
BEA JRockit
Mission
Control®

BEA JRockit Runtime
Analyzer
Mission Control version 3.0.1 ®
Document Revised: October, 2007

Copyright
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA
WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA
WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA
SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

BEA JRockit Runtime Analyzer iii

Contents

Introduction to the BEA JRockit Runtime Analyzer (JRA)
How Does the JRockit Runtime Analyzer System Work? . 1-1

What is a JRA Recording? . 1-2

What is the JRA Tool? . 1-2

What’s New in the JRA System? . 1-3

Workflow Description for Creating and Analyzing a JRA
Recording

1. Start BEA JRockit Mission Control . 2-6

2. Start Your Java Application . 2-6

3. Create JRA Recording. 2-7

4. View Your JRA Recording in the JRA Tool . 2-11

5. Perform Changes in Application or Use Other Command-line Options for BEA JRockit
2-12

6. Create a New JRA Recording . 2-13

7. Compare and Contrast Two Recordings in the JRA Tool. 2-13

Alternative Ways to Start a JRA Recording
Starting a Recording with jrcmd . 3-15

Starting a Recording From the JRockit Command Line . 3-16

iv BEA JRockit Runtime Analyzer

Using the JRA Tool

Getting Started with the BEA JRockit Runtime Analyzer Tool
Starting the JRA Tool. 5-21

JRA Tool Overview . 5-21

JRA Tabs at a Glance . 5-23

Customizing Your JRA Tool . 5-23

Turning on/off Tabs . 5-24

Changing Table Settings . 5-25

Filtering Information . 5-26

Collapsing and Expanding an Information Panel. 5-27

Changing Layout of a Tab . 5-27

General Information in a JRA Recording
Getting Familiar with the General Tab. 6-30

Viewing General Information . 6-31

Viewing Memory Usage Information . 6-32

Viewing Miscellaneous Information . 6-32

Viewing Memory Allocation Information . 6-34

Viewing Threads Information . 6-35

Viewing Exceptions Information . 6-36

Methods and Call Trace Information
Getting Familiar with the Methods Tab . 7-37

Viewing Hot Methods . 7-39

Viewing Predecessors and Successors . 7-39

General Garbage Collector Information
Getting Familiar with the GC General Tab . 8-41

BEA JRockit Runtime Analyzer v

Viewing General Garbage Collection Information. 8-42

Viewing Garbage Collection Call Tree Information . 8-43

Viewing Garbage Collection Strategy Changes Information . 8-43

Garbage Collection Events Information
Getting Familiar with the GCs Tab. 9-45

Changing Focus on GC Chart. 9-47

Viewing Specifics about Garbage Collections . 9-48

Viewing the Detailed Information About the Garbage Collection 9-50

Viewing Information on the General Garbage Collection Tab. 9-51

Viewing Information on the GC Method Call Tree Tab . 9-52

Viewing Information on the Old/Young Collection Tab . 9-52

Viewing Information on the Cache Lists Tab. 9-53

The Pause Time Tab . 9-54

Java Heap Content Information
Getting Familiar with the Heap Tab . 10-57

Viewing the Heap Snapshot at the End of the Recording Information 10-58

Viewing the Heap Contents Information . 10-59

Viewing the Free Memory Contribution Information . 10-59

Objects Information
Getting Familiar with the Objects Tab . 11-61

Viewing Start of Recording Information . 11-62

Viewing End of Recording Information . 11-63

Code Optimization Information
Getting Familiar with the Optimizations Tab . 12-65

Viewing Optimization Information . 12-66

vi BEA JRockit Runtime Analyzer

Viewing Methods Optimized During Recording Information 12-67

Lock Profiling Information
Getting Familiar with the Locks Tab . 13-69

Java Locks Profiling. 13-70

Native Lock Profiling. 13-71

Start and End Processes Information
Turning on the Processes Tab . 14-73

Getting Familiar with the Processes Tab . 14-74

Snapshot of Processes at Beginning and End of Recording. 14-75

Detailed Processes Information . 14-76

Threads Information
Turning on the Threads Tab . 15-77

Getting Familiar with the Threads Tab . 15-78

List of Times when Thread Dump is Taken. 15-79

Thread Dump Information . 15-80

Using the Latency Tabs
Latency Tabs at a Glance . 16-82

Creating a JRA Recording with Latency Data . 16-83

Opening a JRA Recording that Contains Latency Data . 16-86

Shared Functionality Amongst All Latency Tabs . 16-87

Using the Latency Timeline Slide Bar . 16-88

What is an Operative Set? . 16-90

Working with an Operative Set . 16-91

About the Event Types Tab . 16-92

Using the Event Types Tab to Decrease Displayed Events . 16-93

BEA JRockit Runtime Analyzer vii

Using the Event Types Tab to Work with Operative Sets . 16-94

About the Properties Tab . 16-95

Example of How to Compare two JRA Recordings where one Contains Latencies . 16-96

Example Workflow of How to Find Latencies. 16-98

1. Create a JRA Recording with Latency Data. 16-99

2. Open the JRA Recording in the Latency Graph Tab . 16-99

3. Look on the Latency Traces Tab to Find Specific Method 16-100

4. Add a Suspected Method to the Operative Set . 16-101

5. Look at Operative Set on the Latency Traces Tab . 16-102

6. Perform Changes to Your Application . 16-103

7. Compare and Contrast Recordings . 16-103

Latency Log Information
Getting Familiar with the Latency Log Tab . 17-105

Changing Start Time View on an Event . 17-107

About Details for Events. 17-108

Selecting an Event . 17-108

Understanding Event Details . 17-109

Viewing General Event Details . 17-110

Viewing Event Property Details . 17-111

Viewing Event Stack Traces. 17-111

Latency Graph Information
Getting Familiar with the Latency Graph Tab . 18-113

Using the Latency Timeline Slide Bar . 18-115

Understanding the Different Parts of a Thread Image . 18-115

Filtering on Thread Names . 18-116

What Does the Threads Chart Contain? . 18-117

viii BEA JRockit Runtime Analyzer

Correlating Events on Threads . 18-117

Magnifying a Thread . 18-118

Hovering Over an Event. 18-119

Showing Garbage Collection Backdrop . 18-120

Latency Traces Information
Getting Familiar with the Latency Traces Tab. 19-121

Setting Trace Filter. 19-123

Adding Comments and Notes to a Recording

BEA JRockit Runtime Analyzer 1-1

C H A P T E R 1

Introduction to the BEA JRockit
Runtime Analyzer (JRA)

The BEA JRockit Runtime Analyzer (JRA) system is a Java application and JVM profiler that
are especially designed for BEA JRockit. The JRA is a well integrated part of Mission Control
and measures performance in a non-intrusive way in both production and development
environments.

This section is divided into the following topics:

How Does the JRockit Runtime Analyzer System Work?

What is a JRA Recording?

What is the JRA Tool?

What’s New in the JRA System?

How Does the JRockit Runtime Analyzer System Work?
The JRockit Runtime Analyzer (JRA) system consists of two parts (Figure 1-1): one part inside
the JRockit JVM that collects and saves data (the JRA recording engine); and an analysis tool that
visualizes the information (JRA Tool). The JRockit-internal part produces a recording of the
system’s runtime behavior during a user specified period of time, typically a few minutes. The
recording results in an XML file that is automatically transferred to Mission Control and opened
in the JRA Tool (this behavior is valid for JRockit 5.0 and later; for JRockit 1.4, the file is saved
locally to disk and you need to locate it before opening the file).

The recording is a great way to share how JRockit has worked with your application. You can
also use several recordings to compare and contrast how different command line options change

I n t roduct ion to the BEA JRock i t Runt ime Ana l y ze r (JRA)

1-2 BEA JRockit Runtime Analyzer

the behavior of your application, for example, by creating before-and-after recordings. When
sending trouble reports to the BEA JRockit support department, you are required to attach a JRA
recording to your trouble report. The recording is analyzed “offline” by the JRockit Runtime
Analyzer Tool.

Figure 1-1 The BEA JRockit Runtime Analyzer System

The recording engine uses several sources of information including the JRockit Hot Spot
Detector (also used by the optimization engine to decide what methods to optimize), the operating
system, the JRockit Memory System (most notably the garbage collector), the JRockit thread
analyzer (if enabled), and the JRockit lock profiler (if enabled).

What is a JRA Recording?
The JRA recording is a collection of data about the JVM and the running Java application. This
recording can be used in the JRA Tool to analyze what happened in BEA JRockit and the Java
application itself.

What is the JRA Tool?
The JRA Tool is a Java application that parses a JRA recording and visualizes the data. This is a
convenient way to analyze the data offline. The size of the compressed recording is on the order
of a few hundred kilobytes, so a system administrator can easily make a recording of a deployed
system and send it to the JVM or application developer who probably is in a better position to
analyze it.

The JRA Tool shows a top list of the hottest methods where you can select a method and see its
call tree, i.e. its predecessors (what other methods have called this method) and successors (what
methods the selected method will call). A percentage for each branch indicates how common a
given path is.

What ’s New in the JRA Sys tem?

BEA JRockit Runtime Analyzer 1-3

As for memory management, there is a graph of the varying heap usage and pause times for the
garbage collections. Detailed information about each GC shows exactly how much memory was
released in a collection. There are also pie charts showing the distributions in size of free memory
blocks and the distribution of occupied memory in small and large object chunks.

What’s New in the JRA System?
In Mission Control 3.0, the JRA has been extended to record even more information about your
Java application and about the JVM itself. The JRA engine now has the possibility record thread
related information and the JRA Tool has been extended with new tabs to visualize thread and
thread latency information.

Another nifty feature that will make your JRA Tool workspace less cluttered, is that you can turn
off tabs in the JRA Tool that are not showing any data. If you are a returning user to the JRA Tool,
you will also find that the recording dialog for the JRA gives you more possibilities to take control
over the recording itself, which data to include and not include, etc.

The thread and thread latency feature can help you pinpoint, down to the method, where you
might have bottlenecks or problems in the application.

I n t roduct ion to the BEA JRock i t Runt ime Ana l y ze r (JRA)

1-4 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 2-5

C H A P T E R 2

Workflow Description for Creating and
Analyzing a JRA Recording

This section is a workflow description of how to use the JRA system to find problems and
improvement areas with your Java application and BEA JRockit. JRA is excellent to use when
tuning your system, for example when looking for performance bottlenecks, such as latencies.
The typical workflow when working with the JRA is described in Figure 2-1.

Figure 2-1 Typical workflow for comparing different settings of JRockit and Java application

The first steps are to start BEA Mission Control and then start you application so that you can
start a JRA recording. The JRA recording takes a snapshot of the system’s runtime behavior
during the time period that you specify, typically a few minutes. As soon as the recording is
complete, it opens in the JRA Tool where it can be analyzed “offline”. If you want to, you can

Workf l ow Descr ip t i on fo r C reat ing and Ana l y z ing a JRA Reco rd ing

2-6 BEA JRockit Runtime Analyzer

perform changes to your application or change command-line options for JRockit and create a
new recording. This way, you have a chance to compare and contrast how different settings affect
your application.

The steps for creating and comparing and contrasting a JRA recording are detailed in the
following topics:

1. Start BEA JRockit Mission Control

2. Start Your Java Application

3. Create JRA Recording

4. View Your JRA Recording in the JRA Tool

5. Perform Changes in Application or Use Other Command-line Options for BEA JRockit

6. Create a New JRA Recording

7. Compare and Contrast Two Recordings in the JRA Tool

1. Start BEA JRockit Mission Control
The way you start Mission Control depends on which platform you are running it on.
Windows platforms:

Click Start > All Programs > BEA JRockit > BEA JRockit Mission Control or invoke
the launcher (JROCKIT_HOME\bin\jrmc.exe).

Unix platforms:

JROCKIT_HOME/bin/jrmc

2. Start Your Java Application
1. Start your Java application with JRockit.

– If you are running JRockit 1.5 and later and only want to monitor your application
locally, you do not need to do anything else. It will be automatically discovered by
JRockit Mission Control.

– If you want to enable your application for remote monitoring, you need to add the
-Xmanagement option to the command line. SSL and authentication will be enabled by
default. If you do not wish to set up certificates ssl and authentication can be disabled
by providing ssl=false and authenticate=false. Also, if you want to use the
remote discovery feature of JRockit, you can enable it by setting

3. Create JRA Reco rd ing

BEA JRockit Runtime Analyzer 2-7

autodiscovery=true, for example,
-Xmanagement:ssl=false,authenticate=false,autodiscovery=true

2. Start your Java application and make sure it is running with a load. This way you get the best
possible data collected for the JRA recording.

3. Create JRA Recording
It is simple to create a JRA recording, you only need to select a profile that you want to use. You
can create recordings that either contain all “regular” JRA data or more extensive ones that also
contain thread latency data. This section explains the difference between using the profile “JRA
Recording Normal” without the advanced settings and with the advanced settings. There are
alternative ways to start a JRA recording (see Alternative Ways to Start a JRA Recording).

Note: If you are running Mission Control on a Windows system, you need to be a member of
the Administrators or the Performance Logs user groups to create a JRA recording.
The typical error message, for not being part of either of these groups, can look like this:
[perf] Failed to init virtual size counter:

The instructions for how to use the JRA Recording Normal profile is described in:

To use the normal recording profile

To use the normal recording profile with advanced options

For instructions on how to create a JRA recordings that includes latency data, see Creating a JRA
Recording with Latency Data.

To use the normal recording profile

1. Make sure that your application is running and is under load.

If you run the application without load, the data captured from that application will not
show where there is room for improvement.

2. In the JRockit Browser, select the JRockit instance you just started or select an entire folder
with running JRockit instances.

3. Click the Start JRA recording button.

The JRA Recording dialog box appears (Figure 2-2).

Workf l ow Descr ip t i on fo r C reat ing and Ana l y z ing a JRA Reco rd ing

2-8 BEA JRockit Runtime Analyzer

Figure 2-2 JRA Recording Dialog box

4. Select the connection you want to record.

5. From the Select recording file drop-down list, choose JRA Recording Normal.

This option is the “classic” JRA recording. This file contains all information that you as a
returning user have found in JRA recordings for previous Mission Control and JRockit
releases.

6. Type a descriptive name for the recording in the Local filename field.

The file is created in the current directory of the BEA JRockit process, unless you specify
a different path. If an old file already exists, it will be overwritten by the new recording.

