
BEA JRockit®
Mission
Control™

Oracle JRockit Runtime
Analyzer

Mission Control 3.0.2
Document Revised: June, 2008

Oracle JRockit Runtime Analyzer 1

Contents

Welcome to the Memory Leak Detector

Getting Started with Memory Leak Detection
Spotting a Memory Leak. 2-1

Verbose Output. 2-2

Management Console Heap Overview . 2-2

JRA Recording—the GC Events Tab. 2-3

Starting the Memory Leak Detector. 2-4

Detection Process Used with Memory Leak Detector . 2-4

Trend Analysis—What Data is Leaking? . 2-5

Object Type Relations Study . 2-6

Instance Investigation . 2-6

Using the Memory Leak Detector
Getting Familiar with the Memory Leak Detector Interface . 3-1

Toolbar Explained . 3-2

Tabs Explained. 3-3

Analyzing the Java Application . 3-4

Analysis Procedures. 3-5

To Jump to Application Source Code . 3-7

Investigating an Object Type . 3-7

Object Type Investigation Procedures . 3-8

Investigating an Object Instance . 3-10

2 Oracle JRockit Runtime Analyzer

Viewing Allocation Stack Traces. 3-11

Jumping to Application Source . 3-12

Customizing Settings . 3-13

Setting Customization Procedures . 3-13

Oracle JRockit Runtime Analyzer 1-1

C H A P T E R 1

Welcome to the Memory Leak Detector

The Memory Leak Detector, a component of Oracle JRockit Mission Control, detects memory
leaks within Java applications running on the Oracle JRockit JVM. A memory leak means
application code is holding on to memory that is not used by the application any more. The
Memory Leak Detector is a real-time profiling tool providing information about what type of
objects are allocated, how many, of what size, and how they relate to each other. Unlike other
similar tools, there is no need to create full heap dumps that you need to analyze at a later stage.
The data presented is fetched directly from the running JVM, which can continue to run with a
relatively small overhead. When the analysis is done, the tool can be disconnected and the JVM
will run at full speed again. This makes the tool viable for use in a production environment.

The purpose of the Memory Leak Detector is to display memory leaking object types (that is,
classes) and provide help to track the source of the problem. Another purpose of this tool is to
help increase the understanding and knowledge to avoid similar programming errors in future
projects.

This help is divided into the following topics:

Getting Started with Memory Leak Detection

Spotting a Memory Leak

Detection Process Used with Memory Leak Detector

Using the Memory Leak Detector

Getting Familiar with the Memory Leak Detector Interface

Analyzing the Java Application

Welcome to the Memory Leak Detecto r

1-2 Oracle JRockit Runtime Analyzer

Investigating an Object Type

Investigating an Object Instance

Viewing Allocation Stack Traces

Customizing Settings

Oracle JRockit Runtime Analyzer 2-1

C H A P T E R 2

Getting Started with Memory Leak
Detection

Finding memory leaks in an application is a bit of a detective’s work. You might not always see
the obvious leaks. The Memory Leak Detector is a tool that can help you to locate memory leaks
in your application. Once you have found a leaking method, it is a much easier task to fix you
code.

This section describes the memory leak detection procedure that you can easily adapt to your
normal development environment, through the use of Oracle JRockit Mission Control.

This section is divided into the following topics:

Spotting a Memory Leak

Verbose Output

Management Console Heap Overview

JRA Recording—the GC Events Tab

Starting the Memory Leak Detector

Detection Process Used with Memory Leak Detector

Spotting a Memory Leak
There are several ways to spot a memory leak. Most often the memory leak is spotted after the
fact, i.e. you get an OutOfMemoryError in your application. This can typically happen in the
production environment where debugging possibilities are minimal. This online help will
describe two common ways to spot a leak.

Get t ing Star ted wi th Memory Leak Detect ion

2-2 Oracle JRockit Runtime Analyzer

When you have spotted a memory leak, you can start drilling down to the real cause of the leak
by using the Memory Leak Detector plug-in provided with JRockit Mission Control.

The topics are covered to spot a memory leak:

Verbose Output

Management Console Heap Overview

JRA Recording—the GC Events Tab

Starting the Memory Leak Detector

Verbose Output
One of the most widely used ways to monitor the activity of the garbage collector is to start the
JRockit JVM with the -Xverbose:gc option and then watch the output for a while (see
Listing 2-1).

