
Oracle® JRockit Real Time
Introduction to Oracle JRockit Real Time

3.1.0

April 2009

Oracle JRockit Real Time Introduction to Oracle JRockit Real Time, 3.1.0

Copyright © 2007, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
1. Overview
What is Oracle JRockit Real Time?. 1-1

Oracle JRockit Real Time Compatibility. 1-2

Oracle JRockit JDK Features in JRockit Real Time 3.1.0. 1-2

JRockit Latency Analysis Tool . 1-3

JRockit Memory Leak Detector . 1-3

Starting JRockit Mission Control . 1-3

Example Use Cases . 1-4

Derivative Exchange Defies Arbitrage Traders . 1-4

Competition-Beating Risk Calculation Infrastructure . 1-5

Software Components . 1-5

Oracle JRockit JDK 6 R27.6. 1-5

Oracle JRockit JDK 5.0 R27.6 . 1-6

Oracle JRockit JDK 1.4.2 R27.6. 1-6

Deterministic Garbage Collection . 1-6

Enabling the Deterministic Garbage Collector . 1-7

JRockit Runtime Analyzer (JRA) . 1-7

Supported Configurations for JRockit Real Time . 1-8

Terminology. 1-8
Introduction to Oracle JRockit Real Time iii

2. Tuning Real Time Applications for Deterministic Garbage
Collection

Basic Environment Tuning . 2-2

Basic Application Tuning . 2-2

J2EE Application Tuning . 2-3

JMS Application Tuning . 2-3

JVM Tuning for Real-Time Applications . 2-4

Allow For a Warm-up Period. 2-4

Adjust Min/Max Heap Sizes . 2-4

Increase or Decrease Pause Targets . 2-5

Set the Page Size . 2-5

Determine Optimal Load . 2-5

Analyze GC With JRockit Verbose Output . 2-5

Limit Amount of Finalizers and Reference Objects . 2-6

Adjust the Garbage Collection Trigger . 2-6

Adjust the Amount of Garbage Collection Threads for Processors. 2-6

More Tuning Information . 2-7

JRockit JVM . 2-7

3. Using Oracle JRockit Real Time with Other Oracle Products
Getting Started. 3-1

Oracle WebLogic Server . 3-2

WebLogic Event Server . 3-2
iv Introduction to Oracle JRockit Real Time

C H A P T E R 1
Overview
This section contains information on the following subjects:

What is Oracle JRockit Real Time?

Oracle JRockit Real Time Compatibility

Oracle JRockit JDK Features in JRockit Real Time 3.1.0

Example Use Cases

Software Components

Supported Configurations for JRockit Real Time

Terminology

What is Oracle JRockit Real Time?
Oracle JRockit Real Time provides lightweight, front-office infrastructure for low latency,
event-driven applications. For companies in highly-competitive environments where
performance is key and every millisecond counts, JRockit Real Time provides the first
Java-based real-time computing infrastructure.

For example, for certain types of applications, particularly in the Telecom and Finance industries,
stringent requirements are placed on transaction latency. When these applications are written in
Java, the unpredictable pause times caused by garbage collection can have a profound and
potentially harmful affect on this latency.
Introduction to Oracle JRockit Real Time 1-1

For this reason, Oracle JRockit Real Time’s proprietary Oracle JRockit JVM R27.6 features
deterministic garbage collection, a dynamic garbage collection priority that ensures extremely
short pause times and limits the total number of those pauses within a prescribed window. Such
short pauses can greatly lessen the lessen the impact of the deterministic garbage collection when
compared to running a normal garbage collection.

Oracle JRockit Real Time Compatibility
Oracle JRockit Real Time 3.1.0 is fully compatible with Oracle JRockit JDK R27.6 and all
applications certified with the latter will work on the former without need for additional
certification. This means that all Oracle applications supported by Oracle JRockit JDK R27.6
(whether Java 1.4.2-, 5.0- or 6-based) are also supported with Oracle JRockit Real Time 3.1.0.

Oracle JRockit Real Time 3.1.0 also supports standalone Java applications running on Java SE 6
and J2SE 1.4.2 and 5.0 runtime environments, as well as Spring Framework-based applications,
as described in “Software Components” on page 1-5.