7. Set a recording time for the duration of the recording in the Recording time field.

8. Select the time unit you wish to use for specifying the recording time (minutes or seconds).

Note: If you set a time that is too short, e.g. shorter than 30 seconds, you will probably not
get enough sample data for the recording to be meaningful.

9. Click Start.

The JRA recording progress window appears. When the recording is finished, it loads in
the JRA Tool.

To use the normal recording profile with advanced options

1. Make sure that your application is running and is under load.

3. Create JRA Reco rd ing

BEA JRockit Runtime Analyzer 2-9

If you run the application without load, the data captured from that application will not
show where there is room for improvement.

2. In the JRockit Browser, select the JRockit instance you just started or select an entire folder
with running JRockit instances (if you select a folder, you need to select the JRockit you want
to monitor within the JRA Recording dialog box).

3. Select the connection you want to record.

4. From the Select recording file drop-down list, choose JRA Recording Normal.

5. Click Show Advanced Options.

A panel with all options for creating a recording become visible (Figure 2-3).

Figure 2-3 JRA Recording with advanced option selected

6. Type a descriptive name for the recording in the Local filename field.

The file is created in the current directory of the BEA JRockit process, unless you specify
a different path. If an old file already exists, it will be overwritten by the new recording.

7. Set a recording time for the duration of the recording in the Recording time field.

8. Select the time unit you wish to use for specifying the recording time (minutes or seconds).

Workf l ow Descr ip t i on fo r C reat ing and Ana l y z ing a JRA Reco rd ing

2-10 BEA JRockit Runtime Analyzer

Note: If you set a time that is too short, e.g. shorter than 30 seconds, you will probably not
get enough sample data for the recording to be meaningful.

9. Set a delay for when the recording should start in Delay before starting recording.

It is good to set a delay if you know that your application has, for example, a long
warm-up period.

10. Select none, one, or all of the following options:

– Enable method sampling—records samples of methods.

– Enable GC sampling—records garbage collection events.

– Enable native sampling—records samples of native code.

– Stacktraces—records method stack traces.

– Trace depth—decides how “deep” (how many levels that they contain) the stack traces
should go.

– Sample time—decides how often samples should to be taken. If you set a small
number, samples will be taken more frequently.

– Hardware sampling—records sample data in the same manner as the command-line
option -xxhpm.

– Heap statistics—forces a garbage collection in the beginning and end of the recording
to get Java heap data.

– Thread dumps—creates thread dump data in the beginning and end of recording. If
you set the Thread dump interval, you will also get thread dump data during the
recording.

– Thread dump interval—the time interval for how often thread dumps should be
created. The thread dumps are displayed on the Threads tab in the JRA Tool.

– Enable Latency Recording—creates latency data, see Creating a JRA Recording with
Latency Data for more information.

– Latency threshold—sets latency threshold, see Creating a JRA Recording with
Latency Data for more information.

– Enable CPU sampling—records JVM system and user load data and CPU usage. The
information that is recorded is visible on the latency tabs.

– CPU sample interval—sets the time interval for how often CPU sampling should be
performed.

4. V iew Your JRA Record ing in the JRA Too l

BEA JRockit Runtime Analyzer 2-11

11. Click Start.

The JRA recording progress window appears. When the recording is finished, it loads in
the JRA Tool.

See Also
There are alternate ways to start a JRA recording, see Starting a Recording with jrcmd and
Starting a Recording From the JRockit Command Line.

About JRA Overhead when Recording
The overhead while recording is very low—typically less than two percent. However, since JRA
is forcing a full garbage collection at the beginning and at the end of the recording to generate the
heap histogram data, there may be a spike at the beginning and at the end of a recording. This can
be fixed by turning off the option Heap Statistics in the JRA recording window (see Figure 2-3).

4. View Your JRA Recording in the JRA Tool
The recording results in an XML file that opens automatically in the JRA Tool upon completion.
For JRockit 1.4 versions, the XML file is saved to the disk where JRockit is running and you need
to open the JRA Tool prior to opening the JRA recording (see To open a JRA recording that was
created with a JRockit 1.4 version).

Note: If you have previously viewed a JRA recording in the JRA Tool, it will automatically
load when you open JRockit Mission Control.

There are several ways to open a JRA recording:

To open a JRA recording by dragging and dropping

To open a JRA recording within JRockit Mission Control

To open a JRA recording that was created with a JRockit 1.4 version

To open a JRA recording by dragging and dropping

1. Locate the JRA recording on your system.

2. Drag and drop the file to JRockit Mission Control.

Workf l ow Descr ip t i on fo r C reat ing and Ana l y z ing a JRA Reco rd ing

2-12 BEA JRockit Runtime Analyzer

To open a JRA recording within JRockit Mission Control

1. In JRockit Mission Control, click File > Open file > Open JRA Recording.

2. Locate and select the recorded file and click Open.

3. Click OK.

The JRA General tab now opens and you can view the data in the recording (see
Figure 6-1).

Note: If you have opened a recording that has been recorded with an older version of the
JRA, some fields may not have any relevant data, since that data was impossible to
obtain. That data will appear as “N/A”.

To open a JRA recording that was created with a JRockit 1.4 version

1. Start the JRA Tool with java -jar RuntimeAnalyzer.jar.

2. Click File > Open file.

3. Locate and select the recorded file and click Open.

The Improve JRockit window opens. In this window you find information on how you can
help the JRockit engineering team improving JRockit and the JRA.

4. Click OK.

The General tab opens.

5. Perform Changes in Application or Use Other
Command-line Options for BEA JRockit

For your second recording, you should make changes to either your Java application or the
command-line options of BEA JRockit. Typical changes can be setting a different heap size on
the nursery or changing the garbage collector in JRockit. Another good comparison could be to
start your application with a newer version of JRockit, to see if the out-of-the box performance
gives you better and more desired results.

6. Create a New JRA Record ing

BEA JRockit Runtime Analyzer 2-13

6. Create a New JRA Recording
Create a new recording with the new settings or other JRockit version. The recording that you are
comparing should be of the same length for optimal comparable data. See 3. Create JRA
Recording for information on how to start a recording.

7. Compare and Contrast Two Recordings in the JRA Tool
The JRA Tool is excellent to use for comparing and contrasting recordings. Open both recordings
in the JRA Tool and lay them next to each other to compare the results.

To compare and contrast JRA recordings

1. Create two recordings, one for each setting you wish to try.

2. Open both recordings and lay them out in the JRA Tool next to each other (Figure 2-4).

Figure 2-4 Comparing two JRA recordings in the JRA Tool

Workf l ow Descr ip t i on fo r C reat ing and Ana l y z ing a JRA Reco rd ing

2-14 BEA JRockit Runtime Analyzer

Figure 2-4 shows the difference in Java heap content between two JRA recordings. The
upper recording has much more dark matter than the lower one. The dark matter can cause
disk fragmentation and will eventually slow down your application.

BEA JRockit Runtime Analyzer 3-15

C H A P T E R 3

Alternative Ways to Start a JRA
Recording

The default behavior is to start the JRA recording from within Mission Control (see 3. Create JRA
Recording), but there are two alternate ways to start a recording. This section describes the two
alternative ways to start a JRA recording.

Starting a Recording with jrcmd

Starting a Recording From the JRockit Command Line

Starting a Recording with jrcmd
1. Make sure that your application is running and is under load.

If you run the application without stress, the data captured from that application will not
show where there is room for improvements.

2. Use one of the following commands to initiate a recording:

Windows platforms:
bin\jrcmd.exe <pid> jrarecording time=<jrarecording time>

filename=<filename>

Unix platforms:
bin/jrcmd <pid> jrarecording time=<jrarecording time> filename=<filename>

Where the arguments are:

Al te rnat ive Ways to S tar t a JRA Record ing

3-16 BEA JRockit Runtime Analyzer

– jrarecording time—the duration of the recording in seconds (a good length is 300
seconds, i.e., five minutes).

– filename—the name of the file you want to save the recording to (for example
jrarecording.xml.zip). The file will be created in the current directory of the
JRockit process. It will be overwritten if it already exists.

For example:
bin\jrcmd.exe <pid> jrarecording time=300 filename=c:\temp\jra.xml.zip
Starts a JRA recording of 300s and stores the result in the specified file.

After the recording is initiated, BEA JRockit prints a message indicating that the recording
has started. When the recording is done, it will print another message; it is now safe to shut
down your application.

Starting a Recording From the JRockit Command Line
Use the -XXjra command in combination with an option listed in Table 3-1, for example,
-XXjra:recordingtime to specify the duration of the recording.

Table 3-1 Command Line Startup Options

Option Description

delay Amount of time, in seconds, to wait before recording starts.

recordingtime Duration, in seconds, for the recording. This is an optional parameter. If you
don’t use it, the default is 60 seconds.

filename The name of recording file. This is an optional parameter. If you don’t use it,
the default is jrarecording.xml.

sampletime The time, in milliseconds, between samples. Do not use this parameter unless
you are familiar with how it works. This is an optional parameter.

nativesamples Displays method samples in native code; that is, you will see the names of
functions written in C-code. This is an optional parameter.

methodtraces You can set this to false to disable the stack trace collection that otherwise
happens for each sample. The default value is true.

Star t ing a Reco rd ing F rom the JRock i t Command L ine

BEA JRockit Runtime Analyzer 3-17

Note: Setting methodtraces to false can still result in some stack traces being captured. These
stack traces are captured as part of JRockit’s dynamic optimizations and will have a depth
of 3. If optimizations are turned off (-Xnoopt) these traces will not be captured.

The startup options that you have used are shown in the VM Arguments tab on the General tab.
See View VM Arguments.

Listing 3-1 shows an example of how you can setup a JRA recording.

Listing 3-1 An example of using the -XXjra startup command:

-XXjra:delay=10,recordingtime=100,filename=jrarecording2.xml

would result in a recording that:

Commenced ten seconds after JRockit started (delay=10).

Lasted 100 seconds (recordingtime=100).

Was written to a file called jrarecording2.xml (filename=jrarecording2.xml).

tracedepth Sets the number of frames that will be captured when collecting stack traces.
Possible value are 0 through 16. The default value is 16.

heapstat=<true |
false>

Allows you to enable or disable the tracking of heap statistics.
• -XXjra:heapstat=true enables heap statistic tracking
• -XXjra:heapstat=false disables heap statistic tracking.

This tracking is enabled by default but, under certain circumstances can
adversely affect transaction latency. In those situations, it is strongly
recommended that you disable heap statistic tracking.

Table 3-1 Command Line Startup Options

Option Description

Al te rnat ive Ways to S tar t a JRA Record ing

3-18 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 4-19

C H A P T E R 4

Using the JRA Tool

How to use the JRA Tool is divided into the following topics:

Getting Started with the BEA JRockit Runtime Analyzer Tool

General Information in a JRA Recording

Methods and Call Trace Information

Garbage Collection Events Information

General Garbage Collector Information

Java Heap Content Information

Objects Information

Code Optimization Information

Lock Profiling Information

Start and End Processes Information

Threads Information

Using the Latency Tabs

Latency Log Information

Latency Graph Information

Latency Traces Information

Using the JRA Too l

4-20 BEA JRockit Runtime Analyzer

Adding Comments and Notes to a Recording

BEA JRockit Runtime Analyzer 5-21

C H A P T E R 5

Getting Started with the BEA JRockit
Runtime Analyzer Tool

A JRA recording comes with a wealth of information that might seem cumbersome to interpret
at first. You need to keep in mind, however, that the recording should be used when you know
that you have a problem with your application, then the JRA information can help you visualize
those problems so that you have a better chance of fixing them.

This topic gives an overview of the JRA Tool components and how to customize the tool itself.
It includes the following sections:

Starting the JRA Tool

JRA Tool Overview

Customizing Your JRA Tool

Starting the JRA Tool
There are two ways the JRA Tool is started: either automatically when you have created a
recording (see To use the normal recording profile) or when you open an already existing
recording (see To open a JRA recording within JRockit Mission Control).

Note: If you are running a JRockit based on Java 1.4, the JRA Tool does not open automatically
when the recording is completed.

JRA Tool Overview
The JRA Tool is a multi-tabbed interface, each tab allowing you to monitor different aspects of
a JRA recording. New for Mission Control 3.0, is that you can view thread information and thread

Get t ing Star ted w i th the BEA JRock i t Runt ime Ana l yze r Too l

5-22 BEA JRockit Runtime Analyzer

latency information. When all types of recording data has been collected and when all tabs are
activated, the JRA Tool includes eleven tabs within the main window (Figure 5-1). When you
view Latency information, the extra tabs (outside the main JRA Tool window) Event Types and
Properties are also used (marked 2 in Figure 5-1).

Note: The number of tabs that are displayed depends on the JRA recording itself (if all sample
data has been collected or not) and settings in the Properties window (see Turning on/off
Tabs).

Figure 5-1 JRA Tool overview

The main JRA Tool window is divided into the following sections:

1. The main JRA Tool window—the available tabs depends on settings in the Preferences
window and the type of data collected in the JRA recording.

2. Tabs that are valid for Latency trouble shooting only.

3. Tabs for different aspects of the JRA recording.

JRA Tabs a t a G lance

BEA JRockit Runtime Analyzer 5-23

JRA Tabs at a Glance
The following information about the tabs are available:

Getting Familiar with the General Tab

Getting Familiar with the Methods Tab

Getting Familiar with the GC General Tab

Getting Familiar with the GCs Tab

Getting Familiar with the Heap Tab

Getting Familiar with the Objects Tab

Getting Familiar with the Optimizations Tab

Getting Familiar with the Locks Tab

Getting Familiar with the Processes Tab

Getting Familiar with the Threads Tab

Getting Familiar with the Latency Log Tab

Getting Familiar with the Latency Graph Tab

Getting Familiar with the Latency Traces Tab

Adding Comments and Notes to a Recording

Customizing Your JRA Tool
You can customize your JRA Tool in the following ways:

Turning on/off Tabs

Changing Table Settings

Filtering Information

Collapsing and Expanding an Information Panel

Changing Layout of a Tab

Get t ing Star ted w i th the BEA JRock i t Runt ime Ana l yze r Too l

5-24 BEA JRockit Runtime Analyzer

Turning on/off Tabs
When you create a JRA recording, there are several options that you can choose to record or not
(see 3. Create JRA Recording). If you decide to exclude something from the recording, the JRA
Tool automatically excludes the tab that does not contain any information. This way, you will not
get so many tabs to maneuver within the JRA Tool. You can, however, have the JRA Tool show
all tabs, by turning on that function in the Preferences window.

