3=\

THE ENTERPRISE MIDDLEWARE SOLUTION

BEA Jolt”

Jolt 1.1 Release
Document Edition 1.1
August 1997

Copyright
Copyright © 1996, 1997 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Connect, BEA Jolt, Distributed Application Framework, and Enterprise Middleware Solutions are
trademarks of and are developed and licensed by BEA Systems, Inc., Sunnyvale, California. TUXEDO is a
registered trademark of Novell, Inc., exclusively licensed to BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Jolt User’s Guide

Document Edition Part Number Date Software Version
1.0 801-001103-001 November 1996 Jolt Release 1.0
1.0.1 801-001105-002 February 1997 Jolt Release 1.0.1

11 801-001105-003 August 1997 Jolt Release 1.1

Contents

Preface
Purpose of ThisS ManUAL............cooiiiieoii e Xiii
AUGIEICE ...ttt e et e e et e e e e e Xiii
JOIt DOCUMENTALION....cciiiiitiieei ittt ettt e s e e s e e e e Xiii
How This Manual is Organized............cooiiiiiiiiiiiiii et Xiv
Related ManUAIScooiiiiiiiiiiieie e XV
Other TUXEDO RESOUICEScueiiiiiiiiitiaiiie e ettt ettt e e b e e eneees XV
DOCUMENT CONVENTIONS ..ottt ettt ettt et e e neeas XVi
1. Introducing BEA Jolt
WHAL IS BEA JOIt? ..ottt et et 1-2
KeY FEAUIES ... 1-3
HOW T WOTKS e e et 1-5
JOIE SEIVEIS ..ttt et 1-6
Jolt Class Library for JAvVa...........cooiiveiiiiiiiiiie e 1-7
Jolt Server and Jolt Client CommMUNICALION...........cocvviviiiiiiiiieiiiiee e 1-8
JOIE REPOSITONY...c.etiieieiieiit ittt ettt e e 1-9
JOIt INErNEL REIAY ..ot e 1-10
How to Jolt your TUXEDO APPIICALIONSevveeeiiiiiiiiiiiie e 1-11
2. Installing Jolt
Installation REQUIFEMENTScooiiiiiiie ittt 2-2
Server REQUITEMENESoiiiiiiiii ittt ettt 2-2
Jolt Relay ReQUIrEMENES......coiuuiiieiiiiie ettt 2-3
Client REQUIFEMENTSiiiiiiii ettt e 2-3
BEA JOIt 1.1 INSAIALION ..ottt 2-4
DIrECIONY StIUCTUIE ...ttt 2-4

BEA Jolt User’s Guide iii

iv

Before YOU BeOIN.....ooiiiiiiie e 2-¢

UNIX System Installation INStrUCHIONSccovviieiiiiiiiiieie e 2-7
UNIX System Installation SCrPt..........oceviiiiiiiieiniiiee e 2-8
Windows NT Installation INStruCtioNS...........cccevieiiiiiie e, 2-12
Licensing your JOIt SOftWare............cooiiiiiieiiie e 2-22
Using the Jolt Online DOCUMENTALIONccoiiiiiiiiriiiiien et 2-2
Getting Started with the DocumMeNtationccceeevieieeeiiiiee e 2-2

3. Configuring the Jolt System

USING the JOIt SEIVE ...ttt 3
JOIt INtEINEL REIAY......eieiiie et 3-
Security and ENCrYPLoNc.ueviiiiiiiiie e 3-
Starting the JOI SEIVETcoooiiiie s 3-
Configuring the JOIt SEIVETvviiiiie e 3-
Shutting Down the JOIt SEIVEr.........oouiiiiiiiiiiee e 3-1

UsiNg the JOIt REPOSIIONYcooiiiiiiiiiiiie st 3-1
Configuring the Jolt REPOSITONYocoiiiiiiiiiiiiiee e 3-11
Initializing Services Using TUXEDO and the Repository Editor............ 3-13

EVENt SUDSCIIPLIONoiiiiiiiii e 3-1
CONFIGUIALION. ... e 3-1

JOIt INtEINEL REIAYeeiii it 3-1
JOIt REIAY (JRLY) .ttt ettt e e 3-1¢
Jolt Relay Adapter (JRAD)oeiiiiiiie ittt 3-2C

Using Sample Applications in Jolt Online RESOUICESccovviviviierieeererieanes 3-2

4. Bulk Loading TUXEDO Services

Introduction to the BUlK LOAAETc.uueeiiiiiiie et 4-]
Getting Started Using the Bulk LOAdEerccoiiiiiieiiiiiiiiiiiee e 4-
USING UNDX ettt 4-2
USING WINAOWS NT ...ttt ettt 4-2
Syntax of the Bulk Loader Data Filesccoooiiiiiiiiiiiiee e 4-
Guidelines for UsSing KEYWOIdSuueeiriiiiieiiiiiie et 4-4
Keyword Order in the Bulk Loader Data Fileccccvvieniiiieiiiiiiieene, 4-5
Using Service-Level Keywords and Values...........cccoocvieiiiieeiniiiieecee, 4-¢€
Using Parameter-Level Keywords and Values............cccocovvvieiniiiee e, 4-

BEA Jolt User’s Guide

LI C010] o] (ST aTo L0 1o FRF TP 4-9....

Sample BUlK LOAd Da.........ccoiiiiiiiiiiiiiieeiiie et 4-10

5. Using the Jolt Repository Editor

Introduction to the Repository Edil..........cccceeiiiieiniiieiiiie e 5-2
Repository Editor WiNd0'............cooiiieiiiiiie e, 5-3.
GeING SEAME....ceii ittt 5-5....
Starting the Repository Editor Using appletvie..........covveeeiiieeennnns 5-5
Starting the Repository Editor Using Your Web Brov....................... 5-6
Logging on to the Repository Edi.........ccccviiieiieiiiiiiee e 5-6
Exiting the Repository Editi........c.cuuieiiiiiiiii e, 5-8.
Main Components of the Repository Ed..........cccccoovuiiiiiniiiiiiiiie s 5-10
RepOoSitory Editor FIOV..........cciviiiiiiiiiiiiiie e 5-10
What IS @ PACKAGeeeiiiiiiiie it 5-12
WHhAL IS 8 SEIVICE. ...ttt 5-15
What iS & PAramete........coouuiiiiiiiiiiiiien e 5-17.
Setting Up Packages and Serv..........ccceiiiiieiieiniiiiie e 5-19
SAVING YOUT WOTk...coiiiiiiieiiiie ettt 5-19
AddING @ PACKAC.-+..vee ittt 5-19.
AdING @ SEIVICH ..ttt 5-21
AddiNg @ PArameti.......c.ueeiiiiiiiiiieeiiiiie e 5-25
Grouping Services Using the Package Orgar.......cccccceeeeviiciieieneinennnn. 5-29
Modifying Packages/Services/Parame...........cccccovvveeeieeiiiiieenniiieee e, 5-33
EdItiNg @ SEIVICl...ciiiiiiii it 5-33
Editing @ Paramett........cooueieiiiiiieii e 5-35
Deleting Parameters/Services/PacKi...........ccoovviieiiiiiiieiiiiiiiee e, 5-36
Making a Service Available to the Jolt Cli.............ccccoiiiiiiiiiiie, 5-38
EXporting/UNexporting SErViCt..........ouuueeiiiieeiiiiiiie e, 5-38
Reviewing the Exported/Unexported Ste..........cccceevviieeiriniineienen 5-40
TESHNG 8 SEIVIC. .ccii it 5-42.
Repository Editor Service Test Windu..........cccceoviiiiiiiiinieeee 5-43
Testing a Service ProCess Fl.......cooiiiiiiiiiiiiieiee e 5-45
TroUBIESNOOTIN.eeiie i 5-48.

BEA Jolt User’s Guide v

6. Using the Jolt Class Library

Class Library Functionality OVerVie..........cccccoeiiiiiie i) 6-2
Java Applications vs. Java Appl.......ccooeeriiii e, 6-2
Jolt Class Library Featur...........cceeeiiiiiiiiiiiiieee e 6-3..
Jolt Client/Server Relationst............oooiieiiiiiie e 6-4.

Jolt Object RelatioNShif........c.uveiiiiiie e 6-7...

Jolt Class FUNCHONAIIL..........ccoiiiiiiiiiiie e 6-8...

Jolt Class Library Walk-throug...........c..ceeiiiiiiiiiii e 6-10

Using TUXEDO Buffer Types With JC.........cccoiiiiiiiiiiiiiiiiieececviieieeee 6-14
Using the STRING BUfer TYf....uueiiiiiiieriiiiee e 6-15
Using the CARRAY BUffer TYP. ..o, 6-17
Using the VIEW BUFfer TYP......oooiiiiiiieiie e 6-19
Using the FML BUFfer TYP....ooeviie e 6-19

Multithreaded APPIICALION.........ccoiiiiiiiiiiie e 6-21
Preemptive and Non-preemptive Thre.........c.ocooiiiiiiin e, 6-21
Using Jolt with Non-Preemptive Thread............ccccocvvveeiiininniennnnn, 6-22
Using Threads for Asynchronous Behan...........ccccoooiieeiiiiiiicieninen 6-23
Using Threads With JC.........ooiiiiiiiiii e 6-23

Event Subscription and Notificatio.............ccccvieiiiiie i 6-28
AP for Event SUDSCHPLIO.uviiiiiiiie it 6-28
Notification Event Handle.............ccoeoiiiiiieiniiie e, 6-29
CONNECHION MOTE.eiiiiiiiiiiie e 6-30.
Notification Data BUffer...........cceoooiiiiiiiiiiiieeee e 6-30
TUXEDO Event SUDSCIIPLIO........couviieiiiie e 6-31
Using the Jolt API to Receive TUXEDO NoaotificatiC............ccccevneee. 6-33

Clearing Parameter ValU...........ccccooiiiiiiiiiiie e e 6-35

REUSING ODJECT.....eiiiiiiiitiiit e 6-38..

Application Deployment and Localizati...........c.ceeeerieeeeeniiiieeeniiieeenes 6-42
Deploying @ JOIt APPIE......eeieiiiiieee e 6-42
Client CONSIAEIAtION.uvvieiiiiieie ettt 6-43
Web Server ConSideratio...........uvieuiiieiriiieies e e 6-43
Localizing @ JOlt APPIE.....ueiieiiiiieie e 6-44

Vi BEA Jolt User’'s Guide

7. Jolt Class Library Reference

JOIEMELNOAS. ... e 7-2
Methods for Handling Item...........cooeiiiiiiiiie e 7-2.
JoltSessionALtributes Cla........coeveeiiiiiiiiie 7-5..
JoltSessionAttributes CONSLIUC.........euiiiiieieiiiiiiiiiiee e, 7-6
JOItSESSIONALIDULE.ooiviiiiiiiieiiee e 7-6..
JoltSessionAttributes Metho...........oooviiiiiiiiiie e 7-7.
checkAUthentiCatioNLEVE............uvueiiiiiiicici i 7-7
ClBAL ..ttt e 7-8....
JEIBYLEDE . ..o 7-9...
OEtBYLESDE... ..o 7-9...
JEIDOUDIEDE.eiiiiiiie et 7-10
ELFIOALDE.ceiiiiii e 7-10.
GEUNTDET. ... 7-11.
GELISNOMDE. ...t 7-12.
ELISHINGDE. ... 7-12.
SEIBYLE. ..o 7-13
SEIBYLEt e 7-13
SEIDOUDIE.o 7-14
SEEFIOA......c o ——————— 7-14
S N et e 7-15..
SEESNOL...c o ——————— 7-15.
SEESTIINC. .ttt ettt 7-16
JOISESSION ClAS... ... e e a e e e 7-18
JOItSESSION CONSLIUCT.....ciii it 7-19
JOISESSIO. i ————————— 7-19.
JOISESSION MELNQ......cuiiiiiiiiii e, 7-2Q
ENOASESSIO. . uttiitt ittt et 7-2Q.
ISANIVE ... 7-21.
ONREPIY. ..ttt 7-21.
fINANZE. ... 7-22.
JOIREMOLESEIVICE Cla.....icieiiii i 7-23
JOItREMOtESErviCe CONSLIUC.ceei i ie e e et e e 7-24
JOIREMOLESEIVIC.......coiiiiiiiii e 7-24
JoltRemoteService Metha............veieiiiiiiiiiiee e 7-24

BEA Jolt User’s Guide Vii

viii

JoltRequestMessage ADSIract Cl.........oooiviieiriiiiiiieii e 7-26
JoltRequestMessage Methe.........ccuvevviiiiiiiiiiiiie e 7-28
ClEAT. ..t s 7-31
getAPPlICAtIONCOU.eviii e 7-31
OEINAIME. ... 7-31.
JEtOCCUITENCECOU.evieiiiieieieiee ettt 7-32
OEIBYLEDEN. ... 7-32.
OEtBYLESDE. ... 7-32.
EIDOUDIEDE. ... 7-33.
GEIFIOAIDE. ... 7-33.
OetINtDE ... 7-34.
EEISNOMDE ...t 7-34.
GELSIINGDE ... 7-34.
getByteltembDe............ooooiiiiii 7-35
getBytesSHemMSDE..........oooiiiiiiee 7-35
getDOUDIEIEMDE.........coiiiiiiii e 7-36
getFloatitemMDe. 7-36
getintitemDel.........oo s 7-36.
EtShOIIEEMDE. ... 7-37.
etSIINGIEMDE. ...t 7-37.
SEtREQUESEPIION ... 7-38
SEIBYLE. ... 7-38
SEIBYLES. .. 7-39
SEEDOUDI...ceii it 7-39
SEEFIO@. .. oot 7-40
SEUNL... 7-4Q..
SEESION. ..ttt 7-41.
L] 0] 1 o SRS 7-41.
SEIBYLEIteN.. ... 7-42.
SEIBYLESITON. ...t 7-42.
SEtDOUDIEITEN. ... 7-43.
SELFIOALITEN. ... 7-43.
SEUNTIEI.... 7-44..
SEESNOMIEN. ...t 7-44.

BEA Jolt User’s Guide

AAABYLE.ceiii ittt 7-45
E= T (0] 23 (=T PP 7-46
AAADOUDIE.....ueieiccc e 7-46
AAAFIOA. ... ———————————— 7-47.
AAAINE. e —————— 7-47
AAASINON ... e 7-48
AAASEIING ...t 7-48.
AEIBLE. .. 7-49..
AeletBIEN. ... 7-49
JOITranSaCtioN Clai.......oo i 7-50
JoltTransaction CONSIIUCT.......ccooviieieiiii i 7-51
JORTraNSACHO....ccceeeei i 7-51
JoITransaction MethOl...........ooviviiiiiiiiiii e 7-52
(o70] 121 1.4 11 ST 7-52.
FOIDACK. ... ———————————— 7-53.
JOREVENL CIaS.. ..o e 7-54..
JOREVENt MEthOG... ... e 7-54.
UNSUDSCIID. ... s 7-54
UNSUBSCHDEAL ...coiiiiiiiee e 7-55
JORUSEIEVENt Clat........ccooiiii e s 7-56
UNSOLMSEC....cooiiiiiiee e 7-56.
JoltUserEvent Methot.......cccoooveeiiiiiii e, 7-57
JORUSEIEVEN.....oeviiiiiittt e et ae s 7-57.
JOIREPIY ClAS....eeieiieiiiiiii et 7-59..
JOIREPIY MELNOC. ... it 7-59
JEIMESSAY.cieiiiiiii et 7-59.
JOIMESSAGE Cla..... ittt 7-6Q.
JoltMessage Methot.........cooiiiiiiiiiiie e 7-61
JELOCCUITENCECOU. ... ittt 7-61
JEIBYIEDE 7-61.
ELISNOMDE. ...t 7-62.
GEUNTDET. ... 7-62.
ELFIOALDE.ceiiiiii e 7-63.
JEIDOUDIEDE.ottt 7-63

BEA Jolt User’s Guide iX

ELSIINGDE ...t 7-63.

OEtBYLESDE. ... 7-64.
getByteltembDe............ooooiiiiii 7-64
EtShOIIEEMDE. ...t 7-65
getintlitemDel.........oo s 7-65.
getFloatitemMDe. 7-66
getDOUDIEIEMDE.........coiiiiiiii e 7-66
getBytesStemMDE...... ..o 7-67.
etSIINGIEMDE.eiiiiiiiie e 7-67.

A. Jolt Class Library Errors and Exceptions

Jolt Error and Exception Handlil..........c..oeoriiiiieiniiiiiin e A-2
ApPlIcAtiONEXCEPLION Clas........cuvviiiiiiiiiie e A-4..
ApplicationException MethoC..........covvviiiiiiiiieiiiii e A-5
getMessage Metht... ... A-5.
getApplicationCode Methe.........cocvveiiiiiiiiiii e, A-5
getODJECt MELNO.....ci it A-5..
JOIEXCEPLON Clak......eeeieiieiiiie ittt A-6
JOIEXCePtion MEthOC.........cooiiiiiiiiiiie e A-7
getMessage Metht... ... A-7
EtEMNO MEtNOG .. .eiiiiiiiiie e A-7
getODJECt MELNO.....ci it A-7
EVENIEXCEPLION Clat......ii it A-8
MeSSAgEEXCEPLION Cla......iiiiiiiiiie ittt A-8
ServiceEXCePtion Clas........oouiiiiiiiiiiieiiie e A-9
SESSIONEXCEPLION Cla....eiiiiiiiiiieiiiiiii ettt A-9
TransactioNEXCeption Cla...........cooiiiiiiiriiiiieniee e A-10
TUXEDO EITOIS. ..ottt A-11

B. System Messages

JOIt SYSLEM MESSAG ... ceevuvvieee et ettt tee ettt e B-2..
REPOSItONY MESSAG ... vueieeeiiiiiiieiiieieee et ee e s st te e e e st ae e e s sraeee e e nraeeaeaes B-12
FML Error MESSAQE.ccciviiiiiiiiiieiiiiiieit e B-14
INFOrMAtioN MESSAGL. . ccciitiieieiiiiie ettt B-16
Jolt Relay Adapter (JRAD) MESSAC........cueeieeiiiieieeeriieieeensiiiiee e eiieeee e B-17

BEA Jolt User’s Guide

Jolt Relay (JRLY) MESSAGcccuuueeiiaiieieiei ittt
Bulk Loader Utility MESSAQE.cccruiiieiiiiiiieiiiiie et

BEA Jolt User’s Guide

Xi

Xii BEA Jolt User’s Guide

Preface

Purpose of This Manual

This manual describes the BEA Jolt™ product, discusses how to use the Jolt system,
and defines messages and terms associated with using the product.

Audience

This document is intended for system administrators, network administrators, and
developers interested in extending secure, scalable transaction-based processing from
the enterprise to intranet and Internet wide availability. It assumes a familiarity with
BEA TUXEDO and Java programming.

Jolt Documentation

The Jolt documentation consists of the following documents:
BEA Jolt User’s Guid (available in both hardcopy and online format)

BEA Jolt Release Noti(available in hardcopy format)

BEA Jolt User’'s Guide xiii

How This Manual is Organized

Xiv

This manual is organized as follows:

Chapter 1, “Introducing BEA Jolt,” describes the Jolt features, architecture, and
components.

Chapter 2, “Installing Jolt,” describes how to install the Jolt components.

Chapter 3, “Configuring the Jolt System,” describes security, event notification, the
Jolt Relay, and how to configure the Jolt server components.

Chapter 4, “Bulk Loading TUXEDO Services,” describes how to use the Jolt Bulk
Loader utility.

Chapter 5, “Using the Jolt Repository Editor,” describes how to add, modify, test,
export, and delete TUXEDO service definitions from the Repository based on the
information available from the TUXEDO configuration file.

Chapter 6, “Using the Jolt Class Library,” describes how developers use the
object-oriented Java language classes for accessing TUXEDO services.

Chapter 7, “Jolt Class Library Reference,” is a reference for Jolt methods and classe

Appendix A, “Jolt Class Library Errors and Exceptions,” is a resource of Jolt class
library errors and exceptions.

Appendix B, “System Messages,” is a resource for Jolt system error messages.

Note: BEA TUXEDO and BEA Jolt are trademarked terms. Any occurrence of the
terms TUXEDO and Jolt in the document, refers to the BEA TUXEDO and
BEA Jolt products.

BEA Jolt User’s Guide

Related Manuals

TUXEDO System Reference Manual

TUXEDO System Administration Guide

TUXEDO System Programmer’s Guide, Volumes 1 and 2
TUXEDO System Message Manual, Volumes 1 and 2

Other TUXEDO Resources

The TUXEDO Syste(Andrade, Carges, Dywer, Felts)
TUXEDO: An Open Approach to OLI(Primatesta)

Building Client/Server Applications Using TUXEI (Hall)

BEA Jolt User’s Guide

XV

Document Conventions

The following documentation conventions are used throughout this manual:

Iltem Convention Example

Arguments appear in parentheses and are| (name, 0, value)
formatted in a lowercase (ACCTID, 2, 5000)
monospace font. Optional
arguments are formatted in itali
font. Predefined arguments are|
formatted in an uppercase font

Caution Apply to practices that could | Caution: Be sure to save

result in loss of information.

your information
before moving to
the next window.

Environment

are formatted in an uppercase

ENVFILE=${APPDIR}

variables font.

Glossary are formatted in italics in the Port is the host name of a Jolt

terms printed copy. server.

Key names are presented in boldface type| PressEnter to continue.

Literals are formatted in a monospace | class extendSample
font.

Notes highlight procedures and contaifi NOte: Thi§ featur(? is
information which assist the available with Jolt.
user in understanding the
information contained in this
manual.

Programsand| are formatted with initial caps. | Use the Repository Editor and

applications the Class Library.

BEA Jolt User’s Guide

User input are formatted in a monospace| Typecd TUXDIR
font.

Warning applies to practices which coulp Warning: Be sure to save
result in loss of productivity or your information
information. before returning

to the previous
screen.

Window are presented in boldface type| Type your password in the

items Window items can be window | Logon window.

titles, button labels, text edit bo
names or other parts of the
window.

SelectExport to make the
service available to the client.

BEA Jolt User’'s Guide xvii

XViii BEA Jolt User’s Guide

CHAPTER

1

Introducing BEA Jolt

> 4

BEA Jolt is a Java-based interface to the BEA TUXEDO system that extends
TUXEDO services to the Internet. BEA Jolt allows you to build client programs and

applets that can remotely invoke existing BEA TUXEDO services allowing

application messaging, component management, and distributed transaction
processing.

The following BEA Jolt topics are discussed in this chapter:

¢ What is BEA Jolt?

¢ Key Features

¢ How it Works

L4

> & &

Jolt Servers

Jolt Class Library for Java

Jolt Server and Jolt Client Communication
Jolt Repository

Jolt Internet Relay

4 How to Jolt your TUXEDO Applications

BEA Jolt User’s Guide

11

1

INTRODUCING BEA JOLT

What is BEA Jolt?

1-2

BEA Jolt is a Java class library and API that provides an interface to BEA TUXEDO
from Java clients. The BEA Jolt product consists of several components for creating
Java-based client programs that access TUXEDO services and for enabling secure,
reliable access to servers inside corporate firewalls. These Jolt components are as

follows:

L4

Jolt Servers One or more Jolt servers: listen for network connections from
clients, translate Jolt messages, multiplex multiple clients into a single process,
and submit and retrieve requests to and from TUXEDO based applications
running on one or more TUXEDO servers.

Jolt Class Library for Java. The Jolt class library is a Java package containing
the class files which implement the Jolt API. These classes enable Java
applications and applets to invoke BEA TUXEDO services. The Jolt class
library includes functionality to set, retrieve, manage and invoke communication
attributes, notifications, network connections, transactions, and services.

Jolt Repository. A central Jolt Repository contains definitions of BEA

TUXEDO services. These services are used by Jolt at runtime to access
TUXEDO services. Using the Repository Editor, you can test new and existing
BEA TUXEDO services independently of the client applications. You can export
services to a Jolt client application or unexport services by hiding the definitions
from the Jolt client.

Jolt Internet Relay. The Jolt Internet Relay is a component that routes

messages from a Jolt client to a Jolt Server Listener (JSL) or Jolt Server Handler
(JSH). This eliminates the need for the JSH and TUXEDO to run on the same
machine as the Web server. The Jolt Internet Relay consists of the Jolt Relay
(JRLY) and the Jolt Relay Adapter (JRAD).

The separation of BEA Jolt into these components permits the transactional and
Internet components of client/server applications to be implemented separately with
the security and scalability required for large-scale Internet and intranet services.

BEA Jolt User's Guide

KEY FEATURES

Key Features

NEW

With BEA Jolt, you can leverage existing TUXEDO services and extend your
transaction environment to the corporate intranet or world-wide Internet. The key
feature of the Jolt architecture is its simplicity. Using Jolt, you can build, deploy and
maintain robust, modular, and scalable electronic commerce systems that operate over
the Internet.

BEA Jolt includes the following features.

Java-based API for Simplified Developmer. With its Java-based API, BEA Jolt
simplifies application design by providing well-designed object interfaces. Jolt
supports the Java JDK 1.02 and is fully compatible with Java threads. Jolt enables Java
programmers to build graphical front-ends that use the application and transaction
services of TUXEDO without the need to understand detailed transactional semantics
or without having to rewrite existing TUXEDO applications.

Pure Java Client Developmer. Using Jolt you can build a pure Java client that runs
in any Java-enabled browser. Jolt automatically converts from Java to native BEA
TUXEDO data types and buffers and from TUXEDO back to Java. As a pure Java
client, your applet or application does not need resident client-side libraries or
installation, allowing client applications to be downloaded via the network thereby
simplifying software distribution.

Easy Access to TUXEDO Services via Jolt Repositc. The BEA Jolt Repository
facilitates Java application development by managing and presenting BEA TUXEDO
services definitions that you can use in your Java client. A Jolt repository bulk loading
utility lets you quickly integrate your existing TUXEDO services into the Jolt
development environment. Jolt and TUXEDO simplify network and application
scalability, while encouraging the reuse of application components.

GUI-based Maintenance and Distribution of TUXEDO Service. The Jolt
Repository Editor lets you manage BEA TUXEDO service definitions such as service
names, inputs and outputs.

The Jolt Repository Editor provides support for different input and output names for
services defined in the Jolt Repository.

BEA Jolt User’s Guide 1-3

1

INTRODUCING BEA JOLT

1-4

NEW

NEW

NEW

Encryption for Secure Transaction Processin. BEA Jolt allows you to encrypt data
transmitted between Jolt clients and the JSL/JSH using a combination of DES and
RC4. International packages can use a 40-bit key. United States (U.S.) domestic
packages can also use a 128-bit key. Jolt encryption addresses the issue of security the
is essential for reliable Internet transaction processing.

Caution: Programs using the 128-bit encryption cannot be run outside of the United
States. Therefore, clients running 128-bit encryption cannot be outside of
the United States. Customers with Intranets extending beyond the United
States cannot use this mode of encryption if any internal clients are outside
of the United States, without prior documented approval from the United
States government.

Added Security via Internet Relay. BEA Jolt features an Internet Relay component
that allows network administrators to separate their Web Server and TUXEDO
application servelWeb servers are generally considered insecure as they often exist
outside a corporate firewaThe Jolt Internet Relay gives you greater flexibility to
locate your BEA TUXEDO server in a secure location or environment on your
network, yet still be able to handle transactions from Jolt clients on the Internet.

Event Subscription Suppor. Jolt Event Subscription is used to receive event
notifications from either TUXEDO services or other TUXEDO clients. Jolt Event
Subscription lets you handle two types of TUXEDO application events:

4 Unsolicited Event Notifications. A Jolt client can receive these notifications
when a TUXEDO client or service subscribes to unsolicited events and a
TUXEDO client issues a broadcast or a directly targeted message.

4 Brokered Event Notifications. The Jolt client receives these notifications via the
TUXEDO Event Broker. The Jolt client receives these notifications only when it
subscribes to an event and any TUXEDO client or server posts an event.

BEA Jolt User's Guide

How IT WORKS

How it Works

BEA Jolt connects Java clients to applications built using BEA TUXEDO. TUXEDO
provides a set of modular services, each offering specific functionality related to the
application as a whole. For example, a simple banking application might have services
such as INQUIRY, WITHDRAW, TRANSFER, and DEPOSIT. Typically, service
requests are implemented in C or COBOL as a sequence of calls to a program library.
Accessing a library from a native program means installing the library for the specific
combination of CPU and operating system release on the client machine, a situation
Java was expressly designed to avoid. The Jolt Server implementation acts as a proxy
for the Jolt client, invoking the TUXEDO service on behalf of the client. The BEA Jolt
Server accepts requests from the Jolt clients and maps those requests into TUXEDO
service requests.

Figure 1-1 BEA Jolt Architecture

CLIENT

HTML, Applet, and
Jolt Code

Java Virtual Machine

Jolt
Applet/Application

BEA Jolt
Class Library

Transaction Protocol

BEA Jolt Server

Jolt Server Listener

Jolt Server Handler
Repository Server

TUXEDO
State Manager

BEA Jolt
Connectivity
Module

SERVER
Java-enabled Internet _
Web Browser A Application Server
BEA Jolt BEA TUXEDO

INQUIRY Service

DEPOSIT Service

Legacy

Access Services

BEA Jolt
Repositor y >

databases

=

/

Repository
Service
Definitions

Legacy Host
Applications

BEA Jolt User’s Guide

1-5

l INTRODUCING BEA JOLT

Figure 1-1 illustrates the end-to-end view of the BEA Jolt architecture, as well as
related TUXEDO components and their interactions.

Jolt Servers

The Jolt Server has several components that act in concert to pass Jolt client transactiot
processing requests to the TUXEDO application. The components are as follows:

4 Jolt Server Listener (JSL). The JSL handles the initial Jolt client connection,
and is responsible for assigning a Jolt Server Handler to the Jolt client.

4 Jolt Server Handler (JSH). The JSH manages network connectivity, executes
service requests on behalf of the client and translates TUXEDO buffer data into
the Jolt buffer and vice versa.

4 Jolt Repository Server (JREPSVR. The JREPSVR retrieves Jolt service
definitions from the Jolt Repository and returns the service definitions to the
JSH. The JREPSVR also updates or adds Jolt service definitions.

Figure 1-2 illustrates the Jolt Server and Jolt Repository components.

Figure 1-2 Jolt Server Components

Jolt Server and Repository TUXEDO
IT
Jol Server Repository TUXEDO
(OsH) Services
on
Application
T - Server
Jolt Server Jolt Repository
Listener Server
(JsL) (JREPSVR)

1-6 BEA Jolt User's Guide

How IT WORKS

Jolt Class Library for Java

The BEA Jolt Class Library is a set of classes you can use in your Java application or
applet to make service requests to TUXEDO from a Java enabled client. These Jolt
classes allow you to access TUXEDO transaction services using objects.

When developing a Jolt client application, you only need to know about the classes that
Jolt provides and the TUXEDO services that are exported by the Jolt Repository. Jolt
hides the underlying application details. Using Jolt and Jolt’s Class Library, ymt do
need to understand: the underlying transactional semantics, the language in which the
services were coded, buffer manipulation, the location of services, or the names of
databases used.

The Jolt APl is a Java class library and has the benefits that Java provides: applets are
downloaded dynamically and are only resident during runtime. As a result, there is no
need for client installation, administration, management, or version control. If services
are changed, the client application becomes aware of the changes at the next call to the
Jolt Repository.

Figure 1-3 shows the flow of activity from a Jolt client to and from TUXEDO. The
call-out numbers correspond to descriptions of the activity in Table 1-1.

Figure 1-3 Using the Jolt Class Library to access TUXEDO services

CLIENT

JAVA-Enabled TUXEDO Environment
Web Browser

JAVA VM
6
Application connection/request Jolt request BEA TUXEDO
Code 3.4.5 Server g reply ;
~ Jolt
Class Library o
Repository
Run-Time contains TUXEDO

1, 2 connection

p \Web Server HOST

Application Server

service definitions

BEA Jolt User’s Guide 1-7

l INTRODUCING BEA JOLT

The following table briefly describes the flow of activity involved in using the Jolt
Class Library to access TUXEDO services.

Table 1-1 Using the Jolt Class Library

Process Step Action

Connection 1 A Java enabled Web browser downloads an HTML page using
the HTTP protocol.

2 A Jolt applet is downloaded and executed in the Java Virtual
Machine on the client.

3 The first Java applet task is to open a separate connection to the
Jolt Server using a private protocol.

Request 4 The Jolt client now knows the signature of the service (such as,
name, parameters, types) and can build a service request object
based on Jolt class definitions, and make a method call.

) The request is sent to the Jolt Server, which translates the Java
based request into TUXEDO requests and forwards the request to
the TUXEDO environment.

Reply 6 The TUXEDO system processes the request and returns the
information to the Jolt Server, which translates it back to the Java
applet.

Jolt Server and Jolt Client Communication

The Jolt system handles all communication between the Jolt Server and the Jolt client
using the BEA Jolt Transaction Protocol. The communication process between the Jolt
Server and the Jolt client applet or applications functions as follows:

1. TUXEDO service requests and associated parameters are packaged into a messac
buffer and delivered over the network to the Jolt Server.

2. The Jolt Server unpacks the data from the message, and performs any data
conversions necessary, such as numeric format conversions or character set
conversions.

1-8 BEA Jolt User's Guide

How IT WORKS

3. The Jolt Server makes the appropriate service request to the application service
requested by the Jolt client.

4. Once a service request enters the BEA TUXEDO system, it is executed in exactly
the same manner as requests issued by any other TUXEDO client.

5. The results are then returned to the BEA Jolt Server, that packages the results and
any error information into a message that is sent to the Jolt client applet.

6. The Jolt client then maps the contents of the message into the various Jolt client
interface objects, completing the request.

Jolt Repository

The Jolt Repository is a database where TUXEDO services are defined, such as name,
number, type, parameter size, and permissions. The Repository functions as a central
database of definitions for TUXEDO services and permits new and existing TUXEDO
services to be made available to Jolt client applications. A TUXEDO application can
have many services or service definitions such as ADD_CUSTOMER,
GET_ACCOUNTBALANCE, CHANGE_LOCATION, GET_STATUS. Allor only a

few of these definitions may be exported to the Jolt Repository. Within the Jolt
Repository, the developer or system administrator can export these services to the Jolt
client application.

All Repository services that are exported to one client are exported to all clients.
TUXEDO handles the cases where subsets of services may be needed for one client
and not others. Figure 1-4 illustrates how the Jolt Repository brokers TUXEDO
services to multiple Jolt client applications. The diagram shows four TUXEDO
services, however the WITHDRAW service is not defined in the Repository and the
TRANSFER service is defined but not exported.

BEA Jolt User’s Guide 1-9

1

INTRODUCING BEA JOLT

Figure 1-4 Distributing TUXEDO Services via Jolt

Jonpﬁem

TUX!EDQ Jolt Repository Application
éppl[catlon Services DEPOSIT, INQUIRY

ervices

INQUIRY DEPOSIT Jolt Client

DEPOSIT Application
WITHDRAW TRI,L\I,\?SUFIFEQE DEPOSIT, INQUIRY

TRANSFER
Jolt Repository Editor

The Jolt Repository Editor is a Java-based GUI administration tool that gives the
application administrator access to individual BEA TUXEDO services. With the Jolt
Repository Editor you can define, test, and export services to Jolt clients.

The Jolt Repository Editor enables you to extend and distribute TUXEDO services to
Jolt clients without having to modify many lines of code in widely distributed client
applications. With the Jolt Repository Editor, you can modify parameters for
TUXEDO services, logically group TUXEDO services into packages, and remove
services from created packages. You can also make the services available to Web
browser-based Jolt applets or Jolt applications by exporting the services.

Note: The Jolt Repository Editor only controls services for Jolt client applications. It
cannot be used to make changes to the TUXEDO application.

Jolt Internet Relay

1-10

The Jolt Internet Relay is a component that routes messages from a Jolt client to a JSL
or JSH. The Jolt Internet Relay consists ofJolt Relay (JRLY) and theJolt Relay
Adapter (JRAD). The Jolt Relay is not a TUXEDO client or server. JRLY is a
stand-alone software component that routes Jolt messages to the Jolt Relay Adapter.
Requiring only minimal configuration to allow it to work with Jolt clients, the Jolt

Relay eliminates the need for TUXEDO to run on the same machine as the Web server

BEA Jolt User's Guide

How IT WORKS

The JRAD is a TUXEDO application server, but does not include any TUXEDO
services. It requires command line arguments to allow it to work with the JSH and
TUXEDO. JRAL receives client requests from JRLY, and forwards the request to the
appropriate server. Replies from the server are forwarded back to JRAD, which sends
the response and back to the requesting client. A single Jolt Internet Relay
(JRLY/JRAD pair) handles multiple clients concurrently.

BEA Jolt User’'s Guide 1-11

1 INTRODUCING BEA JoLT

How to Jolt your TUXEDO Applications

Figure 1-5 illustrates how to Jolt-enable your new and existing TUXEDO-based
applications. The process for creating Jolt clients is described in the following steps.

Figure 1-5 Creating a Jolt Application

Creating a new TUXEDO

Application? Have an Existing TUXEDO
I BN BN BN BN BN BN BN BN BN BN Application?
1 Design Your Application 1 P e s 7y = :
I Services I . TUXEDO Application is .
i Installed
| |

| Write/Deploy Your Application and) |

| TUXEDO Services |
o -JC Install Jolt)
(Start Your TUXEDO Application)

J L
Decide which TUXEDO Services to
Make Available to Jolt
J L

Use Repository Editor to Define
Services Available from Jolt

< Program Client using Jolt

Test Each Service Class Library

: \‘> Make Jolt classes available
C Export Services) (i.e., via the Web)

Your Jolt Application is
Ready to Run

1-12 BEA Jolt User's Guide

How 10 JoLT YOUR TUXEDO APPLICATIONS

The following steps show just how quickly and easily Jolt clients can be created and
deployed.

1.

Begin the process with a TUXEDO application.

For information about installing TUXEDO and creating a TUXEDO application,
refer to theTUXEDO System 6 documentatior. set

Install Jolt.

For information about installing Jolt components, referlnstalling Jol” in
Chapter 2.

Configure and define services using the Jolt Repository Editor.

For information regarding configuring the Jolt Repository Editor and making
TUXEDO services available to Jolt, refer to:

4 “Using the Jolt Repository Edit" in Chapter 5
4 “System Messag” in Appendix B
Create a client application using the Jolt Class Library.

The following documentation shows you how to program your client application
using the Jolt Class Library:

4 “Using the Jolt Class Libra” in Chapter 6
4 “Jolt Class Library Referen” in Chapter 7
4 “Jolt Class Library Errors and Excepti” in Appendix A

Run the Jolt-based client applet or application.

Refer to 'Using the Jolt Class Libra” in Chapter 6 to assist you in installing a
Jolt Class Library on a Web Server.

BEA Jolt User’'s Guide 1-13

CHAPTER . (
2 Installing Jolt

This chapter explains how to install the Jolt 1.1 software and its online documentation.
Readers of this chapter are assumed to be system administrators and/or application
developers who have experience with the operating platforms on which they are going
to install BEA TUXEDO and Jolt software.

This chapter includes the following sections:
¢ Installation Requirements
4 BEA Jolt 1.1 Installation

4 Using the Jolt Online Documentation

BEA Jolt User’'s Guide 2-1

2 INSTALLING JOLT

Installation Requirements

The following hardware and software components are required before installing
BEA Jolt.

Server Requirements

4 CD-ROM access
4 500K of disk storage

Note: Jolt 1.1 server platform support is dependent on the TUXEDO version support
For example, Jolt 1.1 will only run on Solaris 2.4 and 2.5 if TUXEDO 6.1 or
6.2 is running on the same machine as the Jolt 1.1 server.

