Oracle® JRockit JVM
Diagnostics Guide
R27.6

April 2009

ORACLE

Oracle JRockit JVM Diagnostics Guide, R27.6
Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or “commercial technical data” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

Part |. Understanding the Oracle JRockit JDK
About the Oracle JRockit JDK

What is the JROCKIt VM. . . .o 1-2
About the IDK . .o 1-2
JROCKIt DK VEISIONS . . o .ottt e et e e 1-2
What Platforms Does the JRockit IDK Support?, 1-3
Compatibility Information 1-3
The Contents of a JRockit JDK Installation 1-3
Development TOOIS 1-4
DM . . 1-4
CHeader Files 1-4
Java Runtime Environment (JRE) i 1-5
Additional Libraries. 1-5
SaAMPIe 1-6
Attach APL SUPPOIT. . oo 1-6
Oracle JRockit Documentationttt 1-6
JRockit JVM Command Line Optionst 1-7
JRockit JDK and JRockit Mission Control Support.......... ... i, 1-7

Understanding JIT Compilation and Optimizations
More than a “Black BOX”ot 2-1
How the JRockit JVM Compiles Code. oot e 2-3

Oracle JRockit Diagnostics Guide iii

An Example Illustrating Some Code Optimizations 2-5

Understanding Memory Management

The Heap and the NUISEry oo e 3-1
Object AllOCatioNo e 3-2
Garbage Collection. o e 3-2
The Mark and Sweep Model. i 3-3
Generational Garbage Collection i 3-4
Dynamic and Static Garbage Collection Modes. 3-4
COomMPACTioN . . .ot e 3-5

Understanding Threads and Locks

Understanding Threads.t e e 4-1
Default Stack Size for Java Threads. 4-2
Default Stack Size for JVM Internal Threads. 4-2

Understanding LOCKS oot e 4-3
Spinning and SIEEPING. oot 4-3
LOCK Chains 4-3

Migrating Applications to the Oracle JRockit JDK

About Application Migration. 5-1
Why MiIgrate? . . .o 5-2
Migration ReStrictions.o ot 5-2

Migration SUPPOItt 5-2

Migration ProCEAUIESot 5-2
Environment Changes.t 5-3
O NEr TIPS .« v o ettt 5-3
Tuning the JRockit JVM for Your Application. 5-3

Testing the Application 5-4

Oracle JRockit Diagnostics Guide

WY TS 5-4

HOW o TeSt . . .o 5-4
Replicating Tools Supplied withthe SunJDK.. oot 5-5
Command-line Option Compatibility Between the JRockit JVMand Sun 5-6
Submitting Migration Tipsot e 5-7

Setting Up and Running the Oracle JRockit JDK
Installing the Oracle JRoOCKit JDK 6-1
Setting Up and Checking Your Linux Environment 6-1

LinUX 0N LA . 6-2

Using LD_ASSUME_KERNEL i 6-2

Running in a chroot(3) Environment. i 6-2
Setting Up and Checking Your Windows Environment. 6-2
Setting Up and Checking Your Sun Solaris Environment 6-3
Setting the Path to the License File i, 6-3

Part Il. Profiling and Performance Tuning
About Profiling and Performance Tuning

HOW t0 TUNE: AN OVEIVIBW . . . oottt et e e e e e e e e e e e 7-1
What this Section CoNtains.ttt e 7-1

Understanding the Tuning Trade-offs

Pause Times vs. Throughput. e 8-1
Concurrent vs. “Stop-the-World” 8-1
Compaction Pauses vs. Throughput i, 8-2

Performance vs. Memory Footprint i 8-2
Heap Size vs. Throughput 8-2
Book Keeping vs. Pause TimesS.ot 8-2

Oracle JRockit Diagnostics Guide

vi

First Steps for Tuning the Oracle JRockit JVM

Step L:Basic TUNINGo 9-1
Tuningthe Heap Sizeo i 9-2
Tuning the Garbage Collection. i 9-2
Tuning the NUrsery Size o e 9-3
Tuning the Pause Targetot e 9-4

Step 2: Performance TUNING.ottt 9-4
Lazy Unlocking.o 9-5
Call Profiling.o 9-5
Large PageS . . . ot 9-5

Step 3: Advanced TUNING.o oot e 9-5
Tuning Compaction.t e 9-6
Tuningthe TLA SIZe . . oo oo 9-7
Further Information. 9-8

BeSt PraCtiCesot 9-8
Oracle WebLogiC Server. e 9-8
Oracle WebLogic SIP Server e 9-8
Oracle WebLogic EVent Server.t e 9-9
Oracle WOrkShop.o 9-9
“Utility” Applicationso 9-10
“BatCh” RUNS. . . .o 9-10

Tuning the Memory Management System

Setting the Heap and Nursery Size. e 10-1
Settingthe Heap Size i 10-2
Setting the Nursery and Keep AreaSize............. ... 10-3

Selecting and Tuning a Garbage Collector., 10-4
Selecting a Dynamic Garbage CollectionMode. 10-4

Oracle JRockit Diagnostics Guide

Selecting a Static Garbage Collection Strategy. oo, 10-8

Tuning the Concurrent Garbage Collection Trigger 10-10
Tuning the Compactionof Memory e 10-10
Fragmentation vs. Garbage Collection Pauses 10-10
Adjusting Compaction. 10-11
Optimizing Memory Allocation Performance 10-13
Setting the Thread Local AreaSize............ 10-13

Tuning Locks

Lock Profiling.o 11-2
Disabling Spinning Against Fat LOCKS. 11-2
Adaptive Spinning Against Fat Locks 11-2
Lock Deflationo 11-3
Lazy Unlocking.o 11-3

Tuning For Low Latencies

Measuring LatenCies. v e 12-1
Tune the Garbage Collection i e 12-2
Dynamic Garbage Collection Mode Optimized for Deterministic Pauses 12-3
Dynamic Garbage Collection Mode Optimized for Short Pauses. 12-4
Static Generational Concurrent Garbage Collection....................... 12-5
Tunethe Heap Size.o e e e 12-5
Manually Tune the NUrSery Size i 12-6
Manually Tune Compaction.ot e e e e 12-6
Tune When to Trigger a Garbage Collection.................. 12-7

Tuning For Better Application Throughput

Measuring Your Application’s Throughput oo ia... 13-1
Select Garbage Collector 13-2

Oracle JRockit Diagnostics Guide vii

Dynamic Garbage Collection Mode Optimized for Throughput 13-3

Static Single-Spaced Parallel Garbage Collection 13-3
Static Generational Parallel Garbage Collection. 13-3
Tunethe Heap Size. 13-4
Manually Tune the NUrsery Size e 13-4
Manually Tune Compaction.t e 13-5
Tune the Thread-Local Area Size i 13-5

Tuning For Stable Performance

Measuring the Performance Variance i, 14-1
Tunethe Heap Size.o e 14-2
Manually Tune the NUrsery Size e 14-2
Tune the Garbage Collector e 14-3
Tune ComMPaCtioNo e 14-3

Tuning For a Small Memory Footprint

Measuring the Memory Footprint i 15-1
Setthe Heap Sizeo oo 15-2
Selecta Garbage Collector. i 15-2
Tune ComMPaCHIONo e 15-3
Tune Object Allocation i e e 15-4

Tuning For Faster JVM Startup

Measuring the Startup Time. 16-1
Settingthe Heap Size oo 16-1
Troubleshoot Your Applicationandthe JVM 16-2

Part Ill. JRockit JDK Tools

viii Oracle JRockit Diagnostics Guide

Introduction to Diagnostics Tools
What this Section Contains.t e e 17-1

Using Oracle JRockit Mission Control Tools

JRockit Mission Control Overhead. i 18-1
Architectural Overview of the JRockit Mission Control Client. 18-2
JRockit Mission Control 3.0 18-2
JRockit Mission Control 2.0 18-3
JRockit Mission Control 1.0o 18-4
The JRockit Management Console. i 18-6
The JRockit Runtime Analyzer. i e 18-6
Latency Analysis Tool (JRockit Mission Control 3.0) 18-6
JRA Sample Recordingsc ot e 18-7
The JRockit Memory Leak Detector, 18-8
More Information on JRockit Mission Control Versions. 18-8

Understanding Verbose Outputs

Memory Management Verbose LogModules 19-1
Verbose Memory Module 19-2
Verbose Nursery LogModule i 19-4
Verbose Memdbg LogModule 19-6
Verbose Compaction LogModule. i 19-14
Verbose Gepause Log Module. 19-15
Verbose Gereport LogModule oo 19-17
Verbose Refobj and Referents Log Modules. 19-19

Other Verbose Log Modules. 19-22
Verbose OptLog Moduleo 19-22
Verbose Exceptions LogModule. 19-23

Oracle JRockit Diagnostics Guide ix

Using Thread Dumps

Creating Thread DUMPSot e e 20-1
Reading Thread DUMPSot 20-2
The Beginning of The Thread Dump i 20-2
Stack Trace for Main Application Thread. 20-3
Locksand LoCk Chains.o 20-3
JVM iInternal Threadso o 20-5
Other Java Application Threads i, 20-5
Lock Chains 20-7
Thread Status in Thread DUMPS.o e 20-8
Life StateS . . . ot 20-8
RUNSEAtES . . . oo 20-9
Special States 20-10
Troubleshooting with Thread Dumps. i 20-10
Detecting DeadloCKS oot 20-10
Detecting Processing Bottlenecks. i 20-11
Viewing The Runtime Profile of an Application 20-11

Running Diagnostic Commands

Diagnostic Commands OVerVIEW.ttt et 21-1
USiNg JrCmd . ..o 21-2
How jrcmd Communicates with the JRockitJVM 21-2
Howto Use Jremd e 21-2
Jremd EXamples. ..o 21-3
Known Limitationsof jremd. 21-4
Ctrl-Break Handler. 21-5
Available Diagnostic Commands. 21-7
Getting Help . ..o oo 21-10

Oracle JRockit Diagnostics Guide

Oracle JRockit Time Zone Updater

Downloading the TZUpdatero e 22-2
Introduction to the TZUpdater o 22-2
System Requirements to Runthe TZUpdater. i, 22-2
Using the TZUpdatero e 22-2

Command-line Options Described i 22-2

Example of the Default way of Using TZUpdater 22-3
Error Handling oo 22-4
System-wide USage.o vt 22-4
Determining Your TZUpdater Version.t 22-5
Removing TZUpdater Changesottt e 22-5
KNOWN ISSUBS . . . oo e 22-6

Oracle JRockit Mission Control Use Cases

Analyzing System Behavior with the JRockit Management Console 23-1
Getting Started. o 23-2
Analyzing Memory USage.ottt e 23-3
Setting an Alert Trigger.o 23-6
Profiling Methods Online by Usingthe Console. 23-10

Analyzing System Problems with the JRockit Runtime Analyzer............... 23-12
Getting Started. 23-13
Creatingthe Recordingt e e 23-13
Lookingatthe Recording 23-14
Examiningthe Methods Tab i 23-15

DetectingaMemory Leak i 23-24
Getting Started. 23-24
Analyze the Java Application i 23-25
The Leak is DIiSCOVEred.t e 23-30

Oracle JRockit Diagnostics Guide Xi

Part IV. Diagnostics and Troubleshooting

About Diagnostics and Troubleshooting
What this Section Contains i 24-1

Diagnostics Roadmap

Step 1. Eliminate Common CauSeS vvv et 25-1
Step 2. Observe the Symptoms. 25-3
Step 3. Identify the Problem. 25-4
Step 4. Resolve the Problem. 25-5
Step 5. Send a Trouble Report (Optional)t 25-5
The Oracle JRockit JVM Starts Slowly
Possible Causes Behinda Slow Start. 26-1
Special Note If You Recently Switched JVMs to the JRockit JVM........... 26-2
Diagnosing a SIow JVM Startupo 26-2
Diagnosing a Slow Application Startup. 26-3
Timing with nanoTime() and currentTimeMillis() 26-3
System.nanoTime()o o 26-3
System.currentTimeMillis() 26-4
Milliseconds and nanotime at application startup. 26-4
Recommended Solutions foraSlow Start i il 26-4
Tune for Faster Startup 26-4
Eliminate Optimization Problems. o i 26-4
Eliminate Application Problems. 26-5
Open a Case with Oracle Support. 26-5

Long Latencies
The Problem is Usually with Tuning 27-1

Xii Oracle JRockit Diagnostics Guide

Troubleshooting TIPS . .« ..o v 27-2

GC Trigger Value Keeps INCreasingoovuiiininiii e, 27-2
GC Reason for Old Collections is Failed Allocations. 27-2
Long Young Collection Pause TiIMeSc.coviiiei e, 27-2
Long Pauses in Deterministic Mode i 27-3
If All Else Fails, Open a Case With Oracle Support, 27-3

Low Overall Throughput

The Problem is Usually with Tuning e 28-1
If All Else Fails, Open a Case With Oracle Support 28-2

The Oracle JRockit JVM's Performance Degrades Over Time

The Problem is Usually With Tuning. oo e 29-1
You Could be Experiencing Optimization Problems 29-2
You Could Be Experiencinga Memory LeakinJava 29-2
If All Else Fails, Open a Case with Oracle Support. 29-3

The System is Crashing

Notifying Oracle SUPPOIt oo 30-1
Classify the Crash. e 30-2
UsingaCrash File. e 30-2
Determinethe Crash Type.ot 30-2
Out Of Virtual Memory Crash e 30-3
Verify the Out Of Virtual Memory Error. 30-3
Troubleshoot the Out Of Virtual Memory Errort 30-5
Stack Overflow Crash. 30-7
Verify the Stack Overflow Crash. i 30-7
Troubleshoot a Stack Overflow Crash.t 30-8
Unsupported Linux ConfigurationCrash oo 30-8

Verify that the OS VersionisSupported, 30-8

Verify that You Have Installed the Correct glibc Binary 30-9
Examine the Thread Library e 30-9
JVM Crash . .. 30-9
Code Generation Crash.t 30-9
Garbage Collection Crash. i e 30-12

Understanding Crash Files

Differences Between Text dump Files and Binary core/mdmp Files 31-2
Binary Crash File Sizing 31-3
Locationof Crash Files 31-3
Enabling Binary core Crash Files on Linux and Sun Solaris 31-4
Enabling Binary mdmp Crash Fileson Windows. 31-4
Disabling Crash Files. 31-4
Disabling Textdump Files 31-4
Disabling the Binary Crash Files i i, 31-5
Extracting Information Froma Textdump File........... 31-5
Symptoms to LOOK FOro 31-5
Exampleofa Textdump File 31-6
The Oracle JRockit JVM is Freezing
Diagnosing Where the Freeze isOCCUITINgo oot it 32-1
Java Application Freezet 32-2
Resolving a Java Applicationfreeze........... i 32-2
IfThisDidNotHelp. ... e 32-2
JVM FIEEZE . .o 32-3
Collect Information Aboutthe JIVM Freeze, 32-3
Submit the Information to Oracle JRockit Support. 32-6

Xiv Oracle JRockit Diagnostics Guide

Non-responding NFS Shares i 32-6

Submitting Problems to Oracle Support

Check the Oracle JRockit JVM Forums First.t 33-1
Filing the Trouble Report oo e 33-2
Trouble Reporting Process OVErview, 33-2
Identify Your Problem Type 33-2
Verify That You’re Running a Supported Configuration 33-2
Verify the Problem has Not Been Fixed in a Subsequent Version of the JRockit JVM
33-3
Collect Enough Information to Define Your Issue 33-3

Oracle JRockit Diagnostics Guide XV

Xvi Oracle JRockit Diagnostics Guide

Part| Understanding the
Oracle JRockit JDK

Chapter 1. About the Oracle JRockit IDK

Chapter 2. Understanding JIT Compilation and Optimizations
Chapter 3. Understanding Memory Management

Chapter 4. Understanding Threads and Locks

Chapter 5. Migrating Applications to the Oracle JRockit JDK
Chapter 6. Setting Up and Running the Oracle JRockit JIDK

Oracle JRockit Diagnostics Guide

CHAPTERa

About the Oracle JRockit JDK

Note: The information in the Diagnostics Guide is only applicable to the Oracle JRockit JIDK
R26 and later versions.

The Oracle JRockit JDK provides tools, utilities, and a complete runtime environment for
developing and running applications using the Java programming language. The JRockit JDK
includes the Oracle JRockit Java Virtual Machine (JVM). The Oracle JRockit JVM is developed
and optimized for Intel architectures to ensure reliability, scalability, and manageability for Java
applications.

This section contains information on the following subjects:
e What is the JRockit JVM?
e JRockit JDK Versions
e What Platforms Does the JRockit JDK Support?
e Compatibility Information

The Contents of a JRockit JDK Installation

e Attach API Support
e Oracle JRockit Documentation
e JRockit JVM Command Line Options

e JRockit JDK and JRockit Mission Control Support

Oracle JRockit JVM Diagnostics Guide 1-1

About the Oracle JRockit JDK

What is the JRockit JVM?

The JRockit JVM is a high performance JVM developed to ensure reliability, scalability,
manageability, and flexibility for Java applications. The JRockit JVM delivers a new level of
performance for Java applications deployed on Intel 32-bit (Xeon) and 64-bit (Xeon, Itanium, and
SPARC) architectures at significantly lower costs to the enterprise. Furthermore, it is the only
enterprise-class JVM optimized for Intel architectures, providing seamless inter operability
across multiple hardware and operating configurations. The JRockit JVM makes it possible to
gain optimal performance for your Java applications when running it on either the Windows or
Linux operating platforms on either 32-bit or 64-bit architectures. The JRockit JVM is especially
well suited for running Oracle WebLogic Server.

For more information on JVMs in general, see the Introduction to the JVM Specification at:

http://java.sun.com/docs/books/vmspec/2nd-edition/html/Introduction.doc.ht
ml#3057

About the JDK

The JRockit JVM is one component of the Oracle JRockit Java development kit (JDK). In
addition to the JRockit JVM, the JDK is comprised of the Java Runtime Environment (JRE),
which contains the JVM and Java class libraries (as specified by the Java Platform, Standard
Edition 6 API Specification), as well as a set of development tools, such as a compiler. For more
information about the contents of the JRockit JDK, please refer to The Contents of a JRockit IDK
Installation.

JRockit JDK Versions

1-2

The JRockit JDK numbering scheme is based upon:
e Java SE version (J2SE 1.4.2, J2SE 5.0, Java SE 6)

e The JRockit JVM release number (Rnn.nn.nn)

For example, Oracle JRockit JDK 6 R27.6 refers to the 27.6 release of JRockit JVM used with
Java SE 6; Oracle JRockit JIDK 1.4.2 R27.6 refers to the 27.6 release of the JRockit JVM used
with J2SE 1.4.2. All future versions of the JRockit JDK will follow this versioning scheme.

A full version name might look like this:
R27.6.0-1-85830-1.6.0_01-20070716-1248-windows-ia32

Oracle JRockit JVM Diagnostics Guide

What Platforms Does the JRockit JDK Support?

where R27.6.0 is the JRockit JVM release, 1.6.0_01 is the Java version, and windows-ia32
is the platform on which this version runs.

Note: JRockit JDK versions that were based on J2SE releases earlier than 1.4.2 used a different
numbering scheme following the Oracle WebLogic Platform versions. For this reason,
the J2SE 1.3.1 version of the JRockit JDK was called 7.0.

Every JRockit JVM release comes with several Java versions. For example, JRockit JVM R27.6
comes with Java SE versions 1.4.2, 5.0, and 6. A Java version can be compatible with multiple
JRockit JVM releases.

What Platforms Does the JRockit JDK Support?

The JRockit JDK is certified to be compatible with J2SE 1.3.1, 1.4.2, 5.0, and Java SE 6. For a
complete list of platforms that the JRockit JDK supports, please refer to JRockit JDK Supported
Configurations at:

http://e-docs.bea.com/jrockit/jrdocs/suppPlat/supp_plat.html

Compatibility Information

The JRockit JDK subscribes to an update policy that ensures compatibility from one release to
the next to provide simple and complete upgrade flexibility. This policy is described in
Compatibility Between Releases at:

http://e-docs.bea.com/jrockit/jrdocs/suppPlat/prodsupp.html#999010

The Contents of a JRockit JDK Installation

This section describes the various components that make up an installation of the JRockit JDK.
It also identifies the folders in which the components reside.

The JRockit JDK is very similar, in the file layout, to the Sun JDK, except that it includes a new
JRE with the JRockit JVM and some changes to the Java class libraries (however, all of the class
libraries have the same behavior in the JRockit JDK as in the Sun JDK).

The following sections briefly describe the contents of the directories in a JRockit JDK
installation:

e Development Tools (/bin)

e Demo (/demo)

Oracle JRockit JVM Diagnostics Guide 1-3

About the Oracle JRockit JDK

1-4

C Header Files (Zinclude)

Java Runtime Environment (JRE) (/jre)
e Additional Libraries (/1ib)

e Sample (/sample)

Development Tools
Found in: /bin

Development tools and utilities help you develop, execute, debug, and document programs
written in the Java programming language. The JRockit JDK includes the standard tools
commonly distributed with the typical Java JDKs. While most of these are standard JDK tools
and are proven to work well with Java development projects, you are free to use any other third
party tools, compilers, debuggers, IDEs, and so on that might work best in your situation. The
tools included with the JRockit JDK are:

e Javac compiler
e Jdb debugger
e Javadoc, which is used to create an HTML documentation site for the JVM API

For more information on these tools, please refer to Sun Microsystem’s Java SE 6 Development
Kit at:

http://java.sun.com/javase/6/

Demo

Found in: /demo

This directory contains various demos of how to use various libraries included in the JRockit JDK
installation.

C Header Files

Found in: Zinclude

Header files that support native-code programming using the Java Native Interface (JNI) and the
Java Virtual Machine Tools Interface (JVMTI) and other functionality of the Java SE Platform.

Oracle JRockit JVM Diagnostics Guide

http://java.sun.com/javase/6/

The Contents of a JRockit JDK Installation

Java Runtime Environment (JRE)

Found in: Zjre

The JRockit JVM implementation of the Java runtime environment. The runtime environment
includes the JRockit JVM, class libraries, and other files that support the execution of programs
written in Java.

Java Virtual Machine
By definition, the JVM is the JRockit JVM, as described in this documentation set.

Standard Java SE JRE Features

In addition to JRE components specific to the JRockit JDK, the JRE also contains components
found in the Sun implementation of the JRE. For a complete list of the standard Java SE JRE
features, see the Sun documentation for the specific version of JRockit JDK you are running:

e JRockit JDK 6 R27.2 and higher:
http://java.sun.com/javase/6/docs/index.html

e JRockit JDK 5.0 R25 and higher:
http://java.sun.com/j2se/1.5.0/docs/index.html

e JRockit JDK 1.4.2 R26 and higher:
http://java.sun.com/j2se/1.4_2/docs/index.html

Note on JRE Class Files

The JRE class files distributed with the JRockit JDK come directly from Sun, except for a small
number that are tightly coupled to the JVM and are therefore overridden in the JRockit JDK. The
overridden class files are inthe java.lang, java.io, java.net, and java.util packages. No
classes have been omitted.

Additional Libraries
Found in: /Z1ib

Additional class libraries and support files required by the development tools.

Oracle JRockit JVM Diagnostics Guide 1-5

http://java.sun.com/javase/6/docs/index.html

About the Oracle JRockit JDK

Sample
Found in: /sample

The Sample directory contains the source files for a simple NIO-based HTTP/HTTPS Server
written in Java. The server was written to demonstrate some of the functionality of the Java 2
platform. The demo is not meant to be a full tutorial, it assumes that you have some familiarity
with the subject matter.

Attach APl Support

Versions of the JRockit JVM running on Java 6 support the Attach API. This APl is a Java
extension that provides a way to attach tools written in Java to JRockit JVM and load their tool
agents into it. For example, a management console might use a management agent to obtain
objects in the JRockit JVM instance. If the management console has to manage an application
running in a JRockit JVM instance that doesn’t include the management agent, you can use this
API to attach to the JRockit JVM instance and load the agent.

For more information, please see the Attach API specification at:
http://java.sun.com/javase/6/docs/jdk/api/attach/spec/index.html

Oracle JRockit Documentation

1-6

The Oracle JRockit JVM Diagnostics Guide is a general document applicable to the R27 release
and all subsequent JRockit JDK releases.

For links to all documentation available for the latest version of the JRockit JDK, visit the Oracle
JRockit documentation page at the following location:

http://edocs.bea.com/jrockit/webdocs/index.html

From this page, you can also access the documentation for earlier versions of the Oracle JRockit
JDK.

You can find documentation for the Oracle JRockit Mission Control tools at the following
location:

http://edocs.bea.com/jrockit/tools/index.html

Oracle JRockit JVM Diagnostics Guide

http://edocs.bea.com/jrockit/webdocs/index.html

JRockit JVM Command Line Options

JRockit JVJM Command Line Options

The Oracle JRockit JVM configuration and tuning parameters are set by using specific command
line options, which you can enter either along with the start-up command or include in a start-up
script. These options are discussed in the Oracle JRockit Command Line Reference, at:

http://edocs.bea.com/jrockit/jrdocs/refman/index.html

JRockit JDK and JRockit Mission Control Support

You are entitled to support on the JVM and JRockit Mission Control if you have a support
agreement with Oracle.

Oracle JRockit JVM Diagnostics Guide 1-1

About the Oracle JRockit JDK

1-8 Oracle JRockit JVM Diagnostics Guide

CHAPTERa

Understanding JIT Compilation and
Optimizations

This section offers a high-level look at how the Oracle JRockit JVM generates code. It provides
information on JIT compilation and how the JVM optimizes code to ensure high performance.
This section contains information on the following subjects:

e More than a “Black Box”
e How the JRockit JVM Compiles Code

e An Example Illustrating Some Code Optimizations

More than a “Black Box”

From the user’s point of view, the JRockit JVM is merely a black box that “converts” Java code
to highly optimized machine code: you put Java code in one end of the JVM and out the other end
comes machine code for your particular platform (see Figure 2-1).

Oracle JRockit JVM Diagnostics Guide 2-1

Understanding JIT Compilation and Optimizations

Figure 2-1 The JRockit JVM as a Black Box

JRockit JVM

Solaris

110001110

When lifting the lid of the black box you will see different actions that are taken before the code
is optimized for your particular operating system. There are certain operations, data structure
changes, and transformations that take place before the code leaves the JVM (see Figure 2-2).

2-2 Oracle JRockit JVM Diagnostics Guide

How the JRockit JVM Compiles Code

Figure 2-2 Lifting the Black Box

4

110001110

This section sheds some light on what actually happens with the Java application code when
going through the JVM.

How the JRockit JVM Compiles Code

The code generator in the JRockit JVM runs in the background during the entire run of your Java
application, automatically adapting the code to run its best. The code generator works in three
steps, as described in Figure 2-3.

Oracle JRockit JVM Diagnostics Guide 2-3

Understanding JIT Compilation and Optimizations

2-4

Figure 2-3 How the JRockit JVM Optimizes Code for Your Java Application

Gava applicatioD

1. JRock}f runs JIT _'[2. JRockit monitors]_'[3. JRockit runs

compilation threads optimization

JRockit runs optimization

(JIT-compiled) Highly optimized
machine code machine code
1. The JRockit JVM Runs JIT Compilation

The first step of code generation is the Just-In-Time (JIT) compilation. This compilation allows
your Java application to start and run while the code that is generated is not highly optimized for
the platform. Although the JIT is not actually part of the JVM standard, it is, nonetheless, an
essential component of Java. In theory, the JIT comes into use whenever a Java method is called,
and it compiles the bytecode of that method into native machine code, thereby compiling it “just
in time” to execute.

le - - -

After a method is compiled, the JRockit JVM calls that method’s compiled code directly instead
of trying to interpret it, which makes the running of the application fast. However, during the
beginning of the run, thousands of new methods are executed, which can make the actual start of
the JRockit JVM slower than other JVMs. This is due to a significant overhead for the JIT to run
and compile the methods. So, if you run a JVM without a JIT, that JVM starts up quickly but
usually runs slower. If you run the JRockit JVM that contains a JIT, it can start up slowly, but
then runs quickly. At some point, you might find that it takes longer to start the JVM than to run
an application.

Compiling all of the methods with all available optimizations at startup would negatively impact
the startup time. Thus the JIT compilation does not fully optimize all methods at startup.

