developer Guide - Using Agile APIs

In this API, the specName parameter is the name of the Specification object, and the
complianceEntryValue parameter is the actual value of the Calculated Compliance field,
which can be any entry in the Calculated Compliance list. Both parameters are of type String.

When this value is set by the SDK Client, it is never overwritten during the Rollup. This API allows
users to set the calculated compliance value based on their own defined logic, instead of using the
system’s default logic.
Example: Setting the value of the Calculated Compliance field for Item objects
// COMPLIANT, the actual value of the Calculated Compliance field shows
the Specification
is compliant or not based on customized calculated
compliance result
String COMPLIANT = "Compliant";
// spec_num is the Specification Name in Item object’s Specification
Table
String spec_num =
row.getValue (ItemConstants.ATT SPECIFICATIONS SPECIFICATION) .toStrin
g();
item.setCalculatedComplianceForPartSpec (spec_num, COMPLIANT) ;

Setting Values in the Calculated Compliance Field for Declaration Objects

This is similar to the previous API that enabled setting the Calculated Compliance field for Item
objects. You can use this API to set the value of the Calculated Compliance field in Item table and
Manufacturer Part table for Declaration objects.

Public void setCalculatedComplianceForMDOPartSpec (Object partName, Object
partClassName, Object changeNumber, Object specName, Object
complianceEntryValue)) throws APIException

The system recognizes the SDK Client has set this value and will use the new setting in the
subsequent response during Rollup. In this API, the parameter changeNumber is optional. When
the Declaration object has only one revision of an item, you can set the value of changeNumber to
null. If the Declaration object has more than one revisions of an item, you must set the value of
changeNumber for the proper execution of the API.

Similar to the previous API, when this value is set by the SDK Client, it is never overwritten during
the Rollup within the declaration. This API allows users to set the calculated compliance value
based on their own defined logic, instead of using the system’s default logic.

Note If the SDK developer intends to pass the changeNumber field to
setCalculatedComplianceForDeclarationPartSpec (), the developer must
have the Discover Change privilege mask for that change.

Example: Setting the value of the Calculated Compliance field for Declaration objects

// complianceValue -- This is the customized calculated compliance
value and shows if the part is compliant to a Spec
String ComplianceValue = "Compliant";

// partName is the Item/Mfr Part name in Declaration’s Item/MfrPart
table. If it is a mfr part, it should be like “MFfrName::MfrPartName”
String partName =”"P00001”; String partClassName = “Parts”;

326 Agile Product Lifecycle Management

Chapter 18: Managing Product Governance & Compliance

// If the added part in Declaration is an Item, the changeName should
be the

Change number corresponding to the Item’s revision.

// If the added part in Declaration is a Mfr Part, the
changeName should be “null”

String changeName = “C00001”;

// spec_num is the Specification Name in Declaration object’s
Specification Table

String specName = “Rohs”;

Declaration.setCalculatedComplianceForDeclarationPartSpec
(partName, partClassName, changeName, specName, complianceValue) ;

v9.3.1.1 327

Chapter 19
Handling Exceptions

This chapter includes the following:

I oo TV (=T T0 4TSRS 329
B EXCEPHON CONSIANTSvvevieiieceeiseseisise ettt ettt bbbt 330
N €= 1o = (o] T TSRS 330
= Disabling and Enabling Error Codes With BUIK APIS...........cciiniiniceseeis e 330
B GEHING EITOr MESSAQESvvevveeriisieeerisseieiss et sssstss ettt bs s s bt sse b st ss b s bt s et b s bt s e b st b en st n s s n e 331
= Disabling and Enabling Warning MESSAJESueurreriurrmeriireinisreesisssisssessssssssssssssssssssssssssssssesssssssssssssesssnns 332
= Checking if APIException is Warning and NOt EFTOFceevierrieenisesnsscssssseessssrsesssssssssessssssesssssssessssesesnees 333
= of Saving and Restoring State Enabled and Disabled Warnings...........cccueernneninnesnessesesesesesseens 333
= Deleting Warnings Automatically Disabled by AQIIe AP ... 334

About Exceptions

Errors that cause a problem in a Java program are called exceptions. When Java throws an
exception that is not caught, your program may quit, or errors may appear onscreen. To handle an
exception gracefully, your program must:

o Protect code that contains a method that might throw an exception by putting it in a try block.

o Test for and handle any exceptions that are thrown inside a catch block.

The Agile API provides a subclass of Exception called APIException. Thisis a general-
purpose exception class that is used throughout the Agile API to handle Agile PLM runtime errors.
In the Agile AP HTML reference, each method indicates the types of exceptions it throws.
Generally, any Agile APl method that requires interaction with the Agile Application Server throws
APIException. The table below lists the APIException class methods for handling exceptions:

Method Description
getErrorCode () Returns the number of the error code associated with the APTException.
getMessage () Returns the error message associated with the APTException.
getRootCause () Returns the root cause of the APTException, if any.
getType () Returns the type of exception.

v9.3.1.1 329

SDK Developer Guide - Using Agile APIs

Exception Constants

The ExceptionConstants class contains String constants for all Agile Application Server and
Agile API runtime error and warning codes. For a description of each of these constants, refer to the
API Reference files at http://edelivery.oracle.com/.

Several of ExceptionConstants are for exceptions that are used to display an Agile PLM
warning message before completing an action. All constants for warning messages end with the
suffix WARNING. If you don’t want to use Agile PLM warning messages in your code, you can
disable them. For more information, see Disabling and Enabling Warning Messages on page 332.

Getting Error Codes

To properly trap warning errors, you may need to retrieve the error code of the exception and then
handle it appropriately. Generally, this involves displaying a confirmation dialog box to let the user
choose whether to complete the action. The following example shows how to check for the error
code of an exception in the catch block.

Example: Getting Agile PLM error codes

private void removeApprover (IChange change, IUser[] approvers, IUser|[]
observers, String comment)

try {
// Remove the selected approver
change.removeApprovers (change.getStatus (), approvers, observers,
comment) ;

} catch (APIException ex) {
if
(ex.getErrorCode() .equals (ExceptionConstants.APDM RESPONDEDUSERS WAR
NING))
JOptionPane.showMessageDialog(null, ex.getMessage(), "Warning",
JOptionPane.YES NO OPTION) ;

}
}

Disabling and Enabling Error Codes with Bulk APIs

The SDK supports the following bulk operations in IAgileSession to disable/enable all error
codes or for a given set of error codes:

B IAgileSession.enableWarnings (Integer[])
B IAgileSession.disableWarnings (Integer[])
8 IAgileSession.enableAllWarnings ()

B IAgileSession.disableAllWarnings ()

The process is similar to the previous example. The following example shows how to use these bulk
APIs to suppress warnings while releasing a Change.

Example: Disabling and enabling error codes in the bulk mode

330 Agile Product Lifecycle Management

http://edelivery.oracle.com/

Chapter 19: Handling Exceptions

public static void releseECO (lAgileSession session, IChange change)
throws Exception {

// Set workflow

IWorkflow workflow = change.getWorkflows () [0];

change.setWorkflow (workflow) ;

IStatus submit = getStatus(workflow, StatusConstants.TYPE SUBMIT) ;

IStatus ccb = getStatus (workflow, StatusConstants.TYPE REVIEW) ;

IStatus released = getStatus (workflow,

StatusConstants.TYPE RELEASED) ;

session.disableWarnings(new Integer[] {
ExceptionConstants.APDM_WFL_ ATLEASTONECHGANALYST_WARNING,
ExceptionConstants.APDM_MISSINGFIELDS WARNING });

// instead you can use session.disableAllWarnings()

// route to SUBMIT

change.changeStatus (submit, false, null, false, false, new

Object[]1{}, new Object[]1{}, new Object[] {}, false);

// Change status to CCB

change.changeStatus (ccb, false, null, false, false, new Object[]{},

new Object []1{}, new Object[]1{}, false);

// route from CCB to release

change.changeStatus (released, false, "release", false, false, new

Object[1{}, new Object[]{}, new Object[]l{}, false);

session.enableWarnings (new Integer[]
ExceptionConstants.APDM_WFL_ATLEASTONECHGANALYST_WARNING,
ExceptionConstants.APDM_MISSINGFIELDS WARNING }) ;

// instead you can use session.enableAllWarnings()

public static IStatus getStatus (IWorkflow workflow, StatusConstants
status)
throws Exception {
IStatus[] states = workflow.getStates (status) ;
IStatus state = states[0];
return state;

Getting Error Messages

If your program throws an APIException, which indicates an Agile PLM runtime error, you may
want to display an error message. You can use the getMessage () method to return the error
message string and then display it in a message dialog box, as shown in the following example.
Example: Getting an error message

// Display an error message dialog

void errorMessage (APIException ex) {

try {
JOptionPane.showMessageDialog(null, ex.getMessage(), "Error",

JOptionPane.ERROR MESSAGE) ;
} catch (Exception e) {}

}

For a list of Agile PLM error messages, refer to the APl Reference files (at
http://edelivery.oracle.com/) under ExceptionConstants.

v9.3.1.1 331

http://edelivery.oracle.com/

SDK Developer Guide - Using Agile APIs

Disabling and Enabling Warning Messages

Several Agile PLM error messages are warnings that give you the option to stop or continue with an
operation. By default, most error messages, including warning messages, are enabled. If you try to
perform an action that triggers a warning, an exception will be thrown. To avoid the exception, you
can disable the warning message before performing the action.

The following example shows how to check whether attempting to release a change causes an
exception to be thrown. If the error code for the exception is
ExceptionConstants.APDM UNRESPONDEDCHANGE WARNING, the program displays a warning.
The user can click Yes in the warning dialog box to release the change.
Example: Disabling and enabling error codes
private void releaseChange (IAgileSession m session, IChange chgObj)
IStatus nextStatus = null;
try {

// Get the default next status
nextStatus = chgObj.getDefaultNextStatus() ;

// Release the Change
chgObj .changeStatus (nextStatus, false, "", false, false, null, null,
null, false);
} catch (APIException ex) {

// If the exception is error code
// ExceptionConstants.APDM_UNRESPONDEDCHANGE_WARNING,
// display a warning message
if (ex.getErrorCode() ==
ExceptionConstants.APDM UNRESPONDEDCHANGE WARNING) {

int i =

JOptionPane.showConfirmDialog(null, ex.getMessage(),

"Warning", JOptionPane.YES NO OPTION) ;

if (i == 0) {
// If the user clicks Yes on the warning, disable the error code and
release the change

try
// Disable the warning
m_session.disableWarning(ExceptionConstants.APDM_UNRESPONDEDCHANGE_W
ARNING) ;

// Release the Change
chgObj .changeStatus (nextStatus, false, "", true, true, null, null,
null, false);

// Enable all warnings
m_session.enableWarning(ExceptionConstants.APDM_UNRESPONDEDCHANGE_WA
RNING) ;

} catch (APIException exc) ({}

}

}
}
}

332 Agile Product Lifecycle Management

Chapter 19: Handling Exceptions

Checking if APIException is Warning and not Error

As noted above, if you try to perform an operation that triggers a warning, an exception will be
thrown. Warning messages are helpful for interactive GUI clients, like Agile Web Client, but you
may not want to use them in your Agile APl program, particularly if it performs batch processes.

