
Start

Oracle® Documanage

Documanage Programmer ’s Guide
version 6.6

Part number: E14904-01

March 2009

Copyright © 2009, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable,
the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be
the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for
the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose
to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible
for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including
delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or
damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

s

Notice

THIRD PARTY SOFTWARE NOTICES

This product includes software developed by Apache Software Foundation (http://www.apache.org/).
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution under the Generic
BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Copyright (c) 1995-2004 Jean-loup Gailly and Mark Adler

This product includes software developed by the Massachusetts Institute of Technology (MIT).
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright © 2009 MIT

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by Sam Leffler of Silicon Graphics.
THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE

Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software components distributed via the Berkeley Software Distribution (BSD).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2000-2006 www.hamcrest.org. All Rights Reserved.

This product includes software components developed by the Independent JPEG Group and licensed for binary distribution under the
Independent JPEG Group license.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 1994-1998 AIIM International. All Rights Reserved.

This product includes software components developed by Sam Stephenson.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright (c) 2005-2007 Sam Stephenson

This product includes software components developed by Sun Microsystems.

Copyright (c) 1995-2008 Sun Microsystems, Inc. All rights reserved.

This product includes software components distributed by Vbnet and Randy Birch.

Copyright © 1996-2008 Vbnet and Randy Birch. All Rights Reserved

This product includes software components distributed by the Internet Software Consortium and IBM.

 THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
EVENT SHALL INTERNET SOFTWARE CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright (c) 1996 by Internet Software Consortium.

THE SOFTWARE IS PROVIDED "AS IS", AND IBM DISCLAIMS ALL WARRANTIES, INCLUDING ALL IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY
SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE, EVEN IF IBM IS APPRISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Portions Copyright (c) 1995 by International Business Machines, Inc.

This product includes software components distributed by RSA.
RSA Data Security, Inc. makes no representations concerning either the merchantability of this software or the suitability of this software for any
particular purpose. It is provided "as is" without express or implied warranty of any kind.

Copyright © 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.

This product includes software components distributed by Terence Parr.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2003-2007, Terence Parr. All rights reserved.

This product includes software components distributed by Computer Associates.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) 2002 Computer Associates. All rights reserved.

This product includes software components distributed by MetaStuff.

THE SOFTWARE IS PROVIDED BY METASTUFF, LTD. AND CONTRIBUTORS "AS-IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDINGBUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL METASTUFF, LTD. OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS AND SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ARISING IN ANY WAY OUT OF THE
USE OF THE SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2001-2005 Metastuff, Ltd. All Rights Reserved.

This product includes software components distributed by JSON.

The Software shall be used for Good, not Evil.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright (c) 2002 JSON.org

This product includes software components distributed by OpenSSL (http://www.openssl.org/).

THIS SOFTWARE IS PROVIDED BY THE OPENSSL PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OPENSSL PROJECT BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA OR PROFITS; OR BUSINESS INTERRUPTION)
HOWVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1998-2007 The OpenSSL Project. All rights reserved.

This product includes software components distributed by Yahoo! Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2008 Yahoo! Inc. All Rights Reserved.

Database Administrator’s Guide for Documanage vii

Publication history

First issue for Version 6.4: July 2004
Revision 1 for Version 6.4 Service Release 1: December 2004
Revision 2 for Version 6.4 Service Release 2: May 2005
Revision 3 for Version 6.4 Service Release 4: September 2005
Revision 4 for Version 6.4 Service Release 5: September 2006
Revision 5 for Version 6.4 Service Release 6: July 2006
Revision 6 for Version 6.5: December 2006
Revision 7 for Version 6.5: September 2007
Revision 8 for Version 6.6: March 2009

Programmer’s Guide for Documanage viii

Documanage documentation roadmap

Administrating

Administrator’s
Guide

Installation
Guide

Database
Administrator’s

Guide

Programming

API help Programmer’s
Guide

Workstation

Workstation
Guide

Workstation help

ix Programmer’s Guide for Documanage

Programmer’s Guide for Documanage x

Table of Contents
XVIII PREFACE

xviii Introduction

xx Who Should Use This Manual?

xx What You Need to Get Started

xxi Development Projects

xxii Using this manual

xxii Contents

xxiii Conventions

xxiii Related documents

xxiv Suggestions

1 GENERAL TOPICS

1 Control Inventory

2 Handles and Hierarchy

5 Document Specifiers

5 Using Array Properties

6 Dynamic Loading of Controls Using CreateObject or Type
Libraries

7 Dates

7 Error Handling

9 Valid IsActionAllowed Checks

11 Filter/OrderBy Chart

xi Programmer’s Guide for Documanage

13 NON-VISUAL CONTROLS

13 DmgDiary Control

13 Properties

19 Methods

21 PODocument Control

21 Properties

32 Methods

43 Examples

43 Using the Document Control

44 POFolder Control

44 Properties

48 Methods

53 Using the Folder Control

53 POProject Control

53 Properties

56 Sample code: Adding a Workflow project:

57 CheckOut a Project:

57 Methods

79 POSession Control

79 Standard Properties

80 Router Only Properties

81 Standard Methods

87 Router Only Methods

90 Using the Session Control

90 POVolume Control

Programmer’s Guide for Documanage xii

90 Properties

91 Methods

91 Using POVolume Control

92 POQuery Control

92 Properties

98 Methods

106 Using the Query Control

115 VISUAL CONTROLS

115 POFolder and Document Control

115 Properties

118 Methods

122 Events

124 Example

125 Using the POFolder and Document Control

127 POFolder List Control

127 Properties

129 Methods

129 Events

130 Using the Folder List Control

131 POTree Control

131 Properties

134 Methods

137 Events

141 Example

141 Using the Tree Control

xiii Programmer’s Guide for Documanage

142 DmgViewer Control

142 DmgViewer interface

150 DmgViewer Methods

156 Using the DmgViewer control

158 POViewer Control

159 Basic Imaging Properties

160 Basic Imaging Methods

162 Annotation Properties

164 Annotation Methods

167 Using the POViewer Control

167 Dmg QBE Control

167 Introduction

168 Limitations and Requirements

168 User Interface

169 Behaviors

171 Properties

177 Methods

178 Events

179 XML Files

182 DMDTPicker Control

183 Example - Visual Basic

185 General Topics

185 Refreshing folders when documents change

186 The Tree and GetRelativehItem

186 Visual Controls vs. Programmatic Use

Programmer’s Guide for Documanage xiv

189 DOCUMENT SPECIFIER CONTROLS

189 Introduction

190 Document Specifier List Control

191 Properties

193 Methods

195 Document Access Control

195 Properties

196 Methods

199 CUSTOM WORKFLOW TASKS

199 Workflow Daemon

199 Installation

200 Notation

200 Running the Daemon

202 Run Mode

202 Connection Parameters

203 Logging Parameters

205 Writing Daemon-Called Libraries

208 Workflow Daemon Plugins

208 Workflow Daemon Calls

209 Workflow Daemon Tasks

210 Sample Header File

211 Sample C++ File

211 Sample Plugin Code

xv Programmer’s Guide for Documanage

221 WORKSTATION AUTOMATION FEATURE

221 Introduction

222 Interfaces

222 Init

223 Open Project

223 Open Document

224 Open Folder

225 Open Query

226 Error Information

226 Action Parameter Bitmask

227 Example

230 Specification Formats

230 Project Key

231 Document Key

231 Folder Key

232 Query Specification (Format 0)

234 Query Specification (Format 1)

237 COM INVOCATION INTERFACE

237 DocSelectionData object

237 General

238 Connection Information

239 Document Information

239 Com Object

240 DmgComObjects.ini File

Programmer’s Guide for Documanage xvi

241 Version

241 Document COM Objects

242 Document COM Object

244 Enable Mask

246 Base Functionality COM Replacement Interface

247 Edit

248 View

249 Scan

250 Import

251 Export

252 Mail

253 Print

254 Some Considerations

256 Sample DmgCOMObjects.ini file

259 INDEX

xvii Programmer’s Guide for Documanage

Programmer’s Guide for Documanage xviii

Preface

Introduction
Skywire’s Documanage from Oracle document management system provides
flexible, robust, scalable solutions for enterprise document management and
workflow. A key aspect of this flexibility is the ability of programmers to
write custom additions, interfaces and applications to the system. This
document describes the facilities provided with Documanage which allow
programmers to build such extensions and how to use them to build client
applications. There are multiple Application Programming Interfaces (API's)
described here which serve several different purposes. Some are broadly
applicable interfaces to the system overall while others provide extensions to
specific services such as workflow functions. Not all this information will be
critical to every programmer, a goal of this document is to provide both an
inventory of what is available along with guidance to the appropriate facility
to use.

For customers desiring a portable multi-platform solution, the general
Documanage API is supplied as a C-language callable library of functions
known as the DmgAPI. This library provides programmers access to the full
range of Documanage capabilities from many popular platforms and
programming environments. Libraries are provided for Microsoft Win32,
Linux on Intel, Solaris, AIX and IBM MVS or z/OS. The C-language
interface makes the API accessible from virtually any language including C,
C++, and visual languages like Microsoft Visual BASIC. This API is now the
preferred way to access Documanage programmatically, from any supported
client configuration.

The DmgAPI is not documented in this guide. Instead, the documentation is
provided in a useful cross-platform HTML-based help system with the

Preface
Introduction

xix Programmer’s Guide for Documanage

software distribution. This help system is the complete and definitive guide to
the DmgAPI and providing it in this form insures it can stay up to date and
synchronized with the libraries as they are updated. See your product
distribution media for the folder or directory containing the DmgAPI help
pages.

For Microsoft Windows clients, the general Documanage API is supplied as
ActiveX controls (OCX's) with underlying dynamic link libraries (DLL's).
These controls are completely described in this Programmers' Guide. Many
of the Documanage client applications are themselves built using these
controls. Not all of the controls are required for every application, but they
may be mixed and matched supplying a customizable set of features and
interface elements for any application's needs. These controls are particularly
useful in visual ActiveX environments, such as Microsoft Visual BASIC.
With the introduction of the DmgAPI library interface, the ActiveX controls
will continue to receive limited support. The useful visual interface controls
will continue to receive support.

Several custom extensions to the workflow capabilities of Documanage are
described in this guide. Two workflow task-types allow for extensions
designed to run on the server or on the workstation, the Poller and Launcher
tasks. To make use of these tasks custom programming is required as
described in this guide. Additionally, an external workstation-side program is
now supplied with Documanage that can automate processing of any generic
workflow task, including interfacing to external systems such as e-mail or
other notifications, examining information within Documanage in complex
ways to make go/no-go decisions or virtually any other automation you can
imagine. This program is called the Workflow Daemon application and
executes libraries of custom routines provided according to the API
documented here and the DmgAPI. This guide describes how the daemon
application can be integrated into a workflow process and provides some
example routines for simple functions. The daemon application and the
sample code is provided with your product distribution media.

Preface
Who Should Use This Manual?

Programmer’s Guide for Documanage xx

Who Should Use This Manual?
This manual is for programmers building applications which will interface
directly with Skywire’s Documanage from Oracle document management
system. It describes a set of ActiveX controls provided with the system to
accomplish critical client component functions. The controls provide the
primary Application Programming Interface (API) for client software to
communicate with and request functions of a Documanage server.

Users of the controls should be familiar with programming using ActiveX
controls in their target language platform. They should also be familiar with
Documanage concepts and system architecture. Knowledge of the
Documanage Administration module and Documanage Workstation Client
are essential.

What You Need to Get Started
Before you start, having a few of the basics installed, working and tested will
provide a solid foundation and environment for your development work.

 A working Documanage server system, including router, server and
administration components. This may be on the development machine
itself or elsewhere on the LAN.

 If you will be working with workflow, the Workflow Designer
application should be installed.

 The programmer's workstation should have at least the following
installed and operational:

 Documanage Workstation client software

 If you plan to access Documanage documents using ODMA
interfaces, then the ODMA client software should be installed.

Preface
Development Projects

xxi Programmer’s Guide for Documanage

 Development environment of choice and programming tools

 Documanage SDK

Documanage ActiveX controls can be used in various programming
environments such as Microsoft Visual Basic, Delphi, and Microsoft Visual
C++ or over the Internet using ActiveX capable browsers such as Internet
Explorer.

Development Projects
Using these controls, applications can establish sessions with the
Documanage servers, perform queries, import and retrieve documents,
browse through folders, display documents and manipulate workflow
projects. The controls are divided into several functional categories as well as
into “visual” and “non-visual” controls.

“Visual” controls, as the name implies, provide not only a functional interface
to the server back-end, but a graphical interface to the end-user as well. These
controls are used, for example, in the Documanage client to provide Cabinet
and Folder views, as well as viewing documents and annotations within the
client application.

“Non-visual” controls are supplied for use either behind the scenes in a visual
application (for example in establishing a session to the server, or when the
visual controls interface is inappropriate) or by non-visual applications such
as import/export utilities, middleware such as a web bridge application or
administrative functions where graphic display is not required.

Finally, there are three custom development opportunities that allow you to
extend the workflow functionality in Documanage. The Launcher, Poller and
Workflow Daemon tasks are special workflow task types which call custom
code during the Documanage installation and setup. You can extend the

Preface
Using this manual

Programmer’s Guide for Documanage xxii

sample code provided for each of these types to create meaningful workflow
tasks.

Using this manual
Various constants are referred to in this manual. Each constant is in all caps
and begins with “EZP_”. For Visual Basic, these constants are defined in a
Visual Basic Module file called DocumanageAPI.bas. (This file is included
with you materials included in your toolkit.) C++ programmers have an
equivalent .h file. Users of other languages must convert one of these files
into a usable format.

Contents
This manual is organized as follows:

 General Topics: Chapter 1 provides technical information about general
topics of interest to users of the Documanage ActiveX controls.

 Non-Visual controls: Chapter 2 provides technical information about
various non-visual Documanage ActiveX controls.

 Visual controls: Chapter 3 provides technical information about various
visual Documanage ActiveX controls.

 Custom Workflow Tasks: Chapter 5 provides technical information
about implementing custom Documanage Workflow Launcher and Poller
tasks.

Preface
Conventions

xxiii Programmer’s Guide for Documanage

Conventions
The Programmers Guide to DocuManage manual provides consistent
typographic conventions and keyboard formats to help you locate and
interpret information easily. These conventions are provided below.

Typographic and Keyboard Conventions

Related documents
In addition to this manual, the following related publication(s) are also
available from Oracle Software:

 Administratror’s Guide

 DocuManage™ Workstation Guide

Convention Description

Italics Command, dialog box, icon, and field names

San serif font Directory, folder, and file names

1 Numbered lists Provide step-by-step procedures for performing an
action

 Bulleted lists Provide grouped information, not procedural steps

Preface
Suggestions

Programmer’s Guide for Documanage
xxiv

Suggestions
We welcome your comments, suggestions, and concerns about this manual or
any Oracle Software publication. Send your comments to:

Skywire’s Documanage from Oracle Software Technical Documentation
3353 Peachtree Rd NE, Ste 800
Atlanta, Georgia 30326

Preface
Suggestions

xxv Programmer’s Guide for Documanage

General Topics

Control Inventory
Here is a complete list of the Documanage controls, arranged by category as
described in this document. Each control is registered and thus only one copy
of each control is active on a given Windows system installation at once:

Non Visual
Controls

Description VB Component

DmgDiary.ocx Diary Control DmgDiary ActiveX Control
Module

PODocSpecifier.dll Document Specifier
Classes

PODocSpecifier

PODocument.ocx Document Control PowerOffice Document
Control

POFolder.ocx Folder Control PowerOffice Folder Control

POPoller.ocx Import Poller Control PowerOffice DirectroyPoller
Control

POProject.ocx Project Control PowerOffice Project Control

POSession.ocx Session Control PowerOffice Session Control

POQuery.ocx Query Control PowerOffice Query Control

POVolume.dll Volume Control POVolume Module

General Topics
Handles and Hierarchy

2 Programmer’s Guide for Documanage

Handles and Hierarchy
At a high level, Documanage controls allow you to:

 Create a connection to the Documanage document management server.

 Open a Cabinet.

 Find, view and manipulate items in that Cabinet (i.e., folders and
documents).

These three different actions correspond to 3 different “objects”:

 An open connection to the server.

 An opened Cabinet.

 Visual Controls Description VB Component

DMDTPicker.ocx DateTime Picker
Control

DMDTPicker ActiveX
Control Module

DMGQBE.ocx Query By example
Control

DMGQBE ActiveX Control
Module

DmgViewer.ocx Viewer Control Documanage Viewer Control

POFLD_Doc.ocx Folder/Document
Control

PowerOffice Fld. and Docs.
Control

POFLD_List.ocx Folder List Control PowerOffice Folder List
Control

POTree.ocx Tree Control PowerOffice Tree Control

General Topics
Handles and Hierarchy

Programmer’s Guide for Documanage 3

 Items in a cabinet.

Each of these “objects” are referenced in code by “Handles” – discrete 32-bit
opaque identifiers (i.e., "cookies") which identify these objects. These values
should never be changed and should only be used in the various properties
and methods of the controls.

Since each object is different, each has its own handle:

 A connection to the Server is referenced by a Session Handle (called
hSession).

 An opened Cabinet is referenced by a Cursor Handle (called hCursor).

 Items inside a Cabinet are referenced by Item Handle (called hItem).

Each of these three objects relates to the others. Think of the whole thing as
one big tree.

At the top of the tree is a single Session. Under the Session are one or more
Cabinets (which we also call Cursors). Under each Cabinet are many Items.
Cabinet handles (hCursors) are useless without knowing to what Session
(hSession) they belong. Folders and documents (hItems) are also useless
without knowing in what Cabinet they exist.

General Topics
Handles and Hierarchy

4 Programmer’s Guide for Documanage

Different ActiveX Controls manage each object in the system:

 The Documanage Session Control creates and breaks connections to the
Server and generates hSession handles for other controls to use.

 Cabinets are created and destroyed by the Documanage Query Control.
These cabinets can be accessed by other controls by an hCursor handle it
provides for you. This control also allows access to the different elements
inside a Cabinet, referred to by hItem handles.

 The Documanage Document Control and Folder Control allow detailed
access to documents and folders inside a cabinet.

To sum up:

 hSession Handle: The Session control is used when a user connects/logs
in to the Documanage server. A unique hSession handle is created for
every connection to the server. The hSession is passed between the
various controls to identify the proper session when requesting
information from the server. The hSession is required for all controls
specified in the documentation.

 hCursor Handle: The Query control is used when accessing a cabinet. A
unique hCursor handle is created to identify a cabinet. A new hCursor is
assigned to each instance of a cabinet when it is opened. There may be
several hCursors in an hSession, since a user may have several cabinets
open at the same time.

 hItem Handle: hItem is used to identify a specific cabinet root, folder or
document in an open query. Each hItem belongs to a hCursor, just as a
folder or document belongs to a specific cabinet.

General Topics
Document Specifiers

Programmer’s Guide for Documanage 5

Document Specifiers
Documanage controls provide access to documents through handles, which
are only valid for a particular session and open cabinet. A Document
Specifier, or DocSpecifier for short, provides a way to keep a permanent
reference to a document between sessions. A DocSpecifier can refer to either
the latest version (whatever it is, as it continues to change over time) or a
specific version of a document. Refer to the “Document Specifier Controls”
section.

Using Array Properties
Many properties may be of type string array, long array, etc. Properties of
these types have to be called in this format:

MyVal = Control.Items(MyIndex)

The size of these arrays are often stored in another property of the same name
with the word “total” appended to the beginning. These arrays are zero based
so that the valid range is from 0 to Total – 1. Newer additions to the controls
will not use array properties but a Method to access the array. These methods
are often in the format:

“GetSomeArrayOfValues(index)” where index is from 0 to the property:
“TotalSomeArrayOfValues.”

For example, in the Document control the Document Types are exposed as an
array property but the newer version history information is exposed via a
method. Some controls will provide both array properties and access
methods. Some environments that can use ActiveX controls have difficulties
with these array properties, such as early versions of Visual Basic Scripting
Edition. Standard Visual Basic 4.0 and 5.0 and Visual C++ v4.2 and later
have no problems with these properties.

General Topics
Dynamic Loading of Controls Using CreateObject or Type Libraries

6 Programmer’s Guide for Documanage

Dynamic Loading of Controls Using CreateObject
or Type Libraries

Advanced users may be familiar with OLE Automation Servers (now called
ActiveX DLLs). The Documanage Session, Query, Folder, and Document
controls are both ActiveX controls and ActiveX DLLs at the same time. By
using their OLE names (listed below) one can dynamically create these
objects using CreateObject. Be warned that this uses “late binding”; the
controls will be VB Objects which provide no feedback or warning for
syntax. An even better approach is to import the ActiveX Type Libraries into
your project. Using type libraries allows “early binding”; VB will know
everything about the interface to the controls, will provide feedback and
warnings for syntax and be much faster. You cannot, however, include one
specific Documanage Control into your project (the standard way) and then
try to use a type library to dynamically create that same type of control. If this
case arises then you are forced to use the CreateObject call and standard (non-
typed) Visual Basic Objects. This is a limitation of VB and OLE.

Visual C++ (using MFC) allows similar type library access to the controls.
You must direct the class wizard to create a new class from a type library.
Create an instance of this class and call CreateDispatch(OLE-Name).

The type libraries are named the same as the Active control’s files except they
end in “.tlb” instead of “.ocx”:

Control OLE
Name

Type Library OLE Name

PODocument.ocx PODocument.tlb PODOCUMENT.PODocumentCtrl.1

POFolder.ocx POFolder.tlb POFOLDER.POFolderCtrl.1

POSession.ocx POSession.tlb POSESSION.POSessionCtrl.1

POQuery.ocx POQuery.tlb POQUERY.POQueryCtrl.1

General Topics
Dates

Programmer’s Guide for Documanage 7

Dates
All properties in the controls should be set in the following format:

“yyyy-mm-dd hh:mm:ss”

Visual Basic provides the Format function to easily create dates in any form.

Documanage controls show the dates and times in the specific format used in
the user’s locale, as specified in the Regional Options of the Windows
Control Panel. The programmatic behavior of the controls remains the same,
so clients should use the format shown here in the programmatic interface.

Error Handling
Errors are handled in one of two ways. If an error occurs in response to a
property or method an error is “Raised” in Visual Basic. “On Error” code
must be present to handle these errors. The Err.Description contains a readable
message describing the error. The Err.Number is a number that relates to a
specific Documanage error. The Err.Description contains both the description
of the error and the Documanage error number. This string must be parsed to
determine the Documanage error number. Optionally, error description
parsing can be avoided by checking which Documanage control raised an
error and then checking its LastErrorNumber property. Care should be taken
in this case if you are using more then one Documanage control since it
maybe difficult to determine which control raised the error. VB’s Err object
attempts to report what object raised the error via the Err.Source property but
sometimes this is set inconsistently by VB. When multiple controls are
referenced in the scope of one error handler, parsing is the safest solution.

Here is a VB Routine to parse Err.Description:

General Topics
Error Handling

8 Programmer’s Guide for Documanage

Public Sub ParseErrorDesc(strError As String,
ByRef nNumber As Long, ByRef strDescription As
String)

Dim strPrefix As String
strPrefix = "DocuManage Error #"
If Left(strError, Len(strPrefix)) = strPrefix Then
nNumber = Val(Mid(strError, Len(strPrefix) + 1, 4))
strDescription = Mid(strError, Len(strPrefix) + 7, (Len(strError)) - (Len(str-
Prefix) + 7))
Else
nNumber = 0
strDescription = ""
End If
End Sub

The other way errors are handled are when errors occur not in response to
accessing a property or calling a method. ActiveX controls are forced in these
cases to generate an Error event. This is the error event:

 Error
Error(Number As Integer, Description As String, Scode As Long, Source
As String, HelpFile As String, HelpContext As Long, CancelDisplay As
Boolean)

Remarks: Fired in response to an error when error raising is not possible.

Only three parameters are of interest.

Parameters:

 Number: The Documanage error number.

 Description: The Documanage error description.

 CancelDisplay: Passed ByRef. You should always set this to FALSE
to prevent the ActiveX libraries from generating a message box.

General Topics
Valid IsActionAllowed Checks

Programmer’s Guide for Documanage 9

Every control contains a LastErrorSource and LastErrorNumber property
which can assist in handling errors:

 LastErrorNumber Data Type: long (Read Only)
The last DocuManage error.

 LastErrorSource Data Type: string (Read Only)
The location of the last DocuManage error. This is useful for reporting
bugs to Oracle.

Valid IsActionAllowed Checks
Document
EZP_ACTION_MAKE_REFERENCE
EZP_ACTION_COPY
EZP_ACTION_DELETE
EZP_ACTION_CHECKOUT
EZP_ACTION_VIEW
EZP_ACTION_ANNOTATE_LOCAL
EZP_ACTION_BLACKOUT_LOCAL
EZP_ACTION_ANNOTATE_GLOBAL
EZP_ACTION_BLACKOUT_GLOBAL
EZP_ACTION_END_LOCAL_ANOTATE
EZP_ACTION_END_GLOBAL_ANNOTATE
EZP_ACTION_MOVE
EZP_ACTION_CHECKIN_MAJOR
EZP_ACTION_CHECKIN_MINOR
EZP_ACTION_CHECKIN_SAME
EZP_ACTION_EDIT_CONTENTS
EZP_ACTION_EDIT_ATTRIBUTES
EZP_ACTION_VIEW_HISTORY
EZP_ACTION_PUBLISH
EZP_ACTION_VIEW_WORKING

General Topics
Valid IsActionAllowed Checks

10 Programmer’s Guide for Documanage

EZP_ACTION_GET_UNIQUE_KEY
EZP_ACTION_DOWNLOAD
EZP_ACTION_CHECKIN_UNDO

Document Version
EZP_ACTION_VIEW
EZP_ACTION_DOWNLOAD

Folder
EZP_ACTION_INSERT
EZP_ACTION_EDIT_ATTRIBUTES
EZP_ACTION_CHECKOUT_IN
EZP_ACTION_MAKE_REFERENCE_IN
EZP_ACTION_INSERT_IN
EZP_ACTION_GET_UNIQUE_KEY
EZP_ACTION_DELETE
EZP_ACTION_GETLEVEL

Project Folder
EZP_ACTION_CHECKOUT
EZP_ACTION_CHECKIN_SAME
EZP_ACTION_CHECKIN_PROJ
EZP_ACTION_CHECKIN_PROJ_MOVE
EZP_ACTION_CHECKIN_PROJ_ASSIGN

General Topics
Filter/OrderBy Chart

Programmer’s Guide for Documanage 11

Filter/OrderBy Chart

Documanage
Name

Internal
Name

SQL Type Length

FileType Type varchar 32

DocumentName Tag varchar 64

Major Version
Number

nVersion smallint 2

Volume Volume varchar 10

Author AddedBy varchar 32

AddedOn AddedOn datetime 8

AddedFrom AddedFrom varchar 8

Current
Buis.Table

SourceTable varchar 32

CheckedOutBy CheckedOutBy varchar 32

Category ObjectClass varchar 32

Description Description varchar 240

Date DocumentDate datetime 8

LastEditBy LastEditBy varchar 32

LastEditOn LastEditOn datetime 8

CheckedOutFor CheckedOutFor varchar 24

DueDate DueDate datetime 8

SubCategory ObjectSubClass varchar 15

General Topics
Filter/OrderBy Chart

12 Programmer’s Guide for Documanage

Status Status varchar 10

Keyword1 Keyword1 varchar 15

Keyword2 Keyword2 varchar 15

Flag1 UserFlag1 varchar 15

Flag2 UserFlag2 varchar 15

MinorVerisonNu
mber

nSubVersion smallint 2

Documanage
Name

Internal
Name

SQL Type Length

Programmer’s Guide for Documanage 13

Non-Visual Controls
Non-Visual controls have no user interface. At design time they appear as a
32x32 square icon, while at run-time they are invisible. Full Documanage
functionality is available using only these controls. Visual controls are
described in Chapter 2 of this manual.

DmgDiary Control
In Documanage, a diary item (diary entry) is a group of scheduling properties
that define an entity representing an action-item or assignment. Attributes
such as due date, next alert and priority can be set for each defined action
item. For example, an action item such as "turn in travel expense report" can
be defined with a due date, a reminder and assigned a level of priority using
Diary Control properties. 
The Diary control allows for creation and deletion of diary items for each
user, and modification of diary item properties.
Any user can add diary entries. Only the owner can delete or modify a diary
entry.

Properties

 Title DataType: String (Read/Write)
Title(long index)

A short summary or subject of the diary item.

Non-Visual Controls
DmgDiary Control

14 Programmer’s Guide for Documanage

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 Description Data Type: String (Read/Write)
Description(long index)

A complete description of the diary item.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 Priority DataType: Short (Read/Write)
Priority(long index)

The priority of the diary item.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 CreatedOn DataType: String (Read Only)
CreatedOn(long index)

The date and time when the diary item was created.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

Non-Visual Controls
DmgDiary Control

Programmer’s Guide for Documanage 15

 StartOn DataType: String (Read/Write)
StartOn(long index)

The date and time when the diary item is scheduled to start.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 DueOn DataType: String (Read/Write)
DueOn(long index)

The date and time when the diary item is due to be completed.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 CompletedOn DataType: String (Read/Write)
CompletedOn(long index)

The date and time when the diary item was completed.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 LastModifiedOn DataType: String (Read Only)
LastModifiedOn(long index)

The date and time when the diary item was last modified.

Non-Visual Controls
DmgDiary Control

16 Programmer’s Guide for Documanage

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 NextAlertTime DataType: String (Read/Write)
NextAlertTime(long index)

The date and time of next reminder for the diary item.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 AssignedBy DataType: String (Read Only)
AssignedBy(long index)

The user who created/modified the diary item.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 Owner DataType: String (Read/Write)
Owner(long index)

The user who owns the diary item.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

Non-Visual Controls
DmgDiary Control

Programmer’s Guide for Documanage 17

 Reference DataType: String (Read/Write)
Reference(long index)

A reference to a file, document, project or URL.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 Status DataType: Short (Read/Write)
Status(long index)

The status of the diary item.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 DiaryID DataType: String (Read Only)
DiaryID(long index)

The ID which uniquely identifies the diary item.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 KeyString DataType: String (Read Only)
KeyString(long index)

The fully qualified name of the OT_Diaries table primary key associated
with the diary item.

Non-Visual Controls
DmgDiary Control

18 Programmer’s Guide for Documanage

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 DiaryItemsCount DataType: Long (Read Only)
The total number of diary items for the user. Used in conjunction with
Initialize().

 DiaryFilter DataType: String (Read/Write)
A specially formatted string (SQL OrderBy clause) to be used to filter
which diary items of the user will be shown. This property should be set
before calling Initialize().

 MinDiaryItems DataType: Short (Read/Write)
The point (zero-based index) in the diary items list from where diary
items for the user are retrieved. This property should be set before calling
Initialize().

 MaxDiaryItems DataType: Short (Read/Write)
The maximum number of diary items to be retrieved for the user. This
property should be set before calling Initialize().

 hSession DataType: Long (Read/Write)
The handle of the current session with Documanage Server. hSession is a
value passed from Session control, which identifies the login to
Documanage Server. This property should be set before using any
property or method of the control.

 DiaryOrderBy DataType: String (Read/Write)
A specially formatted string (SQL where clause) that changes the order of
diary items shown. This property should be set before calling Initialize().

Non-Visual Controls
DmgDiary Control

Programmer’s Guide for Documanage 19

 LastErrorNumber DataType: Long (Read Only)
The number of the last Documanage error.

 LastErrorSource DataType: String (Read Only)
The location of the last Documanage error.

Methods

 Initialize

This method initializes the control to get diary items list for the user.

 CreateNewDiaryItem
CreateNewDiaryItem() As Long

This method creates a new diary item for the user.

Return Value: Index of the new diary item in the diary items list for the
user.

 SaveDiaryItem
SaveDiaryItem(index As Long) As String

This method updates existing diary item or saves new diary item with the
properties set by the user.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

Return Value: DiaryID of the saved diary item.

Non-Visual Controls
DmgDiary Control

20 Programmer’s Guide for Documanage

 DeleteDiaryItem
DeleteDiaryItem(index As Long)

This method deletes the diary item.

Parameters:

 index: The position of the diary item in diary items list for the user.
From 0 to DiaryItemsCount - 1.

 GetDiaryItemIndexFromID
GetDiaryItemIndexFromID(diaryID As String) As Long

This method gets the diary item’s index in the diary items list for the user
using its DiaryID.

Parameters:

 diaryID: ID of the diary item.

Return Value: Index of the diary item in the diary items list for the user.

Non-Visual Controls
PODocument Control

Programmer’s Guide for Documanage 21

PODocument Control
The Document control allows you to display or edit the internal Documanage
properties of a new or an existing Documanage document. Giving this control
a valid hCursor and hItem handle (which specifies the cabinet and document,
respectively), provides you with access to all the Documanage document
properties. The Document control also implements the Check-In, Check-Out,
and Version Control methods. The Document control has no visual interface
and is invisible during run-time.

NOTE: The properties marked Read/Write are editable only when the
document is checked out or being imported.

Properties

 AddedByLabel Data Type: String (Read Only)
Reserved for future use.

 AddedFrom Data Type: String (Read/Write)
The method in which the document was brought into Documanage.

 AddedFromLabel Data Type: String (Read/Write)
Reserved for future use.

 AddedOn Data Type: String (Read Only)
The date on which the document was added to Documanage.
This property is set by the server.

 AddedOnLabel Data Type: String (Read Only)
Reserved for future use.

Non-Visual Controls
PODocument Control

22 Programmer’s Guide for Documanage

 AnoAnnotationsTag Data Type: Long (Read Only)
A number that identifies the current version of the document’s annotation
file content.

 ApplicationTabLabel Data Type: String (Read Only)
Reserved for future use.

 Approved Data Type: Integer (Read Only)
The document's "Approved" content management flag value.

 Author Data Type: String (Read/Write)
The user name of the person who added the document to Documanage.

 CheckedOutBy Data Type: String (Read/Write)
The user name of the person who checked out the document.

 CheckedOutByLong Data Type: String (Read Only)
A string with additional information about the CheckOutByUser.

 CheckedOutFor Data Type: String (Read Only)
The reason a document is being checked out.

 CMResetAllowed Data Type: Integer (Read Only)
Current user may reset the content management flags for this document.

 CMSetAllowed Data Type: Integer (Read Only)
Current user may reset the content management flags for this document.

 ContentsTag Data Type: Long (Read Only)
Number that identifies the current version of the document’s file content.

 DataTypes Data Type: Long Array (Read Only)
Array of field data types for Extended Document Properties for the
current document category. Its array size is based the ItemCount value.

Non-Visual Controls
PODocument Control

Programmer’s Guide for Documanage 23

 Date Data Type: String (Read/Write)
A user defined Date. A Documanage document level property.

 DateLabel Data Type: String (Read Only)
Reserved for future use.

 Description Data Type: String (Read/Write)
A user-definable long description on the document.

 DocID Data Type: Long (Read Only)
A unique value for a document that remains constant between cursors and
sessions. This value can be found in the OT_Docs table of the database
containing the table which contains the document.

 DocRenditionKey Data Type: String (Read/Write)
The rendition key for the current document.

 DocumentName Data Type: String (Read/Write)
The Documanage name of the document. This is obtained from the
filename, excluding the extension.

 DocumentSize Data Type: Long (Read Only)
Displays the size of a document on the screen that allows you to select
which properties to display in the document list.

 DocumentType Data Type: String (Read/Write)
The Documanage document type of the document.
NOTE: this is now referred to as the Document Category

 DocumentType Data Type: String array (Read Only)
Selections(Long index)
Array of Document Category selections. Its array size is based on
TotalDocumentTypeSelections. Retrieves possible values for Document
type. Its array size is based on TotalDocTypeSelections (see “Using

Non-Visual Controls
PODocument Control

24 Programmer’s Guide for Documanage

Array Properties”).