2. The JRockit JVM Monitors Threads

During the second phase, the JRockit JVM uses a sophisticated, low-cost, sampling-based
technique to identify which functions merit optimization: a “sampler thread” wakes up at periodic
intervals and checks the status of several application threads. It identifies what each thread is

Oracle JRockit JVM Diagnostics Guide

An Example lllustrating Some Code Optimizations

executing and notes some of the execution history. This information is tracked for all the methods
and when it is perceived that a method is experiencing heavy use—in other words, is “hot”—that
method is earmarked for optimization. Usually, a flurry of such optimization opportunities occur
in the application’s early run stages, with the rate slowing down as execution continues.

3. The JRockit JVM Runs Optimization

During the third phase, the JVM runs an optimization round of the methods that it perceives to be
the most used—"hot”—methods. This optimization is run in the background and does not disturb
the running application.

An Example lllustrating Some Code Optimizations

This example illustrates some ways in which the JRockit JVM optimizes Java code. The example
is fairly short and simple, but it will give you a general idea of how the actual Java code can be
optimized. Note that there are many ways of optimizing Java applications that are not discussed
here.

In Table 2-1 you can see how the code before and after optimization. The differences might not
look substantial, but note that the optimized code does not need to run down to Class B every time
Class Ais run.

Oracle JRockit JVM Diagnostics Guide 2-5

Understanding JIT Compilation and Optimizations

2-6

Table 2-1 Example of before and after optimization of a class

Class A before optimization Class A after optimization
class A { class A {
B b; B b;
public void foo(Q) { public void foo(Q) {
y = b.get(Q); y = b.value;
...do stuff... ...do stuff...
z = b.get(); sum =y + y;
sum =y + z; }
} }
b class B {
class B { int value;
int value; final int get(Q {
final int get() { return value;
return value; }
} }
}

Steps Taken to Optimize Class A

When the Oracle JRockit JVM optimizes code it goes through several steps to get the best
optimization possible. The example from Table 2-1 shows on how a method looks like before and
after the optimization. In Table 2-2 you find an explanation of what can happen in a few
optimization steps that the JVM might go through at the level of the Java application code itself.
Note that several optimizations appear at the level of the assembler code, however.

Oracle JRockit JVM Diagnostics Guide

Table 2-2 Different Optimization Steps

An Example lllustrating Some Code Optimizations

Step in Code Transformation Comment
Optimization
Starting point public void foo() {
y = b.getQ;
...do stuff. ..
z = b.get(Q):
sum =y + z;
}
1. Inline final ~ Public void foo() {
method y = b.value; // b_get() has been replaced by b.value
...do stuff. .. // as latencies are reduced by accessing
z = b.value; // b_.value directly instead of through
sum =y + z; // a function call.
}
2. Remove public void foo() {
redundant y = b.value;
loads ...do stuff...
zZ=Y; // z = b_.value has been replaced with
sum =y + Zz; // z = y so that latencies will be
} // reduced by accessing the local value
// instead of b.value.
3. Copy public void foo() {
propagation y = b.value;
...do stuff. ..
y =Y; // z =y has been replaced by y = y since
sum =y + y; // there is no use for an extra variable
¥ // z as the value of z and y will be
// equal.
4. Eliminate public void foo(Q) {
dead code y = b.value;
...do stuff. ..
sum =y + y; // y =y is unnecessary and can be
} // eliminated.

Oracle JRockit JVM Diagnostics Guide 2-1

Understanding JIT Compilation and Optimizations

2-8 Oracle JRockit JVM Diagnostics Guide

CHAPTERa

Understanding Memory Management

Memory management is the process of allocating new objects and removing unused objects to
make space for those new object allocations. This section presents some basic memory
management concepts and explains the basics about object allocation and garbage collection in
the Oracle JRockit JVM. The following topics are covered:

e The Heap and the Nursery
e Object Allocation

e Garbage Collection

For information about how to use command line options to tune the memory management system,
see Tuning the Memory Management System.

The Heap and the Nursery

Java objects reside in an area called the heap. The heap is created when the JVM starts up and
may increase or decrease in size while the application runs. When the heap becomes full, garbage
is collected. During the garbage collection objects that are no longer used are cleared, thus
making space for new objects.

Note that the JVM uses more memory than just the heap. For example Java methods, thread
stacks and native handles are allocated in memory separate from the heap, as well as JVM internal
data structures.

The heap is sometimes divided into two areas (or generations) called the nursery (or young
space) and the old space. The nursery is a part of the heap reserved for allocation of new objects.

Oracle JRockit JVM Diagnostics Guide 3-1

Understanding Memory Management

When the nursery becomes full, garbage is collected by running a special young collection, where
all objects that have lived long enough in the nursery are promoted (moved) to the old space, thus
freeing up the nursery for more object allocation. When the old space becomes full garbage is
collected there, a process called an old collection.

The reasoning behind a nursery is that most objects are temporary and short lived. A young
collection is designed to be swift at finding newly allocated objects that are still alive and moving
them away from the nursery. Typically, a young collection frees a given amount of memory much
faster than an old collection or a garbage collection of a single-generational heap (a heap without
a nursery).

In R27.2.0 and later releases, a part of the nursery is reserved as a keep area. The keep area
contains the most recently allocated objects in the nursery and is not garbage collected until the
next young collection. This prevents objects from being promoted just because they were
allocated right before a young collection started.

Object Allocation

During object allocation, the JRockit JVM distinguishes between small and large objects. The
limit for when an object is considered large depends on the JVM version, the heap size, the
garbage collection strategy and the platform used, but is usually somewhere between 2 and 128
kB. Please see the documentation for -xXtlaSize and -XXlargeObjectLimit for more
information.

Small objects are allocated in thread local areas (TLAs). The thread local areas are free chunks
reserved from the heap and given to a Java thread for exclusive use. The thread can then allocate
objects in its TLA without synchronizing with other threads. When the TLA becomes full, the
thread simply requests a new TLA. The TLAs are reserved from the nursery if such exists,
otherwise they are reserved anywhere in the heap.

Large objects that don’t fit inside a TLA are allocated directly on the heap. When a nursery is
used, the large objects are allocated directly in old space. Allocation of large objects requires
more synchronization between the Java threads, although the JRockit JVM uses a system of
caches of free chunks of different sizes to reduce the need for synchronization and improve the
allocation speed.

Garbage Collection

Garbage collection is the process of freeing space in the heap or the nursery for allocation of new
objects. This section describes the garbage collection in the JRockit JVM.

3-2 Oracle JRockit JVM Diagnostics Guide

Garbage Collection

The Mark and Sweep Model

Generational Garbage Collection

Dynamic and Static Garbage Collection Modes

e Compaction

The Mark and Sweep Model

The JRockit JVM uses the mark and sweep garbage collection model for performing garbage
collections of the whole heap. A mark and sweep garbage collection consists of two phases, the
mark phase and the sweep phase.

During the mark phase all objects that are reachable from Java threads, native handles and other
root sources are marked as alive, as well as the objects that are reachable from these objects and
so forth. This process identifies and marks all objects that are still used, and the rest can be
considered garbage.

During the sweep phase the heap is traversed to find the gaps between the live objects. These gaps
are recorded in a free list and are made available for new object allocation.

The JRockit JVM uses two improved versions of the mark and sweep model. One is mostly
concurrent mark and sweep and the other is parallel mark and sweep. You can also mix the two
strategies, running for example mostly concurrent mark and parallel sweep.

Mostly Concurrent Mark and Sweep

The mostly concurrent mark and sweep strategy (often simply called concurrent garbage
collection) allows the Java threads to continue running during large portions of the garbage
collection. The threads must however be stopped a few times for synchronization.

The mostly concurrent mark phase is divided into four parts:

o Initial marking, where the root set of live objects is identified. This is done while the Java
threads are paused.

e Concurrent marking, where the references from the root set are followed in order to find
and mark the rest of the live objects in the heap. This is done while the Java threads are
running.

e Precleaning, where changes in the heap during the concurrent mark phase are identified
and any additional live objects are found and marked. This is done while the Java threads
are running.

Oracle JRockit JVM Diagnostics Guide 3-3

Understanding Memory Management

3-4

e Final marking, where changes during the precleaning phase are identified and any
additional live objects are found and marked. This is done while the Java threads are
paused.

The mostly concurrent sweep phase consists of four parts:

e Sweeping of one half of the heap. This is done while the Java threads are running and are
allowed to allocate objects in the part of the heap that isn’t currently being swept.

e A short pause to switch halves.

e Sweeping of the other half of the heap. This is done while the Java threads are running and
are allowed to allocate objects in the part of the heap that was swept first.

e A short pause for synchronization and recording statistics.

Parallel Mark and Sweep

The parallel mark and sweep strategy (also called the parallel garbage collector) uses all
available CPUs in the system for performing the garbage collection as fast as possible. All Java
threads are paused during the entire parallel garbage collection.

Generational Garbage Collection

The nursery, when it exists, is garbage collected with a special garbage collection called a young
collection. A garbage collection strategy which uses a nursery is called a generational garbage
collection strategy, or simply generational garbage collection.

The young collector used in the JRockit JVM identifies and promotes all live objects in the
nursery that are outside the keep area to the old space. This work is done in parallel using all
available CPUs. The Java threads are paused during the entire young collection.

Dynamic and Static Garbage Collection Modes

By default, the JRockit JVM uses a dynamic garbage collection mode that automatically selects
a garbage collection strategy to use, aiming at optimizing the application throughput. You can
also choose between two other dynamic garbage collection modes or select the garbage collection
strategy statically. The following dynamic modes are available:

e throughput, which optimizes the garbage collector for maximum application throughput.
This is the default mode.

e pausetime, which optimizes the garbage collector for short and even pause times.

Oracle JRockit JVM Diagnostics Guide

Garbage Collection

e deterministic, which optimizes the garbage collector for very short and deterministic
pause times. This mode is only available as a part of Oracle JRockit Real Time.

The major static strategies are:
e singlepar, which is a single-generational parallel garbage collector (same as parallel)
e genpar, which is a two-generational parallel garbage collector
e singlecon, which is a single-generational mostly concurrent garbage collector

e gencon, which is a two-generational mostly concurrent garbage collector

For more information on how to select the best mode or strategy for your application, see
Selecting and Tuning a Garbage Collector.

Compaction

Obijects that are allocated next to each other will not necessarily become unreachable (“die”) at
the same time. This means that the heap may become fragmented after a garbage collection, so
that the free spaces in the heap are many but small, making allocation of large objects hard or
even impossible. Free spaces that are smaller than the minimum thread local area (TLA) size can
not be used at all, and the garbage collector discards them as dark matter until a future garbage
collection frees enough space next to them to create a space large enough for a TLA.

To reduce fragmentation, the JRockit JVM compacts a part of the heap at every garbage
collection (old collection). Compaction moves objects closer together and further down in the
heap, thus creating larger free areas near the top of the heap. The size and position of the
compaction area as well as the compaction method is selected by advanced heuristics, depending
on the garbage collection mode used.

Compaction is performed at the beginning of or during the sweep phase and while all Java threads
are paused.

For information on how to tune compaction, see Tuning the Compaction of Memory.

External and Internal Compaction

The JRockit JVM uses two compaction methods called external compaction and internal
compaction. External compaction moves (evacuates) the objects within the compaction area to
free positions outside the compaction area and as far down in the heap as possible. Internal
compaction moves the objects within the compaction area as far down in the compaction area as
possible, thus moving them closer together.

Oracle JRockit JVM Diagnostics Guide 3-5

Understanding Memory Management

3-6

The JVM selects a compaction method depending on the current garbage collection mode and the
position of the compaction area. External compaction is typically used near the top of the heap,
while internal compaction is used near the bottom where the density of objects is higher.

Sliding Window Schemes

The position of the compaction area changes at each garbage collection, using one or two sliding
windows to determine the next position. Each sliding window moves a notch up or down in the
heap at each garbage collection, until it reaches the other end of the heap or meets a sliding
window that moves in the opposite direction, and starts over again. Thus the whole heap is
eventually traversed by compaction over and over again.

Compaction Area Sizing

The size of the compaction area depends on the garbage collection mode used. In throughput
mode the compaction area size is static, while all other modes, including the static mode, adjust
the compaction area size depending on the compaction area position, aiming at keeping the
compaction times equal throughout the run. The compaction time depends on the humber of
objects moved and the number of references to these objects. Thus the compaction area will be
smaller in parts of the heap where the object density is high or where the amount of references to
the objects within the area is high. Typically the object density is higher near the bottom of the
heap than at the top of the heap, except at the very top where the latest allocated objects are found.
Thus the compaction areas are usually smaller near the bottom of the heap than in the top half of
the heap.

Oracle JRockit JVM Diagnostics Guide

CHAPTERa

Understanding Threads and Locks

A running application is usually made up of one process with its own memory space. A computer
is generally running several processes at the same time. For example, a word processor
application process might be running alongside a media player application process. Furthermore,
a process consists of many concurrently running threads. When you run a Java application, a new
JVM process is started.

Each Java process has at least one application thread. Besides the threads of the running Java
application, there are also Oracle JRockit JVM internal threads that take care of garbage
collection or code generation.

This section contains basic information about threads and locks in the JRockit JVM. The
following subjects are discussed:

e Understanding Threads

e Understanding Locks

For information about how to make so-called thread dumps, printouts of the stacks of all the
threads in an application, see Using Thread Dumps. Thread dumps can be used to diagnose
problems and optimize application and JVM performance.

Understanding Threads

A java application consists of one or more threads that run Java code. The entire JVM process
consists of the Java threads and some JVM internal threads, for example one or more garbage
collection threads, a code optimizer thread and one or more finalizer threads.

Oracle JRockit JVM Diagnostics Guide 4-1

Understanding Threads and Locks

From the operating system’s point of view the Java threads are just like any application threads.
Scheduling of the threads is handled by the operating system, as well as thread priorities.

Within Java, the Java threads are represented by thread objects. Each thread also has a stack, used
for storing runtime data. The thread stack has a specific size. If a thread tries to store more items
on the stack than the stack size allows, the thread will throw a stack overflow error.

Default Stack Size for Java Threads

This section lists the default stack sizes. You can change the thread stack size with the -Xss
command line option, for example:

Jjava -Xss:512k MyApplication

The default stack sizes differ depending upon whether you are using 1A32 and X64, as shown in
Table 1:

Table 1 Default Stack Size

0S Default Stack Size
Windows 1A32 64 kB

Windows |A64 320 KB
Windows x64 128 kB

Linux 1A32 128 kB

Linux 1A64 1024 KB

Linux x64 256 kB
Solaris/SPARC 512 KB

Default Stack Size for JVM Internal Threads

A special “system” stack size is used for JVM internal threads; for example, the garbage
collection and code generation threads. The default system stack size is 256 KB on all platforms.

Note: The -Xss command line option sets the stack size of both application threads and JVM
internal threads.

4-2 Oracle JRockit JVM Diagnostics Guide

http://edocs/jrockit/jrdocs/refman/optionX.html#wp999540
http://edocs/jrockit/jrdocs/refman/optionX.html#wp999540
http://edocs/jrockit/jrdocs/refman/optionX.html#wp999540
http://edocs/jrockit/jrdocs/refman/optionX.html#wp999540

Understanding Locks

Understanding Locks

When threads in a process share and update the same data, their activities must be synchronized
to avoid errors. In Java, this is done with the synchronized keyword, or with wait and notify.
Synchronization is achieved by the use of locks, each of which is associated with an object by the
JVM. For a thread to work on an object, it must have control over the lock associated with it, it
must “hold” the lock. Only one thread can hold a lock at a time. If a thread tries to take a lock that
is already held by another thread, then it must wait until the lock is released. When this happens,
there is so called “contention” for the lock.

There are four different kinds of locks:

e Fat locks: A fat lock is a lock with a history of contention (several threads trying to take
the lock simultaneously), or a lock that has been waited on (for notification).

e Thin locks: A thin lock is a lock that does not have any contention.

e Recursive locks: A recursive lock is a lock that has been taken by a thread several times
without having been released.

e Lazy locks: A lazy lock is a lock that is not released when a critical section is exited. Once
a lazy lock is acquired by a thread, other threads that try to acquire the lock have to ensure
that the lock is, or can be, released. Lazy locks are used by default in Oracle JRockit JVM
27.6. In older releases, lazy locks are only used if you have started the JVM with the
-XXlazyUnlocking option.

A thin lock can be inflated to a fat lock and a fat lock can be deflated to a thin lock. The JRockit
JVM uses a complex set of heuristics to determine when to inflate a thin lock to a fat lock and
when to deflate a fat lock to a thin lock.

Spinning and Sleeping

Spinning occurs when a thread that wants a specific lock continuously checks that lock to see if
it is still taken, instead of yielding CPU-time to another thread.

Alternatively, a thread that tries to take a lock that is already held waits for notification from the
lock and goes into a sleeping state. The thread will then wait passively for the lock to be released.

Lock Chains

Several threads can be tied up in what is called lock chains. Although they appear somewhat
complex, lock chains are fairly straightforward. They can be defined as follows:

Oracle JRockit JVM Diagnostics Guide 4-3

Understanding Threads and Locks

4-4

e Threads A and B form a lock chain if thread A holds a lock that thread B is trying to take.
If A is not trying to take a lock, then the lock chain is “open.”

e If A->B is a lock chain, and B->C is a lock chain, then A->B->C is a more complete lock
chain.

o [f there is no additional thread waiting for a lock held by C, then A->B->C is a complete
and open lock chain.

Lock Chain Types

The JRockit JVM analyzes the threads and forms complete lock chains. There are three possible
kinds of lock chains: Open, Deadlocked and Blocked lock chains.

Open Chains

Open lock chains represent a straight dependency, thread A is waiting for B which is waiting for
C, and so on. If you have long open lock chains, your application might be wasting time waiting
for locks. You may then want to reconsider how locks are used for synchronization in your
application.

Deadlock Chains

A deadlocked, or circular, lock chain consists of a chain of threads, in which the first thread in
the chain is waiting for the last thread in the chain. In the simplest case, thread A is waiting for
thread B, while thread B is waiting for thread A. Note that a deadlocked chain has no head. In
thread dumps, the Oracle JRockit JVM selects an arbitrary thread to display as the first thread in
the chain.

Deadlocks can never be resolved, and the application will be stuck waiting indefinitely.

Blocked Chains

A blocked lock chain is made up of a lock chain whose head thread is also part of another lock
chain, which can be either open or deadlocked. For example, if thread A is waiting for thread B,
thread B is waiting for thread A, and thread C is waiting for thread A, then thread A and B form
a deadlocked lock chain, while thread C and thread A form a blocked lock chain.

Oracle JRockit JVM Diagnostics Guide

CHAPTERa

Migrating Applications to the Oracle
JRockit JDK

This section describes how to migrate Java applications developed on another JDKSs to the Oracle
JRockit JDK to ensure optimal performance during runtime. This section contains information on
the following subjects:

e About Application Migration

e Migration Support

Migration Procedures

Testing the Application

Replicating Tools Supplied with the Sun JDK
Command-line Option Compatibility Between the JRockit JVM and Sun

Submitting Migration Tips

About Application Migration

Migrating an application to the JRockit JDK is a relatively simple process, requiring some minor
environmental changes and following some simple coding guidelines. This section provides
instructions and tips to successfully completing this simple process. It also describes some of the
benefits and possible problems you might encounter during migration and it discusses some best
J2SE coding practices for you to follow to ensure that your application runs successfully once it
is running on the JRockit JDK.

Oracle JRockit JVM Diagnostics Guide 5-1

Migrating Applications to the Oracle JRockit JDK

Why Migrate?

The JRockit JDK is the default JDK shipped with Oracle WebLogic Server. Although there are
other JDKs available on the market today that you can use to develop Java applications, Oracle
recommends that you use JRockit JDK with your Oracle products.

Migration Restrictions

Migration is available for all platforms when Oracle WebLogic Server is supported with the
JRockit JDK. For a list of supported platforms, please refer to:

http://edocs.bea.com/platform/suppconfigs/index.html

Migration Support

Should you experience any problems or find any bugs while attempting to migrate an application
to the JRockit JDK, please send us an e-mail at support@bea.com. We would appreciate if you
could provide as much information as possible about the problem, for example:

e Hardware

e Operating system and its version

e The program you are attempting to migrate

e Stack dumps (if any)

o A small code example that will reproduce the error

e Copies of any *_.dump and *_.mdmp/core process memory dump files. On Windows they
are stored as *.mdmp, on Linux and Solaris as core or core.*

Migration Procedures

This section describes basic environmental and implementation changes necessary to migrate to
JRockit JDK from a third-party JDK, such as the Sun Microsystems JDK. It includes information
on the following subjects:

e Environment Changes
e Other Tips

e Tuning the JRockit JVM for Your Application

5-2 Oracle JRockit JVM Diagnostics Guide

Migration Procedures

Environment Changes

Note: The changes described in this section apply primarily to Oracle WebLogic Server. If you
are working with other Java applications, you will need to change the scripts and
environments according to how that application is set up.

To migrate from a third-party JDK to the JRockit JDK, you need to make the following changes
to the files.

e Set the JAVA_HOME environmental variable in <WEBLOGIC_HOME>/common/commEnv .cmd
(or .sh) to the appropriate path.

e Set the JAVA_VENDOR environmental variable in
<WEBLOGIC_HOME>/common/commEnv .cmd (0r .sh) to BEA.

e If you are using a start-up script, remove any Sun-specific (or other JVM provider) options
from the start command line (like -xX:NewSize). If possible, replace them with Oracle
JRockit JVM-specific options; for example, -Xns. Other flags that might need to be
changed include MEM_ARGS and JAVA_VM.

(For more information on command-line options supported by the JRockit JVM, please
refer to the Reference Manual.)

e Change config.xml to point the default compiler setting(s) to the javac compiler in the
JRockit JDK.

Other Tips

For information on other coding practices that will ensure a successful migration of your
application to the JRockit JDK, please refer to Developing Java Applications.

Tuning the JRockit JVM for Your Application

Once you’ve migrated your application to the JRockit JDK, you might want to tune the JVM for
optimal performance. For example, you might want to specify a different start-up heap size or set
custom garbage collection parameters. You can find detailed information on tuning the JRockit
JVM in the chapters of the section Profiling and Performance Tuning.

The non-standard options, that is, options preceded with -X, are critical tools for tuning a JVM at
startup. These options change the behavior of the JRockit JVM to better suit the needs of different
Java applications.

Oracle JRockit JVM Diagnostics Guide 5-3

Migrating Applications to the Oracle JRockit JDK

While all JVMs use non-standard options, the option names might not be the same from JVM to
JVM; for example, while the JRockit JVM will accept the non-standard option -Xns to set the
nursery in generational concurrent and generational parallel garbage collectors, Sun’s HotSpot
JVM uses the non-standard option -xX:NewSize to set this value.

If you are migrating an application to the JRockit JDK, we recommend that you become familiar
with the non-standard options available to you. For more information, please refer to the
Reference Manual.

You should also be aware that, being non-standard, non-standard options are subject to change at
any time.

Testing the Application

5-4

Always test your application on the JRockit JVM before putting it into production. If you develop
your application on the Sun JVM (HotSpot), you must test your application on the JRockit JVM
before you put it into production.

Why Test?

Some important reasons for testing are:

e Sometimes you might find bugs in your own program that don’t occur on the Sun JVM; for
example, synchronization problems.

e You might have used third party class libraries that do not follow the Java specifications
and rely on Sun-specific classes or behavior.

e You might have used third-party class files that are not correct. The JRockit JVM has been
known to enforce verification more rigorously than the Sun JVM.

How to Test

To test your application on the JRockit JVM:

1. Run your application against any test scripts or benchmarks that are appropriate for that
application.

2. If any problems occur, handle them as you normally would for the specific application.

Oracle JRockit JVM Diagnostics Guide

Replicating Tools Supplied with the Sun JDK

Replicating Tools Supplied with the Sun JDK

The following J2SE tools, normally available with the Sun JDK, are not shipped with the JRockit

JDK:

e jmap

e jsadebugd

e jstack

The JRockit JDK provides internal tools that are equivalent to or better than most of the Sun tools.
Listing 5-1 lists the Sun tools and their JRockit JDK equivalents. Some of these tools require
using the jrcmd feature. For more information, please refer to Running Diagnostic Commands

Table 5-1 JRockit JDK/Sun Tool Equivalents

Sun Tool Shipped with JRockit JDK Equivalent
JRockit JDK
jinfo No jrcmd <pid> print_properties
jrcmd <pid> command_line
jhat No JRockit Memory Leak Detector (see The JRockit Memory Leak
Detector) and JRockit Runtime Analyzer (see The JRockit Runtime
Analyzer).
Jmap No JRockit Memory Leak Detector (see The JRockit Memory Leak
Detector)
jrcmd <pid> print_object _summary
jrcmd <pid> verbose_referents
jrcmd <pid> heap_diagnostics
Jsadebugd No No equivalent tool
Jstack No jrcemd <pid> print_threads
Jps Yes jremd

Oracle JRockit JVM Diagnostics Guide 5-5

Migrating Applications to the Oracle JRockit JDK

Table 5-1 JRockit JDK/Sun Tool Equivalents

Sun Tool Shipped with JRockit JDK Equivalent
JRockit JDK
jstat Yes No equivalent, jstat works with the JRockit JVM. The JRockit

Runtime Analyzer (see The JRockit Runtime Analyzer) and the
JRockit Management Console in Oracle JRockit Mission Control
(see The JRockit Management Console) are however better tools for
this purpose.

jstatd Yes No equivalent, jstatd works with the JRockit JVM.

jconsole Yes Jconsole works with the JRockit JVM. The JRockit Management
Console in JRockit Mission Control (see The JRockit Management
Console) is however a better tool for monitoring the JRockit JVM.

Jrunscript Yes No equivalent, jrunscript works with the JRockit JVM.

Command-line Option Compatibility Between the JRockit
JVM and Sun

This section describes the compatibility between command-line options available when running
the JRockit JVM and when running the Sun Hotspot JVM. These options correspond to each
other by name only, by function only, or both by name and function.

Table 5-2 lists options that both Sun Hotspot JVM and the JRockit JVM have but have different
functionality depending upon the JVM you are running.

Table 5-2 Same Name, Different Function

Option Name Hotspot Function JRockit JVM Function

-Xms Sets the initial size of the heap Sets the initial and minimum size of the heap.
For complete description, please refer to
-Xms.

Table 5-3 lists options that work the same or similarly on both Sun Hotspot and the JRockit JVM
but have different names depending upon the JVM you are running.

5-6 Oracle JRockit JVM Diagnostics Guide

Table 5-3 Different Name, Same or Similar Function

Submitting Migration Tips

Hotspot Option Name JRockit JVM Option Name

Function

-XX:+AggressiveHeap -XXaggressive:memory

Configures the memory system for
memory-intensive workloads and sets
an expectation to enable large
amounts of memory resources to
ensure high throughput. The JRockit
JVM will also use large pages, if
available.

-verbose:gc -Xverbose:memory

Prints out log information about the
memory system

-Xmn, -XXNewSize, -Xns
-XXMaxNewSize

Sets the size of the young generation

-XX:+UseConcMarkSweepGC -Xgc:singlecon

Sets the garbage collector to use a
concurrent strategy

-XX:+UseParallelGC -Xgc:parallel

Sets the garbage collector to use a
parallel strategy

Table 5-4 lists options only available when using the Oracle JRockit JVM.

Table 5-4 Options Available for JRockit JVM Only

Option name Function
-XgcPrio Specifies what to prioritize: even pause times or maximum throughput
-XpauseTarget Specifies a suitable pause time for the application

Submitting Migration Tips

The migration tips discussed in this section represent an evolving list. Often, a successful

migration to the JRockit JIDK depends as much upon the application being migrated as it does to
the VMs being used. Oracle welcomes suggestions based upon your experiences with migrating
applications to the Oracle JRockit JDK. Feel free to submit any migration ideas or comments to

the Oracle JRockit forums at dev2dev.

Oracle JRockit JVM Diagnostics Guide 5-7

Migrating Applications to the Oracle JRockit JDK

5-8 Oracle JRockit JVM Diagnostics Guide

CHAPTERa

Setting Up and Running the Oracle
JRockit JDK

Before using the Oracle JRockit JDK, you need to make sure that it is set up correctly. This
section gives you hints on how to set up your environment for your specific platform. Once you
have configured the environment correctly, you will find the diagnosing process easier. The
configuration is done in the following steps:

o Installing the Oracle JRockit JDK

Setting Up and Checking Your Linux Environment

Setting Up and Checking Your Windows Environment

Setting Up and Checking Your Sun Solaris Environment

e Setting the Path to the License File

Installing the Oracle JRockit JDK

The JRockit JDK is included in several Oracle products, for example Oracle JRockit Mission
Control, Oracle JRockit Real Time and Oracle WebLogic.