You can use APIException.isWarning () to check whether an Agile PLM exception is a
warning. If so, you can disable the warning to continue the operation.
Example: Checking if an APIException is a warning

private void checkIfWarning(IAgileSession m session) {

boolean gotWarning = true;
while (gotWarning) ({

try {

// Add some API code here that throws an exception

m_session.doNothing () ;

gotWarning = false;
} catch (APIException e) ({
try {

if (e.isWarning(Q))
m_session.disableWarning((Integer)e.getErrorCode());
} catch (Exception ex) {}
continue;

}

break;

}
}

of Saving and Restoring State Enabled and Disabled
Warnings

Rather than keep track of which warning messages are disabled or enabled before beginning a
particular operation, you can use IAgileSession.pushWarningState () to save the current
state of enabled and disabled warnings. After completing the operation, you can restore the
previous state of enabled and disabled warnings using IAgileSession.popWarningState ().

Example: Using pushWarningState() and popWarningState()

private void pushPopWarningState (IAgileSession m session, IItem item)
throws APIException (

// Save the current state of enabled/disabled warnings
m_session.pushWarningState();

// Disable two AML warnings
m_session.disableWarning (ExceptionConstants.APDM WARN MFRNAMECHANGE
WARNING) ;
m_session.disableWarning (ExceptionConstants.APDM ONEPARTONEMFRPART W
ARNING) ;

// Get the Manufacturers table

v9.3.1.1 333

SDK Developer Guide - Using Agile APIs

ITable aml = item.getTable (ItemConstants.TABLE MANUFACTURERS) ;

// Create a new row and set a value for the row
HashMap amlEntry = new HashMap () ;
amlEntry.put(ItemConstants.ATT_MANUFACTURERS_MFR_NAME, "MFR_TEST3");
amlEntry.put(ItemConstants.ATT_MANUFACTURERS_MFR_PART_NUMBER,
"MFR_PART3");
IRow rowAML1l = aml.createRow(amlEntry) ;
rOWAMLl.setValue(ItemConstants.ATT_MANUFACTURERS_REFERENCE_NOTES,
"new note") ;

// Restore the previous state of enabled/disabled warnings
m_session.popWarningState();

}

Deleting Warnings Automatically Disabled by Agile API

In the Agile Web Client, when you try to delete an object a warning message appears. These
warning messages are not appropriate for batch processes in an Agile API program. Therefore, the
Agile API implicitly disables the following warnings, which saves you the trouble of disabling them in
your code.

o ExceptionConstants.APDM HARDDELETE WARNING

o ExceptionConstants.APDM SOFTDELETE WARNING

For more information about deleting objects, Deleting and Undeleting Objects.

334 Agile Product Lifecycle Management

Chapter 20
Performing Administrative Tasks

This chapter includes the following:

About Agile PLM AAMINISIIALIONcvevriieeiricisiisieisiereessss s ssssessssesssss s ssssssssssessssssssssssssssssssessssssesssnens
Privileges Required to Administer Agile PLM
AdMINISLIAtIVE INTEITACES ...vvvriieiicirre ettt
Getting an TAGMIN INSTANCEcuierieieiieirrt ettt bbbt
WOTKING WItN NOGESocvuvicviiicieiiicis ettt bbbttt n bbb s bt
Managing Agile PLM CIasS€S.........cccvurevrrrernnne
WOTKING WIth AtITOULES «...vcvesciec et s et

Working with Properties of AdMINIStrative NOGESc.cirriirrn e 350
MANAGING USEIS.....eu ittt ettt bbb bbb bbb bbbttt 351
MaANAGING USEI GIOUPS.cvvurieeiiieietssietsets s et sssets st st es bbb s et s e s bbb en bbbttt b st n s e 356

About Agile PLM Administration

Agile Java Client provides administrative functionality that lets you manage the Agile Application
Server. It lets you quickly and easily adapt your Agile PLM system to fit the way you do business.
You can customize the Agile PLM system in several ways:

= Modify Agile PLM database properties
= Define object classes and subclasses
o Set preferences

= Create and configure user accounts

o Define user groups

o Define roles and privileges

= Define SmartRules, which set how you manage your change control process

The Agile API provides read/write access to all nodes of Agile PLM’s administrative functionality.
This means you can create Agile API programs that let users read and modify Agile PLM
subclasses, and add, modify, or delete Agile PLM users. The Agile API does not allow you to create
new nodes in the administrative tree structure. Therefore, you can’t create workflows, criteria, and
roles. However, you can create users and user groups because those objects have been
implemented as data objects; ITUser and IUserGroup both extend IDataObject.

v9.3.1.1 335

SDK Developer Guide - Using Agile APIs

Privileges Required to Administer Agile PLM

Before you can administer the Agile Application Server, you must have proper privileges. For
access to administrative functionality, you should have the Administrator privilege. The
Administrator role grants the Administrator privilege to all administrative functionality available on
the server. The User Administrator role grants the Administrator privilege for functionality related to
users and user groups.

Without the Administrator privilege, you cannot modify administrative nodes, users, and user
groups. If you have not yet been granted Administrator rights to the Agile PLM system, contact the
Agile PLM administrator.

To create users and user groups, you need the Create privilege for those objects. Several roles
supplied with the Agile PLM system, such as the Administrator, User Administrator, and Change
Analyst roles, include the Create privilege for users and user groups.

Administrative Interfaces

The following table lists interfaces related to Agile PLM’s administrative functionality.

Interface Description

IAdmin Interface that lets you get Agile PLM classes, nodes, users, or user groups

IAgileClass Class definition used to identify the category to which an object belongs

IAgileList A general-purpose list interface for all SingleList or MultiList attributes and properties

IAttribute Provides detailed information about a particular data member in an object

IAutoNumber An AutoNumber source, which is a predefined, consecutive number series used to automatically number
Agile PLM objects

ICriteria A reusable set of search criteria used primarily for queries and Workflows

INode A node in the administrative hierarchy. Each node is equivalent to an Admin node in the Agile Java Client

IProperty A property of an Agile PLM administrative node

IRoutableDesc | Metadata that describes any object that implements the IRoutable interface, you can use
IRoutableDesc to getthe workflows for a class without instantiating an object of that class

ITableDesc Metadata that describes an Agile PLM table, you can use ITableDesc to get table attributes without
loading a table

ITreeNode A generic node in a hierarchical tree structure. Several administrative interfaces, such as INode and
IFolder, are subinterfaces of ITreeNode and therefore inherit its functionality
Note: There is also a deprecated I Tree interface which provides similar functionality to ITreeNode.
Be sure to use ITreeNode instead.

IUser An Agile PLM user

IUserGroup A user group. Use user groups to define project teams, site-related groups, departments, or global groups

336

Agile Product Lifecycle Management

Chapter 20: Performing Administrative Tasks

Interface

Description

IWorkflow A Workflow node

Getting an IAdmin Instance

The IAadmin interface provides access to most administrative functionality for the Agile Application
Server. To use the IAdmin interface, you first get an instance of IAdmin from the current session.
The following example shows how to log in to the Agile Application Server and get an IAdmin

instance.

Example: Getting an IAdmin instance

public IAgileSession m _session;
public IAdmin m_admin;
public AgileSessionFactory m_ factory;

try {
HashMap params =

new HashMap () ;

params.put (AgileSessionFactory.USERNAME,
params.put (AgileSessionFactory.PASSWORD,

m_factory =
AgileSessionFactory.getInstance ("http:

"jdassin") ;
uagileu);

agileserver/virtualPath") ;

m_session =

m_factory.createSession(params) ;

m_admin =

m_session.getAdminlnstance();

} catch (APIException ex) {
System.out.println (ex) ;

Once you have an IAdmin instance, you can:

u]

m]

m]

m]

u]

Traverse the server nodes

Traverse the folder hierarchy.

Get Agile PLM classes and subclasses.
Get users.

Get user groups.

Working with Nodes

The INode object represents a single node or object within Agile PLM’s administrative tree. Similar
to the Windows Explorer interface, each INode can be expanded to show child nodes. This simple
hierarchy lets you navigate the administrative tree structure on the Agile Application Server.
Examples of nodes are the root node (also called the Database node), Classes, Preferences,
Roles, Privileges, and SmartRules.

v9.3.1.1

337

http://agileserver/virtualPath

SDK Developer Guide - Using Agile APIs

This table shows the mapping of Agile Java Client nodes to Agile API administrative functionality.

Agile Java Client node

Agile APl equivalent

Data Settings
Classes NodeConstants.NODE AGILE CLASSES
Character Sets NodeConstants.NODE_CHARACTER SETS
Lists Not supported
Process Extensions Not supported
AutoNumbers NodeConstants.NODE_ AUTONUMBERS
Criteria NodeConstants.NODE_CRITERIA LIBRARY
Workflow Settings
Workflows NodeConstants.NODE AGILE WORKFLOWS
User Settings
Account Policy Not supported

Users

Create a query of users

User Groups

Create a query of user groups

Supplier Groups Not supported
Roles NodeConstants.NODE_ ROLES
Privileges NodeConstants.NODE PRIVILEGES
User Monitor Not supported
Deleted Users Not supported
Deleted User Groups Not supported
System Settings
SmartRules NodeConstants.NODE_SMARTRULES
Viewer & Files NodeConstants.NODE_VIEWER AND FILES
Notifications NodeConstants.NODE NOTIFICATION TEMPLATES
Full Text Search Not supported
UuoM Not supported
Company Profile Not supported

Currency Exchange Rates

IAdmin.getConversionRates ()

Commodities

Not supported

Product Cost Management

338

Agile Product Lifecycle Management

Chapter 20: Performing Administrative Tasks

Agile Java Client node

Agile APl equivalent

Ship To Locations Not supported

Projects Execution

Projects Health Not supported

Cost Status Not supported

Quality Status Not supported

Resource Status Not supported

Dashboard Management Not supported

Default Role Not supported

Agile Content Service

Subscribers NodeConstants.NODE_SUBSCRIBERS
Destinations NodeConstants.NODE DESTINATIONS
Events NodeConstants.NODE_EVENTS

Filters NodeConstants.NODE_FILTERS
Package Services Not supported

Response Services Not supported

Product Governance & Compliance

Sign Off Message Not supported
Server Settings
Locations NodeConstants.NODE SERVER LOCATION
Database NodeConstants.ROOT
Preferences NodeConstants.NODE PREFERENCES
Licenses NodeConstants.NODE SERVER LICENSES
NodeConstants.NODE_USER_LICENSES
Task Monitor Not supported
Task Configuration Not supported
Example
Example Roles Not supported
Example Privileges Not supported
Example Criteria Not supported

Agile Web Client allows you to view and edit system and user settings by choosing Admin and
Settings from the menu, respectively. The following table identifies how Agile Web Client
administrative functionality maps to the Agile API.

v9.3.1.1

339

SDK Developer Guide - Using Agile APIs

Agile Web Client Node

Agile APl equivalent

Tools > My Settings

User Profile

User.General Info page

Change Password

IUser.changeLoginPassword () and
IUser.changeApprovalPassword ()

Transfer Authority

Not supported

Organize Bookmarks

My-Inbox folder

Organize Searches

Searches folder

Organize Reports

Not supported

Personal Groups

My-Inbox folder

Deleted Personal Groups Not supported
Personal Criteria Not supported
Personal Supplier Groups Not supported

Tools > Administration > Web Client Settings

Themes

Not supported

Tools > Administrator > User Settings

Users

Create a query of users

User Groups

Create a query of user groups

Supplier Groups Not supported
Deleted Users Not supported
Deleted User Groups Not supported
Dashboard Configuration Not supported

Admin nodes in Agile PLM Clients do not have names that match up identically to their respective
NodeConstants. For example, the Notifications node in Agile Java Client is equivalent to
NodeConstants.NODE NOTIFICATION TEMPLATES. Similarly, the hierarchy of nodes that are
represented in the Agile PLM database does not exactly match Agile Java Client node hierarchy.