Oracle JRockit Real Time 3.1.0 performance still depends upon application type and size, so you
will need to verify that you applications meet the base requirements on hardware, heap size and
other metrics for optimal performance.

Oracle JRockit JDK Features in JRockit Real Time 3.1.0
JRockit Real Time 3.1.0 is bundled with the following versions of the Oracle JRockit JDK:

Oracle JRockit JDK 6 Update 11

Oracle JRockit JDK 5.0 Update 17

Oracle JRockit JDK 1.4.2_19

These versions of the Oracle JRockit JDK are included in Oracle JRockit Mission Control, which
is a suite of tools designed to monitor, manage, profile, and gain insight into problems occurring
in your Java application without requiring the performance overhead normally associated with
these types of tools.

JRockit Mission Control includes the following two tools that are of particular interest to Oracle
JRockit Real Time 3.1.0 users:

JRockit Latency Analysis Tool

JRockit Memory Leak Detector
1-2 Introduction to Oracle JRockit Real Time

Orac le JRock i t JDK Features in JRock i t Rea l T ime 3 .1 .0
JRockit Latency Analysis Tool
The Latency Analysis Tool (LAT), part of the JRockit Runtime Analyzer (JRA) helps you work
your way down to a Java application latency. You can use the Latency Graph to visually see
how a Java application that contains latencies looks like. This tool gives you great flexibility to
pinpoint where in the code waits and other latencies occur.

To record latency data, you need to create a JRA recording. Before you start the JRA recording,
you must select one of the Latency Recording profiles in order to record latency data.

See Oracle JRockit Runtime Analyzer for additional information about using the latency analyzer
and JRA recordings to record latency data. After you launch Oracle JRockit Mission Control,
you can also access additional documentation about this feature using online help.

JRockit Memory Leak Detector
The JRockit Memory Leak Detector is a tool for discovering and finding the cause for memory
leaks in a Java application. The JRockit Memory Leak Detector's trend analyzer discovers slow
leaks, it shows detailed heap statistics (including referring types and instances to leaking objects),
allocation sites, and it provides a quick drill down to the cause of the memory leak. The Memory
Leak Detector uses advanced graphical presentation techniques to make it easier to navigate and
understand the sometimes complex information.

See Introduction to JRockit Memory Leak Detector for additional information about using the
memory leak detector. After you launch JRockit Mission Control, you can also access additional
documentation about this feature using online help.

Starting JRockit Mission Control
To start JRockit Mission Control, follow these steps:

1. Ensure that your JAVA_HOME environment variable points to the root folder of the Oracle
JRockit JDK included in JRockit Real Time 3.1.0.

Use this command for Windows platforms:

Note: This example assumes that you are using the Windows Command Prompt (DOS) or
compatible command shell and have selected the default product installation
directory.

set JAVA_HOME=%ProgramFiles%\JRockit Real Time
\wlrt<wlrt_version>-<java_version>\bin

Use this command for Linux and Solaris platforms:
Introduction to Oracle JRockit Real Time 1-3

http://edocs.bea.com/jrockit/tools/jmcpdfs/mc3/mcjra3.pdf
http://edocs.bea.com/jrockit/tools/jmcpdfs/mc3/mcmemleak3.pdf

Note: This example assumes that you are using the UNIX bash shell or compatible
command shell and have selected the default product installation directory.

export JAVA_HOME=$HOME/wlrt<wlrt_version>-<java_version>/bin

2. Open up a command window.

3. Run the jrmc executable file, located in the %JAVA_HOME%\bin directory:

(Windows) prompt> %JAVA_HOME%\bin\jrmc

(Linux) prompt> ${JAVA_HOME}/bin/jrmc

Example Use Cases
These use cases provide examples of how JRockit Real Time can provide solutions for
high-performance environments with response-time sensitive applications.

