

Oracle® Fusion Middleware
Developer's Guide for Oracle WebCenter Ensemble

10g Release 3 (10.3.0.1.0)

E14115-02

July 2009

Provides instructions for setting up a development
environment and developing services for Oracle WebCenter
Ensemble.

Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble, 10g Release 3 (10.3.0.1.0)

E14115-02

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents ... viii
Conventions ... viii

1 Oracle WebCenter Ensemble Development Environment

1.1 Oracle WebCenter Interaction Development Kit (IDK) Projects ... 1-1
1.1.1 Java: Setting Up a Custom Oracle WebCenter Interaction Development Kit (IDK)

Project in Eclipse 1-2
1.1.1.1 Eclipse Stand-Alone (without WTP).. 1-2
1.1.1.2 Eclipse with WTP ... 1-2
1.1.2 Java: Deploying a Custom Oracle WebCenter Interaction Development Kit (IDK)

Project in Eclipse 1-3
1.1.2.1 Eclipse Stand-Alone (without WTP).. 1-3
1.1.2.2 Eclipse with WTP ... 1-4
1.1.3 Java: Debugging a Custom Oracle WebCenter Interaction Development Kit (IDK)

Project 1-4
1.1.4 .NET: Setting Up a Custom Oracle WebCenter Interaction Development Kit (IDK)

Project in Visual Studio 1-5
1.1.5 .NET: Deploying a Custom Oracle WebCenter Interaction Development Kit (IDK)

Project in IIS 1-6
1.2 Oracle WebCenter Interaction Logging Utilities.. 1-6
1.2.1 Configuring Oracle WebCenter Interaction Development Kit (IDK) Logging 1-7
1.2.1.1 Configuring Java Oracle WebCenter Interaction Development Kit (IDK) Logging

(web.xml) 1-7
1.2.1.2 Configuring .NET Oracle WebCenter Interaction Development Kit (IDK) Logging

(Web.config) 1-8
1.2.1.3 Oracle WebCenter Interaction Development Kit (IDK) Logging Levels 1-8
1.2.1.4 Oracle WebCenter Interaction Development Kit (IDK) Logging API Web

Application Variables 1-10
1.2.2 Using the Oracle WebCenter Interaction Development Kit (IDK) Logging API ... 1-10
1.2.2.1 Using Oracle WebCenter Interaction Development Kit (IDK) Logging in Java

1-11
1.2.2.2 Using Oracle WebCenter Interaction Development Kit (IDK) Logging in .NET

1-14

iv

1.2.2.3 Using Oracle WebCenter Interaction Development Kit (IDK) Logging from the
Command Line 1-18

1.3 About Server Communication and the Proxy ... 1-18
1.3.1 The Oracle WebCenter Ensemble Proxy .. 1-19
1.3.1.1 About Pagelets and the Proxy ... 1-21
1.3.2 About HTTP and CSP ... 1-22
1.3.2.1 HTTP ... 1-22
1.3.2.2 CSP... 1-23
1.3.2.3 Oracle WebCenter Ensemble Headers ... 1-23
1.3.2.4 About SOAP ... 1-24

2 Oracle WebCenter Ensemble Pagelet Development

2.1 Oracle WebCenter Interaction Development Kit (IDK) Proxy API..................................... 2-2
2.1.1 Creating a Custom Pagelet with the Java Oracle WebCenter Interaction Development

Kit (IDK) Proxy API 2-3
2.1.2 Creating a Custom Pagelet with the .NET Oracle WebCenter Interaction Development

Kit (IDK) Proxy API 2-3
2.1.3 Using Programmable Remote Client (PRC) Remote APIs .. 2-6
2.2 Adaptive Pagelets ... 2-6
2.2.1 Adaptive Pagelet Design Patterns... 2-6
2.2.2 Adaptive Tags .. 2-9
2.2.2.1 Adaptive Tag Development Tips .. 2-11
2.2.2.2 Using Internationalized Strings in Adaptive Tags ... 2-11
2.2.2.3 Using Variables in Adaptive Tags .. 2-11
2.2.2.4 Oracle WebCenter Ensemble Adaptive Tag Library (pt:ensemble)................... 2-12
2.2.2.4.1 Inserting Pagelets Using Oracle WebCenter Ensemble Adaptive Tags 2-13
2.2.2.4.2 Accessing Authentication Data Using Oracle WebCenter Ensemble Adaptive

Tags 2-14
2.2.2.4.3 Accessing the Login URL Using Oracle WebCenter Ensemble Adaptive Tags...

2-14
2.2.2.4.4 Accessing Resource Data Using Oracle WebCenter Ensemble Adaptive Tags ...

2-14
2.2.2.4.5 Accessing User Roles Using Oracle WebCenter Ensemble Adaptive Tags 2-15
2.2.2.5 Common Adaptive Tag Library (pt:common) ... 2-15
2.2.2.5.1 Accessing User Information Using Adaptive Tags 2-16
2.2.2.5.2 Adding Header Content Using Adaptive Tags ... 2-16
2.2.2.5.3 Defining a Unique Namespace Token Using Adaptive Tags 2-17
2.2.2.5.4 Displaying Errors Using Adaptive Tags... 2-17
2.2.2.5.5 Transforming URLs Using Adaptive Tags ... 2-18
2.2.2.6 Logic Adaptive Tag Library (pt:logic) .. 2-18
2.2.2.6.1 Evaluating Expressions Using Adaptive Tags... 2-19
2.2.2.6.2 Looping Over Data Collections Using Adaptive Tags 2-20
2.2.2.6.3 Using Shared Variables in Adaptive Tags.. 2-20
2.2.2.7 About Adaptive Tag Control Flow ... 2-21
2.2.2.8 Creating Custom Adaptive Tags... 2-22
2.2.2.8.1 Accessing Browser Session Information in Custom Adaptive Tags........... 2-24
2.2.2.8.2 Accessing Attributes in Custom Adaptive Tags... 2-24
2.2.2.8.3 Storing and Accessing Custom Data in Custom Adaptive Tags................ 2-25

v

2.2.2.8.4 Including JavaScript in Custom Adaptive Tags .. 2-26
2.2.2.8.5 Using Nested Tags in Custom Adaptive Tags... 2-27
2.2.2.8.6 Implementing Non-Standard Custom Adaptive Tag Types 2-27
2.2.2.8.7 Deploying Custom Adaptive Tags ... 2-27
2.2.3 Oracle WebCenter Interaction Scripting Framework.. 2-28
2.2.3.1 Oracle WebCenter Interaction Scripting Framework Development Tips......... 2-28
2.2.3.2 Using Oracle WebCenter Interaction Scripting Framework Event Notification.........

2-29
2.2.3.2.1 Page-Level Events for Use with the Oracle WebCenter Interaction Scripting

Framework 2-33
2.2.3.3 Using In-Place Refresh.. 2-34
2.2.4 Adaptive Pagelet Development Tips ... 2-35
2.3 Session Preferences ... 2-35
2.3.1 Using Oracle WebCenter Interaction Development Kit Methods to Access Session

Preferences 2-36
2.3.2 Using Oracle WebCenter Interaction Scripting Framework Methods to Access Session

Preferences 2-37
2.4 Pagelet Caching ... 2-38
2.4.1 About Pagelet Caching Strategies .. 2-40
2.4.2 Pagelet/Cache Key ... 2-41
2.4.3 Setting HTTP Caching Headers - Cache-Control... 2-41
2.4.4 Setting HTTP Caching Headers - Expires ... 2-42
2.4.5 Setting HTTP Caching Headers - Last-Modified and ETag 2-43
2.5 Pagelet Internationalization ... 2-43
2.6 Pagelet Configuration in Oracle WebCenter Ensemble ... 2-44
2.6.1 Configuring an Oracle WebCenter Ensemble Resource ... 2-44
2.6.2 Configuring an Oracle WebCenter Ensemble Pagelet .. 2-46
2.6.3 Inserting Pagelets Using Oracle WebCenter Ensemble Adaptive Tags 2-47
2.6.4 Inserting Pagelets into Non-Proxied Pages... 2-48
2.6.4.1 Using Automatic Resizing with IFrames .. 2-49
2.6.5 About Oracle WebCenter Ensemble Security... 2-50
2.6.5.1 Using Oracle WebCenter Ensemble Roles in Pagelets and Proxied Applications......

2-50
2.6.5.2 Creating a Custom Credential Mapping.. 2-52

3 Oracle WebCenter Ensemble Login Customization

3.1 Creating a Custom Oracle WebCenter Ensemble Pre-Login Page 3-1
3.2 Creating a Custom Oracle WebCenter Ensemble Login Page ... 3-2
3.3 Creating a Custom Oracle WebCenter Ensemble Error Page .. 3-5
3.4 Creating a Custom Oracle WebCenter Ensemble Post-Login Page..................................... 3-6
3.5 Creating a Custom Oracle WebCenter Ensemble Post-Logout Page 3-8
3.6 Configuring Custom Oracle WebCenter Ensemble Login Pages .. 3-8
3.7 Oracle WebCenter Ensemble Login Headers ... 3-8

4 Oracle WebCenter Ensemble REST APIs

4.1 Data Retrieval APIs... 4-1
4.2 Pagelet Inject API .. 4-3

vi

4.2.1 Using Automatic Resizing with IFrames .. 4-6

5 Oracle WebCenter Ensemble API Libraries

5.1 Oracle WebCenter Interaction Development Kit (IDK) .. 5-1
5.2 Oracle WebCenter Interaction Scripting Framework .. 5-1
5.3 Adaptive Tags ... 5-1

6 Additional Development References

vii

Preface

This guide provides instructions for setting up a development environment and
developing services for Oracle WebCenter Ensemble.

Audience
This document is intended for software developers responsible for creating external
applications that need to utilize Oracle WebCenter Ensemble. The audience of this
documentation is assumed to be proficient in developing applications that use SOAP
web services.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

viii

Related Documents
For more information, see the following documents in the Oracle WebCenter
Ensemble 10g Release 3 (10.3.0.1.0) documentation set:

■ Oracle WebCenter Ensemble Release Notes

■ Oracle Fusion Middleware Installation and Upgrade Guide for Oracle WebCenter
Ensemble

■ Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter Ensemble

■ Oracle Fusion Middleware Web Service Developer's Guide for Oracle WebCenter
Interaction

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Oracle WebCenter Ensemble Development Environment 1-1

1Oracle WebCenter Ensemble Development
Environment

If you are developing services for Oracle WebCenter Ensemble, you will need to
understand the system and prepare your development environment for use with the
Oracle WebCenter Interaction Development Kit (IDK).

This chapter contains instructions for setting up an Oracle WebCenter Interaction
Development Kit (IDK) development environment, and important background
information on the Oracle WebCenter Ensemble development environment.

■ Section 1.1, "Oracle WebCenter Interaction Development Kit (IDK) Projects": This
section provides step-by-step instructions for the most common tasks in setting up
a development environment.

■ Section 1.2, "Oracle WebCenter Interaction Logging Utilities": Oracle WebCenter
Interaction Logging Utilities are a collection of debugging and logging solutions
available for use in Oracle WebCenter Ensemble.

■ Section 1.3, "About Server Communication and the Proxy": This section explains
how Oracle WebCenter Ensemble acts as a proxy server, brokering transactions
between client computers and external resources. This section also provides
detailed information on HTTP and CSP, the protocols that define the syntax of
communication between Oracle WebCenter Ensemble and external resources.

1.1 Oracle WebCenter Interaction Development Kit (IDK) Projects
The following sections provide step-by-step instructions for the most common tasks in
setting up a development environment. For details on installing or downloading the
Oracle WebCenter Interaction Development Kit (IDK), see the installation guide on
Oracle Technology Network at
http://www.oracle.com/technology/index.html.

Java

■ Section 1.1.1, "Java: Setting Up a Custom Oracle WebCenter Interaction
Development Kit (IDK) Project in Eclipse"

■ Section 1.1.2, "Java: Deploying a Custom Oracle WebCenter Interaction
Development Kit (IDK) Project in Eclipse"

■ Section 1.1.3, "Java: Debugging a Custom Oracle WebCenter Interaction
Development Kit (IDK) Project"

.NET

Oracle WebCenter Interaction Development Kit (IDK) Projects

1-2 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

■ Section 1.1.4, ".NET: Setting Up a Custom Oracle WebCenter Interaction
Development Kit (IDK) Project in Visual Studio"

■ Section 1.1.5, ".NET: Deploying a Custom Oracle WebCenter Interaction
Development Kit (IDK) Project in IIS"

1.1.1 Java: Setting Up a Custom Oracle WebCenter Interaction Development Kit (IDK)
Project in Eclipse

This section describes how to set up a custom Java Oracle WebCenter Interaction
Development Kit (IDK) project in Eclipse. The process is different depending on
whether or not Eclipse Web Tools Platform (WTP) is installed:

■ Section 1.1.1.1, "Eclipse Stand-Alone (without WTP)"

■ Section 1.1.1.2, "Eclipse with WTP"

1.1.1.1 Eclipse Stand-Alone (without WTP)
These instructions describe how to set up a custom Java Oracle WebCenter Interaction
Development Kit (IDK) project in Eclipse stand-alone, without Web Tools Platform
(WTP) installed.

1. Open Eclipse and click File > New > Project.

2. Type the Project Name (for example, "idkproject"). Click Next and Finish.

3. In the Package Explorer in Eclipse, right-click on the new project and click
Properties > Java Build Path > Libraries > Add External Jars.

4. Select the *.jar files from the IDK installation directory under the
idk\<version>\devkit\java\WEB-INF\lib directory. Click OK.

1.1.1.2 Eclipse with WTP
These steps describe how to set up a custom Java Oracle WebCenter Interaction
Development Kit (IDK) project in Eclipse with Web Tools Platform (WTP) installed.

1. Open Eclipse and click File > New > Other > Web > Dynamic Web Project.

2. Type the Project Name (for example, "idkproject").

3. Choose a Target Runtime from the drop-down list. If you have not previously
configured a server runtime, click New to configure your Apache Tomcat setup.

4. Click Finish to complete the Dynamic Web Project wizard.

5. Import the IDK Web project template:

a. Right-click the project in the Project Explorer and click Import > General >
File System.

b. To define the From directory field, navigate to the IDK root directory and
select the \devkit\WEB-INF folder.

c. Change the Into folder field to <project name>/WebContent/WEB-INF.

d. Click Finish.

Note: These instructions assume you have installed the Java version
of the Oracle WebCenter Interaction Development Kit (IDK).

Oracle WebCenter Interaction Development Kit (IDK) Projects

Oracle WebCenter Ensemble Development Environment 1-3

1.1.2 Java: Deploying a Custom Oracle WebCenter Interaction Development Kit (IDK)
Project in Eclipse

These steps describe how to deploy a custom Java Oracle WebCenter Interaction
Development Kit (IDK) project in Eclipse. The process is different depending on
whether or not Web Tools Platform (WTP) is installed:

■ Section 1.1.2.1, "Eclipse Stand-Alone (without WTP)"

■ Section 1.1.2.2, "Eclipse with WTP"

1.1.2.1 Eclipse Stand-Alone (without WTP)
These steps describe how to deploy a custom Java IDK project in Eclipse stand-alone
(without Web Tools Platform (WTP) installed).

1. Deploy the Oracle WebCenter Interaction Development Kit (IDK) in your
application server:

a. Create a folder for the custom project in the application server's \webapps
directory. (For example, if Apache Tomcat is installed in C:\tomcat and the
project name is "idkproject", the path would be
C:\tomcat\webapps\idkproject.)

b. Navigate to the IDK installation directory and copy the WEB-INF and its \LIB
subfolder to the directory you created in the previous step. This loads Apache
AXIS into the application server.

c. Confirm that Apache AXIS is available by opening the following page in a
browser: http://<hostname:port>/<projectname>/servlet/AxisServlet.
(Change <hostname:port> to fit your application server, for example,
localhost:8080 for Apache Tomcat. Change <projectname> to the name of the
folder you created in step 1a.) The browser should display the message "And
now... Some Services" and a list of installed services.

2. Compile the class that implements the IDK interface(s) and copy the entire
package structure to the appropriate location in your web application, usually the
\WEB-INF\classes directory.

3. Content services, identity services and SCI pages require additional configuration.
You must add the custom class to the appropriate *Impl keys in the web.xml file in
the WEB-INF directory. For details, see XXX_missing x-ref to ref_idk_
deploymentimplkeys.dita_XXX.

4. Start your application server. In most cases, you must restart your application
server after copying a file.

Note: The Eclipse Web project view hides the imported JARs stored
in WEB-INF/lib and puts those files under ./Java
Resources/src/Libraries/Web App Libraries.

Note: The instructions below are for Apache Tomcat or Oracle
WebLogic. For IBM WebSphere, you must create a .war or .ear file that
is compatible with IBM WebSphere. You must first create an
appropriate server-config.wsdd using the Oracle WebCenter
Interaction Development Kit (IDK) DeployServlet or the supplied
service wsdd files. See the IBM WebSphere documentation for
detailed instructions.

Oracle WebCenter Interaction Development Kit (IDK) Projects

1-4 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

1.1.2.2 Eclipse with WTP
These steps describe how to deploy a custom Java Oracle WebCenter Interaction
Development Kit (IDK) project in Eclipse with Web Tools Platform (WTP) installed.

These instructions use Apache Tomcat as an example.

1. Define the server in Eclipse:

a. Click File > New > Other > Server > Server and click Next.

b. Select the server type (Apache Tomcat v5.0) and click Next.

c. Select the Apache Tomcat v5.0 installation directory and click Next.

d. Add your custom project to the list of configured projects and click Finish.

2. Run and debug the application:

a. In Project Explorer, right-click your custom project and click Debug As >
Debug On Server.

b. Select the existing server and click Finish.

3. Content services, identity services and custom preference (SCI) pages require
additional configuration. You must add the custom class to the appropriate *Impl
keys in the web.xml file in the WEB-INF directory. For details, see XXX_missing
x-ref to ref_idk_deploymentimplkeys.dita_XXX.

4. When Apache Tomcat starts in a new Servers tab, hit
http://localhost:8080/<projectname>/servlet/AxisServlet to ensure that Axis has
deployed correctly and the web service APIs are correctly configured.

1.1.3 Java: Debugging a Custom Oracle WebCenter Interaction Development Kit (IDK)
Project

After you create a custom Oracle WebCenter Interaction Development Kit (IDK)
project, you must deploy it in your Java application server.

These instructions use Apache Tomcat as an example.

1. Define the server in Eclipse:

a. Click File > New > Other > Server > Serverand click Next.

b. Select the server type as Apache Tomcat v5.0 and click Next.

c. Select the Apache Tomcat v5.0 installation directory and click Next.

d. Add your project to the list of configured Apache Tomcat projects and click
Finish.

2. Content services, identity services and SCI pages require additional configuration.
You must add the custom class to the appropriate *Impl keys in the web.xml file in
the WEB-INF directory. For details on Impl keys, see XXX_missing x-ref to ref_
idk_deploymentimplkeys.dita_XXX.

3. Run and debug the application:

a. In Eclipse Project Explorer, right-click your project and click Debug As >
Debug On Server.

b. Select the existing server and click Finish.

4. When Apache Tomcat starts in a new Servers tab, hit
http://localhost:8080/<project name>/servlet/AxisServlet to

Oracle WebCenter Interaction Development Kit (IDK) Projects

Oracle WebCenter Ensemble Development Environment 1-5

ensure that Axis has deployed correctly and the web service APIs are correctly
configured.

1.1.4 .NET: Setting Up a Custom Oracle WebCenter Interaction Development Kit (IDK)
Project in Visual Studio

These steps describe how to set up a custom .NET Oracle WebCenter Interaction
Development Kit (IDK) project in Visual Studio.

1. Start Visual Studio and click File > New Project > C# Projects > ASP.NET Web
Service.

2. Type an intuitive name in the Location field.

3. Delete Service1.asmx and Web.config.

4. In the new project, click File > Add Existing Item.

5. Browse to the \devkit folder in the IDK installation directory.

6. In the File Types mask, click All Files.

7. Select all the .asmx files and Web.config. Do not select the \bin directory.

8. Click Open. You will be prompted to create a class file for each .asmx file; click No
for each file.

9. In the Solution Explorer (usually in the upper right), you should see the project
you created in step 1. Add the IDK assemblies:

a. Right-click References and click Add Reference.

b. Browse to the \devkit\bin folder in the IDK installation directory.

c. Select the assemblies to add to the bin directory: all the .dll files (Ctrl+A).
These are the assemblies that resolve the references in the *.asmx files.

– If you are using the standard (un-signed) version of the IDK, select all the
.dll files (Ctrl+A).

– If you are using the signed dll version of the IDK, select only
Plumtree.openlog-framework_signed.dll. (You must deploy the other
assemblies in the GAC as described in step f below.)

d. Click Open > OK.

e. In the Solution Explorer References, confirm that you now see idk,
openfoundation, etc.

f. If you are using the signed dll version of the IDK, deploy the following
assemblies in the GAC:

– Plumtree.EDK_signed.dll

– OpenFoundation_signed.dll

– Plumtree.openkernel_signed.dll

– Plumtree.openlog-framework_signed.dll

– Plumtree.pmb_signed.dll

Note: These instructions assume you have installed the .NET version
of the Oracle WebCenter Interaction Development Kit (IDK).

Oracle WebCenter Interaction Logging Utilities

1-6 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

– Plumtree.RAT_signed.dll

10. Click File > Add New Item to create new classes and complete your project.

1.1.5 .NET: Deploying a Custom Oracle WebCenter Interaction Development Kit (IDK)
Project in IIS

These steps describe how to deploy a custom .NET Oracle WebCenter Interaction
Development Kit (IDK) project in IIS.

These instructions assume you have set up Visual Studio for IDK development as
described in the previous section, Section 1.1.4, ".NET: Setting Up a Custom Oracle
WebCenter Interaction Development Kit (IDK) Project in Visual Studio".

1. Compile the class that implements the Oracle WebCenter Interaction Development
Kit (IDK) interface(s).

2. Content services, identity services and SCI pages require additional configuration.
You must add the class and the assembly that contains it to the appropriate
*Assembly and *Impl keys in the web.config file in your project. For details, see
XXX_missing x-ref to ref_idk_deploymentimplkeys.dita_XXX.

3. If you do not already have a virtual directory in IIS for your services, add one
using the steps below:

a. Navigate to Internet Services Manager (Internet Information Services) in the
Control Panel under Administrative Tools.

b. Select Default Web Site.

c. Click Action > New > Virtual Directory and type the name of your Visual
Studio location.

d. Click Next twice. Type the path to the home directory for the IDK:
<installdir>\idk\6.0\devkit\dotnet.

e. Check both the Read and Scripts only checkboxes if they are cleared (they
should be checked by default). Click Next then click Finish.

4. Copy the compiled class files to the \bin folder in the
<installdir>\idk\<version>\devkit\dotnet directory.

1.2 Oracle WebCenter Interaction Logging Utilities
Oracle WebCenter Interaction Logging Utilities are a collection of debugging and
logging solutions available for use in Oracle WebCenter Ensemble.

Oracle WebCenter Interaction Logging Utilities allow for a wide variety of logging
solutions. The Oracle WebCenter Interaction Development Kit (IDK) provides a
remote API that allows you to send logging messages from remote web applications.

This chapter contains the following sections:

■ Section 1.2.1, "Configuring Oracle WebCenter Interaction Development Kit (IDK)
Logging": Oracle WebCenter Interaction Development Kit (IDK) logging is not
enabled by default. You can enable logging options programmatically or using the
web.xml or Web.config file distributed with the IDK.

■ Section 1.2.2, "Using the Oracle WebCenter Interaction Development Kit (IDK)
Logging API": The Oracle WebCenter Interaction Development Kit (IDK) logging
API allows you to send log messages from remote services and applications to a

Oracle WebCenter Interaction Logging Utilities

Oracle WebCenter Ensemble Development Environment 1-7

variety of logging receivers. This section explains how to use the logging API
from Java and .NET applications and from the command line.

1.2.1 Configuring Oracle WebCenter Interaction Development Kit (IDK) Logging
To enable and configure Oracle WebCenter Interaction Development Kit (IDK)
logging, first determine how the IDK is deployed.

Oracle WebCenter Interaction Development Kit (IDK) logging is disabled by default. If
logging is enabled, it is sent only to the local machine by default, requiring direct
access to the machine to view the logs. These default settings were chosen to secure
potentially sensitive information present in log messages.

■ If the Oracle WebCenter Interaction Development Kit (IDK) is deployed as a Web
application to support Integration Service implementations, edit the distributed
Web application configuration file (web.xml or Web.config). For details, see
Section 1.2.1.1, "Configuring Java Oracle WebCenter Interaction Development Kit
(IDK) Logging (web.xml)" or Section 1.2.1.2, "Configuring .NET Oracle WebCenter
Interaction Development Kit (IDK) Logging (Web.config)"

■ If the Oracle WebCenter Interaction Development Kit (IDK) is deployed as a
library supporting a Web application (for example, a pagelet), copy and paste the
configuration parameters from the IDK's distributed web.xml/Web.config into
your Web application configuration file. For details, see Section 1.2.1.1,
"Configuring Java Oracle WebCenter Interaction Development Kit (IDK) Logging
(web.xml)" or Section 1.2.1.2, "Configuring .NET Oracle WebCenter Interaction
Development Kit (IDK) Logging (Web.config)".

■ If the Oracle WebCenter Interaction Development Kit (IDK) is deployed as a
stand-alone application outside a Web application context, such as
report-generating or data loading and dumping applications using the PRC, use
programmatic configuration to initialize logging parameters. Programmatic
logging configuration can be done at startup, or by using a static initialization call
on a façade class that the Web application runtime code uses to obtain logging
components or logger instances. For details, see Section 1.2.2, "Using the Oracle
WebCenter Interaction Development Kit (IDK) Logging API".

To use the Oracle WebCenter Interaction Development Kit (IDK) Logging API, you
must configure the logging receiver to read logs from the IDK. To configure the log
receiver, you must know the logging application name. The Oracle WebCenter
Interaction Development Kit (IDK) logging application name is configured in the Web
application configuration file or set via the initialize() method in the Logging
API.

1.2.1.1 Configuring Java Oracle WebCenter Interaction Development Kit (IDK)
Logging (web.xml)
For web services using the Java Oracle WebCenter Interaction Development Kit (IDK),
the web.xml file is the standard way to configure log instrumentation.

The example below shows the logging settings only. The bulk of the web.xml file has
been omitted; environment keys are inserted at the end according to the DTD.

<?xml version='1.0' encoding='ISO-8859-1'?>
<!DOCTYPE web-app

Note: Verbose logging cannot be enabled programmatically; you
must change a setting in the web.xml or Web.config file.

Oracle WebCenter Interaction Logging Utilities

1-8 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

PUBLIC '-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN
'http://java.sun.com/j2ee/dtds/web-app_2.2.dtd'>
<web-app>
...
<env-entry>
 <env-entry-name>ptedk.VerboseLogging</env-entry-name
 <env-entry-value>true</env-entry-value>
 <env-entry-type>java.lang.Boolean</env-entry-type>
</env-entry>
<env-entry>
 <env-entry-name>ptedk.LoggingApplicationName</env-entry-name>
 <env-entry-value>EDK</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
</env-entry>
<env-entry>
 <env-entry-name>ptedk.LogToNetwork</env-entry-name>
 <env-entry-value>true</env-entry-value>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 </env-entry>
<web-app>

1.2.1.2 Configuring .NET Oracle WebCenter Interaction Development Kit (IDK)
Logging (Web.config)
If you are running the .NET Oracle WebCenter Interaction Development Kit (IDK) as a
web application that hosts Web services (that do not use the logging API), the
Web.config file is the best way to configure log instrumentation.

The Oracle WebCenter Interaction Development Kit (IDK) Web.config follows the
normal precedence rules of IIS Web.config: within a web application, machine.config
is read first for configuration values, then overlaid with Web.config from each parent
directory within the web application subtree down to the directory containing the
running code. The example below shows the logging settings only. All .NET Web
applications have Web.config files. If the configuration file does not have an
<appSettings> section, it can be added along with the key-value pairs to configure
logging.

<configuration>
 <appSettings>
 <add key="ptedk.LoggingApplicationName" value="Bulk-Document-Loader" />
 <add key="ptedk.LogToNetwork" value="true" />
 <add key="ptedk.VerboseLogging" value="true" />
 </appSettings>
 <system.web>
 ...
 </system.web>
</configuration>

For stand-alone .NET applications outside a web application context, use
programmatic configuration. For details, see Section 1.2.2.2, "Using Oracle WebCenter
Interaction Development Kit (IDK) Logging in .NET".

1.2.1.3 Oracle WebCenter Interaction Development Kit (IDK) Logging Levels
This page summarizes logging levels and their implementation in Oracle WebCenter
Interaction Development Kit (IDK) logging.

The Oracle WebCenter Interaction Development Kit (IDK) ILogger interface provides
access to all eight standard logging levels.

Oracle WebCenter Interaction Logging Utilities

Oracle WebCenter Ensemble Development Environment 1-9

Table 1–1 Severity-Based Logging Levels

Logging Level Description IDK Implementation

Debug The most common and numerous log call, used
for detailed call tracing and parameter logging.
The message should contain a detailed
descriptive message reporting a minor step
taken in the code or providing variable values
(or both).

