
J o l t 1 . 1 R e l e a s e
D o c u m e n t E d i t i o n 1 . 1

A u g u s t 1 9 9 7

BEA Jolttm

User’s Guide

ystems
 against
hole or
eadable

ms
Clause
 at
 FAR

the part

S,

re
 a

.

Copyright

Copyright © 1996, 1997 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA S
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is
the law to copy the software except as specifically allowed in the agreement. This document may not, in w
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine r
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Syste
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNES
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Connect, BEA Jolt, Distributed Application Framework, and Enterprise Middleware Solutions a
trademarks of and are developed and licensed by BEA Systems, Inc., Sunnyvale, California. TUXEDO is
registered trademark of Novell, Inc., exclusively licensed to BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated

Jolt User’s Guide

Document Edition Part Number Date Software Version

1.0 801-001103-001 November 1996 Jolt Release 1.0

1.0.1 801-001105-002 February 1997 Jolt Release 1.0.1

1.1 801-001105-003 August 1997 Jolt Release 1.1

.. xiii

... xiii

.. xiii

.. xiv

.....xv

....xv

.. xvi

.. 1-2

... 1-3

. 1-5

.. 1-6

. 1-7

. 1-8

.. 1-9

1-10

-11

.. 2-2

... 2-2

.. 2-3

.. 2-3

. 2-4

. 2-4
Contents

Preface
Purpose of This Manual...

Audience...

Jolt Documentation..

How This Manual is Organized...

Related Manuals ...

Other TUXEDO Resources ...

Document Conventions ...

1. Introducing BEA Jolt
What is BEA Jolt? ...

Key Features...

How it Works ...

Jolt Servers ...

Jolt Class Library for Java...

Jolt Server and Jolt Client Communication...

Jolt Repository..

Jolt Internet Relay ..

How to Jolt your TUXEDO Applications ... 1

2. Installing Jolt
Installation Requirements..

Server Requirements ...

Jolt Relay Requirements...

Client Requirements...

BEA Jolt 1.1 Installation ..

Directory Structure..
BEA Jolt User’s Guide iii

. 2-6

2-7

2-8

-12

2-22

2-26

2-27

... 3-2

.. 3-2

.. 3-3

.. 3-3

. 3-4

3-10

3-10

-11

13

. 3-14

3-14

. 3-16

3-18

-20

3-22

. 4-1

.. 4-2

. 4-2

. 4-2

.. 4-4

. 4-4

4-5

. 4-6

.. 4-8
Before You Begin..

UNIX System Installation Instructions ..

UNIX System Installation Script..

Windows NT Installation Instructions.. 2

Licensing your Jolt Software..

Using the Jolt Online Documentation ...

Getting Started with the Documentation ..

3. Configuring the Jolt System
Using the Jolt Server...

Jolt Internet Relay...

Security and Encryption ...

Starting the Jolt Server ...

Configuring the Jolt Server ...

Shutting Down the Jolt Server..

Using the Jolt Repository ..

Configuring the Jolt Repository ... 3

Initializing Services Using TUXEDO and the Repository Editor............ 3-

Event Subscription..

Configuration..

Jolt Internet Relay...

Jolt Relay (JRLY)...

Jolt Relay Adapter (JRAD) .. 3

Using Sample Applications in Jolt Online Resources

4. Bulk Loading TUXEDO Services
Introduction to the Bulk Loader ...

Getting Started Using the Bulk Loader ...

Using UNIX...

Using Windows NT...

Syntax of the Bulk Loader Data Files ...

Guidelines for Using Keywords ..

Keyword Order in the Bulk Loader Data File ..

Using Service-Level Keywords and Values..

Using Parameter-Level Keywords and Values...
iv BEA Jolt User’s Guide

.

Troubleshooting...4-9

Sample Bulk Load Data...4-10

5. Using the Jolt Repository Editor
Introduction to the Repository Editor..5-2

Repository Editor Window...5-3

Getting Started..5-5

Starting the Repository Editor Using appletviewer....................................5-5

Starting the Repository Editor Using Your Web Browser.........................5-6

Logging on to the Repository Editor..5-6

Exiting the Repository Editor...5-8

Main Components of the Repository Editor..5-10

Repository Editor Flow..5-10

What is a Package?...5-12

What is a Service?..5-15

What is a Parameter?..5-17

Setting Up Packages and Services...5-19

Saving Your Work...5-19

Adding a Package...5-19

Adding a Service..5-21

Adding a Parameter..5-25

Grouping Services Using the Package Organizer...5-29

Modifying Packages/Services/Parameters...5-33

Editing a Service..5-33

Editing a Parameter..5-35

Deleting Parameters/Services/Packages...5-36

Making a Service Available to the Jolt Client...5-38

Exporting/Unexporting Services..5-38

Reviewing the Exported/Unexported Status..5-40

Testing a Service...5-42

Repository Editor Service Test Window..5-43

Testing a Service Process Flow..5-45

Troubleshooting...5-48
BEA Jolt User’s Guide v

6. Using the Jolt Class Library
Class Library Functionality Overview..6-2

Java Applications vs. Java Applets..6-2

Jolt Class Library Features...6-3

Jolt Client/Server Relationship...6-4

Jolt Object Relationships...6-7

Jolt Class Functionality...6-8

Jolt Class Library Walk-through...6-10

Using TUXEDO Buffer Types with Jolt...6-14

Using the STRING Buffer Type...6-15

Using the CARRAY Buffer Type..6-17

Using the VIEW Buffer Type...6-19

Using the FML Buffer Type...6-19

Multithreaded Applications...6-21

Preemptive and Non-preemptive Threads..6-21

Using Jolt with Non-Preemptive Threading...6-22

Using Threads for Asynchronous Behavior...6-23

Using Threads with Jolt..6-23

Event Subscription and Notifications..6-28

API for Event Subscription..6-28

Notification Event Handler...6-29

Connection Modes..6-30

Notification Data Buffers...6-30

TUXEDO Event Subscription..6-31

Using the Jolt API to Receive TUXEDO Notifications...........................6-33

Clearing Parameter Values..6-35

Reusing Objects...6-38

Application Deployment and Localization..6-42

Deploying a Jolt Applet..6-42

Client Considerations...6-43

Web Server Considerations..6-43

Localizing a Jolt Applet..6-44
vi BEA Jolt User’s Guide

.

.

7. Jolt Class Library Reference
Jolt Methods...7-2

Methods for Handling Items..7-2

JoltSessionAttributes Class...7-5

JoltSessionAttributes Constructor..7-6

JoltSessionAttributes...7-6

JoltSessionAttributes Methods...7-7

checkAuthenticationLevel..7-7

clear..7-8

getByteDef..7-9

getBytesDef...7-9

getDoubleDef..7-10

getFloatDef..7-10

getIntDef...7-11

getShortDef...7-12

getStringDef..7-12

setByte...7-13

setBytes...7-13

setDouble..7-14

setFloat..7-14

setInt..7-15

setShort..7-15

setString..7-16

JoltSession Class...7-18

JoltSession Constructor..7-19

JoltSession...7-19

JoltSession Method..7-20

endSession...7-20

isAlive ...7-21

onReply...7-21

finalize...7-22

JoltRemoteService Class...7-23

JoltRemoteService Constructor..7-24

JoltRemoteService..7-24

JoltRemoteService Methods...7-24
BEA Jolt User’s Guide vii

call...7-24

JoltRequestMessage Abstract Class..7-26

JoltRequestMessage Methods..7-28

clear...7-31

getApplicationCode...7-31

getName..7-31

getOccurrenceCount..7-32

getByteDef..7-32

getBytesDef...7-32

getDoubleDef..7-33

getFloatDef..7-33

getIntDef..7-34

getShortDef...7-34

getStringDef..7-34

getByteItemDef...7-35

getBytesItemsDef..7-35

getDoubleItemDef...7-36

getFloatItemDef..7-36

getIntItemDef..7-36

getShortItemDef..7-37

getStringItemDef...7-37

setRequestPriority...7-38

setByte...7-38

setBytes...7-39

setDouble...7-39

setFloat..7-40

setInt..7-40

setShort..7-41

setString...7-41

setByteItem..7-42

setBytesItem..7-42

setDoubleItem...7-43

setFloatItem...7-43

setIntItem...7-44

setShortItem..7-44
viii BEA Jolt User’s Guide

setStringItem...7-45

addByte...7-45

addBytes..7-46

addDouble...7-46

addFloat...7-47

addInt..7-47

addShort..7-48

addString...7-48

delete...7-49

deleteItem..7-49

JoltTransaction Class...7-50

JoltTransaction Constructor...7-51

JoltTransaction..7-51

JoltTransaction Methods..7-52

commit..7-52

rollback..7-53

JoltEvent Class..7-54

JoltEvent Methods..7-54

unsubscribe..7-54

unsubscribeAll..7-55

JoltUserEvent Class...7-56

UNSOLMSG...7-56

JoltUserEvent Methods..7-57

JoltUserEvent..7-57

JoltReply Class..7-59

JoltReply Methods..7-59

getMessage..7-59

JoltMessage Class..7-60

JoltMessage Methods...7-61

getOccurrenceCount..7-61

getByteDef..7-61

getShortDef...7-62

getIntDef...7-62

getFloatDef..7-63

getDoubleDef..7-63
BEA Jolt User’s Guide ix

getStringDef..7-63

getBytesDef...7-64

getByteItemDef...7-64

getShortItemDef..7-65

getIntItemDef..7-65

getFloatItemDef..7-66

getDoubleItemDef...7-66

getBytesItemDef..7-67

getStringItemDef...7-67

A. Jolt Class Library Errors and Exceptions
Jolt Error and Exception Handling...A-2

ApplicationException Class...A-4

ApplicationException Methods...A-5

getMessage Method..A-5

getApplicationCode Method..A-5

getObject Method...A-5

JoltException Class...A-6

JoltException Methods..A-7

getMessage Method..A-7

getErrno Method..A-7

getObject Method...A-7

EventException Class...A-8

MessageException Class..A-8

ServiceException Class..A-9

SessionException Class..A-9

TransactionException Class...A-10

TUXEDO Errors...A-11

B. System Messages
Jolt System Messages...B-2

Repository Messages..B-12

FML Error Messages..B-14

Information Messages...B-16

Jolt Relay Adapter (JRAD) Messages..B-17
x BEA Jolt User’s Guide

Jolt Relay (JRLY) Messages...B-24

Bulk Loader Utility Messages...B-29
BEA Jolt User’s Guide xi

xii BEA Jolt User’s Guide

stem,

d
g from
ith
Preface

Purpose of This Manual

This manual describes the BEA Jolt™ product, discusses how to use the Jolt sy
and defines messages and terms associated with using the product.

Audience

This document is intended for system administrators, network administrators, an
developers interested in extending secure, scalable transaction-based processin
the enterprise to intranet and Internet wide availability. It assumes a familiarity w
BEA TUXEDO and Java programming.

Jolt Documentation

The Jolt documentation consists of the following documents:

BEA Jolt User’s Guide (available in both hardcopy and online format)

BEA Jolt Release Notes (available in hardcopy format)
BEA Jolt User’s Guide xiii

he

,
e

sses.

s

he
d
How This Manual is Organized

This manual is organized as follows:

Chapter 1, “Introducing BEA Jolt,” describes the Jolt features, architecture, and
components.

Chapter 2, “Installing Jolt,” describes how to install the Jolt components.

Chapter 3, “Configuring the Jolt System,” describes security, event notification, t
Jolt Relay, and how to configure the Jolt server components.

Chapter 4, “Bulk Loading TUXEDO Services,” describes how to use the Jolt Bulk
Loader utility.

Chapter 5, “Using the Jolt Repository Editor,” describes how to add, modify, test
export, and delete TUXEDO service definitions from the Repository based on th
information available from the TUXEDO configuration file.

Chapter 6, “Using the Jolt Class Library,” describes how developers use the
object-oriented Java language classes for accessing TUXEDO services.

Chapter 7, “Jolt Class Library Reference,” is a reference for Jolt methods and cla

Appendix A, “Jolt Class Library Errors and Exceptions,” is a resource of Jolt clas
library errors and exceptions.

Appendix B, “System Messages,” is a resource for Jolt system error messages.

Note: BEA TUXEDO and BEA Jolt are trademarked terms. Any occurrence of t
terms TUXEDO and Jolt in the document, refers to the BEA TUXEDO an
BEA Jolt products.
xiv BEA Jolt User’s Guide

Related Manuals

TUXEDO System Reference Manual

TUXEDO System Administration Guide

TUXEDO System Programmer’s Guide, Volumes 1 and 2

TUXEDO System Message Manual, Volumes 1 and 2

Other TUXEDO Resources

The TUXEDO System (Andrade, Carges, Dywer, Felts)

TUXEDO: An Open Approach to OLTP (Primatesta)

Building Client/Server Applications Using TUXEDO (Hall)
BEA Jolt User’s Guide xv

Document Conventions

The following documentation conventions are used throughout this manual:

Item Convention Example

Arguments appear in parentheses and are
formatted in a lowercase
monospace font. Optional
arguments are formatted in italic
font. Predefined arguments are
formatted in an uppercase font.

(name, 0, value)

(ACCTID, 2, 5000)

Caution Apply to practices that could
result in loss of information.

Caution: Be sure to save
your information
before moving to
the next window.

Environment
variables

are formatted in an uppercase
font.

ENVFILE=${APPDIR}

Glossary
terms

are formatted in italics in the
printed copy.

Port is the host name of a Jolt
server.

Key names are presented in boldface type. Press Enter to continue.

Literals are formatted in a monospace
font.

class extendSample

Notes highlight procedures and contain
information which assist the
user in understanding the
information contained in this
manual.

Note: This feature is
available with Jolt.

Programs and
applications

are formatted with initial caps. Use the Repository Editor and
the Class Library.
xvi BEA Jolt User’s Guide

User input are formatted in a monospace
font.

Type cd TUXDIR

Warning applies to practices which could
result in loss of productivity or
information.

Warning: Be sure to save
your information
before returning
to the previous
screen.

Window
items

are presented in boldface type.
Window items can be window
titles, button labels, text edit box
names or other parts of the
window.

Type your password in the
Logon window.

Select Export to make the
service available to the client.
BEA Jolt User’s Guide xvii

xviii BEA Jolt User’s Guide

CHAPTER

nd
1 Introducing BEA Jolt

BEA Jolt is a Java-based interface to the BEA TUXEDO system that extends
TUXEDO services to the Internet. BEA Jolt allows you to build client programs a
applets that can remotely invoke existing BEA TUXEDO services allowing
application messaging, component management, and distributed transaction
processing.

The following BEA Jolt topics are discussed in this chapter:

� What is BEA Jolt?

� Key Features

� How it Works

� Jolt Servers

� Jolt Class Library for Java

� Jolt Server and Jolt Client Communication

� Jolt Repository

� Jolt Internet Relay

� How to Jolt your TUXEDO Applications
BEA Jolt User’s Guide 1-1

1 INTRODUCING BEA JOLT

DO
ting
ure,
as

s,

g

ion

g
ort
ns

dler

ith

.

What is BEA Jolt?

BEA Jolt is a Java class library and API that provides an interface to BEA TUXE
from Java clients. The BEA Jolt product consists of several components for crea
Java-based client programs that access TUXEDO services and for enabling sec
reliable access to servers inside corporate firewalls. These Jolt components are
follows:

� Jolt Servers. One or more Jolt servers: listen for network connections from
clients, translate Jolt messages, multiplex multiple clients into a single proces
and submit and retrieve requests to and from TUXEDO based applications
running on one or more TUXEDO servers.

� Jolt Class Library for Java. The Jolt class library is a Java package containin
the class files which implement the Jolt API. These classes enable Java
applications and applets to invoke BEA TUXEDO services. The Jolt class
library includes functionality to set, retrieve, manage and invoke communicat
attributes, notifications, network connections, transactions, and services.

� Jolt Repository. A central Jolt Repository contains definitions of BEA
TUXEDO services. These services are used by Jolt at runtime to access
TUXEDO services. Using the Repository Editor, you can test new and existin
BEA TUXEDO services independently of the client applications. You can exp
services to a Jolt client application or unexport services by hiding the definitio
from the Jolt client.

� Jolt Internet Relay. The Jolt Internet Relay is a component that routes
messages from a Jolt client to a Jolt Server Listener (JSL) or Jolt Server Han
(JSH). This eliminates the need for the JSH and TUXEDO to run on the same
machine as the Web server. The Jolt Internet Relay consists of the Jolt Relay
(JRLY) and the Jolt Relay Adapter (JRAD).

The separation of BEA Jolt into these components permits the transactional and
Internet components of client/server applications to be implemented separately w
the security and scalability required for large-scale Internet and intranet services
1-2 BEA Jolt User’s Guide

KEY FEATURES

nd

e over

 Java
n
ntics

s
A
a

y

DO
ding

vice

 for
Key Features

With BEA Jolt, you can leverage existing TUXEDO services and extend your
transaction environment to the corporate intranet or world-wide Internet. The key
feature of the Jolt architecture is its simplicity. Using Jolt, you can build, deploy a
maintain robust, modular, and scalable electronic commerce systems that operat
the Internet.

BEA Jolt includes the following features.

Java-based API for Simplified Development. With its Java-based API, BEA Jolt
simplifies application design by providing well-designed object interfaces. Jolt
supports the Java JDK 1.02 and is fully compatible with Java threads. Jolt enables
programmers to build graphical front-ends that use the application and transactio
services of TUXEDO without the need to understand detailed transactional sema
or without having to rewrite existing TUXEDO applications.

Pure Java Client Development. Using Jolt you can build a pure Java client that run
in any Java-enabled browser. Jolt automatically converts from Java to native BE
TUXEDO data types and buffers and from TUXEDO back to Java. As a pure Jav
client, your applet or application does not need resident client-side libraries or
installation, allowing client applications to be downloaded via the network thereb
simplifying software distribution.

Easy Access to TUXEDO Services via Jolt Repository. The BEA Jolt Repository
facilitates Java application development by managing and presenting BEA TUXE
services definitions that you can use in your Java client. A Jolt repository bulk loa
utility lets you quickly integrate your existing TUXEDO services into the Jolt
development environment. Jolt and TUXEDO simplify network and application
scalability, while encouraging the reuse of application components.

GUI-based Maintenance and Distribution of TUXEDO Services. The Jolt
Repository Editor lets you manage BEA TUXEDO service definitions such as ser
names, inputs and outputs.

The Jolt Repository Editor provides support for different input and output names
services defined in the Jolt Repository.NEW
BEA Jolt User’s Guide 1-3

1 INTRODUCING BEA JOLT

d

ity that

ited
e of
ited
side
ed

t

xist

e
 it
Encryption for Secure Transaction Processing. BEA Jolt allows you to encrypt data
transmitted between Jolt clients and the JSL/JSH using a combination of DES an
RC4. International packages can use a 40-bit key. United States (U.S.) domestic
packages can also use a 128-bit key. Jolt encryption addresses the issue of secur
is essential for reliable Internet transaction processing.

Caution: Programs using the 128-bit encryption cannot be run outside of the Un
States. Therefore, clients running 128-bit encryption cannot be outsid
the United States. Customers with Intranets extending beyond the Un
States cannot use this mode of encryption if any internal clients are out
of the United States, without prior documented approval from the Unit
States government.

Added Security via Internet Relay. BEA Jolt features an Internet Relay componen
that allows network administrators to separate their Web Server and TUXEDO
application server. Web servers are generally considered insecure as they often e
outside a corporate firewall. The Jolt Internet Relay gives you greater flexibility to
locate your BEA TUXEDO server in a secure location or environment on your
network, yet still be able to handle transactions from Jolt clients on the Internet.

Event Subscription Support. Jolt Event Subscription is used to receive event
notifications from either TUXEDO services or other TUXEDO clients. Jolt Event
Subscription lets you handle two types of TUXEDO application events:

� Unsolicited Event Notifications. A Jolt client can receive these notifications
when a TUXEDO client or service subscribes to unsolicited events and a
TUXEDO client issues a broadcast or a directly targeted message.

� Brokered Event Notifications. The Jolt client receives these notifications via th
TUXEDO Event Broker. The Jolt client receives these notifications only when
subscribes to an event and any TUXEDO client or server posts an event.

NEW

NEW

NEW
1-4 BEA Jolt User’s Guide

HOW IT WORKS

O
the
vices

rary.
cific
tion
 proxy
olt
EDO
How it Works

BEA Jolt connects Java clients to applications built using BEA TUXEDO. TUXED
provides a set of modular services, each offering specific functionality related to
application as a whole. For example, a simple banking application might have ser
such as INQUIRY, WITHDRAW, TRANSFER, and DEPOSIT. Typically, service
requests are implemented in C or COBOL as a sequence of calls to a program lib
Accessing a library from a native program means installing the library for the spe
combination of CPU and operating system release on the client machine, a situa
Java was expressly designed to avoid. The Jolt Server implementation acts as a
for the Jolt client, invoking the TUXEDO service on behalf of the client. The BEA J
Server accepts requests from the Jolt clients and maps those requests into TUX
service requests.

Figure 1-1 BEA Jolt Architecture

BEA Jolt
Class Library

Jolt BEA Jolt
Connectivity
Module

��� ���� 	
��
�

Java-enabled
Web Browser Application Server

Jolt Server Listener
Jolt Server Handler

TUXEDO

Java Virtual Machine

HTML, Applet, and
Jolt Code

 Applet/Application

Access Services
Legacy

DEPOSIT Service

INQUIRY Service

��� �������� �����

��������

CLIENT

BEA Jolt
Transaction Protocol.

Repository Server

BEA Jolt
Repositor y

State Manager

Repository
Service
Definitions

databases

Legacy Host
Applications

SERVER
BEA Jolt User’s Guide 1-5

1 INTRODUCING BEA JOLT

action
:

to
Figure 1-1 illustrates the end-to-end view of the BEA Jolt architecture, as well as
related TUXEDO components and their interactions.

Jolt Servers

The Jolt Server has several components that act in concert to pass Jolt client trans
processing requests to the TUXEDO application. The components are as follows

� Jolt Server Listener (JSL). The JSL handles the initial Jolt client connection,
and is responsible for assigning a Jolt Server Handler to the Jolt client.

� Jolt Server Handler (JSH). The JSH manages network connectivity, executes
service requests on behalf of the client and translates TUXEDO buffer data in
the Jolt buffer and vice versa.

� Jolt Repository Server (JREPSVR). The JREPSVR retrieves Jolt service
definitions from the Jolt Repository and returns the service definitions to the
JSH. The JREPSVR also updates or adds Jolt service definitions.

Figure 1-2 illustrates the Jolt Server and Jolt Repository components.

Figure 1-2 Jolt Server Components

Repository

TUXEDO
/T

Jolt Server and Repository

Jolt Server
Handler
(JSH)

Jolt Server
Listener
(JSL)

Jolt Repository
Server

(JREPSVR)

TUXEDO
Services

on
Application

Server
1-6 BEA Jolt User’s Guide

HOW IT WORKS

on or
Jolt

s that
. Jolt

h the

 of

ts are
is no
ices
l to the

Jolt Class Library for Java

The BEA Jolt Class Library is a set of classes you can use in your Java applicati
applet to make service requests to TUXEDO from a Java enabled client. These
classes allow you to access TUXEDO transaction services using objects.

When developing a Jolt client application, you only need to know about the classe
Jolt provides and the TUXEDO services that are exported by the Jolt Repository
hides the underlying application details. Using Jolt and Jolt’s Class Library, you donot
need to understand: the underlying transactional semantics, the language in whic
services were coded, buffer manipulation, the location of services, or the names
databases used.

The Jolt API is a Java class library and has the benefits that Java provides: apple
downloaded dynamically and are only resident during runtime. As a result, there
need for client installation, administration, management, or version control. If serv
are changed, the client application becomes aware of the changes at the next cal
Jolt Repository.

Figure 1-3 shows the flow of activity from a Jolt client to and from TUXEDO. The
call-out numbers correspond to descriptions of the activity in Table 1-1.

Figure 1-3 Using the Jolt Class Library to access TUXEDO services

3, 4, 5

JAVA-Enabled

CLIENT

Jolt

Web Browser

1, 2

6

Web Server HOST

connection/request
reply

connection

request
Server

Run-Time

Application Server

BEA TUXEDO

BEA Jolt
Repository

contains TUXEDO
service definitions

TUXEDO Environment

Jolt
Class Library

Application
Code

JAVA VM
BEA Jolt User’s Guide 1-7

1 INTRODUCING BEA JOLT

client
e Jolt

essage

he

,
ct

a
t to

a
The following table briefly describes the flow of activity involved in using the Jolt
Class Library to access TUXEDO services.

Jolt Server and Jolt Client Communication

The Jolt system handles all communication between the Jolt Server and the Jolt
using the BEA Jolt Transaction Protocol. The communication process between th
Server and the Jolt client applet or applications functions as follows:

1. TUXEDO service requests and associated parameters are packaged into a m
buffer and delivered over the network to the Jolt Server.

2. The Jolt Server unpacks the data from the message, and performs any data
conversions necessary, such as numeric format conversions or character set
conversions.

Table 1-1 Using the Jolt Class Library

Process Step Action

Connection 1 A Java enabled Web browser downloads an HTML page using
the HTTP protocol.

... 2 A Jolt applet is downloaded and executed in the Java Virtual
Machine on the client.

... 3 The first Java applet task is to open a separate connection to t
Jolt Server using a private protocol.

Request 4 The Jolt client now knows the signature of the service (such as
name, parameters, types) and can build a service request obje
based on Jolt class definitions, and make a method call.

... 5 The request is sent to the Jolt Server, which translates the Jav
based request into TUXEDO requests and forwards the reques
the TUXEDO environment.

Reply 6 The TUXEDO system processes the request and returns the
information to the Jolt Server, which translates it back to the Jav
applet.
1-8 BEA Jolt User’s Guide

HOW IT WORKS

ice

actly

ts and

ient

name,
entral
DO
can

e Jolt

lient

the
3. The Jolt Server makes the appropriate service request to the application serv
requested by the Jolt client.

4. Once a service request enters the BEA TUXEDO system, it is executed in ex
the same manner as requests issued by any other TUXEDO client.

5. The results are then returned to the BEA Jolt Server, that packages the resul
any error information into a message that is sent to the Jolt client applet.

6. The Jolt client then maps the contents of the message into the various Jolt cl
interface objects, completing the request.

Jolt Repository

The Jolt Repository is a database where TUXEDO services are defined, such as
number, type, parameter size, and permissions. The Repository functions as a c
database of definitions for TUXEDO services and permits new and existing TUXE
services to be made available to Jolt client applications. A TUXEDO application
have many services or service definitions such as ADD_CUSTOMER,
GET_ACCOUNTBALANCE, CHANGE_LOCATION, GET_STATUS. All or only a
few of these definitions may be exported to the Jolt Repository. Within the Jolt
Repository, the developer or system administrator can export these services to th
client application.

All Repository services that are exported to one client are exported to all clients.
TUXEDO handles the cases where subsets of services may be needed for one c
and not others. Figure 1-4 illustrates how the Jolt Repository brokers TUXEDO
services to multiple Jolt client applications. The diagram shows four TUXEDO
services, however the WITHDRAW service is not defined in the Repository and
TRANSFER service is defined but not exported.
BEA Jolt User’s Guide 1-9

1 INTRODUCING BEA JOLT

olt

s to
t

e
eb

. It

a JSL

pter.

erver.
Figure 1-4 Distributing TUXEDO Services via Jolt

Jolt Repository Editor

The Jolt Repository Editor is a Java-based GUI administration tool that gives the
application administrator access to individual BEA TUXEDO services. With the J
Repository Editor you can define, test, and export services to Jolt clients.

The Jolt Repository Editor enables you to extend and distribute TUXEDO service
Jolt clients without having to modify many lines of code in widely distributed clien
applications. With the Jolt Repository Editor, you can modify parameters for
TUXEDO services, logically group TUXEDO services into packages, and remov
services from created packages. You can also make the services available to W
browser-based Jolt applets or Jolt applications by exporting the services.

Note: The Jolt Repository Editor only controls services for Jolt client applications
cannot be used to make changes to the TUXEDO application.

Jolt Internet Relay

The Jolt Internet Relay is a component that routes messages from a Jolt client to
or JSH. The Jolt Internet Relay consists of the Jolt Relay (JRLY) and the Jolt Relay
Adapter (JRAD). The Jolt Relay is not a TUXEDO client or server. JRLY is a
stand-alone software component that routes Jolt messages to the Jolt Relay Ada
Requiring only minimal configuration to allow it to work with Jolt clients, the Jolt
Relay eliminates the need for TUXEDO to run on the same machine as the Web s

Jolt Client
ApplicationTUXEDO

Application
Jolt Repository

Services
INQUIRY

Services

WITHDRAW

Jolt Client
Application

...

DEPOSIT

TRANSFER

DEPOSIT

TRANSFER
INQUIRY

DEPOSIT, INQUIRY

DEPOSIT, INQUIRY
1-10 BEA Jolt User’s Guide

HOW IT WORKS

d
 the
ends
The JRAD is a TUXEDO application server, but does not include any TUXEDO
services. It requires command line arguments to allow it to work with the JSH an
TUXEDO. JRAD receives client requests from JRLY, and forwards the request to
appropriate server. Replies from the server are forwarded back to JRAD, which s
the response and back to the requesting client. A single Jolt Internet Relay
(JRLY/JRAD pair) handles multiple clients concurrently.
BEA Jolt User’s Guide 1-11

1 INTRODUCING BEA JOLT

ps.
How to Jolt your TUXEDO Applications

Figure 1-5 illustrates how to Jolt-enable your new and existing TUXEDO-based
applications. The process for creating Jolt clients is described in the following ste

Figure 1-5 Creating a Jolt Application

TUXEDO Application is
Installed

Design Your Application
Services

Write/Deploy Your Application and
TUXEDO Services

Install Jolt

Export Services

Program Client using Jolt
Class Library

Make Jolt classes available
(i.e., via the Web)

Have an Existing TUXEDO
Application?

Creating a new TUXEDO
Application?

Start Your TUXEDO Application

Your Jolt Application is
Ready to Run

Decide which TUXEDO Services to
Make Available to Jolt

Use Repository Editor to Define
Services Available from Jolt

Test Each Service
1-12 BEA Jolt User’s Guide

HOW TO JOLT YOUR TUXEDO APPLICATIONS

and

,

n
The following steps show just how quickly and easily Jolt clients can be created
deployed.

1. Begin the process with a TUXEDO application.

For information about installing TUXEDO and creating a TUXEDO application
refer to the TUXEDO System 6 documentation set.

2. Install Jolt.

For information about installing Jolt components, refer to “Installing Jolt” in
Chapter 2.

3. Configure and define services using the Jolt Repository Editor.

4. For information regarding configuring the Jolt Repository Editor and making
TUXEDO services available to Jolt, refer to:

� “Using the Jolt Repository Editor” in Chapter 5

� “System Messages” in Appendix B

5. Create a client application using the Jolt Class Library.

The following documentation shows you how to program your client applicatio
using the Jolt Class Library:

� “Using the Jolt Class Library” in Chapter 6

� “Jolt Class Library Reference” in Chapter 7

� “Jolt Class Library Errors and Exceptions” in Appendix A

6. Run the Jolt-based client applet or application.

Refer to “Using the Jolt Class Library” in Chapter 6 to assist you in installing a
Jolt Class Library on a Web Server.
BEA Jolt User’s Guide 1-13

CHAPTER

tion.
tion
oing
2 Installing Jolt

This chapter explains how to install the Jolt 1.1 software and its online documenta
Readers of this chapter are assumed to be system administrators and/or applica
developers who have experience with the operating platforms on which they are g
to install BEA TUXEDO and Jolt software.

This chapter includes the following sections:

� Installation Requirements

� BEA Jolt 1.1 Installation

� Using the Jolt Online Documentation
BEA Jolt User’s Guide 2-1

2 INSTALLING JOLT

ort.
or
Installation Requirements

The following hardware and software components are required before installing
BEA Jolt.

Server Requirements

� CD-ROM access

� 500K of disk storage

Note: Jolt 1.1 server platform support is dependent on the TUXEDO version supp
For example, Jolt 1.1 will only run on Solaris 2.4 and 2.5 if TUXEDO 6.1
6.2 is running on the same machine as the Jolt 1.1 server.

� DEC UNIX 4.0

� DEC Alpha NT 4.0

� Hewlett-Packard HP9000 with HP-UX 10.10, 10.20

� IBM RS/6000 with AIX 4.1.4, 4.2

� Intel with Windows NT 3.51 or NT 4.0 (80486 processor or later) (TUXEDO
6.3 is available only on NT 4.0)

� Sequent Dynix 4.2

� SGI Irix 6.2

� Sun SPARC with Solaris 2.4, 2.5, 2.5.1 (TUXEDO 6.3 supports 2.5.1 only)

� Unixware 2.1
2-2 BEA Jolt User’s Guide

INSTALLATION REQUIREMENTS
Jolt Relay Requirements

The Jolt Relay supports the following platforms running on the Web server:

� Hewlett-Packard HP9000 with HP-UX 10.10, 10.20

� Intel with Windows NT 4.0

� Sun SPARC with Solaris 2.5

Client Requirements

� 700K of disk storage (for application development and Web server)

� Java-enabled browser (see the Jolt Release Notes for the approved browsers) or
Java virtual machine

� Java Developer’s Kit (JDK) 1.0.2 (for application development only)
(http://java.sun.com:80/java.sun.com/products/JDK/index.html)

� JDK 1.0.2 on Solaris

� JDK 1.0.2 on Solaris (appletviewer)

� HTML browser for the online documentation (Netscape Navigator 2.02, or
Microsoft Internet Explorer 3.0 or later are recommended)
BEA Jolt User’s Guide 2-3

2 INSTALLING JOLT

ing

 be
ion
.

M.

ns
BEA Jolt 1.1 Installation

You can install the Jolt 1.1 package from a CD-ROM for UNIX and Windows NT
platforms. Your CD-ROM contains all of the necessary files for installing and runn
your Jolt product, including the Jolt Internet Relay. The Jolt Relay Front-End is
installed on the Web server machine. For the Jolt 1.1 release, this machine may
different from the TUXEDO/Jolt machine. You may be required to run the installat
program a second time, using the machine that will run the Jolt Relay Front-End

Online documentation, in the form of HTML files, is also available on the CD-RO

The CD-ROM contains an installation script for UNIX systems and a separate
GUI-based installer for Windows NT users. To install Jolt 1.1, follow the instructio
for your respective platform.

Directory Structure

Figure 2-1 shows the directory structure for UNIX and NT systems.
2-4 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION
Figure 2-1 Sample Directory Structure

jolt1.1 (top level directory of the Jolt CD)

 unix

install.sh (UNIX installation script)

sun5x, sgi, seq, ibm . . . (platform packages)

nt (directory for all NT platform installations)

intel (Intel platform directory)

nt351 (Windows NT 3.51 directory)

tux61 (TUXEDO version)

tux62

setup.exe

setup.exe

tux62

tux63

setup.exe

setup.exe

nt40 (Windows NT 4.0 directory)

 (directory for all UNIX platform installations)

 alpha (Alpha platform directory)

nt40

tux62

tux63

setup.exe

setup.exe

cdimage (tar copy format of UNIX

jolt11.tar (tar file containing
everything in the UNIX and NT

and NT directories)

directories on the Jolt CD)
BEA Jolt User’s Guide 2-5

2 INSTALLING JOLT

 be

.

Before You Begin

Before installing:

� Verify the location of the TUXEDO directory where the Jolt server is going to
be installed.

� Determine the location of the documentation directory where the Jolt
documentation is going to be installed.

� Verify the Web server location where the Jolt client components are going to
installed.

� Verify the user ID and group ID assigned to Jolt server files.

� Verify the user ID and group ID to be assigned to Jolt client files.

� Review the Jolt Release Notes and the Jolt Home Page for any new information
2-6 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

d the

lled.

e

fy
UNIX System Installation Instructions

The Jolt 1.1 installation shell script for UNIX systems includes all components
necessary for installing the Jolt 1.1 system, the Jolt Repository, the Jolt Server, an
Jolt Class Library code. Refer to Figure 2-1 for an example of the Jolt directory
structure.

When installing, ensure that all necessary hardware and software has been insta

1. Log in as a user who has write permission in the TUXEDO directory.

2. Insert the CD-ROM in the CD-ROM drive. If you are running on Solaris and th
daemon /usr/sbin/vold is running, the CD-ROM should be automatically
mounted in the /cdrom/JOLT directory.

cd /cdrom/jolt/unix

If you are not running on Solaris or vold is not running, consult your UNIX
administration documentation to mount the CD-ROM.

3. Type ls

The directory contents should look similar to the following sample. If not, veri
that you are installing the correct CD-ROM.

alpha/ hp/ ibm/

install.sh

seq/ sgi/ sun5x/ uw/

4. Type

sh install.sh

5. Press Enter.

This invokes the Jolt installation script. The step-by-step install screens are
described in the following section.
BEA Jolt User’s Guide 2-7

2 INSTALLING JOLT

help

ou
e by

lt

re
UNIX System Installation Script

The UNIX system installation script provides a set of step-by-step instructions to
you quickly install your Jolt product. This script lets you specify your platform,
operating system, and other installation details. The installation script prompts y
through the entire installation process. You can cancel the installation at any tim
pressing CTRL-C simultaneously.

Note: The script used to show the UNIX installation is taken from Jolt 1.1 for
TUXEDO 6.1/6.2. There are variations of the UNIX installation script for Jo
1.1 for TUXEDO 6.3.

1. Type the number that corresponds to the name of the operating system you a
using (for example, if using SPARC Solaris 2.5.1 for TUXEDO 6.2, type 22). Press
Enter.

