
PeopleSoft Enterprise EPM 9.1
PeopleBook: Application Integration
Framework

April 2010

PeopleSoft Enterprise EPM 9.1 PeopleBook: Application Integration Framework
SKU epm91ecaifepm-b0410

Copyright © 1999, 2010, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. iii

Contents

Preface

Application Integration Framework Preface .. vii

Application Integration Framework ... vii
Common Terms Used in This PeopleBook ... vii

PeopleBooks and the Online PeopleSoft Library ... viii

Chapter 1

Getting Started with Application Integration Framework .. 1

Understanding the Application Integration Framework .. 1
Application Integration Framework Implementation .. 1

Define Value Maps .. 1
Create Application Engine Transform Programs .. 2
Update Service Operation Routing ... 2

Chapter 2

Understanding Application Integration Framework ... 3

Application Integration Framework ... 3
Use Cases for Application Integration Framework ... 5

Maps ... 6
Domain Value Map ... 6
Cross-Reference Map .. 7

Functions to Populate and Maintain the Cross-Reference and DVMs .. 7
Use Case: Integration Broker Transformation Without AIA Middleware .. 9
Use Case: Integration Broker Point-to-Point Transformation ... 13
Use Case: Integration Broker Transformation in Which a Third Party Uses AIA Middleware 17

Chapter 3

Defining and Populating Value Maps .. 21

Understanding Value Maps .. 21
Defining Value Maps ... 24

Contents

iv Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Pages Used to Define Value Maps .. 25
Adding a Value Map ... 25
Adding Elements to the Map ... 26
Assigning Domains to the Value Map .. 27

Populating a Domain Value Map ... 28
Pages Used to Populate a Domain Value Map .. 28
Populating a Domain Value Map .. 28

Chapter 4

Creating Transform Programs and Updating Service Operations ... 29

Understanding Transform Programs .. 29
Creating a Transform Program .. 30
Updating Service Operation Routing .. 31

Chapter 5

Accessing Maps Using XSLT Extension .. 33

Understanding XSLT Extension Functions ... 33
Cross-Reference Functions .. 33

xref:populateXRefRow ... 33
xref:populateXrefRowNVP ... 36
xref:markForDelete ... 38
xref:markForDeleteNVP ... 39
xref:lookupXRef .. 40
xref:lookupXRefNVP .. 41

Domain Value Map Functions ... 43
dvm:lookupValue .. 43
dvm:lookupValueNVP .. 44
dvm:lookup-dvm ... 45

Generate-Guid Function ... 46
generate-guid ... 46

SetID Functions ... 47
SetID:lookupSetCtrlValues ... 47

Chapter 6

Accessing Maps Using PeopleCode .. 51

Understanding Application Integration Framework Classes ... 51
How to Import Application Integration Framework Type Classes .. 51
DVM Utility Class Methods .. 52

Contents

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. v

LookupValue ... 52
LookupValue1M .. 53
LookupValueNVP ... 54

DVM Utility Class Properties .. 55
exceptionCaught .. 55
exceptionDetails .. 56

SetId Utility Class Methods .. 56
lookupSetCtrlValues ... 56
lookupSetID .. 57

Xref Utility Class Methods .. 59
LookupValue ... 59
LookupValue1M ... 60
LookupValueNVP ... 61
MarkForDelete .. 62
MarkForDeleteNVP .. 63
PopulateValue ... 64
PopulateValueNVP ... 65

Xref Class Properties ... 66
exceptionCaught ... 67
exceptionDetails .. 67

Chapter 7

Accessing Maps Using Web Services .. 69

Understanding Application Integration Framework Web Services ... 69
Cross-Reference Lookup Web Service .. 70

Appendix A

Application Integration Framework Example .. 73

Example Overview ... 73
Defining a Dynamic Value Map .. 74
Defining and Populating a Static Value Map ... 76
Using the XSLT Extension Function in the Transformation Program .. 79

Key Value Transformation .. 79
Domain Value Transformation .. 81

Updating the Service Operation Routing ... 82

Index .. 83

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. vii

Application Integration Framework
Preface

This preface provides an overview of the Application Integration Framework PeopleBook.

Application Integration Framework

Application Integration Architecture (AIA) is an effort across all Oracle divisions to facilitate integration
among the various Oracle applications. In PeopleSoft applications, Integration Broker facilitates exposing
PeopleSoft business logic as services and consuming external web services for PeopleSoft applications to
invoke. Application Integration Framework builds upon Integration Broker functionality to provide a standard
way to map data names and domain values used internally by PeopleSoft applications to the names and values
used by external applications, particularly AIA.

This PeopleBook describes the processes for using the Application Integration Framework to define data
transformation definitions and populate the transformation data. These processes include creating and
populating data maps. They also include creating transformation application engine programs using XSLT
functions, PeopleCode APIs, or web services to access the data maps and translate the data.

Common Terms Used in This PeopleBook

ABM Application Business Message: Defines the shape of the payload of a message on
a point or edge system. ABM refers to the message structure used internally by
the PeopleSoft application.

AIA Application Integration Architecture: Refers to the common integration
framework used to ease the challenges of integrating point systems.

EBM Enterprise Business Message: Defines the shape of the payload of a message on
the AIA. This is often referred to as the canonical message.

EBO Enterprise Business Object: Refers to a data model consisting of standard
business data object definitions and reusable data components representing a
business object, such as Sales Order, Party, Item, and so forth.

EBS Enterprise Business Service: Represents an application-independent web-service
definition for performing a business task.

IB PeopleSoft Integration Broker: Facilitates integrations among internal systems
and third-party integration partners, while managing data structure, data format,
and transport disparities.

Preface

viii Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

PeopleBooks and the Online PeopleSoft Library

A companion PeopleBook called PeopleBooks and the Online PeopleSoft Library contains general
information, including:

• Understanding the PeopleSoft online library and related documentation.

• How to send PeopleSoft documentation comments and suggestions to Oracle.

• How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

• Understanding PeopleBook structure.

• Typographical conventions and visual cues used in PeopleBooks.

• ISO country codes and currency codes.

• PeopleBooks that are common across multiple applications.

• Common elements used in PeopleBooks.

• Navigating the PeopleBooks interface and searching the PeopleSoft online library.

• Displaying and printing screen shots and graphics in PeopleBooks.

• How to manage the PeopleSoft online library including full-text searching and configuring a reverse
proxy server.

• Understanding documentation integration and how to integrate customized documentation into the library.

• Glossary of useful PeopleSoft terms that are used in PeopleBooks.

You can find this companion PeopleBook in your PeopleSoft online library.

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 1

Chapter 1

Getting Started with Application
Integration Framework

This chapter provides an overview of the Application Integration Framework and discusses Application
Integration Framework implementation.

Understanding the Application Integration Framework

This PeopleBook describes using Application Integration Framework to create integrations between diverse
systems using a common framework.

Application Integration Framework Implementation

Application Integration Framework uses PeopleSoft Integration Broker framework. These implementation
steps assume PeopleSoft Integration Broker is configured and service operations have been created for the
integration.

To implement Application Integration Framework, you will:

• Define value maps.

• Populate domain value maps.

• Create application engine transform programs.

• Update service operation routing.

See Also

Enterprise PeopleTools 8.50 PeopleBook: Integration Broker

Define Value Maps

To define value maps, perform the following steps:

Getting Started with Application Integration Framework Chapter 1

2 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Step Reference

Define value maps See Chapter 3, "Defining and Populating Value Maps,"
Defining Value Maps, page 24.

Create Application Engine Transform Programs

To create the application engine transform program, perform the following steps:

Step Reference

Create application engine program See Enterprise PeopleTools 8.50 PeopleBook: Integration
Broker, Applying Filtering, Transformation and
Translation, Defining Transform Programs.

Code the XSLT step See Enterprise PeopleTools 8.50 PeopleBook: Integration
Broker, Creating Transform Programs and Updating
Service Operations, Adding XSLT Steps to
Transformation Programs.

Update Service Operation Routing

To update the service operation routing, perform the following steps:

Step Reference

Update the routing See Enterprise PeopleTools 8.50 PeopleBook: Integration
Broker, Creating Transform Programs and Updating
Service Operations, Updating Service Operation Routing.

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 3

Chapter 2

Understanding Application Integration
Framework

This chapter discusses:

• Application Integration Framework.

• Maps.

• Functions to populate and maintain the cross-reference and domain value maps (DVMs).

• Use Case: Integration Broker transformation without Application Integration Architecture (AIA)
middleware.

• Use Case: Integration Broker point-to-point transformation.

• Use Case: Integration Broker transformation in which a third party uses AIA middleware.

Application Integration Framework

Application Integration Framework extends PeopleSoft Integration Broker (IB) functionality to provide a
standard way to represent, classify, store, query, publish, acquire, and invoke data that maps element names,
structures, and values between PeopleSoft Application Business Messages (ABMs) and other applications.
PeopleSoft Integration Broker provides the framework to send and receive messages with other PeopleSoft
systems or third-party systems. If the message structure differs between systems, transformation programs are
used to transform the incoming or outgoing message to a message format that the PeopleSoft system
understands.

Each application that you are integrating with may use different data values or identifiers to represent the
same information. For example, for a new customer in a PeopleSoft application, a new row is inserted in its
customer database with a unique identifier such as PS1001. When the same information is propagated to an
Oracle E-Business Suite application and a Siebel application, a new row should be inserted with different
identifiers, such as EBS1001 and SBL1001. The application integration framework enables you to transform
this data.

Understanding Application Integration Framework Chapter 2

4 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Application Integration Architecture

Application Integration Architecture (AIA) is built on Oracle's Service Operation Architecture (SOA) as a
unified approach for integrating business processes across applications, including third-party applications,
based on a common architecture and common definition of business objects called Enterprise Business
Objects (EBOs). These applications were designed using different technologies and use different names and
structures to represent the same business object. AIA is the foundation for creating transformations on
messages sent between diverse systems to integrate multiple applications without the need to create separate
point-to-point integrations for each system involved.

AIA middleware can be used to transform business objects to a common object. Oracle's Fusion middleware
includes AIA as well as prebuilt integrations for Oracle products.

Oracle Application Integration Architecture Foundation Pack

AIA Process Integration Packs (PIPs) are prebuilt integrations across Oracle applications, such as Siebel
CRM, Oracle E-Business Suite, Agile PLM, and Oracle Communications Billing and Revenue Management.
The integrations consist of EBOs and Enterprise Business Services (EBS). Enterprise Business Messages
(EBMs) are designed to be operation-specific.

AIA provides a middle layer between the PeopleSoft system and other third-party systems. If a third-party
Siebel customer uses AIA, when a message from that customer arrives at the PeopleSoft system, the common
AIA names and values are seen by the PeopleSoft application, rather than the Siebel names and values. On
the other hand, if a Siebel customer did not purchase the AIA PIP, then the PeopleSoft application would see
the Siebel names and values.

Note. PIPs are available from the Oracle E-Delivery website.

Application Integration Framework Integrations

Application Integration Framework is designed to assist developers with the tasks required to produce
integrations that are architected to be AIA-supportive. The integration produces ABMs with the same
semantic content and approximately the same shape as the canonical (AIA) EBMs, thus minimizing
transformation requirements. Each AIA-supportive integration that PeopleSoft applications delivers includes
a sample transformation to enable the integrations to map as closely as possible to the EBOs. This strategy
enables PeopleSoft customers to utilize IB to complete partner integrations without the need for middleware
to perform transformations. Of course, customers who choose to purchase Oracle AIA middleware or who
already own it can use the features of the EBS for transformations instead of or in addition to using the
delivered IB samples.

Note. PeopleSoft-delivered integrations transform messages to the EBM format for direct integration with
other Oracle products.

This diagram illustrates a PeopleSoft message transformed to a common value.

Chapter 2 Understanding Application Integration Framework

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 5

Common value mapping for outgoing message

Use Cases for Application Integration Framework

Use cases fall into two categories:

• Key-mapping transforms using the dynamic cross-reference framework

• Static value transforms using the domain value map framework

These two frameworks are assumed to be separate; however, they in fact share common elements. The values
of keys are open-ended and are usually extended; thus they are created programmatically during the
transformation process, not in advance of the transform. Static value transforms generally have all values
entered into the maps prior to the transformation process, and are less frequently extended.

In addition to these two categories, the integration use case depends on whether the third party is using AIA
middleware.

This table shows where the transformations take place depending on whether AIA middleware is used:

Use Case PeopleSoft Integration
Broker

AIA Middleware Third Party

Integration Broker
Transformations without
AIA middleware

Transform PeopleSoft
ABM to EBM for outbound

Transform EBM to
PeopleSoft ABM for
inbound

not used Transform EBM to third-
party ABM for inbound

Transform third-party ABM
to EBM for outbound

Understanding Application Integration Framework Chapter 2

6 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Use Case PeopleSoft Integration
Broker

AIA Middleware Third Party

Integration Broker Point-to-
Point transformation

Transform PeopleSoft
ABM to third-party ABM
for outbound

Transform third-party ABM
to PeopleSoft ABM for
inbound

not used No transformations are
necessary

Optionally, the third party
can do the outbound
transformation to
PeopleSoft ABM.