If your Agile API program provides a tree view of the Agile PLM administrative nodes, you can use
the view to interactively retrieve INode objects. From each INode object you can get the child
nodes. If you continue to traverse the administrative node hierarchy, you can reach all node levels.

The following example shows how to retrieve the root node and its children, thus displaying the top-
level nodes on the Agile Application Server.

Example: Retrieving top-level nodes
private void getTopLevelNodes () throws APIException ({

INode root =

m_admin.getNode(NodeConstants.ROOT);

if (null != root) {

System.out.println(root.getName() + ", " + root.getId());

340

Agile Product Lifecycle Management

Chapter 20: Performing Administrative Tasks

Collection childNodes =
root .getChildNodes();

for (Iterator it =
childNodes.iterator () ;it.hasNext ();) {

INode node =

(INode) it .next () ;
System.out.println(node.getName() + ", " + node.getId());

}
}
}

Note When you call getChildNodes () on the root node, the results include several
undocumented Agile PLM nodes. Any undocumented nodes are not supported by the
Agile API.

For faster access, you can also retrieve a node by specifying its node ID constant. The
NodeConstants class lists all administrative nodes that are directly accessible. The following
example shows how to retrieve the SmartRules node and its properties.
Example: Retrieving SmartRules values
private void getSmartRules () throws APIException (
//Get the SmartRules node in Agile Administrator
INode node = m_admin.getNode(NodeConstants.NODE_SMARTRULES) ;
System.out.println ("SmartRules Properties");
//Get SmartRules properties
IProperty[] props = (IProperty[])node.getProperties();
for (int i = 0; i < props.length; i++) {
System.out.println("Name : " + props[i] .getName()) ;
Object value = props[i] .getValue() ;
System.out.println("Value : " + value);

}
}

Another way to get a node is to locate a parent node and then get one of its children using the
ITreeNode.getChildNode () method. The getChildNode () method lets you specify a node
by name or ID. You can also specify the path to a subnode, separating each node level with a slash
character (/). The following example shows how to use the getChildNode () method to retrieve a
node.

Example: Retrieving nodes using ITreeNode.getChildNode()

private INode getChildNode (INode node, String childName) throws
APIException {

Node child = (INode) (node.getChildNode(childName)); return child;

v9.3.1.1 341

SDK Developer Guide - Using Agile APIs

Working with the Classes Node

The Classes node and its subnodes are similar to the IAgileClass objects that are returned by
the IAdmin.getAgileClasses () method. The difference is that getAgileClasses () returns
several virtual classes, such as Item and Change, that are not represented as nodes. To modify the
properties of the attribute of a particular node, Agile recommends using the
IAdmin.getAgileClasses () or IAdmin.getAgileClass () methods. Although it's possible
to modify a subclass by traversing the Classes node and its subnodes, it is much easier to work
with IAgileClass objects. For more information, see Managing Agile PLM Classes on page 342.

Managing Agile PLM Classes

The Agile Classes node provides a framework for classifying Agile PLM objects, such as parts,
changes, and packages. Using Agile Java Client, you can define new subclasses for your
organization. Although you can'’t use the Agile API to create new subclasses, you can read or
modify any of the existing subclasses. For example, you can customize a subclass by defining the
attributes that are visible in each table or on each page.

The Agile PLM classes framework is based on the types of objects that are created in Agile PLM.
The objects that are available on your Agile PLM system depend on the Agile PLM agreement with
Oracle.

Each Agile PLM class has at least one subclass. The following table lists Agile PLM base classes,
classes, and Agile-supplied subclasses. Your Agile PLM system may include other user-defined
subclasses.

Base Class Classes Predefined Subclasses
Changes Change Orders ECO
Change Requests ECR
Deviations Deviation
Manufacturer Orders MCO
Price Change Orders PCO
Site Change Orders SCO
Stop Ships Stop Ship
Customers Customers Customer
Declarations Homogeneous Material Declarations Homogeneous Material Declaration
IPC 1752-1 Declarations IPC 1752-1 Declaration
IPC 1752-2 Declarations IPC 1752-2 Declaration
JGPSSI Declarations Japan Green Procurement Survey
Standardization Initiative Declaration
Part Declarations Part Declaration
Substance Declarations Substance Declaration

342 Agile Product Lifecycle Management

Chapter 20: Performing Administrative Tasks

Base Class Classes Predefined Subclasses
Supplier Declarations of Conformance Supplier Declaration of Conformance
Discussions Discussions Discussion
File Folders File Folders File Folder

Historical Report File Folders

Schedule Generated

User Saved
Items Documents Document
Parts Part

Manufacturer Parts

Manufacturer Parts

Manufacturer Part

Manufacturers Manufacturers Manufacturer
Packages Packages Package
Prices Published Prices Contract

Published Price

Quote Histories

Quote History

Product Service Requests

Non-Conformance Reports

NCR

Problem Reports

Problem Report

Projects Activities Phase
Program
Task
Gates Gate
Quality Change Requests Audits Audit
Corrective and Preventive Actions CAPA

Reportsl Custom Reports Custom Report
External Reports External Report
Standard Reports Administrator Report
Standard Report
Requests for Quote Requests for Quote RFQ
RFQ Responses RFQ Responses RFQ Response
Sites Sites Site

Sourcing Projects

Sourcing Projects

Sourcing Project

Specifications Specifications Specification
Substances Materials Material
Subparts Subpart

v9.3.1.1

343

SDK Developer Guide - Using Agile APIs

Base Class Classes Predefined Subclasses
Substance Groups Substance Group
Substances Substance
Suppliers Suppliers Broker

Component Manufacturer

Contract Manufacturer

Distributor

Manufacturer Representative

Transfer Orders Automated Transfer Orders ATO
Content Transfer Orders CT0

User Groups User Groups User Group

Users Users User

Note Report objects are not supported by the Agile API.

Concrete and Abstract Classes

Agile PLM super classes, such asltem and Change, are abstract classes that serve as the parent
classes for other abstract classes, such as Parts Class, Documentation Class, and Engineering
Change Order Class. Abstract superclasses and classes cannot be instantiated.

Concrete classes are user-defined subclasses that can be instantiated by the Agile APIl. Examples

of concrete classes are Part, Document, ECO, and ECR.

When you load an object using the TAgileSession.getObject () method, you can specify

either a concrete or an abstract Agile PLM class. For example, all of the following methods load the

same specified part.
Example: Loading an object using abstract or concrete classes
try {
ITtem item;
// Load a part using the Item base class
item =
(ITtem)m session.getObject(ltemConstants.CLASS_ITEM_BASE_CLASS,
'"1000-02") ;
// Load a part using the Parts class
item =
(ITtem)m session.getObject(ltemConstants.CLASS PARTS_CLASS, '1000-
02);
// Load a part using the Part subclass
item =
(ITtem)m session.getObject(ltemConstants.CLASS_PART, '1000-02');
} catch (APIException ex) {
System.out.println (ex) ;

344 Agile Product Lifecycle Management

Chapter 20: Performing Administrative Tasks

}

To get an array of classes, use the TaAgileClass.getAgileClasses () method. You can
specify a range of classes to return. For example, specify IAdmin.CONCRETE for the range
parameter to return only concrete classes or IAdmin.ALL to return all classes.
Example: Getting classes

private void getConcreteClasses() throws APIException {

IAgileClass[] classes =
m_admin.getAgileClasses(1Admin.CONCRETE);

for (int i = 0; i < classes.length; i++) {
System.out.println("Class Name : " + classes[i].getName());
System.out.println("ID : " + classes([i].getId());
}

}

void getAllClasses() throws APIException ({

IAgileClass([] classes =
m_admin.getAgileClasses(l1Admin.ALL);

for (int i = 0; i < classes.length; i++) {
System.out.println("Class Name : " + classes[i] .getName()) ;
System.out.println("ID : " + classes[i].getId());

}
}

When you create a new object using the IAgileSession.createObject () method, you must
specify a concrete Agile PLM class, that is, one of the user-defined subclasses. Remember,
abstract classes cannot be instantiated. The following example shows how to create an object of
the Part subclass.

Example: Creating a part

try {
Map params =
new HashMap () ;

params.put (ItemConstants.ATT TITLE BLOCK NUMBER, "1000-02");

Iltem item =
(ITtem)m session.createObject(ltemConstants.CLASS_PART, params);

} catch (APIException ex) {
System.out .println (ex) ;

}
Referencing Classes

You can reference Agile PLM classes in the following ways:
o by object (an IAgileClass)

@ by class ID constant, such as ItemConstants.CLASS PART of
ChangeConstants.CLASS_ECO. All Agile API constants are contained in classes that have a
suffix name “Constants.” For example, ItemConstants contains all constants related to
IItem oObjects.

@ by class name, such as “Part” or “ECO”".

v9.3.1.1 345

SDK Developer Guide - Using Agile APIs

In general, avoid referencing classes by name for the following reasons:
o Class names can be modified.

o Class names are not necessarily unique. It's possible to have duplicate class names.
Consequently, if you reference a class by name you may inadvertently reference the wrong
class.

o Class names are localized; that is, the names are different for different languages.

Identifying the Target Type of a Class

Each class has a specified target type, which is the type of Agile PLM object that the class can
create. For example, the target type for the Part subclass is ITtem.OBJECT TYPE. You can use
the target type to classify the user-defined subclasses that have been defined in your Agile PLM
system. For example, if you want to create a user interface that displays item classes, you can list
the classes at run time by selecting those with the target type IItem.OBJECT TYPE.
Example: Getting the target type for a class
private void getConcreteltemClasses () throws APIException ({
IAgileClass([] classes =
m_admin.getAgileClasses(1Admin.CONCRETE);
for (int i = 0; i < classes.length; i++) {
if (classes[i] .getTargetType()
== IItem.OBJECT TYPE) {

System.out.printIn("Class Name : " + classes[i].getName()) ;
System.out.println("ID : " + classes[i] .getId());

}
}
}

There are two predefined concrete classes for the Item class, Document and Part. If your company
hasn’t added any Item subclasses to the Agile PLM system, the code in the previous example
should print the following results:

Class Name : Document

ID : 9141
Class Name : Part
ID : 10141

Working with Attributes

Each object that you can retrieve in an Agile API program has a set of attributes. An attribute
represents metadata for a particular business object. It defines the properties and values of the
object. For example,

“Title Block.Number,” “Title Block.Description,” and “Title Block.Part Category” are three of the Title
Block attributes for a Part.

When you create an instance of an object in your program, each IAttribute in your object
classes is equivalent to a field, or an 1Cell object. IAttribute objects directly correspond with
ICell objects for an object that you created or opened in your program. For more information
about ICell objects, see Working with Data Cells on page 91.

346 Agile Product Lifecycle Management

Chapter 20: Performing Administrative Tasks

Referencing Attributes

You can reference Agile PLM attributes in the following ways:
o by object (an IAttribute)

= Dy attribute ID constants

All Agile API constants, including attribute ID constants, are contained in classes that have the
suffix “Constants.” For example, TtemConstants contains all constants related to IItem
objects.