To set preferences for the JRA Tool

1. Click Window > Preferences.

The Preferences window opens (Figure 5-2).

Figure 5-2 Setting preferences in the JRA Tool

2. Select none, one, or both of the JRA preferences:

– Show every tab...—when you choose to see every tab, the JRA Tool shows all tabs in
the interface regardless of if the tab contains any information.

– Enable extra information...—the extra information is only useful to BEA JRockit
support personnel and this option is used if you have been asked to send a JRA
recording to your BEA support representative.

3. Click Apply for the settings to take effect.

4. Click OK to close the Preferences window.

Chang ing Tab le Se t t ings

BEA JRockit Runtime Analyzer 5-25

Changing Table Settings
The JRA Tool lists a lot of information in different tables. These tables can be customized to
display information of your choice. You can also preset the width of the columns in the tables.

Note: You need to change the settings per table, i.e. there is no global change to all tables since
they contain different types of information depending on the tab you are looking at.

To change the settings of the table

1. Click the Table settings button (Figure 5-3).

Figure 5-3 Table settings button

A Table settings window appears (Figure 5-4).

Get t ing Star ted w i th the BEA JRock i t Runt ime Ana l yze r Too l

5-26 BEA JRockit Runtime Analyzer

Figure 5-4 Table settings window

2. Select what you want displayed in the table.

3. Set the Min. width and Weight of the column (optional) to a pixel value of your choice.

4. Select Initial sort order for a table item that you want the table to be sorted by.

5. Click OK.

Filtering Information
Some of the information tables can contain lengths of data that can be hard to scroll through.
Instead of scrolling through the long tables, you can filter for the information that you are
interested in viewing.

To filter information

1. Select a table column name for which you want to filter the information. In this example,
Figure 5-5, Pause Time was selected.

2. Enter a number or text for the information you want to see. In this example, Figure 5-5, 60*
was used to see all Pause Times that contains a value starting with 60.

Co l laps ing and Expand ing an In fo rmat ion Pane l

BEA JRockit Runtime Analyzer 5-27

Figure 5-5 Filtering information

Collapsing and Expanding an Information Panel
Sometimes the information on a tab can be cumbersome to work with, then it is good to collapse
the view of the panels that you are not working with or viewing.

To collapse/expand a view

Click on the small arrow next to a description field (see highlight in Figure 5-6) to collapse
the view of the General Information field.

Figure 5-6 Collapsing a view

Changing to view less values by right clicking a field. The next time you start the JRA Tool, you
will not see the specific field.

Changing Layout of a Tab
Sometimes the method names are hard to view in the default horizontal layout, therefore, you
might want to change the layout to a vertical view instead.

Get t ing Star ted w i th the BEA JRock i t Runt ime Ana l yze r Too l

5-28 BEA JRockit Runtime Analyzer

To change the layout of a tab

Click either the Horizontal layout or the Vertical layout button in the right hand corner of
the tab that you are viewing (Figure 5-7).

Note: Not all tabs have this functionality.

Figure 5-7 Horizontal and Vertical layout buttons

BEA JRockit Runtime Analyzer 6-29

C H A P T E R 6

General Information in a JRA Recording

The JRA recording contains a lot of data about the application’s behavior, information about
JRockit itself, such as JRockit version and which commands were used at the startup of JRockit.
That general information is displayed on the General tab in the JRA Tool.

For recordings that have been generated with a JRockit that is older than R26.4, you should still
be able to open them in this version of the JRA Tool; however, some fields may be blank, since
older versions of JRockit did not have the same recording capabilities as newer releases.

Note: Only text fields that require extra explanations have been covered in this documentation.

This section is divided into the following topics:

Getting Familiar with the General Tab

Viewing General Information

Viewing Memory Usage Information

Viewing Miscellaneous Information

Viewing Memory Allocation Information

Viewing Threads Information

Viewing Exceptions Information

Gene ra l I n fo rmat ion in a JRA Record ing

6-30 BEA JRockit Runtime Analyzer

Getting Familiar with the General Tab
The General tab (Figure 6-1) contains information on both JRockit, your system, and your
application.

Figure 6-1 The General tab

The General tab is divided into the following sections:

1. General Information—contains all general information about the JVM, operating system,
recording time, etc.

2. Memory Usage—contains information on how JRockit is using the memory.

View ing Genera l In fo rmat ion

BEA JRockit Runtime Analyzer 6-31

3. Miscellaneous—contains additionalinformation about a recording. This section is divided
into two tabbed panels:

– VM Arguments—lists all startup options that were used.

– Recording Parameters—lists all the configurable options used during the recording
and the values seet for them.

4. Allocation—contains information on how your application allocates memory on the Java
heap.

5. Threads—contains information on thread usage.

6. Exceptions—contains exceptions related information.

Viewing General Information
This panel displays (Figure 6-2) information about the JRockit version, the operating system
version, number of CPUs that has been used during the recording, etc.

The value Actual recording time can differ from expected recording time, e.g. if the
application that runs on BEA JRockit finished while a recording was still in progress.

The Maximum heap size is set with a JRockit command-line option.

The VM information can be information regarding the garbage collection that has been
used.

The value Number of codeblocks is a JVM internal value. All generated code is divided
into (non-heap) memory blocks called code blocks.

Gene ra l I n fo rmat ion in a JRA Record ing

6-32 BEA JRockit Runtime Analyzer

Figure 6-2 General Information panel

Viewing Memory Usage Information
This panel (Figure 6-3) shows a snapshot of the memory usage before and after the recording.

The value Committed java heap was the current total heap size at the beginning and the
end of the recording. It is less than or equal to the maximum heap size.

Figure 6-3 Memory Usage panel

Viewing Miscellaneous Information
The Miscellaneous panel is a tabbed interface that shows information that can help you better
understand a recording. In this section, you can:

View VM Arguments

View Recording Parameters

Viewing Misce l laneous In fo rmat ion

BEA JRockit Runtime Analyzer 6-33

View VM Arguments
This panel displays (Figure 6-4) the different command-line options that were used when starting
JRockit. The options that have been used in the example are the following:

The JRA recording records latencies (XXjra:latency) has been set (100 seconds).

The name of the recorded file has been set (filename) and the duration of the recording
(recordingtime).

The initial, minimum and maximum Java heap has been set (-Xms and -Xmx)

Some non-standard (BEA internal) D-options have also been set in this example.

There are many more command-line options that can be set. For comprehensive information on
the different command-line options, please see the BEA JRockit Reference Manual.

Figure 6-4 VM Arguments

View Recording Parameters
This panel displays all configurable options used in the current recording and the values attributed
to those options.

Figure 6-5 Recording Parameters

You can determine which options you can see by specifying a filter. To filter options, do the
following

1. Select a table column name for which you want to filter the information. In Figure 6-6, the
Key column was selected.

Gene ra l I n fo rmat ion in a JRA Record ing

6-34 BEA JRockit Runtime Analyzer

2. Enter text for the information you want to see; for example, in Figure 6-6, cpu* was entered
to limit the options displayed to just those beginning with the text string “cpu”.

Figure 6-6 Filtered Recording Paramters

Viewing Memory Allocation Information
This panel displays information about how JRockit is allocating memory on the Java heap
(Figure 6-7). A Thread Local Area (TLA) is a JRockit internal value. It is a small memory area,
local to a thread, where the JVM can allocate small objects without having to take the heap lock.
For an in-depth explanation of how TLA works, please see Setting the Thread Local Area Size in
the BEA JRockit Diagnostics Guide. See also -XXtlaSize in the BEA JRockit Reference
Manual for more information on how to set different values of the TLA size.

Preferred thread local area (TLA) size is the value that you have set with the
command-line option -XXtlasize:preferred <size>.

Minimum thread local area size is the value that you have set with the command-line
option -XXtlasize:min <size>.

Ratio of bytes for large/small objects. Per default, JRockit considers an object to be large
if it is larger than the thread local area size; it is small if it would normally fit in a thread
local area. Large objects are always allocated in the old space (second generation) of the
heap, never in the nursery.

The Number (#) free list misses is a JRockit internal value. JRockit has a list of free
memory blocks on the Java heap. During allocation, an object is normally put in the first
free block on the “free list.” If it does not fit there, JRockit will try the next block, and the
next, etc. Each block where the code block did not fit is considered a “free list miss.”

Viewing Threads In fo rmat ion

BEA JRockit Runtime Analyzer 6-35

Figure 6-7 Allocation panel

Viewing Threads Information
This panel displays (Figure 6-8) information on the number of Java threads that existed both
before and after the recording.

The value of Total number of threads before/after recording shows how many threads
were active before the recording started and how many were active when the recording
ended.

The value of Number of deamon threads before/after recording is the number of
deamon threads. A deamon thread is a thread that runs in the background to support the
runtime environment, for example, a garbage collector thread. The JVM exists when all
non-daemon threads have completed.

The value Number of threads started during recording shows how many threads were
started.

The value System total of # (number) context switches per second is fetched from the
operating system. An unusually high context switch value compared to other applications
may indicate contention in your application.

Figure 6-8 Threads panel

Gene ra l I n fo rmat ion in a JRA Record ing

6-36 BEA JRockit Runtime Analyzer

Viewing Exceptions Information
This panel displays (Figure 6-9) information on the total number of Java exceptions that are
thrown during a recording. This includes both caught and uncaught exceptions. Excessive
exception throwing can be a performance problem. Hardware generated exceptions are
originating from a “trap” in the hardware and are usually the most “expensive” kinds of
exceptions.

Figure 6-9 Exceptions information

BEA JRockit Runtime Analyzer 7-37

C H A P T E R 7

Methods and Call Trace Information

Methods where JRockit spends most of its time are called hot. Once you have identified such a
method, you might want to investigate it to see if it is a “bottleneck” for the application or not.
The way that BEA JRockit collects method information is via a sampling thread that is called the
hotspot detector. It uses statistical sampling to find Java methods that are candidates for
optimization. The samples are collected by iterating through the Java threads in the virtual
machine and suspending them one at a time. The current instruction pointer of the suspended
thread is used to lookup in which Java method the thread is currently executing. The invocation
count of the method is incremented and the method is added to a queue of methods to be
optimized if the invocation count exceeds a certain threshold.

The JRA recording system makes use of the hotspot detector by setting it to a high sampling
frequency during the recording and directing the samples to the .jra file.

This section is divided into the following topics:

Getting Familiar with the Methods Tab

Viewing Hot Methods

Viewing Predecessors and Successors

Getting Familiar with the Methods Tab
The Methods tab (Figure 7-1) lists the top hot methods, with its predecessors and successors,
that were recorded.

Methods and Ca l l T race In fo rmat ion

7-38 BEA JRockit Runtime Analyzer

Figure 7-1 The Methods tab

The Methods tab is divided into the following sections:

1. Top Hot Methods—a listing of the top hot methods. Click on the different table headings to
get a different sort order.

2. Filter column—see Filtering Information on how to use this function.

3. Predecessors—a listing of all preceding methods to the method that you have selected in the
Top Hot Methods list. If you have selected many methods, there will not be any information
shown in this panel.

4. Successors—a listing of all succeeding methods to the method that you have selected in the
Top Hot Methods list. If you have selected many methods, there will not be any information
shown in this panel.

V iewing Hot Methods

BEA JRockit Runtime Analyzer 7-39

Viewing Hot Methods
The method sampling in JRockit is based on CPU sampling. This requires that you put load on
the system to get any samples. The Top Hot Methods table (Figure 7-2) lists all methods
sampled during the recording and sorts them with the most sampled method s first. These are the
methods where most of JRockit’s time is spent.

Figure 7-2 Top Hot Methods shown

Note: If your recording has native sampling enabled during the recording, you can see methods
prefixed by jvm, which are native methods in JRockit.

Use the filtering function to find the method you are looking for, see Filtering Information.

Viewing Predecessors and Successors
By selecting a method in the Top Hot Methods table, you can see its sampled Predecessors and
Successors (Figure 7-3). The predecessors are the methods that call the selected method and the
successors are the methods that the selected method calls.

Methods and Ca l l T race In fo rmat ion

7-40 BEA JRockit Runtime Analyzer

Figure 7-3 Viewing Predecessors and Successors

The number within brackets of a particular predecessor or successor is the number of sampled
call traces of which the method is part. The percentage shows how common a particular path is
in the method tree. If you see methods that are called a lot from JRockit, you might want to
investigate if that method is causing your application to run slower than necessary.

BEA JRockit Runtime Analyzer 8-41

C H A P T E R 8

General Garbage Collector Information

The GC General tab shows an overview of information about all garbage collections (GC) that
took place during the recording. The information includes, amongst other, the total number of
pause times and when and how the garbage collector has changed strategy.

This section is divided into the following topics:

Getting Familiar with the GC General Tab

Viewing General Garbage Collection Information

Viewing Garbage Collection Call Tree Information

Viewing Garbage Collection Strategy Changes Information

Getting Familiar with the GC General Tab
The GC General tab (Figure 8-1) shows general information about a garbage collection, its call
tree, and what garbage collection strategies have taken place.

Gene ra l Garbage Co l l ec to r In fo rmat ion

8-42 BEA JRockit Runtime Analyzer

Figure 8-1 The GC General tab

The GC General tab is divided into the following sections:

1. General—this panel shows overall statistics about the garbage collections during the entire
JRA recording.

2. Garbage Collection Call Tree—this panel is a collection of all call traces that were sampled
for all garbage collections for the JRA recording.

3. GC Strategy Changes—this table lists when a garbage collection strategy took place and
how it changed.

4. Filter column—see Filtering Information on how to use this function.

Viewing General Garbage Collection Information
The General panel (Figure 8-2) shows general garbage collection information such as the total
number of garbage collections during the recording and the duration of all pause times due to

Viewing Garbage Co l l ec t i on Ca l l T ree In fo rmat ion

BEA JRockit Runtime Analyzer 8-43

garbage collection. You can use this information to, for example, see whether your application is
coming down to desired pause time averages or not.

