
BEA JRockit®
Mission
Control™

Introduction to Oracle
JRockit Mission Control

JRockit Mission Control 3.0.2
Revised: January, 2008

Introduction to Oracle JRockit Mission Control 1

Contents

Introduction to Oracle JRockit Mission Control
Architectural Overview of the JRockit Mission Control Client 1-2

Starting the JRockit Mission Control Client . 1-3

The JVM Browser . 1-3

The Management Console. 1-4

The JRockit Runtime Analyzer (JRA) . 1-5

The Memory Leak Detector . 1-6

JRockit Mission Control Communications . 1-7

Changing Logging Properties . 1-10

Frequently Asked Questions . 1-14

Is There a Forum Where I can Discuss the JRockit Mission Control Plug-ins?. 1-17

Giving Feedback To the JRockit Mission Control Development Team 1-17

2 Introduction to Oracle JRockit Mission Control

Introduction to Oracle JRockit Mission Control 1-1

C H A P T E R 1*

Introduction to Oracle JRockit Mission
Control

Oracle JRockit Mission Control is a suite of tools you can use to monitor, manage, profile, and
eliminate memory leaks in your Java application without introducing the performance overhead
normally associated with these types of tools.

JRockit Mission Control’s low performance overhead is a result of using data collected as part of
the Oracle JRockit JVM’s normal adaptive dynamic optimization. This also eliminates the
problem with the Heisenberg anomaly that can occur when tools using byte code instrumentation
alters the execution characteristics of the system. JRockit Mission Control functionality can
always be available on-demand and the small performance overhead is only in effect while the
tools are running.

This introduction contains information on the following subjects:

Architectural Overview of the JRockit Mission Control Client

Starting the JRockit Mission Control Client

The JVM Browser

The Management Console

The JRockit Runtime Analyzer (JRA)

The Memory Leak Detector

JRockit Mission Control Communications

Frequently Asked Questions

In t roduct ion to Orac le JRock i t M iss i on Cont ro l

1-2 Introduction to Oracle JRockit Mission Control

Is There a Forum Where I can Discuss the JRockit Mission Control Plug-ins?

Giving Feedback To the JRockit Mission Control Development Team

Architectural Overview of the JRockit Mission Control
Client

With the Rich Client Platform (RCP) based JRockit Mission Control Client, you can launch the
Memory Leak Detector, the JRockit Runtime Analyzer, and the Management Console from
within the JRockit Mission Control Client. Figure 1-1 depicts how the JRockit Mission Control
Client looks when all tools are loaded.

Figure 1-1 Architectural Overview of JRockit Mission Control

When a JRA recording is started from within the JRockit Mission Control Client, it records the
status of the Oracle JRockit JVM process for the time that you have specified and creates a ZIP
file containing an XML file with the recorded data and optionally a binary file with latency data
together with the corresponding data producer specification files. The ZIP file is automatically
opened in JRA upon completion of the recording, valid for JDK level 1.5 and later (marked 5 in

Star t ing the JRock i t M iss ion Cont ro l C l i ent

Introduction to Oracle JRockit Mission Control 1-3

Figure 1-1). Typical information that is recorded during a JRA recording is Java heap
distribution, garbage collections, method samples, and lock profiling information (optional).
New for the JRockit Mission Control 3.0 release, is that you can also record thread latency data.
When viewing Latency data in JRA, the Latency Events Details become visible (marked 2 in
Figure 1-1).

To view real-time behavior of your application and of the JRockit JVM, you can connect to an
instance of the JRockit JVM and view real-time information through the Management Console
(marked 4 in Figure 1-1). Typical data that you can view is thread usage, CPU usage, and memory
usage. All graphs are configurable and you can both add your own attributes and redefine their
respective labels. In the Management Console you can also create rules that trigger on certain
events, for example, an mail will be sent if the CPU reaches 90% of the size.

With the JMX Agent you have access to all MBeans deployed in the platform MBean server.
From these MBeans, you can read attribute information, such as garbage collection pause times.

To find memory leaks in your Java application, you connect the Memory Leak Detector to the
running the JRockit JVM process. The Memory Leak Detector connects to the JMX (RMP)
Agent that instructs to start a Memory Leak Server where all further communication takes place.

