

MCA Services

Developer Guide
Version 2004.5, Rev. A

December 2004

Siebel Systems, Inc., 2207 Bridgepointe Parkway, San Mateo, CA 94404

Copyright © 2004 Siebel Systems, Inc.

All rights reserved.

Printed in the United States of America

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in
any way, including but not limited to photocopy, photographic, magnetic, or other record,
without the prior agreement and written permission of Siebel Systems, Inc.

Siebel, the Siebel logo, TrickleSync, Universal Agent, and other Siebel names referenced
herein are trademarks of Siebel Systems, Inc., and may be registered in certain jurisdictions.

Other product names, designations, logos, and symbols may be trademarks or registered
trademarks of their respective owners.

PRODUCT MODULES AND OPTIONS. This guide contains descriptions of modules that are
optional and for which you may not have purchased a license. Siebel’s Sample Database also
includes data related to these optional modules. As a result, your software implementation
may differ from descriptions in this guide. To find out more about the modules your
organization has purchased, see your corporate purchasing agent or your Siebel sales
representative.

U.S. GOVERNMENT RESTRICTED RIGHTS. Programs, Ancillary Programs and Documentation,
delivered subject to the Department of Defense Federal Acquisition Regulation Supplement,
are “commercial computer software” as set forth in DFARS 227.7202, Commercial Computer
Software and Commercial Computer Software Documentation, and as such, any use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation shall be
subject to the restrictions contained in the applicable Siebel license agreement. All other use,
duplication and disclosure of the Programs, Ancillary Programs and Documentation by the U.S.
Government shall be subject to the applicable Siebel license agreement and the restrictions
contained in subsection (c) of FAR 52.227-19, Commercial Computer Software - Restricted
Rights (June 1987), or FAR 52.227-14, Rights in Data—General, including Alternate III (June
1987), as applicable. Contractor/licensor is Siebel Systems, Inc., 2207 Bridgepointe Parkway,
San Mateo, CA 94404.

Proprietary Information

Siebel Systems, Inc. considers information included in
this documentation and in Siebel eBusiness Applications
Online Help to be Confidential Information. Your access
to and use of this Confidential Information are subject to
the terms and conditions of: (1) the applicable Siebel
Systems software license agreement, which has been
executed and with which you agree to comply; and (2)
the proprietary and restricted rights notices included in
this documentation.

Contents

MCA Services Developer Guide Version 2004.5, Rev. A ■ 3

Contents

1 What’s New in this Release ... 11

2 MCA Services Overview... 13

2.1 INTRODUCTION ... 13
2.2 CHANNEL MANAGEMENT... 14
2.2.1 Clients ...14
2.2.2 Channels ...14
2.2.3 Protocols..15
2.2.4 Channel Manager .. 15
2.2.5 DataPacket ..15
2.2.6 XML...15
2.3 FINANCIAL COMPONENT FRAMEWORK ... 16
2.4 CLIENT TO FINANCIAL COMPONENT COMMUNICATION... 16
2.4.1 Transforming the DataPacket into the Protocol format ...17
2.4.2 Specifying the Financial Component .. 17
2.4.3 Invoking the Financial Component ...17
2.4.4 An Example ...18
2.4.5 Sequence Diagrams ..20
2.5 FINANCIAL PROCESS INTEGRATION.. 21
2.5.1 Sequence Diagrams ..23
2.6 SECURITY PROVIDER FRAMEWORK.. 24
2.6.1 User Authentication..25
2.6.2 Session Management ..25
2.6.3 Access Control... 25
2.7 ENTERPRISE SERVICES... 25
2.7.1 Required Services ... 25
2.7.2 Optional Enterprise Services..26
2.8 FRONT-END FRAMEWORK... 27
2.8.1 JSP Architecture .. 28
2.8.2 Applet/Application Architecture ..29
2.9 ADMINISTRATION TOOLS ... 29

3 Front End Framework .. 31

3.1 JSP FRONT END FRAMEWORK.. 31
3.1.1 Introduction..31
3.1.2 JSP Basics ..31
3.1.3 JSP and MCA Services...36
3.1.4 General Tasks using MCA Services and JSP...43
3.1.5 JSP Version...63

Contents

4 ■ MCA Services Developer Guide Version 2004.5, Rev. A

3.1.6 Writing Your JSP: Summary ..63
3.1.7 MCA Services Widgets ..64
3.1.8 Links and Resources ...65
3.2 APPLET/APPLICATION FRONT END FRAMEWORK .. 67
3.2.1 Introduction..67
3.2.2 Architecture ... 67
3.2.3 The com.bankframe.fe.ui Package...69
3.2.4 The MCA Services Sample Application.. 73
3.2.5 Resources and Links ...84

4 Channel Management .. 86

4.1 RMI AND HTTP ... 86
4.1.1 Introduction..86
4.1.2 Class Descriptions ... 88
4.1.3 Communicating over HTTP..91
4.1.4 Thin clients using HTML forms...91
4.1.5 Configuring BankframeResource.properties...94
4.1.6 Developing custom channel clients and servers...95
4.1.7 Examples...95
4.2 XML B2B .. 102
4.2.1 Introduction.. 102
4.2.2 Package: com.bankframe.ei.xml .. 103
4.2.3 Configuring BankframeResource.properties... 106
4.2.4 Developing Custom XML/XSL Codecs... 107
4.2.5 The DPTPCodec transmission format .. 108
4.2.6 XML/XSL Examples... 109
4.2.7 Links and Resources ... 112
4.3 WEB SERVICES .. 113
4.3.1 Introduction.. 113
4.3.2 MCA Services Web services.. 113
4.3.3 Web Services Application Servers ... 115
4.3.4 Class Descriptions ... 116
4.4 SESSION AFFINITY .. 117
4.4.1 Introduction.. 117

5 Financial Process Integration ... 119

5.1 OVERVIEW ... 119
5.1.1 Introduction.. 119
5.1.2 Example... 119
5.1.3 Components of the Financial Process Integrator.. 120
5.1.4 Putting it all together .. 121
5.2 FINANCIAL PROCESS INTEGRATOR META-DATA.. 123
5.2.1 Introduction.. 123
5.2.2 Request Transaction Fields ... 124

Contents

MCA Services Developer Guide Version 2004.5, Rev. A ■ 5

5.2.3 Example Transaction Request ... 126
5.2.4 Processing Host System Response ... 126
5.2.5 Response Meta Data mapping... 127
5.2.6 Response Transaction Fields... 128
5.2.7 Caching the Meta-Data (Transaction Fields) .. 129
5.2.8 TransactionField Interface.. 129
5.2.9 Example Response mapping ... 130
5.2.10 Support for Tier Fields ... 131
5.2.11 Deeply nested Cobol Copybooks... 133
5.2.12 Mapping a subset of transaction fields... 135
5.2.13 Recurring Fields .. 135
5.2.14 Handling Error Conditions.. 136
5.2.15 Example Error Condition.. 138
5.2.16 Transaction Field Naming.. 140
5.3 MAPPING ENTITY BEANS TO TRANSACTIONS .. 141
5.3.1 One transaction to one entity ... 141
5.3.2 One transaction to many entities.. 141
5.4 ENTITY BEAN PERSISTENCE AND THE FPI.. 142
5.4.1 Introduction.. 142
5.4.2 com.bankframe.ejb.bmp... 142
5.4.3 Writing a Persister ... 144
5.4.4 PersisterTxnMap.. 153
5.4.5 Configuring BankframeResource.properties... 154
5.5 FINANCIAL PROCESS INTEGRATOR CACHING.. 155
5.5.1 Introduction.. 155
5.5.2 Host Cache Examples ... 155
5.5.3 Configuring BankframeResource.properties... 155
5.6 FINANCIAL PROCESS INTEGRATOR ENGINE .. 156
5.6.1 Financial Process Integrator Engine Interface.. 156
5.6.2 Transaction Request DataPacket... 157
5.6.3 Transaction Request Processing Steps.. 158
5.6.4 Transaction Data-Format Class ... 158
5.6.5 TransactionHandlerUtils helper class ... 164
5.6.6 DataFormatUtils helper class ... 166
5.6.7 Transaction Route Entity Bean... 167
5.6.8 Destination Entity Bean.. 167
5.6.9 Posting the Transaction Request data Object to the Host Connector ... 168
5.6.10 Configuring BankframeResource.properties .. 169
5.6.11 Financial Process Integrator Testing using Test Servlet... 170
5.7 EIS CONNECTORS.. 173
5.7.1 MCA Services Connector Architecture ... 173
5.7.2 JCA Support .. 183
5.8 STORE AND FORWARD.. 186
5.8.1 Introduction.. 186
5.8.2 Scope .. 186

Contents

6 ■ MCA Services Developer Guide Version 2004.5, Rev. A

5.8.3 Overview.. 187
5.8.4 Destination Entity Bean.. 188
5.8.5 DestinationEjbMap Entity Bean.. 188
5.8.6 Store and Forward Classes and Package Structure... 189
5.8.7 Forcing the host online or offline .. 196
5.8.8 Exceptions ... 196
5.8.9 BankframeResource.properties settings... 197
5.8.10 Implementing Store and Forward... 198
5.8.11 Teller Example of Store and Forward .. 202
5.9 FINANCIAL PROCESS INTEGRATOR EXAMPLES.. 206
5.9.1 Customer Example .. 206
5.9.2 Account Example... 223
5.10 FINANCIAL PROCESS INTEGRATOR ADVANCED TOPICS ... 229
5.10.1 Handling complex amend and find operations ... 229
5.10.2 Handling create and remove operations .. 230
5.10.3 An example data formatter class ... 231

6 Enterprise Services .. 234

6.1 SECURITY PROVIDER FRAMEWORK.. 234
6.1.1 Introduction.. 234
6.1.2 Security Provider Framework Classes and Package Structure... 234
6.1.3 Configuration of the Security Provider.. 234
6.1.4 Security Providers included with MCA Services ... 235
6.1.5 Implementing a Security Provider .. 236
6.1.6 See Also .. 237
6.2 USER AUTHENTICATION .. 237
6.2.1 Introduction.. 237
6.2.2 The logon process ... 238
6.2.3 The logoff process ... 238
6.2.4 com.bankframe.services.authentication package ... 239
6.2.5 Implementing a custom authentication mechanism .. 241
6.2.6 Registering Authentication Mechanisms with MCA Services .. 245
6.2.7 Implementing a client application that can authenticate against MCA... 245
6.2.8 LDAP Authentication.. 248
6.2.9 Introduction to LDAP Authentication... 248
6.2.10 RDBMS Authentication.. 248
6.2.11 Encrypting Sensitive Data.. 250
6.3 SESSION MANAGEMENT.. 250
6.3.1 Introduction.. 250
6.3.2 Use Cases ... 251
6.3.3 com.bankframe.services.sessionmgmt .. 252
6.3.4 Implementing a session management aware client application .. 253
6.3.5 Implementing a custom session management implementation... 253
6.3.6 Configuring and Administering Session Management .. 254
6.3.7 Standard Session Management Implementations .. 254