Remote call tracing. Function parameters.
ToString() of pagelet settings or service request.

Info Used for normal but significant events. Reports
a common operation that is of possible interest,
for example, serving a new user request or
making a remote procedure call.

New pagelet or service request. PRC session
initialization (login). The IDK logging service
sends an Info message to the "EDK main"
logging component when it is initialized.

Warn Used for minor problems. Indicates a possible
problem which the person responsible for the
application should be aware of.

Expected (application) exceptions. For a
pagelet, this includes non-proxied requests and
missing settings. The Oracle WebCenter
Interaction Development Kit (IDK) logging
service sends a Warn message to the 'EDK main'
logging component when it is initialized if
verbose logging is enabled, since the network or
application administrator should be aware of
possible security implications of sending remote
call parameters to a cleartext logging channel.

Error Used for major problems affecting application
function. Indicates a definite problem that
should to be corrected. The message should
state and explain the problem and suggest how
to fix it.

Unexpected platform exceptions. For a pagelet,
this includes errors parsing CSP headers.

Fatal Used for problems so severe that the
application cannot continue to function. The
message should state the problem, explain why
it is a problem, and suggest how to fix it.
Examples include inability to obtain necessary
system or network resources.

A Fatal message is logged when an instance of
the class configured for the Web Service object
cannot be instantiated. Otherwise reserved for
application developer use.

Table 1–2 Supplemental Logging Levels

Logging Level Description IDK Implementation

Action Used for significant actions (between Info and
Warn in severity). Examples include the
beginning or ending of a startup routine or the
start or completion of a new user request.

Initialize an application component or a new
remote session.

Function Used to bracket the beginning and ending of a
function. Use at the very beginning and end of
methods to illustrate code paths and provide
context for messages occurring between the
beginning and ending function messages.

Dispatching and receiving a remote call, and
parsing request parameters.

Performance Provides a millisecond timestamp (for example,
operation X took # milliseconds). Use to
measure operations that may be costly in time.
Typically a pair of begin and end performance
calls will bracket a blocking call to an operation
of interest such as a disk read or write, remote
call, external process invocation, database
query, or large sort operation.

PRC remote calls. Web request lifecycle for
services.

Oracle WebCenter Interaction Logging Utilities

1-10 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

1.2.1.4 Oracle WebCenter Interaction Development Kit (IDK) Logging API Web
Application Variables
To enable Oracle WebCenter Interaction Development Kit (IDK) logging, you must
enter the application name and change the settings in the web.xml (Java) or
Web.config (.NET) file distributed with the Oracle WebCenter Interaction
Development Kit (IDK). The table below lists the applicable variables.

1.2.2 Using the Oracle WebCenter Interaction Development Kit (IDK) Logging API
The Oracle WebCenter Interaction Development Kit (IDK) logging API allows you to
send log messages from remote services and applications to a variety of logging
receivers.

The com.plumtree.remote.logging package provides two interfaces:

■ LogFactory provides static methods to configure logging, query configuration
properties, and obtain ILogger instances.

■ ILogger allows you to test if various log levels are enabled and provides logging
methods. To create a logger object, call LogFactory.getLogger().

Table 1–3 Oracle WebCenter Interaction Development Kit (IDK) Logging API Web Application Variables

Setting Default Value Description

ptedk.LoggingApplicationName "" (No logging occurs if
the application name is
not set.)

OpenLog and Logging Spy use a text string (OpenLog:
'Application' / PTSpy: 'server') to identify a specific log channel
to which log appenders can send messages, and from which log
receivers can receive messages. To receive messages sent to an
OpenLog channel, a listening application must be configured
with the same application name used by the log-generating
application. To receive log messages from an existing Oracle
WebCenter Interaction Development Kit (IDK) deployment in a
Web application, set values for the name and logging options
according to the example in the web.xml or Web.config file. To
receive log messages from a non-Web application that uses the
Oracle WebCenter Interaction Development Kit (IDK) (for
example, batch or utility processes using remote APIs), set the
logging application name programmatically. Use the value in the
key ptedk.LoggingApplicationName to set a matching server
name in the logging receiver. Note: If the application is already
using OpenLog and also using the Oracle WebCenter Interaction
Development Kit (IDK), the code must not attempt to initialize
OpenLog with a different application name

ptedk.LogToNetwork false (Logs to local
machine only.)

Logging to the network is disabled by default. In this condition,
log messages can only be received by OpenLog receiver
processes on the local machine, including Logging Spy, the File
Logger, or receivers using the OpenLog-Log4J Bridge.Logging
can be enabled by setting the value associated with
ptedk.LogToNetwork to true in the Web application
configuration file. For non-Web applications, you can enable
network logging programmatically using the Oracle WebCenter
Interaction Development Kit (IDK).

ptedk.VerboseLogging false (Does not log
method parameters or
return values unless
requested.)

Verbose logging is disabled by default. Basic logging messages
are still sent to the log receiver. The pagelet API sends an Info log
message with each new pagelet context created (each pagelet
request). Any exceptions, errors, or requests for missing settings
are logged as Error or Warning as appropriate.If you enable
verbose logging, additional messages and details are sent to the
log receiver. The pagelet API sends a Warning message
informing the log reader that sensitive information may be
logged in cleartext. With each pagelet request, the pagelet API
sends a Debug message with a toString() of the PortletRequest
object, containing request parameters and pagelet settings; and a
Debug message with a toString() of the PortletUser object,
containing user settings.

Oracle WebCenter Interaction Logging Utilities

Oracle WebCenter Ensemble Development Environment 1-11

To use the Oracle WebCenter Interaction Development Kit (IDK) Logging API, you
must configure the logging receiver to read logs from the IDK. To configure the log
receiver, you must know the logging application name. The Oracle WebCenter
Interaction Development Kit (IDK) logging application name is configured in the Web
application configuration file or set via the initialize() method in the Logging
API.

For details on using the logging API, see the following sections:

■ Section 1.2.2.1, "Using Oracle WebCenter Interaction Development Kit (IDK)
Logging in Java"

■ Section 1.2.2.2, "Using Oracle WebCenter Interaction Development Kit (IDK)
Logging in .NET"

■ Section 1.2.2.3, "Using Oracle WebCenter Interaction Development Kit (IDK)
Logging from the Command Line"

1.2.2.1 Using Oracle WebCenter Interaction Development Kit (IDK) Logging in Java
This example demonstrates how to enable and use Oracle WebCenter Interaction
Development Kit (IDK) logging in a remote Java application.

1. The first step in this example is to enable logging programmatically, by defining
the logging application name and setting the log to network option to true. For
details on logging options, see Section 1.2.1.1, "Configuring Java Oracle WebCenter
Interaction Development Kit (IDK) Logging (web.xml)".

import com.plumtree.remote.logging.ILogger;
import com.plumtree.remote.logging.LogFactory;

public class LoggingExample extends Thread
{
 private static final String INSTANCES_COMPONENT_NAME = 'Instances';
 private static final String MAIN_LOOP_COMPONENT_NAME = 'Main Loop';

 // set the application name
 // (legal characters: ASCII alphanumerics plus . - _ and space)
 public static final String LOGGING_APPLICATION_NAME = 'Logging_API_
Example-1';

 // set to true to multicast log messages to local network
 // set to false to send message only listeners on local machine
 public static final boolean LOG_TO_NETWORK = true;

 private ILogger logger; //instance logging class
 private static ILogger mainLogger; // main component logging class

2. Initialize LogFactory. The recommended way to initialize non-web applications
is in a static block in the application's main class or a logging utility class. Always
check to see if LogFactory has already been initialized (for example, as part of an
IDK-based web application).

if (!LogFactory.isInitialized())
{
 LogFactory.initialize(LOGGING_APPLICATION_NAME, LOG_TO_NETWORK);
}
System.out.print('Set your logging receiver to the \'server\' or \'application
name\' ');
System.out.println(LogFactory.getApplicationName());
System.out.println('The logging component names are \'EDK\', \'' + MAIN_LOOP_
COMPONENT_NAME + '\' and \''

Oracle WebCenter Interaction Logging Utilities

1-12 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

+ INSTANCES_COMPONENT_NAME + '\'.');

mainLogger = LogFactory.getLogger(MAIN_LOOP_COMPONENT_NAME,
LoggingExample.class);
This code creates the following messages in Logging Spy. These messages are sent
automatically by the Oracle WebCenter Interaction Development Kit (IDK). For
the sample code above, the <appname> would be "Logging_API_"

1 <#> <app name> <date/time> Info EDK main LogFactory Initiating EDK logging on behalf
of EDK: LogFactory.

2 <#> <app name> <date/time> Info EDK main LogFactory Verbose logging of internal EDK
classes is off. It may be enabled by setting ptedk.VerboseLogging='true' .

3. Create an instance of ILogger by calling LogFactory.getLogger. In the code
below, the LoggingExample method sends an Info level log message when an
instance is created. The snippet below also uses ILogger.functionBegin and
ILogger.functionEnd to log when a method is entered and exited,
ILogger.action to log significant events, and ILogger.performanceBegin
and ILogger.performanceEnd to log the time required to execute the methods.

public LoggingExample(String instanceName)
{
 setName(instanceName);
 this.logger = LogFactory.getLogger(INSTANCES_COMPONENT_NAME,
LoggingExample.class);
 mainLogger.info('Created new instance named {0}', instanceName);
}
public static void main(String[] args)
{
 final String methodName = 'main';
 mainLogger.functionBegin(methodName);

 // get a timestamp to measure performance of this function
 long performanceStartTicks = mainLogger.performanceBegin();

 mainLogger.action('Creating and starting instances');

 LoggingExample bill = new LoggingExample('Bill');
 bill.start();
 LoggingExample larry = new LoggingExample('Larry');
 larry.start();

 mainLogger.action('Done creating instances');

 // send log message with time since performanceBegin
 mainLogger.performanceEnd(methodName, performanceStartTicks);

 mainLogger.functionEnd(methodName);
}

This code creates the following messages in Logging Spy.

 3 <#> <app name> <date/time> Function Main Loop main LoggingExample Entering
Function main

4 <#> <app name> <date/time> Action Main Loop main LoggingExample Creating and
starting instances

5 <#> <app name> <date/time> Info Main Loop main LoggingExample Created new instance
named Bill

Oracle WebCenter Interaction Logging Utilities

Oracle WebCenter Ensemble Development Environment 1-13

6 <#> <app name> <date/time> Info Main Loop main LoggingExample Created new instance
named Larry

7 <#> <app name> <date/time> Action Main Loop main LoggingExample Done creating
instances

8 <#> <app name> <date/time> Performance Main Loop main LoggingExample main took 0
ms.

9 <#> <app name> <date/time> Function Main Loop main LoggingExample Leaving Function
mainInfo

4. The code below demonstrates available logging levels and provides an example of
how to use token substitution in formatting strings to construct messages. The
thread runs through a small test of logging messages and transfers work to the
next by calling yield(). Note: Wrap any complex message construction in a
conditional block to avoid doing work if there are no listeners at that log level.

public void run()
{
 String levelDescriptionFormat = '{0} level messages are {1} by default in
the log receiver.';
 logger.debug(levelDescriptionFormat, 'Debug', 'off');
 logger.info(levelDescriptionFormat, 'Info', 'off');
 logger.warn(levelDescriptionFormat, 'Warn', 'on');
 logger.error(levelDescriptionFormat, 'Error', 'on');
 logger.fatal(levelDescriptionFormat, 'Fatal', 'on');

 yield();

 // Exceptions may also be caught and logged, and may use token substitution
 try
 {
 throw new InterruptedException(getName() + ' was interrupted.');
 }
 catch (Exception eCaught)
 {
 logger.warn(eCaught, 'Caught an exception from {0}. ',
eCaught.getClass().getPackage().getName());
 }
}

This code creates the following messages in Logging Spy:

10 <#> <app name> <date/time> Function Instances Larry LoggingExample Entering
Function run

11 <#> <app name> <date/time> Action Instances Bill LoggingExample Action log messages
are on by default in the log receiver.

12 <#> <app name> <date/time> Debug Instances Bill LoggingExample Debug level messages
are off by default in the log receiver.

13 <#> <app name> <date/time> Info Instances Bill LoggingExample Info level messages are
off by default in the log receiver.

14 <#> <app name> <date/time> Warning Instances Bill LoggingExample Warn level
messages are on by default in the log receiver.

15 <#> <app name> <date/time> Error Instances Bill LoggingExample Error level messages
are on by default in the log receiver.

Oracle WebCenter Interaction Logging Utilities

1-14 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

16 <#> <app name> <date/time> Fatal Instances Bill LoggingExample Fatal level messages are
on by default in the log receiver.

17 <#> <app name> <date/time> Action Instances Larry LoggingExample Action log
messages are on by default in the log receiver.

18 <#> <app name> <date/time> Debug Instances Larry LoggingExample Debug level
messages are off by default in the log receiver.

19 <#> <app name> <date/time> Info Instances Larry LoggingExample Info level messages are
off by default in the log receiver.

20 <#> <app name> <date/time> Warning Instances Larry LoggingExample Warn level
messages are on by default in the log receiver.

21 <#> <app name> <date/time> Error Instances Larry LoggingExample Error level messages
are on by default in the log receiver.

22 <#> <app name> <date/time> Fatal Instances Larry LoggingExample Fatal level messages
are on by default in the log receiver.

23 <#> <app name> <date/time> Warning Instances Bill LoggingExample Caught an
exception from - java.lang. java.lang.InterruptedException: Bill was interrupted. -
java.lang.InterruptedException: Bill was interrupted. at -
com.plumtree.remote.logging.example.LoggingExample.run(LoggingExample.java:110)

24 <#> <app name> <date/time> Warning Instances Larry LoggingExample Caught an
exception from - java.lang. java.lang.InterruptedException: Larry was interrupted. -
java.lang.InterruptedException: Larry was interrupted. at -
com.plumtree.remote.logging.example.LoggingExample.run(LoggingExample.java:110)

1.2.2.2 Using Oracle WebCenter Interaction Development Kit (IDK) Logging in .NET
This example demonstrates how to use Oracle WebCenter Interaction Development
Kit (IDK) logging in a remote .NET application.

1. The first step in this example is to enable logging programmatically, by defining
the logging application name and setting the log to network option to true. For
details on logging options, see Section 1.2.1.2, "Configuring .NET Oracle
WebCenter Interaction Development Kit (IDK) Logging (Web.config)".

using System;
using System.Threading;
using Plumtree.Remote.Logging;

public class LoggingCommandLineExample
{
 private static readonly String INSTANCES_COMPONENT_NAME = 'Instances';
 private static readonly String MAIN_LOOP_COMPONENT_NAME = 'Main Loop';

 // set the application name
 // (legal characters: ASCII alphanumerics plus . - _ and space)
 public static readonly String LOGGING_APPLICATION_NAME = 'Logging_API_
Example-1';

 // set to true to multicast log messages to local network
 // set to false to send message only listeners on local machine
 public static readonly bool LOG_TO_NETWORK = true;

 private ILogger logger; //instance logging class
 private static ILogger mainLogger; // main component logging class

Oracle WebCenter Interaction Logging Utilities

Oracle WebCenter Ensemble Development Environment 1-15

 // thread for each instance of LoggingCommandLineExample
 private Thread _thread;

2. Initialize LogFactory. The recommended way to initialize non-web applications
is in a static block in the application's main class or a logging utility class. Always
check to see if LogFactory has already been initialized (for example, as part of an
IDK-based web application).

if (!LogFactory.isInitialized())
{
 LogFactory.Initialize(LOGGING_APPLICATION_NAME, LOG_TO_NETWORK);
}
Console.Out.WriteLine('Set your logging receiver to the \'server\' or
\'application name\' ');
Console.Out.WriteLine(LogFactory.GetApplicationName());
Console.Out.WriteLine('The logging component names are \'EDK\', \'' + MAIN_
LOOP_COMPONENT_NAME + '\' and \'' +
INSTANCES_COMPONENT_NAME + '\'.');

mainLogger = LogFactory.GetLogger(MAIN_LOOP_COMPONENT_NAME,
typeof(LoggingCommandLineExample));

This code creates the following messages in Logging Spy. These messages are sent
automatically by the Oracle WebCenter Interaction Development Kit (IDK). For
the sample code above, the <app name> entry would be "Logging_API_"

1 <#> <app name> <date/time> Info EDK main LogFactory Initiating EDK logging on behalf
of EDK: LogFactory.

2 <#> <app name> <date/time> Info EDK main LogFactory Verbose logging of internal EDK
classes is off. It may be enabled by setting ptedk.VerboseLogging='true' .

3. Create an instance of ILogger by calling LogFactory.getLogger. In the code
below, the LoggingExample method sends an Info level log message when an
instance is created. The snippet below also uses ILogger.functionBegin and
ILogger.functionEnd to log when a method is entered and exited,
ILogger.action to log significant events, and ILogger.performanceBegin
and ILogger.performanceEnd to log the time required to execute the methods.

public LoggingCommandLineExample(String instanceName)
{
 _thread = new Thread(new ThreadStart(Run));
 _thread.Name = instanceName;
 this.logger = LogFactory.GetLogger(INSTANCES_COMPONENT_NAME,
typeof(LoggingCommandLineExample));
 mainLogger.Info('Created new instance named {0}', instanceName);
}
[STAThread]
public static void main(String[] args)
{
 String methodName = 'main';
 mainLogger.FunctionBegin(methodName);

 // get a timestamp to measure performance of this function
 long performanceStartTicks = mainLogger.PerformanceBegin();

 mainLogger.Action('Creating and starting instances');

 LoggingExample bill = new LoggingExample('Bill');
 bill.Thread.Start();
 LoggingExample larry = new LoggingExample('Larry');

Oracle WebCenter Interaction Logging Utilities

1-16 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

 larry.Thread.Start();

 mainLogger.Action('Done creating instances');

 // send log message with time since performanceBegin
 mainLogger.PerformanceEnd(methodName, performanceStartTicks);

 mainLogger.FunctionEnd(methodName);
}
This code creates the following messages in Logging Spy.

 3 <#> <app name> <date/time> Function Main Loop main LoggingExample Entering
Function main

4 <#> <app name> <date/time> Action Main Loop main LoggingExample Creating and
starting instances

5 <#> <app name> <date/time> Info Main Loop main LoggingExample Created new instance
named Bill

6 <#> <app name> <date/time> Info Main Loop main LoggingExample Created new instance
named Larry

7 <#> <app name> <date/time> Action Main Loop main LoggingExample Done creating
instances

8 <#> <app name> <date/time> Performance Main Loop main LoggingExample main took 0
ms.

9 <#> <app name> <date/time> Function Main Loop main LoggingExample Leaving Function
mainInfo

4. The code below demonstrates available logging levels and provides an example of
how to use token substitution in formatting strings to construct messages. The
thread runs through a small test of logging messages and interleaves the messages
using Thread.Sleep.

public void Run()
{
 String methodName = 'run';

 // send log message that function is starting
 logger.FunctionBegin(methodName);

 // get a timestamp to measure performance of this function
 long performanceStartTicks = mainLogger.PerformanceBegin();
 Thread.Sleep(1); // interleaves work to the other thread

 String levelDescriptionFormat = '{0} level messages are {1} by default in
the log receiver.';
 logger.Debug(levelDescriptionFormat, 'Debug', 'off');
 logger.Info(levelDescriptionFormat, 'Info', 'off');
 logger.Warn(levelDescriptionFormat, 'Warn', 'on');
 logger.Error(levelDescriptionFormat, 'Error', 'on');
 logger.Fatal(levelDescriptionFormat, 'Fatal', 'on');

 Thread.Sleep(1); // interleaves work to the other thread

Note: Wrap any complex message construction in a conditional
block to avoid doing work if there are no listeners at that log level.

Oracle WebCenter Interaction Logging Utilities

Oracle WebCenter Ensemble Development Environment 1-17

 // Exceptions may also be caught and logged, and may use token substitution
 try
 {
 throw new ThreadInterruptedException(_thread.Name + ' was interrupted.');
 }
 catch (Exception eCaught)
 {
 logger.Warn(eCaught, 'Caught an exception from {0}. ',
eCaught.GetType().Name);
 }

 Thread.Sleep(1); // interleaves work to the other thread

 // send log message with time since performanceBegin
 mainLogger.PerformanceEnd(methodName, performanceStartTicks);

 // send log message that function is ending
 logger.FunctionEnd(methodName);
}
public Thread Thread
{
 get
 {
 return _thread;
 }
}
This code creates the following messages in Logging Spy:

10 <#> <app name> <date/time> Function Instances Larry LoggingExample Entering
Function run

11 <#> <app name> <date/time> Action Instances Bill LoggingExample Action log messages
are on by default in the log receiver.

12 <#> <app name> <date/time> Debug Instances Bill LoggingExample Debug level messages
are off by default in the log receiver.

13 <#> <app name> <date/time> Info Instances Bill LoggingExample Info level messages are
off by default in the log receiver.

14 <#> <app name> <date/time> Warning Instances Bill LoggingExample Warn level
messages are on by default in the log receiver.

15 <#> <app name> <date/time> Error Instances Bill LoggingExample Error level messages
are on by default in the log receiver.

16 <#> <app name> <date/time> Fatal Instances Bill LoggingExample Fatal level messages are
on by default in the log receiver.

17 <#> <app name> <date/time> Action Instances Larry LoggingExample Action log
messages are on by default in the log receiver.

18 <#> <app name> <date/time> Debug Instances Larry LoggingExample Debug level
messages are off by default in the log receiver.

19 <#> <app name> <date/time> Info Instances Larry LoggingExample Info level messages are
off by default in the log receiver.

20 <#> <app name> <date/time> Warning Instances Larry LoggingExample Warn level
messages are on by default in the log receiver.

About Server Communication and the Proxy

1-18 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

21 <#> <app name> <date/time> Error Instances Larry LoggingExample Error level messages
are on by default in the log receiver.

22 <#> <app name> <date/time> Fatal Instances Larry LoggingExample Fatal level messages
are on by default in the log receiver.

23 <#> <app name> <date/time> Warning Instances Bill LoggingExample Caught an
exception from - java.lang. java.lang.InterruptedException: Bill was interrupted. -
java.lang.InterruptedException: Bill was interrupted. at -
com.plumtree.remote.logging.example.LoggingExample.run(LoggingExample.java:110)

24 <#> <app name> <date/time> Warning Instances Larry LoggingExample Caught an
exception from - java.lang. java.lang.InterruptedException: Larry was interrupted. -
java.lang.InterruptedException: Larry was interrupted. at -
com.plumtree.remote.logging.example.LoggingExample.run(LoggingExample.java:110)

1.2.2.3 Using Oracle WebCenter Interaction Development Kit (IDK) Logging from
the Command Line
These instructions explain how to run the Oracle WebCenter Interaction Development
Kit (IDK) Logging API example code (Java or .NET) from the command line.

1. Scan the sample code and note the LOGGING_APPLICATION_NAME parameter
declared near the top of the class. Change this value if you wish, and record it.

2. Java: Compile with all the idk jar files in the classpath. Make sure servlet.jar and
all idk jar files are in the classpath. .NET: Compile the source with reference to
idk.dll and its supporting DLLs.

3. Launch Logging Spy. Go to the Filters dialog box and add a new server
(right-click and select Add Server). Enter the value set for LOGGING_
APPLICATION_NAME in the Add Server dialog box and click OK . Wait a few
seconds until a new entry appears in the Filter Settings list .

4. Run the example from the command line. Note any messages displayed in
Logging Spy. Error and exception logs are included in the logging demonstration.

5. Go back to the Filters dialog in Logging Spy. Click the gray selection box beside
the 'server' entry to accept logging for all logging levels.

6. Run the example again. Note that the messages displayed now in Logging Spy
include examples of all logging levels, including error and exception logs.

1.3 About Server Communication and the Proxy
Oracle WebCenter Ensemble acts as a proxy server, brokering transactions between
client computers and external resources.

Services on external resources communicate with Oracle WebCenter Ensemble via
HTTP and SOAP as shown in the simplified diagram below. For example, when a
browser requests a page, Oracle WebCenter Ensemble makes simultaneous requests
to each external resource to retrieve the pagelet content for the page. The external
resource reads the current user's preferences from the HTTP headers sent by Oracle
WebCenter Ensemble and sends back the appropriate HTML. Oracle WebCenter
Ensemble inserts the HTML into the table that makes up the page. Any images stored
in the Image Service are retrieved and displayed by the browser.

About Server Communication and the Proxy

Oracle WebCenter Ensemble Development Environment 1-19

Figure 1–1 Server Communication (Simplified Diagram)

HTTP and SOAP are both necessary because each standard fits the specific needs of
different tasks. SOAP involves posting and returning XML documents and is
appropriate for exchanging highly structured data. SOAP is used in the
server-to-server communication required for content services, identity services, and
importing documents. HTTP is a much more lightweight protocol, used in Oracle
WebCenter Ensemble for UI presentation, basic configuration and click-through, and
caching. For an introduction to SOAP, see Section 1.3.2.4, "About SOAP".

CSP is a platform-independent protocol based on the open standard of HTTP 1.1. The
syntax of communication between Oracle WebCenter Ensemble and external resources
is defined by CSP. CSP defines custom headers and outlines how services use HTTP
to communicate and modify settings. For details on CSP, see Section 1.3.2, "About
HTTP and CSP".

1.3.1 The Oracle WebCenter Ensemble Proxy
A proxy server acts as a middleman, brokering transactions between a client computer
and another server. This configuration is typically used to serve content to clients that
would otherwise be unable to access the external resource, but it can be used to
impose additional security restrictions on the client. The proxy hides the external
resource; to the end user, the content appears to come directly from the proxy server.

This architecture makes Oracle WebCenter Ensemble the single point of access for
content, and allows external resources to reside on a private network or behind a
firewall. As long as Oracle WebCenter Ensemble can connect to the external resource,
users can view the content, even if they cannot access it directly. To the browser,
Oracle WebCenter Ensemble appears to be the source of content on the external
resource.

When a user interacts with a service, any request made to a URL in the proxy is
automatically rerouted through Oracle WebCenter Ensemble. To the user, the content
appears to come from Oracle WebCenter Ensemble; the external resource is an
unknown back-end system.

About Server Communication and the Proxy

1-20 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

Figure 1–2 Proxy (Gateway) Architecture

There are many benefits to this configuration. The most useful to services are:

■ Dynamic functionality and personalization: Oracle WebCenter Ensemble
intercepts requests from pagelets, which allows it to include information stored in
the database in HTTP requests and responses. Most of this information is
accessible through Oracle WebCenter Interaction Development Kit (IDK) methods.
In many situations, an adaptive tag provides the functionality required, including
navigation and login elements. Custom tags can be created for additional
functionality.

■ Security: Services can allow users to access content that is not publicly available.
Files stored on a secure server can be made available by including specific URLs in
the configuration of the proxy. Note: The proxy is a powerful feature, and can
compromise security if incorrectly configured. Allowing direct access to a external
resource that hosts unprotected private content could create a dangerous security
hole.

■ Performance: Oracle WebCenter Ensemble caches proxied content, decreasing
response time for end users and improving performance on the external resource.
While proxying works efficiently for content like HTML, it is generally not
appropriate for binary data like static images. Images do not need to be
transformed, and proxying large images can adversely affect performance. This is
one reason the Image Service should be used to prevent routing static images
through the proxy.

The collection of URLs that should be proxied for a service is configured in the
Resource editor. All URLs that use the Internal URL prefix configured for the resource
will be proxied unless Enable URL Rewriting is deselected.

Keep the following warnings and best practices in mind when implementing services
that use the proxy:

■ URL transformation: Oracle WebCenter Ensemble must transform code so that
proxied URLs open correctly. Before Oracle WebCenter Ensemble sends a
response, it parses the HTML and looks for any URLs that use the Internal URL
prefix configured for the associated producer resource. Oracle WebCenter

About Server Communication and the Proxy

Oracle WebCenter Ensemble Development Environment 1-21

Ensemble transforms any URLs that should be proxied before returning the
response to the client. Relative URLs are transformed to point to the correct
location.

■ Scripting limitations: JavaScript constructs that dynamically create URLs can
cause problems, because they are run after content is already transformed.
VBScript is not transformed by the proxy; you can continue to use dynamic scripts
and VBScript as long as your code is proxy-aware. To manually mark a URL for
transformation, use the pt:url tag. To disable transformation, use pt:transformer
with a pt:fixurl attribute of 'off.' For details, see Section 2.2.2, "Adaptive Tags".

■ URL encoding: It is a best practice to encode all headers that are URLs to prevent
unexpected transformation. In JSP, encode all URLs that are written. If the code
writes URLs in the body of a page (for example, a link to a preferences page) it
should be encoded. The standard Java servlet command response.encodeURL() is
the preferred method, but you can also use URLEncoder.encode(url). In the .NET
Framework, the HttpUtility.URLEncode class provides the necessary
functionality. Note: In .NET, there is no need to encode the redirect URL; this is
handled automatically on the back end.