= Dy fully qualified name, such as "Title Block.Number" or "Cover Page.Change Category™"

= by short name, such as “Number”. However, attribute short names are not unique in Agile PLM.
If you are referencing multiple attributes, you may run into a conflict if two different attributes
have the same short name.

Note Because attribute names can be modified and referencing attributes by ID number or
constant is difficult to identify or remember, Agile recommends using the APIName filed
for this purpose. For information and procedures, see Accessing PLM Internal Data with
Field on page 125. Many of the examples in this manual reference attributes by name
because they were constructed before the introduction of this field.

The following example shows how to reference an attribute ID constant.

Example: Referencing an attribute ID constant

Integer attrID =
ItemConstants.ATT TITLE BLOCK DESCRIPTION;

try {
v = item.getValue (attrID) ;
} catch (APIException ex) {

System.out.println (ex) ;
}
A fully qualified attribute name is a string with the following format:
TableName.AttributeName

TableName is the name of the table in which the attribute appears. AttributeName is the
current value for the Name property of an attribute. All attributes have default names, but the names
can be changed. In particular, Page Two and Page Three attributes that have been made visible in
your Agile PLM system are likely to have been assigned more meaningful names than “Text01,”
“List01,” and “Date01.”

“Cover Page.Reason for Change” and “Title Block.Number” are two examples of fully qualified
attribute names.

The following example shows how to reference to a fully qualified attribute name.
Example: Referencing an attribute name

Object v;

String attrName = "Title Block.Description";

try {
v = item.getValue (attrName) ;

v9.3.1.1 347

SDK Developer Guide - Using Agile APIs

} catch (APIException ex) {
System.out.println (ex) ;

}

Note Attribute names are case-sensitive.

Retrieving Attributes

IAttribute objects are associated with a particular subclass. For example, the attributes for a
Part are different from those of an ECO. Therefore, if you know the subclass of an object you can
retrieve the list of attributes for it. The following table lists methods that can be used to retrieve

attributes.

Method Description
IAgileClass.getAttribute () Retrieves the specified IAt t ribute object for a class
IAgileClass.getAttributes () Retrieves an array of IAt tribute objects for all tables of a class
IAgileClass.getTableAttributes () Retrieves an array of IAttribute objects for a specified table of

the class
ITable.getAttributes () Retrieves an array of IAt tribute objects for a table
ICell.getAttribute () Retrieves the TAt tribute object for a cell

The following example shows how to retrieve BOM table attributes.
Example: Retrieving BOM table attributes for the Part subclass
try {
// Get the Part subclass

IAgileClass partClass =
(IAgileClass)m admin.getAgileClass (ItemConstants.CLASS PART) ;

// Get the collection of BOM table attributes for the Part subclass

IAttribute[] attrs =
partClass.getTableAttributes(ltemConstants.TABLE_BOM);

} catch (APIException ex) {
System.out.println (ex) ;
}
Another way to retrieve the attributes for a particular table is to first get the table, then get its
attributes using the ITable.getAttributes () method.
Example: Retrieving the collection of BOM table attributes from the table
try {
// Get Part P200

IItem item =
(ITtem)m session.getObject (IItem.OBJECT TYPE, "P200");

// Get the BOM table

ITable bomTable =
item.getTable (ItemConstants.TABLE BOM) ;

// Get BOM table attributes

IAttribute[] attrs =
bomTable.getAttributes();

348 Agile Product Lifecycle Management

Chapter 20: Performing Administrative Tasks

} catch (APIException ex) {
System.out.println (ex) ;

}
Retrieving Individual Attributes

If you know the attribute you want to retrieve, you can get it by using the
IAgileClass.getAttribute () method. The following example shows how to get the “Cover
Page.Reason Code” attribute for an ECO.

Example: Retrieving the “Cover Page.Reason Code” attribute
try {
// Get the ECO subclass

IAgileClass classECO =
m_admin.getAgileClass ("ECO") ;

// Get the "Cover Page.Reason Code" attribute

IAttribute attr =
classECO.getAttribute(ChangeConstants.ATT_COVER_PAGE_REASON_CODE);

// Get available values for Reason Code

IAgileList availValues =
attr.getAvailablevValues () ;

} catch (APIException ex) {
System.out.println (ex) ;

}
Editing the Propenty of an Attribute

Agile PLM classes have attributes, and attributes have properties. To modify the properties of an
attribute for a particular subclass, follow these steps:

1. Usethe IAdmin.getAgileClass () method to get an Agile PLM class.
Use the IAgileClass.getAttribute () method to get an attribute for the class.
Use the IAttribute.getProperty () method to get a property for the attribute.

Use the IProperty.getVvalue () method to get the current value for the property.

a > w DN

Use the IProperty.setValue () method to set a new value for the property.

Working with User-Defined Attributes

For each Agile PLM subclass, you can define additional attributes on the Page Two and Page
Three tables. These user-defined attributes, also known as customer flex fields, behave the same
as predefined Agile PLM attributes. You can retrieve them and edit their properties.

User-defined attributes are custom extensions to the Agile PLM system. Consequently, their IDs are
not included in the CommonConstants class. However, you can view the base ID for any attribute,
including user-defined attributes, in Agile Java Client. You can also write a procedure to
programmatically retrieve the ID for a user-defined attribute at run time.

v9.3.1.1 349

SDK Developer Guide - Using Agile APIs

Working with Properties of Administrative Nodes

If you use the Agile API to retrieve a INode object, you can also view the INode's property values.
An IProperty object represents a single property for an administrative node. To return an array of
all properties for a node, use the INode .getProperties () method.

The following example shows how to get the property value for the Reminder/Escalation Weekend
Setting preference. The last part of this example converts the available list values for this SingleList
property to a comma-delimited string.
Example: Getting Property values
private void getReminderEscalationWeekendProp() throws APIException ({
//Get the General Preferences node

INode node =
m_admin.getNode (NodeConstants.NODE PREFERENCES) ;

//Get the Reminder/Escalation Weekend Setting property

IProperty prop =
node .getProperty(PropertyConstants.PROP_REMINDER_ESCALATION_WEEKEND
SETTING) ;

//Get the Reminder/Escalation Weekend Setting property value

Object wvalue =
prop.getValue();
System.out.println("Reminder/Escalation Weekend Setting : " +
value) ;

IAgileList avail =
prop.getAvailablevValues() ;

if (avail != null) {
String strAvail =

listToString(avail) ;
System.out.println("Available Values : " + strAvail);

}

private String listToString(IAgileList list)
throws APIException {String strList = "";

Collection children =
list.getChildNodes () ;

for (Iterator it =
children.iterator () ;it.hasNext ();) {

IAgileList childList =
(IAgilelList)it.next () ;
strList =
strList + childList.getValue() ;
if (it.hasNext()) {
strList = strList + ", ";

}
}

return strList;

350 Agile Product Lifecycle Management

Chapter 20: Performing Administrative Tasks

The singlelList and MultiList properties are different from other types of properties. You
cannot use the IProperty.getValue () and IProperty.setValue () methods to directly
modify a property that contains a list of values. Instead, you use the
IAgileList.setSelection () method to select a list node, and then use the
IProperty.setValue () method to set the value. For more information about how to modify
SingleList and MultiList properties, see Getting and Setting List Values on page 98.

Managing Users

Users are data objects that you can create, like items and changes. Consequently, you can work
with users directly without traversing the administrative node hierarchy. If you have the proper Agile
PLM privileges, you can create, modify, and delete users. For example, you could create a program
that periodically synchronizes Agile PLM users with data available from a corporate directory.

Getting All Users

To retrieve all Agile PLM users, run a query for User objects. The following example retrieves all
users and prints the username, first name, and last name for each user.
Example: Getting all users
private void getAllUsers() throws APIException
IQuery g =

(IQuery)m session.createObject (IQuery.OBJECT TYPE, "select * from
[Users]");

ArrayList users =
new ArrayList () ;
Iterator itr =
g.execute () .getReferentIterator() ;
while (itr.hasNext()) {

users.add (itr.next ()) ;

}

for (int i = 0; i < users.size(); i++) {

IUser user =
(IUser)users.get (i) ;

System.out.println(
user.getValue (UserConstants.ATT GENERAL INFO USER_ID) + ", " +
user.getValue (UserConstants.ATT GENERAL INFO FIRST NAME) + ", " +
user.getValue (UserConstants.ATT GENERAL INFO LAST NAME)
)i

v9.3.1.1 351

SDK Developer Guide - Using Agile APIs

Creating a User

A user is like other data objects that you can create with the Agile API. To create a user, you define
the user’s parameters and pass them to the IAgileSession.createObject () method. The
required parameters you must specify are username and login password. You can also specify
other user attributes, which are listed in the UserConstants class.

Note If an LDAP directory server is used to authenticate users for your Agile PLM system, you
can create only supplier users, which have restricted access to the Agile PLM system.
You must create and maintain other users on the directory server.

The passwords you specify for a new user are default values. If you specify an approval password,
it must be different from the login password unless the

UserConstants.ATT GENERAL INFO USE LOGIN PASSWORD FOR APPROVAL cell is set to
“Yes.” The user can change passwords later.

Example: Creating a user

public IAgileSession m_session;
public IAdmin m_admin;

public AgileSessionFactory m_ factory;

private void userTest () {

try {
//Add code here to log in to the Agile Application Server
//After logging in, create a new user IUser user =
createUser ("akurosawa") ;

} catch (APIException ex) {
System.out .println (ex) ;

}
}

private IUser createUser (String newUser) throws APIException ({
//Create the new user

Map params =

new HashMap () ;
params.put (UserConstants.ATT GENERAL INFO USER ID, newUser) ;
params.put (UserConstants.ATT LOGIN_ PASSWORD, "agile");
IUser user =

(IUser) session.createObject

(UserConstants.CLASS USER, params) ;

return user;

}

By default, when you create a new user it's assigned the Concurrent user category and the My User
Profile role, a combination that allows the user to view objects but not to create, approve, or modify
them. To create and modify objects, the user must be assigned roles with the appropriate create or
modify privileges. For an example showing how to change a user’s Role settings, see Configuring

User Settings on page 354.

352 Agile Product Lifecycle Management

Chapter 20: Performing Administrative Tasks

Creating Users and Requiring Password Modification at Login

When creating a user, you can require the new user to change the assigned password which are
usually temporary for a new and more secure one at login. To create such a user, it is necessary to
define the user’s parameters as explained in Creating a User and passing a flag to force password
change password at login. This illustrated in the following code sample.

Example: Creating a user and requiring password modification at login
String username = "USER" + System.currentTimeMillis();
HashMap params = new HashMap() ;
params.put (UserConstants.ATT GENERAL INFO USER_ID, username) ;
params.put (UserConstants.ATT GENERAL INFO FIRST NAME, username) ;
params.put (UserConstants.ATT GENERAL INFO LAST NAME, username) ;
params.put (UserConstants.ATT LOGIN PASSWORD, "agile");
params.put (UserConstants.ATT APPROVAL PASSWORD, "agile2");
params.put (UserConstants.ATT MUST CHANGE PWD AT LOGON, "true");

IUser user = (IUser) session.createObject (UserConstants.CLASS USER,
params) ;
System.out.println("Created user: " + user.getName()) ;

Creating a Supplier User

Supplier users are assigned to the Restricted user category by default, which restricts their access
to the Agile PLM system. The Restricted user category allows supplier users to respond to RFQs
and use other features of Agile Product Cost Management (PCM).

