IEBEL.

Retail Finance

4

Design Tools Guide

Version 2004.5
September 2004

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404
Copyright © 2004 Siebel Systems, Inc.

All rights reserved.

Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in
any way, including but not limited to photocopy, photographic, magnetic, or other record,
without the prior agreement and written permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, Universal Agent, and other Siebel names referenced
herein are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered
trademarks of their respective owners.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are
optional and for which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software implementation
may differ from descriptions in this guide. To find out more about the modules your
organization has purchased, see your corporate purchasing agent or your Siebel sales
representative.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation,
delivered subject to the Department of Defense Federal Acquisition Regulation Supplement,
are “commercial computer software” as set forth in DFARS 227.7202, Commercial Computer
Software and Commercial Computer Software Documentation, and as such, any use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation shall be
subject to the restrictions contained in the applicable Siebel license agreement. All other use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions
contained in subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted
Rights (June 1987), or FAR 52.227-14, Rights in Data—General, including Alternate III (June
1987), as applicable. Contractor/licensor is Siebel Systems, Inc., 2207 Bridgepointe Parkway,
San Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in this
documentation and in Siebel eBusiness Applications Online
Help to be Confidential Information. Your access to and use
of this Confidential Information are subject to the terms and
conditions of: (1) the applicable Siebel Systems software
license agreement, which has been executed and with which
you agree to comply; and (2) the proprietary and restricted
rights notices included in this documentation.

Contents

1 What’s New in this Release. ... 6
2 Design TOOIS OVEIVIEWcccceeiiiieiriiienn s s s s e s 7
2.1 CLASS BUILDER........ccoiiiiiieeeee ettt e e aeaees 7
2.2 METHOD DEFINER ... 7
2.3 VALIDATION DEFINER eee e et e e s e aeaeaeaaaeeaaaaaaaeas 7
24 SESSION BUILDERcooiiiiiiieeeeeeeeeee ettt e e e e e e e e eeeeaees 7
25 ATTRIBUTE CLASS DEFINER ... ctiiieiiiiiee ettt ettt et e et e e s smtee e e e nnnee e e e e 7
26 DESIGN DOCUMENTATION BUILDERcciiiiiititie it e ettt e e 7
2.7 MODEL EXPORTERitttiteieeet e ittt e e e e e sttt e e e e e e ettt e e e s e st e e e e e e e e e e aaanbneeeeeaeeeaan 8
2.8 MODEL VALIDATORtttttete e e ettt e e e e e ettt e e e e e e sttt et e e e s e sas bbb e e e e e e e e e aaanbbeeeeeaeeeaan 8
29 MODEL COMPARISON TOOLccoeiiiiiiiiieeee e, 8
3 Class BUilder.........coiiin 9
3.1 INTRODUCTION ...ttt e e e e e e se e s s e s e e e e e s e aeaeseaeaeseseseseaesasasaseaaaaaeaaaeaaaaaeaeaaaaaaaaaaeeens 9
3.2 USING THE CLASS BUILDER......uttiiieitiiieeeitieeeeeetteee e e ssteeeessnteeeessnteeeessnbeeeesssseeeesnnseeaeans 9
3.3 CLASS INFORMATION TABttiiieiiiiiee ettt e e sitee e e sttt e e st e e st e e s annte e e e annbeeeeannneeeeeannes 10
3.31 Create New Class
3.3.2 AMENA EXISHING ClASSeeiutieiie ittt ettt b ettt aa et nb et e e eanes 12
3.3.3 Delete @XISHING ClAsSc..uiiiiiiiieiiie ettt e et a et 12
34 ATTRIBUTE DEFINER TAB ...ttt ettt e e e e e e e e e e e e e e 12
3.4.1 Create NeW AHDULE. ... e 13
342 AMEBNA .. 17
343 DIBLE ... e 17
3.5 FINDER BUILDER TAB.....cettttieiiiiittittee e e e e eaitt bttt e e e e e sttt e e e e e e s e e e e e e e e e sanbneaeeeaeeeaas 17
3.5.2 MEthO DEFINET ... e 19
4 Method Definer ... ———————— 20
4.1 INTRODUGCTION ...ttt e e e e e ettt e e e e ettt e e e e e e ettt e e e e e e e e s anb e et e e e e e e e e annnbeneeeaeeeaans 20
4.2 USING THE METHOD DEFINERutttititieeee ittt ee ettt e et e e e e s eeeee s 20
4.3 OVERVIEW/BEHAVIOUR TABcciiitititeiaitieeesatteeesasseeaeaanseeeesanseeessasseeesansenessnnsenessnnnes 21
4.31 Create NeW Method ... e 21
432 AMENd METhO ... 21
4.3.3 Delete MEthOdooiiiii s 21
4.4 ST N = 1Y = SRS 21
4.4.1 UPAALE SIGNATUEeiiiee ittt ettt et ettt e ettt e e bt e e s bt e et e e e nnb e e e e nbe e e ennes 21
4.5 RETURN TAB ... 23

Design Tools Guide Version 2004.5 W 3

10

451 L8]0 Te =1 (TN (] (1 [o PPN 23

Validation Defineroo it 25
5.1 INTRODUCTION ...ttt e ee e e e e s e e ae e e e e e e e e e e e e aese e e ae s e s e aeseaeseaeaesesaaeaaaeaaaeaaaaaaaaaaaaaaaeens 25
5.2 USING THE VALIDATION DEFINER.......cciiiiieieeee e 25
5.2.1 Create Validation

5.2.2 Y 1= 3 T TSRS UUPPPPPN
5.2.3 (Dot (O 1] 1 oo PRSP PUPPO
SESSION BUIIAET ...t s 28
6.1 INTRODUCTION ...ttt ee e e e e e e ae s e s e s e e e e e e e aese e e ae s e s e aeseaeseaeeeseseaaaeaaaaaeaaaaaeaaaaaaeaaaes 28
6.2 USING THE SESSION BUILDERceiiiiiiiiiiieeeeee e 28
6.3 SESSION INFORMATION TABceiiiitiiieiie e e e e ettt e e e e e e st e e e e e e e e st ae e e e e e e e e enanrasaeeeaens 29
6.3.1 Create New Session

6.3.2 AMENA EXIStING SESSION...c...iiiiiiiiii ittt ettt b e b et e e anes 30
6.3.3 Delete EXIStING SESSION.......ii ittt ettt 30
6.3.4 PrOCESS DEFINET ...ttt a ettt b ettt b et ree et ne e 30
Design Aids & ULIlitiesccciiiiiiiimiiiii s 31
71 INTRODUCTION ...ttt s s se s s s e s e s e s e s s e s e s e s e s e s e sn s e e e aesesaaeaaaeaaaaaeaaanaeaaaaaenanens 31
7.2 USING THE DESIGN AIDS & UTILITIES oiiiiieiciitie it e ettt e e e 31
7.21 Generate DeSigN DOCUMENTSuiiiiiii ittt ettt a e e nib e e e sbee e s anbaeeeanns 32
7.2.2 EXPOrt MOl @S XIML......oiiiiiiiiiie ettt st e et e e st e e et e e e eate e e e 32
7.2.3 LY ToTo o Y = o =1 (o PO PPPPPPPNt 32
7.24 Model COMPANSON TOON ...ttt sa ettt h ettt sb e et e b e e sae e e bt e st b e e nbeeenneenas 32
7.25 ALHDULE Class DEFINETeiiiiii ittt e et e et et e e e 32
Design Documentation BUilder ..o 33
8.1 1T 1T T N R 33
8.2 USING THE DESIGN DOCUMENTATION BUILDERccciiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 33
1V Lo L= I T o T o = 36
9.1 INTRODUCTION ...ttt e e e e e e e e s s e e e s e e e e e s e aese e e ae s e s e seseaeseaeeesesaaaaaaaaaaeaaaaaeaaaaaaaaaaens 36
9.2 USING THE MODEL EXPORTERcoooiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeee 36
9.3 CHANGING DTD LOCATIONccciiieeeeeeeeeeeeeeeeeeeeeee e, 36
L1 Lo [T IV 11T F- 1 Lo o O 38
10.1 INTRODUCTION ...ttt s s se s s s e s s s s s e s e ae s e s e s e s e s e s e s e s e s e aeaeseaeaeaeaeaaaeaaanaeaaaaaananens 38
10.2 USING THE MODEL VALIDATORcctttiieieiiititteeteaessasesrsseeeaaasssssssssseeseaassssasssssesesaassssanns 38
10.3 SELECTION OF MODEL VALIDATOR PROPERTIES FILEcciiiiiiiiiiiiiieeee e 44
10.4 RUNNING THE MODEL VALIDATOR WITH THE DEFAULT PROPERTIES FILE........ccceeeivunnn. 44

4 M Design Tools Guide Version 2004.5

11

1\ FoTe [= B 0o T4 0T e T= T £=o T o T e Y 1 N 45

11.1 INTRODUGCTIONuiititieteee e e e e ettt e e e e e e sttt e e e e e e e sesaaabaeeeeaeeeaesansssaeeeaeeseaannssaaneeaaeeaaas 45
11.2 USING THE COMPARISON TOOLcuuuuuuriieriieuusrerererssssnrsrsresesssssersrnrnresnrenerara.....———————— 45
11.21 ETOT IMESSAGES ...ttt ettt ettt et e e bt e e ettt e et e e ab et n 46
11.2.2 REPOM CONEENTS ...ttt ettt b ettt ea et be e e neenneeeaees 47

Design Tools Guide Version 2004.5 H 5

1 What’s New in this Release

The following changes have been introduced in the Siebel Retail Finance Design Tools, Version 2004.5:

Topic Description

The Class Builder now supports a wide range of Data Attributes can now be defined with a wide
Types, page 14 range of data types including Java Primitives,
Parameter Objects and Classes. The existing
set of data types such as String and Boolean
are still supported.