1.3.1.1 About Pagelets and the Proxy
All pagelets are designed to be displayed with other pagelets. As explained in the
previous section, Oracle WebCenter Ensemble acts as a proxy, processing and
combining pagelets from multiple applications to create a single, unified page with a
range of functionality.

The code returned by a pagelet is parsed by the proxy server and inserted into the
appropriate cell in the HTML table that makes up the mashup page. Pagelets from the
same back-end application can interact with each other within the page.

Figure 1–3 Oracle WebCenter Ensemble as Proxy Server

In Oracle WebCenter Ensemble, a consumer page defines the layout and includes
specific pagelets in the page using adaptive tags. Header navigation can be added
using tags.

About Server Communication and the Proxy

1-22 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

1.3.2 About HTTP and CSP
HTTP is a protocol used mostly for transferring web page content and XML between a
server and a client. CSP is a platform-independent protocol based on the open
standard of HTTP 1.1 that defines the syntax of communication between Oracle
WebCenter Ensemble and external resources.

1.3.2.1 HTTP
HTTP communication is made up of Requests and Responses. Requests and Responses
are essentially lists of name-value pairs of metadata in headers, along with an optional
body. The body is the data that is being transferred (an HTML page or XML file). The
metadata in the headers is information about the Request or Response itself (what
language the content is in, or how long the browser should cache it). The Request and
Response each contain specific information, outlined next. For more detailed
information on HTTP, see RFC 2616
(http://www.faqs.org/rfcs/rfc2616.html).

The client sends the server an HTTP Request, asking for content. The Request body is
used only for requests that transfer data to the server, such as POST and PUT.

HTTP Request Format:

[METHOD] [REQUEST-URI] HTTP/[VERSION]
[fieldname1]: [field-value1]
[fieldname2]: [field-value2]
[request body, if any]
HTTP Request Example:

GET /index.html HTTP/1.1
Host: www.plumtree.com
User-Agent: Mozilla/3.0 (compatible; Opera/3.0; Windows 95/NT4)
Accept: */*
Cookie: username=JoeSmith
The server sends back an HTTP Response that contains page content and important
details, such as the content type, when the document was last modified, and the server
type. The Response contains an error message if the requested content is not found.

HTTP Response Format:

HTTP/[VERSION] [CODE] [TEXT]
[fieldname1]: [field-value1]
[fieldname2]: [field-value2]
[response body, if any (document content here)]
HTTP Response Example:

HTTP/1.0 200 Found
Last-modified: Thursday, 20-Nov-97 10:44:53
Content-length: 6372
Content-type: text/html
<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 3.2 Final// EN'><HTML>
...followed by document content...
Custom HTTP headers can be configured to include specialized information.

Note: Header size limits are controlled by the server that hosts the
code. The standard limit for IIS/ASP is 60K. Java Application Servers
range from 2K to 10K. These limits are generally configurable; see
your server documentation for details.

About Server Communication and the Proxy

Oracle WebCenter Ensemble Development Environment 1-23

Services can also access standard HTTP headers, such as the Set-Cookie header or
HTTP 1.1 basic authentication header. If you want to investigate HTTP further, you
can view all the headers being passed back and forth between your browser and Web
server using a tunnel tool. HTTP is used in conjunction with SSL to serve up secure
content. Single Sign-On (SSO) also uses HTTP headers for basic authentication.

1.3.2.2 CSP
CSP extends HTTP and defines proprietary headers to pass settings between Oracle
WebCenter Ensemble and external resources. CSP outlines how Oracle WebCenter
Ensemble services use HTTP to communicate and modify settings. (CSP is also used
by Oracle WebCenter Interaction.)

The current version is CSP 1.4, which includes backward compatibility with previous
versions. For links to the latest versions of the CSP specification, see Chapter 6,
"Additional Development References".

The Oracle WebCenter Interaction Development Kit (IDK) provides simplified, stable
interfaces that allow you to write code that communicates using CSP.

1.3.2.3 Oracle WebCenter Ensemble Headers
Oracle WebCenter Ensemble uses a group of custom headers to communicate system
and user configuration variables. These headers include information that can be used
by services.

All the usefulinformation stored in these headers should be accessed using the
OracleWebCenter Interaction Development Kit (IDK). Additional proprietary headers
contain the protocol version, proxy type, and aggregationmode. All the key
information in these headers is accessible through the IPortletUser and
IPortletRequest interfaces in the IDK.

Table 1–4 Oracle WebCenter Ensemble Headers

Header Name IDK Method Description

User ID IPortletUser.GetUserID The User ID of the currently logged in user.
This value can be used to determine if the
session has expired. If UserID=2, the default
'Guest' user is logged in; any other user's
session has ended.

User Name IPortletUser.GetUserName The name of the logged in user. The user's
name can be used to personalize display or
pre-fill form fields.

Locale IPortletUser.GetUserCharacterSet The current user's language and character set.
This value is essential when determining the
correct content to return in an internationalized
implementation.

Time Zone IPortletRequest.GetTimeZone The time zone of the current user in the format
used by Oracle WebCenter Ensemble. This
value can be used to synchronize external
resource time with Oracle WebCenter
Ensemble.

Image Service URL IPortletRequest.GetImageServerURI The URL to the root virtual directory of the
Image Service in the user's implementation of
Oracle WebCenter Ensemble. This location
should be used for all static images used in
services.

About Server Communication and the Proxy

1-24 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

1.3.2.4 About SOAP
SOAP is a text-based protocol to wrap XML data for any type of transport, providing
an efficient way to communicate structured data.

The SOAP 1.1 specification describes SOAP as follows: "SOAP is a lightweight
protocol for exchange of information in a decentralized, distributed environment. It is
an XML based protocol that consists of three parts: an envelope that defines a
framework for describing what is in a message and how to process it, a set of encoding
rules for expressing instances of application-defined datatypes, and a convention for
representing remote procedure calls and responses."

SOAP is based on web standards. Like HTML, SOAP uses tags to indicate the role of
each piece of information. In most implementations, SOAP uses HTTP for its transport
protocol. A SOAP request is an XML document that describes a method to invoke on a
remote machine and any parameters to be used. A program sends a SOAP request to a
SOAP server. The SOAP server tries to execute the method with the parameters it was
passed, and it sends back a SOAP response (the result or an error message). A SOAP
endpoint is an HTTP-based URL identifying a target for method invocation.

A common analogy illustrates this concept well. If your XML code was a letter, SOAP
would be the envelope; like an envelope, SOAP protects content from unauthorized
access and provides information about the sender and the addressee. All the elements
of the SOAP envelope are defined by a schema. The schema URI is also the identifier
for the SOAP envelope namespace:
http://schema.xmlsoap.org/soap/envelope.

Stylesheet URL IPortletRequest.GetStylesheetURI The URL to the current user's style sheet. In
each implementation of Oracle WebCenter
Ensemble, the UI is customized. In some
portals, users can choose between a selection of
stylesheets. Using these styles ensures that
pagelets appear in the style of the current user's
implementation of Oracle WebCenter
Ensemble.

Page ID IPortletRequest.GetPageID The Page ID for the current portal page. This
value allows a single pagelet to display
different content on different pages.

Portlet ID IPortletRequest.GetPortletID The ID for the current pagelet. This value is
useful for appending to the names of HTML
forms and client-side JavaScript functions to
ensure unique form and function names on the
page to avoid name conflicts.

Return URL IPortletRequest.GetReturnURI The URL to the page that the pagelet should
return to when finished, usually the page that
hosts the pagelet. Preference pages need this
URL to return the user to the correct page after
settings are configured.

Content Mode IPortletRequest.GetPortletMode The current content mode. This value is used to
display pagelet content in the appropriate
manner.

Browser Type IPortletRequest.GetUserInterface The type of device being used to access Oracle
WebCenter Ensemble. Oracle WebCenter
Ensemble can support wireless handheld
devices that communicate with HDML, WML,
or HTML.

Table 1–4 (Cont.) Oracle WebCenter Ensemble Headers

Header Name IDK Method Description

About Server Communication and the Proxy

Oracle WebCenter Ensemble Development Environment 1-25

As in standard XML, SOAP uses namespaces to segregate content. The formal
designation of a namespace is a URI, usually a URL. Namespaces ensure unique
element references, and they allow a processor to pick out which instructions it should
obey and treat instructions for other processors as simple data. Processors are set up to
handle elements from a particular namespace. Elements that have no namespace are
treated as data.

SOAP Message in HTTP Request:

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset='utf-8'
Content-Length: nnnn
SOAPAction: 'Some-URI'

<SOAP-ENV:Envelope
xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
SOAP-ENV:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'>
<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m='Some-URI'>
<symbol>DIS</symbol>
</m:GetLastTradePrice>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
SOAP Message in HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/xml; charset='utf-8'
Content-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
SOAP-ENV:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>
<SOAP-ENV:Body>
<m:GetLastTradePriceResponse xmlns:m='Some-URI'>
<Price>34.5</Price>
</m:GetLastTradePriceResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Download the complete SOAP 1.1 specification from the World Wide Web
Consortium at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

The Oracle WebCenter Ensemble SOAP API exposes commonly used elements of the
traditional Oracle WebCenter Ensemble API, focused on the functions required to
develop applications that access portal users, communities, pagelets, and directory
functions. The Oracle WebCenter Interaction Development Kit (IDK) PRC API
provides an efficient, object-oriented way to call into Oracle WebCenter Ensemble's
SOAP API. For details, see Section 2.1.3, "Using Programmable Remote Client (PRC)
Remote APIs".

About Server Communication and the Proxy

1-26 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

2

Oracle WebCenter Ensemble Pagelet Development 2-1

2Oracle WebCenter Ensemble Pagelet
Development

The following sections provide general information about Oracle WebCenter
Ensemble pagelet development and configuration.

■ Section 2.1, "Oracle WebCenter Interaction Development Kit (IDK) Proxy API":
The bea.alui.proxy package provides access to information about the environment
in which the pagelet is displayed and the user currently accessing the pagelet,
including session preferences associated with that user. This package also includes
methods to implement security and access XML payloads.

■ The IDK includes a collection of Remote APIs that provide access to
functionality within Oracle WebCenter Interaction, Oracle WebCenter
Collaboration, and the portal Search Service. These APIs are supported by
Oracle WebCenter Ensemble, and can be used by any pagelet deployed in an
environment with access to these applications. For details, see Section 2.1.3,
"Using Programmable Remote Client (PRC) Remote APIs".

■ Section 2.2, "Adaptive Pagelets": Adaptive pagelets allow you to create a
coordinated page with dynamic, interactive functionality comprised of
cross-platform services that talk to multiple back-ends.

Adaptive pagelet tools include the following:

■ Adaptive Tags: Adaptive Tags are used to display contextual data and control
Oracle WebCenter Ensemble from remote pagelets. Unlike the Oracle
WebCenter Interaction Development Kit (IDK), Adaptive Tags use XML in
pagelet content instead of code, which avoids a network round trip. Tags can
be included in the markup returned by any proxied page (HTML, JSP or
ASP.Net). Using the attributes defined in the tag, the Oracle WebCenter
Ensemble proxy transforms the XML and replaces it with standard HTML
and/or executes the relevant operations. The Adaptive Tag collection
currently includes libraries for use in both Oracle WebCenter Interaction and
Oracle WebCenter Ensemble, as well as libraries that are specific to each
environment. For details, see Section 2.2.2, "Adaptive Tags"

■ Oracle WebCenter Interaction Scripting Framework: The Oracle WebCenter
Interaction Scripting Framework is a client-side JavaScript library that
provides services to pagelets and proxied pages. For details, see Section 2.2.3,
"Oracle WebCenter Interaction Scripting Framework".

■ Section 2.3, "Session Preferences": Pagelets can use preferences to communicate
with each other, but accessing preferences usually requires a round trip to a
database. Session preferences provide a way to store and share settings in the
user's session within the client browser.

Oracle WebCenter Interaction Development Kit (IDK) Proxy API

2-2 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

■ Section 2.4, "Pagelet Caching": Caching is the functionality that allows Oracle
WebCenter Ensemble to request pagelet content, save the content, and return the
saved content to users when appropriate. The importance of caching cannot be
overstated.

■ Section 2.5, "Pagelet Internationalization": These tips and best practices apply to all
pagelets that will be translated into multiple languages.

■ Section 2.6, "Pagelet Configuration in Oracle WebCenter Ensemble": To deploy a
pagelet in Oracle WebCenter Ensemble, you must configure Resource and Pagelet
objects and configure security settings.

2.1 Oracle WebCenter Interaction Development Kit (IDK) Proxy API
This section provides an introduction to the Oracle WebCenter Interaction
Development Kit (IDK) Proxy API. For more details on objects and methods, see the
API documentation. For details on Oracle WebCenter Interaction-specific portlet
interfaces, see the Oracle Fusion Middleware Web Service Developer's Guide for Oracle
WebCenter Interaction.

The bea.alui.proxy package/namespace includes the following interfaces:

■ IProxyContext

■ IProxyRequest

■ IProxyResponse

■ IProxyUser

In general, these interfaces are called in the following order:

1. A pagelet uses
ProxyContextFactory.getInstance().createProxyContext to initiate a
connection for communicating with Oracle WebCenter Ensemble.

2. The IProxyContext object returned allows the pagelet to access information
about the request and response, the current user, and the session. The pagelet uses
this information as needed, in arbitrary order, to generate a proper response.
Using IProxyContext, the pagelet can access IProxyRequest, IProxyUser,
IRemoteSession and IProxyResponse.

3. The pagelet retrieves parameters from the request using IProxyRequest.

4. The pagelet retrieves user information and preferences from IProxyUser.

5. The pagelet can access functionality in Oracle WebCenter Interaction applications
using IRemoteSession. For details, see Section 2.2.1, "Adaptive Pagelet Design
Patterns".

6. The pagelet constructs a response using IProxyResponse. The response includes
content to be displayed and any settings to be stored or removed.

For examples of using IProxy interfaces in a pagelet, see Section 2.1.1, "Creating a
Custom Pagelet with the Java Oracle WebCenter Interaction Development Kit (IDK)
Proxy API" and Section 2.1.2, "Creating a Custom Pagelet with the .NET Oracle
WebCenter Interaction Development Kit (IDK) Proxy API".

Oracle WebCenter Interaction Development Kit (IDK) Proxy API

Oracle WebCenter Ensemble Pagelet Development 2-3

2.1.1 Creating a Custom Pagelet with the Java Oracle WebCenter Interaction
Development Kit (IDK) Proxy API

This example creates a simple pagelet that displays information from the proxy,
including setting values.

1. Before writing any code, create a new Oracle WebCenter Interaction Development
Kit (IDK) project as described in Section 1.1.1, "Java: Setting Up a Custom Oracle
WebCenter Interaction Development Kit (IDK) Project in Eclipse".

2. In the new project, create a new JSP page for the pagelet (pagelet.jsp).

3. Implement your code. The pagelet code shown below instantiates the Oracle
WebCenter Interaction Development Kit (IDK) and uses the IProxyContext
interface to retrieve IProxyRequest and IProxyUser objects to access
information about the user and the settings associated with the pagelet.

<%@ page language='java' import='com.bea.alui.proxy.*' %>
<%
String Att1 = 'no setting';
String Att2 = 'no setting';
String sessionVariable = 'no setting';

//get the idk
IProxyContext proxyContext =
ProxyContextFactory.getInstance().createProxyContext(request, response);
IProxyRequest proxyRequest = proxyContext.getProxyRequest()

IProxyUser proxyUser = proxyRequest.getUser();
String userName = proxyUser.getUserName();
int userID = proxyUser.getUserID();

Att1 = proxyRequest.getSetting('Att1')
Att2 = proxyRequest.getSetting('Att2');
sessionVariable = proxyRequest.getSetting('sessionVar');

byte[] payload = proxyRequest.getPayload().getText();
String payloadStr = new String(payload)
%>

<p>User name: <%=userName%>

User ID: <%=userID%>

Attribute 1: <%=Att1%>

Attribute 2: <%=Att2%>

Session variable: <%=sessionVariable%>

Payload: <textarea name=xml cols=80 rows=6> <%=payloadStr%> </textarea>
</p>

2.1.2 Creating a Custom Pagelet with the .NET Oracle WebCenter Interaction
Development Kit (IDK) Proxy API

This example creates a simple pagelet that displays information from the proxy,
including setting values. .NET pagelets use a code-behind page (.aspx.cs) to retrieve
settings and a Web form (.aspx) to display the pagelet content.

Note: There is no need to include html, head and body tags; the
display is handled by the Consumer resource.

Oracle WebCenter Interaction Development Kit (IDK) Proxy API

2-4 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

1. Before writing any code, create a new Oracle WebCenter Interaction Development
Kit (IDK) project as described in Section 1.1.4, ".NET: Setting Up a Custom Oracle
WebCenter Interaction Development Kit (IDK) Project in Visual Studio".

2. In the new project, implement your code. The example below uses a code-behind
page and a web form.

The code-behind page (IDKPagelet.aspx.cs) instantiates the Oracle WebCenter
Interaction Development Kit (IDK) and uses the IProxyContext interface to retrieve
IProxyRequest and IProxyUser objects to access information about the user and
the settings associated with the pagelet.

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using Plumtree.Remote.Portlet;
using System.Xml;
using System.Text;
using Bea.Alui.Proxy;

namespace IDKProxyWS
{
/// <summary>
/// Hello World Pagelet
/// </summary>
 public class IDKPagelet : System.Web.UI.Page
 {
 public String name;
 public bool isGuest;
 public int userID;
 public String envType;
 public String payload;
 public String Att1,Att2;
 public String SessionVar;
 private void Page_Load(object sender, System.EventArgs e
 {
 // Put user code to initialize the page here
 InitializeCSP();
 }
 private void InitializeCSP()
 {
 IProxyRequest proxyRequest;
 IProxyResponse proxyResponse;
 IProxyUser proxyUser;
 IProxyContext proxyContext;
 ProxyContextFactory factory;
 HttpRequest request = HttpContext.Current.Request;
 HttpResponse response = HttpContext.Current.Response;

 try
 {
 factory = ProxyContextFactory.getInstance();
 proxyContext = factory.CreateProxyContext(request, response);
 proxyRequest = proxyContext.GetProxyRequest();

Oracle WebCenter Interaction Development Kit (IDK) Proxy API

Oracle WebCenter Ensemble Pagelet Development 2-5

 proxyResponse = proxyContext.GetProxyResponse();
 envType = proxyRequest.GetEnvironment().GetType().ToString();
 proxyUser = proxyRequest.GetUser();
 isGuest = proxyUser.IsAnonymous();
 name= proxyUser.GetUserName();
 userID = proxyUser.GetUserID();

 Att1 = (String)proxyRequest.GetSetting('attr1');
 Att2 = (String)proxyRequest.GetSetting('attr2');
 Att2 = (String)proxyRequest.GetSetting('SessionVar');

 byte[] bpayload = proxyRequest.GetPayload().GetText()
 System.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding()
 payload = enc.GetString(bpayload)
 }
 catch(Bea.Alui.Proxy.NotGatewayedException e)
 {
 }
 }
 }
#region Web Form Designer generated code
...
#endregion
}
The Web form that displays the pagelet (IDKPagelet.aspx) displays the information
retrieved by the code-behind page above.

<%@ Page Language='c#' runat='server' CodeBehind='IDKPagelet.aspx.cs'
AutoEventWireup='false' inherits='IDKProxyWS.IDKPagelet' %>
<%@ import Namespace='System.Collections' %>
<%@ import Namespace='System.Web' %>
<%@ import Namespace='System.Web.UI' %>

<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN' >
<html>
<head>
<title>IDKPagelet</title>
<meta name='GENERATOR' Content='Microsoft Visual Studio .NET 7.1'>
<meta name='CODE_LANGUAGE' Content='C#'>
<meta name='vs_defaultClientScript' content='JavaScript'>
<meta name='vs_targetSchema'
content='http://schemas.microsoft.com/intellisense/ie5'>
</head>

<body MS_POSITIONING='GridLayout'>

Proxy Pagelet

<%
 Response.Write('IDK Proxy Pagelet
');
 Response.Write('Environment Type ' + envType + '
');
 Response.Write('Guest User? ' + isGuest + '
');
 Response.Write('User Name: ' + name + '
');
 Response.Write('User ID: ' + userID + '
');
 Response.Write('<P>');

 Response.Write('Pagelet Attributes:
');
 Response.Write('Attribute1: ' + Att1 + '
');
 Response.Write('Attribute2: ' + Att2 + '
')
 Response.Write('SessionVar: ' + SessionVar + '
')
 Response.Write('<P>')

Adaptive Pagelets

2-6 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

 Response.Write('Pagelet XML Payload:
');
 Response.Write('<textarea name=xml cols=80 rows=6>' + payload + '</textarea>');
 Response.Write('<P>');
%>

</body>
</html>

2.1.3 Using Programmable Remote Client (PRC) Remote APIs
The plumtree.remote.prc package includes a collection of APIs that provide access to
functionality within Oracle WebCenter Interaction, Oracle WebCenter Collaboration,
and the portal Search Service. These APIs are supported by Oracle WebCenter
Ensemble, and can be used by any pagelet deployed in an environment with access to
these applications.

PRC APIs free you from serializing SOAP messages and minimize the amount of data
that travels between the portal and other servers, improving performance.

The PRC is included with both the Java and .NET versions of the Oracle WebCenter
Interaction Development Kit (IDK). The Java version includes Apache AXIS 1.0; the
.NET version uses the platform-native SOAP client stack. Java clients can call .NET
portals and vice-versa; the PRC takes care of the communication between AXIS and
.NET. Pagelets that use the PRC can be deployed in either Oracle WebCenter
Interaction or Oracle WebCenter Ensemble. For details on using the PRC, see the
Oracle Fusion Middleware Web Service Developer's Guide for Oracle WebCenter Interaction.

2.2 Adaptive Pagelets
Adaptive pagelets allow you to create a coordinated page with dynamic, interactive
functionality comprised of cross-platform services that talk to multiple back-ends. For
detailed examples, see Section 2.2.1, "Adaptive Pagelet Design Patterns".

Adaptive pagelet tools include the following:

■ Adaptive Tags: Oracle WebCenter Ensemble provides a collection of useful XML
tags that can be included in the markup returned by any proxied page, including
pagelets. For details, see Section 2.2.2, "Adaptive Tags"

■ Oracle WebCenter Interaction Scripting Framework: The Oracle WebCenter
Interaction Scripting Framework is a client-side JavaScript library that provides
services to pagelets and proxied pages. For details, see Section 2.2.3, "Oracle
WebCenter Interaction Scripting Framework".

For additional information on adaptive pagelets, see Section 2.2.4, "Adaptive Pagelet
Development Tips".

2.2.1 Adaptive Pagelet Design Patterns
Adaptive pagelet design patterns provide solutions for broad classes of problems, and
provide the base for a range of cross-platform services.

The Master-Detail design pattern uses two pagelets; users select an item from a list in
one, and the details for that item are retrieved from the external resource and
displayed in another. For example, a set of customers could be listed by name in the
"master" pagelet. When the user clicks a name in this pagelet, the "detail" pagelet
presents details about the item. The detail pagelet for a customer list could list all the
important information about that customer, such as name, address, and phone

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-7

number. This pattern assumes a tight coupling between the two pagelets; both the
master pagelet and detail pagelet must be displayed on the same page. For details and
sample code, see Section 2.3, "Session Preferences". For a looser coupling, use the
Broadcast-Listener pattern.

The Broadcast-Listener design pattern is similar to the Master-Detail pattern, but
assumes a loose coupling between pagelets. Users can select an item or perform some
other action in a "broadcast" pagelet, which causes the content in other related
"listener" pagelets to be redrawn. The major difference is that the Broadcast-Listener
pattern relies on the Oracle WebCenter Interaction Scripting Framework to raise an
event when an action is performed in the "broadcast" pagelet. One or more "listener"
pagelets can respond to this event and update their content accordingly. For details
and sample code, see Section 2.2.3.2, "Using Oracle WebCenter Interaction Scripting
Framework Event Notification".

In Place Refresh allows you to refresh the content in a pagelet without refreshing the
page. For details and sample code, see Section 2.2.3.3, "Using In-Place Refresh".

The Structured Response design pattern handles structured HTTP responses,
typically encoded as XML. In many cases it can be expensive and inefficient to send
large amounts of HTML back in response to some HTTP request, if only a small part of
the user interface needs to be changed. This is especially true with more complex user
interfaces. In these cases, the response can be encoded in XML. The client-side
response handler can then parse the XML, and update the user interface (or perform
some other action) based on that response. Use the Structured Response design pattern
to redraw a small area of the user interface after making an HTTP request, or to access
a simple HTTP/URI type web service from a pagelet. The example code below
(structuredresponse_portlet.html) accesses an RSS feed from a selection of news sites.

<!-- jsxml includes -->

<script type="text/javascript"
src="pt://images/plumtree/common/private/js/PTLoader.js"></script>
<script type="text/javascript">
var oImgServer = new Object();
oImgServer.location = document.getElementById('imgServerHref').href;
var imageServerURL = document.getElementById('imgServerHref').href;
var imageServerConnectionURL = oImgServer.location;
new PTLoader(imageServerURL, imageServerConnectionURL).include('jsxml','en');
</script>

<!-- jscontrols includes -->
<link rel="stylesheet" type="text/css"
href="/portal-remote-server/js/jscontrols/styles/css/PTMenu.css"/>
<link rel="stylesheet" type="text/css"
href="/portal-remote-server/js/jscontrols/styles/css/PTRichTextEditor.css"/>
<script type="text/javascript"
src="/portal-remote-server/js/jscontrols/strings/PTControls-en.js"></script>
<script type="text/javascript"
src="/portal-remote-server/js/jscontrols/PTControls.js"></script>

<!-- Inline JS helper functions -->
<!-- NOTE: It is standard practice to use namespace tokens (e.g., <pt:nameSpace
pt:token="$$TOKEN$$" xmlns:pt="http://www.plumtree.com/xmlschemas/ptui/"/>) to
ensure unique global JavaScript function and object names. For simplicity, we do
not do that here.
-->

<script defer type="text/javascript" id="structured-response-portlet-A-script">
// Function that gets the RSS XML feed found at the specified url

Adaptive Pagelets

2-8 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

getRSSFeed = function(url)
 {
 // First clear out any existing rows in the table
 channelTable.clearRows();

 // Force the transformer to fix up the url
 var oURL = new Object();
 oURL.location = url;

 // Do the http get
 var get = new PTHTTPGETRequest(oURL.location, handleRSSResponse);
 get.invoke();
 }

// Function that handles the RSS XML response and updates the table based on the
RSS items
handleRSSResponse = function(response)
 {
 // Get the rss xml
 var xml = response.responseText;
 if (!xml || xml.indexOf('<?xml') == -1) { return; }

 // Parse into a dom, and get the channel node
 var xmlDOM = new PTXMLParser(xml);
 var rssNode = xmlDOM.selectSingleNode('rss');
 var channelNode = rssNode.selectSingleNode('channel');

 // Get the channel title and set the status bar text in the table
 var channelTitle = channelNode.selectSingleNode('title').getNodeValue();
 channelTable.statusBarText = 'Loaded Channel: ' + channelTitle;

 // Get channel item nodes
 var itemNodes = channelNode.selectNodes('item');

 // Build table rows
 channelTable.rows = new Array();
 for (var i=0; i<itemNodes.length; i++)

 {
 var itemNode = itemNodes[i];

 // Get channel item properties
 var itemTitle = itemNode.selectSingleNode('title').getNodeValue();
 var itemLink = itemNode.selectSingleNode('link').getNodeValue();
 var itemDescription = itemNode.selectSingleNode('description').getNodeValue();
 if (itemNode.selectSingleNode('author'))
 var itemAuthor = itemNode.selectSingleNode('author').getNodeValue();
 if (itemNode.selectSingleNode('category'))
 var itemCategory = itemNode.selectSingleNode('category').getNodeValue();
 if (itemNode.selectSingleNode('pubDate'))
 var itemPubDate = itemNode.selectSingleNode('pubDate').getNodeValue();

 // Create a row and add it to the table
 var row = new PTRow();
 row.parent = channelTable;
 row.id = i;
 row.uid = i;
 row.previewText = itemDescription;
 row.link = itemLink;
 row.columnValues[0] = new PTTextColumnValue(itemTitle);

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-9

 row.columnValues[1] = new PTTextColumnValue(itemCategory);
 row.columnValues[2] = new PTTextColumnValue(itemAuthor);
 row.columnValues[3] = new PTTextColumnValue(itemPubDate);
 channelTable.rows[channelTable.rows.length] = row;
 }

 // Redraw the table
 channelTable.draw();
 }
</script>

Select RSS Feed:
<a href="#"
onclick="getRSSFeed('http://www.wired.com/news/feeds/rss2/0,2610,,00.xml'); return
false;">Wired News
<a href="#" onclick="getRSSFeed('http://news.com.com/2547-1_3-0-5.xml'); return
false;">CNET News.com
<a href="#"
onclick="getRSSFeed('http://partners.userland.com/nytRss/nytHomepage.xml'); return
false;">NY Times

<!-- Set up a table control to display channel items -->
<div id="channelTableContainer"></div>
<script defer type="text/javascript">
 var channelTable = new PTTableControl();
 channelTable.locale = 'en_US';
 channelTable.objName = 'channelTable';
 channelTable.container = 'channelTableContainer';
 channelTable.baseURL =
'/imageserver/plumtree/common/private/portal-remote-server/js/jscontrols/1/';
 channelTable.statusBarText = 'No RSS Feed Selected';
 channelTable.rowDetailAction = new
PTJavaScriptAction('window.open(\'${ROW.link}\');');
 channelTable.columns[0] = new PTColumn();
 channelTable.columns[0].name = 'Title';
 channelTable.columns[0].width = '40%';
 channelTable.columns[1] = new PTColumn();
 channelTable.columns[1].name = 'Category';
 channelTable.columns[1].width = '20%';
 channelTable.columns[2] = new PTColumn();
 channelTable.columns[2].name = 'Author';
 channelTable.columns[2].width = '20%';
 channelTable.columns[3] = new PTColumn();
 channelTable.columns[3].name = 'Publication Date';
 channelTable.columns[3].width = '20%';
 channelTable.areColumnsResizable = true;
 channelTable.clientSortEnabled = true;
 channelTable.scrollHeight = 250;

 channelTable.init();
 channelTable.draw();
</script>
</div>

2.2.2 Adaptive Tags
Oracle WebCenter Ensemble provides a collection of useful XML tags that can be
included in the markup returned by any proxied page, including pagelets.