01) alpha/dux40/6.2 02) alpha/dux40/6.3 03) hp/hp1010/6.1

04) hp/hp1010/6.2 05) hp/hp1010/6.3 06) hp/hp1020/6.1

07) hp/hp1020/6.2 08) hp/hp1020/6.3 09) ibm/aix414/6.1

10) ibm/aix414/6.2 11) ibm/aix414/6.3 12) ibm/aix42/6.1

13) ibm/aix42/6.2 14) ibm/aix42/6.3 15) seq/dynix42/6.1

16) seq/dynix42/6.2 17) seq/dynix42/6.3 18) sgi/irix62/6.1

19) sgi/irix62/6.2 20) sgi/irix62/6.3 21) sun5x/sol24/6.1

22) sun5x/sol24/6.2 23) sun5x/sol25/6.1 24) sun5x/sol25/6.2

25) sun5x/sol251/6.1 26) sun5x/sol251/6.2 27) sun5x/sol251/6.3

28) uw/uw21/6.1 29) uw/uw21/6.2 30) uw/uw21/6.3

Install which platform's files? [01-30, q to quit, l for list]:

22

** You have chosen to install from sun5x/sol24/6.2 **

2. You are prompted to review the directory containing the BEA Jolt system. If
correct, type y for “yes,” or n for “no” or q to “quit.” Press Enter.

BEA Jolt Release 1.1

This directory contains the BEA Jolt System for

Solaris 2.4 on SPARC

Is this correct? [y,n,q]: y

To terminate the installation at any time

press the interrupt key,

typically , <break>, or <ctrl+c>.
2-8 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

lled

3. Type BEA Jolt to install the BEA Jolt package. Press Enter.

The following packages are available:

 1 jolt BEA Jolt

Select the package(s) you wish to install (or 'all' to install

all packages) (default: all) [?,??,q]: 1

BEA Jolt

(sparc) Release 1.1

Copyright (c) 1997 BEA Systems, Inc.

Portions * Copyright 1986-1997 RSA Data Security, Inc.

All Rights Reserved.

Distributed under license by BEA Systems, Inc.

TUXEDO is a registered trademark.

BEA Jolt is a trademark of BEA Systems, Inc.

4. Type the number of the installation option you prefer. The Jolt Server is insta
in an existing TUXEDO directory. You must install TUXEDO prior to installing
Jolt.

The following installation options are available:

 1 all Install the full Jolt System

 2 server Install the server only

 3 client Install the client only

 4 rad Install the relay back-end only

 5 doc Install the documentation

Select an option (default: all) [?,??,q]: 1

Note that the jolt server will be installed into an existing

TUXEDO directory. You MUST have previously installed TUXEDO

version 6.1, 6.2, or 6.3 to attempt this installation.

Base directory of existing TUXEDO installation [?,q]:

/usr/jolt/T6.2

Determining if sufficient space is available ...

1118 blocks are required

167860 blocks are available to /usr/jolt/T6.2

Using /usr/jolt/T6.2 as the TUXEDO base directory

The client software should be installed either on your web

server machine, or a machine easily accessible to your web

server machine, as the class files must be downloaded.

JOLTDIR below refers to the directory in which your java

related files are stored. It is the directory which contains

the directory 'classes', not the classes directory itself!

JOLTDIR (default: /usr/jolt/T6.2/udataobj/jolt) [?,q]:
BEA Jolt User’s Guide 2-9

2 INSTALLING JOLT
Determining if sufficient space is available ...

1118 blocks are required

167860 blocks are available to /usr/jolt/T6.2/udataobj/jolt

Using /usr/jolt/T6.2/udataobj/jolt as the Jolt client tree

Unloading /host/sansei/cdrom/sun5x/sol24/6.2/jolt/joltall.Z ...

bin/JREPSVR

bin/JSL

bin/JSH

bin/joutil

bin/JRAD

udataobj/jrep.f16

udataobj/jwsladmin.f32

udataobj/jrepository

udataobj/jolt/client/Atm.html

udataobj/jolt/client/RE.html

udataobj/jolt/client/jolt.zip

udataobj/jolt/client/audio/dot.au

udataobj/jolt/client/audio/ring.au

udataobj/jolt/client/audio/splat.au

udataobj/jolt/client/images/beaLogo.gif

.

.

.

udataobj/jolt/relay/jrly

udataobj/jolt/relay/jrly.config

locale/C/JOLT_CAT

locale/C/JOLT.text

locale/C/JRAD_CAT

locale/C/JRAD.text

lib/libjconv.so

lib/libjnwi.so

include/jotypes.h

2280 blocks

... finished
2-10 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

5. Type your Jolt serial number and press Enter. Type your Jolt license token

number and press Enter. The script continues with the installation process until
the status message, “Installation of BEA Jolt was successful,” displays.

Serial number [?,q]: <enter BEA-provided serial number>

License token [?,q]: <enter BEA-provided license token>

LICUTIL is /usr/jolt/T6.2/bin/joutil

users=0

pbtype=SDK

expdate=9801

serial=<BEA serial number displays>

token=<BEA license token displays>

lictype=a

Activating the license for software in /usr/jolt/T6.2 ...

... finished

Changing file permissions...

... finished

Installation of BEA Jolt was successful

6. The script returns to the installation prompt. Type q to quit.

The following packages are available:

 1 jolt BEA Jolt

Select the package(s) you wish to install (or 'all' to install

all packages) (default: all) [?,??,q]: q

Please don't forget to fill out and send in your registration

card

7. When the installation is complete, unmount the CD-ROM.

The installation is now complete.
BEA Jolt User’s Guide 2-11

2 INSTALLING JOLT

ou

l the

a

 for
Windows NT Installation Instructions

The Jolt NT Installer provides a set of step-by-step installation windows to help y
quickly install your Jolt product. These windows automate the details of your
installation process and prompt you through the entire installation. You can cance
installation at any time.

If you are installing the Jolt package from a CD-ROM, use Windows Explorer or
similar utility. Select the setup.exe program in the NT directory that matches your
platform and TUXEDO version when you insert the CD-ROM. Refer to Figure 2-1
additional information on the directory structure.

1. When you see the Welcome window shown in Figure 2-2, select the Next button
to proceed with the installation.

Figure 2-2 Jolt Welcome Window
2-12 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

of

2. Use the scroll bar or the Page Down key to read the Software License

Agreement. To continue with the Jolt installation, you must accept the terms
the license agreement. If you accept the terms, select Yes to continue with the
installation. If you do not accept the terms, select No and the installation stops.

Figure 2-3 Software License Agreement
BEA Jolt User’s Guide 2-13

2 INSTALLING JOLT
3. At the User Registration window, type your name and company. Use the Tab key
to navigate through the text fields. Select Next after you enter the information.

Figure 2-4 User Registration Window
2-14 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION
4. At the Registration Confirmation window, review the information. If the
information is correct, select Yes to continue with the installation. If the
information is not correct, select No to return to the User Registration window
and change the registration information.

Figure 2-5 Registration Confirmation
BEA Jolt User’s Guide 2-15

2 INSTALLING JOLT

,

ct

5. At the Installation Selection window, select the modules to install (in this case
Jolt Server, Jolt Client , and Jolt Documentation).

This window also allow you to choose a destination directory. To do this, sele
Browse and choose a distention path. To continue with the installation, select
Next.

Figure 2-6 Installation Selection Window
2-16 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

ton

ing
.

a. The selection works as a toggle. With the mouse, click the left mouse but
once to select and once to deselect. Press the Tab key once to highlight and
select. Press it again to highlight and select the next item in the list.

b. To make your selection, click on the space to the left of the text represent
your choice. The window displays a checkmark to the left of your selection

To deselect a component, click on the checkmark to the left of your choice
and the checkmark is removed.

c. To choose a different destination directory, select Browse and choose a
destination path.

Note: The destination path must be the TUXEDO directory.

Table 2-1 Setup Type Window

Setup Type... Installs...

Jolt Server Jolt server only (review license)

Jolt Client Jolt client only

Jolt Relay Back-End Jolt Internet Relay on the back-end server only

Jolt Relay Front-End Jolt Internet Relay on the front-end server only

Jolt Documentation HTML-based documentation
BEA Jolt User’s Guide 2-17

2 INSTALLING JOLT

ar

O
6. Select Disk Space to check the available and required disk space on a particul
drive. Figure 2-7 shows the available disk space. Select OK to continue. Select
Cancel to return to the Installation Selection window.

Figure 2-7 Available Disk Space

7. All Jolt system files are installed in directories relative to the destination
directory. Jolt installs all system files in tthe default directory displayed on the
window. If the default directory is not the directory that contains your TUXED
system, change the directory.
2-18 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

ule

8. In Figure 2-6, Jolt Server, Jolt Client, Jolt Documentation are selected for

installation. Figure 2-8 shows the window used to install the first selected mod
(in this case, the Jolt Server). To change the directory, select Browse or type the
directory path. Select Next to continue with the installation.

Figure 2-8 Choose Destination Location Window for Jolt Server
BEA Jolt User’s Guide 2-19

2 INSTALLING JOLT

9. Figure 2-9 shows the window used to install the next selected module (in this
case, the Jolt Client). To change the directory, select Browse or type the directory
path. Select Next to continue with the installation.

Figure 2-9 Choose Destination Location Window for Client Software
2-20 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

lt
10. You are prompted to install the final module (in this case, the Jolt
Documentation). To change the directory, select Browse or type the directory
path. Select Next to continue with the installation.

Figure 2-10 Choose Destination Location Window for Jolt Documentation

11. When the selected modules are installed, you are prompted to install your Jo
license. The prompt is shown in Figure 2-11.

Figure 2-11 Install License Window
BEA Jolt User’s Guide 2-21

2 INSTALLING JOLT

g
2

lt

 with
12. Select Yes to install the Jolt license.

13. If you are installing Jolt 1.1 for TUXEDO 6.1 or 6.2, a window displays
prompting you to enter your serial number and license key. If you are installin
Jolt 1.1 for TUXEDO 6.3, the Insert License Disk window shown in Figure 2-1
displays, and you are prompted to insert your license disk.

Figure 2-12 Insert License Disk Window

14. Type the designated path or select Browse and select OK .

15. When all files are installed, the Setup Complete window displays. Select a Jo
application by choosing an icon from the window.

Licensing your Jolt Software

The licensing scheme used by Jolt 1.1 depends on the version of TUXEDO used
Jolt. Know the following information before running this command:

� Your version of TUXEDO

� Your TUXEDO directory (TUXDIR) from the installation. This is the directory
that contains the TUXEDO directories (bin, udataobj, etc.).

� Your serial number (included with your Jolt software)

� Your license key or token (included with your Jolt software)
2-22 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

ken
 Jolt

e.

cense

his

T
.
nse
 to
Licensing Jolt 1.1 for TUXEDO 6.1 and 6.2

Jolt 1.1 for TUXEDO 6.1 and 6.2 uses a combination of a serial number and a to
number (or license key) to enable a license. This information is included with the
software when it is shipped to you. The installation programs (install.sh for UNIX
or setup.exe for NT) prompt you for the serial number and token at installation tim
Refer to “UNIX System Installation Script” and “Windows NT Installation
Instructions” for additional information.

Enter the serial number and token number exactly as they are displayed on the li
provided by BEA.

Licensing Jolt 1.1 for TUXEDO 6.3

Jolt 1.1 for TUXEDO 6.3 uses a digitally signed license file to enable a license. T
file is provided on a floppy disk that is shipped with your Jolt software. The UNIX
installation program (install.sh) does not install the license automatically. The N
installation program (setup.exe) prompts you for the location of the Jolt license file
If you provide the necessary information, the installation program installs the lice
file for you. If you do not install the license file during installation, follow the steps
install Jolt manually.

UNIX LICENSING INSTRUCTIONS

1. Identify you current TUXEDO license file. This is located in
TUXDIR/udataobj/lic.txt.

2. Make a copy of this file:

cd $TUXDIR/udataobj

cp lic.txt lic.txt.bak

3. Check that you have completed step 2. Verify the copy using OS-specific
commands (e.g., diff on UNIX systems).

4. Append the contents of the Jolt license file to the TUXEDO license file:

cat /dev/diskette/joltlic.txt >> lic.txt
BEA Jolt User’s Guide 2-23

2 INSTALLING JOLT

le

h

 you
ades
NT LICENSING INSTRUCTIONS

1. Identify you current TUXEDO license file. This is located in
%TUXDIR%\udataobj\lic.txt .

2. Make a copy of this file:

cd %TUXDIR%\udataobj

copy lic.txt lic.txt.bak

3. Check that you have a completed step 2. Verify the copy using OS-specific
commands.

4. Append the contents of the Jolt license file to the TUXEDO license file:

copy lic.txt + a:\joltlic.txt

A text editor can be used to copy and paste the contents of the Jolt license fi
into the TUXEDO license file.

Note: The digital signature is 64 characters long. Every character must matc
exactly or the license is not valid.

If you do not complete the steps for licensing the Jolt software during installation,
can license the software at any time by following the steps in the “Licensing Upgr
Instructions.”
2-24 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

nse,

s.

an
ror,
LICENSING UPGRADES INSTRUCTIONS

If you are using Jolt 1.1 on TUXEDO 6.1 or 6.2, and you need to upgrade your lice
follow these step.

Note: These instructions are for NT. Use the UNIX equivalents for UNIX platform

1. Bring up an NT command prompt window.

2. Type the following:

SET TUXDIR=<the name of your TUXEDO directory>

SET SERNUM=<your serial number>

SET LICENSE=<your license key>

CD %TUXDIR%

CD BIN

JOUTIL -r %TUXDIR% -b -l %LICENSE% -s %SERNUM% -T SDK

For example, if TUXEDO is installed in the directory, /opt/BEAItuxedo , your
serial number is 0123456789 , and your license key is 0A1B2C3D4E5F9999,
execute the following commands:

SET TUXDIR=/opt/BEAItuxedo

SET SERNUM=0123456789

SET LICENSE=0A1B2C3D4E5F9999

CD %TUXDIR%

CD BIN

JOUTIL -r %TUXDIR% -b -l %LICENSE% -s %SERNUM% -T SDK

Note: The “-l ” above is a lowercase “L” not the numeral “1” (one).

Your Jolt executables are now properly licensed. JOUTIL responds with
error if your serial number or license key is incorrect. If you receive an er
ensure that you have the correct serial number and license key.
BEA Jolt User’s Guide 2-25

2 INSTALLING JOLT

to
L
Using the Jolt Online Documentation

Accompanying your Jolt software is an online, HTML-based, documentation set
assist you with using BEA Jolt 1.1. The Jolt product CD-ROM contains the HTM
version of the Jolt User’s Guide.

Figure 2-13 is an example of the Jolt online documentation window. Table 2-2
describes the online documentation browser application components shown in
Figure 2-13.

Figure 2-13 Jolt User’s Guide Online Documentation Window

1
2

3

2-26 BEA Jolt User’s Guide

USING THE JOLT ONLINE DOCUMENTATION

se

.

Getting Started with the Documentation

To open the Jolt online documentation, your browser must support:

� HTML frame tags

� HTML table tags

The recommended browsers for use with the Jolt 1.1 HTML documentation relea
are:

� Netscape Navigator 2.02

� Microsoft Internet Explorer 3.0 or later

Table 2-2 Jolt User’s Guide Online Documentation Window Parts

Part Function

1 Table of Contents View the online documentation Table of Contents. All topics
are hypertext links. Selecting the topic accesses the
accompanying documentation.

2 Documentation Window View the online documentation contents.

3 Topic Buttons Access a subject area by selecting the topic button:

JOLT INTRO - Introduction to the Jolt product and its features

INSTALL CONFIG - Description of the Jolt installation and
configuration process.

REPOSITORY EDITOR - Instructions for using the Jolt
Repository Editor and Bulk Loader.

CLASS LIBRARY - Instructions for using the Jolt Class
Library.

SYSTEM MESSAGES - Jolt system message reference.
BEA Jolt User’s Guide 2-27

2 INSTALLING JOLT

ser.

tions:

Opening the Documentation Files

Follow these instructions for opening the documentation files with a specific brow

NETSCAPE NAVIGATOR

Using Netscape Navigator, access the documentation using the following instruc

1. From the menu bar of your browser, select File.

2. From the File menu, select Open File in Browser.

3. From the Open window, locate the directory where you installed your Jolt
documentation files.

4. Select the joltbegin.htm (NT) or joltbegin.html (UNIX) file and select
Open.

MICROSOFT INTERNET EXPLORER

Using Microsoft Internet Explorer, access the documentation using the following
instructions:

1. From the menu bar of your browser, select File.

2. From the File menu, select Open.

3. Locate the directory where you installed your Jolt documentation files.

4. Open the file to the joltbegin.htm (NT) or joltbegin.html (UNIX) file.
2-28 BEA Jolt User’s Guide

USING THE JOLT ONLINE DOCUMENTATION

ser.

ing

he

he

he
Printing the Documentation Files

Follow these instructions for printing the documentation files with a specific brow

NETSCAPE NAVIGATOR FOR WINDOWS

Using Netscape Navigator for Windows, print the documentation using the follow
instructions:

1. Activate the frame you want to print by using the left mouse button to select t
frame.

2. From the File menu, select Print .

NETSCAPE NAVIGATOR FOR UNIX

Using Netscape Navigator for UNIX, print the documentation using the following
instructions:

1. Activate the frame you want to print by using the left mouse button to select t
frame.

2. From the File menu, select Print Frame.

3. The Netscape Print window displays. Select Print .

MICROSOFT INTERNET EXPLORER

Using Microsoft Internet Explorer, print the documentation using the following
instructions:

1. Activate the frame you want to print by using the left mouse button to select t
frame.

2. From the menu bar, select Print .
BEA Jolt User’s Guide 2-29

2 INSTALLING JOLT
2-30 BEA Jolt User’s Guide

CHAPTER

elay,
to be
he
re
3 Configuring the Jolt
System

This chapter explains how to configure Jolt 1.1 and describes the Jolt Internet R
Event Subscription, and security features. Readers of this chapter are assumed
system administrators and/or application developers who have experience with t
operating systems and workstation platforms on which they are going to configu
TUXEDO and Jolt.

This chapter includes the following sections:

� Using the Jolt Server

� Using the Jolt Repository

� Event Subscription

� Jolt Internet Relay

� Using Sample Applications in Jolt Online Resources
BEA Jolt User’s Guide 3-1

3 CONFIGURING THE JOLT SYSTEM

ame

with

lude:

le,

a JSL
e

DO
olt
Using the Jolt Server

The Jolt Server consists of listeners and handlers.

Jolt Server Listener (JSL). The JSL is configured to support clients on an IP/port
combination.The JSL works with the Jolt Server Handler (JSH) to provide client
connectivity to the backend of the Jolt system. The JSL is administered by the s
tools used to manage any resource within a BEA TUXEDO environment.

Jolt Server Handler (JSH). The JSH is a program that runs on a TUXEDO server
machine to provide a network connection point for remote clients. The JSH works
the JSL to provide client connectivity residing on the backend of the Jolt system.

The system administrator’s responsibilities for the server components of Jolt inc

� Determining server network addresses.

� Determining the number of Jolt clients to be serviced by one JSH (for examp
if there are 10 clients per JSH and 10 JSHs, 100 clients can be connected).

� Determining the minimum and maximum number of JSHs.

Jolt Internet Relay

The Jolt Internet Relay is a component that routes messages from a Jolt client to
or JSH. This alleviates the need for the JSL/JSH and TUXEDO to run on the sam
machine as the Web server. The Jolt Relay (JRLY) is not required to be a TUXE
server or a TUXEDO client. It is a stand-alone piece of software that routes the J
messages to the JSL or JSH. Refer to the “Jolt Internet Relay” in this chapter.
3-2 BEA Jolt User’s Guide

USING THE JOLT SERVER

nd the
rypted
s use

tates;
ts
ernal

e
ns).

ting

s
Security and Encryption

Authentication and key exchange data that are transmitted between Jolt clients a
JSL/JSH are encrypted using DES encryption. All subsequent exchanges are enc
using RC4 encryption. International packages use 40-bit key; domestic package
128-bit key.

Programs using the 128-bit encryption cannot be exported outside of the United S
therefore, clients cannot be outside of the United States. Customers with intrane
extending beyond the United States cannot use this mode of encryption if any int
clients are outside of the United States.

Starting the Jolt Server

Type tmloadcf and tmboot -y to start all administrative and server processes. (Th
prompt only displays when the command is entered with none of the limiting optio
See the TUXEDO System Administration Guide for information on tmloadcf and
tmboot .

Note: TUXEDO monitors the JSL and restarts it in the event of a failure. When
TUXEDO restarts the listener process, the following occurs:

� Clients attempting a listener connection must try to reconnect. Clients attemp
a handler connection receive a timeout or a time delay.

� Clients currently connected to a handler are disconnected (JSH exits when it
corresponding JSL exits).
BEA Jolt User’s Guide 3-3

3 CONFIGURING THE JOLT SYSTEM

nated
r
Configuring the Jolt Server

The Jolt Server Listener (JSL) is a TUXEDO server responsible for distributing
connection requests from Jolt to the JSH. TUXEDO must be running on the host
machine where the JSL and JREPSVR is located.

To configure the JSL, you must modify the UBBCONFIG file. For information regarding
TUXEDO configuration, refer to the TUXEDO Administration Guide. Listing 3-1
shows relevant portions of the UBBCONFIG file.

Listing 3-1 UBBCONFIG File

*MACHINES

MACH1 LMID=SITE1

MAXWSCLIENTS=40

*GROUPS

JSLGRP GRPNO=95 LMID=SITE1

*SERVERS

JSL SRVGRP=JSLGRP SRVID=30 CLOPT= “ -- -n 0x0002PPPPNNNNNNNN -d

/dev/tcp -m2 -M4 -x10”

Change the following sections of the UBBCONFIG file.

The parameters shown in Table 3-1 are the only parameters that should be desig
for the Jolt Server groups and Jolt Servers. You do not need to specify any othe
parameters.

Table 3-1 UBBCONFIG File Sections

Section Parameters to be specified

*MACHINE MAXWSCLIENTS

*GROUPS LMID, GRPNO

*SERVERS SRVGRP, SRVID, CLOPT
3-4 BEA Jolt User’s Guide

USING THE JOLT SERVER

ll

 slots

.

r

gh the
 point
at is
es. A

e to

 the
by the

Note: Ensure that Resource Managers are not assigned as a default value for a
groups in the *GROUPS section of your UBBCONFIG file. This will assign a
Resource Manager to the JSL and you will receive an error during tmboot . In
the *SERVERS section, default values for RESTART, MAXGEN, etc., are
acceptable defaults for the JSL.

*MACHINES Section

The MAXWSCLIENTS parameter is required in the *MACHINES section for the
configuration file and applies to specific machines. The Jolt Server and /WS use
MAXWSCLIENTS in the same way. MAXWSCLIENTS communicates the number of
accesser slots to reserve for Jolt and /WS clients to TUXEDO. For example, if 200
are configured for MAXWSCLIENTS, this number configures TUXEDO for the total
number of remote clients used by Jolt and /WS.

Specify MAXWSCLIENTS in the configuration file. If it is not specified, the default is 0

*GROUPS Section

A *GROUPS entry is required for the group that includes the Jolt Server Listene
(JSL). The group name is selected by the application.

1. Specify the same identifiers given as the value of the LMID parameter in the
*MACHINES section.

2. Specify the value of the GRPNO between 1 and 30,000 in the *GROUPS section.

*SERVERS Section

Clients connect to Jolt applications through the JSL. Services are accessed throu
Jolt Server Handler (JSH). The JSL supports multiple clients and acts as a single
of contact for all the clients to connect to the application at the network address th
specified on the JSL command line. The JSL schedules work for handler process
handler process acts as a substitute for clients on remote workstations within the
administrative domain of the application. The handler uses a multiplexing schem
support the multiple clients concurrently.

The network address specified for the JSL designates a TCP/IP address for both
JSL and any JSH processes associated with that JSL. The port number identified
network address specifies the port number on which the JSL accepts new client
BEA Jolt User’s Guide 3-5

3 CONFIGURING THE JOLT SYSTEM

 at the
re a

d 8003.

eric
 use
t

iple

d

ue
connections. Each JSH associated with the JSL uses consecutive port numbers
same TCP/IP address. For example, if the initial port number is 8000 and there a
maximum of three JSH processes, the JSH processes use ports 8001, 8002, an

Note: Port numbers used by the JSHs are sequentially incremented by one num
digit after the JSL port number. If JSL is using port number 8000, its JSHs
8001, and so on. Misconfiguration of the subsequent JSL results in a por
number collision.

Each handler uses a multiplexing scheme on its designated port to support mult
clients concurrently on one port.

TUXEDO parameters including RESTART, RQADDR, and REPLYQ can be use
with the JSL. See the TUXEDO Administration Guide for additional information
regarding run-time parameters. Enter the following parameters:

1. To identify the SRVGRP parameter, type the previously defined group name val
from the *GROUPS section.

2. To indicate the SRVID, type a number between 1 and 30,000 that identifies the
server within its group.

3. Verify that the syntax for the CLOPT parameter is as follows:

CLOPT= “-- -n 0x0002PPPPNNNNNNNN -d /dev/tcp -m2 -M4 -x10”

Note: The CLOPT parameters may vary. Refer to Table 3-2 for pertinent
command-line information.

4. If necessary, type the optional parameters:

� Type the SEQUENCE parameter to determine the order that the servers are
booted.

� Specify Y to permit release of the RESTART parameter.

� Type 0 to permit an infinite number of server restarts using the GRACE
parameter.
3-6 BEA Jolt User’s Guide

USING THE JOLT SERVER

or

.

 to
ess
f

al

e
Table 3-2 Command Line Options

Command Line Option Description

[-c connection_mode] Allowed connection modes from clients:

RETAINED - the network connection is retained for the full
duration of a session.

RECONNECT - the client establishes and brings down a
connection when an idle timeout is reached, reconnecting f
multiple requests within a session.

ANY - the server allows a client to request either a
RETAINED or RECONNECT type of connection for a
session. Default is ANY. (Optional)

[-d device_name] The device for platforms using the Transport Layer Interface
There is no default. (Required; optional for sockets)

[-H external netaddr] The external netaddr is the network address Jolt clients use
connect to the application. The JSL process uses this addr
to listen for clients attempting to connect at this address. I
the address is 0x0002MMMMdddddddd and JSH network
address is 0x00021111ffffffff , the known network
address is 0x00021111dddd dddd . If the address starts
with "//" network address, the type is IP based and the
TCP/IP port number of JSH network address is copied into
the address to form the combined network address. (Option
for JSL in TUXEDO 6.3)

[-I init-timeout] The time (in seconds) that a Jolt client is allowed to complet
initialization through the JSH before it is timed out by the
JSL. Default is 60 seconds. (Optional)

[-m minh] The minimum number of JSHs that are available in
conjunction with the JSL at one time. The range of this
parameter is between 0 and 255. Default is 0. (Optional)

[-M maxh] The maximum number of JSHs that are available in
conjunction with the JSL at one time. The range of this
parameter is between 1 and 4096. If this option is not
specified, the parameter defaults to MAXWSCLIENTS divided
by the rounded-up -x multiplexing factor. (Optional)
BEA Jolt User’s Guide 3-7

3 CONFIGURING THE JOLT SYSTEM

he

.

s

s

:

e

er
IP
-n netaddr

(TUXEDO 6.1 and 6.2)

Network address used by the Jolt Listener for Jolt 1.1 with
TUXEDO 6.1 and 6.2.

Indicate the network address where the clients connect to t
JSL. This is a required parameter and is the contact point
used by Java workstation clients to access the application

The port number identified by the network address specifie
the port number on which the JSL accepts new client
connections. Each JSH associated with the JSL uses
consecutive port numbers at the same TCP/IP address.

The network address is composed of 1) an initial two digits
indicating hexadecimal characters, followed by three group
of numbers indicating 2) protocol, 3) port number, and 4) IP
address.

For example: 0x 0002 PPPP NNNNNNNN

There is no default. (Required)

-n netaddr

(for TUXEDO 6.3)

Network address used by the Jolt listener for Jolt 1.1 with
TUXEDO 6.3.

TCP/IP addresses may be specified in the following forms

"//host.name:port_number"

"//#.#.#.#:port_number"

In the first format, the domain finds an address for hostnam
using the local name resolution facilities (usually DNS).
Hostname must be the local machine, and the local name
resolution facilities must unambiguously resolve hostname
to the address of the local machine.

In the second example, the “#.#.#.#” is in dotted decimal
format. In dotted decimal format, each # should be a numb
from 0 to 255. This dotted decimal number represents the
address of the local machine.

Table 3-2 Command Line Options

Command Line Option Description
3-8 BEA Jolt User’s Guide

USING THE JOLT SERVER

ul
r

H

t

y

In both of the above formats, port_number is the TCP port
number at which the domain process will listen for incoming
requests. port_number can either be a number between 0
and 65535 or a name.

If port_number is a name, then it must be found in the
network services database on your local machine. The
address can also be specified in hexadecimal format when
preceded by the characters “0x”. Each character after the
initial “0x” is a number between 0 and 9 or a letter between
A and F (case insensitive). The hexadecimal format is usef
for arbitrary binary network addresses such as IPX/SPX o
TCP/IP.

There is no default. (Required)

[-T Client-timeout] The time (in minutes) allowed for a client to stay idle. If a
client does not make any requests during this time, the JS
disconnects the client and the session is terminated. If an
argument is not supplied, the session does not timeout.

When the -c ANY or -c RECONNECT option is used,
always specify -T with an idle timeout value. If -T is not
specified and the connection is suspended, JSH does not
automatically terminate the session. The session never
terminates if a client abnormally ends the session.

If a parameter is not specified, the default is no timeout.
(Optional)

[-w JSH] The Jolt Server Handler is indicated by this command line
option. Default is JSH. (Optional)

[-x mpx-factor] A parameter used to control the degree of multiplexing
within each JSH process. This is the number of clients tha
one JSH can service. Default value is 10. (Optional)

[-Z 40|128] When establishing a network link between a Jolt client and
the JSH, allow encryption up to this level. 40 and 128 specif
the length (in bits) of the encryption key. The default value
is 0.

Table 3-2 Command Line Options

Command Line Option Description
BEA Jolt User’s Guide 3-9

3 CONFIGURING THE JOLT SYSTEM

,

e is

s to

lt
Shutting Down the Jolt Server

All shutdown requests to the Jolt servers are initiated by the TUXEDO command
tmshutdown -y . During shutdown:

� No new client connections are accepted.

� All current client connections are terminated. TUXEDO will rollback in-flight
transactions. Each client receives an error message indicating that the servic
unavailable.

Using the Jolt Repository

The Jolt Repository contains TUXEDO service definitions that allow the Jolt client
access TUXEDO services. The Jolt Repository files included with the installation
contain services definitions used internally by Jolt. See Chapter 5, “Using the Jo
Repository Editor,” for detailed instructions on how to add definitions to the
application services.
3-10 BEA Jolt User’s Guide

USING THE JOLT REPOSITORY

w

ant
Configuring the Jolt Repository

To configure the Jolt Repository, modify the application UBBCONFIG file. The
UBBCONFIG file is an ASCII version of the TUXEDO configuration file. Create a ne
UBBCONFIG file for each application. See the TUXEDO Reference Manual for
information regarding the syntax of the entries for the file. Listing 3-2 shows relev
portions of the UBBCONFIG file.

Listing 3-2 Sample of UBBCONFIG File

*GROUPS

JREPGRP GRPNO=94 LMID=SITE1

*SERVERS

JREPSVR SRVGRP=JREPGRP SRVID=98

RESTART=Y GRACE=0 CLOPT="-A -- -W -P /app/jrepository"

JREPSVR SRVGRP=JREPGRP SRVID=97

RESTART=Y RQADDR=JREPQ GRACE=0 CLOPT="-A -- -P /app/jrepository"

JREPSVR SRVGRP=JREPGRP SRVID=96

RESTART=Y RQADDR=JREPQ REPLYQ=Y GRACE=0 CLOPT="-A -- -P

/app/jrepository"

Note: For UNIX systems, use the slash (/) when setting the path to the jrepository
file. For NT systems, use the backslash (\) and specify the drive name (e.g.,
c:\app\repository).

Change the following sections of the UBBCONFIG file:

Table 3-3 UBBCONFIG File

Section Parameters to be specified

*GROUPS LMID, GRPNO

*SERVERS SRVGRP, SRVID
BEA Jolt User’s Guide 3-11

3 CONFIGURING THE JOLT SYSTEM

e

ed

ry.

e

 the
*GROUPS Section

A *GROUPS entry is required for the group that includes the Jolt Repository. Th
group name parameter is a name selected by the application.

1. Specify the same identifiers given as the value of the LMID parameter in the
*MACHINES section.

2. Specify the value of the GRPNO between 1 and 30,000 in the *GROUPS section.

*SERVERS Section

The Jolt Repository server, JREPSVR, contains services for access and editing the
Repository. Multiple JREPSVR instances share repository information through a shar
file. Include JREPSVR in the *SERVERS section of the UBBCONFIG file.

1. Indicate a new server identification (e.g., 98) with the SRVID parameter.

2. Specify the -W flag for one JREPSVR to ensure that you can edit the Reposito
The Repository is read-only without this flag.

Note: You must install only one writable JREPSVR (i.e., only one JREPSVR
with the -W flag). Multiple read-only JREPSVRs may be installed on th
same host.

3. Type the -P flag to specify the path of the repository file. An error message
displays in the TUXEDO ULOG file if the argument for the -P flag is not entered.

4. Add the file pathname of the Repository file (e.g., /app/jrepository).

5. Boot the TUXEDO system using the tmloadcf command (e.g., tmloadcf -y

ubbconfig) and tmboot command. See the TUXEDO Administration Guide for
information on tmloadcf and tmboot .

Repository File

A Repository file, jrepository , is available with Jolt 1.1. This file includes bankapp
services and the Repository services that you can modify, test, and delete using
Repository Editor.

Start with the jrepository file provided with the installation, even if you are not
going to test the bankapp application with Jolt. Delete the bankapp packages or
services that are not needed.
3-12 BEA Jolt User’s Guide

USING THE JOLT REPOSITORY

se

ges

to
The pathname of the file must match the argument of the -P option.

Warning: Do not modify the Repository files manually or you will not be able to u
the Repository Editor. Although the jrepository file can be modified
and read with any text editor, the Jolt system does not have integrity
checks to ensure that the file is in the proper format. Any manual chan
to the jrepository file may not be detected until runtime. See “Using
the Jolt Repository Editor” for additional information.

Initializing Services Using TUXEDO and the Repository
Editor

You must initially define the TUXEDO services using TUXEDO and Jolt in order
make the Jolt services available to the client.

1. Build the TUXEDO server containing the service. See the TUXEDO
Administration Guide or TUXEDO Programmer’s Guide for additional
information on the following:

� Building the TUXEDO applications/server

� Editing the UBBCONFIG file

� Updating the TUXCONFIG file

� Administering the tmboot command

2. Access the Jolt Repository Editor. See Chapter 5, “Using the Jolt Repository
Editor,” in this book for additional information on the following:

� “Adding a Service”

� “Saving Your Work”

� “Testing a Service”

� “Exporting/Unexporting Services”
BEA Jolt User’s Guide 3-13

3 CONFIGURING THE JOLT SYSTEM

O

as

e
s
event
Event Subscription

Jolt Event Subscription is used to receive event notifications from either TUXED
services or other TUXEDO clients:

Unsolicited Event Notifications. These are notifications that a Jolt client receives
a result of a TUXEDO client or service subscribing to unsolicited events, and a
TUXEDO client issuing broadcast (using either a tpbroadcast() or a directly
targeted message via a tpnotify() ATMI call).

Brokered Event Notifications. These notifications are received by a Jolt client via th
TUXEDO Event Broker. The notifications are only received when both Jolt client
subscribes to an event and any TUXEDO client or server issues system posted
or a tppost() call.

Configuration

Configure the TUXEDO TMUSREVT server and modify the application UBBCONFIG
file. Listing 3-3 shows the relevant portions TMUSREVT parameters in the
UBBCONFIG file. See the TUXEDO Programmer’s Guide for information regarding the
syntax of the entries for the file.

Listing 3-3 UBBCONFIG File

TMUSREVT SRVGRP=EVBGRP1 SRVID=40 GRACE=3600

 ENVFILE="/usr/tuxedo/bankapp/TMUSREVT.ENV"

 CLOPT="-e tmusrevt.out -o tmusrevt.out -A --

 -f /usr/tuxedo/bankapp/tmusrevt.dat"

 SEQUENCE=11
3-14 BEA Jolt User’s Guide

EVENT SUBSCRIPTION

r

 is
s.
Change the following sections of the UBBCONFIG file:

Filtering TUXEDO FML or VIEW Buffers

“Filtering” is a process that allows you to customize a subscription. If you require
additional information about the TUXEDO Event Broker, subscribing to events, o
filtering, refer to the BEA TUXEDO Programmer’s Guide, Volume 1.

In order to filter TUXEDO FML or VIEW buffers, the field definition file must be
available to TUXEDO at runtime.

Note: There are no special requirements for filtering STRING buffers.

FML BUFFER EXAMPLE

Listing 3-4 shows an example using the FML buffer. The FML field definition table
made available to TUXEDO by setting the FIELDTBLS and FLDTBLDIR variable

To filter a field found in the my.flds file:

1. Copy the my.flds file to /usr/me/bankapp directory.

2. Add my.flds to the FIELDTBLS variable in the TMUSREVT.ENV file as shown in
Listing 3-4:

Listing 3-4 FIELDTBLS Variable in the TMUSREVT.ENV File

FIELDTBLS=Usysflds,bank.flds,credit.flds,event.flds,my.flds

FLDTBLDIR=/usr/tuxedo/me/T6.2/udataobj:/usr/me/bankapp

Table 3-4 UBBCONFIG File

Section Parameters to be specified

*SERVERS SRVGRP, SRVID
BEA Jolt User’s Guide 3-15

3 CONFIGURING THE JOLT SYSTEM

le
ate

r to

a JSL
chine
not a
 Jolt

ow

 to

can
, or
If ENVFILE="/usr/me/bankapp/TMUSREVT.ENV" is included in the definition of the
UBBCONFIG file (shown in Listing 3-3), the FIELDTBLS and FLDTBLDIR definitions
are taken from the TMUSREVT.ENV file and not from your environment variable
settings.