Figure 8-2 General Garbage Collection Information

Viewing Garbage Collection Call Tree Information
The Garbage Collection Call Tree panel (Figure 8-3) shows all call traces during the recording
that triggered a garbage collection. The number within the brackets (next to the garbage bin icon)
is the total number of garbage collection rounds that were performed during the JRA recording.
Expand the call tree to see in which methods the garbage collection has taken place.

Figure 8-3 Garbage Collection Call Tree Information

Viewing Garbage Collection Strategy Changes
Information

The Garbage Collection Strategy Changes table (Figure 8-4) lists when the garbage collector
has changed strategy, for example, JRockit has been set to run for best throughput
(-Xgcprio:throughput, GC Prio in Figure 8-4), then JRockit changes strategy in runtime to
best reach this goal. The strategy change can, for example, be from singleParPar to
genParPar. The strategy changes are listed under New Strategy. The old strategies are listed
under Generational, Mark Phase, and Sweep Phase.

Gene ra l Garbage Co l l ec to r In fo rmat ion

8-44 BEA JRockit Runtime Analyzer

Note: These strategy changes only happen if you are running JRockit with the default garbage
collector option, -Xgcprio.

Figure 8-4 Garbage Collection Strategy Changes Information

In the example seen in Figure 8-4, there has been one strategy change for the garbage collector.

Use the filtering function to find a specific garbage collection, see Filtering Information.

BEA JRockit Runtime Analyzer 9-45

C H A P T E R 9

Garbage Collection Events Information

The GCs tab shows detailed information about each garbage collection (GC) event that has
occurred. The tab contains a graph for Java heap usage before and after each garbage collection
as well as detailed garbage collection information for each collection.

This section is divided into the following topics:

Getting Familiar with the GCs Tab

Changing Focus on GC Chart

Viewing Specifics about Garbage Collections

Viewing the Detailed Information About the Garbage Collection

Getting Familiar with the GCs Tab
The GCs tab visualizes how and when a garbage collection has occurred during the running of
the application (Figure 9-1). It also shows specific information for each garbage collection.

Garbage Co l l ec t i on Events In fo rmat ion

9-46 BEA JRockit Runtime Analyzer

Figure 9-1 The GCs tab

The GCs tab is divided into the following sections:

1. GCs Overview timeline—this timeline shows the entire recording in its full length (when you
initially open your recording). You can use this to refocus the Heap Usage graph, see
Changing Focus on GC Chart.

2. Heap Usage graph—this graph shows heap usage compared to pause times and how that
varies during the recording. If you have selected a specific area in the GC Chart, you will only
see that section of the recording. You can change the graph content in the Heap Usage
drop-down list (marked 6 in Figure 9-1) to get a graphical view of the references and
finalizers after each old collection.

3. Garbage Collections events—this list shows all garbage collection events that have taken
place during the recording. When you click on a specific event, you will see a corresponding
flag in the Heap Usage graph for that particular event, see Viewing Specifics about Garbage
Collections.

Changing Focus on GC Chart

BEA JRockit Runtime Analyzer 9-47

4. Details—this panel contains all the details about the specific garbage collection round. When
you select a garbage collection in the Garbage Collection list, the tabs in the Details panel
changes depending on if you have selected an old collection or a young collection.

5. Chart Configuration—this section allows you to change the appearance on the active chart.

6. Drop-down list and Show strategy changes—the drop-down list allows you to toggle
between the Heap Usage and the References and finalizers view on the Heap Usage chart. If
you select Show strategy changes, you will see when JRockit has changed garbage collection
strategy.

7. Move and Zoom buttons—these buttons are used with the GCs Timeline.

Changing Focus on GC Chart
Depending on how long your JRA recording is, the GC Chart can be quite cumbersome to view
in full mode; therefore, you can refocus the chart. by dragging the handles on the slide bar to the
section of the recording that you want to view. Once you have set the side on the slide bar, you
can slide that section to the position of the chart that you are interested in studying.

The two ways to refocus on the GC Chart are described here:

To change focus on the Heap Usage chart

To use the Move and Zoom buttons for the GC Chart

To change focus on the Heap Usage chart

1. Click and drag the handles on both sides on the GC Chart (Figure 9-2).

Figure 9-2 The GC Chart zoom function

2. Drag the GC Chart into the desired position (Figure 9-3).

Garbage Co l l ec t i on Events In fo rmat ion

9-48 BEA JRockit Runtime Analyzer

Figure 9-3 The GC Chart

To use the Move and Zoom buttons for the GC Chart

1. Click the Move forward or Move backward buttons (marked 1 in Figure 9-4) to first
decrease the GC Chart view.

Figure 9-4 Move and Zoom buttons

2. Click either of the Move buttons to slide the focus on the GC Chart.

3. Click the Zoom in or Zoom out buttons (marked 2 in Figure 9-4) to decrease or increase the
visible span of the GC Chart.

Viewing Specifics about Garbage Collections
The Garbage Collections table on the GCs tab is a list of all garbage collections that have taken
place during the recording. It lists all garbage collection events during the recording, provided
that the garbage collection sampling was enabled. If you use the dynamic garbage a garbage
collection can be an old collection, which is a garbage collection in the old space of the Java heap
or a young collection, which is a garbage collection in the young space (nursery). If you use a
static garbage collector, there will not be any old or young collections. For more information on
garbage collections, please see Garbage Collection in BEA JRockit in the BEA JRockit
Diagnostics Guide.

This section is divided into the following topics:

Viewing Spec i f i cs about Garbage Co l l ec t i ons

BEA JRockit Runtime Analyzer 9-49

To view one garbage collection in the GC Chart

To view many garbage collections in GC Chart

To view one garbage collection in the GC Chart

1. Scroll in the Garbage Collection list to the garbage collection you want to view.

2. Click on that garbage collection.

The garbage collection index number is now visible in the GC Chart and the Details panel
has also changed to show all the specifics about that garbage collection.

The Details panel changes name depending on if the selected event is an old collection or a
young collection (Figure 9-5).

Figure 9-5 Viewing one garbage collection

To view many garbage collections in GC Chart

1. Scroll the Garbage Collections list.

2. Click and hold either the Shift key or Ctrl key to select multiple collections.

The garbage collection index numbers are now visible in the GC Chart (Figure 9-6).

Note: The garbage collection event that was last selected is the one that is displayed in the
Details panel.

Garbage Co l l ec t i on Events In fo rmat ion

9-50 BEA JRockit Runtime Analyzer

Figure 9-6 Viewing multiple garbage collections

Viewing the Detailed Information About the Garbage
Collection

When you select a garbage collection, the Details panel of the GCs tab changes name to either
Details - Old Collection or Details - Young Collection depending on the type of garbage
collection you have selected. You will also see different sets of tabs that contain specific
information about the garbage collection that you have selected (Figure 9-7).

Figure 9-7 Tab differences when viewing old and young collections

Each one of these tabs are described here. As much of the information in the tabs are fairly
self-explanatory, those types of details will not be covered in the documentation.

This section describes the following tabs:

Viewing In fo rmat ion on the Genera l Garbage Co l l ec t i on Tab

BEA JRockit Runtime Analyzer 9-51

Viewing Information on the General Garbage Collection Tab

Viewing Information on the GC Method Call Tree Tab

Viewing Information on the Old/Young Collection Tab

Viewing Information on the Cache Lists Tab

The Pause Time Tab

Viewing Information on the General Garbage Collection
Tab

The General tab (Figure 9-8) displays information such as start time and end time of the garbage
collection.

Figure 9-8 The General garbage collection tab

Sum of Pauses—the sum of all pause times in milliseconds that the garbage collector stops
all threads in JRockit. This is not the same as end time-start time in the case of a
concurrent garbage collector.

Start/End Time—the times when the garbage collection started and ended, counted in
milliseconds from when JRockit started.

Heap Usage Before/After—the used heap size before or after the garbage collection.

Committed Heap Size—the total size of the heap (used plus unused memory) after the
garbage collection.

Size of Promoted Objects (and number of Promoted Objects)—the size (and the amount)
of the objects that have been promoted to the old space.

Garbage Co l l ec t i on Events In fo rmat ion

9-52 BEA JRockit Runtime Analyzer

References—there are several types of references collected during a recording. For
information on what a reference is, see Viewing Reference Objects in the Diagnostics
Guide.

Finalizer Queue Length (and Before)—the finalizer queue length.

Generation—Indicates whether the garbage collector performed an old or young collection
(see Generational Garbage Collection in the Diagnostics Guide for more information on
generational garbage collection). If a parallel garbage collector has been used, there will be
only old collections in the Garbage Collections list.

Viewing Information on the GC Method Call Tree Tab
The GC Method Call Tree tab (Figure 9-9) shows an aggregation of the call traces of the threads
triggering a garbage collection.

Figure 9-9 The GC Method Call Tree tab

Viewing Information on the Old/Young Collection Tab
The name of this tab is dynamically changed when you select a garbage collection instance in the
Garbage Collections table. Here you find information about nursery, mark and sweep pause
times, etc. (Figure 9-10).

Viewing In fo rmat ion on the Cache L is ts Tab

BEA JRockit Runtime Analyzer 9-53

Figure 9-10 The Old/Young Collection tab

Nursery Size Before/After—indicates the free space in the nursery before and the free
space in the nursery after the garbage collection (in some cases the nursery size increases).

The information below is only valid for old collections:

Nursery Start/End Position—the starting and ending position in the memory address of
nursery.

Mark/Sweep Phase Time—the time spent in the marking and sweep phases, measured in
milliseconds.

Compacted Size—the size of the heap that has been compacted in the garbage collection.

Compaction Ratio—the ratio of heap size before and after the compaction, measured in
percent.

Desired/Actual evacuation—the desired evacuation is the size of the area on the Java
heap that you want to evacuate and the actual evacuation is the size of the area that JRockit
managed to evacuate. The value for actual evacuation can be smaller than the desired due
to temporarily pinned objects (objects that are not allowed to be moved during garbage
collection). The evacuation takes place during compaction or shrinking of the Java heap.

GC Reason—indicates the reason for doing this garbage collection.

Viewing Information on the Cache Lists Tab
The Cache Lists tab (Figure 9-11) displays the specification for the different cache lists. Each
cache list contains settings for upper and lower cache size.

Garbage Co l l ec t i on Events In fo rmat ion

9-54 BEA JRockit Runtime Analyzer

Figure 9-11 The Cache Lists tab

Index—this is the identification number for the cache list.

#free blocks—the number of free blocks in the cache list.

Cache size—the total size of this cache list.

Avg free block size—the average size of each free memory block in the cache list.

Low limit—the lower limit of a free memory block. There will be no smaller memory
block than this in the selected cache list.

High limit—the upper limit of a free memory block. There will be no larger memory
blocks than this in the selected cache list.

The Pause Time Tab
The information under the Pause Time tab is mainly intended for BEA JRockit internal use when
you have sent a JRA recording for analysis to the JRockit engineering team.

GC Pause—this column displays the names of the pauses (the main entry in the tree
structure). If you are running a parallel garbage collector, then there will only be one pause
per garbage collection. For the concurrent garbage collector, there can be several pauses
during one garbage collection. The pauses consists of pause parts that can help the JRockit
engineering staff to analyze why certain pauses are longer than others.

The Pause T ime Tab

BEA JRockit Runtime Analyzer 9-55

Note: During a pause, the application is standing still.

Duration—this is the length, measured in milliseconds, of the pause.

Start/End—this is the start and end time, measured in milliseconds. You can change how
the time is displayed by right-clicking in the table and select Start and then the value for
the time.

Garbage Co l l ec t i on Events In fo rmat ion

9-56 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 10-57

C H A P T E R 10

Java Heap Content Information

The Heap tab gives a quick overview of what the memory in the Java heap consists of in you
application. The overview displays how the heap looked at the end of the recording and it also
shows compiled information about the status of the heap during the entire recording.

This section contains the following topics:

Getting Familiar with the Heap Tab

Viewing the Heap Snapshot at the End of the Recording Information

Viewing the Heap Contents Information

Viewing the Free Memory Contribution Information

Getting Familiar with the Heap Tab
The Heap tab depicts Java heap contents and free memory distribution (Figure 10-1).

Java Heap Content In fo rmat ion

10-58 BEA JRockit Runtime Analyzer

Figure 10-1 The Heap tab

The Heap tab is divided into the following sections:

1. Heap Snapshot at the End of the Recording—this panel contains all the specifics about
your heap at a glance.

2. Heap Contents—this graph gives a visual overview of the distribution of different sizes of
objects. The table below the graph gives the exact data for each category of memory.

3. Free Memory Contribution—this graph gives a visual overview of the distribution of the
different chunks of free memory that there is on the heap. The table below the graph gives the
exact data for each category of memory.

Viewing the Heap Snapshot at the End of the Recording
Information

When the JRA stops recording, it calculates the value of the committed heap size, which is how
much heap the application has been allowed to use. This size can be set by the -xmx flag.

V iewing the Heap Contents In fo rmat ion

BEA JRockit Runtime Analyzer 10-59

The memory that is considered large object chunks, is the total amount of memory on the heap
that the Java application is allowed to use for large objects (64 KB to 512 kB).

The memory for the pinned object chunks is the amount of memory that is occupied by pinned
objects. A pinned object is both referenced by another object in the application and is not allowed
to be moved for compaction purposes, for example, i/o buffers that are accessed from native
methods (native i/o). The number of pinned object chunks shows a value of how many object
that are pinned.

Dark matter is memory that is free, but cannot be used due to the physical layout of the memory
chunk (i.e. it might be too small for the application to allocate). Dark matter can cause
fragmentation on the disk.

Viewing the Heap Contents Information
The Heap Contents pie chart gives a graphic overview of the distribution of objects on the heap.
The color coding helps you determine how much of the heap that consists of large, small, and
pinned object chunks as well as how much memory is considered dark and how much is free. The
amount of dark matter indicates how much space on the Java heap that is wasted due to
fragmentation. It is normal to have a certain amount of dark matter on the heap.

For information on how to minimize dark matter, see Minimize Dark Matter in the BEA JRockit
Diagnostics Guide.

The table below the pie chart (Figure 10-2) lists all objects with the exact data: memory in MB
and percentage that they occupy of the heap.