Integration Broker
Transformation in which
third party uses AIA
middleware

Transform PeopleSoft
ABM to EBM for outbound

Transform EBM to
PeopleSoft ABM for
inbound

Transform EBM to third-
party ABM for outbound
from PeopleSoft application

Transform third-party ABM
to EBM for inbound to
PeopleSoft application

No transforms are
performed

Maps

Two different kinds of maps are available, domain values maps (DVM) and cross-reference maps (XREF).
The maps are similar in that both maps group elements by domain name and are composed of elements that
map specific values from one domain to another. The difference from a technical perspective is that XREF
values are constantly being created, whereas DVM values are relatively static.

XREF DVM

Usually keys Usually attributes

Data maintained programmatically Data maintained manually through the user interface

 Map cardinality provides an independent classification of the mapping functions. Maps are based on single
values (1:1) or multivalues (N;N).

Domain Value Map

A Domain Value Map (DVM) is used for values that are relatively static and are relatively limited in total
number, such as country codes and states. DVMs generally have all values entered into the maps prior to the
transformation process, and are less frequently extended compared to cross-reference maps.

The DVM consists of domains, maps, and elements.

Domain A participating integrating system, for example, Siebel or Oracle E-Business
Suite.

Note. Multiple domains can be maintained for a map.

Chapter 2 Understanding Application Integration Framework

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 7

Maps A static object for which the mapping needs to be maintained, for example,
currency code or country code.

Element The unit of data in the local or remote message upon which an irreducible
transanimation operates. An irreducible transanimation is one that cannot be
broken into smaller transformations. Most elements contain a single data value,
but that may not always be the case. For example, an address could be
represented as a single string, or it could be composed of separate strings
representing city, state, street, and house number. Examples of DVM elements
are country code and common value.

Cross-Reference Map

A cross-reference map is used for values that are dynamic in nature, such as key elements used to identify an
instance. These are referred to as key maps or cross-references. The values are the names of larger data
entities.

Cross-references consist of domains, maps, and elements.

Domain A participating integrating system, for example, Siebel or E-Business Suite.

Note. Multiple domains can be maintained for a map.

Maps A transaction object where the cross-reference for the keys is maintained, for
example, voucher or vendor.

Element An individual element captured as part of the key information, for example,
SETID, VENDOR_ID.

Functions to Populate and Maintain the Cross-Reference and DVMs

Three types of functions are available to query and maintain the DVM and cross-reference data during the
transformation process.

Application Class
methods

Application class methods are used in PeopleCode. These classes are typically
used in cases in which the transformations are implemented as a PeopleCode step
in an application engine program. These PeopleCode classes are used internally
by the XPATH extension functions and by the web services.

XPath extension
functions

XPath extension functions are used in the XSLT steps in application engine
transform programs to invoke XSLT transforms using the TransformEx
PeopleCode API.

Web services Used by external systems to perform cross-reference lookups.

Understanding Application Integration Framework Chapter 2

8 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

These functions enable you to query, manipulate, and delete cross-reference (XREF) and DVM data during
transforms. The cardinality of the function is incorporated into the API naming convention. Each set of
functions can be further broken down into three activities: lookup, populate, and delete.

The provided functions by class, activity, and form are:

Class Activity Form Description

XREF Populate populateValue Populate a transform item for a single
valued element.

XREF Populate populateValue1M Populate a transform element for a 1 to
many mapping.

XREF Populate populateValueNVP Populate a transform item for a
multivalued element.

XREF Delete markForDelete Mark for deletion a transform element for
a single valued element. Items marked for
delete can be reactivated later.

XREF Delete markForDeleteNVP Mark for deletion a transform element for
a multivalued element (name value pair).

XREF Lookup lookupValue Look up a cross-reference value.

XREF Lookup lookupValue1M Look up a cross-reference element for
multiple values corresponding to a
specific value in a reference element (1 to
many).

XREF Lookup lookupValueNVP Look up a cross-reference value for a
multivalued element.

DVM Lookup lookupValue Look up a domain value.

DVM Lookup lookupValue1M Look up multiple domain values
corresponding to a specific value in a
reference element.

DVM Lookup lookupValueNVP Look up a domain value for a multivalued
element.

DVM Lookup lookup-dvm Look up a domain value.

Chapter 2 Understanding Application Integration Framework

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 9

Use Case: Integration Broker Transformation Without AIA
Middleware

This section discusses the use case in which both the PeopleSoft and third-party maps and transforms take
place within the PeopleSoft Integration Broker through Application Integration Framework. In this use case,
PeopleSoft applications can take advantage of a canonical integration model without the need to purchase
AIA middleware.

Use case includes:

• Outbound request or post to a third party.

• Inbound request or post from a third party.

Outbound Request or Post to a Third Party

This diagram illustrates an outbound request or post to a third party:

Outbound request to a third party without AIA middleware

The following steps are performed in this scenario:

1. A user in the PeopleSoft system triggers publishing of an AIA supportive integration to a third-party
system.

Understanding Application Integration Framework Chapter 2

10 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

2. Within PeopleSoft Integration Broker, a transform on the outbound routing generates the EBM. The
method used to translate the data values depends on the transaction. This table lists the transaction types
and the necessary transformation action.

Transaction Action

Dynamic key add-request If the transaction is an add-request, the transform creates a new
common key (GUID) and uses the appropriate form of the
populate XRef XPath extension function to put the new common
key and the corresponding PeopleSoft keys into the PeopleSoft
cross-reference framework.

Dynamic key lookup If the transaction is not an add-request, the transform looks up the
common key using the appropriate form of the lookup XRef XPath
extension function with the PeopleSoft keys as input. If a common
key does not exist, the developer determines whether to create a
new common key, generate an error, or return an error message in
the reply message if the integration supports it.

Dynamic key delete request For asynchronous notification (request-only) integrations that
delete a keyed entity, developers may choose to leave the cross-
reference values in place for historical purposes or, if desired, they
may choose to delete the cross-reference values. To mark the
PeopleSoft keys for deletion, the transform uses the appropriate
form of the deleteXRef XPath extension function with the
PeopleSoft keys as input.

Static value lookup If the transaction uses a domain value map, the transform looks up
the PeopleSoft values using the appropriate form of the
lookupDVM XPath extension function with the PeopleSoft values
as input. If a value is not found, the developer determines whether
the transform supplies the PeopleSoft values by default, leaves
them blank, throws an error, or returns an error message in the
reply message if the integration supports it.

3. The EBM is routed to the third-party system for processing.

Integrations supporting response messages have these additional steps.

1. The third-party system processes the request, formats the reply message, and then returns it along with the
common key or value.

Chapter 2 Understanding Application Integration Framework

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 11

2. Within PeopleSoft Integration Broker, asynchronous request-reply operations have a transform to look up
the PeopleSoft keys using the appropriate form of the lookupXref XPath extension function with the
common key as input. The PeopleSoft keys are then put into the PeopleSoft ABM. Synchronous
operations do not require this lookup because the PeopleSoft application already knows the PeopleSoft
keys from the initial request.

Transaction Action

Asynchronous request-reply operation using dynamic
key value

Requires a transform program to look up the PeopleSoft
keys using the appropriate form of the lookupXRef
XPath extension function with the common key as
input. The PeopleSoft keys are then put into the
PeopleSoft ABM.

Synchronous operations using dynamic key value Lookup is not required because the PeopleSoft
application already knows the PeopleSoft keys from the
initial request.

Asynchronous request-reply operation using DVM
value

Requires a transform program to look up the PeopleSoft
values using the appropriate form of the lookupDVM
XPath extension function with the common value as
input. The PeopleSoft keys are then put into the
PeopleSoft ABM.

3. The PeopleSoft ABM reply is then returned to the originating PeopleSoft application.

Inbound Request or Post from a Third Party

This diagram illustrates an inbound request from a third party:

Inbound request from third party without AIA middleware

1. A user in the third-party system triggers publishing of an integration to a PeopleSoft system.

2. The EBM is routed to the PeopleSoft system for processing.

Understanding Application Integration Framework Chapter 2

12 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

3. Within PeopleSoft Integration Broker, a transform on the inbound routing performs the following actions
based on transaction type:

Transaction Action

Dynamic key add request If the transaction is an add-request, the transform leaves
the PeopleSoft keys blank in the ABM and passes the
common key along for use in the handler.

Dynamic key lookup If the transaction is not an add-request, the transform
looks up the PeopleSoft keys using the appropriate form
of the lookup XRef XPath extension function with the
common key in the EBM as input. Optionally, this can
be done in the PeopleSoft inbound handler through the
appropriate PeopleSoft lookup XRef API with the
common key as input.

DVM lookup The transform on the inbound routing looks up the
PeopleSoft values using the appropriate form of the
lookupDVM XPath extension function with the
common value from the EBM. If a value is not found,
the developer determines whether the transform
supplies the PeopleSoft values, omits them, throws an
error, or returns an error message in the reply message
if the integration supports it.

4. The PeopleSoft inbound handler processes the message.

Transaction Action

Dynamic key add request If the transaction is an add-request, it creates the
PeopleSoft keys and then uses the appropriate form of
the populate XRef API to add the PeopleSoft keys and
the corresponding common key to the PeopleSoft cross-
reference framework. If the keys cannot be created or
added to the framework, an error occurs or an error
message is returned in the reply message if the
integration supports it.

Dynamic key lookup If the transaction is not an add-request, the message is
processed with the PeopleSoft keys from the ABM. If
the PeopleSoft key values are not found, an error occurs
or a message is returned in the reply message if the
integration supports it.

Integrations supporting response messages have these additional steps.

1. The PeopleSoft application processes the request and returns the ABM reply to the PeopleSoft inbound
handler.

2. The PeopleSoft inbound handler formats the EBM reply and returns it to the third-party system with the
common key.

3. Optionally, if the third-party system uses the PeopleSoft cross-reference framework to persist their key
mappings, asynchronous request-reply operations need to look up the third-party keys using the
appropriate form of the lookup XRef web service with the common key from the EBM reply as input.

Chapter 2 Understanding Application Integration Framework

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 13

Use Case: Integration Broker Point-to-Point Transformation

This section discusses the use case in which PeopleSoft Integration Broker performs all of the transformations
with a third party. In the previous use case, the messages were transformed to the EBM format; in this use
case, the message is transformed into the third-party ABM. If the third party is another PeopleSoft system, no
transform is necessary.

Use case includes:

• Outbound request or post to a third party.

• Inbound request or post from a third party.

Outbound Request or Post to a Third Party

This diagram illustrates an outbound point-to-point request or post to a third party:

Outbound point-to-point request to a third party

The following steps are performed in this scenario:

1. A user in the PeopleSoft system triggers publishing of a point-to-point integration to a third-party system.

Understanding Application Integration Framework Chapter 2

14 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

2. Within PeopleSoft Integration Broker, a transform on the outbound routing generates the third-party
ABM. The method used to translate the data values depends on the transaction. This table lists the
transaction types and the necessary transformation action.

Transaction Action

Dynamic key add-request If the transaction is an add-request, the transform creates a new
common key (GUID) and uses the appropriate form of the
populate XRef XPath extension function to put the new common
key, corresponding PeopleSoft key, and third-party key in the
PeopleSoft cross-reference framework.

Dynamic key lookup If the transaction is not an add-request, the transform looks up the
key using the appropriate form of the lookup XRef XPath
extension function with the PeopleSoft keys as input. If a common
key does not exist, the developer determines whether to create a
new common key, generate an error, or return an error message in
the reply message if the integration supports it.

Dynamic key delete request For asynchronous notification (request-only) integrations that
delete a keyed entity, developers may choose to leave the cross-
reference values in place for historical purposes or, if desired, they
may choose to delete the cross-reference values. To mark the
PeopleSoft keys for deletion, the transform uses the appropriate
form of the deleteXRef XPath extension function with the
PeopleSoft keys as input.

Static value lookup If the transaction uses a domain value map, a transform on the
outbound routing looks up the common value using the appropriate
form of the lookupDVM XPath extension function with the
PeopleSoft value as input. If a value is not found, the developer
determines whether the transform supplies the PeopleSoft values
by default, omits them, throws an error, or returns an error message
in the reply message if the integration supports it.

3. The third-party ABM is routed to the third-party system for processing.

Integrations supporting response messages have these additional steps.

1. The third-party system processes the request, formats the reply message, and then returns it along with the
common key or value.

Chapter 2 Understanding Application Integration Framework

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 15

2. Within PeopleSoft Integration Broker, asynchronous request-reply operations have a transform to look up
the PeopleSoft keys using the appropriate form of the lookup XRef XPath extension function with the
third-party key as input. The PeopleSoft keys are then put into the PeopleSoft ABM. Synchronous
operations do not require this lookup because the PeopleSoft application already knows the PeopleSoft
keys from the initial request.

Transaction Action

Asynchronous request-reply operation using dynamic
key value

Requires a transform program to look up the PeopleSoft
keys using the appropriate form of the lookupXRef
XPath extension function with the third-party key as
input. The PeopleSoft keys are then put into the
PeopleSoft ABM.

Synchronous operations using dynamic key value Lookup is not required because the PeopleSoft
application already knows the PeopleSoft keys from the
initial request.

Asynchronous request-reply operation using DVM
value

Requires a transform program to look up the PeopleSoft
value using the appropriate form of the lookupDVM
XPath extension function with the third-party value as
input. The PeopleSoft keys are then put into the
PeopleSoft ABM.