Starting the JRockit Mission Control Client
The JRockit Mission Control Client executable is located in JROCKIT_HOME/bin. If this
directory is on your system path, you can start the JRockit Mission Control Client by simply
typing jrmc in a command (shell) prompt.

Otherwise, you have to type the full path to the executable file, as shown below:
JROCKIT_HOME/bin/jrmc.exe (Windows)

JROCKIT_HOME\bin\jrmc (Linux)

On Windows installations, you can start the JRockit Mission Control Client from the Start menu.

The JVM Browser
The JVM Browser (see Figure 1-2) was added in the JRockit Mission Control 2.0 release. This
tool allows you to set up and manage all running instances of the JRockit JVM on your system.
From the JVM Browser you activate different tools, such as starting a JRA recording, connecting
a Management Console, and starting memory leak detection. Each JRockit JVM instance is
referred to as a Connector.

In t roduct ion to Orac le JRock i t M iss i on Cont ro l

1-4 Introduction to Oracle JRockit Mission Control

Figure 1-2 The JVM Browser

The Management Console
The Management Console (see Figure 1-3) is used to monitor a JRockit JVM instance. Several
Management Consoles can be running concurrently side by side. The tool captures and presents
live data about memory, CPU usage, and other runtime metrics. For the Management Console
that is connected to the JRockit JVM 5.0, information from any JMX MBean deployed in the
JRockit JVM internal MBean server can be displayed as well. For a Management Console
connected to JRockit JVM 1.4, RMP capabilities are exposed by a JMX proxy. JVM management
includes dynamic control over CPU affinity, garbage collection strategy, memory pool sizes, and
more.

The JRock i t Runt ime Ana lyze r (JRA)

Introduction to Oracle JRockit Mission Control 1-5

Figure 1-3 The Management Console

The JRockit Runtime Analyzer (JRA)
The JRockit Runtime Analyzer (see Figure 1-4) is an on-demand “flight recorder” that produces
detailed recordings about the JRockit JVM and the application it is running. The recorded profile
can later be analyzed off line, using JRA. Recorded data includes profiling of methods and locks,
as well as garbage collection statistics, optimization decisions, and event latencies.

In t roduct ion to Orac le JRock i t M iss i on Cont ro l

1-6 Introduction to Oracle JRockit Mission Control

Figure 1-4 The JRockit Runtime Analyzer

The Memory Leak Detector
The Memory Leak Detector (see Figure 1-5) is a tool for discovering and finding the cause for
memory leaks in a Java application. The Memory Leak Detector’s trend analyzer discovers slow
leaks, it shows detailed heap statistics (including referring types and instances to leaking objects),
allocation sites, and it provides a quick drill down to the cause of the memory leak. The Memory
Leak Detector uses advanced graphical presentation techniques to make it easier to navigate and
understand the sometimes complex information.

JRock i t M iss ion Cont ro l Communicat ions

Introduction to Oracle JRockit Mission Control 1-7

Figure 1-5 The Memory Leak Detector

JRockit Mission Control Communications
This topic describes the communication protocols for JRockit Mission Control.

In t roduct ion to Orac le JRock i t M iss i on Cont ro l

1-8 Introduction to Oracle JRockit Mission Control

Figure 1-6 JRockit Mission Control Communications Overview

J2SE 1.4
J2SE 1.4 versions of JRockit Mission Control uses RMP (Rockit Management Protocol.), an
older legacy protocol that has existed since the 1.3 versions of the JRockit JVM. RMP uses a
single socket. You can specify the port of the listening socket by using the -Xmanagement:port
option; for example -Xmanagement:port=7090. Table 1-1 lists additional system properties
you can use to further configure the agent.

Table 1-1 Additional Communication Settings for JRockit Mission Control on J2SE 1.4

System property Description Default

jrockit.managementserver.address Bind to a specific
interface

Not enabled, listens on all
interfaces)

JRock i t M iss ion Cont ro l Communicat ions

Introduction to Oracle JRockit Mission Control 1-9

J2SE 5.0 and Later
J2SE 5.0 and later versions of the JRockit JVM use JMXRMI (JMX over RMI). This protocol uses
one port for the RMI registry, which is configured with the -Xmanagement:port option, and a
second port (on an anonymous port) for communication with the RMI server. Note that you
cannot configure the port for the RMI server; however, you can write your own agent that defines
a fixed port for the RMI server. Please see the following link for further information:
http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html#g
dfvv.

