
 

 

Design Tools Guide 
Version 2004.5

September 2004
 



 

 

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404 

Copyright © 2004 Siebel Systems, Inc.  

All rights reserved. 

Printed in the United States of America 

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in 
any way, including but not limited to photocopy, photographic, magnetic, or other record, 
without the prior agreement and written permission of Siebel Systems, Inc. 

Siebel, the Siebel logo, TrickleSync, Universal Agent, and other Siebel names referenced 
herein are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions. 

Other product names, designations, logos, and symbols may be trademarks or registered 
trademarks of their respective owners.  

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are 
optional and for which you may not have purchased a license. Siebel’s Sample Database also 
includes data related to these optional modules. As a result, your software implementation 
may differ from descriptions in this guide. To find out more about the modules your 
organization has purchased, see your corporate purchasing agent or your Siebel sales 
representative. 

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation, 
delivered subject to the Department of Defense Federal Acquisition Regulation Supplement, 
are “commercial computer software” as set forth in DFARS 227.7202, Commercial Computer 
Software and Commercial Computer Software Documentation, and as such, any use, 
duplication and disclosure of the Programs, Ancillary Programs and Documentation shall be 
subject to the restrictions contained in the applicable Siebel license agreement. All other use, 
duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S. 
Government shall be subject to the applicable Siebel license agreement and the restrictions 
contained in subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted 
Rights (June 1987), or FAR 52.227-14, Rights in Data—General, including Alternate III (June 
1987), as applicable. Contractor/licensor is Siebel Systems, Inc., 2207 Bridgepointe Parkway, 
San Mateo, CA 94404. 

 

Proprietary Information 

Siebel Systems, Inc. considers information included in this 
documentation and in Siebel eBusiness Applications Online 
Help to be Confidential Information. Your access to and use 
of this Confidential Information are subject to the terms and 
conditions of: (1) the applicable Siebel Systems software 
license agreement, which has been executed and with which 
you agree to comply; and (2) the proprietary and restricted 
rights notices included in this documentation. 

 

 



Contents  

Design Tools Guide Version 2004.5 ■ 3 

 

Contents 

1 What’s New in this Release ................................................................................................. 6 

2 Design Tools Overview........................................................................................................ 7 

2.1 CLASS BUILDER............................................................................................................ 7 
2.2 METHOD DEFINER ........................................................................................................ 7 
2.3 VALIDATION DEFINER.................................................................................................... 7 
2.4 SESSION BUILDER ........................................................................................................ 7 
2.5 ATTRIBUTE CLASS DEFINER .......................................................................................... 7 
2.6 DESIGN DOCUMENTATION BUILDER ............................................................................... 7 
2.7 MODEL EXPORTER ....................................................................................................... 8 
2.8 MODEL VALIDATOR....................................................................................................... 8 
2.9 MODEL COMPARISON TOOL .......................................................................................... 8 

3 Class Builder......................................................................................................................... 9 

3.1 INTRODUCTION ............................................................................................................. 9 
3.2 USING THE CLASS BUILDER........................................................................................... 9 
3.3 CLASS INFORMATION TAB ........................................................................................... 10 
3.3.1 Create New Class.................................................................................................................................. 10 
3.3.2 Amend existing Class ............................................................................................................................12 
3.3.3 Delete existing Class .............................................................................................................................12 
3.4 ATTRIBUTE DEFINER TAB ............................................................................................ 12 
3.4.1 Create New Attribute..............................................................................................................................13 
3.4.2 Amend ...................................................................................................................................................17 
3.4.3 Delete ....................................................................................................................................................17 
3.5 FINDER BUILDER TAB.................................................................................................. 17 
3.5.2 Method Definer ...................................................................................................................................... 19 

4 Method Definer ................................................................................................................... 20 

4.1 INTRODUCTION ........................................................................................................... 20 
4.2 USING THE METHOD DEFINER ..................................................................................... 20 
4.3 OVERVIEW/BEHAVIOUR TAB ........................................................................................ 21 
4.3.1 Create New Method ...............................................................................................................................21 
4.3.2 Amend Method ...................................................................................................................................... 21 
4.3.3 Delete Method ....................................................................................................................................... 21 
4.4 SIGNATURE TAB ......................................................................................................... 21 
4.4.1 Update Signature................................................................................................................................... 21 
4.5 RETURN TAB .............................................................................................................. 23 



Contents   

4 ■ Design Tools Guide Version 2004.5 

4.5.1 Update Return ....................................................................................................................................... 23 

5 Validation Definer ............................................................................................................... 25 

5.1 INTRODUCTION ........................................................................................................... 25 
5.2 USING THE VALIDATION DEFINER................................................................................. 25 
5.2.1 Create Validation ................................................................................................................................... 26 
5.2.2 Amend ...................................................................................................................................................26 
5.2.3 Delete Existing....................................................................................................................................... 27 

6 Session Builder .................................................................................................................. 28 

6.1 INTRODUCTION ........................................................................................................... 28 
6.2 USING THE SESSION BUILDER ..................................................................................... 28 
6.3 SESSION INFORMATION TAB........................................................................................ 29 
6.3.1 Create New Session ..............................................................................................................................29 
6.3.2 Amend existing Session.........................................................................................................................30 
6.3.3 Delete existing Session..........................................................................................................................30 
6.3.4 Process Definer ..................................................................................................................................... 30 

7 Design Aids & Utilities ....................................................................................................... 31 

7.1 INTRODUCTION ........................................................................................................... 31 
7.2 USING THE DESIGN AIDS & UTILITIES .......................................................................... 31 
7.2.1 Generate Design Documents.................................................................................................................32 
7.2.2 Export Model as XML.............................................................................................................................32 
7.2.3 Model Validator...................................................................................................................................... 32 
7.2.4 Model Comparison Tool.........................................................................................................................32 
7.2.5 Attribute Class Definer ...........................................................................................................................32 

8 Design Documentation Builder......................................................................................... 33 

8.1 INTRODUCTION ........................................................................................................... 33 
8.2 USING THE DESIGN DOCUMENTATION BUILDER............................................................ 33 

9 Model Exporter ................................................................................................................... 36 

9.1 INTRODUCTION ........................................................................................................... 36 
9.2 USING THE MODEL EXPORTER .................................................................................... 36 
9.3 CHANGING DTD LOCATION ......................................................................................... 36 

10 Model Validator................................................................................................................... 38 

10.1 INTRODUCTION ........................................................................................................... 38 
10.2 USING THE MODEL VALIDATOR.................................................................................... 38 
10.3 SELECTION OF MODEL VALIDATOR PROPERTIES FILE ................................................... 44 
10.4 RUNNING THE MODEL VALIDATOR WITH THE DEFAULT PROPERTIES FILE....................... 44 



Contents  

Design Tools Guide Version 2004.5 ■ 5 

11 Model Comparison Tool..................................................................................................... 45 

11.1 INTRODUCTION ........................................................................................................... 45 
11.2 USING THE COMPARISON TOOL................................................................................... 45 
11.2.1 Error Messages ................................................................................................................................. 46 
11.2.2 Report Contents ................................................................................................................................47 



What’s New in this Release ■ Class Builder 

6 ■ Design Tools Guide Version 2004.5 

1 What’s New in this Release 
The following changes have been introduced in the Siebel Retail Finance Design Tools, Version 2004.5: 

Topic Description 

The Class Builder now supports a wide range of Data 
Types, page 14 

Attributes can now be defined with a wide 
range of data types including Java Primitives, 
Parameter Objects and Classes. The existing 
set of data types such as String and Boolean 
are still supported.  

The Model Validator validations are now more 
configurable/customizable, page 38  

Users can now decide which validations to 
check for when using the Model Validator. 
Each validation can be switched on or off by 
means of a properties file. Additionally, users 
have the ability to specify their own custom 
Rose script. 

 



Design Tools Overview ■ Class Builder 

Design Tools Guide Version 2004.5 ■ 7 

2 Design Tools Overview 
The Siebel Retail Finance Design Tools comprise of the following: 

2.1 Class Builder 

The Class Builder was developed to aid in the design of Siebel standard entity EJBs. It makes use of 

already existing attributes within the project to assist in Class definition. The Class Builder also automatically 

updates background properties within the Rose model. These help in the automatic entity code generation. 