3. The PeopleSoft ABM reply is returned to the originating PeopleSoft application.

Inbound Request or Post from a Third Party

This diagram illustrates an outbound point-to-point request or post to a third-party:

Inbound point-to-point request from a third party

1. A user in the third-party system triggers publishing an integration to a PeopleSoft system.

2. In this example, the request is sent in the third-party ABM format.

Note. In many instances, the third-party may be aware of the PeopleSoft ABM format and perform a
transformation before sending the message; in this case, no transform is required.

Understanding Application Integration Framework Chapter 2

16 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

3. Within PeopleSoft Integration Broker, a transform on the inbound message performs the following actions
based on transaction type:

Transaction Action

Dynamic key add request If the transaction is an add-request, the transform leaves
the PeopleSoft keys blank in the ABM and passes the
third-party key along for use in the handler.

Dynamic key lookup If the transaction is not an add-request, the transform
looks up the PeopleSoft keys using the appropriate form
of the lookup XRef XPath extension function with the
reference key in the third-party ABM as input.

DVM lookup The transform on the inbound routing looks up the
PeopleSoft values using the appropriate form of the
lookupDVM XPath extension function with the
reference key from the third-party ABM. If a value is
not found, the developer determines whether the
transform supplies the PeopleSoft values, omits them,
throws an error, or return an error message in the reply
message if the integration supports it.

4. Within PeopleSoft Integration Broker, a transform on the inbound message performs the following actions
based on transaction type.

5. The PeopleSoft Inbound handler processes the message.

Transaction Action

Dynamic key add request If the transaction is an add-request, it creates the
PeopleSoft keys and then uses the appropriate form of
the populate XRef API to add the PeopleSoft keys and
the corresponding UniqueGUID to the PeopleSoft
cross-reference framework. If the keys cannot be
created or added to the framework, an error occurs or a
message is returned in the reply message if the
integration supports it.

Dynamic key lookup If the transaction is not an add-request, the message is
processed with the PeopleSoft key values from the
ABM. If the PeopleSoft key values not found, an error
occurs or a message is returned in the reply message if
the integration supports it.

Integrations supporting response messages have these additional steps.

1. The PeopleSoft application processes the request and the PeopleSoft inbound handler formats the ABM
reply and returns it along with the common key or value.

2. No key translation is required in the transform, so the EBM reply is then returned to the third-party
system along with the common key from the ABM reply.

Chapter 2 Understanding Application Integration Framework

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 17

Use Case: Integration Broker Transformation in Which a Third Party
Uses AIA Middleware

From a PeopleSoft perspective, this use case has an identical flow to the transformation without the AIA
middleware. From a third-party perspective, however, it is similar in flow, but not in implementation. In this
case, the third-party system integrates with the AIA using their ABM instead of with PeopleSoft software
using an EBM. All of the third-party value maps and transforms between the EBM and the third-party ABM
are done on the AIA layer using the EBS graphical-mapper and XPath extension functions instead of being
done on the third-party system.

Note. This is the model used with AIA PIPs.

Use cases include:

• Outbound request or post to a third party.

• Inbound request or post from a third party.

Outbound Request or Post to a Third Party

In this use case, a request is sent from the PeopleSoft application to a third party that uses their own AIA
middleware to perform message transformation.

Outbound request to a third party that uses AIA middleware

1. A user in the PeopleSoft system triggers publishing of an AIA supportive integration to a third-party
system through the AIA.

Understanding Application Integration Framework Chapter 2

18 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

2. Within PeopleSoft Integration Broker, a transform on the outbound routing occurs, generating the EBM.
The method used to translate the data values depends on the transaction. This table lists the transaction
types and the necessary transformation action.

Transaction Action

Dynamic key add request If the transaction is an add-request, the transform
creates a new common key (GUID) and uses the
appropriate form of the populateXRef XPath extension
function to put the new common key and the
corresponding PeopleSoft keys in the PeopleSoft cross-
reference framework.

Dynamic key lookup If the transaction is not an add-request, the transform
looks up the common key using the appropriate form of
the lookupXRef XPath extension function with the
PeopleSoft keys as input. If a common key does not
exist, the developer determines whether to create a new
common key, generate an error, or return an error
message in the reply message if the integration supports
it.

Dynamic key delete request For asynchronous notification (request-only)
integrations that delete a keyed entity, developers may
choose to leave the cross-reference values in place for
historical purposes or, if desired, they may choose to
delete the cross-reference values. To mark the
PeopleSoft keys for deletion, the transform uses the
appropriate form of the deleteXRef XPath extension
function with the PeopleSoft keys as input.

DVM lookup If the transaction uses a domain value map, the
transform looks up the PeopleSoft values using the
appropriate form of the lookupDVM XPath extension
function with the common value from the EBM. If a
value is not found, the developer determines whether
the transform supplies the PeopleSoft values by default,
omits them, throws an error, or returns an error in the
reply message if the integration supports it.

3. The EBM is routed to the AIA.

4. Upon receiving the EBM request, the AIA transforms the common key to the third-party key and sends
the transformed request to the third party using their ABM.

Integrations supporting response messages use these additional steps.

1. The third party processes the request, formats the reply message, and returns it to the AIA middleware.

2. The AIA transforms the third-party key in the reply to the common key and returns the EBM reply to
PeopleSoft software.

Chapter 2 Understanding Application Integration Framework

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 19

3. Within PeopleSoft Integration Broker, asynchronous request-reply operations have a transform program
to transform the common key or value and place it into the PeopleSoft ABM. Synchronous operations do
not require this lookup because the PeopleSoft application already knows the PeopleSoft keys or values
from the initial request.

Transaction Action

Dynamic key lookup Transform looks up the PeopleSoft keys using the
appropriate form of the lookup XRef XPath extension
function with the common key as input.

Dynamic key delete (Optional) For integrations that delete a keyed entity,
developers may choose to leave the cross-reference
values in place for historical purposes or, if desired,
they may choose to delete the cross-reference values.
To mark the PeopleSoft keys for deletion, the transform
uses the appropriate form of the deleteXRef XPath
extension function with the PeopleSoft keys as input.

DVM lookup The transform looks up the common value using the
appropriate form of the lookup DVM XPath extension
function with the PeopleSoft values as input.

4. The PeopleSoft ABM reply is returned to the originating PeopleSoft application.

Inbound Request or Post from a Third Party

In this use case, a third-party application creates a request that is transformed using the third-party AIA
middleware and sent to the PeopleSoft application.

Inbound request from a third party using AIA middleware

1. A user in the third-party system triggers publishing of an integration to a PeopleSoft system through the
AIA.

2. The AIA transforms the third-party ABM key and values to the common key and values and routes the
EBM request to the PeopleSoft system for processing.

Understanding Application Integration Framework Chapter 2

20 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

3. Within PeopleSoft Integration Broker, a transform on the inbound routing transforms the EBM to
PeopleSoft ABM using one or more of the following methods depending on the transaction.

Transaction Action

Dynamic key add If the transaction is an add-request, the transform leaves
the PeopleSoft keys blank in the ABM and passes the
common key along for use in the handler.

Dynamic key lookup If the transaction is not an add-request, the transform
looks up the PeopleSoft key using the appropriate form
of the lookupXRef XPath extension function with the
common key in the EBM as input. Optionally, this can
be done in the PeopleSoft inbound handler using the
appropriate PeopleSoft lookup XRef API with the
common key as input.

DVM lookup A transform on the inbound routing looks up the
PeopleSoft values using the appropriate form of the
lookup DVM XPath extension function with the
common value from the EBM. If a value is not found,
the developer determines whether the transform
supplies the PeopleSoft values by default, leaves them
blank, throws an error, or returns an error message in
the reply message if the integration supports it.

For synchronous and asynchronous request-reply messages, the following additional steps are performed.

1. The PeopleSoft application processes the request and the PeopleSoft inbound handler formats the ABM
reply and returns it along with the common key or value.

2. No key translation is required in the IB transform, so the EBM reply is returned to the AIA for routing
back to the third-party system.

3. The AIA transforms the common key and values to the third-party ABM key and values and routes the
third-party ABM reply back to the third-party system.

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 21

Chapter 3

Defining and Populating Value Maps

This chapter provides an overview of value maps and discusses how to:

• Define value map.

• Populate a domain value map.

Understanding Value Maps

The Define Value Maps component enables users to define and classify value maps and elements. Each value
map must be defined as either dynamic (cross-reference) or static (DVM).

Value maps support the following types of maps:

• One-to-one

• One-to-many

• Multiple elements per domain

One-to-One Cross-Reference

Cross-reference maps support a one-to-one relationship between two systems. For example, the PeopleSoft
system uses one ID for customer A, the enterprise business object (EBO) or common value uses a GUID, and
the external system uses another ID for the same customer.

The cross-reference map would be defined like this:

PeopleSoft UniqueGUID External System

PS UniqueGUID EXT

PS100 <guid1> EXT-100

PS102 <guid2> EXT-102

In this scenario, when a PeopleSoft application creates a new customer and sends the create customer
message to the external system, the routing includes a transformation program that uses the cross-reference
map to translate the data.

Defining and Populating Value Maps Chapter 3

22 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

One-to-Many Cross-Reference

Cross-reference maps support a one-to-many relationship between two systems. Two or more values in a
system may correspond to a single value in another system. For example, three different job codes might exist
in the PeopleSoft system that correspond to one job code in the external system.

The cross-reference map would be defined like this:

PeopleSoft UniqueGUID External System

PS UniqueGUID EXT

AS01

AS02

AS03

<guid1>

<guid2>

<guid3>

ASST

MG01 <guid4> MNGR

In this scenario, when the PeopleSoft application assigns or changes a job code and sends the message to the
external system, the routing includes a transformation program that uses the cross-reference map to translate
the data. If the integration requires translation from the external system value to a PeopleSoft value, the
developer is responsible for determining how to handle the multiple PeopleSoft values returned from the
lookup. Options include replicating the source data for each value, implementing a method of choosing a
default value, and generating an error for the transaction.

Cross-Reference with Multiple Domains

Many times a system implements functionality using compound keys. This is supported in the cross-reference
framework by means of multiple elements to identify the value set. For example, item integrations from a
PeopleSoft application to an external system would use a cross-reference map to translate SetID/ItemID on
the PeopleSoft system to Product on the external system.

The cross-reference map would be defined like this:

PeopleSoft PeopleSoft UniqueGUID External System

SETID ITEMID UniqueGUID Product

SHARE 1001 <guid1> RP001

SHARE 1002 <guid2> RP002

SHARE 1003 <guid3> RP003

SHR03 1000 <guid4> RP006

In this scenario, when the PeopleSoft application creates an item and sends the message to the external
system, the routing includes a transformation program that maps the setID and itemID to a common element
(UniqueGUID) and the external system receives the translated data.

Chapter 3 Defining and Populating Value Maps

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 23

One-to-One DVM

In a domain value map, the one-to-one relationship contains the actual data values. For example, the
PeopleSoft application uses the short name for the state code, the EBO defines state code using the full name
as the common value, and the external application uses an abbreviated name for state code.

The DVM would be defined like this:

PeopleSoft Common External System

Short Full Abbrev

MA Massachusetts Mass

CA California Calif

In this scenario, when a PeopleSoft application creates an outbound message to the external system that
includes the state code, the routing includes a transformation program mapping the short name to the full
name and the external system requires a transformation from the full name to the abbreviated name. The
transformation for the external system can be done by means of the AIA middleware or a proprietary
transformation on the external system.

One-to-Many DVM

In the domain value map, a one-to-many relationship is created by entering multiple values for one domain
mapping to a single value in another domain. For example, in the PeopleSoft application, multiple person
types can map to a single person type in the external application.

The DVM would be defined like this:

PeopleSoft UniqueGUID External System 2

PS UniqueGUID EXT2

PS001

PS002

<guid1> SB001

PS003 <guid2> SBL002

In this scenario, when a PeopleSoft application creates an outbound message to an external system that
includes the person type, the routing includes a transformation program to translate the data values.

DVM with Multiple Elements Per Domain

In the DVM, you can map multiple elements to define a value set. For example, in the PeopleSoft application,
the Business Unit/Chartfield combination could map to a Ledger/Segment combination in an external
application.

In this scenario, when a PeopleSoft application creates an outbound message to the external system that
includes the person type, the routing includes a transformation program providing the data translation.

The DVM would be defined like this:

Defining and Populating Value Maps Chapter 3

24 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

PeopleSoft PeopleSoft UniqueGUID External System 1

Business Unit Chartfield UniqueGUID Segment Ledger

US001 ACCOUNT <guid1> SEGMENT1 Ledger1

US001 DEPARTMENT <guid2> SEGMENT2 Ledger1

US001 PRODUCT <guid3> SEGMENT3 Ledger1

US002 ACCOUNT <guid4> SEGMENT1 Ledger2

In this scenario, when a PeopleSoft application creates an outbound message to an external system that
includes the Business Unit/Chartfield, the routing includes a transformation program to translate the data
values for the multiple elements to a single UniqueGUID. The external system would then need to transform
the UniqueGUID to the equivalent Segment/Ledger.

DVM with Qualifiers

Qualifiers provide additional context to uniquely identify mapping values. A mapping may not be valid unless
qualified with additional contextual information. For example, a domain value map containing city code to
city name mapping may have multiple mappings for a city based on the country. For example, Kensington is
a city in Canada as well as the United States.