DEC UNIX 4.0

DEC Alpha NT 4.0

Hewlett-Packard HP9000 with HP-UX 10.10, 10.20
IBM RS/6000 with AIX 4.1.4, 4.2

* & & o o

Intel with Windows NT 3.51 or NT 4.0 (80486 processor or later) (TUXEDO
6.3 is available only on NT 4.0)

Sequent Dynix 4.2
SGl Irix 6.2
Sun SPARC with Solaris 2.4, 2.5, 2.5.1 (TUXEDO 6.3 supports 2.5.1 only)

> & & o

Unixware 2.1

2-2 BEA Jolt User’s Guide

INSTALLATION REQUIREMENTS

Jolt Relay Requirements

The Jolt Relay supports the following platforms running on the Web server:
4 Hewlett-Packard HP9000 with HP-UX 10.10, 10.20

4 Intel with Windows NT 4.0

4 Sun SPARC with Solaris 2.5

Client Requirements

4 700K of disk storage (for application development and Web server)

4 Java-enabled browser (see Jolt Release Not for the approved browsers) or
Java virtual machine

4 Java Developer’s Kit (JDK) 1.0.2 (for application development only)
(http://java.sun.com:80/java.sun.com/products/JDK/index. 1tml)

4 JDK 1.0.2 on Solaris
4 JDK 1.0.2 on Solaris (appletviewer)

4 HTML browser for the online documentation (Netscape Navigator 2.02, or
Microsoft Internet Explorer 3.0 or later are recommended)

BEA Jolt User's Guide 2-3

2 INSTALLING JOLT

BEA Jolt 1.1 Installation

You can install the Jolt 1.1 package from a CD-ROM for UNIX and Windows NT
platforms. Your CD-ROM contains all of the necessary files for installing and running
your Jolt product, including the Jolt Internet Relay. The Jolt Relay Front-End is
installed on the Web server machine. For the Jolt 1.1 release, this machine may be
different from the TUXEDO/Jolt machine. You may be required to run the installation
program a second time, using the machine that will run the Jolt Relay Front-End.

Online documentation, in the form of HTML files, is also available on the CD-ROM.

The CD-ROM contains an installation script for UNIX systems and a separate
GUI-based installer for Windows NT users. To install Jolt 1.1, follow the instructions
for your respective platform.

Directory Structure

Figure 2-1 shows the directory structure for UNIX and NT systems.

2-4 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

Figure 2-1 Sample Directory Structure

joltl.1 (top level directory of the Jolt CD)

- — — = - unix (directory for all UNIX platform installations)
:. _________ install.sh (UNIX installation script)
e e sunbx, sgi, seq, ibm ... (platform packages

P ,— - - - intel (Intel platform directory)
: :. - =+ = - -~ nt351 (Windows NT 3.51 directory)
: : :. e ——— - tux61 (TUXEDO version)
: E : b e m e e setup.exe
E : fo - r----- tux62
: : L e e mmm— - setup.exe
! :
: ! - e —--. Nt40 (Windows NT 4.0 directory)
! b e m e tux62
: : e ee e setup.exe
: In ——— - tux63
, e m e setup.exe
1
e ~ - — - -alpha (Alpha platform directory)
:. —— e ==-- ht40

A tux62

; e oo - setup.exe

A rT————- tux63

e oo - setup.exe

----- cdimage (tar copy format of UNIX
and NT directories)

- - joltll.tar (tar file containing

everything in the UNIX and NT
directories on the Jolt CD)

BEA Jolt User’s Guide

2-5

2

INSTALLING JOLT

Before You Begin

2-6

Before installing:

L4

Verify the location of the TUXEDO directory where the Jolt server is going to
be installed.

Determine the location of the documentation directory where the Jolt
documentation is going to be installed.

Verify the Web server location where the Jolt client components are going to be
installed.

Verify the user ID and group ID assigned to Jolt server files.
Verify the user ID and group ID to be assigned to Jolt client files.

Review theJolt Release Noteand the Jolt Home Page for any new information.

BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

UNIX System Installation Instructions

The Jolt 1.1 installation shell script for UNIX systems includes all components
necessary for installing the Jolt 1.1 system, the Jolt Repository, the Jolt Server, and the
Jolt Class Library code. Refer to Figure 2-1 for an example of the Jolt directory
structure.

When installing, ensure that all necessary hardware and software has been installed.
1. Login as a user who has write permission in the TUXEDO directory.

2. Insert the CD-ROM in the CD-ROM drive. If you are running on Solaris and the
daemon /usr/shin/vold is running, the CD-ROM should be automatically
mounted in th¢cdrom/JOLT directory.

cd /cdrom/jolt/unix

If you are not running on Solaris vold is not running, consult your UNIX
administration documentation to mount the CD-ROM.

3. Typels

The directory contents should look similar to the following sample. If not, verify
that you are installing the correct CD-ROM.

alpha/ hp/ ibm/

install.sh

seq/ sgi/ sun5x/ uw/
4. Type

sh install.sh

5. Pres Enter.

This invokes the Jolt installation script. The step-by-step install screens are
described in the following section.

BEA Jolt User’'s Guide 2-7

2

INSTALLING JOLT

UNIX System Installation Script

2-8

The UNIX system installation script provides a set of step-by-step instructions to helf
you quickly install your Jolt product. This script lets you specify your platform,
operating system, and other installation details. The installation script prompts you
through the entire installation process. You can cancel the installation at any time by
pressincCTRL-C simultaneously.

Note: The script used to show the UNIX installation is taken from Jolt 1.1 for
TUXEDO 6.1/6.2. There are variations of the UNIX installation script for Jolt
1.1 for TUXEDO 6.3.

1. Type the number that corresponds to the name of the operating system you are
using (for example, if using SPARC Solaris 2.5.1 for TUXEDO 6.2,22). Press
Enter.

01) alpha/dux40/6.2 02) alpha/dux40/6.3 03) hp/hp1010/6.1
04) hp/hp1010/6.2 05) hp/hp1010/6.3 06) hp/hp1020/6.1
07) hp/hp1020/6.2 08) hp/hp1020/6.3 09) ibm/aix414/6.1
10) ibm/aix414/6.2 11) ibm/aix414/6.3 12) ibm/aix42/6.1
13) ibm/aix42/6.2 14) ibm/aix42/6.3 15) seq/dynix42/6.1
16) seq/dynix42/6.2 17) seq/dynix42/6.3 18) sgi/irix62/6.1
19) sqilirix62/6.2 20) sqifirix62/6.3 21) sun5x/sol24/6.1

22) sun5x/s0l24/6.2 23) sun5x/so0l25/6.1 24) sun5x/s0l25/6.2
25) sun5x/s0l251/6.1 26) sun5x/sol251/6.2 27) sun5x/so0l251/6.3
28) uw/uw21/6.1 29) uw/uw21/6.2 30) uw/uw21/6.3
Install which platform's files? [01-30, g to quit, | for list]:

22

**You have chosen to install from sun5x/sol24/6.2 **

2. You are prompted to review the directory containing the BEA Jolt system. If
correct, typey for “yes,” orn for “no” or q to “quit.” Pres<Enter.

BEA Jolt Release 1.1

This directory contains the BEA Jolt System for
Solaris 2.4 on SPARC

Is this correct? [y,n,q]: y

To terminate the installation at any time

press the interrupt key,

typically , <break>, or <ctrl+c>.

BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

3. TypeBEA Jolt to install the BEA Jolt package. PrEnter.
The following packages are available:

1 jolt BEA Jolt
Select the package(s) you wish to install (or 'all' to install
all packages) (default: all) [?,??,q]: 1
BEA Jolt
(sparc) Release 1.1
Copyright (c) 1997 BEA Systems, Inc.
Portions * Copyright 1986-1997 RSA Data Security, Inc.
All Rights Reserved.
Distributed under license by BEA Systems, Inc.
TUXEDO is a registered trademark.
BEA Jolt is a trademark of BEA Systems, Inc.

4. Type the number of the installation option you prefer. The Jolt Server is installed
in an existing TUXEDO directory. You must install TUXEDO prior to installing
Jolt.

The following installation options are available:

1 all Install the full Jolt System

2 server Install the server only

3 client Install the client only

4 rad Install the relay back-end only
5 doc Install the documentation

Select an option (default: all) [?,??,9]: 1

Note that the jolt server will be installed into an existing
TUXEDO directory. You MUST have previously installed TUXEDO
version 6.1, 6.2, or 6.3 to attempt this installation.

Base directory of existing TUXEDO installation [?,q]:
ust/jolt/T6.2

Determining if sufficient space is available ...

1118 blocks are required

167860 blocks are available to /ust/jolt/T6.2

Using /usr/jolt/T6.2 as the TUXEDO base directory

The client software should be installed either on your web
server machine, or a machine easily accessible to your web
server machine, as the class files must be downloaded.
JOLTDIR below refers to the directory in which your java
related files are stored. It is the directory which contains
the directory 'classes’, not the classes directory itself!
JOLTDIR (default: /usr/jolt/T6.2/udataobj/jolt) [?,q]:

BEA Jolt User's Guide 2-9

2 INSTALLING JOLT

Determining if sufficient space is available ...

1118 blocks are required

167860 blocks are available to /usr/jolt/T6.2/udataobj/jolt
Using /usr/jolt/T6.2/udataobj/jolt as the Jolt client tree
Unloading /host/sansei/cdrom/sun5x/sol24/6.2/jolt/joltall.Z ...
bin/lJREPSVR

bin/JSL

bin/JSH

bin/joutil

bin/JRAD

udataobij/jrep.f16

udataobj/jwsladmin.f32

udataobij/jrepository

udataobij/jolt/client/Atm.html

udataobij/jolt/client/RE.html

udataobij/jolt/client/jolt.zip
udataobij/jolt/client/audio/dot.au
udataobij/jolt/client/audio/ring.au
udataobij/jolt/client/audio/splat.au
udataobij/jolt/client/images/beal.ogo.gif

udataobj/jolt/relay/jrly
udataobij/jolt/relay/jrly.config
locale/C/JOLT_CAT
locale/C/JOLT.text
locale/C/JRAD_CAT
locale/C/IJRAD.text
lib/libjconv.so
lib/libjnwi.so
include/jotypes.h
2280 blocks

... finished

2-10 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

5. Type your Jolt serial number and prEnter. Type your Jolt license token
number and presEnter. The script continues with the installation process until
the status message, “Installation of BEA Jolt was successful,” displays.

Serial number [?,q]: <enter BEA-provided serial number>
License token [?,q]: <enter BEA-provided license token>
LICUTIL is /usr/jolt/T6.2/bin/joutil

users=0

pbtype=SDK

expdate=9801

serial=<BEA serial number displays>

token=<BEA license token displays>

lictype=a

Activating the license for software in /usr/jolt/T6.2 ...

... finished

Changing file permissions...

... finished

Installation of BEA Jolt was successful

6. The script returns to the installation prompt. Tq to quit.

The following packages are available:

1 jolt BEA Jolt
Select the package(s) you wish to install (or 'all' to install
all packages) (default: all) [?,??,0]: q
Please don't forget to fill out and send in your registration
card

7. When the installation is complete, unmount the CD-ROM.

The installation is now complete.

BEA Jolt User’'s Guide 2-11

2

INSTALLING JOLT

Windows NT Installation Instructions

2-12

The Jolt NT Installer provides a set of step-by-step installation windows to help you
quickly install your Jolt product. These windows automate the details of your
installation process and prompt you through the entire installation. You can cancel th
installation at any time.

If you are installing the Jolt package from a CD-ROM, use Windows Explorer or a
similar utility. Select thesetup.exe program in the NT directory that matches your
platform and TUXEDO version when you insert the CD-ROM. Refer to Figure 2-1 for
additional information on the directory structure.

1. When you see the Welcome window shown in Figure 2-2, seleNext button
to proceed with the installation.

Figure 2-2 Jolt Welcome Window

YWwelcome to the Jolt Setup program. This program wil
inztall Jalt on wour computer.

It iz strongly recommended that you exit all Windows programs
before running thiz Setup program.

Click. Cancel bo quit Setup and then close any programs pou
have running. Click Mest to continue with the Setup program.

WOARMIMG: Thiz program iz protected by coperight law and
international treaties.

Inauthonized reproduction or digtribution of thiz program, or any
portion of it, may resut in severe civil and criminal penalties, and
violators will be prozecuted to the maximnum extent pozsible under
2.

Mest » Cancel

BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

2. Use the scroll bar or thgage Downkey to read the Software License

Agreement. To continue with the Jolt installation, you must accept the terms of
the license agreement. If you accept the terms, sé&siio continue with the
installation. If you do not accept the terms, selznd the installation stops.

Figure 2-3 Software License Agreement

BEA Jolt Software License Agreement

Pleaze read the following license agreement. Use the scroll bar to view
the rest of thiz agreement,

BE& Jolt Syztem Software License And Limited '/ arranty
BEA Jalt Software Licenze

The BEA Jolt Saftware and accompanying documentation [respectively 'Saftware™ and
"Diocumentation'] you have acquired are protected by the copyright laws of the

dnited States and intermational copyright treaties. In addition, the poszession

and uze of the Software and Documentation iz zubject to the restictions contained

in thiz Licenze.

Faor purpozes of thiz agreement:

Client Saftware means the Saftware programz provided az part of the Software that
operate on an inteligent, zsingle uzer device, permitting that device access to the

Do pou accept all the terms of preceding license agreement’?
If 20, click on the ez puzh button. If pou gelect Mo, Setup will exit.

Tes Mo

-

=

BEA Jolt User's Guide 2-13

2 INSTALLING JOLT

3. Atthe User Registration window, type your name and company. U3athlkeey
to navigate through the text fields. Seldetxt after you enter the information.

Figure 2-4 User Registration Window

BEA Jolt User Registration E |

Pleaze Reagizter pour product now.

M amne: |F'at Smith

LCarmpar: IEE.-'l'« Systems, Inc.

¢ Bank I Mewut » I Cancel

2-14 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

4. Atthe Registration Confirmation window, review the information. If the
information is correct, seledtesto continue with the installation. If the
information is not correct, selel to return to the User Registration window
and change the registration information.

Figure 2-5 Registration Confirmation

BEA Jolt Registration Confirmation |

Y'ou have provided the following registration infarmation;

M ame: Fat Smith

Cormpaty: BEA Syztems, ne.

|2 thiz regiztration information corect?

BEA Jolt User’'s Guide 2-15

2 INSTALLING JOLT

5. Atthe Installation Selection window, select the modules to install (in this case,
Jolt Server, Jolt Client, andJolt Documentation).

This window also allow you to choose a destination directory. To do this, select
Browseand choose a distention path. To continue with the installation, select
Next.

Figure 2-6 Installation Selection Window

BEA Jolt Installation Selection E |

Select the module(z] you would lke toinstall, and clear the
one(z] vou do not want toinstall. Once selected, press the
Mext button bo continue the installation,

¥ Jalt Server 781K
Eral s

390K

[" Jalt Relay Front-End 3EE K.

W Jalt Dacumentation

" Drestination Directary

1K
C:MProgram FilesBE& Systems'Jolt Browse. . |

Space Required; 1153 K :
196000 K. Dligk Space...

Space Available:

¢ Bank I Mewut » I Cancel |

2-16 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

Table 2-1 Setup Type Window

Setup Type... Installs...

Jolt Server Jolt server only (review license)

Jolt Client Jolt client only

Jolt Relay Back-End Jolt Internet Relay on the back-end server only
Jolt Relay Front-End Jolt Internet Relay on the front-end server only
Jolt Documentation HTML-based documentation

a. The selection works as a toggle. With the mouse, click the left mouse button
once to select and once to deselect. Prestaheey once to highlight and
select. Press it again to highlight and select the next item in the list.

b. To make your selection, click on the space to the left of the text representing
your choice. The window displays a checkmark to the left of your selection.

To deselect a component, click on the checkmark to the left of your choice
and the checkmark is removed.

c. To choose a different destination directory, seBgotvse and choose a
destination path.

Note: The destination path must be the TUXEDO directory.

BEA Jolt User’'s Guide 2-17

2

INSTALLING JOLT

6. SelecDisk Spaceto check the available and required disk space on a particular
drive. Figure 2-7 shows the available disk space. SElKcto continue. Select

Cancelto return to the Installation Selection window.

Figure 2-7 Available Disk Space

Available Dizk Space Ed |

Space

Drve———
Avalable: 191968 K

Required: 1K

] Cancel

7. All Jolt system files are installed in directories relative to the destination
directory. Jolt installs all system files in tthe default directory displayed on the
window. If the default directory is not the directory that contains your TUXEDO

system, change the directory.

2-18 BEA Jolt User’'s Guide

BEA JOLT 1.1 INSTALLATION

8. In Figure 2-6, Jolt Server, Jolt Client, Jolt Documentation are selected for
installation. Figure 2-8 shows the window used to install the first selected module
(in this case, the Jolt Server). To change the directory, &@aseor type the
directory path. Selediext to continue with the installation.

Figure 2-8 Choose Destination Location Window for Jolt Server

Choose Destination Location E

[f wou wizh toinstall the Jolt Server zoftware in a directony
ather than the one shown, enter your chaice now.

[\ TUREDD

Browse. .. |

¢ Banh I Mewut » I Cancel

BEA Jolt User’'s Guide 2-19

2 INSTALLING JOLT

9. Figure 2-9 shows the window used to install the next selected module (in this
case, the Jolt Client). To change the directory, s@smtvseor type the directory
path. SelecNext to continue with the installation.

Figure 2-9 Choose Destination Location Window for Client Software

Choose Destination Location E

[f wou wizh bo install the Jolt Client software in a directon
ather than the one shown, enter your chaice now.

[\ TUREDD

Browse. .. |

¢ Banh I Mewut » I Cancel

2-20 BEA Jolt User’s Guide

BEA JOLT 1.1 INSTALLATION

10. You are prompted to install the final module (in this case, the Jolt
Documentation). To change the directory, selrciwse or type the directory
path. SelecNext to continue with the installation.

Figure 2-10 Choose Destination Location Window for Jolt Documentation

Choose Destination Location Ei |

IF you wizh to install the Jolt Docurmentation in a directary
ather than the one shown, enter your choice now.

|CATUREDD]

Browsze. .. |

¢ Bk I Mest » I Cancel

11. When the selected modules are installed, you are prompted to install your Jolt
license. The prompt is shown in Figure 2-11.

Figure 2-11 Install License Window

Question |

@ Whould you like to install pour icense now?
Ha |

BEA Jolt User’'s Guide 2-21

2 INSTALLING JOLT

12. Selectresto install the Jolt license.

13.If you are installing Jolt 1.1 for TUXEDO 6.1 or 6.2, a window displays
prompting you to enter your serial number and license key. If you are installing
Jolt 1.1 for TUXEDO 6.3, the Insert License Disk window shown in Figure 2-12
displays, and you are prompted to insert your license disk.

Figure 2-12 Insert License Disk Window

Inzert Licensze Digk |
? Fleaze inzert your BEA Jolt License Disk
Fath:
[
0k Cancel

14. Type the designated path or seBwiwse and selecOK.

15. When all files are installed, the Setup Complete window displays. Select a Jolt
application by choosing an icon from the window.

Licensing your Jolt Software

The licensing scheme used by Jolt 1.1 depends on the version of TUXEDO used wit
Jolt. Know the following information before running this command:

4 Your version of TUXEDO

4 Your TUXEDO directory (TUXDIR) from the installation. This is the directory
that contains the TUXEDO directories (bin, udataobj, etc.).

4 Your serial number (included with your Jolt software)

4 Your license key or token (included with your Jolt software)

2-22 BEA Jolt User's Guide

BEA JOLT 1.1 INSTALLATION

Licensing Jolt 1.1 for TUXEDO 6.1 and 6.2

Jolt 1.1 for TUXEDO 6.1 and 6.2 uses a combination of a serial number and a token
number (or license key) to enable a license. This information is included with the Jolt
software when it is shipped to you. The installation progrémsil(.sh for UNIX
orsetup.exe for NT) prompt you for the serial number and token at installation time.
Refer to “UNIX System Installation Script” and “Windows NT Installation
Instructions” for additional information.

Enter the serial number and token number exactly as they are displayed on the license
provided by BEA.

Licensing Jolt 1.1 for TUXEDO 6.3

Jolt 1.1 for TUXEDO 6.3 uses a digitally signed license file to enable a license. This
file is provided on a floppy disk that is shipped with your Jolt software. The UNIX
installation programirgstall.sh) does not install the license automatically. The NT
installation programsgetup.exe) prompts you for the location of the Jolt license file.

If you provide the necessary information, the installation program installs the license
file for you. If you do not install the license file during installation, follow the steps to
install Jolt manually.

UNIX LICENSING INSTRUCTIONS

1. Identify you current TUXEDO license file. This is located in
TUXDIR/udataobij/lic.txt.

2. Make a copy of this file:
cd $TUXDIR/udataobj

cp lic.txt lic.txt.bak

3. Check that you have completed step 2. Verify the copy using OS-specific
commands (e.gdiff on UNIX systems).

4. Append the contents of the Jolt license file to the TUXEDO license file:

cat /dev/diskette/joltlic.txt >> lic.txt

BEA Jolt User’'s Guide 2-23

2 INSTALLING JOLT

NT LICENSING INSTRUCTIONS

1. Identify you current TUXEDO license file. This is located in
%TUXDIR%\udataobij\lic.txt

2. Make a copy of this file:
cd % TUXDIR%\udataobj

copy lic.txt lic.txt.bak

3. Check that you have a completed step 2. Verify the copy using OS-specific
commands.

4. Append the contents of the Jolt license file to the TUXEDO license file:
copy lic.txt + a:\joltlic.txt

A text editor can be used to copy and paste the contents of the Jolt license file
into the TUXEDO license file.

Note: The digital signature is 64 characters long. Every character must match
exactly or the license is not valid.

If you do not complete the steps for licensing the Jolt software during installation, you
can license the software at any time by following the steps in the “Licensing Upgrade:
Instructions.”

2-24 BEA Jolt User’'s Guide

BEA JOLT 1.1 INSTALLATION

LICENSING UPGRADES INSTRUCTIONS

If you are using Jolt 1.1 on TUXEDO 6.1 or 6.2, and you need to upgrade your license,
follow these step.

Note: These instructions are for NT. Use the UNIX equivalents for UNIX platforms.

1. Bring up an NT command prompt window.

2. Type the following:

SET TUXDIR=<the name of your TUXEDO directory>

SET SERNUM=<your serial number>

SET LICENSE=<your license key>

CD %TUXDIR%

CD BIN

JOUTIL -r %TUXDIR% -b -l %LICENSE% -s %SERNUM% -T SDK

For example, if TUXEDO is installed in the directo/opt/BEAltuxedo , your
serial number 10123456789 , and your license key 0A1B2C3D4E5F9999,
execute the following commands:

SET TUXDIR=/opt/BEAltuxedo

SET SERNUM=0123456789

SET LICENSE=0A1B2C3D4E5F9999

CD %TUXDIR%

CD BIN

JOUTIL -r %TUXDIR% -b -l %LICENSE% -s %SERNUM% -T SDK

Note: The I " above is a lowercase “L" not the numer1” (one).

Your Jolt executables are now properly licensed. JOUTIL responds with an
error if your serial number or license key is incorrect. If you receive an error,
ensure that you have the correct serial number and license key.

BEA Jolt User’'s Guide 2-25

2 INSTALLING JOLT

Using the Jolt Online Documentation

Accompanying your Jolt software is an online, HTML-based, documentation set to

assist you with using BEA Jolt 1.1. The Jolt product CD-ROM contains the HTML
version of theJolt User’s Guid.

Figure 2-13 is an example of the Jolt online documentation window. Table 2-2
describes the online documentation browser application components shown in
Figure 2-13.

Figure 2-13 Jolt User’s Guide Online Documentation Window

el

Back

o)

Forvernd

o)

Home

5

73

=

Open

Fif

]

Find

Sty

Locatinn:If\le:f’ffCIfShaleIt."JDItSnapshot.fSmaphtm#io\tbegin.htm j N
‘wihat's Mew? | “wihat's Cool? | Diestinations | NetSealchI People I Softwarel

Fieload

—_

Contents BEA ..l Olttm / 2

Title Page
Copyright

Preface

Purpose of This

Manual . 9 p D [y {
TR = I G "% \i {' 3
Related

3 Manuals

Document
Conventions

o _>I;I

Zx{sg| |Document Done =27

2-26 BEA Jolt User’s Guide

USING THE JOLT ONLINE DOCUMENTATION

Table 2-2 Jolt User's Guide Online Documentation Window Parts

Part

Function

1 Table of Contents

View the online documentation Table of Contents. All topics
are hypertext links. Selecting the topic accesses the
accompanying documentation.

2 Documentation Window

View the online documentation contents.

3 Topic Buttons

Access a subject area by selecting the topic button:
JOLT INTRO - Introduction to the Jolt product and its features.

INSTALL CONFIG - Description of the Jolt installation and
configuration process.

REPOSITORY EDITOR - Instructions for using the Jolt
Repository Editor and Bulk Loader.

CLASS LIBRARY - Instructions for using the Jolt Class
Library.

SYSTEM MESSAGES - Jolt system message reference.

Getting Started with the Documentation

To open the Jolt online documentation, your browser must support:

¢ HTML frame tags
4 HTML table tags

The recommended browsers for use with the Jolt 1.1 HTML documentation release

are:

4 Netscape Navigator 2.02

4 Microsoft Internet Explorer 3.0 or later

BEA Jolt User's Guide 2-27

2

INSTALLING JOLT

Opening the Documentation Files

2-28

Follow these instructions for opening the documentation files with a specific browser

NETSCAPE NAVIGATOR

Using Netscape Navigator, access the documentation using the following instruction
1. From the menu bar of your browser, seféld.

2. From the File menu, sele@pen Filein Browser.

3. From the Open window, locate the directory where you installed your Jolt
documentation files.

4. Select thgoltbegin.htm (NT) or joltbegin.html (UNIX) file and select
Open.
MICROSOFT INTERNET EXPLORER

Using Microsoft Internet Explorer, access the documentation using the following
instructions:

1. From the menu bar of your browser, sel€its.

2. From the File menu, sele@pen.

3. Locate the directory where you installed your Jolt documentation files.
4

. Open the file to th@ltbegin.htm (NT) orjoltbegin.html (UNIX) file.

BEA Jolt User’s Guide

USING THE JOLT ONLINE DOCUMENTATION

Printing the Documentation Files

Follow these instructions for printing the documentation files with a specific browser.

NETSCAPE NAVIGATOR FOR WINDOWS

Using Netscape Navigator for Windows, print the documentation using the following
instructions:

1. Activate the frame you want to print by using the left mouse button to select the
frame.

2. From the File menu, selePrint.

NETSCAPE NAVIGATOR FOR UNIX

Using Netscape Navigator for UNIX, print the documentation using the following
instructions:

1. Activate the frame you want to print by using the left mouse button to select the
frame.

2. From the File menu, selePrint Frame.

3. The Netscape Print window displays. SePrint.

MICROSOFT INTERNET EXPLORER

Using Microsoft Internet Explorer, print the documentation using the following
instructions:

1. Activate the frame you want to print by using the left mouse button to select the
frame.

2. From the menu bar, selePrint.

BEA Jolt User’'s Guide 2-29

2 INSTALLING JOLT

2-30 BEA Jolt User’s Guide

CHAPTER

3

> 4

Configuring the Jolt
System

This chapter explains how to configure Jolt 1.1 and describes the Jolt Internet Relay,
Event Subscription, and security features. Readers of this chapter are assumed to be
system administrators and/or application developers who have experience with the
operating systems and workstation platforms on which they are going to configure
TUXEDO and Jolt.

This chapter includes the following sections:

L4

¢
¢
¢
¢

Using the Jolt Server
Using the Jolt Repository
Event Subscription

Jolt Internet Relay

Using Sample Applications in Jolt Online Resources

BEA Jolt User’'s Guide 3-1

3 CONFIGURING THE JOLT SYSTEM

Using the Jolt Server

The Jolt Server consists of listeners and handlers.

Jolt Server Listener (JSL). The JSL is configured to support clients on an IP/port
combination.The JSL works with the Jolt Server Handler (JSH) to provide client
connectivity to the backend of the Jolt system. The JSL is administered by the same
tools used to manage any resource within a BEA TUXEDO environment.

Jolt Server Handler (JSH). The JSH is a program that runs on a TUXEDO server
machine to provide a network connection point for remote clients. The JSH works with
the JSL to provide client connectivity residing on the backend of the Jolt system.

The system administrator’s responsibilities for the server components of Jolt include
4 Determining server network addresses.

4 Determining the number of Jolt clients to be serviced by one JSH (for example,
if there are 10 clients per JSH and 10 JSHSs, 100 clients can be connected).

4 Determining the minimum and maximum number of JSHSs.

Jolt Internet Relay

3-2

The Jolt Internet Relay is a component that routes messages from a Jolt client to a J¢
or JSH. This alleviates the need for the JSL/JSH and TUXEDO to run on the same
machine as the Web server. The Jolt Relay (JRLY) is not required to be a TUXEDO
server or a TUXEDO client. It is a stand-alone piece of software that routes the Jolt
messages to the JSL or JSH. Refer to the “Jolt Internet Relay” in this chapter.

BEA Jolt User’s Guide

USING THE JOLT SERVER

Security and Encryption

Authentication and key exchange data that are transmitted between Jolt clients and the
JSL/JSH are encrypted using DES encryption. All subsequent exchanges are encrypted
using RC4 encryption. International packages use 40-bit key; domestic packages use
128-bit key.

Programs using the 128-bit encryption cannot be exported outside of the United States;
therefore, clients cannot be outside of the United States. Customers with intranets
extending beyond the United States cannot use this mode of encryption if any internal
clients are outside of the United States.

Starting the Jolt Server

Typetmloadcf andtmboot -y to start all administrative and server processes. (The
prompt only displays when the command is entered with none of the limiting options).
See th TUXEDO System Administration Gu for informationontmloadcf and

tmboot .

Note: TUXEDO monitors the JSL and restarts it in the event of a failure. When
TUXEDO restarts the listener process, the following occurs:

4 Clients attempting a listener connection must try to reconnect. Clients attempting
a handler connection receive a timeout or a time delay.

4 Clients currently connected to a handler are disconnected (JSH exits when its
corresponding JSL exits).

BEA Jolt User's Guide 3-3

3

CONFIGURING THE JOLT SYSTEM

Configuring the Jolt Server

3-4

The Jolt Server Listener (JSL) is a TUXEDO server responsible for distributing
connection requests from Jolt to the J TUXEDO must be running on the host
machine where the JSL and JREPSVR is located.

To configure the JSL, you must modify iUBBCONFI¢file. For information regarding
TUXEDO configuration, refer to tiTUXEDO Administration Guic. Listing 3-1
shows relevant portions of tlUBBCONFI(file.

Listing 3-1 UBBCONFIG File

*MACHINES
MACH1 LMID=SITE1
MAXWSCLIENTS=40
*GROUPS
JSLGRP GRPNO=95 LMID=SITE1
*SERVERS
JSL SRVGRP=JSLGRP SRVID=30 CLOPT=" -- -n 0x0002PPPPNNNNNNNN -d
/dev/tcp -m2 -M4 -x10”

Change the following sections of tbk@BCONFIdile.

Table 3-1 UBBCONFIG File Sections

Section Parameters to be specified
*MACHINE MAXWSCLIENTS

*GROUPS LMID, GRPNO

*SERVERS SRVGRPSRVID, CLOPT

The parameters shown in Table 3-1 are the only parameters that should be designat
for the Jolt Server groups and Jolt Servers. You do not need to specify any other
parameters.

BEA Jolt User’s Guide

USING THE JOLT SERVER

Note: Ensure that Resource Managers are not assigned as a default value for all
groups in the *GROUPS section of yauBBCONFIHile. This will assign a
Resource Manager to the JSL and you will receive an error duttigt . In
the *SERVERS section, default values for RESTART, MAXGEN, etc., are
acceptable defaults for the JSL.

*MACHINES Section

The MAXWSCLIENT$arameter is required in the *MACHINES section for the
configuration file and applies to specific machines. The Jolt Server and /WS use
MAXWSCLIENTS1 the same wayMAXWSCLIENTSommunicates the number of

accesser slots to reserve for Jolt and /WS clients to TUXEDO. For example, if 200 slots
are configured foMAXWSCLIENTSthis number configures TUXEDO for the total
number of remote clients used by Jolt and /WS.

SpecifyMAXWSCLIENT® the configuration file. If it is not specified, the default is 0.

*GROUPS Section

A *GROUPS entry is required for the group that includes the Jolt Server Listener
(JSL). The group name is selected by the application.

1. Specify the same identifiers given as the value ofthB parameter in the
*MACHINES section.

2. Specify the value of theRPNetween 1 and 30,000 in the *GROUPS section.

*SERVERS Section

Clients connect to Jolt applications through the JSL. Services are accessed through the
Jolt Server Handler (JSH). The JSL supports multiple clients and acts as a single point
of contact for all the clients to connect to the application at the network address that is
specified on the JSL command line. The JSL schedules work for handler processes. A
handler process acts as a substitute for clients on remote workstations within the
administrative domain of the application. The handler uses a multiplexing scheme to
support the multiple clients concurrently.

The network address specified for the JSL designates a TCP/IP address for both the
JSL and any JSH processes associated with that JSL. The port number identified by the
network address specifies the port number on which the JSL accepts new client

BEA Jolt User's Guide 3-5

3 CONFIGURING THE JOLT SYSTEM

connections. Each JSH associated with the JSL uses consecutive port numbers at t
same TCP/IP address. For example, if the initial port number is 8000 and there are |
maximum of three JSH processes, the JSH processes use ports 8001, 8002, and 8(

Note: Port numbers used by the JSHs are sequentially incremented by one numers
digit after the JSL port number. If JSL is using port number 8000, its JSHs use
8001, and so on. Misconfiguration of the subsequent JSL results in a port
number collision.

Each handler uses a multiplexing scheme on its designated port to support multiple
clients concurrently on one port.

TUXEDO parameters including RESTART, RQADDR, and REPLYQ can be used
with the JSL. See ttTUXEDO Administration Guic for additional information
regarding run-time parameters. Enter the following parameters:

1. To identify theSRVGR parameter, type the previously defined group name value
from the *GROUPS section.

2. To indicate thesRVID, type anumber between 1 and 30,000 that identifies the
server within its group.

3. Verify that the syntax for the CLOPT parameter is as follows:
CLOPT= “-- -n 0x0002PPPPNNNNNNNN -d /dev/tcp -m2 -M4 -x10”

Note: The CLOPT parameters may vary. Refer to Table 3-2 for pertinent
command-line information.

4. If necessary, type the optional parameters:

¢ Type theSEQUENC parameter to determine the order that the servers are
booted.

SpecifyY to permit release of ttRESTAR parameter.

Typeo0 to permit an infinite number of server restarts usin(GRAC :
parameter.

3-6 BEA Jolt User’s Guide

USING THE JOLT SERVER

Table 3-2 Command Line Options

Command Line Option

Description

[-c connection_mode

[-d device_name]

[-H external netaddr

[l init-timeout

[-m minh]

[-M maxh]

]

]

]

Allowed connection modes from clients:

RETAINED - the network connection is retained for the full
duration of a session.

RECONNECT - the client establishes and brings down a
connection when an idle timeout is reached, reconnecting for
multiple requests within a session.

ANY - the server allows a client to request either a
RETAINED or RECONNECT type of connection for a
session. Default is ANY. (Optional)

The device for platforms using the Transport Layer Interface.
There is no default. (Required; optional for sockets)

The external netaddr is the network address Jolt clients use to
connect to the application. The JSL process uses this address
to listen for clients attempting to connect at this address. If
the address i0x0002MMMMdddddddc and JSH network
address i10x00021 11 1ffffffff , the known network
address i0x00021111dddd dddd . If the address starts

with "//" network address, the type is IP based and the
TCP/IP port number of JSH network address is copied into
the address to form the combined network address. (Optional
for JSL in TUXEDO 6.3)

The time (in seconds) that a Jolt client is allowed to complete
initialization through the JSH before it is timed out by the
JSL. Default is 60 seconds. (Optional)

The minimum number of JSHs that are available in
conjunction with the JSL at one time. The range of this
parameter is between 0 and 255. Default is 0. (Optional)

The maximum number of JSHs that are available in
conjunction with the JSL at one time. The range of this
parameter is between 1 and 4096. If this option is not
specified, the parameter defaultMAXWSCLIENT divided
by the rounded-u-x multiplexing factor. (Optional)

BEA Jolt User's Guide 3-7

3 CONFIGURING THE JOLT SYSTEM

3-8

Table 3-2 Command Line Options

Command Line Option

Description

-n netaddr
(TUXEDO 6.1 and 6.2)

-n netaddr
(for TUXEDO 6.3)

BEA Jolt User’s Guide

Network address used by the Jolt Listener for Jolt 1.1 with
TUXEDO 6.1 and 6.2.

Indicate the network address where the clients connect to the
JSL. This is a required parameter and is the contact point
used by Java workstation clients to access the application.

The port number identified by the network address specifies
the port number on which the JSL accepts new client
connections. Each JSH associated with the JSL uses
consecutive port numbers at the same TCP/IP address.

The network address is composed of 1) an initial two digits
indicating hexadecimal characters, followed by three groups
of numbers indicating 2) protocol, 3) port number, and 4) IP
address.

For exampleOx 0002 PPPP NNNNNNNN
There is no default. (Required)

Network address used by the Jolt listener for Jolt 1.1 with
TUXEDO 6.3.

TCP/IP addresses may be specified in the following forms:

"/lhost.name:port_number"
"I[#.# #.#:port_number"

In the first format, the domain finds an address for hostname
using the local name resolution facilities (usually DNS).
Hostname must be the local machine, and the local name
resolution facilities must unambiguously resolve hostname
to the address of the local machine.

In the second example, the “#.#.#.#" is in dotted decimal
format. In dotted decimal format, each # should be a number
from O to 255. This dotted decimal number represents the IP
address of the local machine.

USING THE JOLT SERVER

Table 3-2 Command Line Options

Command Line Option

Description

[T Client-timeout

[w JSH

[-x mpx-factor

[-Z 40]128]

]

]

In both of the above formatgort_number isthe TCP port
number at which the domain process will listen for incoming
requestsport_number can either be a number between 0
and 65535 or a name.

If port_number is a name, then it must be found in the
network services database on your local machine. The
address can also be specified in hexadecimal format when
preceded by the characters “0x”. Each character after the
initial “0x” is a number between 0 and 9 or a letter between
A and F (case insensitive). The hexadecimal format is useful
for arbitrary binary network addresses such as IPX/SPX or
TCP/IP.

There is no default. (Required)

The time (in minutes) allowed for a client to stay idle. If a
client does not make any requests during this time, the JSH
disconnects the client and the session is terminated. If an
argument is not supplied, the session does not timeout.

When thec ANY or-c RECONNECToption is used,
always specifyT with an idle timeout value. HT is not
specified and the connection is suspended, JSH does not
automatically terminate the session. The session never
terminates if a client abnormally ends the session.

If a parameter is not specified, the default is no timeout.
(Optional)

The Jolt Server Handler is indicated by this command line
option. Default is JSH. (Optional)

A parameter used to control the degree of multiplexing
within each JSH process. This is the number of clients that
one JSH can service. Default value is 10. (Optional)

When establishing a network link between a Jolt client and
the JSH, allow encryption up to this level. 40 and 128 specify
the length (in bits) of the encryption key. The default value
is 0.