Figure 10-2 Heap content table

Viewing the Free Memory Contribution Information
The Free Memory Contribution pie chart gives a graphic overview of how the free memory is
distributed in free blocks of different sizes on the Java heap. The table below the pie chart
(Figure 10-3) lists all block sizes by category.

Java Heap Content In fo rmat ion

10-60 BEA JRockit Runtime Analyzer

Figure 10-3 Free memory content table

The block sizes are categorized by the following entities: small, medium, large, and very large.
The block sizes are multiples of the minimum block size set at startup (default 2kB). You set the
minimum block size with the option -XXminblocksize.

Below are the multiples used for the different block sizes:

Small: 1–4

Medium: 4–32

Large: 32–256

Very large: 256 and up

BEA JRockit Runtime Analyzer 11-61

C H A P T E R 11

Objects Information

The Objects tab displays the most common types and classes occupying the Java heap at the
beginning and at the end of the JRA recording.

This section is divided into the following topics:

Getting Familiar with the Objects Tab

Viewing Start of Recording Information

Viewing End of Recording Information

Getting Familiar with the Objects Tab
At the beginning and end of a recording session, snapshots are taken of the most common types
and classes of object types that occupy the Java heap, that is, the types which instances in total
occupy the most memory. The results are shown on the Object tab (Figure 11-1). Abnormal
results in the object statistics might help you detect the existence of a memory leak in your
application.

Objec ts In fo rmat ion

11-62 BEA JRockit Runtime Analyzer

Figure 11-1 The Objects tab

The Objects tab is divided into the following sections:

1. Start of Recording—this table lists the most common types on the heap at the beginning of
the recording.

2. Filter column—see Filtering Information on how to use this function.

3. End of Recording—this table lists the most common types on the heap at the end of the
recording.

Viewing Start of Recording Information
When the JRA starts a recording it looks at the Java heap to see which types occupy the most
memory in the used heap space. That information is listed under the Start of Recording table
(Figure 11-2).

Use the filtering function to find the object you are looking for, see Filtering Information.

Viewing End o f Record ing In fo rmat ion

BEA JRockit Runtime Analyzer 11-63

Figure 11-2 Start of Recording table

Viewing End of Recording Information
Right before the JRA stops a recording it looks at the Java heap to see which types occupy the
most memory in the used heap space. That information is listed under the End of Recording table
(Figure 11-3).

Use the filtering function to find the object you are looking for, see Filtering Information.

Figure 11-3 End of Recording table

Objec ts In fo rmat ion

11-64 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 12-65

C H A P T E R 12

Code Optimization Information

JRockit continuously look for ways to optimize code. The Optimizations tab displays the
methods that were optimized by the adaptive optimization system in JRockit during the
recording.

This section is divided into the following topics:

Getting Familiar with the Optimizations Tab

Viewing Optimization Information

Viewing Methods Optimized During Recording Information

Getting Familiar with the Optimizations Tab
The JRA records all optimization events that occur during the course of the recording. JRockit
uses JIT compilation for the initial conversion to machine code. The most commonly used
methods are then further optimized during the application run. This information is then displayed
in the Optimizations tab (Figure 12-1).

Code Opt imizat i on In fo rmat ion

12-66 BEA JRockit Runtime Analyzer

Figure 12-1 Optimizations tab

The Optimizations tab is divided into the following sections:

1. Optimization—this panel displays the before and after scenario of the optimizations that
have taken place.

2. Methods Optimized During Recording—this table lists which methods that have been
optimized during the recording, i.e. this is necessarily not a full list of all optimizations that
are performed for your application.

3. Filter column—see Filtering Information on how to use this function.

Viewing Optimization Information
The Optimization panel (Figure 12-2) contains information on how many optimizations have
taken place and the total duration of the optimizations. You can also see how many JIT
compilations have been performed and the time JRockit took to compile those. For more
information on JIT compilation, see the Introduction to BEA JRockit JDK.

View ing Methods Opt imized Dur ing Record ing In fo rmat ion

BEA JRockit Runtime Analyzer 12-67

Figure 12-2 Optimization panel

Viewing Methods Optimized During Recording
Information

The Methods Optimized During Recording table (Figure 12-3) lists all methods that were
optimized during the JRA recording. Here you can study the size changes of each method that has
been optimized.

Note: Some optimizations, such as inlining, causes the method size to increase.

Use the filtering function to find the method you are looking for, see Filtering Information.

Figure 12-3 Methods Optimized During Recording table

Code Opt imizat i on In fo rmat ion

12-68 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 13-69

C H A P T E R 13

Lock Profiling Information

The Locks tab shows comprehensive information about lock activity for the application JRA is
monitoring (Java locks) and JRockit itself (native locks). You need to enable the lock profiling
data recording capability before you start the profiling of your application. If you have not
enabled the lock profiling data recording, the lock profiling tables are blank on the Locks tab. For
more information on locks, please refer to About Thin, Fat, Recursive, and Contended Locks in
BEA JRockit.

This section is divided into the following topics:

Getting Familiar with the Locks Tab

Java Locks Profiling

Enabling Java Lock Profiling Data

Native Lock Profiling

Enabling Native Locks Information

Getting Familiar with the Locks Tab
The Locks tab displays lock information for both your application and JRockit (Figure 13-1).

Lock P ro f i l ing In fo rmat ion

13-70 BEA JRockit Runtime Analyzer

Figure 13-1 Locks tab

The Locks tab is divided into the following sections:

1. Java Locks—this table lists all locks in your application.

2. Filter column—see Filtering Information on how to use this function.

3. Native Locks—this table lists all locks in JRockit.

Java Locks Profiling
The information that is displayed under the Java Locks chart (Figure 13-2) shows the number of
locks of the threads in your application. You see information on the number of fat uncontended
and contended locks, thin uncontended and contended locks, thin and fat recursive locks, and fat
sleeping locks. For more information on locks, please refer to About Thin, Fat, Recursive, and
Contended Locks in BEA JRockit.

Use the filtering function to find the Java locks you are looking for, see Filtering Information.

Nat ive Lock P ro f i l ing

BEA JRockit Runtime Analyzer 13-71

Figure 13-2 Java Locks

Enabling Java Lock Profiling Data
To record Java lock profiling data, you need to enable it from the command line when you start
JRockit. If your the Java Locks table is blank, it is not enabled.

To enable Java lock profiling data

Issue the command -Djrockit.lockprofiling at the JRockit command line.

For example:

java -Djrockit.lockprofiling=true -XXjra:<AnyJRAParam> -jar MyApplication.jar

Native Lock Profiling
If you are looking at a recording of JRockit J2SE 5.0 or later, the recording includes information
about native locks (Figure 13-3). Native locks are locks in the JRockit internal code and is
nothing your application can control.

Use the filtering function to find the Java locks you are looking for, see Filtering Information.

Figure 13-3 Native Locks

Lock P ro f i l ing In fo rmat ion

13-72 BEA JRockit Runtime Analyzer

If you find high contention on a JRockit internal lock that might be causing issues for your
application, either contact BEA support or contact JRockit through the BEA JRockit news group
at the dev2dev web site.

Enabling Native Locks Information
Lock profiling data can only be generated from the command line. If you have no information
displayed in the Locks tab, the native sampling was not enabled during the recording. See 3.
Create JRA Recording for information on how to enable native sampling.

BEA JRockit Runtime Analyzer 14-73

C H A P T E R 14

Start and End Processes Information

The Processes tab lists which processes were running during the start and the end of the JRA
recording. The information found on this tab is mostly geared towards engineers within the BEA
customer support (Customer Centric Engineering, CCE) team. CCE uses the information to get a
picture of which applications that were running on the machine when, for example, a crash has
occurred. This tab is not visible by default, so you need to turn it on before you can view that
information.

This section is divided into the following topics:

Turning on the Processes Tab

Getting Familiar with the Processes Tab

Snapshot of Processes at Beginning and End of Recording

Detailed Processes Information

Turning on the Processes Tab
The Process tab is not visible unless you have selected the option Enable extra information for
JRPG CCE in the JRA Preferences

To turn on the Processes tab

1. Click Window > Preferences.

The Preferences window appears.

Star t and End Processes In fo rmat ion

14-74 BEA JRockit Runtime Analyzer

2. Click JRockit Mission Control > Runtime Analyzer (JRA).

3. Select the Enable extra information for JRPG CCE option (Figure 14-1).

Figure 14-1 Preferences window

4. Click Apply.

5. Click OK.

If you have a JRA recording open when you change this preference, you need to close it
and then open it again for the Processes tab to become visible.

Getting Familiar with the Processes Tab
The Processes tab displays start and end information of running processes (Figure 14-2).

Note: You need to enable the Processes tab for it to be visible in the JRA Tool (see To turn on
the Processes tab).

Snapshot o f P rocesses a t Beg inn ing and End o f Reco rd ing

BEA JRockit Runtime Analyzer 14-75

Figure 14-2 Processes tab

The Processes tab is divided into the following sections:

1. Snapshot of the processes running on the machine at the start and at the end of the
recording—this table lists all processes that were active either during the start or the end of
the recording or both.

2. Filter column—see Filtering Information on how to use this function.

3. Process—this panel details the processes information.

Snapshot of Processes at Beginning and End of
Recording

The information that is displayed under the Snapshot view (Figure 14-3) lists all processes that
were running at the start of the recording and at the end of the recording.

Use the filtering function to find the process you are looking for, see Filtering Information.

Star t and End Processes In fo rmat ion

14-76 BEA JRockit Runtime Analyzer

Figure 14-3 Snapshot view

Detailed Processes Information
When selecting a process in the Snapshot view, you see a list of all details for that process at the
bottom of the tab (Figure 14-4). The path, the name of the executable, if the process was present
during start and end, the process ID, and also if the process was started with a command-line
option.

Figure 14-4 Detail process view

BEA JRockit Runtime Analyzer 15-77

C H A P T E R 15

Threads Information

The Threads tab lists all thread dumps that have been taken during the recording. If no Thread
Dump interval (in the recording options) is specified, the recording will contain a thread dump
from the start and the end of the recording. A thread dump reveals information about an
application’s thread activity that can help you diagnose problems and better optimize application
and JVM performance; for example, thread dumps automatically show the occurrence of a
deadlock. Deadlocks bring some or all of an application to a complete halt.

The information found on this tab is mostly geared towards engineers within the BEA customer
support (Customer Centric Engineering, CCE) team. This tab is not visible by default, so you
need to turn it on before you can view that information.

Note: For comprehensive information on how create and use a thread dump, please see the
Using Thread Dumps section in the BEA JRockit Diagnostics Guide.

This section is divided into the following topics:

Turning on the Threads Tab

Getting Familiar with the Threads Tab

List of Times when Thread Dump is Taken

Thread Dump Information

Turning on the Threads Tab
The Threads tab is not visible unless you have selected the option Enable extra information
for JRPG CCE in the JRA Preferences.

Threads In fo rmat i on

15-78 BEA JRockit Runtime Analyzer

To turn on the Threads tab

1. Click Window > Preferences.

The Preferences window appears.

2. Click JRockit Mission Control > Runtime Analyzer (JRA).

3. Select the Enable extra information for JRPG CCE option (Figure 15-1).

Figure 15-1 Preferences window

4. Click Apply.

5. Click OK.

If you have a JRA recording open when you change this preference, you need to close it
and then open it again for the Threads tab to become visible.

Getting Familiar with the Threads Tab
The Threads tab lists the available thread dumps and by clicking on a specific time when a thread
dump was created, you see the entire thread dump in the Thread dump (Figure 15-2).

Note: You need to enable the Threads tab for it to be visible in the JRA Tool (see To turn on
the Threads tab).

L is t o f T imes when Thread Dump i s Taken

BEA JRockit Runtime Analyzer 15-79

Figure 15-2 Threads tab

The Threads tab is divided into the following sections:

1. Thread dumps taken at various times during the recording—this table lists the times
when a thread dump has been taken.

2. Filter column—see Filtering Information on how to use this function.

3. Thread dump—this panel displays the actual content of the selected thread dump.

List of Times when Thread Dump is Taken
The information that is displayed under the Thread dumps taken at various times during the
recording table (Figure 15-3) shows when a thread dump was taken. You set the interval for
taking thread dumps under the advanced option when you create a JRA recording (see To use the
normal recording profile with advanced options).

Use the filtering function to find the specific thread dump, see Filtering Information.

Threads In fo rmat i on

15-80 BEA JRockit Runtime Analyzer

Figure 15-3 Time view

Thread Dump Information
When selecting a thread dump in the Thread dump list view, the entire thread dump is displayed
in the Thread dump panel (Figure 15-4).

Note: To understand the information in the thread dump, please see the Using Thread Dumps
section in the BEA JRockit Diagnostics Guide.

Figure 15-4 Thread dump output

BEA JRockit Runtime Analyzer 16-81

C H A P T E R 16

Using the Latency Tabs

Finding performance bottlenecks within your Java application is a bit of a detective’s work. You
know what the symptoms of the problem are, for example, the application is running really slow
but the CPU isn’t saturated. Where to start looking for clues to such an issue is tricky since most
profiling tools for Java applications only pinpoint where in the code your application is spending
the most time to run (which is a good start). What these tools tend to miss, however, or not show
at all is where in the application stops and waits occur, i.e. where the application spends time
being idle.

These stops and waits can be caused by poor memory management, such as limited heap space
or a poorly managed heap that requires too many garbage collections. On the other hand the stops
and waits can be latencies caused by multi-threaded applications that spend much of the processor
time waiting, blocking, or sleeping. These problems have previously been hard to detect but now
the JRA system is able to record latencies within your application and visualize running threads
with their events in an easy to understand manner.

This section of the help gives you an overview of how you can use the latency tabs in the JRA
Tool to work you way down to a Java application latency. In addition, you get one example of
how a Java application that contains latencies looks on the Latency Graph tab and you will get
an example workflow of how to use all latency tabs together. All in all, you now have a greater
possibility to pinpoint where in the code waits and other latencies occur with the JRA latency
capabilities.

This section is divided into the following topics:

Latency Tabs at a Glance

Using the Latency Tabs

16-82 BEA JRockit Runtime Analyzer

Creating a JRA Recording with Latency Data

Opening a JRA Recording that Contains Latency Data

Shared Functionality Amongst All Latency Tabs

Using the Latency Timeline Slide Bar

What is an Operative Set?