Contents

MCA Services Developer Guide Version 2004.5, Rev. A ■ 7

6.4 ACCESS CONTROL.. 255
6.4.1 Introduction.. 255
6.4.2 com.bankframe.services.accesscontrol.. 256
6.4.3 Implementing a custom access control mechanism.. 257
6.4.4 LDAP Access Control Mechanism.. 259
6.4.5 EJB Access Control Implementation .. 262
6.4.6 User and Group Administration Session Beans.. 266
6.5 ROUTING.. 280
6.5.1 Introduction.. 280
6.5.2 How MCA Services Routing works... 280
6.5.3 The com.bankframe.services.requestrouter package ... 281
6.5.4 The com.bankframe.services.route package.. 282
6.5.5 Route Administration Session Bean... 283
6.5.6 Request Contexts .. 286
6.5.7 Request Context Example ... 289
6.6 REMOTE NOTIFICATION... 291
6.6.1 Introduction.. 291
6.6.2 How Siebel Notification Works ... 291
6.6.3 Remote Notification API... 294
6.6.4 The com.bankframe.services.notification.targetselection package ... 297
6.7 INTERNATIONALIZATION... 297
6.7.1 Introduction.. 297
6.7.2 MCA Internationalization Framework ... 298
6.7.3 Examples... 302
6.7.4 References .. 304
6.8 LOGGING.. 304
6.8.1 Introduction.. 304
6.8.2 Classes and Package Structure ... 305
6.8.3 Using the Logging Service ... 306
6.8.4 The Logging context .. 309
6.8.5 Techniques for problem resolution using the logging framework .. 310
6.8.6 Configuring the Logging Service .. 311
6.8.7 Integrating with other Logging Frameworks.. 313
6.8.8 Deprecations ... 314
6.8.9 References .. 314
6.9 AUDIT .. 315
6.9.1 Introduction.. 315
6.9.2 Audit Classes and Package Structure .. 315
6.9.3 Configuring the Audit Service... 315
6.9.4 Configuring Routes to the Audit Service... 316
6.9.5 Calling the Audit Service from within custom code ... 317
6.9.6 Exceptions in the Audit Service.. 317
6.10 TIMING POINTS... 318
6.10.1 Introduction ... 318
6.10.2 The com.bankframe.services.trace package.. 318

Contents

8 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.10.3 Configuring Timing Points.. 323
6.11 MAIL .. 326
6.11.1 Introduction ... 326
6.11.2 Classes and Package Structure... 326
6.11.3 DataPacket Structure .. 327
6.11.4 Using the Mail Service... 328
6.12 PING.. 329
6.12.1 Introduction ... 329
6.12.2 Classes and Package Structure... 329
6.12.3 DataPacket Structure .. 329
6.12.4 Using the Ping Service .. 330
6.13 LDAP CONNECTIVITY... 331
6.13.1 Introduction ... 331
6.13.2 com.bankframe.ei.ldap .. 332
6.13.3 Sample Bean Managed LDAP based Entity Bean ... 335
6.13.4 Advanced Topics... 340
6.14 DATA VALIDATION... 343
6.14.1 Introduction ... 343
6.14.2 Classes and Package Structure... 343
6.14.3 Examples .. 347
6.15 PERIPHERALS SUPPORT ... 353
6.15.1 Introduction ... 353
6.15.2 MCA Device Base Classes.. 354
6.15.3 MCA device implementations .. 357
6.15.4 Implementing a new type of MCA Device ... 372
6.15.5 Hardware Requirements.. 373
6.15.6 Software Requirements ... 373
6.15.7 Installation and configuration of required hardware.. 374
6.15.8 Installation and configuration of required software ... 382
6.15.9 Topology ... 384
6.15.10 Future development... 386
6.15.11 References.. 387
6.16 PRINTING FRAMEWORK... 387
6.16.1 Introduction ... 387
6.16.2 com.bankframe.services.print .. 388
6.16.3 Generating the Service.. 388
6.16.4 Calling the Service from another Session .. 389
6.16.5 Accelio Architecture... 390
6.16.6 Further Reading .. 393
6.17 CACHING FRAMEWORK ... 393
6.17.1 Introduction ... 393
6.17.2 com.bankframe.services.cache ... 395
6.17.3 Cache and CachePolicy Interaction ... 403
6.17.4 Creating persistent caches .. 404
6.17.5 Configuring the Caching Framework.. 404

Contents

MCA Services Developer Guide Version 2004.5, Rev. A ■ 9

6.18 DYNAMIC CONFIGURATION.. 406
6.18.1 Introduction ... 406
6.18.2 com.bankframe.services.resource ... 406
6.18.3 Using the dynamic configuration framework... 412

7 Appendix I – Glossary.. 416

Contents

10 ■ MCA Services Developer Guide Version 2004.5, Rev. A

What’s New in this Release ■ Introduction

MCA Services Developer Guide Version 2004.5, Rev. A ■ 11

1 What’s New in this Release
The following changes have been introduced in MCA Services Version 2004.5:

Topic Description

Additional ChannelClientFactory configuration has
been added, page 88

The ChannelClient factory can now be configured

to return the same instance of a ChannelClient, or

a new instance each time, by setting the

enforce.singleton property in

BankframeResource.properties

Additional HTTPClient configuration settings have
been added, page 89

Settings include what codec class to use to encode

and decode a vector of DataPackets. The

HttpClient can also add values from the first

DataPacket as request properties to the http

connection

A new test servlet has been added –
HttpBoomarangServer, page 89

This is a test servlet that extends HttpServer.

Rather than routing the vector of DataPackets

found in the request, it returns the vector as a

response. It is useful for testing channel client and

codec configuration.

DPTPPaddingCodec has been added, page 90 DPTPPaddingCodec extends DPTPCodec and is

used to wrap or pad out the special characters

used by DPTPCodec in encoding and decoding.

The special characters are <, > and their

corresponding XML entity reference values <

and >.

HTTPConnector has been added, page 183 One of the pre-built connectors provided with MCA

is the HTTPConnector. This connector is designed

for connecting to systems over the HTTP protocol

and can be used in a message based SOAP

environment. It has one connection property:

URL_STRING.

XMLDataFormat has been added, page 183 HTTPConnector uses XMLDataFormat to

encode and decode the request for transport over

HTTP. XMLDataFormat uses DPTPDomCodec to

convert a Vector of DataPackets to and from an

XML string.

TxnHandlerBroker has been added, page 229 The Session Amend Helper service has been

deprecated and it has been replaced by the

Financial Process Integrator Broker.The Financial

What’s New in this Release ■ Introduction

12 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Topic Description

Process Integrator Broker provides an amend() and

find() interface into the Financial Process

Integrator, that is not dependant on mapping entity

beans to host transactions. To provide as flexible a

framework as possible, interfaces are provided to

allow behaviour to be customised at various stages

of the broker’s operation.

The logging service has been amended to allow for
separate logging factories, page 312

By checking Java System property first, and then

eloggerfactory.properties, the logging service

allows for enterprise applications deployed in the

same server to have separate logging factories.

A configurable clean-up interval has been added
for the CachePolicy, page 395

A clean up interval to define how often the

CachePolicy will be asked to check for expired

objects. The
transactionHandler.cache.cleaninterva

l setting is configured in the

BankframeResource.properties file

The cache
com.bankframe.services.cache.NullCache
has been added, page 398

This is a Cache class that is used at runtime when

caching is not required. This Cache class has a

substantially less memory overhead than using

another Cache with short timeout values.

Further configuration information has been added
for bankframeresourcebundle, page 406

To enable dynamic configuration, set the Java

system property
com.eontec.mca.bankframeresourcebundl

e to

com.bankframe.services.resource.BankF

rameResourceBundle.

Two new classes have been added to
com.bankframe.services.resource, page 407

The classes NoReloadBankFrameResourceBundle

and NoReloadBankFrameResource have been

added to com.bankframe.services.resource

MCA Services Overview ■ Introduction

MCA Services Developer Guide Version 2004.5, Rev. A ■ 13

2 MCA Services Overview

2.1 Introduction

MCA Services is a framework for building financial solutions. It provides the building blocks to implement a

complete financial solution. All Siebel Retail Finance Modules are built on top of MCA Services.

At the core of MCA Services is a mechanism for passing data between Client applications and Financial

Components. Also there is a mechanism for sending data between Financial Components and Host

Systems.

Client applications never interact directly with Financial Components, they always communicate via MCA

Services. Similarly Financial Components never communicate directly with Host Systems, they always

communicate via MCA Services.

MCA Services mediates between Clients and Financial Components, so that clients do not have to worry

about locating the Financial Components, this also allows MCA Services to provide secure access to

Financial Components.

MCA Services mediates between Financial Components and Host Systems, so that Financial Components

do not have to worry about how to communicate with Host Systems. Financial Components pass

transactions to MCA Services, which takes care of routing the transactions to the correct Host System.

MCA Services can be categorized into the following functional areas:

Financial Component Framework A standardized architecture for developing

Financial Components.

Front-End Framework A framework for rapidly building financial solution

front-ends.

MCA Services Overview ■ Channel Management

14 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Channel Management The means by which all clients communicate with

MCA Services and thus with Financial

Components.

Financial Process Integration A framework for communicating with Host/legacy

systems.

Enterprise Services A set of services used by Financial Components

e.g. Routing, User Authentication, Access Control

and Internationalization

Administration Tools A set of tools for configuring and administrating

MCA Services.

The following chapters provide an overview of these components and how they interact.

2.2 Channel Management

Channel Management is the mechanism enabling Clients to connect to a Module. MCA Services separates

Financial Components from channel specific functions, thereby increasing the portability of Financial

Components.

2.2.1 Clients

A Client is a single user of a network application run from a central Server. MCA Services is capable of

dealing with a range of Clients from web browsers to Personal Digital Assistants (PDAs).

2.2.2 Channels

A Channel can be seen as a pipe connecting the Client to a Module and is the means by which they interact;

it is the network and the protocols that connect Clients to Servers. MCA Services is capable of supporting a

MCA Services Overview ■ Channel Management

MCA Services Developer Guide Version 2004.5, Rev. A ■ 15

number of different Channels including HTTP, WAP, PDA, and Digital TV. These channels have their own

protocols and servers.

2.2.3 Protocols

A protocol is the set of rules governing the format of messages that are exchanged between a Client and a

Server. MCA Services provides support for communicating over a number of protocols such as HTTP and

RMI.

2.2.4 Channel Manager

Channel Management is the means by which all clients communicate with MCA Services and thus with

Financial Components. MCA Services provides a variety of channel clients that communicate over a variety

of protocols. A Channel Manager transforms data received from the client over a Channel into a format that

Financial Components can understand. It also transforms data returned from Financial Components into the

format required for the Channel the Client is using.