BEA Jolt User's Guide 3-9

3 CONFIGURING THE JOLT SYSTEM

Shutting Down the Jolt Server

All shutdown requests to the Jolt servers are initiated by the TUXEDO command,
tmshutdown -y . During shutdown:

4 No new client connections are accepted.

4 All current client connections are terminated. TUXEDO will rollback in-flight
transactions. Each client receives an error message indicating that the service is
unavailable.

Using the Jolt Repository

The Jolt Repository contains TUXEDO service definitions that allow the Jolt clients to
access TUXEDO services. The Jolt Repository files included with the installation
contain services definitions used internally by Jolt. See Chapter 5, “Using the Jolt
Repository Editor,” for detailed instructions on how to add definitions to the
application services.

3-10 BEA Jolt User’'s Guide

USING THE JOLT REPOSITORY

Configuring the Jolt Repository

To configure the Jolt Repository, modify the applicaUBBCONFI¢ file. The

UBBCONFI(file is an ASCII version of the TUXEDO configuration file. Create a new
UBBCONFI(file for each application. See tTUXEDO Reference Mant for

information regarding the syntax of the entries for the file. Listing 3-2 shows relevant
portions of theUBBCONFI(file.

Listing 3-2 Sample of UBBCONFIG File

*GROUPS

JREPGRP GRPNO=94 LMID=SITE1

*SERVERS

JREPSVR SRVGRP=JREPGRP SRVID=98

RESTART=Y GRACE=0 CLOPT="-A -- -W -P /app/jrepository"

JREPSVR SRVGRP=JREPGRP SRVID=97

RESTART=Y RQADDR=JREPQ GRACE=0 CLOPT="-A -- -P /app/jrepository"
JREPSVR SRVGRP=JREPGRP SRVID=96

RESTART=Y RQADDR=JREPQ REPLYQ=Y GRACE=0 CLOPT="-A -- -P
lappl/jrepository"

Note: For UNIX systems, use the slagh (hen setting the path to thepository
file. For NT systems, use the backslashand specify the drive name (e.g.,
c:\app\repository).

Change the following sections of th@BCONFIdile:

Table 3-3 UBBCONFIG File

Section Parameters to be specified
*GROUPS LMID, GRPNO
*SERVERS SRVGRP, SRVID

BEA Jolt User’'s Guide 3-11

3 CONFIGURING THE JOLT SYSTEM

*GROUPS Section

A *GROUPS entry is required for the group that includes the Jolt Repository. The
group name parameter is a name selected by the application.

1. Specify the same identifiers given as the value ofith® parameter in the
*MACHINES section.

2. Specify the value of theRPNdetween 1 and 30,000 in the *GROUPS section.

*SERVERS Section

The Jolt Repository serveIREPSVR contains services for access and editing the
Repository. MultipleJREPSVRnstances share repository information through a shared
file. IncludeJREPSVRIn the *SERVERS section of th¢eBBCONFIdile.

1. Indicate a new server identification (egg) with theSRVID parameter.

2. Specify thew flag for one JREPSVR to ensure that you can edit the Repository.
The Repository is read-only without this flag.

Note: You must install only one writable JREPSVR (i.e., only one JREPSVR
with the-w flag). Multiple read-only JREPSVRs may be installed on the
same host.

3. Type theP flag to specify the path of the repository file. An error message
displays in the TUXEDQLOGfile if the argument for theP flag is not entered.

4. Add the file pathname of the Repository file (eapp/jrepository).

5. Boot the TUXEDO system using theloadcf command (e.gtmloadcf -y
ubbconfig) andtmboot command. See tHEUXEDO Administration Guidfor
information ontmloadcf ~andtmboot .

Repository File

3-12

A Repository filejrepository , is available with Jolt 1.1. This file includiesnkapp
services and the Repository services that you can modify, test, and delete using the
Repository Editor.

Start with thgrepository file provided with the installation, even if you are not
going to test théankapp application with Jolt. Delete thenkapp packages or
services that are not needed.

BEA Jolt User’s Guide

USING THE JOLT REPOSITORY

The pathname of the file must match the argument c-P option.

@ Warning: Do not modify the Repository files manually or you will not be able to use

the Repository Editor. Although tljrepository file can be modified

and read with any text editor, the Jolt system does not have integrity
checks to ensure that the file is in the proper format. Any manual changes
to thejrepository file may not be detected until runtime. See “Using

the Jolt Repository Editor” for additional information.

Initializing Services Using TUXEDO and the Repository

Editor

You must initially define the TUXEDO services using TUXEDO and Jolt in order to
make the Jolt services available to the client.

1. Build the TUXEDO server containing the service. SeeTUXEDO
Administration Guid or TUXEDO Programmer’s Guidfor additional
information on the following:

¢
¢
¢
¢

Building the TUXEDO applications/server
Editing theUBBCONFI(file
Updating theTUXCONFIC file

Administering thetmboot command

2. Access the Jolt Repository Editor. See ChapteUsing the Jolt Repository
Editor,” in this book for additional information on the following:

L4

¢
¢
¢

“Adding a Service”
“Saving Your Work”
“Testing a Service”

“Exporting/Unexporting Services”

BEA Jolt User's Guide 3-13

3 CONFIGURING THE JOLT SYSTEM

Event Subscription

Jolt Event Subscription is used to receive event notifications from either TUXEDO
services or other TUXEDO clients:

Unsolicited Event Notifications These are natifications that a Jolt client receives as
a result of a TUXEDO client or service subscribing to unsolicited events, and a
TUXEDO client issuing broadcast (using eithep@oadcast() or a directly

targeted message viapaotify() ATMI call).

Brokered Event Notifications. These notifications are received by a Jolt client via the
TUXEDO Event Broker. The notifications are only received when both Jolt clients
subscribes to an event and any TUXEDO client or server issues system posted evel
or atppost() call.

Configuration

3-14

Configure the TUXEDO TMUSREVT server and modify the applicatiBBCONFIG
file. Listing 3-3 shows the relevant portions TMUSREVT parameters in the
UBBCONFIdile. See th&UXEDO Programmer’s Guid®r information regarding the
syntax of the entries for the file.

Listing 3-3 UBBCONFIG File

TMUSREVT SRVGRP=EVBGRP1 SRVID=40 GRACE=3600
ENVFILE="/usr/tuxedo/bankapp/TMUSREVT.ENV"
CLOPT="-e tmusrevt.out -0 tmusrevt.out -A --

-f Jusrituxedo/bankapp/tmusrevt.dat”
SEQUENCE=11

BEA Jolt User’s Guide

EVENT SUBSCRIPTION

Change the following sections of th@BCONFIdile:

Table 3-4 UBBCONFIG File

Section Parameters to be specified

*SERVERS SRVGRP, SRVID

Filtering TUXEDO FML or VIEW Buffers

“Filtering” is a process that allows you to customize a subscription. If you require
additional information about the TUXEDO Event Broker, subscribing to events, or
filtering, refer to theBEA TUXEDO Programmer’s Guide, Volume 1

In order to filter TUXEDO FML or VIEW buffers, the field definition file must be
available to TUXEDO at runtime.

Note: There are no special requirements for filtering STRING buffers.

FML BUFFER EXAMPLE

Listing 3-4 shows an example using the FML buffer. The FML field definition table is
made available to TUXEDO by setting the FIELDTBLS and FLDTBLDIR variables.

To filter a field found in theny.fids file:

1. Copy thamy.flds file to/usr/me/bankapp directory.

2. Addmy.flds tothe FIELDTBLS variable in theMUSREVT.ENYfile as shown in
Listing 3-4:

Listing 3-4 FIELDTBLS Variable in the TMUSREVT.ENV File

FIELDTBLS=Usysflds,bank.flds,credit.flds,event.flds,my.flds
FLDTBLDIR=/usr/tuxedo/me/T6.2/udataobj:/usr/me/bankapp

BEA Jolt User’'s Guide 3-15

3 CONFIGURING THE JOLT SYSTEM

If ENVFILE="/usr/me/bankapp/TMUSREVT.ENV" is included in the definition of the
UBBCONFIdile (shown in Listing 3-3), the FIELDTBLS and FLDTBLDIR definitions
are taken from the TMUSREVT.ENYV file and not from your environment variable
settings.

If you remove theENVFILE="/usr/me/bankapp/TMUSREVT.ENV" definition, the
FIELDTBLS and FLDTBLDIR definitions are taken from your environment variable
settings. The FIELDTBLS and FLDTBLDIR definitions must be set to the appropriate
value prior to booting the TUXEDO system.

For additional information on event subscriptions and the Jolt Class Library, refer to
Chapter 6, “Using the Jolt Class Library.”

Jolt Internet Relay

3-16

The Jolt Internet Relay is a component that routes messages from a Jolt client to a J¢
or JSH. This eliminates the need for the JSH and TUXEDO to run on the same machir
as the Web server (generally considered as insecure). The Jolt Relay (JRLY) is not
TUXEDO server or a TUXEDO client. It is a stand-alone program that routes the Jolt
messages from the Internet to the JSL or JSH

The Jolt Internet Relay consists of two components illustrated in Figure 3-1.

4 Jolt Relay (JRLY). The JRLY is not a TUXEDO client or server. It is a
stand-alone software component. It requires only minimal configuration to allow
it to work with Jolt clients.

4 Jolt Relay Adapter (JRAD). The JRAD is a TUXEDO application server, but
does not include any TUXEDO services. It requires command line arguments to
allow it to work with the JSL and the TUXEDO system.

Note: The Jolt relay is transparent to Jolt clients and Jolt servers. A Jolt server can
simultaneously connect clients directly to the Jolt Server (intranet clients), or
via the Jolt Relay (Internet clients).

BEA Jolt User’s Guide

JOLT INTERNET RELAY

Figure 3-1 Jolt Internet Relay Path

firewall

browser

Web server
software

Insecure
environment

TUXEDO
=» JRAD

Secure
environment

Figure 3-1 shows how a browser connects to the Web server software and downloads
the Jolt applets. The Jolt applet or client connects to the JRLY on the Web server
machine. The JRLY forwards the Jolt messages across the firewall to the JRAD. The
JRAD selectively forwards messages to the JSL or appropriate JSH.

BEA Jolt User’'s Guide 3-17

3 CONFIGURING THE JOLT SYSTEM

Jolt Relay (JRLY)

The JRLY (front-end relay) process may be started before or after the JRAD is startec
If the JRAD is not available when the JRLY is started, the JRLY attempts to connect
to the JRAD when it receives a client request. If JRLY is unable to connect to the
JRAD, the client is denied access and is disconnected. A warning is written to the
JRLY error log file.

Starting the JRLY

The JRLY process is started by typing the command name at a system prompt.
jrly -f <config_file_path>

If the configuration file does not exist or cannot be opened, the JRLY prints an error
message. Refer to Appendix B for the Jolt Relay messages.

If the JRLY is unable to start, it writes a message to standard error and attempts to lo
the startup failure in the error log if possible, then exit.

JRLY Configuration File

3-18

The format of the configuration file is a TAG=VALUE format. Blank lines or lines
starting with a #” are ignored. Refer to Listing 3-5 for an example of the formal
specifications of the configuration file.

Listing 3-5 Specification of Configuration File

LOGDIR=<LOG_DIRECTORY_PATH>
ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>
ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>
LISTEN=<IP:Port combination where JRLY will accept connections>
CONNECT=<IP:Port combination associated with JRAD

BEA Jolt User’s Guide

JOLT INTERNET RELAY

Refer to Listing 3-6 for an example of the JRLY configuration file. The CONNECT
line specifies the IP address and port number of JRAD machine.

Listing 3-6 Example of JRLY Configuration File

LOGDIR=/usr/log/relay
ACCESS_LOG-=access_log
ERROR_LOG=errorlog

jrly will listen on port 4444
LISTEN=200.100.10.100:4444
CONNECT=200.100.20.200:4444

The format for directory and file names is determined by the operating system. UNIX
systems use the forward slash (/). NT systems use the backslash (\). If any of the files
specified in LOGDIR, ACCESS_LOG or ERROR_LOG cannot be opened for writing,
the JRLY prints an error messagestderr and exits.

The format for host names and port numbers are shown in Table 3-5.

Table 3-5 Host Name and Port Number Formats

Host Name/Port Number Descriptions

Hostname:Port Hostname is a stringPort is a decimal number

/[Hostname:Port Hostname is a stringPort is a decimal number

IP:Port IP is a dotted notation IP addreBgyt is a decimal
number

BEA Jolt User’'s Guide 3-19

3 CONFIGURING THE JOLT SYSTEM

Jolt Relay Adapter (JRAD)

The JRAD (back-end relay) is a TUXEDO system server. The JRAD server may or
may not be located on the same TUXEDO host machine (in SHM mode) and server
group that the JSL server it is connected to.

The JRAD can be started independently of its associated JRLY. JRAD tracks its
startup and shutdown activity in the TUXEDO log file.

Starting the JRAD

Typetmloadcf andtmboot to start the JRAD.

Configuration entry in the UBBCONFIG is described in the “JRAD Configuration”
section.

JRAD Configuration

3-20

A single JRAD process can only be connected to a single JRLY. A JRAD can only be
configured to communicate with one JSL and its associated JSHs. However, multipls
JRADs can be configured to communicate with one JSL. The CLOPT parameter for
the TUXEDO servers must be included in ti#8BCONFIdile. For additional

information about the CLOPT parameters, refer to Table 3-2 and Table 3-6.

Table 3-6 JRAD CLOPT Parameter Descriptions

CLOPT Parameter Description

-I <hexadecimal format> Port to listen for the JRLY to connect
on behalf of the client.

-¢ <hexadecimal format> Theaddress of the corresponding
JSL to which JRAD connects.

Note: The format iSOx0002PPPPNNN Refer to thelolt 1.1 Release Notésr
additional information on JRAD.

BEA Jolt User’s Guide

JOLT INTERNET RELAY

Listing 3-7 shows the sample UBBCONFIG file.

Listing 3-7 Sample JRAD Entry in UBBCONFIG File

JRAD host 200.100.100.10 listens at port 2000, connects to JSL
port 8000 on the same host

JRAD SRVGRP=JSLGRP SRVID=60
CLOPT="-A -- -] 0x000207D0C864640A —c 0x00021f40C864640A"

Network Address Configurations

There are several networked components that need to be configured to work together
when configuring a Jolt Internet Relay. Prior to configuration, review the criteria
required in Table 3-7 and record the information. This will help minimize the
possibility of misconfiguration.

Table 3-7 Jolt Internet Relay Network Address Configuration Criteria

JRLY JRAD JSL

LISTEN: <Location where the -I: <Location of where the -n: <Location of JSL. Must
clients connect> listener connects the JRLY> match -c parameter of JRAD>
CONNECT: <Location of your -c: <Location of JSL. Must

JRAD. Must match the -I match -n parameter of JSL>

parameter of JRAD>

BEA Jolt User’'s Guide 3-21

3 CONFIGURING THE JOLT SYSTEM

Using Sample Applications in Jolt Online
Resources

You can access sample code that can be modified for use with BEA Jolt through the
BEA Jolt product Web page at:

http://lwww.beasys.com/products/jolt/index.htm

These samples demonstrate and utilize Jolt features and functionality.
Other Web sites with Java-related information include:

4 Javasoft Home Pagetip://iwww.javasoft.com/)

4 Deja News Home Pagat(p://www.dejanews.com/), an archive of
Java-related newsgroups

¢ Java Programmers FAQt{p://www.best.com/~pvdl/javafaq.txt)

4 In addition, the newsgroups in the comp.lang.java hierarchy contain lists of past
articles and communications regarding Java, and is a valuable source of archiva
material.

3-22 BEA Jolt User’'s Guide

CHAPTER (
4 Bulk Loading TUXEDO

Services

This section covers the following topics:
4 Introduction to the Bulk Loader

4 Getting Started Using the Bulk Loader
4 Syntax of the Bulk Loader Data Files
4 Troubleshooting

4 Sample Bulk Load Data

Introduction to the Bulk Loader

As a systems administrator, you may have an existing TUXEDO application with
multiple TUXEDO services. Manually creating these definitions to the repository
database may take hours to complete.

Using the progranijbld , the bulk loader utility reads the specified text file consisting
of the TUXEDO service definitions and bulk loads them into the Jolt repository. The
services are loaded to the repository database in one “bulk load.” After the services
have populated the Jolt Repository, you may edit services, create new services, and
group services using the Jolt Repository Editor.

See Chapter 5Using the Jolt Repository Edii,” for information about using the Jolt
Repository Editor.

BEA Jolt User’'s Guide 4-1

4 BULK LOADING TUXEDOQO SERVICES

Getting Started Using the Bulk Loader

Sincejbld is a Java application, before running tle command, set the
CLASSPATHenvironment variable (or its equivalent) to point to the directory where the
Jolt class directory (e.dgapt/bealjolt/classes) is located. Ifitis not set, the Java
Virtual Machine cannot locate any Jolt classes.

For security reasonghld does not use command-line arguments to specify user
authentication information (user password or application password). Depending on thi
server's security levejpld will automatically prompt the user for passwords.

The bulk loader utility gets its input from command-line arguments and from the input
file.

Using UNIX

To activate the bulk loader using UNIX:

1. Type the following at the prompt:
setenv CLASSPATH <pathname>

java bea.joltadm.jbld [-n] [-u usrname] [-r usrrole]
<//host:port inputfile>

2. Type your user password and application password, if required.

Using Windows NT

1. To activate the bulk loader using Windows NT, type:
C:\> set CLASSPATH=C:<pathname>

C:\> java bea.jolt.jbld [-n][-u usrname] [-r usrrole]
<//host:port> <filename>

2. Type your user password and application password (if required) ancEptess

4-2 BEA Jolt User’s Guide

GETTING STARTED USING THE BULK LOADER

Command Line Options

Table 4-1 describes the bulk loader command-line options.

Table 4-1 Command Line Options

Option Description

-u usrname Specifies the user name (default is your account
name). (Mandatory if required by security)

-r usrrole Specifies the user role (default is admin). (Mandatory
if required by security)

-n Validates input file against the current repository; no
updates are made to the repository. (Optional)

/Ihost:port Specifies the JRLY or JSL address (host name and IP
port number). (Mandatory)

filename Specifies the file containing the service definitions.
(Mandatory)

About the Bulk Load File

The bulk load file is a text file that defines services and their associated parameters.
The bulk loader loads the services defined in the bulk loader file into the repository
using the package name, “BULKPKG.” If a bulk load has been performed, the
“BULKPKG” package exists in the repository. If another load is performed from a
bulk loader file, all the services in the original “BULKPKG” are deleted. A new
“BULKPKG” package is created with the services from the new bulk loader file.

If a service exists in a package other than “BULKPKG,” the bulk loader reports the
conflict and does not load a service from the bulk loader file into the repository. Use
the Repository Editor to remove duplicate services and load the bulk loader file again.
See Chapter 5Using the Jolt Repository Edit,” for additional information.

BEA Jolt User's Guide 4-3

4 BULK LOADING TUXEDOQO SERVICES

Syntax of the Bulk Loader Data Files

Each service definition consists of services properties and parameters that have a s
number of parameter properties. Each property is represented by a keyword and a
value.

Keywords are divided into two levels:
4 Service-level

4 Parameter-level

Guidelines for Using Keywords

Thejbld reads the service definitions from a text file. While using the keywords,
follow the guidelines in Table 4-2.

Table 4-2 Guidelines for Using Keywords

Guideline Example

Each keyword must be followed Correct: type=string

by an equal sign (=) and the |hcorrect: type
value.

Only one keyword is allowed on Correct: type=string
each line. Incorrect: type=string access=out

Any lines not having an equal Correct: type=string
sign (=) are ignored. Incorrect: type string

Certain keywords only accept a The keywordaccessaccepts these valués; out,
well defined set of values. inout, noaccess

4-4 BEA Jolt User’s Guide

SYNTAX OF THE BULK LOADER DATA FILES

Table 4-2 Guidelines for Using Keywords

Guideline Example
The input file may contain service=INQUIRY
multiple service definitions. <service keywords and values>

service=DEPOSIT

<service keywords and values>
service=WITHDRAWAL
<service keywords and values>
service=TRANSFER

<service keywords and values>

Each service definition consists service=deposit

of multiple keywords and export=true

values. inbuf=VIEW32
outbuf=VIEW32
inview=INVIEW

outview=0OUTVIEW

Keyword Order in the Bulk Loader Data File

Keyword order must be maintained within the data files to ensure an error-free transfer
during the bulk load.

The first keyword definition in the bulk loader data text file must be the initial
service=<NAME> keyword definition (shown in Listing 4-1). Following the
service=<NAME> keyword, all of the remaining service keywords that apply to the
named service must be specified before thegistm=<NAME>definition. These
remaining service keywords can be in any order. Refer to Table 4-3 for a list of the
service keywords and values.

Next, specify all the parameters associated with the service. Following each of the
param=<NAME>keywords are all the parameter keywords that apply to the named
parameter until the next occurrence of a parameter definition. These remaining
parameter keywords can be in any order. When all the parameters associated with the
first service are defined, specify a negwice=<NAME> keyword definition.

BEA Jolt User's Guide 4-5

4 BULK LOADING TUXEDOQO SERVICES

Listing 4-1 Correct Example of Hierarchical Order in a Data File

service =<NAME>

<service keyword>=<value>
<service keyword>=<value>
<service keyword>=<value>
param =<NAME>

<parameter keyword>=<value>
<parameter keyword>=<value>
param =<NAME>

<parameter keyword>=<value>
<parameter keyword>=<value>

Using Service-Level Keywords and Values

4-6

A service definition must begin with the “service=" keyword. For more information
about services, see Chapter 5, “Using the Jolt Repository Editor.”

Note: Services using CARRAY or STRING buffer types should only have one
parameter in the service. The recommended parameter name for a CARRAY
service is “CARRAY” with “carray” as the data type. For a STRING service,
the recommended parameter name is “STRING” with “string” as the data type.
See Chapter 5, “Using the Jolt Repository Editor,” for more information.

BEA Jolt User’s Guide

SYNTAX OF THE BULK LOADER DATA FILES

To review the service-level keywords and values, see Table 4-3.

Table 4-3 Service Keywords and Values

Keyword Value
service Any TUXEDO service name
export true or false (default is false)
inbuf/outbuf Select one of these buffer types:
FML
FML32
VIEW
VIEW32
STRING
CARRAY
inview Any view name for input parameters (optional; only
if VIEW or VIEW32 buffer type is used)
outview Any view name for output parameters (optional)

BEA Jolt User’'s Guide 4-7

4 BULK LOADING TUXEDOQO SERVICES

Using Parameter-Level Keywords and Values

A parameter begins with the “param="keyword followed by a number of parameter
keywords until another “param” or “service” keyword, or end-of-file is encountered.
The parameters can be in any order after the “param” keyword.

See Chapter 5, “Using the Jolt Repository Editor,” for more information about
parameters.

To review the parameter-level keywords and values, see Table 4-4.

Table 4-4 Parameter Keywords and Values

Keyword Values

param Any parameter name

type byte
short
integer
float
double
string
carray

access in
out
inout
noaccess

count Maximum number of occurrences (default is 1). The
value for unlimited occurrences is 0. Used only by the
Repository Editor to format test screens.

4-8 BEA Jolt User’s Guide

TROUBLESHOOTING

Troubleshooting

If you encounter any problems using the bulk loader utility, see Table 4-5. For a
complete list of bulk loader utility error messages and solutions, see Appendix B,
“System Messages.”

Table 4-5 Bulk Loader Troubleshooting Table

If... Then . ..
the data file is not found check to ensure that the path is correct
the keyword is invalid check to ensure that the keyword is valid for

the package, service, or parameter

the value of the keyword is null type a value for the keyword

the value is invalid check to ensure that the value of a parameter
is within the allocated range

the data type is invalid check to ensure that the parameter is using a
valid data type

BEA Jolt User’'s Guide 4-9

4 BULK LOADING TUXEDOQO SERVICES

Sample Bulk Load Data

Listing 4-2 shows a sample data file in the correct format using the following UNIX
commandcat servicefile . This example loads TRANSFER and PAYROLL
service definitions to the BULKPKG.

Listing 4-2 Sample Bulk Load Data

service=TRANSFER
export=true
inbuf=FML
outbuf=FML
param=ACCOUNT_ID
type=integer
access=in

count=2
param=SAMOUNT
type=string
access=in
param=SBALANCE
type=string
access=out

count=2
param=STATLIN
type=string
access=out

service=LOGIN
inbuf=VIEW
inview=LOGINS
outview=LOGINR
export=true
param=user
type=string
access=in
param=passwd
type=string

4-10 BEA Jolt User’'s Guide

SAMPLE BULK LOAD DATA

access=in
param=token
type=integer
access=out

service=PAYROLL
inbuf=FML
outbuf=FML
param=EMPLOYEE_NUM
type=integer
access=in
param=SALARY
type=float
access=inout
param=HIRE_DATE
type=string
access=inout

BEA Jolt User’'s Guide 4-11

4 BULK LOADING TUXEDOQO SERVICES

4-12 BEA Jolt User’'s Guide

CHAPTER

5

> 4
Using the Jolt

Repository Editor

Use the Jolt Repository Editor to add, modify, test, export, and delete TUXEDO
service definitions from the Repository based on the information available from the
TUXEDO configuration file. The Jolt Repository Editor accepts TUXEDO service
definitions, including the names of the packages, services, and parameters.

This chapter gives detailed information on the following areas:
Introduction to the Repository Editor

Getting Started

Main Components of the Repository Editor

Setting Up Packages and Services

Grouping Services Using the Package Organizer
Modifying Packages/Services/Parameters

Making a Service Available to the Jolt Client

Testing a Service

* & & S & & > o o

Troubleshooting

BEA Jolt User’'s Guide 5-1

5 USING THE JOLT REPOSITORY EDITOR

Introduction to the Repository Editor

5-2

The Repository is used internally by Jolt to translate Java parameters to a TUXEDO
type buffer. The Repository Editor is available as a downloadable Java applet. Whel
a TUXEDO service is added to the repository, it must be exported to the Jolt server t
ensure that the client requests can be made from a Jolt client.

The following list describes each section in this chapter:

4 “Getting Started” for information about starting the Repository Editor, logging
on, and exiting the system.

4 “Main Components of the Repository Editor” for information about what
comprises a package, service, and parameter.

4 “Setting Up Packages and Services” for information about creating packages,
services, and parameters.

4 “Grouping Services Using the Package Organizer” for information about moving
services between packages and organizing the services.

¢ “Modifying Packages/Services/Parameters” for information about editing and
deleting packages, services, and parameters.

4 “Making a Service Available to the Jolt Client” for information about exporting
and unexporting services and making the services available for use.

4 “Testing a Service” for information about testing a service and its parameters.

4 “Troubleshooting” for information about potential problems and solutions when
using the Repository Editor.

BEA Jolt User’s Guide

INTRODUCTION TO THE REPOSITORY EDITOR

Repository Editor Window

Repository Editor windows contain entry fields, scrollable displays, command buttons,
status, and radio buttorFigure 5-1 illustrates the parts of a sample window.

Figure 5-1 Sample Repository Editor Window

fﬂ applet vilewer: bea_|olt.REclass L

Hpe Let.

Edit Services

1 —| Editing existing service in package: BANKAPP
Serce TNarm [T HORAWAL Farameters
2 gt Buder e AL | FORMMANM
. ————— | SAMOUNT
Input Wiew Name STATLIM
Output EiufferTypE{ FrAL - ACCOUNT_ID
SBALANCE

Output igw Namel \

Current Status: EXFORTED Pararmeter lewvel actions
4 — Service lewvel actions MNew Parameter...
[Delete Parameter |

— Sawe Service | Test| Back
Tfr-pplet started. | | |

BEA Jolt User's Guide 5-3

5 USING THE JOLT REPOSITORY EDITOR

Repository Editor Window Description

Table 5-1 details the parts of the Repository Editor window example in Figure 5-1.

Table 5-1 Repository Editor Window Parts

Part Function

1 entry fields Enter text, numbers, or alphanumeric characters such as service
names, server names, or port numbers.

2 scrollable display View lists that extend beyond the display using a button.

3 display list Select from a list of predefined items such as the Parameters list
or select from a list of items that have been defined.

4 command buttons Activate an operation such as display the Packages window,
Services window, or Package Organizer.

5 status View the current status of the Repository Editor service or
package.
6 radio buttongnot Select one of a number of options. Only one of the buttons can

illustrated in Figure 5-1) | be activated at a time.

5-4 BEA Jolt User’s Guide

GETTING STARTED

Getting Started

Before starting the Repository Editor, make sure that you have installed all necessary
Jolt software. To use the Repository Editor, you must:

4 Start the Repository Editor
4 Log on to the Repository Editor

Note: For information on exiting the Repository Editor when you are finished
inputting information, refer to “Exiting the Repository Editor” in this chapter.

Start the Repository Editor from either the JavaSgftetviewer or from your Web
browser.

Starting the Repository Editor Using appletviewer

To start the editor using the JavaSafipletviewer
1. Set theCLASSPATHO include the Jolt class directory.

2. Ifloading the applet from a local disk, type the following at the URL location:
appletviewer <full-pathname>/RE.html

If loading the applet from the Web server, type the following at the URL
location:

appletviewer http://<www.server>/<URL path>/RE.html

3. PresEnter. The Repository Editor logon window displays.

BEA Jolt User's Guide 5-5

5 USING THE JOLT REPOSITORY EDITOR

Starting the Repository Editor Using Your Web Browser

To start the Repository Editor from a local file:

1.
2.

Set theCLASSPATI to include the Jolt class directory.

Type the following:

file:<full-pathname>/RE.html

To start the Repository Editor from a Web server:

1.
2.
3.

Ensure that thCLASSPATI does not include the Jolt class directory
Unset theCLASSPATIA

Type the following:
http://<www.server>/<URL path>/RE.html

Note: Modify theapplet codebase parameter iIRE.html to match your Jolt
Java classes directory.

Pres<Enter. The Repository Editor logon window displays.

Logging on to the Repository Editor

5-6

After starting the Jolt Repository Editor, follow the directions to log on:

1.

Type the name of the server machine designated as the “access point” to the
TUXEDO application and select the port number text field.

. Type the port number and preEnter. The system validates the server and port

information.

Note: Unless you are logging on through the Jolt Relay, the same port number i
used to configure the Jolt Listener. Refer to YUBBCONFI file for
additional information.

. Type the TUXEDO Application Password and ptEnter. Based on the

authentication level, type the remaining information.

BEA Jolt User’s Guide

GETTING STARTED

4. Type the TUXEDO user name and prTab.

5. Type the TUXEDO user password and piEnter.

Note: The Jolt 1.1 Repository Editor uses the hardcgoltadmin for the user
role.

ThePackage andService: options are activated.
Figure 5-2 is an example of the Repository Editor logon window.

Figure 5-2 Repository Editor Logon Window

r‘ﬂ Applet Yiewer: bea jolt.RE.class

Applet

BEA Jolt Repository Editor

Server:

I SErvername

Port Number: I 9999
gpplication Password:
User Mame:

Uzer Password;

Il

Packages| Services| Close

I.ﬁ.pplet started,

BEA Jolt User’'s Guide 5-7

5 USING THE JOLT REPOSITORY EDITOR

Repository Editor Logon Window Description

The following listing details the Repository Editor logon window.

Option Description
Server Type the server name.
Port Number Type the port number in decimal value.

Note: After the server name and port number are entered, the
user name and password fields are activated. Activation is
based on the authentication level of the TUXEDO

application.
Application TUXEDO administrative password text entry.
Password
User Name TUXEDO user identification text entry. The first character must be
an alpha character.
User Password TUXEDO password text entry.
Packages Accesses the Packages window. (Enabled after the logon.)
Services Accesses the Services window. (Enabled after the logon.)

Exiting the Repository Editor

Exit the Repository Editor when you are finished adding, editing, testing, or deleting
packages, services, and parameters. Figure 5-3 is an example of the Repository Edif
window before exiting. OnliPackagesServices andCloseare enabled. All text entry
fields are disabled.

5-8 BEA Jolt User’s Guide

GETTING STARTED

Figure 5-3 Example of the Repository Editor Logon Window Before Exiting

T 7| Applet Viewer: bea.jolt.RE.class

Applet

BEA Jolt Repository Editor

Lo

Packages| Services| Close |

I.'5'.|:|r:|let started,

To exit the Repository Editor:
1. SelecBack from a previous window to return to the Logon window.

2. SelectCloseto terminate the connection with the server. The Repository Editor
Logon window continues to display with disabled fields.

3. SelectClosefrom your browser menu to remove the window from your screen.

BEA Jolt User’'s Guide 5-9

5 USING THE JOLT REPOSITORY EDITOR

Main Components of the Repository Editor

The Repository Editor allows you to add, modify, or delete any of the following
components:

4 Packages
4 Services
¢ Parameters

In addition, you can test and group Services.

Repository Editor Flow

After logging on to the Repository Editor, two options are enatfledkagesand
Services Figure 5-4 illustrates the Repository Editor flow to help you determine
which button to select. Figure 5-4 shows the Repository Editor option flow.

5-10 BEA Jolt User’'s Guide

MAIN COMPONENTS OF THE REPOSITORY EDITOR

Figure 5-4 Repository Editor Flow Diagram

% @
Package View

. Package
Organizer & Services

I

Logon to the Repositor
Ed?tor X Y Move Add

. Service Package Export
Determine
which Delete
tasks to Package
complete.

\ E Services

i ; Delete
gdga?gal:actgr Service or Test Service
Parameter

Add
Service or
Parameter

Selec Package to perform the following functions:
4+ View packages and services

4 Make a service available usiExport or Unexport
4 Select a package to delete

4 Access the Package Organizer to:
4 Move services from one package to another

4 Create a new package

BEA Jolt User’'s Guide 5-11

5 USING THE JOLT REPOSITORY EDITOR

Selec Service: to access the Services window and perform the following functions:
4+ Create or edit service definitions
¢ Create, edit, or delete parameters

4 Test the services and parameters

What is a Package?

Packages provide a convenient method for grouping services for Jolt administration
A service is comprised of parameters, including pin number, account number,
payment, rate, term, age, or Social Security numberPackage button can be used

to:

4 View packages and services
4 Export or unexport services

¢ Delete packages
¢

Access Package Organizer to:
4 Move services

4 Create a new package

The available packages are displayed. When a package is selected, the services
contained within a package display.

5-12 BEA Jolt User’'s Guide

MAIN COMPONENTS OF THE REPOSITORY EDITOR

Figure 5-5 is an example of a Packages window.

Figure 5-5 Highlighted Package with Services

BEA Jolt User’'s Guide 5-13

5 USING THE JOLT REPOSITORY EDITOR

Packages Window Description

The following listing describes the Packages window options.

Option Description

Packages Lists available packages.

Services Lists available services within the selected package.

Package Organizer Accesses the Package Organizer window to review available

packages and services. Moves the services among the packages or
add a new package.

Export Makes the most current services available to the client. This option
is enabled when a package is selected.

Unexport Select this option before testing an existing service. This option is
enabled when a package is selected.

Delete Deletes a package. This option is enabled when a package is
selected and the package is empty (no services contained within the
package).

Viewing a Package Instructions

1. Toview the packages, sel&ckagesfrom the Logon window. The Packages
window displays.

2. The packages are displayed in the Packages display list. In Figure 5-5, STOCKS
BANKAPP, HumanResources, and BANK are the available packages.

5-14 BEA Jolt User’'s Guide

MAIN COMPONENTS OF THE REPOSITORY EDITOR

What is a Service?

A service is a definition of an available TUXEDO service. Services are comprised of
parameters such as pin number, account number, payment, and rate. Adding or editing
a Jolt service does not affect an existing TUXEDO service. Use the Services window
to add, edit, or delete services. Figure 5-6 is an example of a Services window with the
available services.

Figure 5-6 Services Window

:fﬂ Apploet Vieweor: bea jolt REclass
Arplet
Sarvices

Packanes
STOCES
HumzenResources
BAME
Servicas Parametars

Message
WITHDRAW AL STAHTLIM
DERPOSIT ACCOUNT_ID
“RAMSFER SBA LG NCE

Mew..| Cdit.| Deete| Dack|

I-"'-F'F'|D'- startod,

BEA Jolt User's Guide 5-15

5 USING THE JOLT REPOSITORY EDITOR

Services Window Description

The following listing describes the Services window options:

Option Description

Packages Lists the services and parameters for the select package. Select the
package to add a new service, edit, or delete a service.

Services Lists a service in the package to edit or delete. Selecting a service
displays the parameters within the service.

Parameters Displays selected service parameters.

New Displays the Edit Services window for adding a new service.

Edit Displays the Edit Services window for editing an existing service.
This button is enabled only if a service has been selected.

Delete Deletes a service. This button is only enabled if a service has been
selected.

Back Returns the user to the previous window.

Viewing a Service Instructions

1. To view the services, selesérvicesfrom the Logon window. The Services
window displays.

2. The available packages are displayed in the Packages display list. Selecting a
package displays the available services for that package in the Services display
list. In Figure 5-6, BANKAPP is the selected package.

3. The available services for the selected package are displayed in the Services
display list. In Figure 5-6, INQUIRY, WITHDRAWAL, DEPOSIT, and
TRANSFER are the available services for BANKAPP.

5-16 BEA Jolt User’'s Guide

MAIN COMPONENTS OF THE REPOSITORY EDITOR

What is a Parameter?

A service is comprised of parameters, including a pin number, account number,
payment, rate, term, age, or Social Security number. A parameter is one of the service
components. Adding or editing a parameter does not modify or change an existing
TUXEDO service. Figure 5-7 is an example of the Services window displaying a
selected service and its parameters.

Figure 5-7 Services Window with Parameters

T =] Applet Viewer: bea.jolt.RE.class i
Applet
Services
Packages
STOCKS
BANKARP
HumanResources
BAMNK
Services Parameters
INCILIIRY Message
WITHDRAW AL STATLIM
DEPOSIT ARCCOUNT_ID
TRAMSFER SEALAMCE

Mewe..| Edit.| Delete| Back]

IF'.ppIet started,

BEA Jolt User’'s Guide 5-17

5 USING THE JOLT REPOSITORY EDITOR

Viewing a Parameter Instructions

1. To view the parameters of a service, seédegvicesfrom the Logon window. The
Services window displays.

2. View packages in the Packages display list. To view the available services for
each package, select the package. In Figure 5-7, BANKAPP is the selected
package.

3. View services in the Services display list. To view the available parameters for
each service, select a service. In Figure 5-7, INQUIRY is the selected service.

4. View parameters for a selected service in the Parameters display list. In
Figure 5-7, Message, STATLIN, ACCOUNT_ID, and SBALANCE are the
available parameters for the INQUIRY service.

5-18 BEA Jolt User’'s Guide

SETTING UP PACKAGES AND SERVICES

Setting Up Packages and Services

This section includes the necessary steps for setting up a package and its services:
4 Adding a package
4 Adding a service

4 Adding a parameter

Saving Your Work

As you are creating and editing services and parameters, it is important to regularly
save information to ensure that you do not inadvertently lose any input. SeSaveg
Service can prevent the need to re-enter information in the event of a system failure.

Be sure to exercise caution when you are adding or editing the parameters of a service.
Add must be selected before choo<Back from the Edit Parameters window (shown
in Figure 5-11) and returning to the Edit Services window (shown in Figure 5-9).

If adding a new service or modifying an existing service at the Edit Services window,
ensure thaSave Servic is selected before choosiBack. If Back is selected before

the modified information is saved, a warning briefly displays on the status line at the
bottom of the window.

Adding a Package

If you need to add a new group of services, a new package must be created before
adding the services. Figure 5-8 shows how a new package, BALANCE, is added to the
Packages listing.