Setting Up and Checking Your Linux Environment

The Linux operating systems exist in a large number of updates and patches. Oracle personnel is
not able to test the JRockit JDK against every patch that is released. Instead we intend to test the
most recent releases of some few distributions. As a general rule, you should keep your Linux
environment up to date and make sure you have a release that is supported by Oracle when

Oracle JRockit JVM Diagnostics Guide 6-1

Setting Up and Running the Oracle JRockit JDK

running the JRockit JDK. Please see the Oracle JRockit JDK Supported Configurations
document for a list of releases and distributions that the JRockit JDK has been successfully tested
against.

The following path is the correct path for Linux installations:

export PATH=$HOME/jrockit-<jrockit_version>-jdk<sun_version>/bin:$PATH

Linux on 1A32

When running the Oracle JRockit JVM on Linux 1A32, it must be configured to use the glibc
compiled for i686 architecture, otherwise you will see freezes and crashes with the JRockit JVM.

Check which glibc is installed by running:
rpm -q --queryformat “\n%{NAME} %{VERSION} %{RELEASE} %{ARCH}\n” glibc

Using LD_ASSUME_KERNEL

When using the JRockit JDK 1.4.2 on Linux, you should first make sure that the environment
variable LD_ASSUME_KERNEL is not defined. If LD_ASSUME_KERNEL is defined, the JRockit JVM
will use an older and slower threading implementation, which can deter—and will not improve—
performance.

Running in a chroot(3) Environment

In some Linux versions the /proc filesystem isn’t mounted when running in a chroot(3)
environment. This may cause the JRockit JVM to become unstable or crash when running in the
chroot(3) environment, as the JVM and some Linux libraries need to access information about
the hardware platform from /proc.

To verify that /proc is mounted you can issue the shell command getconf
_NPROCESSORS_CONF from the command line in your chroot(3) environment. This command
should return the correct number of processors on your system, otherwise you will have to mount
the /proc filesystem before running the JRockit JVM.

Setting Up and Checking Your Windows Environment

There are a number of environment variables that control the operation of the JRockit JVM on
Windows. The following PATH environment variable needs to point to the directory of your Java
installation:

6-2 Oracle JRockit JVM Diagnostics Guide

Setting Up and Checking Your Sun Solaris Environment

set
PATH=%ProgramFiles%\Java\jrockit-<jrockit_version>-jdk<sun_version>\bin;%PATH%

Setting Up and Checking Your Sun Solaris Environment

The following path is the correct path for Solaris installations:

export PATH=$HOME/jrockit-<jrockit_version>-jdk<sun_version>/bin:$PATH

Oracle JRockit JIDK is included in several products, for example Oracle JRockit Mission Control,
Oracle JRockit Real Time and Oracle WebLogic. For more information, see the installation
guides for your specific Oracle product.

Setting the Path to the License File

Note: Technical license checks have been removed as of this rel;ease. The following
instructions apply only to versions of JRockit JDK prior to R27.6.

You can set the path to the license file by using the -Djrockit. license.path flag at startup.
This option is useful when:

e You do not have write permissions to the JDK and therefore can't add the license path
there.

e You want to start several servers with different IPs from the same Oracle JRockit JDK.

The option should point to a directory where the license . bea file resides and not directly to the
license.bea file; for example:

e Correct:
-Djrockit.license.path=C:/Program Files/Java/[JROCKIT_HOME]/jre

e [ncorrect:

-Djrockit. license._path=C:/Program
Files/Java/[JROCKIT_HOME]/jre/license.bea

Oracle JRockit JVM Diagnostics Guide 6-3

Setting Up and Running the Oracle JRockit JDK

6-4 Oracle JRockit JVM Diagnostics Guide

Part Il Profiling and
Performance Tuning

Chapter 7. About Profiling and Performance Tuning
Chapter 8. Understanding the Tuning Trade-offs

Chapter 9. First Steps for Tuning the Oracle JRockit JVM
Chapter 10. Tuning the Memory Management System
Chapter 11. Tuning Locks

Chapter 12. Tuning For Low Latencies

Chapter 13. Tuning For Better Application Throughput
Chapter 14. Tuning For Stable Performance

Chapter 15. Tuning For a Small Memory Footprint
Chapter 16. Tuning For Faster JVM Startup

Oracle JRockit JVM Diagnostics Guide

CHAPTERa

About Profiling and Performance
Tuning

Tuning the Oracle JRockit JVM to achieve optimal application performance is about the most
critical aspect using this product. A poorly-tuned JVM can result in slow transactions, long
latencies, system freezes, and even system crashes. This documen explores the many tuning
techniques and options you can employ to see that your implementation of this JVM performs to
maximum capabilities.

How to Tune: An Overview

Ideally, tuning should occur as part of the system startup, by employing various combinations of
the start-up options described in the Oracle JRockit JVM Command-Line Reference. The Oracle
JRockit JDK provides the necessary tools for monitoring your application during runtime.
Properly tuned, according to the recommendations in this section, the JVM should run smoothly
and provide timely results. Should runtime monitoring indicate problems along the way, you can
use the recommendations in this section to guide you toward a better-tuned JVM.

What this Section Contains

This section includes information on the following subjects:

e While tuning the JRockit JVM you will often find a certain trade-off between short
garbage collection pause times, high application throughput and low memory footprint.
Understanding the Tuning Trade-offs describes these trade-offs and the reasons behind
them.

Oracle JRockit JVM Diagnostics Guide 1-1

About Profiling and Performance Tuning

1-2

Each Java application has its own behavior and its own requirements. The JRockit JVM
can accommodate most of them automatically, but to get the optimal performance you
should tune at least some basic parameters. First Steps for Tuning the Oracle JRockit JVM
gives an overview of the first steps of tuning the JRockit JVM and some best practices for
tuning the JVM for a few different Oracle applications.

A correctly tuned memory management system minimizes the overhead inflicted by
garbage collection and makes object allocation fast. Tuning the Memory Management
System covers the most important options available for tuning the memory management
system in the JRockit JVM.

The interaction between Java threads affects the performance of your application. Tuning
Locks contains information about the JRockit JVM options for tuning how locks and
contention for locks are handled.

Do you want your application to run smoothly with minimal pauses caused by the garbage
collection? If the answer is “yes”, then you want to tune for short pause times. Using the
tuning techniques described in Tuning For Low Latencies to ensure that pause times are
kept to a minimum and transactions execute quickly.

Do you want to minimize the total amount of CPU time spent in garbage collection and
spend more time in the application layer? If the answer is “yes”, then you want to tune for
high application performance, or application throughput. Tuning For Better Application
Throughput describes how to tune your Oracle JRockit JVM to ensure that the Java
application runs as fast as possible with minimal garbage collector overhead.

Oracle JRockit JVM Diagnostics Guide

CHAPTERa

Understanding the Tuning Trade-offs

While tuning the Oracle JRockit JVM you will often find a certain trade-off between short
garbage collection pause times, high application throughput and low memory footprint. This
section describes these trade-offs and the reasons behind them. The following topics are covered:

e Pause Times vs. Throughput

e Performance vs. Memory Footprint

Pause Times vs. Throughput

The JRockit JVM offers a choice between short garbage collection pauses and maximum
application throughput. Intuitively it looks like short garbage collection pauses would also
maximize the application throughput, which may make you wonder why you have to choose
between the two. This section describes the reasons behind this trade-off.

Concurrent vs. “Stop-the-World”

The trade-off between garbage collection pauses and application throughput is partly caused by
the mostly concurrent garbage collection strategy that enables short garbage collection pauses.
No matter how efficient a garbage collection algorithm that stops the Java threads during the
entire garbage collection is, a garbage collection algorithm that allows the Java threads to
continue running during parts of the garbage collection will always give you shorter individual
garbage collection pauses. Unfortunately a concurrent algorithm requires more bookkeeping and
some extra work, since new objects are created and references between objects change during the
garbage collection. All these changes must be kept track of, which alone causes some slight

Oracle JRockit JVM Diagnostics Guide 8-1

Understanding the Tuning Trade-offs

overhead, and at some point the garbage collector must handle all the changes, which causes
some extra work. Simply put, the more the garbage collector can do while the Java threads are
paused, the less it has to work in total.

Compaction Pauses vs. Throughput

The mark and sweep garbage collection model can cause fragmentation on the heap when small
chunks of memory are freed between blocks of live objects. Compaction of the heap reduces this
fragmentation. Fragmentation has a negative impact on the overall throughput as it makes object
allocation more difficult and garbage collections more frequent. The JRockit JVM does partial
compaction of the heap in each garbage collection, and the compaction is done while all Java
threads are paused. Moving objects takes time, and compaction takes more time the more objects
it moves. The trade-off is simple - reducing the amount of compaction shortens the compaction
pause times but lowers the overall throughput by increasing the fragmentation.

Performance vs. Memory Footprint

8-2

A small memory footprint is desirable for applications that run on machines with limited memory
resources. Unfortunately there is a certain trade-off between a small memory footprint and both
application throughput and garbage collection pauses. This section describes some of the reasons
for this trade-off.

Heap Size vs. Throughput

A large heap reduces the garbage collection frequency and the negative impact of fragmentation,
thus improving the throughput of the application. On the other hand a large heap increases the
memory footprint of the Java process.

Book Keeping vs. Pause Times

When you use a garbage collection mode that optimizes for short pauses, the Oracle JRockit JVM
will have to use more advanced book keeping to keep track of changes in the heap, references to
objects that are compacted etc. All this increases the memory footprint. You cannot tune the
memory usage for book keeping other than by selecting a different garbage collection mode or
strategy.

Oracle JRockit JVM Diagnostics Guide

CHAPTERa

First Steps for Tuning the Oracle

JRockit JVM

Each Java application has its own behavior and its own requirements. The Oracle JRockit JVM
can accommodate many of them automatically, but to get the optimal performance you should
tune at least some basic parameters. This section gives an overview of the first steps of tuning the
JRockit JVM and some best practices for tuning the JVM for a few different Oracle applications,
covering the following topics:

e Step 1: Basic Tuning
e Step 2: Performance Tuning
e Step 3: Advanced Tuning

e Best Practices

For in-depth information on tuning the JRockit JVM, please see Tuning the Memory
Management System and Tuning Locks.

Step 1: Basic Tuning

The first steps of tuning are:
e Tuning the Heap Size
e Tuning the Garbage Collection
e Tuning the Nursery Size

e Tuning the Pause Target

Oracle JRockit JVM Diagnostics Guide 9-1

First Steps for Tuning the Oracle JRockit JVM

9-2

Tuning the Heap Size

The heap is the area where Java objects reside. A large heap decreases the garbage collection
frequency but may take slightly longer to garbage collect. Typically a heap should be at least
twice the size of the live objects in the heap, meaning that at least half of the heap should be freed
at each garbage collection. For server applications you can usually set the heap as large as the
available memory in your system will allow, as long as this doesn’t cause paging.

Set the heap size using the following command line options:
e -Xms:<size>, which sets the initial and minimum heap size.

e -Xmx:<size>, which sets the maximum heap size.

For example a server application running on a machine with 2 GB RAM memory could be started
with the following settings:

Jjava -Xms:800m -Xmx:1000m MyServerApp

This starts the JVM with a heap of 800 MB and allows the heap to grow up to 1000MB.

For in-depth information on setting the heap size, see Setting the Heap Size.

Tuning the Garbage Collection

Garbage collection is the process of reclaiming space from objects that are no longer in use, so
that this space can be used for allocation of new objects. Garbage collection uses system
resources in one way or another. By tuning the garbage collection you can decide how and when
the resources are used. The JRockit JVM offers three garbage collection modes and a number of
static garbage collection strategies. These allow you to tune the garbage collection to suit your
application’s needs.

Select the garbage collection mode by using one of the following options:

e -XgcPrio:throughput, which defines that the garbage collection should be optimized for
application throughput. This is the default garbage collection mode.

e -XgcPrio:pausetime, which defines that the garbage collection should be optimized for
short garbage collection pauses.

e -XgcPrio:deterministic, which defines that the garbage collection should be optimized
for very short and deterministic garbage collection pauses. This option is only available as
part of Oracle JRockit Real Time.

Oracle JRockit JVM Diagnostics Guide

Step 1: Basic Tuning

For example a transaction based application which requires reasonably low latencies could be
started with the following settings:

Jjava -XgcPrio:pauseTime MyTransactionApp

This starts the JVM with the garbage collection optimized for short garbage collection pauses.

For in-depth information on selecting a garbage collection mode or a static garbage collection
strategy, see Selecting and Tuning a Garbage Collector.

Tuning the Nursery Size

Some of the garbage collection modes and strategies in the JRockit JVM use a nursery. The
nursery is an area of the heap where new objects are allocated. When the nursery becomes full it
is garbage collected separately in a young collection. The nursery size decides the frequency and
duration of young collections. A larger nursery decreases the frequency but slightly increases the
duration of each young collection.

In the JRockit JVM R27.3.0 and later the nursery size is adjusted automatically to optimize for
application throughput if you use -XgcPrio: throughput (default) or -Xgc:genpar. For other
garbage collection modes and static strategies or older versions of the JVM you may want to tune
the nursery size manually. Typically the nursery size should be as large as possible while
maintaining reasonably short young collection pauses. Depending on the application, a
reasonable nursery size can be anything from a few megabytes up to about half of the heap size.

Set the nursery size by using the following command line option:
® -Xns:<size>

For example a transaction based application running on a machine with 2GB RAM memory could
be started with the following settings:

Jjava -Xms:800m -Xmx:1000m -XgcPrio:pausetime -Xns:100m MyTransactionApp

This starts up the JVM with a heap of 800 MB, allowing it to grow up to 1000 MB. The garbage
collection is set to optimize for pause times and the nursery size is set to 100 MB. Note that the
dynamic garbage collection mode may choose to run without a nursery, but whenever a nursery
is used it will be 100 MB.

For in-depth information on how to tune the nursery size, see Setting the Nursery and Keep Area
Size.

Oracle JRockit JVM Diagnostics Guide 9-3

First Steps for Tuning the Oracle JRockit JVM

Tuning the Pause Target

-XgcPrio:pausetime and -XgcPrio:deterministic use a pause target for optimizing the pause times
while keeping the application throughput as high as possible. A higher pause target usually allows
for a higher application throughput, thus you should set the pause target as high as your
application can tolerate.

Set the pause target by using the following command line option:
o -XpauseTarget:<time>

For example a transaction based application with transactions that normally take 100 ms and time
out after 400 ms could be started with the following settings:

Java -XgcPrio:pausetime -XpauseTarget:250 MyTransactionApp

This starts up the JVM with garbage collection optimized for short pauses with a pause target of
250 ms. This leaves a 50 ms margin before time-out for 100 ms transactions that are interrupted
by a 250 ms garbage collection pause.

For in-depth information on tuning the pause target, see Setting a Pause Target for Pausetime
Mode.

Step 2: Performance Tuning

9-4

To be able to tune your JVM for better application throughput you must first have a way of
assessing the throughput. A common way of measuring the application throughput is to time the
execution of a pre-defined set of test cases. Optimally the test cases should simulate several
different use cases and be as close to real scenarios as possible. Also, one test run should take at
least a few minutes, so that the JVM has time to warm up.

This section describes a few optional performance features that improve the performance for
many applications. Once you have a way of assessing the throughput of your application you can
try out the following features:

e Lazy Unlocking
e Call Profiling

e Large Pages

Oracle JRockit JVM Diagnostics Guide

Step 3: Advanced Tuning

Lazy Unlocking

The JRockit JVM R27.3 and later offers a feature called lazy unlocking. This feature makes
synchronized Java code run faster when the contention on the locks is low.

Try this feature on your application by adding the following option to the command line:

e -XXlazyUnlocking

For more information on this option, see the documentation for -XxlazyUnlocking.

Call Profiling

Call profiling enables the use of more advanced profiling for code optimizations and can increase
the performance for many applications. This option is supported in the JRockit JVM R27.3.0 and
later versions.

Try this feature on your application by adding the following option to the command line:

o -XXcallProfiling
For more information on this option, see the documentation for -Xxcal IProfiling.

Large Pages

The JRockit JVM can use large pages for the Java heap and other memory areas in the JVM. To
use large pages, you must first configure your operating system for large pages. Then you can add
the following option to the Java command line:

e -XlargePages

For complete instructions on how to use this option and configure your operating system for large
pages, see the documentation for -xlargePages.

Step 3: Advanced Tuning

Some applications may benefit from further tuning. It is important that you verify the results of
the tuning by monitoring and benchmarking your application. Advanced tuning of the JRockit
JVM can give you improved performance and predictable behavior if done correctly, while
incorrect tuning may lead to uneven performance, low performance or performance degradation
over time.

This section covers the following topics:

Oracle JRockit JVM Diagnostics Guide 9-5

First Steps for Tuning the Oracle JRockit JVM

9-6

e Tuning Compaction
e Tuning the TLA size

e Further Information

Tuning Compaction

Compaction of objects is the process of moving objects closer to each other in the heap, thus
reducing the fragmentation and making object allocation easier for the JVM. The JRockit JVM
compacts a part of the heap at each garbage collection (or old collection, if the garbage collector
is generational).

Compaction may in some cases lead to long garbage collection pauses. To assess the impact of
compaction on garbage collection pauses you can either monitor the -Xverbose :gcpause
outputs or create a JRA recording and look at the garbage collection pauses in the Java Runtime
Analyzer (see Using Oracle JRockit Mission Control Tools for more information). Look for old
collection pause times and pause parts called “compaction” and “reference updates”. The
compaction pause times depend on the compaction ratio and the compact set limit.

Compaction Ratio

The compaction ratio determines how many percent of the heap will be compacted during each
garbage collection (old collection). The compaction ratio is set using the following option:

e -XXcompactRatio:<percentage>

You can tune the compaction ratio if the garbage collection pauses are too long because of
compaction. As a start, you can try lowering the compaction ratio to 1 and see if the problem
persists. If it doesn’t, you should try gradually increasing the compaction ratio as long as the
compaction times stay short. A good value for the compact ratio is usually between 1 and 20,
sometimes even higher. If the problem persists even though you set the compaction ratio to 1, you
can try changing the compact set limit.

Setting the compaction ratio too low may increase the fragmentation and the amount of “dark
matter”, which is free space that is too small to be used for object allocation. You can see the
amount of dark matter in JRA recordings.

Compact Set Limit

The compact set limit prevents sets a limit for how many references there can be to objects within
the compaction area. If the number of references exceeds this limit, the compaction is canceled.
The compact set limit is set using the following option:

Oracle JRockit JVM Diagnostics Guide

Step 3: Advanced Tuning

e —XXcompactSetLimit:<references>

You can tune the compact set limit if the garbage collection pauses are too long due to
compaction. As a start, you can try setting the compact set limit as low as 10.000. If the problem
is solved you should try gradually increasing the compact set limit as long as the compaction
times stay low. A normal value for the compact set limit is usually between 100.000 and several
million, while lower values are used when the pause time limits are very low.

Setting the compact set limit too low may stop compaction from being done altogether, which
you can see in the verbose logs or in a JRA recording, where all compactions are noted as
“aborted”. Running without any compaction at all may lead to increasing fragmentation, which
will in the end force the JVM to perform a full compaction of the whole heap at once, which may
take several seconds. Thus we recommend that you do not decrease the compact set limit unless
you really have to.

Note: -XXcompactSetLimit has no effect when -XgcPrio:deterministic or
-XgcPrio:pausetime is used. For these garbage collection modes you should not tune
the compaction manually, but instead use the -XpauseTarget option to tune the garbage
collection pauses.

For in-depth information on how to tune compaction, see Tuning the Compaction of Memory.

Tuning the TLA size

The thread local area (TLA) is a chunk of free space reserved on the heap or the nursery and given
to a thread for its exclusive use. A thread can allocate small objects in its own TLA without
synchronizing with other threads. When the TLA gets full the thread simply requests a new TLA.
The objects allocated in a TLA are accessible to all Java threads and are not considered “thread
local” in any way after they have been allocated.

Increasing the TLA size is beneficial for multi threaded applications where each thread allocates
a lot of objects. Increasing the TLA size is also beneficial when the average size of the allocated
objects is large, as this allows larger objects to be allocated in the TLAs. Increasing the TLA size
too much may however cause more fragmentation and more frequent garbage collections. To
assess the sizes of the objects allocated by your application you can do a JRA recording and view
object allocation statistics in the Java Runtime Analyzer. See Using Oracle JRockit Mission
Control Tools for more information on JRA.

The TLA size is set using the following option:

o -XXtlaSize:min=<size>,preferred=<size>

Oracle JRockit JVM Diagnostics Guide 9-7

First Steps for Tuning the Oracle JRockit JVM

The “min” value is the minimum TLA size, while the “preferred” value is a preferred size. This
means that TLAs will be of the “preferred” size whenever possible, but may be as small as the
“min” size. Typically the preferred TLA size can be up to twice the size of the largest commonly
used object size in the application. Adjusting the min size may have an effect on garbage
collection performance, but is seldom necessary. A normal value for the min size is 2 KB.

For in-depth information about tuning the TLA size, see Optimizing Memory Allocation
Performance.

Further Information

Further information on tuning the JRockit JVM can be found in Tuning the Memory Management
System and Tuning Locks.

Best Practices

This section lists some best practices for tuning the JRockit JVM for a number of specific
applications and application types.

Oracle WebLogic Server

Oracle WebL ogic Server is an application server, and as such it requires high application
throughput. An application server is often set up in a controlled environment on a dedicated
machine. Try the following when tuning the JRockit JVM for Oracle WebLogic Server:

e Use a large heap, several gigabytes if the system allows for it.

e Set the initial/minimum heap size (-Xms) to the same value as the maximum heap size
(=Xmx).

e Use the default garbage collection mode, -XgcPrio: throughput

Oracle WebLogic SIP Server

Oracle WebLogic SIP Server is an application server specialized for the communications
industry. Typically it requires fairly low latencies and is run in a controlled environment on a
dedicated machine. Try the following when tuning the JRockit JVM for Oracle WebLogic SIP
Server:

e Use a large heap, at least a couple of gigabytes if the system allows for it.

9-8 Oracle JRockit JVM Diagnostics Guide

Best Practices

e Set the initial/minimum heap size (-Xms) to the same value as the maximum heap size
(=Xmx).

e Use the garbage collection mode optimized for pause times, -XgcPrio:pausetime, or the
static generational concurrent garbage collector, -Xgc:gencon.

e Use a fairly small nursery, in the range of 50-100 MB.

e Decrease the compaction ratio or compact set limit to lower and even out the compaction
pause times, see Tuning Compaction for more information.

Oracle WebLogic Event Server

Oracle WebLogic Event Server is an application server for applications based on an event-driven
architecture. Typically it requires very low latencies and is run in a controlled environment on a
dedicated machine. Try the following settings when tuning the JRockit JVM for Oracle
WebLogic Event Server:

e Use a heap size of 1 GB to fully utilize the deterministic garbage collection mode.

e Set the initial/minimum heap size (-Xms) to the same value as the maximum heap size
(-Xmx).

e Use the garbage collection mode optimized for low and deterministic latencies,
-XgcPrio:deterministic. The deterministic garbage collection mode is only available
as a part of JRockit Real Time.

Oracle Workshop

Oracle Workshop consists of several Eclipse plug-ins. Eclipse requires fast response times and is
typically run on a workstation together with many other applications. Try the following settings
when tuning the JRockit JVM for Eclipse together with Oracle Workshop.

e Use a maximum heap size that is lower than the amount of RAM in the system and leaves
space for the operating system and a varying number of other applications running
simultaneously.

e Set the initial/minimum heap size (-Xms) lower than the maximum heap size (-Xmx) to
allow the JVM to resize the heap when necessary.

e Use the garbage collection mode optimized for short pauses, -XgcPrio:pausetime, or the
default garbage collection mode, -XgcPrio: throughput.

Oracle JRockit JVM Diagnostics Guide 9-9

First Steps for Tuning the Oracle JRockit JVM

9-10

“Utility” Applications

Java utility applications that run for a short time and have a simple and specific purpose, for
example javac, require a fast startup and often don’t need a lot of memory. To tune the JRockit
JVM for this kind of applications, try the following recommendations:

e Use a small heap, anything from 16 MB and up depending on the application’s needs.

e Set the initial/minimum heap size (-Xms) to the same value as the maximum heap size
(=Xmx).

e Use the default garbage collection mode, -XgcPrio: throughput

“Batch” Runs

Data processing applications that process large batches of data, for example applications for
XML processing or data mining, require maximum application throughput but are seldom
sensitive to long latencies. To tune the Oracle JRockit JVM for this kind of applications, try the
following recommendations:

e Set the heap size as large as your system can tolerate, almost as much as the amount of
physical memory in the system while leaving some memory for the operating system and
other applications that may be running at the same time.

e Set the initial/minimum heap size (-Xms) to the same value as the maximum heap size
(=Xmx).

e Use the default garbage collection mode, -XgcPrio:throughput.

e Increase the thread local area size. See Tuning the TLA size for more information.

Oracle JRockit JVM Diagnostics Guide

CHAPTERm

Tuning the Memory Management
System

Memory management is all about allocation of objects. One part of the memory management
system finds a free spot for the new object, while another part garbage collects old objects to
create more free space for new objects. The more objects a Java application allocates, the more
resources will be used for memory management. A correctly tuned memory management system
minimizes the overhead inflicted by garbage collection and makes object allocation fast. You can
read more about how memory management in the Oracle JRockit JVM works in Understanding
Memory Management. This section covers the most important options available for tuning the
memory management system in the JVM. The following topics are covered:

e Optimizing Memory Allocation Performance
e Selecting and Tuning a Garbage Collector
e Tuning the Compaction of Memory

e Optimizing Memory Allocation Performance

Setting the Heap and Nursery Size

The heap is the area where the Java objects reside. The heap size has an impact on the JVM’s
performance, and thus also on the Java application’s performance.

When the JVM uses a generational garbage collection strategy, a part of the heap is reserved for
the nursery. All small objects are allocated in the nursery, also known as young space. When the
nursery becomes full, a young collection is performed, where objects that have lived long enough
in the nursery are moved to old space, which is the rest of the heap.

Oracle JRockit JVM Diagnostics Guide 10-1

Tuning the Memory Management System

10-2

To distinguish between recently allocated objects and objects that have been around for a while
in the nursery, the JVM uses a keep area. The keep area contains the most recently allocated
objects in the nursery and is not garbage collected until the next young collection.

Setting the Heap Size

Command line options: -Xms:<min size> -Xmx:<max size>

The heap size has an impact on allocation speed, garbage collection frequency and garbage
collection times. A small heap will become full quickly and must be garbage collected more
often. It is also prone to more fragmentation, making object allocation slower. A large heap
introduces a slight overhead in garbage collection times. A heap that is larger than the available
physical memory in the system must be paged out to disk, which leads to long access times or
even application freezes, especially during garbage collection.

In general, the extra overhead caused by a larger heap is smaller than the gains in garbage
collection frequency and allocation speed, as long as the heap doesn’t get paged to disk. Thus a
good heap size setting would be a heap that is as large as possible within the available physical
memory.

There are two parameters for setting the heap size:
e -Xms:<size>, which sets the initial and minimum heap size

e -Xmx:<size>, which sets the maximum heap size
For example:
Java -Xms:1g -Xmx:1g MyApplication
This starts up the JVM with a heap size fixed to 1 GB.
For default values and limitations, see the documentation on -Xms and -Xmx.

If the optimal heap size for the application is known, we recommend that you set -Xms and -Xmx
to the same value. This gives you a controlled environment where you get a good heap size right
from the start.

Setting the Heap Size on 64-hit Systems

On 64-bit systems, a memory address is 64 bits long, which makes it possible to address much
more memory than with a 32-bit address; on the other hand, each address reference requires twice
as much memory. To reduce the memory usage for address references on 64-bit systems, the
JRockit JVM can use compressed references. Compressed references reduce the address
references to 32 bits, and can be used as long as the entire heap can be addressed with 32 bits. So

Oracle JRockit JVM Diagnostics Guide

Setting the Heap and Nursery Size

on a 64.bit system, you will usually benefit from setting the maximum heap size below 4 GB as
long as the amount of live data is less than 3-4 GB. Compressed references are enabled by default
whenever applicable.