Working with an Operative Set

About the Event Types Tab

Using the Event Types Tab to Decrease Displayed Events

Using the Event Types Tab to Work with Operative Sets

About the Properties Tab

Example of How to Compare two JRA Recordings where one Contains Latencies

Example Workflow of How to Find Latencies

Latency Tabs at a Glance
The JRA Tool contains three tabs that all show latency data from different perspectives. These
tabs are prefixed Latency and named: Latency Log, Latency Graph, and Latency Traces
(Figure 16-1). Together with these three tabs, there two auxiliary tabs that allow you to turn on
and off event types on the latency tabs and view properties.

Note: Depending on your settings in the Preferences (see Turning on/off Tabs), the latency tabs
may be hidden when your recording does not contain latency information. See Creating
a JRA Recording with Latency Data for information on how to enable latency
information in your recordings.

Creat ing a JRA Record ing wi th La tency Data

BEA JRockit Runtime Analyzer 16-83

Figure 16-1 Latency tabs at a glance

Creating a JRA Recording with Latency Data
You create a JRA Recording with latency data in pretty much the same way you create a regular
JRA recording (see 3. Create JRA Recording). The difference, though, is that you use a different
profile for creating a recording with latency data than when you create the “normal” JRA
recording. If you use the profile with minimal overhead, the JRA will not perform a garbage
collection at the end and beginning of the recording, which minimizes the impact on the system
when creating a recording.

For help on the Advanced option for the recording profile, see To use the normal recording profile
with advanced options.

The instructions for how to use the Latency Recording profiles are described in:

To use the normal latency data profile

To use the minimal latency recording profile

Using the Latency Tabs

16-84 BEA JRockit Runtime Analyzer

To use the normal latency data profile

1. Make sure that your application is running and is under load.

If you run the application without load, the data captured from that application will not
show where there is room for improvement.

2. In the JRockit Browser, select the JRockit instance you just started or select an entire folder
with running JRockit instances.

3. Click the Start JRA recording button.

4. The Start JRA Recording dialog box appears (Figure 16-2).

Figure 16-2 JRA recording with normal latency profile

5. Select the connection you want to record.

6. From the Select recording file drop-down list, choose Latency Recording Normal.

7. Type a descriptive name for the recording in the Local filename field.

The file is created in the current directory of the BEA JRockit process, unless you specify
a different path. If an old file already exists, it will be overwritten by the new recording.

8. Set a recording time for the duration of the recording in the Recording time field.

9. Select the time unit you wish to use for specifying the recording time (minutes or seconds).

Creat ing a JRA Record ing wi th La tency Data

BEA JRockit Runtime Analyzer 16-85

Note: If you set a time that is too short, e.g. shorter than 30 seconds, you will probably not
get enough sample data for the recording to be meaningful.

10. Set a threshold value for Latency threshold. The latency threshold is the duration of the
latency itself. As soon as the latency is longer than that threshold, the data will be saved.

For advance option information, see To use the normal recording profile with advanced
options.

11. Click Start.

The JRA recording progress window appears. When the recording is finished, it loads in
the JRA Tool.

To use the minimal latency recording profile

1. Make sure that your application is running and is under load.

If you run the application without load, the data captured from that application will not
show where there is room for improvement.

2. In the JRockit Browser, select the JRockit instance you just started or select an entire folder
with running JRockit instances.

3. Click the Start JRA recording button.

The JRA Recording dialog box appears (Figure 16-3).

Figure 16-3 JRA recording with minimal latency overhead profile

Using the Latency Tabs

16-86 BEA JRockit Runtime Analyzer

4. Select the connection you want to record.

5. From the Select recording file drop-down list, choose Latency Recording Minimal
Overhead.

Minimal overhead means that the capturing of latency data affects the system in the least
possible way, i.e. it will not disturb or put extra load when recording.

6. Type a descriptive name for the recording in the Local filename field.

The file is created in the current directory of the BEA JRockit process, unless you specify
a different path. If an old file already exists, it will be overwritten by the new recording.

7. Set a recording time for the duration of the recording in the Recording time field.

8. Select the time unit you wish to use for specifying the recording time (minutes or seconds).

Note: If you set a time that is too short, e.g. shorter than 30 seconds, you will probably not
get enough sample data for the recording to be meaningful.

9. Set a threshold value for Latency threshold. The latency threshold is the duration of the
latency itself. As soon as the latency is longer than that threshold, the data will be saved.

For advance option information, see To use the normal recording profile with advanced
options.

10. Click Start.

The JRA recording progress window appears. When the recording is finished, it loads in
the JRA Tool.

Opening a JRA Recording that Contains Latency Data
When JRockit is done recording a JRA file with latency data, the recording is automatically
loaded in the JRA Tool.

To enable latency data on a latency tab

1. Click on a tab with the prefix Latency.

The Show JRA Latency Perspective window opens (Figure 16-4).

Shared Funct iona l i t y Amongs t A l l La tency Tabs

BEA JRockit Runtime Analyzer 16-87

Figure 16-4 The Show JRA Latency Perspective window

2. Select Remember my selection if you do not want this window to open the next time you
click on a latency tab.

3. Click Yes.

Shared Functionality Amongst All Latency Tabs
The latency tabs have some functionality that they share, such as the Latency Timeline slide bar,
the possibility to select events for the operative set, the Event Types tab, and the Properties tab
(Figure 16-5).

Figure 16-5 Shared latency tab functionality

These topics explain the shared functionality of the latency tabs:

Using the Latency Tabs

16-88 BEA JRockit Runtime Analyzer

Using the Latency Timeline Slide Bar

What is an Operative Set?

Working with an Operative Set

About the Event Types Tab

Using the Event Types Tab to Decrease Displayed Events

About the Properties Tab

Using the Latency Timeline Slide Bar
The Latency Timeline slide bar is a universal slide bar for all tabs prefixed Latency. It shows the
entire length of the recorded JRA file. Changing the time span or refocusing the Latency Timeline
slide bar affects all latency tabs in the JRA Tool. You can also use the scroll and zoom buttons to
refocus on events within the recording.

The different ways to use the Latency Timeline are described in the following topics:

To decrease the time span on a latency tab

To refocus using the timeline slide bar

To move and zoom using the move and zoom buttons

To reposition the timeline slide bar

To decrease the time span on a latency tab

Click and drag the handles on the sides of the Latency Timeline (Figure 16-6).

Figure 16-6 The Latency Timeline decreased

To refocus using the timeline slide bar

Drag the Latency Timeline into the desired position (Figure 16-7).

Figure 16-7 Refocus on the Latency Graph tab

Using the La tency T imel ine S l ide Bar

BEA JRockit Runtime Analyzer 16-89

To move and zoom using the move and zoom buttons

1. Click the move buttons (left or right) to move the Latency Timeline. The scroll buttons are
marked 1 in Figure 16-8.

Figure 16-8 Move and zoom buttons

2. Click the zoom in/out buttons to shorten the time span on the Latency Timeline. The zoom
in/out buttons are marked 2 in Figure 16-8.

3. Double-click the Latency Timeline slide bar to go back to display the full length of the latency
data.

To reposition the timeline slide bar

1. On the Menu bar, select Windows>Preferences...

The Preferences dialog box appears (Figure 16-9).

Figure 16-9 Preferences dialog box

Using the Latency Tabs

16-90 BEA JRockit Runtime Analyzer

2. In the left panel, select JRockit Mission Control>Runtime Analyzer>Latency.

The L:atency panel appears (Figure 16-10).

Figure 16-10 Preferences dialog box—Latency panel

3. In the Range Selector position box, select the radio button that identifies where you want the
timeline slide bar to appear; for example, if you want move the sliude bar to the bottom of the
tab, select Bottom.

4. Select either Apply (if you want to set more preferences) or OK.

Note: For this change to take affect, you will need to close and reopen the particular recording.

What is an Operative Set?
An operative set is a set of events that you choose to work with. You can think of the operative
set as a selection of events that you find particularly interesting to view. If you select events for
the operative set on one latency tab, those events are remembered for the other latency tabs and
you can easily view those events on the specific latency tab by selecting the Show only
Operative Set option (Figure 16-11).

Work ing w i th an Operat ive Se t

BEA JRockit Runtime Analyzer 16-91

Figure 16-11 Show only Operative Set option

Working with an Operative Set
You can add and delete events in your operative set in different ways depending on which latency
tab you are looking at at the moment. The procedures

To select events for the operative set

and

To remove events for the operative set

describe how to add and remove events from the operative set. To look at the operative set,
describes how to use the operative set within a tab. The ways on how to work with the operative
set is similar on all latency tabs. These instructions describe how the operative set works for the
Latency Log tab.

For an explanation of an operative set, see What is an Operative Set?.

To select events for the operative set

1. Click on any of the latency tabs, for example the Latency Log tab.

2. Right-click on one or select several events in the Event Table.

3. Select Operative Set > Add selection or Operative Set > Set selection.

The Add selection option adds the events to an already existing operative set (or to a new
one).

The Set selection option clears and overrides the current operative set with the events that
you currently have selected.

To remove events for the operative set

1. Click on any of the latency tabs, for example the Latency Log tab.

2. Right-click on one or select several events in the Event Table.

3. Select Operative Set > Remove selection or Operative Set > Clear.

The Remove selection option deletes the currently selected events from an already existing
operative set.

Using the Latency Tabs

16-92 BEA JRockit Runtime Analyzer

The Clear option deletes all events from an already existing operative set.

To look at the operative set

Select the Show only Operative Set on the latency tab that you are at.

Notice that the list of events becomes more manageable.

About the Event Types Tab
The Event Types tab lists the events in relation to where they come from. The Event types
themselves (marked 3 in Figure 16-12) come from a Level (marked 2 in Figure 16-12), and the
Level comes from a Producer (marked 1 in Figure 16-12).

Figure 16-12 Producers, levels, and event types

Below is an explanation of what you can see in the Events Type tab (Figure 16-12):

1. Producers are the part of the system that produced the events, for example, Garbage
Collector and JRockit. A producer can come from a third party that uses the latency recording
API.

2. Levels are a subdivision of producers. Two events within the same level and thread can never
be performed at the same time. Levels are best visualized when looking at a thread in the
Latency Graph tab (see Understanding the Different Parts of a Thread Image). There you see
that the thread is divided into several levels, but two events within a level overlap.

3. Event type is the actual type of event that was responsible for the latency.

Us ing the Event Types Tab to Dec rease D isp layed Events

BEA JRockit Runtime Analyzer 16-93

Using the Event Types Tab to Decrease Displayed Events
If you have many events selected in the Event Types tab, the Latency Timeline becomes quite
saturated with information (Figure 16-13). It is a good idea to decrease the amount of events to
eliminate events that are not interesting to view, for example, events that come from the JVM
level.

Figure 16-13 Latency Timeline saturated with information

You decrease (or increase) the amount of data displayed in the Latency Timeline by deselecting
events in the Event Types tab (Figure 16-14).

Figure 16-14 The Event Types tab

To change the amount of events displayed

1. Click on the Event Types tab.

2. Click on a specific event, a level, or a producer to select or deselect (see Using the Event
Types Tab to Decrease Displayed Events for an explanation of producer, level, and event).

The Latency Timeline in Figure 16-14 now looks something like Figure 16-15 when many of the
events have been removed. Notice how much easier it is to see differences over time.

Using the Latency Tabs

16-94 BEA JRockit Runtime Analyzer

Figure 16-15 The Latency Timeline with events removed

Using the Event Types Tab to Work with Operative Sets
Read about operative sets at What is an Operative Set?.

You can add events to an operative set or remove it from the set directly from the Event Types
tab. This feature is useful when you want to add or remove all events of that type, add or remove
all events from that specific thread, and so on. These features are enabled by using a context menu
accessible from the Event Types tab (Figure 16-16).

Figure 16-16 Event Types operative set context menu

The procedures in this topic show you how:

To select events for the operative set

To remove events for the operative set

To select events for the operative set

1. Open the Event Types tab by opening the Windows menu and selecting Show View >
Operative Set.

2. Right-click a type in the Event Types tab (see About the Event Types Tab for a description of
tab contents).

The context menu appears.

3. Select Operative Set > Add selection or Operative Set > Set selection.

The Add selection option adds the type to an already existing operative set (or to a new
one). Adding the event type to operative set adds all events of the selected type to the set.

The Set selection option clears and overrides the current operative set with the types that
you currently have selected.

About the P roper t i es Tab

BEA JRockit Runtime Analyzer 16-95

To remove events for the operative set

1. Open the Event Types tab by opening the Windows menu and selecting Show View >
Operative Set.

2. Right-click an event in the Event Types tab.

The context menu appears.

3. Select Operative Set > Remove selection or Operative Set > Clear.

The Remove selection option deletes the currently selected events from an already existing
operative set.

The Clear option deletes all events from an already existing operative set.

About the Properties Tab
The Properties tab lists the event properties, the event’s stack trace, or the general event data
depending on the view you have chosen (Figure 16-17). You select view by clicking on the button
that corresponds to the view you want to see.

Figure 16-17 Properties tab

Below is an explanation of what you can see on the Properties tab (Figure 16-17):

1. Buttons for choosing the property you want to view.

Using the Latency Tabs

16-96 BEA JRockit Runtime Analyzer

Table 16-1 gives an explanation to the different buttons.

2. List of information. This list changes content depending on the button you click in the tab.

Example of How to Compare two JRA Recordings where
one Contains Latencies

In this example you will see two recordings from the same application. The application that has
been recorded uses a common method for logging transactions, which causes many latencies due
to Java synchronization. These latencies can be found in almost all threads in the recording that
is named pricing-server-logging.xml.zip (Figure 16-18).

Table 16-1 Properties tab buttons

Button Description

Event Properties button. Shows the properties of the specific
event. These properties are the same as found on the Event Details
panel on the Latency Log tab.

Event General button. Shows keys and their respective values for
each event.

Stack Trace button. Shows the stack trace for a specific event.

Example o f How to Compare two JRA Record ings where one Conta ins La tenc ies

BEA JRockit Runtime Analyzer 16-97

Figure 16-18 pricing-serving-logging.xml.zip with latencies

For the second recording the same application has been used, but the calls to the logging system
has been removed, which causes a lot less latencies in the system. The second recording is named
pricing-server-no-logging.xml.zip (Figure 16-19). You see the difference both in the color
scheme and the Latency Timeline slide bar.