 DueDate Data Type: String (Read Only)
The document’s Documanage due date, which is set at checkout.

 EditingAllowed Data Type: Boolean (Read Only)
Checks security to verify a user’s rights to edit the properties of a
document.

 FileType Data Type: String (Read/Write)
File extension that identifies the application originating a document.

 Flag1 Data Type: String (Read/Write)
A Documanage document level property.

 Flag1Label Data Type: String (Read Only)
The label of the Flag1 user-defined drop-down list box.

 Flag1Selections Data Type: String array (ReadOnly)
Returns possible values for Flag1. Array of UserFlag1 selections for the
current Document Category. Its array size is based on
TotalFlag1Selections (see “Using Array Properties”).

 Flag2 Data Type: String (Read/Write)
A Documanage document level property.

 Flag2Label Data Type: String (Read Only)
The label of the Flag2 user-defined drop-down list box.

 Flag2Selections Data Type: String array (Read/Write)
Returns possible values for Flag2. Array of UserFlag2 selections for the
current Document Category. Its array size is based on
TotalFlag2Selections (see “Using Array Properties”).

Non-Visual Controls
PODocument Control

Programmer’s Guide for Documanage 25

 hCursor Data Type: Long (Read Only)
The hCursor corresponding to the hItem of the document being viewed.

 hItem Data Type: Long (Read Only)
The hItem currently opened for this control. Use Refresh() after changing
this property, making certain hCursor is correctly set to the hItem’s
corresponding hCursor.

 hSession Data Type: Long (Read Only)
The current session with the Documanage server. hSession is a value
passed to you from the Session control, which identifies your login to the
Documanage server.

 IsADocument Data Type: Long (Read Only)
Returns 1 if the current item is a document or 0 otherwise.

 IsAVersion Data Type: Long (Read Only)
Returns 1 if the current item is a historical document version or 0
otherwise.

 IsCheckedOut Data Type: Boolean (Read Only)
Indicates if a document is checked out.

 IsLocked Data Type: Boolean (Read Only)
Indicates if a document is locked. Lock documents cannot be edited or
checked-out. This typically indicated that the document is already
Checked-Out, but is the original copy of the document, not the Checked-
Out copy currently being edited.

 IsOwnedByThisUser Data Type: Boolean (Read Only)
This is true if IsCheckedOut=TRUE and the current user is the one who
checked out the document.

Non-Visual Controls
PODocument Control

26 Programmer’s Guide for Documanage

 IsReference Data Type: Boolean (Read Only)
Indicates a shortcut document.

 IsTempItem Data Type: Boolean (Read Only)
Indicates a document is a temporary item created from
InitializeForNewDocument().

 ItemCount Data Type: Long (Read/Write)
The number of Extended Document Properties for the current Document
Category.

 KeyString Data Type: String (Read/Write)
An SQL clause that uniquely identifies the current document.

 Keyword1 Data Type: String (Read/Write)
A Documanage document level property.

 Keyword1Label Data Type: String (Read Only)
The user-defined title of this document level property.

 Keyword2 Data Type: String (Read/Write)
A Documanage document level property.

 Keyword2Label Data Type: String (Read Only)
The user-defined title of the document level property.

 LastEditedBy Data Type: String (Read/Write)
A Documanage document level property; this is the user name of the last
person who checked-out the document.

 LastEditedOn Data Type: String (Read/Write)
A Documanage document level property; this is the date of the last time
the document was checked-out.

Non-Visual Controls
PODocument Control

Programmer’s Guide for Documanage 27

 LastErrorNumber Data Type: Long (Read Only)
The last Documanage error.

 LastErrorSource Data Type: String (Read Only)
The location of the last Documanage error. This is useful for reporting
bugs to Oracle.

 Lengths (Long index) Data Type: Long (Read/Write)
Array of field lengths for Extended Document Properties for the current
Document Category. Its array size is based the ItemCount value.

 MajorVersion Data Type: Long (Read/Write)
The document’s major version value.

 MinorVersion Data Type: Long (Read/Write)
The document’s minor version value.

 Obsolete Data Type: Long (Read Only)
The document's "Obsolete" content management flag's value.

 PublishType Data Type: Long (Read/Write)
Called by GetFileType. 1=Make PDF, 0=leave document type unchanged

 QualifiedIndex (Long index) Data Type: String (Read/Write)
Array of qualified column names for Extended Document Properties for
the current Document Category. Its array size is based the ItemCount
value.

 Released Data Type: Long (Read Only)
The document's "Released" content management flag's value.

 RemoteFileName Data Type: String (Read/Write)
Reserved for future use.

Non-Visual Controls
PODocument Control

28 Programmer’s Guide for Documanage

 RenditionDocID(Long index) Data Type: Long (Read Only)
The document ID of the rendition located at the specified index.

 RenditionID Data Type: Long (Read/Write)
The rendition ID of the current document or version.

 RenditionKey (Long index) Data Type: String (Read/Write)
The key of the rendition located at the specified index.

 RenditionMajorVersion (Long index) Data Type: Long (Read Only)
The major version of the rendition located at the specified index.

 RenditionMinorVersion (Long index) Data Type: Long (Read Only)
The minor version of the rendition located at the specified index.

 RenditionTag (Long index) Data Type: String (Read Only)
The document name of the rendition located at the specified index.

 RenditionType (Long index) Data Type: String (Read Only)
The document type of the rendition located at the specified index.

 RequiredFlags (Long index) Data Type: Boolean (Read/Write)
Array of "field is required" flags for Extended Document Properties for
the current Document Category. Its array size is based the ItemCount
value

 SourceDocumentCabinet Data Type: String (Read Only)
Used when dealing with Checked-Out and Shortcut documents. Indicates
the cabinet of the source document. Useful in conjunction with
SourceDocumentFolderFilter.

 SourceDocumentFolderData Data Type: String (Read Only)
Used when dealing with Checked-Out and Shortcut documents. Indicates
in a human readable form the description of the source document's

Non-Visual Controls
PODocument Control

Programmer’s Guide for Documanage 29

current folder.

 SourceDocumentFolderFilter Data Type: String (Read Only)
Used when dealing with Checked-Out and Shortcut documents. Indicates
a filter suitable for the Query control's FolderFilter property. By opening
a the cabinet in SourceDocumentCabinet with this property’s values as
FolderFilter you can get to the source document of another document.

 SourceDocumentName Data Type: String (Read Only)
Used when dealing with Checked-Out documents. Indicates the name of
the source document.

 SourceDocumentTable Data Type: String (Read Only)
Used when dealing with Checked-Out and Shortcut documents. Indicates
internal table name of the source document.

 Status Data Type: String (Read/Write)
The current document Status selection. See StatusSelections.

 StatusLabel Data Type: String (Read/Write)
Reserved for future use.

 StatusSelections (Long index) Data Type: String(Read Only)
Array of Status selections for the current Document Category. Its array
size is based on TotalStatusSelections (see “Using Array Properties”). A
Documanage document level property.

 SubType Data Type: String (Read/Write)
A Documanage document level property.

 SubTypeLabel Data Type: String (Read/Write)
Reserved for future use.

Non-Visual Controls
PODocument Control

30 Programmer’s Guide for Documanage

 Sub Type Selections (Long index) Data Type: String (Read/Write)
Array of SubType selections for the current Document Category. Its array
size is based on TotalSubTypeSelections.

 Titles (Long index) Data Type: String (Read/Write)
Array of field titles for Extended Document Properties for the current
Document Category. Its array size is based the ItemCount value.

 TotalDocumentTypeSelections Data Type: Long (Read Only)
The total number of elements in DocTypeSelections.

 TotalDocumentVersions Data Type: Long (Read Only)
The total number of previous versions of a document.

 TotalFlag1Selections Data Type: Long (Read Only)
The total number of elements in Flag1Selections.

 TotalFlag2Selections Data Type: Long (Read Only)
The total number of elements in Flag2Selections.

 Total Renditions Data Type: Long (Read Only)
The total number of renditions for the current document. Returned by a
call to GetRenditions.

 TotalStatusSelections Data Type: Long (Read Only)
The total number of elements in StatusSelections.

 TotalSubTypeSelections Data Type: Long (Read Only)
The total number of elements in Sub Type Selections.

 TranslateNullProperties Data Type: Boolean (Write Only)
The TranslateNullProperties property determines how the Document
control outputs NULL Extended Document properties for the current
Document category from the Documanage database.

Non-Visual Controls
PODocument Control

Programmer’s Guide for Documanage 31

TranslateNullProperties defaults to True. To change this setting, the
property must be set before calling any properties or methods to get
Extended Document properties. Once set, TranslateNullProperties affects
all subsequent calls to the control.

When TranslateNullProperties is True, the Document control translates
NULL Extended Document properties from the database to empty strings
if they are character data or to zero if they are numeric data when it
returns them to users as variants.

When TranslateNullProperties is set to False, the Document control
returns NULL Extended Document properties from the database as
NULL variants without translating them to zeros or to empty strings.

The control returns Document Control properties for the current
Document Category using the Values() property and GetValueByTitle()
method.

NOTE: You can set NULL values for Extended Document properties by
passing in NULL variants using the Values () property or the
SetValueByTitle () method. Refer to the descriptions of the Values()
property on page 32 and the SetValueByTitle () method on page 41.

 UseFlag1 Data Type: Boolean (Read Only)
Boolean value to determine if the Flag1 user-defined field is being used.

 UseFlag2 Data Type: Boolean (Read Only)
Boolean value to determine if the Flag2 user-defined field is being used.

 UseKeyword1 Data Type: Boolean (Read Only)
Boolean value to determine if the Keyword1 user-defined field is being
used.

Non-Visual Controls
PODocument Control

32 Programmer’s Guide for Documanage

 UseKeyword2 Data Type: Boolean (Read Only)
Boolean value to determine if the Keyword2 user-defined field is being
used.

 Values (Long index) Data Type: Variant (Read/Write)
Array of field values for Extended Document Properties for the current
Document Category. Its array size is based the ItemCount value.

 Version Data Type: String (Read/Write)
A Documanage document level property.

 Volume Data Type: String (Read Only)
A Documanage document level property. Also, the Documanage volume
of where the document is stored.

Methods

 AboutBox
AboutBox();

This method displays the PODocument control's about box.

 AddRendition
Function AddRendition(lDoc As Long, lCursor As Long) As Long

Creates a rendition relationship between the current document and the
document specified by the lDoc and lCursor parameters.

Non-Visual Controls
PODocument Control

Programmer’s Guide for Documanage 33

 CheckIn
CheckIn(CheckInType As Integer, CopyStatus As Integer, VersionNotes
As String) As Long

This method checks back in a document in Documanage.

Parameters:

 CheckInType: A flag indicating how to check-in the document. See
the core Documanage documentation on checking-in, checking-out,
and versioning.

EZP_ACTION_CHECK_IN_UNDO
EZP_ACTION_CHECK_IN_SAME
EZP_ACTION_CHECK_IN_MINOR
EZP_ACTION_CHECK_IN_MAJOR

 CopyStatus: Reserved for future use. Always pass zero.

 VersionNotes: Specify a reason or comments explaining the check-in.
Ignored when checking in as same version. This information is stored
in the history of the document.

Return Value: Returns a long value that is reserved for future use and
should be ignored.

 CheckOut
CheckOut(hCursorTo As Long, hItemTo As Long, CheckedOutBy As
String, CheckedOutFor As String, CheckedOutByLong As String,
DueDate As String) as Long

This method checks out a document in Documanage.

Non-Visual Controls
PODocument Control

34 Programmer’s Guide for Documanage

Parameters:

 hCursorTo: The destination hCursor corresponding to the hItemTo
folder for the checked-out copy document to be placed.

 hItemTo: The destination folder Item for the checked-out copy
document to be placed.

 CheckedOutBy: Reserved for backward compatibility. Pass an empty
string.

 CheckedOutFor: Reason for the checkout. Retrievable when looking
at the checked-out document.

 CheckedOutByLong: [Reserved for future use.] Pass an empty
string.

 DueDate: The date the document is due to be checked-back-in.

Return Value: The method returns hItem to the CheckedOut Document
in the hCursorTo Query. A NULL value is returned if the CheckOut
cannot be performed.

 Delete()
Deletes the currently selected document.

 GetFile
GetFile(Filename As String) As String

This method downloads the physical file locally (mainly for editing).

Parameters:

Non-Visual Controls
PODocument Control

Programmer’s Guide for Documanage 35

 Filename: Indicates full filename with path of where the file should
be placed. If you send an empty string, Documanage will create the
file in the Windows Temp directory with an internally generated
name.

Return Value: This method returns the full pathname of the file. If you
indicated a filename yourself, you can ignore the return value. If you
passed an empty string, the method returns the internally generated
filename.

 GetRenditions
Function GetRenditions(lContentManagementFilter As Long,
latestDocVersionsOnly As Boolean) As Long

Gets the list of documents that are in rendition relationships with the
current document or version. For parameter explanations, see
"RenditionAPI.doc," page 4, "Get The List Of Peer Renditions For A
Document", "resultFilter" and "latestOnly."

 GetValueByTitle
Function GetValueByTitle(strTitle As String)

Retrieves the value of an Extended Document Properties field. The title
for an XDP field can be determined from the Titles array.

Parameter:

 strTitle : the Extended Document Properties field title.

 GetVersionAuthor
GetVersionAuthor(VersionIndex As Long) As String

This method returns the author for a given previous version of this
document. This accesses the internal array of version history of the
current document.

Non-Visual Controls
PODocument Control

36 Programmer’s Guide for Documanage

Parameters:

 VersionIndex: Range from 0 to (TotalDocumentVersions –1).

Return Value: The author.

 GetVersionComments
GetVersionComments(VersionIndex As Long) As String

This method returns the comments for a given previous version of a
document.

Parameters:

 VersionIndex range from 0 to (TotalDocumentVersions –1).

 GetVersionDate
GetVersionDate(VersionIndex As Long) As String

This method returns the version date for a given previous version of a
document.

Parameters:

 VersionIndex range from 0 to (TotalDocumentVersions –1).

Non-Visual Controls
PODocument Control

Programmer’s Guide for Documanage 37

 GetVersionHItem
GetVersionHItem(VersionIndex As Long) As Long

This method returns the hItem for a given previous version of a
document.

Parameters:

 VersionIndex range from 0 to (TotalDocumentVersions –1).

Return Value: hItem for a given previous version. Currently the
document pointed to by this hItem only allows Viewing and
Downloading. Properties cannot be viewed or changed.

 GetVersionNumber
GetVersionNumber(VersionIndex As Long) As String

This method returns the version number for a given previous version of a
document.

Parameters:

 VersionIndex range from 0 to (TotalDocumentVersions –1).

Return Value: The Version number in this format: "##.##", e.i.
major.minor.

 Initialize()

This method refreshes the control, verifying that the hCursor, hSession
and hItem in the document’s properties are set correctly.

 InitializeforNewDocument
InitializeforNewDocument(ParentFolderHItem As Long) As Long

Non-Visual Controls
PODocument Control

38 Programmer’s Guide for Documanage

This method creates and returns a new hItem for the document to be
imported into Documanage. The ParentFolderHitem is the hItem of the
folder where you want the new document to be stored. You must use the
SaveNewDocument method to actually save the newly created hItem
with the physical document, as the InitializeForNewDocument only
creates a new hItem. An example of using this method together with
SaveNewDocument can be found below.

When setting properties of a new document PODocument.Documenttype
should always be set first.

Parameters:

 ParentFolderHItem: The ParentFolderHitem is the hItem of the
folder where you want the new document to be stored.

Return Value: Returns the hItem of this temporary item. This hItem it
not particularly useful and should be ignored.

 InitializeXDAIndexes
Function InitializeXDAIndexes(strDocType As String) As Long

Initializes the Extended Document Properties arrays for the designated
Document Category. Returns zero if the call was successful. After this
call the ItemCount, Titles, DataTypes, Lengths, QualifiedIndex,
RequiredFlags, and Values properties will be populated.

Parameters:

 strDocType: the Document Category that defines the Extended
Document Properties.

Non-Visual Controls
PODocument Control

Programmer’s Guide for Documanage 39

 RefreshDocument
RefreshDocument()

Forces the server to update the cached document object with data from
the datasource.

 RemoveAsRendition
Function RemoveAsRendition(lDoc As Long, lCursor As Long) As Long

Removes the document specified by the lDoc and lCursor parameters
from its rendition relationship.

 Save() as Boolean
This method saves any changes made to the document’s properties.

 SaveNewDocument
SaveNewDocument(Pathname as String) As Long

This method saves the document hItem created in the
InitializeNewDocument method with the physical document located at
‘pathname’ to Documanage.

While every document property has defaults, it is recommended the
following properties should be set before saving a new document:

AddedFrom
DocumentName
DocumentType

Parameters:

 Pathname: The physical file on disk to import into Documanage.

Return Value: The hItem of the new document.

Non-Visual Controls
PODocument Control

40 Programmer’s Guide for Documanage

 SendTo
SendTo(hDestinationCursor as Long, hDestinationfolderitem as Long,
Operation)

This method takes the current document and moves, copies, or creates a
shortcut to a given folder.

Parameters:

 hDestinationCursor: Destination folder’s hCursor.
 hDestinationfolderitem: Destination folder’s hItem.

Operation:

The Documanage action code for the desired operation:
EZP_ACTION_COPY
EZP_ACTION_MOVE
EZP_ACTION_MAKEREFERENCE

Return Value: None

 SetCMFlag
Function SetCMFlag(Flag As Integer, Value As Integer) As Integer

Sets the content management flag (specified by the "Flag" parameter
(DMG_CM_APPROVED, DMG_CM_RELEASED,
DMG_CM_OBSOLETE)) to the value (specified by "Value").

 SetCMFlags
Function SetCMFlags(Mask As Integer, Values As Integer) As Integer

Sets the content management flags (specified by the "Mask" parameter
(combinations of DMG_CM_APPROVED, DMG_CM_RELEASED,
DMG_CM_OBSOLETE)) to the value (specified by "Value").

Non-Visual Controls
PODocument Control

Programmer’s Guide for Documanage 41

 SetValueByTitle
Sub SetValueByTitle(strTitle As String, vNewVal)

Sets the value of an Extended Document Properties field. The title for an
XDP field can be determined from the Titles array.

Parameters:

 strTitle: the Extended Document Properties field title.

 VNewVal: a variant containing the field value.

 ShowDialog
ShowDialog(AllowEdit as Boolean) As Boolean

This method shows the tabbed dialog box. It is recommended to
implement your own custom dialog.

Parameters:

 AllowEdit: If you send TRUE for AllowEdit, the user will be able to
change the document properties. Conversely, if you send FALSE, the
user will be able to view the properties, but is restricted from
modifying them. The AllowEdit parameter is ignored if the
Documanage server prohibits editing of the document.

NOTE: The following document properties are not editable through the
ShowDlg method: Added From, Added On, and Author.

 UpdateFile
UpdateFile(Filename As String)

This method replaces the file on the server with the indicated local
filename. Typically used after a GetFile(), this method only works on
check-out documents owned by the current user. Also typically followed

Non-Visual Controls
PODocument Control

42 Programmer’s Guide for Documanage

by a check in.

Parameters:

 Filename: The local file to replace the remote file with.

 UpdateFileEx
UpdateFileEx(Filename As String, Flags As Long)

See explanation for GetFileEx, below.

 GetFileEx
GetFileEx(Filename As String, Flags As Long) as String

An extended version of UpdateFile and GetFile. While nearly identical to
their counterparts these functions allow uploading and downloading of
special files associated with the document or the document itself. In all
but a few special cases the standard versions of these function should be
used.

Parameters:

 Filename: The local file to replace the remote file with.

 Flags: Combination of flags identifying the type of the file to
transfer. Can be one of the following:

EZP_XFER_DOC_CONTENTS
EZP_XFER_DOC_ANNOTATIONS
EZP_XFER_DOC_TYPE_OVERLAYS
EZP_XFER_DOC_TYPE_ANNOTATIONS

 Return Value: See UpdateFile and GetFile for details.

Non-Visual Controls
PODocument Control

Programmer’s Guide for Documanage 43

Examples

Initializing the Document Control

PODocument.Documenttype

PODocument1.hSession = POSession1.hSession

PODocument1.hCursor = POQuery1.hCursor

PODocument1.Initialize

Importing a Document into Documanage

PODocument1.InitializeForNew Document(POTree1.CurrentFolderhItem)

PODocument1.AddedFrom = “FILE”

PODocument1.ShowDialog(True)

PODocument1.SaveNewDocument(strFileName)

POTree1.RefreshItem(0, False, True) 'Zero hItem indicates the current item

Using the Document Control

To load a document into this control, to see and modify all its properties we
use the following lines of code:

PODocument 1.hSession = POSession1.hSession

PODocument1.hCursor = POCursor1.hCursor

PODocument1.hItem = hItem ‘ Where hItem is ANY Documanage Item

Non-Visual Controls
POFolder Control

44 Programmer’s Guide for Documanage

handle that is of type ‘ EZP_Document.

You can get document hItems by several means; For example, using the
Query’s GetRelativehItem(), or by employing the DocumentAction event on
any of the Documanage Visual Controls. You may want to check the type of
the hItem before setting it in the control by means of the Query’s ItemType()
method.

POFolder Control
The Folder control displays and allows you to edit a specific folder’s
properties. There are multiple array properties that contain lists of all the
internal Documanage properties for a particular control. Each element in each
array corresponds to the identically indexed element in all the other arrays.
The following is an example of the Folder control, with the contents of each
of the control’s arrays underlined.

Properties

 DataTypes Data Type: Long Array (Read Only)
Returns the SQL data type of a given identified folder property. Types
include:

Titles Values Data
Types

Length Edit
Flags

Required
Flags

Vendor Number 12272 INTEGER NULL 0 1

Vendor Name Weiss, Inc. CHAR 80 1 0

Vendor Address Clayton, NJ CHAR 500 1 0

Vendor
PhoneNum

609/767-9876 CHAR 50 1 0

Non-Visual Controls
POFolder Control

Programmer’s Guide for Documanage 45

EZP_TYPE_CHAR, EZP_TYPE_NUMERIC, EZP_TYPE_DECIMAL,
EZP_TYPE_INTEGER, EZP_TYPE_SMALLINT, EZP_TYPE_FLOAT,
EZP_TYPE_REAL, EZP_TYPE_DOUBLE,
EZP_TYPE_VARCHAR, EZP_TYPE_DATE, EZP_TYPE_TIME,
EZP_TYPE_TIMESTAMP, EZP_TYPE_LONGVARCHAR,
EZP_TYPE_BINARY, EZP_TYPE_VARBINARY,
EZP_TYPE_LONGVARBINARY.

 EditFlags Data Type: Boolean Array (Read Only)
Indicates whether or not an identified folder property is editable.

 hCursor Data Type: Long (Read/Write)
The hCursor of the folder to be opened or is currently open.

 hItem Data Type: Long (Read/Write)
The hItem of the folder to be opened or is currently open.

 hSession Data Type: Long (Read/Write)
The session of the folder to be opened or is currently open.

 IsIndexesOnly Data Type: Boolean (Read Only)
Indicates if a control was initialized with InitializeIndexesOnly().

Non-Visual Controls
POFolder Control

46 Programmer’s Guide for Documanage

 IsTempItem Data Type: Boolean (Read Only)
Indicates if a control was initialized with InitializeforNewItem().

 ItemCount Data Type: Long (Read Only)
The number of elements in all the control’s properties that are arrays.
This corresponds to the number of indexes for that folder.

 Label Data Type: String (Read Only)
The name of the folder.

 LastErrorNumber Data Type: Long (Read Only)
The last error in Documanage.

 LastErrorSource Data Type: String (Read Only)
The location of the last Documanage error. This is useful for reporting
bugs to Oracle.

 Lengths Data Type: Long Array (Read Only)
The maximum length of identified folder property values.

 NotesCount DataType: Long (Read Only)
The total number of notes for the folder. Used in conjunction with
InitializeForNotes().

 QualifiedIndex Data Type: String Array (Read Only)
The database qualified index of identified folder property.

 RequiredFlags Data Type: Boolean Array (Read Only)
Indicates whether or not identified folder property is required.

 Titles Data Type: String Array (Read Only)
The title of the identified folder property.

Non-Visual Controls
POFolder Control

Programmer’s Guide for Documanage 47

 TranslateNullProperties Data Type: Boolean (Write Only)
The TranslateNullProperties property determines how the Folder control
outputs NULL Folder properties from the Documanage database.
TranslateNullProperties defaults to True. To change this setting, the
property must be set before calling any properties or methods to get
Folder properties. Once set, TranslateNullProperties affects all
subsequent calls to the control.

When TranslateNullProperties is True, the Folder control translates
NULL Folder properties from the database to empty strings if they are
character data or to zero if they are numeric data when it returns them to
users as variants.

When TranslateNullProperties is set to False, the Folder control returns
NULL Folder properties from the database as NULL variants without
translating them to zeros or to empty strings.

The control returns Folder properties using the Values() property and the
GetValueByTitle () method.

NOTE: You can set NULL values for Folder Properties by passing in NULL
variants using the Values () property or the SetValueByTitle ()
method. Refer to the descriptions of the Values() property on page 48
and the SetValueByTitle () method on page 52.

Non-Visual Controls
POFolder Control

48 Programmer’s Guide for Documanage

 Values Data Type: Variant Array (Read/Write)
Gets or sets the current value of an identified folder property.

 LevelNumber Data Type: Long (Read Only)
Indicates what level of the cabinet the folder exists on.

 KeyString Data Type: String (Read Only)
A unique FolderFilter suitable for use in the Query control that will open
a cabinet showing only this folder.

 VisibleFlags Data Type: Boolean Array (Read Only)
Indicates whether or not an identified folder property should be
displayed.

 IsKey Data Type: Boolean Array (Read Only)
Indicates whether or not an identified folder property is a key.

Methods

 AddNote(description As String, [optional] addedby As Variant,
[optional] additionalinfo As Variant)
Adds a new note to the folder.

Parameters:

 description: Text of the note.

 addedBy: User who adds the note.

 additionalInfo: Additional information for the note.

 DeleteNote(index As Long)
This method marks the specified note as deleted.

Non-Visual Controls
POFolder Control

Programmer’s Guide for Documanage 49

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1

 Initialize()
This method opens a folder in the control. You determine which folder by
the hCursor, hItem, and hSession handles.

 InitializeForNewFolder
InitializeForNewFolder

This method creates a new, empty folder in a cabinet. By setting the
properties and saving the folder, the new folder will contain all the data it
needs. Folders will not actually be inserted into the systems until a save
occurs without any errors.

 InitializeForNotes()
This method initializes the control to obtain information about notes
associated with this folder.

 InitializeIndexesOnly()
This method is similar to Initialize, but only retrieves data about the
Folder properties, not their values.

 Save()
This method saves the changes (if any) to the open folder.

 InitializeTableIndexes
InitializeTableIndexes(strTable As String)

Similar to InitializeIndexesOnly but can take a table name instead of a
hItem of an active folder. This method can be used in conjunction with
calls to the Query control to retrieve index information about a Cabinet
without actually opening it. Note the Values array is not populated since
you are retrieving generic information about a table not a specific folder.

Non-Visual Controls
POFolder Control

50 Programmer’s Guide for Documanage

Parameters:

 strTable: The table to retrieve indexes for.

 GetValueByTitle
GetValueByTitle(strFolderPropTitle As String) As Variant

Allows the Value's array to accessed not by index but by the Title of that
value. Useful when you know ahead of time the name of the index but do
not want to write code to find that index in the arrays.

Parameters:

 strFolderPropTitle: The Title of the index which we want the value
for. Titles for indexes can be retrieved by the Titles property.

Return Value: The value of that index.

 IsNoteDeleted(index As Long) As Boolean
This method is used to determine if a note is marked as deleted.

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1

Return Value: Returns a Boolean which indicates whether the note is
marked for deletion or not.

 NoteAddedBy(index As Long) As String
This method is used to obtain the name of the user who added the
specified note.

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1

Non-Visual Controls
POFolder Control

Programmer’s Guide for Documanage 51

Return Value: Returns a String indicating the name of user who added
the specified note.

 NoteAddedOn
NoteAddedOn(index As Long) As String

This method is used to obtain the date and time when a note was added.

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1

Return Value: Returns a String containing the date and time when the
specified note was added.

 NoteAdditionalInfo (index As Long) As String
This method is used to obtain additional information for a note.

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1

Return Value: Returns a String containing additional information for the
specified note.

 NoteDescription (index As Long) As String
This method is used to obtain the description of a note.

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1

Return Value: Returns a String containing description of the specified
note.

Non-Visual Controls
POFolder Control

52 Programmer’s Guide for Documanage

 SetValueByTitle
SetValueByTitle(strFolderPropTitle As String, vNewVal As Variant)

Allows the Value’s array to be filled in not by index but by the Title of
that value. Useful when you know ahead of time the name of the index
but do not want to write code to find that index in the arrays.

Parameters:

 strFolderPropTitle: The Title of the index which we want the value
for. Titles for indexes can be retrieved by the Titles property.

 vNewVal: The value for that index.

 Delete ()
Delete the current folder from the system.

 RefreshContents ()
This call will insure that the documents in this folder are up to date. This
function is designed to be used as replacement for RefreshItem in the
Folder control.

 UndeleteNote(index As Long)
This method unmarks a note marked as deleted.

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1

Non-Visual Controls
POProject Control

Programmer’s Guide for Documanage 53

Using the Folder Control

To load a folder into this control, to see and modify all its properties, we use
the following four lines of code:

POFolder1.hSession = POSession1.hSession

POFolder1.hCursor = POCursor1.hCursor

POFolder1.hItem = hItem

‘ Where hItem is ANY Documanage Item handle that is of type:
EZP_FOLDER.

You can get Folder hItems by several different means; For example, using the
Query’s GetRelativehItem() or by means of the FolderAction event for any
Documanage Visual Controls. You may want to check the type of the hItem
before setting it in the control by means of the Query’s ItemType() method.

POProject Control

Properties

 AddedOn DataType: String (Read Only)
This allows the user to get an AddedOn Data String.

 AssignedTo DataType: String (Read Only)
The user to whom the project has been assigned.

 DueDate DataType: String (Read/Write)
DueDate of the project.

Non-Visual Controls
POProject Control

54 Programmer’s Guide for Documanage

 hCursor DataType: Long (Read Only)
The hCursor corresponding to the hItem.

 hItem DataType: Long (Read Only)
The hItem of the project to be opened or is currently open.

 hSession DataType: Long (Read/Write)
The Current hSession with the Documanage Server. hSession is a value
passed from the Session control, which identifies the login to the
Documanage Server.

 ItemCount DataType: Long (Read Only)
The number of elements in all the control’s properties that are arrays.
This corresponds to the number of indexes for that project.

 Label DataType: String (Read Only)
Gives the name of the Project.

 LastErrorNumber DataType: Long (Read Only)
Gives the Last Error Number of the Server.

 LastErrorSource DataType: String (Read Only)
Description of the Last Error.

 LockedBy DataType: String (Read Only)
Indicates the user who locked the project.

 NotesCount DataType: Long (Read Only)
Indicates the total number of notes for the project. Used in conjunction
with InitializeForNotes().

 ProjectID DataType: Long (Read Only)
A unique ID, to identify a particular project.

Non-Visual Controls
POProject Control

Programmer’s Guide for Documanage 55

 ProjectName DataType: String (Read/Write)
Gets or Sets a description about the project.

 StartedBy DataType: String (Read Only)
Indicates the user who started the project.

 StartedOn DataType: String (Read Only)
Indicates the project start date.

 TotalHistoryRecords Type: Long (Read Only)
Indicates the total number of history records of a project.

 TotalNextTasks(Long CurrentTaskID) DataType: Long (Read Only)
Indicates the total number of tasks remaining from the current task.

 TotalPendingTasks DataType: Long (Read Only)
Indicates total pending tasks for that user. Used in conjunction with
InitializeForPendingTasksOnly().

 TotalTasks DataType: Long (Read Only)
Indicates total task queues (tasks that have pending or suspended projects
and empty tasks with no projects also) for the current user. Used in
conjunction with InitializeAllTaks().

 TotalWorkflowCabinets Data Type: Long (Read Only)
Indicates total number of workflow cabinets in the system.

 TranslateNullProperties Data Type: Boolean (Write Only)
The TranslateNullProperties property determines how the Project control
outputs NULL Project properties from the Documanage database.
TranslateNullProperties defaults to True. To change this setting, the
property must be set before calling any properties or methods to get
Project properties. Once set, TranslateNullProperties affects all

Non-Visual Controls
POProject Control

56 Programmer’s Guide for Documanage

subsequent calls to the control.

When TranslateNullProperties is True, the Project control translates
NULL Project properties from the database to empty strings if they are
character data or to zero if they are numeric data when it returns them to
users as variants.

When TranslateNullProperties is set to False, the Project control returns
NULL Project properties from the database as NULL variants without
translating them to zeros or to empty strings.

The control returns Project properties using the GetValue () method.

NOTE: You can set NULL values for Project properties by passing in NULL
variants using the SetValue () method. Refer to the description of the
SetValue () method on page 77.

 Workflow DataType: String (Read Only)
Indicates the current workflow.

Sample code: Adding a Workflow project:
POProject1.hSession = POSession1.hSession
POProject1.hCursor = POQuery1.hCursor
POProject1.hItem = POQuery1.hRootItem

POProject1.InitializeForNewProject ""

POProject1.SetValue 0, "107-99-3333"
POProject1.SetValue 1, "John"
POProject1.SetValue 2, "Smith"
POProject1.SetValue 3, "301-589-6300"
POProject1.SetValue 4, "8455 Colesville Rd"
POProject1.SetValue 5, "Silver Spring"

Non-Visual Controls
POProject Control

Programmer’s Guide for Documanage 57

POProject1.SetValue 6, "MD"
POProject1.SetValue 7, "20910"
POProject1.SetValue 8, 1
POProject1.DueDate = "2001-02-04 00:00:00"
POProject1.Priority = 1
POProject1.AssignedTo = "EZPOWER"
POProject1.ProjectName = "This is a project inserted programatically"
POProject1.Save

CheckOut a Project:
POProject1.hSession = POSession1.hSession
POProject1.hCursor = POQuery1.hCursor
POProject1.hItem = hItem
POProject1.Initialize
POProject1.CheckOut

Methods

 AddNote(description As String, [optional] addedby As Variant,
[optional] additionalinfo As Variant)
Adds a new note to the project.

Parameters:

 description: Text of the note.

 addedBy: User who adds the note.

 additionalInfo: Additional information for the note.

 CheckIn (lCheckInType As Long, strUserName As String,
strComments As String, lDecisionBranch As Long)
This method checks back a project.

Non-Visual Controls
POProject Control

58 Programmer’s Guide for Documanage

Parameters:

 lCheckInType: A flag indicating how to check in a project. It can take
the values:

EZP_ACTION_CHECKIN_PROJ = 29
EZP_ACTION_CHECKIN_PROJ_MOVE = 30
EZP_ACTION_CHECKIN_PROJ_ASSIGN = 31

 strUserName: User name of the user checking in the project

 strComments: CheckIn Comment

 lDecisionBranch: Next TaskID in case of human decision.

Return Value: none

 CheckOut()
This method checks out a project.

Parameters: none

Return Value: none

 DeleteNote(index As Long)
This method soft deletes a note (marks the note for deletion).

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1

 GetBranches(decTaskId As Long) As Long
This method gives the number of branches for the workflow at a given
TaskID.

Parameters:

Non-Visual Controls
POProject Control

Programmer’s Guide for Documanage 59

 DecTaskId: TaskID of the current task.