The Model Validator validations are now more Users can now decide which validations to
configurable/customizable, page 38 check for when using the Model Validator.
Each validation can be switched on or off by
means of a properties file. Additionally, users
have the ability to specify their own custom
Rose script.

6 M Design Tools Guide Version 2004.5

2 Design Tools Overview

The Siebel Retail Finance Design Tools comprise of the following:

21 Class Builder

The Class Builder was developed to aid in the design of Siebel standard entity EJBs. It makes use of
already existing attributes within the project to assist in Class definition. The Class Builder also automatically
updates background properties within the Rose model. These help in the automatic entity code generation.

2.2 Method Definer

The Method Definer was developed to aid the design of Siebel standard entity and session EJBs. It updates
the Siebel properties of the methods including the overview and behaviour. The Method Definer has made it
easier to create new methods, as it is easier to add parameters to the signature of a method and define the
return types

2.3 Validation Definer

The Validation Definer was developed to aid in the design of Siebel standard entity EJBs. The Validation
Builder creates Common Validators that are held in the .mdl file. These Common Validators are then
available to all designers when creating the attributes of entities. This means that the designer can select an
existing Validator, which speeds up the process. The Validators are held in a single class, which gets
generated by the code generator

2.4 Session Builder

The Session Builder was developed to aid in the design of standard session EJBs. The Session Builder also
automatically updates background properties within the Rose model. These help in the automatic entity code
generation.

2.5 Attribute Class Definer

The Attribute Class Definer ensures that Attributes defined for a particular class are made available for use
throughout the model. By running the Attribute Class Definer, the Attributes package is updated with the
details of all Attributes defined in the model.

2.6 Design Documentation Builder

The Design Documentation Builder was developed to produce standard design documents. This is made up
of Project directories that contain Financial Objects, Sessions, Parameter Objects, Parameter Object
Factories, External Interfaces, and Java Class documents.

Design Tools Guide Version 2004.5 W 7

2.7 Model Exporter

The Model Exporter was developed to export XML from the Rose designs. This XML is used by all other
Retail Finance tools to develop the products. The Exporter generates a single XML file and outputs it to a
chosen directory.

2.8 Model Validator

The Model Validator was developed so that designers could ensure that their designs meet design
standards. This is to ensure that the code can be generated quickly and easily from the models when the
design phase is over. The tool performs class error checks, attribute error checks, function error checks and
process error checks on the model.

2.9 Model Comparison Tool

The Model Comparison Tool compares the differences between two Siebel Models. The tool was designed
to aid designers and developers as follows: to facilitate handover of updated Rose models to the
development team, to help measure progress during the design phase, to produce input to the review of
design artifacts and to help synchronization of streams within the design process. It produces 6 reports in
HTML format - one for each of the following: financial components, financial processes, paramater objects,
common validations, validator lengths and constants. These comparison reports can be used to identify
changes to a model during the design, development and testing phases of a project.

8 M Design Tools Guide Version 2004.5

3 Class Builder

3.1 Introduction

The Class Builder was developed to aid in the design of standard entity EJBs. It makes use of already
existing attributes within the project to assist in Class definition. The Class Builder also automatically
updates background properties within the Rose model. These help in the automatic entity code generation.

3.2 Using the Class Builder

Once a new model has been created using the Framework then the entities may be designed. This tool is
launched from the Tools>Siebel menu in Rose. The Class Builder appears on the Design Tools Palette.

The Class Builder enables the user to create new Class Packages in the Banking Objects section of the
model. It provides the ability to create/delete domain layer packages and classes.

On loading, all of the existing classes will be shown in the Class List. There is only one class per package so
the creation and maintenance of the packages will be done in the background. The elements in the Class
information section become active when a user selects an existing class or chooses to create a new class.
Any classes that are contained within a write-protected package will appear with a lock symbol next to them.
This is shown for the RetailAccount class in the diagram below.

Design Tools Guide Version 2004.5 W 9

Eontec Design Tools

Retaildcoount. mdl
-B Account
-Bl Commordddress

B ContactD etails
—
-B Person
-Bl PersonalDetails
-l Retailbccount
-B RetaildccountH older
El RetailtccountH olderR etailbecaunt

3.3 Class Information Tab

3.3.1 Create New Class

To create a new class the ﬂ button should be selected. When this is selected the following screen is
launched:

10 M Design Tools Guide Version 2004.5

Cla

. Select Parent Package
—Awailable Module Layer Packages

I{& A etaildcoount. mdl
I D SteelThread

Cancel |

This enables the user to define the BO Grouping that they wish to add the Entity to. The Class Information
section becomes active at this point. The user may enter the Class name (this is a mandatory field), table

name, and class overview into the relevant text fields.

The user may also select whether the class uses a non-functional parameter object. This will create a
background property that indicates to the code generator that a Parameter Object containing all of the
attributes of the class should be created. This will be used in create and amend methods of the object. If
this is not checked on creating the class it can be amended afterwards and saved with the list of non-

functional parameter objects being refreshed with the class name.

The architecture is a Four Layer object architecture. The possible super classes of the new class are all

contained in the ‘Available Super Class’ list as shown below:

___:Zi i:Add Sector Core Super Class |
— Available Sector Super Clazzes

|2 Test! mdl fl

B AccountEankCard

B AccountE ankCardProduct
B AccountEankCardRules
--------------- B AccountStatement

o T L|j
Ok |

In the Production release this list contains all of the Sector Core Layer Classes. In the Delivery release this

contains all of the Module Layer Classes. To save the information the User should select ‘Save’. The
information will also be saved if the User selects one of the other tabs e.g. FinderBuilder. In both cases a
new Class is added to the selected BO Grouping of the Rose model. In the Production release a new Class

is added at the Module Layer and a new Class with the same name is also added to the associated Domain

Design Tools Guide Version 2004.5 W 11

Layer package. By default there are a number of methods added to the classes. These are create, amend
and delete on the module layer class, and £ indByPrimaryKey on the Domain Layer. In the Delivery
release the new Class is only added at the Domain Layer and all of the Default methods are added to this
class.

3.3.2 Amend existing Class

When a Class is selected from the list the Class Information section becomes active. The user may amend
the fields (except for the Name field) in this section. In order to amend the Class the user should select
‘Save’. This will update the Class with the newly entered information.

3.3.3 Delete existing Class

When a Class is selected from the list the button becomes enabled. If a user selects this, the selected
class is deleted from the model. In the Production release both the Module and Domain Layer Classes are
deleted. However in the Delivery release only the Domain Layer Class is released.

34 Attribute Definer Tab

The attributes of the selected class may also be defined by selecting the ‘Attribute Definer’ tab. When this is
selected the class builder screen looks as below:

12 M Design Tools Guide Version 2004.5

iebel Design Tools

& Class Builder | SV Yalidation Definer | @ Session Buider

2 Utilities

r Clazzes

B Beneficiary

B BeneficianyGroup

Bl BeneficiaryGrouptdember

B Bond&pplicant

B Bond&pplicantT oBond&pplication

Bl Bonddpplication

B BonddpplicationD tai
B ondR edemptiol

B BranchCumencyT otals
[Y [y .

Clazs Information Attibute Definer | Finder Builder

tethod Drefiner

r Clazz attibutes

B BondRedemptioralue
e bondType
companyCode
curmency
denomination
issuingBody

[

1 |2 |o

r Abtribute Details
Attribute M ame

Idenomination

Table Colunin

—Data Type

|BDND_NDMINATIDN

Owerview

eatitec. rdl
-4 Boolean
¢ Double
@ Integer
g Shring

W alidation Type

W alidation ‘El

™ Common

Selected Data Type |String

{* Custom

Selected Group

[rata Size

I_ Decimal Places I_

_ - Frimary Fey [~ Mandstomy v
(" Naon-Functional Parameter Objects System Gensrated W Unused r

Save | E it |

In the Production release the classes that are selected are in the Module Layer. In this case the Class

{~ Objects Parameter Objects & Standard Data Types

" Java Primitives

Attributes List only shows attributes of the Module Layer and its parent classes. In the Delivery release the
classes that are selected are in the Domain Layer. In this case the Class Attributes List shows attributes of
the Domain Layer and its parent classes. In both cases the attributes that are in the actual class are shown
in black. The attributes of the parent classes are shown in blue. If an attribute is from a super class then the
following fields are not amendable: Attribute Name, Overview and Data Type. All other parts of the Attribute
Details section are amendable. For an attribute in the actual class all fields are amendable.