Derivative Exchange Defies Arbitrage Traders
An investment arm of a large retail bank provides an exchange for derivatives of European
securities. It is an over-the-counter (OTC) request-for-quote and execution system (but provides
no settlement and clearing services). A broker submits a request for a quotation and includes the
investment identifier and quantity. The system accepts the quotation and applies certain business
rules. Depending upon the investment identifier and market conditions, the request is routed to a
particular third-party market-maker who then calculates and provides the bid and ask price for
the derivative. The response is returned to the broker via the OTC exchange. The broker can then
execute the trade of the derivative through a subsequent request, which is routed via the OTC
exchange to the appropriate market maker.

The complication with this arrangement is that arbitrage traders can take advantage of the latency
delay in the bank’s OTC exchange infrastructure because the arbitrage trader can measure the
latency that occurs during the small period in which the request for quotation is handled. In a fast
moving market, price changes of the derivative may occur within this latency period. This
presents an opportunity for an arbitrage trader to take advantage of inefficiency in the
marketplace and expose the investment bank to intolerable risk.

The investment bank requires a very high performance-driven software infrastructure, such as
JRockit Real Time. It requires that the latency of the OTC exchange be extremely low.
Specifically, to combat arbitrage traders, the latency of the exchange’s infrastructure must be less
than the latency of the arbitrage traders’ infrastructure. In this way, the arbitrage traders’ data
becomes stale before the exchange’s, and therefore is not actionable.
1-4 Introduction to Oracle JRockit Real Time

So f tware Components
Competition-Beating Risk Calculation Infrastructure
A large investment bank is a market-maker for fixed income securities. A request-for-quote
(RFQ) is received from an inter-dealer market electronic communication network (ECN), such
as TradeWeb. This RFQ would have been submitted to a number of entities. To be competitive,
it is vital that the quotation is returned as quickly as possible with the best possible price.
Therefore, a minimum amount of latency is necessary to ensure that the investment bank wins
customers, or at least, the latency is less than that of the organization’s competitors.

During the quotation process, a risk and pricing model is executed to determine the quote price
to provide to the customer. Because of the complexity of these calculations, they are currently
performed overnight. The result is a stratum of at least four grades of risk advisories that govern
fixed rate securities prices. Note that there is at least a twelve-hour lag in these risk calculations.
This leads to a risk window since the calculations are stale even at the start of next-day business.
To lower this risk, and potentially provide better rates to customers, a real-time risk and pricing
calculator would be required. JRockit Real Time provides a latency-adverse infrastructure to
make this feasible.

Software Components
JRockit Real Time supports Java applications running on such Oracle products as (but not limited
to) Oracle WebLogic Event Server 2.0, Oracle WebLogic Server 10.0 (or higher), and Oracle
WebLogic Server 8.1. It also supports standalone Java applications running on Java SE 6 and
J2SE 5.0 and 1.4.2 runtime environments.

JRockit Real Time includes the following software components:

Oracle JRockit JDK 6 R27.6

Oracle JRockit JDK 5.0 R27.6

Oracle JRockit JDK 1.4.2 R27.6

Deterministic Garbage Collection

JRockit Runtime Analyzer (JRA)

Oracle JRockit JDK 6 R27.6
The Oracle JRockit JDK 6 R27.6 is certified to be compatible with Java SE 6 (update 3). This
version includes the Deterministic Garbage Collector for dynamic garbage collection priority that
ensures extremely short pause times and limits the total number of those pauses within a
Introduction to Oracle JRockit Real Time 1-5

prescribed window, as described in “Deterministic Garbage Collection” on page 1-6. It also
installs the JRockit Runtime Analyzer (JRA), Latency Analysis Tool (LAT), and Memory Leak
Detector, which provide internal metrics that are useful for profiling the Oracle JRockit JVM, as
described in “JRockit Runtime Analyzer (JRA)” on page 1-7.

For a listing of the hardware and software configurations supported by JRockit Real Time, see
“Supported Configurations for JRockit Real Time” on page 1-8.