The DVM would be defined like this:

EXT (Qualifier 1)
PSFT (Qualifier 1)

EXT (Qualifier 2)
PSFT (Qualifier 2)

Common EXT PSFT

Country State Common CityCode CityName

USA Minnasota BELG_MN BELG Belgrade

USA North Carolina BELG_NC BELG Belgrade

USA Kansas KN_KS KN Kensington

Canada Prince Edward Island KN_PEI KN Kensington

In this scenario, when the PeopleSoft application creates an outbound message to an external system that
includes the Business Unit/Chartfield, the routing includes a transformation program mapping city name,
country, and state to a common value.

Defining Value Maps

This section discusses how to:

• Add a value map.

• Add elements to a value map.

Chapter 3 Defining and Populating Value Maps

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 25

• Assign domains to a value map.

Pages Used to Define Value Maps

Page Name Definition Name Navigation Usage

Define Value Maps EOTF_DEFINE_MAPS Enterprise Components,
Integration Definitions,
Transformation Framework,
Define Value Maps

Assign elements to the map.

Define Value Maps -
Domains

EOTF_DEFINE_MAPS2 From the Define Value
Maps-Elements page, select
the Domains tab

Assign elements to
domains.

Adding a Value Map

Access the Define Value Maps search page (Enterprise Components, Integration Definitions, Transformation
Framework, Define Value Maps).

Define Value Maps search page: Add a New Value tab

To add a value map:

1. Select the Add a New Value tab.

2. In the Map Name field, enter a name for the map.

3. In the Map Type field, select the map type.

4. Click the Add button.

The Elements page appears, where you can define the elements for the map.

Note. After you save the map, you can not change the map type.

Map Types

Maps are either static or dynamic.

Defining and Populating Value Maps Chapter 3

26 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Domain Value Map
(static)

Static map to which values are provided by means of the Populate Domain value
component.

Cross Reference
(dynamic)

Dynamic map to which values are provided based on key information.

Adding Elements to the Map

Access the Define Value Map - Elements page (Enterprise Components, Integration Definitions,
Transformation Framework, Define Value Maps).

Define Map Values - Elements page

Description Enter a description for the value map.

Comments Enter comments for the value map.

Order The common element is always assigned order 1. All other elements must be
assigned an order of 2 or higher.

Element Name Enter the element name. Select one and only one element as the common
element. The common element must always contain a unique value for each row
of data entered into both dynamic and static value maps.

For dynamic maps, the common element must be a unique guid.

 For static maps, the common element can be assigned as required.

Chapter 3 Defining and Populating Value Maps

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 27

Data Type Values are:

• String

• Numeric

The data type is used for validation when you are entering data values.

Length Enter the length of the element.

The length is used for validation when you are entering data values.

Required Select to indicate that this is a required element.

Assigning Domains to the Value Map

Access the Define Value Map - Domains page (select the Domains tab on the Define Value Map - Elements
page).

Define Maps Values - Domains page

Each element in a value map must be assigned to at least one domain.

Defining and Populating Value Maps Chapter 3

28 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Domain Name Enter the domain name for the participating system.

Is Unique Select to indicate that elements within the domain make up a unique instance.

Element Name Select the element to assign.

Populating a Domain Value Map

This section discusses how to populate a static value map.

Pages Used to Populate a Domain Value Map

Page Name Definition Name Navigation Usage

Populate Domain Value
Maps

EOTF_POPULATE_DVMS Enterprise Components,
Integration Definitions,
Transformation Framework,
Populate Domain Value
Maps

Populate a domain value
map.

Populating a Domain Value Map

Access the Populate Domain Value Maps page (Enterprise Components, Integration Definitions,
Transformation Framework, Populate Domain Value Maps).

Populate Domain Value Maps page

You use domain value maps to enter and maintain data in static value maps. The elements that you define for
the value map make up the columns displayed on the page. Elements are ordered and validated as specified in
the map definition.

A unique value must be entered for each row of data in every DVM. When you save the page, the component
looks for a cached rowset and destroys it. The cache is reloaded the next time it is called.

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 29

Chapter 4

Creating Transform Programs and
Updating Service Operations

This chapter provides an overview of transform programs and discusses how to:

• Create a transform program

• Update service operation routing

Understanding Transform Programs

A transform program is a type of PeopleSoft Application Engine program. After you create a new transform
application engine program, you add steps and actions to the program, and then add code to the steps and
actions that performs data transformation and translation.

To develop a transform program, you must know the initial structure and possibly the content of the message
with which you are working, as well as the structure (and content) of the result that you want to achieve.

You specify which transform program to apply within a routing definition for a service operation.

Transformation Programming Languages

You can use PeopleCode or Extensible Stylesheet Language Transformation (XSLT) as a programming
language for creating transformation logic. XSLT is a recognized standard language that is well-suited to
manipulating XML structures, so it is highly recommended for transformations.

PeopleSoft applications provide XSLT extension functions and PeopleCode APIs to perform value map
lookups, deletes, and population.

Note. When programming using XSLT, you can manually code the XSLT or use the Oracle XSL Mapper to
graphically associate records and fields. The Oracle XSL Mapper then automatically generates the XSLT
code.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Broker, Applying Filtering, Transformation and
Translation, Developing Transform Programs.

Creating Transform Programs and Updating Service Operations Chapter 4

30 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Creating a Transform Program

Create a new application engine program in Application Designer. On the toolbar, click the Properties button
and select the Advanced tab.

Application Engine program properties for a transform program

The application engine program must be defined as program type Transform Only. Optionally, you can
indicate the input and output message name and version. The input and output message name and version are
required if you want to use the Oracle Graphical Mapper to create the XSLT for the transform program.

Note. Refer to Enterprise PeopleTools 8.50 PeopleBook: Integration Broker, Applying Filtering,
Transformation and Translation, Developing Transform Programs for details on creating a transform program
using Oracle Graphical Mapper.

Refer to the chapter "Accessing Maps Using XSLT" for the syntax to use for your cross-references and
domain value maps.

Note. Snippets of code are provided in the appendix, "Application Integration Framework Example."

Chapter 4 Creating Transform Programs and Updating Service Operations

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 31

Updating Service Operation Routing

A routing definition contains routing parameters for each inbound request, inbound response, outbound
request, and outbound response associated with a service operation. For each request or response, you define
the routing alias, message names before and after transformation, and transformation program names.

Your transform program is invoked by PeopleSoft Integration Broker if you specify its name in the a routing
definition for a service operation.

Adding Routing Parameters

To access the Routing Definition page to add routing parameters:

1. Select Integration Broker, Integration Setup, Service Operations.

2. Select the Routing tab.

3. Either click the link for an existing routing or add a new routing.

4. If it is a new routing, add the routing information.

5. Select the Parameters tab.

Routing Parameters page for asynchronous one-way service operation

If the application engine transform program includes the messages into and out of the transformation, the
messages are automatically populated with these values. If the application engine program does not include
the message names, enter the appropriate message names and save the page.

Creating Transform Programs and Updating Service Operations Chapter 4

32 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Note. For synchronous service operations, you can define transformation on both the outbound and inbound
messages.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Broker, Managing Routing Definitions, Creating
Routing Definitions.

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 33

Chapter 5

Accessing Maps Using XSLT Extension

This chapter provides an overview of Extensible Stylesheet Language Transformation (XSLT) extension
functions and discusses:

• Cross-reference functions

• Domain value map (DVM) functions

• Generate-guid function

• SetID functions

Understanding XSLT Extension Functions

When you have created your value maps, you need to write a transformation program that will map the
elements in the message and use the value maps for data translation.

PeopleSoft applications provide XSLT extension functions to perform value map lookups, deletes, and
population. Two nearly identical sets of functions are available, one for cross-references and one for DVMs.

Cross-Reference Functions

This section describes the cross-reference XSLT extension functions.

xref:populateXRefRow

Syntax

xref:populateXRefRow(mapName,referenceElementName, referenceValue,elementName ,
elementValue,mode)

Description

Use the populateXRefRow function to populate a cross-reference element with a value.

Accessing Maps Using XSLT Extension Chapter 5

34 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

mapName The name of the cross-reference map, as string.

referenceElementName The name of the reference element, as string.

referenceValue The value corresponding to the reference element name, as string.

elementName The name of the element to be populated, as string.

elementValue The value with which to populate the element, as string.

mode The mode in which the function populates the element. You can specify any of the
following values: ADD, LINK, or UPDATE. The mode parameter values are case-
sensitive and must be specified in the uppercase only.

Returns

This function returns the cross-reference value being populated as a string.

This table lists the results for the Xref:populateXRefRow function.

Mode Reference Value Value to Be Added Result

ADD Absent

Present

Present

Absent

Absent

Present

Success

Exception

Exception

LINK Absent

Present

Present

Absent

Absent

Present

Exception

Success

Exception

UPDATE Absent

Present

Present

Absent

Absent

Present

Exception

Exception

Success

Example

This table lists examples of the modes with their descriptions and exception reasons:

Chapter 5 Accessing Maps Using XSLT Extension

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 35

Mode Description Exception Reasons

ADD Adds the reference value and the value. For
example:

xref:populateXRefRow("customers"⇒
,"PS","PS101","Common","CM001","⇒
ADD")

adds the reference value PS101 in the PS
element and the value CM001 in the Common
element of the customers cross-reference map.

Exceptions can occur for the following reasons:

• The specified cross-reference map is not
found.

• The specified elements are not found.

• The values provided are empty.

• The value being added is not unique across
that element for that map.

• The element for that row already contains a
value.

• The reference value exists.

LINK Adds the cross-reference value corresponding
to the existing reference value. For example:

xref:populateXRefRow("customers"⇒
,"Common","CM001","SBL","SB-⇒
101","LINK")

adds the value SB-101 in the SBL element of
the customers cross-reference map and links it
to the value CM001 in the Common element.

Exceptions can occur for the following reasons:

• The specified cross-reference map is not
found.

• The specified elements are not found.

• The values provided are empty.

• The reference value is not found.

• The value being linked exists in that
element for that map.

UPDATE Updates the cross-reference value
corresponding to an existing reference
element-value pair. For example:

xref:populateXRefRow("customers"⇒
,"PS","PS100","PS","PS1001","UPD⇒
ATE")

updates the value PS100 in the PS element of
the customers cross-reference map to value
PS1001.

Exceptions can occur for the following reasons:

• The specified cross-reference map is not
found.

• The specified elements are not found.

• The values provided are empty.

• The value being updated is not unique
across that element for that map.

• Multiple values are found for the element
being updated.

• The reference value is not found.

• The element for that row does not have a
value.

Accessing Maps Using XSLT Extension Chapter 5

36 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

xref:populateXrefRowNVP

Syntax

xref:populateXRefRowNVP(mapName,referenceDomain, referenceNVP,targetDomain ,
targetNVP,mode)

Description

Use the xref:populateXrefRowNVP function to populate multiple elements in the cross-reference map with
values.

Parameters

Parameter Description

mapName The name of the cross-reference map, as string.

referenceDomain The name of the reference domain, as string.

rreferencesNVP NVP list of reference elements and values, as string.

targetDomain The name of the domain to be populated, as string.

targetNVP NVP list of elements and values to be populated in the elements, as string.

mode The mode in which the function populates the element. You can specify any of the
following values: ADD, LINK, or UPDATE. The mode parameter values are case-
sensitive and must be specified in the uppercase only.

Returns

This table lists the results for the populateXrefRowNVP function.

Mode Reference Value Value to Be Added Result

ADD Absent

Present

Present

Absent

Absent

Present

Success

Exception

Exception

LINK Absent

Present

Present

Absent

Absent

Present

Exception

Success

Exception

Chapter 5 Accessing Maps Using XSLT Extension

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 37

Mode Reference Value Value to Be Added Result

UPDATE Absent

Present

Present

Absent

Absent

Present

Exception

Exception

Success

Example

This table lists the modes with their descriptions and exception reasons:

Mode Description Exception Reasons

ADD Adds the reference value and the value to be
added. For example:

xref:populateXRefRowNVP("Items",⇒
"PeopleSoft","<Setid>SHARE<⇒
/Setid><ItemID>1005</ItemID>","C⇒
ommon","<Common>" | generate-⇒
guid() | "</Common>","ADD")

adds the reference values SHARE/1005 in the
PeopleSoft domain and the value <guid1> in
the Common domain.

Exceptions can occur for the following reasons:

• The specified cross-reference map is not
found.

• The specified domains are not found.

• The specified elements are not found.

• The values provided are empty.

• The values being added are not unique
across that domain for that map.

• The element for that row already contains a
value.

• The reference value exists.

LINK Adds the cross-reference value corresponding
to the existing reference value. For example:

xref:populateXRefRowNVP("Items⇒
 ","PeopleSoft","<Setid>SHA⇒
RE</Setid><ItemID>1005</ItemID>"⇒
,"Retail","<Product>RP0005<⇒
/Product>","LINK")

adds value RP005 to the Retail domain and
links it to reference values SHARE/1005 in the
PeopleSoft domain.

Exceptions can occur due for following
reasons:

• The specified cross-reference map is not
found.

• The specified domains are not found.

• The specified elements are not found.

• The values provided are empty.

• The reference value is not found.