Return Value: Returns a long value. Total number of branches.

 GetBranchId(index As Long) As String
Gives the TaskID(s) by index from 0 to Total Number of braces – 1.

Parameters:

 index: Index of the branch TaskID

Return Value: Returns a String having the branch TaskID.

 GetBranchName(index As Long) As String
This method gives the branch name given the index.

Parameters:

 index: Index of the branch TaskID

Return Value: Returns a String having the branch name.

 GetKeyString() As String
A unique ProjectFilter suitable for use in the Query control that will open
a project cabinet showing only this folder.

Parameters: none

Return Value: Returns the KeyString.

 GetLength(lIndex As Long) As Long
The maximum length of an identified project property values.

Parameters:

Non-Visual Controls
POProject Control

60 Programmer’s Guide for Documanage

 lIndex: Project property position in the control.

Return Value: Returns the maximum length of the project property.

 GetLocked(lIndex As Long)
Not Used. For future use.

 GetNextTaskDesc(index As Integer) As String

Parameters:

 lIndex: Position in the control. From 0 to TotalNextTasks - 1

Return Value: Returns a String with the description of the task.

 GetNextTaskID(index As Integer) As Long

Parameters:

 lIndex: Position in the control. From 0 to TotalNextTasks - 1

Return Value: Returns a Long with the next TaskID.

 GetNextTaskManager(index As Integer) As String

Parameters:

 lIndex Position in the control. From 0 to TotalNextTasks - 1

Return Value: Returns a String with the next Task Manager.

 GetPendingTask(lIndex As Long, ByRef lTaskID As Long, ByRef
lTaskCount As Long, ByRef strInstructions As String, ByRef
strManager As String, ByRef strDescription As String, ByRef

Non-Visual Controls
POProject Control

Programmer’s Guide for Documanage 61

strCabinet As String, ByRef strFilter As String, ByRef
strWorkflow As String, ByRef strWorkflowDescription As String)
This method is used to get the attributes of a pending task queue at
the specified index in the pending tasks list. This method is valid
only after calling InitializePendingTasksOnly() that initializes the
control with a list of pending tasks for the current user. Note that
ByRef parameters are return values.

Non-Visual Controls
POProject Control

62 Programmer’s Guide for Documanage

Parameters:

 lIndex: Valid range from 0 to value of the property
TotalPendingTasks – 1. Index of the pending task to retrieve
information for in the pending tasks list.

 lTaskID: Unique Identifier of the task.

 lTaskCount: Total Number of pending projects in the task.

 strInstructions: Instructions for the task.

 strManager: Name of the manager of the task.

 strDescription: Description of the task.

 strCabinet: Name of the workflow cabinet for the workflow to which
the task belngs.

 strFilter: Query filter for the task.

 strWorkflow: Name of the workflow to which the task belongs.

 strWorkflowDescription: Description of the workflow to which the
task belongs.

Non-Visual Controls
POProject Control

Programmer’s Guide for Documanage 63

Return Value: None, but note that ByRef parameters are return values.

 GetPendingTaskV2(lIndex As Long, ByRef lTaskID As Long, ByRef
lPendingProjectsCount As Long, ByRef strInstructions As String,
ByRef strManager As String, ByRef strDescription As String, ByRef
strCabinet As String, ByRef strFilter As String, ByRef strWorkflow As
String, ByRef strWorkflowDescription As String, ByRef
lMaxTaskDuration As Long, ByRef lMaxWorkDuration As Long,
ByRef sDeactivated As Short, ByRef lContainerID As Long)
This method is used to get the attributes of a pending task queue at the
specified index in the pending tasks list. This method is valid only after
calling InitializePendingTasksOnly() that initializes the control with a list
of pending tasks for the current user. Note that ByRef parameters are
return values. This method is a newer version of GetPendingTask()
method and this method returns some more new attributes of the pending
task along with the other properties returned by GetPendingTask()
method.

Non-Visual Controls
POProject Control

64 Programmer’s Guide for Documanage

Parameters:

 lIndex: Valid range from 0 to value of the property
TotalPendingTasks – 1. Index of the pending task to retrieve
information for in the pending tasks list.

 lTaskID: Unique Identifier of the task.

 lPendingProjectsCount: Total Number of pending projects in the task.

 strInstructions: Instructions for the task.

 strManager: Name of the manager of the task.

 strDescription: Description of the task.

 strCabinet: Name of the workflow cabinet for the workflow to which
the task belngs.

 strFilter: Query filter for the task.

 strWorkflow: Name of the workflow to which the task belongs.

 strWorkflowDescription: Description of the workflow to which the
task belongs.

 lMaxTaskDuration: The maximum amount of time a project should
remain in a task (the time from when the project enters the task's
queue to when it is forwarded to the next task).

 lMaxWorkDuration: The maximum amount of time spent actually
processing a project within a task (the time from when the project is
removed from a task's queue to when it is forwarded to the next task).

 sDeactivated: Flag that specifies if the task is decactivated. 1 –
Deactivated, 0 – Not Deactivated.

 lContainerID: Unique Identifier of the task container to which the
task belongs. It may be zero if the task does not belong to any
container

Return Value: None, but note that ByRef parameters are return values

Non-Visual Controls
POProject Control

Programmer’s Guide for Documanage 65

 GetPerformedBy(lIndex As Long) As String
Gives the user name who performed the specified task.

Parameters:

 lIndex Position in the control. From 0 to TotalHistoryRecords - 1

Return Value: Returns a String with the user name who performed the
task.

 GetResultID(lIndex As Long) As Long
Returns a result TaskID.

Parameters:

 lIndex Position in the control. From 0 to TotalHistoryRecords - 1

Return Value: Returns a Long with Result TaskID.

 GetRouteTo(lIndex As Long) As String
Returns the user name to whom the project was routed to.

Parameters:

 lIndex Position in the control. From 0 to TotalHistoryRecords - 1

Return Value: Returns a String with the user name.

 GetSince(lIndex As Long) As String
Returns a date string, indicating when the project was locked.

Parameters:

 lIndex Position in the control. From 0 to TotalHistoryRecords - 1

Non-Visual Controls
POProject Control

66 Programmer’s Guide for Documanage

Return Value: Returns a String with the date string.

 GetSuspendedTask(lIndex As Long, ByRef lTaskID As Long, ByRef
lTaskCount As Long, ByRef strInstructions As String, ByRef
strManager As String, ByRef strDescription As String, ByRef
strCabinet As String, ByRef strFilter As String, ByRef strWorkflow As
String, ByRef strWorkflowDescription As String)
This method is used to get the attributes of a suspended task queue at the
specified index in the suspended tasks list. This method is valid only after
calling InitializeSuspendedTasksOnly() that initializes the control with a
list of suspended tasks for the current user. Note that ByRef parameters
are return values.

Non-Visual Controls
POProject Control

Programmer’s Guide for Documanage 67

Parameters:

 lIndex: Valid range from 0 to value of the property
TotalSuspendedTasks – 1. Index of the suspended task to retrieve
information for in the suspended tasks list.

 lTaskID: Unique Identifier of the task.

 lTaskCount: Total Number of suspended projects in the task.

 strInstructions: Instructions for the task.

 strManager: Name of the manager of the task.

 strDescription: Description of the task.

 strCabinet: Name of the workflow cabinet for the workflow to which
the task belngs.

 strFilter: Query filter for the task.

 strWorkflow: Name of the workflow to which the task belongs.

 strWorkflowDescription: Description of the workflow to which the
task belongs.

Non-Visual Controls
POProject Control

68 Programmer’s Guide for Documanage

Return Value: None, but note that ByRef parameters are return values.

 GetSuspendedTaskV2(lIndex As Long, ByRef lTaskID As Long, ByRef
lSuspendedProjectsCount As Long, ByRef strInstructions As String,
ByRef strManager As String, ByRef strDescription As String, ByRef
strCabinet As String, ByRef strFilter As String, ByRef strWorkflow As
String, ByRef strWorkflowDescription As String, ByRef
lMaxTaskDuration As Long, ByRef lMaxWorkDuration As Long,
ByRef sDeactivated As Short, ByRef lContainerID As Long)
This method is used to get the attributes of a suspended task queue at the
specified index in the suspended tasks list. This method is valid only after
calling InitializeSuspendedTasksOnly() that initializes the control with a
list of suspended tasks for the current user. Note that ByRef parameters
are return values. This method is a newer version of GetSuspendedTask()
method and this method returns some more new attributes of the
suspended task along with the other properties returned by
GetSuspendedTask() method

Parameters:

 lIndex: Valid range from 0 to value of the property
TotalSuspendedTasks – 1. Index of the suspended task to retrieve
information for in the suspended tasks list.

 lTaskID: Unique Identifier of the task.

 lSuspendedProjectsCount: Total Number of suspended projects in the
task.

 strInstructions: Instructions for the task.

 strManager: Name of the manager of the task.

 strDescription: Description of the task.

 strCabinet: Name of the workflow cabinet for the workflow to which
the task belngs.

Non-Visual Controls
POProject Control

Programmer’s Guide for Documanage 69

 strFilter: Query filter for the task.

 strWorkflow: Name of the workflow to which the task belongs.

 strWorkflowDescription: Description of the workflow to which the
task belongs.

 lMaxTaskDuration: The maximum amount of time a project should
remain in a task (the time from when the project enters the task's
queue to when it is forwarded to the next task).

 lMaxWorkDuration: The maximum amount of time spent actually
processing a project within a task (the time from when the project is
removed from a task's queue to when it is forwarded to the next task).

 sDeactivated: Flag that specifies if the task is decactivated. 1 –
Deactivated, 0 – Not Deactivated.

 lContainerID: Unique Identifier of the task container to which the
task belongs. It may be zero if the task does not belong to any
container

Return Value: None, but note that ByRef parameters are return values.

 GetTask(lIndex As Long, ByRef lTaskID As Long, ByRef
lPendingProjectsCount As Long, ByRef lSuspendedProjectsCount
Long, ByRef strInstructions As String, ByRef strManager As String,
ByRef strDescription As String, ByRef strCabinet As String, ByRef
strFilter As String, ByRef strWorkflow As String, ByRef
strWorkflowDescription As String, ByRef lMaxTaskDuration As Long,
ByRef lMaxWorkDuration As Long, ByRef sDeactivated As Short,
ByRef lContainerID As Long)
This method is used to get the attributes of a task at the specified index in
the all tasks list. This method is valid only after calling
InitializeAllTasks() that initializes the control with a list of all tasks for
the current user. Note that ByRef parameters are return values. This
method returns both the pending projects count and suspended projects

Non-Visual Controls
POProject Control

70 Programmer’s Guide for Documanage

count (these counts will be zero for empty task queues) for the returned
task.

Parameters:

 lIndex: Valid range from 0 to value of the property TotalTasks – 1.
Index of the task to retrieve information for in the all tasks list.

 lTaskID: Unique Identifier of the task.

 lPendingProjectsCount: Total Number of pending projects in the task.

 lSuspendedProjectsCount: Total Number of suspended projects in the
task.

 strInstructions: Instructions for the task.

 strManager: Name of the manager of the task.

 strDescription: Description of the task.

 strCabinet: Name of the workflow cabinet for the workflow to which
the task belngs.

 strFilter: Query filter for the task.

 strWorkflow: Name of the workflow to which the task belongs.

 strWorkflowDescription: Description of the workflow to which the
task belongs.

 lMaxTaskDuration: The maximum amount of time a project should
remain in a task (the time from when the project enters the task's
queue to when it is forwarded to the next task).

 lMaxWorkDuration: The maximum amount of time spent actually
processing a project within a task (the time from when the project is
removed from a task's queue to when it is forwarded to the next task).

 sDeactivated: Flag that specifies if the task is decactivated. 1 –
Deactivated, 0 – Not Deactivated.

Non-Visual Controls
POProject Control

Programmer’s Guide for Documanage 71

 lContainerID: Unique Identifier of the task container to which the
task belongs. It may be zero if the task does not belong to any
container

Return Value: None, but note that ByRef parameters are return values

 GetTaskDescription(lIndex As Long) As String
Not used. For future use.

 GetTaskTeam(lTaskID As Long, index As Integer) As String
Returns the TeamID of a specified Task.

Parameters:

 lTaskID: TaskID of the task in question.

 index: Position in the control. 0 to TotalTeamsForTask – 1.

Return Value: Returns a String with TeamID.

 GetTaskType(TaskId As Long) As Long
Returns a long indicating the TaskType.

Parameters:

 TaskId: Task id of the task in question

Return Value: Returns a Long with Task Type.

 GetTitle(lIndex As Long) As String
This method gives the Title of a project property by index

Parameters:

 lIndex Position in the control. From 0 to ItemCount - 1

Non-Visual Controls
POProject Control

72 Programmer’s Guide for Documanage

Return Value: Returns a String with the Title of the project property.

 GetTotalTeamsForTask(lTaskID As Long) As Integer
This method gives the Total number of Teams for a specified task.

Parameters:

 lTaskID: Task id of the task in question.

Return Value: Returns an Integer with the TotalTeams for a task.

 GetType(lIndex As Long) As Long
This method returns the Database type of a particular project property.

Parameters:

 lIndex Position in the control. From 0 to ItemCount - 1

Return Value: Returns a Long with the Database datatype of the project
property.

 GetValue(lIndex As Long) As VARIANT
This method gives the value of a project property by index.

Parameters:

 lIndex Position in the control. From 0 to ItemCount - 1

Return Value: Returns a VARIANT with the value of the project
property.

 GetWFCabinetDescription(lIndex As Long) As String
This method gives description of a workflow cabinet.

Non-Visual Controls
POProject Control

Programmer’s Guide for Documanage 73

 Parameters:

 lIndex Position in the control. From 0 to TotalWorkflowCabinets - 1

Return Value: Returns a String with a description of the workflow
cabinet.

 GetWFWorkTableName(lIndex As Long) As String
This method gives the table name on which the workflow is based.

Parameters:

 lIndex Position in the control. From 0 to TotalWorkflowCabinets - 1

Return Value: Returns a String with the table name on which the
workflow cabinet is based on.

 GetWorkflowCabinetName(lIndex As Long) As String
This method gives the name of the workflow cabinet by index

 Parameters:

 lIndex Position in the control. From 0 to TotalWorkflowCabinets - 1

Return Value: Returns a String with the Workflow cabinet name.

 GetWorkflowID(lIndex As Long) As String
This method gives the workflow ID by index.

Parameters:

 lIndex Position in the control. From 0 to TotalWorkflowCabinets - 1

Return Value: Returns a String with the Workflow id.

Non-Visual Controls
POProject Control

74 Programmer’s Guide for Documanage

 GetWorkflowMaxProjectDuration(lIndex As Long) As Long
This method gives the MaxProjectDuration attribute of the specified
workflow in the list of all workflows for the current user.

Parameters:

 lIndex: Valid range from 0 to value of the property
TotalWorkflowCabinets - 1. Index of the workflow to retrieve
information for in the workflows list for the current user.

Return Value: Returns the MaxProjectDuration attribute of the specified
workflow

 Initialize()
This method initializes the project control. You can determine which
project by hCursor, hSession & hItem handles.

 InitializeAllTasks()
This method initializes the control to get information about all task
queues (tasks that have pending or suspended projects and empty tasks
with no projects also) for the current user.

 InitializeForNewProject(strWorkflowCabinetName As String)
This method creates a new, empty project folder in a workflow cabinet.
By setting the properties and saving the project folder, the new project
folder will contain all the data it needs. Project folders will not actually be
inserted into the systems until a save occurs without any errors.

Parameters:

 strWorkflowCabinetName: Name of the workflow cabinet to which a
project folder is to be added.

Non-Visual Controls
POProject Control

Programmer’s Guide for Documanage 75

 InitializeForNotes()
This method initializes the control to get information about notes
associated with the project.

 InitializePendingTasksOnly()
This methods initializes the control to get information about pending
tasks.

 IsKey(lIndex As Long) As Boolean
This method determines if a particular project property is a key or not.

Parameters:

 lIndex: Position in the control. From 0 to ItemCount - 1

Return Value: Returns a Boolean, indicating the key.

 IsNoteDeleted(index As Long) As Boolean
This method is used to determine if a note is marked as deleted or not.

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1.

Return Value: Returns a Boolean value which indicates whether the
specified note is marked as deleted or not.

 IsRequired(lIndex As Long) As Boolean
This method determines whether or not the identified project property is
required.

Parameters:

 lIndex Position in the control. From 0 to ItemCount - 1

Non-Visual Controls
POProject Control

76 Programmer’s Guide for Documanage

Return Value: Returns a Boolean, indicating if the property is required
to be set.

 IsTaskHumanDec(TaskId As Long) As Boolean
This method is used to determine if a particular task is of type, human
decision.

Parameters:

 TaskId: Task id of the task in question.

ReturnValue: Returns a Boolean, indicating if the Task is of type human
decision.

 NoteAddedBy(index As Long) As String
This method is used to obtain the name of user who added the note.

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1.

Return Value: Returns a String indicating name of user who added the
specified note.

 NoteAddedOn(index As Long) As String
This method is used to obtain the date and time when the note was added.

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1.

Return Value: Returns a String with the date and time when the specified
note was added.

Non-Visual Controls
POProject Control

Programmer’s Guide for Documanage 77

 NoteAdditionalInfo (index As Long) As String
This method is used to obtain additional information for a note.

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1.

Return Value: Returns a String with additional information for the
specified note.

 NoteDescription (index As Long) As String
This method is used to obtain the description of a note.

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1.

Return Value: Returns a String with description of the specified note.

 Save()
This method saves changes to project properties (if any). This method
must be to add a project to the workflow cabinet.

 SetValue(lIndex As Long, vNewValue)
This method allows to set project properties by index.

Parameters:

 lIndex: Position in the control. From 0 to ItemCount – 1.

 vNewValue: New value to be set for that index. This is of type
VARIANT.

 UndeleteNote(index As Long)
This method unmarks a note marked as deleted.

Non-Visual Controls
POProject Control

78 Programmer’s Guide for Documanage

Parameters:

 index: Position of the note in notes list. From 0 to NotesCount - 1.

Non-Visual Controls
POSession Control

Programmer’s Guide for Documanage 79

POSession Control
The Session control is used to begin or end a user session. This control is
always required to be included in a project. You must connect before any
other Documanage controls can be used (you need the hSession handle
returned as a result of a Connect()). Before your application quits or when
you are done using Documanage functionality you must call Connect() again
to disconnect.

Standard Properties

 hSession Data Type: Long (Read Only)
The current hSession sent by the Documanage server. This will be set
after a successful call to Connect().

 LastErrorNumber Data Type: Long (Read Only)
The last Documanage error.

 LastError Source Data Type: String (Read Only)
The location of the last Documanage error. This is useful for reporting
bugs to Oracle.

 License Data Type: Integer (Read Only)
Currently Unimplemented.

 Password Data Type: String (Read/Write)
The password of the specified user logging into the Documanage server.
See the Documanage documentation on how Documanage uses NT
security.

 UserName Data Type: String (Read/Write)
The user name to login to the Documanage server. This is a valid NT

Non-Visual Controls
POSession Control

80 Programmer’s Guide for Documanage

Username on the specified Domain. See the core Documanage
documentation on how Documanage uses NT security.

 UsedSessionCredentials Data Type: Boolean (Read Only)
Indicates if session credentials are used to login to the Documanage
server.

 Domain Data Type: String (Read/Write)
The NT Domain of the specified user. See the core Documanage
documentation on how Documanage uses NT security.

 RouterName Data Type: String (Override Only)
RouterAddress Data Type: String (Override Only)
RouterProtocol Data Type: String (Override Only)
RouterEndPoint Data Type: String (Override Only)
You can set these properties to override the default settings. You cannot
view these properties, only create and view the new properties.

For more information see the Documanage documentation on the
POFFICE.INI’s [Router] section.

 ComputerName Data Type: String (Override Only)
The name of the workstation as shown on the Documanage server
console. The default value is the name of the Win95/NT workstation. It is
recommended that this default be used. You can set this property to
override the default settings.

Router Only Properties

This Property should only be called when the Session Control is connected
via Connect(EZP_ROUTER_ACCESS_ONLY , false) call. See Connect for
details.

Non-Visual Controls
POSession Control

Programmer’s Guide for Documanage 81

 TotalServers Data Type: Long (Read Only)
The total number of servers currently connected. Useful in connection
with GetServerInfo().

Standard Methods

 Connect
Connect(Mode As Integer, ShowDialog As Boolean) As Long

This method establishes and disconnects a session with the Documanage
server. Typically you call this twice; once to connect, once to disconnect.

The hSession property contains a valid Session handle after Connect()
has been called with Mode =…FULL. hSession is viewed by all other
controls. Call Connect() with Mode=EZP_ACCESS_NONE to
disconnect.

Parameters:

 Mode: Can be set to one of the following values:

EZP_ACCESS_FULL – Connect to a Documanage Server as the
indicated user. EZP_ACCESS_NONE – Disconnect from a
Documanage Server. This must be called before your application
exits.

EZP_ACCESS_VERIFY – Used to confirm if a user is still
connected to a server.

EZP_ACCESS_ROUTER_ONLY – Allows connection not to a
Documanage Server but to the Documanage Router. Some calls in
this control can only be used while connected in this manner.
Disconnecting is not necessary in this mode.

Non-Visual Controls
POSession Control

82 Programmer’s Guide for Documanage

 ShowDialog: Used to silently or actively create a session. If True, the
control will display a dialog box with the UserName, Password and
Domain properties. If False, the control will silently obtain a session
for the user based UserName, Password and Domain properties. No
dialog box will be shown in this instance.

Return Value: Returns a Long value. This is an error code. A non-error
successful call will return EZP_SUCCESS (zero). Any other value is a
Documanage Error code. This method call may optionally throw a VB
error. To be safe, a check of this return value and an “On Error” VB
handler should be used to trap errors.

 GetTotalWorkflowSchemas - DEPRECATED
Returns the number of workflow schemas stored in the Documanage
server.

Parameters: None.

Return Value: Returns a Long value, the workflow count.

 GetWorkflowSchemaInfo-DEPRECATED
Retrieves the workflow identified by the workflowIndex parameter.

Parameters:

workflowIndex (long) – the workflow’s collection identifier

workflowID (String) – On return, this parameter holds the
workflow’s identifier

workflowDescription (String) – on return, this parameter holds the
workflow’s description

dsnTable (String) – on return, this parameter holds the data source
table name

Non-Visual Controls
POSession Control

Programmer’s Guide for Documanage 83

powerCabinet (String) – on return, this parameter holds the
workflow’s cabinet name

projectDuration (long) – on return, this parameter holds the max
project duration for the workflow

Return Values: Returns a long value: EZP_SUCCESS on success or
EZP_INDEX_NOT_FOUND if the index is out of range.

 GetTotalTaskSchemasForWorkflow- DEPRECATED
Returns the number of tasks in the workflow identified by the
workflowIndex parameter.

Parameters:

workflowIndex (long) – the workflow’s collection identifier

Return Values: Returns a long value, the task count.

 GetTaskSchemaInfo - DEPRECATED
Retrieves the Task identified by the workflowIndex and taskIndex
parameters.

Parameters:

workflowIndex (long) – the parent workflow’s collection identifier

taskIndex (long) – the task’s collection identifier

taskID (long) – on return, contains the task’s Documanage identifier

taskType (long) – on return, contains the task’s type identifier

containerID (long) – on return, contains the task’s container identifier
or 0 if the task has no parent container

Non-Visual Controls
POSession Control

84 Programmer’s Guide for Documanage

taskDescription (String) – on return, contains the human readable
name for the task

taskInstructions (String) – on return, contains the steps to take to
complete the task for a project

taskManager (String) – on return, contains the user id of the person
managing the task

maxTaskDuration (long) – on return, contains the maximum time a
project is allowed in the particular task

maxWorkDuration (long) – on return, contains …

deactivated (long) - on return, contains the deactivation status of the
task

Return Values: Returns a long value: EZP_SUCCESS on success or
EZP_INDEX_NOT_FOUND if an index is out of range.

 GetTotalTeamSchemasForTask - DEPRECATED
Returns the number of teams for the task identified by the workflowIndex
and taskIndex parameters.

Parameters:

workflowIndex (long) – the parent workflow’s collection identifier

taskIndex (long) – the task’s collection identifier

Return Values: Returns a long value, the team count.

 GetTaskTeamSchemaInfo - DEPRECATED
Retrieves the Team identified by the index parameters.

Non-Visual Controls
POSession Control

Programmer’s Guide for Documanage 85

Parameters:

workflowIndex (long) – the parent workflow’s collection identifier

taskIndex (long) – the parent task’s collection identifier

teamIndex (long) – the team’s collection identifier

teamName (String) – on return, contains the team’s group identifier

Return Values: Returns a long value: EZP_SUCCESS on success or
EZP_INDEX_NOT_FOUND if an index is out of range.

 GetTotalContainerSchemasForWorkflow - DEPRECATED
Returns the number of Containers in the workflow identified by the
workflowIndex parameter.

Parameters:

workflowIndex (long) – the parent workflow’s collection
identifier

Return Values: Returns a long, the container count.

 GetContainerSchemaInfo - DEPRECATED
Retrieves the Container identified by the workflowIndex and
containerIndex parameters.

Parameters:

workflowIndex (long) – the parent workflow’s collection identifier

containerIndex (long) – the container’s collection identifier

Non-Visual Controls
POSession Control

86 Programmer’s Guide for Documanage

containerID (long) – on return, contains the container’s Documanage
identifier

parentID (long) – on return, contains the container’s parent container
identifier or 0 if no parent container exists

containerName (String) – on return, contains the human readable
name for the container

containerDescription (String) – on return, contains the description of
the task

containerManager (String) – on return, contains the user id of the
person managing the container

Return Values: Returns a long value: EZP_SUCCESS on success or
EZP_INDEX_NOT_FOUND if an index is out of range.

 GetTotalTeamSchemasForContainer - DEPRECATED
Returns the number of teams for the container identified by the
workflowIndex and containerIndex parameters.

Parameters:

workflowIndex (long) – the parent workflow’s collection identifier

containerIndex (long) – the container’s collection identifier

Return Values: Returns a long value, the team count.

 GetContainerTeamSchemaInfo - DEPRECATED
Retrieves the Team identified by the index parameters.

Non-Visual Controls
POSession Control

Programmer’s Guide for Documanage 87

Parameters:

workflowIndex (long) – the parent workflow’s collection identifier

containerIndex (long) – the parent container’s collection identifier

teamIndex (long) – the team’s collection identifier

teamName (String) – on return, contains the team’s group identifier

Return Values: Returns a long value: EZP_SUCCESS on success or
EZP_INDEX_NOT_FOUND if an index is out of range.

Router Only Methods

These Methods should only be called when the Session Control is connected
via Connect(EZP_ACCESS_ROUTER_ONLY, false) call. See Connect for
details.

 GetServerInfo
GetServerInfo(lIndex as Long, ByRef hServer as Long, ByRef
bIsRunning as Boolean, ByRef bIsStale as Boolean, ByRef
lTotalUsersOnline as Long, ByRef strMachineName as String, ByRef
strProtocol as String, ByRef strEndpoint as String, ByRef Last as Date,
ByRef First as Date)

This function is used to retrieve various information about a specific
server connected to the current Documanage Router. Note that ByRef
properties are return values.

Parameters:

Non-Visual Controls
POSession Control

88 Programmer’s Guide for Documanage

 1Index: Valid range from 0 to value of the property TotalServers –
1.Specifies the current numbered server to retrieve information
about. Typically you would loop through all the servers (from 0 to
TotalServers – 1) changing this Index property of this call
accordingly.

 hServer: A unique handle to the server. This identifier can be used in
other server management type calls. This handle is displayed on the
server console itself in the root of the tree.

 bIsRunning, bIsStale: Both these parameters indicate the status for
the specified server. IsStale indicates that a server has been marked as
out-of-date and will shutdown when all users are disconnected.
IsRunning indicates that a server is up and running correctly.

 lTotalUsersOnline: Total number of users connected to this server.

 strMachineName, strProtocol, strEndpoint: All three of these
indicate where the server is located on the network. Protocol and
Endpoint may indicate only the primary/default network information
since the server may be “listening” on multiple protocols.

 Last, First: Both of these date fields indicate the first and last times
the server reported to the router.

Return Value: None, but note that ByRef properties are return values.

 SetServerStale
SetServerStale (hServer as Long)

Marks a server as Stale. This Server will no longer accept new
connections. This Server will also shut itself down when it no longer has
any users connected to it.

Parameters:

Non-Visual Controls
POSession Control

Programmer’s Guide for Documanage 89

 hServer: The handle to the Documanage Server you want to mark as
Stale. This value can be obtained with a call to GetServerInfo().

Return Value: None.

 SpawnNewServer
SpawnNewServer (hServer as Long)

Launches another server on the same machine as the server specified by
the hServer parameter.

Parameters:

 hServer: The handle of the Documanage Server that will launch
another Documanage Server.

Return Value: None.

 GetTotalNTUsers
GetNTUser (IIndex as Long) as String
GetTotalNTGroups as Long
GetNTGroup (IIndex as Long) as String
GetTotalNTUsersinGroup (strGroup as String) as Long
GetNTUserinGroup (strGroup as String, IIndex as Long) as String
GetTotalNTGroupsforUser (strUser as String) as Long
GetNTGroupsforUser (strUser as String, IIndex as Long) as String
GetFullName (strUser as String) as String
GetTotalUsersByTech (pluginName as String) as Long
GetTotalGroupsByTech(pluginName as String) as Long
GetTotalUsersinGroupByTech (pluginName as String, strGroup as
String) as Long
GetNumGroupsOfUserByTech (pluginName as String, strUser as
String) as Long
GetTotalGroupsForUserByTech (pluginName as String, strUser as
String) as Long

Non-Visual Controls
POVolume Control

90 Programmer’s Guide for Documanage

GetFullNameByTech (pluginName as String, strUser as String) as
String
GetTotalMembersInGroupByTech (pluginName as String, strGroup as
String) as Long
These functions allow communication to the Documanage user and
groups system. These functions are for internal Documanage use and
should not be necessary for most end-users.

Using the Session Control

1 Set UserName, Password and Domain using a dialog box or other
means.

2 Set the UserName, Password and Domain properties.

3 Call the method Connect(EZP_ACCESS_FULL,False). The hSession
property will now be set.

4 On application close, call Connect(EZP_ACCESS_NONE, False).

POVolume Control
The POVolume Control returns a list of known volumes to the server. This
control is used with Document Migration.

Properties

 hSession Data Type: Long (Read/Write)
The current server login from the Session control

Non-Visual Controls
POVolume Control

Programmer’s Guide for Documanage 91

 NumVolumes Data Type: Long (Read Only)
The number of data types known to the system.

Methods

 InitializeFromSession
hSession as Long

Initializes the control and fetches the volume list

 GetVolume
Item (as Long) as String

The list of volumes is cached in the control

Using POVolume Control

POVolumeCtrl1.InitializeFromSession (POSession1.hSession)

lngVolumeCount = POVolumeCtrl1.NumVolumes

For i = 0 To lngVolumeCount - 1

 strResult = String(1024, " ")

 strResult = POVolumeCtrl1.GetVolume(i)

 Next

Non-Visual Controls
POQuery Control

92 Programmer’s Guide for Documanage

POQuery Control
The Query control is used to open a cabinet based on the user’s access rights
and the specified filter or sort criteria. The Query control will return a unique
hCursor handle, which identifies the Documanage cabinet opened. This
hCursor is valid for the lifetime of the cabinet, until another Cabinet is
opened with this same control, or a CloseCursor call is made. After either of
those actions the hCursor should no longer be used.

Properties

 Cabinet Data Type: String (Read/Write)
The name of the Cabinet you wish to open. Cabinets are created in the
Documanage Administrator Module. A full list of available cabinets can
be obtained by using GetCabinetName().

 CurrentAuthor Data Type: String (Read Only)
The author of the last item the method GetRelativeItem() returned.

 CurrentItemType Data Type: Long (Read Only)
The item type of the last item the method GetRelativehItem() returned.
Typically, this will be EZP_DOCUMENT, EZP_FOLDER, or
EZP_CABINET.

 CurrentLabel Data Type: String (Read Only)
The item label of the last item the method GetRelativeItem() returned.

 CurrentTypeDescription Data Type: String (Read Only)
The human readable description returned of the item, e.g., “folder” or
“invoice.” of the last item the method GetRelativehItem() returned.

 DocumentFilter Data Type: String (Read/Write)
A specially formatted string that will be used to filter what document(s)

Non-Visual Controls
POQuery Control

Programmer’s Guide for Documanage 93

will be shown in this opened cabinet. The format of the filter is a SQL
Where Clause without the SQL keyword “WHERE”. To filter on a
particular Documanage Document property you will need to know the
corresponding database column name of that property (shown in the chart
at the end of this document). The indexes (the columns of your mapped
table) of the document’s parent folder can also be used. Detailed
formatting of Where clauses can be found in any SQL reference. These
values may need to be fully qualified. The document properties exist in
the table OT_Docs and are typically owned by the user EZPOWER. The
fully qualified name of OT_Docs can be retrieved by referencing the
property DocumentTable.

Changing this value after Initializing will not affect the state of the
opened cabinet. This property should be set before calling initialize.

 DocumentOrderBy Data Type: String (Read/Write)
A specially formatted string used to change the order of documents
shown in this Cabinet. This string’s format is identical to a SQL OrderBy
clause without the SQL keyword “OrderBy”. To order on a particular
Documanage Document property you will need to know the
corresponding database column name of that property (shown in the chart
at the end of this document). Detailed formatting of OrderBy clauses can
be found in any SQL reference. These values may need to be fully
qualified. They exist in the table OT_Docs and are typically owned by the
user EZPOWER. The fully qualified name of OT_Docs can be retrieved
by referencing the property DocumentTable.

Changing this value after Initializing will not affect the state of the
opened cabinet. This property should be set before calling initialize.

 DocumentTable Data Type: String (Read Only)
The fully qualified SQL table name of the Documanage table that stores
the documents for this cabinet. This is useful for creating the search string
for the DocumentFilter property.

Non-Visual Controls
POQuery Control

94 Programmer’s Guide for Documanage

 FolderFilter Data Type: String (Read/Write)
A specially formatted string that will be used to filter what folders will be
shown in this opened cabinet. The format is a SQL Where Clause without
the SQL keyword “WHERE”. Detailed formatting of Where clauses can
be found in any SQL reference. In this statement you will refer to the
columns of your business tables that make up this cabinet. Since these
cabinet indexes differ from table to table and cabinet to cabinet. If in your
application you have no prior knowledge of the format of the Cabinet,
this information can be retrieved two ways:

1) Use the functions GetTotalLevels and its related function GetLevelInfo
to retrieve the names of each table that represents each level. Then by
Initializing the POFolder control with Table Indexes Only. It will retrieve
the columns (or what we call Indexes) of that table/level (cabinets can be
multi-leveled, each level will have a different set of Indexes based on a
single table). The POFolder’s array property Qualified is the name of the
Index you would use in the folder filter string.

2) If you already have the Cabinet opened you can Initialize Indexes Only
in the POFolder control with any folder hItem. The use of the POFolder
control is the same as the above approach. By navigating through each
level of the cabinet you can get all the indexes. The first approach is a bit
more generic and does not require an open cabinet containing folders.

Changing this value after Initializing will not affect the state of the
opened cabinet. This property should be set before calling initialize.

 FolderOrderBy Data Type: String (Read/Write)
A specially formatted string used to change the order of folders shown in
this Cabinet. This string’s format is identical to a SQL OrderBy clause
without the SQL keyword “OrderBy”. Detailed formatting of OrderBy
clauses can be found in any SQL reference. If, in your application, you
have no prior knowledge of the format of the Cabinet, this information
can be retrieved via the two ways detailed in the FolderFilter property
above.