Listing 2-1 Example of a -Xverbose:gc output.

[memory] 2.703-2.729: GC 262144K->3904K (262144K), 25.857 ms

[memory] 3.901-3.940: GC 262144K->10820K (262144K), 38.835 ms

[memory] 4.857-4.913: GC 262144K->19606K (262144K), 56.011 ms

[memory] 5.780-5.878: GC 262144K->28424K (262144K), 97.406 ms

The value after the arrow (->) is the heap usage after the garbage collection. You can clearly see
that the heap is constantly growing in the example of Listing 2-1.

Management Console Heap Overview
Instead of having to view verbose outputs, tedious at best, you can use the Management Console
Overview function to spot a memory leak. In the Management Console’s Memory graph you
easily see trends in the heap usage over time. Once you have determined that you have a memory
leak, you should switch to the Memory Leak Detector to actually find the object that is leaking.

Figure 2-1 shows how a memory leak can look in the Management Console tool.

Spot t ing a Memory Leak

Oracle JRockit Runtime Analyzer 2-3

Figure 2-1 The Management Console Heap Usage Graph

JRA Recording—the GC Events Tab
You can also create a recording of your application and watch the output in the JRA tool—the
GC Events tab.

Figure 2-2 shows how a memory leak can look in the JRA tool.

Figure 2-2 The JRA Tool with GC Events tab

Get t ing Star ted wi th Memory Leak Detect ion

2-4 Oracle JRockit Runtime Analyzer

Now you have determined that you have a memory leak in your system. This means that you can
start the Memory Leak Detector to figure out which object is leaking.

Starting the Memory Leak Detector
1. Select a JRockit JVM instance in the JVM Browser.

2. Click on the Memory Leak Connection button.

The Memory Leak Detector launches in the JRockit Mission Control Client (see
Figure 3-1).

Detection Process Used with Memory Leak Detector
Ok, now you have spotted that you have a memory leak. It is now time to start using the Memory
Leak Detector to drill down to the cause of the leak. Figure 2-3 gives an overview of the different
steps that you need to take to get to your memory leak.

Detect ion P rocess Used wi th Memory Leak Detec to r

Oracle JRockit Runtime Analyzer 2-5

Figure 2-3 Memory Leak Detection Process

1. Trend Analysis—What Data is Leaking?

2. Object Type Relations Study

3. Instance Investigation

Trend Analysis—What Data is Leaking?
Trend analysis means to observe continuously updated object type related information and try
to discover object types with suspicious memory growth. These object types should then be
studied in the next phase of the memory leak detection process. The information in the trend
analysis table is updated every ten seconds or more often if there are very frequent garbage
collections.

Note: The trend analysis is a great way to find even the smallest leaks, before they even throw
OutOfMemory exceptions.

Get t ing Star ted wi th Memory Leak Detect ion

2-6 Oracle JRockit Runtime Analyzer

Object Type Relations Study
Studying object type relations means following reference paths between object types. The goal
is to find interesting connections between growing object types and what types of objects point
to them. Finding the object type guilty of unusual memory growth will lead to the third and final
phase of the memory leak detection process.

Instance Investigation
Instance investigation consists of finding an instance of abnormal memory size or an abnormal
amount of references being held and then inspecting that instance. When inspecting an instance,
values will be displayed; e.g. field names, field types, and field values. These values will
hopefully lead you to the correct place for the error in the application code; i.e. where that
particular instance of that particular object type is allocated, modified, or removed from the
collection, depending upon what the situation implies. Minimizing the problem areas of the ones
connected to the suspected instance will most likely lead you on the right track to finding the
actual problem causing the memory leak and you will be able to fix it.

Oracle JRockit Runtime Analyzer 3-1

C H A P T E R 3

Using the Memory Leak Detector

Now you understand how a flow of events for memory leak detection works and the basic
functions of the user interface, it is time to get to know how powerful the Memory Leak Detector
actually is in action. This part of the user guide describes the different tabs of the interface in
detail and how the Memory Leak Detector works when monitoring a Java application with a real
memory leak. Each tab of the interface will be explained in detail in this section.

This section is divided into the following topics:

Getting Familiar with the Memory Leak Detector Interface

Analyzing the Java Application

Investigating an Object Type

Investigating an Object Instance

Viewing Allocation Stack Traces

Jumping to Application Source

Customizing Settings

Getting Familiar with the Memory Leak Detector
Interface

When you have started the Memory Leak Detector, it starts in the Trend tab with the Trend
Analysis activated, see Figure 3-1.