If you remove the ENVFILE="/usr/me/bankapp/TMUSREVT.ENV" definition, the
FIELDTBLS and FLDTBLDIR definitions are taken from your environment variab
settings. The FIELDTBLS and FLDTBLDIR definitions must be set to the appropri
value prior to booting the TUXEDO system.

For additional information on event subscriptions and the Jolt Class Library, refe
Chapter 6, “Using the Jolt Class Library.”

Jolt Internet Relay

The Jolt Internet Relay is a component that routes messages from a Jolt client to
or JSH. This eliminates the need for the JSH and TUXEDO to run on the same ma
as the Web server (generally considered as insecure). The Jolt Relay (JRLY) is
TUXEDO server or a TUXEDO client. It is a stand-alone program that routes the
messages from the Internet to the JSL or JSH

The Jolt Internet Relay consists of two components illustrated in Figure 3-1.

� Jolt Relay (JRLY). The JRLY is not a TUXEDO client or server. It is a
stand-alone software component. It requires only minimal configuration to all
it to work with Jolt clients.

� Jolt Relay Adapter (JRAD). The JRAD is a TUXEDO application server, but
does not include any TUXEDO services. It requires command line arguments
allow it to work with the JSL and the TUXEDO system.

Note: The Jolt relay is transparent to Jolt clients and Jolt servers. A Jolt server
simultaneously connect clients directly to the Jolt Server (intranet clients)
via the Jolt Relay (Internet clients).
3-16 BEA Jolt User’s Guide

JOLT INTERNET RELAY

loads
r

. The
Figure 3-1 Jolt Internet Relay Path

Figure 3-1 shows how a browser connects to the Web server software and down
the Jolt applets. The Jolt applet or client connects to the JRLY on the Web serve
machine. The JRLY forwards the Jolt messages across the firewall to the JRAD
JRAD selectively forwards messages to the JSL or appropriate JSH.

firewall

JRAD

JSL

JSH

Web server

JRLY

Insecure
environment

Secure
environment

client
TUXEDO

software

browser
BEA Jolt User’s Guide 3-17

3 CONFIGURING THE JOLT SYSTEM

rted.
nect
e
e

rror

to log

Jolt Relay (JRLY)

The JRLY (front-end relay) process may be started before or after the JRAD is sta
If the JRAD is not available when the JRLY is started, the JRLY attempts to con
to the JRAD when it receives a client request. If JRLY is unable to connect to th
JRAD, the client is denied access and is disconnected. A warning is written to th
JRLY error log file.

Starting the JRLY

The JRLY process is started by typing the command name at a system prompt.

jrly -f <config_file_path>

If the configuration file does not exist or cannot be opened, the JRLY prints an e
message. Refer to Appendix B for the Jolt Relay messages.

If the JRLY is unable to start, it writes a message to standard error and attempts
the startup failure in the error log if possible, then exit.

JRLY Configuration File

The format of the configuration file is a TAG=VALUE format. Blank lines or lines
starting with a “#” are ignored. Refer to Listing 3-5 for an example of the formal
specifications of the configuration file.

Listing 3-5 Specification of Configuration File

LOGDIR=<LOG_DIRECTORY_PATH>

ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>

ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>

LISTEN=<IP:Port combination where JRLY will accept connections>

CONNECT=<IP:Port combination associated with JRAD
3-18 BEA Jolt User’s Guide

JOLT INTERNET RELAY

T

NIX
 files

ng,
Refer to Listing 3-6 for an example of the JRLY configuration file. The CONNEC
line specifies the IP address and port number of JRAD machine.

Listing 3-6 Example of JRLY Configuration File

LOGDIR=/usr/log/relay

ACCESS_LOG=access_log

ERROR_LOG=errorlog

jrly will listen on port 4444

LISTEN=200.100.10.100:4444

CONNECT=200.100.20.200:4444

The format for directory and file names is determined by the operating system. U
systems use the forward slash (/). NT systems use the backslash (\). If any of the
specified in LOGDIR, ACCESS_LOG or ERROR_LOG cannot be opened for writi
the JRLY prints an error message on stderr and exits.

The format for host names and port numbers are shown in Table 3-5.

Table 3-5 Host Name and Port Number Formats

Host Name/Port Number Descriptions

Hostname:Port Hostname is a string, Port is a decimal number

//Hostname:Port Hostname is a string, Port is a decimal number

IP:Port IP is a dotted notation IP address, Port is a decimal
number
BEA Jolt User’s Guide 3-19

3 CONFIGURING THE JOLT SYSTEM

 or
rver

”

y be
ltiple
 for
Jolt Relay Adapter (JRAD)

The JRAD (back-end relay) is a TUXEDO system server. The JRAD server may
may not be located on the same TUXEDO host machine (in SHM mode) and se
group that the JSL server it is connected to.

The JRAD can be started independently of its associated JRLY. JRAD tracks its
startup and shutdown activity in the TUXEDO log file.

Starting the JRAD

Type tmloadcf and tmboot to start the JRAD.

Configuration entry in the UBBCONFIG is described in the “JRAD Configuration
section.

JRAD Configuration

A single JRAD process can only be connected to a single JRLY. A JRAD can onl
configured to communicate with one JSL and its associated JSHs. However, mu
JRADs can be configured to communicate with one JSL. The CLOPT parameter
the TUXEDO servers must be included in the UBBCONFIG file. For additional
information about the CLOPT parameters, refer to Table 3-2 and Table 3-6.

Note: The format is 0x0002PPPPNNN. Refer to the Jolt 1.1 Release Notes for
additional information on JRAD.

Table 3-6 JRAD CLOPT Parameter Descriptions

CLOPT Parameter Description

-l <hexadecimal format> Port to listen for the JRLY to connect
on behalf of the client.

-c <hexadecimal format> The address of the corresponding
JSL to which JRAD connects.
3-20 BEA Jolt User’s Guide

JOLT INTERNET RELAY

ether
Listing 3-7 shows the sample UBBCONFIG file.

Listing 3-7 Sample JRAD Entry in UBBCONFIG File

JRAD host 200.100.100.10 listens at port 2000, connects to JSL

port 8000 on the same host

JRAD SRVGRP=JSLGRP SRVID=60

 CLOPT="-A -- -l 0x000207D0C864640A –c 0x00021f40C864640A"

Network Address Configurations

There are several networked components that need to be configured to work tog
when configuring a Jolt Internet Relay. Prior to configuration, review the criteria
required in Table 3-7 and record the information. This will help minimize the
possibility of misconfiguration.

Table 3-7 Jolt Internet Relay Network Address Configuration Criteria

JRLY JRAD JSL

LISTEN: <Location where the
clients connect>

CONNECT: <Location of your
JRAD. Must match the -l
parameter of JRAD>

-l: <Location of where the
listener connects the JRLY>

-c: <Location of JSL. Must
match -n parameter of JSL>

-n: <Location of JSL. Must
match -c parameter of JRAD>
BEA Jolt User’s Guide 3-21

3 CONFIGURING THE JOLT SYSTEM

 the

ast
ival
Using Sample Applications in Jolt Online
Resources

You can access sample code that can be modified for use with BEA Jolt through
BEA Jolt product Web page at:

http://www.beasys.com/products/jolt/index.htm

These samples demonstrate and utilize Jolt features and functionality.

Other Web sites with Java-related information include:

� Javasoft Home Page (http://www.javasoft.com/)

� Deja News Home Page (http://www.dejanews.com/), an archive of
Java-related newsgroups

� Java Programmers FAQ (http://www.best.com/~pvdl/javafaq.txt)

� In addition, the newsgroups in the comp.lang.java hierarchy contain lists of p
articles and communications regarding Java, and is a valuable source of arch
material.
3-22 BEA Jolt User’s Guide

CHAPTER

g
he

ces
 and
4 Bulk Loading TUXEDO
Services

This section covers the following topics:

� Introduction to the Bulk Loader

� Getting Started Using the Bulk Loader

� Syntax of the Bulk Loader Data Files

� Troubleshooting

� Sample Bulk Load Data

Introduction to the Bulk Loader

As a systems administrator, you may have an existing TUXEDO application with
multiple TUXEDO services. Manually creating these definitions to the repository
database may take hours to complete.

Using the program, jbld , the bulk loader utility reads the specified text file consistin
of the TUXEDO service definitions and bulk loads them into the Jolt repository. T
services are loaded to the repository database in one “bulk load.” After the servi
have populated the Jolt Repository, you may edit services, create new services,
group services using the Jolt Repository Editor.

See Chapter 5, “Using the Jolt Repository Editor,” for information about using the Jolt
Repository Editor.
BEA Jolt User’s Guide 4-1

4 BULK LOADING TUXEDO SERVICES

the

n the

put
Getting Started Using the Bulk Loader

Since jbld is a Java application, before running the jbld command, set the
CLASSPATH environment variable (or its equivalent) to point to the directory where
Jolt class directory (e.g., /opt/bea/jolt/classes) is located. If it is not set, the Java
Virtual Machine cannot locate any Jolt classes.

For security reasons, jbld does not use command-line arguments to specify user
authentication information (user password or application password). Depending o
server’s security level, jbld will automatically prompt the user for passwords.

The bulk loader utility gets its input from command-line arguments and from the in
file.

Using UNIX

To activate the bulk loader using UNIX:

1. Type the following at the prompt:

setenv CLASSPATH <pathname>

java bea.joltadm.jbld [-n] [-u usrname] [-r usrrole]

<//host:port inputfile>

2. Type your user password and application password, if required.

Using Windows NT

1. To activate the bulk loader using Windows NT, type:

C:\> set CLASSPATH=C:<pathname>

C:\> java bea.jolt.jbld [-n][-u usrname] [-r usrrole]

<//host:port> <filename>

2. Type your user password and application password (if required) and press Enter.
4-2 BEA Jolt User’s Guide

GETTING STARTED USING THE BULK LOADER

ers.
ry

e
se

gain.
Command Line Options

Table 4-1 describes the bulk loader command-line options.

About the Bulk Load File

The bulk load file is a text file that defines services and their associated paramet
The bulk loader loads the services defined in the bulk loader file into the reposito
using the package name, “BULKPKG.” If a bulk load has been performed, the
“BULKPKG” package exists in the repository. If another load is performed from a
bulk loader file, all the services in the original “BULKPKG” are deleted. A new
“BULKPKG” package is created with the services from the new bulk loader file.

If a service exists in a package other than “BULKPKG,” the bulk loader reports th
conflict and does not load a service from the bulk loader file into the repository. U
the Repository Editor to remove duplicate services and load the bulk loader file a
See Chapter 5, “Using the Jolt Repository Editor,” for additional information.

Table 4-1 Command Line Options

Option Description

-u usrname Specifies the user name (default is your account
name). (Mandatory if required by security)

-r usrrole Specifies the user role (default is admin). (Mandatory
if required by security)

-n Validates input file against the current repository; no
updates are made to the repository. (Optional)

//host:port Specifies the JRLY or JSL address (host name and IP
port number). (Mandatory)

filename Specifies the file containing the service definitions.
(Mandatory)
BEA Jolt User’s Guide 4-3

4 BULK LOADING TUXEDO SERVICES

 a set
 a

Syntax of the Bulk Loader Data Files

Each service definition consists of services properties and parameters that have
number of parameter properties. Each property is represented by a keyword and
value.

Keywords are divided into two levels:

� Service-level

� Parameter-level

Guidelines for Using Keywords

The jbld reads the service definitions from a text file. While using the keywords,
follow the guidelines in Table 4-2.

Table 4-2 Guidelines for Using Keywords

Guideline Example

Each keyword must be followed
by an equal sign (=) and the
value.

Correct: type=string

Incorrect: type

Only one keyword is allowed on
each line.

Correct: type=string

Incorrect: type=string access=out

Any lines not having an equal
sign (=) are ignored.

Correct: type=string

Incorrect: type string

Certain keywords only accept a
well defined set of values.

The keyword, access accepts these values: in, out,
inout, noaccess
4-4 BEA Jolt User’s Guide

SYNTAX OF THE BULK LOADER DATA FILES

nsfer

he

e

ith the
Keyword Order in the Bulk Loader Data File

Keyword order must be maintained within the data files to ensure an error-free tra
during the bulk load.

The first keyword definition in the bulk loader data text file must be the initial
service=<NAME> keyword definition (shown in Listing 4-1). Following the
service=<NAME> keyword, all of the remaining service keywords that apply to the
named service must be specified before the first param=<NAME> definition. These
remaining service keywords can be in any order. Refer to Table 4-3 for a list of t
service keywords and values.

Next, specify all the parameters associated with the service. Following each of th
param=<NAME> keywords are all the parameter keywords that apply to the named
parameter until the next occurrence of a parameter definition. These remaining
parameter keywords can be in any order. When all the parameters associated w
first service are defined, specify a new service=<NAME> keyword definition.

The input file may contain
multiple service definitions.

service=INQUIRY
<service keywords and values>
service=DEPOSIT
<service keywords and values>
service=WITHDRAWAL
<service keywords and values>
service=TRANSFER
<service keywords and values>

Each service definition consists
of multiple keywords and
values.

service=deposit
export=true
inbuf=VIEW32
outbuf=VIEW32
inview=INVIEW
outview=OUTVIEW

Table 4-2 Guidelines for Using Keywords

Guideline Example
BEA Jolt User’s Guide 4-5

4 BULK LOADING TUXEDO SERVICES

n

RAY
e,
pe.
Listing 4-1 Correct Example of Hierarchical Order in a Data File

service =<NAME>

<service keyword>=<value>

<service keyword>=<value>

<service keyword>=<value>

param =<NAME>

<parameter keyword>=<value>

<parameter keyword>=<value>

param =<NAME>

<parameter keyword>=<value>

<parameter keyword>=<value>

Using Service-Level Keywords and Values

A service definition must begin with the “service=” keyword. For more informatio
about services, see Chapter 5, “Using the Jolt Repository Editor.”

Note: Services using CARRAY or STRING buffer types should only have one
parameter in the service. The recommended parameter name for a CAR
service is “CARRAY” with “carray” as the data type. For a STRING servic
the recommended parameter name is “STRING” with “string” as the data ty
See Chapter 5, “Using the Jolt Repository Editor,” for more information.
4-6 BEA Jolt User’s Guide

SYNTAX OF THE BULK LOADER DATA FILES
To review the service-level keywords and values, see Table 4-3.

Table 4-3 Service Keywords and Values

Keyword Value

service Any TUXEDO service name

export true or false (default is false)

inbuf/outbuf Select one of these buffer types:

FML
FML32
VIEW
VIEW32
STRING
CARRAY

inview Any view name for input parameters (optional; only
if VIEW or VIEW32 buffer type is used)

outview Any view name for output parameters (optional)
BEA Jolt User’s Guide 4-7

4 BULK LOADING TUXEDO SERVICES

ter
d.
Using Parameter-Level Keywords and Values

A parameter begins with the “param=” keyword followed by a number of parame
keywords until another “param” or “service” keyword, or end-of-file is encountere
The parameters can be in any order after the “param” keyword.

See Chapter 5, “Using the Jolt Repository Editor,” for more information about
parameters.

To review the parameter-level keywords and values, see Table 4-4.

Table 4-4 Parameter Keywords and Values

Keyword Values

param Any parameter name

type byte
short
integer
float
double
string
carray

access in
out
inout
noaccess

count Maximum number of occurrences (default is 1). The
value for unlimited occurrences is 0. Used only by the
Repository Editor to format test screens.
4-8 BEA Jolt User’s Guide

TROUBLESHOOTING

,
Troubleshooting

If you encounter any problems using the bulk loader utility, see Table 4-5. For a
complete list of bulk loader utility error messages and solutions, see Appendix B
“System Messages.”

Table 4-5 Bulk Loader Troubleshooting Table

If . . . Then . . .

the data file is not found check to ensure that the path is correct

the keyword is invalid check to ensure that the keyword is valid for
the package, service, or parameter

the value of the keyword is null type a value for the keyword

the value is invalid check to ensure that the value of a parameter
is within the allocated range

the data type is invalid check to ensure that the parameter is using a
valid data type
BEA Jolt User’s Guide 4-9

4 BULK LOADING TUXEDO SERVICES

IX
Sample Bulk Load Data

Listing 4-2 shows a sample data file in the correct format using the following UN
command, cat servicefile . This example loads TRANSFER and PAYROLL
service definitions to the BULKPKG.

Listing 4-2 Sample Bulk Load Data

service=TRANSFER

export=true

inbuf=FML

outbuf=FML

param=ACCOUNT_ID

type=integer

access=in

count=2

param=SAMOUNT

type=string

access=in

param=SBALANCE

type=string

access=out

count=2

param=STATLIN

type=string

access=out

service=LOGIN

inbuf=VIEW

inview=LOGINS

outview=LOGINR

export=true

param=user

type=string

access=in

param=passwd

type=string
4-10 BEA Jolt User’s Guide

SAMPLE BULK LOAD DATA
access=in

param=token

type=integer

access=out

service=PAYROLL

inbuf=FML

outbuf=FML

param=EMPLOYEE_NUM

type=integer

access=in

param=SALARY

type=float

access=inout

param=HIRE_DATE

type=string

access=inout
BEA Jolt User’s Guide 4-11

4 BULK LOADING TUXEDO SERVICES
4-12 BEA Jolt User’s Guide

CHAPTER

he

5 Using the Jolt
Repository Editor

Use the Jolt Repository Editor to add, modify, test, export, and delete TUXEDO
service definitions from the Repository based on the information available from t
TUXEDO configuration file. The Jolt Repository Editor accepts TUXEDO service
definitions, including the names of the packages, services, and parameters.

This chapter gives detailed information on the following areas:

� Introduction to the Repository Editor

� Getting Started

� Main Components of the Repository Editor

� Setting Up Packages and Services

� Grouping Services Using the Package Organizer

� Modifying Packages/Services/Parameters

� Making a Service Available to the Jolt Client

� Testing a Service

� Troubleshooting
BEA Jolt User’s Guide 5-1

5 USING THE JOLT REPOSITORY EDITOR

DO
hen
er to

,

ing

.

n
Introduction to the Repository Editor

The Repository is used internally by Jolt to translate Java parameters to a TUXE
type buffer. The Repository Editor is available as a downloadable Java applet. W
a TUXEDO service is added to the repository, it must be exported to the Jolt serv
ensure that the client requests can be made from a Jolt client.

The following list describes each section in this chapter:

� “Getting Started” for information about starting the Repository Editor, logging
on, and exiting the system.

� “Main Components of the Repository Editor” for information about what
comprises a package, service, and parameter.

� “Setting Up Packages and Services” for information about creating packages
services, and parameters.

� “Grouping Services Using the Package Organizer” for information about mov
services between packages and organizing the services.

� “Modifying Packages/Services/Parameters” for information about editing and
deleting packages, services, and parameters.

� “Making a Service Available to the Jolt Client” for information about exporting
and unexporting services and making the services available for use.

� “Testing a Service” for information about testing a service and its parameters

� “Troubleshooting” for information about potential problems and solutions whe
using the Repository Editor.
5-2 BEA Jolt User’s Guide

INTRODUCTION TO THE REPOSITORY EDITOR

ons,
Repository Editor Window

Repository Editor windows contain entry fields, scrollable displays, command butt
status, and radio buttons. Figure 5-1 illustrates the parts of a sample window.

Figure 5-1 Sample Repository Editor Window

1

2

3

5

4

BEA Jolt User’s Guide 5-3

5 USING THE JOLT REPOSITORY EDITOR

1.

ice

list

n
Repository Editor Window Description

Table 5-1 details the parts of the Repository Editor window example in Figure 5-

Table 5-1 Repository Editor Window Parts

Part Function

1 entry fields Enter text, numbers, or alphanumeric characters such as serv
names, server names, or port numbers.

2 scrollable display View lists that extend beyond the display using a button.

3 display list Select from a list of predefined items such as the Parameters
or select from a list of items that have been defined.

4 command buttons Activate an operation such as display the Packages window,
Services window, or Package Organizer.

5 status View the current status of the Repository Editor service or
package.

6 radio buttons (not
illustrated in Figure 5-1)

Select one of a number of options. Only one of the buttons ca
be activated at a time.
5-4 BEA Jolt User’s Guide

GETTING STARTED

ssary

r.
Getting Started

Before starting the Repository Editor, make sure that you have installed all nece
Jolt software. To use the Repository Editor, you must:

� Start the Repository Editor

� Log on to the Repository Editor

Note: For information on exiting the Repository Editor when you are finished
inputting information, refer to “Exiting the Repository Editor” in this chapte

Start the Repository Editor from either the JavaSoft appletviewer or from your Web
browser.

Starting the Repository Editor Using appletviewer

To start the editor using the JavaSoft appletviewer :

1. Set the CLASSPATH to include the Jolt class directory.

2. If loading the applet from a local disk, type the following at the URL location:

appletviewer <full-pathname>/RE.html

If loading the applet from the Web server, type the following at the URL
location:

appletviewer http://<www.server>/<URL path>/RE.html

3. Press Enter. The Repository Editor logon window displays.
BEA Jolt User’s Guide 5-5

5 USING THE JOLT REPOSITORY EDITOR

t

er is
Starting the Repository Editor Using Your Web Browser

To start the Repository Editor from a local file:

1. Set the CLASSPATH to include the Jolt class directory.

2. Type the following:

file:<full-pathname>/RE.html

To start the Repository Editor from a Web server:

1. Ensure that the CLASSPATH does not include the Jolt class directory

2. Unset the CLASSPATH.

3. Type the following:

http://<www.server>/<URL path>/RE.html

Note: Modify the applet codebase parameter in RE.html to match your Jolt
Java classes directory.

4. Press Enter. The Repository Editor logon window displays.

Logging on to the Repository Editor

After starting the Jolt Repository Editor, follow the directions to log on:

1. Type the name of the server machine designated as the “access point” to the
TUXEDO application and select the port number text field.

2. Type the port number and press Enter. The system validates the server and por
information.

Note: Unless you are logging on through the Jolt Relay, the same port numb
used to configure the Jolt Listener. Refer to your UBBCONFIG file for
additional information.

3. Type the TUXEDO Application Password and press Enter. Based on the
authentication level, type the remaining information.
5-6 BEA Jolt User’s Guide

GETTING STARTED
4. Type the TUXEDO user name and press Tab.

5. Type the TUXEDO user password and press Enter.

Note: The Jolt 1.1 Repository Editor uses the hardcoded joltadmin for the user
role.

The Packages and Services options are activated.

Figure 5-2 is an example of the Repository Editor logon window.

Figure 5-2 Repository Editor Logon Window
BEA Jolt User’s Guide 5-7

5 USING THE JOLT REPOSITORY EDITOR

ting
Editor

Repository Editor Logon Window Description

The following listing details the Repository Editor logon window.

Exiting the Repository Editor

Exit the Repository Editor when you are finished adding, editing, testing, or dele
packages, services, and parameters. Figure 5-3 is an example of the Repository
window before exiting. Only Packages, Services, and Close are enabled. All text entry
fields are disabled.

Option Description

Server Type the server name.

Port Number Type the port number in decimal value.

Note: After the server name and port number are entered, the
user name and password fields are activated. Activation is
based on the authentication level of the TUXEDO
application.

Application
Password

TUXEDO administrative password text entry.

User Name TUXEDO user identification text entry. The first character must be
an alpha character.

User Password TUXEDO password text entry.

Packages Accesses the Packages window. (Enabled after the logon.)

Services Accesses the Services window. (Enabled after the logon.)
5-8 BEA Jolt User’s Guide

GETTING STARTED

r

.

Figure 5-3 Example of the Repository Editor Logon Window Before Exiting
.

To exit the Repository Editor:

1. Select Back from a previous window to return to the Logon window.

2. Select Close to terminate the connection with the server. The Repository Edito
Logon window continues to display with disabled fields.

3. Select Close from your browser menu to remove the window from your screen
BEA Jolt User’s Guide 5-9

5 USING THE JOLT REPOSITORY EDITOR
Main Components of the Repository Editor

The Repository Editor allows you to add, modify, or delete any of the following
components:

� Packages

� Services

� Parameters

In addition, you can test and group Services.

Repository Editor Flow

After logging on to the Repository Editor, two options are enabled, Packages and
Services. Figure 5-4 illustrates the Repository Editor flow to help you determine
which button to select. Figure 5-4 shows the Repository Editor option flow.
5-10 BEA Jolt User’s Guide

MAIN COMPONENTS OF THE REPOSITORY EDITOR
Figure 5-4 Repository Editor Flow Diagram

Select Packages to perform the following functions:

� View packages and services

� Make a service available using Export or Unexport

� Select a package to delete

� Access the Package Organizer to:

� Move services from one package to another

� Create a new package

Packages

Services

Move Add
Package

Export Unexport

 Delete

Package

 Delete
Service or
Parameter

Test ServiceEdit Service
or Parameter

Package
Organizer

 Add
Service or
Parameter

 View
 Package

 & Services

Service

Logon to the Repository
Editor.
Determine
which
tasks to
complete.
BEA Jolt User’s Guide 5-11

5 USING THE JOLT REPOSITORY EDITOR

s:

tion.

s
Select Services to access the Services window and perform the following function

� Create or edit service definitions

� Create, edit, or delete parameters

� Test the services and parameters

What is a Package?

Packages provide a convenient method for grouping services for Jolt administra
A service is comprised of parameters, including pin number, account number,
payment, rate, term, age, or Social Security number. The Packages button can be used
to:

� View packages and services

� Export or unexport services

� Delete packages

� Access Package Organizer to:

� Move services

� Create a new package

The available packages are displayed. When a package is selected, the service
contained within a package display.
5-12 BEA Jolt User’s Guide

MAIN COMPONENTS OF THE REPOSITORY EDITOR
Figure 5-5 is an example of a Packages window.

Figure 5-5 Highlighted Package with Services
BEA Jolt User’s Guide 5-13

5 USING THE JOLT REPOSITORY EDITOR

KS,

s or

on

 is

the
Packages Window Description

The following listing describes the Packages window options.

Viewing a Package Instructions

1. To view the packages, select Packages from the Logon window. The Packages
window displays.

2. The packages are displayed in the Packages display list. In Figure 5-5, STOC
BANKAPP, HumanResources, and BANK are the available packages.

Option Description

Packages Lists available packages.

Services Lists available services within the selected package.

Package Organizer Accesses the Package Organizer window to review available
packages and services. Moves the services among the package
add a new package.

Export Makes the most current services available to the client. This opti
is enabled when a package is selected.

Unexport Select this option before testing an existing service. This option
enabled when a package is selected.

Delete Deletes a package. This option is enabled when a package is
selected and the package is empty (no services contained within
package).
5-14 BEA Jolt User’s Guide

MAIN COMPONENTS OF THE REPOSITORY EDITOR

d of
diting
dow
h the
What is a Service?

A service is a definition of an available TUXEDO service. Services are comprise
parameters such as pin number, account number, payment, and rate. Adding or e
a Jolt service does not affect an existing TUXEDO service. Use the Services win
to add, edit, or delete services. Figure 5-6 is an example of a Services window wit
available services.

Figure 5-6 Services Window
BEA Jolt User’s Guide 5-15

5 USING THE JOLT REPOSITORY EDITOR

 a
lay

t the

ce

en
Services Window Description

The following listing describes the Services window options:

Viewing a Service Instructions

1. To view the services, select Services from the Logon window. The Services
window displays.

2. The available packages are displayed in the Packages display list. Selecting
package displays the available services for that package in the Services disp
list. In Figure 5-6, BANKAPP is the selected package.

3. The available services for the selected package are displayed in the Services
display list. In Figure 5-6, INQUIRY, WITHDRAWAL, DEPOSIT, and
TRANSFER are the available services for BANKAPP.

Option Description

Packages Lists the services and parameters for the select package. Selec
package to add a new service, edit, or delete a service.

Services Lists a service in the package to edit or delete. Selecting a servi
displays the parameters within the service.

Parameters Displays selected service parameters.

New Displays the Edit Services window for adding a new service.

Edit Displays the Edit Services window for editing an existing service.
This button is enabled only if a service has been selected.

Delete Deletes a service. This button is only enabled if a service has be
selected.

Back Returns the user to the previous window.
5-16 BEA Jolt User’s Guide

MAIN COMPONENTS OF THE REPOSITORY EDITOR

ervice
ng

What is a Parameter?

A service is comprised of parameters, including a pin number, account number,
payment, rate, term, age, or Social Security number. A parameter is one of the s
components. Adding or editing a parameter does not modify or change an existi
TUXEDO service. Figure 5-7 is an example of the Services window displaying a
selected service and its parameters.

Figure 5-7 Services Window with Parameters
BEA Jolt User’s Guide 5-17

5 USING THE JOLT REPOSITORY EDITOR

r

or
.

Viewing a Parameter Instructions

1. To view the parameters of a service, select Services from the Logon window. The
Services window displays.

2. View packages in the Packages display list. To view the available services fo
each package, select the package. In Figure 5-7, BANKAPP is the selected
package.

3. View services in the Services display list. To view the available parameters f
each service, select a service. In Figure 5-7, INQUIRY is the selected service

4. View parameters for a selected service in the Parameters display list. In
Figure 5-7, Message, STATLIN, ACCOUNT_ID, and SBALANCE are the
available parameters for the INQUIRY service.
5-18 BEA Jolt User’s Guide

SETTING UP PACKAGES AND SERVICES

es:

rly

ure.

rvice.

ow,

 the

ore
o the
Setting Up Packages and Services

This section includes the necessary steps for setting up a package and its servic

� Adding a package

� Adding a service

� Adding a parameter

Saving Your Work

As you are creating and editing services and parameters, it is important to regula
save information to ensure that you do not inadvertently lose any input. Selecting Save
Service can prevent the need to re-enter information in the event of a system fail

Be sure to exercise caution when you are adding or editing the parameters of a se
Add must be selected before choosing Back from the Edit Parameters window (shown
in Figure 5-11) and returning to the Edit Services window (shown in Figure 5-9).

If adding a new service or modifying an existing service at the Edit Services wind
ensure that Save Service is selected before choosing Back. If Back is selected before
the modified information is saved, a warning briefly displays on the status line at
bottom of the window.

Adding a Package

If you need to add a new group of services, a new package must be created bef
adding the services. Figure 5-8 shows how a new package, BALANCE, is added t
Packages listing.
BEA Jolt User’s Guide 5-19

5 USING THE JOLT REPOSITORY EDITOR

t
n

Figure 5-8 Adding a New Package

Adding a Package Instructions

Follow these instructions to add a package:

1. From the Logon window, select Packages. The Packages window displays. Selec
Package Organizer. The Package Organizer window displays. For a descriptio
of the Package Organizer window, see “Package Organizer Description” in this
chapter.

2. From the Package Organizer window, select New Package. The text field is
activated.

3. Type the name of the new package (not to exceed 32 characters) and press Enter.
The new name (in Figure 5-8, BALANCE) is displayed in the Packages display
list in random order.
5-20 BEA Jolt User’s Guide

SETTING UP PACKAGES AND SERVICES

 Jolt
rvice;

 to a

 all
 30
Adding a Service

Services are definitions of available TUXEDO services and can only be a part of a
package. You are not required to create a new package before creating a new se
however, you must create the service as a part of a package, even if it is moved
different package at a later date.

The Repository Editor accepts the new service name exactly as it is typed (e.g.,
capital letters, abbreviations, misspellings, etc.). Service names must not exceed
characters. Figure 5-9 is an example of the Adding New Service window.

Figure 5-9 Edit Services: Adding New Service Window
BEA Jolt User’s Guide 5-21

5 USING THE JOLT REPOSITORY EDITOR

t

dits

new

r is
Adding a Service Window Description

The following listing describes the options for adding services to a package in a
package window.

Option Description

Service Name Adds the name of the new service to the Repository.

Input Buffer
Type/Output Buffer
Type

VIEW - a C-structure and 16-bit integer field. Contains subtypes tha
have a particular structure. X_C_TYPE and X_COMMON are
equivalent. X_COMMON is used for COBOL and C.

VIEW32 - similar to VIEW, except 32-bit field identifiers are
associated with VIEW32 structure elements.

CARRAY - an array of uninterrupted binary data that is neither
encoded nor decoded during transmission; it may contain null
characters. X_OCTET is equivalent.

FML - a type in which each field carries its own definition.

FML32 - similar to FML except the ID field and length field are 32 bits
long.

STRING - a character array terminated by a null character that is
encoded or decoded.

Input View
Name/Output
View Name

A unique name assigned to the Input View Buffer and Output View
Buffer types. These fields are only enabled if VIEW or VIEW32 are
the selected buffer types.

Current Status Lists current status of the service. EXPORTED or UNEXPORTED
status is displayed. UNEXPORTED is the default.

Save Service Saves newly created service in the Repository.

Test Tests the service. This is disabled until a new service is created or e
to an existing service are saved.

Parameters Lists a parameter to edit or delete.

New Parameter Adds new parameters to the service.

Edit Parameter An existing parameter can be edited. This option is disabled until a
parameter is selected.

Delete Parameter Deletes a parameter. This option is disabled until a new paramete
selected.
5-22 BEA Jolt User’s Guide

SETTING UP PACKAGES AND SERVICES

ain

g

.

tput

put

ay
ervice.
ata
ass

cted
Adding a Service Instructions

To add a service, follow these instructions:

1. From the Logon window, select Services.

2. Select the package where the service is going to be added. If you are uncert
which package should contain the new service, select a package and use the
Package Organizer to move the service to a different package. See “Groupin
Services Using the Package Organizer” for additional information.

3. Select New from the Services window. The Edit Services window is displayed

4. Select the Service Name text field to activate it. Type the service name.

5. Select the buffer type. Although the same buffer type selected for the Input
Buffer is automatically selected for the Output Buffer, you can change the Ou
Buffer type to a different buffer type.

6. If VIEW or VIEW32 is selected, type the Input View Name and Output View
Name in the accompanying text field. If another buffer type is selected, the In
View Name and Output View Name text fields are disabled. If CARRAY or
STRING is selected, refer to “Selecting CARRAY or STRING as a Service
Buffer Type” in this chapter for additional instructions.

7. Select Save Service to save the newly created service.

Selecting CARRAY or STRING as a Service Buffer Type

If CARRAY or STRING is selected as the buffer type for a new service, only carr
or string can be added as the data type for the accompanying parameters of a s
See also “Adding a Parameter” and “Selecting carray or string as a Parameter D
Type” in this chapter. For more information, refer to Chapter 6, “Using the Jolt Cl
Library.”

Figure 5-10 is an example of the Edit Services window with STRING as the sele
buffer type for the service.
BEA Jolt User’s Guide 5-23

5 USING THE JOLT REPOSITORY EDITOR
Figure 5-10 Edit Services Window with STRING as the Selected Buffer Type
5-24 BEA Jolt User’s Guide

SETTING UP PACKAGES AND SERVICES

t the

meter.
Adding a Parameter

Selecting New Parameter from the Edit Services window brings up the Edit
Parameters window. Review the features in Figure 5-11. Use this window to inpu
parameter and window information for a service.

Figure 5-11 is an example of the Edit Parameters window used to add a new para

Figure 5-11 Adding a Parameter Window
BEA Jolt User’s Guide 5-25

5 USING THE JOLT REPOSITORY EDITOR

r

en
Parameters Window Description

The following listing describes the Edit Parameters window options.

Option Description

Field Name Adds the field name (e.g., asset, inventory).

Type List data type choices:

byte - 8-bit

short - 16-bit

integer - 32-bit

float - 32-bit

double - 64-bit

string - null-terminated character array

carray - variable length 8-bit character array

Direction Lists choices for direction:

Input - Information is directed from the client to the server.

Output - Information is directed from the server to the client.

Both - Information is directed from the client to the server, and from
the server to the client.

Occurrence Number of times that an identical field name can be used. If 0, the
field name can be used an unlimited number of times. Occurrences
are used by Jolt to build test screens; not to limit information sent o
retrieved by TUXEDO.

Clear Clears the window.

Change Disabled while new parameters are added.

Add Adds new parameters to the service. The parameters are saved wh
the service is saved.

Back Returns user to the previous window.

Screen Label Disabled for the Jolt 1.1 release.

Screen Information Disabled for the Jolt 1.1 release.
5-26 BEA Jolt User’s Guide

SETTING UP PACKAGES AND SERVICES
Adding a Parameter Instructions

1. Select Field Name to activate the field and type the field name.

Note: If the buffer type is FML or VIEW, the field name must match the
corresponding parameter field name in FML or VIEW.

2. Select the data type.

3. Select the Occurrences text field to activate it, and then type the number of
occurrences.

4. Specify a direction by selecting the input , output, or both radio buttons.

5. Select Add to append the information. Add does not save the parameter.

6. Select Save Service to save the parameter as a part of the service.

Warning: If Save Service is not selected before selecting Back, the parameters
are not saved as part of the service.

7. Select Back to return to the previous window.
BEA Jolt User’s Guide 5-27

5 USING THE JOLT REPOSITORY EDITOR

 or
ice.

meter

 a
ing

cted
Selecting carray or string as a Parameter Data Type

If CARRAY or STRING is the selected buffer type for a new service, only carray
string can be added as the data type for the accompanying parameters of a serv

In this case, only one parameter can be added. It is recommended that the para
name for CARRAY is “CARRAY” and the parameter name for STRING is
“STRING.”

See also “Adding a Service Instructions” and “Selecting CARRAY or STRING as
Service Buffer Type” in this chapter. For more information, refer to Chapter 6, “Us
the Jolt Class Library.”