Adaptive Pagelets

2-10 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

Using the attributes defined in the tag, the proxy transforms the XML and replaces it
with standard HTML to be displayed in a browser. For example, when used in a
pagelet, the following code is replaced with the date and time in the current user's
locale.

<pt:standard.currenttime xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>
The adaptive tag libraries provide access to a wide range of components.

The core tag library provides two basic tags to support core tag functionality.

■ pt:core.debugmode toggles debug mode.

■ pt:core.html allows you to use HTML tags within JavaScript, and supports
attribute replacement.

The tags in the constants library provide access to useful URLs, including the
stylesheet, Image Service, and the correct return URL for the current user.

The common tag library provides access to useful functionality, including URL
transformation and namespace definition. This library also allows you to insert error
information in the page, and CSS and JavaScript references in the Head element in a
proxied HTML page. For details, see Section 2.2.2.5, "Common Adaptive Tag Library
(pt:common)".

The tags in the logic library handle basic logic, including creating data objects and
collections, setting shared variables, and looping over a data collection. For details, see
Section 2.2.2.6, "Logic Adaptive Tag Library (pt:logic)".

In addition to the tags above, platform-specific tags are available to access additional
information and functionality in Oracle WebCenter Ensemble. For details, see
Section 2.2.2.4, "Oracle WebCenter Ensemble Adaptive Tag Library (pt:ensemble)".

For important information about using tags, see the following sections:

■ Section 2.2.2.1, "Adaptive Tag Development Tips"

■ Section 2.2.2.2, "Using Internationalized Strings in Adaptive Tags"

■ Section 2.2.2.3, "Using Variables in Adaptive Tags"

For information on how Oracle WebCenter Ensemble processes tags, see
Section 2.2.2.7, "About Adaptive Tag Control Flow".

You can also create custom tags; for details, see Section 2.2.2.8, "Creating Custom
Adaptive Tags".

For a full list of tags and attributes, see the tagdocs.

Table 2–1 Tags in the constants Library

Tag Replaced with Example

The stylesheet URL in proxied pages
and pagelets

<link type="text/css"
href="pt://styles"
rel="StyleSheet"></link>

pt://styles

The URL to the Image Service <img
src="pt://images/plumtree/po
rtal/public/img/icon_
help.gif">

pt://images

A URL that returns users to the page
from which they came (the page on
which the pagelet that launched the
page is hosted)

Back

pt://return

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-11

2.2.2.1 Adaptive Tag Development Tips
These syntax rules and tips apply to all adaptive tags.

■ All tags are XML compliant. For example, only strings are allowed; you cannot use a tag
within an attribute of another tag (<legal a=<illegal/>/>).

■ All adaptive tags belong to the namespace
http://www.plumtree.com/xmlschemas/ptui/. The namespace prefix must be "pt"
(xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/). To avoid including the
namespace in every tag, enclose all tags in a span that defines the namespace.

■ All adaptive tag attributes require the "pt:" prefix. If you do not include the pt prefix,
Oracle WebCenter Ensemble will not return an error, but will replace the attribute with
the default value when the tag is processed.

■ The adaptive tag framework displays tag errors as HTML comments. If you
suspect that a tag error has occurred, simply view the HTML source for the page. If there
was a problem, there should be an HTML comment where the adaptive tag would have
been.

■ Adaptive tags adhere to XHTML specifications. These specifications are not handled
correctly by all HTML editors and IDEs. Some editors do not display tags correctly because
of the required "pt:" prefix before tags.

■ Use tag debug mode for additional insight into tag errors. Turning on Debug Mode
causes the adaptive tag framework to output HTML comments declaring the start and end
of each tag. This can be useful for determining whether a tag ran and did not output the
expected result, or did not run at all, for example. Note: Standard HTML tags are not
wrapped in HTML comments.

2.2.2.2 Using Internationalized Strings in Adaptive Tags
Adaptive tag attribute value replacement allows you to display localized content
based on the current user's locale.

Oracle WebCenter Ensemble stores internationalized strings in localized string files
with different files for each supported language. Oracle WebCenter Ensemble knows
the locale of the current user and retrieves strings from the correct language folder
automatically. To internationalize a pagelet, move all strings into custom string files
and translate them.

To display content in the pagelet, reference the strings using the value tag from the
Logic tag library. As noted above, Oracle WebCenter Ensemble retrieves the string
from the correct language folder automatically. For example, the HTML below
retrieves the first string from a XML language file called my_message_file.xml.

 <pt:logic.value pt:value="$#1.my_message_file"/>

For details on tags in the Logic tag library, see Section 2.2.2.6, "Logic Adaptive Tag
Library (pt:logic)".

2.2.2.3 Using Variables in Adaptive Tags
Adaptive tag attribute value replacement allows you to access data stored in memory.

The following simple example uses the variable and value tags from the Logic tag
library to store a value in memory and then display it in HTML.

 <pt:logic.variable pt:key="test" pt:value="example text"/>

Adaptive Pagelets

2-12 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

 <pt:logic.value pt:value="$test"/>

Attribute value replacement can also be used to display more complicated memory
structures. Data objects can contain multiple name value pairs. The following example
creates a data object with the name and URL of a link, and then displays the name.

 <pt:logic.data pt:key="testdata" url="http://www.myco.com" name="My company"/>
 <pt:logic.value pt:value="$testdata.name"/>

Attribute value replacement cannot be used with tags outside the adaptive tag
libraries. However, the pt.core.html tag supports attribute replacement within a tag
and allows you to generate any HTML tag. Use the pt:tag attribute to specify the
HTML tag and list the necessary HTML attributes as XML attributes. All non-adaptive
tag attributes (attributes not prefixed with "pt:") are included automatically in the
outputted HTML tag. For example, the following code creates an HTML anchor tag
using an in-memory value for the "href" attribute.

<pt:core.html pt:tag="a" href="$myurl" title="My title">My link</pt:core.html>

This code would be transformed to the following HTML: <a href="[data stored
in the $myurl attribute]" title="My title">My link .

The example below combines several different techniques and tags to show how to
loop over a data collection and output HTML. This code outputs several HTML links
with lines in between them.

 <pt:logic.collection pt:key="testcollection">
 <pt:logic.data url="http://www.myco.com" name="My company"/>
 <pt:logic.data url="http://www.otherco.com" name="Other company"/>
 </pt:logic.collection>
 <pt:logic.foreach pt:data="testcollection" pt:var="link">
 <pt:core.html pt:tag="a" href="$link.url">
 <pt:logic.value pt:value="$link.name"/>
 </pt:core.html>
 <pt:logic.separator>

</pt:logic.separator>
 </pt:logic.foreach>

For details on Logic tags, see Section 2.2.2.6, "Logic Adaptive Tag Library (pt:logic)".
For details on using localized strings in tags, see Section 2.2.2.2, "Using
Internationalized Strings in Adaptive Tags".

2.2.2.4 Oracle WebCenter Ensemble Adaptive Tag Library (pt:ensemble)
The Oracle WebCenter Ensemble tag library (pt:ensemble) provides tags to insert
pagelets in Oracle WebCenter Ensemble consumer pages and access authentication
and role information for Oracle WebCenter Ensemble resources.

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-13

2.2.2.4.1 Inserting Pagelets Using Oracle WebCenter Ensemble Adaptive Tags The
pt:ensemble.inject tag injects the output of the specified pagelet into the page.

The pagelet is referenced by the fully qualified name of the pagelet as defined in
Oracle WebCenter Ensemble, in the form libraryname:pageletname. Any
non-Oracle WebCenter Ensemble attributes (not prefixed with "pt:") will be passed on
to the pagelet. Any HTML content inside the pagelet tag will be passed to the pagelet
as an XML payload.

<pt:ensemble.inject pt:name="mylibrary:mypagelet" pagelet-attribute="A pagelet
attribute">
<?xml version="1.0" encoding="utf-8"?>
<doc>This is an XML payload.</doc>
</pt:ensemble.inject>
To forward query string parameters from the resource request to the pagelet, set the
optional parameter pt:forwardparams to ’true’ as shown in the example below.

<pt:ensemble.inject pt:name="lib:pagelet" pt:forwardparams="true"/>

Table 2–2 Tags in the Oracle WebCenter Ensemble Adaptive Tag Library

Tag Function More Information

pt:ensemble.inject Injects the output of the specified
pagelet into the page.

Section 2.2.2.4.1, "Inserting Pagelets
Using Oracle WebCenter Ensemble
Adaptive Tags"

pt:ensemble.resourcedata Stores data for a specific Oracle
WebCenter Ensemble resource, if
available, in memory as a data object
containing information about the
resource.

Section 2.2.2.4.4, "Accessing Resource
Data Using Oracle WebCenter
Ensemble Adaptive Tags"

pt:ensemble.authsourcedata Stores a list of available
authentication sources for the
currently requested resource in
memory.

Section 2.2.2.4.2, "Accessing
Authentication Data Using Oracle
WebCenter Ensemble Adaptive Tags"

pt:ensemble.loginlink Stores the URL prefix for the login
page in memory using the given key
and scope.

Section 2.2.2.4.3, "Accessing the Login
URL Using Oracle WebCenter
Ensemble Adaptive Tags"

pt:ensemble.roleexpr Evaluates a role expression and stores
the result as a boolean in memory.
Designed to work with the
pt:logic.if tag.

Section 2.2.2.4.5, "Accessing User
Roles Using Oracle WebCenter
Ensemble Adaptive Tags"

pt:ensemble.rolelist Stores a list of the roles for the current
user in memory.

Section 2.2.2.4.5, "Accessing User
Roles Using Oracle WebCenter
Ensemble Adaptive Tags"

pt:ensemble.ssologout Notifies Oracle WebCenter Ensemble
that the current user should be logged
out of all resources. Used as singleton
only (does not display the contents of
the tag).

Note: Some internal Oracle WebCenter Ensemble parameters are not
forwarded, including SSO cookes and login redirects. Query string
parameters that attempt to override any registered pagelet parameters
are not forwarded.

Adaptive Pagelets

2-14 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

When a pagelet request results in a 403, 404 or any other error code, Oracle WebCenter
Ensemble can forward the error code and the error page itself to the browser for
display to the user. To enable this option, set the attribute pt:onhttperror to one of the
following values:

■ comment (default)

■ inline

■ fullpage

For an example of using this code, seeSection 2.1.1, "Creating a Custom Pagelet with
the Java Oracle WebCenter Interaction Development Kit (IDK) Proxy API" or
Section 2.1.2, "Creating a Custom Pagelet with the .NET Oracle WebCenter Interaction
Development Kit (IDK) Proxy API".You can also insert pagelets into non-proxied
pages; for details, see Section 2.6.4, "Inserting Pagelets into Non-Proxied Pages".

2.2.2.4.2 Accessing Authentication Data Using Oracle WebCenter Ensemble Adaptive Tags The
pt:ensemble.authsourcedata tag stores a list of available authentication sources
for the currently requested resource in memory.

The data is stored as a collection, and each item in the collection is a data object
containing information about the authentication source (prefix, name, description)
accessible through the data object dot notation ($curauth.name).

<pt:ensemble.authsourcedata pt:key="sources"/>
<pt:logic.foreach pt:data="sources" pt:var="source">
<pt:logic.value pt:value="$source.prefix"/>
<pt:logic.value pt:value="$source.name"/>
<pt:logic.value pt:value="$source.description"/>
<pt:logic.separator>

</pt:logic.separator>
</pt:logic.foreach>

This example uses logic tags to display information about each authentication source.
For details on logic tags, see Section 2.2.2.6, "Logic Adaptive Tag Library (pt:logic)".

2.2.2.4.3 Accessing the Login URL Using Oracle WebCenter Ensemble Adaptive Tags The
pt:ensemble.loginlink tag stores the URL prefix for the login page in memory
using the given key and scope.

The login prefix will end with a forward slash. This login prefix should be followed by
the page suffix for the page that should be displayed after login. For example, if the
external URL prefix of the resource is http://www.ensemble.com/app/ and the
desired page after login is http://www.ensemble.com/app/pages/mainpage.html,
then the full login link would be made by adding pages/mainpage.html to the login
link prefix.

<pt:ensemble.loginlink pt:level="4" pt:key="loginurlprefix"/>
var loginLink = "<pt:logic.value pt:value="$loginurlprefix"/>" +
"pages/mainpage.html";

2.2.2.4.4 Accessing Resource Data Using Oracle WebCenter Ensemble Adaptive Tags The
pt:ensemble.resourcedata tag stores data for a specific Oracle WebCenter
Ensemble resource, if available, in memory as a data object.

The data object contains information about the resource (name, description, urlprefix,
secureurlprefix) accessible through the data object dot notation ($resource.name). If
the resource does not have a description, urlprefix, or secureurlprefix, the data will not
be available.

<pt:ensemble.resourcedata pt:name="Welcome Resource" pt:key="resource"/>

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-15

<pt:logic.value pt:value="$resource.name"/>
<pt:logic.value pt:value="$resource.description"/>
<pt:logic.value pt:value="$resource.urlprefix"/>
<pt:logic.value pt:value="$resource.secureurlprefix"/>

2.2.2.4.5 Accessing User Roles Using Oracle WebCenter Ensemble Adaptive Tags The role*
tags in the Oracle WebCenter Ensemble tag library allow pagelets to modify content
based on the role of the current user.

For details on roles, see Section 2.6.5, "About Oracle WebCenter Ensemble Security".

The pt:ensemble.roleexpr tag evaluates a role expression and stores the result as
a boolean in memory. This tag is designed to work with the pt:logic.if tag as
shown below.

<pt:ensemble.roleexpr pt:expr="hasRole Default Role from Seed State"
pt:key="boolvalue"/>
<pt:logic.if pt:expr="$boolvalue">
<pt:logic.iftrue>
 <!-- This is displayed if expr evaluates to true. -->
</pt:logic.iftrue>
<pt:logic.iffalse>
 <!-- This is displayed if expr evaluates to false. -->
</pt:logic.iffalse>
</pt:logic.if>
The pt:ensemble.rolelist tag stores a list of the roles for the current user in
memory. The data is stored as a collection, and each item in the collection is a variable
containing the role name. This can be used with the logic.foreach tag to iterate
over role data as shown below.

<pt:ensemble.rolelist pt:key="roles"/>
<pt:logic.foreach pt:data="roles" pt:var="role">
<pt:logic.value pt:value="$role"/>
<pt:logic.separator></pt:logic.separator>
</pt:logic.foreach>
For details on logic tags, see Section 2.2.2.6, "Logic Adaptive Tag Library (pt:logic)".

2.2.2.5 Common Adaptive Tag Library (pt:common)
The Common tag library (pt:common) provides access to useful functionality,
including URL transformation and namespace definition. This library also allows you
to insert error information in the page, and CSS and JavaScript references in the Head
element in a proxied HTML page.

The Common tag library is a cross-platform tag library that can be used in both Oracle
WebCenter Interaction and Oracle WebCenter Ensemble.

For a full list of tags and attributes, see the tagdocs.

Table 2–3 Tags in the Common Adaptive Tag Library

Tag Function More Information

pt:common.namespace Defines a token for use in JavaScript
functions and HTML elements to
ensure unique names in an aggregated
page.

Section 2.2.2.5.3, "Defining a Unique
Namespace Token Using Adaptive
Tags"

pt:common.url Transforms URLs that should be
proxied.

Section 2.2.2.5.5, "Transforming URLs
Using Adaptive Tags"

pt:common.transformer Disables and enables transformation on
a proxied page.

Section 2.2.2.5.5, "Transforming URLs
Using Adaptive Tags"

Adaptive Pagelets

2-16 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

2.2.2.5.1 Accessing User Information Using Adaptive Tags You can use the
pt:common.userinfo tag to access specific user information settings.

The pt:common.userinfo tag is replaced with the value of the User Information
setting specified in the pt:info attribute. The name attribute is case sensitive.

<pt:common.userinfo pt:info="FullName"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>

2.2.2.5.2 Adding Header Content Using Adaptive Tags The pt:common.includeinhead
and headincludes tags allow you to include custom JavaScript and CSS information
in the Head element of the HTML page.

The pt:common.includeinhead tag marks the JavaScript and CSS information to
be included in the Head element of the HTML page by the
pt:common.headincludes tag. If a .js or .css file is marked for inclusion multiple
times, it will only be included once. JavaScript generated by tags will also be included.

<pt:common.includeinhead>
<script type="text/javascript"><!-- JavaScript --></script>
<script type="text/javascript" src="http://test.com/test.js"></script>
<link type="text/css" rel="stylesheet" href="http://test.com/test.css"></link>
</pt:common.includeinhead>

pt:common.error Displays errors on the page so that they
can be placed and formatted as desired.

Section 2.2.2.5.4, "Displaying Errors
Using Adaptive Tags"

pt:common.errorcode Stores a collection of the current error
codes in memory.

Section 2.2.2.5.4, "Displaying Errors
Using Adaptive Tags"

pt:common.errortext Displays the current error text on the
page so that it can be placed and
formatted as desired. Only the first
error message will be displayed. Used
as singleton only (does not display the
contents of the tag).

Section 2.2.2.5.4, "Displaying Errors
Using Adaptive Tags"

pt:common.headincludes Allows JavaScript and Style Sheet
include information to be added to a
specific point in the Head element of an
HTML page, as required by the
XHTML specification.

Section 2.2.2.5.2, "Adding Header
Content Using Adaptive Tags"

pt:common.includeinhead Marks JavaScript and CSS information
to be included in the Head element of
the HTML page by the
pt:common.headincludes tag.

Section 2.2.2.5.2, "Adding Header
Content Using Adaptive Tags"

pt:common.userinfo Displays a specific user information
setting.

Section 2.2.2.5.1, "Accessing User
Information Using Adaptive Tags"

Note: You must configure the Resource to send the appropriate user
information settings to the pagelet.

Note: This tag will be ignored during automatic in-place refresh
requests. Custom in-place refresh solutions must ensure that
JavaScript gets included correctly.

Table 2–3 (Cont.) Tags in the Common Adaptive Tag Library

Tag Function More Information

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-17

The pt:common.headincludes tag adds JavaScript and stylesheet include
information defined by the pt:common.includeinhead tag to the Head element of
the HTML page, as required by the XHTML specification. If no
pt:common.headincludes tag is present, JavaScript will be included at the bottom
of the Head element, and a Head element will be inserted if one does not exist.

<head>
<script type="text/javascript" src="http://test.com/main.js"></script>
</head>

2.2.2.5.3 Defining a Unique Namespace Token Using Adaptive Tags It is an established best
practice to include the pagelet ID in the name of any JavaScript functions and HTML
elements to ensure unique names when the code is combined with markup from other
pagelets on an aggregated page.

The pt:common.namespace tag allows you to define your own token, which is
replaced with the pagelet ID. The token must follow these specifications:

■ Valid values for the token must be in the ASCII range 0x21 to 0x7E, excluding "<"
(0x3C).

■ The scope of the token runs from the tag defining it to the end of the file; you
cannot use a token prior to defining it.

■ A second pt:namespace tag with a different token redefines it; two tokens cannot
be defined at the same time.

<pt:common.namespace pt:token="$$TOKEN$$"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>
do stuff
<script>
function doStuff$$TOKEN$$() {
alert("hello");
}
</script>

2.2.2.5.4 Displaying Errors Using Adaptive Tags The error* tags in the Common library
allow you to insert and format error messages within the page that contains the tag(s).

The pt:common.error tag displays errors on the page, placed and formatted as
desired. If the pt:common.errortext tag is included inside this tag, the contents of
the tag will only be processed if there is an error. If the child tag is not present, any
error messages will be formatted and displayed from this tag in the standard style.If
the pt:common.errortext tag is included, only the first error message will be
displayed. Other errors, as well as exception stack traces and extended error messages,
will be ignored. The pt:common.errorcodes tag stores a collection of the current
error codes in memory. If the error has already been displayed, no error codes will be
available. These error codes can be accessed using the pt:logic.foreach tag as
shown below.

<pt:common.errorcode pt:key="errorcodes"/>
<pt:logic.foreach pt:data="errorcodes" pt:var="code">
<pt:common.errortext/>

Note: If these tags are displayed on a page, errors will no longer be
displayed in the normal error location and will not be available after
the tag has been displayed.

Adaptive Pagelets

2-18 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

2.2.2.5.5 Transforming URLs Using Adaptive Tags The pt:common.url and
pt:common.transformer tags allow you to create and manipulate proxiedURLs.

The pt:common.url tag is used to transform URLs that should be proxied. If the
URL in the pt:href attribute is outside the proxied Resource, it will be transformed
to an absolute URL. This feature does not generate a link in HTML; it obtains the URL
as a string and passes it to a client-side function, as shown in the following example.

<script>
function myFunction()
{
document.write("<pt:common.url pt:href="myURL"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>");
}

The pt:common.transformer tag allows you to turn off JavaScript URL
transformation in a proxied page. Set the pt:fixurl attribute to "off" as shown
below.

<pt:common.transformer pt:fixurl="off"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>

The transformer will not insert calls to the JavaScript URL transformation function for
the rest of the file, unless you switch the feature back on in a subsequent directive
(with a pt:fixurl attribute of "on").

2.2.2.6 Logic Adaptive Tag Library (pt:logic)
Logic tags handle basic logic, including creating data objects and collections, setting
shared variables, evaluating expressions, and looping over a data collection.

The pt:logic tag library is a cross-platform tag library that can be used in both Oracle
WebCenter Interaction and Oracle WebCenter Ensemble.

For a full list of tags and attributes, see the tagdocs.

Note: Many logic tags have a pt:scope attribute. The valid scope
values are: tag, portlet request (pagelet request), http request, session,
persistent session, and application. The default is portlet request
scope.

Table 2–4 Tags in the Logic Adaptive Tag Library

Tag Function More Information

pt:logic.data Creates a data object (collection of
name=value pairs) and stores it in a
shared variable using the key
supplied.

Section 2.2.2.6.3, "Using Shared
Variables in Adaptive Tags"

pt:logic.concat Concatenates two values into one and
sets the new value in a variable with a
specified name.

Section 2.2.2.6.3, "Using Shared
Variables in Adaptive Tags"

pt:logic.variable Stores a shared variable using the key
and value supplied. Designed for use
with attribute replacement or with the
pt:logic.value tag.

Section 2.2.2.6.3, "Using Shared
Variables in Adaptive Tags"

pt:logic.collection Creates a collection of data objects and
stores it in a shared variable using the
key supplied.

Section 2.2.2.6.3, "Using Shared
Variables in Adaptive Tags"

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-19

2.2.2.6.1 Evaluating Expressions Using Adaptive Tags The pt:logic.boolexpr,
intexpr, stringexpr and containsexpr tags work with the pt:logic.if tag
to evaluate a range of expressions.

The sample code below determines whether the current value for the variable "title" is
set to "Administrator". Variables can be set using the pt:logic.data or
pt:logic.variable tags.

<pt:logic.stringexpr pt:expr="($title) == Administrator" pt:key="boolvalue"/>
<pt:logic.if pt:expr="$boolvalue">
<pt:logic.iftrue>
This is displayed if expr evaluates to true.
</pt:logic.iftrue>
<pt:logic.iffalse>
This is displayed if expr evaluates to false.
</pt:logic.iffalse>
</pt:logic.if>

pt:logic.collectionlength Evaluates the length of a collection
and stores the result in memory.

Section 2.2.2.6.3, "Using Shared
Variables in Adaptive Tags"

pt:logic.value Evaluates an attribute and displays
the referenced value. Used as
singleton only (does not display the
contents of the tag).

Section 2.2.2.6.3, "Using Shared
Variables in Adaptive Tags"

pt:logic.boolexpr Evaluates a boolean expression and
stores the result as a boolean in
memory. Designed to work with the
pt:logic.if tag.

Section 2.2.2.6.1, "Evaluating
Expressions Using Adaptive Tags"

pt:logic.intexpr Evaluates an integer expression and
stores the result as a boolean in
memory. Designed to work with the
pt:logic.if tag.

Section 2.2.2.6.1, "Evaluating
Expressions Using Adaptive Tags"

pt:logic.stringexpr Evaluates whether or not two strings
are equal and stores the result as a
boolean in memory. The case must
match. Designed to work with the
pt:logic.if tag.

Section 2.2.2.6.1, "Evaluating
Expressions Using Adaptive Tags"

pt:logic.containsexpr Checks if a collection contains a
specific data element and sets a
specified variable to true or false.
Designed to work with the
pt:logic.if tag.

Section 2.2.2.6.1, "Evaluating
Expressions Using Adaptive Tags"

pt:logic.if Evaluates an expression and displays
either the pt:logic.iftrue or
pt:logic.iffalse tag contents.

Section 2.2.2.6.1, "Evaluating
Expressions Using Adaptive Tags"

pt:logic:iffalse Displayed if the surrounding
pt:logic.if tag evaluates to false.

Section 2.2.2.6.1, "Evaluating
Expressions Using Adaptive Tags"

pt:logic:iftrue Displayed if the surrounding
pt:logic.if tag evaluates to true.

Section 2.2.2.6.1, "Evaluating
Expressions Using Adaptive Tags"

pt:logic.foreach Allows looping over a data collection.
Supports tag and portlet request scope
only.

Section 2.2.2.6.2, "Looping Over Data
Collections Using Adaptive Tags"

pt:logic.separator Inserts a separator between the
elements of a for each loop.

Section 2.2.2.6.2, "Looping Over Data
Collections Using Adaptive Tags"

Table 2–4 (Cont.) Tags in the Logic Adaptive Tag Library

Tag Function More Information

Adaptive Pagelets

2-20 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

For details on using shared variables, see Section 2.2.2.6.3, "Using Shared Variables in
Adaptive Tags".

2.2.2.6.2 Looping Over Data Collections Using Adaptive Tags The pt:logic.foreach tag
allows you to loop over collections of data.

The sample code below creates a table to store links for a navigation menu.

<table cellpadding="5" cellspacing="0" width="100%" border="0">
<!-- loop starts here -->
<pt:logic.foreach pt:data="directorymenu" pt:var="temp">
<tr>
<td height="25" colspan="3" class="navSidebarText">
<pt:core.html pt:tag="img" src="$temp.img" alt="" border="0" align="absmiddle"
height="20" width="20" />
<pt:core.html pt:tag="a" href="$temp.url">
<pt:logic.value pt:value="$temp.title" />
</pt:core.html>
</td>
</tr>
</pt:logic.foreach>
</table>

This table can then be populated with links.

2.2.2.6.3 Using Shared Variables in Adaptive Tags The pt:logic.data, variable, and
collection tags allow you to store editable shared variables, which can be used in
attribute value replacement or with the pt:logic.value tag.

The pt:logic.data tag stores a data object (a name=value pair) as an editable
shared variable using the key passed in. The pt:logic.variable tag stores an
editable shared variable using the key and value passed in. If either tag is used inside
the pt:logic.collection tag, the variables are stored directly in the parent
collection. If the tag is used alone, the key attribute is required. The variable is only
stored after the tag is finished processing all its contents. A collection can only contain
a single type of variable, such as string variables or data objects.

<pt:logic.variable pt:key="title" pt:value="Administrator"/>

<pt:logic.data pt:key="myurl" name="Home" url="http://edocs.bea.com"/>

<pt:logic.collection pt:key="testcollection">
<pt:logic.data url="http://www.myco.com" name="My company"/>
<pt:logic.data url="http://www.otherco.com" name="Other company"/>
</pt:logic.collection>

<pt:logic.collection pt:key="teststringcollection">
<pt:logic.variable pt:value="my string data"/>
<pt:logic.variable pt:value="my other string data"/>
</pt:logic.collection>

Note: If a variable or collection with the same name already exists, it
will be overwritten. If the preexisting variable is not editable, the tag
will fail. Variable names cannot contain the reserved character '.'.

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-21

The pt:logic.value tag displays the value of the variable referenced by the
pt:value attribute. Variables can be set using the pt:logic.data or
pt:logic.variable tags as explained in the previous section. This tag can be used
to reference localized strings in message files.