Oracle JRockit JDK 5.0 R27.6
The Oracle JRockit JDK 5.0 R27.6 is certified to be compatible with J2SE 5.0 (update 14). The
5.0 R27.3 JVM includes the Deterministic Garbage Collector for dynamic garbage collection
priority that ensures extremely short pause times and limits the total number of those pauses
within a prescribed window, as described in “Deterministic Garbage Collection” on page 1-6. It
also installs the JRockit Runtime Analyzer (JRA), Latency Analysis Tool (LAT), and Memory
Leak Detector, which provide internal metrics that are useful for profiling the JRockit JVM, as
described in “JRockit Runtime Analyzer (JRA)” on page 1-7.

For a listing of the hardware and software configurations supported by JRockit Real Time, see
“Supported Configurations for JRockit Real Time” on page 1-8.

Oracle JRockit JDK 1.4.2 R27.6
The Oracle JRockit JDK 1.4.2 R27.6 is certified to be compatible with J2SE 1.4.2_16. The 1.4.2
R27.6 JVM includes the Deterministic Garbage Collector for dynamic garbage collection priority
that ensures extremely short pause times and limits the total number of those pauses within a
prescribed window, as described in “Deterministic Garbage Collection” on page 1-6. It also
installs the JRockit Runtime Analyzer (JRA), which provides internal metrics for Java developers
using the JRockit JVM as their runtime JVM, as described in “JRockit Runtime Analyzer (JRA)”
on page 1-7.

For a listing of the hardware and software configurations supported by Oracle JRockit Real Time,
see “Supported Configurations for JRockit Real Time” on page 1-8.

Deterministic Garbage Collection
Memory management relies on effective garbage collection, which is the process of clearing
dead objects from the heap, thus releasing that space for new objects. JRockit Real Time uses a
dynamic “deterministic” garbage collection priority (-Xgcprio:deterministic) that is
1-6 Introduction to Oracle JRockit Real Time

http://e-docs.bea.com/wlrt/docs30/../../jrockit/jrdocs/refman/optionX.html#999522

So f tware Components
optimized to ensure extremely short pause times and limit the total number of those pauses within
a prescribed window.

For certain types of applications, particularly in the Telecom and Finance industries, stringent
requirements are placed on transaction latency. When these applications are written in Java, the
unpredictable pause times caused by garbage collection can have a profound and potentially
harmful affect on this latency.

However, shorter deterministic pause times do not necessarily equal higher throughput. Instead
the goal of the deterministic garbage collection is to lower the maximum latency for applications
that are running when garbage collection occurs. Such shorter pause times should lessen the
impact of the deterministic garbage collection compared to running a normal garbage collection.

For more information on the deterministic garbage collector, see the Oracle JRockit Diagnostics
Guide.

Enabling the Deterministic Garbage Collector
For standalone or Spring-Based Java applications, enable the Deterministic Garbage Collector by
doing one of the following:

 Enter the -Xgcprio:deterministic option from a Java command line.

Use the sample startup scripts, startRealTime (.cmd/.sh), that demonstrate how to start
the Oracle JRockit JVM with deterministic garbage collection enabled.

JRockit Runtime Analyzer (JRA)
The JRockit Runtime Analyzer (JRA) is an application that helps you profile your application and
the Java runtime. It provides a wealth of useful metrics that are useful when using the JRockit
JVM as your runtime VM.

The JRockit Runtime Analyzer consists of two parts. One part runs inside the JVM and records
information about the currently running JVM and the Java application and saves this information
to a JRA recording file (filename.jra). This file is opened in the other part of the tool, the
analyzer, which is a regular Java application used to visualize the information in the file.

The JRocking Runtime Analyzer is packaged as part of the JRockit Mission Control 3.1.0 tool
suite. Documentation for Mission Control 3.1.0 is bundled with the tools as online
documentation. For general information about Mission Control 3.1.0, see Introduction to Oracle
JRockit Mission Control.
Introduction to Oracle JRockit Real Time 1-7

http://e-docs.bea.com/wlrt/docs30/../../jrockit/tools/intro/index.html
http://edocs.bea.com/jrockit/geninfo/diagnos/index.html

Supported Configurations for JRockit Real Time
Oracle JRockit Real Time is supported on the same configurations (hardware and platform) as
Oracle JRockit JVM R27.6, with the exception of Windows Itanium and Linux Itanium
configurations: it is not supported on those configurations. For a complete list of supported
configurations, please refer to Oracle JRockit Supported Configurations.