2.2 Method Definer 

The Method Definer was developed to aid the design of Siebel standard entity and session EJBs. It updates 

the Siebel properties of the methods including the overview and behaviour. The Method Definer has made it 

easier to create new methods, as it is easier to add parameters to the signature of a method and define the 

return types  

2.3 Validation Definer 

The Validation Definer was developed to aid in the design of Siebel standard entity EJBs. The Validation 

Builder creates Common Validators that are held in the .mdl file. These Common Validators are then 

available to all designers when creating the attributes of entities. This means that the designer can select an 

existing Validator, which speeds up the process. The Validators are held in a single class, which gets 

generated by the code generator 

2.4 Session Builder 

The Session Builder was developed to aid in the design of standard session EJBs. The Session Builder also 

automatically updates background properties within the Rose model. These help in the automatic entity code 

generation.  

2.5 Attribute Class Definer 

The Attribute Class Definer ensures that Attributes defined for a particular class are made available for use 

throughout the model. By running the Attribute Class Definer, the Attributes package is updated with the 

details of all Attributes defined in the model. 

2.6 Design Documentation Builder 

The Design Documentation Builder was developed to produce standard design documents. This is made up 

of Project directories that contain Financial Objects, Sessions, Parameter Objects, Parameter Object 

Factories, External Interfaces, and Java Class documents. 



Design Tools Overview ■ Model Exporter 

8 ■ Design Tools Guide Version 2004.5 

2.7 Model Exporter 

The Model Exporter was developed to export XML from the Rose designs. This XML is used by all other 

Retail Finance tools to develop the products. The Exporter generates a single XML file and outputs it to a 

chosen directory. 

2.8 Model Validator 

The Model Validator was developed so that designers could ensure that their designs meet design 

standards. This is to ensure that the code can be generated quickly and easily from the models when the 

design phase is over. The tool performs class error checks, attribute error checks, function error checks and 

process error checks on the model.  

2.9 Model Comparison Tool 

The Model Comparison Tool compares the differences between two Siebel Models. The tool was designed 

to aid designers and developers as follows: to facilitate handover of updated Rose models to the 

development team, to help measure progress during the design phase, to produce input to the review of 

design artifacts and to help synchronization of streams within the design process. It produces 6 reports in 

HTML format - one for each of the following: financial components, financial processes, paramater objects, 

common validations, validator lengths and constants. These comparison reports can be used to identify 

changes to a model during the design, development and testing phases of a project.  

 



Class Builder ■ Introduction 

Design Tools Guide Version 2004.5 ■ 9 

3 Class Builder 

3.1 Introduction 

The Class Builder was developed to aid in the design of standard entity EJBs. It makes use of already 

existing attributes within the project to assist in Class definition. The Class Builder also automatically 

updates background properties within the Rose model. These help in the automatic entity code generation. 

3.2 Using the Class Builder 

Once a new model has been created using the Framework then the entities may be designed. This tool is 

launched from the Tools>Siebel menu in Rose. The Class Builder appears on the Design Tools Palette.  

 

The Class Builder enables the user to create new Class Packages in the Banking Objects section of the 

model. It provides the ability to create/delete domain layer packages and classes. 

 

On loading, all of the existing classes will be shown in the Class List. There is only one class per package so 

the creation and maintenance of the packages will be done in the background. The elements in the Class 

information section become active when a user selects an existing class or chooses to create a new class. 

Any classes that are contained within a write-protected package will appear with a lock symbol next to them. 

This is shown for the RetailAccount class in the diagram below. 



Class Builder ■ Class Information Tab 

10 ■ Design Tools Guide Version 2004.5 

 

3.3 Class Information Tab 

3.3.1 Create New Class 

To create a new class the  button should be selected. When this is selected the following screen is 

launched: 



Class Builder ■ Class Information Tab 

Design Tools Guide Version 2004.5 ■ 11 

 
This enables the user to define the BO Grouping that they wish to add the Entity to. The Class Information 

section becomes active at this point. The user may enter the Class name (this is a mandatory field), table 

name, and class overview into the relevant text fields. 

 

The user may also select whether the class uses a non-functional parameter object. This will create a 

background property that indicates to the code generator that a Parameter Object containing all of the 

attributes of the class should be created. This will be used in create and amend methods of the object. If 

this is not checked on creating the class it can be amended afterwards and saved with the list of non-

functional parameter objects being refreshed with the class name. 

 

The architecture is a Four Layer object architecture. The possible super classes of the new class are all 

contained in the ‘Available Super Class’ list as shown below: 

 
In the Production release this list contains all of the Sector Core Layer Classes. In the Delivery release this 

contains all of the Module Layer Classes. To save the information the User should select ‘Save’. The 

information will also be saved if the User selects one of the other tabs e.g. FinderBuilder. In both cases a 

new Class is added to the selected BO Grouping of the Rose model. In the Production release a new Class 

is added at the Module Layer and a new Class with the same name is also added to the associated Domain 



Class Builder ■ Attribute Definer Tab 

12 ■ Design Tools Guide Version 2004.5 

Layer package. By default there are a number of methods added to the classes. These are create, amend 

and delete on the module layer class, and findByPrimaryKey on the Domain Layer. In the Delivery 

release the new Class is only added at the Domain Layer and all of the Default methods are added to this 

class. 

3.3.2 Amend existing Class 

When a Class is selected from the list the Class Information section becomes active. The user may amend 

the fields (except for the Name field) in this section. In order to amend the Class the user should select 

‘Save’. This will update the Class with the newly entered information. 

3.3.3 Delete existing Class 

When a Class is selected from the list the  button becomes enabled. If a user selects this, the selected 

class is deleted from the model. In the Production release both the Module and Domain Layer Classes are 

deleted. However in the Delivery release only the Domain Layer Class is released. 

3.4 Attribute Definer Tab 

The attributes of the selected class may also be defined by selecting the ‘Attribute Definer’ tab. When this is 

selected the class builder screen looks as below: 



Class Builder ■ Attribute Definer Tab 

Design Tools Guide Version 2004.5 ■ 13 

 
In the Production release the classes that are selected are in the Module Layer. In this case the Class 

Attributes List only shows attributes of the Module Layer and its parent classes. In the Delivery release the 

classes that are selected are in the Domain Layer. In this case the Class Attributes List shows attributes of 

the Domain Layer and its parent classes. In both cases the attributes that are in the actual class are shown 

in black. The attributes of the parent classes are shown in blue. If an attribute is from a super class then the 

following fields are not amendable: Attribute Name, Overview and Data Type. All other parts of the Attribute 

Details section are amendable. For an attribute in the actual class all fields are amendable. 

3.4.1 Create New Attribute 

To create a new attribute either  or  should be selected. If  is selected then the following screen is 

launched: 



Class Builder ■ Attribute Definer Tab 

14 ■ Design Tools Guide Version 2004.5 

 
This enables the user to add an existing application or system attribute to the entity. The advantage of this is 

that the attribute definition is complete. This makes the design quicker and ensures consistency throughout 

the model. 

If  is selected the Attribute Details section becomes active. The user may enter the ‘Attribute Name’, 

‘Table Column’ and ‘Overview’ into the relevant text fields. The data type of the attribute may be selected by 

clicking on a data type in the tree view. The view may be changed by clicking on the radio buttons in the 

data type section: Objects, Parameter Objects, Standard Data Types, Java Primitives, Non-Functional 

Parameter Objects 

 

If one of the Standard Data Types (Boolean, Double, Integer, String) is selected, the User will have the 

option to assign validation to the attribute. However, for all other data types, validation will be disabled. 

It should be noted here that the tool does not allow attributes of the same name to be defined on an entity. If 

the attribute is defined with a data type of double then the ‘Decimal Places’ field is enabled. The user may 

enter the number of decimal places in the text box. The attribute will default to have Optional validation or 

can be given Mandatory validation by selecting the ‘Mandatory’ check box. The attribute can be defined as a 

Primary Key by selecting the ‘Primary Key’ check box. This will default the attribute as mandatory and will 

enable the ‘System Generated’ check box. The User may select a primary key field to be system generated 

if the attribute is taken from the system on the create of an entity. In the case of Standard Data Types, the 

user may also define the Validator for the attribute at this stage. To do this they must select whether they 

want to use a ‘Common’ or ‘Custom’ validator then select .   