Table 1-2 lists the options available for the -Xmanagement flag:

For a more comprehensive discussion on what these options mean, please see:
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html.

All Versions
For all J2SE versions, you can use the -Xmanagement option autodiscovery to make the
JRockit JVM use the JRockit Discovery Protocol (JDP) to announce its presence; for example
-Xmanagement:autodiscovery=true.

Table 1-3 lists additional system properties you can use to control the behavior of the JDP server:

jrockit.managementserver.timeout Socket timeout in MS 4000

jrockit.managementserver.maxconnect Maximum number of
connections

4

Table 1-2 -Xmanagement Option

Option Description Default

authenticate Use password authentication True

ssl Use secure sockets layer True

port What port to use for the RMI registry 7091

Table 1-1 Additional Communication Settings for JRockit Mission Control on J2SE 1.4

System property Description Default

In t roduct ion to Orac le JRock i t M iss i on Cont ro l

1-10 Introduction to Oracle JRockit Mission Control

All versions of JRockit Mission Control also employ an additional protocol when using the
Memory Leak Detector. The memleak server is not written in Java; rather it is an integral part of
the JRockit JVM. This is because a potential use case for the memleak server is to optionally be
able to start it when an out of memory condition occurs in the JVM. When such a condition
occurs, it is impossible to execute Java code because no heap would be available.

MLP (MemLeak Protocol) is used by the native memleak server during a memleak session.
JRockit Mission Control communicates over RMP (1.4) or JMXRMI (5.0 and higher) to ask the
JRockit JVM to start up the server. You can configure the port on which you want to start the
memleak server on, and to use for the session, by using JRockit Mission Control preferences.

Changing Logging Properties
You can change the way the JRockit Mission Control Client internally logs such items as error
messages and warning messages from the JRockit Mission Control Client system by updating the
logging.properties file. By default, you JRockit Mission Control Client implementation will use
the logging.properties file that is stored in com.jrockit.mc.core. You can either create a new
version of this file or change the settings in the original. Whichever option you choose, you
should move the file to a common location, such as your root directory.

Table 1-3 System properties used to control the JDP server

System property Description Default

jrockit.managementserver.discovery.period The time to wait
between
multicasting the
presence in ms

5000

jrockit.managementserver.discovery.ttl The number of
router hops the
packets being
multicasted should
survive

1

jrockit.managementserver.discovery.address The multicast
group/address to
use

232.192.1.212

jrockit.managementserver.discovery.targetport The target port to
broadcast

7090(1.4)/7091(1.5)

Changing Logging Proper t i es

Introduction to Oracle JRockit Mission Control 1-11

To modify and move the logging.properties file:

1. Go to your file system and locate the logging.properties file at com.jrockit.mc.core.

2. Make a copy of this file to serve as a baseline and save it to a common location, such as your
root directory.

3. Open the original version of logging.properties in a text or code editor. Listing 1-1 shows an
example of what you should see.

Note: The first time you open logging.properties from some versions of Windows Explorer,
you might have to select an program in which to open the file. Follow the instructions
on the Windows dialog box that appears when you try to open the file. Check Select
the program from a list and click OK. On the Open With dialog box, select the
desired program. When you attempt to open logging.properties in the future,
Windows will automatically use the application selected here.

Listing 1-1 logging.properties Default Example

##

Default Logging Configuration File

#

You can use a different file by specifying a filename

with the java.util.logging.config.file system property.

For example java -Djava.util.logging.config.file=myfile

##

##

Global properties

##

"handlers" specifies a comma separated list of log Handler

classes. These handlers will be installed during CorePlugin

startup.

Note that these classes must be on the system classpath.

handlers= java.util.logging.FileHandler, java.util.logging.ConsoleHandler

Default global logging level.