BEA Jolt User’'s Guide 5-19

5 USING THE JOLT REPOSITORY EDITOR

Figure 5-8 Adding a New Package

New Package | BALANCH

ril applet Viewer: bea.jolt.RE.class
Applet
Package Organizer

Packages Packages
TEST TEST
TESTWIE' TESTYIEW
BAMEAPP BAMEAPP
Bk B M E
Services Services
INC LIRY

DEPOSIT

i ITHD R &l & L

TRAMNSFER

Back|

Adding a Package Instructions

5-20

Follow these instructions to add a package:

1. From the Logon window, selePackage. The Packages window displays. Select
Package Organize. The Package Organizer window displays. For a description

of the Package Organizer window, sPackage Organizer Descript” in this

chapter.

2. From the Package Organizer window, seNew Packag. The text field is

activated.

3. Type the name of the new package (not to exceed 32 characters) arEnter.;s
The new name (iFigure 5-8, BALANCE) is displayed in the Packages display

list in random order.

BEA Jolt User’s Guide

SETTING UP PACKAGES AND SERVICES

Adding a Service

Services are definitions of available TUXEDO services and can only be a part of a Jolt
package. You are not required to create a new package before creating a new service;
however, you must create the service as a part of a package, even if it is moved to a
different package at a later date.

The Repository Editor accepts the new service name exactly as it is typed (e.g., all
capital letters, abbreviations, misspellings, etc.). Service names must not exceed 30
characters. Figure 5-9 is an example of the Adding New Service window.

Figure 5-9 Edit Services: Adding New Service Window

fﬂ Applet ¥lewer: bea.|olt.RE.class

Fpe et

Edit Services
Adding new service to package: BANKAPP

Service Narme I Farameters

Input Buffer Type IFML ;I

Input Wiew MName
Cutput Buffer Type|FRL -

Output View Namel

Current Status: LINEXPORT Farameter lewel actions

Service level actions e Pararneter. .
Edit Pararmetes..

Delete Pararmeter |

Save Service | JEst | Back |

BEA Jolt User’'s Guide 5-21

5 USING THE JOLT REPOSITORY EDITOR

Adding a Service Window Description

The following listing describes the options for adding services to a package in a

package window.

Option

Description

Service Name

Adds the name of the new service to the Repository.

Input Buffer
Type/Output Buffer

Type

VIEW - a C-structure and 16-bit integer field. Contains subtypes that
have a particular structure. X_C_TYPE and X_COMMON are
equivalent. X_COMMON is used for COBOL and C.

VIEW32 - similar to VIEW, except 32-bit field identifiers are
associated with VIEW32 structure elements.

CARRAY - an array of uninterrupted binary data that is neither
encoded nor decoded during transmission; it may contain null
characters. X_OCTET is equivalent.

FML - a type in which each field carries its own definition.

FML32 - similar to FML except the ID field and length field are 32 bits
long.

STRING - a character array terminated by a null character that is
encoded or decoded.

Input View
Name/Output
View Name

A unigue name assigned to the Input View Buffer and Output View
Buffer types. These fields are only enabled if VIEW or VIEW32 are
the selected buffer types.

Current Status

Lists current status of the service. EXPORTED or UNEXPORTED
status is displayed. UNEXPORTED is the default.

Save Service

Saves newly created service in the Repository.

Test Tests the service. This is disabled until a new service is created or edits
to an existing service are saved.
Parameters Lists a parameter to edit or delete.

New Parameter

Adds new parameters to the service.

Edit Parameter

An existing parameter can be edited. This option is disabled until a new
parameter is selected.

Delete Parameter

Deletes a parameter. This option is disabled until a new parameter is
selected.

5-22 BEA Jolt User’'s Guide

SETTING UP PACKAGES AND SERVICES

Adding a Service Instructions

To add a service, follow these instructions:

1.
2.

From the Logon window, seleServices

Select the package where the service is going to be added. If you are uncertain
which package should contain the new service, select a package and use the
Package Organizer to move the service to a different package. See “Grouping
Services Using the Package Organizer” for additional information.

SelectNew from the Services window. The Edit Services window is displayed.
Select th&Service Nametext field to activate it. Type the service name.

Select the buffer type. Although the same buffer type selected for the Input
Buffer is automatically selected for the Output Buffer, you can change the Output
Buffer type to a different buffer type.

If VIEW or VIEW32 is selected, type the Input View Name and Output View
Name in the accompanying text field. If another buffer type is selected, the Input
View Name and Output View Name text fields are disabled. If CARRAY or
STRING is selected, refer to “Selecting CARRAY or STRING as a Service
Buffer Type” in this chapter for additional instructions.

SelectSave Servicdo save the newly created service.

Selecting CARRAY or STRING as a Service Buffer Type

If CARRAY or STRING is selected as the buffer type for a new service, only carray

or string can be added as the data type for the accompanying parameters of a service.
See also “Adding a Parameter” and “Selecting carray or string as a Parameter Data
Type” in this chapter. For more information, refer to Chapter 6, “Using the Jolt Class
Library.”

Figure 5-10 is an example of the Edit Services window with STRING as the selected
buffer type for the service.

BEA Jolt User's Guide 5-23

5 USING THE JOLT REPOSITORY EDITOR

Figure 5-10 Edit Services Window with STRING as the Selected Buffer Type

STANG

r
STANG 5]
—

5-24 BEA Jolt User’'s Guide

SETTING UP PACKAGES AND SERVICES

Adding a Parameter

SelectingNew Parameterfrom the Edit Services window brings up the Edit
Parameters window. Review the features in Figure 5-11. Use this window to input the
parameter and window information for a service.

Figure 5-11 is an example of the Edit Parameters window used to add a new parameter.

Figure 5-11 Adding a Parameter Window

fﬂ Applet ¥lewer: bea.|olt.RE.class

Fpe et |

Edit Parameters
Adding new parameter to package: BAMNKAPF service: TRANSFER

Farameter Information Secreen Information

Field Name | Screen Labell—
Type m
Direction Cinput € output % both
Occurrence(s)l_
Clearl Change | Add | Elackl Sereet nfarmaticn |

I.f« nplet started.

BEA Jolt User’'s Guide 5-25

5 USING THE JOLT REPOSITORY EDITOR

Parameters Window Description

The following listing describes the Edit Parameters window options.

Option Description

Field Name Adds the field name (e.g., asset, inventory).

Type List data type choices:
byte - 8-bit
short - 16-bit
integer - 32-bit
float - 32-bit
double - 64-hit
string - null-terminated character array
carray - variable length 8-bit character array

Direction Lists choices for direction:
Input - Information is directed from the client to the server.
Output - Information is directed from the server to the client.

Both - Information is directed from the client to the server, and from
the server to the client.

Occurrence Number of times that an identical field name can be used. If 0, the
field name can be used an unlimited number of times. Occurrences
are used by Jolt to build test screens; not to limit information sent or
retrieved by TUXEDO.

Clear Clears the window.
Change Disabled while new parameters are added.
Add Adds new parameters to the service. The parameters are saved when

the service is saved.

Back Returns user to the previous window.

Screen Label Disabled for the Jolt 1.1 release.

Screen Information Disabled for the Jolt 1.1 release.

5-26 BEA Jolt User’'s Guide

SETTING UP PACKAGES AND SERVICES

Adding a Parameter Instructions

1. Selectrield Nameto activate the field and type the field name.

Note: If the buffer type is FML or VIEW, the field name must match the
corresponding parameter field name in FML or VIEW.

2. Select the data type.

3. Select th®ccurrencestextfield to activate it, and then type the number of
occurrences.

4. Specify a direction by selecting thmput, output, or both radio buttons.
5. SelectAdd to append the informatioAdd does not save the parameter.

6. SelectSave Servicdo save the parameter as a part of the service.

@ Warning: If Save Serviceas not selected before selectiBgck, the parameters
are not saved as part of the service.

7. SelecBack to return to the previous window.

BEA Jolt User’'s Guide 5-27

5 USING THE JOLT REPOSITORY EDITOR

Selecting carray or string as a Parameter Data Type

5-28

If CARRAY or STRING is the selected buffer type for a new service, only carray or
string can be added as the data type for the accompanying parameters of a service.

In this case, only one parameter can be added. It is recommended that the paramet
name for CARRAY is “CARRAY” and the parameter name for STRING is
“STRING.”

See also “Adding a Service Instructions” and “Selecting CARRAY or STRING as a
Service Buffer Type” in this chapter. For more information, refer to Chapter 6, “Using
the Jolt Class Library.”

Figure 5-12 is an example of the Edit Parameters window with string as the selectec
data type for the parameter. Thgpe defaults to string and does not allow you to
modify that particular data type. TRhéeld Namecan be any name.

Figure 5-12 Edit Parameters Window with string as the Data Type

fﬂ Applet ¥lewer: bea.|olt.RE.class

Fpe et |

Edit Parameters
Adding new pararmeter to package: BANKARPP service: SIMPARPF

Pararmeter Information Screen Infarmation

Field Name [INPUT Screen Labell—
Type m
Direction input © output & both
Occurrence(s)’1_
Clearl Ehange | Add | Elackl Screen Information |

I.f« nplet started.

BEA Jolt User’s Guide

GROUPING SERVICES USING THE PACKAGE ORGANIZER

Grouping Services Using the Package
Organizer

The Package Organizer moves or transfers services between packages. You may want
to group related services in a package (for example, WITHDRAWAL services that are
exported only at a certain time of the day can be grouped together in a package).

The Package Organizer arrow buttons allow you to move a service from one package
to another. These buttons are useful if you have several services to move between
packages. The packages and services display listings help track a service within a
particular package.

Figure 5-13 and Figure 5-14 are examples of Package Organizer windows with a
service selected for transfer to another package.

BEA Jolt User’'s Guide 5-29

5 USING THE JOLT REPOSITORY EDITOR

Figure 5-13 Example of a Selected Service

rﬂ Applet Viewer: bea.jolt.RE.class

Applet

Package Organizer

Packages Packages
STOCKS STOCKS
B MESPP BAMESPP
HumanResources HumanResources
BAME B ME
Services Services
IMCILRY -
W THDRAWAL =
DEPOSIT _I
TR&MSFER
Mew Package” Back|

IF'.ppIet started.

5-30 BEA Jolt User’'s Guide

GROUPING SERVICES USING THE PACKAGE ORGANIZER

Package Organizer Description

The following listing describes the options for the Package Organizer window:

Option

Description

Available Packages (left
display list)

Available Packages (right
display list)

Lists packages available where the service to be moved
currently resides.

Lists packages available to move the service to.

Services (left display list)

Lists available services for the highlighted package that can
be moved.

Services (right display list)

Lists available services that have been moved for the
highlighted package.

Left arrow Highlights services on the right to move services (one
service at a time) to the package highlighted on the left.
Right arrow Highlights services on the left to move services (one service

at a time) to the package highlighted on the right.

New Package

Adds the name of a new package.

Back

Returns user to the previous window.

Grouping Services with the Package Organizer Instructions

1. Select the package containing the services to be moved from the Packages left
display window to the right display window. In Figure 5-13, BANKAPP is the

selected package.

2. Select the service to be moved from the Services left display window to the right
display window. In Figure 5-13, INQUIRY is the selected service in the

BANKAPP package.

3. Select the package to receive the service from the Packages right display
window. Figure 5-13 shows the selected service and the selected package,
BANK, to where the INQUIRY service will be moved.

BEA Jolt User's Guide 5-31

5 USING THE JOLT REPOSITORY EDITOR

Figure 5-14 Example of a Moved Service

fil Applet Viewer: bea.jolt.EE.class R
Applet
Package Organizer

Packages Packages

TEST TEST

TESTWIE TESTWIEMW

BAMNEAPP BANKAPP

BaME B &M

Services Services

DEPOSIT INCILIRY
WITHDRAW &L

TRAMSFER

Mew Package” Back|

I

4. To move the services between the packages, select the left(arrevor right
arrow (--->). These keys are activated only when both packages and a service ar
selected. The keys are only active in the direction of the package where the
service is to be moved. Figure 5-14 shows how the Repository Editor moves the
INQUIRY service to the BANK package on the right.

Note: You cannot select the same package in both the left and right display lists

5-32 BEA Jolt User’'s Guide

MODIFYING PACKAGES/SERVICES/PARAMETERS

Modifying Packages/Services/Parameters

If a package, service, or parameter requires any modifications, you can make the
following changes:

4 Editing a service
4+ Editing a parameter

4 Deleting a parameter/service/package

Note: The Jolt 1.1 release does not allow you to edit a package name.

Editing a Service

Edit an existing service name, service information, or access the window to add new
parameters to an existing service. For a description of the Edit Services window, see
“Adding a Service Window Description” in this chapter. Figure 5-15 is an example of
the Edit Services window.

BEA Jolt User's Guide 5-33

5 USING THE JOLT REPOSITORY EDITOR

Figure 5-15 Edit Services Window

Fpe et

fﬂ Applet ¥lewer: bea.|olt.RE.class

Edit Services

Editing existing service in package: BANKARPE

Current Status: EXFORTED

Service level actions

Save Servicel Testl Backl

Service Mame TRAMNSFER Farameters
Input Buffer Type |FML ;I FORRMNAR
: SAMOUNT
Input*iew MName I STATLIN
Output Buffer T el FML - ACCOUNT_ID
. o SBALAMCE
Output View Namel

Farameter level actions

MNew Parameter...
Edit Pararmeter..

Delete Pararmeter |

Editing a Service Instructions

5-34

Follow the instructions below to edit a service:

1. Select the package containing the service that requires editing from the Services

window.

2. Select the service to edit. The parameters are displayed in the parameters displa

list.

3. SeleciEdit. The Edit Services window displays.

4. Type or select the new information and seSave Servic2

BEA Jolt User’s Guide

MODIFYING PACKAGES/SERVICES/PARAMETERS

Editing a Parameter

All parameter elements can be changed, including the name of the parameter.
@ Warning: If you are creating a new parameter using an existing name, the system
overwrites the existing parameter. Figure 5-16 is an example of the Edit
Parameters window.

Figure 5-16 Edit Parameters Window

fﬂ Applet ¥lewer: bea.|olt.RE.class L

Fpe et |

Edit Parameters
Changing existing parameter in package: BANKAPP service: TRANSFER

Farameter Information Screen Information
Field Name IACCOUNT_ID Screen Labell

Type M
Directian @ input © output € both
Occurrence(s)’E_
Clearl Change | el | Eiackl SEreeh nTarmaEtiE |

I.f« nplet started.

BEA Jolt User’'s Guide 5-35

5 USING THE JOLT REPOSITORY EDITOR

Editing a Parameter Instructions

To change a parameter, follow the instructions below:

1. Select the parameter in the Parameters window and Eelie€tarameters. The
Edit Parameters: Changing Existing Parameter window displays.

2. Type the new information and sel€ttange

3. SelecBackto return to the previous window.

Deleting Parameters/Services/Packages

This section details the necessary sequential steps to delete a package. Before delet
a package, all of the services must be deleted from the packageelEteoption is
not enabled until all components of the package or service are deleted.

Warning: The system does not display a prompt to confirm that items are to be
deleted. Be certain that the parameter, service, or package is scheduled
be deleted or has been moved to another location before selBetatg

Deleting a Parameter

Determine which parameters to delete and follow the instructions below.

1. Todelete the parameters, highlight the parameter in the Parameters display list ai
selectDelete Parameter

2. SelecBack to return to the previous window.

5-36 BEA Jolt User’'s Guide

MODIFYING PACKAGES/SERVICES/PARAMETERS

Deleting a Service

Determine which services to delete and follow these instructions. Make sure that alll
parameters within this service are deleted before selecting this option.

1.

2
3.
4

SelectServicesfrom the Logon window. The Packages window displays.

. Select the package containing the service you want to delete.

Select the service you want to del@eleteis enabled.

. SelecDelete The service is deleted.

Deleting a Package

Determine which packages to delete and follow these instructions. Make sure all
services contained in this package are deleted or moved to another package before
selecting this option.

1.

To delete packages, sel@atckagesrom the Logon window. The Packages
window displays.

Select a package.

SelecDelete The package is deleted.

BEA Jolt User’'s Guide 5-37

5 USING THE JOLT REPOSITORY EDITOR

Making a Service Available to the Jolt Client

To make a service available to a Jolt client, you must export it. All services in a
package must be exported or unexported as a group. A service is made available by
using theExport andUnexport buttons.

This section discusses:
4+ Exporting/Unexporting services

4 Reviewing the Export/Unexport status

Exporting/Unexporting Services

Determine which services are being made available or unavailable to the Jolt client.
Services are exported to ensure that the Jolt client can access the most current serv
definitions from the Jolt server.

Figure 5-17 shows the Packages window. From there yoExport andUnexport
services.

5-38 BEA Jolt User’'s Guide

MAKING A SERVICE AVAILABLE TO THE JOLT CLIENT

Figure 5-17 Export and Unexport Buttons

J_'Ll Applet Viewer: bea.jolt.RE.class i
Applet
Packages
Packages Services
STOCES IMCIUIRY
BaMESPP bl I THD R 'y L
HumanResources DEPOSIT
BAME TRA&MSFER

Package Organizer| Export| Unexport| faieis| Back|

IP.ppIet started.

Exporting/Unexporting a Service Instructions
Follow the instructions below to export or unexport a service.
1. SelectPackage from the Logon window. The Packages window displays.
2. Select a packagExport andUnexport are enabled.
3. To make services available, selExport.
4

. To make services unavailable, selUnexport.

Note: The system does not display a confirmation message indicating that the service
is exported or unexported. See “Reviewing the Exported/Unexported Status”
in this chapter for additional information.

BEA Jolt User's Guide 5-39

5 USING THE JOLT REPOSITORY EDITOR

Reviewing the Exported/Unexported Status

When a service is exported or unexported, you can review its status from the Edit
Services window. Figure 5-18 shows the current status as EXPORTED.

Figure 5-18 Exported/Unexported Status

fﬂ applet vilewer: bea_|olt.REclass

Hpe Let.

Edit Services
Editing existing service in package: BANKAFP

Service MName TRANSFER Farameters
Input Buffer Type |FML ;I FORMMNAR
_ SAMOUNT

Input View Name I STATLIM
Cutput Buffer T eIFML vl ACCOUNT_ID

F oH SBALANCE
Clutput Wiewe Namel
Current Status: EXFORTED Farameter level actions

Service level actions e Parameter..
Edit Barameten.

[elete =ararmeter |

Save Service | Test | Back |

5-40 BEA Jolt User’'s Guide

MAKING A SERVICE AVAILABLE TO THE JOLT CLIENT

Reviewing the Exported/Unexported Status Instructions

To review the current exported or unexported status of a service, follow these
instructions:

1.
2.

SelectServicesfrom the Logon window. The Services window displays.

When you want to find out if a service has been exported or unexported, you can
check its status by selecting a package from the Package display list. The
Services display list is enabled with a listing of services for the selected package.

Select the desired service.

Selectedit. The Edit Services window displays with fBarrent Statusof the
service as EXPORTED or UNEXPORTED.

BEA Jolt User’'s Guide 5-41

5 USING THE JOLT REPOSITORY EDITOR

Testing a Service

A service and its parameters should be tested to ensure that they are functioning
properly before they are made available to Jolt clients. Services that are currently
available can be tested without making changes to the services and parameters.

Note: The Repository Editor allows you to test an existing TUXEDO service with
Jolt without writing a line of Java code.

An exported or unexported service can be tested; if you need to change a service al
its parameters, unexport the service prior to editing.

This section explains the following:
4 Jolt Repository Editor Service Test Window

¢ Testing a Service Instructions

5-42 BEA Jolt User’'s Guide

TESTING A SERVICE

Repository Editor Service Test Window

Test the service to ensure that the parameter information is accurate. AlTesl is)
enabled when parameters are not added to the service, the Service Test window
(Figure 5-19) displays the parameter fields as “unused” and they are di A bled.
service can only be tested when the corresponding TUXEDO server is running for the
service being test.d

Note: The Service Test window displays up to 20 items of any multiple-occurrence
parameters. All items that follow the twentieth occurrence of a parameter
cannot be tested.

Figure 5-19 shows an example of a Service Test window with writable and read-only
text fields.

Figure 5-19 Sample Service Test Window

T] Applet ¥Viewer: bea.jolt.RE.class i
Applet
Service: INQUIRY Params 1-4 of 4 displayed
FORM NF'.MI String (ReadOnly)
STP.TLINI String (ReadOnly)
P.CCOUNT_IDIE integer[32]

SBF'.LP.NCEI String (ReadCnly)

RUM| Clear]|

srav| Back|

BEA Jolt User's Guide 5-43

5 USING THE JOLT REPOSITORY EDITOR

Service Test Window Description

5-44

The following listing details the Service Test window in Figure 5-19.

Note: You can enter a two-digit hexadecimal character (0-9, a-f, A-F) for each byte
in the CARRAY data field. For example, the hexadecimal value for 1234
decimal is 0422.

Option Description

Service Displays the name of the tested service (read-only).
Parameters displayed Tracks the parameters displayed in the window (read-only).

Parameter text fields The parameter information text entry field. These fields are
writable or read-only. Disabled if read-only.

RUN Runs the test with the data entered.

Clear Clears the text entry field.

Next Lists additional parameter fields, if applicable.
Prev Lists previous parameter fields, if applicable.
Back Returns to the Edit Services window.

BEA Jolt User’s Guide

TESTING A SERVICE

Testing a Service Process Flow

Test a service to ensure that all service and parameter information is correct. You can
test a service without making changes to the service or its parameters. You can also
test a service after editing the service or its parameters.

Figure 5-20 shows a typical Repository Editor service test flow.

Figure 5-20 Test Service Flow

C Select Test ><

2

Input data

Select RUNH

Unexport

(L)
Comm)
o)

Save Service

BEA Jolt User’'s Guide 5-45

5 USING THE JOLT REPOSITORY EDITOR

Testing a Service Instructions

5-46

Follow these instructions to test a service.
SelectServicesfrom the Logon window to display the Services window.
Select the package and the service to test.
. Selectdit to access the Edit Services window.

1.

2.

3

4. SelecfTestto access the Service test window.

5. Input data in the Service test window parameter text field.
6

. SelecRUN. The status line displays the message, “Run Completed OK,” if the
test passes, or “Call Failed,” if the test fails. See “Some Reasons Why a Test
Might Fail” or Table 5-2 for additional Repository Editor troubleshooting
information.

Follow the instructions below if editing is required to pass the test.

1. Return to the Repository Editor logon window and sdtackages
Select the package with the services to be retested.
SelectUnexport.

SelecBack to return to the Logon window.

SelectServicesto display the Services window.

Select the package and the service that requires editing ancEskiect

Edit the service.

© N o g M 0N

Save the service, seldatst, and repeat steps 5 and 6 from previous list.

BEA Jolt User’s Guide

TESTING A SERVICE

SOME REASONS WHY A TEST MIGHT FAIL

Here are some reasons why a service test might fail and possible solutions.

If this . . . Do this.. ..
A parameter is incorrect. Edit the service.
The Jolt server is down. Check the server. The TUXEDO service is

down. You do not need to edit the service.

BEA Jolt User’'s Guide 5-47

5 USING THE JOLT REPOSITORY EDITOR

Troubleshooting

If you encounter problems while using the Repository Editor, see Table 5-2.

Table 5-2 Repository Editor Troubleshooting Table

If...

Then. ..

You receive any error

Make sure the browser you are running is Java-enabled:

4 For Netscape browsers, look under the “Options” menu,
there should be a choice for “Show Java Console.” If this
does not exist, the browser probably does not support Java.

For Internet Explorer, make sure the version is 3.0 (or later).

If running Netscape Navigator, check the Java Console for
error messages.

4 If running appletviewer, check the system console (or the
window where you started tlappletviewer).

You cannot connect to
the Jolt Server (after
enteringServer and
Port Number)

5-48 BEA Jolt User’'s Guide

Check and make sure that:

4 Your Server name is correct (and accessible from your
machine). Check that the port number is the correct port.
There must be a JSL or JRLY configured to listen on that
port.

4 The Jolt server is up and running. If any authentication is
enabled, check that you are entering the correct user names
and passwords.

4 If the applet was loaded via http, the Web server, JRLY and
the Jolt server must be on the same machine (i.e., the Server
name entered into the Repository Editor must be the same
machine as the one used in the URL to download the

applet).

TROUBLESHOOTING

Table 5-2 Repository Editor Troubleshooting Table

If...

Then . ..

You cannot start the
Repository Editor

If you are running the editor in a browser and downloading the
applet via http, make sure that:

L4

¢
¢
¢

The browser is Java-enabled.
The Web server is running and accessible.
TheRE.html file is available to the Web server.

TheRE.html file contains the correct <codebase>
parameter (this is where the Jolt class files are located).

If running the editor in a browser (appletviewer) and
loading the applet from disk, make sure that:

L4

¢
¢
¢

>

The browser is Java-enabled.
TheRE.html file exists and is readable.
TheRE.html file is Java-enabled.

TheRE.html file contains the correct <codebase>
parameter (this is where the Jolt class files are installed on
the local disk).

CLASSPATH is set and points to the Jolt class directory.

Cannot display
Packagesor Services
even though you are su
they exist

Q

Make sure that the Jolt Repository Server is running
(JREPSVR).

Make sure that the JREPSVR can access the repository file.

Make sure that the configuration of JREPSVR: verify
CLOPT parameters and verify thegp.f16 ~ (FML

definition file) is installed and accessible (follow installation
documentation)

Cannot save changes i
the Repository Editor

T

Check permissions on the repository file. The file must be
writable by the user who starts JREPSVR.

BEA Jolt User's Guide 5-49

5 USING THE JOLT REPOSITORY EDITOR

Table 5-2 Repository Editor Troubleshooting Table

If... Then. ..

Cannot test services | ® Check that the service is available.

¢ Verify the service definition matches the service.

4 If TUXEDO authentication is enabled, check that you have
the required permissions to execute the service.

4 Check if the application file (FML or VIEW) is specified
correctly in the variables (FIELDTBLS or VIEWFILES) in
the ENVFILE. All applications’ FML field tables or VIEW
files must be specified in the FIELDTBLS and VIEWFILES
environment variables in the ENVFILE. If these files are not
specified, the JSH is unable to process data conversion and
you will receive the message “ServiceException: TPEJOLT
data conversion failed.”

4 Check the ULOG file for any additional diagnostic messages.

5-50 BEA Jolt User’'s Guide

CHAPTER

6

> 4

Using the Jolt Class
Library

The BEA Jolt Class Library provides developers with a set of new object-oriented Java
language classes for accessing BEA TUXEDO services. These classes allow you to
extend applications for Internet and intranet transaction processing. The application
developer can use the Jolt Class Library to customize access to BEA TUXEDO
services from Java applets. The following Jolt topics are included in this chapter:

* & & S & S > o o

L4

Class Library Functionality Overview
Jolt Object Relationships

Jolt Class Functionality

Jolt Class Library Walk-through

Using TUXEDO Buffer Types with Jolt
Multithreaded Applications

Event Subscription and Notifications
Clearing Parameter Values

Reusing Objects

Application Deployment and Localization

To use the information in the following sections, you need to be generally familiar with
the Java programming language and object-oriented programming concepts. All of the
programming examples are in Java code.

BEA Jolt User’s Guide 6-1

6 USING THE JOLT CLASS LIBRARY

Note: All of the program examples are only fragments used to illustrate Jolt
capabilities. They are not intended to be compiled and run as provided. These
program examples require additional code to be fully executable.

Class Library Functionality Overview

The Jolt Class Library provides the TUXEDO application developer with the tools to
develop client-side applications or applets that will run in a Java-enabled Web browser
or as an independent Java application. Gdagjolt package contains the Jolt Class
Library. To use the Jolt Class Library, the client program or applet must import this
package. For an example of how to importdbejolt package, refer to Listing 6-1.

Java Applications vs. Java Applets

6-2

Java programs that run in a browser are called “applets.” Applets are intended to be
small, easily downloaded parts of an overall application that perform specific
functions. Many popular browsers impose limitations on the capabilities of Java
applets for the purpose of providing a high degree of security for the users of the
browser. The following are some of the restrictions imposed on applets:

4 An applet ordinarily cannot read or write files on any host system.

4 An applet cannot start any program on the host (client) that is executing the
applet.

4 An applet can make a network connection only to the host where it originated; it
cannot make other network connections, not even to the client machine.

Programming workarounds exist for most of the restrictions on Java applets. Check
your browser’s web site (e.g., www.netscape.com or www.microsoft.com) or
developer documentation for specific information about the applet capabilities that the
browser supports or restricts. You can also use Jolt Relay to overcome some of the
network connection restrictions.

BEA Jolt User's Guide

CLASS LIBRARY FUNCTIONALITY OVERVIEW

A Java application, however, is not run in the context of a browser and is not restricted
in the same ways. For example, a Java application can start another application on the
host machine where it is executing. While an applet relies on the windowing
environment of a browser or appletviewer for much of its user interface, a Java
application requires that you create your own user interface. An applet is designed to
be small and highly portable. A Java application, on the other hand, can operate much
like any other non-Java program. The security restrictions for applets imposed by
various browsers and the scope of the two program types are the most important
differences between a Java application and a Java applet.

Jolt Class Library Features

The Jolt Class Library has the following characteristics:
¢ Features fully thread-safe classes.

4 Encapsulates typical transaction functions such as logon, synchronous calling,
transaction begin, commit, rollback, and logoffs as Java objects.

4 Contains methods that allow you to set idle time-outs for continuous and
intermittent client network connections.

¢ Features methods that allow a Jolt client to subscribe to and receive event-based
notifications.

Jolt Class Library Error and Exception Handling

The Jolt Class Library returns both Jolt interpreter and TUXEDO errors as exceptions.
The Jolt Class Library Reference contains the Jolt classes and lists the errors or
exceptions thrown for each claAppendix A contains the Error and Exception Class
Reference.

BEA Jolt User’s Guide 6-3

6 USING THE JOLT CLASS LIBRARY

Jolt Client/Server Relationship

6-4

BEA Jolt works in a distributed client/server environment and connects Java clients to
BEA TUXEDO based applications. Figure 6-1 illustrates the client/server relationship
between a Jolt program and the Jolt Server.

Figure 6-1 Jolt Client/Server Relationship

Client Jolt Server

Application Protocol TUXEDO

GUI Application | g | Application

. Jolt Transaction Protocol ATMI
Jolt Class Librar
Y| - P> I Protocol Translator
Connection Jolt Network Protocol Connection
Manager - | Manager
TCP/IP

As illustrated in the diagram, the Jolt Server acts as a proxy for a native BEA
TUXEDO client, implementing functionality available through the native BEA
TUXEDO client. The BEA Jolt Server accepts requests from BEA Jolt clients and
maps those requests into BEA TUXEDO service requests through the BEA TUXEDO
ATMI interface. Requests and associated parameters are packaged into a message
buffer and delivered over the network to the BEA Jolt Server. The BEA Jolt
Connection Manager handles all communication between the BEA Jolt Server and the
BEA Jolt applet using the BEA Jolt Transaction Protocol. The BEA Jolt Server
unpacks the data from the message, performs any necessary data conversions, such
numeric format conversions or character set conversions, and makes the appropriate
service request to BEA TUXEDO as specified by the message.

BEA Jolt User's Guide

CLASS LIBRARY FUNCTIONALITY OVERVIEW

Once a service request enters the BEA TUXEDO system, it is executed in exactly the
same manner as any other BEA TUXEDO request. The results are returned through the
ATMI interface to the BEA Jolt Server, which packages the results and any error
information into a message that is sent to the BEA Jolt client applet. The BEA Jolt
client then maps the contents of the message into the various BEA Jolt client interface
objects, completing the request.

On the client side, the user program contains the client application code. The Jolt Class
Library packages a JoltSession and JoltTransaction, which in turn handle service
requests.

The following table describes the client-side requests and Jolt Server-side actions in a
simple example program.

Table 6-1 Jolt Client/Server Interaction

Jolt Client Jolt Server
1 attr=new JoltSessionAttributes(); Binds the client to the TUXEDO
attr.setString(attr. APPADDRESS, environment

“/Imyhost:8000");

2 session=new JoltSession(attr, username, Logs the client on to TUXEDO
userRole, userPassword, appPassword);

3 withdrawal=new JoltRemoteService(servnamelLooks up the service attributes in
session); the Repository

4 withdrawal.addString(“accountnumber”, “123"); Populates variables in the client
withdrawal.addFloat(“amount”, (float) 100.00); (N0 Jolt Server activity)

5 trans=new JoltTransaction(time-out, session); Begins a new TUXEDO

transaction
6 withdrawal.call(trans); Executes the TUXEDO service
7 trans.commit() or trans.rollback(); Completes or rolls back
transaction

8 balance = withdrawal.getFloatDef(“balance,” Retrieves the results (no Jolt
(float) 0.0); Server activity)

9 session.endSession(); Logs the client off of TUXEDO

BEA Jolt User’s Guide 6-5

6 USING THE JOLT CLASS LIBRARY

6-6

The following tasks summarize the interaction shown in Table 6-1 and are the steps
involved in beginning a transaction:

1.
2
3.
4

5.

Bind the client to the TUXEDO environment using fhkSessionAttributes
class.

. Establish a session.

Set variables.
Perform the necessary transaction processing.

Log the client off of the TUXEDO system.

Each of these activities is handled through the use of the Jolt Class Library classes.
These classes include methods for setting and clearing data and for handling remote
service actions. The following section describes the Jolt Class Library classes in more
detail.

BEA Jolt User's Guide

JOLT OBJECT RELATIONSHIPS

Jolt Object Relationships

The following diagram illustrates the relationship between the instantiated objects of
the Jolt Class Library classes.

Figure 6-2 Jolt Object Relationships

JoltRemoteService contains-a JoltUserEvent
uses-a
call(transaction) I JoltSession contains-a
. contains-a
JoltTransaction ! uses-a *
uses-a
I JoltReply
JoltSessionAttributes
contains-a
JoltMessage

As objects, the Jolt classes interact in various relationships with each other. In
Figure 6-2, the relationships are divided into three basic categories:

Contains-¢ relationship. At the class level an object can contain other objects. For
example, a JoltTransaction stores (or contains) a JoltSession object.

Is-arelationship. The is-a relationship usually occurs at the class instance or sub-object
level and denotes that the object is an instance of a particular object.

Uses-i relationship. An object can use another object without containing it. For
example, a JoltSession can use the JoltSessionAttributes object to obtain the host and
port information.

BEA Jolt User’s Guide 6-7

6 USING THE JOLT CLASS LIBRARY

Jolt Class Functionality

Jolt classes are used to perform the basic functions of transaction processing: log
on/log off, synchronous service calling, transaction begin, commit, rollback and
subscribe to events or unsolicited messages. The following sections describe how the
Jolt classes are used to perform these functions.

Logon/Logoff

The client application must log on to the TUXEDO environment prior to initiating any
transaction activity. The Jolt Class Library provides the JoltSessionAttributes class
and JoltSession class to establish a connection to a TUXEDO System.

The JoltSessionAttributes class is used to contain the connection properties to a
Jolt/TUXEDO system and contains various properties about the Jolt/ TUXEDO
System. To establish a connection, the client application must create an instance of the
JoltSession class. This instance is the JoltSession object. By instantiating a JoltSessior
object, users log on to Jolt/ TUXEDO or log off by calling the endSession method.

Synchronous Service Calling

6-8

Transaction activities such as requests and replies are handled through the use of a
JoltRemoteService object (an instance of the JoltRemoteService class). Each
JoltRemoteService object refers to an exported TUXEDO request/reply service. The
programmer must provide a service name and a JoltSession object to instantiate a
JoltRemoteService object before it can be used.

To use a JoltRemoteService object, the programmer simply:
4 Sets the input parameters
4+ Invokes the service

4 Examines the output parameters

BEA Jolt User's Guide

JoLT CLASS FUNCTIONALITY

For efficiency, Jolt does not make a copy of any input parameter object; only the
references to the object (e.g., string and byte array) are saved. Since JoltRemoteService
object is a stateful object, its input parameters and the request attributes are retained
throughout the life of the object. You can use the clear() method to reset the attributes
and input parameters, before reusing the JoltRemoteService object.

Since Jolt is designed for a multithreaded environment, multiple JoltRemoteService
objects can be invoked simultaneously by using Java’'s multithreading capability.
Refer to ‘Multithreaded Applicatior” in this chapter for more information.

Transaction Begin, Commit, and Rollback

In Jolt, a transaction is represented as an object of the class JoltTransaction. The
transaction begins when the transaction object is instantiated. The transaction object is
created with a time out and JoltSession object parameter:

trans = new JoltTransaction(timeout, session)

Jolt uses an explicit transaction model for any services involved in a transaction. The
transaction service invocation requires a JoltTransaction object as a parameter. Jolt
also requires that the service and the transaction belong to the same session. Jolt does
not allow you to use services and transactions that are not bound to the same session.

BEA Jolt User’s Guide 6-9

6 USING THE JOLT CLASS LIBRARY

Jolt Class Library Walk-through

6-10

The example code provided in Listing 6-1 shows how to use the Jolt Class Library and
includes the use of the JoltSessionAttributes, JoltSession, JoltRemoteService, and
JoltTransaction classes.

The example combines two user-defined TUXEDO services (WITHDRAWAL and
DEPOSIT) to perform a simulated TRANSFER transaction. If the WITHDRAWAL
operation fails, a rollback is performed. Otherwise, a DEPOSIT is performed and a
commit completes the transaction.

The basic steps of the transaction process shown in the example are as follows:

1. Set the connection attributes lihostham andportnumbe in the
JoltSessionAttribute object. Refer to the following line in cListing 6-1:

sattr = new JoltSessionAttributes();

2. Thesattr.checkAuthenticationLevel() allows the application to determine
the level of security required to log on to the server. Refer to the following line in
codelisting 6-1:

switch (sattr.checkAuthenticationLevel())

3. The logon is accomplished by instantiating a JoltSession object. Refer to the
following lines in codeListing 6-1:

session = new JoltSession (sattr, userName, userRole,
userPassword, appPassword);

This example does not explicitly catSessionException errors.

4. All JoltRemoteService calls require a service to be specified and the session key
returned fronmJoltSession() . Refer to the following lines in cocListing 6-1:

withdrawal = new JoltRemoteService(“WITHDRAWAL”, session);
deposit = new JoltRemoteService(“DEPOSIT”, session);

These calls bind the service definition of both the WITHDRAWAL and
DEPOSIT services, which are stored in the Jolt Repository, to the withdrawal
and deposit objects, respectively. The services WITHDRAWAL and DEPOSIT
must be defined in the Jolt Repository otherwise a ServiceException will be
thrown. This example does not explicitly catch ServiceException errors.

BEA Jolt User's Guide

JOLT CLASS LIBRARY WALK-THROUGH

5. Once the service definitions are returned, the application-specific fields such as
account number ACCOUNT _ID and withdrawal amount SAMOUNT are
automatically populated. Refer to the following lines in cListing 6-1:

withdrawal.addInt(*ACCOUNT_ID", 100000);
withdrawal.addString(*SAMOUNT"”, “100.00");

Theadd*() methods can throlllegalAccessError or NoSuchFieldError
exceptions.

6. The JoltTransaction call allows a timeout to be specified if the transaction does
not complete within the specified time. Refer to the following line in code
Listing 6-1:

trans = new JoltTransaction(5,session);

7. Once the withdrawal service definition has been automatically populated, the
withdrawal service is invoked by calling the withdrawal.call(trans) method. Refer
to the following line in codListing 6-1:

withdrawal.call(trans);

8. A failed WITHDRAWAL can be rolled back. Refer to the following line in code
Listing 6-1:

trans.rollback();

9. Otherwise, once the DEPOSIT is performed, all the transactions are committed.
Refer to the following lines in code Listing 6-1:

deposit.call(trans);

trans.commit();

Listing 6-1 shows an example of a simple application for the transfer of funds using
the Jolt classes.