 

If Common is selected the following screen is launched: 



Class Builder ■ Attribute Definer Tab 

Design Tools Guide Version 2004.5 ■ 15 

 
This allows the user to select from the list of existing Common Validations. When a validator has been 

selected the details of it are shown in the ‘Overview’ section. If the user should select ‘Save’ and the 

datatype of the validator is not valid a message will instruct the user to select a validator with the correct 

datatype to match the attribute datatype. Below are the valid datatype matches for a Validator: 

Attribute Type Validator Type Validator Value Type Validator Length 

    

String String Any one of the Validator value 

types 

Validator Length required 

Double Number N/A Validator Length required 

Boolean Boolean N/A Validator Length required 

Boolean String forLettersOrDigitsOnly Validator Length required 

Integer String forDigitsOnly Validator Length required 

Constant String Constant Constant Key required 

ByteArray N/A N/A Not required 

 

Once an appropriate validator has been chosen the user should select ‘Save’. This will return the user to the 

Attribute Definer. To exit the screen the user should select ‘Exit’. 

 

If Custom is selected the following screen is launched: 



Class Builder ■ Attribute Definer Tab 

16 ■ Design Tools Guide Version 2004.5 

 
On entry the ‘Name’ field will default to ‘validateAttributeName’, the ‘Type field will be defaulted to ‘String’ the 

‘Value\Date’ field will default to ‘Value’ and the ‘Value Type’ field will default to ‘forLettersOrDigitsOnly’. The 

user may configure the validator as follows: 

 

First the Validator Type should be selected. This can be either Boolean, Number or String and can be 

chosen from the drop down. The other fields in the ‘Overview’ section will be disabled depending on the 

Type chosen: 

• If ‘Boolean’ is selected the all other fields become disabled. 

• If “Number” is selected then the ‘Length’, ‘Max Length’ and ‘Exact Length’ fields are enabled.  

• If ‘String’ is selected then the ‘Value\Date’, Value Type’ and ‘Length’ fields are enabled.  

When ‘Date Or Time’ is selected in the ‘Value\Date’ drop down then the user may select ‘Supply Pattern’ or 

‘System Date Pattern’ from the ‘Value Type’ drop down. If ‘Supply Pattern’ is selected then the ‘Pattern’ field 

becomes enabled and the user may enter a specific date or time pattern e.g. yyyy:mm:dd. If ‘System Date 

Pattern’ is selected, then the ‘Pattern’ field defaults to ‘System’. In both cases the ‘Length’, ‘Max Length’ and 

‘Exact Length’ fields are disabled. 

 

When ‘Value’ is selected in the ‘Value\Date’ drop down then the user may select ‘Constant’, ‘forDigitsOnly’, 

‘forLettersOnly’, ‘forLettersOrDigitsOnly’ or ‘forLettersOrDigitsOrWhiteSpacesOnly’ from the ‘Value Type’ 

drop down. Where the Validator is a constant and ‘Constant’ is chosen then the ‘Length’, ‘Max Length’ and 

‘Exact Length’ fields are disabled and the ‘Constants Key’ field is enabled. In this case the user may select 

an existing Constants Key from the drop down or may choose to add a new constant to the system by 

selecting the  button along side the drop down. In the other three cases the User may select a validator 

length from the ‘Length’ field or create a new length using . The User may also select ‘Max Length’ or 

‘Exact Length’ if the validator so requires. 

 

Once the attribute has been completely defined ‘Save’ must be selected. It is only then that all of the 

information is stored within the model. 



Class Builder ■ Finder Builder Tab 

Design Tools Guide Version 2004.5 ■ 17 

3.4.2 Amend 

To amend an existing attribute the user should select the attribute from the list and update the ‘Attribute 

Details’ section as described above. If an attribute is from a super class then the following fields are not 

amendable: Attribute Name, Overview and Column Format. All other parts of the Attribute Details section 

are amendable. For an attribute in the actual class all fields are amendable. 

3.4.3 Delete 

When a class attribute is selected from the list the  button becomes enabled (it will be disabled for super 

class attributes). If a user selects this, the selected attribute is removed from the entity. 

3.5 Finder Builder Tab 

The finder methods of the selected class may also be defined by selecting the ‘Finder Builder’ tab. When 

this is selected the class builder screen looks as below: 

 



Class Builder ■ Finder Builder Tab 

18 ■ Design Tools Guide Version 2004.5 

The Finder Builder allows the user to create, amend and delete findBy methods. It also allows the user to 

create, amend and delete complex finder methods. In the Production release all of the Finder methods in the 

list will be from the Module and will be amendable. In the Delivery release the Module Layer Finder methods 

will appear in blue and will not be amendable. The Implementation Finder methods will be shown in black 

and will be amendable. 

3.5.1.1 Create simple FindBy 

To add a new finder method to the selected entity the user should select . This enables the Attributes 

section of the Finder Builder Tab. To create a simple findBy method the user must select whether the 

method is an ‘AND’ or an ‘OR’ finder. Selecting the radio buttons in the Attributes section of the screen does 

this. An ‘OR’ finder will find objects that fulfill any of the parameters passed in. An ‘AND’ finder will find any 

objects that fulfill the combination of parameters. Once the user has selected the type of finder, an attribute 

from the list containing all of the Class attributes should be chosen and ‘>>’ should be selected. This will 

update the ‘FindBy Attributes’ list with the selected attribute. To remove an attribute from the findBy 

method, the attribute should be selected from the ‘FindBy Attributes’ list and ‘<<’ should be selected. Once 

the findBy has been properly defined ‘Save’ should be selected. 

3.5.1.2 Create complex FindBy 

To add a new complex finder method to the selected entity the user should select . This enables the 

Attributes section of the Finder Builder Tab. To create a complex findBy method the user must first enter a 

name for the finder. Then the user should select whether the method is an ‘AND’ or ‘OR’ finder. Selecting 

the radio buttons in the Attributes section of the screen does this. An ‘OR’ finder will find objects that fulfill 

any of the parameters passed in. An ‘AND’ finder will find any objects that fulfill the combination of 

parameters. Once the user has selected the type of finder, an attribute from the list containing all of the 

Class attributes should be chosen and ‘>>’ should be selected. This will update the ‘FindBy Attributes’ list 

with the selected attribute. To remove an attribute from the findBy method, the attribute should be selected 

from the ‘FindBy Attributes’ list and ‘<<’ should be selected. To amend the rules on the parameters the user 

should double click on one of the attributes in the ‘FindBy Attributes’ list. This launches the screen shown 

below: 

 
The user may select the rules to be equal to, less than, less than or equal to, greater than, greater than or 

equal to, not equal to or range. Once the user is happy that the correct rule has been applied to the attribute 

‘Ok’ should be selected. Once the findBy has been properly defined ‘Save’ should be selected. 



Class Builder ■ Finder Builder Tab 

Design Tools Guide Version 2004.5 ■ 19 

3.5.1.3 Amend 

To amend an existing finder method, the user should select the method from the ‘FindBy Methods’ list. For 

all finder method the user may add or remove attributes for the findBy. The user may also change the finder 

method from an ‘AND’ method to an ‘OR’ method or vice versa. In the case of complex finder methods, the 

user may also amend the rules on each parameter. 

3.5.1.4 Delete 

To remove a findBy method from a Class the method should be selected from the ‘FindBy Methods’ list 

and  should be selected. 

3.5.2 Method Definer 

When ‘Method Definer’ is selected on the ‘Class Builder’ (first) screen the Method Definer is launched. This 

enables the User to define methods on the class. A method is defined by giving it a name, a signature and a 

return type. The Method Definer also allows the User to define a more detailed behaviour of a method. The 

Method Definer is detailed in the Method Definer document. 



Method Definer ■ Introduction 

20 ■ Design Tools Guide Version 2004.5 

4 Method Definer 

4.1 Introduction 

The Method Definer was developed to aid the design of standard entity and session EJBs. It updates the 

properties of the methods including the overview and behaviour. The Method Definer has made it easier to 

create new methods, as it is easier to add parameters to the signature of a method and define the return 

type. 

4.2 Using the Method Definer 

The Method Definer can be used from the Class Builder or the Session Builder. In both cases the 

functionality that is offered is the same. When using the Class Builder the Method Definer tab becomes 

active when a Class is selected. If the tab is chosen the screen appears as shown below: 

 



Method Definer ■ Overview/Behaviour tab 

Design Tools Guide Version 2004.5 ■ 21 

4.3 Overview/Behaviour tab 

4.3.1 Create New Method 

To create a new method the  icon should be selected on the ‘Method Definer’ tab. The 

Overview/Behaviour section becomes active at this point. The user enters the Method name (this is a 

mandatory field), the method overview and an overview of the method behaviour into the relevant text fields. 