Terminology
Table 1-1 defines the terms and acronyms used this document:

Table 1-1 Terminology

Terms Definition

Real-time A level of computer responsiveness that a user senses as sufficiently immediate or that
enables the computer to keep up with some external process (for example, to present
visualizations of the weather as it constantly changes).

Latency An expression of how much time it takes for data to get from one designated point to
another.

Throughput The amount of work that a computer can do in a given time period.

Deterministic garbage
collection

Short, predictable pause times for memory heap garbage collection, which is the
process of clearing dead objects from the heap, thus releasing that space for new
objects.
1-8 Introduction to Oracle JRockit Real Time

C H A P T E R 2
Tuning Real Time Applications for
Deterministic Garbage Collection
This section contains the following guidelines for tuning your applications for the Oracle JRockit
JVM deterministic garbage collector that is included with Oracle JRockit Real Time.

Note: For more information on adjusting other non-standard start-up commands available with
JRockit, see the JRockit Configuration and Tuning Guide.

“Basic Environment Tuning” on page 2-2

“Basic Application Tuning” on page 2-2

“J2EE Application Tuning” on page 2-3

“JMS Application Tuning” on page 2-3

“JVM Tuning for Real-Time Applications” on page 2-4

“More Tuning Information” on page 2-7
Introduction to Oracle JRockit Real Time 2-1

http://e-docs.bea.com/wlrt/docs30/../../jrockit/geninfo/conftune/index.html

Basic Environment Tuning
Use these guidelines for configuring your environment to use Oracle JRockit Real Time.

Ensure that CPUs are not at maximum capacity out on servers or clients
If an application takes a majority of the CPU, then the deterministic GC performance may
actually degrade the average latency. The reason is that deterministic GC will do
continuous GC and the GC will be competing with the application for CPU cycles. It is
best that the CPU is not fully utilized to get the best latency. A best practice is to run your
benchmarks at various loads (with and without deterministic GC) to determine the optimal
load.

Too many active threads can cause increased latency due to context switching
The “sweet-spot” number is generally one thread per virtual CPU (i.e., counting dual-core
and HyperTransport as separate CPUs), but leaving one CPU free for background GC
work. However, if you make external calls (e.g., to a database), then it does make sense to
allocating a few extra threads to utilize idle cycles.

For information on tuning JRockit garbage collection threads, see “Adjust the Amount of
Garbage Collection Threads for Processors” on page 2-6.

Basic Application Tuning
Use these guidelines when designing your applications for Oracle JRockit Real Time.

Understand your application code and how to measure latency.

 Avoid making synchronous calls to slow back-office systems as part of a transaction as
this defeats the purpose of real-time. Conversely, make sure any non-critical calls are
handled asynchronously through work thread pools, or by using JMS.

Minimize memory allocation. If possible, allocate and free memory for a single transaction
in a chunk as this helps avoid fragmentation of the Java heap. Also, minimize the amount
and size of your objects.

Control memory utilization by avoiding rampant memory allocation and allocating many
large arrays.

Free all objects as soon as possible; otherwise, objects that become unreferenced during a
garbage collection might still be marked alive if they where referenced when the DetGC
marked all live objects.
2-2 Introduction to Oracle JRockit Real Time

J2EE Appl i ca t i on Tun ing
Avoid long critical sections in your code, as synchronized blocks of Java code may cause a
transaction to block.

Avoid long linked structures; the deterministic GC needs to iterate through these objects.

If transactions span more than one highly-active JVM, each such JVM may need to run
Deterministic GC. For example, if a transaction is initiated by a Java client JVM, and the
transaction includes both JMS server and J2EE server operations, all three JVMs may
require Deterministic GC to reliably meet maximum latency criteria.

J2EE Application Tuning
Use these guidelines when tuning your J2EE applications for Oracle JRockit Real Time.

For server-side EJBs, MDBs, and Servlets ensure that there are enough concurrent
instances configured to respond immediately to client requests (if all instances are active,
this is a sign that client requests are queuing up behind each-other on the server).