Note: When you run the JRockit JVM on a 64-bit system with a heap size less than 4 GB, if
native OutOfMemory errors occur despite memory being available, try disabling
compressed references by using the -XxcompressedRefs=0 option.

Setting the Nursery and Keep Area Size

Command line option: -Xns:<nursery size>

The size of the nursery has an impact on allocation speed, garbage collection frequency and
garbage collection times. A small nursery will become full quickly and must be garbage collected
more often, while garbage collection of a large nursery takes slightly longer time. A nursery that
is so small that few or no objects have died before a young collection is started is of very little
use, and neither is a nursery that is so large that no young collections are performed between
garbage collections of the whole heap that are triggered due to allocation of large objects in old
space.

An optimal nursery size for maximum application throughput is such that as many objects as
possible are garbage collected by young collection rather than old collection. This value
approximates to about half of the free heap. In the JRockit JVM R27.3.0 and later versions, the
dynamic garbage collection mode optimized for throughput, -Xgcprio:throughput, and the
static generational parallel garbage collector, -Xgc : genpar, will dynamically set the nursery size
to an approximation of the optimal value.

The optimal nursery size for throughput is often quite large, which may lead to long young
collection times. Since all Java threads are paused while the young collection is performed, you
may want to reduce the nursery size below the optimal value to reduce the young collection pause
times.

The nursery size is set using the command line option -Xns:<size>. For example:
Jjava -Xns:100m MyApplication
This starts up the JVM with a fixed nursery size of 100 MB.

For default values and limitations, see the documentation on -Xns.

Keep Area
Command line option: -XXkeepAreaRatio:<percentage>

Oracle JRockit JVM Diagnostics Guide 10-3

Tuning the Memory Management System

The keep area size has an impact on both old collection and young collection frequency. A large
keep area causes more frequent young collections, while a keep area that is too small causes more
frequent old collections when objects are promoted prematurely.

An optimal keep area size is as small as possible while maintaining a low promotion ratio. The
promotion ratio can be observed in JRA recordings (see Using Oracle JRockit Mission Control
Tools for more information) and verbose outputs from -Xverbose :memory=debug, as well as in
the garbage collection report printed out by -XgcReport. By default the keep area is 25% of the
nursery.

The keep area size can be changed using the command line option
-XXkeepAreaRatio:<percentage>, and is defined as a percentage of the nursery. For
example:

Java -XXkeepAreaRatio:10 MyApplication
This starts up the JVM with a keep area that is 10% of the nursery size.

Selecting and Tuning a Garbage Collector

10-4

Garbage collection of objects is a necessary evil. Without garbage collection the automatic
memory management system would not work, and either the application developers would have
to somehow recycle the memory themselves or the application would after a while use up all the
memory in the system until it can’t continue running as further memory allocation becomes
impossible.

The impact of garbage collection can be distributed in different ways depending on the choice of
the garbage collection method. The JRockit JVM offers several garbage collection modes, which
use one or several garbage collection strategies. The garbage collection modes are either
dynamic, which select the best garbage collection strategy for a given goal, or static, allowing the
user to select a garbage collection strategy of their choice. You can select a dynamic garbage
collection mode by using the command line option -XgcPrio:<mode>, or set a static garbage
collector with -Xgc:<strategy>.

Selecting a Dynamic Garbage Collection Mode

The dynamic garbage collection modes adjust the memory management system in runtime,
optimizing for a specific goal depending on which mode is used. There are three dynamic garbage
collection modes:

e throughput, which optimizes the garbage collector for maximum application throughput

Oracle JRockit JVM Diagnostics Guide

Selecting and Tuning a Garbage Collector

e pausetime, which optimizes the garbage collector for short and even pausetimes

e deterministic, which optimizes the garbage collector for very short and deterministic
pause times

The dynamic garbage collection modes use advanced heuristics to tune the following parameters
in runtime:

e Garbage collection strategy
e Nursery size

e Compaction amount and type

Use a dynamic garbage collection mode if you don’t want to go through the time consuming
process of tuning these parameters manually, or when a static environment isn’t optimal for your
application.

Throughput Mode

Command line option: -XgcPrio:throughput

The dynamic garbage collection mode optimizing over application throughput uses as little CPU
resources as possible for garbage collection, thus giving the Java application as many CPU cycles
as possible. The JRockit JVM achieves this by using a parallel garbage collection strategy that
stops the Java application during the whole garbage collection duration and uses all CPUs
available to perform the garbage collection. Each individual garbage collection pause may be
long, but in total the garbage collector takes as little CPU time as possible.

Use throughput mode for applications that demand a high throughput but are not very sensitive
to the occasional long garbage collection pause.

Throughput mode is default when the JVM runs in -server mode (which is default), or can be
enabled with the command line option -XgcPrio:throughput. For example:

Jjava -XgcPrio:throughput MyApplication
This starts up the JVM with the garbage collection mode optimized for throughput.

For more information, see the documentation on -XgcPrio.

Pausetime Mode
Command line option: -XgcPrio:pausetime

The dynamic garbage collection mode optimizing over pause times aims to keep the garbage
collection pauses below a given pause target while maintaining as high throughput as possible.

Oracle JRockit JVM Diagnostics Guide 10-5

Tuning the Memory Management System

10-6

The JRockit JVM achieves this by choosing between a mostly concurrent garbage collection
strategy that allows the Java application to continue running during large portions of the garbage
collection duration, and a parallel garbage collection strategy that stops the Java application
during the entire garbage collection duration. The mostly concurrent garbage collector introduces
some extra overhead in keeping track of changes during the concurrent phases, and will also
cause more frequent garbage collections. This will lower the overall throughput somewhat, but
keeps down the individual garbage collection pauses.

Use pausetime mode for applications that are sensitive to long latencies, for example transaction
based systems where transaction times must be stable.

Pausetime mode is enabled with the command line option -XgcPrio:pausetime. For example:
Jjava -XgcPrio:pausetime MyApplication
This starts up the JVM with the garbage collection mode optimized for short pauses.

For more information, see the documentation on -XgcPrio.

Setting a Pause Target for Pausetime Mode
Command line option: -XpauseTarget:<time in ms>

The pausetime mode uses a pause target for optimizing the pause times. The pause target impacts
the application throughput, as a lower pause target will inflict more overhead on the memory
management system. Set the pause target as high as your application can tolerate.

The pause target for pausetime mode is by default 500 ms, and can be changed with the command
line option -XpauseTarget:<time in ms>. For example:

Jjava -XgcPrio:pausetime -XpauseTarget:300ms MyApplication

This starts up the JVM with the garbage collection optimized for short pauses and a pause target
of 300 ms.

For more information, see the documentation on -XpauseTarget.

Deterministic Mode
Command line option: -XgcPrio:deterministic

The dynamic garbage collection mode optimizing for deterministic pause times is designed to
ensure extremely short garbage collection pause times and limit the total pause time within a
prescribed window. The JRockit JVM achieves this by using a specially designed mostly
concurrent garbage collector, which allows the Java application to continue running as much as
possible during the garbage collection.

Oracle JRockit JVM Diagnostics Guide

Selecting and Tuning a Garbage Collector

Use the deterministic mode for applications with strict demands on short and deterministic
latencies, for example transaction based applications.

Deterministic mode is enabled with the command line option -XgcPrio:deterministic. For
example:

Jjava -XgcPrio:deterministic MyApplication

This starts up the JVM with the garbage collection mode optimized for short and deterministic
pauses.

For more information, see the documentation on -XgcPrio.

Special Note for WLRT Users

Deterministic garbage collection time can be affected by the JRockit Mission Control Client.
While all JRockit Mission Control tools are fully supported when running WLRT with the
deterministic garbage collector, you should be aware of some caveats.

e -Xmanagement does not prolong deterministic garbage collection pauses by itself, but it
does introduce a slightly increased amount of Java code executed by the JVM. This can
affect response times and performance compared to not using -Xmanagement.

e When making a JRA-recording, disable heap statistics (heapstat) if you run in a latency
sensitive situation where you cannot accept the pause for the benefit of the information.
Heapstat provides additional bookkeeping of the content of the heap. These statistics are
collected at the beginning and at the end of a JRA-recording, inside a pause. You can
disable heapstat by using specific arguments when requesting the recording. For more
information, please see Creating a JRA Recording with JRockit Mission Control 1.0.

e JRA recordings, even with heapstats disabled, might cause deterministic garbage collection
pauses to last slightly longer.

e Memory leak trend analysis can cause longer garbage collection pauses, similar to JRA
recordings.

e On requests for more information when the Memory Leak Detector is using its graphical
user interface or the Ctrl-Break handler—for example to retrieve the number of instances
of a type of object or to retrieve the list of references to an instance or to a class—a longer
pause can be introduced.

For more information on JRockit Mission Control, please refer to Using Oracle JRockit Mission
Control Tools.

Oracle JRockit JVM Diagnostics Guide 10-7

Tuning the Memory Management System

10-8

Setting a Pause Target for Deterministic Mode
Command line option: -XpauseTarget:<time in ms>

The deterministic mode uses a pause target for optimizing the pause times. The pause target
impacts the application throughput, as a lower pause target will inflict more overhead on the
memory management system. Set the pause target as high as your application can tolerate.

The garbage collector will aim on keeping the garbage collection pauses below the given pause
target. How well it will succeed depends on the application and the hardware. For example, a
pause target on 30 ms has been verified on an application with 1 GB heap and an average of 30%
live data or less at collection time, running on the following hardware:

e 2 x Intel Xeon 3.6 GHz, 2 MB level 2 cache, 4 GB RAM

e 4 x Intel Xeon 2.0 GHz, 0.5 MB level 2 cache, 8 GB RAM

Running on slower hardware, with a different heap size and/or with more live data might break
the deterministic behavior or cause performance degradation over time, while faster hardware or
less live data might allow you to set a lower pause target.

The pause target for deterministic mode is by default 30 ms, and can be changed with the
command line option -XpauseTarget:<time>. For example:

Java -XgcPrio:deterministic -XpauseTarget:40ms MyApplication

This starts up the JVM with the garbage collection optimized for short and deterministic pauses
and a pause target of 40ms.

For more information, see the documentation on -XpauseTarget.

Selecting a Static Garbage Collection Strategy

Command line option: -Xgc:<strategy>

There are four major static garbage collection strategies available.
e singlepar, which is a single-generational parallel garbage collector (same as parallel)
e genpar, which is a two-generational parallel garbage collector
e singlecon, which is a single-generational mostly concurrent garbage collector

e gencon, which is a two-generational mostly concurrent garbage collector

When a static garbage collection strategy is selected, the garbage collection strategy will not
change automatically in runtime.

Oracle JRockit JVM Diagnostics Guide

Selecting and Tuning a Garbage Collector

Use a static garbage collection strategy if you want a well defined and predictable behavior and
are willing to tune the JVM to find the best memory management settings for your application.

Garbage Collector Strategy Selection Workflow

To select the best garbage collection strategy for your application you can follow this workflow:
1. Isyour application sensitive to long garbage collection pauses (500 ms or more)?

e Yes: Select a mostly concurrent garbage collection strategy, gencon or singlecon

e No: Select a parallel garbage collection strategy, genpar or singlepar
2. Does your application allocate a lot of temporary objects?

e Yes: Select a two-generational garbage collection strategy, gencon or genpar

e No: Select a single-generational garbage collection strategy, singlecon or singlepar

For example, the Oracle WebLogic Sip Server is a transaction based system that allocates new
objects for each transaction and has short time-outs for transactions. Long garbage collection
pauses would cause transactions to time out, so a mostly concurrent garbage collection should be
used. This suggests either gencon or singlecon. The transactions generate a lot of temporary
or short lived objects, which suggests a two-generational garbage collector, gencon.

You can set a static garbage collection strategy with the command line option
-Xgc:<strategy>, for example:

Jjava -Xgc:gencon MyApplication
This starts up the JVM with the generational concurrent garbage collector.

For more information, see the documentation on -Xgc.

Changing Garbage Collection Strategy During Runtime

You can change garbage collector strategies during runtime from the Memory tab of the JRockit
Management Console (in JRockit Mission Control) except for when these conditions exist:

e If you are using the dynamic garbage collection mode optimized for deterministic pause
times.

e |If you are using static single-spaced parallel garbage collection.
For more information, consult the JRockit Management Console’s online help.

Oracle JRockit JVM Diagnostics Guide 10-9

Tuning the Memory Management System

Tuning the Concurrent Garbage Collection Trigger

Command line option: -XXgcTrigger:<percentage>

When you are using a concurrent strategy for garbage collection (in either the mark or the sweep
phase, or both), the JRockit JVM dynamically adjusts when to start an old generation garbage
collection in order to avoid running out of free heap space during the concurrent phases of the
garbage collection. The triggering is based on such characteristics as how much space is available
on the heap after previous collections. The JVM dynamically tries to optimize this space and will
occasionally run out of free heap during the concurrent garbage collection while it does. When
the limit is hit, the verbose printout:

[memdbg] starting parallel sweeping phase

appears below the command line (assuming you have set -Xverbose :memdbg). This message
means that a concurrent sweep could not finish in time and the JVM is using all currently
available resources to make up for it. In this case, a parallel sweep is made. If the JVM fails to
adapt and the above printout continues to appear, performance is being adversely affected. To
avoid this, set the -XXgcTrigger option to trigger a garbage collection when there is still X%
left of the heap, for example:

Java -XXgcTrigger=20 MyApplication

will trigger an old generation garbage collection when less than 20% of the free heap size is left
unused.

If you are using a parallel garbage collection strategy (in both the mark and the sweep phase),
then old generation garbage collections are performed whenever the heap is completely full.

Tuning the Compaction of Memory

10-10

Compaction is the process of moving chunks of allocated space towards the lower end of the
heap, helping create contiguous free memory at the upper end. The JRockit JVM does partial
compaction of the heap at each old collection. The size and position of the compaction area as
well as the compaction method is selected by advanced heuristics, depending on the garbage
collection mode used.

Fragmentation vs. Garbage Collection Pauses

Compaction is performed during garbage collection while all Java threads are paused.
Compaction of a large area with many objects will thus increase the garbage collection pause
times. On the other hand, insufficient compaction will lead to fragmentation of the heap, which

Oracle JRockit JVM Diagnostics Guide

Tuning the Compaction of Memory

leads to lower performance. If the fragmentation increases over time, the JRockit JVM will
eventually be forced to either do a full compaction of the heap, causing a long garbage collection
pause, or throw an OutOfMemaoryError.

If your application shows performance degradation over time in a periodic manner, such that the
performance degrades until it suddenly pops back to excellent, just to start degrading again, you
are most likely experiencing fragmentation problems. The heap becomes more and more
fragmented for each old collection until finally object allocation becomes impossible and the
JVM is forced to do a full compaction of the heap. The full compaction eliminates the
fragmentation, but only until the next garbage collection. You can verify this by looking at
-Xverbose:memory outputs, monitoring the JVM through the Management Console in JRockit
Mission Control or by creating a JRA recording and examining the garbage collection data. If you
see that the amount of used heap after each old collection keeps increasing over time until it hits
the roof, and then drops down again at the next old collection, you are experiencing a
fragmentation problem.

Compaction is optimally tuned when the fragmentation is kept on a low and constant level.

Adjusting Compaction

Even though the compaction heuristics in the JRockit JVM are designed to keep the garbage
collection pauses low and even, you may sometimes want to limit the compaction ratio further to
reduce the garbage collection pauses. In other cases you may want to increase the compaction
ratio to keep heap fragmentation in control. There are several ways to adjust the compaction:

e Setting the Compaction Ratio
e Setting the Compact Set Limit
e Turning Off Compaction

e Using Full Compaction

Setting the Compaction Ratio

Command line option: -XXcompactRatio:<percentage>

Setting a static compaction ratio will force the JVM to compact a specified percentage of the heap
at each old collection. This disables the heuristics for selecting a dynamic compaction ratio that
depends on the heap layout. The compact ratio can be defined to a static percentage of the heap
using the command line option -XXcompactRatio:<percentage>. For example:

Jjava -XXcompactRatio:1 MyApplication

Oracle JRockit JVM Diagnostics Guide 10-11

Tuning the Memory Management System

10-12

This starts up the JVM with a static compact ratio of about 1% of the heap.
For more information, see the documentation on -xXcompactRatio.

Use this option if you need to force the JVM to use a smaller or larger compaction ratio than it
would select by default. You can monitor the compaction ratio in -Xverbose :memory=debug
outputs and JRA recordings. A high compaction ratio keeps down the fragmentation on the heap
but increases the compaction pause times.

Setting the Compact Set Limit

Command line option: -XXcompactSetLimit:<references>

When compaction has moved objects, the references to these objects must be updated. The
garbage collector does this before the Java threads are allowed to run again, which increases the
garbage collection pause proportionally to the number of references that have been updated. The
compact set limit defines how many references there may be from objects outside the compaction
area to objects within the compaction area, thus limiting a portion of the compaction pause. If,
during a garbage collection, the number of references to the chosen compaction area exceeds the
compact set limit, the compaction will be canceled.

The compact set limit depends on the garbage collection mode used, and will for some modes
adjust dynamically in runtime. You can set a static compact set limit by using the command line
option -XXcompactSetLimit:<references>, where “references” specifies the maximum
number of references to objects within the compaction area. For example:

Jjava -XXcompactSetLimit:20000 MyApplication
This starts up the JVM with a compact set limit of 20000 references.
For more information, see the documentation for -XXcompactSetLimit.

Use this option to increase the compact set limit if too many compactions are canceled (aborted),
or to decrease the limit if the compaction pause times are too long. You can monitor the
compaction behavior in -Xverbose :memory=debug outputs and JRA recordings, and
compaction pause times in -Xverbose :gcpause=debug outputs and JRA recordings.

Note: -XXcompactSetLimit has no effect when the deterministic or pausetime garbage
collection modes are used, as these garbage collector modes use other heuristics for
adjusting the compaction pausetimes.

Turning 0ff Compaction
Command line option: -XXnoCompaction

Oracle JRockit JVM Diagnostics Guide

Optimizing Memory Allocation Performance

Very few applications survive in the long run without any compaction at all, but for those that do
you can turn off the compaction entirely.

To turn off compaction entirely, use the command line option -XXnoCompaction, for example:
Jjava -XXnoCompaction MyApplication

For more information, see the documentation for -xXnoCompaction.

Using Full Compaction
Command line option: -Xxful ICompaction

Some applications are not sensitive to garbage collection pauses or perform old collections very
infrequently. For these applications you may want to try running full compaction, as this
maximizes the object allocation performance between the garbage collections. Note however that
a full compaction of a large heap with a lot of objects may take several seconds to perform.

To turn on full compaction, use the command line option -XXful ICompaction, for example:
Jjava -XXfullCompaction MyApplication
For more information, see the documentation for -XXful ICompaction.

Optimizing Memory Allocation Performance

Apart from optimizing the garbage collection to clear space for object allocation, you can tune
the object allocation itself to maximize the application throughput.

Setting the Thread Local Area Size

Command line options: -XXtlaSize:min=<size>,preferred=<size>
-XXlargeObjectLimit:<size> -XXminBlockSize:<size>

The thread local area (TLA) is a chunk of free space reserved on the heap or in the nursery and

given to a thread for its exclusive use. A thread can allocate small objects in its own TLA without
synchronizing with other threads. Objects allocated in a TLA are however not thread local. They
can be accessed by any thread and will be garbage collected globally. When the TLA gets full the
thread simply requests a new TLA.

The thread local area size influences the allocation speed, but can also have an impact on garbage
collection frequency. A large TLA size allows each thread to allocate a lot of objects before
requesting a new TLA, and in JRockit JVM R27.2 and later it also allows the thread to allocate
larger objects in the thread local area. On the other hand, a large TLA size prevents small chunks
of free memory from being used for object allocation, which increases the impact of

Oracle JRockit JVM Diagnostics Guide 10-13

Tuning the Memory Management System

10-14

fragmentation. In JRockit JVM R27.1 and later, the TLA size is dynamic depending on the size
of the available chunks of free space, and varies between a minimum and a preferred size.

Increasing the preferred TLA size is beneficial for applications where each thread allocates a lot
of objects. When a two-generational garbage collection strategy is used, a large minimum and
preferred TLA size will also allow larger objects to be allocated in the nursery. Note however that
the preferred TLA size should always be less than about 5% of the nursery size.

Increasing the minimum TLA size may improve garbage collection times slightly, as the garbage
collector can ignore any free chunks that are smaller than the minimum TLA size.

Decreasing the preferred TLA size is beneficial for applications where each thread allocates only
a few objects before it is terminated, so that a larger TLA wouldn’t ever become full. A small
preferred TLA size is also beneficial for applications with very many threads, where the threads
don’t have time to fill their TLAs before a garbage collection is performed.

Decreasing the minimum TLA size lessens the impact of fragmentation.

A common setting for the TLA size is a minimum TLA size of 2-4 kB and a preferred TLA size
of 16-256 kB.

To adjust the TLA size, you can use the command line option
-XXtlaSize:min=<size>,preferred=<size>. For example:

Jjava -XXtlaSize:min=1k,preferred=512k MyApplication
This starts up the JVM with a minimum TLA size of 1 kB and a preferred TLA size of 512 kB.

For more information and default values, see the documentation on -XXtlaSize.

Note: Ifyou are using JRockit JVM R27.1 or older and want to adjust the TLA size, you should
set -XXlargeObjectLimit:<size>and -XXminBlockSize:<size>tothe same value
as the minimum TLA size.

Note: Ifyou are using the Oracle JRockit JVM R27.0 or older the minimum and preferred TLA
size will always be the same value. The syntax for setting the TLA size is
-XXtlaSize:<size>.

Oracle JRockit JVM Diagnostics Guide

Tuning Locks

The interaction between Java threads affects the performance of your application.There are two
ways of tuning the interaction of threads.

3. By modifying the structure of your program code, for example to minimize the amount of
contention between threads.

4. By using options in the Oracle JRockit JVM that affect how contention is handled when your
application is running.

The Oracle JRockit JVM Diagnostics Guide does not provide any documentation on how to
optimize thread management when coding Java, but this section contains information about
JRockit JVM options for tuning how locks and contention for locks are handled. This section
covers the following topics:

e Lock Profiling
e Disabling Spinning Against Fat Locks
e Adaptive Spinning Against Fat Locks
o Lock Deflation

e Lazy Unlocking

For more information on how the JRockit JVM handles threads and locks, see Understanding
Threads and Locks.

Oracle JRockit JVM Diagnostics Guide 111

Tuning Locks

Lock Profiling

You can enable the JRockit Runtime Analyzer to collect and analyze information about the locks
and the contention that has occurred while the runtime analyzer was recording. To do this, add
the following option when you start your application:

-Djrockit.lockprofiling=true
When lock profiling has been enabled, you can view information about Java locks on the Lock
Profiling tab in the JRockit Mission Control Client.

Note: Lock profiling creates a lot (in the order of 20%) of overhead processing when your Java
application runs.

There are two Ctrl-Break handlers tied to the lock profile counters. To work, both require lock
profiling to be enabled with the -Djrockit. lockprofi ling option. These are used with jrcmd.

The handler lockprofile_print prints the current values of the lock profile counters. The
handler lockprofile_reset resets the current values of the lock profile counters.

For more information about Ctrl-Break handlers and using jrcmd, see Running Diagnostic
Commands.

Disabling Spinning Against Fat Locks

Spinning against a fat lock is generally beneficial. However, in some instances, it can be
expensive and costly in terms of performance, for example when you have locks that create long
waiting periods and high contention. You can turn off spinning against a fat lock and eliminate a
potential performance degradation with the following option:

-XXdisableFatSpin

The option disables the fat lock spin code in Java, allowing threads that are trying to acquire a fat
lock go to sleep directly.

Adaptive Spinning Against Fat Locks

11-2

You can let the JVM decide whether threads should spin against a fat lock or not (and directly go
into sleeping state when failing to take it). To enable adaptive lock spinning, set the option

-Djrockit.useAdaptiveFatSpin=true

By default, adaptive spinning against fat locks is disabled. Note that whether threads failing to
take a particular fat lock will go spinning or sleeping can change during runtime.

Oracle JRockit JVM Diagnostics Guide

Lock Deflation

You can specify the criteria that needs to be fulfilled for threads to start spinning against a fat
lock. The following options let you tune adaptive spinning.

-Djrockit.adaptiveFatSpinTimeStampDiff=2000000

This sets the maximum difference in CPU-specific ticks where spinning is beneficial.
-Djrockit.adaptiveFatSpinMaxSpin=1000

Number of spins that must fail before threads switch from spinning to sleeping.
-Djrockit.adaptiveFatSpinMaxSleep=1000

Number of sleeps that must get the lock early before threads go back to spinning.
-Djrockit.fatlockspins=100

Number of loops before JRockit JVM tries to read from the lock again in the innermost lock spin
code.

Lock Deflation

If the amount of contention on a lock that has turned fat has been small, then the lock will convert
back to a thin lock. This process is called lock deflation. By default, lock deflation is enabled. If
you do not want fat locks to deflate, then run you application with the following option:

-XXdisableFatLockDeflation

With lock deflation disabled, a fat lock stays a fat lock even after there is no threads contending
or waiting to take the lock.

You can also tune when lock deflation will be triggered. Specify, with the following option, the
number of uncontended fat lock unlocks that should occur before deflation:
-XXfatLockDeflationThreshold=<NumberOfUnlocks>

Lazy Unlocking

So called “lazy” unlocking is intended for applications with many non-shared locks. Be aware
that it can introduce performance penalties with applications that have many short-lived but
shared locks.

When lazy unlocking is enabled, locks will not be released when a critical section is exited.
Instead, once a lock is acquired, the next thread that tries to acquire such a lock will have to ensure
that the lock is or can be released. It does this by determining if the initial thread still uses the
lock. A shared lock will convert to a normal lock and not stay in lazy mode.

Oracle JRockit JVM Diagnostics Guide 11-3

Tuning Locks

Lazy unlocking is enabled by default in the Java 6 version of the Oracle JRockit JVM R27.6 on
all platforms except 1A64 and for all garbage collection strategies except the deterministic
garbage collector. In older releases you can enable lazy unlocking with the command line option
-XXlazyUnlocking.

11-4 Oracle JRockit JVM Diagnostics Guide

Tuning For Low Latencies

Long latencies can make some applications behave poorly even though the overall throughput is
good. For example, a transaction based system may seem to perform well as to the number of
transactions executing during a specified amount of time, but still show some uneven behavior
with transactions timing out now and then even on low loads. Latencies in the application or the
environment in which the application is run may cause this uneven or poor performance.
Latencies can be due to anything from contention in the Java code to slow network connections
to a database server. Latencies may also be caused by the JVM, for example during garbage
collection, depending on how the JVM is tuned. This section describes how to tune the Oracle
JRockit JVM for low latencies, covering the following subjects:

e Measuring Latencies

e Tune the Garbage Collection

Tune the Heap Size

Manually Tune the Nursery Size

Manually Tune Compaction

e Tune When to Trigger a Garbage Collection

Measuring Latencies

Most application developers have a way of measuring their application’s performance. You can
for example run a set of simulated use cases and measure the time it took to execute them, the
number of a specific kind of transactions executed per minute, the average transaction time or

Oracle JRockit JVM Diagnostics Guide 1241

Tuning For Low Latencies

how many percent of the transaction times are above or below a specific threshold. When you
tune for low latencies you will be most interested in measuring the amount of transaction times
that are above a certain threshold. For best tuning results you should have a varied set of
benchmarks that are as realistic as possible and run for a longer period of time. Twenty minutes
is often a minimum, and sometimes the full effect of the tuning can be seen only after several
hours.