The ‘Methods’ list is updated with the new method. 

4.3.2 Amend Method 

Methods of the actual class will be shown in black and methods of the super classes will be shown in blue. 

Only class methods may be amended. To amend a method it should be selected from the list. This will 

enable the user to amend the detail tabs. Once these have been updated the User should select ‘Save’. 

Note that the text “* Deprecated” appears beside the method name of any selected method that is 

deprecated. 

4.3.3 Delete Method 

When a Method is selected from the list the  button becomes enabled. If a user selects this, the selected 

method is deleted from the Class. 

4.4 Signature Tab 

4.4.1 Update Signature 

The parameters of the selected method may be updated by selecting the ‘Signature’ tab. If this is selected 

the screen appears as follows: 



Method Definer ■ Signature Tab 

22 ■ Design Tools Guide Version 2004.5 

 

4.4.1.1 Adding a Parameter 

The Method Signature Definer allows the User to select parameters for the method that has been selected. 

There are a number of lists comprising of all of the attributes, Objects, Parameter Objects, Primary Key 

Classes and Non-Functional Parameter Objects that are in the project. To add a parameter, choose from 

these lists and select ‘>>’. In the case of Objects, Parameter Objects, Primary Key Classes and Non-

Functional Parameter Objects ‘>>>’ may be selected. This will add a collection containing these objects to 

the parameter list. When adding a Parameter Object or Non-Functional Parameter Object an ‘Impl’ suffix is 

added to the name of the parameter object. A parameter may also be added by selecting the  icon. If this 

is selected then the following screen is launched: 



Method Definer ■ Return Tab 

Design Tools Guide Version 2004.5 ■ 23 

 
This allows the input of User Defined parameters. An example of such a parameter is a system specific ID 

that is passed in from the front end but is not modelled as part of any entities. Once all of the parameters 

have been added to the signature ‘Save’ must be selected at the bottom of the tab. 

4.4.1.2 Removing a parameter 

To remove a parameter from the parameter list it should be selected from the ‘Parameters’ list. Then select 

the  icon and the parameter will be deleted.  

4.5 Return Tab 

4.5.1 Update Return 

The return of the selected method may be updated by selecting the ‘Return tab. If this is selected the screen 

appears as below: 



Method Definer ■ Return Tab 

24 ■ Design Tools Guide Version 2004.5 

 

4.5.1.1 Adding a return 

The Method Return Definer allows the User to select primitives and objects as returns for the method that 

has been selected. There are a number of lists comprising of all of the Objects, Parameter Objects and 

Primary Key Classes that are in the project. The User may also define the method as a data type or Void by 

selecting the relevant radio buttons. To add a data type or object, choose from the relevant lists and select 

either ‘>>’ to add a single selected item or ‘>>>’ to add a collection. This will add a collection containing 

these objects to the return. In this case the return will be a collection such as a vector or enumeration. Once 

the return has been completely added to the method ‘Save’ must be selected at the bottom of the tab. 

4.5.1.2 Removing a return 

To remove a primitive or object from the return list it should be selected from the ‘Returns’ list. Then select 

the  icon and the selected item will be deleted.



Validation Definer ■ Introduction 

Design Tools Guide Version 2004.5 ■ 25 

5 Validation Definer 

5.1 Introduction 

The Validation Definer was developed to aid in the design of standard entity EJBs. The Validation Builder 

creates Common Validators that are held in the .mdl file. These Common Validators are then available to 

all designers when creating the attributes of entities. This means that the designer can select an existing 

Validator, which speeds up the process. The Validators are held in a single class, which gets generated by 

the code generator 

5.2 Using the Validation Definer 

This tool is launched from the Tools>Siebel>Design Tools menu in Rose. 

 



Validation Definer ■ Using the Validation Definer 

26 ■ Design Tools Guide Version 2004.5 

The Validation Definer enables the user to create new Common Validators in the model. It also provides the 

ability to delete and amend selected existing Validators. To view the properties of an existing Validator is 

should be selected from the list. The details will appear in the ‘Overview’ section. In the Production release 

all of the Common Validators in the list will be from the Solutionset Common Validator and will be 

amendable. In the Delivery release the Solutionset Common Validators will appear in blue and will not be 

amendable. The Implementation layer Common Validators will be shown in black and will be amendable. 

5.2.1 Create Validation 

To create a new Common Validator select the  icon. The ‘Overview’ section becomes enabled. The new 

Validator name should be entered into the text field as follows: “validateName” e.g. “validateBranchCode”. 

Next the Validator Type should be selected. This can be either Boolean, Number or String and can be 

chosen from the drop down list. The other fields in the ‘Overview’ section will be disabled depending on the 

Type chosen.  

• If ‘Boolean’ is selected then all other fields become disabled. 

• If “Number” is selected then the ‘Length’, ‘Max Length’ and ‘Exact Length’ fields are enabled.  

• If ‘String’ is selected then the ‘Value\Date’, Value Type’ and ‘Length’ fields are enabled.  

When ‘Date Or Time’ is selected in the ‘Value\Date’ drop down list then the user may select ‘Supply Pattern’ 

or ‘System Date Pattern’ from the ‘Value Type’ drop down. If ‘Supply Pattern’ is selected then the ‘Pattern’ 

field becomes enabled and the user may enter a specific date or time pattern e.g. yyyy:mm:dd. If ‘System 

Date Pattern’ is selected, then the ‘Pattern’ field defaults to ‘System’. In both cases the ‘Length’, ‘Max 

Length’ and ‘Exact Length’ fields are disabled. 

 

When ‘Value’ is selected in the ‘Value\Date’ drop down list then the user may select ‘Constant’, 

‘forDigitsOnly’, ‘forLettersOnly’, ‘forLettersOrDigitsOnly’ or ‘forLettersOrDigitsOrWhiteSpacesOnly’ from the 

‘Value Type’ drop down list. Where the Validator is a constant and ‘Constant’ is chosen then the ‘Length’, 

‘Max Length’ and ‘Exact Length’ fields are disabled and the ‘Constants Key’ field is enabled. In this case the 

user may select an existing Constants Key from the drop down list or may choose to add a new constant to 

the system by selecting the  button along side the drop down list. Note that the constant type must match 

the validation type, which is String in this case. In the other three cases the user may select a validator 

length from the ‘Length’ field or create a new length using the  icon. The user may also select ‘Max 

Length’ or ‘Exact Length’ if the validator so requires. 

5.2.2 Amend 

To amend an existing common validator the user should select the validator from the list and update the 

‘Overview’ section as described above. The ‘Name’ field in this instance is disabled so that the common 

validator names cannot be amended. This is done so that references to existing common validators are not 

broken 



Validation Definer ■ Using the Validation Definer 

Design Tools Guide Version 2004.5 ■ 27 

5.2.3 Delete Existing 

When ‘Delete Existing’ is selected the selected Common Validator is removed form the Model. Care must be 

taken in deleting existing validators as entity attributes may already reference these validators. 



Session Builder ■ Introduction 

28 ■ Design Tools Guide Version 2004.5 

6 Session Builder 

6.1 Introduction 

The Session Builder was developed to aid in the design of standard session EJBs. The Session Builder also 

automatically updates background properties within the Rose model. These help in the automatic entity code 

generation. 

6.2 Using the Session Builder 

Once a new model has been created using the Framework then the entities may be designed. This tool is 

launched from the Tools>Siebel menu in Rose. The Session Builder appears on the Design Tools Palette.  

The Session Builder enables the user to create new Class Packages in the Banking Objects section of the 

model. It provides the ability to create/delete domain layer packages and classes. 

 

On loading, all of the existing sessions will be shown in the Session List. There is only one class per 

package so the creation and maintenance of the packages will be done in the background. The elements in 

the Session information section become active when a user selects an existing class or chooses to create a 

new class. Any classes that are contained within a write-protected package will appear with a lock symbol 

next to them. This is shown for the CustomerSearch class in the diagram below. 



Session Builder ■ Session Information Tab 

Design Tools Guide Version 2004.5 ■ 29 

 

6.3 Session Information Tab 

6.3.1 Create New Session 

To create a new session the  button should be selected. When this is selected the following screen is 

launched: 



Session Builder ■ Session Information Tab 

30 ■ Design Tools Guide Version 2004.5 

 
This enables the user to define the BP Grouping that they wish to add the Session to. The Session 

Information section becomes active at this point. The user may enter the Session name (this is a mandatory 

field) and overview into the relevant text fields. The solution works within a Two Layer session architecture.  