<pt:logic.value pt:value="$title"/>
<pt:logic.value pt:value="$myurl.Home"/>

For details on referencing localized strings using tags, see Section 2.2.2.2, "Using
Internationalized Strings in Adaptive Tags".

2.2.2.7 About Adaptive Tag Control Flow
This page describes the control flow of a typical request that makes use of adaptive
tags.

1. First, the proxied page requests pagelet data from the transformer.

2. The transformer retrieves the requested pagelets from the external resources.
Native UI tags, such as JSP Tags or .NET Web controls, are processed on the
external resource before the HTML is returned to the transformer.

3. The transformer converts the HTML into markup data including both HTML and
adaptive tags. This markup data is passed to the Tag Transformation Engine,
which processes the tags and converts them into standard HTML.

4. Finally, the HTML is returned to the page where it is displayed to the end user.

Figure 2–1 Tag Control Flow

The Tag Transformation Engine converts markup data from the transformer into a
tree of HTML and adaptive tags. The Engine moves through the tree and outputs

Adaptive Pagelets

2-22 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

HTML and processes the tags. When a tag is processed, it can cause all of its child
nodes to be processed, or it can skip that entire section of the tree.

The figure below shows an example of a tree. In this example, when the choose tag is
executed, it determines whether or not the current user matches the conditions in the
choose clause. If it does, the when tag will display the HTML inside the tag. If not, the
otherwise tag will display its HTML

Figure 2–2 Tag Transformation Engine Tree

For details on these tags, see Section 2.2.2.6, "Logic Adaptive Tag Library (pt:logic)".

2.2.2.8 Creating Custom Adaptive Tags
The Adaptive Tag Framework allows you to create custom tags for use in pagelets and
proxied pages.

The ATag class is the base class used to write custom tags. To implement a custom tag,
follow the steps below.

1. To implement a new tag, you must have a tag library. A tag library is simply a .jar
or .dll file with exactly one class that implements ITagLibraryMetaData.

Java

public static final TagLibraryMetaData LIBRARY = new TagLibraryMetaData
("Sample Tags", "sample", "This library provides sample tags.", 1.0);

.NET

public static readonly TagLibraryMetaData LIBRARY = new TagLibraryMetaData
("Sample Tags", "sample", "This library provides sample tags.", 1.0);

2. Create one public static final ITagMetaData member variable that provides the
name and description of the tag. Create a public static final
RequiredTagAttribute or OptionalTagAttribute member variable for
every attribute that the tag supports. You can also use standard HTML and XML
attributes; see Section 2.2.2.3, "Using Variables in Adaptive Tags".

Java

public static final ITagMetaData TAG;
public static final RequiredTagAttribute MESSAGEATTRIBUTE;
public static final OptionalTagAttribute LOCATIONATTRIBUTE;

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-23

static
{
TAG = new TagMetaData("hellolocation", "This tag displays a hello message for
the given location.");
MESSAGEATTRIBUTE = new RequiredTagAttribute("message", "The message to display
for hellolocation tag", AttributeType.STRING);
LOCATIONATTRIBUTE = new OptionalTagAttribute("location", "The sample location
attribute for hellolocation tag", AttributeType.STRING, "World");
}

.NET

public static readonly ITagMetaData TAG;
public static readonly RequiredTagAttribute MESSAGEATTRIBUTE;
public static readonly OptionalTagAttribute LOCATIONATTRIBUTE;

static HelloLocationTag()
{
TAG = new TagMetaData("hellolocation", "This tag displays a hello message for
the given location.");
MESSAGEATTRIBUTE = new RequiredTagAttribute("message", "The message to display
for hellolocation tag", AttributeType.STRING);
LOCATIONATTRIBUTE = new OptionalTagAttribute("location", "The sample location
attribute for hellolocation tag", AttributeType.STRING, "World");
}
Type validation is performed by the tag framework automatically. If an optional
attribute is not present in the HTML, the tag framework will use the default value.
In the same code below, the optional attribute has a default value of "World.".

3. Implement the DisplayTag abstract method. Use this method to create and
display HTML. To display any HTML and tags defined within the tag, call
ProcessTagBody and return the resulting HTML. The sample code below adds
the "Hello" string with a user-specified location to an HTMLElement and returns it
to be displayed.

Java

public HTMLElement DisplayTag()
{
String strLocation = GetTagAttributeAsString(LOCATIONATTRIBUTE);
String strMessage = GetTagAttributeAsString(MESSAGEATTRIBUTE);
HTMLElementCollection result = new HTMLElementCollection();
result.AddInnerHTMLString(strMessage + strLocation + "!");
return result;
}

.NET

public override HTMLElement DisplayTag()
{
String strLocation = GetTagAttributeAsString(LOCATIONATTRIBUTE);
String strMessage = GetTagAttributeAsString(MESSAGEATTRIBUTE);
HTMLElementCollection result = new HTMLElementCollection();
result.ddInnerHTMLString(strMessage + strLocation + "!");
return result;
}

4. If the tag should not display any HTML contained within the tag, use the
GetTagType method to return TagType.NO_BODY.

Java

Adaptive Pagelets

2-24 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

public TagType GetTagType()
{
return TagType.NO_BODY;
}

.NET

public override TagType GetTagType()
{
return TagType.NO_BODY;
}

5. Implement the Create abstract method to return a new instance of the tag.

Java

public ATag Create()
{
return new HelloLocationTag();
}

.NET

public override ATag Create()
{
return new HelloLocationTag();
}

The ATag class allows you to include a wide range of functionality in custom tags.
For a full list of interfaces and methods, see the tagdocs. For details on deploying your
custom tag, see Section 2.2.2.8.7, "Deploying Custom Adaptive Tags".

2.2.2.8.1 Accessing Browser Session Information in Custom Adaptive Tags To access
browser session information from a custom adaptive tag, use the IEnvironment
class.

The IEnvironment class provides access to information about the current request
and user, including the following:

■ HTTP Request and Response: Retrieve the Request or Response objects, or the
Request URL. For example: IXPRequest request =
GetEnvironment().GetCurrentHTTPRequest();

■ User information: Retrieve the user's session, or key information including
language, locale, time zone, and access style (standard, 508, or low bandwidth).
For example: String strTZ = GetEnvironment().GetTimeZone();

■ VarPacks: Retrieve any VarPacks associated with the application in which the tag
is executed.

2.2.2.8.2 Accessing Attributes in Custom Adaptive Tags To access attributes used in a
custom tag, use one of the GetTagAttribute* methods.

All basic data types are supported as attributes (defined in the AttributeType
class), including boolean, char, double, int, long and string. The "pt:" attributes specify
the logic for the tag, while any non-pt attributes specify the behavior of the resulting
HTML tag. Non-pt attributes are only applicable in tags that output a simple HTML
tag.

■ To access pt attributes, use the appropriate GetTagAttributeAs* method using
the attribute name. A method is provided for each supported attribute type, e.g.,
GetTagAttributeAsLong. The GetTagAttribute method is provided for
backwards compatibility and should not be used.

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-25

1. First, define the attribute: MODE = new
OptionalTagAttribute("mode", "Turns debug mode on and
off.", AttributeType.BOOLEAN, "true");

2. Then, access the attribute in the DisplayTag method:boolean
bNewDebugMode = GetTagAttributeAsBoolean(MODE);

■ To access non-pt (XML/HTML) attributes, use the GetXMLTagAttribute
method using the attribute name, or GetXMLTagAttributesAsString to
retrieve all non-pt attributes. result.AddInnerHTMLElement(new
HTMLGenericElement("<a href=\"" + GetHREF() + "\" " +
GetXMLTagAttributesAsString() + ">"));

The ITagMetaData, RequiredTagAttribute, and OptionalTagAttribute
objects pre-process tag attributes (presence, correct type, and default values). If the
required attributes are not correct, an error is logged and the tag and its children are
skipped. An HTML comment describing the tag and error is displayed instead.

2.2.2.8.3 Storing and Accessing Custom Data in Custom Adaptive Tags To store custom data
as member variables using a custom tag, use the SetStateVariable or
SetStateSharedVariable methods. To retrieve it, use GetStateVariable or
GetStateSharedVariable.

Standard variables (stored with SetStateVariable) can only be accessed by tags in
the same library. Shared variables (stored with SetStateSharedVariable) can be
accessed by tags from any library. To prevent tags from other libraries from editing a
shared variable, set bOwnerEditOnly to true when the shared variable is stored (tags
in other libraries will still be able to read the variable).The Scope parameter
determines who can see the data and how long it stays in memory. The following
options are defined in the Scope class:

If data is stored directly in the tag in member variables (not recommended), override
the ReleaseTag method to release the data stored on the tag.

/**

Table 2–5 Options Defined in Scope Class

Option Description

Application Scope Data is visible to all tags and all users, and is only removed when the application is
restarted. Therefore, care should be used when storing data on the application to make
sure it does not become cluttered with large amounts of data.

HTTP Request Scope Data will be visible to all tags in the same HTTP Request as the current tag, and is
removed from memory when the HTTP Request is finished.

Session Scope Data is visible to all tags for the current user, and is cleared from memory when a user
logs out and logs in again.

Persistent Session Scope Data is visible to all tags in the same HTTP session, and is only removed from memory
when the browser is closed or the browser session times out. Note: Data is not cleared on
user logout, so do not cache anything on this scope that could be considered a security
risk if it was leaked to another user. Most tags should use Session Scope for HTTP
Session data storage (as described above).

Portlet Request Scope Data is visible to all tags in the same pagelet as the current tag, and is removed from
memory when the pagelet is finished displaying. Tags in other pagelets on the same
page will not be able to see the data.

Tag Scope Data can only be seen by children of the current tag and is removed from memory when
the tag is finished. (For example, in the following tags:
<pt:atag><pt:btag/></pt:atag><pt:ctag/>, data stored in Tag Scope by "atag"
would be visible to "btag" but not to "ctag.")

Adaptive Pagelets

2-26 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

* @see com.plumtree.portaluiinfrastructure.tags.ATag#ReleaseTag()
*/
public void ReleaseTag()
{
// Release all member variables.
m_strPreviousRequestURL = null;
}

2.2.2.8.4 Including JavaScript in Custom Adaptive Tags To include JavaScript in a tag, use
the AddJavaScript method inside the DisplayTag method.

For example:

HTMLScriptCollection scriptCollection = new HTMLScriptCollection();
HTMLScript script = new HTMLScript("text/javascript");
scriptCollection.AddInnerHTMLElement(script);
script.AddInnerHTMLString("function myTest() { alert('test'); }");
AddJavaScript(scriptCollection);
To include common JavaScript that can be shared between multiple instances of a tag
(i.e. JavaScript that is displayed once per page, regardless of how many tags of a
certain type there are), override the DisplaySharedJavaScript method.
DisplaySharedJavaScript is called automatically by the framework.

/**
* Adds the PTIncluder object to the client. This object is used for
* retrieving JSComponent client classes from a page.
*/
public HTMLScriptCollection DisplaySharedJavaScript()
{
HTMLScriptCollection result = new HTMLScriptCollection();
HTMLScript script = new HTMLScript("text/javascript");
result.AddInnerHTMLElement(script); script.SetSrc("/myjsfile.js");
return result;
}
If there are errors in the tag and the JavaScript cannot be displayed properly, the tag
should throw an XPException with an error message, and the tag framework will
log the error and add the message and stack trace to the HTML as an HTML comment.
The message contents will be HTML encoded before being added to the comment.

Note: Displaying an HTMLElement in a tag and caching it so
another tag can add more HTML is not supported. HTMLElement
trees can be generated and stored for later use as long as they are
self-contained trees and used in a read-only way. It is safest to clone a
cached HTMLElement tree before trying to display it again to make
sure there are no threading problems.

Note: It is a best practice not to use static fields for data storage in
tags. Each tag instance is guaranteed to be accessed by only a single
thread at a time, but there may be multiple threads accessing different
instances of the same tag class at the same time, either from the same
user or a different user. This means that any static fields must be
accessed using synchronized methods. Since there can be multiple
instances of the same tag running at the same time, state variables set
in shared scopes (Session, Persistent Session and Application) could
change values during the execution of a single tag.

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-27

2.2.2.8.5 Using Nested Tags in Custom Adaptive Tags Tags can be used within other tags.
To implement nested tags, use the RequiredParentTag, RequiredChildTag and
RelatedChildTag member variables.

The outer tag is referred to as the "parent" tag. Any tags within a parent tag are
referred to as "child" tags of that tag. If the tag is only intended for use within a
particular parent tag, create a public static final RequiredParentTag member
variable. If there are multiple RequiredParentTag members, at least one of the
parent tags must be present for the child tag to function. If the tag must include a
particular child tag to function, create a public static final RequiredChildTag
member variable for each tag that is required inside the parent tag. If the child tag is
not required for the parent tag to function, but is still related to that tag, create a public
static final RelatedChildTag member variable instead.

public static final RequiredChildTag DATA_OBJECT;
static
{
... DATA_OBJECT = new RequiredChildTag(DataObjectTag.TAG);
}

2.2.2.8.6 Implementing Non-Standard Custom Adaptive Tag Types To implement
non-standard tag types in custom adaptive tags, including 508-accessible, looping or
singleton tags, override the associated method.

■ To display a custom tag in non-standard access styles (508 or low bandwidth),
override the SupportsAccessStyle method. The default implementation of the
SupportsAccessStyle method will cause the tag to be skipped in 508 and
low-bandwidth mode. Make sure that tags that support 508 mode can function
without JavaScript, since JavaScript will not be displayed in 508 mode.

■ If the tag displays the tag body more than once (looping tag), override the
GetTagType() method and return TagType.LOOPING.

■ If the tag never displays the tag body (singleton tag), override GetTagType()
and return TagType.NO_BODY.

2.2.2.8.7 Deploying Custom Adaptive Tags To deploy custom adaptive tags, follow these
steps.

1. Navigate to PORTAL_HOME\settings\portal and open CustomTags.xml in a text
editor (you might need to make the file writable).

2. Find the <AppLibFiles> tag and add a new entry using the name of the .jar/.dll
file used to define the custom tag library (e.g., mytags).

<AppLibFiles>
<libfile name="sampletags"/>
</AppLibFiles>

Note: JavaScript is not displayed in 508 mode for either method,
since section 508 compliant browsers do not support JavaScript.

Note: If required parent or child tags are missing when a tag is
displayed, the tag framework will not process the incorrect tag and
will add an error message to the HTML as an HTML comment.

Adaptive Pagelets

2-28 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

3. Add the custom implementation (.jar/.dll) to Oracle WebCenter Ensemble
hierarchy:

■ Java: Copy the custom .jar file to ENSEMBLE_HOME\lib\java and add it to
the .war file in ENSEMBLE_HOME\webapp. (You must stop Oracle
WebCenter Ensemble while modifying portal.war because it will be locked
while Oracle WebCenter Ensemble is running.)

■ .NET: Copy the custom .dll file to ENSEMBLE_HOME\webapp\portal\bin.

4. Run a clean build of Oracle WebCenter Ensemble to refresh all the jar files
associated with Oracle WebCenter Ensemble.

5. Once you have deployed your code, create a pagelet that contains the tag. Custom
adaptive tags must either include the correct XML namespace or be contained
within another tag that does. The simplest way is to put the HTML inside a span.
Custom adaptive tags must use the pt:libraryname.tagname and pt:attributename
format. The sample code below references the custom tag from Section 2.2.2.8,
"Creating Custom Adaptive Tags".

<pt:sample.hellolocation pt:message="Hello" pt:location="San Francisco"/>

6. Add the pagelet to a page and view the page. Test all custom tags.

2.2.3 Oracle WebCenter Interaction Scripting Framework
The Oracle WebCenter Interaction Scripting Framework is a client-side JavaScript
library that provides services to pagelets and proxied pages. The Portlet
Communication Component (PCC) is contained within the Scripting Framework.

The Oracle WebCenter Interaction Scripting Framework allows pagelets to:

■ Store and share session state through browser level variables. Browser-level
variables can be stored and shared among pagelets, even if they are not on the
same page. For example, a value entered by the user in one pagelet can be
retrieved by another. The Scripting Framework acts as an intermediary, allowing
all pagelets access to all values stored in a common session. For details, see
Section 2.3, "Session Preferences".

■ Leverage page-level events. A pagelet can respond when specific events happen,
such as when the page loads or when the browser focus changes. For details, see
Section 2.2.3.2, "Using Oracle WebCenter Interaction Scripting Framework Event
Notification".

■ Refresh pagelet content without reloading the page. pagelets can reload their
internal content without refreshing the page. For details, see Section 2.2.3.3, "Using
In-Place Refresh".

For a full list of classes and methods, see the JSPortlet API documentation.

2.2.3.1 Oracle WebCenter Interaction Scripting Framework Development Tips
These tips and best practices apply to all code that utilizes the Oracle WebCenter
Interaction Scripting Framework.

■ Use unique names for all forms and functions. Use the GUID of a pagelet to form
unique names and values to avoid name collisions with other code on the page.
You can append the pagelet ID using the pt:namespace and pt:token tags, as
shown in the code below.

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-29

<pt:namespace pt:token="$$TOKEN$$"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>
do stuffa
onclick="doStuff$$TOKEN$$();" href="#">do stuff
<script>
function doStuff$$TOKEN$$() {
alert("hello");
}
</script>
Valid values for the token are in the ASCII range 0x21 to 0x7E, excluding "<"
(0x3C). The scope of the token runs from the tag defining it to the end of the file;
you cannot use a token prior to defining it. A second pt:namespace tag with a
different token redefines it; two tokens cannot be defined at the same time.

■ Proxy all URLs. You cannot make a request to a URL whose host/port differs
from that of the calling page. All URLs requested through JavaScript must be
proxied. For details, see Section 1.3, "About Server Communication and the
Proxy".

■ Check for Scripting Framework support. It is good practice to include code that
determines whether or not the component is present. Ideally, your pagelet should
be able to handle either situation. The simplest solution is to precede your code
with an If statement that alerts the user if the Scripting Framework is not
supported.

<script>
if (PTPortlet == null)
 {
 if (document.PCC == null)
 {
 alert("This portlet only works in portals that support the JSPortlet API or
Portlet
 Communication Component (PCC). The portlet will be displayed with severely
reduced
 functionality. Contact your Administrator.");
 }
 }
else
 {
 [scripting code here]
 }
</script>

■ Close all popup windows opened by a pagelet when the window closes. The
Scripting Framework can be used to close popup windows using the onunload
event.

■ Do not assume that browsers will process script blocks/includes added through
the innerHTML property. Add all required JavaScript to the page in advance:

– Microsoft Internet Explorer: Add the defer attribute to the script tag.

– Netscape: Use RegExp to parse the response and look for the script, then
evaluate it.

2.2.3.2 Using Oracle WebCenter Interaction Scripting Framework Event
Notification
The Oracle WebCenter Interaction Scripting Framework allows pagelets to respond to
both page-level events and custom events raised by other pagelets.

Adaptive Pagelets

2-30 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

The registerForWindowEvent and registerOnceForWindowEvent methods in
the Oracle WebCenter Interaction Scripting Framework provide pagelets with access
to page-level events. For a complete list, see Section 2.2.3.2.1, "Page-Level Events for
Use with the Oracle WebCenter Interaction Scripting Framework". To register for
notification of these events, pass in the name of the event and the name of the method
that should be called when it occurs. When a page-level event is raised, the JavaScript
event object is passed to the event handler as an argument. The Oracle WebCenter
Interaction Scripting Framework also allows pagelets to raise and respond to custom
events using raiseEvent and registerForEvent. The Broadcast-Listener design
pattern illustrates an important example of using notification services with session
preferences. Users can select an item or perform some other action in a "broadcast"
pagelet, which causes the content in other related "listener" pagelets to be redrawn. In
the following example, the broadcast pagelet displays a form that allows you to enter a
number in a text box.

When the user enters a number in the text box, the values in the listener pagelets
change. The first listener pagelet displays the square root of the number entered in the
broadcast pagelet.

The second listener pagelet displays the cube root of the number entered in the
broadcast pagelet.

The following steps summarize how the pagelets work:

■ On load, each listener pagelet calls its own instance method
(registerForEvent) to register for events of type 'onBroadcastUpdate'.

■ On each onkeyup event that occurs in the "Enter number" text box, the broadcast
pagelet sets a session preference to the value entered in the text box, and calls its
own instance method (raiseEvent) to raise an event of type
'onBroadcastUpdate'.

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-31

■ When the onBroadcastUpdate event is raised or the page is reloaded, each listener
pagelet retrieves the session preference set by the broadcast pagelet and computes
a new value to display based on the value of the preference.

Broadcast Pagelet

<div style="padding:10px;" align="center">
<p>Enter number:
 <input type="text"
style="font-size:22px;font-weight:bold;text-align:center;"
id="broadcast_prefName" value="4" size="7" onkeyup="broadcast_
setPrefs(this.value)"></p>

</div>

<script type="text/javascript">

function broadcast_setPrefs(val)
{
 var prefName = 'broadcastNumber';
 var prefValue = val;
 PTPortlet.setSessionPref(prefName,prefValue);

 var broadcastPortlet =
PTPortlet.getPortletByGUID('{D9DFF3F4-EAE7-5478-0F4C-2DBD94444000}');

 if (!broadcastPortlet)
 {
 broadcast_debug('Could not locate PTPortlet object which corresponds to
Broadcast Portlet on page.');
 return;
 }

 broadcast_debug('Broadcast Portlet raising onBroadcastUpdate
event.');
 broadcastPortlet.raiseEvent('onBroadcastUpdate',false);

}

function broadcast_debug(str)
{
 if (window.PTDebugUtil)
 {
 PTDebugUtil.debug(str);
 }
}
</script>
Listener Pagelet #1

<div style="padding:10px;" align="center">
<p>Square root:
<div style="height:21px;border:2px solid
black;padding:2px;overflow:visible;font-size:14px;"id="listener1-swatch">
</div>
</div>

<script>

function listener1_update()
{
 var broadcastNumber = parseFloat(PTPortlet.getSessionPref('broadcastNumber'));

Adaptive Pagelets

2-32 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

 if (isNaN(broadcastNumber))
 {
 listener1_error('Listener-1 Portlet cannot parse number from
session pref broadcastNumber');
 return;
 }

 listener1_debug('Listener-1 Portlet computing square root of ' +
broadcastNumber);
 var swatch = document.getElementById('listener1-swatch');
 swatch.innerHTML = Math.sqrt(broadcastNumber);
}

function listener1_debug(str)
{
 if (window.PTDebugUtil)
 {
 PTDebugUtil.debug(str);
 }
}

function listener1_error(str)
{
 if (window.PTDebugUtil)
 {
 PTDebugUtil.error(str);
 }
}

function listener1_getPortlet()
{
 var portletGUID = '{D9DFF3F4-EAE7-5478-0F4C-2DBDB4F4A000}';
 var listener1Portlet = PTPortlet.getPortletByGUID(portletGUID);
 return listener1Portlet;
}

var listener1Portlet = listener1_getPortlet();
if (listener1Portlet)
{
 listener1Portlet.registerForEvent('onBroadcastUpdate','listener1_update');
 listener1_debug('Listener-1 Portlet registered refreshOnEvent for event
onBroadcastUpdate');
 listener1Portlet.registerForEvent('onload','listener1_update');
}

</script>

Listener Pagelet #2

<div style="padding:10px;" align="center">
<p>Cube root:
<div style="height:21px;border:2px solid
black;padding:2px;overflow:visible;font-size:14px;"id="listener2-swatch">
</div>
</div>

<script>
var listener2_oneThird = (1/3);

function listener2_update()
{

Adaptive Pagelets

Oracle WebCenter Ensemble Pagelet Development 2-33

 var broadcastNumber = parseFloat(PTPortlet.getSessionPref('broadcastNumber'));
 if (isNaN(broadcastNumber))
 {
 listener2_error('Listener-2 Portlet cannot parse number from
session pref broadcastNumber');
 return;
 }

 listener2_debug('Listener-2 Portlet computing square root of ' +
broadcastNumber);

 var swatch = document.getElementById('listener2-swatch');
 swatch.innerHTML = Math.pow(broadcastNumber,listener2_oneThird);
}

function listener2_debug(str)
{
 if (window.PTDebugUtil)
 {
 PTDebugUtil.debug(str);
 }
}

function listener2_error(str)
{
 if (window.PTDebugUtil)
 {
 PTDebugUtil.error(str);
 }
}

function listener2_getPortlet()
{
 var portletGUID = '{D9DFF3F4-EAE7-5478-0F4C-2DBDCA1C7000}';
 var listener2Portlet = PTPortlet.getPortletByGUID(portletGUID);
 return listener2Portlet;
}

var listener2Portlet = listener2_getPortlet();
if (listener2Portlet)
{
 listener2Portlet.registerForEvent('onBroadcastUpdate','listener2_update');
 listener2_debug('Listener-2 Portlet registered refreshOnEvent for event
onBroadcastUpdate');
 listener2Portlet.registerForEvent('onload','listener2_update');
}

</script>

2.2.3.2.1 Page-Level Events for Use with the Oracle WebCenter Interaction Scripting Framework
The Oracle WebCenter Interaction Scripting Framework automatically has access to
the following page-level events.

Table 2–6 Page-Level Events

Event Triggered:

onload immediately after the browser loads the page

onbeforeunload prior to a page being unloaded (browser window closes or navigates to
different location)

Adaptive Pagelets

2-34 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

2.2.3.3 Using In-Place Refresh
To refresh pagelet content in place, without affecting other content on the page, use
the Oracle WebCenter Interaction Scripting Framework to implement in-place refresh.

Many pagelets display data that is time sensitive. In some cases, users should be able
to navigate across links within a pagelet without changing or refreshing the rest of the
page. You can refresh pagelet content on command, associate the refresh action with
an event (refreshOnEvent), or program the pagelet to refresh at a set interval
(setRefreshInterval). The Oracle WebCenter Interaction Scripting Framework
also contains methods for expanding and collapsing pagelets. In the simplified
example below, the refresh pagelet displays a "Refresh Portlet" button. Clicking the
button updates the date and time displayed in the pagelet. (The refresh button in the
header is an optional feature available in Oracle WebCenter Interaction only,
configured on the Advanced Settings page of the Web Service editor.)

The in-place refresh is executed by calling the refresh() method on the pagelet
object instance. The pagelet reference can be retrieved by GUID, ID or name, available
via the Oracle WebCenter Interaction Development Kit (IDK) IPortletRequest
interface. You can also set a new URL to be displayed within the pagelet upon refresh

onunload immediately before the page is unloaded (browser window closes or
navigates to different location)

onactivate the page is set as the active element (receives focus)

onbeforeactivate immediately before the page is set as the active element (receives focus)

ondeactivate when the active element is changed from the current page to another page in
the parent document

onfocus when the page receives focus

onblur when the page loses focus

oncontrolselect when the user is about to make a control selection of the page

onresize when the size of the page is about to change

onresizestart when the user begins to change the dimensions of the page in a control
selection

onresizeend when the user finishes changing the dimensions of the page in a control
selection

onhelp when the user presses the F1 key while the browser is the active window

onerror when an error occurs during page loading

onafterprint immediately after an associated document prints or previews for printing

Table 2–6 (Cont.) Page-Level Events

Event Triggered:

Session Preferences

Oracle WebCenter Ensemble Pagelet Development 2-35

by using setRefreshURL or passing in a new URL when you call refresh. (The title
bar cannot be altered on refresh.)

<div style="padding:10px;" align="center">
<p><button onclick="refresh_portlet()">Refresh Portlet</button></p>
<p>Current time is:
 </p>
</div>
<pt:namespace pt:token="$PORTLET_ID$"
xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'/>

<script type="text/javascript">
function refresh_portlet()
{
var refreshPortlet = PTPortlet.getPortletByID($PORTLET_ID$);
if (!refreshPortlet)
 {
 refresh_debug('Could not locate PTPortlet object which corresponds to Refresh
Portlet on page.');
 return;
 }
refresh_debug('Refresh Portlet calling refresh() method.');
refreshPortlet.refresh();
}

function refresh_debug(str)
{
if (window.PTDebugUtil)
 {
 PTDebugUtil.debug(str);
 }
}

var t = new Date();
document.getElementById('refreshTimeSpan').innerHTML = t;
</script>

2.2.4 Adaptive Pagelet Development Tips
These tips apply to most adaptive pagelets.

■ Proxt all URLs. You cannot make request to a URL whose host/port differs from that of
the calling page. All URLs requested through JavaScript must be proxied. For details, see
.Section 1.3, "About Server Communication and the Proxy".

■ Add all required JavaScript to the page in advance. Browsers might not process
script blocks/includes added to the page through the innerHTML property.

– Microsoft Internet Explorer: Add the defer attribute to the script tag.

– Netscape: Use RegExp to parse the response and look for the script, then eval
it.

■ JavaScript HTTP and proxied HTTP must use the same authentication
credentials. JavaScript brokered HTTP requests send the same authentication token
(cookie) as when you make a normal gatewayed HTTP request.