3.4.1 Create New Attribute

To create a new attribute either EI or ¥4 should be selected. If ¥4 is selected then the following screen is

launched:

Design Tools Guide Version 2004.5 W 13

i, Add Existing Attribute
— Available Attributes

2
accezzProviderld

accountB alance

accountCurency

accountingCurrency

accolntM ame

accolntMumber j

1] 3 Cancel |

This enables the user to add an existing application or system attribute to the entity. The advantage of this is
that the attribute definition is complete. This makes the design quicker and ensures consistency throughout
the model.

If EI is selected the Attribute Details section becomes active. The user may enter the ‘Attribute Name’,
‘Table Column’ and ‘Overview’ into the relevant text fields. The data type of the attribute may be selected by
clicking on a data type in the tree view. The view may be changed by clicking on the radio buttons in the
data type section: Objects, Parameter Objects, Standard Data Types, Java Primitives, Non-Functional
Parameter Objects

If one of the Standard Data Types (Boolean, Double, Integer, String) is selected, the User will have the
option to assign validation to the attribute. However, for all other data types, validation will be disabled.

It should be noted here that the tool does not allow attributes of the same name to be defined on an entity. If
the attribute is defined with a data type of double then the ‘Decimal Places’ field is enabled. The user may
enter the number of decimal places in the text box. The attribute will default to have Optional validation or
can be given Mandatory validation by selecting the ‘Mandatory’ check box. The attribute can be defined as a
Primary Key by selecting the ‘Primary Key’ check box. This will default the attribute as mandatory and will
enable the ‘System Generated’ check box. The User may select a primary key field to be system generated
if the attribute is taken from the system on the create of an entity. In the case of Standard Data Types, the
user may also define the Validator for the attribute at this stage. To do this they must select whether they

want to use a ‘Common’ or ‘Custom’ validator then select ‘E

If Common is selected the following screen is launched:

14 M Design Tools Guide Version 2004.5

= :Z:Selecl Common Yalidation for Attribute

— Common ¥ alidations
B Commony alidations -
e B yalidateticcountM ame
& validatetccountMumber
& validateAccountType
& validatetddress
4% validateAddressLinelLenath
% yalidatetimaunt
% yalidateB alance
B slidateBranchCode:
- % yalidateCompanyCode ﬂ
— Owerview
Hame |validateEranchCnde
Type IString j WalueD ate I\,fam,3 ﬂ
Length = JriRANCH_CODE_LENGTH 2] [Vel Tope o ettersOiDigitsOrly [|
Conztants - Pattern
e =) |
Max Length 7 Exact Length [
Save | Exit |

This allows the user to select from the list of existing Common Validations. When a validator has been
selected the details of it are shown in the ‘Overview’ section. If the user should select ‘Save’ and the
datatype of the validator is not valid a message will instruct the user to select a validator with the correct

datatype to match the attribute datatype. Below are the valid datatype matches for a Validator:

Attribute Type Validator Type [Validator Value Type Validator Length

String String Any one of the Validator value |Validator Length required
types

Double Number N/A Validator Length required

Boolean Boolean N/A Validator Length required

Boolean String forLettersOrDigitsOnly Validator Length required

Integer String forDigitsOnly Validator Length required

Constant String Constant Constant Key required

ByteArray N/A N/A Not required

Once an appropriate validator has been chosen the user should select ‘Save’. This will return the user to the

Attribute Definer. To exit the screen the user should select ‘Exit’.

If Custom is selected the following screen is launched:

Design Tools Guide Version 2004.5 W 15

Enter Custom Validation for Attribute

— Owerview
M ame |validateEranchCnde
Type IString j YalugiDate I\,fam,3 ﬂ
Length |BRANCH_CODE_LENGTH =] O Value Tope [ror ettersOiDigitsOiry =l
Constants - Pattern
Kop = |

Max Length [Exact Length [

Exit |

On entry the ‘Name’ field will default to ‘validateAttributeName’, the ‘Type field will be defaulted to ‘String’ the

‘Value\Date’ field will default to ‘Value’ and the ‘Value Type’ field will default to ‘forLettersOrDigitsOnly’. The

user may configure the validator as follows:

First the Validator Type should be selected. This can be either Boolean, Number or String and can be
chosen from the drop down. The other fields in the ‘Overview’ section will be disabled depending on the
Type chosen:

e If‘Boolean’ is selected the all other fields become disabled.

o If “‘Number” is selected then the ‘Length’, ‘Max Length’ and ‘Exact Length’ fields are enabled.

e [f'String’ is selected then the ‘Value\Date’, Value Type’ and ‘Length’ fields are enabled.
When ‘Date Or Time’ is selected in the ‘Value\Date’ drop down then the user may select ‘Supply Pattern’ or
‘System Date Pattern’ from the ‘Value Type’ drop down. If ‘Supply Pattern’ is selected then the ‘Pattern’ field
becomes enabled and the user may enter a specific date or time pattern e.g. yyyy:mm:dd. If ‘System Date
Pattern’ is selected, then the ‘Pattern’ field defaults to ‘System’. In both cases the ‘Length’, ‘Max Length’ and

‘Exact Length’ fields are disabled.

When ‘Value' is selected in the ‘Value\Date’ drop down then the user may select ‘Constant’, ‘forDigitsOnly’,
‘forLettersOnly’, ‘forLettersOrDigitsOnly’ or ‘forLettersOrDigitsOrWhiteSpacesOnly’ from the ‘Value Type’

drop down. Where the Validator is a constant and ‘Constant’ is chosen then the ‘Length’, ‘Max Length’ and
‘Exact Length’ fields are disabled and the ‘Constants Key’ field is enabled. In this case the user may select

an existing Constants Key from the drop down or may choose to add a new constant to the system by
selecting the El button along side the drop down. In the other three cases the User may select a validator

length from the ‘Length’ field or create a new length using El The User may also select ‘Max Length’ or

‘Exact Length’ if the validator so requires.

Once the attribute has been completely defined ‘Save’ must be selected. It is only then that all of the

information is stored within the model.

16 M Design Tools Guide Version 2004.5

3.4.2 Amend

To amend an existing attribute the user should select the attribute from the list and update the ‘Attribute
Details’ section as described above. If an attribute is from a super class then the following fields are not
amendable: Attribute Name, Overview and Column Format. All other parts of the Attribute Details section
are amendable. For an attribute in the actual class all fields are amendable.

3.4.3 Delete

When a class attribute is selected from the list the L= $ button becomes enabled (it will be disabled for super

class attributes). If a user selects this, the selected attribute is removed from the entity.

3.5 Finder Builder Tab

The finder methods of the selected class may also be defined by selecting the ‘Finder Builder tab. When
this is selected the class builder screen looks as below:

ontec Design Tools
=

etaildcoount. mdl
B AccountDetails
B Commondddress
B ContactDetails

B Retailtcoount

B Retailsccount

- accountBalance
accountCunancy
accounth ame
accounth urmber
branchCode
closureR eason
companyCode

Design Tools Guide Version 2004.5 W 17

The Finder Builder allows the user to create, amend and delete £indBy methods. It also allows the user to
create, amend and delete complex finder methods. In the Production release all of the Finder methods in the
list will be from the Module and will be amendable. In the Delivery release the Module Layer Finder methods
will appear in blue and will not be amendable. The Implementation Finder methods will be shown in black
and will be amendable.

3.5.1.1 Create simple FindBy

To add a new finder method to the selected entity the user should select El This enables the Attributes
section of the Finder Builder Tab. To create a simple £indBy method the user must select whether the
method is an ‘AND’ or an ‘OR’ finder. Selecting the radio buttons in the Attributes section of the screen does
this. An ‘OR’ finder will find objects that fulfill any of the parameters passed in. An ‘AND’ finder will find any
objects that fulfill the combination of parameters. Once the user has selected the type of finder, an attribute
from the list containing all of the Class attributes should be chosen and *>>’ should be selected. This will
update the ‘FindBy Attributes’ list with the selected attribute. To remove an attribute from the £indBy
method, the attribute should be selected from the ‘FindBy Attributes’ list and ‘<<’ should be selected. Once

the £indBy has been properly defined ‘Save’ should be selected.

3.5.1.2 Create complex FindBy

To add a new complex finder method to the selected entity the user should select @ This enables the
Attributes section of the Finder Builder Tab. To create a complex £ indBy method the user must first enter a
name for the finder. Then the user should select whether the method is an ‘AND’ or ‘OR’ finder. Selecting
the radio buttons in the Attributes section of the screen does this. An ‘OR’ finder will find objects that fulfill
any of the parameters passed in. An ‘AND’ finder will find any objects that fulfill the combination of
parameters. Once the user has selected the type of finder, an attribute from the list containing all of the
Class attributes should be chosen and ‘>>’ should be selected. This will update the ‘FindBy Attributes’ list
with the selected attribute. To remove an attribute from the £ indBy method, the attribute should be selected
from the ‘FindBy Attributes’ list and ‘<<’ should be selected. To amend the rules on the parameters the user
should double click on one of the attributes in the ‘FindBy Attributes’ list. This launches the screen shown
below:

& FindBy Ru

Attribute Rules: accounthame

| -

'3 | Cancel |

The user may select the rules to be equal to, less than, less than or equal to, greater than, greater than or
equal to, not equal to or range. Once the user is happy that the correct rule has been applied to the attribute
‘Ok’ should be selected. Once the £indBy has been properly defined ‘Save’ should be selected.