2.2.5 DataPacket

A DataPacket is the means by which MCA Services organizes data that is passed between Clients and

Financial Components. It provides a standard format for all data used within a Module, which greatly

simplifies the task of passing data from Clients to Financial Components and from Financial Components to

other Financial Components. Information stored in DataPackets can be transformed into a string

representation or a serialized Java Object. This enables DataPackets to be easily transmitted over various

protocols.

A DataPacket is similar to a Hashtable, it is a container for holding data. Unique strings called Keys

identify each piece of data. The data associated with the key can be any Java data-type. MCA Services

defines a number of standard keys:

DATA PACKET NAME The name of the DataPacket, this key is used to

differentiate between different DataPackets.

OWNER The name of the organization that created the

DataPacket, normally eontec.

REQUEST_ID This is a five-character string that identifies the

Financial Component that the DataPacket should

be sent to. See the Financial Component

Framework section for more information on this.

2.2.6 XML

XML stands for eXtensible Mark-up Language. XML is a meta-language written in SGML that allows one to

design a markup language, used to allow for the easy interchange of structured information.

MCA Services provides XML connectivity for Business-to-Business (B2B) applications. This enables third-

party applications to communicate with Financial Components using XML and vice versa.

MCA Services Overview ■ Financial Component Framework

16 ■ MCA Services Developer Guide Version 2004.5, Rev. A

2.3 Financial Component Framework

A framework is provided for implementing Financial Components. This framework has the following

functions:

- Provide a standard implementation of methods required by the EJB specification. This simplifies

the process of creating Financial Components.

- Define a standard interface to all Financial Components. This ensures that all Financial

Components can be invoked and managed in a uniform manner.

Financial Components are stateless EJB session beans. MCA Services requires that all Financial

Components comply with the Financial Components Framework. The two requirements are:

- All Financial Component EJBs must extend the com.bankframe.ejb.ESessionBean class.

- All Financial Components must implement the processDataPacket() method.

The com.bankframe.ejb.ESessionBean class defines standard implementations of all the methods

required by the EJB Specification. This reduces the code that needs to be written for a Financial

Component. In addition com.bankframe.ejb.ESessionBean defines an abstract method called

processDataPacket(). Defining the method as abstract requires all Financial Components to provide an

implementation of this method. This method takes a DataPacket as a parameter and returns a Vector of

DataPackets. This method provides a standard interface to all Financial Components.

When data needs to be passed to a Financial Component, MCA Services invokes the

processDataPacket() method. When the Financial Component has completed it returns its response

data as a Vector of DataPackets to MCA Services.

2.4 Client to Financial Component Communication

This section covers how Clients send and receive information to/from Financial Components (Note that in

order to keep the discussion simple details of how the Client authenticates itself with MCA Services have

been omitted. This topic is covered in more detail in the security section). The high-level overview is as

follows:

- Client creates DataPacket with the information it wants to send to the Financial Component.

- Client passes the DataPacket to MCA Services.

- MCA Services passes the DataPacket to the Financial Component.

- The Financial Component returns a Vector of DataPackets to MCA Services.

- MCA Services returns the DataPackets to the Client.

There are number of tasks in this process:

- The Client must put the information that the Financial Component is expecting in the DataPacket.

(When the Client is being developed, the Financial Component design documentation must be

consulted, to see what information the Financial Component expects to be in the DataPacket)

- The Client must specify which Financial Component the DataPacket should be sent to.

- The DataPacket must be transformed into the correct format for the protocol being used to

communicate with MCA Services.

- MCA Services must interpret the information received from the Client and transform it back into a

DataPacket.

MCA Services Overview ■ Client to Financial Component Communication

MCA Services Developer Guide Version 2004.5, Rev. A ■ 17

- MCA Services must locate the Financial Component specified by the Client, instantiate the

Financial Component, and pass it the DataPacket.

- The Financial Component must interpret the information in the DataPacket, carry out its business

logic, and return its results in a Vector of DataPackets to MCA Services

- MCA Services must transform the result DataPackets into the format for the protocol being used

to communicate with the Client.

- The Client must transform the result data received from MCA Services back into a Vector of

DataPackets.

The important point to note is that the Client never communicates directly with the Financial Component, it

always communicates via MCA Services.

2.4.1 Transforming the DataPacket into the Protocol format

Transforming a DataPacket to a protocol format (and vice versa) is achieved using a Communications

Manager (CommsManager). MCA Services provides a number of CommsManagers that can transform

DataPackets to/from different protocols, for example the EHTTPCommsManager can transform

DataPackets into HTTP Requests.

So when a Client needs to send a DataPacket to MCA Services over HTTP it uses the

EHTTPCommsManager class to send the DataPackets as HTTP requests to MCA Services. MCA Services

uses another CommsManager: EHTTPServletCommsManager, to transform the HTTP requests back into

DataPackets.

2.4.2 Specifying the Financial Component

One of the DataPacket key values defined by MCA Services is the REQUEST_ID key. This key contains a

five-digit number. This five-digit number is used to identify which Financial Component a DataPacket

should be sent to. Each Financial Component has a REQUEST_ID associated with it. When a Client wants to

send a DataPacket to a Financial Component, it must put the REQUEST_ID associated with the Financial

Component in the DataPacket.

When MCA Services receives the DataPacket from the client it examines the DataPacket to see what

REQUEST_ID is specified. MCA Services then looks up a mapping of REQUEST_IDs to Financial

Component names, finds the specified REQUEST_ID, and invokes the associated Financial Component.

2.4.3 Invoking the Financial Component

The Financial Component is an EJB Session bean. Every EJB has a unique JNDI (Java Naming & Directory

Interface) Name. MCA Services maintains a mapping of REQUEST_IDs to JNDI names. When MCA

Services has discovered a Financial Component’s JNDI name, it asks the EJB Server to create an instance

of the Financial Components. All Financial Components must have a method called

processDataPacket(). MCA Services invokes this method, passing it the DataPacket received from

the client.

MCA Services Overview ■ Client to Financial Component Communication

18 ■ MCA Services Developer Guide Version 2004.5, Rev. A

2.4.4 An Example

This example will illustrate how a credit transfer would be carried out using MCA Services. The following

assumptions will be made:

- The Client is a Java application.

- The Client communicates with MCA Services over HTTP.

- The Financial Component that implements the credit transfer is called CreditTransferBean. It

has the JNDI name: eontec.bankframe.CreditTransferBean.

- The Financial Component is associated with REQUEST_ID 40000.

- The CreditTransferBean expects a DataPacket with the following keys:

DATA PACKET NAME Must have a value of ‘CREDIT TRANSFER’

FROM_ACCOUNT Account number of the account money is being

transferred from
TO_ACCOUNT Account number of the account the money is

being transferred to
AMOUNT Amount to be transferred

- The Client is a Java GUI that allows the user to input the FROM_ACCOUNT, TO_ACCOUNT, and

AMOUNT values: For this example the user has entered the following values:

FROM_ACCOUNT 11442255

TO_ACCOUNT 21673488

AMOUNT $100.00

2.4.4.1 Client creates DataPacket

The Client application must create a DataPacket with the following values:

KEY VALUE

NAME CREDIT TRANSFER

REQUEST_ID 40000

FROM_ACCOUNT 11442255

TO_ACCOUNT 21673488

AMOUNT $100.00

2.4.4.2 Client sends DataPacket to MCA Services

The Client must use the EHTTPCommsManager class to send the DataPacket to MCA Services

via a HTTP request.

MCA Services Overview ■ Client to Financial Component Communication

MCA Services Developer Guide Version 2004.5, Rev. A ■ 19

2.4.4.3 MCA Services converts the HTTP request back to a DataPacket

MCA Services uses the EHTTPServletCommsManager class to convert the HTTP request back to

a DataPacket.

2.4.4.4 MCA Services determines which Financial Component to invoke

MCA Services checks the REQUEST_ID key in the DataPacket. It looks up the mapping of

REQUEST_IDs to JNDI names, and determines that the DataPacket should be sent to the EJB

named ‘eontec.bankframe.CreditTransfer’.

2.4.4.5 MCA Services passes the DataPacket to the Financial Component

MCA Services asks the EJB Container to create an instance of the bean named

‘eontec.bankframe.CreditTransfer’, i.e. CreditTransferBean. When the instance is

created MCA Services invokes CreditTransferBean’s processDataPacket() method,

passing it the DataPacket from the Client.

2.4.4.6 CreditTransferBean processes the DataPacket and returns its
response data

CreditTransferBean parses the information in the DataPacket and carries out the credit

transfer. It returns a response DataPacket confirming the transaction was carried out and

containing the new balance on the account the money was transferred from.

2.4.4.7 MCA Services passes the response data back to the Client

MCA Services uses the EHTTPServletCommsManager to send the response back to the Client

as a HTTP response.

2.4.4.8 The Client converts the HTTP response back into DataPackets

The Client uses EHTTPCommsManager to convert the HTTP Response into a Vector of

DataPackets. In this case the Vector contains a single DataPacket with the information returned

from the Financial Component.

MCA Services Overview ■ Client to Financial Component Communication

20 ■ MCA Services Developer Guide Version 2004.5, Rev. A

2.4.5 Sequence Diagrams

2.4.5.1 Request Router to EJB

2.4.5.2 EJB to Financial Process Integrator

MCA Services Overview ■ Financial Process Integration

MCA Services Developer Guide Version 2004.5, Rev. A ■ 21

2.5 Financial Process Integration

All financial institutions deploy a host of some description. This is where a financial institution’s core

business processes are run. These host systems are accessed via software known as Middleware. MCA

Services can use a number of different Middleware technologies (such as IMS, MQ Series, CICS, Tuxedo)

to communicate with Host systems.

All Middleware technologies do the same basic thing: they send request data to host systems and pass back

response data from the host system. However they all do this in significantly different ways. MCA Services

provides an abstraction layer that hides the differences between different Middleware technologies. This

provides Financial Components with a simple interface for communicating with host systems. This

abstraction is enabled by the Financial Process Integrator.

The Financial Process Integrator is not an off the shelf solution; because of the complexity of communicating

with legacy/host systems, there will always be a certain amount of customization required for each host

system.

The Financial Process Integrator has a number of components:

TransactionHandler This is an EJB session bean that provides the

interface through which Financial Components

communicate with host systems.

Middleware Connector(s) This is an EJB session bean that provides the

means of communicating with a specific Middleware

technology. MCA Services provides a number of

connectors for Middleware technologies such as

IMS or MQ Series.
TransactionRoute This is an EJB Entity Bean that stores the

information about which connector and Data

Formatter to use for each transaction code and

type.
Destination This is an EJB Entity Bean that stores information

necessary for invoking the connector to access a

specific host.

Data Formatter This is a class that formats the data to and from the

Host System. This class uses the EJBs

RequestTransactionField,

ResponseTransactionField, MetaData and

TransactionErrorCondition to obtain the

structure of the host system data.
RequestTransactionField This is an EJB Entity Bean that stores information

about each field in the transaction request to send to

the host system.
ResponseTransactionField This is an EJB Entity Bean that stores information

about each field in the transaction response from the

MCA Services Overview ■ Financial Process Integration

22 ■ MCA Services Developer Guide Version 2004.5, Rev. A

host system.