To create a supplier user, define the user’s parameters and pass them to the
IAgileSession.createObject () method. You must specify the username, login password,
and supplier name. You can also specify other user attributes, which are listed in the
UserConstants class.
Example: Creating a supplier user
private IUser createSupplierUser (String userName, String supplier)
throws APIException

HashMap userParams =
new HashMap () ;
userParams.put (UserConstants.ATT GENERAL INFO USER ID, userName) ;
userParams.put (UserConstants.ATT LOGIN PASSWORD, "agile");
userParams.put (UserConstants.ATT SUPPLIER, supplier);
return (IUser)m session.createObject (UserConstants.CLASS USER,
userParams) ;

}
Saving a User to a New User

You can use the IDataObject.saveAs () method to save an existing user to a new user. The
saveAs () method serves as a handy shortcut because it allows you to assign a new user the
same roles, privileges, and sites as an existing user. When you use the saveAs () method to save
a user, you must specify parameters for the new user’s user name and login password.
Example: Saving an object as a new object

private void saveAsUser (IUser user, String newUserName) {

try {
//Set parameters for the new user

v9.3.1.1 353

SDK Developer Guide - Using Agile APIs

Map params =
new HashMap () ;
params.put(UserConstants.ATT_GENERAL_INFO_USER_ID, newUserName);
params.put(UserConstants.ATT_LOGIN_PASSWORD, "agile'™);

// Save the new user
user.saveAs(UserConstants.CLASS_USER, params);
} catch (APIException ex) {
System.out.println (ex) ;

}
}

Checking for Expired Passwords

You can set Agile PLM passwords to expire at a specified time. When a user’s login password
expires, the user cannot log in to the Agile Application Server. If the login password has expired, the
Agile API program can allow the user to specify a new password. The following example shows how
to check for an Agile API error related to an expired password.

Example: Checking for Expired Passwords

HashMap params = new HashMap () ;
params.put (AgileSessionFactory.USERNAME, user.getName()) ;
params.put (AgileSessionFactory.PASSWORD, "agile");
params.put (AgileSessionFactory.URL, "http://localhost/Agile") ;

// Pass one element array to get the login exception
APIException[] exception = new APIException[1l];
params.put (AgileSessionFactory.STATUS, exception);
IAgileSession session=AgileSessionFactory.createSessionEx (params) ;
System.out.println (exception[0] .getErrorCode()) ;

// When error code is ExceptionConstants.APDM PWDNOCHANGE
If (exception[0] .getErrorCode () ==
ExceptionConstants.APDM PWDNOCHANGE) {

// Prompt for new password and change the passsword
Session.getUser () .changeLoginPassword (oldPassword, newPassword) ;
}

Configuring User Settings

An IUser object, unlike administrative nodes, is a dataobject. Therefore, an TUser object has data
cells, not properties, and you use the ICell interface to configure a user’s settings. The following
example shows how to get visible cells on the General Info and Page Two tables for a user. To
access cells on other user tables, use the IDataObject .getTable () method to load the table.
Example: Getting user cells for General Info and Page Two
private void getUserCells (IUser user) throws APIException ({
ICell[] cells = user.getCells();
for (int i = 0; i < cells.length; i++) {

System.out.println(cells[i] .getName() + " : " +
cells[i] .getValue()) ;

}
}

354 Agile Product Lifecycle Management

http://localhost/Agile

Chapter 20: Performing Administrative Tasks

Two important settings for a user are User Category and Roles. The User Category setting defines
the broad range of actions a user can perform on the Agile PLM system. Select from one of the
following User Category values:

o Power — User can log in to the server at any time with unrestricted use of the Agile PLM system.
Power users are not subject to the limited number of concurrent users.

= Concurrent — User can log in to the server only if a concurrent user agreement is available.

Note Licenses are controlled by your agreement with Oracle.

o Restricted — User has restricted access to the Agile PLM system. Supplier users are by default
assigned the Restricted category, which allows them to respond to RFQs and use other
features of Agile Product Cost Management (PCM). Restricted users are not subject to the
limited number of concurrent users.

The Roles setting further defines the capabilities of a user, assigning roles and privileges. A user
won't be able to create objects without the proper roles and privileges. For more information about
Agile PLM user roles, and privileges, refer to the Agile PLM Administrator Guide.

The following example shows how to set a user’s User Category and Roles settings.

Example: Setting the User Category and Roles settings for a user
private void setCategory(IUser user) throws APIException

//Get the User Category cell

ICell cell =
user.getCell (UserConstants.ATT GENERAL INFO USER_CATEGORY) ;

//Get the available values for the cell

IAgilelList license =
cell.getAvailableValues () ;

//Set the selected value to "Concurrent"
license.setSelection(new Object[] { "Concurrent" });

//Change the cell value
cell.setValue (license) ;
}
private void setRoles (IUser user) throws APIException {
//Get the Role cell

ICell cell =
user.getCell (UserConstants.ATT GENERAL INFO ROLES) ;

//Get the available values for the cell

IAgileList roles =
cell.getAvailableValues();

//Set the selected roles to Change Analyst and Administrator
roles.setSelection(new Object[] {''Change
Analyst"”,"Administrator™,"My User Profile"});

//Change the cell value
cell.setValue(roles);

v9.3.1.1 355

SDK Developer Guide - Using Agile APIs

Resetting User Passwords

Administrators with User Administrator privileges can reset the password of other users to a new
value. Users without this privilege are not able to reset user passwords. This feature enables
resetting large numbers of passwords in a batch mode, which is preferable to manually, using them
one at a time using Ul.

The changeLoginPassword () method which supports this feature allows passing the null value
instead of the current password value. The following example shows how to use this method to
reset a user’s password using null instead of the current password.
Example: Resetting a password to a new value

public void changelLoginPassword (null, String newPassword)

throws APIException;
Deleting a User

To delete a user, use the IDataObject.delete () method. Like other dataobjects, an object
deleted for the first time is “soft-deleted,” which means it is disabled but not removed from the
database. The Agile Application Server does not allow you to permanently delete a user.

Example: Deleting a user

private void removeUser (IUser user) throws APIException (
user.delete();
user = null;

}

Note In Agile Java Client, deleted users can be listed by choosing Admin > User Settings >
Deleted Users.

Managing User Groups

A user group is an object that contains a list of Agile PLM users. You can use user groups to define
project teams, departments, and global groups and their assigned users. User groups are not site-
related, like items and changes, but you can create groups of users based on their location.
Whenever you add a user to a user group, that change is reflected in the user’'s Groups setting,
whose attribute ID is UserConstants.ATT GENERAL INFO GROUPS.

Note In Agile Clients such as Agile Web Client, you can send an object, such as a change, to
a user group. The Agile API does not support sending objects to user groups. However,
you can retrieve users from the Users table of a User Group object and then send them
an object.

Getting All Users Groups

To retrieve all Agile PLM user groups, run a query for User Group objects. You can iterate through
the user groups to find a particular group. The following example retrieves all user groups and prints
the name, description, maximum number of users, and enabled status for each user group.

356 Agile Product Lifecycle Management

Chapter 20: Performing Administrative Tasks

Example: Getting all user groups
private void getAllUserGroups () throws APIException ({

IQuery g =
(IQuery)m session.createObject (IQuery.OBJECT TYPE, "select * from
[User Groupsl");

ArrayList groups = new ArrayList();

Iterator itr =
g.execute () .getReferentIterator() ;

while (itr.hasNext()) {
groups.add(itr.next ()) ;

for (int i = 0; i < groups.size(); i++) {

IUserGroup ug =

(IUserGroup)groups.get (i) ;

System.out .println (
ug.getValue (UserGroupConstants.ATT GENERAL INFO NAME) + ", " +
ug.getValue (UserGroupConstants.ATT GENERAL INFO DESCRIPTION) + ", "
+
ug.getValue (UserGroupConstants.ATT GENERAL INFO MAX NUM OF NAMED USE
RS) + ", " +
ug.getValue (UserGroupConstants.ATT GENERAL INFO_ STATUS)

)i

}

}

Creating a User Group

A user group, like a user, is a dataobject and not an administrative node on the Agile Application
Server. To create a user group, you define the user group’s parameters, such as its name, and
pass the parameters to the IAgileSession.createObject () method. The only required
parameter you must specify is the name, whose attribute ID is

UserGroupConstants.ATT GENERAL INFO NAME. You can also specify other user attributes,
which are listed in the UserGroupConstants class. To enable a user group, make sure the
Enabled cell is set to Yes.

After creating a user group, you need to add users to the Users table to make the group meaningful.
To create a new row in the Users table, use the ITable.createRow (java.lang.Object)
method.

Example: Creating a user group

public IAgileSession m _session;

public IAdmin m_admin;

public AgileSessionFactory m factory;

private void userGroupTest () throws APIException ({
//Add code here to log in to the Agile Application Server

//After logging in, create a new user group IUserGroup group =
createGroup ("Swallowtail Project");

//Add users to the Western project group
IUser[] selUsers = new IUser[] {
m_session.getObject (IUser.OBJECT TYPE, "jford"),

v9.3.1.1 357

SDK Developer Guide - Using Agile APIs

m_session.getObject (IUser.OBJECT TYPE, "hhawkes"),
m_session.getObject (IUser.OBJECT TYPE, "speckinpah")
}i
addUsers (group, selUsers) ;
}
private IUserGroup createGroup (String groupName) throws APIException
//Create the user group
IUserGroup group =

(IUserGroup)m_session.createObject(UserGroupConstants.CLASS_USER_GROUP,
groupName) ;
//Enable the user group

ICell cell =
group.getCell (UserGroupConstants.ATT GENERAL INFO STATUS) ;

IAgileList list = cell.getAvailableValues() ;
list.setSelection (new Object[] { "Active" });
cell.setValue(list) ;

return group;

}

private void addUsers (IUserGroup group, IUser[] users) throws
APIException (

ITable usersTable = group-getTable(UserGroupConstants.TABLE USERS);
for (int i = 0; i < users.length; i++) {
IRow row = usersTable.createRow(users[i]);

}
}
User groups can be global or personal. Global user groups are accessible to all Agile PLM users.
Personal user groups are accessible only to the person who created the group. The following
example shows how to make a user group global.
Example: Making a user group global
private void setGlobal (IUserGroup group) throws APIException ({
//Get the Global/Personal cell

ICell cell =
group.-getCell (UserGroupConstants.ATT_GENERAL_INFO_GLOBAL_PERSONAL) ;

//Get the available values for the cell
IAgileList values = cell.getAvailablevalues();

//Set the selected value to "Global"
values.setSelection(new Object[] { "Global™ });

//Change the cell value
group.setValue(UserGroupConstants .ATT_GENERAL_INFO_GLOBAL_PERSONAL,
values);

}

358 Agile Product Lifecycle Management

Chapter 20: Performing Administrative Tasks

Adding a User Group to the User's User Group Table

IUserGroup can not be passed to createRow () to add a user group to the user’s user group
table. You must use a Map as shown in the following example.