18 M Design Tools Guide Version 2004.5

3.56.1.3 Amend

To amend an existing finder method, the user should select the method from the ‘FindBy Methods’ list. For
all finder method the user may add or remove attributes for the findBy. The user may also change the finder
method from an ‘AND’ method to an ‘OR’ method or vice versa. In the case of complex finder methods, the

user may also amend the rules on each parameter.

3.5.14 Delete

To remove a £indBy method from a Class the method should be selected from the ‘FindBy Methods’ list

and should be selected.

3.5.2 Method Definer

When ‘Method Definer’ is selected on the ‘Class Builder’ (first) screen the Method Definer is launched. This

enables the User to define methods on the class. A method is defined by giving it a name, a signature and a
return type. The Method Definer also allows the User to define a more detailed behaviour of a method. The

Method Definer is detailed in the Method Definer document.

Design Tools Guide Version 2004.5 W 19

4 Method Definer

4.1 Introduction

The Method Definer was developed to aid the design of standard entity and session EJBs. It updates the
properties of the methods including the overview and behaviour. The Method Definer has made it easier to

create new methods, as it is easier to add parameters to the signature of a method and define the return
type.

4.2 Using the Method Definer

The Method Definer can be used from the Class Builder or the Session Builder. In both cases the
functionality that is offered is the same. When using the Class Builder the Method Definer tab becomes

active when a Class is selected. If the tab is chosen the screen appears as shown below:

Eontec Design Tools

o Class Builder | 5 Validation Definer | -© Session Buider| © Utiites |

— Clazses

=% Fietaildcoount.mdl - 0 |
B AccountDetails
B Commordddress

XI

B ContactDetails

B EE unit
B RetailbcoountHolder
Bl RetailtcoountH olderR etailbccount LI

Class Infarmation | Attibute Defirer | Finder Builder Method Definer

tethod
B Retailtcoount -
armend D |
create
delete ﬂ

findBiyPrimaryk.ey

getécoounttdovennents

K

Dverview / Behaviour | Signaturel Retum I

bethad Name [qetfcoounthd ovements

Overview Thiz methaod retieves the Account Movements for a paticular account

Behaviour Calls findBwhccauntMumber an the Retailbccounth ovement

Save | E it |

20 M Design Tools Guide Version 2004.5

4.3 Overview/Behaviour tab

4.3.1 Create New Method

To create a new method the El icon should be selected on the ‘Method Definer’ tab. The
Overview/Behaviour section becomes active at this point. The user enters the Method name (this is a
mandatory field), the method overview and an overview of the method behaviour into the relevant text fields.
The ‘Methods’ list is updated with the new method.

4.3.2 Amend Method

Methods of the actual class will be shown in black and methods of the super classes will be shown in blue.
Only class methods may be amended. To amend a method it should be selected from the list. This will
enable the user to amend the detail tabs. Once these have been updated the User should select ‘Save’.
Note that the text “* Deprecated” appears beside the method name of any selected method that is
deprecated.

4.3.3 Delete Method

When a Method is selected from the list the button becomes enabled. If a user selects this, the selected
method is deleted from the Class.

4.4 Signature Tab

441 Update Signature

The parameters of the selected method may be updated by selecting the ‘Signature’ tab. If this is selected
the screen appears as follows:

Design Tools Guide Version 2004.5 W 21

ontec Design Tools

o Clags Builder | SV Validation Definer | 9 Session Builder | © Utilities

— Clazses

é Retaildccount. mdl = El
B AecountDetails
B Commondddress

B ContactDetails

Br eta||.-'3«c:countH older
B Retailbcoountt olderRetailbecount LI

Class Infarmation | Attibute Defirer | Finder Builder Method Definer

tethod
= etallt’-‘«c:ri::ltj - E|
e X

Overview ¢ Behaviour Signature | Return I

Attributes Parameters
é Retaildcoount mdl 3 Mame |T_','|DE
acceszProviderld accounth umber £5hnin

accountB alance

accountCurency

accolntingCurrency >3 |
accountM ame

accountM urnber
accountT ype
action

e g activeRoleld =
1| | B - -

i Atibutes € Objects € Parameter Objects

= Primam Kev Classes © Non-Funchional Parameter Objects

Save | E it |

B [=]

LT LS

4411 Adding a Parameter

The Method Signature Definer allows the User to select parameters for the method that has been selected.
There are a number of lists comprising of all of the attributes, Objects, Parameter Objects, Primary Key
Classes and Non-Functional Parameter Objects that are in the project. To add a parameter, choose from
these lists and select >>’. In the case of Objects, Parameter Objects, Primary Key Classes and Non-
Functional Parameter Objects ‘>>>" may be selected. This will add a collection containing these objects to
the parameter list. When adding a Parameter Object or Non-Functional Parameter Object an ‘Impl’ suffix is

added to the name of the parameter object. A parameter may also be added by selecting the El icon. If this
is selected then the following screen is launched:

22 M Design Tools Guide Version 2004.5

im. Add Parameter

Mame ||

Drata Type I j

] Cancel

This allows the input of User Defined parameters. An example of such a parameter is a system specific ID
that is passed in from the front end but is not modelled as part of any entities. Once all of the parameters
have been added to the signature ‘Save’ must be selected at the bottom of the tab.

4.41.2 Removing a parameter
To remove a parameter from the parameter list it should be selected from the ‘Parameters’ list. Then select

the icon and the parameter will be deleted.

4.5 Return Tab

451 Update Return

The return of the selected method may be updated by selecting the ‘Return tab. If this is selected the screen
appears as below:

Design Tools Guide Version 2004.5 W 23

5 Eontec Design Tools x|
o Clazz Builder | S0 validation Definer | & Session Builder | © Utilities

— Clazses

B AccountantDetails

B AccountBankCard

B AccountBankCardProduct
B AccountBankCardRules

LI

I o

-
B Asset
B BankRegisteredReceiver

& Batch

Bl Beneficiary

B BeneficianGroup |

Class Infarmation | Attibute Defirer | Finder Builder Method Definer

tethod
amend ;I
create _| Dl
delete
findByPrimaryk.ey X |
aJ oupH
getactorOractorGrounR olesForlndividualR oles ;I
Overview £ Behaviour I Signature Return
Jawva Primitives Returns
=2 eontec. mdl Return | Type O
- boolean cam.bankframe. bo. access. solutionset.img | collection
- bute }(l
- char
- double b33 |
¢ float
g int
% long s
¢ short
1 »
= Vaid {~ Objects Parameter Objects Retuin Type IC:-IIe-:tion
¢ Data Tupes ¢ Primary Key Classes %
= MNon-Functional Parameter Objects Cave | E it |

4511 Adding a return

The Method Return Definer allows the User to select primitives and objects as returns for the method that
has been selected. There are a number of lists comprising of all of the Objects, Parameter Objects and
Primary Key Classes that are in the project. The User may also define the method as a data type or void by
selecting the relevant radio buttons. To add a data type or object, choose from the relevant lists and select
either '>>’ to add a single selected item or *>>>’ to add a collection. This will add a collection containing
these objects to the return. In this case the return will be a collection such as a vector or enumeration. Once
the return has been completely added to the method ‘Save’ must be selected at the bottom of the tab.

4.51.2 Removing a return
To remove a primitive or object from the return list it should be selected from the ‘Returns’ list. Then select

the icon and the selected item will be deleted.

24 M Design Tools Guide Version 2004.5

5 Validation Definer

5.1 Introduction

The Validation Definer was developed to aid in the design of standard entity EJBs. The Validation Builder
creates Common Validators that are held in the .md1 file. These Common Validators are then available to
all designers when creating the attributes of entities. This means that the designer can select an existing
Validator, which speeds up the process. The Validators are held in a single class, which gets generated by

the code generator

5.2 Using the Validation Definer

This tool is launched from the Tools>Siebel>Design Tools menu in Rose.

ontec Design Tools

validatedcoountMame
walidated coounth umber
validatedcoountType

W drezzLinelenath
walidatedmount

validatel alahce
walidateBranchCode
walidateCompanyCode

walidated ddress
ET Vae |

N | £ foretesopsoy
I |] —

1 I

—

Design Tools Guide Version 2004.5 B 25

Definer

The Validation Definer enables the user to create new Common Validators in the model. It also provides the
ability to delete and amend selected existing Validators. To view the properties of an existing Validator is
should be selected from the list. The details will appear in the ‘Overview’ section. In the Production release
all of the Common Validators in the list will be from the Solutionset Common Validator and will be
amendable. In the Delivery release the Solutionset Common Validators will appear in blue and will not be
amendable. The Implementation layer Common Validators will be shown in black and will be amendable.