This specifies which kinds of events are logged across

all loggers. For any given facility this global level

In t roduct ion to Orac le JRock i t M iss i on Cont ro l

1-12 Introduction to Oracle JRockit Mission Control

can be overriden by a facility specific level

Note that the ConsoleHandler also has a separate level

setting to limit messages printed to the console.

.level= WARNING

##

Handler specific properties.

Describes specific configuration info for Handlers.

##

default file output is in user's home directory.

java.util.logging.FileHandler.pattern = %h/mc_%u.log

java.util.logging.FileHandler.limit = 50000

java.util.logging.FileHandler.count = 1

java.util.logging.FileHandler.formatter =

java.util.logging.SimpleFormatter

Limit the message that are printed on the console to INFO and above.

java.util.logging.ConsoleHandler.level = INFO

java.util.logging.ConsoleHandler.formatter =

java.util.logging.SimpleFormatter

##

Facility specific properties.

Provides extra control for each logger.

##

#com.jrockit.mc.browser.level = WARNING

4. Change any property you want to To see guidelines and additional information on setting
logging properties, please refer to the documentation for java.util.logging.

5. Save and close logging.properties.

6. In Eclipse, open Windows>Preferences.

The Preferences dialog box appears.

7. Select JRockit Mission Control.

Changing Logging Proper t i es

Introduction to Oracle JRockit Mission Control 1-13

The right pane changes to show the location of the logging settings file for the JRockit
Mission Control Client (Figure 1-7).

Figure 1-7 Logging Settings File Location

8. Do one of the following:

– Type the path to logging.properties; for example, C:/logging.properties.

OR

a. Click Browse to open the Open dialog box.

b. Navigate to modified version of logging.properties and, once you’ve selected
logging.properties, click Open.

9. In the Preferences dialog box, click OK.

10. Close and restart the JRockit Mission Control Client.

To create a new logging.properties file

1. In the folder where you want to store the logging.properties file, create a new file and save it
as logging.properties.

2. At [MISSION_CONTOL_HOME]/com.jrockit.mc.core, open the logging.properties file and
copy the contents (as shown in Listing 1-1) to you clipboard.

3. Paste the copied contents from your clipboard into the logging.properties file you created in
step 1.

4. Change any property you want to To see guidelines and additional information on setting
logging properties, please refer to the documentation for java.util.logging.

5. Save and close logging.properties.

6. In Eclipse, open Windows>Preferences.

The Preferences dialog box appears.

7. Select JRockit Mission Control.

In t roduct ion to Orac le JRock i t M iss i on Cont ro l

1-14 Introduction to Oracle JRockit Mission Control

The right pane changes to show the location of the logging settings file for the JRockit
Mission Control Client (Figure 1-7).

Figure 1-8 Logging Settings File Location

8. Do one of the following:

– Type the path to logging.properties; for example, C:/logging.properties.

OR

a. Click Browse to open the Open dialog box.

b. Navigate to modified version of logging.properties and, once you’ve selected
logging.properties, click Open.

9. In the Preferences dialog box, click OK.

10. Close and restart the JRockit Mission Control Client.

Frequently Asked Questions
This topic lists and provides answers to questions frequently asked about the JRockit Mission
Control Client.

I cannot connect the JRockit Mission Control Client. What could be the problem?

When attempting to connect the JRockit Mission Control Client I get a stack trace
indicating that JRockit Mission Control attempts to communicate with a strange IP or host
name.

I'm getting exceptions during startup about classes not being found

JRockit Mission Control can't find any local JVMs

Why can't I see any Method Profiling information in my JRA recording?

When using the Memory Leak Detector, nothing happens in the growth column of the
trend table.

Frequent l y Asked Quest ions

Introduction to Oracle JRockit Mission Control 1-15

I cannot connect the JRockit Mission Control Client. What could be the problem?
Consider the following:

Have you started the management server? You must do so if you want to enable your
application for remote monitoring or if you want to monitor an instance of a JRockit JVM
running with JDK 1.4. You can start the management server by adding the -Xmanagement
option to your Java command line. SSL and authentication are available in JDK 1.5/1.6
and will be enabled by default. If you do not want to set up certificates, SSL and
authentication can be disabled by providing ssl=false and authenticate=false. Also,
if you want to use the remote discovery feature of JRockit, you can enable it by setting
autodiscovery=true; for example:
java -Xmanagement:ssl=false,authenticate=false,autodiscovery=true

You can also start the management server on an already running JRockit JVM by using the
jrcmd utility available in the JROCKIT_HOME/bin directory.