2.3 Session Preferences
To store and share settings within the client browser, use session preferences.

Session Preferences

2-36 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

Pagelets can use preferences to communicate with each other, but accessing
preferences usually requires a round trip to a database. Session preferences provide a
way to store and share settings in the user's session within the client browser. The
Master-Detail design pattern illustrates the most basic usage of session preferences.
This design pattern splits control and display between two pagelets. For example, the
"master" pagelet could summarize data in list form, and the "detail" pagelet could
display details on each data item in response to user selection. In the example below,
the master pagelet displays a form that allows you to enter a color code in a text box.

When the user enters a color code in the text box, the color in the detail pagelet
changes.

For each onkeyup event that occurs in the "Enter color" text box in the master pagelet,
the following steps are executed:

1. The master pagelet sets the session preference using the current value of the text
box.

2. The master pagelet calls an update method on the detail pagelet.

3. The detail pagelet retrieves the session preference to get the color value.

4. The detail pagelet redraws its color swatch area to reflect the new color value.

Pagelets can manipulate session preferences using the Oracle WebCenter Interaction
Development Kit (IDK) or the Oracle WebCenter Interaction Scripting Framework.
Sample code for both options is provided below.

2.3.1 Using Oracle WebCenter Interaction Development Kit Methods to Access Session
Preferences

Always use the Oracle WebCenter Interaction Development Kit (IDK) to read session
preferences, as shown in the example code below. (In most cases, reading session

Note: Shared session preferences must be specified by name on the
Preferences page of the associated Web Service editor or they will not
be sent to the pagelet.

Session Preferences

Oracle WebCenter Ensemble Pagelet Development 2-37

preferences via the Oracle WebCenter Interaction Scripting Framework is inefficient
and insecure.)

Java

<%@ page language="java" import="com.plumtree.remote.portlet.*,java.util.Date" %>

IPortletContext portletContext =
PortletContextFactory.createPortletContext(request,response);
IPortletResponse portletResponse = portletContext.getResponse();
IPortletUser portletUser = portletContext.getUser();
IPortletRequest portletRequest = portletContext.getRequest();

masterColor = portletRequest.getSettingValue(SettingType.Session, "masterColor");

.NET

...
Dim portletContext As IPortletContext
portletContext = PortletContextFactory.CreatePortletContext(Request, Response)

Dim portletRequest As IPortletRequest
portletRequest = PortletContext.GetRequest

Dim portletUser As IPortletUser
portletUser = PortletContext.GetUser

Dim portletResponse As IPortletResponse
portletResponse = PortletContext.GetResponse

Dim masterColor As String
masterColor = portletRequest.GetSettingValue(SettingType.Session "masterColor")
...

2.3.2 Using Oracle WebCenter Interaction Scripting Framework Methods to Access
Session Preferences

As noted above, it is usually better to use the Oracle WebCenter Interaction
Development Kit (IDK) to read session preferences; reading session preferences via the
Oracle WebCenter Interaction Scripting Framework is inefficient and insecure.

This example is oversimplified; the master pagelet makes a direct call to a JavaScript
method of the detail pagelet. Unless the master pagelet takes extra measures to ensure
that the detail pagelet is actually present on the same page, calls from master to detail
could generate errors. The Oracle WebCenter Interaction Scripting Framework
provides an easy way to detach the relationship between pagelets and use a common
event interface for communication. For more information on the Oracle WebCenter
Interaction Scripting Framework, see Section 2.2.3, "Oracle WebCenter Interaction
Scripting Framework".

Master Pagelet

<div style="padding:10px;" align="center">
<p>Enter color:
<input type="text" style="font-size:22px;font-weight:bold;text-align:center;"
id="master_prefName"
value="#FFFFFF" size="8" onkeyup="master_setPrefs(this.value)"></p>

</div>

<script type="text/javascript">
function master_setPrefs(val)

Session Preferences

2-38 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

{
var prefName = 'masterColor';
var prefValue = val;
PTPortlet.setSessionPref(prefName,prefValue);

master_debug('Master Portlet called
PTPortlet.setSessionPref(\'masterColor\',\'' + prefValue + '\').');

if (window.detail_update)
 {
 master_debug('Master Portlet calling detail_update().');
 detail_update();
 }
else
 {
 master_debug('Could not locate portlet Detail Portlet on page.');
 }
}
function master_debug(str)
{
if (window.PTDebugUtil)
 {
 PTDebugUtil.debug(str);
 }
}
</script>
Detail Pagelet

<div style="padding:10px;" align="center">
<p>Color swatch
<div style="width:100px;height:100px;border:2px solid
black;padding:2px;"id="detail-swatch"></div>
<script>
function detail_update()
{
var color = PTPortlet.getSessionPref('masterColor');
detail_debug('Detail Portlet received value="' + color + '" for
PTPortlet.getSessionPref(\'masterColor\')');

var swatch = document.getElementById('detail-swatch');
if (swatch)
 {
 swatch.innerHTML = '<div style="background-color:' + color +
';width:100%;height:100%;"></div>';
 }
else
 {
 detail_debug('Detail Portlet cannot find \'detail-swatch\' DIV
element.');
 }
}

function detail_debug(str)
{
if (window.PTDebugUtil)
 {
 PTDebugUtil.debug(str);
 }
}
</script>

Pagelet Caching

Oracle WebCenter Ensemble Pagelet Development 2-39

2.4 Pagelet Caching
Caching is the functionality that allows Oracle WebCenter Ensemble to request
pagelet content, save the content, and return the saved content to users when
appropriate. The importance of caching cannot be overstated.

Efficient caching makes every web application faster and less expensive. The only time
content should not be cached is if the data must be continuously updated. If every
pagelet had to be freshly generated for each request, performance could become
unacceptably slow. Oracle WebCenter Ensemble relies on caching to improve
performance. pagelet content is cached and returned when later requests match the
cache’s existing settings.

Caching is indexed on the settings sent by the pagelet. When the Oracle WebCenter
Ensemble proxy server processes a request for a page, it looks individually at each
pagelet on the page and checks it against the cache. The process can be summarized as
follows:

1. The proxy server assembles a cache key used to uniquely identify each pagelet in
the cache.

2. The proxy server checks the cache for a matching cache key entry:

■ If the proxy erver finds a match that is not expired, it returns the content in the
cache and does not make a request to the external resource.

■ If there is no matching cache key for the pagelet or if the cache key has
expired, the proxy server makes a request to the external resource. If the
matching cache entry uses ETag or Last-Modified caching, it also sends the
appropriate caching header to the external resource in the request.

3. The response comes back from the external resource; the proxy server checks for
caching headers:

■ If the headers include an Expires header, the proxy server stores the new
pagelet content (along with a new expiration date) in its cache.

■ If the headers use ETag or Last-Modified caching, the existing cache entry
might be revalidated (in the case of ‘304-Not Modified’) or new pagelet
content might be stored in the cache.

Oracle WebCenter Ensemble caches proxied content to complement, not replace,
browser caching. Public content is accessible to multiple users without any
user-specific information (based on HTTP headers). The proxy server calculates the
cache headers sent to the browser to ensure that the content is properly cached on the
client side.

Oracle WebCenter Ensemble caches all text (i.e., nonbinary) content returned by GET
requests. Even if proxy caching is disabled (via PTSpy), pagelet caching still takes
place. Proxied content can be cached by an external proxy server or by the user’s
browser. Beware browser caching of proxied content; it is a good idea to clear your
browser cache often during development. An incorrectly set Expires header can cause
browsers to cache proxied content.

The pagelet cache contains sections of finished markup and sections of markup that
require further transformation. Post-cache processing means content can be more
timely and personalized. Adaptive tags enable certain pagelets (for example,
Community banners) to be cached publicly for extended periods of time and yet
contain user specific and page-specific information, as well as the current date and
time.

For details, see the following sections:

Pagelet Caching

2-40 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

■ Section 2.4.1, "About Pagelet Caching Strategies"

■ Section 2.4.2, "Pagelet/Cache Key"

■ Section 2.4.3, "Setting HTTP Caching Headers - Cache-Control"

■ Section 2.4.4, "Setting HTTP Caching Headers - Expires"

■ Section 2.4.5, "Setting HTTP Caching Headers - Last-Modified and ETag"

For a full explanation of HTTP caching, see RFC 2616
(http://www.w3.org/Protocols/rfc2616/rfc2616.html).

2.4.1 About Pagelet Caching Strategies
Pagelet caching is controlled both by the programmer and by the administrator who
registers the pagelet in Oracle WebCenter Ensemble. Each and every pagelet needs a
tailored caching strategy to fit its specific functionality.

A pagelet's caching strategy should take all possibilities into account and use the most
efficient combination for its specific functionality. A pagelet that takes too long to
generate can degrade the performance of every page that displays it. These questions
can help you determine the appropriate caching strategy:

■ Will the content accessed by the pagelet change? How often?

■ How time-critical is the content?

■ What processes are involved in producing pagelet content? How expensive are
they in terms of server time and impact?

■ Is the pagelet the only client with access to the back-end application?

■ Is the content different for specific users?

■ Can users share cached content?

Determine how often pagelet content must be updated, dependent on data update
frequency and business needs. Find the longest time interval between data refreshes
that will not negatively affect the validity of the content or the business goals of the
pagelet.

Since caching is indexed on the settings used by a pagelet, new content is always
requested when settings change (assuming that no cached content exists for that
combination of settings).

There are two common situations in which you might mistakenly decide that a pagelet
cannot be cached:

■ In-place refresh: You might think that caching would "break" a pagelet that uses
in-place refresh because the pagelet would be redirected to the original (cached)
content. This can be avoided if a unique setting is updated on every action that
causes a redraw, effectively "flushing" the cache. (In-place refresh renews the
pagelet display by causing the browser to refresh page at a set interval.)

■ Invisible preferences: If the content of the pagelet is dependent on something
other than preferences (for example, the pagelet keys off the User ID to display a
name or uses portal security to filter a list), caching can still be implemented with
"invisible preferences" (in this case, User ID). As with in-place refresh, invisible
preferences are set solely for the purpose of creating a different cache entry. They
are set programmatically, without the user’s knowledge.

For details on implementing caching, see the following sections:

■ Section 2.4.2, "Pagelet/Cache Key"

Pagelet Caching

Oracle WebCenter Ensemble Pagelet Development 2-41

■ Section 2.4.3, "Setting HTTP Caching Headers - Cache-Control"

■ Section 2.4.4, "Setting HTTP Caching Headers - Expires"

■ Section 2.4.5, "Setting HTTP Caching Headers - Last-Modified and ETag"

2.4.2 Pagelet/Cache Key
The cache key for a pagelet entry in Oracle WebCenter Ensemble consists of the values
in the table below.

The data below is deliberately not included in the cache key:

2.4.3 Setting HTTP Caching Headers - Cache-Control
The Cache-Control header can be used to expire content immediately or disable
caching altogether. The value of this header determines whether cached pagelet
content can be shared among different users.

The Cache-Control header can contain the following values:

Type Value

Pagelet ID The unique ID for the pagelet, defined by Oracle WebCenter Ensemble.

Content Mode The content mode of the pagelet.

Settings Any settings stored in Oracle WebCenter Ensemble.

User Interface The type of device used to access the pagelet.

LocaleID The ID for the locale associated with the current user, defined by Oracle
WebCenter Ensemble.

UserID The unique ID for the current user. Included only if private caching is
used.

URI The URL to the current page on the external resource.

Last-modified date The last modified date of the pagelet.

Type Value

StyleSheetURI Stylesheets are applied at runtime, depending on the user preference. Pagelet
content does not depend on the particular stylesheet that the user has selected.

HostpageURI All parts of the Hostpage URI value are covered separately. The User ID is
added if private caching is used.

Value Description

public Allows any cached content to be shared across users with identical sets
of preferences using the same Oracle WebCenter Ensemble server. This
value should be used whenever possible.

private Tells Oracle WebCenter Ensemble not to share cached content. The
User ID is added to the cache key so that a separate copy is retained in
the cache for each individual user. This value should only be used to
protect sensitive information, for example, an e-mail inbox portlet.
(User settings can also make public content effectively private.)

max-age=[seconds] Specifies the maximum amount of time that an object is considered
fresh. Similar to the Expires header, this directive allows more
flexibility. [seconds] is the number of seconds from the time of the
request that the object should remain fresh.

Pagelet Caching

2-42 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

In JSP, use the setHeader method to configure the Cache-Control header:

<%
response.setHeader("Cache-Control","public");
%>

The JSP example below expires the content immediately using the maximum age
header.

<%
response.setHeader("Cache-Control","max-age=0");
%>

In .NET, the Cache-Control header is accessed through the
System.Web.HttpCachePolicy class. To set the header to public, private or
no-cache, use the Response.Cache.SetCacheability method.

Response.Cache.SetCacheability(HttpCacheability.Public);

To set a maximum age for content in .NET, use the Response.Cache.SetMaxAge
method. The example below expires the content immediately.

TimeSpan ts = new TimeSpan(0,0,0);
Response.Cache.SetMaxAge(ts);

To set the header to must-revalidate in .NET, use the
Response.Cache.SetRevalidation method.

Response.Cache.SetRevalidation(HttpCacheRevalidation.AllCaches);

2.4.4 Setting HTTP Caching Headers - Expires
The Expires header specifies when content will expire, or how long content is "fresh."
After this time, Oracle WebCenter Ensemble will always check back with the resource
to see if the content has changed.

Most web servers allow setting an absolute time to expire, a time based on the last
time that the client saw the object (last access time), or a time based on the last time the
document changed on your server (last modification time).In JSP, setting caching to
forever using the Expires header is as simple as using the code that follows:

<%
response.setDateHeader("Expires",Long.MAX_VALUE);
%>

The .NET System.Web.HttpCachePolicy class provides a range of methods to
handle caching, but it can also be used to set HTTP headers explicitly (see MSDN for
API documentation:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/cpref/html/frlrfsystemwebhttpcachepolicyclasssetexpirestopic.as

must-revalidate Tells the cache that it must obey any freshness information it receives
about an object. HTTP allows caches to take liberties with the freshness
of objects; specifying this header tells the cache to strictly follow your
rules.

no-cache Disables caching completely and overrides Oracle WebCenter
Ensemble settings. Neither the client nor Oracle WebCenter Ensemble
responds to subsequent requests with a cached version.

Value Description

Pagelet Internationalization

Oracle WebCenter Ensemble Pagelet Development 2-43

p). The Response.Cache.SetExpires method allows you to set the Expires header
in a number of ways. The following code snippet sets it to forever:

Response.Cache.SetExpires(DateTime.Now.AddYears(100000000));

In .NET, the Web Form page (.aspx) can also use standard ASP methods to set HTTP
headers.

2.4.5 Setting HTTP Caching Headers - Last-Modified and ETag
The Last-Modified response header specifies the last time a change was made in the
returned content, in the form of a time stamp. ETag values are unique identifiers
generated by the server and changed every time the object is modified. Either can be
used to determine if cached content is up to date.

When an object stored in the cache includes a Last-Modified or ETag header, Oracle
WebCenter Ensemble can use this value to ask the resource if the object has changed
since the last time it was seen.

■ Oracle WebCenter Ensemble sends the value from the Last-Modified header to the
resource in the If-Modified-Since Request header.

■ The resource sends the ETag header to Oracle WebCenter Ensemble with pagelet
content. When another request is made for the same content, Oracle WebCenter
Ensemble sends the value in the ETag header back to the resource in the
If-None-Match header.

The pagelet code on the resource uses the header value to determine if the content
being requested has changed since the last request, and responds with either fresh
content or a 304 Not Modified Response. If Oracle WebCenter Ensemble receives the
latter, it displays the cached content.JSP pagelets can access the value in the
If-Modified-Since request header using the
getLastModified(HttpServletRequest req) method provided by the Java
class HttpServlet.In .NET, the Response.Cache.SetLastModified method allows
you to set the Last-Modified header to the date of your choice. Alternately, the
SetLastModifiedFromFileDependencies method sets the header based on the
time stamps of the handler’s file dependencies.

Response.Cache.SetLastModified(DateTime.Now);

To use ETag in .NET, use the Response.Cache.SetETag method to pass in the
string to be used as the ETag. The SetETagFromFileDependencies method creates
an ETag by combining the file names and last modified timestamps for all files on
which the handler is dependent.

2.5 Pagelet Internationalization
These tips and best practices apply to all pagelets that will be translated into multiple
languages.

Note: Never use Expires = 0 to prevent caching. The Expires header
is sent by the external resource and passed through to the browser by
Oracle WebCenter Ensemble. Unless the time on all three machines is
synchronized, an Expires=0 header can mistakenly return cached
content. To solve this problem, set the Expires header to a fixed date
that is definitely in the past.

Pagelet Configuration in Oracle WebCenter Ensemble

2-44 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

■ Identify ALL culturally dependent data. Text messages are the most obvious example
of locale-specific data, but there are many other parts of a service that can vary with
language or location. These include: images, UI labels and buttons, icons, sounds, graphics,
dates, times, measurements, honorifics and titles, phone numbers, and postal addresses.

■ Do not use compound messages (concatenated strings) to create text. Compound
messages contain variable data. For example, in the text string "You have XX credits," only
the integer "XX" will vary. However, the position of the integer in the sentence is not the
same in all languages. If the message is coded as a concatenated string, it cannot be
translated without rewriting the code.

■ Use the IDK to avoid encoding issues. All content is stored in the database in Unicode.
The Oracle WebCenter Interaction Development Kit (IDK) handles encoding for
international characters.

For details on implementing internationalization, see Section 2.2.2.2, "Using
Internationalized Strings in Adaptive Tags".

2.6 Pagelet Configuration in Oracle WebCenter Ensemble
To deploy a pagelet in Oracle WebCenter Ensemble, you must configure Resource and
Pagelet objects.

To deploy a pagelet, you must create and configure the following objects:

■ Resource (producer): For details, see Section 2.6.1, "Configuring an Oracle
WebCenter Ensemble Resource".

■ Pagelet: For details, see Section 2.6.2, "Configuring an Oracle WebCenter Ensemble
Pagelet".

■ Resource (consumer): For details, see Section 2.6.1, "Configuring an Oracle
WebCenter Ensemble Resource".

You must also configure security settings for Oracle WebCenter Ensemble objects. For
details, see Section 2.6.5, "About Oracle WebCenter Ensemble Security".

To insert pagelets into a page, use one of the following methods:

■ To insert a pagelet into a proxied page, see Section 2.2.2.4.1, "Inserting Pagelets
Using Oracle WebCenter Ensemble Adaptive Tags".

■ To insert a pagelet into a non-proxied page, see Section 2.6.4, "Inserting Pagelets
into Non-Proxied Pages".

2.6.1 Configuring an Oracle WebCenter Ensemble Resource
Producer and consumer resources are both configured through the same editor.

■ The producer resource defines the location of the web application that implements
the pagelet code and how it is accessed. In most cases, a single producer resource
is used for multiple pagelets.

■ The consumer resource defines the location of the web application that displays
the pagelet code and how it is accessed.

To create a new resource, go to the Applications section of the Ensemble Console,
click the Resources sub-tab, and click Create New.

To edit an existing resource, navigate to the Resources sub-tab and click the resource
name.

The resource configuration editor includes the tabs detailed below.

Pagelet Configuration in Oracle WebCenter Ensemble

Oracle WebCenter Ensemble Pagelet Development 2-45

General

The following settings are configured on the General tab:

■ Resource Attributes: Name: The resource name displayed in other sections of the
Oracle WebCenter Ensemble Console. This name must be unique. The Description
is optional.

■ Resource Attributes: Owner: Set to the user who created the resource and can
only be changed by an administrator.

■ Timeout: This setting applies to the resource and any associated pagelets. By
default, the timeout is set to 30 seconds, but can be extended if necessary.

■ Status: This option allows you to disable a resource if it is not accessible.

■ Is Login resource: This option defines the resource as a login resource, used solely
to authenticate users. Login resources are not protected by policies, because they
must be accessible by all users at all times. For details on using login resources, see
Chapter 3, "Oracle WebCenter Ensemble Login Customization".

■ Policy Attributes: Name: The name of the policy set associated with the resource.
This name defaults to the name of the resource, but can be modified.

■ Policy Attributes: Owner: Set to the user who created the resource and can only
be changed by an administrator.

Connections

The Connections tab allows you to define the Internal URL prefix that the Oracle
WebCenter Ensemble proxy uses to access the application, and an External URL
prefix to be exposed to users. The external URL prefix may be absolute or relative to
the Oracle WebCenter Ensemble proxy. If the URL is absolute, it must either point
directly to the Oracle WebCenter Ensemble proxy or, be resolvable to the Oracle
WebCenter Ensemble proxy through DNS. You may configure multiple external URL
prefixes to map to the internal URL prefix.

The Enable URL Rewriting option allows you to choose whether or not links within a
proxied application will be transformed. If the internal and external URL prefixes are
identical or all application links are relative, disabling URL rewriting will improve
performance.

Credential Mapping

The Credential Mapping tab allows you to configure a resource to log in a user to the
back-end application automatically by supplying the required authentication
credentials. To disable Resource Authentication, select Disabled.

This page can be used to configure HTML Form-based authentication or Basic
authentication using static login credentials, user profile information, or the credential
vault. For detailed instructions, see the online help and theOracle Fusion Middleware
Administrator's Guide for Oracle WebCenter Ensemble "Chapter 6, "Credential Mapping."

Headers

This tab allows you to choose which request headers and response headers are passed
on to the back-end application. For example, if you are using delegated authentication,
the SSO system might insert headers that should not be passed to the back-end
application.

CSP

CSP is the protocol used by Oracle WebCenter Interaction to communicate with
external resources. The CSP tab allows you to specify whether or not a login token

Pagelet Configuration in Oracle WebCenter Ensemble

2-46 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

will be sent to the back-end application. The login token is necessary to use the Oracle
WebCenter Interaction (IDK) Remote APIs. For details, see the Oracle Fusion
Middleware Web Service Developer's Guide for Oracle WebCenter Interaction.

This page also allows you to specify session preferences that can be set or obtained
from the application and which user information will be sent to the application. For
details on session preferences, see Section 2.3, "Session Preferences"

Roles

This tab allows you to specify the Roles used by the application. The policy set
associated with the resource maps users and groups to these roles via policies and
policy rules. For details, see Section 2.6.5.1, "Using Oracle WebCenter Ensemble Roles
in Pagelets and Proxied Applications".

SSO Log Out Settings

This tab allows you to enter an URL pattern to trigger Oracle WebCenter Ensemble
SSO log out functionality. A user can be logged in to multiple applications through
Oracle WebCenter Ensemble via a single sign on (SSO) system. When a user logs out
of an application, Oracle WebCenter Ensemble can prompt the user to log out of that
application or all applications. To enable SSO log out for a resource, enter the pattern
of the logout URL in the Internal log out URL patterns list. You may enter multiple
patterns.

For more information on resource configuration, see the online help and the Oracle
Fusion Middleware Administrator's Guide for Oracle WebCenter Ensemble "Chapter 4:
Proxy Resources".

2.6.2 Configuring an Oracle WebCenter Ensemble Pagelet
The pagelet object defines the location of the pagelet file and any associated
parameters.

To create a new pagelet, go to the Applications section of the Oracle WebCenter
Ensemble Console, click the Pagelets sub-tab, and click Create New.

To edit an existing pagelet, navigate to the Pagelets sub-tab and click the pagelet
name. Pagelets can be created and edited by administrators, managers, and resource
owners. Resource owners can only create or edit pagelets if they own the associated
resource.

The pagelet configuration editor includes the tabs detailed below.

General

The following settings are configured on the General tab:

■ Name: The pagelet name displayed in other sections of the Oracle WebCenter
Ensemble Console. This name must be unique. The Description is optional.

■ Parent resource: The producer resource associated with the pagelet. Each pagelet
must be associated with a resource. Multiple pagelets can be associated with the
same resource.

■ Library: A user-defined way to group pagelets. To add the pagelet to a pagelet
library, type the name of the pagelet library. If the pagelet library does not already
exist, one will be created.

■ Sample code: This field displays the XML declaration for the pagelet
(pt.ensemble.inject) that can be used to insert the pagelet in a consumer resource
page. This field is empty until the pagelet is saved. For information on using this

Pagelet Configuration in Oracle WebCenter Ensemble

Oracle WebCenter Ensemble Pagelet Development 2-47

code in a pagelet, see Section 2.2.2.4.1, "Inserting Pagelets Using Oracle WebCenter
Ensemble Adaptive Tags".

■ Publish documentation: This option allows you to choose whether the pagelet is
included in the Developer Pagelet Catalog.

■ Add inline refresh to all URLs: This option allows you to enable automatic inline
refresh for the pagelet and related URLs. If you select this option, make sure to
specify an appropriate Refresh interval.

Location

The pagelet location is composed of the Internal URL prefix of the associated resource
and an URL suffix that points to the pagelet application hosted by that resource. The
internal URL prefix is defined by the associated resource; to modify it, edit the
resource.

Parameters

The Parameters tab provide access to configuration settings for data transport.

The Payload schema URL allows you to apply an XML schema to the pagelet's
payload. Oracle WebCenter Ensemble only supplies the URL to the pagelet; it is up to
the pagelet to use the schema to validate the XML payload. For information on using
payloads, see the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter
Ensemble "Chapter 9, "Pagelets".

Parameters are name/value pairs (attributes) that provide information to the pagelet.
This page allows to set a name and type for each parameter and select whether the
parameter is mandatory.

The Pagelet Parameter Transport Type allows you to port Oracle WebCenter
Interaction portlets that use Administrator, CommunityPortlet, or Community level
preference settings to work as pagelets within Oracle WebCenter Ensemble. To send
attributes to a portlet as an Oracle WebCenter Interaction setting type, choose the
transport type associated with the setting type and enter the preference names in the
parameters list. By default, attributes are send in the HTTP request header. Pagelet
parameter values are defined in the pagelet injection code that is added to a consumer
page. For information on using parameters in a pagelet, see the Oracle Fusion
Middleware Administrator's Guide for Oracle WebCenter Ensemble "Chapter 9, "Pagelets".

Metadata

Metadata can be used to store additional information about a pagelet. Metadata fields
are viewable in the pagelet documentation.

Consumers

By default, all resources are allowed to consume a pagelet. This tab allows you to
restrict which resources are allowed to consume the pagelet. To limit access to the
pagelet, clear the All consumers allowed check box and add any resources that should
have access to the pagelet to the Consumers list.

For more information on pagelet configuration, see the Oracle WebCenter
Ensemble online help and the Oracle Fusion Middleware Administrator's Guide for Oracle
WebCenter Ensemble "Chapter 9, "Pagelets". For details on configuring pagelets and
portlets in Oracle WebCenter Interaction, see the Oracle WebCenter Interaction online
help and the Oracle Fusion Middleware Web Service Developer's Guide for Oracle
WebCenter Interaction

Pagelet Configuration in Oracle WebCenter Ensemble

2-48 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

2.6.3 Inserting Pagelets Using Oracle WebCenter Ensemble Adaptive Tags
The pt:ensemble.inject tag injects the output of the specified pagelet into the
page.

The pagelet is referenced by the fully qualified name of the pagelet as defined in
Oracle WebCenter Ensemble, in the form libraryname:pageletname. Any
attributes not prefixed with "pt:" will be passed on to the pagelet. Any HTML content
inside the pagelet tag will be passed to the pagelet as an XML payload.

<pt:ensemble.inject pt:name="mylibrary:mypagelet" pagelet-attribute="A pagelet
attribute">
<?xml version="1.0" encoding="utf-8"?>
<doc>This is an XML payload.</doc>
</pt:ensemble.inject>
For an example of using this code, seeSection 2.1.1, "Creating a Custom Pagelet with
the Java Oracle WebCenter Interaction Development Kit (IDK) Proxy API" or
Section 2.1.2, "Creating a Custom Pagelet with the .NET Oracle WebCenter Interaction
Development Kit (IDK) Proxy API".You can also insert pagelets into non-proxied
pages; for details, see Section 2.6.4, "Inserting Pagelets into Non-Proxied Pages".

2.6.4 Inserting Pagelets into Non-Proxied Pages
You can also insert pagelets into non-proxied pages using a simple javascript function.

To activate this feature, add the following HTML snippet in the <HEAD> section of
the page.

<script type="text/javascript" src="http://proxy:port/inject/v2/csapi">
</script>
This script injects all CSAPI and pagelet inject functions into the page to display the
pagelet. One of the sections injected is the following function:

function injectpagelet(library, name, injectmethod, payload, arguments)
{
 ...
}
This function injects an Oracle WebCenter Ensemble pagelet as a widget into the
parent page. The method interface is as follows:

■ library: The library name of the pagelet to inject. This argument is a string that
accepts spaces like 'library name'.

■ name: The name of the pagelet to inject. This argument is a string that accepts
spaces like 'pagelet name'.

■ injectmethod: Specifies the manner of injecting the pagelet, if set to 'iframe', then
an iframe is inserted where the call occurs, otherwise inline HTML will be used. If
the inject method is specified as 'iframe', then a set of IFrame options can be sent
along. These options control how the iframe will be displayed. The following
iframe options are supported: width, height, frameborder, align, longdesc,
marginheight, marginwidth, scrolling, stylem class. The parameters are given in
the form of param=value. The separator between parameters are spaces. For
example, 'iframe align=right frameborder=1 width=100%
height=200 scrolling=yes class=myclass'.