Make sure that resource pools contain enough instances so that threads are not forced to
wait for resources. In J2EE for example, tune the EJB max-beans-in-free-pool
property and tune thread pool sizes

JMS Application Tuning
Use these guidelines when using Oracle WebLogic JMS applications with JRockit Real Time.

Consider using asynchronous consumers rather than synchronous consumers.

For more information on JMS consumers, see Best Practices for Application Design in
Programming WebLogic JMS.

Tune all JMS connection factory Messages Maximum settings to 1. This can potentially
provide better latency at the expense of possibly lowering throughput. Similarly, configure
your MDBs to refer to a custom connection factory with the following settings:

– Messages Maximum = 1

– XA Connection Factory Enabled = enabled

– Client Acknowledge Policy = ACKNOWLEDGE_PREVIOUS

For more information on configuring JMS connection factories, see Configure connection
factories in the Administration Console Online Help.
Introduction to Oracle JRockit Real Time 2-3

http://e-docs.bea.com/wlrt/docs30/../../wls/docs100/jms/design_best_practices.html
http://e-docs.bea.com/wlrt/docs30/../../wls/docs100/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html
http://e-docs.bea.com/wlrt/docs30/../../wls/docs100/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html

For consumers of non-persistent messages from queues, consider using the WebLogic JMS
WLSession NO_ACKNOWLEDGE extension.

Ensure that your Spring JMS Templates leverage resource reference pooling (otherwise,
they negatively impact response times as they implicitly create and close JMS connections,
sessions, and producers once per message).

Note: Resource reference pooling is not suitable if the target destination changes with each
call, in which case change application code to use regular JMS and cache the JMS
connections, sessions, producers, and consumers.

JVM Tuning for Real-Time Applications
These tuning suggestions can further improve performance and decrease pause times when using
the JRockit JVM deterministic garbage collector. For more information on the deterministic
garbage collector, see the Oracle JRockit Diagnostics Guide.

Allow For a Warm-up Period
There may be a warm-up period before response times achieve desired levels. During this
warm-up, JRockit JVM will optimize the critical code paths. The warm-up period is application
and hardware dependent, as follows:

For smaller applications (in terms of amount of Java code) with high loads that are running
on fast hardware, there may be a warm-up period of one-to-three minutes.

For large applications (in terms of amount of Java code) with low loads that are running on
slow hardware (in particular, most SPARC hardware), there may be a warm-up period of
approximately thirty minutes.

Adjust Min/Max Heap Sizes
Setting the minimum heap size (-Xms) smaller or the maximum heap size (-Xmx) larger affects
how often garbage collection will occur and determines the approximate amount of live data an
application can have. To begin with, try using the following heap sizes:

 java -Xms1024m -Xmx1024m -XgcPrio:deterministic -XpauseTarget=30

For more information, see -X Command-line Options in the Oracle JRockit JVM Command-Line
Reference.
2-4 Introduction to Oracle JRockit Real Time

http://e-docs.bea.com/wlrt/docs30/../../wls/docs100/javadocs/weblogic/jms/extensions/WLSession.html#NO_ACKNOWLEDGE
http://e-docs.bea.com/wlrt/docs30/../../jrockit/jrdocs/refman/optionX.html
http://edocs.bea.com/jrockit/geninfo/diagnos/index.html

JVM Tun ing fo r Rea l -T ime App l icat ions
Increase or Decrease Pause Targets
If you specify -Xgcprio:deterministic without the pauseTarget option, it will be set
to a default value, which in this release is 30 milliseconds.

Running on slower hardware with a different heap size and/or with more live data may
break the deterministic behavior. In these cases, you might need to increase the default
pause time target (30 milliseconds) by using the -XpauseTarget option. The maximum
allowable value for the pauseTarget option is currently 5000 milliseconds.

Conversely, if you want to test your application for the lowest possible pause time, you can
lower the default -XpauseTarget value down to a minimum value. In this release, the
minimum value is 10 milliseconds.

For more information, see -X Command-line Options in the Oracle JRockit Command-Line
Reference.