Figure 16-19 pricing-server-no-logging.xml.zip with no latencies

You can compare the two JRA recordings next to each other within the JRA Tool, which makes
it easier to see what has happened with the changes in the application (see To compare and
contrast JRA recordings for information on how to compare recordings).

Using the Latency Tabs

16-98 BEA JRockit Runtime Analyzer

Example Workflow of How to Find Latencies
The application that has been used in this example contains a common method for logging
transactions, which causes many latencies due to Java synchronization. These latencies can be
found in almost all threads in the recording. This section will guide you through how the JRA
Tool can be used to find which method that contains the latency.

Note: This is an example recording that contains extremely visible latencies, the application
that you are looking at might not contain as obvious latencies.

Look in Figure 16-20 for an example workflow of how to start your latency detective work.

Figure 16-20 Example workflow for finding latencies

The workflow is divided into the following instructions:

1. Create a JRA Recording with Latency Data

2. Open the JRA Recording in the Latency Graph Tab

3. Look on the Latency Traces Tab to Find Specific Method

4. Add a Suspected Method to the Operative Set

5. Look at Operative Set on the Latency Traces Tab

6. Perform Changes to Your Application

7. Compare and Contrast Recordings

1 . Create a JRA Record ing wi th La tency Data

BEA JRockit Runtime Analyzer 16-99

1. Create a JRA Recording with Latency Data
Before you start profiling your Java application, you need to create a JRA Recording with the
latency recording profile (Figure 16-21). See Creating a JRA Recording with Latency Data for
instructions on how to create a recording.

Figure 16-21 JRA recording with normal latency profile

Investigate further by opening the JRA recording, see 2. Open the JRA Recording in the Latency
Graph Tab.

2. Open the JRA Recording in the Latency Graph Tab
Open your JRA recording that contains latency data and click on the Latency Graph tab to see an
overview of all threads. This tab offers a great overview of a first glance to find latencies. In
Figure 16-22, the Latency Graph tab is visible and possible latency events from the Java producer
has been selected in the Event Types tab. The color of the Java Synchronization event in almost
is visible in almost all threads of the application, which gives a hint that the Java Synchronization
event causes latencies. Investigate further by looking at the Latency Traces tab, see 3. Look on
the Latency Traces Tab to Find Specific Method.

Using the Latency Tabs

16-100 BEA JRockit Runtime Analyzer

Figure 16-22 Latency Graph tab with Java events selected

3. Look on the Latency Traces Tab to Find Specific
Method

Once you are done viewing your recording from a threads perspective, you click on the Latency
Traces tab to find methods that contain latencies. The Traces table is sorted to show the methods
that contain the most number of events with latencies first. Figure 16-23 shows that the most
latencies are within the method java.util.logging.FileHandler.publish(LogRecord).
Investigate further by adding the method
java.util.logging.FileHandler.publish(LogRecord) to the operative set, see 4. Add a
Suspected Method to the Operative Set.

4. Add a Suspec ted Method to the Opera t ive Set

BEA JRockit Runtime Analyzer 16-101

Figure 16-23 Latency Traces tab with method that contains latencies

4. Add a Suspected Method to the Operative Set
When you have found a method that contains latencies, you can add that to the operative set. By
adding the method to the operative set, you can concentrate your viewing to the pieces of
information that you are mostly interested in viewing even on other latency tabs. Figure 16-24
shows how to add the method java.util.logging.FileHandler.publish(LogRecord) to
the operative set. Notice how the Latency Timeline changes color (the operative set becomes
blue) when you have made a selection to the operative set.

Investigate further by looking at the method that you have selected to the operative set in the
Latency Log tab, see 5. Look at Operative Set on the Latency Traces Tab.

Using the Latency Tabs

16-102 BEA JRockit Runtime Analyzer

Figure 16-24 Adding method to operative set

5. Look at Operative Set on the Latency Traces Tab
The Latency Log tab presents, in a sorted list, events that contain the most latency. In
Figure 16-25 only the operative set is shown and you see that the first event is causing latencies
in Thread-7. Look at the Event Details panel for property and stack trace information.

Now you might have a pretty good idea of where in the code you need to perform changes.
Perform those changes and create a new JRA recording to compare and contrast the results, see
6. Perform Changes to Your Application.

6 . Per fo rm Changes to Your App l i cat ion

BEA JRockit Runtime Analyzer 16-103

Figure 16-25 Looking at operative set on the Latency Log tab

6. Perform Changes to Your Application
Once you have found which methods and events that cause latency problems you need to perform
changes to your application code. Perform those changes, create a new JRA recording, and
compare and contrast the result, see 7. Compare and Contrast Recordings.

7. Compare and Contrast Recordings
The latency problem has now been fixed in the example application and the result can look
something similar to what you see in Figure 16-26.

Using the Latency Tabs

16-104 BEA JRockit Runtime Analyzer

Figure 16-26 Logging method reworked

BEA JRockit Runtime Analyzer 17-105

C H A P T E R 17

Latency Log Information

The Latency Log tab lists the latency events that took place during the recording. By looking at
latency data in the Latency Log tab, you can easily find a specific event type or select an attribute
by using the sort and filter functions.

Note: The latency events that are recorded do not necessarily mean that they cause any
problems in the running of the application.

This section is divided into the following topics:

Getting Familiar with the Latency Log Tab

Changing Start Time View on an Event

About Details for Events

Selecting an Event

Understanding Event Details

Viewing General Event Details

Viewing Event Property Details

Viewing Event Stack Traces

Getting Familiar with the Latency Log Tab
The Latency Log tab contains Latency Timeline information, an Event Table, and Event Details
(Figure 17-1).

Latency Log In fo rmat ion

17-106 BEA JRockit Runtime Analyzer

Figure 17-1 The Latency Log tab

The Latency Log tab is divided into the following sections:

1. Latency Timeline slide bar—this timeline shows the entire recording in its full length (the
Latency Timeline works the same on all tabs that start with the name Latency, see Using the
Latency Timeline Slide Bar for more information).

2. Filter column—see Filtering Information on how to use this function.

3. Event Table—the Event Table lists all events that took place during the recording.

4. Event Details—this panel lists the most common types on the heap at the end of the
recording.

5. Show only Operative Set—this option allows you to concentrate on studying the events that
you have chosen for your operative set (see What is an Operative Set? for a description of the
operative set and how to use it).

Changing Star t T ime V i ew on an Event

BEA JRockit Runtime Analyzer 17-107

Changing Start Time View on an Event
The JRA recording collects data for different start times of a recording, for example, time since
the recording started and since JRockit started. This section describes how to change the view of
the start time.

To change the start time view

1. Right click the Event Table (or right click on the label Start Time on the General tab under
the Event Details panel).

2. Click Start Time.

Figure 17-2 Start Time selection

3. Select one of the following Start Time views:

– Time since recording started: this is the default view. It shows how much time has
elapsed since the JRA recording started (in seconds and milliseconds).

– Time since recording started in seconds: this is a shorter view where you see how
many seconds have elapsed since the recording started.

– Time since JRockit started: this view is useful when you have created a recording and
used a JRockit that has, for example, been running on your network for a period of
time. This viewing option shows the time divided in hours, minutes, and seconds.

Latency Log In fo rmat ion

17-108 BEA JRockit Runtime Analyzer

– Time since JRockit started in seconds: this view is useful when you have created a
recording and used a JRockit that has, for example, been running on your network for a
period of time. This viewing option shows the time in seconds.

– Timestamp: this view shows actual time and date for when the event happened (on the
computer that is running your application).

About Details for Events
The Event Table list on the Latency Log tab lists all latency events that have taken place during
the recording provided the latency sampling was enabled during the recording (see 3. Create JRA
Recording for information on how to record latency data).

Selecting an Event

Understanding Event Details

Selecting an Event
There are two places you can view the details for an event: on the Latency Log tab panel called
Event Details or in the Properties tab.

To select an event and view its details under the Event Details

About the Properties Tab

To select an event and view its details under the Event Details

1. Click the event for which you want to view details.

The event specifics are listed in the panel called Event Details (Figure 17-3).

Unders tand ing Event Deta i l s

BEA JRockit Runtime Analyzer 17-109

Figure 17-3 Event selected with General Event Details

You can also view the event specifics on the Properties tab

2. Click on the different tabs in the Event Details panel to see different aspects of detail for the
event.

Note: If you select several events, the Event Details tabs show the information for the event
that was selected first.

Understanding Event Details
As described under Selecting an Event, you have two possibilities to view details of an event:
either directly on the Latency Log tab or in the Properties tab. You also have the possibility to
view the details next to each other, for example, view General event details on the Properties
tab and Stack Trace details on the Event Details panel. Either way, the information is the same.
The description in this help depicts how the event details are displayed from the Latency Log
view. The Event Details are divided into the following sections:

Latency Log In fo rmat ion

17-110 BEA JRockit Runtime Analyzer

Viewing General Event Details

Viewing Event Property Details

Viewing Event Stack Traces

Viewing General Event Details
To view general event details either click the General tab under Event Details or click the General
button on the Properties tab (Figure 17-4). The General events details is an overview of general
specifics for the selected event (Figure 17-4).

Figure 17-4 The General tab for a thread event

To view General event details

1. Select an event in the Event Table.

2. Click the General tab in the Event Details panel (Figure 17-4).

The following information can be found on the General tab. If something is marked N/A,
it means that there was no information for that piece of information during the recording.

– Index—a number that keeps track of each event in the recording.

– Start Time—indicates the time from when the recording was started (default). You can
change the default setting of the start time, see Changing Start Time View on an Event.

– End Time—indicates when the specific event stopped.

– Duration—the length of the event measured in milliseconds.

V iewing Event P rope r t y De ta i l s

BEA JRockit Runtime Analyzer 17-111

– Thread Name—the name of the thread you are inspecting.

– Producer—the part of the system that produced the thread, for example, Garbage
Collector and JRockit.

– Level—Levels are a subdivision of producers. Two events within the same level and
thread can never be performed at the same time. When you click on several event types
within a level, the events appear on top of each other (see Using the Event Types Tab to
Decrease Displayed Events).

– Event Type—a subdivision of levels. The Event Type corresponds to what you have
selected on the Event Types tab (see Using the Event Types Tab to Decrease Displayed
Events).

– Event Type Description—a brief description of the event type, for example, Thread
waiting for a JVM internal event.

Viewing Event Property Details
Select an event in the Event Table and view its details on the tab Event Properties tab
(Figure 17-5).

Figure 17-5 The Event Properties tab

Use the filtering function to find, for example, a specific value, see Filtering Information.

Viewing Event Stack Traces
The Stack Trace tab shows all events on the stack that lead up to the event that you are currently
monitoring (Figure 17-6).

Latency Log In fo rmat ion

17-112 BEA JRockit Runtime Analyzer

Figure 17-6 The Stack Traces tab

To view the event stack trace

1. Select an event in the Event Table.

2. Click the Stack Trace tab in the Event Details panel (Figure 17-6).

BEA JRockit Runtime Analyzer 18-113

C H A P T E R 18

Latency Graph Information

The Latency Graph gives you a graphical overview of how the application executes and it is
easy to select events in terms of when they happened and in which thread. You have a possibility
to both zoom in on a shorter time interval and to magnify the threads themselves to better see the
different events that occurred in the thread.

This section is divided into the following topics:

Getting Familiar with the Latency Graph Tab

Using the Latency Timeline Slide Bar

Filtering on Thread Names

What Does the Threads Chart Contain?

Magnifying a Thread

Showing Garbage Collection Backdrop

Getting Familiar with the Latency Graph Tab
The Latency Graph tab (Figure 18-1) displays the Latency Timeline and the Threads graph.

Latency Graph In fo rmat ion

18-114 BEA JRockit Runtime Analyzer

Figure 18-1 The Latency Graph tab

The Latency Graph tab is divided into the following sections:

1. Latency Timeline slide bar with Move and Zoom buttons—this timeline shows the entire
recording in its full length (the Latency Timeline works the same on all tabs that start with the
name Latency, see Using the Latency Timeline Slide Bar for more information).

2. Filter column—see Filtering Information on how to use this function.

3. Thread list—a graphic representation of all threads in the recorded JRA file.

Using the La tency T imel ine S l ide Bar

BEA JRockit Runtime Analyzer 18-115

4. Thread magnifyer slide bar—this slide bar lets you magnify the thread you are studying.
This way you will better see each event within the thread.

5. Show GC backdrop and Show only Operative Set options—the Show GC backdrop
option allows you to see each garbage collection as fine lines behind each thread. The Show
only Operative Set option allows you to concentrate on studying the events that you have
chosen for your operative set (see What is an Operative Set? for a description of the operative
set and how to use it).

Using the Latency Timeline Slide Bar
Depending on how long your JRA recording is, the Threads graph can be quite cluttered to view
in its full lengths due to all events. Therefore, you can refocus and minimize the amount of data
displayed in the charts by using the Latency Timeline. You can also

Use the move and zoom buttons to refocus in the Latency graph

Move the slide bar from the top of the tab to the bottom.

The different ways to use the Latency Timeline are described in the following topics:

To decrease the time span on a latency tab

To refocus using the timeline slide bar

To move and zoom using the move and zoom buttons

To reposition the timeline slide bar

Understanding the Different Parts of a Thread Image
A thread contains information on the levels and events that have been taking place during the
recording. Figure 18-2 illustrates how a thread looks when it is zoomed in and magnified.

For information on how to zoom in and magnify a thread, see Magnifying a Thread.

Latency Graph In fo rmat ion

18-116 BEA JRockit Runtime Analyzer

Figure 18-2 Magnifying a and zooming a thread

The following information becomes visible when magnifying a thread:

1. The thread itself. This is triggered by the Producer, i.e. the part of the system that produced
an event for that thread, for example, JRockit.

2. The different levels of the thread. These are imaginary levels and depict that an event can only
take place in one level at a time within the same thread.

3. The events that have taken place in the thread. Each event type has its own color (can be
customized). When you hoover over an event, you will get more information about that event.

Filtering on Thread Names
The Filter thread names field lets you filter our the threads that you are interested in viewing.
The example in Figure 18-3, depicts how it looks when you have typed in Thread-2. The Threads
graph show the threads starting with the number 2 only, which can make viewing easier.