Using the Memory Leak De tec to r

3-2 Oracle JRockit Runtime Analyzer

Figure 3-1 The Main Window of the Memory Leak Detector

1. Toolbar where you control the updating of the analysis, how to view the different graphs when
drilling down to find the memory leaks, etc.

2. Trend Analysis table that lists all types that consume memory. It lists the types in descending
order with the type that leaks the most listed at the top.

3. Applies filter to find a type.

4. Tabs that indicate work flow for finding your memory leak.

5. Menu to open types, allocation instances, and other functions.

Toolbar Explained
The Memory Leak Detector tool bar, see Figure 3-2, contains, for example, buttons to connect to
the JRockit JVM instance. See Table 3-1 for an explanation of the different tools in the toolbar.

Get t ing Fami l ia r w i th the Memory Leak Detecto r In te r face

Oracle JRockit Runtime Analyzer 3-3

Figure 3-2 The Toolbar in the Memory Leak Detector

Tabs Explained
The main window of the Memory Leak Detector contains four tabs as shown in Figure 3-3.
Table 3-2 explains what you can do under the different tabs.

Figure 3-3 The Tabs in the Memory Leak Detector (Indicates Work Flow)

Table 3-1 Toolbar Icons Explained

Button Description

Export and Print graphs. This button allows you to export the displayed graph to a jpg or gif
image.

Start, Pause, and Stop monitoring your Java application.

Performs garbage collection on the server.

Refreshes the current view.

Re-layouts the graph. This button allows you to re-layout the graph and have the selected

Restarts the graph. This button allows you to restart, i.e. expand, the node that is currently
selected.

Zooms in and out on a type or an instance. These tools help you navigate in the graph.???

Zoom in on the selected node and resize the graph to 100%.

Fills the viewing area with the current graph.

Lets you view the graph in bird’s eye view. You can easily pan and re-center the graph from
this view.

Using the Memory Leak De tec to r

3-4 Oracle JRockit Runtime Analyzer

Analyzing the Java Application
From the Trend tab (see Figure 3-4), you start the analysis of your applications. The object types
with the highest growth in bytes/sec are marked red (darkest) in the Trend Analysis table and
they are listed at the top of the table. For each update, the list can change and the type that was
the highest move down the list. The object types listed in Figure 3-4 are fetched from an example
application, where you can suspect a memory leak at the objects marked red.

Table 3-2 Memory Leak Detector Tabs Explained

Tab Description

Trend From the Trend tab you view a trend analysis of the object types on the Java heap. You will
see a list of all types that occupy more than 0.1% of the heap (this number can be changed
in File > Preferences > Trend). The object type with the highest growth rate will be listed
first.

Types From the Types tab you view a type graph that shows how different types point to each
other.

Instances From the Instances tab you view an instance graph that shows how different instances point
to each other.

Allocation
Stack Traces

From the Allocation Stack Traces tab you view where a certain type is allocated in the
code.

Analyz ing the Java Appl i cat ion

Oracle JRockit Runtime Analyzer 3-5

Figure 3-4 Trend Analysis

Table 3-3 explains what each column in the Trend tab displays.

Analysis Procedures
This section contains the procedures you can use analyze your application. It shows you how:

To Start Analyzing Your Application

Table 3-3 Trend Analysis - Which types are leaking?

Column Title Displays

Type The type of object (class).

Growth
(bytes/sec)

The amount of memory (in bytes) with which the type is growing, per second.

% of Heap How much of the Java heap is occupied by this type of object, measured in
percentages of the entire heap.

Size (KB) What size in KB does that percentage correspond to.

Instances The number of live objects of this type that currently exist.

Using the Memory Leak De tec to r

3-6 Oracle JRockit Runtime Analyzer

To Pause Analysis of Your Application

To Stop Analysis of Your Application

To Start Further Investigation

To Start Analyzing Your Application
The trend analysis should start automatically. If not, click the Start button to start the trend
analysis

If you have an application with a memory leak, the trend analysis can look something like
Figure 3-4, where you have a type with a great growth in memory consumption. The
darker (red) the type is, the greater amount of memory it consumes.

To Pause Analysis of Your Application
Click the Pause button.