Non-Visual Controls
POQuery Control

Programmer’s Guide for Documanage 95

Changing this value after Initializing will not affect the state of the
opened cabinet. This property should be set before calling initialize.

 hCurrentItem Data Type: Long (Read Only)
The hItem of the last item the method GetRelativeItem() returned.

 hCursor Data Type: Long (Read Only)
The unique value returned which identifies the cabinet opened. The
hCursor will change after every Initialize() call. More information about
hCursors can be found in the general description section of this control.

 hRootItem Data Type: Long (Read Only)
hItem for the root folder of the cabinet. This hItem is the very top of the
hierarchy of folders and documents that make up a cabinet. Visually this
hItem is represented (by the POTree control for example) by a picture of
a cabinet. This item is nether a folder or document, it is a special object in
the system that will identify itself as a “EZP_CABINET”. While this item
is an “EZP_CABINET” it is not an hCursor and should not be confused
with one. Its basically a place holder in the tree hierarchy to make visual
representation simpler and programmatic navigation easier. The
following are some facts about the item useful for GetRelative() calls:
There is always only one hItem of this type “EZP_CABINET” in any
given Cabinet. It will never contain documents. It has no siblings or
parent. Its children are all folders. If it has no children this cabinet must
be empty.

 hSession Data Type: Long (Read/Write)
The current session with the Documanage server. hSession is a value
passed from the Session control, which identifies the login to the
Documanage server.

 LastErrorNumber Data Type: Long (Read Only)
The Documanage error number.

Non-Visual Controls
POQuery Control

96 Programmer’s Guide for Documanage

 LastErrorSource Data Type: String (Read Only)
The location of the last Documanage error. This is useful for reporting
bugs to Oracle.

 MaxFolders Data Type: Integer (Read/Write)
Maximum number of top level folders to retrieve. This is typically a
constant number around 50 to 100. For large cabinets retrieving all
folders may use too many resources and be slow (a cabinet could, and
often will, contain thousands of folders). See MinFolder on how to get
folders passed this max number.

 MinFolders Data Type: Integer(Read/Write)
This property’s name is somewhat misleading. It represents the point
inside the opened cabinet to start retrieving top level folders. When
opening a cabinet you should always start with 0 (zero). Once a Cabinet
is opened you will only be able to access a sub-set of folders that are
contained in the cabinet. This set will be all the folders in the cabinet up
to MaxFolders. To get the next set of folders you would set this property
to itself plus MaxFolders. You then would need to Initialize this control
again (and all dependent controls – see “Initializing and Re-initializing
the POQuery” section below.) To get the next sets of folders, repeat this
process, continually adding MaxFolders to this value and Re-initializing.
To go to a previous set of folders simply subtract MaxFolder instead of
adding.

 TotalCabinets Data Type: Long (Read Only)
The total number of cabinets in the system. Use GetCabinetName() to
retrieve the names of each cabinet.

 TotalDocumentTypeSelections Data Type: Long (Read Only)
Number of valid document types defined. Use in conjunction with the
method GetDocumentTypeName().

Non-Visual Controls
POQuery Control

Programmer’s Guide for Documanage 97

 TotalGroups Data Type: Long (Read Only)
The total number of groups in the system. Use GetGroupID() to retrieve
the total groups.

 TotalVariables Data Type: Long (Read Only)
Total number of variables that must be set to open a cabinet. This should
always be checked immediately after Initializing and before using the
opened cabinet in any way. See the section “Using Variable Filters”
below about how variable filters work.

 TotalVariablesPickListItems Data Type: Long Array (Read Only)
The number of entries in the pick list for each variable used to open a
cabinet. The input index is the same index of the variable name returned
from the "VariableNames(index)" property below. The items in each pick
list are returned by the GetVariablePickListItem method (see below). See
the section “Using Variable Filters” below about how variable filters
work. Its array size is based on TotalVariables (see Using Array
Properties).

 VariableNames Data Type: String Array (Read Only)
The name of each variable used to open a cabinet. See the section “Using
Variable Filters” below about how variable filters work. Its array size is
based on TotalVariables (see Using Array Properties).

 VariableTypes Data Type: Long Array (Read Only)
The SQL type of each variable used to open a cabinet. Returns the SQL
data type of a given identified folder property. Types include:

EZP_TYPE_CHAR, EZP_TYPE_NUMERIC, EZP_TYPE_DECIMAL,
EZP_TYPE_INTEGER, EZP_TYPE_SMALLINT, EZP_TYPE_FLOAT,
EZP_TYPE_REAL, EZP_TYPE_DOUBLE, EZP_TYPE_VARCHAR,
EZP_TYPE_DATE, EZP_TYPE_TIME, EZP_TYPE_TIMESTAMP,
EZP_TYPE_LONGVARCHAR, EZP_TYPE_BINARY,
EZP_TYPE_VARBINARY, EZP_TYPE_LONGVARBINARY

Non-Visual Controls
POQuery Control

98 Programmer’s Guide for Documanage

See the section “Using Variable Filters” below about how variable filters
work. Its array size is based on TotalVariables (see Using Array Properties).

 VariableValues Data Type: String Array (Read/Write)
The value of each of the variables used to open the cabinet. These should
be set before using this cursor in any calls or controls. See the section
“Using Variable Filters” below about how variable filters work. Its array
size is based on TotalVariables (see Using Array Properties).

Methods

 GetCabinetName
GetCabinetName(Index As Long) As String

This method returns the cabinets that are accessible to this user. To
retrieve all cabinets call this function multiple times incrementing Index
from 0 to TotalCabinets –1.

Parameters:

 Index: Numbered cabinet to retrieve. Valid Range from 0 to
TotalCabinets –1.

Return Value: The name of the cabinet you requested.

 GetDocumentTypeName
GetDocumentTypeName(Index As Long) As String

This method returns the name of all document types in the system. To
retrieve all document types call this function multiple times incrementing
Index from 0 to TotalDocumentTypeSelections –1.

Parameters:

Non-Visual Controls
POQuery Control

Programmer’s Guide for Documanage 99

 Index: Numbered document types to retrieve. Valid Range from 0 to
TotalDocumentTypeSelections –1.

Return Value: The name of the document type you requested.

 GetGroupID
GetGroupID(Index As Long) As String

This method returns the group name.

 GetRelativehItem
GetRelativehItem(hItem As Long, RelativePosition As Long)As Long

This method allows retrieving items in a cabinet.

Parameters:

 hItem: The item at which to begin the search.

 RelativePosition: The geometric relation of the requested item to the
specific item. This can be one of the following:

EZP_GET_SELF

EZP_GET_FIRST_CHILD

EZP_GET_LAST_CHILD

EZP_GET_NEXT_SIBLING

EZP_GET_PREV_SIBLING

EZP_GET_PARENT

Non-Visual Controls
POQuery Control

100 Programmer’s Guide for Documanage

See “Navigating With the GetRelativehItem()” below for more
details.

Return Value: Returns the hItem you are requesting. Zero (0) indicates
that this item was not found. In addition many properties will be set after
this call:

 hCurrentItem
 CurrentItemDescription
 CurrentAuthor
 CurrentLabel
 CurrentItemType
These properties will change to the last hItem you retrieved in this way.
They will reset to empty values if the item you requested doesn’t exist.

 GetTemporaryFile
GetTemporaryFile(Path As String, Prefix As String) As String

This method creates and returns to you a temporary file in the specified
directory. This function calls the Win32 API function of the same name
and is exposed only as convenience to the programmer and has very little
to do with Documanage functionality. The user is responsible for
cleaning this file up.

Parameters:

 HItem Path: The full path on a locally accessible drive to create a
temporary file.

 Prefix: Three character prefix for the file.

Return Value: If successful, the name of the new file.

Non-Visual Controls
POQuery Control

Programmer’s Guide for Documanage 101

 GetTemporaryPath
GetTemporaryPath()As String

This method returns the local path where Documanage stores its temp
files. This typically will be the location of the Windows temporary folder.

Return Value: If successful the name of the temp path.

 GetVariablePickListItem
GetVariablePickListItem(VariableIndex As Long, PickListItemIndex As
Integer) As String

Returns the pick list string indicated by the PickListItemIndex for the
Filter Variable indicated by the VariableIndex. The complete pick list for
each Filter Variable may be retrieved by iterating over the range for
PickListItemIndex from 0 to the size of the list (minus one) which is
returned by the TotalVariablesPickListItems count for that VariableIndex.
See the section “Using Variable Filters” below about how variable filters
work.

Parameters:

 VariableIndex: Valid range from 0 to TotalVariables –1

 PickListItemIndex: : Valid range from 0 to
TotalVariablePicklistItems(VariableIndex) -1

Return Value: String value to place in a pick list for this filter variable.

 Initialize()
This method returns an hCursor and hRootItem. Some properties should
be set before, for example hSession, Cabinet, MinFolders and
MaxFolders, are set. At this point, you have opened a cabinet. See the
section “Using the Query Control” below.

Non-Visual Controls
POQuery Control

102 Programmer’s Guide for Documanage

 IsActionAllowed
IsActionAllowed (hSession As Long, hCursor As Long, hItem As Long,
Action As Long) As Boolean

This method returns a TRUE or FALSE value, depending if an operation
is available and/or valid on a particular hItem. The values for operation
are listed in the Documanage Include file. The valid operations are listed
below in the section Using IsActionAllowed.

Parameters:

 hSession

 hCursor

 hItem: All three of these parameters will uniquely identify a folder or
document in the system that will be the target of the security query.
Since we pass a cursor and session we can check security on any item
in the system, not just in the current cursor this control opened.

 Action: The action code. See “Using IsActionAllowed” below. A
different set of actions are used for folders and documents.

Return Value: True if the action is allowed, false if not.

 ItemType
ItemType(hItem As Long) As Long

This method returns the item type for any given hItem. [NOTE: This
function is obsolete. The IsFolder, IsDocument, etc. should be used.]

Parameters:

 hItem: Handle to item we want to know the type of.

Non-Visual Controls
POQuery Control

Programmer’s Guide for Documanage 103

The type of the item: EZP_DOCUMENT, EZP_FOLDER, or
EZP_CABINET.

 IsFolder(hItem as Long) as Boolean
IsDocument(hItem as Long) as Boolean
IsCabinet(hItem as Long) as Boolean
IsPersonalFolder(hItem as Long) as Boolean
IsProjectFolder(hItem as Long) as Boolean
Determines the type of an hItem. These sets of functions are useful in
place of ItemType().

Parameters:

 HItem: The item you are checking

Return Value: True if this item is the type you are checking for,
otherwise False.

 PublishDocument (hItem as Long) as Long
Reserved for future use.

 GetTotalLevels
GetTotalLevels(strCabinet as String, bIncludeHiddenLevels as boolean)
as Long

Given a Cabinet this function will return the total number of levels it
contains.

Parameters:

 strCabinet: Cabinet to retrieve the levels from.

 bIncludeHiddenLevels: If False the method will return the count of
visible levels. True will return all levels, visible or not.

Non-Visual Controls
POQuery Control

104 Programmer’s Guide for Documanage

Return Value: Number of levels in provided cabinet.

 GetLevelInfo
GetLevelInfo(strCabinet As String, lLevel As Long,
IncludeHiddenLevels as Boolean, ByRef strTableName As String, ByRef
strTableDescription As String, ByRef bAllowDocsAtTableLevel As
Boolean, ByRef Boolean, ByRef strQualifiedName As String, ByRef
strDatabaseName As String, ByRef bIsVisible as Boolean)

Retrieves assorted information about a particular level of a particular
cabinet. Note that ByRef properties are return values. This call is useful if
information needs to be retrieved from the cabinet prior to opening the
cabinet. Otherwise, cabinet information should be obtained through
equivalent properties. This should be used in conjunction with the
InitializeTableIndexes method of the POFolder object.

Parameters:

 strCabinet: The Cabinet in question.

 lLevel: Level of the cabinet to retrieve information about.

 bIncludeHiddenLevels: Indicates if the level number specified in
lLevel is counting hidden levels. If the Total Level count was
retrieved by calling GetTotalLevels with bIncludeHiddenLevel set to
true, then this parameter should be set to true. If this level number is
from POFolder’s Level property or was determined by using
GetRelativeItem and counting yourself then this value should be set
to False. See the Documanage Administrator documentation for
information about hidden levels.

 strTableName
 strTableDescription
 bAllowDocsAtTableLevel
 bAllowDocsAtPCabLevel

Non-Visual Controls
POQuery Control

Programmer’s Guide for Documanage 105

 strQualifiedName
 strDatabaseName
 bIsVisible: The different information returned by this function.

Return Value: None, other than the ByRef parameters.

 GetTotalRelatedTables
GetTotalRelatedTables(strTable As String) As Long

This method retrieves the total count of related tables for a given table.
These relationships are created in the Documanage Administrator.

Parameters:

 strTable: The name of the table to retrieve the number of related
tables for.

Return Value: The total count of related tables for the given table.

 GetRelatedTable
GetRelatedTable(lIndex As Long, strTable As String) As String

This method retrieves a the name of a related table give an existing table
and the related table's index which should not exceed the number
returned by GetTotalRelatedTables.

Parameters:

 lIndex: Valid range from 0 to GetTotalRelatedTables(strTable) –1.
Number of related table to retrieve.

 strTable: The name of the table to retrieve related tables for.

Return Value: Returns the name of a requested related table.

Non-Visual Controls
POQuery Control

106 Programmer’s Guide for Documanage

 GetTotalUsersInGroup
GetTotalUsersInGroup(strGroup As String) As Long

 GetUserInGroup
GetUserInGroup(lIndex as Long, strGroup As String) As String

Both functions are obsolete. Users and Groups can now be retrieved by
the POSession control’s NT users and groups calls.

 Reinitialize ()
This method can be used to refresh all folders in a cursor. It is not
recommend to be used at this time. See “Initializing and Reinitializing
The POQuery” below.

 CloseCursor ()
This method forces a cursor to be closed and free the associated memory
on the Server. This call is automatically called when Visual Basic
disposes of the control unloading its Form or calling initialize() on a
control that has been initialized previously. It is always a good idea to
make this call on any initialized Query controls prior to calling Session’s
Connect(EZP_ACCESS_NONE) (i.e. Disconnecting from the Server).

Using the Query Control

Opening a Cabinet

1 Set the following properties: hSession, Cabinet, MinFolders,
MaxFolders

2 Optionally, set the following properties: FolderFilter,
DocumentFilter, FolderOrderBy, DocumentOrderBy

3 Call Initialize().

Non-Visual Controls
POQuery Control

Programmer’s Guide for Documanage 107

4 Check TotalVariables.
If 0, proceed to step 5. Otherwise, traverse the list of Cabinet variables (1
through TotalVariables); the name is in VariableNames[*]. The value has
to be set in VariableValues[*]. All variables must have been set to a valid
value. Some variables may have a pick list, exposed through property
TotalVariablesPickListItems and method GetVariablePickListItem(). See
“Using Variable Filters” below.

5 hCursor and hRootItem are now set.

6 Use RelativehItem() to navigate through the cabinet or use of a
visual control such as POTree Control.

7 Call CloseCursor() when done.

Navigating the Cabinet Programmatically (Using
GetRelativehItem)

While our toolkit provides visual controls to show and move through
cabinets, code can be written to programmatically explore the cabinet and
manipulate folder and documents.

GetRelativehItem can be used to move through the internal hierarchy of
folders and documents and retrieve simple properties (labels and types). By
using the return results (the hItem Handle) of this function you can initialize
the folder and document controls to see extended properties such as folder
indexes and document properties. Various operations can be performed on
these folders and documents such as checking out documents and editing
them, moving documents, deleting them, etc. All operations of Documanage
are accessible without using the visual controls.

Sample Code Navigating the cabinet and adding item to a user create Listbox:

Dim CurrHItem As Long

Non-Visual Controls
POQuery Control

108 Programmer’s Guide for Documanage

' This code will add all folder's Labels in the
first level of a cabinet to a ListBox

' Navigate to the first Item in the cabinet -- The
hRootItem

CurrHItem = MyQuery.GetRelative-
HItem(MyQuery.hRootItem, EZP_GET_SELF)

Get its first child which will always be folder
CurrHItem = MyQuery.GetRelativeHItem(MyQuery.hRoo-
tItem, EZP_GET_FIRST_CHILD)
' Add its label to the listbox
List1.AddItem MyQuery.CurrentLabel()

' Get all the rest of the folders...
While CurrHItem <> 0 ' Zero indicates there are no
folders at the requested Location

CurrHItem = MyQuery.GetRelativeHItem(CurrHItem,
EZP_GET_NEXT_SIBLING)

List1.AddItem MyQuery.CurrentLabel()

Initializing and Reinitializing the POQuery

After you open a cabinet, you may wish to change the value of a property that
must be set before you initialize (like FolderFilter, MinFolder, etc). To do this
you must start over, and open the cabinet again by calling Initialize. By doing
this, your original cabinet is closed and your hCursor and all hItems retrieved
from the cabinet are now invalid. Any other controls using the hCursor and
hItems (like the POTree, PODocument, POFolder, POFld_Doc, etc) must
reset all their hCursor and hItem type properties.

Non-Visual Controls
POQuery Control

Programmer’s Guide for Documanage 109

Using Variable Filters

It would be a good idea to review the Administrator documentation about
Variable Filters before trying to write code to open one. To get started quickly
with the Documanage controls, you can keep your application from opening
any cabinets that have a Variable Filter. After Initializing the POQuery check
the TotalVariables property. If it is not zero do not open the cabinet.

 Opening a cabinet with a Variable Filter requires a bit more work than
opening a cabinet without one. Basically, a “Variable Filter” is a lot like using
FolderFilter, in that it limits what folders are shown when the cabinet is
opened, but the Variable Filter string is set on the server side by the
Administrator. The format of the string on the server is identical to a
FolderFilter string with one difference: special "substitution tags" are written
in the string. These values need to be substituted or replaced each time the
cabinet is opened by the POQuery control. Basically you need to “fill-in the
blanks” of the filter. Commonly used replacement values can be stored
locally to your application in the local POFFICE.INI file to make it
convenient to build a configurable pick list. These values can be retrieved via
the GetVariablePicklistItem calls, however you are not required to make use
of this feature in your application. The Documanage Workstationapplication
does use this feature as an example.

Without specifying the values for the Variable Filters the cabinet will be
opened ignoring the filter specified in the Administrator. This is useful for
opening cabinets in conjunction with the PODocument’s source document
filter property and Workflow.

Example

Assume a cabinet called “Authors In a State” was created. It contains an
index called “au_state” which in the actual database table contains the 2-letter
abbreviation of the state. One Variable Filter was setup. One variable was
specified (called “Author_State”.) When we open this cabinet we will see that
TotalVariables equals 1. We could call VariableName(0) and it would return

Non-Visual Controls
POQuery Control

110 Programmer’s Guide for Documanage

“Author_State”. We would need to set VariableValues(0) equal to a state, like
“NY” to open the cabinet.

INI File Entries

The POQuery control can supply pick list values read from the local
POFFICE.INI file. These values are configured and stored locally on the
client application machine, not on the server and so are machine-specific. The
POFFICE.INI section [Cabinet Filters] is reserved for this purpose.

Each variable name can have a list of any number of strings associated with it
to be used as pick list choices. The number of choices is given as a value of a
key named after the variable name. Each choice is given as the value of a key
named after the variable name concatenated with a zero-based decimal
sequence number. In general, the section would look like this for two
variables named "VariableAName" and "VariableBName":

[Cabinet Filters]
VariableAName=4
VariableAName0=first choice for VariableAName
VariableAName1=second choice for VariableAName
VariableAName2=third choice for VariableAName
VariableAName3=fourth choice for VariableAName
VariableBName=2
VariableBName0=first choice for VariableBName
VariableBName1=second choice for VariableBName

If there are more than 10 choices for a variable, the key values continue to 2
digits as in:

...
MyVariableName9=tenth choice for MyVariableName
MyVariableName10=eleventh choice for MyVariableName
… etc. ...

and so on. To implement choices for the previously discussed example
cabinet "Authors in a State", one could set up the following section to offer

Non-Visual Controls
POQuery Control

Programmer’s Guide for Documanage 111

choices of commonly selected states. Recall that one variable was specified
(called “Author_State”.)

[Cabinet Filters]
Author_State=5
Author_State0=DC
Author_State1=MD
Author_State2=NY
Author_State3=TN
Author_State4=VA

Finally, note that there is no mention of "cabinet name" in this discussion. If
multiple cabinets are set up with Variable Filters, unless those filters refer to
data with exactly the same choices, the filter variable names should be made
distinct. This will allow the definition of distinct sets of choices using the
scheme described here.

Sample Code
Below is a Visual BASIC function that will setup and show a form to allow user
input of these filters. The implementation of the form itself is left up to the reader.
The form's appearance is of a series of labels and text boxes, one set for each vari-
able to fill in. The form has 3 functions. First is Init, which tells the form how many
values you want to display. DisplayValue will insert a row containing a label and a
text box. Finally, GetValue retrieves what the user entered after the form was
closed.

Non-Visual Controls
POQuery Control

112 Programmer’s Guide for Documanage

Public Function SetupVarFilterForm() As Boolean

On Error GoTo ErrHld:

Dim x As Long
Dim y As Long
Dim varCount As Long

'Find out how many variables in this cabinet filter
varCount = POQuery1.TotalVariables

Load QueryForm
Call QueryForm.Init(varCount)

'If there are variables, set up form spaces to
'fill-in
If varCount > 0 Then

QueryForm.Caption = "Please Fill-In All Values to
 Open This Cabinet..."

 For x = 0 To varCount - 1
‘DisplayForm takes a data type to assure the
‘data is entered in the correct form.
Call QueryForm.DisplayValue(x,

POQuery1.VariableNames(x),
POQuery1.VariableTypes(x))

'If a pick list is defined for this variable,
'build it
If POQuery1.TotalVariablesPickListItems(x) > 0

Then

For y = 0 To
POQuery1.TotalVariablesPickListItems(x) - 1

Call QueryForm.AddPickListItem(x,
POQuery1.GetVariablePickListItem(x, y))

Non-Visual Controls
POQuery Control

Programmer’s Guide for Documanage 113

Next y

End If

Next x

QueryForm.Show 1

If QueryForm.tag = "0" Then
'User hit cancel
GoTo ErrHdl

End If

'Transfer user's input to POQuery control
 For x = 0 To varCount - 1

POQuery1.VariableValues(x) =
QueryForm.GetValue(x)

Next x

End If

Unload QueryForm
SetupVarFilterForm = True
Exit Function

ErrHld:
 Unload QueryForm
 SetupVarFilterForm = False
 Exit Function

End Function

Non-Visual Controls
POQuery Control

114 Programmer’s Guide for Documanage

Programmer’s Guide for Documanage 115

Visual Controls

POFolder and Document Control
This control is used mainly for displaying a single folder’s contents. To use
this control, you pass the hItem of the parent folder. The control then
displays, in a Windows ListView Control, the contents (also known as
children) of the opened folder. This control is contained in the
POFld_Doc.ocx file.

Properties

 AllowDeletingFolders Data Type: Boolean (Read/Write)
Indicates if the delete key can be used to delete a highlighted folder. This
operation will raise the Error event of this control if the user is not
authorized to delete folders and this property is set to true.

 Appearance Data Type: Integer (Read/Write)
0 — normal

1 — 3Dlook

 BorderStyle Data Type: Integer (Read/Write)
0 – normal

1 – solid border

 CurrentHItem Data Type: Long Array (Read Only)
Returns one of the selected hItems in the control indicated by Index. 0 to
Total Selected –1.

Visual Controls
POFolder and Document Control

116 Programmer’s Guide for Documanage

 DisplayItems Data Type: Long (Read/Write)
Indicates whether to display documents, folders, or both. For documents,
set to EZP_DOCUMENT. For folders, set to EZP_FOLDER. For both,
set to EZP_DOCUMENT logically “or-ed” with EZP_FOLDER.

 EmptyMessage Data Type: String (Read/Write)
Text to display when no items are present in the view. Default is: " This
Folder Is Empty"

 ExtendedStylesActive Data Type: Boolean (Read Only)
Indicates if advanced ListView styles are available. Since this control is
"sub-classed" from a standard Windows "common" control much of its
appearance is determined by Window itself. If a recent comctrl32.dll is
installed on your system certain new properties in this control will
become active and this property will return true. Microsoft is shipping
new comctrl32.dlls with it Internet Explorer web browser 3.0 or greater.

 FullRowSelect Data Type: Boolean (Read/Write)
Allow a row to be selected by mouse-click anywhere in the row, not just
in the first column. Available only if ExtendedStylesActive = TRUE.

 IndicateVersionedDocs Data Type: Boolean (Read/Write)
Indicates versioned documents in a folder in bold face font if it is set to
true. Default is true.

 LastErrorNumber Data Type: Long (Read Only)
The last Documanage error.

 LastErrorSource Data Type: String (Read Only)
The location of the last Documanage error. This is useful for reporting
bugs to Oracle.

 ParentHCursor Data Type: Long (Read/Write)

Visual Controls
POFolder and Document Control

Programmer’s Guide for Documanage 117

Set to the hCursor generated by this control’s master Query Control.

 ParentHItem Data Type: Long (Read/Write)
The hItem of the folder whose contents you wish to show in the control.

 ParenthSession Data Type: Long (Read/Write)
The hSession of the folder you wish to show in the control.

 TotalItems Data Type: Long (Read Only)
The total number of items shown in the control.

 TotalSelected Data Type: Long (Read Only)
The total number of selected items.

 CurrentFocusedhItem Data Type: Long (Read Only)
The hItem of the element in the object in the listview that currently has
the focus.

 ShowFolderProperties Data Type: Boolean (Read/Write)
If set to TRUE allows folders indexes to appear in the control. This must
be set prior to initialization. This setting is designed to allow this control
to replace the Documanage Folder List control.

 ShowGridLines Data Type: Boolean (Read/Write)
Show gridlines in the control. Available only if ExtendedStylesActive =
TRUE.

 MovableHeaders Data Type: Boolean (Read/Write)
Allows the position of the headers of the columns to be adjusted by
mouse drag. Available only if ExtendedStylesActive = TRUE.

 ViewMode Data Type: Long (Read/Write)
Determines how to display items in the list. It is recommended to use

Visual Controls
POFolder and Document Control

118 Programmer’s Guide for Documanage

LVS_REPORT in all cases.

Can be any of the following values:

LVS_SMALLICON

LVS_LIST

LVS_REPORT

Methods

 Export
Export(PutOnClipboard As Boolean, Path As String).

This method exports to a local path all the selected documents in the
control.

Parameters:

 PutOnClipboard: Set to TRUE will additionally place these
documents on the Clipboard in addition to the disk. Typically set this
to FALSE.

 Path: The pathname to export the files to.

 Copy()
This method copies a document(s) to the Windows Clipboard.

Return Value: None

 Cut()
This method cuts a document(s) to the Windows Clipboard.

Return Value: None

 Delete()

Visual Controls
POFolder and Document Control

Programmer’s Guide for Documanage 119

This method deletes the currently selected document(s).

Return Value: None

 Paste()
This method pastes a document(s) from the Windows Clipboard into the
selected folder.

 PasteShortcut()
This method pastes a document’s shortcut from the Windows Clipboard
into the selected folder.

 RefreshItem
RefreshItem(hItem As Long, bNotify As Boolean, bKeepSelection As
Boolean)

This method updates the contents of the folder in this control. Refreshing
is necessary when an action in a different control effect the documents in
this control. See Refreshing Folders and Documents below.

Parameters:

 hItem: The folder to refresh. If zero the control will refresh the
currently selected hItem.

 bNotify: Fire a Folder Action event
(EZP_ACTION_REFRESHDEPENDENTS) in response to this call.
Typically send FALSE. See the FolderAction event below.

 bKeepSelection: Tells control to attempt to keep selected document
highlighted after refresh.

 GetIndexFromHitem
GetIndexFromhItem(Index As Long)

This method, given an hItem, returns its position in the list view.

Visual Controls
POFolder and Document Control

120 Programmer’s Guide for Documanage

Parameters:

 hItem: The handle to the item in the control.

Return Value: The index position in the list view.

 GetHtemfromIndex
GethItemfromIndex(Index As Long) As Long

This method given an index in the list box returns an hItem.

Parameters:

 Index: Item’s position in control. Valid range from 0 to
TotalItems -1.

Return Value: The hItem for the indicated item.

 GetLabel
GetLabel(hItem As Long)As String
This method returns the Documanage label using the hItem value (first
column of display).

Return Value: The Documanage label.

 Initialize()
This method is called to refresh the content of the control. Any changes to
the document’s properties must be followed by this call. hItem (set in
ParenthItem property) is the folder’s hItem that will have its contents
shown.

 RemoveItem(hItem As Long) As Boolean
This method removes an hItem from list box given. It does not delete
hItem from system – the item is only removed from the visual list, with
no effect on the server. This method is useful for manual filtering and the
hiding of documents. Refreshing or initializing this will eliminate this

Visual Controls
POFolder and Document Control

Programmer’s Guide for Documanage 121

methods effect.

Parameters:

hItem: The hItem handle for the item to hide.

 SetDisplayStyle
SetDisplayStyle(Style As Long, bAdd As Boolean)

This method adds or removes Windows styles for this control. See the
Windows API documentation on ListView's styles. This is provided for
advanced users familiar with the ListView Window's common control
(not the Visual Basic ActiveX version).

Parameters:

 Style: Any LVS_* styles. Multiple styles can be combined . These
styles can be found in the Windows API documentation. Below are
some examples:

LVS_ICON, LVS_REPORT, LVS_SMALLICON, LVS_LIST,
LVS_TYPEMASK, LVS_SINGLESEL, LVS_SHOWSELALWAYS,
LVS_SORTASCENDING, LVS_SORTDESCENDING,
LVS_SHAREIMAGELISTS, LVS_NOLABELWRAP,
LVS_AUTOARRANGE, LVS_EDITLABELS,
LVS_OWNERDATA, LVS_NOSCROLL,
LVS_TYPESTYLEMASK, LVS_ALIGNTOP, LVS_ALIGNLEFT,
LVS_ALIGNMASK, LVS_OWNERDRAWFIXED,
LVS_NOCOLUMNHEADER, LVS_NOSORTHEADER

 bAdd: Indicated if this style or combination of styles should be added
or removed.

Visual Controls
POFolder and Document Control

122 Programmer’s Guide for Documanage

Events

 Error
See the “Error Handling” section at the end of this document.

 Folder Action
FolderAction(hItem As Long, Action As Long)

Fired when an action has occurred on a folder. The user can take the
appropriate action at this point.

Parameters:

 hItem: The Item (a folder) which the specified action as taken place
on. If 0 then the action took place on the control, but not on an item.
This is called a “whitespace” event.

 Action: The code of the action which took place. Can be one of the
following:

EZP_ACTION_EXPAND, EZP_ACTION_COLLAPSE

A folder has been expanded or collapsed in some manner. If
expanding you should typically have the control “drill down” into
this folder by setting ParenthItem to the hItem parameter and calling
initialize.

EZP_ACTION_SELECT

A folder has been selected in some manner. Setting the property
CurrentHItem will not fire this event.

EZP_ACTION_GETPROPERTIES

Visual Controls
POFolder and Document Control

Programmer’s Guide for Documanage 123

A folder has been selected to display a context menu or property in
some manner. This is the right-click event.

EZP_ACTION_REFRESH_CUTSOURCE

Fired when a document has been cut from one control and pasted in
this one.

EZP_ACTION_REFRESHDEPENDENTS

Fired when the control has refreshed the given folder internally or in
response to a RefreshItem call with bNotify set to TRUE.

 FileDrop
FileDrop(Filename As String, hItem As Long)

Fired when the user drops or pastes Windows’ files from Windows’
Explorer or anywhere else from Windows. You may take any action –
like importing these files.

Parameters:

 FileName: The filename of the file dropped.

 hItem: The folder hItem the file was dropped into.

 DocumentAction
DocumentAction(hItem As Long, Action As Long)

Fired when an action has occurred on a document. The user can take the
appropriate action at this point, which is probably viewing the document
or showing its properties.

Parameters:

Visual Controls
POFolder and Document Control

124 Programmer’s Guide for Documanage

 hItem: The Item (a document) which the specified action as taken
place on.

 Action: The code of the action which took place. Can be one of the
following:

EZP_ACTION_EXPAND

A documents has been selected to open. Typically the user would
send this document to the Viewer control. Typically this is fired when
a document is double-clicked or enter is pressed.

EZP_ACTION_SELECT

A document has been selected in some manner. Setting the property
CurrentHItem will not fire this event.

EZP_ACTION_GETPROPERTIES

A document has been selected to display a context menu or property
sheet. This is the right-click event.

Example

The following is an example of the Document/Folder List control. In this
example, the hSession handle is returned from the Session control, assigns the
hCursor from the Query control, and then displays the appropriate folders and
documents.

POFld_Doc1.ParenthSession = POSession1.hSession

POFld_Doc1.ParentHCursor = POQuery1.hCursor

POFld_Doc1.DisplayDetails = True

Visual Controls
POFolder and Document Control

Programmer’s Guide for Documanage 125

Using the POFolder and Document Control

This example shows how to display in the control all the folders in a cabinet.
Let’s assume we’ve already opened a cabinet in the Documanage Query
Control (see that control for more details on opening cabinets). Remember
that hRootItem (created by the Query Control) is the “File Cabinet” that
contains all the folders. HRootItem is an hItem which is type EZP_CABINET
, so since the Folder and Document Control shows the contents of any hItem
(that is, type EZP_FOLDER or EZP_CABINET).

We can see the folders that this cabinet contains by doing the following:

POFld_Doc.ParentHSession = POSession.hSession

POFld_Doc.ParentHCursor = POQuery.hCursor

POFld_Doc.ParentHItem = POQuery.hRootItem

POFld_Doc.Initialize

Now all of the cabinet’s folders are displayed in the Control. We can see a
folder’s contents by double-clicking on that folder. Folders will typically
contain documents and sub-folders. We then add some code in the control’s
FolderAction Event sub-routine.

Private Sub POFld_Doc1_FolderAction(ByVal hItem As Long, ByVal
Action As Long)
 Select Case Action

 case EZP_ACTION_EXPAND: 
 rem Expand is a Double-Click
 POFld_Doc1.ParentHItem = hItem ‘ hItem is the Documanage Item
 ‘ Handle to the clicked folder.
 POFld_Doc1.Initialize

Visual Controls
POFolder and Document Control

126 Programmer’s Guide for Documanage

 case else:
 Exit Sub

End Select
End Sub

Visual Controls
POFolder List Control

Programmer’s Guide for Documanage 127

POFolder List Control
This control works like the Folder and Documents List control except that it
shows only folders (no documents). If the Folder and Document List control
is set to show only folders, and to display full folder indexes, that control will
appear the same as this one. Since the functionality of this control has been
merged with Folder and Documents List control, the Folders List control
should be considered obsolete and is only documented here briefly for any
legacy code that may still use this control.

Properties

 Appearance Data Type: Integer (Read/Write)
0 — normal

1 — 3Dlook

 BorderStyle Data Type: Integer (Read/Write)
0 – normal

1 – solid border

 ColumnCount Data Type: Long (Read Only)
The total count of columns to be shown.

 FolderCount Data Type: Long (Read Only)
The total number of folders shown.

 Enabled Data Type: Boolean (Read/Write)
Whether or not the control is able to react to mouse clicks and Drag and
Drop.

Visual Controls
POFolder List Control

128 Programmer’s Guide for Documanage

 Font Data Type: stdFont (Read/Write)
The font used in the control. See your programming language reference
for details on setting font properties. See Windows API documentation
for the stdFont structure.

 hWind Data Type: Long (Read Only)
The windows handle of the control. See Windows API for details.

 LastErrorNumber Data Type: Long (Read Only)
The last error in Documanage.