MetaData This is an EJB Entity Bean that stores information

about the mapping from the host system transaction

data to the Financial Component data
TransactionErrorCondition This is an EJB Entity Bean that stores information

about error condition response transactions from the

host system.

All Financial Components interact with the Financial Process Integrator by passing it DataPackets,

containing the information about the transaction to be sent to the host system. The DataPacket passed in

will contain a transaction code and a transaction type. The Financial Process Integrator will use the

TransactionRoute Bean to determine

• Which Destination corresponds to the transaction code and transaction type and

• Which Data Formatter class is required to format the data to and from the host system.

The TransactionRoute contains information about which Middleware Connector to use, so the

TransactionHandler will

• Call the Data Formatter to transform the information in the DataPacket into a host system

specific format and

• Instantiate the correct Connector and pass the formatted data to it.

The Connector will send the information to the Host System.

The Data Formatter will also take any data passed back from the Host System and transform it into one

or more DataPacket(s) and pass it/them back to the Financial Process Integrator. The Financial Process

Integrator will then pass back the DataPacket(s) to the Financial Components.

MCA Services Overview ■ Financial Process Integration

MCA Services Developer Guide Version 2004.5, Rev. A ■ 23

2.5.1 Sequence Diagrams

2.5.1.1 TxnHandler Find

MCA Services Overview ■ Security Provider Framework

24 ■ MCA Services Developer Guide Version 2004.5, Rev. A

2.5.1.2 TxnHandler Amend

2.6 Security Provider Framework

MCA Services provides a framework for ensuring that access to Financial Components is limited to

authorized users. The framework provides both off the shelf security solutions and an extendable

architecture enabling third-party security applications to be integrated with MCA Services.

The MCA Services Security Provider Framework consists of a NullBankFrameSecurityProvider and a

DefaultBankFrameSecurityProvider and the framework enables the implementation of custom

security providers. The NullBankFrameSecurityProvider is used to turn off security and the

DefaultBankFrameSecurityProvider encompasses the following:

User Authentication The process by which a user’s identity is verified.

Session Management The process of keeping track of which users are currently logged on to

MCA Services.

Access Control The process of determining which Financial Component(s) each user is

MCA Services Overview ■ Enterprise Services

MCA Services Developer Guide Version 2004.5, Rev. A ■ 25

permitted to access.

Below we discuss how MCA Services authenticates Clients and how access to Financial Components is

controlled.

2.6.1 User Authentication

MCA Services must authenticate Clients before they are permitted to access Financial Components. The

Client must send a special DataPacket (a logon request), which contains the user’s authentication details.

As with any other request the DataPacket must contain a REQUEST_ID In the case of a logon request, the

REQUEST_ID must map to the EJB Session bean that carries out User Authentication. The logon request is

passed to the User Authentication Bean, which will determine if the user’s credentials are correct.

2.6.2 Session Management

If a Client’s user credentials are determined to be correct then a user session is created for the user. This

user session includes a unique session ID. This session ID is returned to the Client after a successful

authentication. The Client must add this session ID to each subsequent DataPacket it sends to MCA

Services. This requirement makes sure that only authenticated users gain access. Each time MCA Services

receives a request from a Client it checks to ensure that the session ID is valid.

2.6.3 Access Control

Before passing a DataPacket from a Client to a Financial Component for processing the access control

bean checks to ensure that the Client has access to the Financial Component. Each DataPacket from the

Client will contain a unique session ID. This session ID corresponds to an individual user. The user’s access

rights will be checked to ensure the user has access to the requested Financial Component. If the user does

not have access then the DataPacket will not be passed to the Financial Component, and an error will be

returned to the Client, otherwise the DataPacket will be passed to the Financial Component as normal.

2.7 Enterprise Services

Required Enterprise Services Required by MCA Services to function properly e.g. Routing or

User Authentication.

Optional Enterprise Services Useful but not required e.g. Mail.

2.7.1 Required Services

The following are required by MCA Services to function correctly:

2.7.1.1 Routing

The core of MCA Services; it takes DataPackets received from Clients and determines which Financial

Component they are intended for, and then passes the DataPackets to the relevant Financial Component.

When processing requests from Clients it uses the User Authentication service to log users on and off, the

MCA Services Overview ■ Enterprise Services

26 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Session Management service to ensure users are logged on before they access Financial Components, and

the Access Control service to make sure Clients only send DataPackets to the Financial Components they

are allowed access to.

2.7.1.2 User Authentication, Session Management, and Access Control

Refer to the MCA Services Security section for an overview of the above.

2.7.1.3 Internationalisation

MCA Services code does not contain any hard-coded messages; all messages are loaded at run-time from

a file. This means that localizing MCA Services to a new language is a simple matter of changing the

content of the messages file.

2.7.1.4 Dynamic Configuration

Standard Java APIs for reading configuration information from .properties files require the application

server to be re-started to pick up any configuration changes made. The MCA Dynamic Configuration

framework enables changing MCA's configuration & enabling these changes to take effect without having to

re-start the application server. The Dynamic Configuration framework re-reads the .properties file into in-

memory cache from the disk file at set intervals. The interval period is configurable in the

BankframeResource.properties file and can be turned off by setting the refresh rate to –1. The default

is 15 minutes. The MCA Dynamic Configuration framework allows for the grouping of properties.

2.7.2 Optional Enterprise Services

MCA Services contains a number of optional Enterprise Services, which are not required for MCA Services

to function correctly:

2.7.2.1 Audit

This service enables a record of all Business Transactions carried out by Financial Components to be

recorded in a relational database table.

2.7.2.2 Logging

This service provides a facility for MCA Services and Financial Components to record actions carried out in

a text file. A GUI-based log viewer tool is available in the Siebel Financial Transactions WorkBench –

consult the WorkBench documentation for further information on same.

2.7.2.3 Mail

This service enables Financial Components to send e-mails.

MCA Services Overview ■ Front-End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 27

2.7.2.4 Ping

This service is used to determine if MCA Services is working properly. Clients can invoke this service to

determine if a connection to MCA Services can be made.

2.7.2.5 LDAP

This service provides connectivity to LDAP data-stores. It provides two levels of connectivity: an API for

directly accessing data in the LDAP data-store, and a framework for developing Bean Managed Entity

Beans that persist to an LDAP data-store.

2.7.2.6 Peripherals Support

MCA Services provides a framework for implementing support for peripherals such as cheque-readers, PIN-

readers and receipt printers, MCA Services also provides some sample drivers for supporting these types of

devices.

2.7.2.7 Printing Support

MCA Services provides printing support via the third party Accelio Central Pro product. Accelio Central Pro

takes application data and merges it with an electronic document template. It accepts input from different

sources and produces output in a variety of formats. Documents can be simultaneously output to print, fax,

e-mail, PDF or the Web.

2.7.2.8 Caching Framework

The MCA Services Caching Framework reduces the effort required to implement caching and ensures

caching is done in a uniform manner. For use anytime it is expensive (in terms of time) to access some data.

Supports both in-memory caching and persistent caching. A persistent cache can be read-only or read-write.

The generic caching framework encompasses:A generic implementation of an in-memory cache

• A plugable CachePolicy interface that allows the policy used for removing expired objects to be

customized.A framework for implementing persistent caches - supports maintaining the cache

consistency and flushing updates to the persistent store.

• An easy to use API; the Cache class implements the java.util.Map interface so that it can be easily

integrated into code that previously used Hashtables or HashMaps for caching data.

2.8 Front-End Framework

The two main purposes of the front-end framework are:

• To maintain consistency

Design and development consistency is vital during development. It allows developers to debug and

understand other developers’ code, it makes code reusable, and it gives the interface a consistent look

and feel.

• The ability to interact with Channel Management

The front-end framework also outlines the standard way in which client applications will communicate

MCA Services Overview ■ Front-End Framework

28 ■ MCA Services Developer Guide Version 2004.5, Rev. A

with server side processes. If this were not consistent, then new code would have to be written for

different client types, and different architectures.

There are two current implementations of front ends provided by MCA Services: JSP and Java

Applet/Application Front Ends.

2.8.1 JSP Architecture

MCA Services provides a number of extension resources to the JavaServer Pages framework, making JSP

development faster and easier. These resources include:

• JavaBeans component super classes

• Servlets, which can accept HTTP requests from multiple client types for processing DataPackets.

• HTML and WML widget classes.

The objectives of the MCA Services JSP front-end framework are to maintain consistency and reusability,

and to make it easy for a JSP page to communicate with server side processes. The front-end framework

also outlines the standard way in which client JSP pages will communicate with server side processes.

In the JSP architecture each dynamic JSP page has a corresponding JavaBeans component which

generates the dynamic output and handles communication with Financial Components. If you need to

perform any extra processing on the request object, your BankFramePage extension class will override

the executeRequest() method of the super class. If not, the executeRequest() method of the super

class (BankFramePage) will execute.

2.8.1.1 Sequence Diagram

2.8.1.1.1 JSP to RequestRouter

MCA Services Overview ■ Administration Tools

MCA Services Developer Guide Version 2004.5, Rev. A ■ 29

2.8.2 Applet/Application Architecture

MCA Services contains specialized components that allow you to assemble Java applet and application

based front-ends with ease. The Graphical User Interface (GUI) of MCA Services applets can be

constructed using a combination of Java Swing components and Siebel Java components.

Building an MCA Services Swing application is essentially the same as building a standard Java Swing

application. It utilizes panels, layout managers, event listeners etc. in the same manner that a typical Java

applet or application would. The main difference is that there are several helper classes that allow you to

write code that can easily communicate with Financial Components running on the server and pre-load

panel classes and image files for the application. In addition, MCA Services provides a recommended

development architecture that makes it easier to manage the navigation of screens, plug-in new panels and

components, switch between common application structures such as menus, easily change the ordering and

structure of screens through properties files, and more.

2.8.2.1 Sequence Diagram

2.8.2.1.1 Applet to RequestRouter

2.9 Administration Tools

MCA Services provides some tools for administering MCA Services installations, these are:

RouteServlet A Servlet for administering the REQUEST_IDs that Financial

C t i t d ith

MCA Services Overview ■ Administration Tools

30 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Components are associated with.
BankFrameSessionServlet A Servlet for administering MCA Services Session

Management.
MonitorServlet A Servlet for testing that MCA Services installations are

correctly configured.

These tools are described in more detail in the Administrating MCA Services documentation.

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 31

3 Front End Framework

3.1 JSP Front End Framework

3.1.1 Introduction

This document is only applicable if the Siebel Financial Transactions WorkBench Screen Orchestrator is not

being used for Front End generation.