This operation freezes the updating of the trend analysis in the Trend tab and you can start
to analyze the application. If you want to view more data from the same analysis run, click
the Play button again and the Memory Leak Detector resumes displaying samples from the
application.

To Stop Analysis of Your Application
Click the Stop button.

This operation stops the continuous update of the data. When you start the trend analysis
again, the data that is currently displayed will be reset.

Note: You do not stop the application itself by stopping the analysis.

To Start Further Investigation
1. Right-click the object you think contains a memory leak.

2. Select Show Referring Types.

The Types tab appears (see Figure 3-5). For instructions on how to investigate further, see
To Get Closer to the Memory Leaking Object.

Inves t igat ing an Ob jec t Type

Oracle JRockit Runtime Analyzer 3-7

To Jump to Application Source Code
You can jump directly from the Trend Analysis table to application source code. For instructions,
please refer to Jumping to Application Source.

Investigating an Object Type
Once you have found a suspected memory leak (a type that is high in growth and is colored red),
you investigate the suspected leak further in the Types tab, see Figure 3-5. Before anything is
displayed in this tab, you need to start the investigation by selecting a type from the Trend tab,
see To Start Further Investigation, and then right-click on the type and select Show Referring
Types.

The Types tab offers a view of the relationships between all the types pointing to the type you
are investigating. For each type you also see a number, which is the number of instances that point
to that type.

Figure 3-5 Types Tab

The color red (dark) means that the type has a high growth rate (which may or may not be related
to a memory leak).

Using the Memory Leak De tec to r

3-8 Oracle JRockit Runtime Analyzer

Object Type Investigation Procedures
This section shows you how:

To Get Closer to the Memory Leaking Object

To Get an Overview of the Graph

To Investigate an Instance of a Type

To Get Closer to the Memory Leaking Object
1. Double-click on the type with the darkest color.

The type expands further.

2. Keep clicking the type with the darkest color (red), until you get down to a “natural end”
where you think you can pinpoint the memory leak.

3. Right-click the type where you suspect a leak.

4. Select List Instances.

The Instances part of the Types tab opens.

List instances shows you instances of the selected type. The instances shown will only be
those that have references to the type indicated by the arrow from the selected type in the
above type graph.

Inves t igat ing an Ob jec t Type

Oracle JRockit Runtime Analyzer 3-9

The lower half of the tab lists all instances of type A pointing to type B if the instance list
is not too large. If the list is too large, the Memory Leak Detector might time out when
trying to display the list. You can change the time out setting under Window >
Preferences.

The column Data kept alive (bytes) shows how much data a certain instance keeps alive.
This data cannot be garbage collected.

Have the Overview part of the window open to see where you are in the graph (see To Get
an Overview of the Graph for how to turn on the overview). You can also zoom in/out or
re-center the view.

To Get an Overview of the Graph
Click the Bird’s-eye Overview button.

A small Overview window opens on the tab. This Overview is good to help you navigate
in large graphs. You can refocus the view in the current tab by moving the shaded area.

Using the Memory Leak De tec to r

3-10 Oracle JRockit Runtime Analyzer

Figure 3-6 Bird’s Eye Overview of Graph

To Investigate an Instance of a Type
1. Right-click an instance in the Types tab (probably one with the highest data kept alive).

2. Select Show Referring Instances.

The Instances tab appears (see Figure 3-7).

Investigating an Object Instance
In the Instance tab, see Figure 3-7, you view the instances of the type that you suspect is leaking
memory. You can also see the name of the specific field by looking at the arrow that is referring.
Right-click an instance to get a popup menu with the Inspect Instance option. When inspecting
an instance you will see all instance variables that the object contains. This information will help
you pinpoint where in your application the leaking object is located.

Viewing A l locat ion S tack T races

Oracle JRockit Runtime Analyzer 3-11

Figure 3-7 Referring Instances Tab

Table 3-4 explains what you will be able to view in the Instances tab.

Viewing Allocation Stack Traces
In the Allocation Stack Traces tab, see Figure 3-8, you can check for where in the code
allocations of a certain type are done. Enabling allocation stack traces may deteriorate the
performance of the JRockit JVM. Collecting information about all the allocation points might
take a while.

Table 3-4 Instances of Suspected Memory Leaks

Part of Tab Displays

Instances Graph This graph shows how the instances are connected to each other.

Inspector In the inspector view you can see all fields the object contains and their values. The
information that is displayed is depending on the application you monitor.