Are you using the correct protocol?

The easiest way is to ensure that you are using the same version of the JRockit JVM you
want to monitor as the JRockit JVM running the JRockit Mission Control Client. If that is
not an option, you can use the radio buttons in the connection dialog box in JRockit
Mission Control to select which protocol to use: 1.4 will select RMP and 1.5 and later will
select JMXRMI.

For earlier versions of the JRockit Mission Control Client these radio buttons don’t exist
and, to make a 1.5 JRockit JVM instance connect to a 1.4 version, you must explicitly
specify the JMX Service URL. The format of the service URL is:

service:jmx:rmp://<hostname>:<port>

for example:

service:jmx:rmp://localhost:7091

Are the correct ports opened?

Note that JMX over RMI uses two ports and that one of the ports will not be known
beforehand.

Maybe the communication is caught in the firewall?

Please see JRockit Mission Control Communications for more information.

In t roduct ion to Orac le JRock i t M iss i on Cont ro l

1-16 Introduction to Oracle JRockit Mission Control

When attempting to connect the JRockit Mission Control Client I get a stack trace
indicating that JRockit Mission Control attempts to communicate with a strange IP or
host name.
Sometimes RMI can have a problem determining which address to use. This can happen because
of

Access restrictions in the Security manager,

The machine being multihomed and RMI picking the wrong interface

A misconfigured hosts file or a number of different network related configuration
problems.

If all else fails you can try specifying the java.rmi.server.hostname system property. Please
note that this can affect applications running in the JRockit JVM.

I'm getting exceptions during startup about classes not being found
Make sure you are using the proper launcher to start up the JRockit Mission Control Client. You
must only use JROCKIT_HOME/bin/jrmc.

JRockit Mission Control can't find any local JVMs
Make sure you are using the proper launcher to start up the JRockit Mission Control Client. You
must only use JROCKIT_HOME/bin/jrmc.

Why can't I see any Method Profiling information in my JRA recording?
By default, the JRockit Mission Control Client doesn't show tabs if no data has been recorded for
them. Ensure that method profiling was enabled for your JRA recording and that the application
was under load. If the JRockit JVM is spending most of the time with none of the threads doing
any work, no samples will be recorded. If you still want to create a JRA recording with method
sampling and a low load, try increasing the sampling frequency.

When using the Memory Leak Detector, nothing happens in the growth column of the
trend table.
The algorithm needs at least three data points to kick in and the data is collected as part of the old
space mark phase of the garbage collection. If you see no data, possibly not enough garbage has
been collected for these collections to occur. To speed up the process, try clicking the garbage
can in the tool bar of the Memory Leak Detector to force three successive garbage collections,
with a brief pause in between each collection.

I s There a Fo rum Where I can D iscuss the JRock i t M iss ion Cont ro l P lug- ins?

Introduction to Oracle JRockit Mission Control 1-17

Is There a Forum Where I can Discuss the JRockit Mission
Control Plug-ins?

If you have any questions you are welcome to share them in the Oracle JRockit general interest
news group, which is monitored by the JRockit engineering team. To access the news group, go
to:

http://newsgroups.bea.com

Giving Feedback To the JRockit Mission Control
Development Team

If you have any suggestions about how to improve the JRockit Mission Control plug-ins or
information on how it is most commonly used in your development environments, we would be
grateful to receive your input. This information would contribute to our understanding on how to
best further improve these tools in the future.

Please, send an email with feedback and your ideas on how to use it to:

mailto:jrockit-improve@oracle.com

The feedback will be considered by the development team designing the JRockit Mission Control
plug-ins. We will look at collected ideas and improve the plug-ins to make them even easier to
use. our goal with these plug-ins is to simplify the tasks in getting your applications to run as
smoothly as possible on JRockit JVM.

In t roduct ion to Orac le JRock i t M iss i on Cont ro l

1-18 Introduction to Oracle JRockit Mission Control