To save the information the User should select ‘Save’. The information will also be saved if the User selects 

one of the other tabs e.g. Process Builder. In both cases a new Class is added to the selected BP Grouping 

of the Rose model. In the Production release a new Session is added at the Module Layer and a new 

Session with the same name is also added to the associated Domain Layer package. In the Delivery release 

the new Session is only added at the Domain Layer. 

6.3.2 Amend existing Session 

When a Session is selected from the list the Session Information section becomes active. The user may 

amend the fields (except for the Name field) in this section. In order to amend the Session the user should 

select ‘Save’. This will update the Session with the newly entered information. 

6.3.3 Delete existing Session 

When a Session is selected from the list the  button becomes enabled. If a user selects this, the 

selected session is deleted from the model. In the Production release both the Module and Domain Layer 

Sessions are deleted. However in the Delivery release only the Domain Layer Session is released. 

6.3.4 Process Definer 

When ‘Process Definer’ is selected on the ‘Session Builder’ (first) screen the ‘Method Definer’ is launched. 

This enables the User to define processes on the session. A process is defined by giving it a name, a 

signature and a return type. The Method Definer also allows the User to define a more detailed behaviour of 

a process. The Method Definer is detailed in the Method Definer document. 



Design Aids & Utilities ■ Introduction 

Design Tools Guide Version 2004.5 ■ 31 

7 Design Aids & Utilities 

7.1 Introduction 

The Design Aids & Utilities were developed to assist the job of the designers. Most of the utilities produce 

reports of the models. These allow the designers to get a quick view of the dependencies and associations 

within the model. They also assist in the development stage to identify all required methods and assist in 

development planning and provide a method of handing over the designs to the developers by generating 

both design documentation and code. 

7.2 Using the Design Aids & Utilities 

All of the Design Aids & Utilities can be launched from the Tools>Siebel menu within Rose. Each is 

discussed below. 

 



Design Aids & Utilities ■ Using the Design Aids & Utilities 

32 ■ Design Tools Guide Version 2004.5 

7.2.1 Generate Design Documents 

This utility is described in the Design Documentation Builder document. 

7.2.2 Export Model as XML 

This utility is described in the Model Exporter document. 

7.2.3 Model Validator 

This utility is described in the Model Validator document. 

7.2.4 Model Comparison Tool 

This utility is described in the Model Comparison Tool document. 

7.2.5 Attribute Class Definer 

The Attribute Class Definer ensures that Attributes defined for a particular class are made available for use 

throughout the model. To run the Attribute Class Definer select its icon on the Utilities tab. By running the 

Attribute Class Definer, the Attributes package is updated with the details of all Attributes defined in the 

model. 

 
 



Design Documentation Builder ■ Introduction 

Design Tools Guide Version 2004.5 ■ 33 

8 Design Documentation Builder 

8.1 Introduction 

The Design Documentation Builder was developed to produce standard design documents. The generator 

produces a directory structure that is compliant to these standards. This is made up of Project directories 

that contain Financial Objects, Sessions, Parameter Objects, Parameter Object Factories, External 

Interfaces, and Java Class documents. 

8.2 Using the Design Documentation Builder 

Once the designer has completed the design phase for a requirement the Design Documentation Builder 

may be used to create standard design documents. The Document Generator is launched from the 

Tools>Siebel menu within Rose. 



Design Documentation Builder ■ Using the Design Documentation Builder 

34 ■ Design Tools Guide Version 2004.5 

 
 

Once the Generator has launched, the user must select the Destination Directory for the documents (using 

the Drop-Down box and List box in the top left corner). The generator also provides the ability to select 

which documents should be generated. Using the ‘Model Views’ radio buttons on the right the user may 

select to generate all of the design documents, or only a selection of design documents, which may be 

Banking Object documents, Business Process documents, Parameter Object documents, Parameter Object 

Factory documents, JavaClasses documents or Constant documents. Alternatively the user may select to 

generate the documents of a single class by selecting a class from the list of classes displayed when one of 

the ‘Model Views’ options is selected and checking the ‘Generate Selected Class only’ box. 



Design Documentation Builder ■ Using the Design Documentation Builder 

Design Tools Guide Version 2004.5 ■ 35 

 
The user must also select the Version of the model that is being worked on (either Version 4 or Version 5). 

Clicking the ‘Generate’ button will generate the design documents and output same to the destination 

directory. 

 

*An important note regarding Design document generation is that there is a Windows restriction of 256 

characters in the fully qualified file name of any file, i.e. the file name with the full folder and sub folders 

names all added up together. Overloading operation with up to 10 parameters causes a maximum of 55 

characters to be added to the name of the operation design file - it can be more for operations with more that 

10 parameters. If the fully qualified file name of the operation exceeds 256 characters an error message is 

displayed with the message, 'Path not found' and the Design document generation will exit at this point. In 

order to get over this issue, try generating the documents in a folder off the c:\ or d:\ root drive, or shorten 

the class and/or operation names. 



Model Exporter ■ Introduction 

36 ■ Design Tools Guide Version 2004.5 

9 Model Exporter 

9.1 Introduction 

The Model Exporter was developed to export XML from the Rose designs. This XML is used by all other 

Retail Finance tools to develop the products. The Exporter generates a single XML file and outputs it to a 

chosen directory. 

9.2 Using the Model Exporter 

Once a model has been completed, or a module has been taken from the repository then the XML may be 

exported. This tool is launched from the Tools>Siebel menu in Rational Rose. 

 
When the Model Exporter is launched the above screen appears. The User can enter the name of the XML 

file they want to generate or select a current file to overwrite. Once this is done the Save button can be 

clicked and the file will be generated to the chosen location.  

9.3 Changing DTD location 

The XML generated by the Model Exporter references a DTD file. The DTD can be referenced in the XML as 

a file or a URL. It is important that the DTD location is accessible when the XML file is passed to other Retail 

Finance tools. For example, if the DTD location referenced in the XML is a network drive or a URL and the 

user has no network connectivity, other Retail Finance tools may not be able to read the file. If the user 

wishes to change the DTD referenced they can do so by choosing Tools>Siebel menu (Change DTD 

Location) in Rational Rose. 



Model Exporter ■ Changing DTD location 

Design Tools Guide Version 2004.5 ■ 37 

 
This is a prompt for the User to select where the DTD they want to use for the export is located. If ‘New File’ 

is selected then the User may select a DTD from a directory. The User may also choose a URL for the DTD. 

The URL entered for the DTD must end in /EontecModel.dtd.  



Model Validator ■ Introduction 

38 ■ Design Tools Guide Version 2004.5 

10 Model Validator 

10.1 Introduction 

The Model Validator was developed so that designers could ensure that their designs meet design 

standards. This is to ensure that the code can be generated quickly and easily from the models when the 

design phase is over. There are a number of checks which the Model Validator does, outlined below. 

10.2 Using the Model Validator 

The Model Validator tool is launched from the Tools->Siebel menu in Rose. 

 

The user can edit the validations.properties file to determine which validations are selected. To remove a 

validation, the symbol # may be inserted at the beginning of the line. The validations.properties file has the 

following format: 
 

# Custom Rose Script 
customModelValidations.ebx 
# Attribute Validations 
AttributeMandatoryValidation 

AttributeDataSize 

# AttributeDataSizeNumeric 

AttributeValidatorMethodDefined 

 

The name of the custom Rose script is specified in the first uncommented line of the properties file. 

 

When the Model Validator is invoked, the properties file is read. If a validation is “commented out” it will not 

be used to validate the model. 