• The value being linked exists in that
domain for that map.

Accessing Maps Using XSLT Extension Chapter 5

38 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Mode Description Exception Reasons

UPDATE Updates the cross-reference value
corresponding to an existing reference
element-value pair. For example:

xref:populateXRefRowNVP("Items⇒
 ","PeopleSoft","<Setid>SHA⇒
RE</Setid><ItemID>1000</ItemID>"⇒
,"PeopleSoft","<Setid>SHARE<⇒
/Setid><ItemID>10000</ItemID>","⇒
UPDATE")

updates the value 1000 in the ItemID element
of the PeopleSoft domain to value 10000.

Exceptions can occur for the following reasons:

• The specified cross-reference map is not
found.

• The specified domains are not found.

• The specified elements are not found.

• The values provided are empty.

• The values being updated are not unique
across that domain for that map.

• Multiple values are found for the domain
being updated.

• The reference value is not found.

• The element for that row does not have a
value.

xref:markForDelete

Syntax

xref:markForDelete(mapName,elementName,elementValue)

Description

Use the xref:markForDelete function to delete a value in a cross-reference map when the element specified is
the only element for a single domain. The value in the element is marked as deleted. If multiple domains
reference the element or the domain the element is referenced by has multiple primary elements, use the
xref:markForDeleteNVP function instead.

A cross-reference map row should have at least two mappings. Therefore, if you have only two mappings in a
row and you mark one value for delete, then the value in another element is also deleted.

Any element value marked for delete is treated as if the value does not exist. Therefore, you can populate the
same element with the xref:populateXRefRow function in ADD mode. However, if the element value is
marked for delete as a reference, it cannot be used in the LINK mode of xref:populateXRefRow function.

Parameters

Parameter Description

mapName The cross-reference map name, as string.

elementName The name of the element from which you want to delete a value, as string.

Chapter 5 Accessing Maps Using XSLT Extension

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 39

Parameter Description

elementValue The value to be deleted, as string.

Returns

 This function returns true if deletion was successful; otherwise, it returns false.

An exception can occur for the following reasons:

• The cross-reference map with the given name is not found.

• The specified element name is not found.

• The specified element name is not unique to a domain.

• The specified value is empty.

• The specified value is not found in the element.

• Multiple values are found.

Example

The following code deletes the PS001 value in the PS element of the customers cross-reference map:

xref:markForDelete("customers","PS","PS001")

xref:markForDeleteNVP

Syntax

xref:markForDeleteNVP(mapName,referenceDomain,referenceNVP)

Description

Use the xref:markForDeleteNVP function to delete a set of values in a cross-reference map for a specified
domain. The values in the elements are marked as deleted.

 A cross-reference map row should have at least two mappings. Therefore, if you have only two mappings in
a row and you mark one value for delete, then the value in the other domain is also deleted.

Any values marked for delete are treated as if they do not exist. Therefore, you can populate the same
elements with the xref:populateXRefRowNVP function in ADD mode. However, if the element value is
marked for delete as a reference, it cannot be used in the LINK mode of xref:populateXRefRowNVP
function.

Accessing Maps Using XSLT Extension Chapter 5

40 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Parameters

Parameter Description

mapName The cross-reference map name, as string.

referenceDomain The name of the reference domain, as string.

referenceNVP NVP list of reference elements and values that you want to delete, as string.

Returns

This function returns true if deletion was successful; otherwise, it returns false.

An exception can occur for the following reasons:

• The cross-reference map with the given name is not found.

• The specified element name is not found.

• All primary elements in this domain have not been specified.

• The specified value is empty.

• The specified value is not found in the element.

• Multiple values are found.

Example

The following code deletes the specified values in the Setid and ItemID elements of the PeopleSoft domain
from the Items cross-reference map:

xref:markForDeleteNVP("Items","PeopleSoft","<Setid>SHARE</Setid><ItemID>1000</Item⇒
ID>")

xref:lookupXRef

Syntax

xref:lookupXRef(mapName,referenceElementName,xrefReferenceValue,elementName,
needAnException)

Description

Use the lookupXRef function to look up a cross-reference element for a value that corresponds to a specific
value in a reference element.

Chapter 5 Accessing Maps Using XSLT Extension

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 41

Parameters

Parameter Description

mapName The name of the cross-reference map, as string.

referenceElementName The name of the reference element, as string.

referenceValue The value corresponding to the reference element name, as string.

elementName The name of the element to be looked up for the value, as string.

needAnException Specify true or false.

If the needAnException parameter is set to true, an exception occurs if the value
being looked up in the map is not found. If the needAnException parameter is set
to false, an empty value is returned if the value being looked up in the map is not
found.

Returns

The value of the requested element.

An exception can occur for the following reasons:

• The cross-reference map with the given name is not found.

• The specified element names are not found.

• The specified reference value is empty.

• Multiple target values are found.

Example

The following code looks up the Common element of the customers cross-reference map for a value
corresponding to the PS001 value in the PS element:

xref:lookupXRef("customers","PS","PS001","Common",true())

xref:lookupXRefNVP

Syntax

xref:lookupXRefNVP(mapName,referenceDomain,referenceNVP,targetDomain,
needAnException)

Accessing Maps Using XSLT Extension Chapter 5

42 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Description

Use the lookupXRefNVP function to look up cross-reference values that correspond to a specified set of
values in a reference domain. All primary elements in the reference domain must be included in the reference
NVP list, but any qualifier elements are optional.

Parameters

Parameter Description

mapName The name of the cross-reference map, as string.

referenceDomain The name of the reference domain, as string.

referenceNVP NVP list of reference elements and values, as string.

targetDomain The name of the domain to be looked up for the values, as string.

needAnException Specify true or false.

If the needAnException parameter is set to true, an exception occurs if the value
being looked up in the map is not found. If the needAnException parameter is set
to false, an empty value is returned if the value being looked up in the map is not
found.

Returns

The return string includes values for all primary and qualifier elements in the target domain as an NVP list.

An exception can occur for the following reasons:

• The cross-reference map with the given name is not found.

• The specified domain names are not found.

• The specified element names are not found.

• The specified reference value is empty.

• Multiple target values are found.

Example

The following code looks up the values of all elements in the Common domain of the Items cross-reference
map that correspond to values SHARE/1000 in the PeopleSoft domain:

xref:lookupXRefNVP("Items","PeopleSoft","<Setid>SHARE</Setid><ItemID>1000</Item⇒
ID>","Common",true())

Chapter 5 Accessing Maps Using XSLT Extension

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 43

Domain Value Map Functions

This section describes the domain value map functions.

dvm:lookupValue

Syntax

dvm:lookupValue(mapName,referenceElementName,referenceValue,elementName,
defaultValue,needAnException)

Description

The dvm:lookupValue function finds the reference element value in a domain value map and returns the
equivalent value of the specified element name as a string. This form of DVM lookup is used to find a single
reference element and return a single element value. Lookups involving multiple elements in a reference or
return domain need to be done using the dvm:lookupValueNVP function.

Parameters

Parameter Description

mapName The domain value map name, as string.

referenceElementName The source element name, as string.

referenceValue The source value (an XPath expression bound to the source document of the XSLT
transformation), as string.

elementName The target element name, as string.

defaultValue If the value is not found, then the default value is returned, as string.

needAnException Specify true or false.

If the needAnException parameter is set to true, an exception occurs if the value
being looked up in the map is not found. If the needAnException parameter is set
to false, an empty value is returned if the value being looked up in the map is not
found.

Returns

The dvm:lookupValue returns a string containing the value of the element.

An exception can occur for the following reasons:

Accessing Maps Using XSLT Extension Chapter 5

44 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

• The DVM map with the given name is not found.

• The specified elements are not found.

• The specified source value is empty.

Example

The following code looks up the value of the Short element in the StateCodes DVM map corresponding to the
California value in the Long element:

dvm:lookupValue("StateCodes","Long","California","Short","CouldNotBeFound",True)

dvm:lookupValueNVP

Syntax

dvm:lookupValueNVP(mapName,referenceDomain,referenceNVP,targetDomain,defaultNVP,
needAnException)

Description

The dvm:lookupValueNVP function finds the reference domain element values in a DVM and returns the
equivalent values of all elements in the specified domain as an NVP list. This form of DVM lookup should be
used when multiple elements exist in either the reference or return domain. All required elements in the
reference domain must be included in the reference NVP list, but optional elements (qualifiers perhaps) do
not have to be included. The return string will include values for all elements in the target domain as an NVP
list regardless of whether they are required.

Parameters

Parameter Description

mapName The domain value map name, as string.

referenceDomain The source domain name, as string.

referenceNVP NVP list of source elements and values, as string.

targetDomain The target domain name, as string.

defaultNVP If the value is not found, then the default values specified are returned, as string.

needAnException Specify true or false.

Chapter 5 Accessing Maps Using XSLT Extension

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 45

Returns

The return string will include values for all elements in the target domain as an NVP list regardless of
whether they are required.

An exception can occur for one of the following reasons:

• The DVM map with the given name is not found.

• The specified domains are not found.

• The specified elements are not found.

• The specified source values are empty.

Example

The following code looks up the specified values of the BusinessUnit and Chartfield elements in the
PeopleSoft domain of the ChartElements DVM and returns the value of the UniqueGUID element:

dvm:lookupValueNVP("ChartElements","PeopleSoft","<BusinessUnit>US100</Business⇒
Unit><Chartfield>ACCOUNT</Chartfield>","UniqueGUID","<UniqueGUID>CouldNotBeFound⇒
</UniqueGUID>",True)

dvm:lookup-dvm

Syntax

dvm:lookup-dvm(mapName,referenceElementName,referenceValue,elementName,
defaultValue,needAnException)

Description

The dvm:lookup-dvm function finds the reference element value in a domain value map and returns the
equivalent value of the specified element name as a string. This form of DVM lookup is used to find a single
reference element and return a single element value. Lookups involving multiple elements in a reference or
return domain need to be done using the dvm:lookupValueNVP function. This function is identical in purpose
and function to the dvm:lookupValue function. It exists to mimic the function names defined in the ESB
implementation of DVM.

Parameters

Parameter Description

mapName The domain value map name, as string.

referenceElementName The name of the source element in the DVM, as string.

Accessing Maps Using XSLT Extension Chapter 5

46 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

referenceValue The source value (an XPath expression bound to the source document of the XSLT
transformation), as string.

elementName The name of the target element in the DVM, as string.

defaultValue A default value to assign to the target element if no value is found, as string.

needAnException Specify true or false.

If the needAnException parameter is set to true, an exception occurs if the value
being looked up in the map is not found. If the needAnException parameter is set
to false, an empty value is returned if the value being looked up in the map is not
found.

Returns

This function returns a string by looking up the value for the target element in the DVM, where the value for
the source element is equal to the source value. The source value is an XPath expression bound to the source
document of the XSLT transformation. The expression is evaluated during the transformation and the result
value is passed as the source value for lookup.

An exception can occur for the following reasons:

• The DVM map with a given name is not found.

• The specified elements are not found.

• The specified source value is empty.

Example

The following code looks up the value of the Short element in the StateCodes DVM map corresponding to the
Calif value in the Abbrev element:

dvm:lookup-dvm("StateCodes","Abbrev","Calif","Short","CouldNotBeFound", True)

Generate-Guid Function

This section discuss the generate-guid function.

generate-guid

Syntax

generate-guid()

Chapter 5 Accessing Maps Using XSLT Extension

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 47

Description

Use this function to generate a guid.

Parameters

none

Returns

This function returns a string containing a randomly generated globally unique identifier (GUID).

Example

The following code generates a random GUID that could be used as a new common key value:

generate-guid()

SetID Functions

This section describes the SetID XSLT extension function.

SetID:lookupSetCtrlValues

Syntax

SetID:lookupSetCtrlValues (SetId,LookupType,dvmTranslate, dvmMapName,SourceElementName ,
TargetElementName,needAnException)

Description

Use the lookupSetCtrlValues function to look up the list of set control values associated with the setID in the
context of a record group or record. Optionally, each set control value can be translated through a DVM map
if a map name, source element name, and target element name are provided.

Parameters

Parameter Description

SetId The SetId value interested in lookup.

Accessing Maps Using XSLT Extension Chapter 5

48 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

LookupType The lookup type is used to indicate the type of lookup. You can specify either 1 for
the record group name or 2 for the record name.

LookupValue Value should be either a record name or record group ID as determined by
LookupType.

dvmTranslate Specify True if translation to Common ID using DVM Name supplied is desired.
Specify False if no translation is needed.

dvmMapName DVM map to be used in translation if requested.

SourceElementName The source element name to be used in DVM translation if requested.

TargetElementName The target element name to be used in DVM translation if requested.

needAnException Specify true or false to indicate whether an exception should occur if set control
values are not found.

Returns

This function returns a list of set control values or a list of translated set control values as a concatenated
string that could be parsed in XSLT.

Example

This example looks up the set control values (representing PeopleSoft business units in this example)
associated with the setID SHARE for the record group VENDOR and translates them to the common IDs for
Business Unit by means of the DVM mapping BusinessUnit. An exception is requested if set control values
are not found:

xref:lookupSetCtrlValues("SHARE","1", "VENDOR",true(),"BusinessUnit","PSFT_⇒
BU","COMMON",true())

Exceptions can occur for the following reasons:

• The DVM map name specified is not valid.