Figure 5-12 is an example of the Edit Parameters window with string as the sele
data type for the parameter. The Type defaults to string and does not allow you to
modify that particular data type. The Field Name can be any name.

Figure 5-12 Edit Parameters Window with string as the Data Type
5-28 BEA Jolt User’s Guide

GROUPING SERVICES USING THE PACKAGE ORGANIZER

y want
t are
.

kage
en
 a

a
Grouping Services Using the Package
Organizer

The Package Organizer moves or transfers services between packages. You ma
to group related services in a package (for example, WITHDRAWAL services tha
exported only at a certain time of the day can be grouped together in a package)

The Package Organizer arrow buttons allow you to move a service from one pac
to another. These buttons are useful if you have several services to move betwe
packages. The packages and services display listings help track a service within
particular package.

Figure 5-13 and Figure 5-14 are examples of Package Organizer windows with
service selected for transfer to another package.
BEA Jolt User’s Guide 5-29

5 USING THE JOLT REPOSITORY EDITOR
Figure 5-13 Example of a Selected Service
5-30 BEA Jolt User’s Guide

GROUPING SERVICES USING THE PACKAGE ORGANIZER

eft

ight

an

e
Package Organizer Description

The following listing describes the options for the Package Organizer window:

Grouping Services with the Package Organizer Instructions

1. Select the package containing the services to be moved from the Packages l
display window to the right display window. In Figure 5-13, BANKAPP is the
selected package.

2. Select the service to be moved from the Services left display window to the r
display window. In Figure 5-13, INQUIRY is the selected service in the
BANKAPP package.

3. Select the package to receive the service from the Packages right display
window. Figure 5-13 shows the selected service and the selected package,
BANK, to where the INQUIRY service will be moved.

Option Description

Available Packages (left
display list)

Lists packages available where the service to be moved
currently resides.

Available Packages (right
display list)

Lists packages available to move the service to.

Services (left display list) Lists available services for the highlighted package that c
be moved.

Services (right display list) Lists available services that have been moved for the
highlighted package.

Left arrow Highlights services on the right to move services (one
service at a time) to the package highlighted on the left.

Right arrow Highlights services on the left to move services (one servic
at a time) to the package highlighted on the right.

New Package Adds the name of a new package.

Back Returns user to the previous window.
BEA Jolt User’s Guide 5-31

5 USING THE JOLT REPOSITORY EDITOR

e are

the

lists.
Figure 5-14 Example of a Moved Service

4. To move the services between the packages, select the left arrow (<---) or right
arrow (--->). These keys are activated only when both packages and a servic
selected. The keys are only active in the direction of the package where the
service is to be moved. Figure 5-14 shows how the Repository Editor moves
INQUIRY service to the BANK package on the right.

Note: You cannot select the same package in both the left and right display
5-32 BEA Jolt User’s Guide

MODIFYING PACKAGES/SERVICES/PARAMETERS

e

new
, see
 of
Modifying Packages/Services/Parameters

If a package, service, or parameter requires any modifications, you can make th
following changes:

� Editing a service

� Editing a parameter

� Deleting a parameter/service/package

Note: The Jolt 1.1 release does not allow you to edit a package name.

Editing a Service

Edit an existing service name, service information, or access the window to add
parameters to an existing service. For a description of the Edit Services window
“Adding a Service Window Description” in this chapter. Figure 5-15 is an example
the Edit Services window.
BEA Jolt User’s Guide 5-33

5 USING THE JOLT REPOSITORY EDITOR

ices

splay
Figure 5-15 Edit Services Window

Editing a Service Instructions

Follow the instructions below to edit a service:

1. Select the package containing the service that requires editing from the Serv
window.

2. Select the service to edit. The parameters are displayed in the parameters di
list.

3. Select Edit . The Edit Services window displays.

4. Type or select the new information and select Save Service.
5-34 BEA Jolt User’s Guide

MODIFYING PACKAGES/SERVICES/PARAMETERS

em
dit
Editing a Parameter

All parameter elements can be changed, including the name of the parameter.

Warning: If you are creating a new parameter using an existing name, the syst
overwrites the existing parameter. Figure 5-16 is an example of the E
Parameters window.

Figure 5-16 Edit Parameters Window
.

BEA Jolt User’s Guide 5-35

5 USING THE JOLT REPOSITORY EDITOR

eleting

led to

st and
Editing a Parameter Instructions

To change a parameter, follow the instructions below:

1. Select the parameter in the Parameters window and select Edit Parameters. The
Edit Parameters: Changing Existing Parameter window displays.

2. Type the new information and select Change.

3. Select Back to return to the previous window.

Deleting Parameters/Services/Packages

This section details the necessary sequential steps to delete a package. Before d
a package, all of the services must be deleted from the package. The Delete option is
not enabled until all components of the package or service are deleted.

Warning: The system does not display a prompt to confirm that items are to be
deleted. Be certain that the parameter, service, or package is schedu
be deleted or has been moved to another location before selecting Delete.

Deleting a Parameter

Determine which parameters to delete and follow the instructions below.

1. To delete the parameters, highlight the parameter in the Parameters display li
select Delete Parameter.

2. Select Back to return to the previous window.
5-36 BEA Jolt User’s Guide

MODIFYING PACKAGES/SERVICES/PARAMETERS

t all

l
fore
Deleting a Service

Determine which services to delete and follow these instructions. Make sure tha
parameters within this service are deleted before selecting this option.

1. Select Services from the Logon window. The Packages window displays.

2. Select the package containing the service you want to delete.

3. Select the service you want to delete. Delete is enabled.

4. Select Delete. The service is deleted.

Deleting a Package

Determine which packages to delete and follow these instructions. Make sure al
services contained in this package are deleted or moved to another package be
selecting this option.

1. To delete packages, select Packages from the Logon window. The Packages
window displays.

2. Select a package.

3. Select Delete. The package is deleted.
BEA Jolt User’s Guide 5-37

5 USING THE JOLT REPOSITORY EDITOR

e by

ent.
ervice
Making a Service Available to the Jolt Client

To make a service available to a Jolt client, you must export it. All services in a
package must be exported or unexported as a group. A service is made availabl
using the Export and Unexport buttons.

This section discusses:

� Exporting/Unexporting services

� Reviewing the Export/Unexport status

Exporting/Unexporting Services

Determine which services are being made available or unavailable to the Jolt cli
Services are exported to ensure that the Jolt client can access the most current s
definitions from the Jolt server.

Figure 5-17 shows the Packages window. From there you can Export and Unexport
services.
5-38 BEA Jolt User’s Guide

MAKING A SERVICE AVAILABLE TO THE JOLT CLIENT

rvice
tus”
Figure 5-17 Export and Unexport Buttons

Exporting/Unexporting a Service Instructions

Follow the instructions below to export or unexport a service.

1. Select Packages from the Logon window. The Packages window displays.

2. Select a package. Export and Unexport are enabled.

3. To make services available, select Export .

4. To make services unavailable, select Unexport.

Note: The system does not display a confirmation message indicating that the se
is exported or unexported. See “Reviewing the Exported/Unexported Sta
in this chapter for additional information.
BEA Jolt User’s Guide 5-39

5 USING THE JOLT REPOSITORY EDITOR

it
Reviewing the Exported/Unexported Status

When a service is exported or unexported, you can review its status from the Ed
Services window. Figure 5-18 shows the current status as EXPORTED.

Figure 5-18 Exported/Unexported Status
5-40 BEA Jolt User’s Guide

MAKING A SERVICE AVAILABLE TO THE JOLT CLIENT

 can

age.
Reviewing the Exported/Unexported Status Instructions

To review the current exported or unexported status of a service, follow these
instructions:

1. Select Services from the Logon window. The Services window displays.

2. When you want to find out if a service has been exported or unexported, you
check its status by selecting a package from the Package display list. The
Services display list is enabled with a listing of services for the selected pack

3. Select the desired service.

4. Select Edit . The Edit Services window displays with the Current Status of the
service as EXPORTED or UNEXPORTED.
BEA Jolt User’s Guide 5-41

5 USING THE JOLT REPOSITORY EDITOR

y
.

h

e and
Testing a Service

A service and its parameters should be tested to ensure that they are functioning
properly before they are made available to Jolt clients. Services that are currentl
available can be tested without making changes to the services and parameters

Note: The Repository Editor allows you to test an existing TUXEDO service wit
Jolt without writing a line of Java code.

An exported or unexported service can be tested; if you need to change a servic
its parameters, unexport the service prior to editing.

This section explains the following:

� Jolt Repository Editor Service Test Window

� Testing a Service Instructions
5-42 BEA Jolt User’s Guide

TESTING A SERVICE

r the

ce

only
Repository Editor Service Test Window

Test the service to ensure that the parameter information is accurate. Although Test is
enabled when parameters are not added to the service, the Service Test window
(Figure 5-19) displays the parameter fields as “unused” and they are disabled. A
service can only be tested when the corresponding TUXEDO server is running fo
service being tested.

Note: The Service Test window displays up to 20 items of any multiple-occurren
parameters. All items that follow the twentieth occurrence of a parameter
cannot be tested.

Figure 5-19 shows an example of a Service Test window with writable and read-
text fields.

Figure 5-19 Sample Service Test Window
BEA Jolt User’s Guide 5-43

5 USING THE JOLT REPOSITORY EDITOR

yte
Service Test Window Description

The following listing details the Service Test window in Figure 5-19.

Note: You can enter a two-digit hexadecimal character (0-9, a-f, A-F) for each b
in the CARRAY data field. For example, the hexadecimal value for 1234
decimal is 0422.

Option Description

Service Displays the name of the tested service (read-only).

Parameters displayed Tracks the parameters displayed in the window (read-only).

Parameter text fields The parameter information text entry field. These fields are
writable or read-only. Disabled if read-only.

RUN Runs the test with the data entered.

Clear Clears the text entry field.

Next Lists additional parameter fields, if applicable.

Prev Lists previous parameter fields, if applicable.

Back Returns to the Edit Services window.
5-44 BEA Jolt User’s Guide

TESTING A SERVICE

u can
also
Testing a Service Process Flow

Test a service to ensure that all service and parameter information is correct. Yo
test a service without making changes to the service or its parameters. You can
test a service after editing the service or its parameters.

Figure 5-20 shows a typical Repository Editor service test flow.

Figure 5-20 Test Service Flow

Select Test

Select RUN

Pass

Fail

Edit Service

Input data

Unexport

Save Service
BEA Jolt User’s Guide 5-45

5 USING THE JOLT REPOSITORY EDITOR

e

Testing a Service Instructions

Follow these instructions to test a service.

1. Select Services from the Logon window to display the Services window.

2. Select the package and the service to test.

3. Select Edit to access the Edit Services window.

4. Select Test to access the Service test window.

5. Input data in the Service test window parameter text field.

6. Select RUN. The status line displays the message, “Run Completed OK,” if th
test passes, or “Call Failed,” if the test fails. See “Some Reasons Why a Test
Might Fail” or Table 5-2 for additional Repository Editor troubleshooting
information.

Follow the instructions below if editing is required to pass the test.

1. Return to the Repository Editor logon window and select Packages.

2. Select the package with the services to be retested.

3. Select Unexport.

4. Select Back to return to the Logon window.

5. Select Services to display the Services window.

6. Select the package and the service that requires editing and select Edit .

7. Edit the service.

8. Save the service, select Test, and repeat steps 5 and 6 from previous list.
5-46 BEA Jolt User’s Guide

TESTING A SERVICE
SOME REASONS WHY A TEST MIGHT FAIL

Here are some reasons why a service test might fail and possible solutions.

If this . . . Do this . . .

A parameter is incorrect. Edit the service.

The Jolt server is down. Check the server. The TUXEDO service is
down. You do not need to edit the service.
BEA Jolt User’s Guide 5-47

5 USING THE JOLT REPOSITORY EDITOR

.

).

s

er

Troubleshooting

If you encounter problems while using the Repository Editor, see Table 5-2.

Table 5-2 Repository Editor Troubleshooting Table

If . . . Then . . .

You receive any error Make sure the browser you are running is Java-enabled:

� For Netscape browsers, look under the “Options” menu,
there should be a choice for “Show Java Console.” If this
does not exist, the browser probably does not support Java

� For Internet Explorer, make sure the version is 3.0 (or later

� If running Netscape Navigator, check the Java Console for
error messages.

� If running appletviewer, check the system console (or the
window where you started the appletviewer).

You cannot connect to
the Jolt Server (after
entering Server and
Port Number)

Check and make sure that:

� Your Server name is correct (and accessible from your
machine). Check that the port number is the correct port.
There must be a JSL or JRLY configured to listen on that
port.

� The Jolt server is up and running. If any authentication is
enabled, check that you are entering the correct user name
and passwords.

� If the applet was loaded via http, the Web server, JRLY and
the Jolt server must be on the same machine (i.e., the Serv
name entered into the Repository Editor must be the same
machine as the one used in the URL to download the
applet).
5-48 BEA Jolt User’s Guide

TROUBLESHOOTING

.

You cannot start the
Repository Editor

If you are running the editor in a browser and downloading the
applet via http, make sure that:

� The browser is Java-enabled.

� The Web server is running and accessible.

� The RE.html file is available to the Web server.

� The RE.html file contains the correct <codebase>
parameter (this is where the Jolt class files are located).

If running the editor in a browser (or appletviewer) and
loading the applet from disk, make sure that:

� The browser is Java-enabled.

� The RE.html file exists and is readable.

� The RE.html file is Java-enabled.

� The RE.html file contains the correct <codebase>
parameter (this is where the Jolt class files are installed on
the local disk).

� CLASSPATH is set and points to the Jolt class directory.

Cannot display
Packages or Services
even though you are sure
they exist

� Make sure that the Jolt Repository Server is running
(JREPSVR).

� Make sure that the JREPSVR can access the repository file

� Make sure that the configuration of JREPSVR: verify
CLOPT parameters and verify that jrep.f16 (FML
definition file) is installed and accessible (follow installation
documentation)

Cannot save changes in
the Repository Editor

Check permissions on the repository file. The file must be
writable by the user who starts JREPSVR.

Table 5-2 Repository Editor Troubleshooting Table

If . . . Then . . .
BEA Jolt User’s Guide 5-49

5 USING THE JOLT REPOSITORY EDITOR

s.
Cannot test services � Check that the service is available.

� Verify the service definition matches the service.

� If TUXEDO authentication is enabled, check that you have
the required permissions to execute the service.

� Check if the application file (FML or VIEW) is specified
correctly in the variables (FIELDTBLS or VIEWFILES) in
the ENVFILE. All applications’ FML field tables or VIEW
files must be specified in the FIELDTBLS and VIEWFILES
environment variables in the ENVFILE. If these files are not
specified, the JSH is unable to process data conversion and
you will receive the message “ServiceException: TPEJOLT
data conversion failed.”

� Check the ULOG file for any additional diagnostic message

Table 5-2 Repository Editor Troubleshooting Table

If . . . Then . . .
5-50 BEA Jolt User’s Guide

CHAPTER

Java
u to
tion

:

ith
f the
6 Using the Jolt Class
Library

The BEA Jolt Class Library provides developers with a set of new object-oriented
language classes for accessing BEA TUXEDO services. These classes allow yo
extend applications for Internet and intranet transaction processing. The applica
developer can use the Jolt Class Library to customize access to BEA TUXEDO
services from Java applets. The following Jolt topics are included in this chapter

� Class Library Functionality Overview

� Jolt Object Relationships

� Jolt Class Functionality

� Jolt Class Library Walk-through

� Using TUXEDO Buffer Types with Jolt

� Multithreaded Applications

� Event Subscription and Notifications

� Clearing Parameter Values

� Reusing Objects

� Application Deployment and Localization

To use the information in the following sections, you need to be generally familiar w
the Java programming language and object-oriented programming concepts. All o
programming examples are in Java code.
BEA Jolt User’s Guide 6-1

6 USING THE JOLT CLASS LIBRARY

hese

 to
wser

is

 be

; it

eck

t the
the
Note: All of the program examples are only fragments used to illustrate Jolt
capabilities. They are not intended to be compiled and run as provided. T
program examples require additional code to be fully executable.

Class Library Functionality Overview

The Jolt Class Library provides the TUXEDO application developer with the tools
develop client-side applications or applets that will run in a Java-enabled Web bro
or as an independent Java application. The bea.jolt package contains the Jolt Class
Library. To use the Jolt Class Library, the client program or applet must import th
package. For an example of how to import the bea.jolt package, refer to Listing 6-1.

Java Applications vs. Java Applets

Java programs that run in a browser are called “applets.” Applets are intended to
small, easily downloaded parts of an overall application that perform specific
functions. Many popular browsers impose limitations on the capabilities of Java
applets for the purpose of providing a high degree of security for the users of the
browser. The following are some of the restrictions imposed on applets:

� An applet ordinarily cannot read or write files on any host system.

� An applet cannot start any program on the host (client) that is executing the
applet.

� An applet can make a network connection only to the host where it originated
cannot make other network connections, not even to the client machine.

Programming workarounds exist for most of the restrictions on Java applets. Ch
your browser’s web site (e.g., www.netscape.com or www.microsoft.com) or
developer documentation for specific information about the applet capabilities tha
browser supports or restricts. You can also use Jolt Relay to overcome some of
network connection restrictions.
6-2 BEA Jolt User’s Guide

CLASS LIBRARY FUNCTIONALITY OVERVIEW

icted
n the

d to
uch

y
t

g,

sed

ions.

s
A Java application, however, is not run in the context of a browser and is not restr
in the same ways. For example, a Java application can start another application o
host machine where it is executing. While an applet relies on the windowing
environment of a browser or appletviewer for much of its user interface, a Java
application requires that you create your own user interface. An applet is designe
be small and highly portable. A Java application, on the other hand, can operate m
like any other non-Java program. The security restrictions for applets imposed b
various browsers and the scope of the two program types are the most importan
differences between a Java application and a Java applet.

Jolt Class Library Features

The Jolt Class Library has the following characteristics:

� Features fully thread-safe classes.

� Encapsulates typical transaction functions such as logon, synchronous callin
transaction begin, commit, rollback, and logoffs as Java objects.

� Contains methods that allow you to set idle time-outs for continuous and
intermittent client network connections.

� Features methods that allow a Jolt client to subscribe to and receive event-ba
notifications.

Jolt Class Library Error and Exception Handling

The Jolt Class Library returns both Jolt interpreter and TUXEDO errors as except
The Jolt Class Library Reference contains the Jolt classes and lists the errors or
exceptions thrown for each class. Appendix A contains the Error and Exception Clas
Reference.
BEA Jolt User’s Guide 6-3

6 USING THE JOLT CLASS LIBRARY

ts to
hip

DO

age

d the

such as
riate
Jolt Client/Server Relationship

BEA Jolt works in a distributed client/server environment and connects Java clien
BEA TUXEDO based applications. Figure 6-1 illustrates the client/server relations
between a Jolt program and the Jolt Server.

Figure 6-1 Jolt Client/Server Relationship
.

As illustrated in the diagram, the Jolt Server acts as a proxy for a native BEA
TUXEDO client, implementing functionality available through the native BEA
TUXEDO client. The BEA Jolt Server accepts requests from BEA Jolt clients and
maps those requests into BEA TUXEDO service requests through the BEA TUXE
ATMI interface. Requests and associated parameters are packaged into a mess
buffer and delivered over the network to the BEA Jolt Server. The BEA Jolt
Connection Manager handles all communication between the BEA Jolt Server an
BEA Jolt applet using the BEA Jolt Transaction Protocol. The BEA Jolt Server
unpacks the data from the message, performs any necessary data conversions,
numeric format conversions or character set conversions, and makes the approp
service request to BEA TUXEDO as specified by the message.

Client

GUI Application

Jolt Class Library

Connection
Manager

ATMI
Protocol Translator

Connection

Jolt Server

TCP/IP

TUXEDO
Application

Application Protocol

Jolt Transaction Protocol

Jolt Network Protocol
Manager
6-4 BEA Jolt User’s Guide

CLASS LIBRARY FUNCTIONALITY OVERVIEW

y the
h the

lt
rface

Class

s in a
Once a service request enters the BEA TUXEDO system, it is executed in exactl
same manner as any other BEA TUXEDO request. The results are returned throug
ATMI interface to the BEA Jolt Server, which packages the results and any error
information into a message that is sent to the BEA Jolt client applet. The BEA Jo
client then maps the contents of the message into the various BEA Jolt client inte
objects, completing the request.

On the client side, the user program contains the client application code. The Jolt
Library packages a JoltSession and JoltTransaction, which in turn handle service
requests.

The following table describes the client-side requests and Jolt Server-side action
simple example program.

Table 6-1 Jolt Client/Server Interaction

Jolt Client Jolt Server

1 attr=new JoltSessionAttributes();

attr.setString(attr.APPADDRESS,
“//myhost:8000”);

Binds the client to the TUXEDO
environment

2 session=new JoltSession(attr, username,
userRole, userPassword, appPassword);

Logs the client on to TUXEDO

3 withdrawal=new JoltRemoteService(servname,
session);

Looks up the service attributes in
the Repository

4 withdrawal.addString(“accountnumber”, “123”);

withdrawal.addFloat(“amount”, (float) 100.00);

Populates variables in the client
(no Jolt Server activity)

5 trans=new JoltTransaction(time-out, session); Begins a new TUXEDO
transaction

6 withdrawal.call(trans); Executes the TUXEDO service

7 trans.commit() or trans.rollback(); Completes or rolls back
transaction

8 balance = withdrawal.getFloatDef(“balance,”
(float) 0.0);

Retrieves the results (no Jolt
Server activity)

9 session.endSession(); Logs the client off of TUXEDO
BEA Jolt User’s Guide 6-5

6 USING THE JOLT CLASS LIBRARY

eps

es.
ote
ore
The following tasks summarize the interaction shown in Table 6-1 and are the st
involved in beginning a transaction:

1. Bind the client to the TUXEDO environment using the JoltSessionAttributes
class.

2. Establish a session.

3. Set variables.

4. Perform the necessary transaction processing.

5. Log the client off of the TUXEDO system.

Each of these activities is handled through the use of the Jolt Class Library class
These classes include methods for setting and clearing data and for handling rem
service actions. The following section describes the Jolt Class Library classes in m
detail.
6-6 BEA Jolt User’s Guide

JOLT OBJECT RELATIONSHIPS

s of

r

bject

st and
Jolt Object Relationships

The following diagram illustrates the relationship between the instantiated object
the Jolt Class Library classes.

Figure 6-2 Jolt Object Relationships

As objects, the Jolt classes interact in various relationships with each other. In
Figure 6-2, the relationships are divided into three basic categories:

Contains-a relationship. At the class level an object can contain other objects. Fo
example, a JoltTransaction stores (or contains) a JoltSession object.

Is-a relationship. The is-a relationship usually occurs at the class instance or sub-o
level and denotes that the object is an instance of a particular object.

Uses-a relationship. An object can use another object without containing it. For
example, a JoltSession can use the JoltSessionAttributes object to obtain the ho
port information.

JoltUserEvent

JoltTransaction uses-a

uses-a

contains-a

JoltSession

JoltRemoteService

JoltSessionAttributes

contains-a

call(transaction) contains-a

JoltReply

JoltMessage

contains-a

uses-a
BEA Jolt User’s Guide 6-7

6 USING THE JOLT CLASS LIBRARY

g

w the

ny
ss

 of the
ssion
.

of a

The
 a
Jolt Class Functionality

Jolt classes are used to perform the basic functions of transaction processing: lo
on/log off, synchronous service calling, transaction begin, commit, rollback and
subscribe to events or unsolicited messages. The following sections describe ho
Jolt classes are used to perform these functions.

Logon/Logoff

The client application must log on to the TUXEDO environment prior to initiating a
transaction activity. The Jolt Class Library provides the JoltSessionAttributes cla
and JoltSession class to establish a connection to a TUXEDO System.

The JoltSessionAttributes class is used to contain the connection properties to a
Jolt/TUXEDO system and contains various properties about the Jolt/TUXEDO
System. To establish a connection, the client application must create an instance
JoltSession class. This instance is the JoltSession object. By instantiating a JoltSe
object, users log on to Jolt/TUXEDO or log off by calling the endSession method

Synchronous Service Calling

Transaction activities such as requests and replies are handled through the use
JoltRemoteService object (an instance of the JoltRemoteService class). Each
JoltRemoteService object refers to an exported TUXEDO request/reply service.
programmer must provide a service name and a JoltSession object to instantiate
JoltRemoteService object before it can be used.

To use a JoltRemoteService object, the programmer simply:

� Sets the input parameters

� Invokes the service

� Examines the output parameters
6-8 BEA Jolt User’s Guide

JOLT CLASS FUNCTIONALITY

ervice
ined
utes

ice

e
ject is

 The
Jolt
lt does
ssion.
For efficiency, Jolt does not make a copy of any input parameter object; only the
references to the object (e.g., string and byte array) are saved. Since JoltRemoteS
object is a stateful object, its input parameters and the request attributes are reta
throughout the life of the object. You can use the clear() method to reset the attrib
and input parameters, before reusing the JoltRemoteService object.

Since Jolt is designed for a multithreaded environment, multiple JoltRemoteServ
objects can be invoked simultaneously by using Java’s multithreading capability.
Refer to “Multithreaded Applications” in this chapter for more information.

Transaction Begin, Commit, and Rollback

In Jolt, a transaction is represented as an object of the class JoltTransaction. Th
transaction begins when the transaction object is instantiated. The transaction ob
created with a time out and JoltSession object parameter:

trans = new JoltTransaction(timeout, session)

Jolt uses an explicit transaction model for any services involved in a transaction.
transaction service invocation requires a JoltTransaction object as a parameter.
also requires that the service and the transaction belong to the same session. Jo
not allow you to use services and transactions that are not bound to the same se
BEA Jolt User’s Guide 6-9

6 USING THE JOLT CLASS LIBRARY

 and
nd

d

 a

 in

key

T
Jolt Class Library Walk-through

The example code provided in Listing 6-1 shows how to use the Jolt Class Library
includes the use of the JoltSessionAttributes, JoltSession, JoltRemoteService, a
JoltTransaction classes.

The example combines two user-defined TUXEDO services (WITHDRAWAL an
DEPOSIT) to perform a simulated TRANSFER transaction. If the WITHDRAWAL
operation fails, a rollback is performed. Otherwise, a DEPOSIT is performed and
commit completes the transaction.

The basic steps of the transaction process shown in the example are as follows:

1. Set the connection attributes like hostname and portnumber in the
JoltSessionAttribute object. Refer to the following line in code Listing 6-1:

sattr = new JoltSessionAttributes();

2. The sattr.checkAuthenticationLevel() allows the application to determine
the level of security required to log on to the server. Refer to the following line
code Listing 6-1:

switch (sattr.checkAuthenticationLevel())

3. The logon is accomplished by instantiating a JoltSession object. Refer to the
following lines in code Listing 6-1:

session = new JoltSession (sattr, userName, userRole,

userPassword, appPassword);

This example does not explicitly catch SessionException errors.

4. All JoltRemoteService calls require a service to be specified and the session
returned from JoltSession() . Refer to the following lines in code Listing 6-1:

withdrawal = new JoltRemoteService(“WITHDRAWAL”, session);

deposit = new JoltRemoteService(“DEPOSIT”, session);

These calls bind the service definition of both the WITHDRAWAL and
DEPOSIT services, which are stored in the Jolt Repository, to the withdrawal
and deposit objects, respectively. The services WITHDRAWAL and DEPOSI
must be defined in the Jolt Repository otherwise a ServiceException will be
thrown. This example does not explicitly catch ServiceException errors.
6-10 BEA Jolt User’s Guide

JOLT CLASS LIBRARY WALK-THROUGH

as

s

fer

ed.

ng
5. Once the service definitions are returned, the application-specific fields such
account number ACCOUNT_ID and withdrawal amount SAMOUNT are
automatically populated. Refer to the following lines in code Listing 6-1:

withdrawal.addInt(“ACCOUNT_ID”, 100000);

withdrawal.addString(“SAMOUNT”, “100.00”);

The add*() methods can throw IllegalAccessError or NoSuchFieldError
exceptions.

6. The JoltTransaction call allows a timeout to be specified if the transaction doe
not complete within the specified time. Refer to the following line in code
Listing 6-1:

trans = new JoltTransaction(5,session);

7. Once the withdrawal service definition has been automatically populated, the
withdrawal service is invoked by calling the withdrawal.call(trans) method. Re
to the following line in code Listing 6-1:

withdrawal.call(trans);

8. A failed WITHDRAWAL can be rolled back. Refer to the following line in code
Listing 6-1:

trans.rollback();

9. Otherwise, once the DEPOSIT is performed, all the transactions are committ
Refer to the following lines in code Listing 6-1:

deposit.call(trans);

trans.commit();

Listing 6-1 shows an example of a simple application for the transfer of funds usi
the Jolt classes.
BEA Jolt User’s Guide 6-11

6 USING THE JOLT CLASS LIBRARY
Listing 6-1 Jolt Transfer of Funds Example (SimXfer.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

import bea.jolt.*;

public class SimXfer

{

 public static void main (String[] args)

 {

 JoltSession session;

 JoltSessionAttributes sattr;

 JoltRemoteService withdrawal;

 JoltRemoteService deposit;

 JoltTransaction trans;

 String userName=null;

 String userPassword=null;

 String appPassword=null;

 String userRole=”myapp”;

 sattr = new JoltSessionAttributes();

 sattr.setString(sattr.APPADDRESS, “//bluefish:8501”);

 switch (sattr.checkAuthenticationLevel())

 {

 case JoltSessionAttributes.NOAUTH:

 System.out.println(“NOAUTH\n”);

 break;

 case JoltSessionAttributes.APPASSWORD:

 appPassword = “appPassword”;

 break;

 case JoltSessionAttributes.USRPASSWORD:

 userName = “myname”;

 userPassword = “mysecret”;

 appPassword = “appPassword”;

 break;

 }

 sattr.setInt(sattr.IDLETIMEOUT, 300);

 session = new JoltSession(sattr, userName, userRole,

 userPassword, appPassword);

 // Simulate a transfer

 withdrawal = new JoltRemoteService(“WITHDRAWAL”, session);

 deposit = new JoltRemoteService(“DEPOSIT”, session);
6-12 BEA Jolt User’s Guide

JOLT CLASS LIBRARY WALK-THROUGH
 withdrawal.addInt(“ACCOUNT_ID”, 100000);

 withdrawal.addString(“SAMOUNT”, “100.00”);

 // Begin the transaction w/ a 5 sec timeout

 trans = new JoltTransaction(5, session);

 try

 {

 withdrawal.call(trans);

 }

 catch (ApplicationException e)

 {

 e.printStackTrace();

 // This service uses the STATLIN field to report errors

 // back to the client application.

 System.err.println(withdrawal.getStringDef(“STATLIN”,”NO

 STATLIN”));

 System.exit(1);

 }

 String wbal = withdrawal.getStringDef(“SBALANCE”, “$-1.0”);

 // remove leading “$” before converting string to float

 float w = Float.valueOf(wbal.substring(1)).floatValue();

 if (w < 0.0)

 {

 System.err.println(“Insufficient funds”);

 trans.rollback();

 System.exit(1);

 }

 else // now attempt to deposit/transfer the funds

 {

 deposit.addInt(“ACCOUNT_ID”, 100001);

 deposit.addString(“SAMOUNT”, “100.00”);

 deposit.call(trans);

 String dbal = deposit.getStringDef(“SBALANCE”, “-1.0”);

 trans.commit();

 System.out.println(“Successful withdrawal”);

 System.out.println(“New balance is: “ + wbal);
BEA Jolt User’s Guide 6-13

6 USING THE JOLT CLASS LIBRARY

ing
r

efer

G
e

rsion

s a
nt

EDO

e

er
 System.out.println(“Successful deposit”);

 System.out.println(“New balance is: “ + dbal);

 }

 session.endSession();

 System.exit(0);

 } // end main

 } // end SimXfer

Using TUXEDO Buffer Types with Jolt

Jolt supports all of the TUXEDO typed buffers, data types, and buffer types includ
the built-in TUXEDO buffer types such as FML, VIEW, CARRAY, and STRING. Fo
information about all of the TUXEDO typed buffers, data types, and buffer types, r
to the TUXEDO System Programmer’s Guide, Volume 1 and the TUXEDO System
Reference Manual.

Of the TUXEDO built-in buffer types, the Jolt application programmer should be
particularly aware of how Jolt handles the CARRAY (character array) and STRIN
built-in buffer types. The CARRAY type is used to handle data opaquely, (e.g., th
characters of a CARRAY data type are not interpreted in any way). No data conve
is performed between a Jolt client and TUXEDO service.

For example, if a TUXEDO service uses a CARRAY buffer type and the user set
32-bit integer (in Java the integer is in big-endian byte order), then the data is se
unmodified to the TUXEDO service. If the TUXEDO service is run on a machine
whose processor uses little-endian byte-ordering (e.g., Intel processors), the TUX
service must convert the data properly before the data can be used.

Note: You should only define one parameter for the CARRAY buffer type and th
STRING buffer type.

For more information about the TUXEDO CARRAY and STRING buffer types, ref
TUXEDO System Programmer’s Guide, Volume 1.
6-14 BEA Jolt User’s Guide

USING TUXEDO BUFFER TYPES WITH JOLT

ull

tring

ice
he
eed
Using the STRING Buffer Type

The STRING buffer type is a collection of characters. STRING consists of non-n
characters and is terminated by a null character. The STRING data type is character
and, unlike CARRAY, you can determine its transmission length by counting the
number of characters in the buffer until reaching the null character.

Note: During the data conversion from Jolt to STRING, the null terminator is
automatically appended to the end of the STRING buffers because Java s
is not null-terminated.

The following ToUpper application fragment illustrates how Jolt works with a serv
whose buffer type is STRING. The TOUPPER TUXEDO Service is available in t
simpapp example. Before running the ToUpper.java example in Listing 6-2, you n
to do the following:

� Define the TOUPPER service through Jolt's Repository Editor.

� Define the TOUPPER service with an input buffer type of STRING and an
output buffer type of STRING.

� Define an input-output parameter whose name is STRING for the TOUPPER
service.

� Define only one parameter for the TOUPPER service.

Listing 6-2 Use of the STRING buffer type (ToUpper.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

import bea.jolt.*;

public class ToUpper

 {

 public static void main (String[] args)

 {

 JoltSession session;

 JoltSessionAttributes sattr;

 JoltRemoteService toupper;

 JoltTransaction trans;

 String userName=null;

 String userPassword=null;

 String appPassword=null;
BEA Jolt User’s Guide 6-15

6 USING THE JOLT CLASS LIBRARY
 String userRole=”myapp”;

 String outstr;

 sattr = new JoltSessionAttributes();

 sattr.setString(sattr.APPADDRESS, “//bluefish:8501”);

 switch (sattr.checkAuthenticationLevel())

 {

 case JoltSessionAttributes.NOAUTH:

 break;

 case JoltSessionAttributes.APPASSWORD:

 appPassword = “appPassword”;

 break;

 case JoltSessionAttributes.USRPASSWORD:

 userName = “myname”;

 userPassword = “mysecret”;

 appPassword = “appPassword”;

 break;

 }

 sattr.setInt(sattr.IDLETIMEOUT, 300);

 session = new JoltSession(sattr, userName, userRole,

 userPassword, appPassword);

 toupper = new JoltRemoteService (“TOUPPER”, session);

 toupper.setString(“STRING”, “hello world”);

 toupper.call(null);

 outstr = toupper.getStringDef(“STRING”, null);

 if (outstr != null)

 System.out.println(outstr);

 session.endSession();

 System.exit(0);

 } // end main

 } // end ToUpper
6-16 BEA Jolt User’s Guide

USING TUXEDO BUFFER TYPES WITH JOLT

the

 how

ffer

lient

 will
Using the CARRAY Buffer Type

The CARRAY buffer type is a simple character array buffer type that is built into
TUXEDO system. With the CARRAY buffer type, because the system does not
interpret the data, although the data type is known, there is no way of determining
much data to transmit during an operation. The application is always required to
specify a length when passing this buffer type.

The Listing 6-3 code fragment illustrates how Jolt works with a service whose bu
type is CARRAY. Since Jolt does not look into the CARRAY data stream, it is the
programmer's responsibility to have the matching data format between the Jolt c
and the CARRAY service.

Before running the example in Listing 6-3, you must write an “ECHO” TUXEDO
service and boot the service. This service takes a buffer and passes it back. You
also need to use the Jolt Repository Editor to add in the ECHO service.

In the Repository Editor add the ECHO service as follows:

� Add a service named ECHO whose buffer type is CARRAY.

� Define the ECHO service with an input-output parameter named CARRAY.

� Define just one parameter for the CARRAY buffer type.

Listing 6-3 Use of CARRAY Buffer Type

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

 /*

 * This code fragment illustrates how Jolt works with a service whose

 * buffer type is CARRAY.

 */

 import java.io.*;

 import bea.jolt.*;

class ...

{

 ...

 public void tryOnCARRAY()

 {

 byte data[];
BEA Jolt User’s Guide 6-17

6 USING THE JOLT CLASS LIBRARY
 JoltRemoteService csvc;

 DataInputStream din;

 DataOutputStream dout;

 ByteArrayInputStream bin;

 ByteArrayOutputStream bout;

 /*

 * Use java.io.DataOutputStream to put data into a byte array

 */

 bout = new ByteArrayOutputStream(512);

 dout = new DataOutputStream(bout);

 dout.writeInt(100);

 dout.writeFloat((float) 300.00);

 dout.writeUTF("Hello World");

 dout.writeShort((short) 88);

 /*

 * Copy the byte array into a new byte array "data". Then

 * issue the Jolt remote service call.

 */

 data = bout.toByteArray();

 csvc = new JoltRemoteService("ECHO", session);

 csvc.setBytes("CARRAY", data, data.length);

 csvc.call(null);

 /*

 * Get the result from JoltRemoteService object and use

 * java.io.DataInputStream to extract each individual value

 * from the byte array.