When you have identified a situation where the long latencies occur, you can start monitoring the
JRockit JVM using some of the following methods:

e Create a runtime analysis report by using the JRockit Runtime Analyzer (JRA) supplied
with the product. If you are running the JRockit JVM R27.1 or later and Oracle JRockit
Mission Control 2.0 or later version of JRockit Runtime Analyzer, the individual pause
times for each garbage collection pause (there might be several pauses during one garbage
collection) are reported. The JRA report will also show page faults occurring during
garbage collection. For information on creating and analyzing a JRA report, please refer to
the online help in the JRockit Mission Control Client or the Oracle JRockit Mission
Control documentation.

e You can create a latency recording to monitor the occurrences of latencies in your
application. For more information on creating a Latency Recording, please see the online
help in the Oracle JRockit Mission Control Client or the Oracle JRockit Mission Control
documentation.

e You can see garbage collection pause times in the JRockit JVM by starting the JVM with
-Xverbose:gcpause.

e |f you are using an older versions of the JRockit JVM (that is, prior to version R27.1) and
an older version of JRA, use the command-line option -Xverbose :memdbg , gcpause to
print out the garbage collection pause times. The parameter memdbg will also display more
detailed printouts about page faults that occur during garbage collection.

Now you have the tools to see the results of your tuning.

Tune the Garbage Collection

The first step for tuning the JRockit JVM for low latencies is to select a garbage collection mode
that gives you short garbage collection pauses. The best bet is one of the following two dynamic
garbage collection modes or one static garbage collection strategy, described further in this
section:

e Dynamic Garbage Collection Mode Optimized for Deterministic Pauses.

12-2 Oracle JRockit JVM Diagnostics Guide

Tune the Garbage Collection

This is the garbage collection mode designed for very short and deterministic garbage
collection pauses. It is available as a part of Oracle JRockit Real Time.

e Dynamic Garbage Collection Mode Optimized for Short Pauses.

This is a garbage collection mode designed for short garbage collection pauses.

e Static Generational Concurrent Garbage Collection

This static garbage collection mode provides fairly short garbage collection pauses but
does not optimize for a specific pause target. Additional tuning of the nursery size and
compaction may be necessary when this garbage collector is chosen.

For more information about different garbage collector options, see Selecting and Tuning a
Garbage Collector.

Dynamic Garbage Collection Mode Optimized for
Deterministic Pauses

Applications that require minimal latency, such as those used in the telecom and finance
industries, cannot abide by the unpredictable pause times caused common garbage collection
strategies. To avoid these overly-long pauses, the JRockit JVM provides “deterministic” garbage
collection, a dynamic garbage collection mode that keeps the garbage collection pauses short and
deterministic.

Set the deterministic garbage collector at the commandline as follows:
Jjava -XgcPrio:deterministic -Xms:1g -Xmx:1g myApplication

The garbage collector will aim on keeping the garbage collection pauses below the given pause
target. How well it will succeed depends on the application and the hardware. For example, a
pause target on 30 ms has been verified on an application with 1 GB heap and an average of 30%
live data or less at collection time, running on the following hardware:

e 2 x Intel Xeon 3.6 GHz, 2 MB level 2 cache, 4 GB RAM

e 4 x Intel Xeon 2.0 GHz, 0.5 MB level 2 cache, 8 GB RAM

Running on slower hardware, with a different heap size and/or with more live data might break
the deterministic behavior or cause performance degradation over time, while faster hardware or
less live data might allow you to set a lower pause target.

The pause target for deterministic mode is by default 30 ms, and can be changed with the
command line option -XpauseTarget:<time>. For example:

Oracle JRockit JVM Diagnostics Guide 12-3

Tuning For Low Latencies

12-4

Jjava -XgcPrio:deterministic -Xms:1lg -Xmx:1g -XpauseTarget:40ms
MyApplication

This starts up the JVM with the garbage collection optimized for short and deterministic pauses
and a pause target of 40ms.

For more information, see the documentation on -XpauseTarget.

The deterministic garbage collector optimizes the compaction for the given pause target and does
not use a nursery. Further tuning of compaction and nursery size should thus be unnecessary
when the deterministic garbage collector is used.

Dynamic Garbage Collection Mode Optimized for Short
Pauses

The dynamic garbage collection mode optimized for short pauses is useful for applications that
don’t require quite as short and deterministic pauses as the deterministic garbage collector
guarantees. This garbage collection mode selects a garbage collection strategy to keep the
garbage collection pauses below a given pause target (500 ms by default). Compaction will also
be adjusted automatically to keep down the pause times caused by compaction.

Set the pausetime priority as follows:
jJava -XgcPrio:pausetime myApplication

If you use the pausetime priority but find that the default (500 ms) is too long, you can specify a
target pause time by using the -XpauseTarget option, for example:

Jjava -XgcPrio:pausetime -XpauseTarget=200ms myApplication

Be aware that there is a certain trade off between short pauses and application throughput. Shorter
garbage collection pauses require more overhead in bookkeeping and may cause more
fragmentation, which lowers the performance. If your application can tolerate pause times longer
than 500 ms you can increase the pause target to increase the application’s performance.

The target value is used as a pause time goal and by the dynamic garbage collector to more
precisely configure itself to keep pauses near the target value. Using this option allows you to
specify the pause target to be between 200 ms and 5 seconds. If you don’t specify a pause target,
the default remains 500 ms.

The garbage collection mode for short pauses optimizes the compaction for the given pause
target, so further tuning of the compaction should not be necessary. The nursery size is adjusted
automatically, but for an even performance you may need to tune the nursery size manually. In

Oracle JRockit JVM Diagnostics Guide

Tune the Heap Size

R27.3 and later releases, the nursery size is static for this garbage collection mode and will have
to be tuned manually.

Static Generational Concurrent Garbage Collection

If you want to use a static garbage collector and still experience minimal pause times, use a
concurrent garbage collector. Generally, using a generational garbage collector is preferable to
using a single-spaced garbage collector since a generational garbage collector gives you better
application throughput.

To use a generational concurrent garbage collector, enter the following at the command line:
Java -Xgc:gencon myApplication

To use a single-spaced concurrent garbage collector, enter the following at the command line:
jJjava -Xgc:singlecon myApplication

When you use a static garbage collector you may have to tune the nursery size and the compaction
manually.

Tune the Heap Size

You can resize the heap by using the -Xms (initial and minimum heap size) and -Xmx (maximum
heap size) command line options when you launch the JRockit JVM. Usually you can set the
initial and the maximum heap size to the same value. Increasing the heap size reduces the
frequency of garbage collections. A larger heap may also take slightly longer to garbage collect,
but this effect is usually not considerable until the heap reaches sizes of several gigabytes.

The best approach to tuning the heap size is simply to benchmark the application with many
different heap sizes. Monitor the garbage collection pauses as described in Measuring Latencies
while you do this to determine the largest possible heap size for your application.

The only exception is the deterministic garbage collector. The deterministic garbage collector is
verified using a heap of about 1 GB, and will work best with heaps of about this size.

To set the heap size, use the -Xms and the -Xmx options, for example
Jjava -Xms:1g -Xmx:1g myApp

For more information, see Optimizing Memory Allocation Performance.

Oracle JRockit JVM Diagnostics Guide 12-5

Tuning For Low Latencies

Manually Tune the Nursery Size

If you are running -XgcPrio:pausetime or -Xgc:gencon you might want to tune the nursery
size manually.

The size of the nursery changes dynamically in runtime when you use -XgcPrio:pausetime,
but setting it manually gives a more even behavior (note that when you use the dynamic garbage
collector, the nursery might also be turned off completely when single-spaced garbage collection
is used).

Note: In the Oracle JRockit JVM R27.3 and later versions the nursery size is static when
running -XgcPrio:pausetime. Tuning the nursery size manually is often beneficial for
both the pause times and the application throughput.

The default nursery size for -Xgc:gencon is static, and may thus not be optimal for all
applications. You might benefit from manually setting a custom nursery size. The nursery should
be as large as possible, but the nursery size must be decreased if the pause time created by a young
collection (nursery garbage collection) is too long. Tune the nursery size by benchmarking your
application with several different nursery sizes while monitoring the garbage collection pauses as
described in Measuring Latencies.

To set the size of the nursery, use the -Xns option; for example:

Java -XgcPrio:pausetime -Xns:64m myApp

Manually Tune Compaction

12-6

If you are using a static garbage collector, tuning compaction manually might help improve
latencies. Compaction is performed during a garbage collection pause, and thus the compaction
time affects the garage collection pause times. By default, the static garbage collectors use a
compaction scheme that aims at keeping the compaction times fairly even, but does not put an
upper bound on the compaction time.

You can limit the compaction manually by setting a static compaction area size
(-XXcompactRatio) or by limiting the number of references that can be updated due to
compaction (-XXcopactSetLimit). Neither action will not guarantee an upper bound on the
compaction time, but will reduce the risk for long compaction times.

Be aware that if you set the compaction ratio to low, the heap slowly becomes more and more
fragmented until it is impossible to find free space that is big enough for object allocation. The
heap becomes full of dark matter (basically severe fragmentation). When this happens, a full

Oracle JRockit JVM Diagnostics Guide

Tune When to Trigger a Garbage Collection

compaction (a compaction of the complete heap) will be done, which can result in a pause times
of up to half a minute. Dark matter is reported for the heap in a JRA recording.

For complete information on limiting compaction, please refer to Adjusting Compaction.

Tune When to Trigger a Garbage Collection

The -XXgcTrigger option determines how much free memory should remain on the heap when
a concurrent garbage collection starts. If the heap becomes full during the concurrent garbage
collection, the Java application can’t allocate more memory until garbage collection frees some
memory, which might cause the application to pause. While the trigger value will tune itself in
runtime to prevent the heap from becoming too full, this automatic tuning might take too long.
Instead, you can use -XXgcTrigger option to set from the start a garbage collection trigger value
more appropriate to your application.

If the heap becomes full during the concurrent mark phase, the sweep phase will revert to parallel
sweep (unless -XxnoParSweep has been specified). If this happens frequently and the garbage
collection trigger doesn't increase automatically to prevent this, use -XXgcTrigger to manually
increase the garbage collection trigger; for example:

Java -XXgcTrigger myApp

The current value of the garbage collection trigger appears in the -Xverbose :memdbg outputs
whenever the trigger changes.

Oracle JRockit JVM Diagnostics Guide 12-1

Tuning For Low Latencies

12-8 Oracle JRockit JVM Diagnostics Guide

cHAPTER@

Tuning For Better Application
Throughput

Every application has a unique behavior and has its own unique requirements on the JVM for
gaining maximum application throughput. The “out of the box” behavior of the Oracle JRockit
JVM gives good performance for most applications. You can however often tune the JVM further
to gain some extra application throughput, which means that the application will run faster.

This chapter describes how to tune the JRockit JVM for improved application throughput. It
includes information on the following subjects:

e Measuring Your Application’s Throughput
e Select Garbage Collector

e Tune the Heap Size

e Manually Tune the Nursery Size

e Manually Tune Compaction

e Tune the Thread-Local Area Size

Measuring Your Application’s Throughput

In this document “application throughput” denotes the speed at which a Java application runs. If
your application is a transaction based system, high throughput means that more transactions are
executed during a given amount of time. You can also measure the throughput by measuring how
long it takes to perform a specific task or calculation.

Oracle JRockit JVM Diagnostics Guide 13-1

Tuning For Better Application Throughput

To measure the throughput of your application you need a benchmark. The benchmark should
simulate several realistic use cases of the application and run long enough to allow the JVM to
warm up and perform several garbage collections. You also need a way to measure the results,
either by timing the entire run of a specific set of actions or by measuring the number of
transactions that can be performed during a specific amount of time. For an optimal throughput
assession, the benchmark should run on high load and not depend on any external input like
database connections.

When you have a benchmark set up, you can monitor the behavior of the JVM using one of the
following methods:

e Create a runtime analysis with the JRockit Runtime Analyzer (JRA) in Oracle JRockit
Mission Control. In the JRA tool, you can see the frequency of the garbage collections and
why garbage the collections are launched. This information provides clues for memory
management tuning. For information on creating and analyzing a JRA report, please refer
to the online help in the Oracle JRockit Mission Control Client or the Oracle JRockit
Mission Control documentation.

e Create verbose outputs by using the command-line option -Xverbose; for example,
-Xverbose:memdbg,gcpause, gcreport will show memory management data like
garbage collection frequency and duration. From the JRockit JVM R27.1 and forward,
setting -Xverbose :memdbg will also show the reason why each garbage collection was
started. This will help you study the garbage collection behavior.

Now you have the tools for measuring the throughput of your Java application and can start to
tune the JVM for better application throughput.

Select Garbage Collector

The first step of tuning the JRockit JVM for maximum application throughput is to select an
appropriate garbage collection mode or strategy.

e Dynamic Garbage Collection Mode Optimized for Throughput

This is the default garbage collection mode for the JRockit JVM. This mode selects the
optimal garbage collection strategy for maximum application throughput.

e Static Generational Parallel Garbage Collection

This static garbage collector is a good alternative if you do not want to use a dynamic
garbage collection mode. The generational parallel garbage collector provides high
throughput for applications that allocate a lot of temporary objects.

13-2 Oracle JRockit JVM Diagnostics Guide

Select Garbage Collector

e Static Single-Spaced Parallel Garbage Collection.

This is another alternative if you do not want to use a dynamic garbage collection mode.
The single-spaced parallel garbage collector provides high throughput for applications that
allocate mostly large objects.

For more information about different garbage collector options, see Selecting and Tuning a
Garbage Collector.

Dynamic Garbage Collection Mode Optimized for
Throughput

The default garbage collection mode in the JRockit JVM (assuming that you run in server mode,
which is also default) tunes the memory management for maximum application throughput.
Depending on the behavior of your application, it will select either a generational or
non-generational parallel garbage collection strategy. It will also tune the nursery size, if the
garbage collection strategy is generational.

Be aware that if you use the dynamic garbage collection mode optimized for throughput, the
garbage collection pauses will not have any strict time limits. If your application is sensitive to
long latencies, you should tune for low latencies rather than for maximum throughput, or find a
middle path that gives you acceptable latencies.

The dynamic garbage collection mode optimized for throughput is the default garbage collector
for the JRockit JVM. You can also turn it on explicitly like this:

Jjava -XgcPrio:throughput myApplication

Static Single-Spaced Parallel Garbage Collection

If you want to use a static garbage collector, then you should use a parallel garbage collector in
order to maximize application throughput. If the large/small object allocation ratio is high, then
use a single-spaced garbage collector (-Xgc:singlepar). You can see the ratio between large

and small object allocation if you do a JRA recording of your application.

To improve throughput by using a static garbage collector, you may also need to set other -X or
-XX options to deliver that throughput.

Static Generational Parallel Garbage Collection

If you want to maximize application throughput and the large/small object allocation ratio is low,
then use a generational parallel garbage collector (-Xgc:genpar). A generational parallel

Oracle JRockit JVM Diagnostics Guide 13-3

Tuning For Better Application Throughput

garbage collector might be the right choice even if the large/small object allocation ratio is high
when you are using a very small nursery. You can see the ratio between large and small object
allocation if you do a JRA recording of your application.

To improve throughput by using a static garbage collector, you may also need to set other -X or
-XX options to deliver that throughput.

Tune the Heap Size

The default heap size starts at 64 MB and can increase up to 1 GB. Most server applications need
a large heap—at least larger than 1 GB—to optimize throughput. For such applications, you will
need to set the heap size manually by using the -Xms (initial heap size) and -Xmx (maximum heap
size) command-line options. Setting -Xms the same size as -Xmx has regularly shown to be the
best configuration for improving throughput; for example:

Java -Xms:2g -Xmx:2g myApp

For more information on setting the initial and maximum heap sizes, including guidelines for
setting these values, please see Optimizing Memory Allocation Performance.

Manually Tune the Nursery Size

The nursery—or young generation —is the area of free chunks in the heap where objects are
allocated when running a generational garbage collector (-XgcPrio: throughput, -Xgc:genpar
or -Xgc:gencon). A nursery is valuable because most objects in a Java application die young.
Collecting garbage from the young space is preferable to collecting the entire heap, as it is a less
expensive process and most objects in the young space will already be dead when the garbage
collection is started.

If you are using a generational garbage collector you might need to change the nursery setting to
accommodate more young objects.

e -XgcPrio:throughput and -Xgc:genpar will change the nursery size dynamically in
runtime. -XgcPrio: throughput might even turn off the nursery (that is, switch to a single
generational garbage collector). In some cases manual tuning might result in a more
efficient nursery size.

e -Xgc:gencon has a fairly low and static nursery size setting. For many applications, you
may want to tune the nursery size manually when using this garbage collector.

An efficient nursery size is such that the amount of memory freed by young collections (garbage
collections of the nursery) rather than old collections (garbage collections of the entire heap) is

13-4 Oracle JRockit JVM Diagnostics Guide

Manually Tune Compaction

as high as possible. To achieve this, you should set the nursery size close to the size of half of the
free heap after an old collection.

To set the nursery size manually, use the -Xns command-line option; for example:

Jjava -Xgc:gencon -Xms:2g -Xmx:2g -Xns:512m myApp

Manually Tune Compaction

Compaction is the process of moving chunks of allocated space toward the lower end of the heap,
helping to create contiguous free memory at the other end. The JRockit JVM does partial
compaction of the heap at each old collection.

The default compaction setting for static garbage collectors (-Xgc or -XXsetGC) use a dynamic
compaction scheme that tries to avoid “peaks” in the compaction times. This is a compromise
between keeping garbage collection pauses even and maintaining a good throughput, so it doesn't
necessarily give the best possible throughput. Tuning the compaction can pay off well, depending
on the application's characteristics.

There are two ways to tune the compaction for better throughput; increasing the size of the
compaction area and increasing the compact set limit. Increasing the size of the compaction area
will help reduce the fragmentation on the heap. Increasing the compact set limit will implicitly
allow larger areas to be compacted at each garbage collection. This reduces the garbage collection
frequency and makes allocation of large objects faster, thus improving the throughput.

For information on tuning these compaction options, please refer to Tuning the Compaction of
Memory.

Tune the Thread-Local Area Size

Thread Local Areas (TLAS) are chunks of free memory used for object allocation. The TLASs are
reserved from the heap and given to the Java threads on demand, so that the Java threads can
allocate objects without having to synchronize with the other Java threads for each object
allocation.

Increasing the preferred TLA size speeds up allocation of small objects when each Java thread
allocates a lot of small objects, as the threads won’t have to synchronize to get a new TLA as
often.

In Oracle JRockit JVM R27.3 and later releases the preferred TLA size also determines the size
limit for objects allocated in the nursery. Increasing the TLA size will thus also allow larger
objects to be allocated in the nursery, which is beneficial for applications that allocate a lot of

Oracle JRockit JVM Diagnostics Guide 13-5

Tuning For Better Application Throughput

13-6

large objects. In older versions you need to set both the TLA size and the Large Object Limit to
allow larger objects to be allocated in the nursery. A JRA recording will show you statistics on
the sizes of large objects allocated by your application. For good performance you can try setting
the preferred TLA size at least as large as the largest object allocated by your application.

For more information on how to set the TLA size, see Setting the Thread Local Area Size.

Oracle JRockit JVM Diagnostics Guide

cHAPTER@

Tuning For Stable Performance

An incorrectly tuned JVM may perform well initially, but start showing lower performance or
longer latencies over time or display severe performance variations. This section shows you how
to tune your JVM for stable performance over time. The following topics are covered:

Measuring the Performance Variance

Tune the Heap Size

Manually Tune the Nursery Size

Tune the Garbage Collector

Tune Compaction

Measuring the Performance Variance

To be able to measure and analyze performance variance over time you need a long-running test
that continuously reports the current performance. The test scenario should be as realistic as
possible and cover as many use cases as possible.

When you have identified a variance in performance you can start monitoring the Oracle JRockit
JVM to see if this variance correlates to events within the JVM, for example garbage collection,
fragmentation or lock deflation. The tools in Oracle JRockit Mission Control will help you do

this, as well as the verbose outputs that you can enable with the -Xverbose command line option.

Oracle JRockit JVM Diagnostics Guide 141

Tuning For Stable Performance

Events to look for and the proper tools for finding these are listed in Table 14-1

Table 14-1 JVM Events

Event Type What to Look For Tools

Heap size change The heap increases or decreases -Xverbose:memdbg, JRA,
Oracle JRockit Mission Control

Nursery size change The nursery size increases or -Xverbose:memdbg, JRA,

decreases Oracle JRockit Mission Control
Garbage collector strategy A dynamic garbage collection -Xverbose:memdbg, JRA
change mode changes the garbage

collection strategy

Increased fragmentation The amount of dark matter JRA
increases

Full compaction Compaction of all heap partsat ~ -Xverbose:memdbg, JRA
once

Tune the Heap Size

Heap size changes in runtime may cause performance variations. You can monitor the heap size
in -Xverbose :memdbg outputs and in JRockit Mission Control tools. A JRA recording will also
tell you if the heap size has changed during the recording.

For an even performance over time, you should set the initial heap size (-Xms) to the same value
as the maximum heap size (-xmx), for example:

Jjava -Xms:1g -Xmx:1g myApplication

For more information on tuning the heap size, see Setting the Heap Size.

Manually Tune the Nursery Size

Nursery size changes in runtime may cause performance variations, but may also help keeping
the performance high when the load changes. You can monitor the nursery size in
-Xverbose:memdbg outputs and JRockit Mission Control tools. A JRA recording will also tell
you if the nursery size has changed during the recording. If you find that performance variations
in your application correlate to nursery size changes, you can set a static nursery size with the
command line option -Xns:<size>, for example:

14-2 Oracle JRockit JVM Diagnostics Guide

Tune the Garbage Collector

java -Xns:100m myApplication

For more information on tuning the nursery size, see Setting the Nursery and Keep Area Size.

Note: Overriding the dynamic nursery sizing heuristics may have a negative impact on the
performance or cause performance variations in applications where the amount of live
data varies during the run.

Tune the Garbage Collector

The dynamic garbage collection modes in the JRockit JVM select a garbage collection strategy
based on runtime information. Changes in application behavior may cause the garbage collection
strategy to change. If such changes happen often and cause a performance variations, you may
want to select a static garbage collection strategy rather than a dynamic garbage collection mode.
Set a static garbage collection strategy with the command line option -Xgc:<strategy>, for
example:

jJjava -Xgc:parallel myApplication

For more information on selecting a static garbage collection strategy, see Selecting a Static
Garbage Collection Strategy.

Tune Compaction

The Oracle JRockit JVM uses the mark and sweep garbage collection model as described in The
Mark and Sweep Model. This garbage collection model may cause the heap to become
fragmented, which means that the free areas on the heap become many but small. The JVM
performs partial compaction of the heap at each garbage collection to reduce the fragmentation.
Sometimes the amount of compaction isn’t enough. This leads to increasing fragmentation,
which in turn leads to more and more frequent garbage collections until the heap is so fragmented
that a full compaction is performed. After the full compaction the garbage collection frequency
goes down, but will gradually increase as the fragmentation increases again.

This behavior will cause the performance of the Java application to vary. As the garbage
collection frequency increases the performance drops. During the full compaction you may
experience a prolonged garbage collection pause, which pauses the entire Java application for a
while. After this the performance is high again, but starts going down as the garbage collection
frequency increases again.

You can monitor the compaction ratio and garbage collection frequency in -Xverbose :memdbg
outputs, the Management Console and JRA recordings. A JRA recording will also show you how
much dark matter (severe fragmentation) there is on the heap. If you find that the garbage

Oracle JRockit JVM Diagnostics Guide 14-3

Tuning For Stable Performance

collection keeps increasing until a full compaction is done, you need to increase the compaction
ratio. For information on how to tune the compaction, see Tuning the Compaction of Memory.

You can also decrease the fragmentation on the heap by using a generational garbage collector.
See Selecting and Tuning a Garbage Collector for information on different garbage collectors.

14-4 Oracle JRockit JVM Diagnostics Guide

cHAPTER@

Tuning For a Small Memory Footprint

If you are running on a system with limited memory resources, you may want to tune the Oracle
JRockit JVM for a small memory footprint. This section describes the tuning options you have
available for reducing the memory footprint of the JVM. The following topics are covered:

e Measuring the Memory Footprint

Set the Heap Size

Select a Garbage Collector

Tune Compaction

e Tune Object Allocation

Measuring the Memory Footprint

The memory footprint of an application is best measured using some of the tools provided with
the operating system, for example the top shell command or the Task Manager in Windows.

To determine how the memory usage of the JVM process is distributed, you can request a
memory analysis by using jrcmd to print the JVM’s memory usage. See Using jrcmd and
Available Diagnostic Commands for more information.

When you have acquired information on the JVM’s memory usage you can start tuning the JVM
to reduce the memory footprint within the areas that use the most memory.

Oracle JRockit JVM Diagnostics Guide 15-1

Tuning For a Small Memory Footprint

Set the Heap Size

The most obvious place to start tuning the memory footprint is the Java heap size. If you reduce
the Java heap size by a certain amount you will reduce the memory footprint of the Java process
by the same amount. You can however not reduce the Java heap size infinitely. The heap must be
at least large enough for all objects that are alive at the same time. Preferably the heap should be
at least twice the size of the total amount of live objects, or large enough so that the JVM spends
less time garbage collecting the heap than running Java code.

The heap size is set with the command line options -Xms (initial heap size) and -Xmx (maximum
heap size); for example:

java -Xms:100m -Xmx:100m myApplication

To allow the heap to grow and shrink depending on the amount of free memory in your system,
set -Xms lower than -Xmx. For more information on setting the heap size, see Optimizing Memory
Allocation Performance.

Note: Running JRockit on 64-bit Systems

Because of internal optimizations made by the JRockit JVM, a certain portion of each
Java class must be stored in the first 4 GB of the address space of the process. For large
applications with many classes, when you specify a heap size lower than 4 GB, native
OutOfMemory errors might occur even if free memory is available (physical or swap).

The OutOfMemory error occurs because when you specify a heap size lower than 4 GB,
compressed references are enabled automatically and the JRockit JVM places the Java
heap within the first 4 GB of the address space so that 32-bit pointers can be used for
referencing objects on the heap. This can limit the amount of free space below the critical
4 GB needed for storing Java classes.

So when you run the JRockit JVM on a 64-bit system with a heap size less than 4 GB, if
native OutOfMemory errors occur despite memory being availabe, try disabling
compressed references by using the -XXcompressedRefs=0 option.

Select a Garbage Collector

15-2

The choice of a garbage collection mode or static strategy does not in itself affect memory
footprint noticeably, but choosing the right garbage collection strategy may allow you to reduce
the heap size without a major performance degradation.

If your application uses a lot of temporary objects you should consider using a generational
garbage collection strategy. The use of a nursery reduces fragmentation and thus allows for a
smaller heap.

Oracle JRockit JVM Diagnostics Guide

Tune Compaction

The concurrent garbage collector must start garbage collections before the heap is entirely full,
to allow Java threads to continue allocating objects during the garbage collection. This means that
the concurrent garbage collector requires a larger heap than the parallel garbage collector, and
thus your primary choice for a small memory footprint is a parallel garbage collector.

The default garbage collection mode chooses between a generational parallel garbage collection
strategy and a non-generational parallel garbage collection strategy, depending on the sizes of the
objects that your application allocate. This means that the default garbage collector is a good
choice when you want to minimize the memory footprint.

If you want to use a static garbage collection strategy, you can specify the strategy with the -Xgc
command line option; for example:

Jjava -Xgc:genpar myApplication

For more information on selecting a garbage collector, see Selecting and Tuning a Garbage
Collector.

Tune Compaction

Using a small heap increases the risk for fragmentation on the heap. Fragmentation can have a
severe effect on application performance, both by lowering the throughput and by causing
occasional long garbage collections when the garbage collector is forced to compact the entire
heap at once.

If you are experiencing problems with fragmentation on the heap you can increase the
compaction ratio by using the command line option -XXcompactRatio:<percentage>, for
example:

Jjava -XXcompactRatio:50 myApplication

If your application isn’t sensitive to long latencies, you can try using full compaction. This will
allow you to use a smaller heap, as all fragmentation is eliminated at each garbage collection.
Enable full compaction by using the command line option -Xxful 1Compaction; for example:

Jjava -XXfullCompaction myApplication

Compaction uses memory outside of the heap for bookkeeping. As an alternative to increasing
the compaction you can use a generational garbage collector, which also reduces the
fragmentation.

Oracle JRockit JVM Diagnostics Guide 15-3

Tuning For a Small Memory Footprint

Tune Object Allocation

15-4

You can tune the object allocation to allow smaller chunks of free memory to be used for
allocation. This reduces the negative effects of fragmentation, and allows you to run with a
smaller heap. The smallest chunk of memory used for object allocation is a thread local area. Free
chunks smaller than the minimum thread local area size are ignored by the garbage collector and
become dark matter until a later garbage collection frees some adjacent memory or compacts the
area to create larger free chunks. You can reduce the minimum thread local area size with the
command line option -XXtlaSize:min=<size>, for example:

Java -XXtlaSize:min=1k myApplication

In releases older than R27.2 you reduce the TLA size with the command line option
-XXtlaSize:<size>, for example:

Java -XXtlaSize:1k myApplication

For more information on how to set the thread local area size, see the documentation on
-XxtlaSize and Optimizing Memory Allocation Performance.