Set the Page Size
Increasing the page size (-XXlargePages) can increase performance and lower pause times by
limiting cache misses in the translation look-aside buffer (TLB). See -XX Command-line Options
in the Oracle JRockit JVM Command-Line Reference.

Determine Optimal Load
Do not be overcautious in terms of load. The deterministic garbage collector can handle a fair
amount of load without breaking its determinism guarantees. Too little load means the JVM’s
optimizer and GC heuristics have too little information to work with, resulting in sub-par
performance. A best practice is to run your benchmarks at various loads (with and without
deterministic GC) to determine the optimal load.

Analyze GC With JRockit Verbose Output
JRockit JVM verbose output normally doesn’t incur a measurable performance impact, and is
quite useful for analyzing JVM memory and GC activity. Table 2-1 defines recommended
verbose options for analyzing JVM memory and GC activity.
Introduction to Oracle JRockit Real Time 2-5

http://e-docs.bea.com/wlrt/docs30/../../jrockit/jrdocs/refman/optionX.html
http://e-docs.bea.com/wlrt/docs30/../../jrockit/jrdocs/refman/optionXX.html

Limit Amount of Finalizers and Reference Objects
Try to limit the amount of Finalizers and reference objects that are used, such as Soft-, Weak-,
and Phantom- references. These types require special handling, and if they occur in large
numbers then pause times can become longer than 30ms.

Adjust the Garbage Collection Trigger
Try adjusting the garbage collection trigger (-XXgctrigger) to limit the amount of heap space
used. This way, you can force the garbage collection to trigger more frequent garbage collections
without modifying your applications. The garbage collection trigger is somewhat deterministic,
since garbage collection starts each time the trigger limit is hit. See the Oracle JRockit JVM
Diagnostics Guide.

Note: If the trigger value is set to low, the heap might get full before the garbage collection is
finished, causing even longer pauses for threads since they have to wait for the garbage
collection to complete before getting new memory. Typically, memory is always
available since a portion of the heap is free and any pauses are just the small pauses when
the garbage collection stops the Java application.

Adjust the Amount of Garbage Collection Threads for
Processors
With the variety of sophisticated processing hardware currently available (HyperTransport,
Strands, Dual Core, etc.), the JRockit JVM may not be able to determine the appropriate number
of GC threads it should start. The current recommendation is to start one thread per physical CPU;
that is, one thread per chip not per core. However, having too many garbage collection threads
could affect the latency of applications since more threads will be running on the system, which
might saturate the CPUs, and thus affect the Java application. Conversely, setting them too low

Table 2-1 JRockit JVM Verbose Output Options

Option What it does...

-Xverbose:opt,memory,memdbg,
gcpause,compact,license

For GC and memory analysis.

-Xverboselog:verbose-jrockit.log Redirects verbose output to the designated file.

-Xverbosetimestamp Prints a formatted date before each verbose line.
2-6 Introduction to Oracle JRockit Real Time

http://edocs.bea.com/jrockit/geninfo/diagnos/index.html

More Tun ing In fo rmat ion
could increase the mark phase of the GC, since less parallelism is possible. For example, on a dual
core Intel Woodcrest machine with four cores the recommended number of GC threads is two,
which is the same as the number of processors in the machine.

To see how many garbage collection threads that the JRockit JVM uses on your machine, start
the JRockit JVM with -verbose:memdbg and then check for the following lines that are printed
during startup:

 [memdbg] number of oc threads: <num>
 [memdbg] number of yc threads: <num>

If necessary, adjust the number of GC threads using the -XXgcthreads:<# threads>
parameter.

For more information, see -XX Command-line Options in the Oracle JRockit JVM
Command-Line Reference.

More Tuning Information
This section contains pointers to additional performance and tuning information.

JRockit JVM
 Memory Management Basics contains information on all of the garbage collection
options.

About Profiling and Performance Tuning provides information on tuning the JRockit JVM.