BEA Jolt User’'s Guide 6-11

6 USING THE JOLT CLASS LIBRARY

6-12

Listing 6-1 Jolt Transfer of Funds Example (SimXfer.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class SimXfer

{

public static void main (String[] args)

{

JoltSession session;
JoltSessionAttributes sattr;
JoltRemoteService withdrawal;
JoltRemoteService deposit;
JoltTransaction trans;

String userName=null;

String userPassword=null;
String appPassword=null;
String userRole="myapp”;

sattr = new JoltSessionAttributes();
sattr.setString(sattr APPADDRESS, “//bluefish:8501");

switch (sattr.checkAuthenticationLevel())
{
case JoltSessionAttributes.NOAUTH:
System.out.printin(“NOAUTH\n");
break;
case JoltSessionAttributes. APPASSWORD:
appPassword = “appPassword”;
break;
case JoltSessionAttributes. USRPASSWORD:
userName = “myname”;
userPassword = “mysecret”;
appPassword = “appPassword”;
break;
}
sattr.setInt(sattr.IDLETIMEOUT, 300);
session = new JoltSession(sattr, userName, userRole,
userPassword, appPassword);
/I Simulate a transfer
withdrawal = new JoltRemoteService(“WITHDRAWAL", session);
deposit = new JoltRemoteService("DEPOSIT”, session);

BEA Jolt User's Guide

JOLT CLASS LIBRARY WALK-THROUGH

withdrawal.addInt(*ACCOUNT_ID", 100000);
withdrawal.addString(*“SAMOUNT”, “100.00");

/I Begin the transaction w/ a 5 sec timeout
trans = new JoltTransaction(5, session);
try

{

withdrawal.call(trans);

}

catch (ApplicationException e)

{
e.printStackTrace();
// This service uses the STATLIN field to report errors
I/ back to the client application.
System.err.printin(withdrawal.getStringDef(“STATLIN",”"NO
STATLIN"));
System.exit(1);

}

String wbal = withdrawal.getStringDef(“SBALANCE”, “$-1.0");

/I remove leading “$” before converting string to float
float w = Float.valueOf(wbal.substring(1)).floatValue();
if (w < 0.0)
{
System.err.printin(“Insufficient funds”);
trans.rollback();
System.exit(1);
}
else /I now attempt to deposit/transfer the funds
{
deposit.addint(“ACCOUNT_ID", 100001);
deposit.addString(“SAMOUNT”, “100.00%);

deposit.call(trans);
String dbal = deposit.getStringDef(“*SBALANCE”, “-1.0");
trans.commit();

System.out.printin(“Successful withdrawal);
System.out.printin(“New balance is: “ + wbal);

BEA Jolt User’'s Guide 6-13

6 USING THE JOLT CLASS LIBRARY

System.out.printin(“Successful deposit”);
System.out.printin(“New balance is: “ + dbal);

}

session.endSession();
System.exit(0);
} /I end main

} /I end SimXfer

Using TUXEDO Buffer Types with Jolt

6-14

Jolt supports all of the TUXEDO typed buffers, data types, and buffer types including
the built-in TUXEDO buffer types such as FML, VIEW, CARRAY, and STRING. For
information about all of the TUXEDO typed buffers, data types, and buffer types, refer
to theTUXEDO System Programmer’s Guide, Volunandl theTUXEDO System
Reference Manual

Of the TUXEDO built-in buffer types, the Jolt application programmer should be
particularly aware of how Jolt handles the CARRAY (character array) and STRING
built-in buffer types. The CARRAY type is used to handle data opaquely, (e.g., the
characters of a CARRAY data type are notinterpreted in any way). No data conversion
is performed between a Jolt client and TUXEDO service.

For example, if a TUXEDO service uses a CARRAY buffer type and the user sets a
32-bit integer (in Java the integer is in big-endian byte order), then the data is sent
unmodified to the TUXEDO service. If the TUXEDO service is run on a machine
whose processor uses little-endian byte-ordering (e.g., Intel processors), the TUXEDO
service must convert the data properly before the data can be used.

Note: You should only define one parameter for the CARRAY buffer type and the
STRING buffer type.

For more information about the TUXEDO CARRAY and STRING buffer types, refer
TUXEDO System Programmer’s Guide, Volume 1

BEA Jolt User's Guide

USING TUXEDO BUFFER TYPES WITH JOLT

Using the STRING Buffer Type

The STRING buffer type is a collection of characters. STRING consists of non-null
characters and is terminated by a null character. The STRING data character

and, unlike CARRAY, you can determine its transmission length by counting the
number of characters in the buffer until reaching the null character.

Note: During the data conversion from Jolt to STRING, the null terminator is
automatically appended to the end of the STRING buffers because Java string
is not null-terminated.

The following ToUpper application fragment illustrates how Jolt works with a service
whose buffer type is STRING. The TOUPPER TUXEDO Service is available in the
simpapp example. Before running the ToUpper.java example in Listing 6-2, you need
to do the following:

4+ Define theTOUPPE service through Jolt's Repository Editor.

¢ Define the TOUPPER service with an input buffer type of STRING and an
output buffer type of STRING.

4 Define an input-output parameter whose name is STRING f(TOUPPER
service.

4 Define only one parameter for tTOUPPE service.

Listing 6-2 Use of the STRING buffer type (ToUpper.java)

[* Copyright 1996 BEA Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class ToUpper
{
public static void main (String[] args)
{
JoltSession session;
JoltSessionAttributes sattr;
JoltRemoteService toupper;
JoltTransaction trans;
String userName=null;
String userPassword=null;
String appPassword=null;

BEA Jolt User’'s Guide 6-15

6 USING THE JOLT CLASS LIBRARY

String userRole="myapp”;
String outstr;

sattr = new JoltSessionAttributes();
sattr.setString(sattr APPADDRESS, “//bluefish:8501");

switch (sattr.checkAuthenticationLevel())
{
case JoltSessionAttributes.NOAUTH:
break;
case JoltSessionAttributes. APPASSWORD:
appPassword = “appPassword”;
break;
case JoltSessionAttributes. USRPASSWORD:
userName = “myname”;
userPassword = “mysecret”;
appPassword = “appPassword”;
break;
}
sattr.setInt(sattr.IDLETIMEOUT, 300);
session = new JoltSession(sattr, userName, userRole,
userPassword, appPassword);
toupper = new JoltRemoteService (“TOUPPER”, session);
toupper.setString(“STRING”, “hello world”);
toupper.call(null);
outstr = toupper.getStringDef(“STRING”, null);
if (outstr != null)
System.out.printin(outstr);

session.endSession();
System.exit(0);
}// end main
} /I end ToUpper

6-16 BEA Jolt User's Guide

USING TUXEDO BUFFER TYPES WITH JOLT

Using the CARRAY Buffer Type

The CARRAY buffer type is a simple character array buffer type that is built into the
TUXEDO system. With the CARRAY buffer type, because the system does not
interpret the data, although the data type is known, there is no way of determining how
much data to transmit during an operation. The application is always required to
specify a length when passing this buffer type.

The Listing 6-3 code fragment illustrates how Jolt works with a service whose buffer
type is CARRAY. Since Jolt does not look into the CARRAY data stream, it is the
programmer's responsibility to have the matching data format between the Jolt client
and the CARRAY service.

Before running the example in Listing 6-3, you must write an “ECHO” TUXEDO
service and boot the service. This service takes a buffer and passes it back. You will
also need to use the Jolt Repository Editor to add in the ECHO service.

In the Repository Editor add the ECHO service as follows:
4 Add a service named ECHO whose buffer type is CARRAY.
4 Define the ECHO service with an input-output parameter named CARRAY .

4+ Define just one parameter for the CARRAY buffer type.

Listing 6-3 Use of CARRAY Buffer Type

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

/*
* This code fragment illustrates how Jolt works with a service whose
* puffer type is CARRAY.
*
/

import java.io.*;

import bea.jolt.*;
class ...

{

public void tryOnCARRAY ()

{
byte datal];

BEA Jolt User's Guide 6-17

6 USING THE JOLT CLASS LIBRARY

JoltRemoteService csvc;

DatalnputStream din;

DataOutputStream dout;

ByteArraylnputStream bin;

ByteArrayOutputStream bout;

/*

* Use java.io.DataOutputStream to put data into a byte array
*

bout = new ByteArrayOutputStream(512);

dout = new DataOutputStream(bout);

dout.writelnt(100);

dout.writeFloat((float) 300.00);

dout.writeUTF("Hello World");

dout.writeShort((short) 88);

/*

* Copy the byte array into a new byte array "data”. Then
* issue the Jolt remote service call.

*

data = bout.toByteArray();

csvc = new JoltRemoteService("ECHQO", session);
csve.setBytes("CARRAY", data, data.length);
csvc.call(null);

/*

* Get the result from JoltRemoteService object and use
* java.io.DatalnputStream to extract each individual value
* from the byte array.

*

data = csvc.getBytesDef("CARRAY", null);
if (data != null)

{

bin = new ByteArraylnputStream(data);
din = new DatalnputStream(bin);
System.out.printin(din.readint());
System.out.printin(din.readFloat());
System.out.printin(din.readUTF());
System.out.printin(din.readShort());

6-18 BEA Jolt User's Guide

USING TUXEDO BUFFER TYPES WITH JOLT

Using the VIEW Buffer Type

For Jolt 1.1, information about using the TUXEDO View buffer type is located at the

following BEA web site address:

http://www.beasys.com/products/jolt/index.htm

Using the FML Buffer Type

The Listing 6-4 Java code fragment illustrates how Jolt works with a service whose

buffer type is FML.

Listing 6-4 Use of the FML Buffer Type

/* Copyright 1997 BEA Systems, Inc. All Rights Reserved */

/*

* This code fragment illustrates how Jolt works with a service whose
* puffer type is FML.

*/

import bea.jolt.*;
public class /* start of ... */ tryOnFml

{

public static void main (String [] args)

{
}

tryOnFmil();

public static void tryOnFml ()

{

JoltSessionAttributes sattr = null;
JoltRemoteService passFml;
JoltSession session;
String outputString;
int outputint;
float outputFloat;
sattr = new JoltSessionAttributes();
sattr.setString(sattr. APPADDRESS, "//bluefish:5151");
session = new JoltSession(sattr, "test”, "role”, null, null);
/*end of ... */
passFml = new JoltRemoteService("PASSFML",session);
passFml.setString("INPUTSTRING", "John");

BEA Jolt User’s Guide

6-19

6 USING THE JOLT CLASS LIBRARY

passFml.setInt("INPUTINT", 67);
passFml.setFloat("INPUTFLOAT", (float)12.0);

passFml.call(null);

outputString = passFml.getStringDef("OUTPUTSTRING", "failed");
outputint = passFml.getintDef("OUTPUTINT", -1);

outputFloat = passFml.getFloatDef("OUTPUTFLOAT", (float)-1.0);
System.out.print("String =" + outputString);

System.out.print(" Int =" + outputint);

System.out.printin(" Float =" + outputFloat);

}

Note: The exampleryonFml.c illustrates the server side code for using the FML
buffer type. This example can be found at the following BEA Web site
address:

http://lwww.beasys.com/products/jolt/index.htm

FML Field Definitions

The following entries show FML field definitions for tlhgOnFmljava example.

#

FML field definition table
#

*base 4100
INPUTSTRING 1 string
INPUTINT 2 long
INPUTFLOAT 3 float
OUTPUTSTRING 4 string
OUTPUTINT 5 long
OUTPUTFLOAT 6 float

6-20 BEA Jolt User's Guide

MULTITHREADED APPLICATIONS

Multithreaded Applications

As a Java based set of classes, Jolt supports multithreaded applications. However,
various implementations of the Java language differ with respect to certain language
and environment features. Jolt programmers need to be aware of the following:

4 The use of preemptive and non-preemptive threads when creating applications or
applets with the Jolt Class Library.

¢ The use of threads to get asynchronous behavior similar tpacall()
function in TUXEDO.

The following section describes the issues arising from using threads with different
Java implementations and is followed by an example of the use of threads in a Jolt
program.

Preemptive and Non-preemptive Threads

Most Java implementations provide preemptive threads. However, the current Sun
Solaris implementation provides non-preemptive threads. The difference between
these two models can lead to very different performance and programming
requirements.

Threads of Control

Each concurrently operating task in the Java virtual machine is a thread. Threads exist
in various states, the important ones being RUNNING, RUNNABLE, or BLOCKED.

4 A RUNNING thread is a currently executing thread.

4 A RUNNABLE thread can be run once the current thread has relinquished
control of the CPU. There can be many threads in the RUNNABLE state, but
only one can be in the RUNNING state. Running a thread means changing the
state of a thread from RUNNABLE to RUNNING, and causing the thread to
have control of the Java Virtual Machine (VM).

4 A BLOCKED thread is a thread that is waiting on the availability of some event
or resource.

BEA Jolt User’'s Guide 6-21

6 USING THE JOLT CLASS LIBRARY

Note: The Java VM schedules threads of the same priority to run in a round-robin
mode.

Preemptive Threading

The main performance difference between the two threading models arises in telling a
running thread to relinquish control of the Java VM. In a preemptive threading
environment, the usual procedure is to set a hardware timer that goes off periodically;
when the timer goes off, the current thread is moved from the RUNNING to the
RUNNABLE state, and another thread is chosen to run.

Non-preemptive Threading

In a non-preemptive threading environment, a thread must volunteer to give up control
of the CPU and move to the RUNNABLE state. Many of the methods in the Java
language classes contain code that volunteers to give up control, and are typically
associated with actions that might take a long time. For instance, reading from the
network will generally cause a thread to wait for a packet to arrive. A thread that is
waiting on the availability of some event or resource is in the BLOCKED state. When
the event occurs or the resource becomes available, the thread becomes RUNNABLE

Using Jolt with Non-Preemptive Threading

6-22

If your Jolt-based Java program is running on a non-preemptive threading Virtual
Machine (e.g., Sun Solaris), then the program must either:

4 Occasionally call a method that blocks the thread
4+ Explicitly give up control of the CPU using tThread.yield() method

The typical usage is to make the following call in all long running code segments or
potentially time-consuming loops:

Thread.currentThread.yield();

Without sending this message, the threads used by the Jolt library may never get
scheduled, and as such, the Jolt operation will be impaired.

BEA Jolt User's Guide

MULTITHREADED APPLICATIONS

The only virtual machine known to use non-preemptive threading is the Java
Developer’s Kit (JDK version 1.0, 1.0.1, 1.0.2) machine running on a Sun platform. If
you want your applet to work on JDK 1.0, you must make sure to send the yield
messages. As mentioned earlier, some methods contain yields. An important exception
is theSystem.in.read method. This method does not cause a thread switch. Rather
than rely on these messages, we suggest using yields explicitly.

Note: Sun has indicated that JDK 1.1 will implement preemptive threads, and should
alleviate the requirement for yields. Code that includes yields will continue to
work; code without yields will begin working with the JDK 1.1 release.

Using Threads for Asynchronous Behavior

You can use threads in Jolt to get asynchronous behavior that is analogous to the
tpacall() function in TUXEDO. With this capability, you do not need a
asynchronous service request function. You can get this functionality because Jolt is
thread safe. For example the client Jolt application can start one thread that sends a
request to a TUXEDO service function and then immediately starts another thread that
sends another request to a TUXEDO service function. So even though the Jolt
tpacall() is synchronous, the application is asynchronous because the two threads
are running at the same time.

Using Threads with Jolt

A Jolt client-side program or applet is fully thread-safe. Jolt's support of
multi-threaded applications includes the following client characteristics:

4 Multiple sessions per client

4 Multithreaded within a session

4+ Client application manages threads, not asynchronous calls
¢ Performs synchronous calls

The following program illustrates the use of two threads in a Jolt application.

BEA Jolt User’'s Guide 6-23

6 USING THE JOLT CLASS LIBRARY

Listing 6-5 Using Multithreads with Jolt (ThreadBank.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class ThreadBank
{
public static void main (String [] args)
{
JoltSession session;
try
{
JoltSessionAttributes dattr;
String userName = null;
String userPasswd = null;
String appPasswd = null;
String userRole = null;

/I fill in attributes required
dattr = new JoltSessionAttributes();
dattr.setString(dattr. APPADDRESS,”//bluefish:8501");

/I instantiate domain
/I check authentication level
switch (dattr.checkAuthenticationLevel())

{

case JoltSessionAttributes.NOAUTH:
System.out.printin(“NOAUTH\n");
break;

case JoltSessionAttributes. APPASSWORD:
appPasswd = “myAppPasswd”;
break;

case JoltSessionAttributes. USRPASSWORD:
userName = “myName”;
userPasswd = “mySecret”;
appPasswd = “myAppPasswd”;
break;

dattr.setInt(dattr.IDLETIMEOUT, 60);

session = new JoltSession (dattr, userName, userRole,
userPasswd, appPasswd);

6-24 BEA Jolt User's Guide

MULTITHREADED APPLICATIONS

T1tl = new T1 (session);
T2 12 = new T2 (session);

t1.start();
t2.start();

Thread.currentThread().yield();
try
{
while (t1.isAlive() && t2.isAlive())

{
Thread.currentThread().sleep(1000);

}
}
catch (InterruptedException e)
{
System.err.printin(e);
if (t2.isAlive())
{
System.out.printin(“job 2 is still alive”);
try
{
Thread.currentThread().sleep(1000);

}

catch (InterruptedException el)

{
System.err.printin(el);
}

}
else if (t1.isAlive())

{ System.out.printin(“job1 is still alive”);
try
{
Thread.currentThread().sleep(1000);

}

catch (InterruptedException el)

{

System.err.printin(el);
}
}
}

session.endSession();

}

catch (SessionException e)

BEA Jolt User’'s Guide 6-25

6 USING THE JOLT CLASS LIBRARY

6-26

{
System.err.printin(e);
}
finally
{
System.out.printin(“normal ThreadBank term”);
}
}
}

class T1 extends Thread

{
JoltSession j_session;
JoltRemoteService j_withdrawal;

public T1 (JoltSession session)
{
j_session=session;
j_withdrawal= new JoltRemoteService(“WITHDRAWAL",j_session);
}
public void run()
{
j_withdrawal.addInt(*ACCOUNT_ID",10001);
j_withdrawal.addString(“SAMOUNT”,”100.00");
try
{
System.out.printin(“Initiating Withdrawal from account 10001");
j_withdrawal.call(null);
String W = j_withdrawal.getStringDef("SBALANCE”","-1.0");
System.out.printin(“-->Withdrawal Balance: “ + W);
}
catch (ApplicationException e)
{
e.printStackTrace();
System.err.printin(e);
}
}
}

class T2 extends Thread

{
JoltSession j_session;
JoltRemoteService j_deposit;

public T2 (JoltSession session)

{

BEA Jolt User's Guide

MULTITHREADED APPLICATIONS

j_session=session;
j_deposit= new JoltRemoteService("DEPOSIT",j_session);
}
public void run()
{
j_deposit.addInt(*“ACCOUNT_ID",10000);
j_deposit.addString(“SAMOUNT",”100.00");
try
{
System.out.printin(“Initiating Deposit from account 10000");
j_deposit.call(null);
String D = j_deposit.getStringDef(“SBALANCE”","-1.0");
System.out.printin(“-->Deposit Balance: “ + D);
}
catch (ApplicationException e)
{
e.printStackTrace();
System.err.printin(e);
}
}

BEA Jolt User's Guide 6-27

6 USING THE JOLT CLASS LIBRARY

Event Subscription and Notifications

Programmers developing client applications using Jolt can receive event notifications
from either TUXEDO Services or other TUXEDO clients. The Jolt Class Library
contains classes that support the following types of TUXEDO noatifications for
handling event-based communication:

4 Unsolicited Event Notifications These are notifications that a Jolt client
receives as a result of a TUXEDO client or service issuing a broadcast using
either atpbroadcagf) or a directly targeted message vigoaotify() ATMI call.

4 Brokered Event Notifications. These notifications are received by a Jolt client
via the TUXEDO Event Broker. The notifications are only received when both
the Jolt client subscribes to an event and any TUXEDO client or server issues
system posted event otpos() call.

API for Event Subscription

The Jolt Class Library provides four classes that implement the asynchronous
notification mechanism for Jolt client applications. These classes are:

4 JoltSession. The JoltSession class includezn&eply) method for receiving
notifications and notification messages.

4 JoltReply. The JoltReply class gives the client application access to any
messages received with an event or notification.

4 JoltMessage. The JoltMessage class provides get methods for obtaining
information about the notification or event.

4 JoltUserEvent. The JoltUserEvent class supports subscription to of both
unsolicited and event notification types.

For more information about these classes refer to Chapter 7, “Jolt Class Library
Reference.”

6-28 BEA Jolt User's Guide

EVENT SUBSCRIPTION AND NOTIFICATIONS

Notification Event Handler

For both unsolicited notifications and a brokered event notification, the Jolt client
application requires an event handler routine that is invoked upon receipt of a
notification. The Jolt 1.1 release only supports a single handler per session. In current
TUXEDO versions, it is not possible to determine which event generated a
notification. Thus it is not possible to invoke an event-specific handler based on a
particular event.

The client application must provide a single handler (by overridinonReply ()

method) per session that will be invoked for all notifications received by that client for
that session. The single handler call-back function is used for both unsolicited and
event notification types. It is up to the (user supplied) handler routine to determine
what event caused the handler invocation and take appropriate action. If the user does
not override the session handler, then notification messages are silently discarded by
the default handler.

The Jolt client provides the call back function by subclassing the JoltSession class and
overriding theonReply () method with a user-defineonReply () method.

In TUXEDO/ATMI clients, processing in the handler call-back function is limited to

a subset of ATMI calls. This restriction does not apply to Jolt clients. Separate threads
are used to monitor notifications and run the event handler method. A Jolt client will
be able to perform all Jolt-supported functionality from within the handler. All the
rules that apply to a normal Jolt client program apply to the handler, such as a single
transaction per session at any time.

Each invocation of the handler method takes place in a separate thread. The application
developer should ensure that onReply () method is either synchronized or written
thread-safe, since separate threads could be executing the method simultaneously.

Subscribing to Event Notifications Enables Unsolicited Notifications

Jolt uses an implicit model for enabling the handler routing. When a client subscribes
to an event, Jolt will internally enables the handler for that client, thus enabling
unsolicited notifications as well. A Jolt client cannot subscribe to event notifications
without also receiving unsolicited notifications. In addition, a sionReply ()

method is invoked for both types of notifications.

BEA Jolt User’'s Guide 6-29

6 USING THE JOLT CLASS LIBRARY

Connection Modes

Jolt supports notification receipt for clients working in either connection-retained or
connection-less modes of operation. Connection-retained clients receive all
notifications. Jolt clients working in connection-less mode will receive notifications
while they have an active network connection to the Jolt Session Handler (JSH). When
the network connection is closed, the JSH logs and drops notifications destined for the
client. Jolt clients operating in a connection-less mode will not receive unsolicited
messages or notifications while they do not have an active network connection. All
messages received during this time are logged and discarded by the JSH.

ACKNOWLEDGED NOTIFICATIONS

Connection mode notification handling includes acknowledged notifications for

Jolt 1.1 clients in a TUXEDO 6.3 environment. If a JSH receives an acknowledged
notification for a client and the client does not have an active network connection, the
JSH logs an error and return a failure acknowledgment to the notification.

Notification Data Buffers

6-30

When a client receives notification, it is accompanied by a data buffer. The data buffer
can be of any TUXEDO data buffer type. Jolt clients (i.e., the handler) will receive
these buffers asJoltMessage object and should use the approprJoltMessage
classget*) methods to retrieve the data from this object.

The Jolt Repository does not need to have the definition of the buffers used for
notification. However, the Jolt client application programmer will need to know field
names beforehand.

The Jolt system does not provide functionality equivaletptypes() in TUXEDO,
soin effect a Jolt 1.1 client is limited to receiving a “known” buffer type. For FML and
VIEW buffers, the data will be accessed usingget*() methods with the
appropriate field name, for example, enter:

getintDef ("ACCOUNT_ID", -1);

BEA Jolt User's Guide

EVENT SUBSCRIPTION AND NOTIFICATIONS

For STRING and CARRAY buffers, the data will be accessed by the same name as the
buffer type, e.g.,:

getStringDef ("STRING", null);
getBytesDef ("CARRAY", null);

STRING and CARRAY buffers contain only a single data element: this complete
element is returned in ttget*() methods above.

TUXEDO Event Subscription

TUXEDO brokered event naotification allows TUXEDO programs to post events
without needing to know what other programs are supposed to receive notification of
an event’s occurrence. The Jolt event notification allows Jolt client applications to
subscribe to TUXEDO events that are broadcast or posted using the TUXEDO
tpnotify() or tpbroadcast() calls.

Jolt clients are only able to subscribe to events and notifications that are generated by
other components in TUXEDO (such as a TUXEDO Service or Client). Jolt 1.1 clients
are not able to send events or notifications.

Supported Subscription Types

Jolt1.1 only supports notification types of subscriptions. TheonReply() method

is called when a subscription is fulfilled. The Jolt 1.1 API does not support dispatching
a service routine or enqueueing a message to an application queue when a notification
is received.

Subscribing to Notifications

If a Jolt client subscribes to a single event natifications, the client receives both
unsolicited messages and event notification. Subscribing to an event implicitly enables
unsolicited notification. This means that if the application creates a JoltUserEvent
object for Event "X", the client will automatically receive notifications directed to it as

a result oftpnotify() or tpbroadcast()

BEA Jolt User’'s Guide 6-31

6 USING THE JOLT CLASS LIBRARY

Note: This is NOT the recommended method for enabling unsolicited notification -
if you want unsolicited notification, the application should explicitly do so (as
described in the JoltUserEvent class). The reason for this is explained in the
following unsubscribe section.

Unsubscribing from Notifications

To stop subscribing to event notifications and/or unsolicited messages, you need to use
the JoltUserEvent unsubscribe method. In Jolt, disabling unsolicited notifications with
an unsubscribe method does not turn off all subscription notifications. This differs
from TUXEDO. In TUXEDO the use cpsetunsol() with a NULL handler turns

off all subscription notifications.

When unsubscribing, the following considerations apply:

4 If aclient is subscribed to only a single event, unsubscribing disables both the
event notification and unsolicited messages.

4 If a client has multiple subscriptions, then unsubscribing from any single
subscription disables just that single subscription. Unsolicited notifications
continue. Only the last subscription to be unsubscribed causes unsolicited
notification to stop.

4 If a client subscribes to both an unsolicited and an event notifications, then
unsubscribing to just the unsolicited notification will not stop either type of
notifications from continuing. In addition, this unsubscribe does not throw an
Exception. However, the Jolt API will remember that an unsubscribe has taken
place and a subsequent unsubscribe to the remaining event will disable both
event notification and unsolicited messages.

If you want to stop unsolicited messages in your client application, you need to make
sure that you have unsubscribed to all events.

Note: Jolt 1.1 does not support the wildcard unsubscribe semantics of
tpunsubscribe (-1,..) . Jolt clients wishing to unsubscribe to all
subscriptions will do so by invoking tlunsubscribe() method in each
event subscription object.

6-32 BEA Jolt User's Guide

EVENT SUBSCRIPTION AND NOTIFICATIONS

Using the Jolt API to Receive TUXEDO Notifications

The example code provided in Listing 6-6 shows how to use the Jolt Class Library for
receiving notifications and includes the use of the JoltSession, JoltReply, JoltMessage
and JoltUserEvent classes.

Listing 6-6 Asynchronous Notification

class EventSession extends JoltSession
{
public EventSession(JoltSessionAttributes attr, String user,
String role, String upass, String apass)
{
super(attr, user, role, upass, apass);
}
/**
* Override the default unsolicited message handler.
* @param reply a place holder for the unsolicited message
* @see bea.jolt.JoltReply
*/
public void onReply (JoltReply reply)
{
/I Print out the STRING buffer type message which contains
/I only one field; the field name must be "STRING". If the
/I message uses CARRAY buffer type, the field name must be
/I "CARRAY". Otherwise, the field names must conform to the
/I elements in FML or VIEW.

JoltMessage msg = (JoltMessage) reply.getMessage();
System.out.printin(msg.getStringDef("STRING", "No Msg"));
}
public static void main(Strings argsf])
{
JoltUserEvent unsolEvent;
JoltUserEvent helloEvent;
EventSession session;

/I Instantiate my session object which can print out the
/I unsolicited messages. Then subscribe to HELLO event

BEA Jolt User’'s Guide 6-33

6 USING THE JOLT CLASS LIBRARY

/l and Unsolicited Notification which both use STRING
I buffer type for the unsolicited messages.

session = new EventSession(...);

helloEvent = new JoltUserEvent("HELLO", null, session);
unsolEvent = new JoltUserEvent(JoltUserEvent. UNSOLMSG, null,
session);

/I Unsubscribe the HELLO event and unsolicited notification.
helloEvent. unsubscribe ();
unsolEvent.unsubscribe();

6-34 BEA Jolt User's Guide

CLEARING PARAMETER VALUES

Clearing Parameter Values

The Jolt Class Library includes a method (the clear method) that allows the developer
to remove an object’s existing attributes and in effect provides for the reuse of the
object. TheeuseSamplejava example illustrates how to use the clear method for
clearing parameter values.

ThereuseSample.java example shows how to reuse the JoltRemoteService
parameter values. The example shows that you do not have to destroy the service to
reuse it. Instead, thec.clear() ; statement is used to discard the existing input
parameters before reusing theiString method.

Listing 6-7 Jolt Object Reuse (reuseSample.java)

[* Copyright 1996 BEA Systems, Inc. All Rights Reserved */
import java.net.*;
import java.io.*;
import bea.jolt.*;
/*
* This is a Jolt sample program that illustrates how to reuse the
* JoltRemoteService after each invocation.
*
class reuseSample
{
private static JoltSession s_session;
static void init(String host, short port)
{
[* Prepare to connect to the TUXEDO domain. */
JoltSessionAttributes attr = new JoltSessionAttributes();
attr.setString(attr. APPADDRESS,”//"+ host+™:” + port);

String username = null;

String userrole = “sw-developer”;
String applpasswd = null;

String userpasswd = null;

[* Check what authentication level has been set. */
switch (attr.checkAuthenticationLevel())

{

BEA Jolt User’'s Guide 6-35

6 USING THE JOLT CLASS LIBRARY

6-36

}

case JoltSessionAttributes. NOAUTH:
break;
case JoltSessionAttributes. APPASSWORD:
applpasswd = “secret8”;
break;
case JoltSessionAttributes. USRPASSWORD:
username = “myName”;
userpasswd = “BEA#1";
applpasswd = “secret8”;
break;

}

/* Logon now without any idle timeout (0). */

/* The network connection is retained until logoff. */
attr.setInt(attr.IDLETIMEOUT, 0);

s_session = new JoltSession(attr, username, userrole,
userpasswd, applpasswd);

public static void main(String args[])

{

String host;
short port;
JoltRemoteService svc;

if (args.length != 2)

{
System.err.printin(“Usage: reuseSample host port”);
System.exit(1);

}

/* Get the host name and port number for initialization. */
host = args[0];
port = (short)Integer.parselnt(args[1]);

init(host, port);

BEA Jolt User's Guide

CLEARING PARAMETER VALUES

[* Get the object reference to the DELREC service. This
* service has no output parameters, but has only one input
* parameter.

*/

svc = new JoltRemoteService(“DELREC", s_session);

try

{
[* Set input parameter REPNAME. */
svc.addString(“REPNAME”, “Record1”);
svc.call(null);
[* Change the input parameter before reusing it */
svc.setString(“REPNAME”, “Record2”);
svc.call(null);
/* Simply discard all input parameters */
svc.clear();
svc.addString(“REPNAME”, “Record3”);
svc.call(null);

}

catch (ApplicationException e)

{
System.err.printin(“Service DELREC failed: “+
e.getMessage()+” “+ svc.getStringDef(“MESSAGE”, null));

}

* Logoff now and get rid of the object. */
s_session.endSession();

BEA Jolt User’'s Guide 6-37

6 USING THE JOLT CLASS LIBRARY

Reusing Objects

6-38

The followingextendSample.java example illustrates one way to subclass the
JoltRemoteService class. In this case, a TransferService class is created by subclassin
the JoltRemoteService class. The TransferService class extends the JoltRemoteServic:
class, adding a Transfer feature which makes use of the TUXEDO bankapp funds
TRANSFER service.

The example uses the “extends” mechanism from the Java language. The extend is
used in Java to subclass a base (parent) class. The following code shows only one of
many different ways to extend from JoltRemoteService.

Listing 6-8 Extending Jolt Remote Service (extendSample.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

import java.net.*;
import java.io.*;
import bea.jolt.*;

/*
* This Jolt sample code fragment illustrates how to customize
* JoltRemoteService. It uses the Java language “extends” mechanism
*/
class TransferService extends JoltRemoteService
{
public String fromBal;
public String toBal;

public TransferService(JoltSession session)
{

super(“TRANSFER”, session);
}

public String doxfer(int fromAcctNum, int toAcctNum, String
amount)
{
/* Clear any previous input parameters */
this.clear();

BEA Jolt User's Guide

REUSING OBJECTS

}

[* Set the input parameters */
this.setIntitem(*ACCOUNT_ID", 0, fromAcctNum);
this.setIntltem(*ACCOUNT _ID", 1, toAcctNum);
this.setString(“SAMOUNT”, amount);

try

{
/* Invoke the transfer service. */
this.call(null);

[* Get the output parameters */
fromBal = this.getStringltemDef(*SBALANCE?”, 0, null);
if (fromBal == null)

return “No balance from Account “ +

fromAcctNum;
toBal = this.getStringltemDef(“"SBALANCE?”, 1, null);
if (toBal == null)
return “No balance from Account “ + toAcctNum;
return null;
}
catch (ApplicationException e)
{
[* The transaction failed, return the reason */
return this.getStringDef(“STATLIN", “Unknown reason”);
}

class extendSample

{

public static void main(String args[])

{

JoltSession s_session;
String host;
short port;
TransferService xfer;
String failure;

if (args.length 1= 2)
{

System.err.printin(“Usage: reuseSample host port”);

BEA Jolt User’'s Guide 6-39

6 USING THE JOLT CLASS LIBRARY

6-40

System.exit(1);
}

/* Get the host name and port number for initialization. */
host = args[0];
port = (short)Integer.parselnt(args[1]);

[* Prepare to connect to the TUXEDO domain. */
JoltSessionAttributes attr = new JoltSessionAttributes();
attr.setString(attr. APPADDRESS,”//"+ host+":" + port);

String username = null;

String userrole = “sw-developer”;
String applpasswd = null;

String userpasswd = null;

/* Check what authentication level has been set. */
switch (attr.checkAuthenticationLevel())

{
case JoltSessionAttributes. NOAUTH:
break;
case JoltSessionAttributes. APPASSWORD:
applpasswd = “secret8”;
break;
case JoltSessionAttributes. USRPASSWORD:
username = “myName”;
userpasswd = “BEA#1";
applpasswd = “secret8”;
break;
}

/* Logon now without any idle timeout (0). */

/* The network connection is retained until logoff. */
attr.setInt(attr.IDLETIMEOUT, 0);

s_session = new JoltSession(attr, username, userrole,
userpasswd, applpasswd);

/*

* TransferService extends from JoltRemoteService and uses the

* standard TUXEDO BankApp TRANSFER service. We invoke this
* service twice with different parameters. Note, we assume

* that “s_session” is initialized somewhere before.

*/

BEA Jolt User's Guide

REUSING OBJECTS

xfer = new TransferService(s_session);

if ((failure = xfer.doxfer(10000, 10001, “500.00")) != null)
System.err.printin(“Tranasaction failed: “ + failure);

else

{
System.out.printin(“Transaction is done.”);
System.out.printin(“From Acct Balance: “+xfer.fromBal);
System.out.printin(* To Acct Balance: “+xfer.toBal);

}

if ((failure = xfer.doxfer(51334, 40343, “$123.25")) != null)
System.err.printin(“Tranasaction failed: “ + failure);

else

{
System.out.printin(“Transaction is done.”);
System.out.printin(“From Acct Balance: “+xfer.fromBal);
System.out.printin(* To Acct Balance: “+xfer.toBal);

BEA Jolt User's Guide 6-41

6 USING THE JOLT CLASS LIBRARY

Application Deployment and Localization

The Jolt Class Library allows you to build Java applications that execute from within
a client Web browser. For these types of applications, you need to address the
following application development tasks:

4+ Deploying your Jolt application in an HTML page
4 Localizing your Jolt application for different languages and character sets

The following sections describe these application development considerations.

Deploying a Jolt Applet

When you deploy a Jolt applet, you need to consider the three components that operate
together to make the applet function in a Web browser environment:

4 Requirements for the TUXEDO server and Jolt Server
4 Client-side execution of the applet
4 Requirements for the Web server that downloads the Java applet

Information for configuring the TUXEDO server and Jolt Server to work with Jolt is
available in Chapter 2, “Installing Jolt.” The following sections describe common
client and Web server considerations for deploying Jolt applets.

6-42 BEA Jolt User's Guide

APPLICATION DEPLOYMENT AND LOCALIZATION

Client Considerations

When you write a Java applet that incorporates Jolt classes, the applet works just as
any other Java applet in an HTML page. A Jolt applet can be embedded in a HTML
page using the HTML applet tag:

<applet code="applet_name.class”> </applet>

If the Jolt applet is embedded in an HTML page, the applet downloads when the
HTML page loads. You can code the applet to run immediately after it is downloaded,
or you can include code that sets the applet to run based upon a user action, a timeout,
or a set interval. You can also create an applet that downloads in the HTML page, but
opens in another window or, for instance, simply plays a series of sounds or musical
tunes at intervals. The programmer has a large degree of freedom in coding the applet
initialization procedure.

Note: If the user loads a new HTML page into the browser, the applet execution is
stopped.

Web Server Considerations

When you use the Jolt classes in a Java applet, the Jolt Server must run on the same
machine as the Web server that downloads the Java applet unless you install Jolt Relay
on the Web server.

When a webmaster sets up a Web server, a directory is specified to store all the HTML
files. Within that directory, a subdirectory named “classes” must be created to contain
all Java class files and packagFor example:

<html-dir>/classes/bea/jolt

Note: You can place the Jolt classes subdirectory anywhere. For convenient access,
you may want to place it in the same directory as the HTML files. The only
requirements for the Jolt classes subdirectory are that they must be made
available to the Web server.

Since all Jolt classes belong to packbea.jolt , all Jolt class files are put in
Iclasses/bealjolt subdirectory (i.e., “jolt” is a subdirectory of “bea” which is a
subdirectory of “classes”).

BEA Jolt User’'s Guide 6-43

6 USING THE JOLT CLASS LIBRARY

The HTML file for the Jolt applet should refer the codebase to the “classes” directory.
For example:

lexport/html/

classes/

| bea/

| | jolt/

| [JoltSessionAttributes.class
| [JoltRemoteServices.class
I
I

mycompany/
| app.class
____exl.html
___ex2.html

The webmaster may specify the “app” applet in ex1.html as:

<applet codebase="classes” code=mycompany.app.class width=400
height=200>

Localizing a Jolt Applet

6-44

If your Jolt application is intended for international use, you must address certain
application localization issues. Localization considerations apply to applications that
execute from a client Web browser and applications that are designed to run outside a
Web browser environment. Localization tasks can be divided into two categories:

4 Adapting an application from its original language to a target language.

4 Translating strings from one language to another. This sometimes requires
specifying a different alphabet or a character set from the one used in the
original language.

For localization, the Jolt Class Library package relies on the conventions of the Java
language and the TUXEDO system. Jolt transfers Java 16-bit Unicode characters to the
JSH. The JSH provides a mechanism to convert Unicode to the local character set.