• The source element name specified is not associated with the DVM map.

• The target element name specified is not associated with the DVM map.

• No translated value is found for the set control value in the DVM map.

• If needAnException is set to true, an exception will occur if the set control values cannot be found for the
given SETID/Record or record group ID.

This example looks up the set control values (representing PeopleSoft Business Units in this example)
associated with the SETID SHARE for the record VENDOR_LOC and translates them to the common IDs for
Business Unit by means of the DVM mapping BusinessUnit. An exception is not requested if set control
values are not found:

Chapter 5 Accessing Maps Using XSLT Extension

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 49

xref:lookupSetCtrlValues("SHARE","2", "VENDOR_LOC",true(),"BusinessUnit","PSFT_⇒
BU","COMMON",false())

This example looks up the set control values (representing PeopleSoft Business Units in this example)
associated with the setID SHARE for the record group VENDOR. An exception is requested if set control
values are not found:

xref:lookupSetCtrlValues("SHARE","1", "VENDOR",false(),"","","",true())

An exception can occur if the set control values cannot be found for the given SETID/Record or record group
ID.

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 51

Chapter 6

Accessing Maps Using PeopleCode

This chapter provides an overview of Application Integration Framework classes and discusses:

• How to import Application Integration Framework type classes

• DVM utility class methods

• DVM utility class properties

• SetId utility class methods

• Xref utility class methods

• Xref class properties

Understanding Application Integration Framework Classes

Application Integration Framework classes provide functions to perform value map lookups, deletes, and
population. The following functions mirror the functionality of the XPath extension functions provided for
XSLT transformation.

DVM Utility Class Functions for PeopleCode developers to access the data for a domain value map
(DVM) during transformations. These functions mirror the functionality of the
XPath extension functions provided for XSLT transformations.

SetId Utility Class Functions for PeopleCode developers to access SetId data stored in a DVM
during transformations.

Xref Utility Class Functions for PeopleCode developers to access the data for a dynamic (cross-
reference) value map during transformations.

How to Import Application Integration Framework Type Classes

The Application Integration Framework type classes are not built-in classes, like Rowset, Field, Record, and
so on. They are application classes. Before you can use these classes in your PeopleCode program, you must
import them to your program.

Accessing Maps Using PeopleCode Chapter 6

52 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

 An import statement names either all the classes in a package or one particular application class. For
importing Application Integration Framework classes, Oracle recommends that you import the functions class
in the application package that is specific to your needs.

The function classes are stored in the following application packages:

• EOTF_CORE:DVM

• EOTF_CORE:SetId

• EOTF_CORE:Xref

You should use one of the following import statements:

import EOTF_CORE:DVM:Functions;
import EOTF_CORE:Setid:Functions;
import EOTF_CORE:Xref;

DVM Utility Class Methods

This section describes the DVM utility class methods. The methods are discussed in alphabetical order.

LookupValue

Syntax

 LookupValue(mapName,referenceElementName,referenceValue, elementName,defaultValue,
needAnException)

Description

Locate the reference element value in a domain value map, and return the equivalent value for the specified
element name. This form of DVM lookup is used to find a single reference element and return a single
element value.

Parameters

Parameter Description

mapName Name of a static value map definition (DVM), as string.

referenceElementName Name of an element in the DVM in which to look for a value, as string.

referenceValue Value of an element in the DVM to look for, as string.

elementName Name of the element in the DVM to return an equivalent value for, as string.

Chapter 6 Accessing Maps Using PeopleCode

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 53

Parameter Description

defaultValue Default value to be returned if needAnException is false and an error occurs, as
string.

needAnException True to return error messages, false to return the default value.

Returns

The equivalent value of elementName in the DVM, or the default value.

Example

This example is used to look up the value &guid1 in the UniqueGUID element of the &TestName DVM and
return the equivalent value of element &EBS1.

Local string &returnValue = &dvm.LookupValue(&TestName, &UniqueGUID, &guid1,⇒
 &EBS1, "Value not found.", True);

This example will look up a value that does not exist in element &EBS1 of the &TestName DVM to verify
that the default value is returned when the NeedAnException parameter is false.

&returnValue = &dvm.LookupValue(&TestName, &EBS1, "NotFound", &UniqueGUID, &Value⇒
NotFound, False);

LookupValue1M

Syntax

 LookupValue1M(mapName,referenceElementName,referenceValue, elementName,needAnException)

Description

Locate the reference element value in a domain value map, and return the equivalent values of the specified
element name as an NVP list. This form of DVM lookup is used to find a single reference element and return
one to many equivalent values for the specified element.

Parameters

Parameter Description

mapName Name of a static value map definition (DVM), as string.

referenceElementName Name of an element in the DVM in which to look for a value, as string.

Accessing Maps Using PeopleCode Chapter 6

54 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

referenceValue Value of an element in the DVM to look for, as string.

elementName Name of the element in the DVM to return equivalent values for, as string.

needAnException True to return error messages, false to return the default values.

Returns

An array of string containing the equivalent values of elementName in the DVM.

Example

This example will look up value &guid1 in the UniqueGUID element of the &TestName DVM and return the
equivalent value of element &EBS1

&returnValue = &dvm.LookupValue1M(&TestName, &UniqueGUID, &guid1, &EBS1, True);

This example will look up a value that does not exist in the UniqueGUID element of the &TestName DVM to
verify that no value is returned when the NeedAnException parameter is false:

 &returnValue = &dvm.LookupValue1M(&TestName, &UniqueGUID, "NotFound", &EBS1,⇒
 False);

LookupValueNVP

Syntax

LookupValueNVP (mapName,referenceDomain,referenceNVP,targetDomain,defaultNVP,
needAnException)

Description

Locate the reference domain element values in a DVM, and return the equivalent values of all elements in the
specified domain as an NVP list. This form of DVM lookup should be used when multiple elements exist in
either the reference or return domain. All required elements in the reference domain must be included in the
reference NVP list, but optional elements (qualifiers perhaps) do not have to be included. The return string
will include values for all elements in the target domain as an NVP list regardless of whether they are
required.

Parameters

Parameter Description

mapName Name of a static value map definition (DVM), as string.

Chapter 6 Accessing Maps Using PeopleCode

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 55

Parameter Description

referenceDomain Name of a domain in the DVM in which to look for a value, as string.

referenceNVP Name value pairs of elements and values in the DVM domain to look for, as an
array of DataElement.

targetDomain Name of the domain to return equivalent values for, as string.

defaultNVP Default values (NVPs) to be returned if needAnException is false and an error
occurs, as an array of DataElement.

needAnException True to return error messages, false to return an NVP with the default values.

Returns

An array of DataElement. Name value pairs containing the equivalent values for the elements in the target
domain, or the default values.

Example

This example is used to look up value &guid1 in the UniqueGUID domain of the &TestName DVM and
return the equivalent values for the &RTK domain.

Local array of EOTF_CORE:Common:DataElement &UniqueGUIDrequestValues = CreateArray⇒
(create EOTF_CORE:Common:DataElement(&UniqueGUID));

&UniqueGUIDrequestValues [1].value = &guid1;
Local array of EOTF_CORE:Common:DataElement &returnValue = &dvm.LookupValueNVP⇒
(&TestName, &UniqueGUID, &UniqueGUIDrequestValues, &RTK, &DefaultRTKValues,⇒
 True);

DVM Utility Class Properties

This section describes the DVM utility class properties.

exceptionCaught

Description

Value true when a lookup method suppresses an exception because the needAnException parameter was
false.

Accessing Maps Using PeopleCode Chapter 6

56 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

exceptionDetails

Description

Exception object containing the detail of the exception that was caught.

SetId Utility Class Methods

This section describes the SetId Utility class methods. The methods are discussed in alphabetical order.

lookupSetCtrlValues

Syntax

lookupSetCtrlValues(SetId,LookupType,LookupName,dvmTranslate,dvmMapName,PsftElementName,
CommonElementName,needAnException)

Description

You can use the lookupSetCtrlValues function to look up the set control values associated with a setId in the
context of a record or record group. Furthermore, you can request that the set control value be translated
through a specified DVM map from the element in the PeopleSoft domain to an element in the common
domain. In a typical PeopleSoft implementation the set control values represent PeopleSoft Business Unit. In
such case, you would have a DVM defined for Business Unit mapping for translation.

Parameters

Parameter Description

SetId The SetId value interested in lookup, as string.

LookupType The type of lookup to perform. Valid values are 1 for record group ID and 2 for
record name.

 LookupName Record group ID or record name, as string. The value should correspond to the
LookupType specified.

dvmTranslate Specify True if translation of set control values using the static value map (DVM)
supplied is desired.

dvmMapName The name of the static value map (DVM) to be used in translation, as string.

Chapter 6 Accessing Maps Using PeopleCode

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 57

Parameter Description

PsftElementName The name of the element belonging to the PeopleSoft domain in the DVM to use
in lookup, as string.

CommonElementName The name of the element belonging to the Common domain in the DVM for which
to return an equivalent value, as string.

needAnException True to cause exception to occur in case set control values are not found. False to
request an empty string in such case instead.

Returns

The equivalent values in array of string.

Example

This example looks up the set control values (representing PeopleSoft Business Units in this example)
associated with the setID SHARE for the record group VENDOR and translates them to the common IDs for
Business Unit by means of the DVM mapping BusinessUnit. An exception is requested if set control values
are not found:

&oSetIdUtil = create EOTF_CORE:SetId:Functions();

 Local array of string &arrReturnValue = CreateArrayRept("", 0);

 try

 &arrReturnValue = &oSetIdUtil.lookupSetCtrlValues("SHARE", "1", "VENDOR",⇒
 true, "BusinessUnit", "PSFT_BU", "COMMON", true);

 catch Exception &exReturn
. . .
 {Your Exception Handling Logic Here}
. . .
 end-try;

lookupSetID

Syntax

 lookupSetID(LookupValue,dvmTranslate,dvmMapName,PsftElementName,CommonElementName,
LookupType,LookupName,needAnException)

Accessing Maps Using PeopleCode Chapter 6

58 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Description

You can use the lookupSetID function to look up the setID corresponding to a set control value in the context
of a record or record group. Furthermore, you can request that the set control value to use for lookup be
translated through a specified DVM map from an element in a common domain to the element in the
PeopleSoft domain. In a typical PeopleSoft implementation the set control values represent PeopleSoft
Business Units. In this case, you would have a DVM defined for Business Unit mapping translation.

Parameters

Parameter Description

LookupValue Value to use in setID lookup, as string. Value should either be a set control value
if dvmTranslate is false or a common element value if dvmTranslate is true.

dvmTranslate Specify True if translation of set control values using static value map (DVM)
supplied is desired.

dvmMapName. The name of the static value map (DVM) to be used in translation, as string.

PsftElementName Name of the element belonging to the PeopleSoft domain in the DVM for which to
retrieve the equivalent set control value, as string.

CommonElementName Name of the element belonging to the Common domain in the DVM to use in
lookup, as string .

LookupType The type of lookup to perform. Valid values are 1 for record group ID and 2 for
record name.

 LookupName Record group ID or record name, as string. The value should correspond to the
LookupType specified.

needAnException True to cause exception to occur in case setID is not found. False to request an
empty string in such case instead.

Returns

The equivalent value as string.

Example

The following code looks up the setID associated with the common ID for Business Unit BUID001 in the
DVM mapping BusinessUnit for the record group VENDOR. No exception is requested if setID is not found
(empty string will be returned.)

Chapter 6 Accessing Maps Using PeopleCode

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 59

&oSetIdUtil = create EOTF_CORE:SetId:Functions();

Local string &ReturnValue;

&ReturnValue = &oSetIdUtil.lookupSetId("BUID001", "BusinessUnit", "PSFT_BU",⇒
 "COMMON", "1" ,"VENDOR", false);

Xref Utility Class Methods

This section describes the Xref class methods. The methods are discussed in alphabetical order.

LookupValue

Syntax

LookupValue(mapName,referenceElementName,referenceValue, elementName,needAnException)

Description

Locate the reference element value in a cross-reference value map, and return the equivalent value for the
specified element name. This form of lookup is used to find a single reference element and return a single
element value.

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as string.

referenceElementName Name of an element in the Xref in which to look for a value, as string.

referenceValue Value of an element in the Xref to look for, as string.

elementName Name of the element in the Xref for which to return equivalent values, as string.

needAnException True to return error messages, false to return blank.

Returns

An array of string containing the equivalent values of elementName in the Xref .

Accessing Maps Using PeopleCode Chapter 6

60 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Example

This example will look up value &guid1 in the UniqueGUID element of the &TestName cross-reference map
and return the equivalent value of element &EBS1.

Local string &returnValue = &xref.LookupValue(&TestName, &UniqueGUID, &guid1,⇒
 &EBS1, True);

This example will look up a value that does not exist in element &EBS1 of the &TestName cross-reference
map to verify that the default value (blank) is returned when the NeedAnException parameter is false.