The tool performs the following checks on the model and produces a HTML report: 

Section Validation Description Validation Code 

General Errors   

 
Check that the documentation field in the 

BankingObject Catagory is not blank 

GeneralBankingObjectCatego

ryDocumentation 

 
Check that the BankingObject Category contains

a Domain Layer 

GeneralBankingObjectCatego

ryDomain 

 
Check that the BankingObject Category contains

a Module Layer 

GeneralBankingObjectCatego

ryModule 

 
The documentation field in the Domain layer 

packages (stereotype DomainPackageObject) 

GeneralBankingObjectDomain

LayerCategoriesDocumentatio



Model Validator ■ Using the Model Validator 

Design Tools Guide Version 2004.5 ■ 39 

must contain part of the Java namespace n 

 

The documentation field in the Module layer 

packages (stereotype ModulePackageObject) 

must contain part of the Java namespace 

GeneralBankingObjectModule

LayerCategoriesDocumentatio

n 

 
BusinessProcess Category documentation must 

contain com.bankframe.bp 

GeneralBusinessProcessCate

goryDocumentation 

 
BusinessProcess Category must contain a 

Domain Layer 

GeneralBusinessProcessCate

goryDomain 

 

BusinessProcess Category must contain a 

Module Layer 

 

GeneralBusinessProcessCate

goryModule 

 
Check that the Domain Layer Categories contain 

qualified name documentation 

GeneralBusinessProcessDom

ainLayerCategoriesDocument

ation 

 
Check that the Module Layer Categories contain 

qualified name documentation 

GeneralBusinessProcessMod

uleLayerCategoriesDocument

ation 

Validator Errors   

 
Check that the model contains a Validator 

Category 
ValidatorCatagoryExists 

 
Validator Category documentation must contain 

com.bankframe.validator 

ValidatorCatagoryDocumentat

ion 

 Validator Category must contain a Domain Layer
ValidatorCatagoryDomainExis

ts 

 
The Domain Layer Validator Category must 

contain qualified name documentation 

ValidatorCatagoryDomainDoc

umentation 

 
The Domain Layer Validator Category must 

contain at least one class 
ValidatorDomainClasses 

 Validator Category must contain a Module Layer
ValidatorCatagoryModuleExist

s 

 
The Module Layer Validator Category must 

contain qualified name documentation 

ValidatorCatagoryModuleDoc

umentation 

 
The Module Layer Validator Category must 

contain at least one class 
ValidatorModuleClasses 

 

The class Common Validations must have a 

stereotype of DomainValidator, if it belongs to 

the DomainValidator package 

ValidatorDomainStereotype 

 
The class Common Validations must have a 

stereotype of SolutionsetValidator, if it belongs to 
ValidatorModuleStereotype 



Model Validator ■ Using the Model Validator 

40 ■ Design Tools Guide Version 2004.5 

the SolutionsetValidator package 

Constant Class Errors   

 The model must contain a Constants category ConstantsCatagoryExists 

 
The Constants Category documentation must 

contain com.bankframe.co 

ConstantsCatagoryDocument

ation 

 

The Constants Category does must contain a 

Constants class 

 

ConstantsClassExists 

 
The Contants class must have a stereotype of 

“Constants” 

ConstantsClassStereotype 

Attributes Class Errors   

 
The model must contain an Attributes Category 

 

AttributesCategoryExists 

 

The Attributes Category must contain an 

Attributes Class 

 

AttributesCategoryClasses 

 
The Attributes Class must belong to the 

Attributes package 

AttributesClassStereotype 

Class Errors   

 Check that no Object starts with a small letter classstartslowercaseCheck 

 
Check that no Object is misspelled or contains 

illegal characters 
classillegalcharacterCheck 

 
Check that no Object inherits from multiple 

classes 
classMultipleInheritanceCheck

 Check that no Object has Duplicate associations
classDuplicateAssocationChe

ck 

 
Check that no Solution Set Objects exist without 

corresponding Domain Package Objects 
classdomainlayerclassCheck 

 
Check that no Session contains BPDs without a 

process on the session of the same name 
 

 
Check that every package name matches its 

session name 

classdifferentpackagenameCh

eck 

 Check that findByPrimaryKey is correctly spelt classFindByPKCheck 

 Check that the Stereotype is correct in all cases classSterotypeCheck 

 
Check that every entity has at least one primary 

key attribute defined for it 
classPrimaryKeyCheck 

 Check that every entity has at least one Attribute classNoAttributesCheck 

 
Check that every session has at least one 

Method 
 



Model Validator ■ Using the Model Validator 

Design Tools Guide Version 2004.5 ■ 41 

Attribute Errors   

 Check that attribute data size is defined attributeDataSizeCheck 

 
Check that attribute table column name is 

defined 
attributreColumnCheck 

 Check that attribute data type is defined attributeDataTypeCheck 

 
Check that attribute validation has been defined 

(stereotype) 

attributeMandatoryValidationC

heck 

 
Check that no attribute validation has been 

defined (non-stereotype) 
attributeValidatorCheck 

 Check that no attribute starts with a capital letter attributeLowercaseCheck 

 
Check that no attribute is misspelled or contains 

illegal characters 
attributeIllegalCharacterCheck

 Check that no Object has duplicate attributes classDuplicateCheck 

 
Check that attribute data size is defined with a 

numeric value 
attributeDataNumericCheck 

 

Ensure that the table column of the attribute is 

not defined in the wrong part of the model. 

Note: The value for 

theAttribute.GetPropertyValue("ETHOS","eontab

lecolumn") should be blank – the table column 

information is no longer stored in this field. 

attributeOldColumnCheck 

 
Ensure that there is no overwriting in the 

Solution Set 
 

Function Errors   

 
Check that every function overview has been 

completed 
functionOverviewCheck 

 
Check that every function behavior has been 

completed 
functionBehaviourCheck 

 
Check that every function’s parameters have 

been properly defined 
functionParameterCheck 

 Check that no function starts with a capital letter functionLowercaseCheck 

 
Check that no function is misspelled or contains 

illegal characters 

functionNameIllegalCharacter

Check 

 
Check that no function behaviour contains illegal 

characters 

functionBehaviourIllegalChara

cterCheck 

 
Check that no function overview contains illegal 

characters 

functionOverviewIllegalCharac

terCheck 

 
Make sure all the parameters for a findBy are 

attributes of the object the findBy is on 
functionFindByCheck 



Model Validator ■ Using the Model Validator 

42 ■ Design Tools Guide Version 2004.5 

 
Check that the function has a return type 

specified 
functionReturnTypeCheck 

 

Check that any method that overwrites an 

existing method has the same return type as the 

original method 

functionReturnOverwriteChec

k 

Session Errors Module Layer   

 
Check that every Session name does not 

contain an illegal character  

SessionModuleIllegalCharacte

r 

 
Check that the Session name starts with a lower 

case letter 

SessionModuleStartsLowerCa

se 

 
Check that the Session has a corresponding 

class on the domain layer 
SessionModuleDomainLayer 

 
Check that the Session Package Name does not 

differ from the Class name 

SessionModuleDifferentPacka

geName 

 
Check that the Session has the correct 

stereotype 
SessionModuleStereotype 

 
Check that the Session contains at least one 

operation 

SessionModuleOperationsExi

st 

 
Check that no method is overwriting a method 

with a different return type 

SessionModuleMethodOverwr

itingDifferentReturn 

BPD Errors – Module Layer   

 
Check that no BPD contains module layer 

objects 

BPDModuleNonDomainLayer

Object 

 Check that no BPD contains undefined classes BPDModuleUndefinedObject 

 
Check that the BPD has a process associated 

with it on the Session 
BPDModuleMethodAssociated

 
Check that the BPD does not have an undefined 

message 

BPDModuleUndefinedMessag

e 

Process Errors Module 
Layer 

  

 
Check that the Process is not named with an 

illegal character 

ProcessModuleNameIllegalCh

aracter 

 
Check that every Process overview has been 

completed 

ProcessModuleOverviewDefin

ed 

 
Check that every Process overview does not 

contain illegal characters 

ProcessModuleOverviewIllega

lCharacter 

 
Check that every Process behavior has been 

completed 

ProcessModuleBehaviourDefi

ned 

 Check that every Process behaviour does not ProcessModuleBehaviourIlleg



Model Validator ■ Using the Model Validator 

Design Tools Guide Version 2004.5 ■ 43 

contain illegal characters alCharacter 

 
Check that every Process response has been 

completed 
ProcessModuleReturnDefined

 Check that no function starts with a capital 
ProcessModuleStartsLowerCa

se 

 Check that all method arguments have a type 
ProcessModuleParameterVali

dType 

Session Errors Domain 

Layer 
  

 
Check that every Session name does not 

contain an illegal character  

SessionDomainIllegalCharact

er 

 
Check that the Session name starts with a lower 

case letter 

SessionDomainStartsLowerC

ase 

 
Check that the Session is not inherited from 

multiple objects 

SessionDomainInheritedMultip

le 

 
Check that the Session Package Name does not 

differ from the Class name 

SessionDomainDifferentPacka

geName 

 
Check that the Session has the correct 

stereotype 
SessionDomainStereotype 

 
Check that the Session contains at least one 

operation 

SessionDomainOperationsExi

st 

 
Check that no method is overwriting a method 

with a different return type 

SessionDomainMethodOverwr

itingDifferentReturn 

BPD Errors – Domain Layer   

 
Check that no BPD contains module layer 

objects 

BPDDomainNonDomainLayer

Object 

 Check that no BPD contains undefined classes BPDDomainUndefinedObject 

 
Check that the BPD has a process associated 

with it on the Session 

BPDDomainMethodAssociate

d 

 
Check that the BPD does not have an undefined 

message 

BPDDomainUndefinedMessag

e 

Process Errors Domain 
Layer 

  