Example: Using a Map to add a User Group to a User Group Table

ITable ugTable = user.getTable (UserConstants.TABLE_USERGROUP) ;

Map map = nNew HashMap() ;

map.put (UserConstants.ATT_USER_GROUP_GROUP_NAME, ug.getName ()) ;
ugTable.createRow (map) ;

Listing Users in a User Group

The users contained within a user group are listed on the Users table. Therefore, to get the list of
users in the user group, use the IDataObject.getTable () method and then iterate over the
table rows to access data for each user. The following example shows how to list the users in a
user group.
Example: Listing the users in a user group
private void listUsers (IUserGroup group) throws APIException ({
ITable usersTable =
group -getTable(UserGroupConstants.TABLE_USERS) ;

Iterator it =
usersTable.iterator () ;

while (it.hasNext()) {
IRow row = (IRow)it.next();

System.out.println(row.getValue (UserGroupConstants.ATT USERS USER NA

ME)) ;

}
}

v9.3.1.1

359

Appendix A
Mapping Agile PLM Client Features to Agile API

This Appendix includes the following:

LOGIN FRAIUMEScvvuvveeisesceeiisets i ses sttt s et a s R s e s st n e
GBNEIAI FRAIUIES.......ecveeiceeee ettt sttt et sttt e e st e e st bt st e b et s b et st e b e st et e s e et et et e st abe st st et st ese st e b e st abe st arns
YT (o R ST LU= TSRS
Attachment Features
WOrkflow FEAtUIES.......cccvveveee e,
Manufacturing Site FEatures..........ccoevurvrrrrernnnn.
0] [0 [T LT (11T
Projects Features
AGMINISIIALIVE FEAIUIEScvietiicti ettt sttt ettt b e e bt b e b e st et e st et e et e bs st et s sbebe st absseab et sbessseebn st

Login Features

The following table lists general features for logging in to the Agile Application Server.

Feature Equivalent Method(s)
Get an instance of the Agile Application Server session AgileSessionFactory.getInstance ()
Create a session and log in to the Agile Application AgileSessionFactory.createSession ()
Server
Close a session and disconnect from the Agile IAgileSession.close ()

Application Server

v9.3.1.1

361

SDK Developer Guide - Using Agile APIs

General Features

The following table lists the General features that apply to all Agile PLM business objects.

Feature

Equivalent Method(s)

Create a new object

TAgileSession.createObject ()

Load an existing object

IAgileSession.getObject ()

Save an object as another object

IDataObject.savelAs ()

Delete an object

IDataObject.delete ()
IFolder.delete()
IQuery.delete ()

Undelete an object

IDataObject.undelete ()

Get a cell value for an object

IDataObject.getValue ()

Set an cell value for an object

IDataObject.setValue ()

Get a table for an object

IDataObject.getTable ()

Add a row to a table

ITable.createRow ()

Remove a row from a table

ITable.removeRow ()

Get subscriptions for an object.

ISubscribable.getSubscriptions ()

Enable a subscription event.

ISubscription.enable ()

Modify subscriptions for an object.

ISubscribable.modifySubscriptions ()

Search Features

Table below lists the supported Search (Query) features.

Feature

Equivalent Method(s)

Set the name of a search

IQuery.setName ()

Make the search public or private

IQuery.setQueryType ()

Set the search type for a query (object search or Where Used
search)

IQuery.setSearchType ()

Set and get search criteria

IQuery.setCriterial()
IQuery.getCriterial)

Run a search

IQuery.execute ()

Make a search case-sensitive

IQuery.setCaseSensitive ()

Delete a search

IQuery.delete ()

Save a search as another search

IQuery.savels ()

362

Agile Product Lifecycle Management

Appendix A

Attachment Features

Table below lists features for working with attachments and file folders.

Feature

Equivalent Method(s)

Download all files contained in a file folder

IFileFolder.getFile ()

Download a single file listed on the Attachments tab

IAttachmentFile.getFile ()

Check out a file folder

IFileFolder.checkOut ()

Check in a file folder

IFileFolder.checkIn()

Cancel checkout

IFileFolder.cancelCheckOut ()

Incorporate or unincorporate an item, thereby locking or
unlocking its attachments

IAttachmentContainer.setIncorporated ()

Workflow Features

Table below lists Workflow features for routable Agile PLM objects.

Feature

Equivalent Method(s)

Audit a routable object

IRoutable.audit ()

Change the status of a routable object

IRoutable.changeStatus ()

Send an object to another Agile PLM user(s)

IDataObject.send ()

Approve a routable object

IRoutable.approve ()

Reject a routable object

IRoutable.reject ()

Comment on a routable object

IRoutable.comment ()

Add or remove approvers and observers for a routable object

IRoutable.addApprovers ()
IRoutable.removelApprovers ()

v9.3.1.1

363

SDK Developer Guide - Using Agile APIs

Manufacturing Site Features

The table below lists features for working with manufacturing sites.

Feature

Equivalent Method(s)

Get the current manufacturing site selected for an
item

IManufacturingSiteSelectable.getManufacturingSi
te()

Get all manufacturing sites for an item

IManufacturingSiteSelectable.getManufacturingSi
tes ()

Set an item to use all manufacturing sites.

IManufacturingSiteSelectable.setManufacturingSi
te(
ManufacturingSiteConstants.ALL SITES)

Specify that an item is not site-specific and is
common to all sites.

IManufacturingSiteSelectable.setManufacturingSi
te(
ManufacturingSiteConstants.COMMON_ SITE)

Set an item to use a specific manufacturing site.

IManufacturingSiteSelectable.setManufacturingSi
te(site)

Folder Features

The following table lists the Folder features for working with folders.

Feature

Equivalent Method(s)

Add an item (such as a query) to the folder

IFolder.addChild()

Set the type of folder (public or private)

IFolder.setFolderType ()

Set the folder name

IFolder.setName ()

Get a folder of the current user

IUser.getFolder ()

Remove an item from the folder

IFolder.removeChild()

Clear all objects from the folder

IFolder.clear ()

Delete a folder

IFolder.delete ()

364

Agile Product Lifecycle Management

Appendix A

Projects Features

The following table lists features for working with Projects.

Feature

Equivalent Method(s)

Save a Projects as another Projects or template

IProgram. saveas ()

Reschedule a Projects

IProgram.reschedule ()

Assign users from a resource pool

IProgram.assignUsersFromPool ()

Delegate ownership of a Projects to another user

IProgram.delegateOwnership ()

Substitute Projects resources

IProgram.substituteResource ()

Create a baseline

IProgram.createBaseline ()

Select a baseline view of the Projects

IProgram.selectBaseline ()

Lock or unlock a Projects

IProgram.setLock ()

Reply to a discussion

IMessage.reply ()

Administrative Features

The following table provides the list of features for working with Admin nodes and properties in Agile

Java Client.

Feature

Equivalent Method(s)

Get an administrative node

IAdmin.getNode ()

Get all subnodes (children) of an administrative node

ITreeNode.getChildNodes ()

Get all properties of an administrative node

INode.getProperties ()

Get the value for an administrative node’s property

IProperty.getValue ()

Get the possible values for a list field

IProperty.getAvailableValues ()

Get all Agile PLM classes

IAdmin.getAgileClasses (ALL)

Get all top-level Agile PLM classes

IAdmin.getAgileClasses (TOP)

Get all Agile PLM classes that can be instantiated

IAdmin.getAgileClasses (CONCRETE)

Get the list of subclasses for a specific class

IAgileClass.getSubclasses ()

Get the Autonumber sources for a subclass

IAgileClass.getAutoNumberSources ()

Get an array of attributes for a table

IAgileClass.getTableAttributes ()

Get the metadata for a table

IAgileClass.getTableDescriptor ()

Get the Agile PLM list library

IAdmin.getListLibrary ()

Create a new Agile PLM list

IListLibrary.createAdminList ()

v9.3.1.1

365

SDK Developer Guide - Using Agile APIs

Feature Equivalent Method(s)
Get an Agile PLM list IListLibrary.getAdminList ()
Get all Agile PLM users Create a query of users
Get all Agile PLM user groups Create a query of user groups
Create a user or user group IAgileSession.createObject ()
Set properties of a user or user group IProperty.setValue ()
Change user passwords IUser.changeApprovalPassword ()

IUser.changelLoginPassword ()

366 Agile Product Lifecycle Management

Appendix B

Migrating Release 9.2.1 and Older Table Constants to
Release 9.2.2 or Later

This Appendix includes the following:

= Mapped Pre-Release 9.2.2 Table Constants t0 9.2.2 Table CONSLANLScccovevrrevvncnsieseensees s 367
= Removed Pre-Release 9.2.2 Table CONSIANES ... 370

Information about merging and replacing the Relationship tables first appeared in Accessing the
New and Merged Relationships Tables on page 69. Tables in this appendix list the Release 9.2.2
table constants and table constants that are either merged and mapped into a single table constant,
or mapped into a new table constant.

Mapped Pre-Release 9.2.2 Table Constants t0 9.2.2
Table Constants

This table lists the pre-release 9.2.2 table constants and the new table constants that they are either
merged and mapped into Release 9.2.2, or mapped to in later releases of the SDK.

Pre 9.2.2 Table Constants 9.2.2 Table Constants

@ TABLE RELATIONSHIPSAFFECTEDBY TABLE RELATIONSHIPS
o TABLE RELATIONSHIPSAFFECTS
= TABLE REFERENCES

o ATT RELATIONSHIPS AFFECTED BY CRITERIA | ATT RELATIONSHIPS CRITERIA ME
_MET T B B
e ATT RELATIONSHIPS AFFECTS CRITERIA MET

= ATT_RELATIONSHIPS AFFECTED_ BY_ CURRENT_ | ATT RELATIONSHIPS CURRENT STA

STATUS TUS
© ATT RELATIONSHIPS AFFECTS_ CURRENT STAT

Us
© ATT RELATIONSHIPS AFFECTED BY DATEO1 ATT RELATIONSHIPS DATEO1
© ATT RELATIONSHIPS AFFECTS DATEO1
© ATT RELATIONSHIPS AFFECTED BY DATEO2 ATT RELATIONSHIPS DATEO02
o ATT RELATIONSHIPS AFFECTS_ DATE(2
o ATT RELATIONSHIPS AFFECTED BY DATEO03 ATT RELATIONSHIPS DATEO3
o ATT RELATIONSHIPS AFFECTS DATEO03
o ATT RELATIONSHIPS AFFECTED BY DATEO(4 ATT RELATIONSHIPS DATE04
o ATT RELATIONSHIPS AFFECTS_DATE04
o ATT RELATIONSHIPS AFFECTED BY DATEOS5 ATT RELATIONSHIPS DATEOS5