Oracle JRockit JVM Diagnostics Guide

cHAPTER@

Tuning For Faster JVM Startup

Small utility applications that run only for a short time may suffer a performance hit if the JVM
and Java application startup time is long. The Oracle JRockit JVM is by default optimized for
server use, which means that the startup times can be longer in favour of high performance as
soon as the application is up and running. This section describes how to tune the JVM to decrease
the startup times, covering the following topics:

e Measuring the Startup Time
e Setting the Heap Size
e Troubleshoot Your Application and the JVM

Measuring the Startup Time

The startup time of an application is the time it takes for the application to get up and running and
ready to start doing what it is supposed to do. The startup time includes both the JVM startup and
the Java application startup.

For information on how to measure the startup time of your application, see Timing with
nanoTime() and currentTimeMillis().

Setting the Heap Size

The heap size has an impact on both the JVM startup time and the Java application startup time.
The JVM reserves memory for the maximum heap size (-Xmx) and commits memory for the
initial heap size (-Xms) at startup, which takes time. For large applications this is inevitable, but

Oracle JRockit JVM Diagnostics Guide 16-1

Tuning For Faster JVM Startup

you should be aware that using an oversized heap may lead to longer JVM startup times than
necessary. If your application is small and runs only for a short time you may have to set a small
heap size to avoid the overhead of reserving and committing more memory than the application
will ever need.

On the other hand, if the initial heap is too small, the Java application startup becomes slow as
the JVM is forced to perform garbage collection frequently until the heap has grown to a more
reasonable size. For optimal startup performance you should set the initial heap size to the same
as the maximum heap size.

Troubleshoot Your Application and the JVM

16-2

The application itself may be causing the startup to become slow. See The Oracle JRockit JVM
Starts Slowly for tips on troubleshooting problems in the application and JVM.

Oracle JRockit JVM Diagnostics Guide

Part Il JRockit JDK Tools

Chapter 17. Introduction to Diagnostics Tools

Chapter 18. Using Oracle JRockit Mission Control Tools
Chapter 20. Using Thread Dumps

Chapter 21. Running Diagnostic Commands

Chapter 22. Oracle JRockit Time Zone Updater

Oracle JRockit JVM Diagnostics Guide

cHAPTERa

Introduction to Diagnostics Tools

Throughout the Oracle JRockit JVM Diagnostics Guide, you will be directed to use certain tools
or other features of the Oracle JRockit JVM to better identify and resolve problems when running
an application with the JVM. The chapters in this section provide an overview of these tools along
with instructions for using them.

What this Section Contains

These tools and features include:

e Monitoring, management and analysis tools that are included in Oracle JRockit Mission
Control. JRockit Mission Control contains a suite of tools that help you monitor, manage,
profile, and eliminate memory leaks in your Java application without causing undue
performance overhead (see Using Oracle JRockit Mission Control Tools).

e Customizable verbose logs that provide low overhead runtime information on various
components of the JRockit JVM, for example memory management and code
optimizations. (see Understanding Verbose Outputs).

e Thread dumps, snapshots of the state of all threads that are part of the process. These
dumps reveal information about an application’s thread activity, which can help you
diagnose problems and better optimize application and JVM performance (see Using
Thread Dumps).

e Ctrl-Break Handlers, which allow you to interrupt processing to print information about
running processes or communicate directly with the JRockit JVM. You can easily send

Oracle JRockit JVM Diagnostics Guide 1741

Introduction to Diagnostics Tools

11-2

Ctrl-Break handler commands “on the fly” to a running JVM process by using jrcmd (see
Running Diagnostic Commands).

Time Zone Updater, required for you to update installed JDK/JRE images with more recent
time zone data to accommodate the U.S. 2007 daylight saving time changes (US2007DST)
originating with the U.S. Energy Policy Act of 2005. (see Oracle JRockit Time Zone
Updater).

Instructions for Oracle JRockit Mission Control 1.0 users who want to create a JRockit
Runtime Analyzer recording. The JRA provides a wealth of information on internals in the
JRockit JVM that you will find of great interest if you are using this product as your
runtime VM (see Creating a JRA Recording with JRockit Mission Control 1.0).

Oracle JRockit Mission Control Use Cases demonstrates various ways Oracle JRockit
Mission Control can be used to monitor and manage application running on the JRockit
JVM. It includes use cases describing how to use:

— The JRockit Management Console
— The JRockit Runtime Analyzer (JRA)
— The JRockit Memory Leak Detector (Memleak)

Oracle JRockit JVM Diagnostics Guide

cHAPTERﬂ

Using Oracle JRockit Mission Control
Tools

The suite of tools included in Oracle JRockit Mission Control are designed to monitor, manage,
profile, and gain insight into problems occurring in your Java application without requiring the
performance overhead normally associated with these types of tools.

This chapter serves as a generic introduction to the different versions of JRockit Mission Control.
You can find more detailed information about the versions, please refer to More Information on
JRockit Mission Control Versions.

This chapter contains information on these subjects:
e JRockit Mission Control Overhead
e Architectural Overview of the JRockit Mission Control Client
e The JRockit Management Console
e The JRockit Runtime Analyzer
e The JRockit Memory Leak Detector

e More Information on JRockit Mission Control \ersions

JRockit Mission Control Overhead

JRockit Mission Control’s low performance overhead is a result of using data collected as part of
the Oracle JRockit JVM’s normal adaptive dynamic optimization. This also eliminates the

problem with the Heisenberg anomaly that can occur when tools using bytecode instrumentation
alters the execution characteristics of the system. JRockit Mission Control functionality is always

Oracle JRockit JVM Diagnostics Guide 18-1

Using Oracle JRockit Mission Control Tools

available on-demand and the small performance overhead is only in effect while the tools are
running.

Architectural Overview of the JRockit Mission Control
Client
This section provides an architectural overview of all versions of JRockit Mission Control.
o JRockit Mission Control 3.0
o JRockit Mission Control 2.0

e JRockit Mission Control 1.0

JRockit Mission Control 3.0

With the Rich Client Platform (RCP) based JRockit Mission Control Client, you can launch the
JRockit Memory Leak Detector, the JRockit Runtime Analyzer, and the JRockit Management
Console from within the JRockit Mission Control Client. Figure 18-3 depicts how the JRockit
Mission Control Client looks when all tools are loaded.

Figure 18-1 Architectural Overview of the JRockit Mission Control 3 Client

5 o] 5 v] e i i [e

When a JRA recording is started from within the JRockit Mission Control Client, it records the
status of the JRockit JVM process for the time that you have specified and creates a ZIP file

18-2 Oracle JRockit JVM Diagnostics Guide

Architectural Overview of the JRockit Mission Control Client

containing an XML file with the recorded data and optionally a binary file with latency data
together with the corresponding data producer specification files. The ZIP file is automatically
opened in the JRockit Runtime Analyzer (marked 5 in Figure 18-3) upon completion of the
recording for JDK level 1.5 and later; for JDK 1.4.2 it is stored locally on the computer where the
recorded JVM was running. Typical information that is recorded during a JRA recording is Java
heap distribution, garbage collections, method samples, and lock profiling information
(optional). New for the JRockit Mission Control 3.0 release, is that you can also record thread
latency data. When viewing Latency data in the JRA Tool, the Latency Events Details become
visible (marked 2 in Figure 18-3).

To view real-time behavior of your application and of the JRockit JVM, you can connect to an
instance of the JVM and view real-time information through the JRockit Management Console
(marked 4 in Figure 18-3). Typical data that you can view is thread usage, CPU usage, and
memory usage. All graphs are configurable and you can both add your own attributes and
redefine their respective labels. In the Management Console you can also create rules that trigger
on certain events, for example sending an e-mail if the CPU load reaches 90%.

With the IMX Agent you have access to all MBeans deployed in the platform MBean server.
From these MBeans, you can read attribute information, such as garbage collection durations.

To find memory leaks in your Java application, you connect the JRockit Memory Leak Detector
to the running JRockit JVM process. The JRockit Memory Leak Detector connects to the IMX
(RMP) Agent that instructs to start a Memory Leak server with which all further communication
takes place.

JRockit Mission Control 2.0

With the new Client Platform (RCP) based JRockit Mission Control Client, you can launch the
JRockit Memory Leak Detector, the JRockit Runtime Analyzer, and the JRockit Management
Console from within the JRockit Mission Control Client (see Figure 18-2).

Oracle JRockit JVM Diagnostics Guide 18-3

Using Oracle JRockit Mission Control Tools

18-4

Figure 18-2 Architectural Overview of the JRockit Mission Control 2.0 Client

BEA JRockit Process

Through the IMX Agent, you have access to all MBeans deployed in the platform MBean server.
From these MBeans, you can read attributes information, such as garbage collection duration.

When a JRA recording is started from within the JRockit Mission Control Client, it records the
status of the JRockit JVM process for the time that you have specified and creates an XML file.
This file is automatically opened in the JRockit Runtime Analyzer. Typical information that is
recorded during a JRA recording is Java heap distribution, garbage collections, method
optimizations, and method profiling information.

To find memory leaks in your Java application, you connect the JRockit Memory Leak Detector
to the running JRockit JVM process. The Memory Leak Detector connects to the IMX (RMP)
Agent that instructs to start a Memory Leak server with which all further communication takes
place.

JRockit Mission Gontrol 1.0

JRockit Mission Control 1.0 is available on the JRockit JDK 1.4.2 (R26.2 and later) and JRockit
JDK 5.0 (R26.0 and later), see Figure 18-3. The difference between the two is the connection
agent used by the JRockit Management Console and the JRockit Management Console user
interface itself.

Oracle JRockit JVM Diagnostics Guide

Architectural Overview of the JRockit Mission Control Client

The RMP Agent (JRockit JDK 1.4.2) provides access, among other things, to live data about
memory and CPU usage. With the addition of the IMX Agent (available with JRockit JDK 5.0)
you will also get access to MBeans available to the platform MBean server. From these MBeans,
you can read attributes information, such as garbage collection pauses.

When a JRA recording is started, for example, from the Management Console, it records the
status of the JRockit JVM process for the time that you have specified. When the recording is
completed, the information is saved to an XML file. This XML file can be viewed and analyzed
in the JRockit Runtime Analyzer. Typical information that is recorded during a JRA recording is
Java heap distribution, garbage collections, and method optimizations.

To find memory leaks in your Java application, you connect the JRockit Memory Leak Detector
to the running JRockit JVM process. The Memory Leak Detector connects to the JIMX (RMP)
Agent that instructs to start a Memory Leak server where all further communication takes place.

Figure 18-3 Architectural Overview of JRockit Mission Control 1.0

v ¥ ! v v
[RMP Agent for JRockit 1.4.2/JMX Agent for JRockit 5.0 Memory Leak Server J
BEA JRockit Process

Oracle JRockit JVM Diagnostics Guide 18-5

Using Oracle JRockit Mission Control Tools

The JRockit Browser (JRockit Mission Control 2.0 and
later)

The JRockit Browser is available only with JRockit Mission Control 2.0 and later versions. This
tool allows you to set up and manage all running instances of the JRockit JVM on your system.
From the JRockit Browser you activate recordings, set up a tree view of different JRockit JVMs
to monitor, start other JRockit Mission Control tools, etc. Each JRockit JVM instance is referred
to as a Connector.

The JRockit Management Console

The JRockit Management Console is used to monitor and manage multiple (or single) JRockit
JVM instances. It captures and presents live data about memory, CPU usage, and other runtime
metrics. For the Management Console that is running on JRockit JDK 5.0, information from any
JMX MBean deployed in the JRockit JVM internal MBean server (JMX Agent in Figure 18-3)
can be displayed as well. JVM management includes dynamic control over CPU affinity, garbage
collection strategy, memory pool sizes, and more.

The JRockit Runtime Analyzer

18-6

The JRockit Runtime Analyzer (JRA) is an on-demand “flight recorder” that produces detailed
recordings about the JVM and the application it is running. The recorded profile can later be
analyzed off line by using the JRA. Recorded data includes profiling of methods and locks, as
well as garbage collection statistics, optimization decisions, and latency analysis (JRockit
Mission Control 3.0).

Latency Analysis Tool (JRockit Mission Control 3.0)

The Latency Analysis Tool is a subset of the JRockit Mission Control 3.0 version of the JRA that
allows you to create JRA recordings that contain latency information for your application.
Latency events occur when thread execution stops temporarily, for example when a thread waits
for its turn to enter a synchronized method, or waits for data from a socket. The JRA now contains
three additional tabs that all show latency data from different perspectives. These tabs are
prefixed Latency and named: Latency Log, Latency Graph, and Latency Traces. Together with
these three tabs and two auxiliary tabs, you can activate and deactivate event types on the latency
tabs and view properties.

Oracle JRockit JVM Diagnostics Guide

The JRockit Runtime Analyzer

JRA Sample Recordings

Beginning with the JRockit JVM R27.5 and JRockit Mission Control 3.0.2, you can access three
sample JRA recordings that demonstrate the features of the Latency Analysis Tool. The files are
located at JROCKIT_HOME/missioncontrol/samples/jrarecordings/. They are:

e pricing_server_logging_on.jra — this recording shows an application experiencing
problems with latencies because several threads try to access a java.util.logging
Logger.

e pricing_server_logging_off.jra— this file contains a recording of the same
application in pricing_server_logging_on. jra, but with logging turned off.

e java2d_demo. jra — this recording shows how to use the Jump-to-Source feature. It is a
recording of the demo located at JROCK1T_HOME/demo/jfc/Java2D. The Java2D demo
folder contains the source, allowing this recording to demonstrate Jump-to-Source.

Note: Jump-to-Source is only available when running the JRockit Mission Control Client
within Eclipse. To run the JRockit Mission Control Client within Eclipse, please
install it from the update site. For more information see
dev2dev.bea.com/jrockit/tools._html. You also need to set up a Java project
containing the source you wish to jump to; in this case the Java2D demo.

Opening a Sample Recording

You can open a sample either from within the JRockit Mission Control Client or directly from
the file system, as described below:

To open a sample recording from within the JRockit Mission Control Client
With the JRockit Mission Control Client running, do the following:
1. Open the File menu and select Open File...

The Open File dialog box appears, showing the
JROCKIT_HOME/missioncontrol/samples/jrarecordings/ folder (the default folder).

2. Select the sample recording you want to open and click Open.

The recording opens.

To open a sample recording from the file system

With the JRockit Mission Control Client running and your file system (for example, Windows
Explorer) open, do the following:

Oracle JRockit JVM Diagnostics Guide 18-17

Using Oracle JRockit Mission Control Tools

1. Inthe file system, navigate to
JROCKIT_HOME/missioncontrol/samples/jrarecordings/ and select the recording
you want to open.

2. Drag the recording from the file system directly onto the JRockit Mission Control Client

The recording opens.

The JRockit Memory Leak Detector

The JRockit Memory Leak Detector is a tool for discovering and finding the cause for memory
leaks in a Java application. The JRockit Memory Leak Detector’s trend analyzer discovers slow
leaks, it shows detailed heap statistics (including referring types and instances to leaking objects),
allocation sites, and it provides a quick drill down to the cause of the memory leak. The Memory
Leak Detector uses advanced graphical presentation techniques to make it easier to navigate and
understand the sometimes complex information.

More Information on JRockit Mission Control Versions

18-8

Complete information on using JRockit Mission Control is available in the respective versions
documentation. Because of the difference in deployment mechanisms between JRockit Mission
Control 1.0, JRockit Mission Control 2.0, and JRockit Mission Control 3.0, each version has its
own set of documentation:

e For JRockit Mission Control 1.0, please refer to the JRockit Mission Control
documentation.

e For JRockit Mission Control 2.0, please refer to the online help documentation included
with the JRockit Mission Control 2 GUI.

e For JRockit Mission Control 3.0, please refer to the built-in help documentation as well as
eDocs. For PDF versions of the help, see the Oracle JRockit Mission Control
documentation.

Oracle JRockit JVM Diagnostics Guide

cHAPTER@

Understanding Verbose Outputs

The -Xverbose command line option enables verbose outputs from the Oracle JRockit JVM.
You can use these verbose outputs for monitoring, tuning and diagnostics. This chapter describes
some of the most useful verbose modules and how to interpret the outputs from them.

Note: Outputs may differ between JVM versions and that the exact format is subject to changes
at any time.

This chapter is divided into two sections:
e Memory Management Verbose Log Modules

e Other Verbose Log Modules

Memory Management Verbose Log Modules

Many of the verbose modules available in the JRockit JVM are dedicated to memory
management and garbage collection.Table 19-1 lists the verbose modules described in this
section.

Table 19-1 Memory Management Verbose Modules

Module Description Uses
memory Basic garbage collection information Tuning and monitoring
nursery Nursery details Tuning and monitoring

Oracle JRockit JVM Diagnostics Guide 19-1

Understanding Verbose Outputs

Table 19-1 Memory Management Verbose Modules

Module Description Uses

memdbg Memory management details Tuning, monitoring and diagnostics
compaction Compaction details Tuning, monitoring and diagnostics
gcpause Garbage collection pause times Tuning, monitoring and diagnostics
gcreport Garbage collection summary Tuning and monitoring

refobj Reference object information (R27.5) Monitoring and diagnostics
referents Reference object information Monitoring and diagnostics

Most verbose modules are available in several log levels. This section covers only the default
(info) log level, which is the most useful for general tuning and monitoring purposes.

Verbose Memory Module

The -Xverbose:memory (or -Xverbose :gc) module provides basic information on garbage
collection events. The overhead for this module is very low, which means that you can enable it
even in a production environment.

Initial Verbose Memory Outputs

At JVM startup the memory log module outputs some basic numbers on the memory management
system configuration and a guide to how to read the garbage collection printouts.

Listing 19-1 shows an example of the initial output from the memory log module. This example
is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-1 Initial Verbose Memory Output

1: [memory] GC mode: Garbage collection optimized for throughput, initial
strategy: Generational Parallel Mark & Sweep

2: [memory] heap size: 307200K, maximal heap size: 307200K, nursery size:
153600K

3: [memory] <s>-<end>: GC <before>K-><after>K (<heap>K), <pause> ms

19-2 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules

4: [memory] <s/start> - start time of collection (seconds since jvm start)
5: [memory] <end> - end time of collection (seconds since jvm start)

6: [memory] <before> - memory used by objects before collection (KB)

7: [memory] <after> - memory used by objects after collection (KB)

8: [memory] <heap> - size of heap after collection (KB)

9: [memory] <pause> - total sum of pauses during collection (milliseconds)
10: [memory] run with -Xverbose:gcpause to see individual pauses

Line 1 describes the garbage collection mode used in this run, as well as the initial garbage
collection strategy.

Line 2 shows you the initial and maximum heap size, as well as the initial nursery size.

Lines 3-10 describe the format of the garbage collection outputs.

Verbose Memory Garbage Collection Outputs
The memory log module prints out a line for each garbage collection.

Listing 19-2 shows a snippet of verbose outputs from the memory log module. This example is
from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-2 Verbose Memory Garbage Collection Outputs

A W N P

[memory] 83.976: parallel nursery GC 307200K->191044K (307200K), 35.584 ms
[memory] 84.772-85.766: GC 288200K->73425K (307200K), 994.090 ms

[memory] 87.036: parallel nursery GC 233783K->119655K (307200K), 57.716 ms
[memory] 87.974: parallel nursery GC 233655K->119527K (307200K), 35.876 ms

Each garbage collection output starts with a timestamp, which is the time in seconds since the
JVM started. At the end of each line you can also see the total heap size within parenthesis, and
the total garbage collection duration for each garbage collection. Note that the garbage collection
duration may consist of both pauses and concurrent garbage collection phases.

Oracle JRockit JVM Diagnostics Guide 19-3

Understanding Verbose Outputs

Lines 1, 3 and 4 are outputs from young collections. The young collection on line 1 reduced the
amount of occupied heap from 307200 KB to 191044 KB.

Line 2 is an output from an old collection, which reduced the amount of occupied heap from
288200 KB to 73425 KB.

Verbose Memory Page Faults Warning

Page faults cause memory access to become slow, and page faults during garbage collection may
cause long garbage collection times. Because of this, the verbose memory log module prints out
a warning whenever the number of page faults during the garbage collection was more than 5%
of the number of pages in the heap.

Listing 19-3 shows an example of a page fault warning. This example is from the JRockit JVM
R27.4.

Listing 19-3 Verbose Memory Page Faults Warning

[memory] Warning: Your computer has generated 9435 page faults during the last
garbage collection.

[memory] If you find this swapping problematic, please consider running JRockit
with a smaller heap.

19-4

Verbose Nursery Log Module

The -Xverbose:nursery log module provides details on young collections and nursery sizing.
Some of this information is useful for monitoring and tuning the JRockit JVM. The overhead is
very low, which means that you can enable this module even in a production environment.

The nursery log module is available in the JRockit JVM R27.2 and later releases.

Verbose Nursery Young Collection Output

Listing 19-4 shows an example of an output from the nursery log module during a young
collection. This example is from the JRockit JVM R27.4. Line numbers have been added.

Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules

Listing 19-4 Verhose Nursery Young Collection Output

1: [nursery] KeepAreaStart: Ox015FFFFO KeepAreatEnd: Ox01AFFFFO

2: [nursery] Young collection 86 started. This YC is running while the OC is in
phase: not running.

3: [nursery] Setting mmNurseryMarker[0] to Ox015FFFFO

4: [nursery] Setting mmNurseryMarker[1] to OxO1AFFFFO

Lines 1, 3 and 4 contain information related to the keep area size and position. This information
is only interesting for advanced diagnostics.

Line 2 shows you the sequence number of the young collection. It also informs you that the old
collection is not running while this young collection is running. Other possible old collection
phases are marking, precleaning and sweeping, which are the concurrent phases of the concurrent
old collection.

Verbose Nursery Size Adjustment Output

Some garbage collection modes and strategies will adjust the nursery size in runtime for optimal
performance. The nursery log module shows some information on the nursery sizing calculations
and nursery size changes.

Listing 19-5 shows an example of nursery sizing outputs from an old collection. This example is
from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-5 Verhose Nursery Size Adjustment Output

1: [nursery] Optimal nursery size: 157286400, free heap: 314572800

2: [nursery] Nursery size increased from Okb to 153600kb. Parts: 4023

Line 1 shows you that the heuristics have found that an optimal nursery size would be 157286400
bytes. The memory management system may however not be able to create a nursery of exactly
this size.

Oracle JRockit JVM Diagnostics Guide 19-5

Understanding Verbose Outputs

Line 2 states that the nursery size is being increased from 0 (no nursery) to 153600 KB, and that
the nursery consists of 4023 chunks.

Verbose Memdbg Log Module

The -Xverbose :memdbg log module provides details on garbage collection and memory
management. Enabling this log module also enables some other log modules, for example the
nursery log module. This section only describes the outputs labeled memdbg, all other verbose
outputs have been removed from the examples.

The overhead of the verbose memdbg outputs is low, and thus it can be used in production
environments.

Initial Verbose Memdbg Output

Listing 19-6 shows an example of the initial output from the memdbg verbose module. This
example is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-6 Initial Verbose Memdhg Output

1
2
3:
4
5:

: [memdbg] "J" - java heap,

: [memdbg] Memory layout after heap allocation:

: [memdbg] * " - free, "-" - OS reserved range, "r" - reserved, "x" - committed,

[memdbg] "+ - committed/read, "e" - committed/executable

Jj° - jJjava heap data structures

[memdbg] 00 0.00Gb

-SNNNNNNNNNNNNNNNNNNNNNNNNNNRNNNNNNNNNNNNNNNNNNNNNNNNNNNNNRNNNN)

6
7
8:
9

: [memdbg] 10 0.25Gb JJJJJIIIIIIIIII
: [memdbg] 20 0.50Gb

[memdbg] 30 0.75Gb

: [memdbg] 40 1.00Gb

10: [memdbg] 50 1.25Gb

11: [memdbg] 60 1.50Gb

12: [memdbg] 70 1.75Gb e e - eee e€jj

19-6

Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules

13: [memdbg
14: [memdbg
15: [memdbg
16: [memdbg
17: [memdbg
18: [memdbg
19: [memdbg
20: [memdbg
21: [memdbg
22: [memdbg
23: [memdbg
24: [memdbg
25: [memdbg

Minimum TLA size is 2048 bytes

Preferred TLA size is 38912 bytes

Large object limit is 2048 bytes

Minimal blocksize on the freelist is 2048 bytes

Initial and maximum number of gc threads: 2, of which 2 parallel

threads, 1 concurrent threads, and 2 yc threads

26: [memdbg] Prefetch distance in balanced tree: 4

27: [memdbg] Using prefetch linesize: 32 bytes chunks: 512 bytes pf _dist: 64

bytes

Lines 1-20 describe the memory lay-out in the machine after the Java heap has been allocated.
This information can be used for diagnosing problems related to heap positioning.

Lines 21-24 show you the minimum and preferred Thread Local Area sizes, the large object limit
and the minimum block size on the freelist. These values may depend on the heap size and the
garbage collector, as well as the JRockit JVM version.

Line 25 informs you of the number of garbage collection threads.

Oracle JRockit JVM Diagnostics Guide 19-7

Understanding Verbose Outputs

Line 26 and 27 contain information on prefetching, which is mostly useful for advanced
diagnosing and tuning.

Verbose Memdhg Parallel Old Collection Output

The memdbg module adds a lot of useful information to the garbage collection outputs. For most
tuning and diagnosing, this information is essential. The outputs differ between garbage
collection types.

Listing 19-7 shows an example of a verbose memdbg output from a single generational parallel
old collection. This example is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-7 Verbose Memdbg Parallel 0ld Collection Output

1: [memdbg] GC reason: System.gc() called, cause: System.gc()

2: [memdbg] Stopping of javathreads took 0.213 ms

3: [memdbg] old collection 1 started

4: [memdbg] Alloc Queue size before GC: 0, tlas: 0, oldest: 0O

5: [memdbg] Compacting 8 heap parts at index 120 (type external) (exceptional
false)

6: [memdbg] Starting parallel marking phase.

7: [memdbg] Hard handles: Processed 1946 handles during normal processing.
8: [memdbg] Weak handles: Processed 104 handles during normal processing.
9: [memdbg] total mark time: 7.440 ms

10: [memdbg] ending marking phase

11: [memdbg] starting parallel sweeping phase

12: [memdbg] total sweep time: 3.844 ms

13: [memdbg] ending sweeping phase

14: [memdbg] Alloc Queue size after GC: 0, tlas: O, oldest: O

15: [memdbg] Page faults before GC: 6618, page faults after GC: 7938, pagesin
heap: 76800

16: [memdbg] Restarting of javathreads took 0.023 ms

19-8 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules

Line 1 displays the reason for the garbage collection. In this example the garbage collection was
triggered by a System.gc() call.

Line 2 displays the time it took to stop all Java threads for garbage collection, in this case 0.213
ms. This information is useful for latency diagnosing.

Line 3 shows the sequence number of the garbage collection.

Line 4 contains information on the object allocation queue status at the start of the garbage
collection. The allocation queue contains all pending object allocation requests that have not yet
been satisfied. In this example the allocation queue is empty, which is normal when the garbage
collection is started by System.gc().

Line 5 shows you the compaction planned for this garbage collection. In this example 8 heap parts
will be compacted starting at heap part 120. The compaction type is external, which means that
objects are moved out of the compaction area, and the compaction is not exceptional, which
means that it may be aborted or interrupted if the compaction heuristics decide that it will take
too long to perform the compaction.

Line 6 marks the start of the mark phase.

Lines 7 and 8 show information on weak and hard handles. This is mostly useful for advanced
diagnostics and monitoring.

Line 9 shows you the total time for the mark phase. This time can include both pauses and
concurrent phases, although in this case the entire mark phase is done while the Java threads are
paused.

Line 10 marks the end of the mark phase.
Line 11 marks the start of the sweep phase.

Line 12 shows you the total time for the sweep phase. This time can include both pauses and
concurrent phases, although in this case the entire mark phase is done while the Java threads are
paused.