 
Check that the Process is not named with illegal 

character 

ProcessDomainNameIllegalC

haracter 

 
Check that every Process overview has been 

completed 

ProcessDomainOverviewDefin

ed 

 
Check that every Process overview does not 

contain illegal characters 

ProcessDomainOverviewIlleg

alCharacter 



Model Validator ■ Selection of Model Validator Properties File 

44 ■ Design Tools Guide Version 2004.5 

 
Check that every Process behavior has been 

completed 

ProcessDomainBehaviourDefi

ned 

 
Check that every Process behaviour does not 

contain illegal characters 

ProcessDomainBehaviourIlleg

alCharacter 

 
Check that every Process response has been 

completed 
ProcessDomainReturnDefined

 Check that no function starts with a capital 
ProcessDomainStartsLowerC

ase 

 Check that all method arguments have a type 
ProcessDomainParameterVali

dType 

 

10.3 Selection of Model Validator Properties File 

The user has the facility to select a properties file, according to the project they are working on. When the 

user clicks the Model Validator button on the utilities tab, the user is prompted to select a properties file. 

 

This allows the user to predefine multiple properties files, according to the requirements of different projects. 

 

The model validator file selection and its directory will be saved locally as the default properties file. 

10.4 Running the Model Validator with the Default Properties File 

The user has the option to run the model validator with the default properties file. This is implemented by 

means of a new button – ‘Model Validator – Default’ 

 

The last properties file that was used to validate the model will automatically be selected. If the functionality 

is being run for the first time and the default properties file does not exist in its saved directory, the user will 

be prompted to select the properties file manually, as described in the previous section. 

 

 



Model Comparison Tool ■ Introduction 

Design Tools Guide Version 2004.5 ■ 45 

11 Model Comparison Tool 

11.1 Introduction 

The Model Comparison Tool compares the differences between two models. The tool was designed to aid 

designers and developers in the following ways: 

■ To facilitate handover of updated Rose models to the development team 

■ To help measure of progress during the design phase 

■ To produce input to the review of design artifacts 

■ To help synchronization of streams within the design process 

It produces 6 reports in HTML format, one for each of the following: 

■ Banking Objects  

■ Banking Processes 

■ Parameter Objects 

■ Common Validations 

■ Validator Lengths 

■ Constants 

These comparison reports can be used to identify changes to a model during the design, development and 

testing phases of a project. The details of these reports are listed in the Report Contents section. 

11.2 Using the Comparison Tool 

The main screen of the Comparison Tool appears as follows: 

 
The following steps should be taken to compare two Models: 

1. Click on the browse button beside the Base Model list – a file chooser dialog is then launched - 

select the base model XML, i.e. the old version of the model that you want to compare against 



Model Comparison Tool ■ Using the Comparison Tool 

46 ■ Design Tools Guide Version 2004.5 

2. Click on the browse button beside the Comparison Model list – a file chooser dialog is then 

launched - select the comparison model XML, i.e. the newest version of the model to compare 

against  

3. Click on the browse button beside the Comparison Reports list to select the location that the 

comparison report files will be output to 

4. Click on the “OK” button to generate the Comparison Reports. 

5. When the reports have been generated a message will be displayed indicating where the 

comparison reports have been output to. It may take a few minutes for the generation process to 

complete depending on the size of the models being compared 

Note: The XML files used as input into this tool must be valid Model XML files. They should be exported 

from a Rose Model that adheres to all Design Standards as specified in the Automated Methodology. The 

XML export tool can be found in the Utilities section of the Design Tools. 

11.2.1 Error Messages 

The following errors can be encountered when using the Comparison Tool 

11.2.1.1 XML Parsing Error – An invalid character was found in text content 

This error indicates that an invalid XML character has been found in one of the selected XML files. Ensure 

that the Model Validator (found in the Utilities section of the Design Tools) has been run and correct any 

invalid XML characters which are flagged in the Model Validator report. The error message above indicates 

the line number that the invalid character was found at. This line of the XML file can be inspected in a text 

editor to help to identify where the problem is located. However it is recommended that the actual Rational 

Rose Model be updated to correct the problem rather than the XML file. If the XML file is edited manually the 

changes will not be reflected in the Rose Model and the problem will occur again the next time XML is 

exported from the model. 

11.2.1.2 XML Parsing Error – The system cannot locate the resource 
specified 

This error message indicates that the Model.dtd is missing. The Retail Fiance Tools Model.dtd is installed 

in the same default location. The Comparison Tool cannot parse a Siebel Model XML file if the dtd cannot be 

found on the system. However an XML file generated on another machine that uses an older version of the 

Design Tools may have a reference to a different folder location in its DOCTYPE (located on the second line 

of the file). To correct this problem the XML file must be edited to change the location of the 

EontecModel.dtd to a valid location on the users system.  

Note: Great care should be taken when manually editing the XML files. If a tag is left open or an invalid 

character inserted by accident the tool will not be able to read the file. 



Model Comparison Tool ■ Using the Comparison Tool 

Design Tools Guide Version 2004.5 ■ 47 

11.2.1.3 XML Parsing Error – The base XML file selected is not of doctype 
EontecModel. 

This error indicates that an XML file was selected which wasn’t of DOCTYPE EontecModel. This means that 

the file chosen was not a valid Siebel Model XML file and hadn’t been exported from the Design Tools. 

11.2.1.4 XML Parsing Error – A duplicate package name has been found in 
the base XML. 

This error indicates that the XML file contains more than one object with the same package name. According 

to Automated Methodology standards all classes should have unique package names. The duplicate 

package names should be removed from the design before the comparison tool can be run again. 

11.2.2 Report Contents 

The following are the Generated Reports (HTML files) that are produced by the Model Comparison Tool: 

■ Banking Objects Report (BankingObjects.html) 

■ Banking Processes (BankingProcesses.html) 

■ Common Validations (CommonValidations.html) 

■ Constants (Constants.html) 

■ Parameter Objects (ParameterObjects.html) 

■ Validator Lengths 

Note: If there are no differences found for a particular report only the initial section (see below) is displayed. 

Underneath this the message “No Differences Found” is displayed. 

11.2.2.1 Initial Section 

All reports contain a header area containing the following information: 
■ Date of Generation - date the model comparison report was produced 

■ Base Model - the old version of the model 

■ Compared Model - the latest version of the model 

11.2.2.2 The Summary Report section 

All reports contain a summary section that contains summary totals for changes, additions and deletions. 

11.2.2.3 The Detailed Report Section 

11.2.2.3.1 Banking Object Report (BankingObjects.html) 

Added Objects - The name and package name of Banking Objects that have been added to the model are 

listed here. Note: The properties, attributes and methods of objects that have been added are not listed in 

the report. 

 

Removed Objects - The name and package name of Banking Objects that have been removed from the 



Model Comparison Tool ■ Using the Comparison Tool 

48 ■ Design Tools Guide Version 2004.5 

model are listed here. Note: The properties, attributes and methods of objects that have been added or 

removed are not listed in the report. 

 
Modified Objects 
Each modified object is represented as a table in the report. The object’s name and package name are listed 

at the top of the table. The modifications to the object are listed in the table. 

 

The following sub-sections can be found in this section of the report: 

■ Modified Object Details - Any properties of the Banking Object that have been modified are 

listed here. 

■ Modified Attributes - Any attributes that have been modified are listed here.  The values of the 

modified properties from both models are also listed (“Value Before” and “Value After”). 

■ Added Attributes – Any attributes that have been added to the object are listed here 

■ Removed Attributes – Any attributes that have been removed from the object are listed here 

■ Modified Methods – Any methods that have been modified are listed here. It is important to 

remember that it is possible for the same method name to exist with many signatures. 