For information about the Java implementation for Unicode and character escapes,
refer to your Java Development Kit (JDK) documentation.

BEA Jolt User's Guide

CHAPTER

7

>
Jolt Class Library

Reference

The Jolt Class Library consists of object-oriented Java language classes for accessing
BEA TUXEDO services and defining transactions. The Jolt Class Library package is
designed to be small, simple, and easy to incorporate into your Java application. The
classes for this package provide TUXEDO logon/logoff, synchronous calling, and
transaction services for a client Java applet.

The Jolt Class Library reference includes the following topics:
Jolt Methods

JoltSessionAttributes Class

JoltSession Class

JoltRemoteService Class

JoltRequestMessage Abstract Class

JoltTransaction Class

JoltEvent Class

JoltUserEvent Class

JoltReply Class

* & & & & O ¢ > o o

JoltMessage Class

Each class description includes information about the class constructor and class
methods.

BEA Jolt User’s Guide 7-1

v

JoLT CLASS LIBRARY REFERENCE

To use the following information, you need to be generally familiar with the Java
programming language and object-oriented programming concepts. The reference
material follows the Java standard terminology for classes and for the methods that
operate on the class instances.

For information about programming the Jolt Class Library, refer to Chapter 6, “Using
the Jolt Class Library.” For information about the Jolt Exception Classes and related
TUXEDO errors listed for the Jolt classes, refer to Appendix A, “Jolt Class Library
Errors and Exceptions.”

Jolt Methods

The Jolt classes and class methods that form the Jolt Class Library follow the Java
language structure and are intended for use in Java programs. However, since the Jol
Class Library is designed for accessing TUXEDO System applications, you need to be
aware of how get, set, add, and delete methods operate within the context of transactior
processing.

For example, if you are working with a series of account numbers for a banking
transaction and are changing the value from one account number to another account
number, you must be aware of how the Jolt methods determine the position of an item
in a list. Understanding how these methods work will help you avoid inadvertently
reversing the order of a transaction, assigning incorrect values to an item, or deleting
the wrong item.

Methods for Handling Items

7-2

The get, set, and setltem methods are used to obtain information about a specified item
or to change information about a specified item. The add methods append a specified
item to a list and the delete and deleteltem methods remove specified items. The
following sections describe how these methods operate on an item in a list of items.

BEA Jolt User's Guide

JoLT METHODS

Changing the First Item Occurrence

The set and delete methods operate on the first occurrence of an item in a list. In Jolt,
the first occurrence of an item is always at position zero. For example, if you have a
list of account numbers and you use a delete method, the item at position zero is
deleted. For example:

delete (*ACCTNUM”)
Deletes the account number at position zero of the account number list.
setint (“ACCTNUM”, 3200)

Sets the account number at position zero to the value 3200.

Changing Items by Item Position

The following types of methods in the Jolt Class Library are position dependent. To
change a position-dependent item, you specify the location or index of the item in a list.

¢ set...Item methods
4 deleteltem methods

For example, to set the third item in a list of account numbers to a value, you would
specify the following:

setintltem (“ACCTID", 2, 5000)

The example sets the account number at position three to the value 5000. You specify
an index of 2 because the index numbering starts at 0 and 2 is at the third position of
the list.

To delete the first item in a list of account numbers, you would specify the following:
deleteltem (*ACCTID", 0)

The example deletes the account number at position 0 and is exactly equivalent to
using just the delete method set...ltem (name, 0, value) also works exactly
as the set method.

BEA Jolt User’s Guide 7-3

7 JoLT CLass

LIBRARY REFERENCE

Getting Items

The Jolt Class Library includes a number of get methods. However, the get methods
operate differently from the other types of methods. The following three get methods
retrieve information with a single value.

4 getOccurrenceCount
4 getName
4 getApplicationcode

All other get methods are in the form oget...Def ~ orget...ltemDef . The

get...Def methods retrieve information about the first item (item 0). The get...ItemDef
methods retrieve information about an item that you specify by its position or index
number. If the item has no information, these methods allow you to set a default. For
example:

getintitemDef (“CreditRating”, 4, -1)

The example gets the credit rating for the fifth item in a list of items starting at position
zero. If the item has no value for a credit rating, the get returns the default value of -1.
You specify the value for the method in ‘defValu« parameter.

Appending ltems

The add methods append an item to the end of a list of items. Of course if your list of
items is empty, an add will make the item the first one in the list. In the following
example, the add method appends a name to the end of a list of names:

addString (“CompanyName”, “BoltBikeWorks”)

7-4 BEA Jolt User's Guide

JOLTSESSIONATTRIBUTES CLASS

JoltSessionAttributes Class

java.lang.Object

+----bea.jolt. JoltSessionAttributes

The JoltSessionAttributes class defines the acceptable attributes for the JoltSession
constructor. The set methods add the attribute if one does not exist. Otherwise, the set
method overwrites the old value.

The get and set methods throw java.lang.NoSuchFieldError or
java.lang.lllegalAccessError . By default, these errors are caught by the Java
virtual machine.

public class JoltSessionAttributes

{

/* The supported authentication levels. */
public final static int NOAUTH; /I No authentication
public final static int APPASSWORD; // Application password
public final static int USRPASSWORD; // App and User passwords

/* The attribute names for set and get. */

public final static String APPADDRESS // String “//host:port"
/I Used with setString()

public final static String IDLETIMEOUT; // Used with Setint()"

public final static String SENDTIMEOUT; // Used with Setint()"

public final static String RECVTIMEOUT; // Used with Setint()"

/* The attribute name for get only. */
public final static String SESSIONTIMEOUT; // getintDef()

public JoltSessionAttributes 0;

/1JoltSessionAttributes methods.

public int checkAuthenticationLevel 0

throws SessionException;
public void clear ();
public byte getByteDef (String name, byte defValue);
public byte]] getBytesDef (String name, byte[] defValue);
public double getDoubleDef (String name, double defValue);
public float getFloatDef (' String name, float defValue);

BEA Jolt User’s Guide 7-5

7 JOLT CLASS LIBRARY REFERENCE

public int getintDef (' String name, int defValue),

public short getShortDef (String name, short defValue);
public String getStringDef (' String name, String defValue);
public void setByte (String name, byte value);

public void setBytes (' String name, byte[] value , int len);
public void setDouble (String name, double value);

public void setFloat (' String name, float value);

public void setint (String name, int value);

public void setShort (' String name, short value);

public void setString (' String name, String value);

JoltSessionAttributes Constructor

The following constructor creates an instance of the JoltSessionAttributes class.
JoltSessionAttributes
This constructor allocates a new instance of the JoltSessionAttributes class.
Synopsis public JoltSessionAttributes 0;

Usage Specific components are extracted to assist in defining the attributes of the Session
constructor.

Throws java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

7-6 BEA Jolt User's Guide

JOLTSESSIONATTRIBUTES CLASS

JoltSessionAttributes Methods

The following methods are used in conjunction with the JoltSessionAttributes class.

¢ checkAuthenticationLevel and clear method. These methods provide a
means to retrieve the values set for system access and to remove data.

4 get method. The get attribute methods obtain the value of an attribute. If the
attribute does not exist, the default value is returned. The user sets the default.

4 set method. These methods set the value of an attribute. If a value already
exists, using the set method overwrites the existing value. Unless otherwise
specified, the set methods return no values.

These JoltSessionAttributes methods are described in the following sections.

checkAuthenticationLevel

Synopsis

Usage

The checkAuthenticationLevel method gets the authentication level set up by the
TUXEDO administrator.

int checkAuthenticationLevel () throws SessionException;

The authentication level determines which values are set to the JoltSession constructor
parameters. This method returns the authentication level specified in Table 7-1.

You must se APPADDRESS before calling this method (refer to Table 7-2).

BEA Jolt User’s Guide 7-7

7 JOLT CLASS LIBRARY REFERENCE

Returns

Throws

clear

Synopsis

Usage

Table 7-1 describes the possible return values for the checkAuthenticationLevel
method.

Table 7-1 Return Values for the checkAuthenticationLevel Method

Return Value Description
NOAUTH No authentication is required to access the system.
APPASSWORD System authentication is required. Clients provide user name, user

role, and application password to authenticate the system.

USRPASSWORD System and application authentication are required to access the
system. Clients provide user name, user role, user password, and
application password to authenticate the system.

java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

The clear method removes all attributes.
void clear ();

The JoltSessionAttributes class contains data that must be removed for object reuse.
Use the clear method to remove data.

7-8 BEA Jolt User's Guide

JOLTSESSIONATTRIBUTES CLASS

getByteDef

Synopsis

Usage

Returns

Throws

getBytesDef

Synopsis

Usage

Returns

Throws

The getByteDef method gets the byte value of a specified item.

byte getByteDef (String name byte defValue),

Gets the byte value (8-bit) of the item specified inrtameparameter or the specified
defValueg if the name does not exist.

This method returns a single byte value.

java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

The getBytesDef method gets an array of byte values.
byte[] getBytesDef (String name, byte[] defValue);

Gets an array of byte values of the item specified indmeeparameter or the specified
defValug if the name does not exist.

This method returns an array of values.

java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

BEA Jolt User’s Guide 7-9

7 JOLT CLASS LIBRARY REFERENCE

getDoubleDef

Synopsis

Usage

Returns

Throws

getFloatDef

Synopsis

Usage

Returns

Throws

The getDoubleDef method gets the double precision value of an item.
double getDoubleDef (String name, double defValue);

Gets the double precision value of the item specified iname¢ parameter or the
specifieddefValuy, if the name does not exist.

This method returns an double precision floating point value (64-bit).

java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

The getFloatDef method gets the floating point value of an item.
float getFloatDef (String name, float defValue);

Gets the floating point value of the item specified innam¢ parameter or the
specifieddefValuy, if the name does not exist.

This method returns a floating point value (32-bit).

java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

7-10 BEA Jolt User's Guide

JOLTSESSIONATTRIBUTES CLASS

getintDef

The getintDef() method gets the integer value of an item.
Synopsis int getintDef (String name, int defValue);

Parameters name Specifies the attribute name.

defValue Specifies a default value for an item if it does not have an
existing name.

Usage Gets the integer value of the item specified inname¢ parameter or the specified
defValu,, if the name does not exist. Use these values to specidefValue
parameter for this method.

Returns ~ This method returns an integer value (32-bit).

Example attr.getintDef(attr. SESSIONTIMEOUT, 1);

Throws java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

BEA Jolt User’'s Guide 7-11

7 JOLT CLASS LIBRARY REFERENCE

getShortDef

The getShortDef method gets the short integer value of an item.
Synopsis short getShortDef (String name, short defValue);

Usage Getsthe shortinteger value of the item specified iname parameter or the specified
defValug, if the name does not exist.

Returns This method returns a short integer value (16-bit).

Throws java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

getStringDef
The getStringDef method gets the string value of an item.
Synopsis ~ String getStringDef (String name, String defValue);

Usage Gets the string value of the item specified inname¢ parameter or the specified
defValuy, if the name does not exist. The default value can be a null string or any other
text string.

Returns This method returns a text string.

Throws java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

7-12 BEA Jolt User's Guide

JOLTSESSIONATTRIBUTES CLASS

setByte

Synopsis

Usage

Throws

setBytes

Synopsis

Usage

Throws

The setByte method sets the byte value of a specified item.
void setByte (String name, byte value);

Sets the value of the item specified in name parameter to the byte value specified
in thevalue parameter. The value is an 8-bit byte.

java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

The setBytes method sets the byte array value of a specified item.

void setBytes (String name, byte[] value , int len);

Sets the value of the item specified in nam¢ parameter to the byte array value
specified in thevalue parameter, with the length set by len parameter. The value is
in 8-bit bytes.

java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

BEA Jolt User’'s Guide 7-13

7 JOLT CLASS LIBRARY REFERENCE

setDouble

Synopsis

Usage

Throws

setFloat

Synopsis

Usage

Throws

The setDouble method sets the double precision value of a specified item.
void setDouble (String name, double value);

Sets the value of the item specified inname parameter to the double precision value
specified in thevalue parameter. The value is in 64-bits.

java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

The setFloat method sets the floating point value of a specified item.
void setFloat (String name, float value);

Sets the value of the item specified inname parameter to the floating point (32-bit)
value specified in thvalue parameter.

java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

7-14 BEA Jolt User's Guide

JOLTSESSIONATTRIBUTES CLASS

setint

Synopsis

Usage

Throws

setShort

Synopsis

Usage

Throws

The setint method sets the integer value of a specified item.
void setint (String name, int value);

Sets the value of the item specified in nam¢ parameter to the integer (32-bit) value
specified in thevalue parameter.

java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

The setShort method sets the short integer value of a specified item.
void setShort (String name, short value);

Sets the value of the item specified in nam¢ parameter to the short (16-bit) integer
value specified in thvalue parameter.

java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

BEA Jolt User’'s Guide 7-15

7 JOLT CLASS LIBRARY REFERENCE

setString

Synopsis

Usage

Throws

The setString method sets the string value of a specified item.
void setString (String name, String value);

Sets the value of the item specified in name¢ parameter to the string value specified
in thevalue parameter.

java.lang.lllegalAccessError . Occurs when the user tries to set a value to a
get-only attribute, or to get a value from a set-only attribute.

java.lang.NoSuchFieldError . Occurs when the user tries to set an attribute which
is not one of the predefined attributes.

Attributes Names for Get and Set Methods

The attribute names for the JoltSessionAttributes class include static final variables

(essentially predefined constants) for setting the application address, and for setting
and getting timeouts. The predefined attribute names listed in Table 7-2 are used for
specifying the Strinname¢ parameter of the JoltSessionAttributes get and set methods.

Note: The get methods are unrestricted. That is, the programmer can define names
in addition to using the predefined ones. The set methods are currently
restricted to the use of the predefined names listed in Table 7-2.

7-16 BEA Jolt User's Guide

JOLTSESSIONATTRIBUTES CLASS

Table 7-2 Predefined Attribute Names

Attribute Name

Description

APPADDRESS

IDLETIMEOUT

RECVTIMEOUT

SENDTIMEOUT

SESSIONTIMEOUT

Defines the location of the machine where the application resides.
The format is as follows:

String “//host:port”

Host is the host machine name or IP address and port is the TCP
port number for the Jolt JSL or Jolt Relay. |setString() to
set the value of this attribute.

Defines an integer representing the timeout interval in seconds.
Set the IDLETIMEOUT to an interval of time that is less than the
SESSIONTIMEOUT value.

IDLETIMEOUT is used to hint to the system when to drop the
network connection while retaining the session. When the
IDLETIMEOUT is set to 0, the system is notified that the network
connection is always retained. This ensures that when the system
times out, the network connection to the target system is
terminated, and the session is terminated. The system
administrator may override this parameter.

UsesetIntDef() to set the value of this attribute.

Defines the number of seconds to wait after Jolt issues the TCP/IP
recv() before timing out. The default is 120 seconds. Use
setint() to set the value of this attribute.

Defines the number of seconds to wait after Jolt issues the TCP/IP
send() before timing out. The default is 10 seconds.

SESSIONTIMEOQUT is the only attribute used for the
get...methods. This attribute is the integer value in minutes of the
SESSIONTIMEOUT that is configured in the Jolt server. When a
session has been idle for the specified time, the server terminates
the session. See the -T option in JSL. setString() to set

the value of this attribute.

Note: For more information about the JSL -T timeout refe*SERVERS Sectio.”

BEA Jolt User's Guide 7-17

v

JoLT CLASS LIBRARY REFERENCE

7-18

JoltSession Class

java.lang.Object
I

+----bea.jolt.Session

+----bea.jolt.JoltSession

The JoltSession class represents the logon session object and is used to access availakb
TUXEDO services. The GUI-based Jolt Repository handles the propagation of
TUXEDO services to Jolt client applications. (For more information about the Jolt
Repository, see Chapter 5, “Using the Jolt Repository Editor.”) The programmer must
instantiate an object for each logon session. The JoltSession object communicates dat:
from, and connects to the TUXEDO System. The session ends with a call using the
endSession() method.

The JoltSession object is passed, by reference, to the JoltRemoteService and
JoltTransaction objects. All Jolt transactions must pass a JoltSession to access the
TUXEDO application.

public class JoltSession
{
Il JoltSession Constructor
public JoltSession (JoltSessionAttributes attr , String
userName, String userRole , String userPassword , String

appPassword)throws SessionException;

I JoltSession Method

public void endSession ()throws SessionException;
public final isAlive ();

public void onReply (JoltReply reply);
protected void finalize ();

}

For more information see the following classes: JoltSessionAttributes,
JoltRemoteService, JoltTransaction, JoltReply.

BEA Jolt User's Guide

JOLTSESSION CLASS

JoltSession Constructor

JoltSession

Synopsis

Usage

Throws

The JoltSession constructor creates a JoltSession object with attributes from the
JoltSessionAttributes class. The JoltSession object is the logon to the target system
which is identified in the APPADDRESS name of the JoltSessionAttributes. In
addition, programmers can specify the IDLETIMEOUT value (in seconds) in
JoltSessionAttributes to hint to the system when to drop the network connection while
retaining the session. Value 0 means the network connection should be retained
throughout the session. The administrator can override the behavior.

The programmer can set all other parameters for this constructor to null, depending
upon the authentication level.

Creates an instance of the JoltSession class with the specified attributes.

JoltSession (JoltSessionAttributes attr , String userName,
String userRole , String userPassword , String appPassword)
throws SessionException;

The JoltSession class creates an instance of the JoltSession class with the specified
attributes. Specific components are extracted to assist in joining an application and
terminating a session.

JoltSession allows the user identified by userNam parameter to log on to the
Jolt/TUXEDO system. All parameters must be set according to the authentication
level. If the logon is not successful, a SessionException is thrown. The object is
returned upon completion.

The JoltSession constructor throws the following exceptions:

SessionException ~ TPEJOLT: Missing host name or missing port number.
TPEJOLT: Protocol Error
TPEJOLT: Network Error
TPEJOLT: Can't connect to (host name)

BEA Jolt User’'s Guide 7-19

JOLT CLASS LIBRARY REFERENCE

The JoltSession constructor throws the following TUXEDO errors:

tpinit (3) TPEINVAL, TPENOENT, TPEPERM, TPEPROTO,
TPESYSTEM, TPEOS

Refer to TUXEDO Error¢?’ in Appendix A ortperrno (5) in the
TUXEDO System Reference Mar for explanations of these
error messages.

JoltSession Method

endSession

7-20

Synopsis

Usage

Throws

See Also

The JoltSession class contains one method, the endSession method, for handling
session logoff activities, two additional methcisAlive() andonReply() for
handling event subscription, and the overridfinalize() method.

The endSession method performs a session termination procedure.

void endSession () throws SessionException;

The endSession method is used to terminate the session and obsolete the session
object. The endSession method allows the user to log off the Jolt/TUXEDO system.
When logged off, the session is invalid.

TheendSession() method throws the following exceptions:

SessionException TPEJOLT: Invalid Session
TPEJOLT: Connection send error

TheendSession() method generates a Jolt exception upon receipt of one of the
following TUXEDO errors:

tpterm (): TPEPROTO, TPESYSTEM, TPEOS

“TUXEDO Error¢ in Appendix A ortperrno (5) in theTUXEDO System Reference
Manua.

BEA Jolt User's Guide

JOLTSESSION CLASS

isAlive

Synopsis

Usage

Returns

Throws

onReply

Synopsis
Parameter

Usage

Overrides

TheisAlive method checks if the session is still alive.
boolean isAlive () throws SessionException

The isAlive method will return a boolean (true/false) value indicating whether the
client session is valid or not. The validity of the client session is checked at the
JoltSessionHandler (JSH). If a client which is operating in connection-less mode calls
isAlive() while its network connection is closed, this method will cause the network
connection to be re-opened and closed.

True if this session is still alive; false otherwise.

TheisAlive() method throws SessionException

TheonReply() method is the default event handler for all events.
void onReply (JoltReply reply)
reply Specifies an object containing the data message.

This method is the default event handler for all events. This method is invoked by Jolt
and it should be overridden by the user. Client application developers need to provide
an implementation of thonReply() method to invoke when any notification is
received. The JoltReply object that is passed tonReply() method contains any

data that is included with the notification. The application can use the methods in
JoltReply and JoltMessage to retrieve this data.

Since Jolt is a multi-threaded environment, the onReply() method executes on a
separate thread simultaneously with other application threads. You must, therefore,
write a thread-safe handler. Separate threads could be executing the onReply() method
concurrently, so the method must be written to accommodate this possibility.
Alternately, you can declare the onReply() method as synchronized—this will cause
all its invocations to be serialized.

TheonReply() method overrides zonReply() method.

BEA Jolt User's Guide 7-21

7 JOLT CLASS LIBRARY REFERENCE

finalize
Thefinalize() method will call theendSession() method if arendSession()
has never been called.
Synopsis protected void finalize ()

Usage This method is automatically called by the Java garbage collector.

Overrides Thefinalize() method overridejava.lang.Object.finalize()

7-22 BEA Jolt User's Guide

JOLTREMOTESERVICE CLASS

JoltRemoteService Class

java.lang.Object
I

+----bea.jolt. JoltRequestMessage

+----bea.jolt. JoltRemoteService

The JoltRemoteService class is a subclass (child class) of the JoltRequestMessage
class. Itis derived from and inherits the characteristics of its parent class,
JoltRequestMessage. The JoltRemoteService object is reusable; therefore, the
programmer should invoke the JoltRequestMesclear method to reset any

previous data (such as flags, priority, and parameters) before invoking the object again.

JoltRemoteService is used to perform the Request/Reply call. To make a call, the
programmer:

1. Instantiates an object of this class for each service, usiradd methods from
JoltRequestMessage to add the parameters.

2. Invokes thecall method to send the request.

3. Uses the JoltRequestMessiget methods, upon successful completion of the
call, to retrieve the reply result.

The JoltRemoteService methods are described as part of the JoltRequestMessage
class. Refer to the JoltRequest Message, JoltSession, and JoltTransaction classes for
additional information.

public class JoltRemoteService extends JoltRequestMessage

{
public JoltRemoteService (String name, JoltSession s) throws
ServiceException;

/Il JoltRemoteService methods

public void call (Transaction t)
throws ServiceException,
TransactionException, ApplicationException

BEA Jolt User’'s Guide 7-23

7 JOLT CLASS LIBRARY REFERENCE

JoltRemoteService Constructor

The following JoltRemoteService constructor is used to create instances of the
JoltRemoteService class.

JoltRemoteService

Synopsis

Usage

Throws

The JoltRemoteService constructor defines a constructor for a remote service object.

JoltRemoteService (String name, JoltSession s) throws
ServiceException;
JoltRemoteService() defines the constructor for a remote service objectname:

parameter specifies the service name.s parameter specifies the session object from
the JoltSession class. This constructor receives thecurrent versio from a

repository that holds the service definitions. If the service does not exist, an exception
is thrown.

ServiceExceptions ~ TPENOENT - Service (service name) is not available.
TPEJOLT - Invalid session
TPEJOLT - bea.jolt.DefinitionException: Invalid (message)

JoltRemoteService Methods

call

Synopsis

The JoltRemoteService() method provide the means to call a transaction service
for the JoltRemoteService object.

Thecal() method calls the specified service.

void call (Transaction t) throws ApplicationException,
TransactionException, ServiceException;

7-24 BEA Jolt User's Guide

JOLTREMOTESERVICE CLASS

Usage

Throws

See Also

Thecall) method calls the service. Tt parameter specifies the transaction object.
The transaction must belong to the same session as the current service. If a TUXEDO
error (not service failure) occurs, the call method throws a ServiceException.

You can pass a null to thcall) method to call services without defining a
JoltTransaction object or to exclude the services from a transaction.

You can use getErro to retrieve the TUXEDO error code and error message from
the ServiceException. If there is a service failure (TPESVCFAIL), the call method
throws a runtime exception, ApplicationException.

When programming in multithreaded mode, if the transaction is aborted, all
outstanding calls associated with such a transaction receive a TransactionException
with a TPEABORT error code. The associated message contains the service name.

To call services without defining a JoltTransaction object or to exclude the services
from a transaction, you can pass a null to the call method.

ApplicationException (application code) - “this” object is included.

ServiceExceptions TPEJOLT: Invalid session
TPEJOLT: Connection send error
TPEJOLT: Connection recv error
TPEJOLT: Protocol error
TPEJOLT: bea.jolt.BufException.....
TPEJOLT: bea.jolt.MessageException:...

TransactionExceptions TPEJOLT - Invalid Transaction
TPEABORT - (service name)

Thecall) method generates an exception upon receipt of the following TUXEDO
errors:

tpcall TPEINVAL, TPENOENT, TPEITYPE, TPETRAN,
TPETIME, TPESVCFAIL, TPESVCERR, TPEBLOCK,
TPGOTSIG, TPEPROTO, TPESYSTEM, TPEOS

“TUXEDO Error¢ in Appendix A ortperrno in theTUXEDO System Reference
Manua.

BEA Jolt User’'s Guide 7-25

7 JOLT CLASS LIBRARY REFERENCE

JoltRequestMessage Abstract Class

JoltRequestMessage is an abstract class whose main purpose is to serve as a base o
parent class ft JoltRemoteServi. The JoltRemoteService class extends from (or is a
subclass of) the JoltRequestMessage. All of the methods provided for the
JoltRequestMessage class only work with the JoltRemoteService class.

Note: All JoltRequestMessage method exceptions are caught by the Java virtual
machine by default.

public abstract class JoltRequestMessage
{
public String getName();
public void setRequestPriority (int priority);
public int getApplicationCode 0;
public void clear ();
public void addByte (String name, byte val);
public void addShort (String name, short val);
public void addInt (String name, int val);
public void addFloat (String name, float val);
public void addDouble (String name, double val);
public void addString (String name, String val);
public void addBytes (String name, byte[] val ,int len);
public void delete (String name);
public void deleteltem (String name, int itemNo);
public void setByte (String name, byte value);
public void setShort (String name, short value);
public void setint (String name, int value);
public void setFloat (String name, float value);
public void setDouble (String name, double value);
public void setString (String name, String value);
public void setBytes (String name, byte[] value , int len);
public void setByteltem (String name, int itemNo , byte val);
public void setShortltem (String name, int itemNo , short val);
public void setintitem (String name, int itemNo , int val);
public void setFloatltem (String name, int itemNo , float val);
public void setDoubleltem (String name, int itemNo , double val);
public void setStringltem (' String name, int itemNo , String val);
public void setBytesltem (String name, int itemNo , byte[] val ,

7-26 BEA Jolt User's Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

int len);

public int getOccurrenceCount (String name);

public byte getByteDef (' String name, byte defValue);

public short getShortDef (String name, short defValue);

public int getintDef (String name, int defValue);

public float getFloatDef (String name, float defValue);

public double getDoubleDef (String name, double defValue);

public String getStringDef (String name, String defValue),

public byte]] getBytesDef (String name, byte[] defValue);

public byte getByteltemDef (String name, int itemNo , byte def);

public short getShortltemDef (String name, int itemNo , short

def);

public int getintitemDef (String name, int itemNo , int def);

public float getFloatltemDef (' String name, int itemNo ,

float def);

public double getDoubleltemDef (String name, int itemNo , double

def);

public byte[] getBytesltemsDef (String name, int itemNo , byte[]
def);

public String getStringltemDef (' String name, int itemNo , String

def);

BEA Jolt User's Guide 7-27

7 JOLT CLASS LIBRARY REFERENCE

JoltRequestMessage Methods

The JoltRequestMessage methods are used in conjunction with the abstract
JoltRequestMessage class. These methods are divided into five categories: the clear
method, get methods, set methods, add methods, and delete methods.

Note: Theclear() method removes JoltRequestMessage settings.

Get Methods

The get JoltRequestMessage methods are used to get values from the remote service
object. These methods encompass two types of get methods, service and request
methods and output parameter methods.

Service and Request Methoc. The service methods handle queries about service
attributes such as the name of the current service, or the application code (i.e.,
tpusrcode in ATMI). These methods include:

4 getApplicationCode()
4 getName()

Output Parameter Methods. All of the get methods are used to obtain the value of a
named item that must be one of the result parameters. If the item does not exist, the
method returns the specified default value. A get method wiitemN¢ parameter is
equivalent to a get method witemNcO (i.e., first occurrence). These methods
include the following:

4 getOccurrenceCount
getByteDef
getBytesDef
getDoubleDef
getFloatDef
getintDef
getShortDef

* & & & & o o

getStringDef

7-28 BEA Jolt User's Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

Set Methods

getByteltemDef
getBytesltemsDef
getDoubleltemDef
getFloatltemDef
getintitemDef
getShortitemDef

* S S & & o o

getStringltemDef

The corresponding set methods for these get methods are locatedsetByt¢’
section.

The set methods are used to set values for the remote service object. These methods
manipulate the input parameters. The set JoltRequestMessage methods are divided
into two categories:

Service and Request Metho. The service method sets the request priority service
attribute, this includes:

4 setRequestPriority

Input Parameter Methods. These methods are used to set the value of a named item
that must be one of the input parameters. If the named item does not exist, the value is
added. These methods include the following:

setByte
setBytes
setDouble
setFloat
setint

setShort

* & & & & o o

setString

BEA Jolt User’'s Guide 7-29

v

JOLT CLASS LIBRARY REFERENCE

setByteltem
setBytesltem
setDoubleltem
setFloatltem
setintitem

setShortltem

* S S & & o o

setStringltem

For all of theset...Item methods, if an item exists, the set method will overwrite it.
The parameteitemNc¢ specifies an index that points to the value. If there are gaps in
the index (that is, you set a value itemNc¢ 3 and there are no values setitemNc

1, and 2) these items will be set with:

0,

4 an empty string, “ ", for string values

¢ 0 for short, int, or byte values

4 0.0 for floating point and double precision values
4 null for byte arrays

In the following example, the setStringltem method is used to change the name John
to Jim. TheitemNc parameter specifies a list of names. Currently, the name John exists
for itemNc 2. To change the name you might write:

setStringltem (“names”, 2, “jim”);

Allindexes specified bitemNc start at 0 and increment. Therefore, the second item in
a list is actuallyitemNc¢ 1 and the first item in the list is actuaitemNc O.

Add and Delete Methods

7-30

The add and delete methods are used to add or delete values for the remote service
object. These methods manipulate the input parameters. These methods include:

4 addByte
4 addBytes
4 addDouble

BEA Jolt User's Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

addFloat
addint
addShort
addString

delete

* & & & o o

deleteltem
clear
Theclear() method resets all input/output parameters or any information.
Synopsis void clear ();

Usage Theclear() ~method handles removal of parameter settings or information set by the
JoltRequestMessage class.

getApplicationCode

The getApplicationCode() method gets the application code returned by the
service.

Synopsis int getApplicationCode 0;

Usage ThegetApplicationCode() method is equivalent ttpurcode or thercode in
TUXEDO's tpreturn ~ (3).

Returns This method returns an integer value (32-bit).

getName

ThegetName() method gets the name of the current service.
Synopsis ~ String getName ();

Returns This method returns a string value.

BEA Jolt User’'s Guide 7-31

7 JOLT CLASS LIBRARY REFERENCE

getOccurrenceCount

ThegetOccurrenceCount() method gets the number of occurrences of a specified
item.

Synopsis int getOccurrenceCount (String name);

Usage This method retrieves the number of occurrences of an item specified namee
parameter. The item must be one of the result or output parameters.

Returns ~ This method returns an integer value (32-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getByteDef
ThegetByteDef() method gets the byte value of a specified parameter.
Synopsis byte getByteDef (String name, byte defValue),

Usage This method gets the byte value of name¢ parameter or the specifidefValug, if the
name does not exist. The item must be one of the result or output parameters.

Returns This method returns a byte value (8-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getBytesDef
ThegetBytesDef() method gets the byte array value of a specified parameter.

Synopsis byte[] getBytesDef (String name, byte[] defValue);

Usage This method gets the byte array value of the first item specified name¢ parameter
or the specifiedefValu, if the name does not exist.

7-32 BEA Jolt User's Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

Returns This method returns an array of byte values.

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getDoubleDef

ThegetDoubleDef() method gets the double precision value of a specified
parameter.

Synopsis double getDoubleDef (String name, double defValue);

Usage This method gets the double precision value of the item specified name:
parameter or the specifidefValuy, if the name does not exist.

Returns This method returns a double precision value (64-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getFloatDef
The getFloatDef() method gets the floating point value of a specified parameter.
Synopsis float getFloatDef (String name, float defValue);

Usage This method gets the floating point value of the item specified iname¢ parameter
or the specifiedefValuy, if the name does not exist.

Returns This method returns a floating point value (32-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

BEA Jolt User’'s Guide 7-33

7 JOLT CLASS LIBRARY REFERENCE

getintDef

The getintDef() method gets the integer value of a specified parameter.
Synopsis int getintDef (String name, int defValue);

Usage This method gets the integer value of the item specified inam¢ parameter or the
specifieddefValuy, if the name does not exist.

Returns ~ This method returns an integer value (32-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getShortDef
The getShortDef() method gets the short integer value of a specified parameter.
Synopsis short getShortDef (String name, short defValue);

Usage This method gets the short integer value (16-bit) of the item specified name:
parameter or the specifidefValu, if the name does not exist.

Returns This method returns a short integer value (16-bit).

Throws java.lang.NoSuchFieldError .(field name) Attempt to get a field that is not
defined for this service.

getStringDef
The getStringDef() method gets the string value of a specified parameter.
Synopsis String getStringDef (String name, String defValue);

Usage This method gets the string value of the item specified iname¢ parameter or the
specifieddefValu, if the name does not exist. The default value can be a null string or
any string that you specify.

7-34 BEA Jolt User's Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

Returns This method returns a string value.

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getByteltemDef
ThegetByteltemDef() gets the byte item.
Synopsis byte getByteltemDef (String name, int itemNo , byte def);

Usage This method gets the byte value of itemNc of thename parameter. If the item does
not exist, the get method returns the default value.

Returns This method returns a byte value (8-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getBytesltemsDef
The getBytesltemDef() gets the byte array item.
Synopsis byte[] getBytesltemDef (String name, int itemNo , byte[] def);

Usage This method gets the byte value of itemNc of thename parameter. If the item does
not exist, the get method uses the default value.

Returns ~ This method returns a byte value (8-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

BEA Jolt User’'s Guide 7-35

7 JOLT CLASS LIBRARY REFERENCE

getDoubleltemDef

ThegetDoubleltemDef() gets the double precision item.
Synopsis double getDoubleltemDef (String name, int itemNo , double def);

Usage This method gets the double precision value oitemNc of the name parameter. If
the item does not exist, the get method returns the default value.

Returns This method returns a double precision value (64-bit).

Throws java.lang.NoSuchFieldError . (field name) Attempt to get a field that is not
defined for this service.

getFloatltemDef
The getFloatitemDef() gets the floating point item.
Synopsis float getFloatitemDef (String name, int itemNo , float def);

Usage This method gets the floating point value of itemNc of the name parameter. If the
item does not exist, the get method returns the default value.

Returns This method returns a floating point value (32-bit).

Throws java.lang.NoSuchFieldError . (field name) - Attempt to get a field that is not
defined for this service.

getintltemDef
ThegetintitemDef() gets the integer item.

Synopsis int getintitemDef (String name, int itemNo , int def);

Usage This method gets the integer value of itemNc¢ of the name parameter. If the item
does not exist, the get method returns the default value.

7-36 BEA Jolt User's Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

Returns ~ This method returns an integer value (32-bit).
Throws java.lang.NoSuchFieldError . (field name) - Attempt to get a field that is not
defined for this service.
getShortltemDef
The getShortitemDef() gets the short item.
Synopsis short getShortitemDef (String name, int itemNo , short def);
Usage This method gets the short value of itemNcof the name parameter. If the item does
not exist, the get method returns the default value.
Returns This method returns a short integer value (16-bit).
Throws java.lang.NoSuchFieldError . (field name) - Attempt to get a field that is not
defined for this service.
getStringltemDef
The getStringltemDef() gets the string value of a specified item.
Synopsis String getStringltemDef (String name, int itemNo , String def);
Usage This method gets the string value ofitemNc of the name parameter. If the item does
not exist, the get method returns the default value.
Returns This method returns a string value.
Throws java.lang.NoSuchFieldError . (field name) - Attempt to get a field that is not

defined for this service.

BEA Jolt User's Guide 7-37

7 JOLT CLASS LIBRARY REFERENCE

setRequestPriority
The setRequestPriority() method sets the request priority service attribute.
Synopsis void setRequestPriority (int priority);
Parameter priority Specify a priority value between 1 and 100 inclusive.
Usage Sets the absolute request priority for the current service. It is seclear() is

setByte

Synopsis

Usage

Throws

called.

ThesetByte() method sets the value of the specified item.
void setByte (String name, byte value);

Sets the value of the item specified in nam¢ parameter to the byte value specified
in thevalue parameter. The value is an 8-bit byte.

java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

7-38 BEA Jolt User's Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

setBytes

Synopsis

Usage

Throws

setDouble

Synopsis

Usage

Throws

ThesetBytes() method sets the value of the specified item.
void setBytes (String name, byte[] value , int len);

Sets the value of the item specified in nam¢ parameter to the byte array value
specified in thevalue parameter, with the length set by len parameter. The value is
in 8-bit bytes.

java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

ThesetDouble() method sets the double precision value of the specified item.
void setDouble (String name, double value);

Sets the value of the item specified in name parameter to the double precision
(64-bit) value specified in thvalue parameter.

java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

BEA Jolt User’'s Guide 7-39

7 JOLT CLASS LIBRARY REFERENCE

setFloat

Synopsis

Usage

Throws

setint

Synopsis

Usage

Throws

The setFloat() method sets the floating point value of the specified item.
void setFloat (String name, float value);

Sets the value of the item specified inname parameter to the floating point (32-bit)
value specified in thvalue parameter.

java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

Thesetint() method sets the integer value of the specified item.
void setint (String name, int value);

Sets the value of the item specified in name¢ parameter to the integer (32-bit) value
specified in thevalue parameter.

java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

7-40 BEA Jolt User's Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

setShort

Synopsis

Usage

Throws

setString

Synopsis

Usage

Throws

ThesetShort() method sets the short integer value of the specified item.
void setShort (String name, short value);

Sets the value of the item specified in nam¢ parameter to the short (16-bit) integer
value specified in thvalue parameter.

java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

ThesetString() method sets the string value of the specified item.
void setString (String name, String value);

Sets the value of the item specified in nam¢ parameter to the string value specified
in thevalue parameter.

java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

BEA Jolt User’'s Guide 7-41

7 JOLT CLASS LIBRARY REFERENCE

setByteltem

ThesetByteltem() method sets a named item at a specified index with a byte value.
Synopsis void setByteltem (String name, int itemNo, byte value);

Usage Sets the item specified in thameparameter at the index specifieditemNowith the
byte value specified by ttvalue parameter. If the item already exists, the value is
overwritten.

Throws java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

setBytesltem

ThesetBytesltem() method sets a named item at a specified index with a byte value.
Synopsis void setBytesltem (String name, int itemNo, byte[]] value, int len),

Usage Sets the item specified in thame¢parameter at the index specifieditemNowith the
byte array value specified by tvalue parameter. If the item already exists, the value
is overwritten.