 LastErrorSource Data Type: String (Read Only)
The location of the last Documanage error. This is useful for reporting
bugs to Oracle.

 ParentHItem Data Type: Long (Read/Write)
The hItem of the folder whose contents are to be shown in the control.

 ParentHCursor Data Type: Long (Read/Write)
The hCursor of the folder you wish to show in the control.

 ParentHSession Data Type: Long (Read/Write)
The hSession of the folder you wish to show in the control.

 TotalSelected Data Type: Long (Read Only)
The total number of selected items.

Visual Controls
POFolder List Control

Programmer’s Guide for Documanage 129

Methods

 GetLabel
GetLabel(hItem As Long) As String

This method returns the name of an item in the tree referred to by its
hItem.

 Initialize()
This method opens a folder in the control. You determine which folder by
the hCursor and hItem handles.

 Paste()
This method pastes a document(s) from the Windows Clipboard into the
selected folder.

 RefreshItem
RefreshItem(hItem As Long, bNotify As Long, bKeepSelection As Long)

This method is called to refresh the contents of the box. Any changes to
the properties must be followed by this call. hItem (set in parenthItem
property) is the folder’s hItem that will have its contents shown.

Events

 FolderAction
FolderAction(hItem As Long, Action As Long)

Fired when a folder is expanded/opened, most likely when a user double-
clicks the mouse or presses [Enter]). Whether the user expanded or
collapsed a folder can be determined by checking the action parm. The
user can take the appropriate action at this point. Specific actions that can
be taken include:

Visual Controls
POFolder List Control

130 Programmer’s Guide for Documanage

EZP_ACTION_EXPAND, EZP_ACTION_SELECT

 FileDrop
FileDrop(Filename As String, hItem As Long)

Fired when the user drops or pastes Windows’ files from Windows’
Explorer or anywhere from Windows. You may take any action, e.g.,
importing these files.

Using the Folder List Control

As previously noted, this control operates nearly identically to the Folder and
Documents control, except that it only shows folders with all their
Documanage Folder Properties.

Much like the example in the Folder and Documents control we can show all
the folders in an opened cabinet (see the Query Control to see just how to
open a cabinet) this way:

POFld_List.ParentHSession = POSession.hSession

POFld_List.ParentHCursor = POQuery.hCursor

POFld_List.ParentHItem = POQuery.hRootItem ‘ The Documanage
Cabinet Handle and contains all the folders

POFld_List.Initialize

You can also let the user open one of the displayed folders (by a double-click)
by the following code. Remember, however, that you will only see folders in
this control - so by showing the contents of a folder here we won’t see any
documents, just sub-folders.

Private Sub POFld_List1_FolderAction(ByVal hItem As Long, ByVal

Visual Controls
POTree Control

Programmer’s Guide for Documanage 131

Action As Long)
Select Case Action

case EZP_ACTION_EXPAND:
rem Expand is a Double-Click
POFld_List1.ParentHItem = hItem ‘ hItem is the Documanage
Item

‘ Handle to the clicked folder.
POFld_List1.Initialize
case else:

Exit Sub
End Select

End Sub

POTree Control
The POTree control displays, in a hierarchical form, all the folders and
documents in a given cabinet.

Properties

 AllowDeletingFolders Data Type: Boolean (Read/Write)
Indicates if the delete key can be used to delete a highlighted folder. This
operation will raise the Error event of this control if the user is not
authorized to delete folders and this property is set to true.

 Appearance Data Type: Integer (Read/Write)
0 — normal

1 — 3Dlook

 BorderStyle Data Type: Integer (Read/Write)
0 – normal

Visual Controls
POTree Control

132 Programmer’s Guide for Documanage

1 – solid border

 CurrentFolderhItem Data Type: Long (Read Only)
If a document is selected, the hItem of its parent folder will be returned. If
a folder is selected, the hItem of that folder will be returned. This is
useful when documents are shown to quickly determine the current
folder.

 CurrentHItem Data Type: Long (Read/Write)
The hItem of the selected folder, document, or cabinet. Changing this
property will change the highlighted Item in the tree. More information
about this property can be found below in Manipulating the Visual
Controls programmatically.

 Enabled Data Type: Boolean (Read/Write)
This property determines whether or not a control is able to react to
mouse operation such as clicks and Drag and Drops.

 GroupBy Data Type: String (Read/Write)
Groups documents in the tree by the specified document field. Valid
fields are Category, SubCategory, Author, and an empty string indicating
no groups. Default is an empty string.

 FolderCount Data Type: Integer (Read Only)
Total number of visible top-level folders. If the HideEmptyFolders
property is set to true, the sum of FolderCount and TotalHiddenFolders
properties values will give the number of top level folders in the current
result set.

 Font Data Type: stdFont (Read/Write)
The font used in the control. See your programming language reference
manual for details on setting font properties. NOTE: Please see Windows
API documentation for the stdFont type declaration.

Visual Controls
POTree Control

Programmer’s Guide for Documanage 133

 hCursor Data Type: Long (Read/Write)
The current hCursor of this control.

 HideEmptyFolders Data Type: Boolean (Read/Write)
Hides folders that do not have any documents in them if it is set to true.
Default is false.

 hRootItem Data Type: Long (Read/Write)
The item to be used as the root of the tree. This should always be set to
the value in the POQuery’s hRootItem property.

 hSession Data Type: Long (Read/Write)
The current session with the Documanage server. hSession is a value
passed to you from the Session control that identifies your login to the
Documanage server.

 hWnd Data Type: Long (Read Only)
The windows handle of the control. See the Windows API for details.

 IndicateVersionedDocs Data Type: Boolean (Read/Write)
Indicates versioned documents in a folder in bold face font if it is set to
true. Default is true.

 LastErrorNumber Data Type: Long (Read Only)
The last Documanage error.

 LastErrorSource Data Type: String (Read Only)
The location of the last Documanage error. This is useful for reporting
bugs to Oracle.

 ReadyState Data Type: Long (Read/Write)
Not in use.

Visual Controls
POTree Control

134 Programmer’s Guide for Documanage

 ShowDocuments Data Type: Boolean (Read/Write)
Set to TRUE to show documents in this control, FALSE to hide
documents in this control. Use FALSE to get an Explorer-like look where
only folders appear in the tree.

 Style Data Type: Long (Read/Write)
Determines how the tree displays the hierarchy. In most cases you will
want to set this value to 5. Buttons refer to the plus/minus buttons that
appear next to each item in the tree. Lines are the gray lines connecting
all the items, full lines will include lines at the root of the tree, simple
lines will not.

0 – simple (no lines or buttons)
1 – buttons only
2 – simple lines only
3 – simple lines and buttons
4 – full lines only
5 – full lines and buttons

 TotalHiddenFolders Data Type: Long (Read Only)
Total number of hidden folders when HideEmptyFolders property is set
to true.

 TotalSelected Data Type: Long (Read Only)
Total number of selected items in the tree. Since the tree is single
selection, this will only return values of 1 or 0. [This property was added
in the event that we extend the tree to be multi-select in future versions.]

Methods

 Copy()
This method copies a document(s) to the Windows Clipboard.

Visual Controls
POTree Control

Programmer’s Guide for Documanage 135

Return Value: None

 Cut()
This method cuts a document(s) to the Windows Clipboard.

Return Value: None

 Delete()
This method deletes the currently selected document(s).

Return Value: None

 Expand
Expand(hItem As Long, Action As Integer)

This method can be used to programmatically collapse and expand
folders in the tree. Selecting items in the tree can be accomplished
through setting the CurrentHItem property.

Parameters:

 hItem: The item to adjust. Documents cannot be expanded or
collapsed in the tree since they never have children.

 Action: One can specify whether they wish to expand, collapse, or
toggle the state of a folder in the tree by setting the mode
appropriately. Specific actions that can be taken include:

EZP_ACTION_EXPAND,
EZP_ACTION_COLLAPSE
EZP_ACTION_TOGGLE

Return Value: None

 Export
Export(PutOnClipboard As Boolean, Path As String)

This method exports to a local path all the selected documents in the

Visual Controls
POTree Control

136 Programmer’s Guide for Documanage

control.

Parameters:

 PutOnClipboard: Set to TRUE will additionally place these
documents on the Clipboard in addition to the disk. Typically set this
to FALSE.

 Path: The pathname to export the files to.

 GetLabel
GetLabel (hItem As Long) As String

This method returns the name of an item in the tree referred to by its
hItem.

Parameters:

 hItem: The item in question.

Return Value: The label asked for. If an empty is returned no item is
selected.

 Initialize()
This method is used to display all the folders and documents in the
control based on the settings in this control’s properties. Before calling
this function make sure the hSession, hCursor, and hRootItems have been
set.

 Paste()
This method pastes a document(s) from the Windows Clipboard into the
selected folder.

 PasteShortcut()
This method pastes a document’s shortcut from the Windows Clipboard

Visual Controls
POTree Control

Programmer’s Guide for Documanage 137

into the selected folder.

 RefreshItem
RefreshItem(hItem As Long, bNotify As Boolean, bKeepSelection As
Boolean)

This method updates the contents of a given folder in the tree. Useful
ONLY if the tree is showing documents. Refreshing is necessary when an
action in a different control effect the documents in this control. See
Refreshing Folders and Documents below.

Parameters:

 hItem: The folder to refresh. If zero the control will refresh the
currently selected hItem.

 bNotify: Fire a Folder Action event
(EZP_ACTION_REFRESHDEPENDENTS) in response to this call.
Typically send FALSE. See the FolderAction event below.

 bKeepSelection: Tells control to attempt to keep selected document
highlighted after refresh.

Events

 ConfirmFileOperation
ConfirmFileOperation (lOperation As Long, lItemCount As Long, By Ref
pbAllowOperation As Boolean)

This is used to determine if a file operation is can be permitted.
lOperation passes an EZP_ACTION… constant. The lItemCount
indicates the number of files affected. pbAllowOperation should be set
programmatically prior to exiting this event. This last parameter
determines whether the file operation should complete or not.

 Error

Visual Controls
POTree Control

138 Programmer’s Guide for Documanage

See the “Error Handling” section at the end of this document.

 FolderAction
FolderAction (hItem As Long, Action As Long)

Fired when some action has occurred on a folder. The user can take the
appropriate action at this point. This control will automatically change
the display in the Folder Tree itself; there will also be no need to invoke,
for example, the Expand() method yourself. Action on the Cabinet item
are also included in this event.

Parameters:

 HItem: The Item (a folder) which the specified action as taken place
on. If 0 then the action took place on the control, but not on an item.
This is common called a “whitespace” event.

 Action: The code of the action which took place. Can be one of the
following:

EZP_ACTION_EXPAND, EZP_ACTION_COLLAPSE

A folder has been expanded or collapsed in some manner. The
method expand will not fire this event.

EZP_ACTION_SELECT

A folder has been selected in some manner. The property
CurrentHItem will not fire this event.

 EZP_ACTION_GETPROPERTIES

A folder has been selected to display a context menu or property in
some manner. This is the right-click event

EZP_ACTION_REFRESH_CUTSOURCE

Visual Controls
POTree Control

Programmer’s Guide for Documanage 139

Fired when a document has been cut from one control and pasted in
this one.

EZP_ACTION_REFRESHDEPENDENTS

Fired when the control has refreshed the given folder internally or in
response to a RefreshItem call with bNotify set to TRUE.

 Group Action
GroupAction(hItem As Long, Action As Long)

Fired when some action has occurred on a group. The user can take the
appropriate action at this point, which is usually to disable user interface
elements that would pertain to a selected folder or document.

Parameters:

 hItem: The Item (a group) which the specified action as taken place
on (This is only a placeholder and is not a valid hItem).

 Action: The code of the action which took place. Can be one of the
following:

EZP_ACTION_EXPAND

A group has been selected to open. Typically no action is necessary
as the control will expand or collapse the node. Typically this is fired
when a document is double-clicked or enter is pressed.

EZP_ACTION_SELECT

A group has been selected in some manner. User interface that
assumes a folder or document is selected should be disabled.

EZP_ACTION_GETPROPERTIES

Visual Controls
POTree Control

140 Programmer’s Guide for Documanage

A group has been selected to display a context menu or property
sheet. This is the right-click event.

 FileDrop
FileDrop(Filename As String, hItem As Long)

Fired when the user drops or pastes Windows’ files from Windows’
Explorer or anywhere else from Windows. You may take any action –
like importing these files.

Parameters:

 FileName: The filename of the file dropped.

 hitem: The folder hItem the file was dropped into.

 DocumentAction
DocumentAction(hItem As Long, Action As Long)

Fired when some action has occurred on a document. The user can take
the appropriate action at this point, which is probably viewing the
document or showing its properties.

Parameters:

 hItem: The Item (a document) which the specified action as taken
place on.

 Action: The code of the action which took place. Can be one of the
following:

EZP_ACTION_EXPAND

A document has been selected to open. Typically the user would send
this document to the Viewer control. Typically this is fired when a
document is double-clicked or enter is pressed.

Visual Controls
POTree Control

Programmer’s Guide for Documanage 141

EZP_ACTION_SELECT

A document has been selected in some manner. The property
CurrentHItem will not fire this event.

EZP_ACTION_GETPROPERTIES

A document has been selected to display a context menu or property
sheet. This is the right-click event.

Example

POTree1.hSession = POSession1.hSession

POTree1.hCursor = POQuery1.hCursor

POTree1.hRootItem = POQuery1.hRootItem

POTree1.Initialize()

Using the Tree Control

1 Obtain a valid hSession (from Session control), valid hCursor and
hRootItem (from Query control).

2 Set the hSession, hCursor and hRootItem properties of the Tree
control.

3 Optionally, set the ShowDocuments and Style properties.

4 Call Initialize().

This will display the Tree.

Visual Controls
DmgViewer Control

142 Programmer’s Guide for Documanage

5 Optionally, call GetRelativeHItem() in the Query control and the
tree’s Expand() in any desired combination to open the tree to the
desired configuration.

DmgViewer Control
The DmgViewer control replaces the POViewer control, described on
page 158; however it is not backward compatible with that control in any
way. The DmgViewer control supports the server-side rendering viewing
technology in the context of Documanage. It is a user control that can be
drawn on a dialog. Any number of DmgViewer controls can coexist within
the same application (or on the same dialog). The DmgViewer is fully
functional within the control itself; there is no need for the container to
implement UI to drive the control. However, the control presents interfaces
and events that allow it to be driven by an external UI. This UI can get quite
complex so developers are encouraged to enable the control's toolbars and let
it handle the complexity. The container is responsible for initializing the
control and for directing the control to save any altered annotations when the
DmgViewer is to be reinitialized or cleared.

DmgViewer interface

Events

 SetZoomUI(' SET ZOOM INTERFACE
ByVal iZoom As ZOOM_OPTION,' option - (see ZOOM_OPTION enum) 
ByVal lValue As Long)' value for certain options

If the container has a user interface to indicate the current scaling level of
the image, it can respond to this event and set the interface accordingly.

Visual Controls
DmgViewer Control

Programmer’s Guide for Documanage 143

 SetRotationUI(' SET IMAGE ROTATION INTERFACE
ByVal iDegree As Integer)' current image rotate degree

If the container has a user interface to indicate the current rotation of the
image, it can respond to this event and set the interface accordingly.

 SetModeUI(' SET MODE INTERFACE
ByVal lMode As VW_MODE)' current mode (see VW_MODE enum)

If the container has a user interface to indicate the current viewing mode
of the control (grabber mode, marquee mode, or annotation mode), it can
respond to this event and set the interface accordingly.

 SetEditMenuUI(' SET EDIT MENU INTERFACE
ByVal lMode As VW_MODE,' current mode (see VW_MODE enum) 
ByVal bIsRect As Boolean,' selection rect drawn (.t. | .f.) 
ByVal bClipboardData As Boolean, ' clipboard data present 
ByVal nAnnotations As Long)' current annotation count

If the container has an Edit Menu (Cut, Copy, Paste, Delete, Select All), it
can respond to this event and set the various Edit Menu options based
upon the parameters of this event).

 SetImageToolsUI(' SET IMAGE TOOLS INTERFACE
ByVal bEnabled As Boolean)' controls should be enabled | disabled

If the container has an Image Tools menu or user interface, it can respond
to this event to enable or disable the interface.

 SetTaskUI(' SET TASK COUNT INTERFACE
ByVal iTask As Long, ' current taskDoc number
ByVal nTasks As Long)' current taskDoc count

If the container has a user interface to indicate the current task document
number and count, it can respond to this event and set the interface
accordingly.

Visual Controls
DmgViewer Control

144 Programmer’s Guide for Documanage

 SetImageUI(' SET IMAGE COUNT INTERFACE
ByVal iImage As Long,' current image number 
ByVal nImages As Long)' current image count

If the container has a user interface to indicate the current image number
and count, it can respond to this event and set the interface accordingly.

 SetAnnotationUI(' SET ANNOTATION INTERFACE
ByVal lOption As ANO_UI_OPTION, ' option (see ANO_UI_OPTION
enum) ByVal lValue As Long)' value for certain options

If the container has a menu or interface indicating the annotation options,
it can respond to this event and set the options accordingly.

 SetImageDirtyUI(' SET IMAGE ANNOTATION CHANGED
INTERFACE
ByVal bImageDirty As Boolean, ' current image annotations have
changed
ByVal bFileDirty As Boolean)' current file has changed annotations

If the container has a user interface that indicates that the current image
and/or file annotations have changed, it can respond to this event and set
the interface accordingly.

 ShowContextMenuUI(' PRESENT A CONTEXT MENU
ByVal lOption As CONTEXT_MENU)' option (see CONTEXT_MENU
enum)

If the container would like to present a context menu when the user right-
clicks on the image, it can respond to this event and present a context
menu.

 Error('CONTROL ACTION HAS GENERATED AN ERROR
ByVal Number As Integer,' error number - usually EZP_STD_ERROR 
ByVal Description As String,' error description
ByVal Scode As Long,' [Not Implemented] 
ByVal Source As String,' source of last error

Visual Controls
DmgViewer Control

Programmer’s Guide for Documanage 145

ByVal HelpFile As String,' [Not Implemented] 
ByVal HelpContext As Long,' [Not implemented] 
ByRef CancelDisplay As Boolean) ' set to true to suppress error dialog

This event is generated when an error is encountered by the DmgViewer
control.

Properties

Appearance Properties

The following properties control the visibility and appearance of various
interface elements of the DmgViewer control.

 AnnotationToolbarVisible('ANNOTATION TOOLBAR IS VISIBLE
) As Boolean' [READ WRITE]

The annotation toolbar can be visible or not. If it is visible, the container
does not need to support the various annotation commands and events.

 AnnotationToolbarWrappable('ANNOTATION TOOLBAR WRAPS
) As Boolean' [READ WRITE]

This determines whether the annotation toolbar will wrap to multiple
lines as the size of the DmgViewer control is changed. If this is set to
false, the toolbar will truncate if the DmgViewer control is sized smaller
than the toolbar length. If this is set to true, the toolbar will wrap to
multiple lines if the DmgViewer control is sized smaller than the toolbar
length.

 ImageToolbarVisible(' IMAGE TOOLBAR IS VISIBLE
) As Boolean' [READ WRITE]

The image toolbar can be visible or not. If it is visible, the container does
not need to support the various image commands and events.

Visual Controls
DmgViewer Control

146 Programmer’s Guide for Documanage

 ImageToolbarWrappable(' IMAGE TOOLBAR WRAPS
) As Boolean' [READ WRITE]

This determines whether the image toolbar will wrap to multiple lines as
the size of the DmgViewer control is changed. If this is set to false, the
toolbar will truncate if the DmgViewer control is sized smaller than the
toolbar length. If this is set to true, the toolbar will wrap to multiple lines
if the DmgViewer control is sized smaller than the toolbar length.

 StatusBarVisible(' STATUSBAR IS VISIBLE
) As Boolean' [READ WRITE]

The status can be visible or not. If it is visible, the container does not need
to support the various image status events.

Printing Options

 IgnoreDCDprintTags(' PRINT DCD DOCUMENTS AS DISPLAYED
) As Boolean' [READ WRITE]

Documaker DCD file types can be printed on background stock paper.
This option can be set to display the image as if it were printed on the
stock paper.

Visual Controls
DmgViewer Control

Programmer’s Guide for Documanage 147

 PrintAnnotations(' PRINT ANNOTATIONS WITH IMAGE
) As Boolean' [READ WRITE]

If this property is true, the document annotations will be printed with the
document.

 PrintOutputFormat(' PRINT OUTPUT FORMAT
) As POFORMAT' [READ WRITE]

This option determines how the image will be printed (Actual size, fit to
page, or pixel to pixel).

Image Rendering and Scaling Options

 EnableAFPMETcolorImage(' RENDER AFP & MET COLOR
IMAGES
) As Boolean' [READ WRITE]

This option determines whether AFP and Metacode printstreams that
contain color will be rendered in color or black and white.

Current Image and Document Properties

 hSession(' DOCUMENT hSESSION
) As Long' [READ WRITE]

The Documanage session handle for the current document. This property
must be set prior to calling the Initialize method.

 hCursor(' DOCUMENT hCURSOR
) As Long' [READ WRITE]

The Documanage cursor handle for the current document. This property
must be set prior to calling the Initialize method.

 hItem(' DOCUMENT hITEM
) As Long' [READ WRITE]

Visual Controls
DmgViewer Control

148 Programmer’s Guide for Documanage

The Documanage document handle for the current document. This
property must be set prior to calling the Initialize method.

 DocumentName(' DOCUMENT NAME
) As String' [READ WRITE]

The name of the current document. This property should be set prior to
calling the Initialize method but it can be blank.

 AnnotationsAllowed(' USER CAN ANNOTATE IMAGE
) As Boolean' [READ ONLY]

Indicates if the current user has authority to annotation the document.

 DirtyFile(' FILE ANNOTIONS HAVE CHANGED
) As Boolean' [READ WRITE]

If the annotations on any page in the current document have been altered,
this value will be true.

 DirtyImage('CURRENT IMAGE ANNOTATIONS HAVE CHANGED
) As Boolean' [READ WRITE]

This value will be true if the annotations for the current image have been
altered.

 iImage(' CURRENT IMAGE NUMBER
) As Long' [READ ONLY]

The image number currently showing in the DmgViewer control (1
based).

 nImages(' CURRENT IMAGE COUNT
 As Long' [READ ONLY]

The number of images in the current task document. NOTE that virtually
all Documanage files only have one task document.

Visual Controls
DmgViewer Control

Programmer’s Guide for Documanage 149

 iTask(' CURRENT TASKDOC NUMBER
) As Long [READ ONLY]

The current task document set for the DmgViewer control. NOTE that
virtually all Documanage files only have one task document.

 nTasks(' CURRENT TASKDOC COUNT
) As Long' [READ ONLY]

The number of task documents in the current file. NOTE that virtually all
Documanage files only have one task document.

Error Information

 LastErrorAdviceID(' ADVICE CLAUSE ID [Not Implemented]
) As Long' [READ ONLY]

This property is reserved for future use. It will always have a value of
zero.

 LastErrorDescription(' LAST ERROR DESCRIPTION
) As String' [READ ONLY]

This property will contain a description of the last error encountered by
the DmgViewer control.

 LastErrorNumber(' LAST ERROR NUMBER
) As Long' [READ ONLY]

This property will contain the number of the last error encountered by the
DmgViewer control.

 LastErrorSource(' SOURCE OF LAST ERROR
) As String' [READ ONLY]

This property will contain some information about where the last error
occurred in the DmgViewer control.

Visual Controls
DmgViewer Control

150 Programmer’s Guide for Documanage

DmgViewer Methods

Document Operations

 Initialize(' INITALIZE CONTROL (and show 1st image)
) As DMV_ERROR (DMV_NOERROR | DMV_GENERALERROR |
DMV_NOTIMAGEFILE)

This method initializes the control and show the first image of the first
task document.

 Clear() ' CLEAR CONTROL
This clears the control and disables all of the control toolbars. If the
container has implemented user interface elements to control the
DmgViewer control, it should respond to the various events raised by this
call and disable its user interface.

 ShowImage(' SHOW SELECTED IMAGE
ByVal iTask As Long,' taskDoc number (1 based)
ByVal iImage As Long' image number (1 based)
) As DMV_ERROR (DMV_NOERROR | DMV_GENERALERROR)
Show the requested image.
SaveAnnotations()' SAVE ANNOTATION DATA TO Documanage

Save any altered annotations to permanent storage in Documanage. Any
individual page annotations that have changed are saved automatically by
the DmgViewer control. This call commits the changes to permanent
storage. The container should check the .DirtyImage property prior to
making this call. NOTE that the DmgViewer control will not
automatically save the file annotations to Documanage. It is up to the
container to make this call.

 PrintDocument() ' PRINT DOCUMENT
Print the current document. The user will be prompted with a Printer
Setup dialog.

Visual Controls
DmgViewer Control

Programmer’s Guide for Documanage 151

Edit Operations

 EditCopy() ' COPY SELECTED ITEMS TO CLIPBOARD
This method copies the currently selected annotations or image marquee
to the clipboard. If the Copy menu option from the DmgViewer Image
Toolbar is selected, the control does this operation automatically. If the
container has an Edit Menu with a Copy option, it can invoke this method
in response to that menu selection.

 EditCut() ' CUT SELECTED ITEMS TO CLIPBOARD
This method cuts the currently selected annotations to the clipboard. If
the Cut menu option from the DmgViewer Image Toolbar is selected, the
control does this operation automatically. If the container has an Edit
Menu with a Cut option, it can invoke this method in response to that
menu selection. NOTE that an image selection marquee cannot be cut.

 EditClear() ' DELETE SELECTED ITEMS
This method deletes the currently selected annotations. If the Delete
menu option from the DmgViewer Image Toolbar is selected, the control
does this operation automatically. If the container has an Edit Menu with
a Clear or Delete option, it can invoke this method in response to that
menu selection. NOTE that an image selection marquee cannot be
deleted.

 EditPaste() ' PASTE CLIPBOARD CONTENTS
This method pastes any annotations in the clipboard onto the image. If the
Paste menu option from the DmgViewer Image Toolbar is selected, the
control does this operation automatically. If the container has an Edit
Menu with a Paste option, it can invoke this method in response to that
menu selection. NOTE that an image data cannot be pasted.

 EditSelectAll() ' SELECT ALL AVAILABLE ITEMS
This method selects all of the current annotations in the DmgViewer is in
annotation mode or marquees the entire image if the DmgViewer is in

Visual Controls
DmgViewer Control

152 Programmer’s Guide for Documanage

marquee mode. If the Select All menu option from the DmgViewer Image
Toolbar is selected, the control does this operation automatically. If the
container has an Edit Menu with a Select All option, it can invoke this
method in response to that menu selection.

User Interface Operations

 ShowIndexInfo() ' SHOW PRINTSTREAM INDEX INFORMATION
This method is only relevant for printstream files. It will show a dialog
containing the Index Information embedded in the printstream file. If the
Index Information button is selected from DmgViewer Image Toolbar,
the control does this operation automatically. If the container has an
Menu with an Index Information option, it can invoke this method in
response to that menu selection.

 ShowResourceInfo() ' SHOW PRINTER RESOURCE
INFORMATION
This method is only relevant for printstream files. It will show a dialog
containing the Printer Resources required to render the printstream file. If
the Resource Information button is selected from DmgViewer Image
Toolbar, the control does this operation automatically. If the container has
an Menu with an Resource Information option, it can invoke this method
in response to that menu selection.

 ShowAnnotations(' SHOW / HIDE ANNOTATIONS
ByVal bShow As Boolean)' show | hide

This option shows or hides any image annotations. If the Show/Hide
menu option from the DmgViewer Image Toolbar is selected, the control
does this operation automatically. If the container has an Annotation
Menu with a Show/Hide option, it can invoke this method in response to
that menu selection.

Visual Controls
DmgViewer Control

Programmer’s Guide for Documanage 153

 SelectAnnotationTool(' SELECT ANNOTATION TOOL
iTool As AnnotationToolIDs)' ToolID

This option selects the specified annotation tool (see
AnnotationToolIDs). If the tool is selected from the DmgViewer
Annotation Toolbar, the control does this operation automatically. If the
container has an Annotation Menu or Toolbar, it can invoke this method
in response to the tool selection.

 SetMode(' SET VIEW MODE
ByVal lMode As VW_MODE)' mode

This option sets the current view mode for the DmgViewer. The modes
can be Grabber mode, Marquee mode, or Annotation mode. If the mode
is selected from the DmgViewer Image Toolbar, the control does this
operation automatically. If the container has a Mode menu or Toolbar, it
can invoke this method in response to the mode selection.

 SetRotation(' SET IMAGE ROTATION
ByVal lOption As ROTATION_OPTION) ' rotation option

This method sets the current image rotation (see the
ROTATION_OPTION enumeration). If the rotation is selected from the
DmgViewer Image Toolbar, the control does this operation automatically.
If the container has a Rotation menu or Toolbar, it can invoke this method
in response to the rotation selection.

 SetZoom(' SET IMAGE SCALE
ByVal lOption As ZOOM_OPTION)' scale option

This method sets the current image scale (see the ZOOM_OPTION
enumeration). If the scale is selected from the Scale menu on the
DmgViewer Image Toolbar, the control does this operation automatically.
If the container has a Scale Menu, it can invoke this method in response
to the scale selection.

Visual Controls
DmgViewer Control

154 Programmer’s Guide for Documanage

Enumerations
Public Enum VW_MODE
 VW_MODE_EMPTY = 0
 VW_MODE_MARQUEE = 1
 VW_MODE_GRABBER = 2
 VW_MODE_ANNOTE8 = 3
End Enum
Public Enum ANO_UI_OPTION
 ANO_UI_OPTION_DISABLE = -1
 ANO_UI_OPTION_ENABLE = 0
 ANO_UI_OPTION_UNCHECK = 1
 ANO_UI_OPTION_TOOLSELECT = 2
 ANO_UI_OPTION_SHOWHIDE = 3
End Enum
Public Enum ROTATION_OPTION
 ROTATE_NONE = 0
 ROTATE_LEFT90 = 1
 ROTATE_RIGHT90 = 2
 ROTATE_FLIP = 3
End Enum
Public Enum ZOOM_OPTION
 ZOOM_ENABLE = -1
 ZOOM_FITTO_WINDOW = 0
 ZOOM_FITTO_WIDTH = 1
 ZOOM_FITTO_HEIGHT = 2
 ZOOM_FITTO_ACTUAL = 3
 ZOOM_SCALE_1600 = 4
 ZOOM_SCALE_800 = 5
 ZOOM_SCALE_400 = 6
 ZOOM_SCALE_200 = 7

Visual Controls
DmgViewer Control

Programmer’s Guide for Documanage 155

 ZOOM_SCALE_150 = 8
 ZOOM_SCALE_125 = 9
 ZOOM_SCALE_100 = 10
 ZOOM_SCALE_75 = 11
 ZOOM_SCALE_50 = 12
 ZOOM_SCALE_25 = 13
 ZOOM_SCALE_12 = 14
 ZOOM_SCALE_6 = 15
 ZOOM_MARQUEE_DRAWN = 16
 ZOOM_MARQUEE_UP = 17
 ZOOM_MARQUEE_DOWN = 18
End Enum
Public Enum CONTEXT_MENU
 MNU_NAVIGATION = 0
 MNU_MODE = 1
 MNU_ZOOM = 2
 MNU_ORIENTATION = 3
 MNU_PRINTPROGRESS = 4
End Enum
Public Enum DMV_ERROR
 DMV_GENERALERROR = -1
 DMV_NOERROR = 0
 DMV_USERCANCEL = 1
 DMV_WORKING = 2
 DMV_WARNING = 3
 DMV_NOTIMAGEFILE = 7
End Enum

Visual Controls
DmgViewer Control

156 Programmer’s Guide for Documanage

POFormat Values
pofActualSize = 1
pofFitToPage = 2
pofPixelToPixel = 0

AnnotationToolIDs values
TOOLID_ATTACH_NOTE = 8
TOOLID_END = 11
TOOLID_FILLED_RECT = 6
TOOLID_FREEHAND_LINE = 2
TOOLID_HIGHLIGHTER = 3
TOOLID_HOLLOW_RECT = 5
TOOLID_NONE = 0
TOOLID_RUBBER_STAMP = 10
TOOLID_SELECT_ANNOTATIONS = 1
TOOLID_STRAIGHT_LINE = 4
TOOLID_TEXT = 7
TOOLID_TEXT_FROM_FILE = 9

Using the DmgViewer control

Setup
 With ocxDmgViewer
 .AnnotationToolbarVisible = True
 .AnnotationToolbarWrappable = True
 .ImageToolbarVisible = True
 .ImageToolbarWrappable = True
 .StatusBarVisible = True
 End With

Visual Controls
DmgViewer Control

Programmer’s Guide for Documanage 157

Initializing
Private Sub loadViewer(ByVal hItem As Long, ByVal sTag As String)
 '
 ' clear control (this optionally saves any changed annotations)
 '
 unloadViewer
 '
 ' initialize / reinitialize viewer
 '
 With ocxDmgViewer
 .hSession = m_hSession
 .hCursor = m_hCursor
 .hItem = hItem
 .DocumentName = sTag
 dmvRC = .Initialize()
 If (dmvRC <> DMV_NOERROR) Then
 m_TKCorigin = .LastErrorSource
 m_TKCerror = .LastErrorDescription
 m_TKCadvice = "Please check with your System Administrator."
 iOK = showMsg(vbInformation, m_TKCorigin, m_TKCerror,
m_TKCadvice)
 End If
 End With
End Sub

Saving / Clearing
Private Sub unloadViewer()
 '
 ' offer to save any altered annotations, then clear control
 '

Visual Controls
POViewer Control

158 Programmer’s Guide for Documanage

 With ocxDmgViewer
 If .DirtyFile Then
 m_TKCerror = "The document annotations have been altered."
 m_TKCadvice = "Do you want to save the annotation data?"
 iOK = showMsg((vbYesNo + vbQuestion + vbDefaultButton1), "Save
Annotations", m_TKCerror, m_TKCadvice)
 If (iOK = vbNo) Then
 Else
 .SaveAnnotations
 End If
 End If
 .Clear
 End With
End Sub

POViewer Control
The POViewer control has been deprecated in favor of the DmgViewer
control, described on .page 142. The POViewer control displays a document
in the Documanage viewer. This sends the hSession, hCursor, and hItem to
identify the document to be viewed, and calls Initialize() and finally View().
Annotations to the document can also be performed through the viewer using
the Annotation properties and method. Note that viewing annotations is
automatic when any image is viewed.

While POViewer may seem the most complex of the controls, it provides a lot
of functionality with only a minimum amount of code. If creating/editing

Visual Controls
POViewer Control

Programmer’s Guide for Documanage 159

annotations are not required, then the control is very straightforward. The
properties and methods are divided into two categories:

 Imaging/Basic which detail the viewing of documents, and

 Annotation which allows you to create and edit multi-layer annotations.

Basic Imaging Properties

 hCursor Data Type: Long (Read Only)
The cursor of the cabinet in which the document being viewed exists.

 hItem Data Type: Long (Read Only)
The handle of the document being viewed.

 hSession Data Type: Long (Read Only)
The handle of the session obtained originally from POSession.

 hWnd Data Type: Long (Read Only)
The window handle.

 LastError Number Data Type: Long (Read Only)
The last Documanage error.

 LastErrorSource Data Type: String (Read Only)
The location of the last Documanage error. This is useful for reporting
bugs to Oracle.

 Rotation Data Type: Short (Read/Write)
The current angle of rotation at which the image is displayed: 0, 90, 180,
or 270.

Visual Controls
POViewer Control

160 Programmer’s Guide for Documanage

Basic Imaging Methods

 FillWindow()
This method fills the entire window with the image; the part of image
appears in window.