 */

 data = csvc.getBytesDef("CARRAY", null);

 if (data != null)

 {

 bin = new ByteArrayInputStream(data);

 din = new DataInputStream(bin);

 System.out.println(din.readInt());

 System.out.println(din.readFloat());

 System.out.println(din.readUTF());

 System.out.println(din.readShort());

 }

 }

}

6-18 BEA Jolt User’s Guide

USING TUXEDO BUFFER TYPES WITH JOLT

the

se
Using the VIEW Buffer Type

For Jolt 1.1, information about using the TUXEDO View buffer type is located at
following BEA web site address:

http://www.beasys.com/products/jolt/index.htm

Using the FML Buffer Type

The Listing 6-4 Java code fragment illustrates how Jolt works with a service who
buffer type is FML.

Listing 6-4 Use of the FML Buffer Type

/* Copyright 1997 BEA Systems, Inc. All Rights Reserved */

/*

 * This code fragment illustrates how Jolt works with a service whose

 * buffer type is FML.

 */

import bea.jolt.*;

public class /* start of ... */ tryOnFml

{

 public static void main (String [] args)

 {

 tryOnFml();

 }

 public static void tryOnFml ()

 {

 JoltSessionAttributes sattr = null;

 JoltRemoteService passFml;

 JoltSession session;

 String outputString;

 int outputInt;

 float outputFloat;

 sattr = new JoltSessionAttributes();

 sattr.setString(sattr.APPADDRESS, "//bluefish:5151");

 session = new JoltSession(sattr, "test", "role", null, null);

 /* end of ... */

 passFml = new JoltRemoteService("PASSFML",session);

 passFml.setString("INPUTSTRING", "John");
BEA Jolt User’s Guide 6-19

6 USING THE JOLT CLASS LIBRARY

 passFml.setInt("INPUTINT", 67);

 passFml.setFloat("INPUTFLOAT", (float)12.0);

 passFml.call(null);

 outputString = passFml.getStringDef("OUTPUTSTRING", "failed");

 outputInt = passFml.getIntDef("OUTPUTINT", -1);

 outputFloat = passFml.getFloatDef("OUTPUTFLOAT", (float)-1.0);

 System.out.print("String =" + outputString);

 System.out.print(" Int =" + outputInt);

 System.out.println(" Float =" + outputFloat);

 }

}

Note: The example tryOnFml.c illustrates the server side code for using the FML
buffer type. This example can be found at the following BEA Web site
address:

http://www.beasys.com/products/jolt/index.htm

FML Field Definitions

The following entries show FML field definitions for the tryOnFml.java example.

#

FML field definition table

#

*base 4100

INPUTSTRING 1 string

INPUTINT 2 long

INPUTFLOAT 3 float

OUTPUTSTRING 4 string

OUTPUTINT 5 long

OUTPUTFLOAT 6 float
6-20 BEA Jolt User’s Guide

MULTITHREADED APPLICATIONS

er,
age

s or

nt
olt

un
n

 exist
D.

e

nt
Multithreaded Applications

As a Java based set of classes, Jolt supports multithreaded applications. Howev
various implementations of the Java language differ with respect to certain langu
and environment features. Jolt programmers need to be aware of the following:

� The use of preemptive and non-preemptive threads when creating application
applets with the Jolt Class Library.

� The use of threads to get asynchronous behavior similar to the tpacall()
function in TUXEDO.

The following section describes the issues arising from using threads with differe
Java implementations and is followed by an example of the use of threads in a J
program.

Preemptive and Non-preemptive Threads

Most Java implementations provide preemptive threads. However, the current S
Solaris implementation provides non-preemptive threads. The difference betwee
these two models can lead to very different performance and programming
requirements.

Threads of Control

Each concurrently operating task in the Java virtual machine is a thread. Threads
in various states, the important ones being RUNNING, RUNNABLE, or BLOCKE

� A RUNNING thread is a currently executing thread.

� A RUNNABLE thread can be run once the current thread has relinquished
control of the CPU. There can be many threads in the RUNNABLE state, but
only one can be in the RUNNING state. Running a thread means changing th
state of a thread from RUNNABLE to RUNNING, and causing the thread to
have control of the Java Virtual Machine (VM).

� A BLOCKED thread is a thread that is waiting on the availability of some eve
or resource.
BEA Jolt User’s Guide 6-21

6 USING THE JOLT CLASS LIBRARY

in

ing a

ally;

ntrol

ly
e

 is
hen

BLE.

l

 or

t
Note: The Java VM schedules threads of the same priority to run in a round-rob
mode.

Preemptive Threading

The main performance difference between the two threading models arises in tell
running thread to relinquish control of the Java VM. In a preemptive threading
environment, the usual procedure is to set a hardware timer that goes off periodic
when the timer goes off, the current thread is moved from the RUNNING to the
RUNNABLE state, and another thread is chosen to run.

Non-preemptive Threading

In a non-preemptive threading environment, a thread must volunteer to give up co
of the CPU and move to the RUNNABLE state. Many of the methods in the Java
language classes contain code that volunteers to give up control, and are typical
associated with actions that might take a long time. For instance, reading from th
network will generally cause a thread to wait for a packet to arrive. A thread that
waiting on the availability of some event or resource is in the BLOCKED state. W
the event occurs or the resource becomes available, the thread becomes RUNNA

Using Jolt with Non-Preemptive Threading

If your Jolt-based Java program is running on a non-preemptive threading Virtua
Machine (e.g., Sun Solaris), then the program must either:

� Occasionally call a method that blocks the thread

� Explicitly give up control of the CPU using the Thread.yield() method

The typical usage is to make the following call in all long running code segments
potentially time-consuming loops:

Thread.currentThread.yield();

Without sending this message, the threads used by the Jolt library may never ge
scheduled, and as such, the Jolt operation will be impaired.
6-22 BEA Jolt User’s Guide

MULTITHREADED APPLICATIONS

. If

ption
ther

ould
 to

e

lt is
ds a
 that

ads
The only virtual machine known to use non-preemptive threading is the Java
Developer’s Kit (JDK version 1.0, 1.0.1, 1.0.2) machine running on a Sun platform
you want your applet to work on JDK 1.0, you must make sure to send the yield
messages. As mentioned earlier, some methods contain yields. An important exce
is the System.in.read method. This method does not cause a thread switch. Ra
than rely on these messages, we suggest using yields explicitly.

Note: Sun has indicated that JDK 1.1 will implement preemptive threads, and sh
alleviate the requirement for yields. Code that includes yields will continue
work; code without yields will begin working with the JDK 1.1 release.

Using Threads for Asynchronous Behavior

You can use threads in Jolt to get asynchronous behavior that is analogous to th
tpacall() function in TUXEDO. With this capability, you do not need a
asynchronous service request function. You can get this functionality because Jo
thread safe. For example the client Jolt application can start one thread that sen
request to a TUXEDO service function and then immediately starts another thread
sends another request to a TUXEDO service function. So even though the Jolt
tpacall() is synchronous, the application is asynchronous because the two thre
are running at the same time.

Using Threads with Jolt

A Jolt client-side program or applet is fully thread-safe. Jolt’s support of
multi-threaded applications includes the following client characteristics:

� Multiple sessions per client

� Multithreaded within a session

� Client application manages threads, not asynchronous calls

� Performs synchronous calls

The following program illustrates the use of two threads in a Jolt application.
BEA Jolt User’s Guide 6-23

6 USING THE JOLT CLASS LIBRARY
Listing 6-5 Using Multithreads with Jolt (ThreadBank.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

import bea.jolt.*;

public class ThreadBank

{

 public static void main (String [] args)

 {

 JoltSession session;

 try

 {

 JoltSessionAttributes dattr;

 String userName = null;

 String userPasswd = null;

 String appPasswd = null;

 String userRole = null;

 // fill in attributes required

 dattr = new JoltSessionAttributes();

 dattr.setString(dattr.APPADDRESS,”//bluefish:8501”);

 // instantiate domain

 // check authentication level

 switch (dattr.checkAuthenticationLevel())

 {

 case JoltSessionAttributes.NOAUTH:

 System.out.println(“NOAUTH\n”);

 break;

 case JoltSessionAttributes.APPASSWORD:

 appPasswd = “myAppPasswd”;

 break;

 case JoltSessionAttributes.USRPASSWORD:

 userName = “myName”;

 userPasswd = “mySecret”;

 appPasswd = “myAppPasswd”;

 break;

 }

 dattr.setInt(dattr.IDLETIMEOUT, 60);

 session = new JoltSession (dattr, userName, userRole,

 userPasswd, appPasswd);
6-24 BEA Jolt User’s Guide

MULTITHREADED APPLICATIONS
 T1 t1 = new T1 (session);

 T2 t2 = new T2 (session);

 t1.start();

 t2.start();

 Thread.currentThread().yield();

 try

 {

 while (t1.isAlive() && t2.isAlive())

 {

 Thread.currentThread().sleep(1000);

 }

 }

 catch (InterruptedException e)

 {

 System.err.println(e);

 if (t2.isAlive())

 {

 System.out.println(“job 2 is still alive”);

 try

 {

 Thread.currentThread().sleep(1000);

 }

 catch (InterruptedException e1)

 {

 System.err.println(e1);

 }

 }

 else if (t1.isAlive())

 { System.out.println(“job1 is still alive”);

 try

 {

 Thread.currentThread().sleep(1000);

 }

 catch (InterruptedException e1)

 {

 System.err.println(e1);

 }

 }

 }

 session.endSession();

 }

 catch (SessionException e)
BEA Jolt User’s Guide 6-25

6 USING THE JOLT CLASS LIBRARY
 {

 System.err.println(e);

 }

 finally

 {

 System.out.println(“normal ThreadBank term”);

 }

 }

}

class T1 extends Thread

{

 JoltSession j_session;

 JoltRemoteService j_withdrawal;

 public T1 (JoltSession session)

 {

 j_session=session;

 j_withdrawal= new JoltRemoteService(“WITHDRAWAL”,j_session);

 }

 public void run()

 {

 j_withdrawal.addInt(“ACCOUNT_ID”,10001);

 j_withdrawal.addString(“SAMOUNT”,”100.00”);

 try

 {

 System.out.println(“Initiating Withdrawal from account 10001”);

 j_withdrawal.call(null);

 String W = j_withdrawal.getStringDef(“SBALANCE”,”-1.0”);

 System.out.println(“-->Withdrawal Balance: “ + W);

 }

 catch (ApplicationException e)

 {

 e.printStackTrace();

 System.err.println(e);

 }

 }

}

class T2 extends Thread

{

 JoltSession j_session;

 JoltRemoteService j_deposit;

 public T2 (JoltSession session)

 {
6-26 BEA Jolt User’s Guide

MULTITHREADED APPLICATIONS
 j_session=session;

 j_deposit= new JoltRemoteService(“DEPOSIT”,j_session);

 }

 public void run()

 {

 j_deposit.addInt(“ACCOUNT_ID”,10000);

 j_deposit.addString(“SAMOUNT”,”100.00”);

 try

 {

 System.out.println(“Initiating Deposit from account 10000”);

 j_deposit.call(null);

 String D = j_deposit.getStringDef(“SBALANCE”,”-1.0”);

 System.out.println(“-->Deposit Balance: “ + D);

 }

 catch (ApplicationException e)

 {

 e.printStackTrace();

 System.err.println(e);

 }

 }

}

BEA Jolt User’s Guide 6-27

6 USING THE JOLT CLASS LIBRARY

ions

s
Event Subscription and Notifications

Programmers developing client applications using Jolt can receive event notificat
from either TUXEDO Services or other TUXEDO clients. The Jolt Class Library
contains classes that support the following types of TUXEDO notifications for
handling event-based communication:

� Unsolicited Event Notifications. These are notifications that a Jolt client
receives as a result of a TUXEDO client or service issuing a broadcast using
either a tpbroadcast() or a directly targeted message via a tpnotify() ATMI call.

� Brokered Event Notifications. These notifications are received by a Jolt client
via the TUXEDO Event Broker. The notifications are only received when both
the Jolt client subscribes to an event and any TUXEDO client or server issue
system posted event or a tppost() call.

API for Event Subscription

The Jolt Class Library provides four classes that implement the asynchronous
notification mechanism for Jolt client applications. These classes are:

� JoltSession. The JoltSession class includes an onReply() method for receiving
notifications and notification messages.

� JoltReply. The JoltReply class gives the client application access to any
messages received with an event or notification.

� JoltMessage. The JoltMessage class provides get methods for obtaining
information about the notification or event.

� JoltUserEvent. The JoltUserEvent class supports subscription to of both
unsolicited and event notification types.

For more information about these classes refer to Chapter 7, “Jolt Class Library
Reference.”
6-28 BEA Jolt User’s Guide

EVENT SUBSCRIPTION AND NOTIFICATIONS

rrent

a

 for
d
e
 does
d by

s and

to
eads
will

ngle

cation

sly.

ibes

ns
Notification Event Handler

For both unsolicited notifications and a brokered event notification, the Jolt client
application requires an event handler routine that is invoked upon receipt of a
notification. The Jolt 1.1 release only supports a single handler per session. In cu
TUXEDO versions, it is not possible to determine which event generated a
notification. Thus it is not possible to invoke an event-specific handler based on
particular event.

The client application must provide a single handler (by overriding the onReply ()
method) per session that will be invoked for all notifications received by that client
that session. The single handler call-back function is used for both unsolicited an
event notification types. It is up to the (user supplied) handler routine to determin
what event caused the handler invocation and take appropriate action. If the user
not override the session handler, then notification messages are silently discarde
the default handler.

The Jolt client provides the call back function by subclassing the JoltSession clas
overriding the onReply () method with a user-defined onReply () method.

In TUXEDO/ATMI clients, processing in the handler call-back function is limited
a subset of ATMI calls. This restriction does not apply to Jolt clients. Separate thr
are used to monitor notifications and run the event handler method. A Jolt client
be able to perform all Jolt-supported functionality from within the handler. All the
rules that apply to a normal Jolt client program apply to the handler, such as a si
transaction per session at any time.

Each invocation of the handler method takes place in a separate thread. The appli
developer should ensure that the onReply () method is either synchronized or written
thread-safe, since separate threads could be executing the method simultaneou

Subscribing to Event Notifications Enables Unsolicited Notifications

Jolt uses an implicit model for enabling the handler routing. When a client subscr
to an event, Jolt will internally enables the handler for that client, thus enabling
unsolicited notifications as well. A Jolt client cannot subscribe to event notificatio
without also receiving unsolicited notifications. In addition, a single onReply ()
method is invoked for both types of notifications.
BEA Jolt User’s Guide 6-29

6 USING THE JOLT CLASS LIBRARY

or

s
hen
r the

All

ed
, the

uffer
e

ld

nd
Connection Modes

Jolt supports notification receipt for clients working in either connection-retained
connection-less modes of operation. Connection-retained clients receive all
notifications. Jolt clients working in connection-less mode will receive notification
while they have an active network connection to the Jolt Session Handler (JSH). W
the network connection is closed, the JSH logs and drops notifications destined fo
client. Jolt clients operating in a connection-less mode will not receive unsolicited
messages or notifications while they do not have an active network connection.
messages received during this time are logged and discarded by the JSH.

ACKNOWLEDGED NOTIFICATIONS

Connection mode notification handling includes acknowledged notifications for
Jolt 1.1 clients in a TUXEDO 6.3 environment. If a JSH receives an acknowledg
notification for a client and the client does not have an active network connection
JSH logs an error and return a failure acknowledgment to the notification.

Notification Data Buffers

When a client receives notification, it is accompanied by a data buffer. The data b
can be of any TUXEDO data buffer type. Jolt clients (i.e., the handler) will receiv
these buffers as a JoltMessage object and should use the appropriate JoltMessage
class get*() methods to retrieve the data from this object.

The Jolt Repository does not need to have the definition of the buffers used for
notification. However, the Jolt client application programmer will need to know fie
names beforehand.

The Jolt system does not provide functionality equivalent to tptypes() in TUXEDO,
so in effect a Jolt 1.1 client is limited to receiving a “known” buffer type. For FML a
VIEW buffers, the data will be accessed using the get*() methods with the
appropriate field name, for example, enter:

getIntDef ("ACCOUNT_ID", -1);
6-30 BEA Jolt User’s Guide

EVENT SUBSCRIPTION AND NOTIFICATIONS

s the

n of
o

ed by
nts

hing
cation

bles
t
as
For STRING and CARRAY buffers, the data will be accessed by the same name a
buffer type, e.g.,:

getStringDef ("STRING", null);

getBytesDef ("CARRAY", null);

STRING and CARRAY buffers contain only a single data element: this complete
element is returned in the get*() methods above.

TUXEDO Event Subscription

TUXEDO brokered event notification allows TUXEDO programs to post events
without needing to know what other programs are supposed to receive notificatio
an event’s occurrence. The Jolt event notification allows Jolt client applications t
subscribe to TUXEDO events that are broadcast or posted using the TUXEDO
tpnotify() or tpbroadcast() calls.

Jolt clients are only able to subscribe to events and notifications that are generat
other components in TUXEDO (such as a TUXEDO Service or Client). Jolt 1.1 clie
are not able to send events or notifications.

Supported Subscription Types

Jolt1.1 only supports notification types of subscriptions. The Jolt onReply() method
is called when a subscription is fulfilled. The Jolt 1.1 API does not support dispatc
a service routine or enqueueing a message to an application queue when a notifi
is received.

Subscribing to Notifications

If a Jolt client subscribes to a single event notifications, the client receives both
unsolicited messages and event notification. Subscribing to an event implicitly ena
unsolicited notification. This means that if the application creates a JoltUserEven
object for Event "X", the client will automatically receive notifications directed to it
a result of tpnotify() or tpbroadcast() .
BEA Jolt User’s Guide 6-31

6 USING THE JOLT CLASS LIBRARY

n -
as
the

to use
with
s

e

n

ake
Note: This is NOT the recommended method for enabling unsolicited notificatio
if you want unsolicited notification, the application should explicitly do so (
described in the JoltUserEvent class). The reason for this is explained in
following unsubscribe section.

Unsubscribing from Notifications

To stop subscribing to event notifications and/or unsolicited messages, you need
the JoltUserEvent unsubscribe method. In Jolt, disabling unsolicited notifications
an unsubscribe method does not turn off all subscription notifications. This differ
from TUXEDO. In TUXEDO the use of tpsetunsol() with a NULL handler turns
off all subscription notifications.

When unsubscribing, the following considerations apply:

� If a client is subscribed to only a single event, unsubscribing disables both th
event notification and unsolicited messages.

� If a client has multiple subscriptions, then unsubscribing from any single
subscription disables just that single subscription. Unsolicited notifications
continue. Only the last subscription to be unsubscribed causes unsolicited
notification to stop.

� If a client subscribes to both an unsolicited and an event notifications, then
unsubscribing to just the unsolicited notification will not stop either type of
notifications from continuing. In addition, this unsubscribe does not throw an
Exception. However, the Jolt API will remember that an unsubscribe has take
place and a subsequent unsubscribe to the remaining event will disable both
event notification and unsolicited messages.

If you want to stop unsolicited messages in your client application, you need to m
sure that you have unsubscribed to all events.

Note: Jolt 1.1 does not support the wildcard unsubscribe semantics of
tpunsubscribe (-1,..) . Jolt clients wishing to unsubscribe to all
subscriptions will do so by invoking the unsubscribe() method in each
event subscription object.
6-32 BEA Jolt User’s Guide

EVENT SUBSCRIPTION AND NOTIFICATIONS

y for
sage
Using the Jolt API to Receive TUXEDO Notifications

The example code provided in Listing 6-6 shows how to use the Jolt Class Librar
receiving notifications and includes the use of the JoltSession, JoltReply, JoltMes
and JoltUserEvent classes.

Listing 6-6 Asynchronous Notification

class EventSession extends JoltSession

{

 public EventSession(JoltSessionAttributes attr, String user,

 String role, String upass, String apass)

 {

 super(attr, user, role, upass, apass);

 }

 /**

 * Override the default unsolicited message handler.

 * @param reply a place holder for the unsolicited message

 * @see bea.jolt.JoltReply

 */

 public void onReply (JoltReply reply)

 {

 // Print out the STRING buffer type message which contains

 // only one field; the field name must be "STRING". If the

 // message uses CARRAY buffer type, the field name must be

 // "CARRAY". Otherwise, the field names must conform to the

 // elements in FML or VIEW.

 JoltMessage msg = (JoltMessage) reply.getMessage();

 System.out.println(msg.getStringDef("STRING", "No Msg"));

 }

 public static void main(Strings args[])

 {

 JoltUserEvent unsolEvent;

 JoltUserEvent helloEvent;

 EventSession session;

 ...

 // Instantiate my session object which can print out the

 // unsolicited messages. Then subscribe to HELLO event
BEA Jolt User’s Guide 6-33

6 USING THE JOLT CLASS LIBRARY
 // and Unsolicited Notification which both use STRING

 // buffer type for the unsolicited messages.

 session = new EventSession(...);

 helloEvent = new JoltUserEvent("HELLO", null, session);

 unsolEvent = new JoltUserEvent(JoltUserEvent.UNSOLMSG, null,

 session);

 ...

 // Unsubscribe the HELLO event and unsolicited notification.

 helloEvent. unsubscribe ();

 unsolEvent.unsubscribe();

 }

}

6-34 BEA Jolt User’s Guide

CLEARING PARAMETER VALUES

loper
e
r

e to
Clearing Parameter Values

The Jolt Class Library includes a method (the clear method) that allows the deve
to remove an object’s existing attributes and in effect provides for the reuse of th
object. The reuseSample.java example illustrates how to use the clear method fo
clearing parameter values.

The reuseSample.java example shows how to reuse the JoltRemoteService
parameter values. The example shows that you do not have to destroy the servic
reuse it. Instead, the svc.clear() ; statement is used to discard the existing input
parameters before reusing the addString method.

Listing 6-7 Jolt Object Reuse (reuseSample.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

import java.net.*;

import java.io.*;

import bea.jolt.*;

/*

 * This is a Jolt sample program that illustrates how to reuse the

 * JoltRemoteService after each invocation.

 */

class reuseSample

{

 private static JoltSession s_session;

 static void init(String host, short port)

 {

 /* Prepare to connect to the TUXEDO domain. */

 JoltSessionAttributes attr = new JoltSessionAttributes();

 attr.setString(attr.APPADDRESS,”//”+ host+”:” + port);

 String username = null;

 String userrole = “sw-developer”;

 String applpasswd = null;

 String userpasswd = null;

 /* Check what authentication level has been set. */

 switch (attr.checkAuthenticationLevel())

 {
BEA Jolt User’s Guide 6-35

6 USING THE JOLT CLASS LIBRARY
 case JoltSessionAttributes.NOAUTH:

 break;

 case JoltSessionAttributes.APPASSWORD:

 applpasswd = “secret8”;

 break;

 case JoltSessionAttributes.USRPASSWORD:

 username = “myName”;

 userpasswd = “BEA#1”;

 applpasswd = “secret8”;

 break;

 }

 /* Logon now without any idle timeout (0). */

 /* The network connection is retained until logoff. */

 attr.setInt(attr.IDLETIMEOUT, 0);

 s_session = new JoltSession(attr, username, userrole,

 userpasswd, applpasswd);

 }

 public static void main(String args[])

 {

 String host;

 short port;

 JoltRemoteService svc;

 if (args.length != 2)

 {

 System.err.println(“Usage: reuseSample host port”);

 System.exit(1);

 }

 /* Get the host name and port number for initialization. */

 host = args[0];

 port = (short)Integer.parseInt(args[1]);

 init(host, port);
6-36 BEA Jolt User’s Guide

CLEARING PARAMETER VALUES
 /* Get the object reference to the DELREC service. This

 * service has no output parameters, but has only one input

 * parameter.

 */

 svc = new JoltRemoteService(“DELREC”, s_session);

 try

 {

 /* Set input parameter REPNAME. */

 svc.addString(“REPNAME”, “Record1”);

 svc.call(null);

 /* Change the input parameter before reusing it */

 svc.setString(“REPNAME”, “Record2”);

 svc.call(null);

 /* Simply discard all input parameters */

 svc.clear();

 svc.addString(“REPNAME”, “Record3”);

 svc.call(null);

 }

 catch (ApplicationException e)

 {

 System.err.println(“Service DELREC failed: “+

 e.getMessage()+” “+ svc.getStringDef(“MESSAGE”, null));

 }

 /* Logoff now and get rid of the object. */

 s_session.endSession();

 }

}
BEA Jolt User’s Guide 6-37

6 USING THE JOLT CLASS LIBRARY

lassing
ervice
s

d is
ne of
Reusing Objects

The following extendSample.java example illustrates one way to subclass the
JoltRemoteService class. In this case, a TransferService class is created by subc
the JoltRemoteService class. The TransferService class extends the JoltRemoteS
class, adding a Transfer feature which makes use of the TUXEDO bankapp fund
TRANSFER service.

The example uses the “extends” mechanism from the Java language. The exten
used in Java to subclass a base (parent) class. The following code shows only o
many different ways to extend from JoltRemoteService.

Listing 6-8 Extending Jolt Remote Service (extendSample.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

import java.net.*;

import java.io.*;

import bea.jolt.*;

/*

 * This Jolt sample code fragment illustrates how to customize

 * JoltRemoteService. It uses the Java language “extends” mechanism

 */

class TransferService extends JoltRemoteService

{

 public String fromBal;

 public String toBal;

 public TransferService(JoltSession session)

 {

 super(“TRANSFER”, session);

 }

 public String doxfer(int fromAcctNum, int toAcctNum, String

amount)

 {

 /* Clear any previous input parameters */

 this.clear();
6-38 BEA Jolt User’s Guide

REUSING OBJECTS
 /* Set the input parameters */

 this.setIntItem(“ACCOUNT_ID”, 0, fromAcctNum);

 this.setIntItem(“ACCOUNT_ID”, 1, toAcctNum);

 this.setString(“SAMOUNT”, amount);

 try

 {

 /* Invoke the transfer service. */

 this.call(null);

 /* Get the output parameters */

 fromBal = this.getStringItemDef(“SBALANCE”, 0, null);

 if (fromBal == null)

 return “No balance from Account “ +

 fromAcctNum;

 toBal = this.getStringItemDef(“SBALANCE”, 1, null);

 if (toBal == null)

 return “No balance from Account “ + toAcctNum;

 return null;

 }

 catch (ApplicationException e)

 {

 /* The transaction failed, return the reason */

 return this.getStringDef(“STATLIN”, “Unknown reason”);

 }

 }

}

class extendSample

{

 public static void main(String args[])

 {

 JoltSession s_session;

 String host;

 short port;

 TransferService xfer;

 String failure;

 if (args.length != 2)

 {

 System.err.println(“Usage: reuseSample host port”);
BEA Jolt User’s Guide 6-39

6 USING THE JOLT CLASS LIBRARY
 System.exit(1);

 }

 /* Get the host name and port number for initialization. */

 host = args[0];

 port = (short)Integer.parseInt(args[1]);

 /* Prepare to connect to the TUXEDO domain. */

 JoltSessionAttributes attr = new JoltSessionAttributes();

 attr.setString(attr.APPADDRESS,”//”+ host+”:” + port);

 String username = null;

 String userrole = “sw-developer”;

 String applpasswd = null;

 String userpasswd = null;

 /* Check what authentication level has been set. */

 switch (attr.checkAuthenticationLevel())

 {

 case JoltSessionAttributes.NOAUTH:

 break;

 case JoltSessionAttributes.APPASSWORD:

 applpasswd = “secret8”;

 break;

 case JoltSessionAttributes.USRPASSWORD:

 username = “myName”;

 userpasswd = “BEA#1”;

 applpasswd = “secret8”;

 break;

 }

 /* Logon now without any idle timeout (0). */

 /* The network connection is retained until logoff. */

 attr.setInt(attr.IDLETIMEOUT, 0);

 s_session = new JoltSession(attr, username, userrole,

 userpasswd, applpasswd);

 /*

 * TransferService extends from JoltRemoteService and uses the

 * standard TUXEDO BankApp TRANSFER service. We invoke this

 * service twice with different parameters. Note, we assume

 * that “s_session” is initialized somewhere before.

 */
6-40 BEA Jolt User’s Guide

REUSING OBJECTS
 xfer = new TransferService(s_session);

 if ((failure = xfer.doxfer(10000, 10001, “500.00”)) != null)

 System.err.println(“Tranasaction failed: “ + failure);

 else

 {

 System.out.println(“Transaction is done.”);

 System.out.println(“From Acct Balance: “+xfer.fromBal);

 System.out.println(“ To Acct Balance: “+xfer.toBal);

 }

 if ((failure = xfer.doxfer(51334, 40343, “$123.25”)) != null)

 System.err.println(“Tranasaction failed: “ + failure);

 else

 {

 System.out.println(“Transaction is done.”);

 System.out.println(“From Acct Balance: “+xfer.fromBal);

 System.out.println(“ To Acct Balance: “+xfer.toBal);

 }

 }

}

BEA Jolt User’s Guide 6-41

6 USING THE JOLT CLASS LIBRARY

thin

perate

is

Application Deployment and Localization

The Jolt Class Library allows you to build Java applications that execute from wi
a client Web browser. For these types of applications, you need to address the
following application development tasks:

� Deploying your Jolt application in an HTML page

� Localizing your Jolt application for different languages and character sets

The following sections describe these application development considerations.

Deploying a Jolt Applet

When you deploy a Jolt applet, you need to consider the three components that o
together to make the applet function in a Web browser environment:

� Requirements for the TUXEDO server and Jolt Server

� Client-side execution of the applet

� Requirements for the Web server that downloads the Java applet

Information for configuring the TUXEDO server and Jolt Server to work with Jolt
available in Chapter 2, “‘Installing Jolt.” The following sections describe common
client and Web server considerations for deploying Jolt applets.
6-42 BEA Jolt User’s Guide

APPLICATION DEPLOYMENT AND LOCALIZATION

t as
ML

ded,

eout,
, but

sical
pplet

 is

same
 Relay

TML
tain

cess,
ly
e
Client Considerations

When you write a Java applet that incorporates Jolt classes, the applet works jus
any other Java applet in an HTML page. A Jolt applet can be embedded in a HT
page using the HTML applet tag:

<applet code=“applet_name.class”> </applet>

If the Jolt applet is embedded in an HTML page, the applet downloads when the
HTML page loads. You can code the applet to run immediately after it is downloa
or you can include code that sets the applet to run based upon a user action, a tim
or a set interval. You can also create an applet that downloads in the HTML page
opens in another window or, for instance, simply plays a series of sounds or mu
tunes at intervals. The programmer has a large degree of freedom in coding the a
initialization procedure.

Note: If the user loads a new HTML page into the browser, the applet execution
stopped.

Web Server Considerations

When you use the Jolt classes in a Java applet, the Jolt Server must run on the
machine as the Web server that downloads the Java applet unless you install Jolt
on the Web server.

When a webmaster sets up a Web server, a directory is specified to store all the H
files. Within that directory, a subdirectory named “classes” must be created to con
all Java class files and packages. For example:

<html-dir>/classes/bea/jolt

Note: You can place the Jolt classes subdirectory anywhere. For convenient ac
you may want to place it in the same directory as the HTML files. The on
requirements for the Jolt classes subdirectory are that they must be mad
available to the Web server.

Since all Jolt classes belong to package bea.jolt , all Jolt class files are put in
/classes/bea/jolt subdirectory (i.e., “jolt” is a subdirectory of “bea” which is a
subdirectory of “classes”).
BEA Jolt User’s Guide 6-43

6 USING THE JOLT CLASS LIBRARY

ory.

that
ide a
:

ava
 to the
et.

es,
The HTML file for the Jolt applet should refer the codebase to the “classes” direct
For example:

 /export/html/

 |___ classes/

 | |_____ bea/

 | | |______ jolt/

 | | |_____ JoltSessionAttributes.class

 | | |_____ JoltRemoteServices.class

 | | |_____ ...

 | |_____ mycompany/

 | |________ app.class

 |___ ex1.html

 |___ ex2.html

The webmaster may specify the “app” applet in ex1.html as:

<applet codebase=“classes” code=mycompany.app.class width=400

height=200>

Localizing a Jolt Applet

If your Jolt application is intended for international use, you must address certain
application localization issues. Localization considerations apply to applications
execute from a client Web browser and applications that are designed to run outs
Web browser environment. Localization tasks can be divided into two categories

� Adapting an application from its original language to a target language.

� Translating strings from one language to another. This sometimes requires
specifying a different alphabet or a character set from the one used in the
original language.

For localization, the Jolt Class Library package relies on the conventions of the J
language and the TUXEDO system. Jolt transfers Java 16-bit Unicode characters
JSH. The JSH provides a mechanism to convert Unicode to the local character s

For information about the Java implementation for Unicode and character escap
refer to your Java Development Kit (JDK) documentation.
6-44 BEA Jolt User’s Guide

CHAPTER

ssing
e is
 The

s
7 Jolt Class Library
Reference

The Jolt Class Library consists of object-oriented Java language classes for acce
BEA TUXEDO services and defining transactions. The Jolt Class Library packag
designed to be small, simple, and easy to incorporate into your Java application.
classes for this package provide TUXEDO logon/logoff, synchronous calling, and
transaction services for a client Java applet.

The Jolt Class Library reference includes the following topics:

� Jolt Methods

� JoltSessionAttributes Class

� JoltSession Class

� JoltRemoteService Class

� JoltRequestMessage Abstract Class

� JoltTransaction Class

� JoltEvent Class

� JoltUserEvent Class

� JoltReply Class

� JoltMessage Class

Each class description includes information about the class constructor and clas
methods.
BEA Jolt User’s Guide 7-1

7 JOLT CLASS LIBRARY REFERENCE

ce
hat

ing
ted
y

va
e Jolt

to be
action

ount
 item
y
eting

d item
cified

ms.
To use the following information, you need to be generally familiar with the Java
programming language and object-oriented programming concepts. The referen
material follows the Java standard terminology for classes and for the methods t
operate on the class instances.

For information about programming the Jolt Class Library, refer to Chapter 6, “Us
the Jolt Class Library.” For information about the Jolt Exception Classes and rela
TUXEDO errors listed for the Jolt classes, refer to Appendix A, “Jolt Class Librar
Errors and Exceptions.”

Jolt Methods

The Jolt classes and class methods that form the Jolt Class Library follow the Ja
language structure and are intended for use in Java programs. However, since th
Class Library is designed for accessing TUXEDO System applications, you need
aware of how get, set, add, and delete methods operate within the context of trans
processing.

For example, if you are working with a series of account numbers for a banking
transaction and are changing the value from one account number to another acc
number, you must be aware of how the Jolt methods determine the position of an
in a list. Understanding how these methods work will help you avoid inadvertentl
reversing the order of a transaction, assigning incorrect values to an item, or del
the wrong item.

Methods for Handling Items

The get, set, and setItem methods are used to obtain information about a specifie
or to change information about a specified item. The add methods append a spe
item to a list and the delete and deleteItem methods remove specified items. The
following sections describe how these methods operate on an item in a list of ite
7-2 BEA Jolt User’s Guide

JOLT METHODS

 Jolt,
e a

To
a list.

uld

ecify
n of

ing:

 to
Changing the First Item Occurrence

The set and delete methods operate on the first occurrence of an item in a list. In
the first occurrence of an item is always at position zero. For example, if you hav
list of account numbers and you use a delete method, the item at position zero is
deleted. For example:

delete (“ACCTNUM”)

Deletes the account number at position zero of the account number list.

setInt (“ACCTNUM”, 3200)

Sets the account number at position zero to the value 3200.

Changing Items by Item Position

The following types of methods in the Jolt Class Library are position dependent.
change a position-dependent item, you specify the location or index of the item in

� set...Item methods

� deleteItem methods

For example, to set the third item in a list of account numbers to a value, you wo
specify the following:

setIntItem (“ACCTID”, 2, 5000)

The example sets the account number at position three to the value 5000. You sp
an index of 2 because the index numbering starts at 0 and 2 is at the third positio
the list.

To delete the first item in a list of account numbers, you would specify the follow

deleteItem (“ACCTID”, 0)

The example deletes the account number at position 0 and is exactly equivalent
using just the delete method. A set...Item (name, 0, value) also works exactly
as the set method.
BEA Jolt User’s Guide 7-3

7 JOLT CLASS LIBRARY REFERENCE

ods
ods

Def
ex
. For

tion
f -1.

st of
Getting Items

The Jolt Class Library includes a number of get methods. However, the get meth
operate differently from the other types of methods. The following three get meth
retrieve information with a single value.

� getOccurrenceCount

� getName

� getApplicationcode

All other get methods are in the form of a get...Def or get...ItemDef . The
get...Def methods retrieve information about the first item (item 0). The get...Item
methods retrieve information about an item that you specify by its position or ind
number. If the item has no information, these methods allow you to set a default
example:

getIntItemDef (“CreditRating”, 4, -1)

The example gets the credit rating for the fifth item in a list of items starting at posi
zero. If the item has no value for a credit rating, the get returns the default value o
You specify the value for the method in the defValue parameter.

Appending Items

The add methods append an item to the end of a list of items. Of course if your li
items is empty, an add will make the item the first one in the list. In the following
example, the add method appends a name to the end of a list of names:

addString (“CompanyName”, “BoltBikeWorks”)
7-4 BEA Jolt User’s Guide

JOLTSESSIONATTRIBUTES CLASS

ion
he set

a
JoltSessionAttributes Class

java.lang.Object

 |

 +----bea.jolt.JoltSessionAttributes

The JoltSessionAttributes class defines the acceptable attributes for the JoltSess
constructor. The set methods add the attribute if one does not exist. Otherwise, t
method overwrites the old value.