This document provides an overview of the MCA Services JSP Front End Framework for building front end

applications using JavaServer Pages (JSPs) & JavaBeans. It provides a brief overview of the general

architecture of a JSP application and specifically discusses how JavaServer Pages technology is used

within MCA Services. There are several sections that provide practical tips and code samples for common

JSP coding techniques in application development.

3.1.1.1 Purpose

The purpose of this document is to provide detailed information on how JavaServer Pages work with MCA

Services and can be used to develop multi-channel thin-client applications.

3.1.1.1.1 Scope

It is assumed that the reader is already somewhat familiar with MCA Services and has adequate knowledge

of Internet technologies such as JavaServer Pages, JavaScript, Java, HTML, XML etc. If this is not the

case, it is recommended that you visit some of the sites in the links section at the end of this document.

This is written as a programmer’s guide, and concentrates on architecture, code examples, and

programming techniques.

3.1.2 JSP Basics

3.1.2.1 Sun’s JSP Technology

JavaServer Pages (JSP) technology was a concept developed through the Java Community Process,

headed by Sun Microsystems, and adopted by many of the leading Application Server Vendors in the

industry. A JSP (JavaServer Page) is a document that contains a combination of mark-up language syntax

(like HTML or XML), scripting language syntax (like JavaScript or WmlScript) and Java code. This document

or page is compiled into a servlet, which displays content to the end user, via a browser, as an HTML or

XML interface. JavaServer Page technology uses application logic written in the Java programming

language to encapsulate the process that generates page content. This application logic has the ability to

reside in server-based resources such as JavaBeans components. The JSP accesses these beans using

XML-like tags and scriptlets. Formatting and content (HTML or XML) tags are passed directly back to the

requesting client. By separating the page’s logic from its design and display, and supporting a reusable

component-based design, JSP technology is an ideal framework for building web-based applications. For

Front End Framework ■ JSP Front End Framework

32 ■ MCA Services Developer Guide Version 2004.5, Rev. A

details on the advantages of JSP technology, and how it was formed using the Java Community Process,

visit the Sun JSP web site, referenced in the references section.

3.1.2.2 JavaServer Page LifeCycle

A JavaServer Page is a file that you put on a JSP enabled web server. When a browser requests a specific

JSP for the first time, the request is passed onto the web server. The web server in turn parses the JSP,

generates a lightweight Java servlet and compiles the servlet. The generated servlet is then executed as a

standard Java servlet. The next time that particular JSP is called, it will not be necessary to generate or

compile it again. Instead it will access the original compiled servlet to request the dynamic content.

Subsequent requests to a JSP are therefore much faster than the original request because the code-

generation and servlet compilation steps have already been completed. A JSP file has an extended HTML

syntax within it. It understands all the HTML tags and has its own tags detailed in the JSP specification.

These special JSP tags allow you to place Java code in the HTML file to make calls to Java objects and

servlets. These Java methods return a String that is in HTML format. This HTML is then incorporated with

the HTML page and returned to the browser from the JSP. In summary, A JavaServer Page is a text-based

document that describes how to process a request to create a response. The description intermixes

template data with some dynamic actions. The features of JSP support a number of different paradigms for

authoring of dynamic content.

3.1.2.3 Simple JSP Example

A simple example of a JSP page is shown below (example 0.1). This example shows the mark-up for the

response page, which is intended to be a short list with the day of the month and year at the moment when

the request is received. The page itself contains several standard HTML tags, as well as some JSP tags. As

the request reaches the page, the response is created based on the static HTML tags and dynamic content

generated from the JSP tags. As the first JSP element is reached, a server-side Bean object is created with

the name clock and type calendar.jspCalendar. This object can be used and modified later in the

page. In particular, the next two JSP elements access properties of the object and insert these values into

the response page as Strings. This example encapsulates our approach to building the front end of an

application using JavaServer Pages. This code is typical of how to separate static content from dynamic

content.

Example 0.1
<html>

<jsp:useBean id="clock" class="calendar.jspCalendar" />

Day: <%=clock.getDayOfMonth() %>

Year: <%=clock.getYear() %>

</html>

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 33

3.1.2.4 JSP Objects and Scopes

This section describes how objects are created, the type of objects that are created, what scope these

objects have and how they relate to the JSP Front End Architecture. This section discusses only the basics

of JSP Scope because this topic is covered in much more detail in the JSP Specification document on Sun’s

website. A JSP can create and/or access Java objects when processing a request. The JSP specification

indicates that some objects are created implicitly, perhaps as a result of a directive, while other objects are

created explicitly through actions. Objects can also be created directly using scripting code although this is

less common. The created objects have a scope attribute defining where there is a reference to the object

and when that reference is removed. The created objects may also be visible directly to the scripting

elements through some scripting-level variables. Each action and declaration defines, as part of its

semantics; 1) the object it creates, 2) the scope of the object and 3) whether or not the object is accessible

to the scripting elements. Objects are always created within a JSP instance in response to a request object.

JSP defines several scopes that are listed below.

3.1.2.4.1 Page Scope

Objects with page scope are accessible only within the page where they are created. All references to such

an object shall be released after the response is sent back to the client from the JSP page or the request is

forwarded somewhere else. References to objects with page scope are stored in the pageContext object.

3.1.2.4.2 Request Scope

Objects with request scope are accessible from pages processing the same request where they were

created. All references to the object shall be released after the request is processed; in particular, if the

request is forwarded to a resource in the same Java runtime environment, the object is still reachable.

References to objects with request scope are stored in the request object.

3.1.2.4.3 Session Scope

Objects with session scope are accessible from pages processing requests that are in the same session as

the one in which they were created. It is not legal (I.e. it will result in runtime errors) to define an object with

session scope from within a page that is not session-aware. All references to the object shall be released

after the associated session ends. References to objects with session scope are stored in the session

object associated with the page activation.

3.1.2.4.4 Application Scope

Objects with application scope are accessible from pages processing requests that are in the same

application as the one in which they were created. All references to the object shall be released when the

runtime environment reclaims the ServletContext. Objects with application scope can be defined (and

reached) from pages that are not session-aware. References to objects with application scope are stored in

the application object associated with page activation. A name should refer to a unique object at all

points in the execution, i.e. all the different scopes really should behave as a single name space. A JSP

implementation may or may not enforce this rule explicitly due to performance reasons.

Front End Framework ■ JSP Front End Framework

34 ■ MCA Services Developer Guide Version 2004.5, Rev. A

3.1.2.5 JSP Tags

3.1.2.5.1 Overview

The JSP specification is designed to support the dynamic creation of several types of structured documents,

especially those using HTML and XML. In general, a JSP page uses some data sent to the server in an

HTTP request (for example, by a QUERY argument or a POST method) to interact with information already

stored on the server, and then dynamically creates some content that is then sent back to the client. The

content can be organized in some standard format (like HTML, DHTML, XHTML, XML, WML etc.), in some

ad-hoc structured text format, or not at all. There is another relationship between JSP and XML: a JSP page

has a standard translation into a valid XML document. The latest specification of JavaServer Pages allows

you to write any JSP tag in an XML compatible format. This translation is useful because it provides a

standard mechanism to use XML tools and APIs to read, manipulate, and author JSP documents. It is

strongly recommended that when writing your JSP content, you use the XML syntax for scriptlets, directives

and JSP tags. The JSP Standards document contains more information on this topic. Writing your JSP tags

in XML format ensures that your code can be easily parsed or manipulated by XML tools if necessary.

Further details on the XML syntax of JavaServer Pages, and how to migrate from non-XML syntax into XML

syntax can be found in the JSP 1.1 specification document, on Sun’s JSP home page (see references

section).

3.1.2.5.2 Tag Types

There are many different types of JSP tags that you can manipulate in your pages. These tags are divided

into categories such as directive tags, declarative tags, scriptlet tags, expression tags, and more. JSP

technology even provides you with a means of creating your own custom tags, to manipulate the content of

a page. As mentioned above, all JSP tags can have one of two formats: XML and non-XML style. As XML

is becoming more and more accepted within the Internet development community, it is recommended that

you use the XML syntax whenever writing your JSP applications. An example of the include directive, using

XML syntax, looks like:
<jsp:directive.include file=”copyright.html” flush=”true” />

While the non-XML syntax looks like:
<% @include file=”copyright.html” flush=”true” %>

XML syntax for JSP tags was introduced in the JSP 1.1 specification, so you must ensure that the JSP

container you are using includes support for writing XML tags. A complete list of the JSP tags available can

be found in the documentation of the JSP container that you are using. In addition, Sun’s JSP 1.1

specification is available for download on their public Internet site.

3.1.2.5.3 useBean Tag

The jsp:useBean tag is one that is used extensively throughout the JSP architecture. The useBean

action associates an instance of a Java programming language object with an identifiable variable within the

context of the JavaServer Page. This makes it easier to call methods of a custom Java component within

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 35

JSP code. When a useBean tag is encountered, the JSP container first searches for a bean instance that

matches the scope and the class defined in the tag. If the JSP container can find an instance of the

useBean class, then it will instantiate it using the public, no-argument constructor. If there are any

initialization properties that must be set, you can place the appropriate parameter tags between

<jsp:usebean> and </jsp:usebean> - these are only executed when a new instance is created. An

example of what the useBean tag looks like:

<jsp:useBean id="testPage" class="your.proj.dir.TestPage" scope="request">

</jsp:useBean>

3.1.2.5.4 Custom Tags and Tag Libraries

Tag libraries define declarative, modular functionality that can be reused by any JSP page. They reduce the

necessity of embedding large amounts of Java code in a JSP page by turning it into JSP syntax instead.

Tag libraries are packages of Java classes that implement special JSP interfaces, allowing you to use tags

other than the standard ones defined in the JSP specification. Tag libraries can be implemented by anyone

provided they follow the standard interfaces defined in the specification. Tag libraries may be included in

your JSP file using the taglib directive, which specifies the name and location of the tag library descriptor

file, and the tag prefix that you wish to use within your JSP syntax:
<jsp:directive.taglib uri="taglib.jar" prefix="tag" />

There are many different companies currently working on various implementations of useful tag libraries,

including a standard tag library implementation, which is being headed up by Sun Microsystems.

Using tag libraries, developers can also write their own custom tags for use in an application. This is

accomplished by extending the interfaces provided in the javax.servlet.jsp.tagext package. By

extending these classes, you can write your own Java implementations that define how to manipulate

content found in a JSP tag that you define. For instance, you could extend the JSP tag extension interfaces

and write your own JSP tag called: <myjsp:translate from=English to=French>

…</myjsp:translate> which could translate English HTML text into French text. There are hundreds of

possibilities to manipulate code and make it easier for front-end developers to design dynamic web pages.

For details on how to build custom JSP tags, and use other available tag libraries, please refer to references

section.

3.1.2.5.5 Calling a Native Java Method

In JSP pages, you can execute Java code by surrounding it with the declaration, expression or scriptlet tags.