5.21 Create Validation

To create a new Common Validator select the El icon. The ‘Overview’ section becomes enabled. The new
Validator name should be entered into the text field as follows: “validateName” e.g. “validateBranchCode”.
Next the Validator Type should be selected. This can be either Boolean, Number or String and can be
chosen from the drop down list. The other fields in the ‘Overview’ section will be disabled depending on the
Type chosen.

o If ‘Boolean’ is selected then all other fields become disabled.

e If“Number” is selected then the ‘Length’, ‘Max Length’ and ‘Exact Length’ fields are enabled.

e [f ‘'String’ is selected then the ‘Value\Date’, Value Type’ and ‘Length’ fields are enabled.
When ‘Date Or Time’ is selected in the ‘Value\Date’ drop down list then the user may select ‘Supply Pattern’
or ‘System Date Pattern’ from the ‘Value Type’ drop down. If ‘Supply Pattern’ is selected then the ‘Pattern’
field becomes enabled and the user may enter a specific date or time pattern e.g. yyyy:mm:dd. If ‘System
Date Pattern’ is selected, then the ‘Pattern’ field defaults to ‘System’. In both cases the ‘Length’, ‘Max
Length’ and ‘Exact Length’ fields are disabled.

When ‘Value' is selected in the ‘Value\Date’ drop down list then the user may select ‘Constant’,
‘forDigitsOnly’, ‘forLettersOnly’, ‘forLettersOrDigitsOnly’ or ‘forLettersOrDigitsOrWhiteSpacesOnly’ from the
‘Value Type’ drop down list. Where the Validator is a constant and ‘Constant’ is chosen then the ‘Length’,
‘Max Length’ and ‘Exact Length’ fields are disabled and the ‘Constants Key’ field is enabled. In this case the

user may select an existing Constants Key from the drop down list or may choose to add a new constant to

the system by selecting the El button along side the drop down list. Note that the constant type must match
the validation type, which is String in this case. In the other three cases the user may select a validator

length from the ‘Length’ field or create a new length using the El icon. The user may also select ‘Max
Length’ or ‘Exact Length’ if the validator so requires.

5.2.2 Amend

To amend an existing common validator the user should select the validator from the list and update the
‘Overview’ section as described above. The ‘Name’ field in this instance is disabled so that the common
validator names cannot be amended. This is done so that references to existing common validators are not
broken

26 M Design Tools Guide Version 2004.5

5.2.3 Delete Existing

When ‘Delete Existing’ is selected the selected Common Validator is removed form the Model. Care must be
taken in deleting existing validators as entity attributes may already reference these validators.

Design Tools Guide Version 2004.5 W 27

6 Session Builder

6.1 Introduction

The Session Builder was developed to aid in the design of standard session EJBs. The Session Builder also
automatically updates background properties within the Rose model. These help in the automatic entity code

generation.

6.2 Using the Session Builder

Once a new model has been created using the Framework then the entities may be designed. This tool is
launched from the Tools>Siebel menu in Rose. The Session Builder appears on the Design Tools Palette.
The Session Builder enables the user to create new Class Packages in the Banking Objects section of the

model. It provides the ability to create/delete domain layer packages and classes.

On loading, all of the existing sessions will be shown in the Session List. There is only one class per
package so the creation and maintenance of the packages will be done in the background. The elements in
the Session information section become active when a user selects an existing class or chooses to create a
new class. Any classes that are contained within a write-protected package will appear with a lock symbol
next to them. This is shown for the CustomerSearch class in the diagram below.

28 M Design Tools Guide Version 2004.5

Eontec Design Tools

Retaildcoount. mdl

B CustomerSearch
-B Print

B U serbdministration

6.3 Session Information Tab

6.3.1 Create New Session

To create a new session the ﬂ button should be selected. When this is selected the following screen is
launched:

Design Tools Guide Version 2004.5 B 29

. Select Parent Package
—Awailable Module Layer Packages

0k Cancel

This enables the user to define the BP Grouping that they wish to add the Session to. The Session
Information section becomes active at this point. The user may enter the Session name (this is a mandatory
field) and overview into the relevant text fields. The solution works within a Two Layer session architecture.
To save the information the User should select ‘Save’. The information will also be saved if the User selects
one of the other tabs e.g. Process Builder. In both cases a new Class is added to the selected BP Grouping
of the Rose model. In the Production release a new Session is added at the Module Layer and a new
Session with the same name is also added to the associated Domain Layer package. In the Delivery release
the new Session is only added at the Domain Layer.

6.3.2 Amend existing Session

When a Session is selected from the list the Session Information section becomes active. The user may
amend the fields (except for the Name field) in this section. In order to amend the Session the user should
select ‘Save’. This will update the Session with the newly entered information.

6.3.3 Delete existing Session

When a Session is selected from the list the button becomes enabled. If a user selects this, the
selected session is deleted from the model. In the Production release both the Module and Domain Layer
Sessions are deleted. However in the Delivery release only the Domain Layer Session is released.

6.3.4 Process Definer

When ‘Process Definer’ is selected on the ‘Session Builder’ (first) screen the ‘Method Definer’ is launched.
This enables the User to define processes on the session. A process is defined by giving it a name, a
signature and a return type. The Method Definer also allows the User to define a more detailed behaviour of
a process. The Method Definer is detailed in the Method Definer document.

30 M Design Tools Guide Version 2004.5

7 Design Aids & Utilities

71 Introduction

The Design Aids & Utilities were developed to assist the job of the designers. Most of the utilities produce
reports of the models. These allow the designers to get a quick view of the dependencies and associations
within the model. They also assist in the development stage to identify all required methods and assist in
development planning and provide a method of handing over the designs to the developers by generating
both design documentation and code.

7.2 Using the Design Aids & Utilities

All of the Design Aids & Utilities can be launched from the Tools>Siebel menu within Rose. Each is
discussed below.

B Eontec Design Tools

o Class Builderl AW Yalidation Definer | 2 Session Builder

— Desgign Document Generator

0 [:
- Generate Design Documents

r— Model Exparter

@[E vport Model 2 XML

— Design Aids and Utilitie:

e Fodel ¥ alidator Attribute Clazs Definer

[H]

@ tdodel Comparison Tool

Exit |

Design Tools Guide Version 2004.5 W 31

7.21 Generate Design Documents

This utility is described in the Design Documentation Builder document.

7.2.2 Export Model as XML

This utility is described in the Model Exporter document.

7.2.3 Model Validator

This utility is described in the Model Validator document.

7.2.4 Model Comparison Tool

This utility is described in the Model Comparison Tool document.

7.2.5 Attribute Class Definer

The Attribute Class Definer ensures that Attributes defined for a particular class are made available for use
throughout the model. To run the Attribute Class Definer select its icon on the Ultilities tab. By running the
Attribute Class Definer, the Attributes package is updated with the details of all Attributes defined in the

model.

% Rational Rose - eontec.mdl —|=] x|
Eile Edit Wiew add-Ins window Help

Pl 2R ROERREE|[Feaa@@|E w2 — =

@ eontec
#-CJ Use Case View
=7 Logical Yiew
EBanking Objects
+ Business Processes
Constanits
Extemnalinterface
3 FrontEnd
B3] JavaClasses
-7 Classes
=7 Attibutes
ER=N < tibutes:
g accountNumber
& accountCunency
& accountBalance
- g comparyCode
- g movementld
- g movementD ate
- g movementCurrency
- g movementdmount
- ¢ foreignExchangeR ate
g movementT ype
e g narative
& oniginalCurency
& oniginalCurrencydmaunt
& tunningBalance
- applicationld
- g branchCode
- g branchStatus
- g branchMame

Altributes:

Far Help. press F1

32 M Design Tools Guide Version 2004.5

8 Design Documentation Builder

8.1 Introduction

The Design Documentation Builder was developed to produce standard design documents. The generator
produces a directory structure that is compliant to these standards. This is made up of Project directories
that contain Financial Objects, Sessions, Parameter Objects, Parameter Object Factories, External
Interfaces, and Java Class documents.

8.2 Using the Design Documentation Builder

Once the designer has completed the design phase for a requirement the Design Documentation Builder
may be used to create standard design documents. The Document Generator is launched from the

Tools>Siebel menu within Rose.

Design Tools Guide Version 2004.5 W 33

Design Documentation Builder

EAM Design Documentation Generator 5[
— Directany Details

Destination Directorny:
s

Bin

Builds Archive
chartbuilder
codegentest

DEZLOG
Documents and Settings _I Generate |

dovnloads

— enerate Documents

[” Generate Selected Clazs only

— b odule;
— Al Docurmentation — Model Views
Thiz Yiew all zelection will generate = Al Documentation

el giszumenizien ™ Banking Object Documentation

" Business Proces: Documentation
" Parameter Object Documentation
™ Parameter Object Factonies

" JavaClasses Documentation

" Constant D ocumentation

—Eontec Model Yerzion
* “ersion §
i~ Verzion 4

Once the Generator has launched, the user must select the Destination Directory for the documents (using
the Drop-Down box and List box in the top left corner). The generator also provides the ability to select
which documents should be generated. Using the ‘Model Views’ radio buttons on the right the user may
select to generate all of the design documents, or only a selection of design documents, which may be
Banking Object documents, Business Process documents, Parameter Object documents, Parameter Object
Factory documents, JavaClasses documents or Constant documents. Alternatively the user may select to
generate the documents of a single class by selecting a class from the list of classes displayed when one of
the ‘Model Views’ options is selected and checking the ‘Generate Selected Class only’ box.