The get and set methods throw the java.lang.NoSuchFieldError or
java.lang.IllegalAccessError . By default, these errors are caught by the Jav
virtual machine.

public class JoltSessionAttributes

{

/* The supported authentication levels. */

 public final static int NOAUTH; // No authentication

 public final static int APPASSWORD; // Application password

 public final static int USRPASSWORD; // App and User passwords

 /* The attribute names for set and get. */

 public final static String APPADDRESS // String “//host:port"

 // Used with setString()

 public final static String IDLETIMEOUT; // Used with SetInt()"

 public final static String SENDTIMEOUT; // Used with SetInt()"

 public final static String RECVTIMEOUT; // Used with SetInt()"

 /* The attribute name for get only. */

 public final static String SESSIONTIMEOUT; // getIntDef()

 public JoltSessionAttributes ();

 //JoltSessionAttributes methods.

 public int checkAuthenticationLevel ()

 throws SessionException;

 public void clear ();

 public byte getByteDef (String name, byte defValue);

 public byte[] getBytesDef (String name, byte[] defValue);

 public double getDoubleDef (String name, double defValue);

 public float getFloatDef (String name, float defValue);
BEA Jolt User’s Guide 7-5

7 JOLT CLASS LIBRARY REFERENCE

ion

ch
 public int getIntDef (String name, int defValue);

 public short getShortDef (String name, short defValue);

 public String getStringDef (String name, String defValue);

 public void setByte (String name, byte value);

 public void setBytes (String name, byte[] value , int len);

 public void setDouble (String name, double value);

 public void setFloat (String name, float value);

 public void setInt (String name, int value);

 public void setShort (String name, short value);

 public void setString (String name, String value);

}

JoltSessionAttributes Constructor

The following constructor creates an instance of the JoltSessionAttributes class.

JoltSessionAttributes

This constructor allocates a new instance of the JoltSessionAttributes class.

Synopsis public JoltSessionAttributes ();

Usage Specific components are extracted to assist in defining the attributes of the Sess
constructor.

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.
7-6 BEA Jolt User’s Guide

JOLTSESSIONATTRIBUTES CLASS

ss.

lt.

ructor
JoltSessionAttributes Methods

The following methods are used in conjunction with the JoltSessionAttributes cla

� checkAuthenticationLevel and clear methods. These methods provide a
means to retrieve the values set for system access and to remove data.

� get methods. The get attribute methods obtain the value of an attribute. If the
attribute does not exist, the default value is returned. The user sets the defau

� set methods. These methods set the value of an attribute. If a value already
exists, using the set method overwrites the existing value. Unless otherwise
specified, the set methods return no values.

These JoltSessionAttributes methods are described in the following sections.

checkAuthenticationLevel

The checkAuthenticationLevel method gets the authentication level set up by the
TUXEDO administrator.

Synopsis int checkAuthenticationLevel () throws SessionException;

Usage The authentication level determines which values are set to the JoltSession const
parameters. This method returns the authentication level specified in Table 7-1.

You must set APPADDRESS before calling this method (refer to Table 7-2).
BEA Jolt User’s Guide 7-7

7 JOLT CLASS LIBRARY REFERENCE

ch

use.

er

d
Returns Table 7-1 describes the possible return values for the checkAuthenticationLevel
method.

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.

clear

The clear method removes all attributes.

Synopsis void clear ();

Usage The JoltSessionAttributes class contains data that must be removed for object re
Use the clear method to remove data.

Table 7-1 Return Values for the checkAuthenticationLevel Method

Return Value Description

NOAUTH No authentication is required to access the system.

APPASSWORD System authentication is required. Clients provide user name, us
role, and application password to authenticate the system.

USRPASSWORD System and application authentication are required to access the
system. Clients provide user name, user role, user password, an
application password to authenticate the system.
7-8 BEA Jolt User’s Guide

JOLTSESSIONATTRIBUTES CLASS

ch

ch
getByteDef

The getByteDef method gets the byte value of a specified item.

Synopsis byte getByteDef (String name, byte defValue);

Usage Gets the byte value (8-bit) of the item specified in the name parameter or the specified
defValue, if the name does not exist.

Returns This method returns a single byte value.

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.

getBytesDef

The getBytesDef method gets an array of byte values.

Synopsis byte[] getBytesDef (String name, byte[] defValue);

Usage Gets an array of byte values of the item specified in the name parameter or the specified
defValue, if the name does not exist.

Returns This method returns an array of values.

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.
BEA Jolt User’s Guide 7-9

7 JOLT CLASS LIBRARY REFERENCE

ch

ch
getDoubleDef

The getDoubleDef method gets the double precision value of an item.

Synopsis double getDoubleDef (String name, double defValue);

Usage Gets the double precision value of the item specified in the name parameter or the
specified defValue, if the name does not exist.

Returns This method returns an double precision floating point value (64-bit).

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.

getFloatDef

The getFloatDef method gets the floating point value of an item.

Synopsis float getFloatDef (String name, float defValue);

Usage Gets the floating point value of the item specified in the name parameter or the
specified defValue, if the name does not exist.

Returns This method returns a floating point value (32-bit).

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.
7-10 BEA Jolt User’s Guide

JOLTSESSIONATTRIBUTES CLASS

ch
getIntDef

The getIntDef() method gets the integer value of an item.

Synopsis int getIntDef (String name, int defValue);

Parameters name Specifies the attribute name.

defValue Specifies a default value for an item if it does not have an
existing name.

Usage Gets the integer value of the item specified in the name parameter or the specified
defValue, if the name does not exist. Use these values to specify the defValue
parameter for this method.

Returns This method returns an integer value (32-bit).

Example attr.getIntDef(attr.SESSIONTIMEOUT, 1);

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.
BEA Jolt User’s Guide 7-11

7 JOLT CLASS LIBRARY REFERENCE

ch

ther

ch
getShortDef

The getShortDef method gets the short integer value of an item.

Synopsis short getShortDef (String name, short defValue);

Usage Gets the short integer value of the item specified in the name parameter or the specified
defValue, if the name does not exist.

Returns This method returns a short integer value (16-bit).

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.

getStringDef

The getStringDef method gets the string value of an item.

Synopsis String getStringDef (String name, String defValue);

Usage Gets the string value of the item specified in the name parameter or the specified
defValue, if the name does not exist. The default value can be a null string or any o
text string.

Returns This method returns a text string.

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.
7-12 BEA Jolt User’s Guide

JOLTSESSIONATTRIBUTES CLASS

ch

ch
setByte

The setByte method sets the byte value of a specified item.

Synopsis void setByte (String name, byte value);

Usage Sets the value of the item specified in the name parameter to the byte value specified
in the value parameter. The value is an 8-bit byte.

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.

setBytes

The setBytes method sets the byte array value of a specified item.

Synopsis void setBytes (String name, byte[] value , int len);

Usage Sets the value of the item specified in the name parameter to the byte array value
specified in the value parameter, with the length set by the len parameter. The value is
in 8-bit bytes.

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.
BEA Jolt User’s Guide 7-13

7 JOLT CLASS LIBRARY REFERENCE

e

ch

ch
setDouble

The setDouble method sets the double precision value of a specified item.

Synopsis void setDouble (String name, double value);

Usage Sets the value of the item specified in the name parameter to the double precision valu
specified in the value parameter. The value is in 64-bits.

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.

setFloat

The setFloat method sets the floating point value of a specified item.

Synopsis void setFloat (String name, float value);

Usage Sets the value of the item specified in the name parameter to the floating point (32-bit)
value specified in the value parameter.

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.
7-14 BEA Jolt User’s Guide

JOLTSESSIONATTRIBUTES CLASS

ch

ch
setInt

The setInt method sets the integer value of a specified item.

Synopsis void setInt (String name, int value);

Usage Sets the value of the item specified in the name parameter to the integer (32-bit) value
specified in the value parameter.

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.

setShort

The setShort method sets the short integer value of a specified item.

Synopsis void setShort (String name, short value);

Usage Sets the value of the item specified in the name parameter to the short (16-bit) integer
value specified in the value parameter.

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.
BEA Jolt User’s Guide 7-15

7 JOLT CLASS LIBRARY REFERENCE

ch

les
ting
d for
ds.

mes
setString

The setString method sets the string value of a specified item.

Synopsis void setString (String name, String value);

Usage Sets the value of the item specified in the name parameter to the string value specified
in the value parameter.

Throws java.lang.IllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute whi
is not one of the predefined attributes.

Attributes Names for Get and Set Methods

The attribute names for the JoltSessionAttributes class include static final variab
(essentially predefined constants) for setting the application address, and for set
and getting timeouts. The predefined attribute names listed in Table 7-2 are use
specifying the String name parameter of the JoltSessionAttributes get and set metho

Note: The get methods are unrestricted. That is, the programmer can define na
in addition to using the predefined ones. The set methods are currently
restricted to the use of the predefined names listed in Table 7-2.
7-16 BEA Jolt User’s Guide

JOLTSESSIONATTRIBUTES CLASS

s.

P

.

em

/IP

/IP

e
a
tes
Note: For more information about the JSL -T timeout refer to “*SERVERS Section.”

Table 7-2 Predefined Attribute Names

Attribute Name Description

APPADDRESS Defines the location of the machine where the application reside
The format is as follows:

String “//host:port”

Host is the host machine name or IP address and port is the TC
port number for the Jolt JSL or Jolt Relay. Use setString() to
set the value of this attribute.

IDLETIMEOUT Defines an integer representing the timeout interval in seconds
Set the IDLETIMEOUT to an interval of time that is less than the
SESSIONTIMEOUT value.

IDLETIMEOUT is used to hint to the system when to drop the
network connection while retaining the session. When the
IDLETIMEOUT is set to 0, the system is notified that the network
connection is always retained. This ensures that when the syst
times out, the network connection to the target system is
terminated, and the session is terminated. The system
administrator may override this parameter.

Use setIntDef() to set the value of this attribute.

RECVTIMEOUT Defines the number of seconds to wait after Jolt issues the TCP
recv() before timing out. The default is 120 seconds. Use
setInt() to set the value of this attribute.

SENDTIMEOUT Defines the number of seconds to wait after Jolt issues the TCP
send() before timing out. The default is 10 seconds.

SESSIONTIMEOUT SESSIONTIMEOUT is the only attribute used for the
get...methods. This attribute is the integer value in minutes of th
SESSIONTIMEOUT that is configured in the Jolt server. When
session has been idle for the specified time, the server termina
the session. See the -T option in JSL. Use setString() to set
the value of this attribute.
BEA Jolt User’s Guide 7-17

7 JOLT CLASS LIBRARY REFERENCE

vailable

lt
ust

s data
the

the
JoltSession Class

java.lang.Object

 |

 +----bea.jolt.Session

 |

 +----bea.jolt.JoltSession

The JoltSession class represents the logon session object and is used to access a
TUXEDO services. The GUI-based Jolt Repository handles the propagation of
TUXEDO services to Jolt client applications. (For more information about the Jo
Repository, see Chapter 5, “Using the Jolt Repository Editor.”) The programmer m
instantiate an object for each logon session. The JoltSession object communicate
from, and connects to the TUXEDO System. The session ends with a call using
endSession() method.

The JoltSession object is passed, by reference, to the JoltRemoteService and
JoltTransaction objects. All Jolt transactions must pass a JoltSession to access
TUXEDO application.

public class JoltSession

{

 // JoltSession Constructor

 public JoltSession (JoltSessionAttributes attr , String

 userName , String userRole , String userPassword , String

 appPassword)throws SessionException;

 // JoltSession Method

 public void endSession ()throws SessionException;

 public final isAlive ();

 public void onReply (JoltReply reply);

 protected void finalize ();

}

For more information see the following classes: JoltSessionAttributes,
JoltRemoteService, JoltTransaction, JoltReply.
7-18 BEA Jolt User’s Guide

JOLTSESSION CLASS

tem

hile

ing

ified
nd

n
JoltSession Constructor

The JoltSession constructor creates a JoltSession object with attributes from the
JoltSessionAttributes class. The JoltSession object is the logon to the target sys
which is identified in the APPADDRESS name of the JoltSessionAttributes. In
addition, programmers can specify the IDLETIMEOUT value (in seconds) in
JoltSessionAttributes to hint to the system when to drop the network connection w
retaining the session. Value 0 means the network connection should be retained
throughout the session. The administrator can override the behavior.

The programmer can set all other parameters for this constructor to null, depend
upon the authentication level.

JoltSession

Creates an instance of the JoltSession class with the specified attributes.

Synopsis JoltSession (JoltSessionAttributes attr , String userName ,

String userRole , String userPassword , String appPassword)

throws SessionException;

Usage The JoltSession class creates an instance of the JoltSession class with the spec
attributes. Specific components are extracted to assist in joining an application a
terminating a session.

JoltSession allows the user identified by the userName parameter to log on to the
Jolt/TUXEDO system. All parameters must be set according to the authenticatio
level. If the logon is not successful, a SessionException is thrown. The object is
returned upon completion.

Throws The JoltSession constructor throws the following exceptions:

SessionException TPEJOLT: Missing host name or missing port number.
TPEJOLT: Protocol Error
TPEJOLT: Network Error
TPEJOLT: Can’t connect to (host name)
BEA Jolt User’s Guide 7-19

7 JOLT CLASS LIBRARY REFERENCE

g

on
m.

The JoltSession constructor throws the following TUXEDO errors:

tpinit (3) TPEINVAL, TPENOENT, TPEPERM, TPEPROTO,
TPESYSTEM, TPEOS

Refer to “TUXEDO Errors” in Appendix A or tperrno (5) in the
TUXEDO System Reference Manual for explanations of these
error messages.

JoltSession Method

The JoltSession class contains one method, the endSession method, for handlin
session logoff activities, two additional methods, isAlive() and onReply() for
handling event subscription, and the overridden finalize() method.

endSession

The endSession method performs a session termination procedure.

Synopsis void endSession () throws SessionException;

Usage The endSession method is used to terminate the session and obsolete the sessi
object. The endSession method allows the user to log off the Jolt/TUXEDO syste
When logged off, the session is invalid.

Throws The endSession() method throws the following exceptions:

SessionException TPEJOLT: Invalid Session
TPEJOLT: Connection send error

The endSession() method generates a Jolt exception upon receipt of one of the
following TUXEDO errors:

tpterm (): TPEPROTO, TPESYSTEM, TPEOS

See Also “TUXEDO Errors” in Appendix A or tperrno (5) in the TUXEDO System Reference
Manual.
7-20 BEA Jolt User’s Guide

JOLTSESSION CLASS

calls
rk

 Jolt
vide

re,
ethod

use
isAlive

The isAlive method checks if the session is still alive.

Synopsis boolean isAlive () throws SessionException

Usage The isAlive method will return a boolean (true/false) value indicating whether the
client session is valid or not. The validity of the client session is checked at the
JoltSessionHandler (JSH). If a client which is operating in connection-less mode
isAlive() while its network connection is closed, this method will cause the netwo
connection to be re-opened and closed.

Returns True if this session is still alive; false otherwise.

Throws The isAlive() method throws a SessionException .

onReply

The onReply() method is the default event handler for all events.

Synopsis void onReply (JoltReply reply)

Parameter reply Specifies an object containing the data message.

Usage This method is the default event handler for all events. This method is invoked by
and it should be overridden by the user. Client application developers need to pro
an implementation of the onReply() method to invoke when any notification is
received. The JoltReply object that is passed to the onReply() method contains any
data that is included with the notification. The application can use the methods in
JoltReply and JoltMessage to retrieve this data.

Since Jolt is a multi-threaded environment, the onReply() method executes on a
separate thread simultaneously with other application threads. You must, therefo
write a thread-safe handler. Separate threads could be executing the onReply() m
concurrently, so the method must be written to accommodate this possibility.
Alternately, you can declare the onReply() method as synchronized—this will ca
all its invocations to be serialized.

Overrides The onReply() method overrides an onReply() method.
BEA Jolt User’s Guide 7-21

7 JOLT CLASS LIBRARY REFERENCE
finalize

The finalize() method will call the endSession() method if an endSession()
has never been called.

Synopsis protected void finalize ()

Usage This method is automatically called by the Java garbage collector.

Overrides The finalize() method overrides java.lang.Object.finalize() .
7-22 BEA Jolt User’s Guide

JOLTREMOTESERVICE CLASS

ge

again.

e

ge
es for
JoltRemoteService Class

java.lang.Object

 |

 +----bea.jolt.JoltRequestMessage

 |

 +----bea.jolt.JoltRemoteService

The JoltRemoteService class is a subclass (child class) of the JoltRequestMessa
class. It is derived from and inherits the characteristics of its parent class,
JoltRequestMessage. The JoltRemoteService object is reusable; therefore, the
programmer should invoke the JoltRequestMessage clear method to reset any
previous data (such as flags, priority, and parameters) before invoking the object

JoltRemoteService is used to perform the Request/Reply call. To make a call, th
programmer:

1. Instantiates an object of this class for each service, using the add methods from
JoltRequestMessage to add the parameters.

2. Invokes the call method to send the request.

3. Uses the JoltRequestMessage get methods, upon successful completion of the
call, to retrieve the reply result.

The JoltRemoteService methods are described as part of the JoltRequestMessa
class. Refer to the JoltRequest Message, JoltSession, and JoltTransaction class
additional information.

public class JoltRemoteService extends JoltRequestMessage

{

 public JoltRemoteService (String name, JoltSession s) throws

 ServiceException;

 // JoltRemoteService methods

 public void call (Transaction t)

 throws ServiceException,

 TransactionException, ApplicationException

}

BEA Jolt User’s Guide 7-23

7 JOLT CLASS LIBRARY REFERENCE

ject.

m

ption

e
JoltRemoteService Constructor

The following JoltRemoteService constructor is used to create instances of the
JoltRemoteService class.

JoltRemoteService

The JoltRemoteService constructor defines a constructor for a remote service ob

Synopsis JoltRemoteService (String name, JoltSession s) throws

ServiceException;

Usage JoltRemoteService() defines the constructor for a remote service object. The name
parameter specifies the service name. The s parameter specifies the session object fro
the JoltSession class. This constructor receives the most current version from a
repository that holds the service definitions. If the service does not exist, an exce
is thrown.

Throws ServiceExceptions TPENOENT - Service (service name) is not available.
TPEJOLT - Invalid session
TPEJOLT - bea.jolt.DefinitionException: Invalid (message)

JoltRemoteService Methods

The JoltRemoteService() method provide the means to call a transaction servic
for the JoltRemoteService object.

call

The call() method calls the specified service.

Synopsis void call (Transaction t) throws ApplicationException,

TransactionException, ServiceException;
7-24 BEA Jolt User’s Guide

JOLTREMOTESERVICE CLASS

t.
EDO

m

tion
me.

es

O
Usage The call() method calls the service. The t parameter specifies the transaction objec
The transaction must belong to the same session as the current service. If a TUX
error (not service failure) occurs, the call method throws a ServiceException.

You can pass a null to this call() method to call services without defining a
JoltTransaction object or to exclude the services from a transaction.

You can use a getErrno to retrieve the TUXEDO error code and error message fro
the ServiceException. If there is a service failure (i.e., TPESVCFAIL), the call method
throws a runtime exception, ApplicationException.

When programming in multithreaded mode, if the transaction is aborted, all
outstanding calls associated with such a transaction receive a TransactionExcep
with a TPEABORT error code. The associated message contains the service na

To call services without defining a JoltTransaction object or to exclude the servic
from a transaction, you can pass a null to the call method.

Throws ApplicationException (application code) - “this” object is included.

ServiceExceptions TPEJOLT: Invalid session
TPEJOLT: Connection send error
TPEJOLT: Connection recv error
TPEJOLT: Protocol error
TPEJOLT: bea.jolt.BufException:....
TPEJOLT: bea.jolt.MessageException:...

TransactionExceptions TPEJOLT - Invalid Transaction
TPEABORT - (service name)

The call() method generates an exception upon receipt of the following TUXED
errors:

tpcall TPEINVAL, TPENOENT, TPEITYPE, TPETRAN,
TPETIME, TPESVCFAIL, TPESVCERR, TPEBLOCK,
TPGOTSIG, TPEPROTO, TPESYSTEM, TPEOS

See Also “TUXEDO Errors” in Appendix A or tperrno in the TUXEDO System Reference
Manual.
BEA Jolt User’s Guide 7-25

7 JOLT CLASS LIBRARY REFERENCE

ase or
 a

l
JoltRequestMessage Abstract Class

JoltRequestMessage is an abstract class whose main purpose is to serve as a b
parent class for JoltRemoteService. The JoltRemoteService class extends from (or is
subclass of) the JoltRequestMessage. All of the methods provided for the
JoltRequestMessage class only work with the JoltRemoteService class.

Note: All JoltRequestMessage method exceptions are caught by the Java virtua
machine by default.

public abstract class JoltRequestMessage

{

 public String getName ();

 public void setRequestPriority (int priority);

 public int getApplicationCode ();

 public void clear ();

 public void addByte (String name, byte val);

 public void addShort (String name, short val);

 public void addInt (String name, int val);

 public void addFloat (String name, float val);

 public void addDouble (String name, double val);

 public void addString (String name, String val);

 public void addBytes (String name, byte[] val , int len);

 public void delete (String name);

 public void deleteItem (String name, int itemNo);

 public void setByte (String name, byte value);

 public void setShort (String name, short value);

 public void setInt (String name, int value);

 public void setFloat (String name, float value);

 public void setDouble (String name, double value);

 public void setString (String name, String value);

 public void setBytes (String name, byte[] value , int len);

 public void setByteItem (String name, int itemNo , byte val);

 public void setShortItem (String name, int itemNo , short val);

 public void setIntItem (String name, int itemNo , int val);

 public void setFloatItem (String name, int itemNo , float val);

 public void setDoubleItem (String name, int itemNo , double val);

 public void setStringItem (String name, int itemNo , String val);

 public void setBytesItem (String name, int itemNo , byte[] val ,
7-26 BEA Jolt User’s Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS
 int len);

 public int getOccurrenceCount (String name);

 public byte getByteDef (String name, byte defValue);

 public short getShortDef (String name, short defValue);

 public int getIntDef (String name, int defValue);

 public float getFloatDef (String name, float defValue);

 public double getDoubleDef (String name, double defValue);

 public String getStringDef (String name, String defValue);

 public byte[] getBytesDef (String name, byte[] defValue);

 public byte getByteItemDef (String name, int itemNo , byte def);

 public short getShortItemDef (String name, int itemNo , short

 def);

 public int getIntItemDef (String name, int itemNo , int def);

 public float getFloatItemDef (String name, int itemNo ,

 float def);

 public double getDoubleItemDef (String name, int itemNo , double

 def);

 public byte[] getBytesItemsDef (String name, int itemNo , byte[]

 def);

 public String getStringItemDef (String name, int itemNo , String

 def);

}

BEA Jolt User’s Guide 7-27

7 JOLT CLASS LIBRARY REFERENCE

clear

ervice
st

f a
 the
JoltRequestMessage Methods

The JoltRequestMessage methods are used in conjunction with the abstract
JoltRequestMessage class. These methods are divided into five categories: the
method, get methods, set methods, add methods, and delete methods.

Note: The clear() method removes JoltRequestMessage settings.

Get Methods

The get JoltRequestMessage methods are used to get values from the remote s
object. These methods encompass two types of get methods, service and reque
methods and output parameter methods.

Service and Request Methods. The service methods handle queries about service
attributes such as the name of the current service, or the application code (i.e.,
tpusrcode in ATMI). These methods include:

� getApplicationCode()

� getName()

Output Parameter Methods. All of the get methods are used to obtain the value o
named item that must be one of the result parameters. If the item does not exist,
method returns the specified default value. A get method without itemNo parameter is
equivalent to a get method with itemNo 0 (i.e., first occurrence). These methods
include the following:

� getOccurrenceCount

� getByteDef

� getBytesDef

� getDoubleDef

� getFloatDef

� getIntDef

� getShortDef

� getStringDef
7-28 BEA Jolt User’s Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

thods
ided

tem
lue is
� getByteItemDef

� getBytesItemsDef

� getDoubleItemDef

� getFloatItemDef

� getIntItemDef

� getShortItemDef

� getStringItemDef

The corresponding set methods for these get methods are located in the “setByte”
section.

Set Methods

The set methods are used to set values for the remote service object. These me
manipulate the input parameters. The set JoltRequestMessage methods are div
into two categories:

Service and Request Method. The service method sets the request priority service
attribute, this includes:

� setRequestPriority

Input Parameter Methods. These methods are used to set the value of a named i
that must be one of the input parameters. If the named item does not exist, the va
added. These methods include the following:

� setByte

� setBytes

� setDouble

� setFloat

� setInt

� setShort

� setString
BEA Jolt User’s Guide 7-29

7 JOLT CLASS LIBRARY REFERENCE

it.
 in

John
ists

 in

vice
:

� setByteItem

� setBytesItem

� setDoubleItem

� setFloatItem

� setIntItem

� setShortItem

� setStringItem

For all of the set...Item methods, if an item exists, the set method will overwrite
The parameter itemNo specifies an index that points to the value. If there are gaps
the index (that is, you set a value for itemNo 3 and there are no values set for itemNo
0, 1, and 2) these items will be set with:

� an empty string, “ ”, for string values

� 0 for short, int, or byte values

� 0.0 for floating point and double precision values

� null for byte arrays

In the following example, the setStringItem method is used to change the name
to Jim. The itemNo parameter specifies a list of names. Currently, the name John ex
for itemNo 2. To change the name you might write:

setStringItem (“names”, 2, “jim”);

All indexes specified by itemNo start at 0 and increment. Therefore, the second item
a list is actually itemNo 1 and the first item in the list is actually itemNo 0.

Add and Delete Methods

The add and delete methods are used to add or delete values for the remote ser
object. These methods manipulate the input parameters. These methods include

� addByte

� addBytes

� addDouble
7-30 BEA Jolt User’s Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

 the
� addFloat

� addInt

� addShort

� addString

� delete

� deleteItem

clear

The clear() method resets all input/output parameters or any information.

Synopsis void clear ();

Usage The clear() method handles removal of parameter settings or information set by
JoltRequestMessage class.

getApplicationCode

The getApplicationCode() method gets the application code returned by the
service.

Synopsis int getApplicationCode ();

Usage The getApplicationCode() method is equivalent to tpurcode or the rcode in
TUXEDO’s tpreturn (3).

Returns This method returns an integer value (32-bit).

getName

The getName() method gets the name of the current service.

Synopsis String getName ();

Returns This method returns a string value.
BEA Jolt User’s Guide 7-31

7 JOLT CLASS LIBRARY REFERENCE

d
getOccurrenceCount

The getOccurrenceCount() method gets the number of occurrences of a specifie
item.

Synopsis int getOccurrenceCount (String name) ;

Usage This method retrieves the number of occurrences of an item specified by the name
parameter. The item must be one of the result or output parameters.

Returns This method returns an integer value (32-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getByteDef

The getByteDef() method gets the byte value of a specified parameter.

Synopsis byte getByteDef (String name, byte defValue);

Usage This method gets the byte value of the name parameter or the specified defValue, if the
name does not exist. The item must be one of the result or output parameters.

Returns This method returns a byte value (8-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getBytesDef

The getBytesDef() method gets the byte array value of a specified parameter.

Synopsis byte[] getBytesDef (String name, byte[] defValue);

Usage This method gets the byte array value of the first item specified in the name parameter
or the specified defValue, if the name does not exist.
7-32 BEA Jolt User’s Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

r.
Returns This method returns an array of byte values.

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getDoubleDef

The getDoubleDef() method gets the double precision value of a specified
parameter.

Synopsis double getDoubleDef (String name, double defValue);

Usage This method gets the double precision value of the item specified in the name
parameter or the specified defValue, if the name does not exist.

Returns This method returns a double precision value (64-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getFloatDef

The getFloatDef() method gets the floating point value of a specified paramete

Synopsis float getFloatDef (String name, float defValue);

Usage This method gets the floating point value of the item specified in the name parameter
or the specified defValue, if the name does not exist.

Returns This method returns a floating point value (32-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.
BEA Jolt User’s Guide 7-33

7 JOLT CLASS LIBRARY REFERENCE

.

 or
getIntDef

The getIntDef() method gets the integer value of a specified parameter.

Synopsis int getIntDef (String name, int defValue);

Usage This method gets the integer value of the item specified in the name parameter or the
specified defValue, if the name does not exist.

Returns This method returns an integer value (32-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getShortDef

The getShortDef() method gets the short integer value of a specified parameter

Synopsis short getShortDef (String name, short defValue);

Usage This method gets the short integer value (16-bit) of the item specified in the name
parameter or the specified defValue, if the name does not exist.

Returns This method returns a short integer value (16-bit).

Throws java.lang.NoSuchFieldError .(field name) Attempt to get a field that is not
defined for this service.

getStringDef

The getStringDef() method gets the string value of a specified parameter.

Synopsis String getStringDef (String name, String defValue);

Usage This method gets the string value of the item specified in the name parameter or the
specified defValue, if the name does not exist. The default value can be a null string
any string that you specify.
7-34 BEA Jolt User’s Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

Returns This method returns a string value.

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getByteItemDef

The getByteItemDef() gets the byte item.

Synopsis byte getByteItemDef (String name, int itemNo , byte def);

Usage This method gets the byte value of the itemNo of the name parameter. If the item does
not exist, the get method returns the default value.

Returns This method returns a byte value (8-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getBytesItemsDef

The getBytesItemDef() gets the byte array item.

Synopsis byte[] getBytesItemDef (String name, int itemNo , byte[] def);

Usage This method gets the byte value of the itemNo of the name parameter. If the item does
not exist, the get method uses the default value.

Returns This method returns a byte value (8-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.
BEA Jolt User’s Guide 7-35

7 JOLT CLASS LIBRARY REFERENCE

getDoubleItemDef

The getDoubleItemDef() gets the double precision item.

Synopsis double getDoubleItemDef (String name, int itemNo , double def);

Usage This method gets the double precision value of the itemNo of the name parameter. If
the item does not exist, the get method returns the default value.

Returns This method returns a double precision value (64-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getFloatItemDef

The getFloatItemDef() gets the floating point item.

Synopsis float getFloatItemDef (String name, int itemNo , float def);

Usage This method gets the floating point value of the itemNo of the name parameter. If the
item does not exist, the get method returns the default value.

Returns This method returns a floating point value (32-bit).

Throws java.lang.NoSuchFieldError . (field name) - Attempt to get a field that is not
defined for this service.

getIntItemDef

The getIntItemDef() gets the integer item.

Synopsis int getIntItemDef (String name, int itemNo , int def);

Usage This method gets the integer value of the itemNo of the name parameter. If the item
does not exist, the get method returns the default value.
7-36 BEA Jolt User’s Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

s

s
Returns This method returns an integer value (32-bit).

Throws java.lang.NoSuchFieldError . (field name) - Attempt to get a field that is not
defined for this service.

getShortItemDef

The getShortItemDef() gets the short item.

Synopsis short getShortItemDef (String name, int itemNo , short def);

Usage This method gets the short value of the itemNo of the name parameter. If the item doe
not exist, the get method returns the default value.

Returns This method returns a short integer value (16-bit).

Throws java.lang.NoSuchFieldError . (field name) - Attempt to get a field that is not
defined for this service.

getStringItemDef

The getStringItemDef() gets the string value of a specified item.

Synopsis String getStringItemDef (String name, int itemNo , String def);

Usage This method gets the string value of the itemNo of the name parameter. If the item doe
not exist, the get method returns the default value.

Returns This method returns a string value.

Throws java.lang.NoSuchFieldError . (field name) - Attempt to get a field that is not
defined for this service.
BEA Jolt User’s Guide 7-37

7 JOLT CLASS LIBRARY REFERENCE

t

setRequestPriority

The setRequestPriority() method sets the request priority service attribute.

Synopsis void setRequestPriority (int priority);

Parameter priority Specify a priority value between 1 and 100 inclusive.

Usage Sets the absolute request priority for the current service. It is set until clear() is
called.

setByte

The setByte() method sets the value of the specified item.

Synopsis void setByte (String name, byte value);

Usage Sets the value of the item specified in the name parameter to the byte value specified
in the value parameter. The value is an 8-bit byte.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.
7-38 BEA Jolt User’s Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

t

t

setBytes

The setBytes() method sets the value of the specified item.

Synopsis void setBytes (String name, byte[] value , int len);

Usage Sets the value of the item specified in the name parameter to the byte array value
specified in the value parameter, with the length set by the len parameter. The value is
in 8-bit bytes.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

setDouble

The setDouble() method sets the double precision value of the specified item.

Synopsis void setDouble (String name, double value);

Usage Sets the value of the item specified in the name parameter to the double precision
(64-bit) value specified in the value parameter.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.
BEA Jolt User’s Guide 7-39

7 JOLT CLASS LIBRARY REFERENCE

t

t

setFloat

The setFloat() method sets the floating point value of the specified item.

Synopsis void setFloat (String name, float value);

Usage Sets the value of the item specified in the name parameter to the floating point (32-bit)
value specified in the value parameter.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

setInt

The setInt() method sets the integer value of the specified item.

Synopsis void setInt (String name, int value);

Usage Sets the value of the item specified in the name parameter to the integer (32-bit) value
specified in the value parameter.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.
7-40 BEA Jolt User’s Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

t

t

setShort

The setShort() method sets the short integer value of the specified item.

Synopsis void setShort (String name, short value);

Usage Sets the value of the item specified in the name parameter to the short (16-bit) integer
value specified in the value parameter.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

setString

The setString() method sets the string value of the specified item.

Synopsis void setString (String name, String value);

Usage Sets the value of the item specified in the name parameter to the string value specified
in the value parameter.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.
BEA Jolt User’s Guide 7-41

7 JOLT CLASS LIBRARY REFERENCE

lue.

t

lue.

e

t

setByteItem

The setByteItem() method sets a named item at a specified index with a byte va

Synopsis void setByteItem (String name, int itemNo, byte value);

Usage Sets the item specified in the name parameter at the index specified by itemNo with the
byte value specified by the value parameter. If the item already exists, the value is
overwritten.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

setBytesItem

The setBytesItem() method sets a named item at a specified index with a byte va

Synopsis void setBytesItem (String name, int itemNo, byte[] value, int len);

Usage Sets the item specified in the name parameter at the index specified by itemNo with the
byte array value specified by the value parameter. If the item already exists, the valu
is overwritten.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.
7-42 BEA Jolt User’s Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

ble

e

t

ng

t

setDoubleItem

The setDoubleItem() method sets a named item at a specified index with a dou
precision value.

Synopsis void setDoubleItem (String name, int itemNo , double value);

Usage Sets the item specified in the name parameter at the index specified by itemNo with the
double precision value specified by the value parameter. If the item already exists, th
value is overwritten.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

setFloatItem

The setFloatItem() method sets a named item at a specified index with a floati
point value.

Synopsis void setFloatItem (String name, int itemNo, float value);

Usage Sets the item specified in the name parameter at the index specified by itemNo with the
floating point value specified by the value parameter. If the item already exists, the
value is overwritten.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.
BEA Jolt User’s Guide 7-43

7 JOLT CLASS LIBRARY REFERENCE

lue.

is

t

t

setIntItem

The setIntItem() method sets a named item at a specified index with a integer va

Synopsis void setIntItem (String name, int itemNo, int value);

Usage Sets the item specified in the name parameter at the index specified by itemNo with the
integer value specified by the value parameter. If the item already exists, the value
overwritten.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

setShortItem

The setShortItem() method sets a named item at a specified index with a short
integer value.

Synopsis void setShortItem (String name, int itemNo, short value);

Usage Sets the item specified in the name parameter at the index specified by itemNo with the
short value specified by the value parameter. If the item already exists, the value is
overwritten.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.
7-44 BEA Jolt User’s Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

g

t

t

t
setStringItem

The setStringItem() method sets a named item at a specified index with a strin
value.

Synopsis void setStringItem (String name, int itemNo, string value);

Usage Sets the item specified in the name parameter at the index specified by itemNo with the
string value specified by the value parameter. If the item already exists, the value is
overwritten.

Throws java.lang.IllegalAccessError . (field name) - Attempt to set a value to an outpu
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

addByte

The addByte() method adds the byte input parameters.

Synopsis void addByte (String name, byte val);

Usage The addByte() method adds specified byte items to the input parameters.

Throws java.lang.IllegalAccessError . (field name) - Attempt to add a value to an inpu
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field tha
is not defined for this service.
BEA Jolt User’s Guide 7-45

7 JOLT CLASS LIBRARY REFERENCE

t

t

t

t
addBytes

The addBytes() method adds the byte array input parameter.

Synopsis void addBytes (String name, byte[] val, int len);

Usage The addBytes() method adds the byte value (8-bit) of the item specified in the name
parameter.

Throws java.lang.IllegalAccessError . (field name) - Attempt to add a value to an inpu
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field tha
is not defined for this service.

addDouble

The addDouble() method adds the double precision input parameter.

Synopsis void addDouble (String name, double val);

Usage The addDouble() method adds the double precision value (64-bit) of the item
specified in the name parameter.

Throws java.lang.IllegalAccessError . (field name) - Attempt to add a value to an inpu
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field tha
is not defined for this service.
7-46 BEA Jolt User’s Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

 in

t

t

t

t
addFloat

The addFloat() method adds the floating point input parameter.

Synopsis void addFloat (String name, float val);

Usage The addFloat() method adds the floating point value (32-bit) of the item specified
the name parameter.

Throws java.lang.IllegalAccessError . (field name) - Attempt to add a value to an inpu
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field tha
is not defined for this service.

addInt

The addInt() method adds the integer input parameter.

Synopsis void addInt (String name, int val);

Usage The addInt() method adds the integer value (32-bit) of the item specified in the name
parameter.

Throws java.lang.IllegalAccessError . (field name) - Attempt to add a value to an inpu
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field tha
is not defined for this service.
BEA Jolt User’s Guide 7-47

7 JOLT CLASS LIBRARY REFERENCE

t

t

t

t
addShort

The addShort() method adds the short integer value (16-bit) input parameter.

Synopsis void addShort (String name, short val);

Usage This method adds the short integer value (16-bit) of the item specified in the name
parameter.