Line 13 marks the end of the sweep phase.

Line 14 displays information on the status of the object allocation queue after the garbage
collection. You can compare this information to the information on line 4 to get an idea of how
well object allocation is faring. Many objects in the allocation queue at the end of a garbage
collection may be an indication that object allocation is difficult, for example due to heavy
fragmentation.

Line 15 shows statistics on page faults before and after the garbage collection. Page faults during
the garbage collection may slow down the garbage collection severely.

Oracle JRockit JVM Diagnostics Guide 19-9

Understanding Verbose Outputs

Line 16 displays the time it took to restart all Java threads after garbage collection. This
information is useful for latency diagnosing.

Verbose Memdhg Concurrent 0ld Collection Output

The memdbg module adds a lot of useful information to the garbage collection outputs. For most
tuning and diagnosing, this information is essential. The outputs differ between garbage
collection types.

Listing 19-8 shows an example of a verbose memdbg output from a single generational mostly
concurrent old collection. This example is from the JRockit JVM R27.4. Line numbers have been
added.

Listing 19-8 Verhose Memdbg Concurrent 0ld Collection Output

al

© 0 N O =Ho » W N P

[
o

11:
12:
13:
14:
15:
16:

[memdbg] GC reason: GC trigger reached, cause: Heap too full
[memdbg] Stopping of javathreads took 0.425 ms
[memdbg] old collection 5 started

[memdbg] Alloc Queue size before GC: 0, tlas: 0, oldest: O

: [memdbg] Compacting 16 heap parts at index 112 (type internal) (exceptional
se)

[memdbg] Starting initial marking phase (0OCl).
[memdbg] Restarting of javathreads took 31.908 ms
[memdbg] Starting concurrent marking phase (0C2).

[memdbg] Hard handles: Processed 4251 handles during concurrent processing.

: [memdbg] Starting precleaning phase (0C3).

[memdbg] Weak handles: Processed 146 handles during concurrent processing.
[memdbg] Stopping of javathreads took 0.219 ms

[memdbg] Starting final marking phase (0C4).

[memdbg] Hard handles: Processed 8 handles during remaining processing.
[memdbg] Weak handles: Processed 40 handles during remaining processing.

[memdbg] total concurrent mark time: 512.526 ms

19-10 Oracle JRockit JVM Diagnostics Guide

17:

18:

19:

20:

21:

22:

23:

in

h

24:

Memory Management Verbose Log Modules

[memdbg] ending marking phase

[memdbg] starting concurrent sweeping phase

[memdbg] total concurrent sweep time: 54.623 ms

[memdbg] ending sweeping phase

[memdbg] Alloc Queue size after GC: 0, tlas: 0, oldest: O
[memdbg 1 gc-trigger is 13.200 %

[memdbg] Page faults before GC: 89592, page faults after GC: 92886, pages
eap: 76800

[memdbg] Restarting of javathreads took 0.030 ms

Line 1 displays the reason for the garbage collection. In this example the garbage collection was
started because the heap occupancy reached the limit for when a concurrent garbage collection
should be started.

Line 2 displays the time it took to stop all Java threads for garbage collection, in this case 0.425
ms. Similar information is displayed on line 12. This information is useful for latency diagnosing.

Line 3 shows the sequence number of the garbage collection.

Line 4 contains information on the object allocation queue status at the start of the garbage
collection. The allocation queue contains all pending object allocation requests that have not yet
been satisfied. In this example the allocation queue is empty.

Line 5 shows you the compaction planned for this garbage collection. In this example 16 heap
parts will be compacted starting at heap part 112. The compaction type is internal, which means
that objects are moved within the compaction area, and the compaction is not exceptional, which
means that it may be aborted or interrupted if the compaction heuristics decide that it will take
too long to perform the compaction.

Line 6 marks the start of the initial mark phase.

Line 7 displays the time it took to start the Java threads for the concurrent marking phase. Similar
information is displayed on line 24.

Line 8 marks the start of the concurrent mark phase.

Lines 9, 11, 14 and 15 show information on weak and hard handles. This is mostly useful for
advanced diagnostics and monitoring.

Oracle JRockit JVM Diagnostics Guide 19-11

Understanding Verbose Outputs

Line 10 marks the start of the concurrent precleaning phase.
Line 13 marks the start of the final marking phase.

Line 16 shows you the total time for the mark phase. This time includes both pauses and
concurrent phases.

Line 17 marks the end of the mark phase.
Line 18 marks the start of the sweep phase.

Line 19 shows you the total time for the sweep phase. This time includes both pauses and
concurrent phases.

Line 20 marks the end of the sweep phase.

Line 21 displays information on the status of the object allocation queue after the garbage
collection. You can compare this information to the information on line 4 to get an idea of how
well object allocation is faring. Many objects in the allocation queue at the end of a garbage
collection may be an indication that object allocation is difficult, for example due to heavy
fragmentation.

Line 22 displays the value of the GC trigger. The next concurrent old collection will start when
less than this percentage of the heap is free.

Line 23 shows statistics on page faults before and after the garbage collection. Page faults during
the garbage collection may slow down the garbage collection severely.

Verbose Memdhg Young Collection Output

Listing 19-9 shows an example of a verbose memdbg output from a young collection. This
example is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-9 Verbose Memdbg Young Collection Output

a A W N PP

: [memdbg] GC reason: TLA allocation failed, cause: Get TLA From Nursery

[memdbg] Stopping of javathreads took 0.198 ms
[memdbg] Hard handles: Processed 4259 handles during normal processing.
[memdbg] Weak handles: Processed 144 handles during normal processing.

[memdbg] nursery GC 86: promoted 48984 objects (1718K) in 39.310 ms

19-12 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules

6: [memdbg] Page faults before GC: 89240, page faults after GC: 89754, pages in
heap: 76800

7: [memdbg] Nursery size after YC: 20971520

8: [memdbg] Restarting of javathreads took 0.030 ms

Line 1 displays the reason for the garbage collection. In this example the garbage collection was
started because allocation of a thread local area failed. This is the normal reason for starting a
young collection.

Line 2 displays the time it took to stop all Java threads for garbage collection, in this case 0.198
ms. This information is useful for latency diagnosing.

Lines 3 and 4 show information on weak and hard handles. This is mostly useful for advanced
diagnostics and monitoring.

Line 5 shows details on the young collection. 48984 objects of a total size of 1718 KB were
promoted during this young collection. The young collection took 39.310 ms.

Line 6 shows statistics on page faults before and after the garbage collection. Page faults during
the garbage collection may slow down the garbage collection severely.

Line 7 shows the nursery size after the young collection.

Line 8 displays the time it took to start all Java threads after the garbage collection, in this case
0.030 ms.

Aborted Compactions

Verbose memdbg outputs tell you if compaction is aborted due to too many pointers to the
compaction area. When that happens, the following output is printed:

[memdbg] Pointerset limit hit, compaction aborted.

Parallel Sweep in Concurrent 0ld Collections

If the heap becomes full during the mark phase of a concurrent old collection, the garbage
collector will by default override the concurrent sweep phase and use parallel sweep instead.
When that happens, the following output is printed:

[memdbg] The heap became full during concurrent mark. Running parallel
sweep .-

Oracle JRockit JVM Diagnostics Guide 19-13

Understanding Verbose Outputs

Verbose Compaction Log Module

The JRockit JVM performs partial compaction of the heap at each old collection. Compaction
reduces fragmentation in the heap, which makes object allocation faster. The verbose
compaction log module displays details on compaction. The overhead of this log module is low,
which means that it can be enabled in production environments.

Listing 19-10 shows an example of a verbose output from the compaction log module. This
example is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-10 Verbose Compaction 0ld Collection Output

: [compact] OC 4: 8 parts (max 128), index 8. Type internal, (exceptional false)

: [compact] Area start: Ox01EC0000, end: 0x03180000

: [compact] Updated 14130 references in O nonmoved and 11700 moved objects

: [compact] Average compact time ratio: 0.442280

: [compact] Compaction pause: 2.548 (target 50.000), update ref pause: 10.025

> [compact] Updated 59048 refs (limit: 84386).

: [compact] Compaction ended at index 15, object end address 0x03179A00.

> [compact] Summary: 4;8;15;8;1;0;2.548;50.000;10.025;50.000;59048;84386

1
2
3
4
5:
(target 50.000)
6
7
8
9

- [compact] Adjusting compactsetlimit: 102698

10: [compact] Pause per 1000 refs, current: 0.169920, average: 0.486862. Target
pause: 50.000

19-14

Line 1 shows a summary of the upcoming compaction. In this example the sequence number of
the old collection is 4. 8 heap parts out of a total of 128 heap parts will be compacted, starting at
index 8. The compaction type is internal, which means that objects will be moved within the
compaction area. The compaction is not exceptional, which means that it can be aborted or
interrupted if it takes too long.

Line 2 shows the physical addresses of the start and the end of the compaction area. This
information is useful for advanced diagnostics.

Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules

Line 3 displays statistics on the number of references updated within the compaction area due to
moved objects. In this example 14130 references were updated in 11700 moved objects.

Line 4 informs you that the average ratio between time spent in moving objects and updating
references to moved objects is 0.44.

Line 5 shows detailed information on the two components of the pause time caused by
compaction, as well as the current pause targets for these components. In this example, moving
objects took only 2.548 ms and updating references to moved objects took 10.025 ms, while the
target was 50 ms for each of the components.

Line 6 shows the total number of references updated, both those within the compaction area and
those outside the compaction area that pointed at objects within the compaction area. This
information is useful for monitoring and tuning.

Line 7 shows the end index and physical address of the compaction. This information is useful
for diagnostics.

Line 8 contains a machine readable summary of some of the statistics from this compaction. This
line is useful for collecting statistics.

Line 9 informs you that the compaction heuristics have adjusted the compact set limit. The
compact set limit determines the amount of compaction that can be done at each old collection.

Line 10 shows statistics on the average time for updating 1000 references. This value is used as
a base for the compact set limit calculation.

Aborted Compaction Verbose Output

Whenever a compaction is aborted, the verbose compaction log module will display information
on the reason for the aborted compaction. In the following example the pointer matrix for a
garbage collection thread reached its top limit, which means that there were too many pointers to
objects within the selected compaction area.

[compact] Pointermatrix for thread " (GC Worker Thread 1)" failed to extend
beyond 25817 elements.

Verbose Gcpause Log Module

The -Xverbose :gcpause log module displays information on individual garbage collection
pauses. For monitoring, tuning and diagnosing latencies this information is essential. The
overhead of the log module is low, which means that it can be used in production environments.

Oracle JRockit JVM Diagnostics Guide 19-15

Understanding Verbose Outputs

Verbose Gepause Parallel 0ld Collection Output

A parallel old collection pauses all Java threads during the entire garbage collection. The output
from -Xverbose:gcpause during a parallel old collection is thus fairly simple, as seen in
Listing 19-11. This example is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-11 Verbose Gepause Parallel 0ld Collection Output

1: [gcpause] Threads waited for memory 147.424 ms starting at 6.398 s

2: [gcpause] old collection phase 1-0 pause time: 146.861682 ms, (start time:
6.398 s)

3: [gcpause] (pause includes compaction: 10.169 ms (external), update ref: 14.390
ms)

Line 1 tells you that Java threads waited 147.424 ms for memory due to the old collection. This
value can be different than the old collection pause time.

Line 2 shows the pause time for “phase 1-0” of the old collection. Phase 1 is the first phase, while
phase 0 is the default phase while the garbage collection isn’t running. This means that the timing
started in phase 1 and ended after the garbage collector was finished, and thus includes the entire
garbage collection.

Line 3 shows some details on how much of the pause time consisted of compaction and reference
updates due to compaction.

Verbose Gcpause Concurrent 0ld Collection Output

A mostly concurrent (or “concurrent”) old collection consists of several concurrent garbage
collection phases with short pauses in between.

Listing 19-12 shows an example of an output from a mostly concurrent old collection. This
example is from the JRockit JVM R27.4. Line numbers have been added.

Listing 19-12 Verhose Gepause Concurrent Old Collection Output

1: [gcpause] old collection phase 1 pause time: 19.184561 ms, (start time: 24.027
s)

19-16 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules

2: [gcpause] old collection phase 4-5 pause time: 25.100956 ms, (start time:
24.720 s)

3: [gcpause] (pause includes yc: 24.456 ms, compaction: 0.230 ms (external),
update ref: 0.003 ms)

4: [gcpause] old collection phase 5 pause time: 0.253384 ms, (start time: 24.769
s)

5: [gcpause] old collection phase 5-0 pause time: 1.751061 ms, (start time: 1.391
s)

Line 1 shows the pause time for phase 1 of the old collection. Phase 1 is the initial marking phase.

Line 2 shows the pause time for the pause that starts with phase 4 and ends at the beginning of
phase 5 of the old collection. This phase is the final marking phase and compaction.

Line 3 shows some details of the phase 4-5 pause. The young collection performed in phase 4
took 24.456 ms, the compaction took 0.23 ms and reference updates after compaction took 0.003
ms. This information is useful for tuning and diagnosing compaction pause times.

Line 4 shows the pause time for the pause in the middle of phase 5. Phase 5 is the concurrent
sweep phase. The heap is swept in two parts, and the short pause is for switching parts to sweep.

Line 5 shows the pause time for the pause at the end of phase 5, where final statistics are collected
and the garbage collection is wrapped up.

Verbose Gepause Young Collection Output

A young collection consists of a single pause. Thus the verbose gcpause output for a young
collection is very simple, as seen in this example:

[gcpause] nursery collection pause time: 37.832462 ms

Verbose Gcreport Log Module

The -Xverbose:gcreport log module prints out a summary of garbage collection activity at the
end of the run.

Listing 19-13 shows an example of a verbose gcreport output. This example is from the JRockit
JVM R27.4. Line numbers have been added.

Oracle JRockit JVM Diagnostics Guide 19-17

Understanding Verbose Outputs

Listing 19-13 Verbose GCreport Output

1: [memory] Memory usage report
2: [memory]
3: [memory] young collections
4: [memory] number of collections = 5647
5: [memory] total promoted = 58920467 (size 2144906056)
6: [memory] max promoted = 219349 (size 10249784)
7: [memory] total GC time = 37.543 s
8: [memory] mean GC time = 6.648 ms
9: [memory] maximum GC Pauses = 59.602 , 71.426, 75.759 ms
10: [memory]
11: [memory] old collections
12: [memory] number of collections = 34
13: [memory] total promoted = 776698 (size 28208080)
14: [memory] max promoted = 72997 (size 2655216)
15: [memory] total GC time = 13.970 s (pause 4.583 s)
16: [memory] mean GC time = 410.872 ms (pause 134.790 ms)
17: [memory] maximum GC Pauses = 147.064 , 172.153, 209.094 ms
18: [memory]
19: [memory] number of concurrent mark phases = 21
20: [memory] number of parallel mark phases = 13
21: [memory] number of concurrent sweep phases = 18
22: [memory] number of parallel sweep phases = 16

Lines 3-9 display information on the young collections during this run.

Line 4 shows the total number of young collections.
19-18 Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules

Line 5 shows the total number of objects promoted and their total size in bytes.

Line 6 shows the largest number of objects promoted during a single young collection and their
total size in bytes.

Line 7 shows the total time spent in young collections.

Line 8 shows the average time spent in a single young collection.

Line 9 shows the three longest pause times caused by young collection.

Lines 11-17 show statistics on old collections.

Line 12 shows the total number of old collections.

Line 13 shows the number of objects promoted during old collections and their total size in bytes.

Line 14 shows the largest number of objects promoted during a single old collection and their
total size in bytes.

Line 15 shows the total time spent in old collections and the sum of all garbage collection pauses
caused by old collections.

Line 16 shows the average time spent in a single old collection and the average sum of pauses
during a single old collection.

Line 17 shows the three longest old collection pauses.

Line 19 displays the number of concurrent mark phases. In this example 21 of the old collections
used concurrent mark.

Line 20 shows the number of parallel mark phases. In this example 13 of the old collections used
parallel mark.

Line 21 shows the number of concurrent sweep phases. In this example 18 of the old collections
used concurrent sweep.

Line 22 shows the number of parallel sweep phases. In this example 16 of the old collections used
parallel sweep.

Verbose Refobj and Referents Log Modules

The -Xverbose: referents log module was introduced in the JRockit JVM R27.2, while
-Xverbose:refobj was introduced in the JRockit JVM R27.5 and will replace the verbose
referents module.

The verbose referents module introduces some overhead and is not suitable for production
environments. The verbose refobj info level output in R27.2 is much cheaper and can be used

Oracle JRockit JVM Diagnostics Guide 19-19

Understanding Verbose Outputs

in production environments. The debug level output of refobjs corresponds to the old verbose
referents information on info level and should not be used in production.

Verbose Refobj Output on Info Level

The -Xverbose: refobj log module shows a summary of the number of reference objects and
how they are handled at each garbage collection.

Listing 19-14 shows an example of a verbose refobj output. This example is from the JRockit
JVM R27.5. Line numbers have been added.

Listing 19-14 Verbose Refobj Output on Info Level

© 00 ~N o g A wWw N P

[
o

11:
12:
13:

[refobj
[refobj
[refobj
[refobj
[refobj
[refobj
[refobj
[refobj
[refobj

[refobj
[refobj
[refobj

1
1
1
1
1
1
1
1
1

SoftRef:
WeakRef:
Phantom:
ObjMoni :
Finaliz:
WeakHnd:
SoftRef:
WeakRef:
Phantom:
: [refobj] ObjMoni:
] Finaliz:
] WeakHnd:
] SoftRef:

Reach:
Reach:
Reach:
Reach:
Reach:
Reach:
@vark:
@vark:
@vark:

@Mark:
@Mark:
@Mark:

2
183

17
306
62
178
0

Act:
Act:
Act:
Act:
Act:
Act:
@Preclean:
@Preclean:

@Preclean:

o o o o o

0

0 @Preclean:

PrevAct:
PrevAct:
PrevAct:
PrevAct:
PrevAct:

PrevAct:

2 @Preclean:

11

o o o o o

Null:
Null:
Null:
Null:
Null:
Null:

50
10

o O o o

1 @FinalMark:
15 @FinalMark:
0 @FinalMark:

0 @FinalMark:
17 @FinalMark:

0 @Preclean: 105 @FinalMark:

SoftAliveOnly: 0 SoftAliveAndReach: 0O

201

19-20

Lines 1-6 show the number of occurrences of each reference object type, finalizers, weak handles
and object monitors. The references objects are categorized by status, as follows:

e Reachable: Reference objects with reachable referents. A referent that is reachable on a
harder level is considered reachable; for example a referent of a soft reference is reachable
if it also is hard reachable.

Oracle JRockit JVM Diagnostics Guide

Memory Management Verbose Log Modules

e Activated: Activated references are such that the referent is no longer reachable on any
harder level than this reference, which means that the reference can be cleared or put on a
reference queue.

e Previously Activated: References that have been activated at a previous garbage
collection but have not yet been cleared are previously activated.

o Null: Null references are such that the reference in the reference object is null, but the
reference object itself still exists.

Lines 7-12 show statistics on in which garbage collection phases the reference objects were
handled.

Line 13 shows how many soft references are soft alive only and how many are also hard
reachable.

Verhose Referents Output and Verbose Refobj on Debug Level

The old verbose referents log module and the debug level of the refobj log module displays
detailed information on reference objects and referents, as seen in Listing 19-15. This example is
from the JRockit JVM R27.2. Note that the output may look different in later releases.

Each reference type is broken down by reference class and referent. In the case of handles, only
referents are shown; there are no references. The different counters tell how many instances of
each type exists and how they are reachable (or cleared).

Additional information is that the header/footer of the report informs what type of collection took
place. In the header you can see the time since the last old collection and the amount of free at
that time. If any soft references are present you will also find information on which softly
reachable referents are collected based on when they where last looked up through get().

Note: These verbose outputs have a significant negative impact on the performance.

Listing 19-15 Verbose Referents Output

--- Verbose reference objects statistics - heap collection ----———-
63.7 MB free memory (of 64.0 MB) after last heap GC, finished 0.177 s ago.
Soft references: 0 (0 only soft reachable, 2 cleared this GC)

Jjava/lang/ref/SoftReference: 0 (0, 2)
0 (0, 1) java/lang/StringCoding$CharsetSD
0 (0, 1) [LjavaZlang/String;
Softly reachable referents not used for at least 0.000 s cleared.

Weak references: 10 (O cleared this GC)

Jjava/lang/ref/WeakReference: 9 (0)

Oracle JRockit JVM Diagnostics Guide 19-21

Understanding Verbose Outputs

9 (0) jJjava/lang/Class
java/lang/ThreadLocal$ThreadLocalMap$Entry: 1 (0)
1 (0 jJava/lang/ThreadLocal
Weak object handles: 63 (0 cleared this GC)
35 (0) sun/misc/Launcher$AppClassLoader
28 (0) jJava/lang/String
Final handles: 10 (0 pending finalization, O became pending this GC)
4 (0, 0) javasZutil/jar/JarFile
3 (0, 0) javas/util/zip/Inflater
2 (0, 0) java/io/FileOutputStream
1 (0, 0) java/Zio/FilelnputStream
Phantom references: 2 (0 only phantom reachable, 0 became phantom reachable this
GC)
Jjrockit/vm/ObjectMonitor: 2 (0, 0)
1 (0, 0) java/lang/Object
1 (0, 0) java/io/PrintStream
--- End of reference objects statistics - heap collection —---—---—-

In this example the garbage collection has cleared two soft references referring to objects or
arrays of the types java.lang.StringCoding and java.lang.String, respectively.

There are 10 weak references, 63 weak object handles, 10 final handles and 2 phantom references.

Other Verbose Log Modules

Among the various log modules available in the JRockit JVM, opt and exceptions are two of
the most used and most useful.

Verbose Opt Log Module

The -Xverbose:opt log module displays information on code optimizations done by the
optimizing compiler.

Listing 19-16 shows an example of a verbose opt output. This example is from the JRockit JVM
R27.5. Line numbers have been added.

Listing 19-16 Verbose Opt Output

1: [opt 71 #1 5 (Ox1c) o0 java/util/Random.acquireSeedLock()V

2: [opt] #1 5 (0Ox1c) 00 @0x13AA0000-Ox13AA003F 2.43 ms (2.43 ms)

19-22 Oracle JRockit JVM Diagnostics Guide

Other Verbose Log Modules

3: [opt 1 #2 5 (0x1c) o0 java/Zutil/Random.next(1)I1
4: [opt 1 #2 5 (0x1c) o0 @0x13AA0370-0x13AA03FF 2.66 ms (20.19 ms)

Lines 1 and 3 show the names of two methods that are optimized.
Lines 2 and 4 show the addresses of the methods and the time it took to optimize them.

You can use the verbose opt information to diagnose and monitor the optimizations.

Verbose Exceptions Log Module

The -Xverbose:exceptions log module prints each Java exception that is thrown in the
application. You can use this information to monitor and troubleshoot exceptions in your
application.

Listing 19-17 shows some example outputs from the verbose exceptions log module. This
example is from the Oracle JRockit JVM R27.5. Each line displays the name of the exception
thrown as well as the exception message, if such is available.

Listing 19-17 Verbose Exceptions Output

[excepti][00004] java/lang/NullPointerException

[excepti][00004] java/lang/NullPointerException: null array passed into
arraycopy

[excepti][00004] java/lang/ArraylndexOutOfBoundsException
[excepti][00004] java/lang/ArraylndexOutOfBoundsException

[excepti][00004] java/lang/NullPointerException: null array passed into
arraycopy

-Xverbose:exceptions=debug prints out the same information but also provides stack traces
for each exception.

Oracle JRockit JVM Diagnostics Guide 19-23

Understanding Verbose Outputs

19-24 Oracle JRockit JVM Diagnostics Guide

Using Thread Dumps

This chapter describes how to get and use Oracle JRockit JVM thread dumps. For basic
background information about threads and thread synchronization, see Understanding Threads
and Locks.

A thread dump is a snapshot of the state of all threads that are part of the process. The state of
each thread is presented with a so called stack trace, which shows the contents of a thread’s stack.
Some of the threads belong to the Java application you are running, while others are JVM internal
threads.

A thread dump reveals information about an application’s thread activity that can help you
diagnose problems and better optimize application and JVM performance; for example, thread
dumps automatically show the occurrence of a deadlock. Deadlocks bring some or all of an
application to a complete halt.

The following subjects are discussed in this chapter:
e Creating Thread Dumps
e Reading Thread Dumps
e Thread Status in Thread Dumps

e Troubleshooting with Thread Dumps

Creating Thread Dumps

To create a thread dump from a process, do either of the following:

Oracle JRockit JVM Diagnostics Guide 20-1

Using Thread Dumps

e Press Ctrl-Break while the process is running (or by sending SIGQUIT to the process on
Linux).

e Enter the following at the command line at startup:
bin\Jrcmd.exe <pid> print_threads

The thread dump appears at the command line.

Note: For more information about jrcmd and Ctrl-Break handlers, see Running Diagnostic
Commands.

Reading Thread Dumps

20-2

This section describes the typical contents of a thread dump by going through an example thread
dump from the beginning to end. First, an example thread dump, broken up into its components
is presented (see Listing 20-1, Listing 20-2, Listing 20-3, Listing 20-4 and Listing 20-5). First,
information about the main thread is printed, then all the JVM internal threads, followed by all
other Java application threads (if there are any). Finally, information about lock chains are
printed.

The example thread dump is taken from a program that creates three threads that are quickly
forced into a deadlock. The application threads Thread-0, Thread-1, and Thread-2 correspond to
three different classes in the Java code.

The Beginning of The Thread Dump

The thread dump starts with the date and time of the dump, and the version number of the JRockit
JVM used (see Listing 20-1).

Listing 20-1 The initial information of a thread dump

===== FULL THREAD DUMP
Wed Feb 21 13:46:45 2007
BEA JRockit(R) R27.1.0-109-73164-1.5.0_08-20061129-1428-windows-ia32

Oracle JRockit JVM Diagnostics Guide

Reading Thread Dumps

Stack Trace for Main Application Thread

Listing 20-2 shows the stack trace of the main application thread. There is a thread information
line, followed by information about locks and a trace of the thread’s stack at the moment of the
thread dump.

Listing 20-2 The main thread in the thread dump

“Main Thread" id=1 §1dx=0x2 tid=48652 prio=5 alive, in native, waiting

-- Waiting for notification on: util/repro/Thread1@0x01226528[fat lock]
at jrockit/vm/Threads.waitForSignal (J)Z(Native Method)

at java/lang/Object.wait(J)V(Native Method)

at java/lang/Thread.join(Thread.java:1095)

~-- Lock released while waiting: util/repro/Threadl1@0x01226528[fat lock]
at java/lang/Thread.join(Thread.java:1148)

at util/repro/DeadLockExample.main(DeadLockExample.java:23)

at jrockit/vm/RNI.c2java(llll)V(Native Method)

-- end of trace

After the name and other identification information, the different status messages of the main
thread are printed. The main thread in Listing 20-2 is a running thread (al ive), it is either
executing JVM internal code or user-defined JNI code (in native), and it is currently waiting
for an object to be released (waiting). If athread is waiting on a notification on a lock (by calling
Object.wait()), thisis indicated at the top of the stack trace asWaiting for notification
on.

Locks and Lock Chains

For each thread, the JRockit JVM prints the following information:

o [f the thread is trying to take a lock (to enter a synchronized block), but the lock is already
held by another thread, this is indicated at the top of the stack trace, as “Blocked trying to
get lock”.

o |f the thread is waiting on a notification on a lock (by calling Object.wait()), this is
indicated at the top of the stack trace as “Waiting for notification”.

Oracle JRockit JVM Diagnostics Guide 20-3

Using Thread Dumps

20-4

o If the thread has taken any locks, this is shown in the stack trace. After a line in the stack
trace describing a function call is a list of the locks taken by the thread in that function.
This is described as ~-- Holding lock (where the ~-- serves as a reminder that the lock
is taken in the function written above the line with the lock).

The semantics for waiting (for notification) on an object in Java is somewhat complex. First, to
enter a synchronized block, you must take the lock for the object, and then you call wait() on
that object. In the wait method, the lock is released before the thread actually goes to sleep waiting
for a notification. When it receives a notification, wait re-takes the lock before returning. So, if a
thread has taken a lock, and is waiting (for notification) on that lock, the line in the stack trace
that describes when the lock was taken is not shown as “Holding lock,” but as “Lock released
while waiting.”