Figure 18-3 Filtering threads

What Does the Threads Char t Conta in?

BEA JRockit Runtime Analyzer 18-117

What Does the Threads Chart Contain?
The Threads chart lists all threads that have been active during the recording. The threads are
quite colorful at a first glance where every color represents an event. Figure 18-4 shows an
example of threads. The garbage collections are located at the top of the list (marked 1 in
Figure 18-4) and each thread is located below its thread group in alphabetical order (marked 2 in
Figure 18-4).

Figure 18-4 Threads list

Each thread in the Threads list contains events. A thread can also contain different levels within
the same thread (see Thread-14 in Figure 18-4 for an example of levels). To see the actual events
with some granularity, you can magnify the thread itself (see To zoom in on a thread by using the
magnifyer slide bar) and decrease the time span of the thread you are monitoring (see To decrease
the time span on a latency tab).

You can also view specific properties for each event as described in About the Properties Tab or
Hovering Over an Event.

Correlating Events on Threads
You can easily correlate latency events that occur on non-adjacent threads by using a guide line
that lays over the graph. For example, if you have 10 threads in your application and you want to
correlate the time when a latency event happens in thread 2 (which will appear toward the top of
the screen) with another latency event that happens in thread 9 (toward the the bottom of the
screen), you would do the following:

1. On the elapsed time bar at the top of the Thread List, click the point in time for which you
want to correlate latency events.

The guide line will appear (Figure 18-5).

Latency Graph In fo rmat ion

18-118 BEA JRockit Runtime Analyzer

Figure 18-5 Latency events correlation guideline

2. Scroll down to the first event you want to correlate and hover over the intersection of the
thread event and the guide line to display event information (Figure 18-6).

Figure 18-6 Thread information displayed

3. Scroll down to the next event you want to correlate and hover over the intersection of the
thread event and the guide line to display event information

4. To clear the guide line from the graph, simply click the top of it (the black triangle).

Magnifying a Thread
To get a better view at the events within a thread, you will probably need to magnify the thread
you are monitoring. There are two ways to better see events within a thread: magnify the thread
or zoom in on the time span that is used.

This section explains how to magnify a thread:

To zoom in on a thread by using the magnifyer slide bar

To zoom in on a thread by using the magnifyer slide bar

1. Click and hold the Thread magnifyer slide bar (Figure 18-7).

Guide Line

Hover ing Ove r an Event

BEA JRockit Runtime Analyzer 18-119

Figure 18-7 Thread magnifyer slide bar

2. Slide up to magnify and down to minimize the thread size.

Figure 18-8 shows a thread that has been magnified to its maximum size.

Figure 18-8 Magnified thread

3. Slide up or down, using the side scroll bars, to find the thread you want to study.

4. Hoover with the mouse over the thread, you will see details for each event in that thread
(Figure 18-9).

Figure 18-9 Magnified event

As you can see, the events appear as large chunks were there are many of the same type
and each event can be hard to see.

Hovering Over an Event
The default tooltip setting for hovering over an event is to display the standard information
(minimized information plus holder thread and lock name). You can change the amount of
information displayed in the tooltip.

Maximize

Minimize

Latency Graph In fo rmat ion

18-120 BEA JRockit Runtime Analyzer

To change the tooltip setting

1. Right-click anywhere in the Threads chart.

2. Click Tooltip settings > Verbosity.

Figure 18-10 Tooltip setting

3. Select a tooltip granularity.

– Minimum: shows start time, end time, and duration.

– Standard (default): shows start time, end time, duration, holder thread, and lock name.

– Full: shows start time, end time, duration, holder thread, lock name, and stack trace.

Showing Garbage Collection Backdrop
The Show GC backdrop function is a helpful feature that lets you see when and where a garbage
collection occurs. You will get the best visual effect of the garbage collections if you zoom in on
the threads you are monitoring. The garbage collection backdrop lines might otherwise become
more of a light raster in the background than helpful lines.

To turn on/off the GC backdrop lines

Click the Show GC backdrop option (marked 5 in Figure 18-1) to turn on/off the GC
backdrop lines.

BEA JRockit Runtime Analyzer 19-121

C H A P T E R 19

Latency Traces Information

The Latency Traces tab contains a list of all methods that contain events with latencies. The
method traces with the most latencies are listed first. The Latency Traces table can be
customized to display specific packages, classes, and methods.

This section is divided into the following topics:

Getting Familiar with the Latency Traces Tab

Setting Trace Filter

Getting Familiar with the Latency Traces Tab
The Latency Traces tab (Figure 19-1) lists methods with most amount of events and the longest
latencies.

Latency T races In fo rmat i on

19-122 BEA JRockit Runtime Analyzer

Figure 19-1 Latency Traces tab

The Latency Traces tab is divided into the following sections:

1. Latency Timeline slide bar—this timeline shows the entire recording in its full length (the
Latency Timeline works the same on all tabs that start with the name Latency, see Using the
Latency Timeline Slide Bar for more information).

2. Trace filters button—this button allows you to add and remove packages, classes, and
methods in the Traces table.

3. Traces table—the Traces table lists the packages and their events. The color coding of the
Events and Latency columns gives you an overview of which package contains the events
that have the greatest latencies.

Se t t ing T race F i l te r

BEA JRockit Runtime Analyzer 19-123

Setting Trace Filter
Using filters is a great way to minimize the amount of data that is shown in the Latency Traces
table. The available trace filter is quite powerful with capabilities to filter on packages, classes,
and methods. You can create your own filter profile.

The Latency Traces tab has a powerful filtering function that allows you to easily filter out
packages, classes, and methods from the Latency Traces table. That way you will get a better
overview of the exact methods you want to study. You can also decide if you want to show or
hide the stack frames that matches the filter.

To add a package, class, or method

1. Click the Trace filters button.

The Trace filters window opens (Figure 19-2).

Figure 19-2 Trace filters window

2. Click either the Add package, Add class, or Add method button.

The Add window opens (Figure 19-3 shows how to add a package).

Latency T races In fo rmat i on

19-124 BEA JRockit Runtime Analyzer

Figure 19-3 Add package window

3. Type in the prefix of the package, class, or method name, for example com.bea if you are
adding a package, to quickly find what you are looking for.

4. Select the package, class, or method you want to use as a filter.

The selected package now appears in the Trace filters window (Figure 19-4).

Figure 19-4 Trace filter with package, class, and method

5. Select one of the following options:

– Hide filtered stack frames—you will not see the stack frames that matches the
selected filter.

– Show only traces that match filters—you will see only the traces containing stack
frames that matches the selected filter.

– Enable trace filters—turns the filter function on when selected.

6. Click OK.

To remove a package, class, or method

1. Click the Trace filters button.

Se t t ing T race F i l te r

BEA JRockit Runtime Analyzer 19-125

The Trace filters window opens (Figure 19-5).

Figure 19-5 Trace filters window

2. Select the package, class, or method you want to remove.

3. Click Remove.

4. Click OK.

Note: You can also deselect the Enable trace filters function to disable the filter.

Latency T races In fo rmat i on

19-126 BEA JRockit Runtime Analyzer

BEA JRockit Runtime Analyzer 20-127

C H A P T E R 20

Adding Comments and Notes to a
Recording

The JRA Tool is equipped with a small text editor where you can add notes and comments about
the recording and your application. These comments will help the BEA JRockit engineering team
to understand what has happened to JRockit and your application during the recording
(Figure 20-1).

Figure 20-1 The Notes Tab

To add a note

1. Enter a description of you application in the text field.

2. To save the message as part of the recording, use one of the options described in Table 20-1.

Adding Comments and No tes t o a Record ing

20-128 BEA JRockit Runtime Analyzer

4. Close the JRA recording.

Table 20-1 Saving a recording

To save the
recording...

Do this...

Under its orginal name Select File>Save.

The comments will be saved in a file.

Under a new name 1. Select File>Save as...

The Save as dialog box appears

2. Open the folder into whch you want to save the
recording and enter the name you under which you
want to save the recording.

3. Click Save.

	Introduction to the BEA JRockit Runtime Analyzer (JRA)
	How Does the JRockit Runtime Analyzer System Work?
	What is a JRA Recording?
	What is the JRA Tool?
	What’s New in the JRA System?

	Workflow Description for Creating and Analyzing a JRA Recording
	1. Start BEA JRockit Mission Control
	2. Start Your Java Application
	3. Create JRA Recording
	To use the normal recording profile
	To use the normal recording profile with advanced options
	See Also
	About JRA Overhead when Recording

	4. View Your JRA Recording in the JRA Tool
	To open a JRA recording by dragging and dropping
	To open a JRA recording within JRockit Mission Control
	To open a JRA recording that was created with a JRockit 1.4 version

	5. Perform Changes in Application or Use Other Command-line Options for BEA JRockit
	6. Create a New JRA Recording
	7. Compare and Contrast Two Recordings in the JRA Tool
	To compare and contrast JRA recordings

	Alternative Ways to Start a JRA Recording
	Starting a Recording with jrcmd
	Starting a Recording From the JRockit Command Line

	Using the JRA Tool
	Getting Started with the BEA JRockit Runtime Analyzer Tool
	Starting the JRA Tool
	JRA Tool Overview
	JRA Tabs at a Glance
	Customizing Your JRA Tool
	Turning on/off Tabs
	To set preferences for the JRA Tool

	Changing Table Settings
	To change the settings of the table

	Filtering Information
	To filter information

	Collapsing and Expanding an Information Panel
	To collapse/expand a view

	Changing Layout of a Tab
	To change the layout of a tab

	General Information in a JRA Recording
	Getting Familiar with the General Tab
	Viewing General Information
	Viewing Memory Usage Information
	Viewing Miscellaneous Information
	View VM Arguments
	View Recording Parameters

	Viewing Memory Allocation Information
	Viewing Threads Information
	Viewing Exceptions Information

	Methods and Call Trace Information
	Getting Familiar with the Methods Tab
	Viewing Hot Methods
	Viewing Predecessors and Successors

	General Garbage Collector Information
	Getting Familiar with the GC General Tab
	Viewing General Garbage Collection Information
	Viewing Garbage Collection Call Tree Information
	Viewing Garbage Collection Strategy Changes Information

	Garbage Collection Events Information
	Getting Familiar with the GCs Tab
	Changing Focus on GC Chart
	To change focus on the Heap Usage chart
	To use the Move and Zoom buttons for the GC Chart

	Viewing Specifics about Garbage Collections
	To view one garbage collection in the GC Chart
	To view many garbage collections in GC Chart

	Viewing the Detailed Information About the Garbage Collection
	Viewing Information on the General Garbage Collection Tab
	Viewing Information on the GC Method Call Tree Tab
	Viewing Information on the Old/Young Collection Tab
	Viewing Information on the Cache Lists Tab
	The Pause Time Tab

	Java Heap Content Information
	Getting Familiar with the Heap Tab
	Viewing the Heap Snapshot at the End of the Recording Information
	Viewing the Heap Contents Information
	Viewing the Free Memory Contribution Information

	Objects Information
	Getting Familiar with the Objects Tab
	Viewing Start of Recording Information
	Viewing End of Recording Information

	Code Optimization Information
	Getting Familiar with the Optimizations Tab
	Viewing Optimization Information
	Viewing Methods Optimized During Recording Information

	Lock Profiling Information
	Getting Familiar with the Locks Tab
	Java Locks Profiling
	Enabling Java Lock Profiling Data
	To enable Java lock profiling data

	Native Lock Profiling
	Enabling Native Locks Information

	Start and End Processes Information
	Turning on the Processes Tab
	To turn on the Processes tab

	Getting Familiar with the Processes Tab
	Snapshot of Processes at Beginning and End of Recording
	Detailed Processes Information

	Threads Information
	Turning on the Threads Tab
	To turn on the Threads tab

	Getting Familiar with the Threads Tab
	List of Times when Thread Dump is Taken
	Thread Dump Information

	Using the Latency Tabs
	Latency Tabs at a Glance
	Creating a JRA Recording with Latency Data
	To use the normal latency data profile
	To use the minimal latency recording profile

	Opening a JRA Recording that Contains Latency Data
	To enable latency data on a latency tab

	Shared Functionality Amongst All Latency Tabs
	Using the Latency Timeline Slide Bar
	To decrease the time span on a latency tab
	To refocus using the timeline slide bar
	To move and zoom using the move and zoom buttons
	To reposition the timeline slide bar

	What is an Operative Set?
	Working with an Operative Set
	To select events for the operative set
	To remove events for the operative set
	To look at the operative set

	About the Event Types Tab
	Using the Event Types Tab to Decrease Displayed Events
	To change the amount of events displayed

	Using the Event Types Tab to Work with Operative Sets
	To select events for the operative set
	To remove events for the operative set

	About the Properties Tab
	Example of How to Compare two JRA Recordings where one Contains Latencies
	Example Workflow of How to Find Latencies
	1. Create a JRA Recording with Latency Data
	2. Open the JRA Recording in the Latency Graph Tab
	3. Look on the Latency Traces Tab to Find Specific Method
	4. Add a Suspected Method to the Operative Set
	5. Look at Operative Set on the Latency Traces Tab
	6. Perform Changes to Your Application
	7. Compare and Contrast Recordings

	Latency Log Information
	Getting Familiar with the Latency Log Tab
	Changing Start Time View on an Event
	To change the start time view

	About Details for Events
	Selecting an Event
	To select an event and view its details under the Event Details

	Understanding Event Details
	Viewing General Event Details
	To view General event details

	Viewing Event Property Details
	Viewing Event Stack Traces
	To view the event stack trace

	Latency Graph Information
	Getting Familiar with the Latency Graph Tab
	Using the Latency Timeline Slide Bar
	Understanding the Different Parts of a Thread Image
	Filtering on Thread Names
	What Does the Threads Chart Contain?
	Correlating Events on Threads
	Magnifying a Thread
	To zoom in on a thread by using the magnifyer slide bar

	Hovering Over an Event
	To change the tooltip setting

	Showing Garbage Collection Backdrop
	To turn on/off the GC backdrop lines

	Latency Traces Information
	Getting Familiar with the Latency Traces Tab
	Setting Trace Filter
	To add a package, class, or method
	To remove a package, class, or method

	Adding Comments and Notes to a Recording
	To add a note