Throws java.lang.IllegalAccessError . (field name) - Attempt to add a value to an inpu
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field tha
is not defined for this service.

addString

The addString() method adds the string value input parameter.

Synopsis void addString (String name, String val);

Usage This method adds the string value of the item specified in the name parameter.

Throws java.lang.IllegalAccessError . (field name) - Attempt to add a value to an inpu
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field tha
is not defined for this service.
7-48 BEA Jolt User’s Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

g

put

t

t

ot

t

t
delete

The delete() method deletes a first occurrence of the named item or any existin
item.

Synopsis void delete (String name);

Usage This method deletes the first named item. The named item must be one of the in
parameters.

Throws java.lang.IllegalAccessError . (field name) - Attempt to add a value to an inpu
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field tha
is not defined for this service.

deleteItem

The deleteItem() method deletes an occurrence of an existing named item.

Synopsis void deleteItem (String name, int itemNo);

Usage This method deletes an existing named item (input parameter). If the item does n
exist, an exception will be thrown. The deleteItem method without the itemNo
parameter is equivalent to delete methods with itemNo 0 (i.e., first occurrence).

Throws java.lang.IllegalAccessError . (field name) - Attempt to add a value to an inpu
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field tha
is not defined for this service.
BEA Jolt User’s Guide 7-49

7 JOLT CLASS LIBRARY REFERENCE

ction
ervice
 out,
tion
JoltTransaction Class

java.lang.Object

 |

 +----bea.jolt.Transaction

 |

 +----bea.jolt.JoltTransaction

The JoltTransaction class is the explicit transaction model for Jolt. The JoltTransa
class implements the transaction object. This object can be used by JoltRemoteS
to include several services into a single transaction. When a transaction is timed
the user must rollback the transaction immediately. Due to the current implementa
of TUXEDO, only one transaction object can be instantiated at one time.

Refer also to the JoltRemoteService and JoltSession classes.

public class JoltTransaction

{

 public JoltTransaction (int timeout , JoltSession s) throws

 TransactionException;

 public void commit () throws TransactionException;

 public void rollback () throws TransactionException;

}

7-50 BEA Jolt User’s Guide

JOLTTRANSACTION CLASS

bject.

ject

e of

s. The

eout
ction

wing
JoltTransaction Constructor

The JoltTransaction Class provides a constructor to create the JoltTransaction o

JoltTransaction

The JoltTransaction() constructor creates an instance of the JoltTransaction ob
with the specified parameters.

Note: You can pass a null to the JoltRemoteService call() method to call services
without defining a JoltTransaction object or to exclude the services from a
transaction.

Synopsis public JoltTransaction (int timeout , JoltSession s) throws

TransactionException;

Usage The constructor (or the method that is invoked automatically when a new instanc
a class is created) implies the beginning of the transaction. The s (session) parameter
in the constructor ensures that the transaction does not span over multiple session
current Jolt release allows only one transaction per session.

JoltTransaction requires that you set the timeout for a transaction. Specifying a tim
parameter of 0, sets the timeout to the maximum value for the system. If the transa
is not completed within this period of time (the time between the tpbegin() and the
tpcommit()), then Jolt generates a TransactionException.

The RECVTIMEOUT for each transactional JoltRemoteService.call() is
automatically adjusted to the proper timeout value.

Throws TransactionException TPEJOLT: Invalid session
TPEJOLT: Connection send error
TPEJOLT: Connection recv error
TPEJOLT: Protocol error

The JoltTransaction constructor generates an exception upon receipt of the follo
TUXEDO errors:

tpbegin TPEINVAL, TPETRAN, TPEPROTO, TPESYSTEM, TPEOS
BEA Jolt User’s Guide 7-51

7 JOLT CLASS LIBRARY REFERENCE

cess.
e

O
See Also “TUXEDO Errors” in Appendix A or tperrno (5) in the TUXEDO System Reference
Manual.

JoltTransaction Methods

The JoltTransaction methods provide the means to start or end a transaction pro
The following methods handle commit and rollback transaction processing for th
JoltTransaction class.

commit

The commit() method performs the transaction commit.

Synopsis void commit ()

Usage After commit() is called, the object is obsolete.

Throws TransactionException TPEJOLT: Invalid transaction
TPEJOLT: Connection send error
TPEJOLT: Connection recv error
TPEJOLT: Protocol error
TPEABORT: Requests pending

The commit() method generates an exception upon receipt of the following TUXED
errors:

tpcommit (3) TPEINVAL, TPETIME, TPEABORT, TPEHEURISTIC,
TPEHAZARD, TPEPROTO, TPESYSTEM, TPEOS
7-52 BEA Jolt User’s Guide

JOLTTRANSACTION CLASS
rollback

The rollback() method aborts the transaction.

Synopsis void rollback ()

Usage After rollback() is called, the object is obsolete.

Throws TransactionException TPEJOLT: Invalid transaction
TPEJOLT: Connection send error
TPEJOLT: Connection recv error
TPEJOLT: Protocol error

The rollback() method generates an exception upon receipt of the following
TUXEDO errors:

tpabort (3) TPEINVAL, TPEHEURISTIC, TPEHAZARD, TPEOS,
TPEPROTO, TPESYSTEM

See Also “TUXEDO Errors” in Appendix A or tperrno(5) in the TUXEDO System Reference
Manual.
BEA Jolt User’s Guide 7-53

7 JOLT CLASS LIBRARY REFERENCE

. The

sync

Once
esult
JoltEvent Class

java.lang.Object

 |

 +----bea.jolt.JoltEvent

The JoltEvent class extends the java.lang.Object class and is a base class for
various event subscriptions. This class is not designed to be instantiated directly
JoltEvent class provides some common implementations for all subscriptions. An
event can be a notification event or service event. A notifiable event generates a
notification (unsolicited notification or event notification) while a service event
invokes a service.

For additional information, refer also to the JoltSession class.

public class JoltEvent

 unsubscribe ()

 unsubscribeAll (Session)

JoltEvent Methods

The following methods are used with the JoltEvent class.

unsubscribe

Deletes the subscription to an event.

Synopsis public int unsubscribe()

Usage This method is used to stop subscribing to the event specified in the constructor.
it is unsubscribed, this object becomes obsoleted. All notifications received as a r
of a subscription will cause the onReply() method in the session to be invoked.
7-54 BEA Jolt User’s Guide

JOLTEVENT CLASS

ied
Returns Number of subscriptions deleted.

Throws EventException . No such event or invalid event.

SessionException . An error occurs in this session.

unsubscribeAll

The unsubscribeAll() method unsubscribes all event subscriptions in the specif
session.

Synopsis public static int unsubscribeAll (Session session)

Usage Unsubscribe all event subscriptions in the specified session. The session parameter
requires a Jolt session object.

Returns Number of subscriptions deleted.

Throws EventException . Unsubscription error from TUXEDO.

SessionException . Invalid session or a session error.
BEA Jolt User’s Guide 7-55

7 JOLT CLASS LIBRARY REFERENCE

ption

r.

ides

tion

ion

ply
JoltUserEvent Class

java.lang.Object

 |

 +----bea.jolt.JoltEvent

 |

 +----bea.jolt.JoltUserEvent

The JoltUserEvent class extends JoltEvent. JoltUserEvent implements a subscri
to an asynchronous (async) notification event. An async notification is either an
unsolicited event notification or event notification from the TUXEDO Event Broke
Unsolicited notifications are produced in response to a TUXEDO tpnotify() call or
a TUXEDO tpbroadcast() call. Event notifications are produced as a result of a
TUXEDO tppost() call.

The JoltUserEvent class is used in Jolt 1.1 to support notification. This class prov
support for both unsolicited notification (produced as a result of tpnotify() or
tpbroadcast()) and event notifications (produced as a result of tppost()).

The String JoltUserEvent.UNSOLMSG in the class is a constant which the applica
programmer uses to request unsolicited messages.

Note: In TUXEDO, an unsolicited notification is indistinguishable from event
notification. This is also reflected in Jolt.

The handler for unsolicited notification and event notification is done in the Sess
object. A thread is used in this class to monitor any incoming messages.

For additional information, refer also to the JoltSession, JoltMessage, and JoltRe
classes.

public class JoltUserEvent

 UNSOLMSG

JoltUserEvent (String, String, Session)

UNSOLMSG

The regular expression constant for unsolicited notification subscription.

Synopsis final static String UNSOLMSG
7-56 BEA Jolt User’s Guide

JOLTUSEREVENT CLASS

 the

 the

he

ter
fer

t

n to
e

ous

her
JoltUserEvent Methods

The following methods are used with the JoltUserEvent class.

JoltUserEvent

This constructor subscribes to the specific asynchronous notification.

Synopsis JoltUserEvent (String expr , String filter , Session session)

 throws EventException, SessionException

Parameters expr JoltUserEvent.UNSOLMSG for unsolicited notification or a
regular expression for event notification. The parameter expr is
a String containing a regular expression of the same format as
event expression used in tpsubscribe() . The maximum length
of this parameter is 255 characters. Setting this parameter to
constant JoltUserEvent.UNSOLMSG will allow the client to
receive unsolicited messages (generated as a result of
tpnotify() or tpbroadcast()).

filter null or boolean expression. The parameter filter is a String of t
same format as the filter parameter passed to tpsubscribe() .
The maximum length of this parameter is 255 characters. Fil
rules are specific to the buffers to which they are applied. Re
to TUXEDO documentation for complete explanation of the
filtering function. Filtering is done on the TUXEDO server, no
the Jolt client.

session a JoltSession object. The parameter session is the JoltSessio
which the subscription is bound. An event is bound to a singl
session.

Usage This constructor subscribes the specific asynchronous notification. An asynchron
notification may be an unsolicited notification or event notification. If the expr is
JoltUserEvent.UNSOLMSG, the filter must be null. Otherwise, the filter can be eit
null or a boolean expression (see Fboolco(3) in the Tuxedo Reference Manual).

This constructor will return a JoltUserEvent object which will provide notification
when the Event identified by the parameter event occurs.
BEA Jolt User’s Guide 7-57

7 JOLT CLASS LIBRARY REFERENCE

n
Throws SessionException . Invalid session or a session error.

EventException . Filter for unsolicited subscription is not null, or event subscriptio
failed.
7-58 BEA Jolt User’s Guide

JOLTREPLY CLASS

tion.

t or
JoltReply Class

java.lang.Object

 |

 +----bea.jolt.JoltReply

The JoltReply class extends the java.lang.Object . JoltReply is a place holder of the
message for unsolicited messages or event notifications. This class provides the
application with access to any message received with a TUXEDO event or notifica

public class JoltReply

Message getMessage ()

JoltReply Methods

The following method is used with the JoltReply class.

getMessage

Gets the response message.

Synopsis Message getMessage ()

Usage The getMessage() method returns a JoltMessage object. The returned object
provides the application with access to any data that is associated with the even
notification.

Returns The getMessage() method returns a message object.
BEA Jolt User’s Guide 7-59

7 JOLT CLASS LIBRARY REFERENCE

on
 more
JoltMessage Class

java.lang.Object

 |

 +----bea.jolt.Message

 |

 +----bea.jolt.JoltMessage

The JoltMessage class extends java.lang.Object . This class implements the
Message class, which encapsulates the attribute-value pair data for the applicati
protocol. This class allows the user to get an output attribute to the message. For
information, refer also to the JoltReply classes.

public class JoltMessage

//These methods are duplicates of the JoltRequestMessage class

//They are inherited from that class.

 public int getOccurrenceCount (String name);

 public byte getByteDef (String name, byte def);

 public short getShortDef (String name, short def);

 public int getIntDef (String name, int def);

 public float getFloatDef (String name, float def) ;

 public double getDoubleDef (String name, double def);

 public String getStringDef (String name,String def);

 public byte[] getBytesDef (String name, byte def []);

 public byte getByteItemDef (String name, int itemNo , byte def);

 public short getShortItemDef (String name, int itemNo , short def);

 public int getIntItemDef (String name, int itemNo , int def);

 public float getFloatItemDef (String name, int itemNo , float def);

 public double getDoubleItemDef (String name, int itemNo , double

 def) ;

 public byte[] getBytesItemDef (String name, int itemNo , byte

 def []);

 public String getStringItemDef (String name, int itemNo , String

 def) ;
7-60 BEA Jolt User’s Guide

JOLTMESSAGE CLASS
JoltMessage Methods

The following methods are used with the JoltMessage class.

getOccurrenceCount

Get the number of occurrence of a named item.

Synopsis synchronized int getOccurrenceCount (String name)

Parameters name The name of the item.

Throws NoSuchFieldError . It is an invalid name.

getByteDef

Get the first item based on its name.

Synopsis public byte getByteDef (String name, byte def)

Parameters name The name of the item.

def The default byte value.

Usage Get the first item based on its name. If it does not exist, the default value will be
returned.

Throws NoSuchFieldError . It is an invalid name.
BEA Jolt User’s Guide 7-61

7 JOLT CLASS LIBRARY REFERENCE
getShortDef

Get the first item based on its name.

Synopsis short getShortDef (String name, short def)

Parameters name The name of the item.

def The default short value.

Usage Get the first item based on its name. If it does not exist, the default value will be
returned.

Throws NoSuchFieldError . It is an invalid name.

IllegalAccessError . Cannot delete an input item.

getIntDef

Get the first item based on its name.

Synopsis int getIntDef (String name, int def)

Parameters name The name of the item.

def The default int value.

Usage Get the first item based on its name. If it does not exist, the default value will be
returned.

Throws NoSuchFieldError . It is an invalid name.

IllegalAccessError . Cannot delete an input item.
7-62 BEA Jolt User’s Guide

JOLTMESSAGE CLASS

e is
getFloatDef

Get the first item based on its name.

Synopsis float getFloatDef (String name, float def)

Parameters name The name of the item.

def The default float value.

Usage Get the first item based on its name. If it does not exist, the default value will be
returned.

Throws NoSuchFieldError . It is an invalid name.

getDoubleDef

Get the first item based on its specified name.

Synopsis double getDoubleDef (String name, double def)

Parameters name The name of the item.

def The default double value.

Usage Get the first item based on its specified name. If it does not exist, the default valu
returned.

Throws NoSuchFieldError . It is an invalid name.

getStringDef

Get the first item based on its name.

Synopsis String getStringDef (String name,String def)

Parameters name The name of the item.

def The default string value.
BEA Jolt User’s Guide 7-63

7 JOLT CLASS LIBRARY REFERENCE

.

Usage Get the first item based on its name. If it does not exist, the default value will be
returned.

Throws NoSuchFieldError . It is an invalid name.

getBytesDef

Get the first item based on its name.

Synopsis byte[] getBytesDef (String name, byte def [])

Parameters name The name of the item.

def The default byte-array value.

Usage Get the first item based on its name. If it does not exist, the default value will be
returned.

Throws NoSuchFieldError . It is an invalid name.

getByteItemDef

Get an occurrence of a named item of byte data type.

Synopsis byte getByteItemDef (String name, int itemNo , byte def)

Parameters name Name of the item.

itemNo Occurrence number of the item.

def Default value.

Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned

Returns A byte value.

Throws NoSuchFieldError . It is an invalid name.
7-64 BEA Jolt User’s Guide

JOLTMESSAGE CLASS

.

.
getShortItemDef

Get an occurrence of a named item of short data type.

Synopsis short getShortItemDef (String name, int itemNo , short def)

Parameters name Name of the item.

itemNo Occurrence number of the item.

def Default value.

Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned

Returns A short value.

Throws NoSuchFieldError . It is an invalid name.

getIntItemDef

Get an occurrence of a named item of int data type.

Synopsis int getIntItemDef (String name, int itemNo , int def)

Parameters name Name of the item.

itemNo Occurrence number of the item.

def Default value.

Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned

Returns An integer value.

Throws NoSuchFieldError . It is an invalid name.
BEA Jolt User’s Guide 7-65

7 JOLT CLASS LIBRARY REFERENCE

.

.
getFloatItemDef

Get an occurrence of a named item of float data type.

Synopsis float getFloatItemDef (String name, int itemNo , float def)

Parameters name Name of the item.

itemNo Occurrence number of the item.

def Default value.

Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned

Returns A floating point value.

Throws NoSuchFieldError . It is an invalid name.

getDoubleItemDef

Get an occurrence of a named item of double data type.

Synopsis double getDoubleItemDef (String name, int itemNo , double def)

Parameters name Name of the item.

itemNo Occurrence number of the item.

def Default value.

Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned

Returns A double precision value.

Throws NoSuchFieldError . It is an invalid name.
7-66 BEA Jolt User’s Guide

JOLTMESSAGE CLASS

.

.
getBytesItemDef

Get an occurrence of a named item of byte-array data type.

Synopsis byte[] getBytesItemDef (String name, int itemNo , byte def [])

Parameters name Name of the item.

itemNo Occurrence number of the item.

def Default value.

Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned

Returns A byte-array object.

Throws NoSuchFieldError . It is an invalid name.

getStringItemDef

Get an occurrence of a named item of string data type.

Synopsis String getStringItemDef (String name, int itemNo , String def)

Parameters name Name of the item.

itemNo Occurrence number of the item.

def Default value.

Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned

Returns A string value.

Throws NoSuchFieldError . It is an invalid name.
BEA Jolt User’s Guide 7-67

7 JOLT CLASS LIBRARY REFERENCE
7-68 BEA Jolt User’s Guide

APPENDIX

lass
rary
ed in

n of
A Jolt Class Library Errors
and Exceptions

This appendix describes the Jolt Class Library errors and exceptions. The Jolt C
Library returns both Jolt and TUXEDO errors and exceptions. The Jolt Class Lib
errors and exceptions are also listed for each class, constructor, and method list
Chapter 7, “Jolt Class Library Reference.”

The following topics are included in this appendix:

� Jolt Error and Exception Handling

� ApplicationException Class

� JoltException Class

� EventException Class

� MessageException Class

� ServiceException Class

� SessionException Class

� TransactionException Class

� TUXEDO Errors

TUXEDO errors are described briefly in this appendix. For a complete explanatio
TUXEDO errors, refer to the TUXEDO System Reference Manual.
BEA Jolt User’s Guide A-1

A JOLT CLASS LIBRARY ERRORS AND EXCEPTIONS

error

.

he

ions
e

nd

Jolt Error and Exception Handling

An error condition indicates that a non-recoverable error has occurred. When an
occurs, a message is displayed and the current method stops executing.

Note: In general, these errors are not caught in your application. Normally, Java
errors and exceptions are automatically caught by Jolt.

An exception indicates that a condition occurred that requires special handling to
prevent the application from terminating. Exceptions can be caught and handled

Each exception or error comes with an error code and a simple text message. T
following table describes the relationship between the error code types and their
messages.

The Jolt Class Library uses exceptions to report runtime problems. All Jolt except
extend from Java’s RuntimeException and Error classes. Figure A-1 illustrates th
relationship of the JoltException classes to the Java RuntimeException class.

Table A-1 Error Code Text Messages

If the error code Then the text message

Is one of the TUXEDO
errors (e.g., TPENOENT)

Is the text message from ATMI tpstrerror(3) .

TPEJOLT Provides useful information about what error has occurred a
location. You can use a getErrno to get the error number and
a getMessage to obtain the error message for the exception
object.
A-2 BEA Jolt User’s Guide

JOLT ERROR AND EXCEPTION HANDLING

 the
M to

 be
Figure A-1 Jolt Exception Class Hierarchy

Since Java’s RuntimeException and Error conditions are caught automatically by
Java virtual machine (VM), programmers can ignore these and rely on the Java V
trap them. However, programmers must catch the exceptions or errors that are
important to their particular applications so that application-specific recovery can
initiated.

is-a

is-a

java.lang.RuntimeException

ApplicationException

MessageException

JoltException

TransactionException

EventException

ServiceException

SessionException
BEA Jolt User’s Guide A-3

A JOLT CLASS LIBRARY ERRORS AND EXCEPTIONS
ApplicationException Class

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----java.lang.RuntimeException

 |

 +----bea.jolt.ApplicationException

The ApplicationException class is used by the JoltRemoteService class and its
methods. The ApplicationException is thrown only when the service calls a tpreturn
(TPFAIL , tpurcode , ...).

public class ApplicationException extends

java.lang. RuntimeException
A-4 BEA Jolt User’s Guide

APPLICATIONEXCEPTION CLASS

vice
e
ApplicationException Methods

The following methods are used with the ApplicationException.

getMessage Method

The getMessage method gets the error message.

Synopsis public String getMessage ();

Usage This method is taken from the Java RuntimeException class.

getApplicationCode Method

The getApplicationCode method gets the application code (tpurcode).

Synopsis public int getApplicationCode ();

getObject Method

The getObject method gets the object that throws this exception.

Synopsis public Object getObject ();

Usage In Jolt 1.1, the object retrieved by getObject is an instance of the JoltRemoteSer
class. The caller can still use this object to retrieve all the output parameters. Se
getStringDef() or similar in JoltRemoteService class.
BEA Jolt User’s Guide A-5

A JOLT CLASS LIBRARY ERRORS AND EXCEPTIONS

irtual
ny of
JoltException Class

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----java.lang.RuntimeException

 |

 +----bea.jolt.JoltException

All Jolt exceptions are derived from the Java RuntimeException class. The Java v
machine catches them by default, thus the programmer is not required to catch a
these exceptions.

public class JoltException extends java.lang.RuntimeException

{

public final static int TPEABORT = 1; // Tuxedo error codes

public final static int TPEBADDESC = 2;

public final static int TPEBLOCK = 3;

public final static int TPEINVAL = 4;

public final static int TPELIMIT = 5;

public final static int TPENOENT = 6;

public final static int TPEOS = 7;

public final static int TPEPERM = 8;

public final static int TPEPROTO = 9;

public final static int TPESVCERR = 10;

public final static int TPESVCFAIL = 11;

public final static int TPESYSTEM = 12;

public final static int TPETIME = 13;

public final static int TPETRAN = 14;

public final static int TPGOTSIG = 15;

public final static int TPERMERR = 16;

public final static int TPEITYPE = 17;

public final static int TPEOTYPE = 18;

public final static int TPERELEASE = 19;

public final static int TPEHAZARD = 20;

public final static int TPEHEURISTIC = 21;
A-6 BEA Jolt User’s Guide

JOLTEXCEPTION CLASS

public final static int TPEEVENT = 22;

public final static int TPEMATCH = 23;

public final static int TPEDIAGNOSTIC = 24;

public final static int TPEMIB = 25;

public final static int TPEJOLT = 100; // Jolt error or

 /programming error

JoltException Methods

The JoltException methods are used to obtain information about the error or the
condition that causes the error.

getMessage Method

The getMessage method gets the error message.

Synopsis public String getMessage ();

Usage This method is taken from the Java RuntimeException class.

getErrno Method

The getErrno method gets the error code.

Synopsis public int getErrno ();

getObject Method

The getObject method gets the object which throws this exception.

Synopsis public Object getObject ();

Usage In some situations, this method returns a “null” object.
BEA Jolt User’s Guide A-7

A JOLT CLASS LIBRARY ERRORS AND EXCEPTIONS

bject.
EventException Class

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----java.lang.RuntimeException

 |

 +----bea.jolt.JoltException

 |

 +----bea.jolt.EventException

This exception is thrown when the user encounters any error during the event
subscription.

public class EventException extends JoltException

MessageException Class

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----java.lang.RuntimeException

 |

 +----bea.jolt.MessageException

This exception is thrown when there is an error in parsing the internal message o

public class MessageException

extends RuntimeException
A-8 BEA Jolt User’s Guide

SERVICEEXCEPTION CLASS

 used
ServiceException Class

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----java.lang.RuntimeException

 |

 +----bea.jolt.JoltException

 |

 +----bea.jolt.ServiceException

The ServiceException class extends JoltException. The ServiceException class is
by the JoltRemoteService class and its methods.

public class ServiceException extends JoltException

SessionException Class

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----java.lang.RuntimeException

 |

 +----bea.jolt.JoltException

 |

 +----bea.jolt.SessionException
BEA Jolt User’s Guide A-9

A JOLT CLASS LIBRARY ERRORS AND EXCEPTIONS

 the

on
The SessionException extends JoltException. The SessionException is used by
JoltSession class and its methods.

public class SessionException extends JoltException

TransactionException Class

java.lang.Object

 |

 +----java.lang.Throwable

 |

 +----java.lang.Exception

 |

 +----java.lang.RuntimeException

 |

 +----bea.jolt.JoltException

 |

 +----bea.jolt.TransactionException

The TransactionException class extends JoltException. The TransactionExcepti
class is used by the JoltTransaction class and class methods.

public class TransactionException extends JoltException
A-10 BEA Jolt User’s Guide

TUXEDO ERRORS

ve

on

f

er

ype
TUXEDO Errors

Expanded references to TUXEDO will be available in a future release of the Jolt
product documentation. If you require an immediate, expanded reference for
TUXEDO related errors, see the BEA TUXEDO Reference Manual.

Table A-2 TUXEDO Errors

Error Description

TPEABORT A transaction could not commit because the work performed by the
initiator, or by one or more of its participants, could not commit.

TPEBADDESC A call descriptor is invalid or is not the descriptor with which a
conversational service was invoked.

TPEBLOCK A blocking condition exists and TPNOBLOCK was specified.

TPEDIAGNOSTIC To be determined.

TPEEVENT An event occurred; the event type is returned in revent.

TPEHAZARD Due to a failure, the work done on behalf of the transaction can ha
been heuristically completed.

TPEHEURISTIC Due to a heuristic decision, the work done on behalf of the transacti
was partially committed and partially aborted.

TPEINVAL An invalid argument was detected.

TPEITYPE The type and subtype of the input buffer is not one of the types and
subtypes that the service accepts.

TPELIMIT The caller’s request was not sent because the maximum number o
outstanding requests or connections has been reached.

TPEMATCH svcname is already advertised for the server but with a function oth
then func.

TPEMIB To be determined.

TPENOENT Cannot send to svc because it does not exist or is not the correct t
of service.
BEA Jolt User’s Guide A-11

A JOLT CLASS LIBRARY ERRORS AND EXCEPTIONS

ion
TPEOS An operating system error has occurred.

TPEOTYPE The type and subtype of the reply are not known to the caller.

TPEPERM A client cannot join an application because it does not have permiss
to do so or because it has not supplied the correct application
password.

TPEPROTO A library routine was called in an improper context.

TPERELEASE To be determined.

TPERMERR A resource manager failed to open or close correctly.

TPESVCERR A service routine encountered an error either in tpreturn(3) or
tpforward(3). For example, bad arguments were passed.

TPESVCFAIL The service routine sending the caller’s reply called.

TPESYSTEM A System/T error occurred.

TPETIME A time-out occurred.

TPETRAN The caller cannot be placed in transaction mode.

TPGOTSIG A signal was received and TPSIGRSTRT was not specified.

Table A-2 TUXEDO Errors

Error Description
A-12 BEA Jolt User’s Guide

APPENDIX

f the
fer to
B System Messages

Jolt system messages and code references will be available in a future release o
Jolt product documentation. If you require an immediate, expanded reference, re
the TUXEDO System Message Manual, Volume 2.

This appendix includes:

� Jolt System Messages

� Repository Messages

� FML Error Messages

� Information Messages

� Jolt Relay Adapter (JRAD) Messages

� Jolt Relay (JRLY) Messages

� Bulk Loader Utility Messages
BEA Jolt User’s Guide B-1

B SYSTEM MESSAGES

Jolt System Messages

1503 ERROR Could not initialize Jolt administration services.

Description Jolt administration services cannot be started.

Action Check the userlog for other messages to determine the
proper course of action.

See Also TUXEDO Administration Guide

1504 ERROR Failed to advertise local Jolt administration service <service name>.

Description Jolt administration services cannot be started.

Action Check the userlog for other messages to determine the
proper course of action.

See Also TUXEDO Administration Guide

1505 ERROR Failed to advertise global Jolt administration service <service name>.

Description Jolt administration services cannot be started.

Action Check the userlog for other messages to determine the
proper course of action.

See Also TUXEDO Administration Guide

1506 ERROR Terminating Jolt administration services in preparation for shutdown.

Description The JSL has completed its shutdown and is exiting the
system.

Action Informational message, no action required.

See Also TUXEDO Administration Guide
B-2 BEA Jolt User’s Guide

JOLT SYSTEM MESSAGES
1510 ERROR Received network message with unknown context.

Description BEA Jolt protocol failure. Received a corrupted or an
improper message.

Action Restart Jolt client.

1511 ERROR _tprandkey() failed tperrno = %d, could not generate random encryption
key.

Description TUXEDO internal failure.

Action Restart Jolt servers.

1512 ERROR Sending of reply to challenge call to client failed.

Description JSH was unable to reply to Jolt client due to network
error.

Action Restart client.

1513 ERROR Failed to encrypt ticket information.

Description BEA TUXEDO internal failure.

Action Retry the option. If the problem persists, contact BEA
Technical Support.

1514 ERROR Incorrect ticket value sent by workstation client.

Description BEA Jolt protocol failure.

Action Retry the option. If the problem persists, contact BEA
Technical Support.

1515 ERROR Tried to process unexpected message opcode 0x%1x.

Description BEA Jolt protocol failure. Client is sending Jolt
messages with unknown opcodes.

Action Retry the option. If the problem persists, contact BEA
Technical Support.

1516 ERROR Unrecognized message format, release %1d.

Description BEA Jolt protocol failure.

Action Make sure the client classes are at the appropriate
version level.
BEA Jolt User’s Guide B-3

B SYSTEM MESSAGES
1517 ERROR Commit handle and clientid have no matching requests.

Description Received a copy from TUXEDO that has no
corresponding client.

Action No action required.

1518 ERROR Call handle and clientid have no matching requests.

Description Received a reply from TUXEDO that has no
corresponding client.

Action No action required.

1519 ERROR Application password does not match.

Description Authentication error.

Action Check the application password.

1521 ERROR Unrecognized message magic %ld.

Description Inappropriate message is sent to JSH/JSL.

Action Check the client sending erroneous messages.

1522 ERROR Memory allocation failure.

Description Machine does not have enough memory.

Action Check the machine resources.

1523 ERROR Memory allocation failure.

Description Machine does not have enough memory.

Action Check the machine resources.

1524 ERROR Failed to create encryption/decryption schedule.

Description BEA TUXEDO internal error.

Action Retry the option. If the problem persists, contact BEA
Technical Support.
B-4 BEA Jolt User’s Guide

JOLT SYSTEM MESSAGES

1525 ERROR Tried to process unexpected message opcode 0x%1x.

Description Received a message with invalid opcode.

Action Check the client.

1526 ERROR Jolt license has expired.

Description License for Jolt use has expired.

Action Contact BEA Technical Support.

1527 ERROR Expected argument to -c option.

Description Option -c needs an argument.

Action Provide a valid argument.

1528 ERROR Request for inappropriate session type.

Description Received a message without valid session information.

Action Restart the client.

1529 ERROR Session type must be RETAINED or TRANSIENT.

Description Server configuration does not match client request.

Action Check the -c argument of the JSL.

1530 ERROR Received RECONNECT message with invalid context.

Description Client context is cleaned. A -T option is specified to the
JSL.

Action Check the -T option. Check the network errors also.

1531 ERROR Received invalid RECONNECT request

Description Received a RECONNECT request.

Action Restart client.
BEA Jolt User’s Guide B-5

B SYSTEM MESSAGES

e

1532 ERROR Received J_CLOSE message with invalid context.

Description Timeout in connection.

Action If a request is sent after a timeout that is longer than th
session timeout of the JSL, the JSH cannot validate the
session ID.

1533 ERROR Sending of reply of close protocol failed.

Description BEA Jolt protocol failure.

Action Check the client.

1534 ERROR Sending of reply of reconnect protocol failed.

Description BEA Jolt protocol failed.

Action Check the client.

1535 ERROR Timestamp mismatch in close protocol.

Description BEA Jolt protocol failed.

Action Restart the client.

1536 ERROR Received J_RECONNECT message with invalid context.

Description BEA Jolt protocol failed. Session timed out before
RECONNECT request arrived.

Action Restart the client.

1537 ERROR Timestamp mismatch in reconnect protocol.

Description BEA Jolt protocol failure.

Action Restart the client.

1538 ERROR Client address mismatch in reconnect protocol.

Description BEA Jolt protocol failure.

Action Restart the client.
B-6 BEA Jolt User’s Guide

JOLT SYSTEM MESSAGES

t

1539 ERROR Failed to decrypt reconnect information.

Description BEA Jolt protocol failure.

Action Restart the client.

1540 ERROR Failed to encrypt reconnect information.

Description BEA Jolt protocol failure.

Action Restart the client.

1541 ERROR Received RECONNECT request for nonTRANSIENT client.

Description Improper request from client.

Action Restart the client.

1542 ERROR Unlicensed Jolt server.

Description The JSL is not licensed. The installation is incomplete,
or it failed to burn the license into the JSL.

Action Reinstall Jolt with a valid Jolt license.

1543 ERROR Invalid Jolt license.

Description The license used for the Jolt installation is not for the Jol
product. The TUXEDO license may have been used
during installation instead of the Jolt license.

Action Reinstall Jolt with a valid Jolt license.

1544 ERROR This TUXEDO is not Release <TUXEDO release number>.

Description Jolt is compatible with TUXEDO Release 6.1 or 6.2. The
JSL has determined that the TUXEDO release is not
compatible.

Action Install TUXEDO 6.1 or TUXEDO 6.2.
BEA Jolt User’s Guide B-7

B SYSTEM MESSAGES

1545 ERROR Cannot determine if this TUXEDO is <TUXEDO release number>:
service.TMIB failed.

Description This version of TUXEDO does not support the MIB. The
TUXEDO release may be TUXEDO 6.0 or earlier.

Action Install TUXEDO 6.1 or 6.2 or check to ensure that your
TUXEDO release is 6.1 or 6.2.

1546 WARN The version of this TUXEDO is not available; <TUXEDO release number>
is assumed.

Description The MIB is supported with this version of TUXEDO, but
the release number is unavailable. The TUXEDO
version might not be a master binary. It might also be an
internal version of TUXEDO.

Action No action is required.

1547 ERROR Memory allocation failure in JOLT_SUBSCRIBE.

Description Check resources of the machine.

Action Restart TUXEDO after increasing system resources.

1548 ERROR jolt_tpset_enq failed.

Description Internal system failure.

Action Restart the client. If problem persists, check field table
files and directories and then restart the servers.

1549 ERROR [JOLT_EVENTS failed to set %s field. Ferror32=%d].

Description Unable to get the field definition for TUXEDO internal
fields.

Action Check TUXEDO installation and restart the servers.
B-8 BEA Jolt User’s Guide

JOLT SYSTEM MESSAGES

1550 ERROR JOLT_UNSUBSCRIBE - Invalid Subscription ID.

Description Application error.

Action Check the client and restart the client.

1551 ERROR Memory allocation failure in JOLT_UNSUBSCRIBE.

Description Resources are not enough.

Action Increase resources and restart TUXEDO.

1552 WARN Dropping notification message for Transient client %d.

Description Notification arrived when a transient client is not
connected.

Action Information message only; no action required.

1553 WARN Dropping broadcast message for Transient client %d.

Description Notification arrived when a transient client is not
connected.

Action Information message only; no action required.

1554 ERROR Expected numeric argument for -Z option.

Description -Z option expects 0, 40, or 128 as the argument.

Action Check the configuration file and specify a valid numeric
argument for JSL.

1555 ERROR %d - Ille gal argument for -Z option.

Description Incorrect argument value is specified.

Action Check the argument for -Z option and correct it.

1556 ERROR %d - Ille gal argument for -Z option due to international license.

Description For international release only 0 or 40 are allowed.

Action Specify correct argument.
BEA Jolt User’s Guide B-9

B SYSTEM MESSAGES
1557 ERROR Incorrect number of encrypted bit values from workstation client.

Description BEA Jolt protocol failure.

Action Call BEA Technical Support.

1558 ERROR Expected argument to -E option.

Description An argument is expected for -E option.

Action Specify correct option and restart TUXEDO.

1559 ERROR %s - Illegal argument to -E option.

Description Incorrect value is specified as argument to -E option.

Action Specify the correct option.

1560 ERROR Cannot initialize the code conversion for local %s.

Description Cannot find function to do the code conversion for
internationalization.

Action Check the shared library.

1561 ERROR TUXDIR is not set.

Description TUXDIR environment variable is not set.

Action Set the variable to TUXEDO directory and restart
TUXEDO.

1562 ERROR Error reading license file.

Description Jolt is not able to open TUXEDO license file in
$TUXDIR/udataobj/lic.txt.

Action Copy the correct license file to
$TUXDIR/udataobj/lic.txt.

1563 INFO Serial Number: <%s>, Expiration Date: <%s>.

Description Serial number and expiration date displays.

Action No action required.
B-10 BEA Jolt User’s Guide

JOLT SYSTEM MESSAGES
1564 INFO Licensee: <%s>.

Description Licensee information displays.

Action No action required.
BEA Jolt User’s Guide B-11

B SYSTEM MESSAGES

t
on

Repository Messages

ERROR Usage: JREPSVR [-W] -P path -W writable repository.

Description An invalid option is specified or -P is not specified
properly.

Action Review the Jolt documentation and ensure that the
options are specified correctly.

ERROR Not enough memory

Description Not enough memory; please add more swap space.

Action Configure additional memory. Make sure the operating
system parameters are set correctly for the amount of
memory on the machine and the amount of memory tha
can be used by a process. Reduce the memory usage
the machine or increase the amount of physical memory
on the machine.

 ERROR Not enough disk space for “<repository-file-path>”

Description Ran out of disk space while adding or deleting
Repository entries, or during garbage collection.

Action Configure additional disk space.

ERROR Cannot modify read-only repository “<repository-file-path>”

Description Denies attempt to add or delete an entry from a
read-only repository.

Action Check the file permission and ensure that the file is
writable.