Throws java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

7-42 BEA Jolt User's Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

setDoubleltem

Synopsis

Usage

Throws

setFloatltem

Synopsis

Usage

Throws

The setDoubleltem() method sets a named item at a specified index with a double
precision value.

void setDoubleltem (String name, int itemNo , double value);

Sets the item specified in thame¢ parameter at the index specifieditemNowith the
double precision value specified by value parameter. If the item already exists, the
value is overwritten.

java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

The setFloatitem() method sets a named item at a specified index with a floating
point value.

void setFloatltem (String name, int itemNo, float value);

Sets the item specified in thame¢ parameter at the index specifieditemNowith the
floating point value specified by ttvalue parameter. If the item already exists, the
value is overwritten.

java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

BEA Jolt User’'s Guide 7-43

7 JOLT CLASS LIBRARY REFERENCE

setintltem

Thesetintitem() method sets a named item at a specified index with a integer value.
Synopsis void setintitem (String name, int itemNo, int value);

Usage Sets the item specified in thameparameter at the index specifieditemNowith the
integer value specified by tlvalue parameter. If the item already exists, the value is
overwritten.

Throws java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

setShortltem

The setShortitem() method sets a named item at a specified index with a short
integer value.

Synopsis void setShortltem (String name, int itemNo, short value);

Usage Sets the item specified in thameparameter at the index specifieditemNowith the
short value specified by ttvalue parameter. If the item already exists, the value is
overwritten.

Throws java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

7-44 BEA Jolt User's Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

setStringltem

The setStringltem() method sets a named item at a specified index with a string
value.

Synopsis void setStringltem (' String name, int itemNo, string value);

Usage Sets the item specified in thame parameter at the index specifieditemNowith the
string value specified by thvalue parameter. If the item already exists, the value is
overwritten.

Throws java.lang.lllegalAccessError . (field name) - Attempt to set a value to an output
parameter field.

java.lang.NoSuchFieldException . (field name) - Attempt to set a field which is
not defined for this service.

addByte
TheaddByte() method adds the byte input parameters.
Synopsis void addByte (String name, byte val);
Usage TheaddByte() method adds specified byte items to the input parameters.

Throws java.lang.lllegalAccessError . (field name) - Attempt to add a value to an input
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field that
is not defined for this service.

BEA Jolt User’'s Guide 7-45

7 JOLT CLASS LIBRARY REFERENCE

addBytes

Synopsis

Usage

Throws

addDouble

Synopsis

Usage

Throws

TheaddBytes() method adds the byte array input parameter.
void addBytes (String name, byte[] val, int len);

TheaddBytes() method adds the byte value (8-bit) of the item specified iname:
parameter.

java.lang.lllegalAccessError . (field name) - Attempt to add a value to an input
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field that
is not defined for this service.

TheaddDouble() method adds the double precision input parameter.
void addDouble (String name, double val);

TheaddDouble() method adds the double precision value (64-bit) of the item
specified in thename parameter.

java.lang.lllegalAccessError . (field name) - Attempt to add a value to an input
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field that
is not defined for this service.

7-46 BEA Jolt User's Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

addFloat

Synopsis

Usage

Throws

addint

Synopsis

Usage

Throws

TheaddFloat) method adds the floating point input parameter.
void addFloat (String name, float val);

TheaddFloat() method adds the floating point value (32-bit) of the item specified in
thename¢ parameter.

java.lang.lllegalAccessError . (field name) - Attempt to add a value to an input
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field that
is not defined for this service.

Theaddint() method adds the integer input parameter.
void addint (String name, int val);

Theaddint() method adds the integer value (32-bit) of the item specified nam¢:
parameter.

java.lang.lllegalAccessError . (field name) - Attempt to add a value to an input
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field that
is not defined for this service.

BEA Jolt User's Guide 7-47

7 JOLT CLASS LIBRARY REFERENCE

addShort

Synopsis

Usage

Throws

addString

Synopsis
Usage

Throws

Theaddshort() method adds the short integer value (16-bit) input parameter.
void addShort (String name, short val);

This method adds the short integer value (16-bit) of the item specifiedname?
parameter.

java.lang.lllegalAccessError . (field name) - Attempt to add a value to an input
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field that
is not defined for this service.

Theaddstring() method adds the string value input parameter.
void addString (String name, String val);
This method adds the string value of the item specified inam¢ parameter.

java.lang.lllegalAccessError . (field name) - Attempt to add a value to an input
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field that
is not defined for this service.

7-48 BEA Jolt User's Guide

JOLTREQUESTMESSAGE ABSTRACT CLASS

delete

Synopsis

Usage

Throws

deleteltem

Synopsis

Usage

Throws

Thedelete() method deletes a first occurrence of the named item or any existing
item.

void delete (String name);

This method deletes the first named item. The named item must be one of the input
parameters.

java.lang.lllegalAccessError . (field name) - Attempt to add a value to an input
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field that
is not defined for this service.

Thedeleteltem() method deletes an occurrence of an existing named item.
void deleteltem (String name, int itemNo);

This method deletes an existing named item (input parameter). If the item does not
exist, an exception will be thrown. The deleteltem method withotitemNc¢
parameter is equivalent to delete methods itemNcO (i.e., first occurrence).

java.lang.lllegalAccessError . (field name) - Attempt to add a value to an input
parameter field, or delete a value from an input parameter field.

java.lang.NoSuchFieldError . (field name) - Attempt to add or delete a field that
is not defined for this service.

BEA Jolt User’'s Guide 7-49

7 JOLT CLASS LIBRARY REFERENCE

JoltTransaction Class

java.lang.Object
I
+----bea.jolt. Transaction

+----bea.jolt.JoltTransaction

The JoltTransaction class is the explicit transaction model for Jolt. The JoltTransaction
class implements the transaction object. This object can be used by JoltRemoteService
to include several services into a single transaction. When a transaction is timed out,
the user must rollback the transaction immediately. Due to the current implementation
of TUXEDO, only one transaction object can be instantiated at one time.

Refer also to the JoltRemoteService and JoltSession classes.

public class JoltTransaction
{
public JoltTransaction (int timeout , JoltSession s) throws
TransactionException;
public void commit () throws TransactionException;
public void rollback () throws TransactionException;

}

7-50 BEA Jolt User's Guide

JOLTTRANSACTION CLASS

JoltTransaction Constructor

The JoltTransaction Class provides a constructor to create the JoltTransaction object.

JoltTransaction

Synopsis

Usage

Throws

TheJoltTransaction() constructor creates an instance of the JoltTransaction object
with the specified parameters.

Note: You can pass a null to the JoltRemoteSercall) method to call services
without defining i JoltTransaction object or to exclude the services from a
transaction.

public JoltTransaction (int timeout , JoltSession s) throws
TransactionException;

The constructor (or the method that is invoked automatically when a new instance of

a class is created) implies the beginning of the transactiors (sessionparameter

in the constructor ensures that the transaction does not span over multiple sessions. The
current Jolt release allows only one transaction per session.

JoltTransaction requires that you set the timeout for a transaction. Specifying a timeout
parameter of 0, sets the timeout to the maximum value for the system. If the transaction
is not completed within this period of time (the time betweertpbegin() and the
tpcommit()), then Jolt generates a TransactionException.

The RECVTIMEOQOUT for each transactiorJoltRemoteService.call() is
automatically adjusted to the proper timeout value.

TransactionException TPEJOLT: Invalid session
TPEJOLT: Connection send error
TPEJOLT: Connection recv error
TPEJOLT: Protocol error

The JoltTransaction constructor generates an exception upon receipt of the following
TUXEDO errors:

tpbegin TPEINVAL, TPETRAN, TPEPROTO, TPESYSTEM, TPEOS

BEA Jolt User’'s Guide 7-51

7 JOLT CLASS LIBRARY REFERENCE

See Also “TUXEDO Error¢ in Appendix A ortperrno (5) in theTUXEDO System Reference
Manua.

JoltTransaction Methods

The JoltTransaction methods provide the means to start or end a transaction process.
The following methods handle commit and rollback transaction processing for the
JoltTransaction class.

commit

Thecommit() method performs the transaction commit.
Synopsis void commit ()
Usage After commit() is called, the object is obsolete.

Throws TransactionException TPEJOLT: Invalid transaction
TPEJOLT: Connection send error
TPEJOLT: Connection recv error
TPEJOLT: Protocol error
TPEABORT: Requests pending

Thecommit() method generates an exception upon receipt of the following TUXEDO
errors:

tpcommit (3) TPEINVAL, TPETIME, TPEABORT, TPEHEURISTIC,
TPEHAZARD, TPEPROTO, TPESYSTEM, TPEOS

7-52 BEA Jolt User's Guide

JOLTTRANSACTION CLASS

rollback

Synopsis
Usage

Throws

See Also

Therollback() method aborts the transaction.
void rollback ()

After rollback() is called, the object is obsolete.

TransactionException TPEJOLT: Invalid transaction
TPEJOLT: Connection send error
TPEJOLT: Connection recv error
TPEJOLT: Protocol error

Therollback() method generates an exception upon receipt of the following
TUXEDO errors:

tpabort (3) TPEINVAL, TPEHEURISTIC, TPEHAZARD, TPEQOS,
TPEPROTO, TPESYSTEM

“TUXEDO Error¢’ in Appendix A or tperrno(5) in thTUXEDO System Reference
Manua.

BEA Jolt User’'s Guide 7-53

v

JOLT CLASS LIBRARY REFERENCE

JoltEvent Class

java.lang.Object

+----bea.jolt.JoltEvent

The JoltEvent class extends fava.lang.Object class and is a base class for

various event subscriptions. This class is not designed to be instantiated directly. The
JoltEvent class provides some common implementations for all subscriptions. An
event can be a notification event or service event. A notifiable event generates async
notification (unsolicited notification or event notification) while a service event
invokes a service.

For additional information, refer also to the JoltSession class.
public class JoltEvent

unsubscribe ()
unsubscribeAll (Session)

JoltEvent Methods

unsubscribe

7-54

Synopsis

Usage

The following methods are used with the JoltEvent class.

Deletes the subscription to an event.

public int unsubscribe()

This method is used to stop subscribing to the event specified in the constructor. Once
it is unsubscribed, this object becomes obsoleted. All notifications received as a result
of a subscription will cause ttonReply() method in the session to be invoked.

BEA Jolt User's Guide

JOLTEVENT CLASS

Returns Number of subscriptions deleted.

Throws EventException . No such event or invalid event.
SessionException . An error occurs in this session.

unsubscribeAll
TheunsubscribeAll() method unsubscribes all event subscriptions in the specified
session.
Synopsis public static int unsubscribeAll (Session session)
Usage Unsubscribe all event subscriptions in the specified sessiorsessio parameter

requires a Jolt session object.

Returns Number of subscriptions deleted.

Throws EventException . Unsubscription error from TUXEDO.

SessionException . Invalid session or a session error.

BEA Jolt User’'s Guide 7-55

v

JOLT CLASS LIBRARY REFERENCE

JoltUserEvent Class

UNSOLMSG

7-56

Synopsis

java.lang.Object
|

+----bea.jolt.JoltEvent

+----bea.jolt.JoltUserEvent

The JoltUserEvent class extends JoltEvent. JoltUserEvent implements a subscription
to an asynchronous (async) notification event. An async notification is either an
unsolicited event notification or event notification from the TUXEDO Event Broker.
Unsolicited notifications are produced in response to a TUXltpnotify() call or

a TUXEDOtpbroadcast() call. Event notifications are produced as a result of a
TUXEDO tppost() call.

The JoltUserEvent class is used in Jolt 1.1 to support naotification. This class provides
support for both unsolicited notification (produced as a resttpnotify() or
tpbroadcast()) and event notifications (produced as a resutppost()).

The String JoltUserEvent. UNSOLMSG in the class is a constant which the application
programmer uses to request unsolicited messages.

Note: In TUXEDO, an unsolicited notification is indistinguishable from event
notification. This is also reflected in Jolt.

The handler for unsolicited notification and event notification is done in the Session
object. A thread is used in this class to monitor any incoming messages.

For additional information, refer also to the JoltSession, JoltMessage, and JoltReply
classes.

public class JoltUserEvent
UNSOLMSG
JoltUserEvent (String, String, Session)

The regular expression constant for unsolicited notification subscription.

final static String UNSOLMSG

BEA Jolt User's Guide

JOLTUSEREVENT CLASS

JoltUserEvent Methods

The following methods are used with the JoltUserEvent class.

JoltUserEvent

Synopsis

Parameters

Usage

This constructor subscribes to the specific asynchronous notification.

JoltUserEvent

expr

filter

session

This constructor subscribes the specific asynchronous notification. An asynchronous

(String expr , String filter , Session session)
throws EventException, SessionException

JoltUserEvent. UNSOLMSG for unsolicited notification or a
regular expression for event notification. The paranmexpi is

a String containing a regular expression of the same format as the

event expression usedtpsubscribe() . The maximum length

of this parameter is 255 characters. Setting this parameter to the

constant JoltUserEvent. UNSOLMSG will allow the client to
receive unsolicited messages (generated as a result of
tpnotify() ortpbroadcast()).

null or boolean expression. The parameter filter is a String of the

same format as the filter parameter passepsubscribe()

The maximum length of this parameter is 255 characters. Filter
rules are specific to the buffers to which they are applied. Refer

to TUXEDO documentation for complete explanation of the
filtering function. Filtering is done on the TUXEDO server, not
the Jolt client.

a JoltSession object. The parameter session is the JoltSession to
which the subscription is bound. An event is bound to a single

session.

notification may be an unsolicited notification or event notification. llexpr is

JoltUserEvent. UNSOLMSG, the filter must be null. Otherwise, the filter can be either

null or a boolean expression (see Fboolco(3) irTuxedo Reference Mani).

This constructor will return a JoltUserEvent object which will provide notification
when the Event identified by the parameter event occurs.

BEA Jolt User's Guide 7-57

7 JOLT CLASS LIBRARY REFERENCE

Throws SessionException . Invalid session or a session error.

EventException . Filter for unsolicited subscription is not null, or event subscription
failed.

7-58 BEA Jolt User's Guide

JOLTREPLY CLASS

JoltReply Class

java.lang.Object

|
+----bea.jolt.JoltReply

The JoltReply class extends java.lang.Object . JoltReply is a place holder of the
message for unsolicited messages or event notifications. This class provides the
application with access to any message received with a TUXEDO event or notification.

public class JoltReply
Message getMessage ()

JoltReply Methods

getMessage

Synopsis

Usage

Returns

The following method is used with the JoltReply class.

Gets the response message.
Message getMessage ()

ThegetMessage() method returns a JoltMessage object. The returned object
provides the application with access to any data that is associated with the event or
notification.

ThegetMessage() method returns a message object.

BEA Jolt User’'s Guide 7-59

7 JOLT CLASS LIBRARY REFERENCE

JoltMessage Class

java.lang.Object

+----bea.jolt. Message

+----bea.jolt.JoltMessage

The JoltMessage class exteljava.lang.Object . This class implements the

Message class, which encapsulates the attribute-value pair data for the application
protocol. This class allows the user to get an output attribute to the message. For more
information, refer also to the JoltReply classes.

public class JoltMessage

/[These methods are duplicates of the JoltRequestMessage class
/[They are inherited from that class.

public int getOccurrenceCount (String name);

public byte getByteDef (String name, byte def);

public short getShortDef (String name, short def);

public int getintDef (String name, int def);

public float getFloatDef (String name, float def) ;

public double getDoubleDef (String name, double def);

public String getStringDef (String name,String def);

public byte[] getBytesDef (String name, byte def []);

public byte getByteltemDef (String name, int itemNo , byte def);
public short getShortitemDef (String name, int itemNo , short def);
public int getintitemDef (String name, int itemNo , int def);

public float getFloatltemDef (String name, int itemNo , float def);
public double getDoubleltemDef (String name, int itemNo , double

def)

public byte[] getBytesltemDef (String name, int itemNo , byte

def [));

public String getStringltemDef (String name, int itemNo , String

def)

7-60 BEA Jolt User's Guide

JOLTMESSAGE CLASS

JoltMessage Methods

The following methods are used with the JoltMessage class.

getOccurrenceCount

Get the number of occurrence of a named item.

Synopsis synchronized int getOccurrenceCount ~ (String name)
Parameters name The name of the item.
Throws NoSuchFieldError . It is an invalid name.
getByteDef

Get the first item based on its name.
Synopsis public byte getByteDef (String name, byte def)

Parameters name The name of the item.

def The default byte value.

Usage Get the first item based on its name. If it does not exist, the default value will be
returned.

Throws NoSuchFieldError . It is an invalid name.

BEA Jolt User’'s Guide 7-61

7 JOLT CLASS LIBRARY REFERENCE

getShortDef

Get the first item based on its name.
Synopsis short getShortDef (String name, short def)

Parameters name The name of the item.

def The default short value.

Usage Get the first item based on its name. If it does not exist, the default value will be

returned.
Throws NoSuchFieldError . It is an invalid name.
lllegalAccessError . Cannot delete an input item.

getintDef

Get the first item based on its name.
Synopsis int getintDef (String name, int def)

Parameters name The name of the item.

def The default int value.

Usage Get the first item based on its name. If it does not exist, the default value will be

returned.
Throws NoSuchFieldError . It is an invalid name.
lllegalAccessError . Cannot delete an input item.

7-62 BEA Jolt User's Guide

JOLTMESSAGE CLASS

getFloatDef
Get the first item based on its name.
Synopsis ~ float getFloatDef (String name, float def)
Parameters name The name of the item.
def The default float value.
Usage Get the first item based on its name. If it does not exist, the default value will be
returned.
Throws NoSuchFieldError . It is an invalid name.
getDoubleDef
Get the first item based on its specified name.
Synopsis double getDoubleDef (String name, double def)
Parameters name The name of the item.
def The default double value.
Usage Get the first item based on its specified name. If it does not exist, the default value is
returned.
Throws NoSuchFieldError . It is an invalid name.
getStringDef
Get the first item based on its name.
Synopsis ~ String getStringDef (String name,String def)
Parameters name The name of the item.
def The default string value.

BEA Jolt User’'s Guide 7-63

7 JOLT CLASS LIBRARY REFERENCE

Usage Get the first item based on its name. If it does not exist, the default value will be
returned.
Throws NoSuchFieldError . Itis an invalid name.
getBytesDef
Get the first item based on its name.
Synopsis byte[] getBytesDef (String name, byte def[])
Parameters name The name of the item.
def The default byte-array value.
Usage Get the first item based on its name. If it does not exist, the default value will be
returned.
Throws NoSuchFieldError . Itis an invalid name.
getByteltemDef
Get an occurrence of a named item of byte data type.
Synopsis byte getByteltemDef (String name, int itemNo ,byte def)
Parameters name Name of the item.
itemNo Occurrence number of the item.
def Default value.
Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned.
Returns A byte value.
Throws NoSuchFieldError . Itis an invalid name.

7-64 BEA Jolt User's Guide

JOLTMESSAGE CLASS

getShortltemDef

Synopsis short getShortltemDef (String name, int jtemNo , short def)
Parameters name Name of the item.
itemNo Occurrence number of the item.
def Default value.
Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned.
Returns A short value.
Throws NoSuchFieldError . It is an invalid name.
getintitemDef
Get an occurrence of a named item of int data type.
Synopsis int getintitemDef (String name, int itemNo , int def)
Parameters name Name of the item.
itemNo Occurrence number of the item.
def Default value.
Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned.
Returns An integer value.
Throws NoSuchFieldError . It is an invalid name.

Get an occurrence of a named item of short data type.

BEA Jolt User’'s Guide 7-65

7 JOLT CLASS LIBRARY REFERENCE

getFloatltemDef

Synopsis float getFloatitemDef (String name, int itemNo , float def)
Parameters name Name of the item.
itemNo Occurrence number of the item.
def Default value.
Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned.
Returns A floating point value.
Throws NoSuchFieldError . Itis an invalid name.
getDoubleltemDef
Get an occurrence of a named item of double data type.
Synopsis double getDoubleltemDef (String name, int itemNo , double def)
Parameters name Name of the item.
itemNo Occurrence number of the item.
def Default value.
Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned.
Returns A double precision value.
Throws NoSuchFieldError . Itis an invalid name.

Get an occurrence of a named item of float data type.

7-66 BEA Jolt User's Guide

JOLTMESSAGE CLASS

getBytesltemDef

Synopsis byte[] getBytesltemDef (String name, int itemNo ,byte def[])
Parameters name Name of the item.
itemNo Occurrence number of the item.
def Default value.
Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned.
Returns A byte-array object.
Throws NoSuchFieldError . It is an invalid name.
getStringltemDef
Get an occurrence of a named item of string data type.
Synopsis String getStringltemDef (String name, int itemNo , String def)
Parameters name Name of the item.
itemNo Occurrence number of the item.
def Default value.
Usage The occurrence starts from 0. If it doesn't exist, the default value will be returned.
Returns A string value.
Throws NoSuchFieldError . It is an invalid name.

Get an occurrence of a named item of byte-array data type.

BEA Jolt User’'s Guide 7-67

7 JOLT CLASS LIBRARY REFERENCE

7-68 BEA Jolt User's Guide

APPENDIX

A

> 4

Jolt Class Library Errors
and Exceptions

This appendix describes the Jolt Class Library errors and exceptions. The Jolt Class
Library returns both Jolt and TUXEDO errors and exceptions. The Jolt Class Library

errors and exceptions are also listed for each class, constructor, and method listed in
Chapter 7, Jolt Class Library Referen.”

The following topics are included in this appendix:

* & & & & > o o

L4

Jolt Error and Exception Handling
ApplicationException Class
JoltException Class
EventException Class
MessageException Class
ServiceException Class
SessionException Class
TransactionException Class

TUXEDO Errors

TUXEDO errors are described briefly in this appendix. For a complete explanation of
TUXEDO errors, refer to thTUXEDO System Reference Manual.

BEA Jolt User’'s Guide A-1

A JoLT CLASS LIBRARY ERRORS AND EXCEPTIONS

Jolt Error and Exception Handling

An error condition indicates that a non-recoverable error has occurred. When an error
occurs, a message is displayed and the current method stops executing.

Note: In general, these errors are not caught in your application. Normally, Java
errors and exceptions are automatically caught by Jolt.

An exception indicates that a condition occurred that requires special handling to
prevent the application from terminating. Exceptions can be caught and handled.

Each exception or error comes with an error code and a simple text message. The
following table describes the relationship between the error code types and their
messages.

Table A-1 Error Code Text Messages

If the error code Then the text message

Is one of the TUXEDO Is the text message froATMI tpstrerror(3)
errors (e.g., TPENOENT)

TPEJOLT Provides useful information about what error has occurred and
location. You can usegetErrno to get the error number and
agetMessage to obtain the error message for the exception
object.

The Jolt Class Library uses exceptions to report runtime problems. All Jolt exceptions
extend from Java’s RuntimeException and Error classes. Figure A-1 illustrates the
relationship of the JoltException classes to the Java RuntimeException class.

A-2 BEA Jolt User's Guide

JOLT ERROR AND EXCEPTION HANDLING

Figure A-1 Jolt Exception Class Hierarchy

java.lang.RuntimeException

ApplicationException

is-a
__| TransactionException

MessageException

|| EventException

JoltException e |

Is-a ServiceException

|| SessionException

Since Java’s RuntimeException and Error conditions are caught automatically by the
Java virtual machine (VM), programmers can ignore these and rely on the Java VM to
trap them. However, programmers must catch the exceptions or errors that are
important to their particular applications so that application-specific recovery can be
initiated.

BEA Jolt User's Guide A-3

A JOLT CLASS LIBRARY ERRORS AND EXCEPTIONS

ApplicationException Class

A-4

java.lang.Object

+----java.lang.Throwable
I
+----java.lang.Exception
I
+----java.lang.RuntimeException

+----bea.jolt. ApplicationException

The ApplicationException class is used by the JoltRemoteService class and its
methods. The ApplicationException is thrown only when the service ctpreturn
(TPFAIL, tpurcode , ...).

public class ApplicationException extends
java.lang. RuntimeException

BEA Jolt User's Guide

APPLICATIONEXCEPTION CLASS

ApplicationException Methods

The following methods are used with the ApplicationException.

getMessage Method

Synopsis

Usage

The getMessage method gets the error message.
public String getMessage ();

This method is taken from the Java RuntimeException class.

getApplicationCode Method

The getApplicationCode method gets the application ctpurcode).

Synopsis public int getApplicationCode 0;
getObject Method
The getObject method gets the object that throws this exception.
Synopsis public Object getObject ();
Usage In Jolt 1.1, the object retrieved by getObject is an instance of the JoltRemoteService

class. The caller can still use this object to retrieve all the output parameters. See
getStringDef() or similar in JoltRemoteService class.

BEA Jolt User's Guide A-5

A JOLT CLASS LIBRARY ERRORS AND EXCEPTIONS

JoltException Class

java.lang.Object
I
+----java.lang.Throwable
I
+----java.lang.Exception
I

+----java.lang.RuntimeException

+----bea.jolt. JoltException

All Jolt exceptions are derived from the Java RuntimeException class. The Java virtual
machine catches them by default, thus the programmer is not required to catch any of
these exceptions.

public class JoltException extends java.lang.RuntimeException
{
public final static int TPEABORT =1, /I Tuxedo error codes
public final static int TPEBADDESC = 2;
public final static int TPEBLOCK = 3;
public final static int TPEINVAL = 4;
public final static int TPELIMIT = 5;
public final static int TPENOENT = 6;
public final static int TPEOS = 7,
public final static int TPEPERM = 8;
public final static int TPEPROTO = 9;
public final static int TPESVCERR = 10;
public final static int TPESVCFAIL = 11,
public final static int TPESYSTEM = 12;
public final static int TPETIME = 13;
public final static int TPETRAN = 14;
public final static int TPGOTSIG = 15;
public final static int TPERMERR = 16;
public final static int TPEITYPE = 17;
public final static int TPEOTYPE = 18;
public final static int TPERELEASE = 19;
public final static int TPEHAZARD = 20;
public final static int TPEHEURISTIC = 21;

A-6 BEA Jolt User's Guide

JOLTEXCEPTION CLASS

public final static int TPEEVENT = 22;

public final static int TPEMATCH = 23;

public final static int TPEDIAGNOSTIC = 24;

public final static int TPEMIB = 25;

public final static int TPEJOLT = 100; // Jolt error or
/programming error

JoltException Methods

The JoltException methods are used to obtain information about the error or the
condition that causes the error.

getMessage Method

The getMessage method gets the error message.
Synopsis public String getMessage ();

Usage This method is taken from the Java RuntimeException class.

getErrno Method

The getErrno method gets the error code.
Synopsis public int getErrno ();
getObject Method
The getObject method gets the object which throws this exception.
Synopsis public Object getObject ();

Usage In some situations, this method returns a “null” object.

BEA Jolt User’'s Guide A-7

A JOLT CLASS LIBRARY ERRORS AND EXCEPTIONS

EventException Class

java.lang.Object

+----java.lang.Throwable

+----java.lang.Exception

+----java.lang.RuntimeException

+----bea.jolt. JoltException

+----bea.jolt.EventException

This exception is thrown when the user encounters any error during the event
subscription.

public class EventException extends JoltException

MessageException Class

java.lang.Object

+----java.lang.Throwable

+----java.lang.Exception

+----java.lang.RuntimeException

+----bea.jolt. MessageException

This exception is thrown when there is an error in parsing the internal message object.

public class MessageException
extends RuntimeException

A-8 BEA Jolt User's Guide

SERVICEEXCEPTION CLASS

ServiceException Class

java.lang.Object

+----java.lang.Throwable

+----java.lang.Exception

+----java.lang.RuntimeException

+----bea.jolt.JoltException

+----bea.jolt.ServiceException

The ServiceException class extends JoltException. The ServiceException class is used
by the JoltRemoteService class and its methods.

public class ServiceException extends JoltException

SessionException Class

java.lang.Object

+----java.lang.Throwable

+----java.lang.Exception

+----java.lang.RuntimeException

+----bea.jolt.JoltException

+----bea.jolt. SessionException

BEA Jolt User's Guide A-9

A JOLT CLASS LIBRARY ERRORS AND EXCEPTIONS

The SessionException extends JoltException. The SessionException is used by the
JoltSession class and its methods.

public class SessionException extends JoltException

TransactionException Class

java.lang.Object

+----java.lang.Throwable

+----java.lang.Exception

+----java.lang.RuntimeException

+----bea.jolt. JoltException

+----bea.jolt. TransactionException

The TransactionException class extends JoltException. The TransactionException
class is used by the JoltTransaction class and class methods.

public class TransactionException extends JoltException

A-10 BEA Jolt User's Guide

TUXEDO ERRORS

TUXEDO Errors

Expanded references to TUXEDO will be available in a future release of the Jolt
product documentation. If you require an immediate, expanded reference for
TUXEDO related errors, see tBEA TUXEDO Reference Manual.

Table A-2 TUXEDO Errors

Error Description

TPEABORT A transaction could not commit because the work performed by the
initiator, or by one or more of its participants, could not commit.

TPEBADDESC A call descriptor is invalid or is not the descriptor with which a
conversational service was invoked.

TPEBLOCK A blocking condition exists and TPNOBLOCK was specified.

TPEDIAGNOSTIC

TPEEVENT

TPEHAZARD

TPEHEURISTIC

TPEINVAL

TPEITYPE

TPELIMIT

TPEMATCH

TPEMIB

TPENOENT

To be determined.
An event occurred; the event type is returned in revent.

Due to a failure, the work done on behalf of the transaction can have
been heuristically completed.

Due to a heuristic decision, the work done on behalf of the transaction
was partially committed and partially aborted.

An invalid argument was detected.

The type and subtype of the input buffer is not one of the types and
subtypes that the service accepts.

The caller’s request was not sent because the maximum number of
outstanding requests or connections has been reached.

svcname is already advertised for the server but with a function other
then func.

To be determined.

Cannot send to svc because it does not exist or is not the correct type
of service.

BEA Jolt User’'s Guide A-11

A JoLT CLASS LIBRARY ERRORS AND EXCEPTIONS

A-12

Table A-2 TUXEDO Errors

Error Description

TPEOS An operating system error has occurred.

TPEOTYPE The type and subtype of the reply are not known to the caller.

TPEPERM A client cannot join an application because it does not have permission
to do so or because it has not supplied the correct application
password.

TPEPROTO A library routine was called in an improper context.

TPERELEASE To be determined.

TPERMERR A resource manager failed to open or close correctly.

TPESVCERR A service routine encountered an error either in tpreturn(3) or
tpforward(3). For example, bad arguments were passed.

TPESVCFAIL The service routine sending the caller’s reply called.

TPESYSTEM A System/T error occurred.

TPETIME A time-out occurred.

TPETRAN The caller cannot be placed in transaction mode.

TPGOTSIG A signal was received and TPSIGRSTRT was not specified.

BEA Jolt User's Guide

APPENDIX

B

> 4

System Messages

Jolt system messages and code references will be available in a future release of the
Jolt product documentation. If you require an immediate, expanded reference, refer to
the TUXEDO System Message Manual, Volume 2

This appendix includes:

Jolt System Messages

Repository Messages

FML Error Messages

Information Messages

Jolt Relay Adapter (JRAD) Messages
Jolt Relay (JRLY) Messages

* & & & O o o

Bulk Loader Utility Messages

BEA Jolt User’'s Guide B-1

B System MEssaces

Jolt System Messages

B-2

1503 ERROR Could not initialize Jolt administration services.
Description Jolt administration services cannot be started.
Action Check the userlog for other messages to determine the
proper course of action.
See Also TUXEDO Administration Guide
1504 ERROR Failed to advertise local Jolt administration service <service name>.
Description Jolt administration services cannot be started.
Action Check the userlog for other messages to determine the
proper course of action.
See Also TUXEDO Administration Guide
1505 ERROR Failed to advertise global Jolt administration service <service name>.
Description Jolt administration services cannot be started.
Action Check the userlog for other messages to determine the
proper course of action.
See Also TUXEDO Administration Guide
1506 ERROR Terminating Jolt administration services in preparation for shutdown.
Description The JSL has completed its shutdown and is exiting the
system.
Action Informational message, no action required.
See Also TUXEDO Administration Guide

BEA Jolt User’s Guide

JOLT SYSTEM MESSAGES

1510 ERROR Received network messge with unknown context.
Description BEA Jolt protocol failure. Received a corrupted or an
improper message.
Action Restart Jolt client.
1511 ERROR _tprandkey() failed tperrno = %d, could not generate random encyption
key.
Description TUXEDO internal failure.
Action Restart Jolt servers.
1512 ERROR Sending of reply to challerge call to client failed.
Description JSH was unable to reply to Jolt client due to network
error.
Action Restart client.
1513 ERROR Failed to encliypt ticket information.
Description BEA TUXEDO internal failure.
Action Retry the option. If the problem persists, contact BEA
Technical Support.
1514 ERROR Incorrect ticket value sent by workstation client.
Description BEA Jolt protocol failure.
Action Retry the option. If the problem persists, contact BEA
Technical Support.
1515 ERROR Tried to process unepected messge qocode 0x%1X.
Description BEA Jolt protocol failure. Client is sending Jolt
messages with unknown opcodes.
Action Retry the option. If the problem persists, contact BEA
Technical Support.
1516 ERROR Unrecognized messge format, release %1d.
Description BEA Jolt protocaol failure.
Action Make sure the client classes are at the appropriate
version level.

BEA Jolt User’'s Guide B-3

B System MEssaces

1517 ERROR Commit handle and clientid have no matching requests.
Description Received a copy from TUXEDO that has no
corresponding client.
Action No action required.
1518 ERROR Call handle and clientid have no matching requests.
Description Received a reply from TUXEDO that has no
corresponding client.
Action No action required.
1519 ERROR Application password does not match.
Description Authentication error.
Action Check the application password.
1521 ERROR Unrecognized message magic %ld.
Description Inappropriate message is sent to JSH/JSL.
Action Check the client sending erroneous messages.
1522 ERROR Memory allocation failure.
Description Machine does not have enough memory.
Action Check the machine resources.
1523 ERROR Memory allocation failure.
Description Machine does not have enough memory.
Action Check the machine resources.
1524 ERROR Failed to create encryption/decryption schedule.
Description BEA TUXEDO internal error.
Action Retry the option. If the problem persists, contact BEA

Technical Support.

B-4 BEA Jolt User’s Guide

JOLT SYSTEM MESSAGES

1525 ERROR Tried to process unepected messge qpcode 0x%1X.
Description Received a message with invalid opcode.
Action Check the client.
1526 ERROR Jolt license has epired.
Description License for Jolt use has expired.
Action Contact BEA Technical Support.
1527 ERROR Expected aigument to -c gotion.
Description Option -c needs an argument.
Action Provide a valid argument.
1528 ERROR Request for inappropriate session ype.
Description Received a message without valid session information.
Action Restart the client.
1529 ERROR Sessionype must be RETAINED or TRANSIENT.
Description Server configuration does not match client request.
Action Check the -c argument of the JSL.
1530 ERROR Received RECONNECT messge with invalid context.
Description Client context is cleaned. A -T option is specified to the
JSL.
Action Check the -T option. Check the network errors also.
1531 ERROR Received invalid RECONNECT reguest
Description Received a RECONNECT request.
Action Restart client.

BEA Jolt User’'s Guide B-5

B System MEssaces

1532 ERROR Received J_CLOSE message with invalid context.
Description Timeout in connection.
Action If a request is sent after a timeout that is longer than the
session timeout of the JSL, the JSH cannot validate the
session ID.
1533 ERROR Sending of reply of close protocol failed.
Description BEA Jolt protocol failure.
Action Check the client.
1534 ERROR Sending of reply of reconnect protocol failed.
Description BEA Jolt protocol failed.
Action Check the client.
1535 ERROR Timestamp mismatch in close protocol.
Description BEA Jolt protocol failed.
Action Restart the client.
1536 ERROR Received J_RECONNECT message with invalid context.
Description BEA Jolt protocol failed. Session timed out before

RECONNECT request arrived.

Action Restart the client.

1537 ERROR Timestamp mismatch in reconnect protocol.
Description BEA Jolt protocol failure.
Action Restart the client.

1538 ERROR Client address mismatch in reconnect protocol.
Description BEA Jolt protocol failure.
Action Restart the client.

B-6 BEA Jolt User’s Guide

JOLT SYSTEM MESSAGES

1539 ERROR Failed to dectypt reconnect information.
Description BEA Jolt protocaol failure.
Action Restart the client.

1540 ERROR Failed to encrypt reconnect information.

Description BEA Jolt protocaol failure.

Action Restart the client.

1541 ERROR Received RECONNECT regjuest for nonTRANSIENT client.

Description Improper request from client.

Action Restart the client.

1542 ERROR Unlicensed Jolt server.

Description The JSL is not licensed. The installation is incomplete,
or it failed to burn the license into the JSL.

Action Reinstall Jolt with a valid Jolt license.

1543 ERROR Invalid Jolt license.

Description The license used for the Jolt installation is not for the Jolt
product. The TUXEDO license may have been used
during installation instead of the Jolt license.

Action Reinstall Jolt with a valid Jolt license.

1544 ERROR This TUXEDO is not Release <TUXEDO release number>.

Description Joltis compatible with TUXEDO Release 6.1 or 6.2. The
JSL has determined that the TUXEDO release is not
compatible.

Action Install TUXEDO 6.1 or TUXEDO 6.2.

BEA Jolt User’'s Guide B-7

B System MEssaces

B-8

1545 ERROR Cannot determine if this TUXEDO is <TUXEDO release number>:

service. TMIB failed.

Description This version of TUXEDO does not support the MIB. The
TUXEDO release may be TUXEDO 6.0 or earlier.

Action Install TUXEDO 6.1 or 6.2 or check to ensure that your
TUXEDO release is 6.1 or 6.2.

1546 WARN The version of this TUXEDO is not available; <TUXEDO release number>
is assumed.
Description The MIB is supported with this version of TUXEDO, but
the release number is unavailable. The TUXEDO
version might not be a master binary. It might also be an
internal version of TUXEDO.
Action No action is required.
1547 ERROR Memory allocation failure in JOLT_SUBSCRIBE.

Description Check resources of the machine.

Action Restart TUXEDO after increasing system resources.
1548 ERROR jolt_tpset_engq failed.

Description Internal system failure.

Action Restart the client. If problem persists, check field table
files and directories and then restart the servers.

1549 ERROR [JOLT_EVENTS failed to set %s field. Ferror32=%d].

Description Unable to get the field definition for TUXEDO internal
fields.

Action Check TUXEDO installation and restart the servers.

BEA Jolt User’s Guide

JOLT SYSTEM MESSAGES

1550 ERROR JOLT_UNSUBSCRIBE - Invalid Subscription ID.
Description Application error.
Action Check the client and restart the client.
1551 ERROR Memory allocation failure in JOLT _UNSUBSCRIBE.
Description Resources are not enough.
Action Increase resources and restart TUXEDO.
1552 WARN Dropping notification messae for Transient client %d.
Description Notification arrived when a transient client is not
connected.
Action Information message only; no action required.
1553 WARN Dropping broadcast messge for Transient client %d.
Description Notification arrived when a transient client is not
connected.
Action Information message only; no action required.
1554 ERROR Expected numeric agument for -Z option.
Description -Z option expects 0, 40, or 128 as the argument.
Action Check the configuration file and specify a valid numeric

argument for JSL.

1555 ERROR %d - llle gal argument for -Z option.
Description Incorrect argument value is specified.
Action Check the argument for -Z option and correct it.
1556 ERROR %(d - llle gal argument for -Z option due to international license.
Description For international release only O or 40 are allowed.
Action Specify correct argument.