If you were making a call to a Java method it would be of the form:
<jsp:scriplet> code fragment goes here </jsp:scriplet>

If you are calling a method that returns data that you want to appear in the HTML code then you will need to

enclose the method in expression tags:
<jsp:expression> testPage.getMesssage() </jsp:expression>

Front End Framework ■ JSP Front End Framework

36 ■ MCA Services Developer Guide Version 2004.5, Rev. A

3.1.3 JSP and MCA Services

3.1.3.1 Overview

MCA Services provides a number of extension resources to the JavaServer Pages framework, which make

JSP development for applications faster and easier. These resources include:

• Siebel JavaBeans component super classes. Developers extend these classes to facilitate

programming of server side communications and calling server side Financial Components.

• Siebel servlets, which can accept HTTP requests from multiple client types for processing

DataPackets.

• HTML and WML widget classes, for programmatically generating mark-up language output.

The objectives of the Siebel JSP front-end framework are to maintain consistency and reusability, and to

make it easy for a JSP page to communicate with server side processes. The front-end framework also

outlines the standard way in which client JSP pages will communicate with server side processes. If this

were not consistent, then new code would have to be written for different client types, and different

architectures.

The remainder of this section will concentrate on the presentation and client tiers, and their interface with

Siebel server components. In the examples used throughout this document, we use the scenario of a remote

user with a pure html client viewed in a web browser to access the functionality of the system.

3.1.3.2 JSP Execution

This section will describe in detail the order of events that occur when executing a JavaServer Page within

MCA Services. We will step through a generic scenario where a JSP page must generate some dynamic

content from the Enterprise JavaBeans server. The client accessing the page will be requesting it in HTML

format. In this particular scenario, the user will be calling the JSP page via a link from a previous JSP page.

(For instance, they might select the login link from a welcome.jsppage that will bring them to the

login.jsppage. The welcome.jsp page might contain one HTML form, with input parameters that create

a request object. The request object is then used in a BankFramePage object to determine the

dynamic content of the next page). The actions that occur in this situation are as follows:

User clicks on a link or presses a button on their current page. The link points to another JavaServer Page

(i.e. login.jsp)

A (HTTP) request object is formed from the current page and sent via HTTP over the network to the

application server. The request object contains user information such as login name and password, or

account number and deposit amount etc.

The application server compiles the requested JSP page (if not done so already) into a servlet, and

executes the logic and code in that JSP page.

In the Siebel JSP architecture, each dynamic JSP page has a corresponding JavaBeans component, which

generates the dynamic output and handles communication with Financial Components. The first line in all

JSP pages is a Java call to the executeRequest() method of its corresponding JavaBeans component.

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 37

If you need to perform any extra processing on the request object, your BankFramePage extension class

will override the executeRequest() method of the super class. If not, the executeRequest() method

of the super class (BankFramePage) will execute.

The BankFramePage.executeRequest method performs the following:

Formats the incoming request object into a DataPacket.

Invokes Request Router, for routing process requests to EJB implementations.

Request Router looks up the requested Financial Component in the EJB server.

Executes the requested Financial Component on the EJB server, using RMI/IIOP to communicate.

Passes the returned results (as a Vector of DataPackets) to the

BankFramePage.handleResponse() method.

Your extension to the BankFramePage class should implement the handleResponse() method to handle

the response of the Financial Component results.

Typically this involves storing results from the server in private variables within the BankFramePage Object.

Alternatively, this method could forward the client to an alternate page, based on the returned results from

the process. For instance, if a user failed a login validation, the client might be re-directed to a ‘no-access’

page.

These variables should have corresponding getter methods, which can be accessed directly in the JSP

page.

Any further processing, such as building Arrays, Lists, Vectors etc. with these results is done here.

The JSP page will then make direct calls to the get methods of the BankFramePage extension class, to

dynamically populate fields and tables as HTML content.

The diagram below shows the MCA Services with JSPs. Each of the steps above is explained in detail in

the following sections.

Front End Framework ■ JSP Front End Framework

38 ■ MCA Services Developer Guide Version 2004.5, Rev. A

3.1.3.3 Sending User Data to a Module with JSP

When a user clicks on a link or presses a button from their current HTML (JSP) page a (HTTP) request

object is formed and sent via HTTP over the network to the application server. The request object will

contain user information such as login name and password, or account number and deposit amount,

depending on what Financial Component they need to execute. To illustrate this architecture we will use the

example of customer logon transaction for an Internet banking user. This will illustrate user actions and the

layers in the architecture to return the content relevant to the user who logged on. This example will illustrate

the typical scenarios as handled by the front-end architecture. Our example begins with the user currently

viewing a welcome page in their html based web browser. Along with any graphics and text that will be on

this page, there is one button in the center that brings you to a login page. Since the welcome page is

purely static content, it has no corresponding BankFramePage object associated with it. However, in the

HTML code for the welcome page, there must be parameters indicating that the random number generator

Financial Component is needed to dynamically create a login and password field on the next page. These

parameters are specified using HTML input objects inside an HTML form object. When the button is

pressed to go to the login JSP page, these input objects (among other things) create an HTTP request

object, which is forwarded on to the login JSP page.

The welcome page will have a section of HTML code that looks like the following:

Example 0.2
<form method = post action ="CustomerLogon.jsp">

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 39

<input type = hidden name="DATA PACKET NAME" value="GET RANDOM

NUMBER">

<input type = hidden name="Number Of Random Numbers" value=’3’>

<input type = hidden name="End Range Number" value=’6’>

<input type = hidden name="Start Range Number" value=’1’>

<input type = hidden name="REQUEST_ID" value="88888">

<input type = submit name=’logon’ value=’logon’>

</form>

This will produce an HTML form with data that gets transformed into a DataPacket by the

BankFramePage object before being passed on to the EJB server. On a submit, this form will post its data

to the CustomerLogon.jsp page to handle the request.

3.1.3.4 Receiving The HTTP Post Request

When the form on the welcome page is submitted (by the user pressing the logon submit button), the web

browser will build an HTTP request object and send it to the application server that is hosting this

application. An HTTP request object is a list of key and value pairs that are specified in the HTML form

object. In the example above, one such key value pair would be “REQUEST_ID=88888”. For details on the

hypertext transport protocol, please refer to the Resources and Links section at the end of this document.

The components of the application server that handle a JSP request are the web server and the JSP engine.

As mentioned in the “JSP Basics” section, when a JavaServer Page is requested, the JSP engine will first

compile the page into a Java servlet, if it hasn’t done so already. The JSP engine will then execute any

Java code that is contained in the page, before sending a pure HTML response back to the browser.

 The next section will discuss standard code that all Siebel JSP pages should contain, and how to

generate the dynamic data based on a Financial Component’s response.

3.1.3.5 Extending BankFramePage Object

In the Siebel JSP architecture, each dynamic JSP page has a corresponding JavaBeans component, which

generates the dynamic output and handles communication with Financial Components. The class that your

JSP JavaBeans components will extend from is the abstract com.bankframe.fe.jsp.BankFramePage

class. As mentioned earlier, there is typically a one-to-one relationship between a dynamic JSP page and a

BankFramePage component. Therefore, for each dynamic JSP page in your project, you will create a

corresponding JavaBeans component, which is a sub-class of the BankFramePage object. For instance,

the login.jsp page might have a corresponding LoginPage class, which extends from BankFramePage.

After you determine how many BankFramePage objects the application requires, it might be wise to create

a parent class containing methods that are common across all pages. This new parent class will be an

extension of the BankFramePage class and will generally be specific to the application you are working on.

It is best to incorporate as many common methods into this class as possible because this promotes reuse

Front End Framework ■ JSP Front End Framework

40 ■ MCA Services Developer Guide Version 2004.5, Rev. A

of components and limits unnecessary duplication of code. The JSP BankFramePage objects will now

extend this new parent class; so they are all in fact still extensions of the BankFramePage class.

3.1.3.5.1 The executeRequest() Method

The first line in all Siebel JSP pages is a Java call to the executeRequest method of its corresponding

BankFramePage component.

Example 0.3
<jsp:usebean id="testPage" class="your.proj,dir.TestPage" scope="request">

</jsp:usebean>

<jsp:expression> testPage.executeRequest(config, request, response)

</jsp:expression>

If you need to perform any extra processing on the request object, your BankFramePage extension class

will override the executeRequest() method of the super class. If not, the executeRequest() method

of the super class (BankFramePage) will execute.

The executeRequest() method of the BankFramePage class handles all the difficult tasks for you

automatically. This method is able to read the http request object that was sent from the client browser.

Recall that this request object contains all the parameters required to look up the Financial Component

that was requested. The requested Financial Component was specified in a previous JSP page, using

HTML forms and input tags. The tasks that the BankFramePage object’s executeRequest()

method perform include formatting the request object into a DataPacket, passing the request on to the

Request Router, and waiting for a response from the server. For details of how Routing handles Financial

Component requests, please refer to the documentation on MCA Services Routing. When the Route service

is finished processing the request, it passes the returned results back to the BankFramePage object as a

Vector of DataPackets. The executeRequest() method then passes control over to the

handleResponse() method of the BankFramePage object.

3.1.3.5.2 The handleResponse() Method

Each BankFramePage object that you implement should override the handleResponse() method of the

super class. As the name indicates, this is where you will handle the response from the Financial

Component request and format any data that will be used to generate dynamic content in your JSP page.

The handleResponse() method is basically an initialization method that sets the properties of your

BankFramePage bean. These properties will then be requested later on in the JSP page. This method

handles all data sent down from the server, which is sent in the form of a Vector of DataPackets. The

handleResponse() method will decide what to do with this Vector. It should strip the data out of the

relevant DataPackets and load the properties of the BankFramePage object. In the example below, the

handleResponse() method loops through the returned Vector, and extracts any relevant data from each

DataPacket element in the Vector. This data is then assigned to the private variables of that

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 41

BankFramePage object, which can later be accessed through their public get methods. (See Example

below).

Example 0.4
public void handleResponse(Vector DataPackets) {

DataPacket tmp; //declare a new Datapacket

String name = ""; //declare a new String

//Loop through entire vector of DataPackets

for (int i = 0; i < dataPackets.size(); i++) {

//create new Datapacket from the vectors current element

tmp = (DataPacket) dataPackets.elementAt(i);

//assign the Name of this Datapacket to the variable "name"

name = tmp.getString(DataPacket.DATA_PACKET_NAME);

//If the name of the Datapacket is equal "CLIENT FACILITY DETAILS"

//enter this if statement and strip out the relevant properties from

the //DataPacket

If (name.equals("CLIENT FACILITY DETAILS")) {

//the getString method searches through the datapacket for

//the given key "Facility

Amount " and it returns the value it

//holds into the string iepFacilityAmount

this.iepFacilityAmount = tmp.getString("Facility Amount");

this.daysCreditUpTo = tmp.getString("Days Credit Up To");

this.euroBalanceOS = tmp.getString("Euro Outstanding Bal");

this.facilityExpiryDate = tmp.getString("Facility Expiry Date");

this.iepBalanceOS = tmp.getString("Outstanding Balance");

this.iepBalAvailable = tmp.getString("IEP Balance Avail");

this.euroFacilityAmount = tmp.getString("Euro Facility Amount");

this.euroBalAvailable = tmp.getString("Euro Balance Avail");

} //end if

} //end for

} //end method

Front End Framework ■ JSP Front End Framework

42 ■ MCA Services Developer Guide Version 2004.5, Rev. A

These properties, which have been assigned values in the above code, can be retrieved later by using the

JSP: getProperty tag.