&returnValue = &xref.LookupValue(&TestName, &EBS1, "NotFound", &UniqueGUID, False);

LookupValue1M

Syntax

 LookupValue1M(mapName,referenceElementName,referenceValue, elementName,needAnException)

Description

Locate the reference element value in a cross-reference value map, and return the equivalent values of the
specified element name as a named value pair (NVP) list. This form of lookup is used to find a single
reference element and return one to many equivalent values for the specified element

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as string.

referenceElementName Name of an element in the Xref in which to look for a value, as string.

referenceValue Value of an element in the Xref to look for, as string.

elementName Name of the element in the Xref for which to return equivalent values, as string.

needAnException True to return error messages, false to return blank.

Returns

An array of string containing the equivalent values of elementName in the cross-reference.

Chapter 6 Accessing Maps Using PeopleCode

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 61

Example

This example will look up value &guid1 in the UniqueGUID element of the &TestName cross-reference map
and return the equivalent value of element &EBS1.

Local array of string &returnValue;

&returnValue = &xref.LookupValue1M(&TestName, &UniqueGUID, &guid1, &EBS1, True);

This example will look up a value that does not exist in the UniqueGUID element of the &TestName cross-
reference map to verify that no value is returned when the NeedAnException parameter is false.

 &returnValue = &xref.LookupValue1M(&TestName, &UniqueGUID, "NotFound", &EBS1,⇒
 False);

LookupValueNVP

Syntax

LookupValueNVP(mapName, referenceDomain,referenceNVP,targetDomain,needAnException)

Description

Locate the reference domain element values in a cross-reference map, and return the equivalent values of all
elements in the specified domain as an NVP list. This form of lookup should be used when multiple elements
exist in either the reference or return domain. All required elements in the reference domain must be included
in the reference NVP list, but optional elements (qualifiers perhaps) do not have to be included. The return
string will include values for all elements in the target domain as an NVP list regardless of whether they are
required.

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as string.

referenceDomain Name of a domain in the XREF in which to look for a value, as string.

referenceNVP Name value pairs of elements and values in the reference domain to look for, as an
array of DataElement.

targetDomain Name of the domain to return equivalent values for, as string.

needAnException True to return error messages, false to return an NVP with the default values.

Accessing Maps Using PeopleCode Chapter 6

62 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Returns

An array of DataElement for name value pairs containing the equivalent values for the elements in the target
domain, or the default values.

Example

This example will look up value &guid1 in the UniqueGUID domain of the &TestName cross-reference map
and return the equivalent values for the &RTK domain.

 Local array of EOTF_CORE:Common:DataElement &returnValue = &xref.LookupValueNVP⇒
(&TestName, &UniqueGUID, &UniqueGUIDrequestValues, &RTK, True);

MarkForDelete

Syntax

MarkForDelete(mapName,elementName,elementValue)

Description

Delete a value in a cross-reference map when the element specified is the only element for a single domain. If
multiple domains reference the element, or the element is used in a domain containing multiple primary
elements, the xref:markForDeleteNVP function should be used instead. The values in the elements are
marked as deleted. If only two mappings are in a row and one of them is marked for deletion, then the value
in the other domain will also be deleted. Any element value marked for delete is treated as if the value does
not exist. Therefore, you can populate the same element with the xref:populateXRefRow function in ADD
mode. However, using the element value marked for delete as a reference value in the LINK mode of the
xref:populateXRefRow function would cause an error.

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as string.

elementName Name of the element in the Xref from which to delete a value, as string.

elementValue Value of the element in the Xref to be deleted, as string.

Returns

 True if the delete succeeds .

Chapter 6 Accessing Maps Using PeopleCode

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 63

Example

This example will delete the PS001 value in the PS element of the Customers cross-reference map.

&return=&xref.MarkForDelete("Customers", "PS", "PS001")

MarkForDeleteNVP

Syntax

MarkForDeleteNVP(mapName,referenceDomain,referenceNVP)

Description

Delete a set of values in a cross-reference map for a specified domain. The values in the elements are marked
as deleted. If only two mappings are in a row and one of them is marked for deletion, then the value in the
other domain will also be deleted. Any values marked for delete are treated as if they do not exist. Therefore,
you can populate the same elements with xref:populateXRefRowNVP function in ADD mode. However,
using the values marked for delete as a reference value in the LINK mode of the xref:populateXRefRowNVP
function would cause an error.

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as string.

referenceDomain Name of a domain in the Xref from which to delete values, as string.

referenceNVP Name value pairs of elements and values in the reference domain to be deleted, as
an array of DataElement.

Returns

True if the delete succeeds.

Example

This example deletes the specified values in the EBS domain from the Items cross-reference map.

Local array of EOTF_CORE:Common:DataElement &ebsNVP1 = CreateArrayRept(create EOTF_⇒
CORE:Common:DataElement(&EBS1), 1);
&ebsNVP1 [1].value = &value1;
Local boolean &return = &xref.MarkForDeleteNVP("Items", &EBS1, &ebsNVP1);

Accessing Maps Using PeopleCode Chapter 6

64 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

PopulateValue

Syntax

PopulateValue(mapName,referenceElementName,referenceValue,elementName,elementValue,mode)

Description

Locate a reference element value in a cross-reference map and populate another element in the same data row
with an equivalent value. This form of populate is used to find a single reference element and populate a
single element value.

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as string.

referenceElementName Name of an element in the Xref in which to look for a value, as string.

referenceValue Value of an element in the Xref to look for, as string.

elementName Name of the element in the Xref in which to supply an equivalent value, as string.

elementValue The equivalent value to be supplied to the element, as string.

mode The mode in which the function populates the element. You can specify any of the
following values: ADD, LINK, or UPDATE. The mode parameter values are case-
sensitive and must be specified in uppercase only.

Returns

The UniqueGUID value of the Xref row where the data was populated.

Example

This example will locate value &guid1 in the UniqueGUID element of the &TestName cross-reference map,
and update the equivalent value of element EBS1 to &value1.

 &value1 = &value1 | "0";
 &returnValue = &xref.PopulateValue(&TestName, &UniqueGUID, &guid1, &EBS1,⇒
 &value1, &UPDATE);

This example will add values &guid3 in the UniqueGUID element and &value3 in the EBS1 element to the
&TestName cross-reference map data.

Chapter 6 Accessing Maps Using PeopleCode

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 65

Local string &guid3 = UuidGen();
Local string &value3 = "00003";
&returnValue = &xref.PopulateValue(&TestName, &EBS1, &value3, &UniqueGUID, &guid3,⇒
 &ADD);

This example will add value &value4 in the EBS1 element to the &TestName cross-reference map data, and
let the code generate a random UniqueGUID.

 Local string &value4 = "00004";
 &returnValue = &xref.PopulateValue(&TestName, &EBS1, &value4, &UniqueGUID, "",⇒
 &ADD);

PopulateValueNVP

Syntax

PopulateValueNVP(mapName,referenceDomain, DataElement referenceNVP, targetDomain,targetNVP,
mode)

Description

Locate the reference domain element values in a cross-reference map, and populate another domain's
elements in the same data row with an equivalent value. This form of populate should be used when multiple
elements exist in either the reference or target domain. All required elements in the reference domain must be
included in the reference NVP list, but optional elements such as qualifiers do not have to be included.

Parameters

Parameter Description

mapName Name of a dynamic (cross-reference) value map definition, as string.

referenceDomain Name of a domain in the Xref in which to look for a value, as string.

referenceNVP Name value pairs of elements and values in the reference domain to look for, as an
array of DataElement.

targetDomain Name of the domain in which to populate equivalent values, as string.

targetNVP Element names and their equivalent values (NVPs) to be populated in the Xref
map, as an array of DataElement.

mode The mode in which the function populates the element. You can specify any of the
following values: ADD, LINK, or UPDATE. The mode parameter values are case-
sensitive and must be specified in uppercase only.

Accessing Maps Using PeopleCode Chapter 6

66 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Returns

The UniqueGUID value of the Xref row where the data was populated.

Example

This example will locate value &guid1 in the UniqueGUID element of the &TestName cross-reference map,
and update the equivalent value of element EBS1 to &value1.

&value1 = &value1 | "0";
&ebsNVP1 [1].value = &value1;
&returnValue = &xref.PopulateValueNVP(&TestName, &UniqueGUID, &guidNVP1, &EBS,⇒
 &ebsNVP1, &UPDATE);

This example will add values &guid3 in the UniqueGUID element and &value3 in the EBS1 element to the
&TestName cross-reference map data.

Local string &guid3 = UuidGen();
Local array of EOTF_CORE:Common:DataElement &guidNVP3 = CreateArrayRept(create⇒
 EOTF_CORE:Common:DataElement(&UniqueGUID), 1);
&guidNVP3 [1].value = &guid3;
Local string &value3 = "00003";
Local array of EOTF_CORE:Common:DataElement &ebsNVP3 = CreateArrayRept(create EOTF_⇒
CORE:Common:DataElement(&EBS1), 1);
&ebsNVP3 [1].value = &value3;
&returnValue = &xref.PopulateValueNVP(&TestName, &EBS, &ebsNVP3, &UniqueGUID,⇒
 &guidNVP3, &ADD);

This example will add value &value4 in the EBS1 element to the &TestName cross-reference map data, and
let the code generate a random UniqueGUID.

Local array of EOTF_CORE:Common:DataElement &guidNVP4 = CreateArrayRept(create⇒
 EOTF_CORE:Common:DataElement(&UniqueGUID), 1);
Local string &value4 = "00004";
Local array of EOTF_CORE:Common:DataElement &ebsNVP4 = CreateArrayRept(create EOTF_⇒
CORE:Common:DataElement(&EBS1), 1);
&ebsNVP4 [1].value = &value4;
&returnValue = &xref.PopulateValueNVP(&TestName, &EBS, &ebsNVP4, &UniqueGUID,⇒
 &guidNVP4, &ADD);
&requestValues = CreateArrayRept(create EOTF_CORE:Common:DataElement(&EBS1), 1);
&requestValues [1].value = &value4;

Xref Class Properties

This section discusses the Xref class properties.

Chapter 6 Accessing Maps Using PeopleCode

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 67

exceptionCaught

Description

Value true when a lookup method suppresses an exception because the needAnException parameter was
false.

exceptionDetails

Description

Exception object containing the detail of the exception that was caught.

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 69

Chapter 7

Accessing Maps Using Web Services

This chapter provides an overview of Application Integration Framework web services and discusses the
cross-reference lookup service.

Understanding Application Integration Framework Web Services

Application Integration Framework web services provide external applications a web-service-based means of
accessing Application Integration Framework map information. Web services are implemented by means of
the PeopleTools Integration Broker (IB) framework. The Integration Gateway web application receives all the
web service requests and forwards them to the Integration Engine (application server) for processing.

This diagram illustrates an external application using the cross-reference lookup web service to look up
values in an Application Integration Framework cross-reference map.

Using Application Integration Framework web service with an external application

1. The external application invokes one of the web service operations.

2. PeopleSoft Integration Broker receives the service operation and validates the WS security credentials.

3. The request is passed to the application server for processing. The application server authenticates the
service operation and routes it to the respective handler. The handler runs the PeopleCode and sends the
response to the Integration Gateway.

Accessing Maps Using Web Services Chapter 7

70 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

4. Integration Broker sends the response to the external application.

Cross-Reference Lookup Web Service

The service operation EOTF_XREF_LOOKUP.v1 is used by external systems to look up a cross-reference
value. For the external system to have access to the web service, it must be published on the PeopleSoft
application.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Broker, Providing Services.

Example: Cross-Reference Map Definition

In this example, the third-party system requests a cross-reference lookup for payment terms. This page shows
elements in the value map PaymentTermsGUID:

Domain value map used in example

Three elements are defined: UniqueGUID, SETID, and PYMNT_TERMS_CD.

This page shows the domains that are defined for the domain value map:

Chapter 7 Accessing Maps Using Web Services

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 71

Value Map - Domains page used in this example

Two domains are defined for this map:

1. PSFT represents the PeopleSoft application which contains the elements SETID and
PYMNT_TERMS_CD.

2. UinqueGUID is the domain used by the third party; it contains the UniqueGUID element.

Example: Web Service Request and Response

This is a sample request to obtain the PeopleSoft values for a common GUID value:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:⇒
xref="http://xmlns.oracle.com/Enterprise/tools/schema/xrefLookupValue.v1">
 <soapenv:Header/>
 <soapenv:Body>
 <xref:xrefLookupValue needFault="true">
 <xref:mapname>PaymentTermGUID</xref:mapname>
 <xref:Values>
 <xref:domain>UniqueGUID</xref:domain>
 <!--1 or more repetitions:-->
 <xref:element name="UniqueGUID">9d266732-90e2-11dd-a062-96c8921a7858<⇒
/xref:element>
 </xref:Values>
 <xref:targetDomain>PSFT</xref:targetDomain>
 </xref:xrefLookupValue>
 </soapenv:Body>
</soapenv:Envelope>

This is the response:

Accessing Maps Using Web Services Chapter 7

72 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:⇒
soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsd="http://www.w3.org⇒
/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <xrefResponse xmlns="http://xmlns.oracle.com/Enterprise/tools/schema/xref⇒
Response.v1">
 <status>Success</status>
 <responseValues>
 <domain>PSFT</domain>
 <element name="SETID">SHARE</element>
 <element name="PYMNT_TERMS_CD">CD01</element>
 </responseValues>
 </xrefResponse>
 </soapenv:Body>
</soapenv:Envelope>

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 73

Appendix A

Application Integration Framework
Example

This appendix provides an overview of an example of an Application Integration Framework transformation
and discusses how to:

• Define a dynamic value map

• Define and populate a static value map

• Use the XSLT extension function in the transformation program

• Update the service operation routing

Example Overview

This diagram represents the scenario for this application:

Payment terms integration flow

Application Integration Framework Example Appendix A

74 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

In this example, the PeopleSoft application updates the third-party application every time a new payment term
is added. This transformation requires mapping the PeopleSoft ABM elements to the EBM elements, as well
as mapping keys and static values. This example covers the following data translations within Application
Integration Framework:

• The combination of the fields SETID and PYMNT_TERMS_CD is used as the key in the PeopleSoft
application. This value needs to be assigned a common GUID for the EBM.