34 M Design Tools Guide Version 2004.5

Design Documentation Builder B

EAM Design Documentation Generator
— Directany Details

Destination Directorny:

[:hgenencPaymentzDesignDocss

D [

— enerate Documents

Generate |

¥ Generate Selected Clazs only

— M odule:

—Businessz Processee—————— — Model Yiews

E ntitlementzdzzignmenthd aintenan: I
EntitlementsAuthentication

E rtitlemertstuthariz ation " Banking Object Documentation
E ntitlementstd aintenance
EntitlementzPrivileget aintenance

i~ Al Documentation

¥ Business Process Documentation

Generclntermnalbocount " Parameter Object Documentation
eneru:MaintainFinanciaITransacti " Parameter Object Factories
[3enencPayments _
GenencT ranzactionF ees " JavaClasses D ocumentation
GenericT ransfers ™ Congtant Documentation
|ntermaldcoolnt ;I
—Eontec Model Yerzion
* “ersion §
i~ Verzion 4

Catizel |

The user must also select the Version of the model that is being worked on (either Version 4 or Version 5).

Clicking the ‘Generate’ button will generate the design documents and output same to the destination
directory.

*An important note regarding Design document generation is that there is a Windows restriction of 256
characters in the fully qualified file name of any file, i.e. the file name with the full folder and sub folders
names all added up together. Overloading operation with up to 10 parameters causes a maximum of 55
characters to be added to the name of the operation design file - it can be more for operations with more that
10 parameters. If the fully qualified file name of the operation exceeds 256 characters an error message is
displayed with the message, 'Path not found' and the Design document generation will exit at this point. In
order to get over this issue, try generating the documents in a folder off the c:\ or d:\ root drive, or shorten
the class and/or operation names.

Design Tools Guide Version 2004.5 W 35

9 Model Exporter

9.1 Introduction

The Model Exporter was developed to export XML from the Rose designs. This XML is used by all other
Retail Finance tools to develop the products. The Exporter generates a single XML file and outputs it to a

chosen directory.

9.2 Using the Model Exporter

Once a model has been completed, or a module has been taken from the repository then the XML may be
exported. This tool is launched from the Tools>Siebel menu in Rational Rose.

Save XML |
Save jn: I'aHITI' j ﬁl

@ WCA Toals Dema. kil

@ SampleCaonstants. xmil

@ SampleParameterdbjects. @ml
@ SimpleBranchSearch, sml

2] Uszertdministration. sml

File name: I Save I
Save as type: IHML File= j Cancel |

When the Model Exporter is launched the above screen appears. The User can enter the name of the XML

file they want to generate or select a current file to overwrite. Once this is done the Save button can be
clicked and the file will be generated to the chosen location.

9.3 Changing DTD location

The XML generated by the Model Exporter references a DTD file. The DTD can be referenced in the XML as
a file or a URL. It is important that the DTD location is accessible when the XML file is passed to other Retail
Finance tools. For example, if the DTD location referenced in the XML is a network drive or a URL and the
user has no network connectivity, other Retail Finance tools may not be able to read the file. If the user
wishes to change the DTD referenced they can do so by choosing Tools>Siebel menu (Change DTD

Location) in Rational Rose.

36 M Design Tools Guide Version 2004.5

Change DTD Location

Menfie | NewunL |

This is a prompt for the User to select where the DTD they want to use for the export is located. If ‘New File’
is selected then the User may select a DTD from a directory. The User may also choose a URL for the DTD.
The URL entered for the DTD must end in /EontecModel .dtd.

Design Tools Guide Version 2004.5 W 37

10 Model Validator

10.1 Introduction

The Model Validator was developed so that designers could ensure that their designs meet design
standards. This is to ensure that the code can be generated quickly and easily from the models when the
design phase is over. There are a number of checks which the Model Validator does, outlined below.

10.2 Using the Model Validator

The Model Validator tool is launched from the Tools->Siebel menu in Rose.

The user can edit the validations.properties file to determine which validations are selected. To remove a
validation, the symbol # may be inserted at the beginning of the line. The validations.properties file has the

following format:

Custom Rose Script
customModelValidations.ebx

Attribute Validations
AttributeMandatoryValidation
AttributeDataSize

AttributeDataSizeNumeric
AttributeValidatorMethodDefined

The name of the custom Rose script is specified in the first uncommented line of the properties file.

When the Model Validator is invoked, the properties file is read. If a validation is “commented out” it will not
be used to validate the model.
The tool performs the following checks on the model and produces a HTML report:

Section Validation Description \Validation Code

General Errors

Check that the documentation field in the GeneralBankingObjectCatego
BankingObject Catagory is not blank ryDocumentation

Check that the BankingObject Category contains|GeneralBankingObjectCatego
a Domain Layer ryDomain

Check that the BankingObject Category contains|GeneralBankingObjectCatego
a Module Layer ryModule

The documentation field in the Domain layer GeneralBankingObjectDomain
packages (stereotype DomainPackageObject) [LayerCategoriesDocumentatio

38 M Design Tools Guide Version 2004.5

must contain part of the Java namespace

n

The documentation field in the Module layer
packages (stereotype ModulePackageObiject)
must contain part of the Java namespace

GeneralBankingObjectModule
LayerCategoriesDocumentatio
n

BusinessProcess Category documentation must
contain com.bankframe.bp

GeneralBusinessProcessCate
goryDocumentation

BusinessProcess Category must contain a
Domain Layer

GeneralBusinessProcessCate

goryDomain

BusinessProcess Category must contain a
Module Layer

GeneralBusinessProcessCate
goryModule

Check that the Domain Layer Categories contain
qualified name documentation

GeneralBusinessProcessDom
ainLayerCategoriesDocument
ation

Check that the Module Layer Categories contain
qualified name documentation

GeneralBusinessProcessMod
uleLayerCategoriesDocument
ation

Validator Errors

Check that the model contains a Validator
Category

\ValidatorCatagoryExists

VValidator Category documentation must contain

com.bankframe.validator

\ValidatorCatagoryDocumentat

ion

VValidator Category must contain a Domain Layer,

\ValidatorCatagoryDomainExis
ts

The Domain Layer Validator Category must
contain qualified name documentation

\ValidatorCatagoryDomainDoc
umentation

The Domain Layer Validator Category must

contain at least one class

\ValidatorDomainClasses

\Validator Category must contain a Module Layer
s

\ValidatorCatagoryModuleExist

The Module Layer Validator Category must

contain qualified name documentation

\ValidatorCatagoryModuleDoc

umentation

The Module Layer Validator Category must
contain at least one class

\ValidatorModuleClasses

The class Common Validations must have a
stereotype of DomainValidator, if it belongs to
the DomainValidator package

\ValidatorDomainStereotype

The class Common Validations must have a
stereotype of SolutionsetValidator, if it belongs to

\ValidatorModuleStereotype

Design Tools Guide Version 2004.5 W 39

the SolutionsetValidator package

Constant Class Errors

The model must contain a Constants category

ConstantsCatagoryExists

The Constants Category documentation must
contain com.bankframe.co

ConstantsCatagoryDocument
ation

The Constants Category does must contain a
Constants class

ConstantsClassExists

The Contants class must have a stereotype of
“Constants”

ConstantsClassStereotype

Attributes Class Errors

The model must contain an Attributes Category

AttributesCategoryExists

The Attributes Category must contain an
Attributes Class

AttributesCategoryClasses

The Attributes Class must belong to the
Attributes package

AttributesClassStereotype

Class Errors

Check that no Object starts with a small letter

classstartslowercaseCheck

Check that no Object is misspelled or contains
illegal characters

classillegalcharacterCheck

Check that no Object inherits from multiple
classes

classMultipleInheritanceCheck|

Check that no Object has Duplicate associations

classDuplicateAssocationChe
ck

Check that no Solution Set Objects exist without
corresponding Domain Package Objects

classdomainlayerclassCheck

Check that no Session contains BPDs without a

process on the session of the same name

Check that every package name matches its

session name

classdifferentpackagenameCh
eck

Check that findByPrimaryKey is correctly spelt

classFindByPKCheck

Check that the Stereotype is correct in all cases

classSterotypeCheck

Check that every entity has at least one primary
key attribute defined for it

classPrimaryKeyCheck

Check that every entity has at least one Attribute

classNoAttributesCheck

Check that every session has at least one
Method

40 M Design Tools Guide Version 2004.5

Attribute Errors

Check that attribute data size is defined

attributeDataSizeCheck

Check that attribute table column name is
defined

attributreColumnCheck

Check that attribute data type is defined

attributeDataTypeCheck

Check that attribute validation has been defined

(stereotype)

attributeMandatoryValidationC
heck

Check that no attribute validation has been
defined (non-stereotype)

attributeValidatorCheck

Check that no attribute starts with a capital letter

attributeLowercaseCheck

Check that no attribute is misspelled or contains
illegal characters

attributelllegalCharacterCheck

Check that no Object has duplicate attributes

classDuplicateCheck

Check that attribute data size is defined with a

numeric value

attributeDataNumericCheck

Ensure that the table column of the attribute is
not defined in the wrong part of the model.