BEA Jolt User’'s Guide B-9

B System MEssaces

B-10

1557 ERROR Incorrect number of encrypted bit values from workstation client.
Description BEA Jolt protocol failure.
Action Call BEA Technical Support.
1558 ERROR Expected argument to -E option.
Description An argument is expected fele option.
Action Specify correct option and restart TUXEDO.
1559 ERROR %s - lllegal argument to -E option.
Description Incorrect value is specified as argumentEooption.
Action Specify the correct option.
1560 ERROR Cannot initialize the code conversion for local %s.
Description Cannot find function to do the code conversion for
internationalization.
Action Check the shared library.
1561 ERROR TUXDIR is not set.
Description TUXDIR environment variable is not set.
Action Set the variable to TUXEDO directory and restart
TUXEDO.
1562 ERROR Error reading license file.
Description Jolt is not able to open TUXEDO license file in
$TUXDIR/udataobj/lic.txt.
Action Copy the correct license file to
$TUXDIR/udataobj/lic.txt.
1563 INFO Serial Number: <%s>, Expiration Date: <%s>.
Description Serial number and expiration date displays.
Action No action required.

BEA Jolt User’s Guide

JOLT SYSTEM MESSAGES

1564 INFO Licensee: <%s>.
Description Licensee information displays.
Action No action required.

BEA Jolt User’'s Guide B-11

B System MEssaces

Repository Messages

ERROR Usage: JREPSVR [-W] -P path -W writable repository.
Description An invalid option is specified o is not specified
properly.
Action Review the Jolt documentation and ensure that the
options are specified correctly.
ERROR Not enough memory
Description Not enough memory; please add more swap space.
Action Configure additional memory. Make sure the operating
system parameters are set correctly for the amount of
memory on the machine and the amount of memory that
can be used by a process. Reduce the memory usage on
the machine or increase the amount of physical memory
on the machine.
ERROR Not enough disk space for “<repository-file-path>"
Description Ran out of disk space while adding or deleting
Repository entries, or during garbage collection.
Action Configure additional disk space.
ERROR Cannot modify read-only repository “<repository-file-path>"
Description Deniesattempt to add or delete an entry from a
read-only repository.
Action Check the file permission and ensure that the file is
writable.
ERROR “<repository-file-path>" is not a valid repository file.

Description The specified file is not valid; a valid repository file
must have the string, “#!JOLT1.0” in the first line.

Action Extract the file from the Jolt distribution CD-ROM.

B-12 BEA Jolt User’'s Guide

REPOSITORY MESSAGES

ERROR Can't open <repository-file-path>.

Description Unable to open the repository file.

Action Check to ensure that the file path is valid or its
permission is correct.

ERROR Can't create <repository-file-path>: checkpermission orpath.

Description Unable to create the repository file during garbage
collection.

Action Check the file or directory permission.

ERROR Syntax error: <service definition>.

Description An invalid entry was detected when an attempt was
made to add an entry to the repository. The entry must
have ‘' as a field separator.

Action Contact BEA Technical Support.

ERROR Garbage collection failed: <keg/> not found.

Description When the writable repository is shutdown, it performs
garbage collection to collapse the repository file. If it
detects an inconsistency, the garbage collection fails.

Action Contact BEA Technical Support.

BEA Jolt User’'s Guide B-13

B System MEssaces

FML Error Messages

B-14

ERROR Fielded buffer not aligned.

Description An FML function was called with a fielded buffer that is
not properly aligned. Most machines require half-word
alignment.

Action UseFalloc to retrieve an allocated, properly
aligned buffer.

See Also TUXEDO Reference Manual

ERROR Buffer not fielded.

Description A buffer was passed to an FML function that has not
been initialized.

Action UseFinit to initialize a buffer allocated directly by
the application, or usealloc to allocate and
initialize a fielded buffer.

See Also TUXEDO Reference Manual

ERROR Invalid argument to function.

Description

An invalid argument (other than an invalid field buffer,
field identifier, or field type) was passed to an FML
function. This can be a parameter where a non-NULL
parameter was expected (for example, it can be an
invalid buffer size, etc.).

Action

See the manual page associated with the error for the
correct parameter values.

See Also

TUXEDO Reference Manual

BEA Jolt User’s Guide

FML ERROR MESSAGES

ERROR Unknown field number or type.

Description An invalid field number was specified for an FML
function, an invalid field number (0 or greater than
8192) was specified, drname could not find the
associated field identifier for the specified name.

Action Most of the FML functions return this error; see the
manual page associated with the function that returned
this error. Check your code to make sure the field
specified is valid.

See Also TUXEDO Reference Manual

BEA Jolt User’'s Guide B-15

B System MEssaces

Information Messages

B-16

INFO Repository “<repository-file-path>" (### records) is writable.
Description When a writable Repository server is brought up, it
reports the number of records it found.
Action No action required.
INFO Repository “<repository-file-path>" (### records) is read-only.

Description When a read-only Repository server is brought up, it
reports the number of records it found.

Action No action required.

BEA Jolt User’s Guide

JOLT RELAY ADAPTER (JRAD) MESSAGES

Jolt Relay Adapter (JRAD) Messages

1005 ERROR

Memory allocation failure.

Description

An attempt dynamically to allocate memory from the
operating system usingalloc failed.

Action

Make sure the operating system parameters are set
correctly for the amount of memory on the machine and
the amount of memory that can be used by a process.
Reduce the memory usage on the machine or increase the
amount of physical memory on the machine. Increase the
space on the swap device.

1006 ERROR

Failed to initialize global network information.

Description

The internal network information used by the JSH or the
JSL was not initialized. This can happen if the system
has run out of memory.

Action

Increase the virtual memory available for the JSH and
JSL processes.

BEA Jolt User’'s Guide B-17

B System MEssaces

1008 ERROR Could not establish listening address on network.

Description

This error occurs if the JSH or the JSL cannot advertise
its listening address on the network. This could happen
for one of the following conditions.

4 The format of the address supplied to the JSL is
incorrect. If the address format is incorrect, the
network provider will be unable to advertise the
address and the request fails.

4 The address used in the command line option
to the JSL is already in use by another process.
For TCP/IP, this can be verified by using the
netstat command.

4 The system has run out of network addresses for
the JSH. The JSH requests a new address from the
system. If there are no addresses available, the
request is rejected.

¢ A previously used address has not completed the
close sequence. This occurs if the JSL or JSH was
killed in an abortive manner such as kil . Some
transports (among them, TCP/IP) keep the
connection open for an “implementation
dependent” time to flush the existing data on the
buffered network connection.

Action

To correct the problem, match one of the following
solutions with the problem descriptions above:

4 Check that the address format is correct. For
TCP/IP, the format is
0x0002ppppaaaaaaaa . Thisis a
hexadecimal representation of the TCP/IP
address, wherpppp is a unique port number and
aaaaaaaa is the IP dotted number in the
/etc/hosts file for the machine on which the JSL
will run.

4 See if other processes are using the requested
network address. For TCP/IP, use the netstat
command and, if the address is already in use,
select a different address.

4 If the system is out of network addresses, check
with the system administrator to increase the
number of addresses to use.

4 If the connection is not closed yet, wait a few
minutes and try again.

B-18 BEA Jolt User’s Guide

JOLT RELAY ADAPTER (JRAD) MESSAGES

1068 ERROR Invalid command line argument '%c' i gnored.

Description An illegal command line option was found in the
CLOPT string.

Action Refer to theBEA TUXEDO Reference Manuak
correct options.

1074 ERROR Memory allocation failure.

Description The JSL failed in an attempt to create a buffer for storing
a network address.

Action Make sure the operating system parameters are set
correctly for the amount of memory on the machine and
the amount of memory that can be used by a process.
Reduce the memory usage on the machine or increase the
amount of physical memory on the machine. Increase the
space on the swap device.

1080 ERROR Error polling network connections.

Description The JSL encountered an error polling a network
connection.

Action This error indicates a network error. Check with your
system administrator to see if the network is down.

1081 ERROR Error servicin g network event.
Description The JSL was unable to process a network event.
Action This error indicates an internal problem with the JSL or

the LIBNET software. Contact BEA Technical Support.

BEA Jolt User’'s Guide B-19

B System MEssaces

B-20

1101 ERROR Bad hex number provided for listening address: %s.

Description

The JSL process was invoked withra option that
specified a hexadecimal value as an option-argument.
However, the value specified was not a valid
hexadecimal constant.

Action

Change the network address specified for the JSL so that
it contains an even number of hexadecimal digits, and
make certain that each digit is '0' through '9', ‘A’ through
'F', or 'a' through 'f'. Also, remember that the
WSNADDR environment variable in client processes
associated with this JSL must be set to this same address.
The JSL-n option and its associated network address
are part of the CLOPT parameter specified for the JSL
process in the configuration file. The options for a server
may be updated while the system is running through use
of the tmconfig (1) command, or may be updated while
the system is shut down by reloading the configuration
file through use of tmloadcf (1).

1102 ERROR Bad hex number provided for listening address: %s.

Description

The JSL process was invoked withra option that
specified a hexadecimal value as an option-argument.
However, the value specified was not a valid
hexadecimal constant.

Action

Change the network address specified for the JSL so that
it contains an even number of hexadecimal digits, and
make certain that each digit is '0' through '9', 'A’ through
'F', or 'a' through 'f'. Also, remember that the

WSNADDR environment variable in client processes
associated with this JSL must be set to this same address.
The JSL -n option and its associated network address are
part of the CLOPT parameter specified for the JSL
process in the configuration file. The options for a server
may be updated while the system is running through use
of the tmconfig (1) command, or may be updated while
the system is shut down by reloading the configuration
file through use of tmloadcf (1).

1197 INFO Exiting system.

Description

Informational message, no action required.

Action

Refer to theBEA TUXEDO Administrator's Guide

BEA Jolt User’s Guide

JOLT RELAY ADAPTER (JRAD) MESSAGES

1202 ERROR Could not initialize network.

Description An attempt to initialize the networking software from the
JSL or JSH failed.

Action Make sure that the correct networking software is
installed on the system and that the network is
accessible.

1221 ERROR Unrecognized messge magic %d.

Description The Jolt listener has tried all TCP ports within the range
specified by the -p and -P options. It could not bind to
any of the TCP ports in the range. The Jolt listener could
not bind to the given address.

Action If there are more Jolt handlers than ports available in the
range specified by -p and -P, then a new handler will not
be able to bind to any of the TCP ports in the allowable
range. Do not forget about the TCP port which is used by
the workstation listener as well. Increase the range
specified by the -p and -P options. Make sure that
address is correct.

1500 ERROR Needs both -I -c ptions with arguments.

Description Needed options are without arguments.

Action Check and correct configuration file for JRAD entry.
1501 ERROR Malloc failed.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the JRAD.
1502 ERROR Memory allocation failed.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the JRAD.
1503 ERROR Memory allocation failed. Cannot send ESTCON.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the JRAD.

BEA Jolt User’'s Guide B-21

B System MEssaces

B-22

1504 INFO Memory allocation failed. Cannot send ESTCON.
Description JRAD is not able to allocate dynamic memory.
Action Increase the system resources and restart the JRAD.
1505 ERROR Memory allocation failed. Cannot send ESTCON.
Description JRAD is not able to allocate dynamic memory.
Action Increase the system resources and restart the JRAD.
1506 ERROR Connection to JSL failed.
Description JSL is not running.
Action Check the address given with optian.
1507 ERROR Sending message to JSL failed.
Description JSL is not running or network connection is down.
Action Restart the JRAD/JSL.
1508 INFO Sending message to JSH failed.
Description Network is down. Connection to the JSH failed.
Action Check the network and restart the JSL.
1509 ERROR Sending CONNECT reply to JRLY.
Description Unable to reach JRLY. Probably problem in the network.
Action Restart the JRLY and JRAD after check the network
addresses.

BEA Jolt User’s Guide

JOLT RELAY ADAPTER (JRAD) MESSAGES

1510 ERROR Sending SHUTDOWN reply to JRLY.
Description Unable to reach JRLY. Probably problem in the network.
Action Restart the JRLY and JRAD after check the network
addresses.

BEA Jolt User’'s Guide B-23

B System MEssaces

Jolt Relay (JRLY) Messages

B-24

ERROR Ignoring syntax error in configuration file line %d

Description The line in question doesn't contain an equal sign or (in
case of the LISTEN and CONNECT tag) is missing the
colon.

Action Verify the syntax of the configuration file at the
specified line.

ERROR Ignoring unknown tag '%s' in configuration file line %d.

Description The line in question is does not contain one of the valid
tags: LOGDIR, ACCESS_LOG, ERROR_LOG,
LISTEN, CONNECT.

Action Verify the syntax of the configuration file at the
specified line.

ERROR MSG_MALLOC: perror().

Description Memory allocation failed. The relay will exit.

Action Make more memory available on the machine on which
the relay is running. Remove other unnecessary
processes which may be running on the same host as the
relay. Restart the relay.

ERROR Client structure != NULL for file descriptor %ld

Description An internal error occurred. The relay will continue to
run, but a client process may have been disconnected.

Action None. If this message appears repeatedly and can be
reproduced consistently notify BEA Technical Support.

ERROR Invalid file descriptor %ld

Description An internal error occurred. The relay will continue to
run, but a client process may have been disconnected.
Action None. If this message appears repeatedly and can be

reproduced consistently notify BEA Technical Support.

BEA Jolt User’s Guide

JOLT RELAY (JRLY) MESSAGES

ERROR Could not open configuration file %s

Description The specified configuration file does not exist or is not
readable. The relay will exit.

Action Check the file name and the permissions on the file and
the directory.

ERROR No log directory specified.

Description LOGDIR was not specified in the configuration file or no
value for it was given.

Action Verify the entry for the tag LOGDIR in the configuration
file. Check that the correct configuration file is being
used {f parameter).

ERROR No access Ig file specified.

Description ACCESS_LOG was not specified in the configuration
file or no value for it was given.

Action Verify the entry for the tag ACCESS_LOG in the
configuration file.Check that the correct configuration
file is being used-{ parameter).

ERROR No error log file specified.

Description ERROR_LOG was not specified in the configuration file
or no value for it was given.

Action Verify the entry for the tag ERROR_LOG in the
configuration file. Check that the correct configuration
file is being used-{ parameter).

ERROR No JRLY host gecified

Description The value for the LISTEN tag does not contain the host
name or IP address or the relay host, e.g.,
LISTEN=host:port.

Action Verify the entry for the tag LISTEN in the configuration

file. Check that the correct configuration file is being
used {f parameter).

BEA Jolt User’'s Guide B-25

B System MEssaces

B-26

ERROR No JRAD host specified.

Description The value for the CONNECT tag does not contain the
host name or IP address or the JRAD host, e.g.,
CONNECT=host:port.

Action Verify the entry for the tag CONNECT in the
configuration file. Check that the correct configuration
file is being used-{ parameter).

ERROR No listener port specified or listener port <= 0.

Description The value for the LISTEN tag does not contain a valid
port number on the relay host.

Action Verify the entry for the tag LISTEN in the configuration
file. Check that the correct configuration file is being
used {f parameter).

ERROR No JRAD port specified or JRAD port <= 0.

Description The value for the CONNECT tag does not contain a valid
port number on the relay host.

Action Verify the entry for the tag CONNECT in the
configuration file.Check that the correct configuration
file is being used-{ parameter).

ERROR Could not determine IP address of listener host

Description The relay could not look up the IP address of the host
machine.

Action If the host was specified as a host name replace it with

the IP address and restart the relay. If it already was
given as IP address make sure that the IP address is
correct and that you're trying to start the relay on this
host. Note that the address specified must be the address
of the host on which the relay is running.

BEA Jolt User’s Guide

JOLT RELAY (JRLY) MESSAGES

ERROR

Cannot bind socket

Description The listener port specified in the configuration file is
already being used by another application or still in a
final wait state from a previous run of jrly.

Action Either specify a different port number in the
configuration file (and all HTML files containing the IP
address and port number of the relay) or wait a few
minutes. The command "netstat -a" displays existing
connections.

ERROR

Can't open lag file %s

Description Either the error log file or access log file (or both) could
not be opened for writing.

Action Check the configuration file for correct spelling of the
LOGDIR. Make sure you have write permissions on this
directory and the files specified. On Windows NT, the
directory separators must be back slashes, not forward
slashes.

ERROR

WSAStartup failed (NT only)

Description The Winsock driver could not initialize. Possible causes:

4 The underlying network subsystem is not ready
for network communication Version 2.0 of
Windows Sockets support is not provided by this
particular Windows Sockets implementation.

4 Limit on the number of tasks supported by the
Windows Sockets implementation has been
reached.

Action Check the networking software configuration on your
system.

ERROR

Couldn't load Winsock Driver version 2.X. (NT only)

Description The relay requires Winsock version 2 or higher, but
could not load it.

Action Check the networking software configuration on your
system. An older version of Windows Sockets support
was detected.

BEA Jolt User's Guide B-27

B System MEssaces

B-28

ERROR FATAL ERROR: unknown message code %ld.

Description Internal error. The relay will exit

Action Restart the relay. If this message appears repeatedly and
can be reproduced consistently notify BEA Technical
Support.

ERROR connect: Connection refused

Description The relay could not connect to JRAD.

Action Make sure the relay adapter (JRAD) is running. Check
that the CONNECT tag in the relay configuration file
identifies the correct host and port on which the JRAD
is running.

ERROR accept(): acept failed, errno: 24, strerror: Too many open files

Description The relay tried to open more files/sockets than the
system limit.

Action The default maximum number of open file descriptors

for a process is 64 on most UNIX systems. Set this
number to at least 1024 (with the limit or ulimit
commands).

BEA Jolt User’s Guide

BULK LOADER UTILITY MESSAGES

Bulk Loader Utility Messages

ERROR File not found: %s
Description The specified file is not found.
Action Check the path again.

ERROR Error on line %d: %s value is null
Description A value is expected for this keyword.
Action Input the value.

ERROR Error on line %d: Invalid ke yword: %s=%s
Description Keyword is not recognized.
Action Input the correct keyword value.

ERROR Error on line %d: Invalid number: %s
Description The numeric number is malformed.
Action Input the correct value.

ERROR Error on line %d: Invalid value: %s
Description The value of the parameter is out of range.
Action Input the correct value.

ERROR Error on line %d: Invalid value: %s
Description The data type of the parameter is invalid.
Action Input the correct value.

BEA Jolt User’'s Guide B-29

B System MEssaces

B-30 BEA Jolt User’'s Guide

Index

A

APPADDRESS 7-17
applets
client-side execution 6-42
Java 6-1, 6-2, 6-43
Jolt 1-10, 6-4
localizing 6-44
appletview
Repository Editor 5-5
ApplicationException 7-25
class A-4
methods A-5
getApplicationCode A-5
getMessage A-5
getObject A-5
applications
deployment 6-42
localization 6-42
multithreaded 6-21
sample
online resources 3-22

BEA TUXEDO
access 6-1
ATMI interface 6-4
buffer types
using with Jolt 6-14
customizing 6-1
data types
using with Jolt 6-14

Jolt Repository Editor
initializing services using 3-13
logging
off 6-5
on 6-5
server requirements 6-42
services
executing 6-5
requests 6-4
transaction
begin 6-5
complete 6-5
new 6-5
rollback 6-5
browsers
online documentation viewing 2-27
buffer type
CARRAY 6-17
FML 6-19
STRING 6-15
VIEW 6-19
buffer types
STRING 6-15
TUXEDO 6-14
bulk loader
bulk load file 4-3
command line options 4-3
data file syntax 4-4
getting started 4-2
introduction 4-1
keywords 4-4, 4-5, 4-6, 4-8
messages B-29
sample data 4-10
troubleshooting 4-9
UNIX 4-2
using Windows NT 4-2

BEA Jolt User’s Guide -1

C

CARRAY
buffer type 6-17, 6-19
classes 6-6
ApplicationException A-4
EventException A-8
functionality 6-8
hierarchy 6-7
Java RuntimeException and Error ~ A-2
Jolt 6-1, 6-6, 6-8
JoltEvent class 7-54
JoltException A-6
JoltMessage class 7-60
JoltRemoteService 6-8
JoltRemoteService class 7-23
JoltReply class 7-59
JoltRequestMessage class 7-26
JoltSession 6-8
JoltSession class 7-18
JoltSessionAttributes 6-6, 6-8
JoltSessionAttributes class 7-5
JoltTransaction 6-10
JoltTransaction class 7-50
JoltUserEvent class 7-56
MessageException A-8
relationships 6-7
ServiceException A-9
SessionException A-9
subdirectory 6-43
TransactionException A-10
client
Jolt 6-5
logon/logoff 6-8
configuration 2-1, 3-1, 3-12
CLOPT parameters 3-7
command line options 3-7
Jolt Repository
*GROUPS section 3-12
*SERVERS section 3-12
Jolt Server Listener (JSL) 3-4

-2 BEA Jolt User’s Guide

network address 3-20
Repository File
jrepository 3-12
connection attributes 6-10
hosthname 6-10
portnumber 6-10
connection modes
connection-less 6-30
retained 6-30
constants
APPADDRESS 7-17
IDLETIMEOUT 7-17
RECVTIMEOUT 7-17
SENDTIMEOUT 7-17
constructors
JoltRemoteService constructor 7-24
JoltSession constructor 7-19
JoltSessionAttributes constructor 7-6
JoltTransaction constructor 7-51

D

data types
TUXEDO 6-14
DES 14
directory structure 2-4, 2-5

E

ECHO service parameters
INPUT/OUTPUT 6-17
encryption 1-4, 3-3
error code types A-2
error messages
from tpstrerror A-2

getting A-2
error number, getting A-2
errors A-1
caught by Jolt A-2
Jolt 6-3

Jolt interpreter 6-3

non-recoverable A-2

summary of TUXEDO A-11

TPEJOLT A-2

TUXEDO A-2

TUXEDO generated in Jolt 6-3
Event Subscription 6-28

classes for 6-28

supported types 6-31
event subscription 3-14

configuration 3-14

filtering buffers 3-15
EventException class A-8
events, subscribingto 6-28
exceptions A-1

for endSession method 7-20, 7-21,

7-22

Jolt 6-3

Jolt class hierarchy A-3

ServiceException 6-10

System.in.read 6-23
exporting services 5-38

F
FML buffer type 6-19

G

getErrno

using to get error number A-2
getMessage

using to get error message A-2
group services

package organizer, how to use 5-31
GROUPS section configuration 3-12

H

HTML
applettag 6-43
page 6-43

IDLETIMEOUT 7-17
installation 2-1, 2-2, 2-13, 3-1
before you begin 2-6
directory structure 2-4, 2-5
Jolt 2-4
Jolt Relay 2-3
NT license agreement 2-22
online documentation 2-1, 3-1
requirements
client 2-3
disk storage 2-2, 2-3
Java Developer’s Kit 2-3
server 2-2
UNIX system instructions 2-7
Windows NT 2-12
Internet services 1-2
Internet Relay 3-2, 3-16
Intranet services 1-2
items
methods for appending 7-4
methods for changing by index7-3
methods for changing first 7-3
methods for getting 7-4
methods for handling 7-2

J

Java

applets 6-1, 6-2, 6-43

class files 6-43

clients 1-7, 6-4

Developer’s Kit (JDK) 1.0 6-23

language classes 6-1

packages 6-43

programs 6-2

Thread.yield() method 6-22

Virtual Machine (VM) 6-21
java.lang.lllegalAccessError 7-6 — 7-16
java.lang.NoSuchFieldError 7-6 — 7-16

BEA Jolt User’s Guide I-3

Jolt

-4

applets 1-10
deploying 6-42
localizing 6-44
architecture 1-3, 1-5
bulk loader 4-1
classes 6-1, 6-6, 6-43
functionality 6-8
hierarchy 6-7
relationships 6-7
subdirectory 6-43
client
interface objects 6-5
logon/logoff 6-8
populating variables 6-5
requests 6-5
client/server
interaction 6-5
relationship 6-4
clients
communication with servers 1-8
connection manager 6-4
defined 1-1, 1-2
features 1-3
installation
package 2-4
requirements 2-2
international use 6-44
Internet Relay 3-2, 3-16
JRAD B-17
JRLY B-24
license 2-22
license agreement 2-13
Relay installation 2-3
Repository 3-10, 6-5
service attributes 6-5
Repository Editor 1-2,
initializing services using 3-13
using 5-1
sample applications
simpapp 3-22

BEA Jolt User’s Guide

server 3-2, 6-4, 6-5, 6-43
requirements 6-42
Server Listener (JSL)
*SERVERS section 3-5
configuration 3-5
servers 1-2
communication with clients 1-8
components 1-6
proxy for TUXEDO client 1-5
Transaction Protocol 1-8, 6-4
using threads with 6-23
Jolt Class Library 1-2, 1-7, 6-2,
6-6, 6-8, 6-10, 7-1
application development 6-42
errors 6-3, A-1
handling 6-3, A-2
list of TUXEDO related A-11
exceptions 6-3, A-1
handling 6-3, A-2
functionality 6-8
object/class reusability 6-35
Jolt classes
JoltEvent 7-54
JoltMessage 7-60
JoltRemoteService 7-23
JoltReply 7-59
JoltRequestMessage 7-26
JoltSession 7-18
JoltSessionAttributes 7-5
JoltTransaction 7-50
JoltUserEvent 7-56
Jolt methods 7-2
Jolt Reply 6-28
Jolt Repository Server 1-6
Jolt Server
shutting down the 3-10
starting the 3-3
Jolt Server Handler 1-6
Jolt Server Listener 1-6

Jolt Server Listener (JSL)
*MACHINES section 3-5
configuration 3-4
UBBCONFIG file 3-4

JoltEvent 7-54

JoltException
class A-3, A-6
methods

getErrno A-7
getMessage A-7
getObject A-7

JoltMessage 6-28, 7-60

JoltRemoteService 6-10, 7-23
calls 6-10
class 6-8
methods 7-24
object 6-8
resetting parameters 6-9
reusing 6-35

JoltReply 7-59

JoltRequestMessage 7-26
methods 7-28

JoltSession 6-5, 6-10, 6-28, 6-33,

7-18
class 6-8, 6-10, 6-33
constructor 7-19
methods 7-20
object 6-7, 6-8
instantiating 6-10
JoltSessionAttributes 6-6, 6-7, 6-8,
6-10, 7-5
constructor 7-6
JoltTransaction 6-5, 6-7, 6-9, 6-10,
7-50
class 6-10
constructor 7-51
methods 7-52

JoltUserEvent 6-28, 7-56

JRAD 3-20
configuration 3-20
messages B-17

network address configuration3-20
starting 3-20

jrepository 3-12

JRLY 3-18
configuration 3-18
messages B-24
network address configuration3-20
starting 3-18

L

license agreement 2-13
installation 2-22
licensing 2-22
TUXEDO 6.1, 6.2 2-23
TUXEDO 6.3 2-23
logoff 6-8
logon 6-8
Repository Editor 5-6

M

MACHINES section
Jolt Server Listener (JSL) 3-5
MessageException
class A-8
messages
bulk loader B-29
FML B-14
information B-16
Jolt system B-2
JRAD B-17
JRLY B-24
repository B-12
methods 7-2
ApplicationException A-5
getApplicationCode A-5
getMessage A-5
getObject A-5
clear() 6-9

BEA Jolt User’s Guide I-5

JoltEvent
unsubscribe 7-54
unsubscribeAll 7-55

JoltException
getErrno A-7
getMessage A-7
getObject A-7

JoltMessage 7-61
getByteDef 7-61,

7-63, 7-64

getByteltemDef 7-64
getBytesltemDef 7-67
getDoubleDef 7-63
getDoubleltemDef 7-66
getFloatltemDef 7-66
getintDef 7-62
getintitemDef 7-65
getOccurrenceCount 7-61
getShortltemDef 7-65
getStringltemDef 7-67

JoltRemoteService 7-24
call 7-24

JoltReply
getMessage 7-59

JoltRequestMessage 7-28
addByte 7-45
addBytes 7-46
addDouble 7-46
addFloat 7-47
addint 7-47
addShort 7-48
addString 7-48
clear 7-31
delete 7-49
deleteltem 7-49
getApplicationCode 7-31
getByteDef 7-32
getByteltemDef 7-35
getBytesDef 7-32
getBytesltemDef 7-35
getDoubleDef 7-33

BEA Jolt User’s Guide

getDoubleltemDef 7-36
getFloatDef 7-33
getFloatltemDef 7-36
getintDef 7-34
getintitemDef 7-36
getName 7-31
getOccurences 7-32
getShortDef 7-34
getShortltemDef 7-37
getStringDef 7-34
getStringltemDef 7-37
setByte 7-38, 7-39
setByteltem 7-42
setBytesltem 7-42
setDouble 7-39
setDoubleltem 7-43
setFloat 7-40
setFloatitem 7-43
setint 7-40
setintltem 7-44
setRequestPriority 7-38
setShort 7-41
setShortltem 7-44
setString 7-41
setStringltem 7-45

JoltSession 7-20

endSession 7-20, 7-21
finalize 7-22

JoltSessionAttributes 7-7

checkAuthenticationLevel 7-7
clear 7-8

getByteDef 7-9, 7-12
getBytesDef 7-9
getDoubleDef 7-10
getFloatDef 7-10

getintDef 7-11
getStringDef 7-12

global attributes for methods 7-16
setByte 7-13

setBytes 7-13

setDouble 7-14

setFloat 7-14
setint 7-15
setShort 7-15
setString 7-16
JoltTransaction 7-52
commit 7-52
rollback 7-53
JoltUserEvent
JoltUserEvent 7-57
Thread.yield() 6-22
Microsoft Internet Explorer
opening documentation files 2-28
multithreaded applications 6-21

N

Netscape Navigator 5-6
opening documentation files 2-28
notifications
acknowledged 6-30
brokered event 6-28
data buffers 6-30
event handler for 6-29
unsolicited 6-28, 6-29
unsubscribing 6-32
using Jolt to receive 6-33

0

objects
relationships 6-7
reusability 6-28
reusing 6-38

online documentation 2-27
browsers 2-3, 2-27
getting started 2-27
installation 2-1, 3-1
opening files

Microsoft Internet Explorer 2-28

Netscape Navigator 2-28
using 2-26

P

package organizer
description 5-31
group services, howto 5-31
using 5-29
packages
add a package 5-20
adding 5-19
delete a package 5-36
deleting 5-37
modifying 5-33
package organizer 5-29
Repository Editor 5-12, 5-14
parameters 5-17
delete a parameter 5-36
deleting 5-36
edit a parameter 5-36
editing 5-35
modifying 5-33

R

RC4 14
RECVTIMEOUT 7-17
Repository
configuration 3-11
Repository Editor 1-2, 1-9
appletviewer 5-5
exiting the 5-8
introduction 5-2
logon 5-6
main components of 5-10
Netscape Navigator 5-6
packages 5-12, 5-14
setting up 5-19
parameters 5-17
process flow 5-10
sample window 5-3
sample window description 5-4
saving your work 5-19

BEA Jolt User’s Guide

-7

services 5-15
description of 5-16
setting up 5-19
view services 5-16

troubleshooting 5-48

requirements 2-2, 2-27

S

saving your work 5-19
security 1-4, 3-3
SENDTIMEOUT 7-17
server
installation requirements
AIX 2-2
disk storage 2-2
Hewlett-Packard 2-2, 2-3
Jolt 6-5
TUXEDO requirements for 6-42
web 6-43
servers
components 1-6
Jolt 1-2
Jolt Repository 1-6
ServiceException
class A-9
ServiceExceptions 7-25
services
add a parameter 5-25
data type selection 5-28
howto 5-27
window description 5-26
add a service 5-21
buffer type selection 5-23
howto 5-22, 5-23
calling synchronous 6-8
definitions 6-11
delete a service 5-36
deleting 5-37
edit a service 5-33
editing 5-34

-8 BEA Jolt User’s Guide

export status
reviewing 5-40, 5-41
exporting 5-38, 5-39
grouping 5-29
Internet 1-2
Intranet 1-2
Jolt client
make service available to 5-38
modifying 5-33
parameters 5-17
service test window 5-43, 5-44
test a service
failure, reasons for 5-47
howto 5-45, 5-46
process flow 5-45
testing 5-42
unexport 5-38
unexport a service 5-39
unexport status
reviewing 5-40, 5-41
using the Repository Editor 5-15
view parameters 5-18
view services 5-16
SessionException 7-19
class A-9
simpapp
online resources 3-22
STRING buffer type 6-15

T

testing
services 5-42

threads
BLOCKED 6-21
non-preemptive 6-21, 6-22
preemptive 6-21
RUNNABLE 6-21
RUNNING 6-21
using Jolt with non-preemptive 6-22
using with Jolt 6-23

TOUPPER
input parameters 6-15
service 6-15
TPEABORT A-11
TPEBADDESC A-11
TPEBLOCK A-11
TPEDIAGNOSTIC A-11
TPEEVENT A-11
TPEHAZARD A-11
TPEHEURISTIC A-11
TPEINVAL A-11
TPEITYPE A-11
TPELIMIT A-11
TPEMATCH A-11
TPEMIB A-11
TPENOENT A-11
TPEOS A-11
TPEOTYPE A-11
TPEPERM A-12
TPEPROTO A-12
TPERELEASE A-12
TPERMERR A-12
TPESVCERR A-12
TPESVCFAIL A-12
TPESYSTEM A-12
TPETIME A-12
TPETRAN A-12
TPGOTSIG A-12
tpreturn A-4
tpurcode A-5
Transaction
begin 6-9
commit 6-9
object 6-9
Protocol 6-4
rollback 6-9
TransactionException
class A-10
troubleshooting

Repository Editor 5-48

TUXEDO
distributing services 1-9
errors A-11

U

UBBCONFIG
Jolt Repository configuration sample
3-11
Jolt Server Listener (JSL) configuration
sample 3-4
unexporting services 5-38
UNIX system
installation 2-7
UNSOLMSG 7-56

v

VIEW buffer type 6-19
view parameters 5-18

w

web server
considerations 6-43
Windows NT
installation 2-12

BEA Jolt User’s Guide 1-9

I-10 BEA Jolt User’s Guide

	Contents
	Preface
	Purpose of This Manual
	Audience
	Jolt Documentation
	How This Manual is Organized
	Related Manuals
	Other TUXEDO Resources
	Document Conventions
	1 Introducing BEA Jolt
	What is BEA Jolt?
	Key Features
	How it Works
	Jolt Servers
	Jolt Class Library for Java
	Jolt Server and Jolt Client Communication
	Jolt Repository
	Jolt Internet Relay
	How to Jolt your TUXEDO Applications
	2 Installing Jolt
	Installation Requirements
	Server Requirements
	Jolt Relay Requirements
	Client Requirements
	BEA Jolt 1.1 Installation
	Directory Structure
	Before You Begin
	UNIX System Installation Instructions
	UNIX System Installation Script
	Windows NT Installation Instructions
	Licensing your Jolt Software
	Using the Jolt Online Documentation
	Getting Started with the Documentation
	3 Configuring the Jolt System
	Using the Jolt Server
	Jolt Internet Relay
	Security and Encryption
	Starting the Jolt Server
	Configuring the Jolt Server
	Shutting Down the Jolt Server
	Using the Jolt Repository
	Configuring the Jolt Repository
	Initializing Services Using TUXEDO and the Reposit...
	Event Subscription
	Configuration
	Jolt Internet Relay
	Jolt Relay (JRLY)
	Jolt Relay Adapter (JRAD)
	Using Sample Applications in Jolt Online Resources
	4 Bulk Loading TUXEDO Services
	Introduction to the Bulk Loader
	Getting Started Using the Bulk Loader
	Using UNIX
	Using Windows NT
	Syntax of the Bulk Loader Data Files
	Guidelines for Using Keywords
	Keyword Order in the Bulk Loader Data File
	Using Service-Level Keywords and Values
	Using Parameter-Level Keywords and Values
	Troubleshooting
	Sample Bulk Load Data
	5 Using the Jolt Repository Editor
	Introduction to the Repository Editor
	Repository Editor Window
	Getting Started
	Starting the Repository Editor Using appletviewer
	Starting the Repository Editor Using Your Web Brow...
	Logging on to the Repository Editor
	Exiting the Repository Editor
	Main Components of the Repository Editor
	Repository Editor Flow
	What is a Package?
	What is a Service?
	What is a Parameter?
	Setting Up Packages and Services
	Saving Your Work
	Adding a Package
	Adding a Service
	Adding a Parameter
	Grouping Services Using the Package Organizer
	Modifying Packages/Services/Parameters
	Editing a Service
	Editing a Parameter
	Deleting Parameters/Services/Packages
	Making a Service Available to the Jolt Client
	Exporting/Unexporting Services
	Reviewing the Exported/Unexported Status
	Testing a Service
	Repository Editor Service Test Window
	Testing a Service Process Flow
	Troubleshooting
	6 Using the Jolt Class Library
	Class Library Functionality Overview
	Java Applications vs. Java Applets
	Jolt Class Library Features
	Jolt Client/Server Relationship
	Jolt Object Relationships
	Jolt Class Functionality
	Jolt Class Library Walk-through
	Using TUXEDO Buffer Types with Jolt
	Using the STRING Buffer Type
	Using the CARRAY Buffer Type
	Using the VIEW Buffer Type
	Using the FML Buffer Type
	Multithreaded Applications
	Preemptive and Non-preemptive Threads
	Using Jolt with Non-Preemptive Threading
	Using Threads for Asynchronous Behavior
	Using Threads with Jolt
	Event Subscription and Notifications
	API for Event Subscription
	Notification Event Handler
	Connection Modes
	Notification Data Buffers
	TUXEDO Event Subscription
	Using the Jolt API to Receive TUXEDO Notifications
	Clearing Parameter Values
	Reusing Objects
	Application Deployment and Localization
	Deploying a Jolt Applet
	Client Considerations
	Web Server Considerations
	Localizing a Jolt Applet
	7 Jolt Class Library Reference
	Jolt Methods
	Methods for Handling Items
	JoltSessionAttributes Class
	JoltSessionAttributes Constructor
	Synopsis
	Usage
	Throws
	JoltSessionAttributes Methods
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Example
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	JoltSession Class
	JoltSession Constructor
	Synopsis
	Usage
	Throws
	JoltSession Method
	Synopsis
	Usage
	Throws
	See Also
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Parameter
	Usage
	Overrides
	Synopsis
	Usage
	Overrides
	JoltRemoteService Class
	JoltRemoteService Constructor
	Synopsis
	Usage
	Throws
	JoltRemoteService Methods
	Synopsis
	Usage
	Throws
	See Also
	JoltRequestMessage Abstract Class
	JoltRequestMessage Methods
	Synopsis
	Usage
	Synopsis
	Usage
	Returns
	Synopsis
	Returns
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Parameter
	Usage
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	JoltTransaction Class
	JoltTransaction Constructor
	Synopsis
	Usage
	Throws
	See Also
	JoltTransaction Methods
	Synopsis
	Usage
	Throws
	Synopsis
	Usage
	Throws
	See Also
	JoltEvent Class
	JoltEvent Methods
	Synopsis
	Usage
	Returns
	Throws
	Synopsis
	Usage
	Returns
	Throws
	JoltUserEvent Class
	Synopsis
	JoltUserEvent Methods
	Synopsis
	Parameters
	Usage
	Throws
	JoltReply Class
	JoltReply Methods
	Synopsis
	Usage
	Returns
	JoltMessage Class
	JoltMessage Methods
	Synopsis
	Parameters
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	Synopsis
	Parameters
	Usage
	Returns
	Throws
	A Jolt Class Library Errors and Exceptions
	Jolt Error and Exception Handling
	ApplicationException Class
	ApplicationException Methods
	Synopsis
	Usage
	Synopsis
	Synopsis
	Usage
	JoltException Class
	JoltException Methods
	Synopsis
	Usage
	Synopsis
	Synopsis
	Usage
	EventException Class
	MessageException Class
	ServiceException Class
	SessionException Class
	TransactionException Class
	TUXEDO Errors
	B System Messages
	Jolt System Messages
	Repository Messages
	FML Error Messages
	Information Messages
	Jolt Relay Adapter (JRAD) Messages
	Jolt Relay (JRLY) Messages
	Bulk Loader Utility Messages