3.1.3.5.3 Properties of a JSP BankFramePage Object

In the BankFramePage objects that you create, you will have a number of variables that need to be

returned to the JSP Page. The best way to do this is to create a ‘get’ method for each of the variables. In

JavaBeans standards, these variables should also each have ‘set’ methods, but the standard is not very

rigid on this specification. (In the JavaBeans API, an instance/state variable with this type of pairing of

access methods is called a property). As an example, if you needed to return a user’s client number to the

JSP Page you would need to define the String clientNumber as a private variable, and then create the

method getClientNumber for public access to it. (see example below)

Example 0.5
public class JSPPage {

private String clientNumber = new String();

public String getClientNumber() {

return this.clientNumber;

}

public void setClientNumber(String clientNumber) {

this.clientrNumber = clientNumber;

}

}

Use of this will be described in the JSP scripting section of this document.

3.1.3.6 JSP and WML

Wireless Application Protocol (WAP) is fast becoming a popular standard for displaying Internet content

wirelessly on mobile telephones. WAP refers to the protocol used to transport data wirelessly over

telephone networks, while Wireless Mark-up Language (WML) is the actual programming language used to

write content for these phones. WML adheres to the XML standards, and is very similar in nature to HTML.

Building a JSP application that supports wireless phone browsers is just as simple as building an HTML

based application. The only difference is that you will write your content using WML and Wireless Mark-up

Script (WmlScript) instead of HTML and JavaScript. You must also ensure that your application server has

the functionality of a WAP gateway, or you must install a third party WAP gateway to work with the

application server. An example of a JSP page that generates WML content instead of HTML content

follows:

Example 0.6
<?xml version="1.0"?>

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 43

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>

<card id="Start" title="wapbanking">

<p><img src="eonteclogo.wbmp" alt=" WAP Banking from eontec"</p>

<anchor title="Login">Login

<go href="customerlogon.jsp">

<postfield name="DATA PACKET NAME" value="GET RANDOM NUMBER"/>

<postfield name="Number Of Random Numbers" value="3"/>

<postfield name="End Range Number" value="6"/>

<postfield name="Start Range Number" value="1"/>

<postfield name="REQUEST_ID" value="80032"/>

</go>

</anchor>

</card>

</wml>

Notice that in WML, you use the postfield tag and go href tag to submit data to the server, instead of

the form and input tags in HTML. For more information on WML and WAP, please refer to links section of

this document.

3.1.4 General Tasks using MCA Services and JSP

There are many general tasks that often get performed when writing JSP applications with MCA Services.

Most of these tasks are not within the realm of MCA Services’ responsibility (as an architecture), but they

are worth noting in this document. This area includes tasks such as generating tables dynamically in a JSP

page, using JavaScript within your JSP page, or forwarding requests to other JSP pages.

3.1.4.1 Dynamic Tables with JSP

Generating dynamic tables in HTML and JSP is more difficult than creating tables in native Java. There are

different approaches to combat this issue, but only one will be discussed here. One method for creating

dynamic tables using HTML and JSP is to break the table up into sections and display one section at a time,

say ten rows at once. To reach the next ten you simply supply a link to these next ten rows, as well as

maintaining a link to the previous ten. This is not as effective as having a scrollbar at the side of the table for

viewing large amounts of data, but it works nonetheless. An example below shows the initial filling of table

data using this method:

Front End Framework ■ JSP Front End Framework

44 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Example 0.7
//these are the arrays that will be filled with the info from the payee

// Datapackets

private String existingCreditorsBank[] = new String[10];;

private String existingCreditorsPayee[] = new String[10];

private String existingCreditorsCurr[] = new String[10];

//this code for handle response is much the same as before except the

//properties aren’t filled now

public void handleResponse(Vector dataPackets) {

//new vector created to hold the payee DataPackets

payees = new Vector();

DataPacket tmp;

String name = "";

for (int i = 0; i < dataPackets.size(); i++) {

tmp = (DataPacket) dataPackets.elementAt(i);

name = tmp.getString(DataPacket.DATA_PACKET_NAME);

if (name.equals("PAYEE AND PAYEE ACCOUNTS")) {

//datapacket added to the payee vector which will eventual //contain all

the

datapackets for all the rows in the table

payees.addElement(tmp);

}

}

//call to fill the first ten rows of table data

this.fillData(0, 9);

}

private void fillData(int start, int end) {

if (start > payees.size()) {

//call to funciton that initialises the arrays

this.fillBlank();

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 45

} else {

this.fillBlank();

DataPacket data = null;

DataPacketSort dataPacketSort = new DataPacketSort();

//call to function that returns an alphabetically sorted vector, sorted

//according to the Payee Field

payees = dataPacketSort.sortForOtherDescending(payees, "Payee");

int row = 0;

for (int pos = start;((pos <= end) && (pos < payees.size())); pos++) {

data = (DataPacket) payees.elementAt(pos);

//the getString method searches through the datapacket for

//the given key "Bank " and it returns the value it holds into the

// array existingCreditorsBank at the index specified by the int row

this.existingCreditorsBank[row] = data.getString("Bank");

this.existingCreditorsCurr[row] = data.getString("Currency");

this.existingCreditorsPayee[row] = data.getString("Payee");

row = row + 1;

} //end for

} //end else

}

Now the first ten rows of data are ready for the table. In order to persist your dynamic objects in the JSP,

you will have to assign the scope variable of your useBean to be the session type. This means that the

payee Vector contains the entire table details for the length of the session unless it is re-initialized along

the way. So now when you click on “next” the page object does not need to be re-loaded from the database.

It simply updates the arrays with the next ten rows of data. To do this we have to create a method called

executeRequest() which replaces the one in the super class or base class BankFramePage.

Example 0.8
public String executeRequest(ServletConfig config, HttpServletRequest

request,

HttpServletResponse response) throws ServletException {

String dir = null;

try {

Front End Framework ■ JSP Front End Framework

46 ■ MCA Services Developer Guide Version 2004.5, Rev. A

//grabs the direction value from the post

dir = request.getParameterValues("Direction")[0];

} catch (Exception ex) {

dir = null;

}

if (dir != null) {

if (dir.equals("Next")) {

this.currentLine1 = this.currentLine1 + 10;

} else {

this.currentLine1 = this.currentLine1 - 10;

}

//call to fill the array for the next or previous 10 rows

this.fillData(this.currentLine1, this.currentLine1 + 9);

} else {

this.currentLine1 = 0;

return super.executeRequest(config, request, response);

}

}

This is the HTML code (Example 0.9) to pass the Direction value up to the JSP Page Object as you can

see it sends it up in a Hidden field.

Example 0.9
<form name="nextform" method="post" action="existingcreditors.jsp">

<input type="hidden" name="Direction" value="Next">

</form>

3.1.4.2 Retrieving Data from a BankFramePage Object

Now that you have your BankFramePage implementation correctly populating its variables with the

Financial Component’s results, you must be able to access these variables from within the JSP page. For

example you might want to fill this HTML text box below with data from the BankFramePage Object.

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 47

This can be done in one of two ways:

3.1.4.2.1 <jsp:getProperty name="testPage" property="Message"/>

Where name refers to the usebean "testPage" and property "Message" will be associated with the method

getMessage() in testPage, which returns the private variable ‘message’ in String format. The code

above identifies the Java call that will retrieve the message variable’s data, but that will not format it into an

HTML text box as we want. To do this, you must mix your JSP Java calls within HTML code. This can be

done with the following:
Message: <input type="input" name="Message" value="<jsp:getProperty

name="testPage" property="Message"/>">

3.1.4.2.2 <jsp:expression> testPage.getMesage() </jsp:expression>

Where "testPage" refers to the useBean and getMessage() a method of testPage that returns the

String message. In the JSP Page it would look like this:

Message: <input type="input" name="Message"

value="<jsp:expression> testPage.getMesage() </jsp:expression>">

3.1.4.3 Creating and Filling JSP Tables

In previous sections we saw how to initialize the data variables for populating dynamic tables in a JSP page

and we learned the basics of how to get these data variables from the BankFramePage object into the JSP

page as HTML. Now we will combine these two techniques to generate a dynamic table in HTML that is

filled with the array variables from our BankFramePage object. Basically here all you are doing is wrapping

a JSP loop around the HTML code for a table row, thereby creating and filling your table. Just create the one

row with its relevant columns and the loop for the number of rows you desire.

Example 0.10
<table>

<% for (int i = 0; i < numebr_of_rows; i++) { %>

<tr >

<td><%= testPage.getTableElements(i) %></td>

</tr>

<% } %>

</table>

Front End Framework ■ JSP Front End Framework

48 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Where the getTableElements() method of the useBean testPage returns a string from the string

array tableElements according to the index passed up in the call to it. This is very handy for creating

tables with many rows. You can even create your own style and feel for the table. Say, for example, you

wanted every second row to be gray. You could simply accomplish this with the following:

Example 0.11
<table>

<% for (int i = 0; i < numebr_of_rows; i++) {

if(i%2 > 0)

bgcolor = "#FFFFFF";

else

bgcolor = "#CCCCCC";

%>

<tr bgcolor="<%= bgcolor %>">

<td><%= testPage.getTableElements(i) %></td>

</tr>

<% } %></table>

In the code above, every even row has a white background color and every odd row has a gray background.

3.1.4.4 Page Formatting

JSP scripting can be useful for creating a different look to your page. For Example if there are different

levels of users and you want one user (level 1) to have access to some content, but the other user (level 2)

should not have access to this content, you could do the following:

Example 0.12
<jsp:scriptlet>

if (testPage.getUserLevel() == 1)

</jsp:scriptlet>

Links:

< a href="authorise.jsp">Authorise:

<Payment History:

<jsp:scriptlet>

} else {

</jsp:scriptlet>

Links:

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 49

<Payment History:

<jsp:scriptlet>

}

</jsp:scriptlet>

In this example user 1 has access to both hyperlinks, whereas user 2 only has access to the "Payment

History Link". Their corresponding web pages will look as follows:
User 1:

Links:

Authorize:

Payment History:

User 2:

Links:

Payment History:

3.1.4.5 Including and Forwarding to Files

Using the <jsp:forward page="myfile.jsp"/> JSP element, allows the runtime dispatch of the

current request to another JSP page. A jsp:forward effectively terminates the execution of the current

page. This command could be used to forward a user to the relevant area of a site based on their access

level. For example:

Example 0.13
<jsp:scriptlet>

if(logonPage.getAccessLevel().equals("Admin")) {

</jsp:scriptlet>

<jsp:forward page="admin.jsp"/>

<jsp:scriptlet>

} else {

</jsp:scriptlet>

<jsp:forward page="user.jsp"/>

<jsp:scriptlet>

}

</jsp:scriptlet>

Front End Framework ■ JSP Front End Framework

50 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Using the <jsp:include page="myfile.jsp" flush="true"></jsp:include> JSP code you can

pull in the text of another file and compile it as if it were part of the including (original) file. (The previous

syntax for this was <%@ include file="myfile.jsp" %>) The included file can be any type (such as

HTML or text). This command has many uses and can be incorporated into a scriptlet to improve the

functionality of a system. For example the following scriptlet will test to see if a user has administrator

access to a page. If so the admintools.inc page will be pulled in and displayed to the user along with the

rest of the page. Otherwise the usertools.inc page is included.