© ATT RELATIONSHIPS AFFECTS DATEOS

v9.3.1.1 367

SDK Developer Guide - Using Agile APIs

ATT REFERENCES DATEO1l

ATT RELATIONSHIPS DATEO6

ATT REFERENCES DATEO2

ATT RELATIONSHIPS DATEQ7

ATT REFERENCES DATEO03

ATT RELATIONSHIPS DATEOS8

ATT REFERENCES DATEO4

ATT RELATIONSHIPS DATEO9

ATT REFERENCES DATEOS5

ATT RELATIONSHIPS DATE1O0

ATT RELATIONSHIPS AFFECTED BY DESCRIPT
ION

ATT RELATIONSHIPS AFFECTS DESCRIPTION
ATT REFERENCES DESCRIPTION

ATT RELATIONSHIPS DESCRIPTION

ATT RELATIONSHIPS AFFECTED BY LISTO1,
ATT RELATIONSHIPS AFFECTS_ LISTO1

ATT RELATIONSHIPS LISTO1

ATT RELATIONSHIPS AFFECTED BY LISTO02,
ATT RELATIONSHIPS AFFECTS LIST02

ATT RELATIONSHIPS LISTO02

ATT RELATIONSHIPS AFFECTED BY LISTO03
ATT RELATIONSHIPS AFFECTS LISTO3

ATT RELATIONSHIPS LISTO03

ATT RELATIONSHIPS AFFECTED BY LISTO04
ATT RELATIONSHIPS AFFECTS LISTO04

ATT RELATIONSHIPS LISTO04

ATT RELATIONSHIPS AFFECTED BY LISTO5
ATT RELATIONSHIPS AFFECTS LISTO05

ATT RELATIONSHIPS LISTO5

ATT REFERENCES LISTO1

ATT RELATIONSHIPS LISTO06

ATT REFERENCES LISTO02

ATT RELATIONSHIPS LISTO07

ATT REFERENCES LISTO03

ATT RELATIONSHIPS LISTOS8

ATT REFERENCES LISTO04

ATT RELATIONSHIPS LISTO09

ATT REFERENCES LISTO05

ATT RELATIONSHIPS LIST10

ATT RELATIONSHIPS AFFECTED BY MULTITEX
TO01

ATT RELATIONSHIPS AFFECTS MULTITEXTO1

ATT RELATIONSHIPS MULTITEXTO1

ATT RELATIONSHIPS AFFECTED BY MULTITEX
T02

ATT RELATIONSHIPS AFFECTS MULTITEXTO02

ATT RELATIONSHIPS MULTITEXTO02

ATT RELATIONSHIPS AFFECTED BY MULTITEX
TO3

ATT RELATIONSHIPS AFFECTS MULTITEXTO3

ATT RELATIONSHIPS MULTITEXTO3

ATT RELATIONSHIPS AFFECTED BY MULTITEX
TO04

ATT RELATIONSHIPS AFFECTS MULTITEXTO04

ATT RELATIONSHIPS MULTITEXTO04

ATT RELATIONSHIPS AFFECTED BY MULTITEX
TO05

ATT RELATIONSHIPS AFFECTS MULTITEXTOS5

ATT RELATIONSHIPS MULTITEXTOS5

ATT REFERENCES MULTITEXTO1

ATT RELATIONSHIPS MULTITEXTO6

ATT REFERENCES MULTITEXTO2

ATT RELATIONSHIPS MULTITEXTO7

ATT REFERENCES MULTITEXTO3

ATT RELATIONSHIPS MULTITEXTOS8

368

Agile Product Lifecycle Management

Appendix B

ATT REFERENCES MULTITEXTO04

ATT RELATIONSHIPS MULTITEXTOS

ATT REFERENCES MULTITEXTOS5

ATT RELATIONSHIPS MULTITEXT10

ATT RELATIONSHIPS AFFECTED BY TEXTO1
ATT RELATIONSHIPS AFFECTS TEXTO1l

ATT RELATIONSHIPS TEXTO1

ATT RELATIONSHIPS AFFECTED BY TEXTO02
ATT RELATIONSHIPS AFFECTS TEXTO02

ATT RELATIONSHIPS TEXTO02

ATT RELATIONSHIPS AFFECTED BY TEXTO03,
ATT RELATIONSHIPS AFFECTS TEXTO03

ATT RELATIONSHIPS TEXTO03

ATT RELATIONSHIPS AFFECTED BY TEXTO04,
ATT RELATIONSHIPS AFFECTS_ TEXTO04

ATT RELATIONSHIPS TEXTO04

ATT RELATIONSHIPS AFFECTED BY TEXTO05
ATT RELATIONSHIPS AFFECTS_ TEXTO5

ATT RELATIONSHIPS TEXTO05

ATT REFERENCES TEXTO1

ATT RELATIONSHIPS TEXTO06

ATT REFERENCES TEXTO02

ATT RELATIONSHIPS TEXTO07

ATT REFERENCES TEXTO03

ATT RELATIONSHIPS TEXTO0S8

ATT REFERENCES TEXTO04

ATT RELATIONSHIPS TEXTO09

ATT REFERENCES TEXTO05

ATT RELATIONSHIPS TEXT10

ATT RELATIONSHIPS AFFECTED BY NOTES
ATT RELATIONSHIPS AFFECTS NOTES

ATT RELATIONSHIPS NOTES1

ATT REFERENCES NOTES

ATT RELATIONSHIPS NOTES2

ATT RELATIONSHIPS AFFECTED BY NUMBER
ATT RELATIONSHIPS AFFECTS NUMBER
ATT REFERENCES NUMBER

ATT RELATIONSHIPS NAME

v9.3.1.1

369

SDK Developer Guide - Using Agile APIs

Removed Pre-Release 9.2.2 Tahle Constants

The following pre-release 9.2.2 table constants are no longer available and should not be used in
later releases of the SDK:

B ATT RELATIONSHIPS AFFECTED_ BY EVENT

B ATTRELATIONSHIPS AFFECTS TRIGGER_EVENT

B ATT RELATIONSHIPS AFFECTED BY TRIGGER_EVENT

B ATT RELATIONSHIPS AFFECTS EVENT

8 ATT RELATIONSHIPS AFFECTS RESULT

@ MaterialDeclarationConstants.TABLE RELATIONSHIPSAFFECTEDBY
B MaterialDeclarationConstants.TABLE RELATIONSHIPSAFFECTS

B MaterialDeclarationConstants.TABLE REFERENCES

370 Agile Product Lifecycle Management

	Oracle Copyright
	 New in Release 9.3.1.1
	Missing Content
	Publishing Agile APIs and PLM Extensions in Separate Books

	Introduction
	About this Guide
	 Agile APIs

	SDK Components
	Client-Side Components
	Documentation
	Installation

	Server-Side Components

	SDK Architecture
	System Requirements
	Java Requirements
	Java Virtual Memory Parameters (JVM) to Prevent Out of Memory Exceptions

	Agile SDK Installation Folders
	Checking Your Agile PLM System
	Agile PLM Business Objects

	Getting Started with Agile API
	Agile API Overview
	Types of Agile API Classes and Interfaces
	Network Class Loading
	Single-Threaded versus Multi-Threaded Applications
	Packaging an Agile API Program
	Distributing Agile API Files
	Sample Programs

	 Starting an Agile API Program
	Setting the Class Path for the Agile API Library
	Importing Agile API Classes
	Creating a Session and Logging In
	Creating a Session by Accessing a Password Protected URL
	 Creating a Session from an Agile Web Service
	Creating a Session in a Cluster Environment

	Loading and Creating Agile PLM Objects
	Loading Objects
	Specifying Object Types
	Specifying Object Parameters
	Loading Different Types of Objects

	Creating Objects
	Working with Agile PLM Classes
	Creating Objects of User-Defined Subclasses
	Using AutoNumbers
	Setting the Required Fields
	Creating Different Types of Objects

	Checking the State of Agile PLM Objects
	Propagating Values to Related Objects
	Saving an Object to a New Object
	Sharing an Object
	Deleting and Undeleting Objects
	Closing a Session

	Creating and Loading Queries
	About Queries
	Creating a Query
	Saving a Query to a Folder
	Generating Ordered (sorted) or Unordered Query Results
	 Creating a Parameterized Query
	Specifying Query Attributes when Creating a Query
	Specifying Search Criteria
	Search Conditions
	Query Language Keywords
	Specifying Search Attributes
	Retrieving Searchable Attributes
	 Using Relational Operators
	Using Unicode Escape Sequences
	Using Between, Not Between, In, and Not In Operators
	Using the Nested Criteria to Search for Values in Object Lists
	Using Criteria Selected from Criteria Library in SDK Queries
	Using Relationships and Content in SDK Queries
	Searching for Words or Phrases Contained in Attachments

	Formatting Dates in Query Criteria
	Using Logical Operators
	Using Wildcard Characters with the Like Operator
	Using Parentheses in Search Criteria
	Setting Search Criteria for Lists Containing Large Number of Objects

	Using SQL Syntax for Search Criteria
	Using SQL Wildcards
	Sorting Query Results Using SQL Syntax

	Setting Result Attributes for a Query
	Specifying Result Attributes
	Retrieving CTO Originator Name
	 Duplicate Results for Site-Related Objects and AMLs

	Working with Query Results
	Sorting Query Results
	Query Result Datatypes
	Managing Large Query Results
	Query Performance

	Creating a Where-Used Query
	Loading a Query
	Deleting a Query
	Simple Query Examples

	Working with Tables
	About Tables
	Retrieving a Table
	Accessing the New and Merged Relationships Tables
	Accessing the Relationships Table
	Accessing the Merged Tables
	Accessing the Merged Relationships.AffectedBy Table
	Accessing the Merged Relationships.Affects table
	Accessing the Merged Relationships.References Table

	 Working with Read-only Tables

	Retrieving the Metadata of a Table
	Adding Table Rows
	Adding an Item to the BOM Table
	Adding an Attachment to the Attachments Table
	Adding a Manufacturer Part to the Manufacturers Table
	Adding an Item to the Affected Items Table
	Adding a Task to the Schedule Table

	Adding and Updating Multiple Table Rows
	Adding Multiple Team Members to the Team Table of a Project
	Adding Multiple Items to the BOM Table
	Updating Multiple BOM Rows

	Iterating Over Table Rows
	Updating Objects in Query Results with Multiple Page Tables
	 Updating Table Rows when Iterating Large Query Results

	Sorting Table Rows
	Removing Table Rows
	Retrieving the Referenced Object for a Row
	Checking Status Flags of a Row
	Working with Page 1, Page 2, and Page 3
	 Redlining
	Removing Redline Changes
	Removing Redline Changes in Bulk Mode
	Removing Redline Changes in Bulk Mode

	Identifying Redlined Rows and Redlined Cells
	Using ICell.getOldValue

	Working with Data Cells
	About Data Cells
	Data Types
	Checking User's Discovery Privilege
	Checking if the Cell is a Read-Only Cell
	Getting Values
	Understanding SDK Date Formats and User Preferences

	Getting Values
	 Setting Values
	Catching Exceptions for Locked Objects

	Getting and Setting List Values
	Getting and Setting Values for SingleList Cells
	Getting and Setting Values for MultiList Cells
	Getting and Setting Values for Cascading Lists

	Using Reference Designator Cells

	Working with Folders
	About Folders
	Using Level Separation Characters in Folder and Object Names

	Loading a Folder
	Creating a Folder
	Setting the Folder Type
	Adding and Removing Folder Elements
	 Adding Folder Elements
	Removing Folder Elements

	Getting Folder Elements
	 Deleting a Folder

	Working with Items, BOMs, and AMLs
	Working with Items
	Getting and Setting the Revision of an Item
	Changing the Incorporated Status of a Revision

	Working with BOMs
	 Adding an Item to a BOM
	Expanding a BOM
	Copying one BOM into another BOM
	Creating BOM-Related Product Reports
	Redlining a BOM
	Getting a Released Assembly Item
	Creating a Change Order
	Adding an Item to the Affected Items tab of a Change Order
	 Modifying the Redline BOM Table

	Working with AMLs
	Adding an Approved Manufacturer to the Manufacturers Table
	Redlining an AML

	Accessing PLM Metadata with APIName Field
	About APIName Field
	Assigning Names to APIName Fields
	APIName Validation Rules
	Accessing Metadata Using the APIName Field
	APIs that Support the APIName Field
	SDK APIs that Get the APIName Field
	API Names of Root Administrator Nodes
	API Name Examples