 FitInWindow()
This method makes the entire image fit in the window, leaving portions of
the window blank.

 NextPage()
This method gets the next page in a multi-page document.

 PreviousPage()
This method gets the previous page in a multi-page document.

 PrintDocument
PrintDocument(ShowDialog As Boolean) As Boolean
This method prints the currently viewed document. Also see
SetPrinterInfo().

Parameters:

 ShowDialog: Whether or not to show the Windows Print dialog.
Typically this should be TRUE.

 View
View() As Long

This method views the document indicated in the hItem property.

Return Value: Should be ignored.

Visual Controls
POViewer Control

Programmer’s Guide for Documanage 161

 ViewNormalSize
ViewNormalSize() As Long

This method removes the current zooming.

 ZoomIn()
This method zooms into a page.

 ZoomOut()
This method zooms out of a page.

 Initialize() As Long
Call before View, allows internal initialization and clean-up prior to
viewing.

 SetPrinterInfo
SetPrinterInfo(sDriverName as string, sDeviceName as string,
sPortName as string) As Long

Sets Printer driver information if you wish to print with no dialog. This
call is not needed when ShowDialog is True in the Print call.

Parameters:

 sDriverName

 sDeviceName

 sPortName: Various information to identify your printer.

 CanRotate() As Boolean
This method returns true if the image can be rotated, false otherwise.

Visual Controls
POViewer Control

162 Programmer’s Guide for Documanage

Annotation Properties

 AnnotationBGColor Data Type: OLE Color (Read/Write)
The background color for the highlighted arrow.

 AnnotationCurrentLayer Data Type: Long (Read/Write)
The current layer of an annotation.

 AnnotationFGColor Data Type: OLE Color (Read/Write)
The foreground color for the highlighted arrow.

 AnnotationLayers Data Type: Long (Read/Write)
The number of layers for the current document.

 AnnotationLineStyle Data Type: Integer (Read/Write)
The style of the annotation line.

 AnnotationLineWidth Data Type: Integer (Read/Write)
The width of an annotation line.

 AnnotationMode Data Type: Long (Read/Write)
The current annotation mode:

EZP_ANNOTATION_HIDE, EZP_ANNOTATION_EDIT, or
EZP_ANNOTATION_SHOW.

 AnnotationObject Data Type: Integer (Read/Write)
The current annotation object can include:

EZP_ANNOTATION_LINEOBJ, EZP_ANNOTATION_TEXTOBJ,
EZP_ANNOTATION_ARROWOBJ,
EZP_ANNOTATION_RECTANGLEOBJ,
EZP_ANNOTATION_ELLIPSEOBJ,

Visual Controls
POViewer Control

Programmer’s Guide for Documanage 163

EZP_ANNOTATION_STICKYNOTEOBJ,
EZP_ANNOTATION_POLYGONOBJ,
EZP_ANNOTATION_POLYLINEOBJ,
EZP_ANNOTATION_HIGHLIGHTEROBJ,
EZP_ANNOTATION_STAMPOBJ,
EZP_ANNOTATION_REDACTIONOBJ,
EZP_ANNOTATION_FREEHANDOBJ,
EZP_ANNOTATION_SOUNDOBJ,
EZP_ANNOTATION_BUTTONOBJ,
EZP_ANNOTATION_HOTSPOTOBJ

 AnnotationPaintMode Data Type: Integer (Read/Write)
The current way annotations will paint:

EZP_ANNOTATION_PAINT_OPAQUE, EZP_ANNOTATION_PAINT
TRANSPARENT, or EZP_ANNOTATION_PAINT_TINTED

 AnnotationPattern Data Type: Integer (Read/Write)
The current annotation pattern can include:

EZP_ANNOTATION_PATTERN_HORIZONTAL,
EZP_ANNOTATION_PATTERN_VERTICAL,
EZP_ANNOTATION_PATTERN_FDIAGONAL,
EZP_ANNOTATION_PATTERN_BDIAGONAL,
EZP_ANNOTATION_PATTERN_CROSS,
EZP_ANNOTATION_PATTERN_DIAGCROSS,
EZP_ANNOTATION_PATTERN_NONE

 DocTypeAnnotation Data Type: Boolean (Read/Write)
Indicates which annotation set with which you are currently working:
local (FALSE) or global (TRUE).

Visual Controls
POViewer Control

164 Programmer’s Guide for Documanage

Annotation Methods

 AnnotationCopy()
This method undoes the last annotation copy.

 AnnotationCut()
This method undoes the last annotation cut.

 AnnotationDelete()
This method deletes the current annotation.

 AnnotationLayerAdd
AnnotationLayerAdd (Type As Long, Comments As String, ViewGroup As
String, HideGroup As String, EditGroup As String, DeleteGroup As
String) As Boolean

This method adds an annotation layer.

 AnnotationLayerDelete
AnnotationLayerDelete(LayerNum As Long) As Long

This method deletes the given annotation layer indicated by LayerNum.

 AnnotationPaste()
This method undoes the last annotation paste.

 AnnotationSave()
This method saves the annotations back to the screen.

 AnnotationTypeCanChangeDelete
AnnotationTypeCanChangeDelete(Type As Long) As Boolean

This method returns whether or not deleting a group for an indicated
annotation and type is allowed to be changed by the current user.

Visual Controls
POViewer Control

Programmer’s Guide for Documanage 165

 AnnotationTypeCanChageEdit
AnnotationTypeCanChangeEdit(Type As Long) As Boolean

This method returns whether or not editing a group for an indicated
annotation and type is allowed to be changed by the current user.

 AnnotationTypeCanChangeHide
AnnotationTypeCanChangeHide(Type As Long) As Boolean

This method returns whether or not hiding a group for an indicated
annotation and type is allowed to be changed by the current user.

 AnnotationTypeCanChangeView
AnnotationTypeCanChangeView(Type As Long) As Boolean

This method returns whether or not viewing a group for an indicated
annotation and type is allowed to be changed by the current user.

 AnnotationUndo
AnnotationUndo()

This method undoes the last annotation edit.

 CanDeleteLayer
CanDeleteLayer(LayerNum As Long) As Error

This method given a layer indicates if the current user allows deleting.

 CanEditLayer
CanEditLayer(LayerNum As Long)As Error

This method given a layer indicates if the current user allows editing.

 CanHideLayer
CanHideLayer(LayerNum As Long)

This method given a layer indicates if the current user allows hiding.

Visual Controls
POViewer Control

166 Programmer’s Guide for Documanage

 CanViewLayer
CanViewLayer(LayerNum As Long)

This method given a layer indicates if the current user allows viewing.

 GetAnnotationLayerCreatedBy
GetAnnotationLayerCreatedBy(LayerNum As Long) As String

This method returns who created a given layer.

 GetAnnotationLayerText
GetAnnotationLayerText(LayerNum As Long) As String

This method returns the name of the given layer.

 GetAnnotationTypeDefaultDelete
GetAnnotationTypeDefaultDelete(Type As Long) As String

This method returns the Default group for a given annotation type for
deleting.

 GetAnnotationTypeDefaultEdit
GetAnnotationTypeDefaultEdit(Type As Long) As String

This method returns the Default group for a given annotation type for
editing.

 GetAnnotationTypeDefaultHide
GetAnnotationTypeDefaultHide(Type As Long) As String

This method returns the Default group for a given annotation type for
hiding.

 GetAnnotationTypeDefaultView
GetAnnotationTypeDefaultView(Type As Long) As String

This method returns the Default group for a given annotation type for
viewing.

Visual Controls
Dmg QBE Control

Programmer’s Guide for Documanage 167

 GetAnnotationTypeText
GetAnnotationTypeText(TypeNum As Long) As String

This method, given an annotation layer type, returns its name (e.g.,
MarkUp, BlackOut, etc.)

Using the POViewer Control

Viewing A Document

POViewer1.hSession=POSession.hSession

POViewer1.hCursor=POQuery1.hCursor

POViewer1.hItem=hItem ‘ retrieved from POTree’s DocumentAction Event

POViewer1.Initialize

POViewer1.View()

Dmg QBE Control

Introduction

The Query By Example (QBE) control provides a common dialog for
searching in several Documanage applications, including the Documanage
Workstation, Documanage DocMigration utility, and the Open Document
Management API (ODMA).

The QBE control generates and outputs folder, document, extended
document, and full text filters that these applications use to search the

Visual Controls
Dmg QBE Control

168 Programmer’s Guide for Documanage

Documanage server database through the POQuery Control or the Document
Migration tools. The control outputs these search filters through the control
properties, which are described in the section on Properties. The control can
also store search filters in XML files for later use.

Limitations and Requirements

The QBE control provides a Query By Example dialog, not a full query
builder. It does not include Boolean search capabilities other than through its
Edit SQL tab, and it does not support building structured full text queries
other than through its Full Text Search edit text field.

The QBE Control uses the Spread control to display tables. Other controls
used by the QBE Control include POVolume, POFolder, PO_Document,
POQuery and DMDTPicker.

User Interface

The QBE control can be displayed in a dialog or in a form. You specify the
title bar text displayed by the dialog. via the container for the control.

The bottom of the dialog displays:a Case Sensitive checkbox and an Indicate
Empty Folders option list; and OK. Clear, and Clear All buttons.

A property allows you to hide or show each of these checkboxes and buttons,
allowing you to provide your own buttons or programmatic interface.

 Clicking OK makes the control fire an event to the container telling it that
the search filters are ready.

 Clicking Cancel fires an event telling the container telling it that no
action should be taken.

Visual Controls
Dmg QBE Control

Programmer’s Guide for Documanage 169

 Clicking Clear clears the values in the fields on the current screen and set
the operators back to their defaults.

 Clicking Clear All clears all fields on all of the screens.

Clicking Save and Open Query saves the query to the XML query file, reads
from the XML file, and fires events indicating that the user has clicked a
button. The path to the XML query file is usually provided by the container. If
it does not provide a path, the control saves to a query file defined by a
default path. Properties get and set the text in the Edit SQL screen, and get
and set the contents of the forms on the properties screens. The control uses
XML to format the formal data for saving and restoring. The current widths
of the columns in the tables shown in the tabs are stored in the XML file and
are restored when the XML file is read in.

Behaviors

The QBE control maintains a document filter string, a folder filter string, and,
if required, an extended document filter string. It builds these strings from the
form data when the following actions take place: clicking OK; clicking Save;
and switching between tabs (that is, if you switch from, say, the Folder tab to
the Edit SQL tab, it builds the data in the Folder tab into the filter string); and
programmatically calling the BuildFilter() method. The filter properties
contain empty strings (their defaults) before these actions take place.

When it builds the filter string, the control tries to validate field entries for
each data type unless it uses the BuildFilter method to build the filter string
with Validate = FALSE.

NOTE: The control does not validate Between ranges since a Between query
can be in either order—because a database engine is not sensitive to

Visual Controls
Dmg QBE Control

170 Programmer’s Guide for Documanage

order in a between clause, the control sorts these when building the
query.

The control validates queries in tab field order. If it finds and displays an
error, it highlights the invalid field and then stops the validation and query-
building process. This allows the control to find only one validation error at a
time. That is, if alphabetic characters are input to a numeric field, the control
displays an error message when the query string is built.

An Edit button in the error dialog takes you back to the tab with the error; an
Ignore button allows the control to build the filter even if there is an error.
You can use the Ignore button to save bad queries for later editing, or to
correct them in the Edit SQL dialog.

Clicking Cancel returns all properties, including those that define the filters,
to the states that they were in when the control was invoked. This requires
buffering the original property values during the session.

When the QBE control first appears, it displays the Folder Properties tab. In
subsequent displays of the control, the tab that you selected last is in front.
You can use the Front Tab property to programmatically select the front-most
tab.

During a session, the control remembers the settings of all of the tabs between
invocations. The control also saves a set of default settings for Operators and
Category by storing them in an XML file that accommodates cabinet-specific
defaults. This file is specified by the container application, but the control
reads from and writes to it.

A Not Equal operator and a Does Not Contain clause (labeled Omits) is
available for all field types.

Visual Controls
Dmg QBE Control

Programmer’s Guide for Documanage 171

Properties

Properties for the QBE control include a session handle, a document table, a
cabinet table, a case sensitive setting, a show empty folders setting, assorted
properties for showing or hiding dialog elements, a path to query files, and
optional filters that can preset the dialog. The QBE control also has properties
for the session, document table, table name, SQL filters, dialog title, the case
sensitive and empty folders checkboxes, errors, and tab display settings.

Output properties define filters that can be stored in XML files for later use. If
the control writes a filter to an XML file, it appears in the Edit SQL dialog
and any values in the field-oriented page for that filter are cleared. The filter
properties are meant to be read from, but they can also be written to.

NOTE: To use the QBE control, initialize the following properties: hSession,
(DocumentTable, TableName) OR FiltersXMLPath with tables set in
the XML file.

 hSession Data Type: Long (Read/Write)
The session to the server, input to the control. Default = 0.

 Cabinet Data Type: String (Read/Write)
Input to the control, the name of the current cabinet. Default = NULL.

 Level Data Type: Long (Read/Write)
Input to the control, the level number that should be the focus when the
control is displayed. 1-based. Default = 1.

 DocumentTable Data Type: String (Read/Write)
Input to the control, for use in building DocumentFilter. Default = NULL.

 TableName: Data Type: String (Read/Write)

Visual Controls
Dmg QBE Control

172 Programmer’s Guide for Documanage

Input to the control, the fully qualified table name for the current cabinet
level. Default = NULL. If TableName is set but Cabinet is not, the Folder
tab presents a single level corresponding to that table.

 Category: Data Type: String (Read/Write)
The document category (doctype) selected in the Category screen.

 FolderFilter: Data Type: String (Read/Write)
If input, displayed in SQL Edit screen; output to caller. Default = NULL.

 DocumentFilter: Data Type: String (Read/Write)
If input, displayed in SQL Edit screen; output to caller. Default = NULL.

 ExtendedDocFilter Data Type: String (Read/Write)
If input, displayed in SQL Edit screen; output to caller. Default = NULL.

 FullTextFilter Data Type: String (Read/Write)
If input, displayed in Full Text Search screen; output to caller. Default =
NULL.

 FullTextHelp Data Type: String (Read/Write)
Sets the help text displayed in the Full Text Search screen.

 FiltersXMLPath Data Type: String (Read/Write)
Path to XML file. Passed in by container for read or write. Refer to
“XML Files” on page 179 for the XML schema. Default = NULL.

 CaseSensitive Data Type: Boolean (Read/Write)
Specifies if query should be case sensitive. Default = FALSE.

 DBCaseSensitive Data Type: Boolean (Read/Write)
Specifies if the data source is case sensitive. If this is FALSE,
CaseSensitive is overridden, and the case sensitive checkbox is disabled,

Visual Controls
Dmg QBE Control

Programmer’s Guide for Documanage 173

overriding EnableCaseSensitiveBtn. Default = TRUE.

 Show Empties - DEPRECATED Data Type: Boolean (Read/Write)
Specifies if empty folders are indicated. Default = FALSE.

 LastErrorNumber Data Type: Long (Read)
Documanage error number. Default = 0.

 LastErrorSource Data Type: String (Read)
Source of error. Default = NULL.

NOTE: The Display Page properties default to TRUE.

 DisplayFolderPage Data Type: Boolean (Read/Write)
If true, show Folder screen, if false, hide it. Default = TRUE.

 DisplayDocumentPage Data Type: Boolean (Read/Write)
If true, show Document screen, if false, hide it. Default = TRUE.

 DisplayCategoryPage Data Type: Boolean (Read/Write)
If true, show Category screen, if false, hide it. Default = TRUE.

 DisplayFullTextPage Data Type: Boolean (Read/Write)
If true show full text screen, if false, hide it. Default = TRUE.

 DisplayXDPPage Data Type: Boolean (Read/Write)
If true show extended document properties table on Category screen, if
false, hide it. Default = TRUE.

 DisplayEditSQLPage Data Type: Boolean (Read/Write)
If true show Edit SQL screen, if false, hide it. Default = TRUE.

Visual Controls
Dmg QBE Control

174 Programmer’s Guide for Documanage

NOTE: The Show Btn properties default to TRUE.

 ShowOKBtn Data Type: Boolean (Read/Write)
If true show OK button, if false, hide it. Default = TRUE.

 ShowCancelBtn Data Type: Boolean (Read/Write)
If true show Cancel button, if false, hide it. Default = TRUE.

 ShowClearBtn Data Type: Boolean (Read/Write)
If true show Clear button, if false, hide it. Default = TRUE.

 ShowClearAllBtn Data Type: Boolean (Read/Write)
If true show Clear All button, if false, hide it. Default = TRUE.

 ShowSaveBtn Data Type: Boolean (Read/Write)
If true show Save Query button, if false, hide it. Default = TRUE.

 ShowOpenBtn Data Type: Boolean (Read/Write)
If true show Open Query button, if false, hide it. Default = TRUE.

 ShowCaseSensitiveBtn Data Type: Boolean (Read/Write)
If true show Case Sensitive button, if false, hide it. Default = TRUE.

 ShowEmptyFoldersBtn Data Type: Boolean (Read/Write)
If true show Show Empty Folders button, if false, hide it. Default =
TRUE.

 EnableCaseSensitiveBtn Data Type: Boolean (Read/Write)
If true enable Case Sensitive button, if false, disable it. Default = TRUE.

Visual Controls
Dmg QBE Control

Programmer’s Guide for Documanage 175

 AltEnabled Data Type: Boolean (Read/Write)
If true enable alt key processing in the control to navigate to tabs and fire
buttons, if false, alt keys are ignored and underlines in button and tab
names are removed; must be set before calling Initialize(). Default =
FALSE.

 FrontTab Data Type: Long (Read/Write)
Specifies the tab to be displayed in front (1-based). Default = 1.

 DefaultsXMLPath Data Type: String (Read/Write)
Path to XML file listing defaults for Category and operator values, by
cabinet. Passed in by container for read or write. Refer to “XML Files”
on page 179 for the XML schema. Default = NULL.

 StringOpDefault Data Type: Long (Read/Write)
Default operator for all string field types (1=Includes, 2=Equals,
3=Omits, 4=Not Equal, 5=Begins With). Default = 1.

 NumOpDefault Data Type: Long (Read/Write)
Default operator for all numeric field types (2=Equals, 4=Not Equal,
5=Greater Than, 6=Less Than, 7= Between, 8=Greater Than or Equal,
9=Less Than or Equal). Default = 2.

 FolderLabelWidth Data Type: Long (Read/Write)
Width in pixels of folder table Label column.

 FolderOpWidth Data Type: Long (Read/Write)
Width in pixels of folder table Operator column.

 FolderValWidth Data Type: Long (Read/Write)
Width in pixels of folder table Value column.

Visual Controls
Dmg QBE Control

176 Programmer’s Guide for Documanage

 DocLabelWidth Data Type: Long (Read/Write)
Width in pixels of document table Label column.

 DocOpWidth Data Type: Long (Read/Write)
Width in pixels of document table Operator column.

 DocValWidth Data Type: Long (Read/Write)
Width in pixels of document table Value column.

 CatLabelWidth Data Type: Long (Read/Write)
Width in pixels of category table Label column.

 CatOpWidth Data Type: Long (Read/Write)
Width in pixels of category table Operator column.

 CatValWidth Data Type: Long (Read/Write)
Width in pixels of category table Value column.

 ExtLabelWidth Data Type: Long (Read/Write)
Width in pixels of extended document table Label column.

 ExtOpWidth Data Type: Long (Read/Write)
Width in pixels of extended document table Operator column.

 ExtValWidth Data Type: Long (Read/Write)
Width in pixels of extended document table Value column.

 EmptyFoldersOption Data Type: Long (Read/Write)
Indicates how empty folders should be displayed by the POTree control.
Valid values are 0 = no special processing of empty folders; 1 = empty
folders are indicated by a special icon in the tree; 2 - empty folders are
not added to the list of folders in the tree.

Visual Controls
Dmg QBE Control

Programmer’s Guide for Documanage 177

Methods

 Initialize
Initialize()

Called after setting all the input properties. Displays the property sheet
with appropriate field labels. Returns TRUE if OK, else FALSE.

 Clear
Clear(long Screen)

Clear all fields on the specified screen (1-based) and reset operators to
defaults. If pass in 0, all screens are cleared, as if Clear All had been
pressed.

 BuildFilter
BuildFilter(long Filter,BOOL Validate)

Build the filter specified in Filter (1=Folder,2=Document,3=Extended
Document) as if the OK button had been pressed. This allows the filter
property to be fetched, even if the user hasn't yet performed an action to
assemble the filter. If Validate = TRUE, validation occurs otherwise it
does not. Returns TRUE if OK, else FALSE.

 Save
Save()

Tells the control to save the filters to the XML file specified in the
FiltersXMLPath property. Returns TRUE if OK, else FALSE.

 Open
Open()

Tells the control to open the XML file specified in the FiltersXMLPath
property and load its contents into the control. Returns TRUE if OK, else
FALSE.

Visual Controls
Dmg QBE Control

178 Programmer’s Guide for Documanage

 LaunchFTHelp
LaunchFTHelp()

Tells the control to launch the Full Text Help file, as if the user had
pressed the Full Text Help button on the Full Text Search tab. Returns
TRUE if OK, else FALSE.

Events

 OnOK
OnOK

Occurs when the OK button is clicked.

 OnCancel
OnCancel

Occurs when the Cancel button is clicked.

 OnSave
OnSave (BOOL Cancel, String path)

Occurs when the Save Query button is clicked. Parameters are passed by
reference. The container can pass back a TRUE in cancel to cancel the
save, and can pass in a different path (perhaps from a Save dialog).
Defaults to FALSE. The control sets the path to the XML file in the
FiltersXMLPath property.

 OnOpen
OnOpen (BOOL Cancel, String path)

Occurs when the Open Query button is clicked. Parameters can be passed
by reference. The container can pass back a TRUE in cancel to cancel the
Open, and can pass in a different path, perhaps from an Open dialog.
Defaults to FALSE with the path set in the FiltersXMLPath property.

Visual Controls
Dmg QBE Control

Programmer’s Guide for Documanage 179

NOTE: The QBE control does not execute the SQL queries. This is because
the queries may be executed through different controls depending on
the application. The Workstation uses the POQuery control to
execute the query and return a cursor, while the Document Migration
utility uses the migration tools or controls to execute the query. The
OnCancel, OnSave, OnOK and OnOpen events tell the container that
their respective buttons have been clicked. The container can then
respond with actions, such as fetching filters and executing them.

If the OK, Clear, and Cancel buttons are hidden, the you use the Clear()
method to clear the forms. If the equivalent of an OK button is pressed, you
call the BuildFilter method for each filter, then fetch the properties.

XML Files

The QBE control uses XML files with a common schema to save and restore
queries from forms and to save and restore defaults. The filter element stores
queries from the Edit SQL and Full Text Search tabs.

Clicking Save saves the query to an XML query file; clicking Open Query
reads from the XML file; clicking either button fires events indicating that the
user has clicked the corresponding button.

The container for the control provides a path to the XML files; if it does not
provide a path, the control saves the file using a default path. Control
properties for getting or setting the text in the Edit SQL screen, and for
getting or setting the contents of the forms on the properties screens are
available.

The XML file stores the current width of each column in each table so that
these widths can be restored when the XML file is read in.

Visual Controls
Dmg QBE Control

180 Programmer’s Guide for Documanage

The schema for the XML files is shown here:

<!ELEMENT settinglist (config,rowset*,filter* >
<!ELEMENT config
(cabinet,doctable,cabtable,folderlabelwidth?,folder
opwidth?,foldervalwidth?,doclabelwidth?,docopwidth?
,docvalwidth?,catlabelwidth?,catopwidth?,catvalwidt
h?,extlabelwidth?,extopwidth?,extvalwidth?)
<!ELEMENT cabinet (#PCDATA) >
<!ELEMENT doctable (#PCDATA) >
<!ELEMENT cabtable (#PCDATA) >
<!ELEMENT rowset (table,label,operator,value?) >
<!ELEMENT table (#PCDATA) >
<!ELEMENT label (#PCDATA) >
<!ELEMENT operator (#PCDATA) >
<!ELEMENT value (#PCDATA) >
<!ELEMENT filter (type,filtertxt) >
<!ELEMENT type
("FOLDER"|"DOCUMENT"|"EXTENDED"|"FULLTEXT") >
<!ELEMENT filtertxt (#PCDATA) >

A settinglist consists of the fully qualified names of the OT_DOCS
and cabinet tables, (optionally) the width in pixels of each table column, and
one or more rowsets.

The cabinet subelement to the config element stores the cabinet name. Level
table numbers in the folder tab are specified starting at 101. That is, the first
level is 101, the second level is 102, and so on.

A rowset consists of the table number (Folder Filter table = 1, Document
Filter table = 2, Category table = 3 (includes the Category field, which isn't
actually in the table but controls it), Extended Document table = 4), field
label, operator (as described under properties) and an optional value. The
optional value allows the schema to store defaults.

Visual Controls
Dmg QBE Control

Programmer’s Guide for Documanage 181

The filter element stores the actual assembled filter string, which may be
from the Edit SQL or Full Text screens.

XML File Example

Here is an example of the XML generated by the QBE control:

<?xml version="1.0"?>
<!-- DOCTYPE settinglist SYSTEM "settinglist.dtd" --
>
<settinglist>
<cabinet>author</cabinet>
<rowset>
<table>101</table>
<label>Fname</label>
<operator>Contains</operator>
<value>Fred</value>
</rowset>
<table>101</table>
<label>Mname</label>
<operator>Contains</operator>
<value>Rocky</value>
</rowset>
<rowset>
<table>101</table>
<label>Lname</label>
<operator>Contains</operator>
<value>Flintstone</value>
</rowset>
<rowset>
<table>102</table>
<label>City</label>
<operator>Contains</operator>
<value>Bedrock</value>

Visual Controls
DMDTPicker Control

182 Programmer’s Guide for Documanage

</rowset>
<rowset>
<table>2</table>
<label>AU ID</label>
<operator>Contains</operator>
<value>222-22-2222</value>
</rowset>
<rowset>
<table>3</table>
<label>category</label>
<operator>Contains</operator>
<value>abnormal</value>
</rowset>
<rowset>
<table>4</table>
<label>abnormal1</label>
<operator>Contains</operator>
<value>ab1</value>
</rowset>
</settinglist>

DMDTPicker Control
The DMDTPicker control provides a user interface for manipulating dates
and time. It is basically a wrapper that extends the Microsoft CDateTime and
CMonthCal controls. The DMDTPicker control is packaged as an ActiveX
control and can be used from a variety of Microsoft development tools
including C++ and Visual Basic. It inherits the standard COleControl
properties and methods such as Enabled, Font, Create(), etc.

When not dropped down, it displays a date/time string. When dropped down,
it displays a date picker, a time picker, or both, depending on the data type.

Visual Controls
DMDTPicker Control

Programmer’s Guide for Documanage 183

Primary Dispatch Interface Properties:

Event Dispatch Interface Methods:

Example - Visual Basic

Option Explicit
Private Const EZP_TYPE_DATE = 9
Private Const EZP_TYPE_TIME = 10
Private Const EZP_TYPE_TIMESTAMP = 11
Private Const DATE_FORMAT As String = "yyyy-mm-dd"
Private Const DATETIME_FORMAT As String = "yyyy-mm-dd hh:nn:ss"
Private Const TIME_FORMAT As String = "hh:nn:ss"

Property Description Data Type

DataType Type of date string: 
9 = Date, 
10 = Time, 
11 = Timestamp

long (Read/Write)

Value String representing
date/time

BSTR (Read/Write)

bDropped True if control is cur-
rently in the dropped-
down state

boolean (Read Only)

Method Description

void Change() Notifies caller that the values in
the control have changed

Visual Controls
DMDTPicker Control

184 Programmer’s Guide for Documanage

Private Sub DMDTPtest_Change()
Dim sData As String
sData = DMDTPtest.Value
MsgBox "The value is..." & sData, vbInformation

End Sub

Private Sub Form_Load()
DMDTPtest.Font = Me.Font

End Sub

Private Sub optDataType_Click(Index As Integer)
Dim sData As String
Dim lDataType As Long

 Select Case Index
 Case 0

sData = Format(Now, DATETIME_FORMAT)
lDataType = EZP_TYPE_TIMESTAMP

Case 1
sData = Format(Now, DATE_FORMAT)
lDataType = EZP_TYPE_DATE

Case 2
sData = Format(Now, TIME_FORMAT)
lDataType = EZP_TYPE_TIME

Case Else
MsgBox "Unknown Option", vbInformation
Exit Sub

End Select

 With DMDTPtest
.Font = Me.Font

Visual Controls
General Topics

Programmer’s Guide for Documanage 185

.DataType = lDataType

.Value = sData
 End With

End Sub

General Topics

Refreshing folders when documents change

Some coding is involved in keeping the folder and documents shown in the
visual controls current. Mainly this is done via the RefreshItem method
shared by both the Tree and the Folder And Document control. RefreshItem
takes a given folder and updates all the documents contained in it. This is
only needed when documents are manipulated by multiple controls. The Tree
control contains all folders and optionally all documents in a cursor. Only
when the Tree is showing document must you worry about keeping it
refreshed correctly.

When Refreshing is necessary:

 When using CheckIn , CheckOut, Import, SendTo, and in the Document
control—Delete (note SendTo and Delete are not recommended when
using the visual controls, use cut, copy, paste, and delete in the visual
controls themselves) Any Visual Control containing that document’s
parent folder needs RefreshItem called with hItem set to the parent folder
of the document. Remember the Tree contains all folders so if it is
showing documents you will have to refresh it. Folder And Document
control contains only one folder so only when it ParentHItem is equal to
the source or destination hItems in any of the mentioned calls is it
necessary to refresh.

Visual Controls
General Topics

186 Programmer’s Guide for Documanage

 When someone Cuts and then Pastes the folder where the document was
cut in needs refreshing—Simply remember in your code where the last
Cut was executed. The FolderAction event is fired with
EZP_ACTION_REFRESHCUTSOURCE when a cut then paste has
occurred (the event happens in the control who “pasted.”

 When a EZP_ACTION_REFRESHDEPENDENTS action occurs in a
FolderAction—This means that the control automatically refreshed itself
and any other controls showing the same folder indicated in the hItem
property of the event needs refreshing. If you have only one control in the
same Cabinet showing documents you can ignore this message.

The Tree and GetRelativehItem

Be aware that attempting to use the Documanage Tree control in conjunction
with GetRelativeItem can cause problems since it is designed to be used
interactively and GetRelativeItem is for Programmatic use. A few simple
rules must be kept in mind. The Tree control only retrieves children of items
when it needs to. Any calls to Expand, CurrenthItem, or RefreshItem in the
Tree with hItems retrieved from this call may generate
EZP_ITEM_NOT_FOUND. This means that the Tree has not retrieved that
item yet. A work around is to make sure all parent hItems to the hItem in
question have been Expanded in the Tree. This can be accomplished by calls
to GetRelativeItem with flag EZP_GET_PARENT and the Tree’s Expand.

Visual Controls vs. Programmatic Use

While all operations are available via the various non-visual controls, a lot of
user interface work can be saved by using the Documanage visual ActiveX
controls (mainly the Documanage Tree Control, Documanage Folder and
Documents control, and the Documanage Folder List Control). The visual
controls’ main strengths include:

Visual Controls
General Topics

Programmer’s Guide for Documanage 187

 User can navigate through entire cabinet visually with only a few lines of
code (no need for GetRelativehItem calls)

 Provides a familiar and consistent interface between user-created
applications and Documanage created applications (including icons)

 Automatic Drag and Drop between controls (and operating system)
without coding.

 Simple methods for Copy, Paste, and Delete operations.

 Helpful events that are geared towards Documanage clients.

Visual Controls
General Topics

188 Programmer’s Guide for Documanage

Programmer’s Guide for Documanage 189

Document Specifier Controls

Introduction
The visual and non-visual controls provide access to documents through
handles, which are only valid for a particular session and open cabinet. A
Document Specifier, or DocSpecifier for short, provides a way to keep a
permanent reference to a document between sessions. A DocSpecifier can
refer to either the latest version (whatever it is, as it continues to change over
time) or a specific version of a document.

The DocSpecifier consists of four parts:

 Cabinet—the name of a cabinet that contains the specified entity. (Note
that when multiple cabinets contain the same entity, any of their names
will suffice. The Cabinet is used to identify which document tables
should be searched and to define a security context.)

 ID—the Entity ID of the entity, or, when Major Version and Minor
Version are set for a historical version of a document, this may be the
Document ID.

 Major Version—the major version number of the specified entity. For
example, the Major Version would be 2 for version 2.03 of a document. A
specifier with a Major Version of -1 indicates that the ID portion of the
DocSpecifier must be interpreted as an Entity ID rather than a Document
ID. This is used to identify the latest version of a document (since the
latest version's Entity ID is always the document's Document ID) or as an
alternative to specifying the version numbers for other entities.

Document Specifier Controls
Document Specifier List Control

190 Programmer’s Guide for Documanage

 Minor Version—the minor version number of the specified document.
For example, the Minor Version would be 3 for version 2.03 of a
document. The Minor Version is ignored when the Major Version is -1.

Use the Document Specifier List Control to get document specifiers for
documents that match a filter you provide. You can also use the visual and
non-visual controls to find documents and retrieve the data needed for a
specifier.

Use the Document Access Control to get the Documanage handles you need
to access a document with the visual and non-visual controls.

Because DocSpecifiers refer to documents across different Documanage
sessions, keep in mind that there is no guarantee the specified document will
continue to be accessible. If the session is for a different user, or your access
permissions change, or the document is moved to a different cabinet or
deleted, you may not be able to use the DocSpecifier. If this happens, the
Document Access Control will not provide you with the Documanage
handles.

Document Specifier List Control
The Document Specifier List Control gives you one-time access to a set of
document specifiers that match criteria you specify through a filter.

To use the Document Specifier List Control, you must create an instance of
the control, and set its Session, Cabinet, and Filter properties. Then, call its
NextDocSpecifier method, and read the Cabinet, DocID, MajorVersion, and
MinorVersion properties to obtain a DocSpecifier. Continue calling
NextDocSpecifier until it returns FALSE, indicating the end of the list has
been reached.

Document Specifier Controls
Document Specifier List Control

Programmer’s Guide for Documanage 191

This control iterates over the list of DocSpecifiers in the forward direction
only; once you call NextDocSpecifier, the previous specifier is no longer
available through this control. There is no way to re initialize the control to
start over or use a different filter. To do any of these things, you will need to
create another instance of the control.

NOTE: This implementation may return some DocSpecifiers that, while
valid, are ultimately inaccessible due to cabinet filters or insufficient
permissions. The cabinet filters and permissions are not fully
evaluated until a DocSpecifier is resolved, typically with the
Document Access Control.

Properties

 Cabinet Data Type: String
The name of a cabinet containing the documents for which you want to
get specifiers. A full list of cabinet names can be obtained by calling the
Query Control's GetCabinetName method. Changing this property after
the NextDocSpecifier method has been called will have no effect on the
control.

 DocID Data Type: Long (Read Only)
The DocID of the specifier retrieved with the last call to the
NextDocSpecifier method.

NOTE: This property is not valid before the first call to NextDocSpecifier, or
after NextDocSpecifier has returned FALSE indicating there are no
more specifiers that match the filter.

Document Specifier Controls
Document Specifier List Control

192 Programmer’s Guide for Documanage

 Filter Data Type: String
A specially formatted string that will be used to filter what documents'
DocSpecifiers will be retrieved. The format of the Filter is a SQL Where
Clause without the SQL keyword "WHERE". To filter on a particular
Documanage Document property, you will need to know the
corresponding database column name of that property (shown in the chart
at the end of this document). Detailed formatting of Where clauses can be
found in any SQL reference. Changing this property after the
NextDocSpecifier method has been called will have no effect on the
control.