■ payload: The XML payload to send along with the pagelet request

■ arguments: The pagelet arguments to send along with the pagelet request. Should
be given in the form of:
'param1=value1¶m2=value2¶m3=value3'.

Pagelet Configuration in Oracle WebCenter Ensemble

Oracle WebCenter Ensemble Pagelet Development 2-49

The script also creates a new <div> with a unique name that includes a reference to the
injectpagelet function. Several examples are shown below:

<div>
 <script type="text/javascript">
 injectpagelet('library', 'name');
 </script>
</div>
<div>
 <script type="text/javascript">
 injectpagelet('library', 'name', 'iframe', 'payload',
'param1=value1¶m2=value2¶m3=value3');
 </script>
</div>

<div>
 <script type="text/javascript">
 injectpagelet('library', 'name', 'iframe width=100% height=200', 'payload');
 </script>
</div>

2.6.4.1 Using Automatic Resizing with IFrames
The pagelet inject function can automatically resize the IFrame that encapsulates
pagelet content. The resizing is done so that the IFrame stretches to fit the content
within. To use this feature, the ifwidth and ifheight parameters must be set to ’auto’ as
shown in the example below:

<script type="text/javascript">
injectpagelet('library', 'pagelet', 'iframe ifheight=auto ifwidth=auto');
</script>
In addition, this feature relies on an external page on the same domain as the
consumer page. This page is included into the pagelet IFrame as an internal hidden
IFrame. This page collects the sizing information and passes it on to the parent
consumer page. This page must be deployed in the same directory as the consumer
page. An example is shown below.

<html>
 <head>
 <title>Resizing Page</title>
 <script type="text/javascript">
function onLoad() {
var params = window.location.search.substring(1).split('&');
var height;
var width;
var iframe;

for(var i = 0, l = params.length; i < l; ++i) {
var parts = params[i].split('=');
switch(parts[0]) {
case 'height':
height = parseInt(parts[1]);
break;
case 'width':
width = parseInt(parts[1]);
break;
case 'iframe':
iframe = parts[1];
break;
}
}

Pagelet Configuration in Oracle WebCenter Ensemble

2-50 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

window.top.updateIFrame(iframe, height, width);
}

if (window.addEventListener) {
window.addEventListener("load", onLoad, false)
} else if (window.attachEvent) {
window.detachEvent("onload", onLoad)
window.attachEvent("onload", onLoad)
} else {
window.onload=onLoad
}
 </script>
 </head>
 <body>
 </body>
</html>
To insert a pagelet into a proxied page, use the pt:inject tag; for details, see
Section 2.2.2.4.1, "Inserting Pagelets Using Oracle WebCenter Ensemble Adaptive
Tags". You can also inject pagelets using REST; for details, see Chapter 4, "Oracle
WebCenter Ensemble REST APIs".

2.6.5 About Oracle WebCenter Ensemble Security
There are two factors that control access to a resource in Oracle WebCenter Ensemble:
authentication and policies.

Oracle WebCenter Ensemble manages authentication with each proxied application
based on the settings defined for the associated resource.

You can define the credential mappings for each resource. For details on configuring
credential mappings, see the Oracle Fusion Middleware Administrator's Guide for Oracle
WebCenter Ensemble and the online help. You can create custom mappings to external
credential stores. For details, see Section 2.6.5.2, "Creating a Custom Credential
Mapping".

Each resource is protected by a policy set, which describes the conditions under which
a user may be granted access to the resource, and the roles associated with those
conditions. For details on using roles, see Section 2.6.5.1, "Using Oracle WebCenter
Ensemble Roles in Pagelets and Proxied Applications".

2.6.5.1 Using Oracle WebCenter Ensemble Roles in Pagelets and Proxied
Applications
Pagelets and proxied applications can use Oracle WebCenter Ensemble roles to control
access to content and functionality.

Each incoming request to Oracle WebCenter Ensemble is evaluated against the
policies for the requested resource. If the user is found to be in one or more roles,
access is granted and the set of matching roles is passed on to the proxied application,
allowing the application to determine the correct access level for the user. This is
called Role-Based Access Control (RBAC).Roles are sent in an HTTP header and can
be accessed using the Proxy IDK and adaptive tags.Adaptive tags can be included in
the markup returned by any proxied page, including pagelets. Using the attributes
defined in the tag, Oracle WebCenter Ensemble transforms the XML and replaces it
with standard HTML to be displayed in a browser. For details, see Section 2.2.2.4,
"Oracle WebCenter Ensemble Adaptive Tag Library (pt:ensemble)".

■ The pt:ensemble.rolelist tag creates a collection of the user's roles in the
current context and stores it in memory using the name in the pt:key attribute.

Pagelet Configuration in Oracle WebCenter Ensemble

Oracle WebCenter Ensemble Pagelet Development 2-51

Each item in the collection is a variable containing the role name. The example
below displays a list of the user's roles by iterating over the collection using the
pt:logic.foreach tag.

<pt:ensemble.rolelist pt:key='roles'/>
<pt:logic.foreach pt:data='roles' pt:var='role'>
<pt:logic.value pt:value='$role'/>
 <pt:logic.separator>
</pt:logic.separator>
</pt:logic.foreach>

■ The pt:ensemble.roleexpr tag evaluates an expression and stores the result
as a boolean in memory using the name in the pt:key attribute. The example below
checks if the user has the Admin role and displays a message based on the result
using the pt:logic.if tag.

<pt:ensemble.roleexpr pt:expr='hasRole Admin' pt:key='hasrole'/>
<pt:logic.if pt:expr='$hasrole'>
 <pt:logic.iftrue>
 This user has the Admin role.
 </pt:logic.iftrue>
 <pt:logic.iffalse>
 Warning: This user DOES NOT have the Admin role.
 </pt:logic.iffalse>
</pt:logic.if>

The IDK bea.alui.proxy.IProxyUser interface also allows you to get a list of the
user's roles in the current context, or determine whether the user has a specific role.

■ The IProxyUser.getRoles method returns an iterator of the user's roles as
strings.

■ The IProxyUser.isUserInRole method determines whether the user is in the
role passed in the role parameter and returns true if the user has the role (false
otherwise).

■ The IProxyUser.isAnonymous method determines whether the user is an
Anonymous user.

■ The IProxyUser.isUserInRole method determines whether the user is in the
role passed in the role parameter and returns true if the user has the role (false
otherwise).

The simplified example below (roleconsumer.jsp) retrieves role information for the
current user. The associated Oracle WebCenter Ensemble resource has three roles
defined: AdminRole, MgrRole, and UserRole. (The associated policy set assigns these
roles to groups or users.) In this example, the associated Oracle WebCenter Ensemble
pagelet is named 'rolePagelet'. For more details on the Oracle WeCenter Interaction
Development Kit (IDK) proxy API, see the API documentation.

<%@ page language='java' import='com.plumtree.remote.portlet.*, java.util.Date,
java.util.*, com.bea.alui.proxy.*' %>

You refreshed at <%= new Date().toString()%>

<%
response.setHeader('Cache-Control','no-cache'); //HTTP 1.1
response.setHeader('Pragma','no-cache'); //HTTP 1.0
response.setDateHeader ('Expires', 0); //prevents caching at the proxy server

IProxyContext ctx =
ProxyContextFactory.getInstance().createProxyContext(request,response);
IProxyRequest req = ctx.getProxyRequest();
IProxyResponse res = ctx.getProxyResponse();

Pagelet Configuration in Oracle WebCenter Ensemble

2-52 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

Enumeration roles = req.getUser().getRoles();
boolean isAdmin = req.getUser().isUserInRole('AdminRole');
boolean isMgr = req.getUser().isUserInRole('MgrRole');
boolean isUser = req.getUser().isUserInRole('UserRole')
%>

<html>
<head>
<meta http-equiv='Content-Type' content='text/html; charset=ISO-8859-1'>
<META HTTP-EQUIV='PRAGMA' CONTENT='NO-CACHE'>
<title>Preferences</title>
</head>

<body>

 CONSUMER SETTINGS

<% while (roles.hasMoreElements()) {
 String role = (String)roles.nextElement(); %>

User has role: <%=role%>

<% } %>

User is admin? <%=isAdmin%>

User is manager? <%=isMgr%>

User is standard user? <%=isUser%>

<pt:ensemble.inject xmlns:pt='http://www.plumtree.com/xmlschemas/ptui/'
pt:name='idkLib:rolePagelet'/>

</body>
</html>

2.6.5.2 Creating a Custom Credential Mapping
Oracle WebCenter Ensemble provides an API for creating custom mappings to
external credential stores, allowing you to authenticate users against a custom
credential source.

The IVendorCredentialMapper interface defines the Oracle WebCenter Ensemble
interface for objects capable of obtaining an appropriate set of credentials needed for
secondary authentication for a particular user in an application. To implement this
interface, follow the directions below.

1. Create a java class that implements
thecom.plumtree.runner.credentialmapper.IVendorCredentialMapp
er interface.

2. Map the getCredential and setCredential methods of this interface to your
credential vault. The simplified example below uses an internal class called
VConnector and calls
VConnector.getInstance().getCrededentialsForDomain. Note: This
step is vendor-specific. It will probably include a network hop, since the credential
store will most likely reside on another server. You must give the mapper a
unique name, and localized ones if necessary. See the IVendorCredentialMapper
API documentation for all required names.

3. Compile the class into a jar. The build process must link to common.jar, included
with the Oracle WebCenter Ensemble distribution.

4. To load the custom vault into Oracle WebCenter Ensemble, copy the jar file to the
Oracle WebCenter Ensemble server and edit the configuration.xml file. Add the
following component, and include the path to the custom jar file in the <value>
element:

Pagelet Configuration in Oracle WebCenter Ensemble

Oracle WebCenter Ensemble Pagelet Development 2-53

<component name="runner:credentialproviders"
type="http://www.plumtree.com/config/component/type/credentialproviders">
 <setting name="CredentialVaultClassPath">
 <value xsi:type="xsd:string">c:/jarfolder/jarname.jar</value>
 </setting>
 <clients>
 <client name="runnercontext" />
 </clients>
</component>

If the Oracle WebCenter Ensemble proxy and adminui run on different servers,
the jar file must be copied to both servers, and the configuration.xml file on both
servers must be edited.

5. Restart the Oracle WebCenter Ensemble server (both proxy and adminui if they
are on separate servers). The custom credential vault should show up in the list of
credential sources on the Credential Mapping page of the Resource editor.

The example below is simplified for illustration purposes.

package com.oracle.credentialvault;

import com.oracle.connector.CredentialsSet;
import com.oracle.connector.VConnector;
import com.plumtree.runner.credentialmapper.Credential;
import com.plumtree.runner.credentialmapper.IVendorCredentialMapper;

public class OracleCredentialVault implements IVendorCredentialMapper {

 /*
 * Ensemble will pass credential types as following:
 * Runner_*, where * is what the credential value type associated with this
login form in the Ensemble adminui.
 * For example, if the credential value type is 'username' then "Runner_
username" will be passed to the mapper.
 */
 public Credential getCredential(String initiator, String credType) {
 System.out.println("OracleCredentialVault::getCredential, initiator: " +
initiator + ", credType: " + credType);

 /*
 * Since this vault stores credentials per user and domain, we need to
devise a scheme to
 * map Ensemble's credential type to a domain. One way to do this is to
specify the credential
 * type as something like: "domain_type", which would translate to
credTypes like:
 * Runner_domain.com_username and Runner_domain.com_password
 */

 String username = initiator.toLowerCase(); // lets assume that the vault
stores all usernames in lowercase
 String domain = "oracle.com"; //getDomain(credType); // lets assume that
the vault stores all domains in lowercase
 String type = credType; //getType(credType);

 CredentialsSet credSet =
VConnector.getInstance().getCrededentialsForDomain(username, domain);
 if(credSet != null) {
 System.out.println("OracleCredentialVault::getCredential, found vault
set: " + credSet.toString() + ", returning type = " + type);

Pagelet Configuration in Oracle WebCenter Ensemble

2-54 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

 return new Credential(credSet.getCredential(type));
 } else {
 System.out.println("OracleCredentialVault::getCredential, found null
vault set");
 return null;
 }

 }

 public String getDescription(String userLocale) {
 return "Test mapper that mimics a mapper between Ensemble and a credential
vault that associates credentials with a username/domain relationship";
 }

 public String getName() {
 return "OracleCredentialVault";
 }

 public String getName(String userLocale) {
 return "OracleCredentialVault";
 }

 public String getVendorName(String userLocale) {
 return "Oracle";
 }

 public boolean setCredential(String initiator, Credential credential, String
credType) {
 System.out.println("OracleCredentialVault::setCredential, initiator: " +
initiator + ", credType: " + credType + ", Credential: " +
credential.getCredentialValue());

 String username = initiator.toLowerCase(); // lets assume that the vault
stores all usernames in lowercase
 String domain = "oracle.com"; //getDomain(credType); // lets assume that
the vault stores all domains in lowercase
 String type = credType; //getType(credType);

 System.out.println("OracleCredentialVault::setCredential setting username:
" + credential.getCredentialValue());
 CredentialsSet userCredSet =
VConnector.getInstance().getCrededentialsForDomain(username, domain);
 userCredSet.setCrededential(type, credential.getCredentialValue());
 VConnector.getInstance().setCrededentialsForDomain(username, domain,
userCredSet);
 return true;

 }

 public boolean supportsCredentialsEditing() {
 // We can set new credentials using this vault
 return true;
 }

 /*
 private String getDomain(String credType) {
 int dstart = credType.indexOf("_");
 int dend = credType.indexOf("_", dstart+1);
 String domain = credType.substring(dstart+1, dend);

Pagelet Configuration in Oracle WebCenter Ensemble

Oracle WebCenter Ensemble Pagelet Development 2-55

 System.out.println("TestMapper::getDomain, reading domain as: " + domain);
 return domain;
 }
 */

 /*
 private String getType(String credType) {
 int dstart = credType.indexOf("_");
 dstart = credType.indexOf("_", dstart+1);
 String type = credType.substring(dstart+1, credType.length());
 System.out.println("TestMapper::getType, reading type as: " + type);
 return type;
 }
 */

 /*
 private String doGetPropertyValue(String principal, String property) {
 return doGetPropertyValue(principal, property, ",", "=");
 }
 */

 /*
 private String doGetPropertyValue(String principal, String property, String
propDelim, String valueDelim) {
 int propertyindex =
principal.toLowerCase().indexOf(property.toLowerCase());
 String uname = null;
 if(propertyindex != -1) {
 // found a property occurence
 int beginIndex = propertyindex;
 int endIndex =
principal.toLowerCase().indexOf(propDelim.toLowerCase(), beginIndex);

 String prop = null;
 if(endIndex != -1) {
 prop = principal.subSequence(beginIndex,
endIndex).toString().trim();
 } else {
 prop = principal.subSequence(beginIndex,
principal.length()).toString().trim();
 }

 if(prop != null) {
 int valueIndex = prop.toLowerCase().indexOf(valueDelim);
 if(valueIndex != -1) {
 uname = prop.subSequence(valueIndex + valueDelim.length(),
prop.length()).toString().trim();
 }
 }

 }
 return uname;
 }
 */

}

For details on configuring resources to use credential mappings, see the Oracle Fusion
Middleware Administrator's Guide for Oracle WebCenter Ensemble and the online help.

Pagelet Configuration in Oracle WebCenter Ensemble

2-56 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

3

Oracle WebCenter Ensemble Login Customization 3-1

3Oracle WebCenter Ensemble Login
Customization

To display custom pages to the user at different steps during Oracle WebCenter
Ensemble login and logout, you can customize a range of steps in the login process.

You can create custom login, logout, error and interstitial pages and configure Oracle
WebCenter Ensemble to display them at specific points in the login/logout process.
(An interstitial page is a page that appears before the expected content page.) Custom
pages are hosted on a proxied application server, called the login resource. For details,
see the following sections:

■ Section 3.1, "Creating a Custom Oracle WebCenter Ensemble Pre-Login Page"

■ Section 3.2, "Creating a Custom Oracle WebCenter Ensemble Login Page"

■ Section 3.3, "Creating a Custom Oracle WebCenter Ensemble Error Page"

■ Section 3.4, "Creating a Custom Oracle WebCenter Ensemble Post-Login Page"

■ Section 3.5, "Creating a Custom Oracle WebCenter Ensemble Post-Logout Page"

■ Section 3.6, "Configuring Custom Oracle WebCenter Ensemble Login Pages"

■ Section 3.7, "Oracle WebCenter Ensemble Login Headers"

3.1 Creating a Custom Oracle WebCenter Ensemble Pre-Login Page
The pre-login page is an interstitial page displayed before the login form.

The pre-login page could display an important message about availability or new
functionality. The pre-login page can also be used to display a custom message to
users who are part of an experience definition that is blocked from accessing the
requested resource. In the example below, the pre-login page (preinterstitialpage.jsp)
displays a message about server maintenance. This page uses the pt:common.error
tag to display any errors within the page, and the pt:core.html tag to display the
submit button.

<%@page contentType="text/html;charset=UTF-8"%>
<HTML>
<BODY>

<FORM action="./processpreinterstitialpage.jsp" method="POST">
<P>
<TABLE>
<TR><TD>
<CENTER>Maintenance Updates</CENTER>
</TD></TR>

Creating a Custom Oracle WebCenter Ensemble Login Page

3-2 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

<TR><TD>
 This server will be going down for maintenance on 5/28/07 at 6:37PM and 24
seconds.

<pt:common.error>
<P><pt:logic.value pt:value="$#10.ptmsgs_login"/>:
<pt:common.errortext/>
</P>
</pt:common.error>
</TD></TR>
<TR><TD>
<CENTER>
<pt:core.html pt:tag="input" type="submit" value="$#2.ptmsgs_samples"/>
</CENTER>
</TD></TR>
</TABLE>
</FORM>

</BODY>
</HTML>
When the user clicks the submit button, the processing page shown below
(processpreinterstitialpage.jsp) sets the runner_pre_interstitial_complete
header to true, which directs the browser to the login page. It also provides error text
for the error page in case processing fails.

<%@page contentType="text/html;charset=UTF-8"%>
<HTML>
<BODY>
<%
out.println("<P>Ensemble pre-login interstitial page processing login completion
error.
Contact your system administrator.</P>");
response.addHeader("runner_pre_interstitial_complete", "true")
%>
</BODY>
</HTML>

3.2 Creating a Custom Oracle WebCenter Ensemble Login Page
The login page allows you to customize the Oracle WebCenter Ensemble login form
display and functionality.

The pt:ensemble.authsourcedata tag provides a collection of the authentication
sources available for the resource. The data is stored as a collection, and each item in
the collection is a data object containing information about the authentication source
(prefix, name, description) accessible through the data object dot notation
($authsource.name). You can use additional adaptive tags to iterate through the
collection and allow the user to select the appropriate choice, as shown in the example
that follows.

The example below (loginpage.jsp) displays a banner and a login form. The login form
posts back to the page, which sets the appropriate headers to authenticate with the
resource (runner_username, runner_password, runner_authentication_
provider, and runner_portal_authentication_source). This page uses the
pt:ensemble.authsourcedata tag, as well as several other adaptive tags to
handle logic and display. For details on adaptive tags, see Section 2.2.2, "Adaptive
Tags".

<%@ page import="java.net.*"%>
 <%@page contentType="text/html;charset=UTF-8"%>
<%

Creating a Custom Oracle WebCenter Ensemble Login Page

Oracle WebCenter Ensemble Login Customization 3-3

String username = request.getParameter("username");
String password = request.getParameter("password");
if(username != null && password != null)
{
 response.addHeader("runner_username", username);
 response.addHeader("runner_password", password);
}
String authsource = request.getParameter("authsource");
if (authsource != null
{
 response.addHeader("runner_authentication_provider", "portal");
 response.addHeader("runner_portal_authentication_source", authsource);
}
%>
<html>
<head>
<link rel='stylesheet' type='text/css' href='css/main.css'/>
</head>
<body>

<table class="banner" cellpadding="0" cellspacing="0">
<tr>
 <td class="appLogo"></htm:td>
 <td class="liquid"></htm:td>
 </tr>
</table>

<!-- Welcome message: -->
 <pt:logic.value pt:value="$#3.ptmsgs_login"/>

<pt:logic.value pt:value="$#7.ptmsgs_login"/>

<%
String errorValue = request.getHeader("runner_error_last_error_message");
if(errorValue != null)
{
 out.println("
");
 out.println("");
 out.println("<pt:logic.value pt:value=\"$#8.ptmsgs_login\"/>
");
 out.println("");
 out.println("");
 out.println("");
 out.println(errorValue);
 out.println("");
 out.println("");
 out.println("
");
}
%>

<pt:common.error>
<P><pt:logic.value pt:value="$#10.ptmsgs_login"/>:
<pt:common.errortext/>
 </pt:common.error>

<!-- Login form: -->
<FORM name="loginform" action="loginpage.jsp" method="POST">
<table>
<tr><!-- Username -->
 <td align="right">
 <pt:logic.value pt:value="$#0.ptmsgs_login"/>

Creating a Custom Oracle WebCenter Ensemble Login Page

3-4 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

 </td>
 <td align="left">
 <!-- inputs and password inputs are of slightly different length in IE. This
can be fixed with CSS.-->
 <pt:core.html pt:tag="input" type="text" name="username" alt="$#0.ptmsgs_
login" size="30" value="${param["username"]}"/>
 </td> </tr>
<tr><!-- Password -->
 <td align="right">
 <pt:logic.value pt:value="$#1.ptmsgs_login"/>
 </td>
 <td align="left">
 <pt:core.html pt:tag="input" onkeypress="return submitform(event)"
type="password"
name="password" size="30" alt="$#1.ptmsgs_login" value="${param["password"]}"/>
 </td> </tr>
 <!-- Auth sources -->
<pt:ensemble.authsourcedata pt:key="authsources"/>
<pt:logic.collectionlength pt:data="authsources" pt:key="authsourceslength"/>
<pt:logic.intexpr pt:expr="($authsourceslength)>0" pt:key="hasvalues"/>
<pt:logic.if pt:expr="$hasvalues">
<pt:logic.iftrue>
 <pt:logic.intexpr pt:expr="($authsourceslength)>1" pt:key="hasmultvalues"/>
 <pt:logic.if pt:expr="$hasmultvalues">
 <pt:logic.iftrue>
 <tr><!--Authentication Source:-->
 <td align="right" width="40%" colspan="1">
 <pt:logic.value pt:value="$#5.ptmsgs_login"/>
 </td>
 <td align="left" width="40%" colspan="1">
 <select name="authsource" onkeypress="return submitform(event)"
lang="en">
 <pt:logic.foreach pt:data="authsources" pt:var="auth">
 <pt:core.html pt:tag="option" value="$auth.prefix"
alt="$auth.description"> <pt:logic.value pt:value="$auth.name"/></pt:core.html>
 </pt:logic.foreach>
 </select>
 </td> </tr>
</pt:logic.iftrue>
<pt:logic.iffalse>
 <!-- Hidden input for single auth source. -->
 <pt:logic.foreach pt:data="authsources" pt:var="auth">
 <pt:core.html pt:tag="input" type="hidden" name="authsource" alt=""
value="$auth.prefix"/>
 </pt:logic.foreach>
</pt:logic.iffalse>
</pt:logic.if>
</pt:logic.iftrue>
<pt:logic.iffalse><!-- Otherwise no auth sources for this resource.
--></pt:logic.iffalse>
</pt:logic.if>
 <tr><!-- Login -->
 <td align="right"></td>
 <td align="left">
 <pt:core.html pt:tag="input" type="submit" value="$#2.ptmsgs_login"/>
 </td>
</tr></table>
</FORM>

Creating a Custom Oracle WebCenter Ensemble Error Page

Oracle WebCenter Ensemble Login Customization 3-5

<SCRIPT language="JavaScript">
function submitform(evt)
{
 evt = (evt) ? evt : event;
 var charCode = (evt.charCode) ? evt.charCode : ((evt.which) ? evt.which :
evt.keyCode);
 if (charCode == 13 || charCode == 3)
 {
 document.loginform.submit();
 }
return true;
}
</SCRIPT
The login page can use the pt:ensemble.loginlink tag to retrieve the external
URL prefix defined for the resource. For example, if the external URL prefix of the
resource is http://www.ensemble.com/app/ and the desired page after login is
http://www.ensemble.com/app/pages/mainpage.html, then the full login link
would be made by adding pages/mainpage.html to the login link prefix as shown in
the sample code below.

<pt:ensemble.loginlink pt:level="4" pt:key="loginurlprefix"/>
var loginLink = "<pt:logic.value pt:value="$loginurlprefix"/>" +
"pages/mainpage.html";

3.3 Creating a Custom Oracle WebCenter Ensemble Error Page
A custom error page can be displayed if there is an error in the Oracle WebCenter
Ensemble login process.

The pt:common.error, errortext and errorcodes tags allow you to insert
Oracle WebCenter Ensemble error information into a custom error page.

By itself, the pt:common.errortext tag displays only the first error message, or the
custom error message defined in the pt:text attribute. Other errors, as well as exception
stack traces and extended error messages, will be ignored. Combined with the
pt:common.errorcodes tag and pt:logic tags, the pt:common.errortext tag
can be used to display all error codes in memory. (If the errors have already been
displayed, no error codes will be available.)

The example below (errorpage.jsp) illustrates how to retrieve and display a collection
of errors and how to replace system errors with a custom error message. This example
uses pt:logic tags to display the error collection. For details on adaptive tags, see
Section 2.2.2, "Adaptive Tags".

<%@page contentType="text/html;charset=UTF-8"%>
<HTML> <head> <link rel='stylesheet' type='text/css' href='css/main.css'/> </head>
<BODY>

<table class="banner" cellpadding="0" cellspacing="0"> <tr>
 <td class="appLogo"></htm:td>
 <td class="liquid"></htm:td>
</tr> </table>

<P><pt:logic.value pt:value="$#11.ptmsgs_login"/> </P>

Note: If these tags are included on a page, errors will no longer be
displayed in the normal error location and will not be available after
the page has been displayed.

Creating a Custom Oracle WebCenter Ensemble Post-Login Page

3-6 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

<P>
<pt:common.errorcode pt:key="errorcodes"/>
<pt:logic.foreach pt:data="errorcodes" pt:var="code">
 <pt:common.errortext/>

 <pt:logic.value pt:value="$#12.ptmsgs_login"/><pt:logic.value
pt:value="$code"/>

<!-- This is how you would override a specific error with a new message. -->
<!--
<pt:logic.intexpr pt:expr="($code)==2010" pt:key="isrequestedresource"/>
<pt:logic.if pt:expr="$isrequestedresource">
<pt:logic.iftrue>
 <pt:common.errortext pt:text="The requested resource is not in the resource
map. This is a custom error message."/>
</pt:logic.iftrue>
<pt:logic.iffalse>
 <pt:common.errortext/>
</pt:logic.iffalse>
</pt:logic.if>
-->

</pt:logic.foreach>
</P>
<P><pt:logic.value pt:value="$#13.ptmsgs_login"/></P>
 </BODY> </HTML>

3.4 Creating a Custom Oracle WebCenter Ensemble Post-Login Page
The post-login page is an interstitial page that can be used to display messages or
gather input from the user after the login form is submitted.

The example below (interstitialpage.jsp) displays a user agreement that requires
approval. This page uses adaptive tags to display errors and form elements. For details
on adaptive tags, see Section 2.2.2, "Adaptive Tags".

<%@page contentType="text/html;charset=UTF-8"%>
<HTML>
<BODY>

<FORM action="./processinterstitialpage.jsp" method="POST">
<P>
<TABLE>
<TR>
<TD><CENTER><pt:logic.value pt:value="$#3.ptmsgs_samples"/></CENTER>
</TD></TR>
<TR>
 <TD>
 <TEXTAREA name="thetext" rows="15" cols="80">
 Owner: This web site belongs to Sample Company United States, Inc. Sample
Company may change or terminate this web site or any parts thereof.
 Agreement: Your use of this web site constitutes your agreement with Sample
Company to operate under the auspices of, and to act in
 concordance with, these Terms and Conditions of use. By clicking "Agree"
below, you are confirming your agreement, which will also be confirmed
 by merely accessing this web site beyond this page.
 Continuing Agreement: Sample Company may modify or alter these Usage Terms at
any time. Further usage of this web site after the terms have
 been modified confirms your agreement with the modified Usage Terms.

Creating a Custom Oracle WebCenter Ensemble Post-Login Page

Oracle WebCenter Ensemble Login Customization 3-7

 Use of Materials: Sample Company owns all of the data on this web site or has
secured permission from a third party to use the material. Usage of
 this material in any way outside this web site is strictly prohibited.
 </TEXTAREA>

 <pt:common.error>
 <P>
 <pt:logic.value pt:value="$#10.ptmsgs_
login"/>:
 <pt:common.errortext/>
 </P>
 </pt:common.error>

 <P>
 <pt:core.html pt:tag="input" type="checkbox" name="agreement" alt="$#0.ptmsgs_
samples" value="agree"/>
 <pt:logic.value pt:value="$#1.ptmsgs_samples"/>
 <pt:core.html pt:tag="input" type="submit" value="$#2.ptmsgs_samples"/>
 </P>
 </TD>
</TR>
</TABLE></BODY></HTML>
When the user clicks the submit button, the processing page
(processinterstitialpage.jsp) sets the runner_post_interstitial_complete
header to true, which directs the browser to the resource. If the user did not select
Accept on the post-login page, a message is displayed including a link back to the
agreement. This file also provides error text for the error page in case processing fails.