 ERROR “<repository-file-path>” is not a valid repository file.

Description The specified file is not valid; a valid repository file
must have the string, “#!JOLT1.0” in the first line.

Action Extract the file from the Jolt distribution CD-ROM.
B-12 BEA Jolt User’s Guide

REPOSITORY MESSAGES

 ERROR Can’t open <repository-file-path>.

Description Unable to open the repository file.

Action Check to ensure that the file path is valid or its
permission is correct.

 ERROR Can’t create <repository-file-path>: check permission or path.

Description Unable to create the repository file during garbage
collection.

Action Check the file or directory permission.

ERROR Syntax error: <service definition>.

Description An invalid entry was detected when an attempt was
made to add an entry to the repository. The entry must
have ‘:’ as a field separator.

Action Contact BEA Technical Support.

ERROR Garbage collection failed: <key> not found.

Description When the writable repository is shutdown, it performs
garbage collection to collapse the repository file. If it
detects an inconsistency, the garbage collection fails.

Action Contact BEA Technical Support.
BEA Jolt User’s Guide B-13

B SYSTEM MESSAGES
FML Error Messages

 ERROR Fielded buffer not aligned.

Description An FML function was called with a fielded buffer that is
not properly aligned. Most machines require half-word
alignment.

Action Use Falloc to retrieve an allocated, properly
aligned buffer.

See Also TUXEDO Reference Manual

 ERROR Buffer not fielded.

Description A buffer was passed to an FML function that has not
been initialized.

Action Use Finit to initialize a buffer allocated directly by

the application, or use Falloc to allocate and
initialize a fielded buffer.

See Also TUXEDO Reference Manual

ERROR Invalid argument to function.

Description An invalid argument (other than an invalid field buffer,
field identifier, or field type) was passed to an FML
function. This can be a parameter where a non-NULL
parameter was expected (for example, it can be an
invalid buffer size, etc.).

Action See the manual page associated with the error for the
correct parameter values.

See Also TUXEDO Reference Manual
B-14 BEA Jolt User’s Guide

FML ERROR MESSAGES

ERROR Unknown field number or type.

Description An invalid field number was specified for an FML
function, an invalid field number (0 or greater than

8192) was specified, or Fname could not find the
associated field identifier for the specified name.

Action Most of the FML functions return this error; see the
manual page associated with the function that returned
this error. Check your code to make sure the field
specified is valid.

See Also TUXEDO Reference Manual
BEA Jolt User’s Guide B-15

B SYSTEM MESSAGES
Information Messages

 INFO Repository “<repository-file-path>” (### records) is writable.

Description When a writable Repository server is brought up, it
reports the number of records it found.

Action No action required.

 INFO Repository “<repository-file-path>” (### records) is read-only.

Description When a read-only Repository server is brought up, it
reports the number of records it found.

Action No action required.
B-16 BEA Jolt User’s Guide

JOLT RELAY ADAPTER (JRAD) MESSAGES

he
e

Jolt Relay Adapter (JRAD) Messages

 1005 ERROR Memory allocation failure.

Description An attempt dynamically to allocate memory from the
operating system using malloc failed.

Action Make sure the operating system parameters are set
correctly for the amount of memory on the machine and
the amount of memory that can be used by a process.
Reduce the memory usage on the machine or increase t
amount of physical memory on the machine. Increase th
space on the swap device.

 1006 ERROR Failed to initialize global network information.

Description The internal network information used by the JSH or the
JSL was not initialized. This can happen if the system
has run out of memory.

Action Increase the virtual memory available for the JSH and
JSL processes.
BEA Jolt User’s Guide B-17

B SYSTEM MESSAGES

1008 ERROR Could not establish listening address on network.

Description This error occurs if the JSH or the JSL cannot advertise
its listening address on the network. This could happen
for one of the following conditions.

� The format of the address supplied to the JSL is
incorrect. If the address format is incorrect, the
network provider will be unable to advertise the
address and the request fails.

� The address used in the -n command line option
to the JSL is already in use by another process.
For TCP/IP, this can be verified by using the
netstat command.

� The system has run out of network addresses for
the JSH. The JSH requests a new address from the
system. If there are no addresses available, the
request is rejected.

� A previously used address has not completed the
close sequence. This occurs if the JSL or JSH was
killed in an abortive manner such as kill -9 . Some
transports (among them, TCP/IP) keep the
connection open for an “implementation
dependent” time to flush the existing data on the
buffered network connection.

Action To correct the problem, match one of the following
solutions with the problem descriptions above:

� Check that the address format is correct. For
TCP/IP, the format is
0x0002ppppaaaaaaaa . This is a
hexadecimal representation of the TCP/IP
address, where pppp is a unique port number and
aaaaaaaa is the IP dotted number in the
/etc/hosts file for the machine on which the JSL
will run.

� See if other processes are using the requested
network address. For TCP/IP, use the netstat
command and, if the address is already in use,
select a different address.

� If the system is out of network addresses, check
with the system administrator to increase the
number of addresses to use.

� If the connection is not closed yet, wait a few
minutes and try again.
B-18 BEA Jolt User’s Guide

JOLT RELAY ADAPTER (JRAD) MESSAGES

he
e

1068 ERROR Invalid command line argument '%c' i gnored.

Description An illegal command line option was found in the
CLOPT string.

Action Refer to the BEA TUXEDO Reference Manual for
correct options.

 1074 ERROR Memory allocation failure.

Description The JSL failed in an attempt to create a buffer for storing
a network address.

Action Make sure the operating system parameters are set
correctly for the amount of memory on the machine and
the amount of memory that can be used by a process.

Reduce the memory usage on the machine or increase t
amount of physical memory on the machine. Increase th
space on the swap device.

1080 ERROR Error polling network connections.

Description The JSL encountered an error polling a network
connection.

Action This error indicates a network error. Check with your
system administrator to see if the network is down.

1081 ERROR Error servicin g network event.

Description The JSL was unable to process a network event.

Action This error indicates an internal problem with the JSL or
the LIBNET software. Contact BEA Technical Support.
BEA Jolt User’s Guide B-19

B SYSTEM MESSAGES

t

s.

e

t

s.
re

e

1101 ERROR Bad hex number provided for listening address: %s.

Description The JSL process was invoked with a -n option that
specified a hexadecimal value as an option-argument.
However, the value specified was not a valid
hexadecimal constant.

Action Change the network address specified for the JSL so tha
it contains an even number of hexadecimal digits, and
make certain that each digit is '0' through '9', 'A' through
'F', or 'a' through 'f'. Also, remember that the
WSNADDR environment variable in client processes
associated with this JSL must be set to this same addres
The JSL -n option and its associated network address
are part of the CLOPT parameter specified for the JSL
process in the configuration file. The options for a server
may be updated while the system is running through us
of the tmconfig (1) command, or may be updated while
the system is shut down by reloading the configuration
file through use of tmloadcf (1).

 1102 ERROR Bad hex number provided for listening address: %s.

Description The JSL process was invoked with a -n option that
specified a hexadecimal value as an option-argument.
However, the value specified was not a valid
hexadecimal constant.

Action Change the network address specified for the JSL so tha
it contains an even number of hexadecimal digits, and
make certain that each digit is '0' through '9', 'A' through
'F', or 'a' through 'f'. Also, remember that the
WSNADDR environment variable in client processes
associated with this JSL must be set to this same addres
The JSL -n option and its associated network address a
part of the CLOPT parameter specified for the JSL
process in the configuration file. The options for a server
may be updated while the system is running through us
of the tmconfig (1) command, or may be updated while
the system is shut down by reloading the configuration
file through use of tmloadcf (1).

1197 INFO Exiting system.

Description Informational message, no action required.

Action Refer to the BEA TUXEDO Administrator's Guide.
B-20 BEA Jolt User’s Guide

JOLT RELAY ADAPTER (JRAD) MESSAGES

t

1202 ERROR Could not initialize network.

Description An attempt to initialize the networking software from the
JSL or JSH failed.

Action Make sure that the correct networking software is
installed on the system and that the network is
accessible.

1221 ERROR Unrecognized message magic %d.

Description The Jolt listener has tried all TCP ports within the range
specified by the -p and -P options. It could not bind to
any of the TCP ports in the range. The Jolt listener could
not bind to the given address.

Action If there are more Jolt handlers than ports available in the
range specified by -p and -P, then a new handler will no
be able to bind to any of the TCP ports in the allowable
range. Do not forget about the TCP port which is used by
the workstation listener as well. Increase the range
specified by the -p and -P options. Make sure that
address is correct.

 1500 ERROR Needs both -l -c options with arguments.

Description Needed options are without arguments.

Action Check and correct configuration file for JRAD entry.

1501 ERROR Malloc failed.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the JRAD.

1502 ERROR Memory allocation failed.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the JRAD.

 1503 ERROR Memory allocation failed. Cannot send ESTCON.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the JRAD.
BEA Jolt User’s Guide B-21

B SYSTEM MESSAGES

.

1504 INFO Memory allocation failed. Cannot send ESTCON.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the JRAD.

1505 ERROR Memory allocation failed. Cannot send ESTCON.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the JRAD.

1506 ERROR Connection to JSL failed.

Description JSL is not running.

Action Check the address given with option -c .

 1507 ERROR Sending message to JSL failed.

Description JSL is not running or network connection is down.

Action Restart the JRAD/JSL.

1508 INFO Sending message to JSH failed.

Description Network is down. Connection to the JSH failed.

Action Check the network and restart the JSL.

1509 ERROR Sending CONNECT reply to JRLY.

Description Unable to reach JRLY. Probably problem in the network

Action Restart the JRLY and JRAD after check the network
addresses.
B-22 BEA Jolt User’s Guide

JOLT RELAY ADAPTER (JRAD) MESSAGES

.

1510 ERROR Sending SHUTDOWN reply to JRLY.

Description Unable to reach JRLY. Probably problem in the network

Action Restart the JRLY and JRAD after check the network
addresses.
BEA Jolt User’s Guide B-23

B SYSTEM MESSAGES

e
Jolt Relay (JRLY) Messages

 ERROR Ignoring syntax error in configuration file line %d

Description The line in question doesn't contain an equal sign or (in
case of the LISTEN and CONNECT tag) is missing the
colon.

Action Verify the syntax of the configuration file at the
specified line.

ERROR Ignoring unknown tag '%s' in configuration file line %d.

Description The line in question is does not contain one of the valid
tags: LOGDIR, ACCESS_LOG, ERROR_LOG,
LISTEN, CONNECT.

Action Verify the syntax of the configuration file at the
specified line.

ERROR MSG_MALLOC: perror().

Description Memory allocation failed. The relay will exit.

Action Make more memory available on the machine on which
the relay is running. Remove other unnecessary
processes which may be running on the same host as th
relay. Restart the relay.

ERROR Client structure != NULL for file descriptor %ld

Description An internal error occurred. The relay will continue to
run, but a client process may have been disconnected.

Action None. If this message appears repeatedly and can be
reproduced consistently notify BEA Technical Support.

ERROR Invalid file descriptor %ld

Description An internal error occurred. The relay will continue to
run, but a client process may have been disconnected.

Action None. If this message appears repeatedly and can be
reproduced consistently notify BEA Technical Support.
B-24 BEA Jolt User’s Guide

JOLT RELAY (JRLY) MESSAGES

t
ERROR Could not open configuration file %s

Description The specified configuration file does not exist or is not
readable. The relay will exit.

Action Check the file name and the permissions on the file and
the directory.

ERROR No log directory specified.

Description LOGDIR was not specified in the configuration file or no
value for it was given.

Action Verify the entry for the tag LOGDIR in the configuration
file. Check that the correct configuration file is being
used (-f parameter).

ERROR No access log file specified.

Description ACCESS_LOG was not specified in the configuration
file or no value for it was given.

Action Verify the entry for the tag ACCESS_LOG in the
configuration file.Check that the correct configuration
file is being used (-f parameter).

ERROR No error log file specified.

Description ERROR_LOG was not specified in the configuration file
or no value for it was given.

Action Verify the entry for the tag ERROR_LOG in the
configuration file. Check that the correct configuration
file is being used (-f parameter).

ERROR No JRLY host specified

Description The value for the LISTEN tag does not contain the hos
name or IP address or the relay host, e.g.,
LISTEN=host:port.

Action Verify the entry for the tag LISTEN in the configuration
file. Check that the correct configuration file is being
used (-f parameter).
BEA Jolt User’s Guide B-25

B SYSTEM MESSAGES

ss
ERROR No JRAD host specified.

Description The value for the CONNECT tag does not contain the
host name or IP address or the JRAD host, e.g.,
CONNECT=host:port.

Action Verify the entry for the tag CONNECT in the
configuration file. Check that the correct configuration
file is being used (-f parameter).

ERROR No listener port specified or listener port <= 0.

Description The value for the LISTEN tag does not contain a valid
port number on the relay host.

Action Verify the entry for the tag LISTEN in the configuration
file. Check that the correct configuration file is being
used (-f parameter).

ERROR No JRAD port specified or JRAD port <= 0.

Description The value for the CONNECT tag does not contain a valid
port number on the relay host.

Action Verify the entry for the tag CONNECT in the
configuration file.Check that the correct configuration
file is being used (-f parameter).

ERROR Could not determine IP address of listener host

Description The relay could not look up the IP address of the host
machine.

Action If the host was specified as a host name replace it with
the IP address and restart the relay. If it already was
given as IP address make sure that the IP address is
correct and that you're trying to start the relay on this
host. Note that the address specified must be the addre
of the host on which the relay is running.
B-26 BEA Jolt User’s Guide

JOLT RELAY (JRLY) MESSAGES

ERROR Cannot bind socket

Description The listener port specified in the configuration file is
already being used by another application or still in a
final wait state from a previous run of jrly.

Action Either specify a different port number in the
configuration file (and all HTML files containing the IP
address and port number of the relay) or wait a few
minutes. The command "netstat -a" displays existing
connections.

ERROR Can’t open log file %s

Description Either the error log file or access log file (or both) could
not be opened for writing.

Action Check the configuration file for correct spelling of the
LOGDIR. Make sure you have write permissions on this
directory and the files specified. On Windows NT, the
directory separators must be back slashes, not forward
slashes.

ERROR WSAStartup failed (NT only)

Description The Winsock driver could not initialize. Possible causes:

� The underlying network subsystem is not ready
for network communication Version 2.0 of
Windows Sockets support is not provided by this
particular Windows Sockets implementation.

� Limit on the number of tasks supported by the
Windows Sockets implementation has been
reached.

Action Check the networking software configuration on your
system.

ERROR Couldn't load Winsock Driver version 2.X. (NT only)

Description The relay requires Winsock version 2 or higher, but
could not load it.

Action Check the networking software configuration on your
system. An older version of Windows Sockets support
was detected.
BEA Jolt User’s Guide B-27

B SYSTEM MESSAGES

d
ERROR FATAL ERROR: unknown message code %ld.

Description Internal error. The relay will exit

Action Restart the relay. If this message appears repeatedly an
can be reproduced consistently notify BEA Technical
Support.

ERROR connect: Connection refused

Description The relay could not connect to JRAD.

Action Make sure the relay adapter (JRAD) is running. Check
that the CONNECT tag in the relay configuration file
identifies the correct host and port on which the JRAD
is running.

ERROR accept(): accept failed, errno: 24, strerror: Too many open files

Description The relay tried to open more files/sockets than the
system limit.

Action The default maximum number of open file descriptors
for a process is 64 on most UNIX systems. Set this
number to at least 1024 (with the limit or ulimit
commands).
B-28 BEA Jolt User’s Guide

BULK LOADER UTILITY MESSAGES
Bulk Loader Utility Messages

ERROR File not found: %s

Description The specified file is not found.

Action Check the path again.

ERROR Error on line %d: %s value is null

Description A value is expected for this keyword.

Action Input the value.

ERROR Error on line %d: Invalid ke yword: %s=%s

Description Keyword is not recognized.

Action Input the correct keyword value.

ERROR Error on line %d: Invalid number: %s

Description The numeric number is malformed.

Action Input the correct value.

ERROR Error on line %d: Invalid value: %s

Description The value of the parameter is out of range.

Action Input the correct value.

ERROR Error on line %d: Invalid value: %s

Description The data type of the parameter is invalid.

Action Input the correct value.
BEA Jolt User’s Guide B-29

B SYSTEM MESSAGES
B-30 BEA Jolt User’s Guide

Index

A
APPADDRESS 7-17
applets

client-side execution 6-42
Java 6-1, 6-2, 6-43
Jolt 1-10, 6-4
localizing 6-44

appletview
Repository Editor 5-5

ApplicationException 7-25
class A-4
methods A-5

getApplicationCode A-5
getMessage A-5
getObject A-5

applications
deployment 6-42
localization 6-42
multithreaded 6-21
sample

online resources 3-22

B
BEA TUXEDO

access 6-1
ATMI interface 6-4
buffer types

using with Jolt 6-14
customizing 6-1
data types

using with Jolt 6-14

Jolt Repository Editor
initializing services using 3-13

logging
off 6-5
on 6-5

server requirements 6-42
services

executing 6-5
requests 6-4

transaction
begin 6-5
complete 6-5
new 6-5
rollback 6-5

browsers
online documentation viewing 2-27

buffer type
CARRAY 6-17
FML 6-19
STRING 6-15
VIEW 6-19

buffer types
STRING 6-15
TUXEDO 6-14

bulk loader
bulk load file 4-3
command line options 4-3
data file syntax 4-4
getting started 4-2
introduction 4-1
keywords 4-4, 4-5, 4-6, 4-8
messages B-29
sample data 4-10
troubleshooting 4-9
UNIX 4-2
using Windows NT 4-2
BEA Jolt User’s Guide I-1

C
CARRAY

buffer type 6-17, 6-19
classes 6-6

ApplicationException A-4
EventException A-8
functionality 6-8
hierarchy 6-7
Java RuntimeException and Error A-2
Jolt 6-1, 6-6, 6-8
JoltEvent class 7-54
JoltException A-6
JoltMessage class 7-60
JoltRemoteService 6-8
JoltRemoteService class 7-23
JoltReply class 7-59
JoltRequestMessage class 7-26
JoltSession 6-8
JoltSession class 7-18
JoltSessionAttributes 6-6, 6-8
JoltSessionAttributes class 7-5
JoltTransaction 6-10
JoltTransaction class 7-50
JoltUserEvent class 7-56
MessageException A-8
relationships 6-7
ServiceException A-9
SessionException A-9
subdirectory 6-43
TransactionException A-10

client
Jolt 6-5
logon/logoff 6-8

configuration 2-1, 3-1, 3-12
CLOPT parameters 3-7
command line options 3-7
Jolt Repository

*GROUPS section 3-12
*SERVERS section 3-12

Jolt Server Listener (JSL) 3-4

network address 3-20
Repository File

jrepository 3-12
connection attributes 6-10

hostname 6-10
portnumber 6-10

connection modes
connection-less 6-30
retained 6-30

constants
APPADDRESS 7-17
IDLETIMEOUT 7-17
RECVTIMEOUT 7-17
SENDTIMEOUT 7-17

constructors
JoltRemoteService constructor 7-24
JoltSession constructor 7-19
JoltSessionAttributes constructor 7-6
JoltTransaction constructor 7-51

D
data types

TUXEDO 6-14
DES 1-4
directory structure 2-4, 2-5

E
ECHO service parameters

INPUT/OUTPUT 6-17
encryption 1-4, 3-3
error code types A-2
error messages

from tpstrerror A-2
getting A-2

error number, getting A-2
errors A-1

caught by Jolt A-2
Jolt 6-3
Jolt interpreter 6-3
I-2 BEA Jolt User’s Guide

non-recoverable A-2
summary of TUXEDO A-11
TPEJOLT A-2
TUXEDO A-2
TUXEDO generated in Jolt 6-3

Event Subscription 6-28
classes for 6-28
supported types 6-31

event subscription 3-14
configuration 3-14
filtering buffers 3-15

EventException class A-8
events, subscribing to 6-28
exceptions A-1

for endSession method 7-20, 7-21,
7-22

Jolt 6-3
Jolt class hierarchy A-3
ServiceException 6-10
System.in.read 6-23

exporting services 5-38

F
FML buffer type 6-19

G
getErrno

using to get error number A-2
getMessage

using to get error message A-2
group services

package organizer, how to use 5-31
GROUPS section configuration 3-12

H
HTML

applet tag 6-43
page 6-43

I
IDLETIMEOUT 7-17
installation 2-1, 2-2, 2-13, 3-1

before you begin 2-6
directory structure 2-4, 2-5
Jolt 2-4
Jolt Relay 2-3
NT license agreement 2-22
online documentation 2-1, 3-1
requirements

client 2-3
disk storage 2-2, 2-3
Java Developer’s Kit 2-3
server 2-2

UNIX system instructions 2-7
Windows NT 2-12

Internet services 1-2
Internet Relay 3-2, 3-16
Intranet services 1-2
items

methods for appending 7-4
methods for changing by index 7-3
methods for changing first 7-3
methods for getting 7-4
methods for handling 7-2

J
Java

applets 6-1, 6-2, 6-43
class files 6-43
clients 1-7, 6-4
Developer’s Kit (JDK) 1.0 6-23
language classes 6-1
packages 6-43
programs 6-2
Thread.yield() method 6-22
Virtual Machine (VM) 6-21

java.lang.IllegalAccessError 7-6 — 7-16
java.lang.NoSuchFieldError 7-6 — 7-16
BEA Jolt User’s Guide I-3

Jolt
applets 1-10

deploying 6-42
localizing 6-44

architecture 1-3, 1-5
bulk loader 4-1
classes 6-1, 6-6, 6-43

functionality 6-8
hierarchy 6-7
relationships 6-7
subdirectory 6-43

client
interface objects 6-5
logon/logoff 6-8
populating variables 6-5
requests 6-5

client/server
interaction 6-5
relationship 6-4

clients
communication with servers 1-8

connection manager 6-4
defined 1-1, 1-2
features 1-3
installation

package 2-4
requirements 2-2

international use 6-44
Internet Relay 3-2, 3-16
JRAD B-17
JRLY B-24
license 2-22
license agreement 2-13
Relay installation 2-3
Repository 3-10, 6-5

service attributes 6-5
Repository Editor 1-2,

initializing services using 3-13
using 5-1

sample applications
simpapp 3-22

server 3-2, 6-4, 6-5, 6-43
requirements 6-42

Server Listener (JSL)
*SERVERS section 3-5
configuration 3-5

servers 1-2
communication with clients 1-8
components 1-6
proxy for TUXEDO client 1-5

Transaction Protocol 1-8, 6-4
using threads with 6-23

Jolt Class Library 1-2, 1-7, 6-2,
6-6, 6-8, 6-10, 7-1

application development 6-42
errors 6-3, A-1

handling 6-3, A-2
list of TUXEDO related A-11

exceptions 6-3, A-1
handling 6-3, A-2

functionality 6-8
object/class reusability 6-35

Jolt classes
JoltEvent 7-54
JoltMessage 7-60
JoltRemoteService 7-23
JoltReply 7-59
JoltRequestMessage 7-26
JoltSession 7-18
JoltSessionAttributes 7-5
JoltTransaction 7-50
JoltUserEvent 7-56

Jolt methods 7-2
Jolt Reply 6-28
Jolt Repository Server 1-6
Jolt Server

shutting down the 3-10
starting the 3-3

Jolt Server Handler 1-6
Jolt Server Listener 1-6
I-4 BEA Jolt User’s Guide

Jolt Server Listener (JSL)
*MACHINES section 3-5
configuration 3-4
UBBCONFIG file 3-4

JoltEvent 7-54
JoltException

class A-3, A-6
methods

getErrno A-7
getMessage A-7
getObject A-7

JoltMessage 6-28, 7-60
JoltRemoteService 6-10, 7-23

calls 6-10
class 6-8
methods 7-24
object 6-8
resetting parameters 6-9
reusing 6-35

JoltReply 7-59
JoltRequestMessage 7-26

methods 7-28
JoltSession 6-5, 6-10, 6-28, 6-33,

7-18
class 6-8, 6-10, 6-33
constructor 7-19
methods 7-20
object 6-7, 6-8

instantiating 6-10
JoltSessionAttributes 6-6, 6-7, 6-8,

6-10, 7-5
constructor 7-6

JoltTransaction 6-5, 6-7, 6-9, 6-10,
7-50

class 6-10
constructor 7-51
methods 7-52

JoltUserEvent 6-28, 7-56
JRAD 3-20

configuration 3-20
messages B-17

network address configuration 3-20
starting 3-20

jrepository 3-12
JRLY 3-18

configuration 3-18
messages B-24
network address configuration 3-20
starting 3-18

L
license agreement 2-13

installation 2-22
licensing 2-22

TUXEDO 6.1, 6.2 2-23
TUXEDO 6.3 2-23

logoff 6-8
logon 6-8

Repository Editor 5-6

M
MACHINES section

Jolt Server Listener (JSL) 3-5
MessageException

class A-8
messages

bulk loader B-29
FML B-14
information B-16
Jolt system B-2
JRAD B-17
JRLY B-24
repository B-12

methods 7-2
ApplicationException A-5

getApplicationCode A-5
getMessage A-5
getObject A-5

clear() 6-9
BEA Jolt User’s Guide I-5

JoltEvent
unsubscribe 7-54
unsubscribeAll 7-55

JoltException
getErrno A-7
getMessage A-7
getObject A-7

JoltMessage 7-61
getByteDef 7-61, 7-62,

7-63, 7-64
getByteItemDef 7-64
getBytesItemDef 7-67
getDoubleDef 7-63
getDoubleItemDef 7-66
getFloatItemDef 7-66
getIntDef 7-62
getIntItemDef 7-65
getOccurrenceCount 7-61
getShortItemDef 7-65
getStringItemDef 7-67

JoltRemoteService 7-24
call 7-24

JoltReply
getMessage 7-59

JoltRequestMessage 7-28
addByte 7-45
addBytes 7-46
addDouble 7-46
addFloat 7-47
addInt 7-47
addShort 7-48
addString 7-48
clear 7-31
delete 7-49
deleteItem 7-49
getApplicationCode 7-31
getByteDef 7-32
getByteItemDef 7-35
getBytesDef 7-32
getBytesItemDef 7-35
getDoubleDef 7-33

getDoubleItemDef 7-36
getFloatDef 7-33
getFloatItemDef 7-36
getIntDef 7-34
getIntItemDef 7-36
getName 7-31
getOccurences 7-32
getShortDef 7-34
getShortItemDef 7-37
getStringDef 7-34
getStringItemDef 7-37
setByte 7-38, 7-39
setByteItem 7-42
setBytesItem 7-42
setDouble 7-39
setDoubleItem 7-43
setFloat 7-40
setFloatItem 7-43
setInt 7-40
setIntItem 7-44
setRequestPriority 7-38
setShort 7-41
setShortItem 7-44
setString 7-41
setStringItem 7-45

JoltSession 7-20
endSession 7-20, 7-21
finalize 7-22

JoltSessionAttributes 7-7
checkAuthenticationLevel 7-7
clear 7-8
getByteDef 7-9, 7-12
getBytesDef 7-9
getDoubleDef 7-10
getFloatDef 7-10
getIntDef 7-11
getStringDef 7-12
global attributes for methods 7-16
setByte 7-13
setBytes 7-13
setDouble 7-14
I-6 BEA Jolt User’s Guide

setFloat 7-14
setInt 7-15
setShort 7-15
setString 7-16

JoltTransaction 7-52
commit 7-52
rollback 7-53

JoltUserEvent
JoltUserEvent 7-57

Thread.yield() 6-22
Microsoft Internet Explorer

opening documentation files 2-28
multithreaded applications 6-21

N
Netscape Navigator 5-6

opening documentation files 2-28
notifications

acknowledged 6-30
brokered event 6-28
data buffers 6-30
event handler for 6-29
unsolicited 6-28, 6-29
unsubscribing 6-32
using Jolt to receive 6-33

O
objects

relationships 6-7
reusability 6-28
reusing 6-38

online documentation 2-27
browsers 2-3, 2-27
getting started 2-27
installation 2-1, 3-1
opening files

Microsoft Internet Explorer 2-28
Netscape Navigator 2-28

using 2-26

P
package organizer

description 5-31
group services, how to 5-31
using 5-29

packages
add a package 5-20
adding 5-19
delete a package 5-36
deleting 5-37
modifying 5-33
package organizer 5-29
Repository Editor 5-12, 5-14

parameters 5-17
delete a parameter 5-36
deleting 5-36
edit a parameter 5-36
editing 5-35
modifying 5-33

R
RC4 1-4
RECVTIMEOUT 7-17
Repository

configuration 3-11
Repository Editor 1-2, 1-9

appletviewer 5-5
exiting the 5-8
introduction 5-2
logon 5-6
main components of 5-10
Netscape Navigator 5-6
packages 5-12, 5-14

setting up 5-19
parameters 5-17
process flow 5-10
sample window 5-3
sample window description 5-4
saving your work 5-19
BEA Jolt User’s Guide I-7

services 5-15
description of 5-16
setting up 5-19
view services 5-16

troubleshooting 5-48
requirements 2-2, 2-27

S
saving your work 5-19
security 1-4, 3-3
SENDTIMEOUT 7-17
server

installation requirements
AIX 2-2
disk storage 2-2
Hewlett-Packard 2-2, 2-3

Jolt 6-5
TUXEDO requirements for 6-42
web 6-43

servers
components 1-6
Jolt 1-2
Jolt Repository 1-6

ServiceException
class A-9

ServiceExceptions 7-25
services

add a parameter 5-25
data type selection 5-28
how to 5-27
window description 5-26

add a service 5-21
buffer type selection 5-23
how to 5-22, 5-23

calling synchronous 6-8
definitions 6-11
delete a service 5-36
deleting 5-37
edit a service 5-33
editing 5-34

export status
reviewing 5-40, 5-41

exporting 5-38, 5-39
grouping 5-29
Internet 1-2
Intranet 1-2
Jolt client

make service available to 5-38
modifying 5-33
parameters 5-17
service test window 5-43, 5-44
test a service

failure, reasons for 5-47
how to 5-45, 5-46
process flow 5-45

testing 5-42
unexport 5-38
unexport a service 5-39
unexport status

reviewing 5-40, 5-41
using the Repository Editor 5-15
view parameters 5-18
view services 5-16

SessionException 7-19
class A-9

simpapp
online resources 3-22

STRING buffer type 6-15

T
testing

services 5-42
threads

BLOCKED 6-21
non-preemptive 6-21, 6-22
preemptive 6-21
RUNNABLE 6-21
RUNNING 6-21
using Jolt with non-preemptive 6-22
using with Jolt 6-23
I-8 BEA Jolt User’s Guide

TOUPPER
input parameters 6-15
service 6-15

TPEABORT A-11
TPEBADDESC A-11
TPEBLOCK A-11
TPEDIAGNOSTIC A-11
TPEEVENT A-11
TPEHAZARD A-11
TPEHEURISTIC A-11
TPEINVAL A-11
TPEITYPE A-11
TPELIMIT A-11
TPEMATCH A-11
TPEMIB A-11
TPENOENT A-11
TPEOS A-11
TPEOTYPE A-11
TPEPERM A-12
TPEPROTO A-12
TPERELEASE A-12
TPERMERR A-12
TPESVCERR A-12
TPESVCFAIL A-12
TPESYSTEM A-12
TPETIME A-12
TPETRAN A-12
TPGOTSIG A-12
tpreturn A-4
tpurcode A-5
Transaction

begin 6-9
commit 6-9
object 6-9
Protocol 6-4
rollback 6-9

TransactionException
class A-10

troubleshooting
Repository Editor 5-48

TUXEDO
distributing services 1-9
errors A-11

U
UBBCONFIG

Jolt Repository configuration sample
3-11

Jolt Server Listener (JSL) configuration
sample 3-4

unexporting services 5-38
UNIX system

installation 2-7
UNSOLMSG 7-56

V
VIEW buffer type 6-19
view parameters 5-18

W
web server

considerations 6-43
Windows NT

installation 2-12
BEA Jolt User’s Guide I-9

I-10 BEA Jolt User’s Guide

	Contents
	Preface
	Purpose of This Manual
	Audience
	Jolt Documentation
	How This Manual is Organized
	Related Manuals
	Other TUXEDO Resources
	Document Conventions
	1 Introducing BEA Jolt
	What is BEA Jolt?
	Key Features
	How it Works
	Jolt Servers
	Jolt Class Library for Java
	Jolt Server and Jolt Client Communication
	Jolt Repository
	Jolt Internet Relay
	How to Jolt your TUXEDO Applications
	2 Installing Jolt
	Installation Requirements
	Server Requirements
	Jolt Relay Requirements
	Client Requirements
	BEA Jolt 1.1 Installation
	Directory Structure
	Before You Begin
	UNIX System Installation Instructions
	UNIX System Installation Script
	Windows NT Installation Instructions
	Licensing your Jolt Software
	Using the Jolt Online Documentation
	Getting Started with the Documentation
	3 Configuring the Jolt System
	Using the Jolt Server
	Jolt Internet Relay
	Security and Encryption
	Starting the Jolt Server
	Configuring the Jolt Server
	Shutting Down the Jolt Server
	Using the Jolt Repository
	Configuring the Jolt Repository
	Initializing Services Using TUXEDO and the Reposit...
	Event Subscription
	Configuration
	Jolt Internet Relay
	Jolt Relay (JRLY)
	Jolt Relay Adapter (JRAD)
	Using Sample Applications in Jolt Online Resources
	4 Bulk Loading TUXEDO Services
	Introduction to the Bulk Loader
	Getting Started Using the Bulk Loader
	Using UNIX
	Using Windows NT
	Syntax of the Bulk Loader Data Files
	Guidelines for Using Keywords
	Keyword Order in the Bulk Loader Data File
	Using Service-Level Keywords and Values
	Using Parameter-Level Keywords and Values
	Troubleshooting
	Sample Bulk Load Data
	5 Using the Jolt Repository Editor
	Introduction to the Repository Editor
	Repository Editor Window
	Getting Started
	Starting the Repository Editor Using appletviewer
	Starting the Repository Editor Using Your Web Brow...
	Logging on to the Repository Editor
	Exiting the Repository Editor
	Main Components of the Repository Editor
	Repository Editor Flow
	What is a Package?
	What is a Service?
	What is a Parameter?
	Setting Up Packages and Services
	Saving Your Work
	Adding a Package
	Adding a Service
	Adding a Parameter
	Grouping Services Using the Package Organizer
	Modifying Packages/Services/Parameters
	Editing a Service
	Editing a Parameter
	Deleting Parameters/Services/Packages
	Making a Service Available to the Jolt Client
	Exporting/Unexporting Services
	Reviewing the Exported/Unexported Status
	Testing a Service
	Repository Editor Service Test Window
	Testing a Service Process Flow
	Troubleshooting
	6 Using the Jolt Class Library
	Class Library Functionality Overview
	Java Applications vs. Java Applets
	Jolt Class Library Features
	Jolt Client/Server Relationship
	Jolt Object Relationships
	Jolt Class Functionality
	Jolt Class Library Walk-through
	Using TUXEDO Buffer Types with Jolt
	Using the STRING Buffer Type
	Using the CARRAY Buffer Type
	Using the VIEW Buffer Type
	Using the FML Buffer Type
	Multithreaded Applications
	Preemptive and Non-preemptive Threads
	Using Jolt with Non-Preemptive Threading
	Using Threads for Asynchronous Behavior
	Using Threads with Jolt
	Event Subscription and Notifications
	API for Event Subscription
	Notification Event Handler
	Connection Modes
	Notification Data Buffers
	TUXEDO Event Subscription
	Using the Jolt API to Receive TUXEDO Notifications
	Clearing Parameter Values
	Reusing Objects
	Application Deployment and Localization
	Deploying a Jolt Applet
	Client Considerations
	Web Server Considerations
	Localizing a Jolt Applet
	7 Jolt Class Library Reference
	Jolt Methods
	Methods for Handling Items
	JoltSessionAttributes Class
	JoltSessionAttributes Constructor
	Synopsis
	Usage
	Throws
	JoltSessionAttributes Methods
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Example
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	JoltSession Class
	JoltSession Constructor
	Synopsis
	Usage
	Throws
	JoltSession Method
	Synopsis
	Usage
	Throws
	See Also
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Parameter
	Usage
	Overrides
	Synopsis
	Usage
	Overrides
	JoltRemoteService Class
	JoltRemoteService Constructor
	Synopsis
	Usage
	Throws
	JoltRemoteService Methods
	Synopsis
	Usage
	Throws
	See Also
	JoltRequestMessage Abstract Class
	JoltRequestMessage Methods
	Synopsis
	Usage
	Synopsis
	Usage
	Returns
	Synopsis
	Returns
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Parameter
	Usage
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	JoltTransaction Class
	JoltTransaction Constructor
	Synopsis
	Usage
	Throws
	See Also
	JoltTransaction Methods
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	See Also
	JoltEvent Class
	JoltEvent Methods
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	JoltUserEvent Class
	Synopsis
	JoltUserEvent Methods
	Synopsis
	Parameters
	Usage
	Throws
	JoltReply Class
	JoltReply Methods
	Synopsis
	Usage
	Returns
	JoltMessage Class
	JoltMessage Methods
	Synopsis
	Parameters
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	A Jolt Class Library Errors and Exceptions
	Jolt Error and Exception Handling
	ApplicationException Class
	ApplicationException Methods
	Synopsis
	Usage
	Synopsis
	Synopsis
	Usage
	JoltException Class
	JoltException Methods
	Synopsis
	Usage
	Synopsis
	Synopsis
	Usage
	EventException Class
	MessageException Class
	ServiceException Class
	SessionException Class
	TransactionException Class
	TUXEDO Errors
	B System Messages
	Jolt System Messages
	Repository Messages
	FML Error Messages
	Information Messages
	Jolt Relay Adapter (JRAD) Messages
	Jolt Relay (JRLY) Messages
	Bulk Loader Utility Messages