Note: The value for
theAttribute.GetPropertyValue("ETHOS","eontab
lecolumn") should be blank — the table column
information is no longer stored in this field.

attributeOldColumnCheck

Ensure that there is no overwriting in the
Solution Set

Function Errors

Check that every function overview has been
completed

functionOverviewCheck

Check that every function behavior has been
completed

functionBehaviourCheck

Check that every function’s parameters have
been properly defined

functionParameterCheck

Check that no function starts with a capital letter

functionLowercaseCheck

Check that no function is misspelled or contains
illegal characters

functionNamelllegalCharacter
Check

Check that no function behaviour contains illegal

characters

functionBehaviourlllegalChara
cterCheck

Check that no function overview contains illegal
characters

functionOverviewlllegalCharac|
terCheck

Make sure all the parameters for a findBy are

attributes of the object the findBy is on

functionFindByCheck

Design Tools Guide Version 2004.5 W 41

Check that the function has a return type
specified

functionReturnTypeCheck

Check that any method that overwrites an

existing method has the same return type as the "

original method

functionReturnOverwriteChec

Session Errors Module Layer,

Check that every Session name does not
contain an illegal character

SessionModulelllegalCharacte

r

Check that the Session name starts with a lower
case letter

SessionModuleStartsLowerCa
se

Check that the Session has a corresponding
class on the domain layer

SessionModuleDomainLayer

Check that the Session Package Name does not
differ from the Class name

SessionModuleDifferentPacka
geName

Check that the Session has the correct

stereotype

SessionModuleStereotype

Check that the Session contains at least one

operation

SessionModuleOperationsExi
st

Check that no method is overwriting a method
with a different return type

SessionModuleMethodOverwr
itingDifferentReturn

BPD Errors — Module Layer

Check that no BPD contains module layer
objects

BPDModuleNonDomainLayer
Object

Check that no BPD contains undefined classes

BPDModuleUndefinedObject

Check that the BPD has a process associated
with it on the Session

BPDModuleMethodAssociated

Check that the BPD does not have an undefined
message

BPDModuleUndefinedMessag
e

Process Errors Module
Layer

Check that the Process is not named with an
illegal character

ProcessModuleNamelllegalCh
aracter

Check that every Process overview has been
completed

ProcessModuleOverviewDefin
ed

Check that every Process overview does not
contain illegal characters

ProcessModuleOverviewlllega
ICharacter

Check that every Process behavior has been
completed

ProcessModuleBehaviourDefi
ned

Check that every Process behaviour does not

ProcessModuleBehaviourllleg

42 M Design Tools Guide Version 2004.5

contain illegal characters

alCharacter

Check that every Process response has been
completed

ProcessModuleReturnDefined

Check that no function starts with a capital

ProcessModuleStartsLowerCa
se

Check that all method arguments have a type

ProcessModuleParameterVali
dType

Session Errors Domain

Layer

Check that every Session name does not
contain an illegal character

SessionDomainlllegalCharact

er

Check that the Session name starts with a lower
case letter

SessionDomainStartsLowerC
ase

Check that the Session is not inherited from
multiple objects

SessionDomainlnheritedMultip|
le

Check that the Session Package Name does not
differ from the Class name

SessionDomainDifferentPacka
geName

Check that the Session has the correct

stereotype

SessionDomainStereotype

Check that the Session contains at least one
operation

SessionDomainOperationsExi
st

Check that no method is overwriting a method
with a different return type

SessionDomainMethodOverwr]
itingDifferentReturn

BPD Errors — Domain Layer

Check that no BPD contains module layer
objects

BPDDomainNonDomainLayer
Object

Check that no BPD contains undefined classes

BPDDomainUndefinedObject

Check that the BPD has a process associated
with it on the Session

BPDDomainMethodAssociate
d

Check that the BPD does not have an undefined

message

BPDDomainUndefinedMessag
e

Process Errors Domain

Layer

Check that the Process is not named with illegal
character

ProcessDomainNamelllegalC
haracter

Check that every Process overview has been
completed

ProcessDomainOverviewDefin|
ed

Check that every Process overview does not

contain illegal characters

ProcessDomainOverviewllleg

alCharacter

Design Tools Guide Version 2004.5 W 43

perties File

Check that every Process behavior has been ProcessDomainBehaviourDefi
completed ned

Check that every Process behaviour does not |ProcessDomainBehaviourllleg
contain illegal characters alCharacter

Check that every Process response has been) i
ProcessDomainReturnDefined
completed

ProcessDomainStartsLowerC
Check that no function starts with a capital
ase

ProcessDomainParameterVali
Check that all method arguments have a type T
ype

10.3 Selection of Model Validator Properties File

The user has the facility to select a properties file, according to the project they are working on. When the
user clicks the Model Validator button on the utilities tab, the user is prompted to select a properties file.

This allows the user to predefine multiple properties files, according to the requirements of different projects.

The model validator file selection and its directory will be saved locally as the default properties file.

10.4 Running the Model Validator with the Default Properties File

The user has the option to run the model validator with the default properties file. This is implemented by
means of a new button — ‘Model Validator — Default’

The last properties file that was used to validate the model will automatically be selected. If the functionality

is being run for the first time and the default properties file does not exist in its saved directory, the user will

be prompted to select the properties file manually, as described in the previous section.

44 M Design Tools Guide Version 2004.5

11

11.1

Model Comparison Tool

Introduction

The Model Comparison Tool compares the differences between two models. The tool was designed to aid

designers and developers in the following ways:

To facilitate handover of updated Rose models to the development team
To help measure of progress during the design phase

To produce input to the review of design artifacts

To help synchronization of streams within the design process

It produces 6 reports in HTML format, one for each of the following:

Banking Objects
Banking Processes
Parameter Objects
Common Validations
Validator Lengths
Constants

These comparison reports can be used to identify changes to a model during the design, development and

testing phases of a project. The details of these reports are listed in the Report Contents section.

11.2

Using the Comparison Tool

The main screen of the Comparison Tool appears as follows:

ﬂﬁelect Eontec XML Files To Compare - O] x|

About

— Select Files

B aze Model

Comparizon bodel

3

Comparizon Reports

3

3

ok LCancel |

The following steps should be taken to compare two Models:

1. Click on the browse button beside the Base Model list — a file chooser dialog is then launched -

select the base model XML, i.e. the old version of the model that you want to compare against

Design Tools Guide Version 2004.5 W 45

parison Tool

2. Click on the browse button beside the Comparison Model list — a file chooser dialog is then
launched - select the comparison model XML, i.e. the newest version of the model to compare
against

3. Click on the browse button beside the Comparison Reports list to select the location that the
comparison report files will be output to
Click on the “OK” button to generate the Comparison Reports.

When the reports have been generated a message will be displayed indicating where the
comparison reports have been output to. It may take a few minutes for the generation process to
complete depending on the size of the models being compared
Note: The XML files used as input into this tool must be valid Model XML files. They should be exported
from a Rose Model that adheres to all Design Standards as specified in the Automated Methodology. The
XML export tool can be found in the Ultilities section of the Design Tools.

11.2.1 Error Messages

The following errors can be encountered when using the Comparison Tool

11.21.1 XML Parsing Error — An invalid character was found in text content

This error indicates that an invalid XML character has been found in one of the selected XML files. Ensure
that the Model Validator (found in the Utilities section of the Design Tools) has been run and correct any
invalid XML characters which are flagged in the Model Validator report. The error message above indicates
the line number that the invalid character was found at. This line of the XML file can be inspected in a text
editor to help to identify where the problem is located. However it is recommended that the actual Rational
Rose Model be updated to correct the problem rather than the XML file. If the XML file is edited manually the
changes will not be reflected in the Rose Model and the problem will occur again the next time XML is

exported from the model.

11.2.1.2 XML Parsing Error — The system cannot locate the resource
specified

This error message indicates that the Model.dtd is missing. The Retail Fiance Tools Model . dtd is installed
in the same default location. The Comparison Tool cannot parse a Siebel Model XML file if the dtd cannot be
found on the system. However an XML file generated on another machine that uses an older version of the
Design Tools may have a reference to a different folder location in its DOCTYPE (located on the second line
of the file). To correct this problem the XML file must be edited to change the location of the
EontecModel.dtd to a valid location on the users system.

Note: Great care should be taken when manually editing the XML files. If a tag is left open or an invalid
character inserted by accident the tool will not be able to read the file.

46 M Design Tools Guide Version 2004.5

11.2.1.3 XML Parsing Error — The base XML file selected is not of doctype
EontecModel.

This error indicates that an XML file was selected which wasn’t of DOCTYPE EontecModel. This means that

the file chosen was not a valid Siebel Model XML file and hadn’t been exported from the Design Tools.

11.21.4 XML Parsing Error — A duplicate package name has been found in
the base XML.

This error indicates that the XML file contains more than one object with the same package name. According
to Automated Methodology standards all classes should have unique package names. The duplicate
package names should be removed from the design before the comparison tool can be run again.

11.2.2 Report Contents

The following are the Generated Reports (HTML files) that are produced by the Model Comparison Tool:

m Banking Objects Report (BankingObjects.html)

m Banking Processes (BankingProcesses.html)

m Common Validations (CommonValidations.html)

m Constants (Constants.html)

m Parameter Objects (ParameterObjects.html)

m Validator Lengths
Note: If there are no differences found for a particular report only the initial section (see below) is displayed.
Underneath this the message “No Differences Found” is displayed.