<%@page contentType="text/html;charset=UTF-8"%>
<HTML>
<BODY>

<pt:common.error>
<P>
<pt:logic.value pt:value="$#10.ptmsgs_login"/>:
<pt:common.errortext/>
</P>
</pt:common.error>

<%
if (request.getParameter("agreement") != null)
{
 out.println("<P>Ensemble post-login interstitial page processing login
completion error.
 Contact your system administrator.</P>");
 response.addHeader("runner_post_interstitial_complete", "true");
 session.invalidate();
}
else
{
 out.println("<P>If you do not consent to the web site usage agreement, you
will not be able to access any content.</P>");
 out.println("<P>Click here to view the
usage agreement again, or ");
 out.println("you can use Google to find
another web site.</P>");
}
%>
</BODY></HTML>

Creating a Custom Oracle WebCenter Ensemble Post-Logout Page

3-8 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

3.5 Creating a Custom Oracle WebCenter Ensemble Post-Logout Page
The post-logout page is displayed when a user logs out of the resource.

In most cases, this page simply displays a message that informs users that they have
been logged out of the system. The pt:ensemble.ssologout tag can be added to
any proxied page to display a link that logs out of all resources and directs the
browser to the post-logout page associated with the user's experience definition. For
details on adaptive tags, see Section 2.2.2, "Adaptive Tags".

3.6 Configuring Custom Oracle WebCenter Ensemble Login Pages
Custom login resources and pages are configured through the associated experience
definition.

To define the login resource, create a resource and select Is login resource on the
General tab. (If the application server is already registered as a resource in Oracle
WebCenter Ensemble, confirm that the login resource setting is enabled.) To deploy
custom pages in Oracle WebCenter Ensemble, edit the associated experience
definition. On the Log In Settings page, define the login resource and any of the
following custom pages:

3.7 Oracle WebCenter Ensemble Login Headers
Communication between login resource pages and Oracle WebCenter Ensemble is
done using HTTP headers

The following table describes the available headers, including how and when they are
used. Error and Post-logout pages are considered terminal pages and do not
communicate with Oracle WebCenter Ensemble using headers.

Custom Page Description

Pre-login page Displayed before attempting to authenticate the user.

Login page Displayed only when form authentication is being used; provides the form
for login.

Post-login page Displayed to the user after successful authentication and before the
resource is accessed.

Error page Displayed if there is an error in the login process.

Post-logout page Displayed after the user logs out of the resource.

Note: The settings in the experience definition are used regardless
of the authenticator used to access a resource. If the required
authenticator uses a login page and there is no login page configured
in the experience definition, the user will be presented with a blank
page and will be unable to authenticate. For details, see the Oracle
Fusion Middleware Administrator's Guide for Oracle WebCenter Ensemble
Chapter 8, 'Experience Definitions'.

Oracle WebCenter Ensemble Login Headers

Oracle WebCenter Ensemble Login Customization 3-9

Table 3–1 Oracle WebCenter Ensemble Login Headers

Property Type Property Value Property Description

Pre-login runner_pre_interstitial_complete true indicates that the pre-login page has completed
successfully. Oracle WebCenter Ensemble proceeds to the
login page. false (or no header) means the page has not
completed successfully. The pre-login page is displayed
again.

Login runner_username The user name used to authenticate the user.

Login runner_password The password used to authenticate the user.

Login runner_authentication_provider The provider for authentication. The only valid value is
portal. If the header is not present, the provider defaults to
portal.

Login runner_portal_authentication_source The authentication source against which to authenticate
the user. This is the same as the authentication source the
user would use to log in to Oracle WebCenter Ensemble.

Post-login runner_post_interstitial_complete true indicates that the post-login page has completed
successfully. Oracle WebCenter Ensemble proceeds to the
resource. false (or no header) means the page has not
completed successfully. The post-login page is displayed
again.

Oracle WebCenter Ensemble Login Headers

3-10 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

4

Oracle WebCenter Ensemble REST APIs 4-1

4Oracle WebCenter Ensemble REST APIs

Oracle WebCenter Ensemble REST APIs provide the following functionality:

■ Allow remote web services to retrieve information about resources and pagelets
from Oracle WebCenter Ensemble; for details, see Section 4.1, "Data Retrieval
APIs".

■ Inject pagelets into non-proxied pages, allowing Oracle WebCenter Ensemble to
act as a portlet provider for Oracle WebCenter Interaction, Oracle WebLogic
Portal, or other third-party portals for details, see Section 4.2, "Pagelet Inject API".

REST stands for Representational State Transfer and is a simple way of providing APIs
over HTTP. The basic principles of REST are:

■ API URLs point to the resource being used, rather than a generic method
endpoint.

■ Requests use standard HTTP verbs for simplified CRUD methods. This is a
read-only API and allows GET requests only.

■ Every request should return a full representation of the object retrieved (pagelet or
resource).

4.1 Data Retrieval APIs
Two REST APIs are available to retrieve data from Oracle WebCenter Ensemble:

■ Pagelet API: Allows remote applications to retrieve pagelet data from Oracle
WebCenter Ensemble.

■ Resource API: Allows remote applications to retrieve resource data from Oracle
WebCenter Ensemble.

The base URL for all requests is http://<Ensemble base URL>/api/v2/ensemble/

The following arguments are available:

Argument Returns Example: Pagelet API Example: Resource API

None All pagelets or
resources.

http://myensemble.com/
api/v2/ensemble/pagelet
s

http://myensemble.com/
api/v2/ensemble/resourc
es

Library or
Resource name

All pagelets
within a specific
library, or a
specific resource.

http://myensemble.com/
api/v2/ensemble/pagelet
/samples/

http://myensemble.com/
api/v2/ensemble/resourc
e/sampleresource/

Data Retrieval APIs

4-2 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

For example, the http://myensemble.com/api/v2/ensemble/pagelets?id=5 request
returns the following:

<ns2:Pagelet>
<name>attributepagelet</name>
<desc>This pagelet uses attributes.</desc>
<id>5</id>
<lastModified>2008-03-03T13:12:44.683-08:00</lastModified>
<created>2008-03-03T13:12:44.683-08:00</created>
<m_strLibraryName>samples</m_strLibraryName>
<parent_resource_name>samples resource</parent_resource_name>
<parent_resource_desc>This resource contains the standard sample pages.</parent_
resource_desc>
<parent_resource_id>8</parent_resource_id>
<parent_resource_external_url_list>/samples/</parent_resource_external_url_list>
-
 <parent_resource_external_url_list>
https://daniilk-w2k3.devnet.plumtree.com:443/samples/
</parent_resource_external_url_list>
-
 <m_strCodeSample>
<pt:ensemble.inject pt:name="samples:attributepagelet"
param1="0"
param2="">

</pt:ensemble.inject>
</m_strCodeSample>
<m_bPublishDocs>true</m_bPublishDocs>
<m_addInlineRefreshToAllUrls>false</m_addInlineRefreshToAllUrls>

name The pagelet with
the specified
name.

http://myensemble.com/
api/v2/ensemble/pagelet
s?name=samplepagelet

To retrieve a specific
resource, use the syntax
above.

resultCount List of all pagelets
or resources,
limited to the
specified result
count.

http://myensemble.com/
api/v2/ensemble/pagelet
s?resultCount=3

http://myensemble.com/
api/v2/ensemble/resourc
es?resultCount=3

id A pagelet or
resource with the
specified id.

http://myensemble.com/
api/v2/ensemble/pagelet
s?id=5

http://myensemble.com/
api/v2/ensemble/resourc
es?id=5

owner A list of resources
associated with
the specified user.

n/a http://myensemble.com/
api/v2/ensemble/resourc
es?owner={35DE6AF8-AB
B6-4e9b-B4E1-D1FC492F2
BE8}

externalurlprefix A list of resources
associated with
the specified
URL.

n/a http://myensemble.com/
api/v2/ensemble/resourc
es?externalurlprefix=http:
//joesmith.amer.bea.com:
80/login/

format The format to use
in the response
(xml or json).
Responses are
returned in XML
by default.

http://myensemble.com/
api/v2/ensemble/pagelet
s?format=json

http://myensemble.com/
api/v2/ensemble/resourc
es?format=json

Argument Returns Example: Pagelet API Example: Resource API

Pagelet Inject API

Oracle WebCenter Ensemble REST APIs 4-3

<m_refreshInterval>0</m_refreshInterval>
<url_suffix>attributepagelet.html</url_suffix>
<pagelet_external_url>/inject/v2/pagelet/attributepagelet/samples</pagelet_
external_url>
<parametersTransport>PAGELET_REALM</parametersTransport>
<m_bAllowAll>true</m_bAllowAll>
</ns2:Pagelet>

If the format is specified as JSON
(http://myensemble.com/api/v2/ensemble/pagelets?id=5&format=json), the
following response is returned:

{"ns2$Pagelet":{"@xmlns":{"ns2":"http:\/\/social.bea.com\/ensemble"},"name":{"name
":"attributepagelet"},"desc":{"desc":"This pagelet uses
attributes."},"id":{"id":"5"},"lastModified":{"lastModified":"2008-03-03T13:12:44.
683-08:00"},"created":{"created":"2008-03-03T13:12:44.683-08:00"},"m_
strLibraryName":{"m_strLibraryName":"samples"},"parent_resource_name":{"parent_
resource_name":"samples resource"},"parent_resource_desc":{"parent_resource_
desc":"This resource contains the standard sample pages."},"parent_resource_
id":{"parent_resource_id":"8"},"parent_resource_external_url_list":[{"parent_
resource_external_url_list":"\/samples\/"},{"parent_resource_external_url_
list":"https:\/\/daniilk-w2k3.devnet.plumtree.com:443\/samples\/"}],"m_
strCodeSample":{"m_strCodeSample":"<pt:ensemble.inject
pt:name=\"samples:attributepagelet\"\nparam1=\"0\"\nparam2=\"\">\n\n<\/pt:ensemble
.inject>"},"m_bPublishDocs":{"m_bPublishDocs":"true"},"m_
addInlineRefreshToAllUrls":{"m_addInlineRefreshToAllUrls":"false"},"m_
refreshInterval":{"m_refreshInterval":"0"},"url_suffix":{"url_
suffix":"attributepagelet.html"},"pagelet_external_url":{"pagelet_external_
url":"\/inject\/v2\/pagelet\/attributepagelet\/samples"},"parametersTransport":{"p
arametersTransport":"PAGELET_REALM"},"m_bAllowAll":{"m_bAllowAll":"true"}}}

4.2 Pagelet Inject API
By entering a proxy URL into the portal portlet source code, Oracle WebCenter
Ensemble will load up the pagelet as a portlet. The proxy URL must use the following
format:

http://host:port/inject/v2/pagelet/libraryname/pageletname?instanceid=55&conten
t-type=html

where libraryname and pageletname refer to the library and pagelet configured in
Oracle WebCenter Ensemble.

The query string arguments to the above call define how the pagelet is to be returned.
The following parameters are defined:

■ instanceid: Optional. The instance ID of the pagelet.

■ content-type: The return type. Three types are supported:

■ javascript: Returns injectable code.

Note: When using the pagelet inject API as the URL for a Portlet
Web Service in Oracle WebCenter Interaction, you must switch
"pagelet" to "portlet" in the URL. For example, the above URL would
become:
http://host:port/inject/v2/portlet/libraryname/pageletname?instan
ceid=55&content-type=html

Pagelet Inject API

4-4 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

■ html: Returns the pagelet markup with its associated PTPortlet object.

■ iframe: Returns an IFrame that points back to the inject api, filling the IFrame
with the pagelet content, instead of directly inline with the page. The IFrame
can be styled by providing a set of query string parameters.

■ csapi: Sets whether the CSAPI will be included with the pagelet response (true or
false). Including the CSAPI is optional, but the pagelet included in the response
relies on the CSAPI libraries being present on the page where the pagelet is to be
rendered. If csapi=false, then the CSAPI libraries must be included with the parent
page (usually in the HEAD section).

■ onhtttperror:: When a pagelet request results in a 403, 404 or any other error code,
Oracle WebCenter Ensemble can forward the error code and the error page itself
to the browser for display to the user. The onhttperror parameter accepts the
following values:

■ comment (default): Oracle WebCenter Ensemble will create an HTML
comment in place of the failing pagelet (the failing pagelet will simply not be
displayed).

■ inline: The pagelet error along with the server error page will be displayed
inline where the pagelet would normally be shown on the page.

■ fullpage: The http error will consume the whole page. This mode is only
available if Oracle WebCenter Ensemble controls the parent page.

For example, the following URL points to the linkpagelet in the samples library:

Parameter Description Default

ifwidth Sets the width of the IFrame; can be specified in
percent '%' or pixels 'px', for example:
ifwidth=500px. Can be set to ’auto’ to
automatically resize the IFrame to fit the
content within. For details, see Section 4.2.1,
"Using Automatic Resizing with IFrames".

100%

ifheight Sets the height of the IFrame; can be specified in
percent '%' or pixels 'px', for example:
ifheight=500px. Can be set to ’auto’ to
automatically resize the IFrame to fit the
content within. For details, see Section 4.2.1,
"Using Automatic Resizing with IFrames".

No default

ifborder Sets the border of the IFrame. 'none'

ifalign Sets the align rule within the IFrame, for
example: ifalign=center.

No default

ifdesc Sets the description of the IFrame. No default

ifmarginheight Sets the margin height; can be specified in
percent '%' or pixels 'px', for example:
ifmarginheight=500px.

No default

ifmarginwidth Sets the margin width; can be specified in
percent '%' or pixels 'px', for example:
ifmarginwidth=500px.

 No default

ifscrolling Sets the scrollbars of the IFrame. Accepted
values: yes/no/auto.

auto

ifstyle Sets the CSS style of the IFrame No default

ifclass Sets the CSS class of the IFrame. No default

Pagelet Inject API

Oracle WebCenter Ensemble REST APIs 4-5

http://proxy:port/inject/v2/pagelet/samples/linkspagelet?content-type=iframe&csa
pi=true&ifheight=123px&ifclass=myclass

This URL should result in markup similar to the code below.

<html>
 <head>
 </head>
 <body>
 <iframe frameborder="none" class="myclass" width="100%" height="123px"
scrolling="auto"
src="http://proxy:port/inject/v2/pagelet/samples/linkspagelet?asdg=asdfgas¶m=t
rue&content-type=html&jswrap=false&csapi=true">
 <html>
 <head>
 <script
src="http://proxy:loginserverport/loginserver/ensemblestatic/imageserver/plumtree/
common/private/js/jsutil/LATEST/PTUtil.js" type="text/javascript"> </script>
 <script
src="http://proxy:loginserverport/loginserver/ensemblestatic/imageserver/plumtree/
common/private/js/jsutil/LATEST/PTDateFormats.js" type="text/javascript"></script>
 <script
src="http://proxy:loginserverport/loginserver/ensemblestatic/imageserver/plumtree/
common/private/js/jsxml/LATEST/PTXML.js" type="text/javascript"></script>
 <script
src="http://proxy:loginserverport/loginserver/ensemblestatic/imageserver/plumtree/
common/private/js/jsportlet/LATEST/PTPortletServices.js"
type="text/javascript"></script>
 </head>

 <body>
 <div id="pt-pagelet-content-1" class="pagelet-container" style="display:
inline;">

 Pagelet links:

 The
first pagelet

 The
second pagelet

 The
csapi pagelet

 This
pagelet

 </div>

Note: The IFrame source points back to the inject API, but this time
the content-type parameter is set to html. This feature adds an
additional step in the pagelet retrieval. The csapi parameter is seet to
true on the subsequent call to get the IFrame contents so that the
required CSAPI content is included in the IFrame (if this was not the
case, javascript resolve errors would be returned because the pagelet
code cannot access any CSAPI script included outside the IFrame).

Pagelet Inject API

4-6 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

 </body>
 </html>
 </iframe>
 </body>
</html>

4.2.1 Using Automatic Resizing with IFrames
The Oracle WebCenter Ensemble pagelet inject API can automatically resize the
IFrame that encapsulates pagelet content. The resizing is done so that the IFrame
stretches to fit the content within. To use this feature, the ifwidth and ifheight
parameters must be set to ’auto’ as shown in the example below:

http://proxy:port/inject/v2/pagelet/samples/linkspagelet?content-type=iframe&csa
pi=true&ifheight=auto&ifwidth=auto&ifclass=myclass

In addition, this feature relies on an external page on the same domain as the
consumer page. This page is included into the pagelet IFrame as an internal hidden
IFrame. This page collects the sizing information and passes it on to the parent
consumer page. This page must be deployed in the same directory as the consumer
page. An example is shown below.

<html>
 <head>
 <title>Resizing Page</title>
 <script type="text/javascript">
function onLoad() {
var params = window.location.search.substring(1).split('&');
var height;
var width;
var iframe;

for(var i = 0, l = params.length; i < l; ++i) {
var parts = params[i].split('=');
switch(parts[0]) {
case 'height':
height = parseInt(parts[1]);
break;
case 'width':
width = parseInt(parts[1]);
break;
case 'iframe':
iframe = parts[1];
break;
}
}
window.top.updateIFrame(iframe, height, width);
}

if (window.addEventListener) {
window.addEventListener("load", onLoad, false)
} else if (window.attachEvent) {
window.detachEvent("onload", onLoad)
window.attachEvent("onload", onLoad)
} else {
window.onload=onLoad
}
 </script>
 </head>
 <body>

Pagelet Inject API

Oracle WebCenter Ensemble REST APIs 4-7

 </body>
</html>

Pagelet Inject API

4-8 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

5

Oracle WebCenter Ensemble API Libraries 5-1

5Oracle WebCenter Ensemble API Libraries

This page lists API libraries for use in Oracle WebCenter Ensemble development.
All documentation can be found on the Oracle Technology Network at
http://www.oracle.com/technology/index.html.

5.1 Oracle WebCenter Interaction Development Kit (IDK)
These API libraries provide detailed documentation on IDK objects and methods. To
access documentation for previous versions or download the entire documentation
package, download the appropriate version of the IDK. For details on using these
APIs, see Section 2.1, "Oracle WebCenter Interaction Development Kit (IDK) Proxy
API."

5.2 Oracle WebCenter Interaction Scripting Framework
The Oracle WebCenter Interaction Scripting Framework is a collection of client-side
JavaScript libraries that provide services to pagelets and hosted proxied pages. Most
services are provided by the JSPortlet API. Opener functionality is provided by the
Common Opener API. For lower-level functionality, see the JSXML package. For
details on using these APIs, see Section 2.2.1, "Adaptive Pagelet Design Patterns."

5.3 Adaptive Tags
Adaptive Tags are XML tags that can be included in the markup returned by any
proxied page, including pagelets. These tags provide access to key portal components
and support advanced attribute replacement. For details on using tags, see
Section 2.2.2, "Adaptive Tags".

A separate set of classes are used to create custom Adaptive Tags for use in pagelets
and proxied pages. For details on creating custom tags, see Section 2.2.2.8, "Creating
Custom Adaptive Tags".

Adaptive Tags

5-2 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

6

Additional Development References 6-1

6Additional Development References

The following references provide additional information for use in Oracle WebCenter
Ensemble development. All documentation can be found on the Oracle Technology
Network at http://www.oracle.com/technology/index.html.

CSP

CSP is a platform-independent protocol based on the open standard of HTTP 1.1. The
syntax of communication between the portal and remote servers is defined by CSP.
CSP defines custom headers and outlines how Oracle WebCenter Interaction and
Oracle WebCenter Ensemble services use HTTP to communicate and modify settings.
The Oracle WebCenter Interaction Development Kit (IDK) provides simplified, stable
interfaces that allow you to write code that communicates using CSP. The current
version of CSP is 1.4.

Oracle WebCenter Application Accelerator for Microsoft .NET

The Oracle WebCenter Application Accelerator for Microsoft .NET is a collection of
libraries and Visual Studio 2005 integration features that supporteasy authoring of
ASP.NET 2.0 and WSRP portlets. The Oracle WebCenter Application Accelerator for
Microsoft .NET includes the Oracle WebCenter PortletToolkit for .NET. Portlets can be
authored for both Oracle WebCenter Interaction and Oracle WebLogic Portal.
Development guides are available for both environments.

Oracle WebCenter Analytics APIs

Oracle WebCenter Analytics delivers comprehensive reporting onactivity and content
usage within portals and composite applications, allowing you to know and meet user
information needs. The OpenUsage and Query APIs provide access the Oracle
WebCenter Analytics functionality from customapplications.

■ The OpenUsage API allows you to to raise Oracle WebCenter Analytics events
from custom portlets and applications and store them in the database.

■ The Query API allows you to query data in the Oracle WebCenter Analytics
database.

Oracle WebCenter JSR-168 Container

The Oracle WebCenter JSR-168 Container is an implementation of the JSR-168 JCP
standard for portlet authoring.

6-2 Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Ensemble

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Oracle WebCenter Ensemble Development Environment
	1.1 Oracle WebCenter Interaction Development Kit (IDK) Projects
	1.1.1 Java: Setting Up a Custom Oracle WebCenter Interaction Development Kit (IDK) Project in Eclipse
	1.1.1.1 Eclipse Stand-Alone (without WTP)
	1.1.1.2 Eclipse with WTP

	1.1.2 Java: Deploying a Custom Oracle WebCenter Interaction Development Kit (IDK) Project in Eclipse
	1.1.2.1 Eclipse Stand-Alone (without WTP)
	1.1.2.2 Eclipse with WTP

	1.1.3 Java: Debugging a Custom Oracle WebCenter Interaction Development Kit (IDK) Project
	1.1.4 .NET: Setting Up a Custom Oracle WebCenter Interaction Development Kit (IDK) Project in Visual Studio
	1.1.5 .NET: Deploying a Custom Oracle WebCenter Interaction Development Kit (IDK) Project in IIS

	1.2 Oracle WebCenter Interaction Logging Utilities
	1.2.1 Configuring Oracle WebCenter Interaction Development Kit (IDK) Logging
	1.2.1.1 Configuring Java Oracle WebCenter Interaction Development Kit (IDK) Logging (web.xml)
	1.2.1.2 Configuring .NET Oracle WebCenter Interaction Development Kit (IDK) Logging (Web.config)
	1.2.1.3 Oracle WebCenter Interaction Development Kit (IDK) Logging Levels
	1.2.1.4 Oracle WebCenter Interaction Development Kit (IDK) Logging API Web Application Variables

	1.2.2 Using the Oracle WebCenter Interaction Development Kit (IDK) Logging API
	1.2.2.1 Using Oracle WebCenter Interaction Development Kit (IDK) Logging in Java
	1.2.2.2 Using Oracle WebCenter Interaction Development Kit (IDK) Logging in .NET
	1.2.2.3 Using Oracle WebCenter Interaction Development Kit (IDK) Logging from the Command Line

	1.3 About Server Communication and the Proxy
	1.3.1 The Oracle WebCenter Ensemble Proxy
	1.3.1.1 About Pagelets and the Proxy

	1.3.2 About HTTP and CSP
	1.3.2.1 HTTP
	1.3.2.2 CSP
	1.3.2.3 Oracle WebCenter Ensemble Headers
	1.3.2.4 About SOAP

	2 Oracle WebCenter Ensemble Pagelet Development
	2.1 Oracle WebCenter Interaction Development Kit (IDK) Proxy API
	2.1.1 Creating a Custom Pagelet with the Java Oracle WebCenter Interaction Development Kit (IDK) Proxy API
	2.1.2 Creating a Custom Pagelet with the .NET Oracle WebCenter Interaction Development Kit (IDK) Proxy API
	2.1.3 Using Programmable Remote Client (PRC) Remote APIs

	2.2 Adaptive Pagelets
	2.2.1 Adaptive Pagelet Design Patterns
	2.2.2 Adaptive Tags
	2.2.2.1 Adaptive Tag Development Tips
	2.2.2.2 Using Internationalized Strings in Adaptive Tags
	2.2.2.3 Using Variables in Adaptive Tags
	2.2.2.4 Oracle WebCenter Ensemble Adaptive Tag Library (pt:ensemble)
	2.2.2.4.1 Inserting Pagelets Using Oracle WebCenter Ensemble Adaptive Tags
	2.2.2.4.2 Accessing Authentication Data Using Oracle WebCenter Ensemble Adaptive Tags
	2.2.2.4.3 Accessing the Login URL Using Oracle WebCenter Ensemble Adaptive Tags
	2.2.2.4.4 Accessing Resource Data Using Oracle WebCenter Ensemble Adaptive Tags
	2.2.2.4.5 Accessing User Roles Using Oracle WebCenter Ensemble Adaptive Tags

	2.2.2.5 Common Adaptive Tag Library (pt:common)
	2.2.2.5.1 Accessing User Information Using Adaptive Tags
	2.2.2.5.2 Adding Header Content Using Adaptive Tags
	2.2.2.5.3 Defining a Unique Namespace Token Using Adaptive Tags
	2.2.2.5.4 Displaying Errors Using Adaptive Tags
	2.2.2.5.5 Transforming URLs Using Adaptive Tags

	2.2.2.6 Logic Adaptive Tag Library (pt:logic)
	2.2.2.6.1 Evaluating Expressions Using Adaptive Tags
	2.2.2.6.2 Looping Over Data Collections Using Adaptive Tags
	2.2.2.6.3 Using Shared Variables in Adaptive Tags

	2.2.2.7 About Adaptive Tag Control Flow
	2.2.2.8 Creating Custom Adaptive Tags
	2.2.2.8.1 Accessing Browser Session Information in Custom Adaptive Tags
	2.2.2.8.2 Accessing Attributes in Custom Adaptive Tags
	2.2.2.8.3 Storing and Accessing Custom Data in Custom Adaptive Tags
	2.2.2.8.4 Including JavaScript in Custom Adaptive Tags
	2.2.2.8.5 Using Nested Tags in Custom Adaptive Tags
	2.2.2.8.6 Implementing Non-Standard Custom Adaptive Tag Types
	2.2.2.8.7 Deploying Custom Adaptive Tags

	2.2.3 Oracle WebCenter Interaction Scripting Framework
	2.2.3.1 Oracle WebCenter Interaction Scripting Framework Development Tips
	2.2.3.2 Using Oracle WebCenter Interaction Scripting Framework Event Notification
	2.2.3.2.1 Page-Level Events for Use with the Oracle WebCenter Interaction Scripting Framework

	2.2.3.3 Using In-Place Refresh

	2.2.4 Adaptive Pagelet Development Tips

	2.3 Session Preferences
	2.3.1 Using Oracle WebCenter Interaction Development Kit Methods to Access Session Preferences
	2.3.2 Using Oracle WebCenter Interaction Scripting Framework Methods to Access Session Preferences

	2.4 Pagelet Caching
	2.4.1 About Pagelet Caching Strategies
	2.4.2 Pagelet/Cache Key
	2.4.3 Setting HTTP Caching Headers - Cache-Control
	2.4.4 Setting HTTP Caching Headers - Expires
	2.4.5 Setting HTTP Caching Headers - Last-Modified and ETag

	2.5 Pagelet Internationalization
	2.6 Pagelet Configuration in Oracle WebCenter Ensemble
	2.6.1 Configuring an Oracle WebCenter Ensemble Resource
	2.6.2 Configuring an Oracle WebCenter Ensemble Pagelet
	2.6.3 Inserting Pagelets Using Oracle WebCenter Ensemble Adaptive Tags
	2.6.4 Inserting Pagelets into Non-Proxied Pages
	2.6.4.1 Using Automatic Resizing with IFrames

	2.6.5 About Oracle WebCenter Ensemble Security
	2.6.5.1 Using Oracle WebCenter Ensemble Roles in Pagelets and Proxied Applications
	2.6.5.2 Creating a Custom Credential Mapping

	3 Oracle WebCenter Ensemble Login Customization
	3.1 Creating a Custom Oracle WebCenter Ensemble Pre-Login Page
	3.2 Creating a Custom Oracle WebCenter Ensemble Login Page
	3.3 Creating a Custom Oracle WebCenter Ensemble Error Page
	3.4 Creating a Custom Oracle WebCenter Ensemble Post-Login Page
	3.5 Creating a Custom Oracle WebCenter Ensemble Post-Logout Page
	3.6 Configuring Custom Oracle WebCenter Ensemble Login Pages
	3.7 Oracle WebCenter Ensemble Login Headers

	4 Oracle WebCenter Ensemble REST APIs
	4.1 Data Retrieval APIs
	4.2 Pagelet Inject API
	4.2.1 Using Automatic Resizing with IFrames

	5 Oracle WebCenter Ensemble API Libraries
	5.1 Oracle WebCenter Interaction Development Kit (IDK)
	5.2 Oracle WebCenter Interaction Scripting Framework
	5.3 Adaptive Tags

	6 Additional Development References