 DocTypeFilter DataType: String
The DocType of the documents on which the user want to perform a
eXtended Document Attribute (XDA) query.

 XDAFilter DataType: String
A specially formatted string that will be used to filter what documents'
DocSpecifiers will be retrieved. The format of the Filter is a SQL Where
Clause without the SQL keyword "WHERE". To filter on a particular
Documanage eXtended Document Attributes (XDA), you will need to
know the corresponding database column name of that property (using
Document control). Detailed formatting of Where clauses can be found in
any SQL reference. Changing this property after the NextDocSpecifier
method has been called will have no effect on the control.

 hSession Data Type: Long
Your current session with the Documanage Server. You can get the
correct value from the Session Control. This property should not be
changed once the NextDocSpecifier method has been called.

 MajorVersion Data Type: Short (Read Only)
The Major Version (e.g., for version 2.03 this would be 2) of the
document. For all DocSpecifiers retrieved through this control,
MajorVersion will always be set for the specific document version, even

Document Specifier Controls
Document Specifier List Control

Programmer’s Guide for Documanage 193

if it is the latest version. After a new version of the document is checked
in later, the specifier will still access the earlier version.

NOTE: This property is not valid before the first call to NextDocSpecifier, or
after NextDocSpecifier has returned FALSE indicating there are no
more specifiers that match the filter.

 MinorVersion Data Type: Short (Read Only)
The Minor Version (e.g., for version 2.03 this would be 3) of the
document. For all DocSpecifiers retrieved through this control,
MinorVersion will always be set for the specific document version, even
if it is the latest version. After a new version of the document is checked
in later, the specifier will still access the earlier version.

NOTE: This property is not valid before the first call to NextDocSpecifier, or
after NextDocSpecifier has returned FALSE indicating there are no
more specifiers that match the filter.

Methods

 NextDocSpecifier
NextDocSpecifier() As Boolean

This method retrieves the next specifier that matches the Filter the user
specified. After this has been called, the specifier may be retrieved by
accessing the DocID, Cabinet, MajorVersion, and MinorVersion
properties of the control.

Return Value:

Returns TRUE if a DocSpecifier was successfully retrieved, and FALSE
if there were no more DocSpecifiers that match the filter. After this
method returns FALSE, the DocID, MajorVersion, and MinorVersion

Document Specifier Controls
Document Specifier List Control

194 Programmer’s Guide for Documanage

properties are no longer valid.

Example:

This code gets specifiers for all documents in PersonalCabinet and
displays them in a simple message box. POSession1 is a Session Control
that has been properly connected to a Documanage server.

Dim SpecList As New PODocSpecifierListCtrl

SpecList.hSession = POSession1.hSession

SpecList.Cabinet = "PersonalCabinet"

SpecList.Filter = ""

While SpecList.NextDocSpecifier <> False

 MsgBox "Specifier: " & SpecList.Cabinet & ", " _

 & SpecList.DocID & ", " _

 & SpecList.MajorVersion & ", " _

 & SpecList.MinorVersion

Wend

Document Specifier Controls
Document Access Control

Programmer’s Guide for Documanage 195

Document Access Control
This control "converts" a DocSpecifier into Documanage handles that are
usable in a particular Documanage session. To use the Doc Access Control,
set its hSession property to a valid Documanage session, then call the
InitializeFromDocSpecifier method with the document specifier to load the
hCursor, hFolder, and hItem properties with handles that are valid in that
session.

If a DocSpecifier refers to a document that does not satisfy the cabinet filters
or session permissions, an error is thrown. (The Document Specifier List
Control may return such inaccessible DocSpecifiers.)

A single control can be used to get handles to several documents; simply
repeat the call to InitializeFromDocSpecifier with a different specifier to
change the handle properties to refer to the other document.

Properties

 hCursor Data Type: Long (Read Only)
A Documanage cursor that can be used with the visual and non-visual
controls to access the document or specific version.

 hFolder Data Type: Long (Read Only)
A Documanage folder that can be used with the visual and non-visual
controls to access the folder properties for the specified document.

 hItem Data Type: Long (Read Only)
A Documanage item that identifies the specified document. If the
specified version was the latest version of the document, this refers to a
document object; if the version was an earlier version, this refers to a
document "version" object, which is similar to a document but has some

Document Specifier Controls
Document Access Control

196 Programmer’s Guide for Documanage

restrictions (e.g., a document version cannot be edited or checked out).

Use the hItem along with the hCursor and hSession to initialize the
Document Control with this item.

 hSession Data Type: Long
Your current session with the Documanage Server. You can get the
correct value from the Session Control. The hCursor, hFolder, and hItem
properties are only valid within the context of this particular session
handle.

Methods

 InitializeFromDocSpecifier

InitializeFromDocSpecifier(Cabinet As String, DocID As Long,
MajorVersion As Short, MinorVersion As Short) As Long

This method initializes the hCursor, hFolder, and hItem properties for use
with the other Documanage controls to access the document identified by
the passed specifier. If the DocSpecifier parameters do not define an
accessible document (for which the Cabinet filters and session
permissions allow access), this method throws an error.

Parameters:

 Cabinet: The Cabinet portion of the Document Specifier

 DocID: The DocID portion of the Document Specifier

 MajorVersion: The MajorVersion portion of the Document Specifier.
To retrieve the latest version of a document, pass -1.

Document Specifier Controls
Document Access Control

Programmer’s Guide for Documanage 197

 MinorVersion: The MinorVersion portion of the Document Specifier.
Must be between 0 and 99. This parameter is ignored if MajorVersion
is -1.

Return Value: Returns a Long value that is reserved for future use
and should be ignored.

Example

This code displays a message box with the name and version of each
document specified in a DocSpecifierList control. POSession1 is a
Session Control which has already been connected to a Documanage
server. SpecList is a DocSpecifierList Control which has been prepared
by setting the hSession, Cabinet, and Filter properties. PODocument1 is a
Document Control whose hSession property has already been set.

DocAccess.hSession = POSession1.hSession

While SpecList.NextDocSpecifier <> False

 DocAccess.InitializeFromDocSpecifier SpecList.Cabinet, _

 SpecList.DocID, _

 SpecList.MajorVersion, _

 SpecList.MinorVersion

 PODocument1.hCursor = DocAccess.hCursor

 PODocument1.hItem = DocAccess.hItem

 PODocument1.Initialize

Document Specifier Controls
Document Access Control

198 Programmer’s Guide for Documanage

 MsgBox "Document: " & PODocument1.Name & " " _

 & PODocument1.Version

 Wend

Custom Workflow Tasks

Workflow Daemon

The Documanage Workflow Daemon is an application that automates
workflow tasks that might normally be completed by human users. It can be
run either as an NT service or as a console application. The daemon
application logs into the Documanage system with a user account,
periodically checks the logged-in user's inbox for pending tasks and runs
custom-programmed rules to process each task. The custom rules have access
to the Documanage session and can manipulate the workflow project and
associated documents as desired, based on the privileges of the logged-in user
account.

The daemon does not do any task processing itself, but instead makes use of
one or more custom dlls to process tasks. These dlls use the Documanage API
(DmgAPI) to check out, process, and check in or forward tasks.

Installation

The workflow daemon and associated sample files are supplied on your
distribution media as part of the Documanage Software Development Kit.
This also kit includes the DmgAPI for Win32 which you will need to write
the custom libraries you need to supply to use the daemon application. There
is no installation required other than copying the files once you have the
Documanage Workstation and the DmgAPI installed on your development
computer. You can use the Documanage Workstation as a workbench tool to

Custom Workflow Tasks
Workflow Daemon

200 Programmer’s Guide for Documanage

see the data your libraries will manipulate within Documanage and to
generate test data for your code.

Copy the folders with the workflow daemon and the DmgAPI from the SDK
onto your hard drive.

Notation

In this section, syntax is specified in a different typeface. Text that must be
specified literally as shown is in bold. Placeholder names for syntax elements
that are to be replaced by actual meaningful text are shown in italics. In many
cases, parts of the syntax are optional. These optional portions are enclosed in
square brackets to indicate they are optional. The square brackets are not part
of the syntax itself. When brackets are nested, outer syntax is required in
order to properly specify inner syntax. For example:
name.exe [-x[path]]

indicates that "name.exe" needs to be typed as shown. In order to specify an
optional real "path" text, you must first specify the "-x" syntax as shown and
that both path and the entire "-x" along with a path is optional. So, an actual
case of this syntax might be:

name.exe -xc:\mydirectory\

Running the Daemon

The Workflow Daemon command-line program may be run as a console
application or configured as a Windows NT service. While you are
developing your custom library routines, you should run the program from
the command line for easier debugging and control. Once your libraries are
debugged and ready, you should still test them running as a service if that is
the target environment. The command line syntax is shown here:

Custom Workflow Tasks
Workflow Daemon

Programmer’s Guide for Documanage 201

DMGWorkDaemon.exe [options]

Options are specified as a space-separated set of the following items. When
an option takes an argument, there is a space between the option and its
argument. The /p and /o options are mutually exclusive and the /i and /u
options should be the only options specified when they are used.

Help and Installation

Run Mode / Connecting to Documanage

Execution Control

/h or ? Display program command-line help

/i or /u Install (/i) or uninstall (/u) program as an NT service

/p profilename Run as program. User profile name (see DmgAPI Help) to use
to connect to Documanage. REQUIRED if run from
command-line.

/o profilename Run as service (default). User profile name (see DmgAPI
Help) to use to connect to Documanage.

/a address DNS name or IP address of Documanage router computer

/r protocol Protocol to use to Documanage router

/e endpoint Protocol-specific endpoint to use to Documanage router

/m domain Domain of user name (/n) to use to log into Documanage

/n username User name from domain (/m) to use to log into Documanage

/w password Password of user name (/n) to use to log into Documanage

/s seconds Polling interval in seconds (time between task queue scans)

Custom Workflow Tasks
Workflow Daemon

202 Programmer’s Guide for Documanage

Logging

The following is an example of using some of these options:

dmworkdaemon.exe -p dprof -n bill -m acme -w pw -a mordor
-e 4000 -r ncacn_ip_tcp -s 5

Run Mode

When run as a service, the daemon application makes calls to the Windows
Service Control Manager (SCM) and expects control messages from it. This
is the default run mode for the daemon. To run as a normal application
without interfacing to the SCM, use the /p option. To specify a profile (next
section) and still run as a service, use the /o option.

Connection Parameters

The daemon application uses the DmgAPI to connect to and interact with
Documanage. Refer to the DmgAPI help for additional information. In order
to connect, the daemon creates or uses and existing saved DmgAPI
connection profile. If you have a saved profile, you may name it with the /p or
/o option and specify no other connection parameters. In order to easily create
a profile, you may run the daemon with the name you want to create as the /p

/l filename Name of log file (default = "DMWorkDaemon.log")

/z kbytes Minimum log file size in K (default = 100)

/x kbytes Maximum log file size in K (default = 200)

/v loglevel Amount of detail to include in the log file (default = 0)

/d setting If 1, include extra log detail (default 0)

/b setting If 1, disable all logging (default 0)

Custom Workflow Tasks
Workflow Daemon

Programmer’s Guide for Documanage 203

option and specify the contents of the profile in the other connection options,
/a, /r, /e, /m, /n, and /w.

If the /o option is omitted, the program runs as a service by default as
mentioned above. Default credentials (the Windows account used to log into
the computer) are used. A user profile called "Default" is created with blanks
for user, password, and domain which is the key to using the Windows
account credentials. The program may be run with the /p option referring to a
like profile to use the Windows account credentials yet not run as a service.

If the Documanage router information is not specified, the daemon uses the
information in the [Router] section of the POFFICE.INI file.

Logging Parameters

The /v log level is currently not used. It may be used in the future to
determine how much detail is written to the log file; the lower the level, the
less logging takes place. The /d extra detail flag causes some extra
information to be logged for certain errors.

Specifying /b 1 will turn off all logging.

Setting Up Task Instructions

The Workflow Daemon fetches the Instructions property for each task it
finds in its queue and parses it to determine if the task can be processed by the
daemon. If the Instructions don't contain the right information, the task is
skipped and an error message is logged. The task instructions should be in the
following format:

dllname[|COM control name[|entrypointname[|parameters]]]

Custom Workflow Tasks
Workflow Daemon

204 Programmer’s Guide for Documanage

The pipe (|) symbol is used as a delimiter, and the list is positional. For
example, if the instruction contains the dllname and a parameter string, all the
pipe characters up to the parameter are included:

dllname|||parameters

The dll name is the exact name of the dll including the ".dll" extension.
Examples of strings which might appear in the Instructions field are:

MyPlainDLL.dll

WFCom.dll|MyCOMControl.MyCOMControl.1

MyEMailer.dll|||user@acme.com,"Subject",file:///C:/IF.txt

MyWFLibrary.dll||Email|user@acme.com,"Subject",file:///C:/IF.txt

MyWFLibrary.dll||WaitForForms|1099,518A

The Instructions property is filled in by the user who designs the workflow,
using the Documanage Workflow Designer. See the documentation on that
program for more details on how workflows are designed and task properties
are set.

The daemon interfaces to simple Win32 Dynamically Loaded Libraries
(DLL's) for its processing. Some programming tools such as Microsoft Visual
Basic, are incapable of producing simple dlls but instead produce COM
controls. To allow workflow processing libraries to be written as COM
controls, a COM compatibility dll, WFCom.dll, is included with the
Workflow Daemon. This allows COM controls to be called through
intermediation.

NOTE: The Workflow Daemon expects to load an "in process" library and
pass process-specific information—a Session Handle, for instance—
to that library. This library must use the same instance of the

Custom Workflow Tasks
Workflow Daemon

Programmer’s Guide for Documanage 205

DmgAPI library as the Workflow Daemon. If a COM object is
defined as "out-of-process" such that a new application is launched
separately from the Workflow Daemon, the session context
information that the Workflow Daemon passes to it will be unusable.
WFCom.dll does not call out-of-process COM objects for this reason.

If a COM compatibility dll is being used, the first entry in the instructions list
will be the name of the compatibility dll as in the second example above. The
second parameter, the COM control name, will then contain the
programmatical name of the COM control to load, for example,
MyCOMControl.MyCOMControl.1.

The entrypointname is an optional string with an internal function name to
perform. This is interpreted by the library code and is opaque to the daemon
application.

Optional parameters can be included as a "fourth field." These parameters
(anything past the third field) are not used or processed by the daemon
application in any way. Your library will extract any additional parameters
from the instructions field and parse this data itself - no format is imposed by
the workflow daemon application. The parameters string may therefore be in
whatever format desired by your library. The entire Instructions property is
limited to 254 characters in length.

Writing Daemon-Called Libraries

You will write one or more libraries of functions which are packaged as a
DLL or COM object and installed on the computer in the same directory as
the workflow daemon application. Your library is then loaded and executed
on demand by the daemon application as it encounters workflow tasks that
reference it. Any number of libraries may be installed as long as they are
packaged with different file names. Libraries and COM objects are loaded the

Custom Workflow Tasks
Workflow Daemon

206 Programmer’s Guide for Documanage

first time they are encountered in a task Instructions field. Thereafter, the
daemon keeps the libraries and COM objects loaded until it terminates.

Each standard DLL library to be called by the daemon must implement the
following two C-language interfaces:

long PINotify(long hSession, long hTask, long nFlag, long
nSpare);

long PIExecute(long hSession, long hTask, long hProject,
char* strEntrypoint);

COM controls must implement these as methods which are called by the
WFCom.dll library after making a CreateDispatch() call with the COM
object identifier from the Instructions field. (This call is only made once as is
the LoadLibrary() call on the standard DLL. See above.)

PINotify()

long PINotify(long hSession, long hTask, long nFlag, long nSpare);

PINotify() is called each time the Workflow Daemon starts processing a new
task, and when it is finished with the task. It is also called when the Workflow
Daemon is shut down, to deliver a "goodnight kiss" to the DLL. All
parameters are passed in. Additional nFlag values may be introduced in the
future, so your code should allow for unrecognized values and ignore them. A
spare long parameter is also provided for future expansion. Its value is
currently undefined. Your library can return error codes to the Workflow
Daemon. A zero value indicates success.

hSession in DmgAPI session handle of open Documanage server session

hTask in DmgAPI task handle to the task being processed

nFlag in Reason for call: 1 = Start Task, 2 = End Task, and 3 = Goodnight

nSpare in undefined; unused at this time

Custom Workflow Tasks
Workflow Daemon

Programmer’s Guide for Documanage 207

You may use the PINotify() notification call for whatever reasons you need.
There are no required responses to any of the PINotify calls. For example,
you may use this call to tell the library to check for abnormal numbers of
projects associated with a task, or for logging into a resource, logging/
reporting, etc.

PIExecute()

long PIExecute(long hSession, long hTask, long hProject, char*
strEntrypoint);

After the PINotify(start task) call, the daemon calls PIExecute() and passes in
the session, the task handle, the project handle, and an optional string
intended to indicate what internal function the library will execute. Your
library will extract properties from the task handle, including the instructions
property and determine what needs to be done to process the task. Your
library may use the handles passed to it by the daemon program to access
Documanage, conduct queries, check out/in documents, or whatever it needs
to do. All actions take place under the user identity of the daemon application
session. Once completed, you library is responsible for making the decision
to advance the project to the next task, suspend it, check it back in to be
processed again on the next daemon cycle, forward it to another team
member or to leave the project checked out. This could involve merely
advancing the project or if the current task is a Human Decision task, making
the correct advance calls to implement the decision.

hSession in DmgAPI session handle of open Documanage server
session

hTask in DmgAPI task handle to the task being processed

hProject in DmgAPI project handle to the project folder

strEntrypoint in opaque string interpreted by your code

Custom Workflow Tasks
Workflow Daemon Plugins

208 Programmer’s Guide for Documanage

Once the task is processed, your library returns from the PIExecute() call.
Your library can return error codes to the Workflow Daemon. A zero value
indicates success.

The Documanage Workflow Daemon does not maintain state between calls to
plug-ins. Any state must be maintained by the plugin. Keep in mind that the
order in which dlls and their functions are called cannot be guaranteed, so any
state preservation must take this into account.

For details on using the session, task and project handles, see the DmgAPI
documentation.

Workflow Daemon Plugins

The Documanage Workflow Daemon polls the logged-in user's inbox for
pending workflow tasks, then processes them using custom plugin libraries.
These libraries can make use of the dmg_api to check out, process, and check
in or forward tasks. This provides a powerful and flexible mechanism for
extending the capabilities of the Documanage workflow system and
automating certain tasks.

The Workflow Daemon makes use of standard dynamic link libraries (DLLs).
COM libraries can be used through the intermediary of the COM
compatibility plugin, WFCom.dll.

Workflow Daemon Calls

The Workflow Daemon plug must implement the following calls:

long PINotify(long hSession, long hTask, long nFlag, long nSpare);

Custom Workflow Tasks
Workflow Daemon Plugins

Programmer’s Guide for Documanage 209

long PIExecute(long hSession, long hTask, long hProject, char*
strEntrypoint);

PINotify() will be called each time the Workflow Daemon starts a new task,
and when it is finished with the task. It will also be called when the Workflow
Daemon is shut down, to deliver a "goodnight kiss" to the dll. The session and
the task handle are passed in. The nFlag parameter will be set to 1 for Start
Task, 2 for End Task, and 3 for Goodnight. Future flag values may be
introduced in the future, and a spare long parameter is provided for future
expansion. The PINotify notification may be used to tell the library to check
for abnormal numbers of projects associated with a task, or for logging into a
resource, reporting, etc.

When the daemon calls PIExecute(), it passes in the session, the task handle,
the project handle, and an optional string indicating what internal method the
library will execute. The library will extract properties from the task handle,
including the instructions property.

Workflow Daemon Tasks

Tasks that can be processed by the Workflow Daemon maintain processing
directions in the instructions property of the task. The task instructions are in
the following format:

dllname.dll[|optional COM control name][|optional
entrypointname][| optional parameters]

The pipe (|) symbol is used as a delimiter, and the list is positional. For
example, if the instruction contains the dllname and a parameter, all the pipe
characters up to the parameter are included: dllname.dll|||parameter. The dll
name is the exact name of the dll, plus the .dll extension.

The instructions property will contain any additional parameters needed by
the library after the formatted specification of what library to call, and the

Custom Workflow Tasks
Workflow Daemon Plugins

210 Programmer’s Guide for Documanage

library will parse this data itself - no format is imposed on the additional
parameter field. However, the entire instructions property is limited to 254
characters in length.

The Documanage Workflow Daemon does not maintain state between calls to
plugins. Any state must be maintained by the plugin. Keep in mind that the
order in which dlls and their functions are called cannot be guaranteed, so any
state preservation must take this into account.

The plugin can return error codes to the Workflow Daemon. A zero value
indicates success.

For details on using the session, task and project handles, see the dmg_api
documentation.

Source listings for a simple sample plugin follow. This plugin checks out a
project and advances it without doing anything to it. It illustrates the required
entrypoints (PINotify and PIExecute) and the techniques for checking out and
advancing the project.

Sample Header File
#ifdef WFSAMPLE_EXPORTS

#define WFSAMPLE_API __declspec(dllexport)

#else

#define WFSAMPLE_API __declspec(dllimport)

#endif

typedef enum {

FLAG_START=1,

FLAG_END,

FLAG_GOODBYE

} e_NotifyFlag;

Custom Workflow Tasks
Workflow Daemon Plugins

Programmer’s Guide for Documanage 211

 bool nNotified;

 #define min(a, b) (((a) < (b)) ? (a) : (b))

 #ifdef __cplusplus

extern "C" {

#endif

 WFSAMPLE_API int PINotify(long hSession, long hTask,
e_NotifyFlag nFlag, long nSpare);

 WFSAMPLE_API int PIExecute(long hSession, long hTask,
long hProject, char* strEntryPt);

 #ifdef __cplusplus

}

#endif

Sample C++ File

Sample Plugin Code

This simple sample plugin illustrates the basics of a DMGWorkflowDaemon
plugin library. The header file declares the interface and the flags that can be
passed into PINotify(). The source file shows simple implementations of
PINotify and PIExecute.

In this example, PINotify() simply sets an internal flag if it has received the
FLAG_START flag. In an actual implementation, PINotify might respond
differently to each of the three flags, perhaps setting up environment variables
or checking status.

PIExecute() calls an internal routine, GetParameters(), which illustrates
parsing the instructions property to fetch parameter data. It then checks out
the project with the dmg_api function DmgProjectCheckOut(). It gets the

Custom Workflow Tasks
Workflow Daemon Plugins

212 Programmer’s Guide for Documanage

branch list with DmgProjectGetBranchList(), and gets the first handle from
that list with DmgListGetFirstHandle().

It continues by getting the branch ID using
DmgHandleGetPropertyByName() and DmgPropertyGetValue().

At this point in an actual working plugin, the project would be processed in
whatever way is appropriate. This sample plugin does nothing to the project
other than the final step, advancing it. It does that by calling
DmgProjectCheckInToBranch().

// WFSample.cpp : Defines the entry point for the DLL.

//

#include "string.h"

#include "dmg_api.h"

#ifdef _DEBUG

#include <iostream.h>

#include <stdlib.h>

#endif

#include "WFSample.h"

#ifdef __cplusplus

extern "C" {

#endif

WFSAMPLE_API int PINotify(long hSession, long hTask,
e_NotifyFlag nFlag, long nSpare)

//

// You can use the PINotify call to check for unusual
conditions like

// too many projects associated with a task, or to do
initialization.

//

Custom Workflow Tasks
Workflow Daemon Plugins

Programmer’s Guide for Documanage 213

{ nNotified = nFlag == FLAG_START;// nNotified true if
start task, else false

#ifdef _DEBUG

char nn[255];

cout << "PINotify: nFlag = " << _itoa(nFlag,nn,10) <<
endl;

#endif

return 0;

}

 void GetParameters(long hTask, char** strParams)

//

// Utility function to parse out the parameters from the

// Instructions property. If you don't expect parameters
in the

// Instructions property, you can skip this.

//

{

long result;
long hProperty = 0;

char* strInstructions=NULL;

long sLen = DMG_P_TASK_INSTRUCTIONS_LEN;

//

// Get Instructions property using the dmg_api.

//

result = DmgHandleGetPropertyByName(hTask,
DMG_PROP_BASIC, DMG_P_TASK_INSTRUCTIONS, &hProperty);

if (result == DMG_SUCCESS && hProperty) {

result = DmgPropertyGetValue(hProperty,
DMG_DATATYPE_STRING, NULL, &sLen);

if (result == DMG_SUCCESS) {

Custom Workflow Tasks
Workflow Daemon Plugins

214 Programmer’s Guide for Documanage

strInstructions = new char[sLen];

result = DmgPropertyGetValue(hProperty,
DMG_DATATYPE_STRING, strInstructions, &sLen);

}

if (result == DMG_SUCCESS &&
strlen(strInstructions) > 0) {

#ifdef _DEBUG

cout << "Instructions: " << strInstructions <<
endl;

#endif

//

// Got the property, now parse the string

// Look for first pipe, between plugin name and
OCX GUID

//

char* ocxOffset = strchr(strInstructions,0x7c);
// "|"

if (ocxOffset) {

//

// Found pipe. If no pipe, there are no
entrypoint name or parameters.

//

// Parse past the plugin name (we aren't
going to use it)

//

ocxOffset += 1;

//

// Look for second pipe, between OCX GUID and
entrypoint name

//

char* entryptOffset = strchr(ocxOffset,0x7c);

Custom Workflow Tasks
Workflow Daemon Plugins

Programmer’s Guide for Documanage 215

if (entryptOffset) {

//

// Found pipe

// Parse past the OCX GUID (we aren't
going to use it)

//

entryptOffset += 1;

//

// Look for third pipe, between entrypoint
and parameters,

//

char* paramOffset =
strchr(entryptOffset,0x7c);

if (paramOffset) {

//

// Copy parameters into strParams

//

paramOffset += 1;

sLen = strlen(paramOffset);

*strParams = new char[sLen+1];

strcpy(*strParams,paramOffset);

#ifdef _DEBUG

cout << "Parameters: " << *strParams <<
endl;

#endif

//

// Delete this when done with it

//

if (strInstructions)

delete[] strInstructions;

}

Custom Workflow Tasks
Workflow Daemon Plugins

216 Programmer’s Guide for Documanage

}

WFSAMPLE_API int PIExecute(long hSession, long hTask,
long hProject, char* strEntryPt)

//

// Executes the functionality of the plugin. In this
example, there are

// no additional entrypoints so strEntryPt is ignored.

//

{

long result = 0;

long chkResult = 0;// Checkout result

long hList = 0;

long hBranch = 0;

long hProperty = 0;

long nBranchID = 0;// Default

char* strParams=NULL;// Optional parameters

//

// If you expect parameters to be passed in the
Instructions field,

// parse them out.

//

GetParameters(hTask,&strParams);

//

// Check out the project

//

chkResult = DmgProjectCheckOut(hProject);

//

// Get the first branch so we can check the project
back in.

Custom Workflow Tasks
Workflow Daemon Plugins

Programmer’s Guide for Documanage 217

// An alternative is to determine what kind of task
this is - get

// the taskType for the project (basic property
DMG_P_PROJECT_TASKTYPE)

// then see if the type is DMG_TASK_HUMANDECISION. If
it's not a human

// decision, just use 0 as the branchID.

//

if (chkResult == DMG_SUCCESS) {

//

// Get list of branches

//

#ifdef _DEBUG

cout << "Checkout successful" << endl;

#endif

result = DmgProjectGetBranchList(hProject,&hList);

}

if (result == DMG_SUCCESS && hList != 0) {

//

// Get first branch

//

#ifdef _DEBUG

cout << " Got Branch List" << endl;

#endif

result = DmgListGetFirstHandle(hList,&hBranch);

}

//

// If there's no branch, we'll use a branchID of 0
(defaulted in

// declaration at top of this method). If there is

Custom Workflow Tasks
Workflow Daemon Plugins

218 Programmer’s Guide for Documanage

// a branch, get its branchID and use it.

//

if (result == DMG_SUCCESS && hBranch != 0) {

//

// Get Id property

//

#ifdef _DEBUG

cout << " Got first branch" << endl;

#endif

result =
DmgHandleGetPropertyByName(hBranch,DMG_PROP_BASIC,"Id",&
hProperty);

if (result == DMG_SUCCESS && hProperty != 0) {

//

// Get the branch Id

//

#ifdef _DEBUG

cout << " Got Id Property" << endl;

#endif

long len = 4;

result =
DmgPropertyGetValue(hProperty,DMG_DATATYPE_LONG,&nBranch
ID,&len);

#ifdef _DEBUG

char nn[255];

cout << " Id = " << _itoa(nBranchID,nn,10) <<
endl;

#endif

}

Custom Workflow Tasks
Workflow Daemon Plugins

Programmer’s Guide for Documanage 219

}

//

// Do interesting things to your project here.

//

//

// When finished, we need to advance or forward the
project before

// returning. In this case we advance it.

//

if (chkResult == DMG_SUCCESS) {

//

// Check into branch identified by Id.

//

chkResult =
DmgProjectCheckInToBranch(hProject,nBranchID);

#ifdef _DEBUG

char nn[255];

cout << "Checkin result = " <<
_itoa(chkResult,nn,10) << endl;

#endif

}

//

// Clean up

//

delete[] strParams;

return chkResult;

Custom Workflow Tasks
Workflow Daemon Plugins

220 Programmer’s Guide for Documanage

}

#ifdef __cplusplus

}

#endif

Programmer’s Guide for Documanage 221

Workstation Automation
Feature

Introduction
The Workstation Automation Feature is an ActiveX extension to the
Documanage Workstation. It allows external applications to "launch" the
Workstation and programmatically open items in the Workstation.

The Workstation exposes a publicly creatable ActiveX object class. If an
external application creates an instance of the public object, the workstation
is automatically launched if it is not currently running. If it is running, the
object is created on the running process.

The external application is then free to call methods on the public class,
which can open pending or suspended projects, cabinets containing a
requested folder or document, or to open a cabinet with a full QBE
specification.

The OpenFolder, OpenDocument, and OpenProject interfaces are fairly
simple. However, the OpenQuery interface has a complex syntax with two
variations. One replicates the functionality of the QBE dialog in the
workstation. A second allows for multi-level cabinet folder filter conditions,
order by clauses, and OR conditions.

Workstation Automation Feature
Interfaces

222 Programmer’s Guide for Documanage

Interfaces
The DmgClient exposes a publicly creatable ActiveX object. When an
instance of this object is created by an external application, the Windows
operating system automatically launches the DmgClient if it is not already
running. If DmgClient is running the external application attaches to the
running process. Thus, only one instance of the DmgClient is ever running on
the user's computer.

The object has the following classID: DmgClient.DmgQuery

After the object is created, the external application must call its .Init()
method. This launches the application if it's not already running and logs into
Documanage. This is the equivalent of launching the DmgClient by double-
clicking on it's executable, or launching it from a menu. If DmgClient is
already running, the .Init() method simply returns a SUCCESS.

Once the DmgClient was running. It continues to run even if the external
application destroys all references to the DmgQuery object.

The ActiveX interface does not affect the existing Documanage Workstation
functionality in any way. If desired, it can continue to be used as a stand-alone
application without ever invoking the DmgQuery interface.

Init

The Init method call launches the Documanage Workstation if it is not
already running and logs in to Documanage. If the Workstation is already
running, it simply returns a SUCCESS. The external application must call this
method prior to calling any of the request methods. Calling other methods
without first calling .Init() will return an error.

DmgQuery.Init(
) As Long.' 0 - success | -1 - failure

Workstation Automation Feature
Interfaces

Programmer’s Guide for Documanage 223

Open Project

This method call opens a pending or suspended project in an Active Project
dialog. The project is checked out to the user and is available for processing.

DmgQuery.OpenProject(' open a pending or suspended project
ByVal lTaskID as Long, ' project task ID
ByVal sType as String, ' project type "P" | "S"
ByVal sKey as string, ' project key (see below)
ByVal sLabel as String, ' project label
ByVal lAction as Long ' reserved for future use, pass 0

) As Long ' 0 = success | -1 = error

The equivalent Documanage Workstation operation is as follows:

1 From the File Room Open a Task Queue (either Pending or
Suspended)

2 From the Task Queue window, select a project, right-click and select
"Work on Project"

Open Document

This method call opens a cabinet which contains the document corresponding
to the Document Key. The document is contained in its parent folder. If the
cabinet specified is the Personal Cabinet, the Personal Cabinet is opened or
brought to the front without regard to the rest of the document specification
(i.e. we don't allow the Personal Cabinet to be opened with a filter). Also,
only the current version of the document can be opened, so the major and
minor version parameters of the DocSpecifier are ignored.

DmgQuery.OpenDocument(' open a cabinet containing the document
ByVal sKey as string, ' document key (see below)
ByVal sLabel as String, ' document label

Workstation Automation Feature
Interfaces

224 Programmer’s Guide for Documanage

ByVal lAction as Long ' see Action Parameter Bitmask, below
) As Long ' 0 = success | -1 = error | 1 = warning

The equivalent Documanage Workstation operation is as follows:

1 From the File Room Select a Cabinet and right-click. Select Open
Cabinet with Query

2 From the Query dialog, specify the Document query criteria
(although DocID is not available on this dialog)

3 An instance of a Cabinet containing the requested document is
opened.

Open Folder

This method call opens a cabinet which contains the folder corresponding to
the Folder Key. It is envisioned that this call pertains to a single folder,
although that is not enforced (as the Folder Key is used as a folder filter
without being examined or parsed). If the cabinet specified is the Personal
Cabinet, the Personal Cabinet is opened or brought to the front without regard
to the rest of the folder specification (i.e. we don't allow the Personal Cabinet
to be opened with a filter).

DmgQuery.OpenFolder(' open a cabinet containing the folder
ByVal sKey as string, ' folder key (see below)
ByVal sLabel as String, ' folder label
ByVal lAction as Long ' see Action Parameter Bitmask, below

) As Long ' 0 = success | -1 = error | 1 = warning

The equivalent Documanage Workstation operation is as follows:

Workstation Automation Feature
Interfaces

Programmer’s Guide for Documanage 225

1 From the File Room Select a Cabinet and right-click. Select Open
Cabinet with Query

2 From the Query dialog, specify the Folder query criteria

3 An instance of a Cabinet containing the requested folder is opened.

Open Query

This method allows a cabinet to be opened with a specified filter condition. It
is envisioned that this call would pertain to multiple folders and/or
documents, rather than the single instance calls detailed above
(OpenDocument,. OpenFolder). However if the cabinet specified is the
Personal Cabinet, the Personal Cabinet is opened or brought to the front
without regard to the rest of specification (i.e. we don't allow the Personal
Cabinet to be opened with a filter).

There are two specification formats proposed (see Appendix A). Additional
formats may be added in the future. Format 0 is equivalent to a specification
derived from the QBE dialog. Format 1 has no equivalent in the workstation
and would allow multi-level cabinet queries, order by clauses, and OR terms.

DmgQuery.OpenQuery(' open a cabinet filtered
ByVal sQuerySpecification As String, ' query specification (see below)

) As Long ' 0 = success | -1 = error | 1 = warning

Workstation Automation Feature
Interfaces

226 Programmer’s Guide for Documanage

The equivalent Documanage Workstation operation for Format 0 is as
follows:

1 From the File Room Select a Cabinet and right-click. Select Open
Cabinet with Query

2 From the Query dialog, specify the query criteria

3 An instance of a Cabinet filtered by the query conditions is opened

There is no Documanage Workstation equivalent for Format 1. It requires that
the external application construct fully qualified SQL clauses.

Error Information

If a method call fails, the external application can retrieve the following
properties to determine the circumstances of the error.