	Subscribing to Agile PLM Objects
	About User Subscriptions
	Subscription Events
	Subscribe Privilege
	Subscription Notifications
	Sending Notifications with SDK

	Deleting Subscribed Objects

	 Getting Subscriptions for an Object
	Modifying the Subscriptions for an Object
	Making Attributes Available for Subscription
	Parent and Child Attributes

	 Working with Subscription Tables

	Managing Manufacturing Sites
	About Manufacturing Sites
	Controlling Access to Sites
	Creating a Manufacturing Site
	Loading a Manufacturing Site
	Retrieving the Sites Table for an Item
	Adding a Manufacturing Site to the Sites Table
	Selecting the Current Manufacturing Site for an Item
	 Disabling a Site

	Working with Lists
	About Lists
	List Library
	SingleList Lists
	Cascading Lists
	MultiList Lists
	Methods that Use IAgileList

	Selecting a List Value
	Working with Lifecycle Phase Cells
	 Working with Dynamic Lists
	Enumerable and Non-Enumerable Lists
	Non-Enumerable PG&C Lists

	Selecting a List from the List Library
	Creating Custom Lists
	Creating a Simple List
	 Automatically Creating New Lists by Modifying Existing Lists
	Creating a Cascading List
	 Creating a Criteria-Based List

	Checking the Data Type of a List
	 Modifying a List
	Adding a Value to a List
	Making List Values Obsolete
	Setting the List Name and Description
	 Setting Level Names for a Cascading List
	Enabling or Disabling a List
	Deleting a List
	Modifying and Removing List Values

	Printing Contents of IAgileList Objects

	Working with Attachments and File Folder Objects
	About Attachments and File Folders
	Working with File Folders
	File Folder Classes and Subclasses
	File Folder Tables and Constants
	Creating File Folder Objects
	Creating File Folder Objects by Adding Rows to Attachments Table
	Working with the Files Table of a File Folder
	Accessing Files in Agile PLM File Vault with IAttachmentFile

	Working with Attachments Table of an Object
	Checking In and Checking Out Files with ICheckoutable
	Specifying the Revision of the Item
	Checking whether the Revision Is Incorporated

	Checking Out a File Folder
	Canceling a File Folder Checkout
	Adding Files and URLs to the Attachments Table
	Deep Cloning Attachments and Files from One Object to Another
	Specifying the File Folder Subclass When Adding Attachments
	Retrieving Attachment Files
	Deleting Attachments and File Folders
	Working with Thumbnails
	Accessing Thumbnails
	Regenerating Thumbnails
	Setting Master Thumbnails
	Replacing Thumbnails
	Sequencing Thumbnails
	Generating Thumbnails while Adding Files to Attachments Tab

	Working with Design Objects
	Adding and Loading Design Objects
	 Managing Version Specific Relationships between Design Objects
	Adding Relationships for Specific Versions of Design Objects
	Removing Relationships for Specific Versions of Design Objects
	Getting Relationships for Specific Versions of Design Objects
	Editing Relationships for Specific Versions of Design Objects

	Purging Specific Versions of Design Objects
	Searching Design Object Deployments with Where-Used Queries

	Importing and Exporting Data with SDK
	About Importing and Exporting Data
	Validating Import Data and Importing Data
	 Validating Data and Importing Data with SDK

	Exporting Data from the SDK
	 Invoking SDK's Export Function

	Managing Workflow
	About Workflow
	The Change Control Process
	Dynamics of Workflow Functionality
	How the Status of a Change Affects Workflow Functionality
	 How User Privileges Affect Workflow Functionality

	Selecting a Workflow
	Adding and Removing Approvers
	Setting the “Signoff User Dual Identification” Preference
	Approving a Routable Object
	Rejecting a Routable Object
	Adding User Groups of Approvers and Users to Approve Routable Objects
	Approving a Routable Object by Users on behalf of “Transferred from Users”
	Adding Active Escalations for the Current User to Approve a Routable Object
	 Specifying a Second Signature to Approve a Routable Object
	Examples

	Adding User ID as Second Signature to Approve a Routable Object

	Approving or Rejecting Change
	Approving or Rejecting a Change Without Password
	 Commenting a Change
	Auditing a Change
	Changing the Workflow Status of an Object
	Sending an Agile Object to Selected Users
	Sending an Agile Object to User Groups

	Managing and Tracking Quality
	About Quality Control
	Quality-Related API Objects
	 Quality-Related Roles and Privileges

	Working with Customers
	About Customers
	Creating a Customer
	Loading a Customer
	Saving a Customer as Another Customer

	 Working with Product Service Requests
	About Problem Reports
	About Nonconformance Reports
	Creating a Product Service Request
	Assigning a Product Service Request to a Quality Analyst
	Adding Affected Items to a Product Service Request
	Adding Related PSRs to a Product Service Request

	Working with Quality Change Requests
	Creating a Quality Change Request
	Assigning a Quality Change Request to a Quality Administrator
	Saving a Quality Change Request as a Change

	Using Workflow Features with PSRs and QCRs
	Selecting Workflows for PSRs and QCRs

	Creating and Managing Projects
	About Projects and Projects Objects
	 Differences in the Behavior of Projects Objects
	Creating Projects
	Adding Rules for PPM Objects
	Loading Projects
	Adding "FileFolder" to Project's Content Tab
	Using Projects Templates
	Creating New Projects Using Templates
	Creating Projects and Changing Ownerships
	Saving Projects as Templates

	Scheduling Projects
	Setting Start and End Timestamps for PPM Date Attributes
	Working with Projects Baselines
	Delegating Ownership of a Projects to Another User
	Adding Resources to a Projects Team
	Substituting Projects Resources
	Locking or Unlocking Projects
	Working with Discussions
	Creating a Discussion
	Replying to a Discussion
	Joining a Discussion
	Creating an Action Item

	Working with Product Cost Management
	Overview
	Working with Price Objects
	Managing Pricing
	Creating a Price Object
	Defaults
	 Specifying Item Revision
	Creating a Published Price

	Loading a Price Object
	Adding Price Lines
	Creating a Price Change Order

	Working with Suppliers
	Loading a Supplier
	Modifying Supplier Data

	Working with Sourcing Projects
	Supported API Methods
	Loading an Existing Sourcing Projects
	Creating Sourcing Projects by Quantity Breaks
	Creating Sourcing Projects by Quantity Breaks and Price Periods
	Accessing and Modifying Objects, Tables, and Attributes
	 Setting Cover Page Values for Sourcing Projects

	Understanding Nested Tables in PCM
	Sourcing Projects’ Parent Table and Nested Child Table Constants
	Accessing and Modifying Nested Tables in Sourcing Projects or RFQ
	Viewing Updates after Modifying a Nested Table

	 Accessing and Modifying the Status of Sourcing Projects

	Managing Data in Sourcing Projects
	Setting Quantity for Items in Sourcing Projects
	Adding Items to Sourcing Projects with BOM Filters
	 Performing Quantity Rollup in Sourcing Projects
	Performing Cost Rollup in Sourcing Projects
	 Performing Price Lookup in Sourcing Projects
	Price Lookup API and Price Lookup Options
	Parameters for Price Lookup from History or Another Sourcing Projects
	Parameters specific to price lookups from price history
	Parameters specific to price lookups from Sourcing Projects
	 Parameters required for price lookups from price history
	Parameters required for price lookups from Sourcing Projects
	Setting the price lookup from History or Sourcing Projects
	Settings for Quantity Breaks in price lookups
	Impact of improper parameter settings
	For RFQ lookup:

	Generating the Assembly Cost Report for Sourcing Projects
	Understanding Assembly Cost Report Parameters

	Modifying the Target Price for Items in Sourcing Projects
	Setting the Best Response for Items in Sourcing Projects
	 Setting Partners in a Sourcing Projects

	Working with RFQs
	Supported API Methods
	Creating RFQs for Sourcing Projects
	Loading Existing RFQs
	Loading RFQs from Sourcing Projects' RFQ Table
	 Supported RFQ Tables

	Accessing and Modifying RFQ Objects, Tables, Nested Tables, and Attributes
	RFQ Parent Table and Nested Child Table Constants

	Performing Price Lookup in RFQs
	Required parameters for an RFQ price lookup
	 Impact of Improper parameter settings

	Working with RFQ Responses

	Managing Product Governance & Compliance
	About Agile Product Governance and Compliance
	Agile PG&C Interfaces and Classes
	Agile PG&C Roles
	Creating Declarations, Specifications, and Substances
	Creating Declarations
	Creating Specifications
	Creating Substances
	Creating a Subpart
	Creating a Substance Group
	Creating a Material
	 Creating a Substance

	Adding Items, Manufacturer Parts, and Part Groups to Declarations
	Adding Substances to Declarations
	Structure of Bill of Substances
	Rules for Adding Substances
	Adding Subparts and Materials that Do Not Exist
	Adding Examples to Substances
	Adding Substances to Manufacturer Part Composition Table of Homogeneous Material Declarations
	Adding Substances to Manufacturer Part Composition Table of Substance Declarations

	Adding Substances to a Specification
	Adding Specifications to a Declaration
	Rules for Adding Specifications

	Routing Declarations
	 Completing a Declaration
	Submitting Declarations to Compliance Managers
	Publishing a Declaration
	Getting and Setting Weight Values
	Adding Substance Compositions for Manufacturer Parts
	Rolling Up Compliance Data
	Understanding the IPGCRollup Interface
	Passing the Date Parameter

	Using the IPGCRollup Interface
	Rolling Up Assembled Data on Items
	Rolling Up Assembled Data on MPNs
	Setting Values in the Calculated Compliance Field for Item Objects
	Setting Values in the Calculated Compliance Field for Declaration Objects

	Handling Exceptions
	About Exceptions
	 Exception Constants
	Getting Error Codes
	Disabling and Enabling Error Codes with Bulk APIs
	Getting Error Messages
	Disabling and Enabling Warning Messages
	Checking if APIException is Warning and not Error
	of Saving and Restoring State Enabled and Disabled Warnings
	Deleting Warnings Automatically Disabled by Agile API

	Performing Administrative Tasks
	About Agile PLM Administration
	 Privileges Required to Administer Agile PLM
	Administrative Interfaces
	Getting an IAdmin Instance
	Working with Nodes
	 Working with the Classes Node

	Managing Agile PLM Classes
	Concrete and Abstract Classes
	Referencing Classes
	Identifying the Target Type of a Class

	Working with Attributes
	Referencing Attributes
	Retrieving Attributes
	Retrieving Individual Attributes
	Editing the Property of an Attribute
	Working with User-Defined Attributes

	Working with Properties of Administrative Nodes
	Managing Users
	Getting All Users
	 Creating a User
	Creating Users and Requiring Password Modification at Login
	Creating a Supplier User
	Saving a User to a New User
	Checking for Expired Passwords
	Configuring User Settings
	Resetting User Passwords
	Deleting a User

	Managing User Groups
	Getting All Users Groups
	Creating a User Group
	Adding a User Group to the User's User Group Table
	Listing Users in a User Group

	Mapping Agile PLM Client Features to Agile API
	Login Features
	 General Features
	Search Features
	Attachment Features
	Workflow Features
	 Manufacturing Site Features
	Folder Features
	 Projects Features
	Administrative Features

	Migrating Release 9.2.1 and Older Table Constants to Release 9.2.2 or Later
	Mapped Pre-Release 9.2.2 Table Constants to 9.2.2 Table Constants
	 Removed Pre-Release 9.2.2 Table Constants