Using the Memory Leak De tec to r

3-12 Oracle JRockit Runtime Analyzer

Figure 3-8 Allocation Stack Traces Tab

To Jump to Application Source Code
You can jump directly from the Allocation Stack Trace list to application source code. For
instructions, please refer to Jumping to Application Source.

Jumping to Application Source
If you are using the Memory Leak Detector as an Eclipse plug-in, you can jump from either the
Trend tab or the Allocation Stack Traces tab directly to the source code. A feature called
Jump-to-Source allows you not only to see the name of a “problem” class or method displayed in
the GUI, but lets you jump from the displayed method or class name directly to that class or
method’s source, where you can evaluate the code to see what might be causing the problem. This
feature extremely is useful in helping you locate and debug coding errors that are creating runtime
problems for your application.

To jump to the source code

1. In the Trend Analysis table or the Allocation Stack Trace for... table, right-click the problem
method or class to open a context menu.

2. Select Open Method or Open Type (depending upon what you are jumping from).

Customiz ing Se t t ings

Oracle JRockit Runtime Analyzer 3-13

3. The source code appears in a separate editor.

Customizing Settings
You can change preferences for time-outs, communication ports, updating frequency, etc. for the
Memory Leak Detector.

Setting Customization Procedures
This section shows you how:

To Open the Preferences Window

To Change General Settings

To Change Communication Settings

To Change Graphs Settings

To Change Instance Limits

To Change Trend Settings

To Open the Preferences Window
Click Window > Preferences > JRockit Mission Control > Memory Leak Detector.

The Preferences window opens.

To Change General Settings
1. Click Window > Preferences > JRockit Mission Control > Memory Leak Detector.

2. Deselect the Attempt to run Memory Leak Detector in a tab option.

If you let the Memory Leak Detector open in its own window, it de couples from the
JRockit Mission Control window and it opens in a new window. The menus changes
slightly to become more similar to the previous release. This setting takes effect the next
time you start the Memory Leak Detector.

3. Click OK.

Using the Memory Leak De tec to r

3-14 Oracle JRockit Runtime Analyzer

To Change Communication Settings
1. Click Window > Preferences > JRockit Mission Control > Memory Leak Detector >

Communication.

2. Select one of the communication options for the Memory Leak Protocol (MLP)
communication.

– Let OS choose—this is a convenient choice if you are not sitting behind a firewall.

– Use fixed port—this is used when you are running one JRockit JVM behind a firewall.

– Use port relative to JMX port—this is used when you are running several JVMs on
the same computer and the computer is behind a firewall. You decide how many
increments (a number between 1 and 65535) you want the TCP port for the MLP
communication to be.

3. Click OK.

To Change Graphs Settings
1. Click Window > Preferences > JRockit Mission Control > Memory Leak Detector >

Graphs.

The following can be set:

– Animate layouts, when selected, animates the expansion of a node on the type in
Types tab and the Instances tab.

– Automatically center the last expanded node, when selected, centers a type in the
viewing area for the Types tab and Instances tab.

– Number of referred nodes to add when a node is expanded, when set, controls how
many nodes you want to be displayed in the Types tab and Instances tab. If you
specify a very high number, the view can become cluttered.

– Show fully qualified class names in graph nodes, when selected, displays the
complete class name in the graphs of the Types tab and Instances tab.

2. Click OK.

To Change Instance Limits
1. Click Window > Preferences > JRockit Mission Control > Memory Leak Detector >

Instance limits.

Customiz ing Se t t ings

Oracle JRockit Runtime Analyzer 3-15

The following can be set:

– Number of array elements to fetch when inspecting arrays—These elements are
displayed in the Types tab when you have selected List Largest Arrays.

– Maximum number of instance relations to list—Here you set the number of
instances you want to list when doing List instances of a type. The list is shown in the
Types tab under Instances.

– Timeout in seconds for fetching instance relations—The instance relation is showed
in the Instances tab. A time out error can be caused by too many instances that need to
be fetched.

– Maximum keep alive size to trace, in bytes—The Memory Leak Detector looks at an
object until it reaches this value.

2. Click OK.

To Change Trend Settings
1. Click Window > Preferences > JRockit Mission Control > Memory Leak Detector >

Trend.

The following can be set:

– Lowest heap usage to report.

– Trend refresh interval.

2. Click OK.

Using the Memory Leak De tec to r

3-16 Oracle JRockit Runtime Analyzer