Therefore, if the signature of an existing method on a Class is modified through the Design 

Tools, the updated method is represented as a new method in the Comparison Report, while 

the previous version is represented as a removed method in the Comparison Report. 

■ Added Methods – The name and signature of any methods that have been added to the object 

are listed here. 

■ Removed Methods – The name and signature of any methods that have been removed from 

the object are listed here. 

11.2.2.3.2 Banking Process Report (BankingProcesses.html) 

Added Sessions- The name and package name of Sessions that have been added to the model are listed 

here. 
 
Removed Sessions - The name and package name of Sessions that have been removed from the model 

are listed here. 

 

Note: The properties and processes of sessions that have been added or removed are not listed in the 

report. 

 
Modified Sessions 
Each modified session is represented as a table in the report. The session’s name and package name are 

listed at the top of the table. The modifications to the session are listed in the table. 

 

The following sub-sections can be found in this section of the report: 

■ Modified Object Details - Any properties of the Session that have been modified are listed 

here. 



Model Comparison Tool ■ Using the Comparison Tool 

Design Tools Guide Version 2004.5 ■ 49 

■ Modified Processes – Any processes that have been modified are listed here. It is important to 

remember that it is possible for the same process name to exist with many signatures. 

Therefore, if the signature of an existing process on a session is modified through the Design 

Tools, the updated method is represented as a new process in the Comparison Report, while 

the previous version is represented as a removed process in the Comparison Report. 

■ Added Processes – The name and signature of any processes that have been added to the 

object are listed here. 

■ Removed Processes – The name and signature of any processes that have been removed 

from the object are listed here. 

11.2.2.3.3 Common Validations Report (CommonValidations.html) 

Note: This report only outlines changes to Common Validations. Customized validations are stored on an 

attribute. Therefore if an attribute's validation is customized, this will appear on the BankingObject 

comparison report. 

 
Added Objects- The name and package name of CommonValidations objects that have been added to the 

model are listed here. Note: The Validation methods of Common Validations objects that have been added 

are not listed in the report 
 
Removed Objects - The name and package name of CommonValidations objects that have been removed 

from the model are listed here. Note: The Validation methods of Common Validations objects that have been 

removed are not listed in the report 

 
Modified Objects 
Each modified CommonValidations object is represented as a table in the report.  The object’s name and 

package name are listed at the top of the table. The modifications to the object are listed in the table. 

 

The following sub-sections can be found in this section of the report: 

■ Modified Validations– Any validations that have been modified are listed here.  

■ Added Validations – The name of any validations that have been added to the object are listed 

here. 

■ Removed Validations – The name of any validations that have been removed from the object 

are listed here. 

11.2.2.3.4 Constants Report (Constants.html) 

Added Constants Classes- The name and package name of CommonValidations objects that have been 

added to the model are listed here. 

 
Removed Constants Classes - The name and package name of CommonValidations objects that have 

been removed from the model are listed here. 



Model Comparison Tool ■ Using the Comparison Tool 

50 ■ Design Tools Guide Version 2004.5 

 

Note: There should only be one Constants class in the model (as per Automated Methodology standards). If 

the package name of this class is changed the report will indicate that the class has been removed and a 

new one added. 
 
Added Constants 
Any Constants that have been added to the Constants Class are listed here. 

 
Removed Constants 
Any Constants that have been removed from the Constants Class are listed here. 

 
Modified Constants 
Each modified Constant is represented as a table in the report. The constant’s name is listed at the top of 

the table. The modifications to the constant are listed inside this table. 

 

The following sub-sections can be found in this section of the report: 

■ Modified Constant Details – The only constant detail that can change is the data type. If this 

changes the details are listed here.  

■ Added Values – The name of any constant values that have been added to the constant are 

listed here. 

■ Removed Values – The name of any constant values that have been removed from the 

constant are listed here. 

 

Note: The term Constant above shouldn’t be confused with the term Constants Class. A Constant 

represents a value or list of values. An example of a Constant would be ACCOUNT_TYPE. The 

ACCOUNT_TYPE constant could contain Constant Values of “Current Account” and “Deposit Account”. The 

Constants Class is the Class that these constants are stored on in the model. 

11.2.2.3.5 Parameter Object Report (ParameterObjects.html) 

Added Objects - The name and package name of Parameter Objects that have been added to the model 

are listed here. 

 

Removed Objects - The name and package name of Parameter Objects that have been removed from the 

model are listed here. 

 

Note: The properties and attributes of objects that have been added or removed are not listed in the report. 
 
Modified Objects 
Each modified object is represented as a table in the report.  The object’s name and package name are 

listed at the top of the table.  The modifications to the object are listed inside this table. 



Model Comparison Tool ■ Using the Comparison Tool 

Design Tools Guide Version 2004.5 ■ 51 

 

The following sub-sections can be found in this section of the report: 

■ Modified Object Details - Any properties of the Banking Object that have been modified are 

listed here. 

■ Modified Attributes - Any attributes that have been modified are listed here.  The values of the 

modified properties from both models are also listed (“Value Before” and “Value After”). 

■ Added Attributes – Any attributes that have been added to the object are listed here 

■ Removed Attributes – Any attributes that have been removed from the object are listed here 

11.2.2.3.6 Validator Lengths Report (ValidatorLengths.html) 

Note: Validator Lengths are stored on the Constants Class in Siebel XML representation of the design 

model.  If the package name of the Constants Class changes then it is considered to have been removed 

and a new one added. If this has happened then the Comparison Tool doesn’t examine the Validator 

Lengths for differences and only the initial section of the report is generated.  Underneath this the message 

“The Constants Class has been removed or renamed” is displayed. 
 
Added Validator Lengths 
Any Validator Lengths that have been added to the model are listed here. 
 
Removed Validator Lengths 
Any Validator Lengths that have been removed from the model are listed here. 
 
Modified Validator Lengths 
The name and details of each modified Validator Length are listed is this section. 

Note: The only Validator Length detail that can change is the length. 


	What’s New in this Release
	Design Tools Overview
	Class Builder
	Method Definer
	Validation Definer
	Session Builder
	Attribute Class Definer
	Design Documentation Builder
	Model Exporter
	Model Validator
	Model Comparison Tool

	Class Builder
	Introduction
	Using the Class Builder
	Class Information Tab
	Create New Class
	Amend existing Class
	Delete existing Class

	Attribute Definer Tab
	Create New Attribute
	Amend
	Delete

	Finder Builder Tab
	
	Create simple FindBy
	Create complex FindBy
	Amend
	Delete

	Method Definer


	Method Definer
	Introduction
	Using the Method Definer
	Overview/Behaviour tab
	Create New Method
	Amend Method
	Delete Method

	Signature Tab
	Update Signature
	Adding a Parameter
	Removing a parameter


	Return Tab
	Update Return
	Adding a return
	Removing a return



	Validation Definer
	Introduction
	Using the Validation Definer
	Create Validation
	Amend
	Delete Existing


	Session Builder
	Introduction
	Using the Session Builder
	Session Information Tab
	Create New Session
	Amend existing Session
	Delete existing Session
	Process Definer


	Design Aids & Utilities
	Introduction
	Using the Design Aids & Utilities
	Generate Design Documents
	Export Model as XML
	Model Validator
	Model Comparison Tool
	Attribute Class Definer


	Design Documentation Builder
	Introduction
	Using the Design Documentation Builder

	Model Exporter
	Introduction
	Using the Model Exporter
	Changing DTD location

	Model Validator
	Introduction
	Using the Model Validator
	Selection of Model Validator Properties File
	Running the Model Validator with the Default Properties File

	Model Comparison Tool
	Introduction
	Using the Comparison Tool
	Error Messages
	XML Parsing Error – An invalid character was found in text content
	XML Parsing Error – The system cannot locate the resource specified
	XML Parsing Error – The base XML file selected is not of doctype EontecModel.
	XML Parsing Error – A duplicate package name has been found in the base XML.

	Report Contents
	Initial Section
	The Summary Report section
	The Detailed Report Section
	Banking Object Report (BankingObjects.html)
	Banking Process Report (BankingProcesses.html)
	Common Validations Report (CommonValidations.html)
	Constants Report (Constants.html)
	Parameter Object Report (ParameterObjects.html)
	Validator Lengths Report (ValidatorLengths.html)