LastErrorAdvice() As String - suggests what to do about the error
LastErrorAdviceID() As Long -- [Not Used]
LastErrorDescription() As String - description of the error
LastErrorNumber() As Long - number of the last error (not very helpful)
LastErrorSource() As String - code module that triggered the error

Action Parameter Bitmask

The lAction parameter of the OpenFolder and OpenDocument methods is
setup as a bitmask. Documanage Workstation versions prior to 6.4.2 assume
this parameter has a zero value and ignore it. Documanage Workstation
version 6.4.2 exposes the following enumeration:

Public Enum WA_ACTION
 WA_REFRESH = 1
End Enum.

Workstation Automation Feature
Interfaces

Programmer’s Guide for Documanage 227

The initial call to OpenFolder or OpenDocument should have an lAction
parameter value of zero. If your code subsequently does something that might
alter the contents of the Cabinet window that was opened by the initial call,
you can make a subsequent call to OpenFolder or OpenDocument with the
WA_REFRESH bit in the lAction parameter turned on. This call will refresh
the content of the window and bring it to the front. If the user has closed the
window the call will re-open it. The other parameters of the OpenFolder or
OpenDocument method should have the exact values as the initial call. This
is illustrated in the example shown here.

Example

The following routine illustrates how an external application could invoke the
Documanage Workstation to open a cabinet containing the requested
document.
Private Sub openDocumentItem(ByVal sKey As String, ByVal
sLabel As String)
' --
' --- open cabinet containing document in DmgWorkstation
' --
'
' sKey - document key
' sLabel - document label
' --
'
' error handling
'
Const K_Proc = "TS_DmgxTree.openDocumentItem"
m_TKCorigin = ""
m_TKCerror = ""
m_TKCadviceID = 0
On Error GoTo ErrorHandler
'

Workstation Automation Feature
Interfaces

228 Programmer’s Guide for Documanage

' dimension local variables
'
Dim oDmgQuery As DMgClient.DmgQuery
Dim lRC As Long
Dim lAction as Long
'
' create new DmgQuery object
'
Set oDmgQuery = New DMgClient.DmgQuery
'
' initialize the DmgQuery object (this causes a Dmg
logon)
'
Screen.MousePointer = vbHourglass
lRC = oDmgQuery.Init()
If (lRC <> 0) Then
m_TKCerror = "oDmgQuery.Init() returned..." &
oDmgQuery.LastErrorDescription
m_TKCorigin = K_Proc & "..." & oDmgQuery.LastErrorSource
Err.Raise GENERAL_ERROR, m_TKCorigin, m_TKCerror, "",
ADVICE_NONE
End If
'
' open the document
'
lAction = 0
lRC = oDmgQuery.OpenDocument(sKey, sLabel, 0)
If (lRC <> 0) Then
m_TKCerror = "oDmgQuery.OpenDocument() returned..." &
oDmgQuery.LastErrorDescription
m_TKCorigin = K_Proc & "..." & oDmgQuery.LastErrorSource
Err.Raise GENERAL_ERROR, m_TKCorigin, m_TKCerror, "",
ADVICE_NONE
Else
MsgBox "oDmgQuery.OpenQuery() succeeded.", vbInformation

Workstation Automation Feature
Interfaces

Programmer’s Guide for Documanage 229

End If
'
'refresh the window that was opened by the previous call
'
lAction = 0 + WA_REFRESH
 lRC = oDmgQuery.OpenDocument(sKey, sLabel, lAction)
 If (lRC <> 0) Then
 m_TKCerror = "oDmgQuery.OpenDocument() returned..."
& oDmgQuery.LastErrorDescription
 m_TKCorigin = K_Proc & "..." &
oDmgQuery.LastErrorSource
 Err.Raise GENERAL_ERROR, m_TKCorigin, m_TKCerror,
"", ADVICE_NONE
 Else
 MsgBox "oDmgQuery.OpenQuery() succeeded.",
vbInformation
 End If
 '
 '
 '
'
Cleanup:
On Error GoTo 0
Set oDmgQuery = Nothing
Screen.MousePointer = vbDefault
Exit Sub
'---
ErrorHandler:
Select Case Err.Number
Case EZP_STD_ERROR
m_TKCerror = Err.Description
Case GENERAL_ERROR
Case Else

Workstation Automation Feature
Specification Formats

230 Programmer’s Guide for Documanage

m_TKCerror = "ERROR: " & Err.Number & " An unanticipated
error has occurred in " & K_Proc & "..." &
Err.Description
End Select
m_TKCadviceID = Err.HelpContext
m_TKCorigin = Err.Source
m_TKCmessage = m_TKCorigin & "..." & m_TKCerror
LogIt 5, m_TKCmessage
iOK = showMsg(vbInformation, m_TKCorigin, m_TKCerror,
m_TKCadvice)
Resume Cleanup
'---
End Sub

Specification Formats

NOTE: If an item contains a pipe-symbol, "|" (ASCII 124), replace it with an
escape sequence "%7C"

Project Key
Cabinet|Level|ProjectKeyString

DmgAPI
Level = DMG_P_PROJECT_LEVELNUMBER
ProjectKeyString = DMG_P_PROJECT_KEYSTRING

POAPI
Level = 1
ProjectKeyString = POProject .GetKeyString()

Workstation Automation Feature
Specification Formats

Programmer’s Guide for Documanage 231

Examples

Claim Properties|1|dbo.WF_Claims.Claim_Number = 1.000000 and
dbo.WF_Claims.I_TaskID = 8002

Amergen Test|1|dbo.WF_Amergen.LName = 'Lobdale' and
dbo.WF_Amergen.I_TaskID = 12003

Document Key

Cabinet|DocID|MajorVersion|MinorVersion

DmgAPI
DocID = DMG_P_DOCUMENT_ID
MajorVersion = DMG_P_DOCUMENT_MAJORVERSION
MinorVersion = DMG_P_DOCUMENT_MINORVERSION

POAPI
DocID = PODocument.DocID
MajorVersion = PODocument.Version ' portion of string before "."
MinorVersion = PODocument.Version ' portion of string after "."

Examples
Amergen|4|1|0
DCIG by Claim|407|1|0

Folder Key
Cabinet|Level|FolderKeyString

Workstation Automation Feature
Specification Formats

232 Programmer’s Guide for Documanage

DmgAPI
Level = DMG_P_FOLDER_LEVELNUMBER
FolderKeyString = DMG_P_FOLDER_KEYSTRING

POAPI
Level = POFolder.LevelNumber
FolderKeyString = POFolder.KeyString

Examples
Amergen|1|DMGSamples.dbo.Amergen.LName = 'Bradley'
DCIG by Claim|4|DMGSamples.dbo.Vehicle.Vehicle_ID = 24.000000

Query Specification (Format 0)

?Format=0?Cabinet=CabinetDesignation?[Folder=FolderCriterion]?[Docum
ent=DocumentCriterion] …

 Format = 0 — ' this is a constant value. The Format item must be the first
item in the Query Specification

 Cabinet = Cabinetname|Cabinet Level|Force Case Blind (Y|N) ' the
Cabinet Designation Item must be the second item in the Query
Specification

 Folder = Fieldname|Operator|Value|[Value2]' Folder criteria can be
repeated as necessary

 Document= Fieldname|Operator|Value|[Value2]' Document criteria can
be repeated as necessary

 XDPCategory=Category' this term must preceded any XDP terms

Workstation Automation Feature
Specification Formats

Programmer’s Guide for Documanage 233

 XDP== Fieldname|Operator|Value|[Value2]' XDP criteria can be
repeated as necessary; must be preceded by XDPCategory term

 FolderOrder = FieldName[|ASC][|DESC]' Folder Order By criteria can
be repeated as necessary, sort order is optional and defaults to ASC

 DocumentOrder = FieldName[|ASC][|DESC]' Document Order By
criteria can be repeated as necessary, sort order is optional and defaults to
ASC

 FullTextFilter = Full Text Filter

 IndicateEmptyFolders=[TRUE] [FALSE]' value must be either True or
False

 Operators

 = equals

 <>not equal to

 < less than

 > greater than

 <= less than or equal to | on or before

 >= greater than or equal to | on or after

 -- between (requires Value2)

 ** contains

 * begins with

NOTE: In all cases if an item contains a question mark "?" (ASCII 63) it
should be replaced with an escape sequence "%3F"

Workstation Automation Feature
Specification Formats

234 Programmer’s Guide for Documanage

NOTE: The "Force Case Blind" value in the Cabinet Designation item
constructs SQL clauses that are Case-Blind for Case-Sensitive
databases. This is a very expensive operation for the database. This
value should be set to "N" unless a case-blind filter is truly intended.
For non-Case-Sensitive databases the value is overwritten to "N"
regardless of its value.

 All items are delimited with a question mark. There should be no final
trailing question mark.

 Folder and Document criteria can be repeated as necessary.

 The Field names are the field names as displayed in the Documanage
Workstation and Documanage Administrator (they are not the fully
qualified table column names)

 This specification format is currently restricted to one cabinet level.

 This format does not allow for the specification of "OR" terms.

 This syntax does not address specifying Variable Filters (i.e. Server-Side
filters)

Query Specification (Format 1)

?Format=1?Cabinet=CabinetDesignation?[FolderFilter=FolderFilter]?[Docu
mentFilter=DocumentFilter]?[FolderOrderBy=FolderOrderBy]?[DocumentO
rderBy=DocumentOrderBy]?[XDPFilter=XDPFilter]?[FullTextFilter=FullTe
xtFilter]?[IndicateEmptyFolders=True|False]

Workstation Automation Feature
Specification Formats

Programmer’s Guide for Documanage 235

 Format = 1 ' this is a constant value. The Format item must be the first
item in the Query Specification

 Cabinet=Cabinetname|Cabinet Level|Force Case Blind (Y|N) [ignored]
' the Cabinet Designation Item must be the second item in the Query
Specification. The Cabinet Level parameter is ignored. The Force Case
Blind parameter is ignored.

 FolderFilter=SQL where clause with fully qualified folder filter

 DocumentFilter=SQL where clause with fully qualified document filter

 FolderOrderBy=SQL order by clause for Folder

 DocumentOrderBy=SQL order by clause for Document

 XDPFilter=Category|SQL where clause with fully qualified XDP Filter

 FullTextFilter=Full Text Filter

 IndicateEmptyFolders=[True] [False]

NOTE: In all cases if an item contains a question mark "?" (ASCII 63) it
should be replaced with an escape sequence "%3F"

NOTE: The "Force Case Blind" value in the Cabinet Designation item is
ignored as the designated filters are not manipulated in any way. If
the filter syntax has a Force Case Blind form, this field can be set to
"Y" for the sake of completeness. This is not necessary.

 All items are delimited with a question mark. There should be no final
trailing question mark.

Workstation Automation Feature
Specification Formats

236 Programmer’s Guide for Documanage

 The various items should not be repeated. If they are the last specified of
the type will be used, without an error noted.

 This specification format allows for "OR" clauses in Folder and
Document filters. This syntax does not address specifying Variable Filters
(i.e. Server-Side filters)

Examples

 FolderFilter = DMGSamples.dbo.Vehicle.Customer_ID = 137 Or
DMGSamples.dbo.Vehicle.Customer_ID = 145

 DocumentFilter = dbo.OT_Docs.DocID = 4

 FolderOrderBy = DMGSamples.dbo.Amergen.FName

 DocumentOrderBy = Order By dbo.OT_Docs.Tag

 XDPFilter = CLAIM|dbo.OT_CLAIM.Accident_Cause LIKE '%test%'
and dbo.OT_CLAIM.Fault LIKE '%yes%'

 FullTextFilter = See Microsoft documentation for syntax

 IndicateEmptyFolders = True

NOTE: The DocumentOrderBy clause requires the "Order By" phrase,
whereas the FolderOrderBy does not and will throw an error if it's
included. The DocumentOrderBy clause will not throw an error if it's
not included, but will not include any documents in the query.

237

 COM Invocation Interface
Programmers can give Workstation users a way to select documents and pass
them to a custom component using the COM Invocation Interface. The
interface provides a menu option that instantiates a COM object and passes
information about the current connection, cabinet, and the documents that
users have selected. The interface can run the COM object in process or out-
of-process.

DocSelectionData object
When the user selects a COM Invocation menu item, the Workstation
instantiates an object by calling CreateObject on the supplied ProgID. It then
calls the .Init() method of the object passing it a DocSelectionData object.The
properties of that object are as follows:

General

 MenuCaption() As String
The caption of the menu option used to invoke the object.

The same object could be used by multiple menu options and change it's
behavior accordingly).

 Version() As String
The version of the interface; currently 1.0

COM Invocation Interface
DocSelectionData object

238

 CurrentForm() As Object
The current form.

This allows an in-process component to use this form as the "parent" for
any dialogs it posts. Thus they will follow the parent if minimized or
context is switched to a different applications, and so on. This value will
be invalid for out-of-process components.

Connection Information

The component could use the existing connection if it is in-process and based
on POAPI; otherwise it could use this information to establish a session.

 .hSession() As Long
current session

 .hCursor() As Long
current cursor

 .hFolder() As Long
current folder hItem

 .Cabinet() As String
cabinet name

 .FolderLabel() As String
current folder label

 .FolderKeyString() As String
current folder keystring

COM Invocation Interface
Com Object

239

Document Information

Information about the selected document(s).

 .TotalDocuments() As Long
number of documents

 .DocumentLabel(i) As String
document label (array is 1-based)

 .DocumentKeyString(i) As String
document keystring (array is 1-based)

 .DocumentSpecifier(i) As String
document specifier (array is 1-based)

 .DocumenthItem(i) As Long
hItem for document (array is 1-based)

Com Object
Various COM objects that support the COM Invocation interface can be
defined. Depending upon how they are compiled, they can run in-process or
out-of-process. They could conceivably run on a separate machine through
DCOM. If the object uses POAPI and is running in-process, it can use the
existing session, cursor and hItems. In this case, the component would act as
if it were part of the Workstation. Out-of-process components or those built
on DmgAPI would need to establish a session and use the folderkey to get a
cursor, or use the docSpecifiers to get document hItems. A COM object
supporting the COM Invocation interface has to expose the following
properties and methods:

COM Invocation Interface
DmgComObjects.ini File

240 Programmer’s Guide for Documanage

 .Init(oDocSelectionData as DmgClient.DocSelectionData) As Long
The passed parameter could also be defined "As Object" and then would
be late bound. The method should return a zero for success, greater than
zero for a user cancellation, less than zero for an error.

 .Version() As String
The version of the COM Invocation interface that the component
supports, currently 1.0.

 .RefreshContent() As Boolean
A flag indicating whether the Workstation should refresh its UI content.

For example, the component may have altered folder contents, document
attributes, and so on.

 .LastErrorDescription() As String
A description of the last error encountered.

The workstation reports the error to its log and to the user if the .Init
method returns a negative error code.

 .LastErrorSource() As String
Source of the last error.

 .LastErrorNumber() As Long
Number of the last error.

 .LastErrorAdvice() As String
Suggestion to the user regarding the error.

DmgComObjects.ini File
Programmers can give Workstation users a way to select documents and pass
them to a custom component using the COM Invocation Interface. The

COM Invocation Interface
Version

Programmer’s Guide for Documanage 241

interface provides a menu option that instantiates a COM object and passes
information about the current connection, cabinet, and the documents that
users have selected.

The DmgComObjects.ini filet adds one or more menu items to the
Documanage Workstation Document Menu.The following paragraphs
describe the entries in the file and include a name/value table, and a sample
file entry.

Version
The Version section contains the version information for the COM Invocation
Interface.

Sample ini file entry:

[Version]
Version=1.0

Document COM Objects
This section contains a count of the number of COM objects that can be
defined. In the future, COM objects on the Folder menu or some other extension
might be supported

Name Possible Values Default Description

Version 1.0 "1.0” Version information. NOTE this
section must be present with a
value of 1.0

COM Invocation Interface
Document COM Object

242 Programmer’s Guide for Documanage

Sample ini file entry:

[DocumentCOMObjects]

Count=2

Document COM Object
This section contains information for the nth COM object. One of these
sections exists for each COM object.

Name Possible Values Default Description

Count 2 No Default The number of Document COM objects
defined.

Name Possible Values Default Description

ProgID TestDmgCOM.TestObject No Default The ProgID of the object.
The Workstation instantiates
the object with a
CreateObject call on this
ProgID

MenuCaption Test C&OM Object If a menu
caption is not
provided, the
ProgID is used.

The menu caption added to
the Document Menu;
accelerator keys may be
defined but should not be in
conflict with existing
accelerator keys on the
menu.

COM Invocation Interface
Document COM Object

Programmer’s Guide for Documanage 243

Sample DocCOMObject.ini file entry:

[DocCOMObject_1]

ProgID=TestDmgCOM.TestObject

MenuCaption=Test C&OM Object

ShowOnCabinet=True

ShowOnProject=True

EnableOnMultiselect=True

EnableMask=0

ShowOnCabinet True, False False A flag that determines
whether the menu option
appears on the Cabinet
Window

ShowOnProject True, False False A flag that determines
whether the menu
option appears on the
ActiveProject window.

EnableOnMultiselect True, False True A flag whether the
menu option should be
enabled when multiple
documents are selected.

EnableMask 0, or mask setting 0 A bit mask that enables the
menu options corresponding
to user authorities
(download, view, edit, and so
on) . A value of zero enables
the menu option whenever a
document is selected.

Name Possible Values Default Description

COM Invocation Interface
Document COM Object

244 Programmer’s Guide for Documanage

Enable Mask

The EnableMask value reflects which of its bits should be ON to enable
different menu options. The bits are evaluated based upon the user authorities
for the last selected document.

NOTE: All of the specified Enable Mask bits must be ON to enable the menu
item.

An EnableMask value of zero indicates that the menu option should be
enabled whenever a document is selected. The DocSelectionData object
exposes the following enumeration, which holds bit values that control the
enabled state of the COM object menu item(s).

Public Enum COM_ENABLE_BITS
 CEB_ISCHECKEDOUTBYCURRENTUSER = 2
 CEB_CHECKOUT = 4
 CEB_VIEW = 8
 CEB_DOWNLOAD = 16
 CEB_EDITCONTENTS = 32
 CEB_EDITDATA = 64
 CEB_CHECKINSAME = 128
 CEB_CHECKINMINOR = 256
 CEB_CHECKINMAJOR = 512
 CEB_DELETE = 1024
 CEB_VIEWHISTORY = 2048
 CEB_MOVE = 4096
 CEB_COPY = 8192
End Enum

Enable Mask Constant Definitions
Constant Definition

CEB_ISCHECKEDOUTBYCURRENTUSER The document is checked out by the current user.

CEB_CHECKOUT The document can be checked out.

COM Invocation Interface
Document COM Object

Programmer’s Guide for Documanage 245

Enable Mask Example

 To specify that a COM menu option should be enabled if the user has the
authority to download and edit the document file contents, the
EnableMask should be set to 48 (16 + 32).

 To specify that a COM menu option should be enabled if the user has the
authority to copy and delete a document, the EnableMask should be set to
9216 (1024 + 1892).

CEB_VIEW The document can be viewed.

CEB_DOWNLOAD The document file can be downloaded.

CEB_EDITCONTENTS The user can edit the document file.

CEB_EDITDATA The user can edit the document information.

CEB_CHECKINSAME The document can be checked in as the same
version. NOTE that the document must be checked
out for this authority to evaluate to true.

CEB_CHECKINMINOR The document can be checked in as a minor
version. NOTE that the document must be checked
out for this authority to evaluate to true.

CEB_CHECKINMAJOR The document can be checked in as a major
version. NOTE that the document must be checked
out for this authority to evaluate to true.

CEB_DELETE The document can be deleted.

CEB_VIEWHISTORY The version history of the document can be
viewed.

CEB_MOVE The document can be moved to another folder.

CEB_COPY The document can be copied to another folder.

Constant Definition

COM Invocation Interface
Base Functionality COM Replacement Interface

246 Programmer’s Guide for Documanage

 To specify that a COM menu option should be enabled if the user has the
authority to checkout a document, edit the document information, and
download and edit the document file, the EnableMask should be set to
116 (4 + 16 + 32 + 64).

 To specify that a COM menu option should be enabled whenever a
document is selected, the EnableMask should be set to zero.

Base Functionality COM Replacement Interface
A COM component can replace the existing basic functions of the
Workstation. The following .ini file entries allow you to replace these
functions with custom COM components.

 Edit

 View

 Scan

 Import

 Export

 Mail

 Print

The Workstation reads the DmgCOMObjects.ini file and determines if a
replacement is defined for any of these base document procedures. If present
the Workstation invokes the COM component designated in the .ini file rather
than the procedure ordinarily called by the Workstation. It passes a

COM Invocation Interface
Base Functionality COM Replacement Interface

Programmer’s Guide for Documanage 247

DocSelectionData object as discussed above. The technical details of the
COM interface are identical to that discussed above.

Edit

Edit replaces the Document Edit procedure

Name Possible Values Default Description

ProgID COM ProgID of
component to replace
Document Edit Procedure

No Default The ProgID of the object; the
Workstation will instantiate
the object with a
CreateObject call on this
ProgID

ShowOnCabinet True|False False A flag whether the procedure
should be replaced on the
Cabinet Window.

ShowOnProject True|False False A flag whether the procedure
should be replaced on the
Project Window.

EnableOnMultiselect True|False False A flag whether the procedure
should be replaced on the
Cabinet Window.

MenuCaption blank|Replacement Menu
Caption

"" which
preserves the
existing Menu
Caption.

replacement Menu Caption
for the procedure. NOTE it
is recommended this item be
left blank or omitted

COM Invocation Interface
Base Functionality COM Replacement Interface

248 Programmer’s Guide for Documanage

View

View replaces the Document View procedure.

ToolTip blank|Replacement
ToolTip

"" which
preserves the
existing ToolTip

replacement ToolTip for the
procedure button on the
Document Toolbar. NOTE
that this is ignored on the
ActiveProject Window
which does not have a
Document Toolbar

Name Possible Values Default Description

Name Possible Values Default Description

ProgID COM ProgID of
component to replace
Document View Procedure

No Default The ProgID of the object; the
Workstation will instantiate
the object with a
CreateObject call on this
ProgID

ShowOnCabinet True|False False A flag whether the procedure
should be replaced on the
Cabinet Window.

ShowOnProject True|False False A flag whether the procedure
should be replaced on the
Project Window.

EnableOnMultiselect True|False False A flag whether the procedure
should be replaced on the
Cabinet Window.

COM Invocation Interface
Base Functionality COM Replacement Interface

Programmer’s Guide for Documanage 249

Scan

Scan replaces the Scan procedure.

MenuCaption blank|Replacement Menu
Caption

"" which
preserves the
existing Menu
Caption.

replacement Menu Caption
for the procedure. NOTE it
is recommended this item be
left blank or omitted

ToolTip blank|Replacement
ToolTip

"" which
preserves the
existing ToolTip

replacement ToolTip for the
procedure button on the
Document Toolbar. NOTE
that this is ignored on the
ActiveProject Window
which does not have a
Document Toolbar

Name Possible Values Default Description

Name Possible Values Default Description

ProgID COM ProgID of
component to replace Scan
Procedure

No Default The ProgID of the object; the
Workstation will instantiate
the object with a
CreateObject call on this
ProgID

ShowOnCabinet True|False False A flag whether the procedure
should be replaced on the
Cabinet Window.

ShowOnProject True|False False A flag whether the procedure
should be replaced on the
Project Window.

EnableOnMultiselect NA NA Does not apply. Can be
present but will be ignored.

COM Invocation Interface
Base Functionality COM Replacement Interface

250 Programmer’s Guide for Documanage

Import

Import replaces the Document Import procedure.

MenuCaption blank|Replacement Menu
Caption

"" which
preserves the
existing Menu
Caption.

replacement Menu Caption
for the procedure. NOTE it
is recommended this item be
left blank or omitted

ToolTip NA NA Does not apply. Can be
present but will be ignored.

Name Possible Values Default Description

Name Possible Values Default Description

ProgID COM ProgID of
component to replace
Document Import
Procedure

No Default The ProgID of the object; the
Workstation will instantiate
the object with a
CreateObject call on this
ProgID

ShowOnCabinet True|False False A flag whether the procedure
should be replaced on the
Cabinet Window.

ShowOnProject True|False False A flag whether the procedure
should be replaced on the
Project Window.

EnableOnMultiselect NA NA Does not apply. Can be
present but will be ignored.

MenuCaption blank|Replacement Menu
Caption

"" which
preserves the
existing Menu
Caption.

replacement Menu Caption
for the procedure. NOTE it
is recommended this item be
left blank or omitted

COM Invocation Interface
Base Functionality COM Replacement Interface

Programmer’s Guide for Documanage 251

Export

Export replaces the Document Export procedure.

ToolTip blank|Replacement
ToolTip

"" which
preserves the
existing ToolTip

replacement ToolTip for the
procedure button on the
Document Toolbar. NOTE
that this is ignored on the
ActiveProject Window
which does not have a
Document Toolbar

Name Possible Values Default Description

Name Possible Values Default Description

ProgID COM ProgID of
component to replace
Document Export
Procedure

No Default The ProgID of the object; the
Workstation will instantiate
the object with a
CreateObject call on this
ProgID

ShowOnCabinet True|False False A flag whether the procedure
should be replaced on the
Cabinet Window.

ShowOnProject True|False False A flag whether the procedure
should be replaced on the
Project Window.

EnableOnMultiselect True|False False A flag whether the procedure
should be replaced on the
Cabinet Window.

COM Invocation Interface
Base Functionality COM Replacement Interface

252 Programmer’s Guide for Documanage

Mail

Mail replaces the Document Mail procedure.

MenuCaption blank|Replacement Menu
Caption

"" which
preserves the
existing Menu
Caption.

replacement Menu Caption
for the procedure. NOTE it
is recommended this item be
left blank or omitted

ToolTip blank|Replacement
ToolTip

"" which
preserves the
existing ToolTip

replacement ToolTip for the
procedure button on the
Document Toolbar. NOTE
that this is ignored on the
ActiveProject Window
which does not have a
Document Toolbar

Name Possible Values Default Description

Name Possible Values Default Description

ProgID COM ProgID of
component to replace
Document Mail Procedure

No Default The ProgID of the object; the
Workstation will instantiate
the object with a
CreateObject call on this
ProgID

ShowOnCabinet True|False False A flag whether the procedure
should be replaced on the
Cabinet Window.

ShowOnProject True|False False A flag whether the procedure
should be replaced on the
Project Window.

COM Invocation Interface
Base Functionality COM Replacement Interface

Programmer’s Guide for Documanage 253

Print

Print replaces the Document Print procedure.

EnableOnMultiselect True|False False A flag whether the procedure
should be replaced on the
Cabinet Window.

MenuCaption blank|Replacement Menu
Caption

"" which
preserves the
existing Menu
Caption.

replacement Menu Caption
for the procedure. NOTE it
is recommended this item be
left blank or omitted

ToolTip blank|Replacement
ToolTip

"" which
preserves the
existing ToolTip

replacement ToolTip for the
procedure button on the
Document Toolbar. NOTE
that this is ignored on the
ActiveProject Window
which does not have a
Document Toolbar

Name Possible Values Default Description

Name Possible Values Default Description

ProgID COM ProgID of
component to replace
Document Print Procedure

No Default The ProgID of the object; the
Workstation will instantiate
the object with a
CreateObject call on this
ProgID

ShowOnCabinet True|False False A flag whether the procedure
should be replaced on the
Cabinet Window.

COM Invocation Interface
Base Functionality COM Replacement Interface

254 Programmer’s Guide for Documanage

Some Considerations

The User Interface does not change, except for Document menu items and
Document Toolbar button ToolTips that can be overridden. The enabled/
disabled state of the items follows the same evaluation of user authorities as
the base functionality except that most of these procedures are currently
enabled only when a single document is selected, as follows:

ShowOnProject True|False False A flag whether the procedure
should be replaced on the
Project Window.

EnableOnMultiselect True|False False A flag whether the procedure
should be replaced on the
Cabinet Window.

MenuCaption blank|Replacement Menu
Caption

"" which
preserves the
existing Menu
Caption.

replacement Menu Caption
for the procedure. NOTE it
is recommended this item be
left blank or omitted

ToolTip blank|Replacement
ToolTip

"" which
preserves the
existing ToolTip

replacement ToolTip for the
procedure button on the
Document Toolbar. NOTE
that this is ignored on the
ActiveProject Window
which does not have a
Document Toolbar

Name Possible Values Default Description

Procedure Selection

Edit single select only

View single select only

COM Invocation Interface
Base Functionality COM Replacement Interface

Programmer’s Guide for Documanage 255

The syntax allows this to be overridden with the EnableOnMultiselect flag.

Scan NA

Import NA

Export multiselect OK

Mail multiselect OK

Print multiselect OK

Procedure Selection

COM Invocation Interface
Sample DmgCOMObjects.ini file

256 Programmer’s Guide for Documanage

Sample DmgCOMObjects.ini file
A typical DmgCOMObjects.ini file is shown here.

[Version]

Version=1.0

[DocumentCOMObjects]

Count=2

[DocCOMObject_1]

ProgID=TestDmgCOM.TestObject

MenuCaption=Test C&OM Object

ShowOnCabinet=True

ShowOnProject=True

EnableOnMultiselect=True

EnableMask=0

[DocCOMObject_2]

ProgID=TestDmgCOMoop.TestObject

MenuCaption=Test CO&M Object Out-of-Process

ShowOnCabinet=True

ShowOnProject=True

EnableOnMultiselect=False

EnableMask=0

[Mail]

ProgID=TestDmgCOM.ReplaceMail

ShowOnCabinet =True

ShowOnProject =True

EnableOnMultiselect=True

COM Invocation Interface
Sample DmgCOMObjects.ini file

Programmer’s Guide for Documanage 257

MenuCaption=Mail document(s) via specialized component…

ToolTip=Mail document(s) via Acme SuperMail

[Print]

ProgID= TestDmgCOM.ReplacePrint

ShowOnCabinet =True

ShowOnProject = False

EnableOnMultiselect= False

MenuCaption=

ToolTip=

COM Invocation Interface
Sample DmgCOMObjects.ini file

258 Programmer’s Guide for Documanage

Programmer’s Guide for Documanage 259

Index
A

array properties, using 5

C

cabinet, navigating the 107

control inventory 1

controls

dynamic loading 6

non-visual

Diary 13

Document 21

Folder 44

POProject 53

POVolume 90

Query 92

Session 79

visual

Document Viewer 142

Folder and Document 115

Folder List 127

Tree 131

D

dates, format 7

Diary Control

description 13

methods 19

properties 13

Document Control

description 21

examples 43

methods 32

using 43

document conventions xxiii

Document Viewer Control

description 142

methods

Annotation 164

Imaging/Basic 160

properties

Annotation 162

Imaging/Basic 159

using 167

dynamic loading 6

E

error handling 7

F

Folder and Document Control

description 115

events 122

example 124

methods 118

properties 115

using 125

Folder Control

description 44

Index

260 Programmer’s Guide for Documanage

methods 48

properties 44

using 53

Folder List Control

description 127

events 129

methods 129

using 130

G

getting started xx

H

handles 2

hCursor 4

hItem 4

hSession 4

hCursor handle 4

hierarchy 2

hItem handle 4

hSession handle 4

N

non-visual controls 13

P

POProject Control

methods 57

properties 53

sample code 56

POVolume Control

description 90

methods 91

properties 90

using 91

Q

Query Control

description 92

methods 98

properties 92

using 106

R

refreshing folders 185

S

Session Control

description 79

methods

router only 87

standard 81

properties

router only 80

standard 79

using 90

T

Tree Control

description 131

events 137

example 141

methods 134

properties 131

using 141

Index

Programmer’s Guide for Documanage 261

type libraries 6

V

variable filters, using 109

Index

262 Programmer’s Guide for Documanage

	Start
	Notice
	Publication history
	Documanage documentation roadmap
	Table of Contents
	Preface
	Introduction
	Who Should Use This Manual?
	What You Need to Get Started
	Development Projects
	Using this manual
	Contents
	Conventions
	Typographic and Keyboard Conventions

	Related documents
	Suggestions

	General Topics
	Control Inventory
	Handles and Hierarchy
	Document Specifiers
	Using Array Properties
	Dynamic Loading of Controls Using CreateObject or Type Libraries
	Dates
	Error Handling
	Valid IsActionAllowed Checks
	Filter/OrderBy Chart

	Non-Visual Controls
	DmgDiary Control
	Properties
	Methods

	PODocument Control
	Properties
	Methods
	Examples
	Initializing the Document Control
	Importing a Document into Documanage

	Using the Document Control

	POFolder Control
	Properties
	Methods
	Using the Folder Control

	POProject Control
	Properties
	Sample code: Adding a Workflow project:
	CheckOut a Project:
	Methods

	POSession Control
	Standard Properties
	Router Only Properties
	Standard Methods
	Router Only Methods
	Using the Session Control

	POVolume Control
	Properties
	Methods
	Using POVolume Control

	POQuery Control
	Properties
	Methods
	Using the Query Control
	Opening a Cabinet
	Navigating the Cabinet Programmatically (Using GetRelativehItem)
	Initializing and Reinitializing the POQuery
	Using Variable Filters
	Example
	INI File Entries
	Sample Code

	Visual Controls
	POFolder and Document Control
	Properties
	Methods
	Events
	Example
	Using the POFolder and Document Control

	POFolder List Control
	Properties
	Methods
	Events
	Using the Folder List Control

	POTree Control
	Properties
	Methods
	Events
	Example
	Using the Tree Control

	DmgViewer Control
	DmgViewer interface
	Events
	Properties

	DmgViewer Methods
	Document Operations
	Enumerations

	Using the DmgViewer control
	Setup
	Initializing
	Saving / Clearing

	POViewer Control
	Basic Imaging Properties
	Basic Imaging Methods
	Annotation Properties
	Annotation Methods
	Using the POViewer Control
	Viewing A Document

	Dmg QBE Control
	Introduction
	Limitations and Requirements
	User Interface
	Behaviors
	Properties
	Methods
	Events
	XML Files
	XML File Example

	DMDTPicker Control
	Example - Visual Basic

	General Topics
	Refreshing folders when documents change
	The Tree and GetRelativehItem
	Visual Controls vs. Programmatic Use

	Document Specifier Controls
	Introduction
	Document Specifier List Control
	Properties
	Methods

	Document Access Control
	Properties
	Methods

	Custom Workflow Tasks
	Workflow Daemon
	Installation
	Notation
	Running the Daemon
	Help and Installation
	Run Mode / Connecting to Documanage
	Execution Control
	Logging

	Run Mode
	Connection Parameters
	Logging Parameters
	Setting Up Task Instructions

	Writing Daemon-Called Libraries
	PINotify()
	PIExecute()

	Workflow Daemon Plugins
	Workflow Daemon Calls
	Workflow Daemon Tasks
	Sample Header File
	Sample C++ File
	Sample Plugin Code

	Workstation Automation Feature
	Introduction
	Interfaces
	Init
	Open Project
	Open Document
	Open Folder
	Open Query
	Error Information
	Action Parameter Bitmask
	Example

	Specification Formats
	Project Key
	DmgAPI
	POAPI
	Examples

	Document Key
	DmgAPI
	POAPI
	Examples

	Folder Key
	DmgAPI
	POAPI
	Examples

	Query Specification (Format 0)
	Query Specification (Format 1)
	Examples

	COM Invocation Interface
	DocSelectionData object
	General
	Connection Information
	Document Information

	Com Object
	DmgComObjects.ini File
	Version
	Document COM Objects
	Document COM Object
	Enable Mask
	Enable Mask Example

	Base Functionality COM Replacement Interface
	Edit
	View
	Scan
	Import
	Export
	Mail
	Print
	Some Considerations

	Sample DmgCOMObjects.ini file

	Index