All locks are described as Classname@0xLock ID[LockType]; for example:
Java/lang/0Object@0x105BDCCO[thin lock]

Classname@0xLock 1D describe the object to which the lock belongs. The classname is an exact
description, the fully qualified classname of the object. Lock1D, on the other hand, is a temporary
ID which is only valid for a single thread dump. That is, you can trust that if a thread A holds a
lock javas/lang/0bject@0x105BDCCO, and a thread B is waiting for a lock
java/lang/0bject@0x105BDCCO, in a single thread dump, then it is the same lock. If you do
any subsequent thread dumps however, LockID is not comparable and, even if a thread holds the
same lock, it might have a different Lock 1D and, conversely, the same Lock 1D does not guarantee
that it holds the same lock. LockType describes the JVM internal type of the lock (fat, thin,
recursive, or lazy). The status of active locks (monitors) is also shown in stack traces.

Presentation of Locks Out of Order
The lines with the lock information might not always be correct, due to compiler optimizations.
This means two things:

o |f a thread, in the same function, takes lock A first and then lock B, the order in which they
are printed is unspecified.

o If athread, in method foo() calls method bar (), and takes a lock A in bar(), the lock
might be printed as being taken in foo ().

Normally, this should not be a problem. The order of the lock lines should never move much from
their correct position. Also, lock lines will never be missing—you can be assured that all locks
taken by a thread are shown in the thread dump.

Oracle JRockit JVM Diagnostics Guide

Reading Thread Dumps

JVM Internal Threads

Listing 20-3 shows the traces of JVM internal threads. The threads have been marked as daemon
threads, as can be seen by their daemon state indicators. Daemon threads are either JVM internal
threads (as in this case) or threads marked as daemon threads by
Jjava.lang.Thread.setbaemon().

Listing 20-3 The first and last thread in a list of JVM internal Threads

"(Signal Handler)"™ id=2 idx=0x4 tid=48668 prio=5 alive, in native, daemon

[---1

"(Sensor Event Thread)" id=10 idx=0x1lc tid=48404 prio=5 alive, in native,
daemon

As you can see, lock information and stack traces are not printed for the JVM internal threads in
Listing 20-3. This is the default setting.

If you want to see stack traces for the JVM internal threads, then use the parameter
nativestack=true when you send the print_threads handler. At the command line, write
the following:

bin\jrcmd.exe <pid> print_threads nativestack=true

Other Java Application Threads

Normally, you will primarily be interested in the threads of the Java application you are running
(including the main thread). All Java application threads except the main thread are presented
near the end of the thread dump. Listing 20-4 shows the stack traces of three different application
threads.

Listing 20-4 Additional application threads

"Thread-0" i1d=11 idx=0Oxle tid=48408 prio=5 alive, in native, blocked
-- Blocked trying to get lock: java/lang/Object@0x01226300[fat lock]
at jrockit/vm/Threads.waitForSignal (J)Z(Native Method)

at

Oracle JRockit JVM Diagnostics Guide 20-5

Using Thread Dumps

20-6

Jrockit/vm/Locks.fatLockBlockOrSpin(lLjrockit/vm/ObjectMonitor;11)V(Unknow
n Source)

at

Jrockit/vm/Locks. lockFat(Ljava/lang/Object; ILjrockit/vm/ObjectMonitor;Z)Lj
ava/lang/Object; (Unknown Source)

at
Jrockit/vm/Locks._monitorEnterSecondStage(Ljava/lang/Object; I)Ljava/lang/Ob
ject; (Unknown Source)

at
Jrockit/vm/Locks.monitorEnter(Ljava/lang/Object;)Ljava/lang/Object; (Unknow
n Source)

at util/repro/Threadl.run(DeadLockExample.java:34)

~-- Holding lock: java/lang/Object@0x012262F0[thin lock]

~-- Holding lock: java/lang/Object@0x012262F8[thin lock]

at jrockit/vm/RNI.c2java(llll)V(Native Method)

-- end of trace

"Thread-1" i1d=12 idx=0x20 tid=48412 prio=5 alive, in native, blocked

-- Blocked trying to get lock: java/lang/Object@0x012262F8[thin lock]

at jrockit/vm/Threads.sleep(1)V(Native Method)

at jrockit/vm/Locks.waitForThinRelease(Ljava/lang/Object; 1)1 (Unknown
Source)

at
Jrockit/vm/Locks.monitorEnterSecondStage(Ljava/lang/Object; I)Ljava/lang/0Ob
ject; (Unknown Source)

at
Jjrockit/vm/Locks._monitorEnter(Ljava/lang/Object;)Ljava/lang/Object; (Unknow
n Source)

at util/repro/Thread2.run(DeadLockExample.java:48)

at jrockit/vm/RNI.c2java(llll)V(Native Method)

-- end of trace

"Thread-2" i1d=13 idx=0x22 tid=48416 prio=5 alive, in native, blocked
-- Blocked trying to get lock: java/lang/Object@0x012262F8[thin lock]
at jrockit/vm/Threads.sleep(1)V(Native Method)

at jrockit/vm/Locks.waitForThinRelease(Ljava/lang/Object; 1)1 (Unknown
Source)

Oracle JRockit JVM Diagnostics Guide

Reading Thread Dumps

at
Jjrockit/vm/Locks._monitorEnterSecondStage(Ljava/lang/Object; I)Ljava/lang/0Ob
ject; (Unknown Source)

at
Jrockit/vm/Locks.monitorEnter(Ljava/lang/Object;)Ljava/lang/Object; (Unknow
n Source)

at util/repro/Thread3.run(DeadLockExample.java:65)

~-- Holding lock: java/lang/Object@0x01226300[fat lock]

at jrockit/vm/RNI._c2java(llll)V(Native Method)

-- end of trace

All three threads are in a blocked state (indicated by blocked), which means that they are all
trying to enter synchronized blocks. Thread-0 is trying to take Object@0x01226300[fat lock]
but this is held by Thread-2. Both Thread-2 and Thread-1 are trying to take
Object@0x012262F8[thin lock] but this lock is held by Thread-0. This means that Thread-0
and Thread-2 form a deadlock, while Thread-1 is blocked.

Lock Chains

One prominent feature of the JRockit JVM is that it automatically detects deadlocked, blocked

and open lock chains among the running threads. The analysis in Listing 20-5 presents the all the
lock chains created by the threads T1, T2, T3, T4 and T5. This information can be used to tune
and troubleshoot your Java code.

Listing 20-5 Deadlocked and blocked lock chains

Circular (deadlocked) lock chains

Chain 6:

"Dead T1" 1d=16 1dx=0x48 tid=3648 waiting for java/lang/Object@0x01225018
held by:

"Dead T3" 1d=18 i1dx=0x50 tid=900 waiting for java/lang/Object®0x01225010
held by:

"Dead T2" 1d=17 idx=0x4c tid=3272 waiting for java/lang/Object@0x01225008
held by:

"Dead T1" id=16 idx=0x48 tid=3648

Oracle JRockit JVM Diagnostics Guide 20-7

Using Thread Dumps

Blocked lock chains

Chain 7:

"Blocked T2" id=20 idx=0x58 tid=3612 waiting for
Java/lang/Object@0x01225310 held by:

"Blocked T1" id=19 idx=0x54 tid=2500 waiting for
Jjava/lang/0bject@0x01224B60 held by:

"Open T3" 1d=13 1dx=0x3c tid=1124 in chain 1

Open lock chains

Chain 1:

"Open T5" i1d=15 idx=0x44 tid=4048 waiting for java/lang/Object@0x01224B68
held by:

"Open T4" 1d=14 i1dx=0x40 tid=3380 waiting for java/lang/Object@0x01224B60
held by:

"Open T3" 1d=13 1dx=0x3c tid=1124 waiting for java/lang/Object@0x01224B58
held by:

"Open T2" i1d=12 idx=0x38 tid=3564 waiting for java/lang/Object@0x01224B50
held by:

"Open T1" 1d=11 1dx=0x34 tid=2876 (active)

Thread Status in Thread Dumps

20-8

This section describes the different statuses or states a thread can show in a thread dump. There
are three types of states:

o Life States
e Run States

e Special States

Life States

Table 20-1 describes the life states a thread can show in a thread dump.

Oracle JRockit JVM Diagnostics Guide

Thread Status in Thread Dumps

Table 20-1 Thread Life States

State

Description

alive

This is a normal, running thread. Virtually all threads in the thread dump will be
alive.

not started

The thread has been requested to start running by
jJava.lang.Thread.start(), butthe actual OS process has not yet started, or
executed far enough to pass control to the JRockit JVM. It is extremely unlikely to
see this value. A java. lang.Thread object that is created, but not has had
start() executed, will not show up in the thread dump.

terminated

This thread has finished its run() method and has also notified any threads joining
on it, but it is still kept in the JVM internal thread structure for running threads. It
is extremely unlikely to see this value. A thread that has been terminated for a time
longer than a few milliseconds will not show up in the thread dump.

Run States

Table 20-2 describes the run states a thread can show in a thread dump.

Tahle 20-2 Thread Run States

State

Description

blocked

This thread has tried to enter a synchronized block, but the lock was taken by
another thread. This thread is blocked until the lock gets released.

blocked (on

This is the same state as b locked, but with the additional information that the lock

thin lock) in question is a thin lock.

waiting This thread has called Ob ject .wait() on an object. The thread will remain there
until some other thread sends a notification on that object.

sleeping This thread has called java. lang.Thread.sleep().

parked This thread has called
Java.util .concurrent.locks.LockSupport.park().

suspended The thread’s execution has been suspended by

java.lang.Thread.suspend() or a JVMTI/JVMPI agent call

Oracle JRockit JVM Diagnostics Guide 20-9

Using Thread Dumps

Special States

Table 20-3 describes the special states a thread can show in a thread dump. Note that all these
states are not mutually exclusive.

Table 20-3 Special Thread States

State Description
interrupted The user has called java. lang.Thread. interrupt() on this thread.
daemon This is either an JVM internal thread or a thread that has been marked as

a daemon thread by java.lang.Thread.setDaemon().

in native This thread is executing native code. This could either mean user-supplied JNI
code, or JVM internal code.

in suspend critical Thisthread is executing JVM internal code, and has marked itself as being
mode suspend critical, meaning that for a short moment, it will block a garbage
collection from taking place.

native_blocked This thread is executing JVM internal code, and have tried to take an JVM internal
lock. The thread is blocked, since that lock is held by another thread.

native_waiting This thread is executing JVM internal code, and is waiting for notification from
another thread on an JVM internal lock.

Troubleshooting with Thread Dumps

This section contains information on about how to use thread dumps for troubleshooting and
diagnostics.

To use thread dumps for troubleshooting, beyond detecting deadlocks, you need to take several
thread dumps from the same process. However, if you want to do long time analysis of behavior
you will likely be more helped by combining occasional thread dumps with other diagnostics
tools, such as the JRockit Runtime Analyzer, which is part of Oracle JRockit Mission Control
(see Using Oracle JRockit Mission Control Tools for more information).

Detecting Deadlocks

The Oracle JRockit JVM automatically analyzes the thread dump information and detects
whether there exists any circular (deadlocked) or blocked lock chains in it.

20-10 Oracle JRockit JVM Diagnostics Guide

Troubleshooting with Thread Dumps

Detecting Processing Bottlenecks

For detecting more than deadlocks in your threads, you have to make several consecutive thread
dumps. This lets you detect the occurrence of contention, where multiple threads are trying to get
the same lock. Contention might create long open lock chains that, while not deadlocked, will
degrade performance.

If you discover (in a set of consecutive thread dumps) that one or more threads in your application
is temporarily stuck waiting for a lock to be released, then you might have reason to look over the
code of your Java application to see if the synchronization (serialization) is necessary or if the
threads can be organized differently.

Viewing The Runtime Profile of an Application

By making several consecutive thread dumps, you might quickly get an overview of which parts
of your Java application that are most heavily used. However, you should consult the Threads
tab in JRockit Management Console for more detailed information about the workload on the
different parts of your application.

Oracle JRockit JVM Diagnostics Guide 20-11

Using Thread Dumps

20-12 Oracle JRockit JVM Diagnostics Guide

cHAPTERﬂ

Running Diagnostic Commands

Use diagnostic commands to communicate with a running Oracle JRockit JVM process. These
commands tell the JRockit JVM to for example print a heap report or a garbage collection activity
report, or to turn on or off a specific verbose module. This chapter describes how to run diagnostic
commands and lists the available commands. The following sections are included:

e Diagnostic Commands Overview
e Using jrcmd

e Ctrl-Break Handler

e Available Diagnostic Commands

e Getting Help

Diagnostic Commands Overview

Diagnostic commands help you communicate with a running JRockit JVM process. With these
commands you can for example ask for a heap report or enable or disable a verbose module.

You can send diagnostic commands to a running JVM process in several ways:

e By using jrcmd, a command line tool that sends the commands to a given JRockit JVM
process.

e By pressing Ctrl-Break, whereupon the JVM will look for a ctrilhandler.act file and
execute the commands listed therein.

Oracle JRockit JVM Diagnostics Guide 21-1

Running Diagnostic Commands

e By using the JRockit Management Console in Oracle JRockit Mission Control to send
diagnostic commands to a running JRockit JVM process.

You can enable or disable any diagnostic command using the system property
-Djrockit.ctrlbreak.enable<name>=<true| false>, where name is the name of the
diagnostic command. The following two handlers are disallowed by default and need to be turned
on:

e run_class

e force_crash.
For example:

-Djrockit.ctrlbreak.enablerun_class=true

Using jremd

jremd is a command line tool included with the JRockit JDK you can use to send diagnostic
commands to a running JVM process. This section provides a brief overview of jremd. It
includes information on the following subjects:

e How jremd Communicates with the JRockit JVM
e How to Use jrcmd
e jrcmd Examples

e Known Limitations of jrcmd

How jrcmd Communicates with the JRockit JVM

jremd uses the JRIPC library, a small C library, to communicate with a running JRockit JVM
process. JRIPC has the following basic functionality

e It discovers which JRockit JVM processes are running on the machine
e |t sends diagnostic commands to a JRockit JVM process

o |t reads performance counters exposed by the JRockit JVM

How to Use jrcmd

To use jrcmd, simply enter it at the command line, with the appropriate parameters:

jremd <jrockit pid> [<command> [<arguments>]] [-1] [-f file] [-p] -h]

21-2 Oracle JRockit JVM Diagnostics Guide

Using jrcmd

where:

e [<command> [<arguments>]] is any diagnostic command and its associated arguments;
for example, version, print_properties, command_line, and so on.

e -1 displays the counters exposed by this process
e —T reads and execute commands from the file
e —p lists JRockit JVM processes on the local machine

e -h shows help

If the PID is 0, commands will be sent to all JRockit JVM processes. If no options are given,
default is -p.

jrcmd Examples

Here are some examples of using jrcmd for:
e Listing JRockit JVM Processes
e Sending a Command to a Process

e Sending Several Commands

Listing JRockit JVM Processes

Do the following to list all JRockit JVM processes running on the machine:

1. Run jrcmd or jremd -p to list the running JRockit JVMs; for example:

> jrcmd -P
10064 Sleeper

-Xverbose:memory -Xmx30m
>

You will see the PID of the process (10064) and the program it is currently running
(Sleeper) as well as the parameters used to start the JVM (-Xverbose :memory
-Xmx30m).

Sending a Command to a Process

To send a command to the process you identified in Listing JRockit JVM Processes, do the
following:

1. Find the PID from Listing JRockit JVM Processes (10064)

Oracle JRockit JVM Diagnostics Guide 21-3

Running Diagnostic Commands

2. Enter jrcmd with that PID and the version command; for example:
> jrcmd 10064 version
This command sends the version command to the JRockit JVM. The response will be:
Oracle WebLogic JRockit(R) Virtual Machine build 9.9.9-1.5.0-Jun 9
2004-13:52:53-<internal>, Native Threads, GC strategy: parallel
Sending Several Commands
You can create a file (just like the ctrihandler.act file) with several commands and execute

all of them. Use this procedure:

1. Create a file called commands.txt with the following contents:
— version
— timestamp

2. Execute the file with jrcmd; for example:
> jrcmd 10064 -f commands.txt

The system will respond:

Oracle WebLogic JRockit(R) Virtual Machine build 9.9.9-1.5.0-Jun 9
2004-13:52:53-<internal>, Native Threads, GC strategy: parallel

==== Timestamp ==== uptime: 0 days, 00:05:04 time: Fri Jun 11 14:28:31 2004

3. Use the PID 0 to send the commands to all running JRockit JVM processes.

Known Limitations of jrcmd

When using jremd, be aware of these limitations:

e In order to issue diagnostic commands to a process on Linux or Solaris, you need to run
jremd as the same user as the one running the Java process.

e When using jrcmd on Windows, you need to run the Java process and jrcmd from the same
Windows station. If you run the Java process as a Windows service, and run jrcmd on your
desktop, it will not work, since they are running in two separate environments.

e When an JRockit JVM is started as root and then changed to a less privileged user, jrcmd
will not be able to communicate properly with the process thereafter due to security
restrictions.

21-4 Oracle JRockit JVM Diagnostics Guide

Ctrl-Break Handler

— The following things can be done:
Root can list the running processes.
The less privileged user can send commands to the process.

— The following things cannot be done:
Root cannot send commands to the process; any commands will be treated as a
Ctrl-Break signal and print a thread dump instead.
The less privileged user cannot list the running JRockit JVM process, but if they know
the process ID (PID), they can send commands to the process using jrecmd <pid>
<command>

o [f the default Windows temporary directory (java.io.temp) is on a FAT file system, jrcmd
will not be able to discover local processes. For security reasons, local monitoring and
management is only supported if your default Windows temporary directory is on a file
system that supports setting permissions on files and directories (for example, on an NTFS
file system). It is not supported on a FAT file system that provides insufficient access

controls.

Ctrl-Break Handler

Another way you can run diagnostic commands is by pressing Ctrl-Break. When you press

Ctrl-Break, the JRockit JVM will search for a file named ctrihandler.act (see Listing 21-1)

in your current working directory. If it doesn't find the file there, it will look in the directory

containing the JVM. If it does not find this file there either, it will revert to displaying the normal
thread dumep. If it finds the file, it will read the file searching for command entries, each of which

invoke the corresponding diagnostic command.

Listing 21-1 ctrlhandler.act File

set_filename filename=c:\output.txt append=true

print_class_summary

print_object_summary increaseonly=true

print_threads

print_threads nativestack=true

print_utf8pool

Jjrarecording filename=c:\myjra.xml time=120 nativesamples=true
verbosity set=memory,memdbg,codegen,opt,sampling filename="c:\output"
timestamp

stop

ctrl-break-handler will stop reading the file after it finds
the stop key-word

Oracle JRockit JVM Diagnostics Guide

21-5

Running Diagnostic Commands

HHRIFHFFHFHRFHRFHRFEHRFE TR

version - print JRockit version

print_threads - the normal thread dump that lists all the currently
running threads and there state

print_class_summary - prints a tree of the currently loaded classes
print_utf8pool - print the internal utf8 pool

print_object_summary - display info about how many objects of each
type that are live currently and how much size

they use. Also displays points to information

Jvmpi_datadump

Jvmpi_datareset

Jjrarecording - starts a jrarecording

verbosity - changes the verbosity level , not functional in arianel42_04
start_management_server - starts a management server
kill_management_server - shuts the management server down

(the managementserver.jar has to be in the bootclasspath for
these command to work)

In the ctrihandler.act file, each command entry starts with a Ctrl-Break Handler name
followed by the arguments to be passed to the Ctrl-Break Handler. The arguments should be on
the property form (that is, name=value; for example, set_filename
filename=c:\output.txt append=true). String, integer or boolean values are acceptable
property types.

You can disable Ctrl-Break functionality by setting this command:

-Djrockit._.dontusectrlbreakfile=true.

21-6 Oracle JRockit JVM Diagnostics Guide

Available Diagnostic Commands

Available Diagnostic Commands

Table 21-1 lists the currently available diagnostic commands.

Table 21-1 Existing Ctrl-Break Handlers

Command

Description

set_filename Filename=<file>
[append=true]

Set the file which all commands following this command
will use for printing. You can have several
set_filename commands in afile. It takes two
arguments: filename and an optional append to specify if
you want to append to the file or overwrite it. The default
file is stderr, and to overwrite the file.

timestamp

Prints a timestamp.

version

Prints the JRockit JVM version

print_threads [nativestack=true]
[Jvmmonitors=true]

Prints a normal thread dump.

e nativestack=true will print C-level stacktraces
as well as Java traces.

e jvmmonitors=true will also print the JRockit
JVM's internal native locks (those that are
registered): status and wait queue, and with
-XXnativeLockProfil ing=true their profile
stats (acquired/contended/tryfailed).

verbosity [args=<components>]
[Ffilename=<file>]

Change the verbosity level normally specified with
-Xverbose. This handler does not work in R25.

command_line

Prints the command line used to start the JRockit JVM.

print_object_summary

See the JRockit Memory Leak Detector User Guide (for
JRockit Mission Control 1.0) or the Memory Leak
Detector built-in help (for Oracle JRockit Mission
Control 2.0 and later).

print_class_summary

Print all loaded classes.

print_utf8pool

Print all UTF8 strings.

print_memusage

Print all memory the OS says the JRockit JVM process
is holding onto, as well as what each subsystem thinks it
is holding onto.

Oracle JRockit JVM Diagnostics Guide 21-1

Running Diagnostic Commands

Table 21-1 Existing Ctrl-Break Handlers

Command

Description

oom_diagnostics

Note: This command applies only to versions of
JRockit JVM R26.3 and earlier.

Cause an OutOfMemoryDiagnostics to be printed. If
both set_filename and
-Djrockit.oomdiagnostics.filename is set,
the latter takes precedence.

This command is deprecated in the JRockit JVM R26.4.
Use heap_diagnostics instead.

heap_diagnostics

Cause a heap diagnostic to be printed. Output ends up on
Ctrl-Break Handler output stream and does not take the
property
-Djrockit.oomdiagnostics.filename into
consideration. This command applies only to versions of
JRockit JVM R26.4 and later.

heapreport Prints out a report on the JVM’s native memory
allocation on the C-Heap. This is only supported if you
are running with HEAP_TRACE defined.

gcreport Prints out a comprehensive summary of garbage

collection activity so far during the run. In order to be
able to dynamically print out the same information as
-XgcReportwould provide at the end of an application
run, make sure to have the option flag -XgcReport in
your start-up configuration, otherwise the correct
measurements won't be performed.

jJjrarecording [filename=<file>]
[time=<time>] [nativesamples=true]

Starts a JRA recording. For more information, please
refer to Creating a JRA Recording with JRockit Mission
Control 1.0

run_optfile [Filename=<file>]

See Creating and Using an Optfile.

start_management_server

Starts the management server. (Actually the listening
socket that in turn starts servers whenever a connection
is established). managementnserver . jar has to be
in the boot classpath for this command to work.

21-8 Oracle JRockit JVM Diagnostics Guide

Table 21-1 Existing Ctrl-Break Handlers

Available Diagnostic Commands

Command

Description

kill_management_server

Stops the management server. (Actually shuts down the
listening socket.) The only reason it isn't named
stop_management_server is that stop is a reserved
keyword that stops parsing of the act file. The
managementserver.jar has to be in the boot classpath for
this command to work.

lockprofile_print

Will print the current values of the lock profile counters.
Enable lock profiling with
-Djrockit. lockprofiling.

lockprofile_reset

Will reset the current values of the lock profile counters.
Enable lock profiling with
-Djrockit. lockprofiling.

print_exceptions
[stacktraces=all/true/false]
[exceptions=all/true/false]

Enable/disable printing of exceptions (see
-Xverbose). To turn exception printing off completely
you need to set exceptions = false even if it was
turned on by stacktraces = true.

force_crash

Forces the Oracle JRockit JVM to crash/dump.

run_class [class=<classname>]
[daemon=<true|false>]

Runs any class implementing the Runnable interface.
Must be enabled with:

-Djrockit.ctrlbreak.enablerun_class=tr
ue.

Note that the class name must use slashes (/) to separate
package names; for example:

jremd <pid> run_class
class=java/lang/Thread

memprof [sampleRate=<seconds>]
[trendSize=<size>]
[forceThreshold=<bytes>]
[verboseResultStats=<true|false>]
[skipSymbols=<symbolexcludelist>]

Turns on memory profiling in the running application.
Memory profiling can be very helpful for diagnosing
such problems as memory leaks.

Oracle JRockit JVM Diagnostics Guide 21-9

Running Diagnostic Commands

Getting Help

To get help about the available commands, execute the special command help. This will print all
available commands.

e help <handlername> prints help for the specified command.
e help help will print help for help.

e help all will print the help for all commands.

21-10 Oracle JRockit JVM Diagnostics Guide

cHAPTER@

Oracle JRockit Time Zone Updater

The Oracle JRockit Time Zone Updater (TZUpdater) allows you to update installed JDK/JRE
images with more recent time zone data to accommodate the U.S. 2007 daylight saving time
changes (US2007DST) originating with the U.S. Energy Policy Act of 2005.

Oracle recommends using the latest Oracle JRockit JDK release as the preferred vehicle for
delivering both time zone data updates and other product improvements, such as security fixes.
If you are unable to use the latest JRockit JIDK/JRE update release, this tool provides a route of
updating time zone data while leaving other system configuration and dependencies unchanged.

This section contains information on the following subjects:
e Downloading the TZUpdater

e Introduction to the TZUpdater

System Requirements to Run the TZUpdater

Using the TZUpdater

e Error Handling

System-wide Usage

Removing TZUpdater Changes

Known Issues

Oracle JRockit JVM Diagnostics Guide 22-1

Oracle JRockit Time Zone Updater

Downloading the TZUpdater

Download the TZUpdater from:

http://www.oracle.com/technology/software/products/jrockit/index.html

Introduction to the TZUpdater

To upgrade a specific Java installation, you need to include the full path to the Java executable of
that installation. If tzupdater . jar is run by just running java -jar. . ., or by double-clicking
the tzupdater . jar file, this will invoke Sun’s Java on many systems, which will result in an
error message being displayed. The section Example of the Default way of Using TZUpdater
explains the typical use of TZUpdater.

A single JDK/JRE image is modified per execution. For administering of multiple JDK/JRE
instances, see System-wide Usage.

Prior to running the TZUpdater, you need to stop any running instances of the specific JDK/JRE
that you will operate upon.

The TZUpdater modifies and updates the JVM it is run with, thus it is important to run the tool
as a command-line application, see Command-line Options Described.

System Requirements to Run the TZUpdater

The TZUpdater supports Oracle’s JDK/JRE releases 1.4 or later on all supported platforms.

Using the TZUpdater

22-2

The command-line interface is the following:

JAVA_HOME/bin/java -jar tzupdater.jar options

Command-line Options Described

If no command-line option is specified, the usage message is displayed. To perform time zone
data update, either the -u or -f option must be specified, see Table 22-1 for a list of all available
command line options.

Oracle JRockit JVM Diagnostics Guide

Using the TZUpdater

Table 22-1 List of available options.

Command Option Name

Description

-h help Prints the usage to stdout and exit. Other options are ignored if
specified.

-V version Shows the tool version number and the tzdata version numbers of
the JRE and the archive embedded in the jar file and exit.

-u update Updates the time zone data. If this option is specified with -h, -t, or
-V option, the command displays the usage to stdout and exit.

-T force Force update the tzdata even if the version of the tzdata archive is
older then the JRE’s tzdata version. This option doesn’t require the
-u option to perform the update.

-v verbose Displays detailed messages to stdout.

-bc backward Keeps backward compatibility with the 3-letter time zone IDs of JDK

compatible 1.1. Any time zone IDs that conflict with the JDK 1.1 time zone IDs

will be removed from the installed time zone data. See Known Issues
for details. This option must be specified with the -u, -, or -t
option.

-t test Runs verification tests only and exit. The -f option is ignored if

specified. If the -bc option is specified, any test cases for time zone
IDs that conflict with the JDK 1.1 time zone IDs will be ignored.

Example of the Default way of Using TZUpdater

Below is an example of the default way of using the TZUpdater to upgrade time zone data on a
Java installation at, for example, Zopt/bea/jrockit90_150_06.

1. Test the current version of the timezone data of the JRE:

> /opt/bea/jrockit90_150 0O6/bin/java -jar tzupdater.jar -V

tzupdater version