11.2.21 Initial Section

All reports contain a header area containing the following information:
m Date of Generation - date the model comparison report was produced
m Base Model - the old version of the model
m Compared Model - the latest version of the model

11.2.2.2 The Summary Report section

All reports contain a summary section that contains summary totals for changes, additions and deletions.

11.2.2.3 The Detailed Report Section

11.2.2.3.1 Banking Object Report (BankingObjects.html)

Added Objects - The name and package name of Banking Objects that have been added to the model are
listed here. Note: The properties, attributes and methods of objects that have been added are not listed in

the report.

Removed Objects - The name and package name of Banking Objects that have been removed from the

Design Tools Guide Version 2004.5 W 47

ison Tool

model are listed here. Note: The properties, attributes and methods of objects that have been added or

removed are not listed in the report.

Modified Objects
Each modified object is represented as a table in the report. The object’s name and package name are listed
at the top of the table. The modifications to the object are listed in the table.

The following sub-sections can be found in this section of the report:

m Modified Object Details - Any properties of the Banking Object that have been modified are
listed here.

m Modified Attributes - Any attributes that have been modified are listed here. The values of the
modified properties from both models are also listed (“Value Before” and “Value After”).

m Added Attributes — Any attributes that have been added to the object are listed here

m Removed Attributes — Any attributes that have been removed from the object are listed here

m Modified Methods — Any methods that have been modified are listed here. It is important to
remember that it is possible for the same method name to exist with many signatures.
Therefore, if the signature of an existing method on a Class is modified through the Design
Tools, the updated method is represented as a new method in the Comparison Report, while
the previous version is represented as a removed method in the Comparison Report.

m Added Methods — The name and signature of any methods that have been added to the object
are listed here.

m Removed Methods — The name and signature of any methods that have been removed from

the object are listed here.

11.2.2.3.2 Banking Process Report (BankingProcesses.html)

Added Sessions- The name and package name of Sessions that have been added to the model are listed

here.

Removed Sessions - The name and package name of Sessions that have been removed from the model

are listed here.

Note: The properties and processes of sessions that have been added or removed are not listed in the

report.

Modified Sessions
Each modified session is represented as a table in the report. The session’s name and package name are
listed at the top of the table. The modifications to the session are listed in the table.

The following sub-sections can be found in this section of the report:

m Modified Object Details - Any properties of the Session that have been modified are listed

here.

48 M Design Tools Guide Version 2004.5

m Modified Processes — Any processes that have been modified are listed here. It is important to
remember that it is possible for the same process name to exist with many signatures.
Therefore, if the signature of an existing process on a session is modified through the Design
Tools, the updated method is represented as a new process in the Comparison Report, while
the previous version is represented as a removed process in the Comparison Report.

m Added Processes — The name and signature of any processes that have been added to the
object are listed here.

m Removed Processes — The name and signature of any processes that have been removed

from the object are listed here.

11.2.2.3.3 Common Validations Report (CommonValidations.html)

Note: This report only outlines changes to Common Validations. Customized validations are stored on an
attribute. Therefore if an attribute's validation is customized, this will appear on the BankingObject

comparison report.

Added Objects- The name and package name of CommonValidations objects that have been added to the
model are listed here. Note: The Validation methods of Common Validations objects that have been added

are not listed in the report

Removed Objects - The name and package name of CommonValidations objects that have been removed
from the model are listed here. Note: The Validation methods of Common Validations objects that have been

removed are not listed in the report

Modified Objects
Each modified CommonValidations object is represented as a table in the report. The object’'s name and
package name are listed at the top of the table. The modifications to the object are listed in the table.

The following sub-sections can be found in this section of the report:
m Modified Validations— Any validations that have been modified are listed here.
m Added Validations — The name of any validations that have been added to the object are listed
here.
m Removed Validations — The name of any validations that have been removed from the object

are listed here.

11.2.2.3.4 Constants Report (Constants.html)

Added Constants Classes- The name and package name of CommonValidations objects that have been

added to the model are listed here.

Removed Constants Classes - The name and package name of CommonValidations objects that have

been removed from the model are listed here.

Design Tools Guide Version 2004.5 W 49

on Tool

Note: There should only be one Constants class in the model (as per Automated Methodology standards). If
the package name of this class is changed the report will indicate that the class has been removed and a

new one added.

Added Constants
Any Constants that have been added to the Constants Class are listed here.

Removed Constants
Any Constants that have been removed from the Constants Class are listed here.

Modified Constants
Each modified Constant is represented as a table in the report. The constant’s name is listed at the top of

the table. The modifications to the constant are listed inside this table.

The following sub-sections can be found in this section of the report:
m Modified Constant Details — The only constant detail that can change is the data type. If this
changes the details are listed here.
m Added Values — The name of any constant values that have been added to the constant are
listed here.
m Removed Values — The name of any constant values that have been removed from the

constant are listed here.

Note: The term Constant above shouldn’t be confused with the term Constants Class. A Constant
represents a value or list of values. An example of a Constant would be ACCOUNT TYPE. The
ACCOUNT_TYPE constant could contain Constant Values of “Current Account” and “Deposit Account”. The

Constants Class is the Class that these constants are stored on in the model.

11.2.2.3.5 Parameter Object Report (ParameterObjects.html)

Added Objects - The name and package name of Parameter Objects that have been added to the model

are listed here.

Removed Objects - The name and package name of Parameter Objects that have been removed from the

model are listed here.
Note: The properties and attributes of objects that have been added or removed are not listed in the report.
Modified Objects

Each modified object is represented as a table in the report. The object’'s name and package name are
listed at the top of the table. The modifications to the object are listed inside this table.

50 M Design Tools Guide Version 2004.5

The following sub-sections can be found in this section of the report:
m Modified Object Details - Any properties of the Banking Object that have been modified are
listed here.
m Modified Attributes - Any attributes that have been modified are listed here. The values of the
modified properties from both models are also listed (“Value Before” and “Value After”).
m Added Attributes — Any attributes that have been added to the object are listed here
m Removed Attributes — Any attributes that have been removed from the object are listed here

11.2.2.3.6 Validator Lengths Report (ValidatorLengths.html)

Note: Validator Lengths are stored on the Constants Class in Siebel XML representation of the design
model. If the package name of the Constants Class changes then it is considered to have been removed
and a new one added. If this has happened then the Comparison Tool doesn’t examine the Validator
Lengths for differences and only the initial section of the report is generated. Underneath this the message

“The Constants Class has been removed or renamed” is displayed.

Added Validator Lengths
Any Validator Lengths that have been added to the model are listed here.

Removed Validator Lengths
Any Validator Lengths that have been removed from the model are listed here.

Modified Validator Lengths

The name and details of each modified Validator Length are listed is this section.
Note: The only Validator Length detail that can change is the length.

Design Tools Guide Version 2004.5 W 51

	What’s New in this Release
	Design Tools Overview
	Class Builder
	Method Definer
	Validation Definer
	Session Builder
	Attribute Class Definer
	Design Documentation Builder
	Model Exporter
	Model Validator
	Model Comparison Tool

	Class Builder
	Introduction
	Using the Class Builder
	Class Information Tab
	Create New Class
	Amend existing Class
	Delete existing Class

	Attribute Definer Tab
	Create New Attribute
	Amend
	Delete

	Finder Builder Tab
	
	Create simple FindBy
	Create complex FindBy
	Amend
	Delete

	Method Definer

	Method Definer
	Introduction
	Using the Method Definer
	Overview/Behaviour tab
	Create New Method
	Amend Method
	Delete Method

	Signature Tab
	Update Signature
	Adding a Parameter
	Removing a parameter

	Return Tab
	Update Return
	Adding a return
	Removing a return

	Validation Definer
	Introduction
	Using the Validation Definer
	Create Validation
	Amend
	Delete Existing

	Session Builder
	Introduction
	Using the Session Builder
	Session Information Tab
	Create New Session
	Amend existing Session
	Delete existing Session
	Process Definer

	Design Aids & Utilities
	Introduction
	Using the Design Aids & Utilities
	Generate Design Documents
	Export Model as XML
	Model Validator
	Model Comparison Tool
	Attribute Class Definer

	Design Documentation Builder
	Introduction
	Using the Design Documentation Builder

	Model Exporter
	Introduction
	Using the Model Exporter
	Changing DTD location

	Model Validator
	Introduction
	Using the Model Validator
	Selection of Model Validator Properties File
	Running the Model Validator with the Default Properties File

	Model Comparison Tool
	Introduction
	Using the Comparison Tool
	Error Messages
	XML Parsing Error – An invalid character was found in text content
	XML Parsing Error – The system cannot locate the resource specified
	XML Parsing Error – The base XML file selected is not of doctype EontecModel.
	XML Parsing Error – A duplicate package name has been found in the base XML.

	Report Contents
	Initial Section
	The Summary Report section
	The Detailed Report Section
	Banking Object Report (BankingObjects.html)
	Banking Process Report (BankingProcesses.html)
	Common Validations Report (CommonValidations.html)
	Constants Report (Constants.html)
	Parameter Object Report (ParameterObjects.html)
	Validator Lengths Report (ValidatorLengths.html)