• The PeopleSoft application uses a 3-character code for language. The third-party system uses a numeric
code.

This integration requires a transformation that:

• Maps the message structure.

• Creates a common value for the key fields.

• Translates the data values for static fields that differ.

Defining a Dynamic Value Map

 To create a new dynamic value map:

1. Select Enterprise Components, Integration Definitions, Transformation Framework, Define Value Maps.

2. Select the Add a New Value tab.

3. Enter PaymentTermsGUID for the map name.

4. Select Cross-reference (Dynamic) for the map type.

5. Click Add.

The map will contain the element UniqueGUID.

6. Add two additional elements SETID and PYMNT_TERMS_CD.

Appendix A Application Integration Framework Example

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 75

Domain value map used in example

Three elements are defined: UniqueGUID, SETID, and PYMNT_TERMS_CD.

To add the domains:

1. Select the Domains tab.

The UniqueGUID domain appears.

2. Click the Add a new row icon to create another domain.

3. Enter PSFT for the domain name.

4. Select SETID for the first element.

5. Click the Add a new row icon to add another row.

6. Select PYMNT_TERMS_CD for the second element.

7. Save the page.

Application Integration Framework Example Appendix A

76 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Value Map-Domains page used in this example

Two domains are defined for this map:

• PSFT represents the PeopleSoft application and contains the elements SETID and PYMNT_TERMS_CD.

• UinqueGUID is the domain used by the third party; it contains the UniqueGUID element.

Defining and Populating a Static Value Map

To create a new domain value map:

1. Select Enterprise Components, Integration Definitions, Transformation Framework, Define Value Maps.

2. Select the Add a New Value tab.

3. Enter LanguageCodeDVM for the map name.

4. Select Domain Value Map (DVM) for the map type.

5. Click Add.

The map will contain the element UniqueGUID.

6. Add two additional elements, LANGUAGE_CD and COMMON.

Appendix A Application Integration Framework Example

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 77

Domain value map for language code

To add the domains:

1. Select the Domains tab.

The UniqueGUID domain appears.

2. Click the Add a new row icon to create another domain.

3. Enter PSFT for the domain name.

4. Select LANGUAGE_CD for the first element.

5. Click the Add a new row icon in the header to add another domain.

6. Enter AIA for the domain name.

7. Select COMMON for the first element.

8. Save the page.

Application Integration Framework Example Appendix A

78 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Domain value map domains for language code

Three domains are defined: AIA, PSFT and UniqueGUID.

To populate the DVM:

1. Select Enterprise Components, Integration Definitions, Transformation Framework, Populate Domain
Value Maps.

2. Select LanguageCodeDVM.

3. In the LANGUAGE_CD column, enter a data value as defined in the PeopleSoft (PSFT) domain.

4. In the corresponding COMMON column, enter the value to be used for the AIA domain.

5. Add as many rows as necessary to map all of the static values.

6. Save the page.

Appendix A Application Integration Framework Example

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 79

Populate Domain Value Maps page

Using the XSLT Extension Function in the Transformation Program

Create a transformation program that maps the fields in the PeopleSoft ABM message to the corresponding
fields in the EBM message. You will then use the XSLT functions to map the data values.

This section provides sample coding for sections of the transform application engine program for:

• Key value transformation

• Domain value transformation

Key Value Transformation

This example shows the elements in XML in the ABM that need to be translated, the code for the translation,
and the resulting elements in the EBM.

Key Elements for Translation in PeopleSoft ABM

Elements in XML message:

<MsgData>
 <Transaction>
 <PYMT_TRMS_HDR class="R">
 <SETID IsChanged="Y">SHARE</SETID>
 <PYMNT_TERMS_CD IsChanged="Y">DIT91</PYMNT_TERMS_CD>

XSLT Code

This snippet of the XSLT code shows the transform XSLT in the application engine program:

Application Integration Framework Example Appendix A

80 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

1. Create a new variable by concatenating SETID and PYMT_TERMS_CD:

<corecom:ApplicationObjectKey>
 <corecom:ID>
 <xsl:attribute name="schemeID">
 <xsl:text disable-output-escaping="no">PSFT</xsl:text>
 </xsl:attribute>
 <xsl:attribute name="schemeAgencyID">
 <xsl:text disable-output-escaping="no">PSFT_COMMON</xsl:text>
 </xsl:attribute>
 <xsl:variable name="NamedValuePair"select='concat("<SETID>",PYMT_TRMS_⇒
HDR/SETID,"</SETID><PYMNT_TERMS_CD>",PYMT_TRMS_HDR/PYMNT_TERMS_⇒
CD,"</PYMNT_TERMS_CD>")'/>

2. Use the generate-guid utility to generate a unique GUID:

 <xsl:variable name="CommonGuid" select='concat("<UniqueGUID>",utility:⇒
generate-guid(),"</UniqueGUID>")'/>

Note. This step is not necessary. If the GUID does not exist, the appropriate xref:populate function
automatically generates the unique GUID.

3. Use the xref:populateValueNVP function to add the new GUID to the cross-reference:

<xsl:variable name="GUIDAdd" select='xref:populateValueNVP("PaymentTermGUID","PSFT"⇒
,$NamedValuePair,"UniqueGUID",$CommonGuid,"ADD")'/>
 <xsl:call-template name="Process-GUID">
 <xsl:with-param name="returnValue">
 <xsl:value-of select="$GUIDAdd"/>
 </xsl:with-param>
 <xsl:with-param name="statusDelimiter">;</xsl:with-param>
 </xsl:call-template>
 </corecom:ID>

4. Insert the values in the EBM message:

 <corecom:ContextID>
 <xsl:attribute name="schemeID">
 <xsl:text disable-output-escaping="no">SETID</xsl:text>
 </xsl:attribute>
 <xsl:attribute name="schemeAgencyID">
 <xsl:text disable-output-escaping="no">PSFT</xsl:text>
 </xsl:attribute>
 <xsl:value-of select="PYMT_TRMS_HDR/SETID"/>
 </corecom:ContextID>
 <corecom:ContextID>
 <xsl:attribute name="schemeID">
 <xsl:text disable-output-escaping="no">Payment Terms Code</xsl:text>
 </xsl:attribute>
 <xsl:attribute name="schemeAgencyID">
 <xsl:text disable-output-escaping="no">PSFT</xsl:text>
 </xsl:attribute>
 <xsl:value-of select="PYMT_TRMS_HDR/PYMNT_TERMS_CD"/>
 </corecom:ContextID>

Transformed Elements in EBM Message

The transformed EBM message contains the common GUID value:

Appendix A Application Integration Framework Example

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 81

<corecom:ApplicationObjectKey>
 <corecom:ID schemeAgencyID="PSFT_COMMON"schemeID=⇒
"PSFT">b15f3c34-72bc-11dd-b7dd-aaf7c4308a71</corecom:ID>
 <corecom:ContextID schemeAgencyID="PSFT" schemeID=⇒
"SETID">SHARE</corecom:ContextID>
 <corecom:ContextID schemeAgencyID="PSFT" schemeID=⇒
"Payment Terms Code">DIT91</corecom:ContextID>

Domain Value Transformation

This example shows the domain value elements in XML in the ABM that need to be translated, the code for
the translation, and the resulting elements in the EBM.

Domain Value Elements for Translation in PeopleSoft ABM

Here is the element for language in PeopleSoft ABM message:

<<PSCAMA class="R">
 <LANGUAGE_CD>ENG</LANGUAGE_CD>

XSLT Code

This snippet of the XSLT code shows the dvm lookup in the transform application engine program:

<xsl:variable name="MsgLang" select='dvm:lookup-dvm ("LanguageCodeDVM"⇒
,"LANGUAGE_CD",//MsgData/Transaction/PSCAMA/LANGUAGE_CD,"COMMON"⇒
,//MsgData/Transaction/PSCAMA/LANGUAGE_CD,false())'/>
<xsl:variable name="BaseLang" select='dvm:lookup-dvm("LanguageCodeDVM"⇒
,"LANGUAGE_CD",//MsgData/Transaction/PSCAMA/BASE_LANGUAGE_CD,"COMMON",⇒
//MsgData/Transaction/PSCAMA/BASE_LANGUAGE_CD,false())'/>
<xsl:attribute name="languageCode">
 <xsl:value-of select="substring-after($MsgLang,';')"/>
</xsl:attribute>

Transformed Elements in EBM Message

Here is the translated elements in the resulting EBM message:

<?xml version="1.0"?>
<paytermcreate:CreatePaymentTermEBM languageCode="500" xmlns:corepaymenttermcust=⇒
"http://xmlns.oracle.com/EnterpriseObjects/Core/Custom/EBO/PaymentTerm/V1"⇒
 xmlns:paytermcreate="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/Create⇒
PaymentTermEBM/V1">
 <corecom:EBMHeader languageCode="500" xmlns:corecom="http://xmlns.oracle.com⇒
/EnterpriseObjects/Core/Common/V2">
 <corecom:Sender>
 <corecom:ID>E900B20</corecom:ID>
 </corecom:Sender>
 </corecom:EBMHeader>

Application Integration Framework Example Appendix A

82 Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved.

Updating the Service Operation Routing

To update the service operations routing:

1. Select Integration Broker, Integration Setup, Service Operations.

2. Select the service operation that you need to update.

3. Select the Routing tab.

4. Either enter a new routing or click the link for an existing routing.

5. If it is a new routing, enter the routing information.

6. Access the Parameters page.

Message.Ver into
Transform 1

This is the PeopleSoft ABM message.

Transform Program 1 This is the transformation program created for this integration.

Message.Ver out of
Transforms

This is the EBM message that will be sent to the third party.

7. Save the routing.

Service Operations Routing - Parameters page

Index

Copyright © 1999, 2010, Oracle and/or its affiliates. All Rights Reserved. 83

A
ABM vii
AIA 4
Application Integration Architecture 4

C
cross-reference functions 33
cross-reference map 7

D
DVM map 6

E
EBM vii
EBO vii
EBS vii

F
framework 3

G
generate-guid 46

L
lookup-dvm 45
lookupSetCtrlValues 47, 56
lookupSetID 57
lookupValue 43
LookupValue 52, 59
LookupValue1M 53, 60
lookupValueNVP 44
LookupValueNVP 61
LookupVaueNVP 54
lookupXRef 40
lookupXRefNVP 41

M
maps

value maps 6
markForDelete 38
MarkForDelete 62
markForDeleteNVP 39
MarkForDeleteNVP 63

P
PIP 4
PopulateValue 64
Populate ValueNVP 65
populateXRefRow 33
populateXrefRowNVP 36

S
SOA 4

W
web service 69

X
xref map 7

	PeopleSoft Enterprise EPM 9.1 PeopleBook: Application Integration Framework
	Copyright
	Contents
	Preface: Application Integration Framework Preface
	Application Integration Framework
	Common Terms Used in This PeopleBook

	PeopleBooks and the Online PeopleSoft Library

	Chapter 1: Getting Started with Application Integration Framework
	Understanding the Application Integration Framework
	Application Integration Framework Implementation

	Chapter 2: Understanding Application Integration Framework
	Application Integration Framework
	Use Cases for Application Integration Framework

	Maps
	Domain Value Map
	Cross-Reference Map

	Functions to Populate and Maintain the Cross-Reference and DVMs
	Use Case: Integration Broker Transformation Without AIA Middleware
	Use Case: Integration Broker Point-to-Point Transformation
	Use Case: Integration Broker Transformation in Which a Third Party Uses AIA Middleware

	Chapter 3: Defining and Populating Value Maps
	Understanding Value Maps
	Defining Value Maps
	Pages Used to Define Value Maps
	Adding a Value Map
	Adding Elements to the Map
	Assigning Domains to the Value Map

	Populating a Domain Value Map
	Pages Used to Populate a Domain Value Map
	Populating a Domain Value Map

	Chapter 4: Creating Transform Programs and Updating Service Operations
	Understanding Transform Programs
	Creating a Transform Program
	Updating Service Operation Routing

	Chapter 5: Accessing Maps Using XSLT Extension
	Understanding XSLT Extension Functions

	Chapter 6: Accessing Maps Using PeopleCode
	Understanding Application Integration Framework Classes
	How to Import Application Integration Framework Type Classes

	Chapter 7: Accessing Maps Using Web Services
	Understanding Application Integration Framework Web Services
	Cross-Reference Lookup Web Service

	Appendix A: Application Integration Framework Example
	Example Overview
	Defining a Dynamic Value Map
	Defining and Populating a Static Value Map
	Using the XSLT Extension Function in the Transformation Program
	Key Value Transformation
	Domain Value Transformation

	Updating the Service Operation Routing

	Index