See Oracle JRockit JVM Diagnostics Guide for additional diagnostic information about the
Oracle JRockit JVM.
Introduction to Oracle JRockit Real Time 2-7

http://edocs.bea.com/jrockit/geninfo/diagnos/about_prof_perftune.html
http://e-docs.bea.com/wlrt/docs30/../../jrockit/jrdocs/refman/optionXX.html
http://edocs.bea.com/jrockit/geninfo/diagnos/index.html

2-8 Introduction to Oracle JRockit Real Time

C H A P T E R 3
Using Oracle JRockit Real Time with
Other Oracle Products
Oracle JRockit Real Time is fully compatible with Oracle JRockit JVM R27.6 and is therefore
supported by Oracle when used with Oracle products that are supported with Oracle JRockit
JVM R27.6. This chapter describes the tasks necessary for using JRockit Real Time with other
Oracle products. It includes information on the following subjects:

Getting Started

Oracle WebLogic Server

WebLogic Event Server

Getting Started
To use JRockit Real Time with an Oracle product, you must download and install the Oracle
product and JRockit Real Time separately and then make the following configuration changes:

Update the Oracle product start script to use the WLRT JAVA_HOME.

Remove any -Xgc: and -Xgcprio: parameters from the Java command line.

Add -Xgcprio:deterministic and -Xpausetarget=nnms (where nn is the desired
pause target) to the Java command line

Selecting a lower pause target will result in shorter garbage collection pauses, with the caveats
outlined in Tuning the Pause Target in the Oracle JRockit JVM iagnostics Guide. Here are some
recommendations for the most common combinations:
Introduction to Oracle JRockit Real Time 3-1

Oracle WebLogic Server
Oracle WebLogic Server can be enabled to use JRockit Real Time either by following the generic
instructions above or by using a preconfigured domain template. Oracle has prepared templates
for the following Oracle WebLogic Server versions:

Oracle WebLogic Server 8.1 domain template.

Oracle WebLogic Server 10.0 domain template.

Oracle has verified that larger J2EE applications (including SPECjAppServer2004) works well
with a 30ms pause targets. Lower pause targets might be possible for smaller J2EE applications
or faster hardware.

WebLogic Event Server
The Oracle WebLogic Server has been extensively optimized for use with Oracle JRockit Real
Time, so a good starting point for the pausetarget is 10 ms. Oralce has verified that small WLEvS
applications on recent x86 hardware work with pausetargets down to 3 ms. For more information
on tuning Oracle WebLogic Server with JRockit Real Time, see the Oracle WebLogic Server
documentation.
3-2 Introduction to Oracle JRockit Real Time

	Oracle® JRockit Real Time
	3.1.0

	Oracle JRockit Real Time Introduction to Oracle JRockit Real Time, 3.1.0
	Overview
	What is Oracle JRockit Real Time?
	Oracle JRockit Real Time Compatibility
	Oracle JRockit JDK Features in JRockit Real Time 3.1.0
	JRockit Latency Analysis Tool
	JRockit Memory Leak Detector
	Starting JRockit Mission Control

	Example Use Cases
	Derivative Exchange Defies Arbitrage Traders
	Competition-Beating Risk Calculation Infrastructure

	Software Components
	Oracle JRockit JDK 6 R27.6
	Oracle JRockit JDK 5.0 R27.6
	Oracle JRockit JDK 1.4.2 R27.6
	Deterministic Garbage Collection
	Enabling the Deterministic Garbage Collector

	JRockit Runtime Analyzer (JRA)

	Supported Configurations for JRockit Real Time
	Terminology

	Tuning Real Time Applications for Deterministic Garbage Collection
	Basic Environment Tuning
	Basic Application Tuning
	J2EE Application Tuning
	JMS Application Tuning
	JVM Tuning for Real-Time Applications
	Allow For a Warm-up Period
	Adjust Min/Max Heap Sizes
	Increase or Decrease Pause Targets
	Set the Page Size
	Determine Optimal Load
	Analyze GC With JRockit Verbose Output
	Limit Amount of Finalizers and Reference Objects
	Adjust the Garbage Collection Trigger
	Adjust the Amount of Garbage Collection Threads for Processors

	More Tuning Information
	JRockit JVM

	Using Oracle JRockit Real Time with Other Oracle Products
	Getting Started
	Oracle WebLogic Server
	WebLogic Event Server