Example 0.14
<jsp:scriplet>

if (toolsPage.getAccessLevel().equals("Admin")) { //if user access is

Admin

</jsp:scriptlet>

<jsp:include file="admintools.jsp"> </jsp:include>

<jsp:scriptlet>

} else { //else if access not Admin

</jsp:scriplet>

<jsp:include file="usertools.jsp" > </jsp:include>

3.1.4.6 JavaScript and JSP

JavaScript can be used to provide many different aspects of functionality in an application. Once again,

JavaScript functionality is not the responsibility of MCA Services, but it is worth noting some of the common

tasks that have come up during project development. Specifically, the following tasks are often needed

when integrating JavaScript into a JSP page:

• Image rollovers

• Making rollover images act like form submit buttons

• Filling elements of a page for display

• Validation of forms

• Filling a hidden data field in a form based on which radio button was clicked on a table

3.1.4.6.1 Image Rollovers

An image rollover is an effect frequently found on websites where the image changes color or shape when

the user puts the mouse pointer over it. This effect is achieved using JavaScript. Most HTML editors such as

MacroMedia’s Dreamweaver will have wizards to help produce this code on a page. To insert a rollover

image using Dreamweaver complete the following steps:
1 From the Insert menu select Rollover Image

2 From the "Insert Rollover Image" dialog box select the original image (the image on the page before the

user places the pointer over it) and the rollover image (the image that will be displayed when the user places

the pointer over it).

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 51

3 Ensure that the Preload Images box at the end of the dialog is checked on. This ensures that all the

images on the page will be preloaded when the page is displayed and that there will be no delay when

JavaScript has to swap the original with the rollover image. Once the steps above have been completed

Dreamweaver will create the necessary JavaScript to achieve the image rollover effect on a page.

3.1.4.6.2 Rollover Images as Form Submit Buttons

Siebel JSP applications are based on the posting of data between pages and BankFramePage object

classes. The posting of information is usually achieved by creating an HTML form and using a submit button

to post the information in the form to the location specified in the ‘action’ tag of the form. However if you

want to use rollover images instead of submit buttons to post the form you must use some JavaScript to

achieve this. Complete the following steps to make a rollover image act like a form submit button.

1 Create a rollover image in Dreamweaver.

2 Ensure the image is contained in the same form as the elements you wish to post.

3 Create a function in the script section of your html (between the <head> </head> tags. This function will

be consist of one line of JavaScript to submit the form:

Example 0.15
<html>

<head>

<script language="javascript">

<!-….

….

Function submit_form(){

document.form1.submit();

}

// -->

</head>

</script>

4 The line defining the rollover image in the html now needs to be changed so it executes the JavaScript

function when it is clicked. Inserting the JavaScript function as the <href> of the image does this:

Example 0.16
<form name="form1" action="nextpage.jsp" method="post">

<input type="text" name="value1">

<input type="text" name="value2">

<a href="javascript:submit_form()" onMouseOut="MM_swapImgRestore()"

onMouseOver="MM_swapImage('document.Image1','document.I

Front End Framework ■ JSP Front End Framework

52 ■ MCA Services Developer Guide Version 2004.5, Rev. A

mage1','myimage.gif','#950615672877')"><img name="Image1" border="0"

src="myimage.gif">

</form>

3.1.4.6.3 Filling Elements of a Page for Display

JavaScript can be used to hold values as variables. These values can then be used to populate form

elements on a page after the page has loaded. For example a form has a dropdown list and a text box. The

choices available from the dropdown list are: Current Account, Deposit Account and Credit Card Account.

Depending on the choice selected from the list we want one of the following account numbers to appear in

the text box:

1234567, 7654321, or 1236547

JavaScript can be used to store the account numbers in an array, the value of the selectedIndex of the

dropdown list will then be used to populate the text box with the appropriate account number from the array.

Example 0.16
<html>

<head>

<script language="javascript">

<!--

//declare and populate an array of account numbers

//note:you could use jsp script here to populate the array from

//a database via the page object class

var accountNoArray = new Array();

accountNoArray[0] = 1234567; // current account number

accountNoArray[1] = 7654321; // deposit account number

accountNoArray[2] = 1236547; // credit card account number

function fill_text(){

//store the selectedIndex of the dropdown list

var accountIndex = document.form1.accountList.selectedIndex;

//fill the text box with the element of the Array which

// corresponds to the selectedIndex of the dropdown list.

document.form1.textAccount.value = accountNoArray[accountIndex];

} //end of function fill_text

// -->

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 53

</script>

</head>

<body>

<form name="form1">

Account Type:

< select name="accountList">

<option>Current Account</option>

<option>Deposit Account</option>

<option>Credit Card Account</option>

</select>

Account Number:

<input type="text" name="textAccount">

</form>

</body>

</html>

JavaScript can also be used to dynamically fill dropdown lists on a page. For example a form has 2

dropdown lists. The first list contains a list of countries, which a bank has offices in. The second list contains

the cities where branches are located. Depending on the country selected from the first list, the second list

will change the cities it displays:

Example 0.17
<html>

<head>

<script language="javascript">

<!--

//declare and populate an array of account numbers

//note:you could use jsp script here to populate the array from

//a database

var irelandArray = new Array(); //declare array to hold Irish cities

var britainArray = new Array();//declare array to hold British cities

var usaArray = new Array();//declare array to hold American cities

Front End Framework ■ JSP Front End Framework

54 ■ MCA Services Developer Guide Version 2004.5, Rev. A

var selectArray = new Array;//declare array to hold the chosen countries

//cities for

evaluation later in the code

irelandArray[0] = "Dublin";

irelandArray[1] = "Cork";

irelandArray[2] = "Galway";

britainArray[0] = "London";

britainArray[1] = "Birmingham";

britainArray[2] = "Liverpool";

britainArray[3] = "Manchester"

usaArray[0] = "New York";

usaArray[1] = "Boston";

usaArray[2] = "San Francisco";

usaArray[3] = "Washington";

usaArray[5] = "Los Angeles";

function fill_city(){ //function to fill the cities dropdown list

//this will be called by the onChange event of //the countryList dropdown

list

//store the selectedIndex of the dropdown list

var countryIndex = document.form2.countryList.selectedIndex;

if (countryIndex == 0){ //

selectArray = irelandArray; //

} else // assign a list of cities to the selectArray

if (countryIndex == 1){ // depending on the country chosen

selectArray = britainArray; // from the countryList dropdown list

} else //

if (countryIndex == 2){ //

selectArray = usaArray; //

}

//loop through the cityList options and delete them by setting them to

null

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 55

for (i = 0; i <= document.form2.cityList.options.length;i++){

document.form2.cityList.options[i] = null;

}

//loop through the selectedArray and add each element of the array to the

//cityList dropdown list

for (i = 0; i < selectArray.length;i++){

document.form2.cityList.options[i] = new Option(selectArray[i]);

}

} //end of function fill_city

// -->

</script>

</head>

<body>

<form name="form2">

Country:

<select name="countryList" onChange="fill_city()">

<option>Ireland</option>

<option>Britain</option>

<option>USA</option>

</select>

City:

<select name="cityList">

<option> </option>

</select>

</form>

</body>

</html>

Front End Framework ■ JSP Front End Framework

56 ■ MCA Services Developer Guide Version 2004.5, Rev. A

3.1.4.6.4 Validation of Forms

One of the most common uses of JavaScript is the validation of user input on a form. The following

examples will demonstrate the use of JavaScript to:

• Check that all fields in a form have been completed

• Ensure that certain fields in a form contain numeric input only

• Ensure that certain fields in a form contain valid dates only

3.1.4.6.4.1 Check that all fields in a form have been completed

This example will check that all three text input fields in a form have data entered into them. When the

user clicks on the button the JavaScript function checkForm() will be called. If any of the text fields are

empty a message will be displayed to the user. If all fields have data in them the form will be submitted.

(Note: Instead of referring to the text input fields by their names we will refer to them using the form

elements object. Every element on a form belongs to the form elements[] array i.e. if a form has

three elements on it you could refer to the elements on the form as document.form.elements[0],

document.form.elements[1] and document.form.elements[2] respectively.)

Example 0.18
<html>

<head>

<script language="javascript">

<!--

function checkForm(){

var valid = true; //switch initialised to true

//loop through the first three elements on the form there

//are 4 elements on the form:3 text boxes and 1 button.

// Therefore document.validateForm.elements.length is 4.

//1 is subtracted from this value in the for loop statement

//because the elements array begins with element[0].

for (i=0;i < document.validateForm.elements.length - 1;i++){

if (document.validateForm.elements[i].value == "")

valid = false; // if the value in the text box is blank set the

//switch to false

}

if (!(valid)) //if the switch is false then display an error

alert("You must make an entry in all fields on the form");

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 57

else //if the switch is true then submit the form

document.validateForm.submit();

} //end function checkForm

// -->

</script>

</head>

<body>

<form name="validateForm" method="post">

Field 1: <input type="text" name="Text Field 1">

Field 2: <input type="text" name="Text Field 2">

Field 3: <input type="text" name="Text Field 3">

<input type="button" onClick="javascript:checkForm()">

</form>

</body>

</html>

3.1.4.6.4.2 Ensure that certain fields in a form contain numeric input only

This example will check that the text entered into an input field in a form contains only numeric data.

When the user clicks on the submit button the JavaScript function checkNumber() will be called. If the

text field contains non-numeric values a message will be displayed to the user.

Example 0.19
<html>

<head>

<script language="javascript">

<!--

var inStr = document.numberForm.numberText.value;

function checkNumber(){

var numpat = /^(\d+)$/; //variable to hold the search string

//this string is a regular expression

// the forward slashes at the start of the string the

//delimiters for the start and end of a regular expression

//^ matches at the beginning of the input string,

Front End Framework ■ JSP Front End Framework

58 ■ MCA Services Developer Guide Version 2004.5, Rev. A

//(\d+) indicates that one or more digits are valid

//in the input string,

//$ matches at the end of the input string

var matchArray = inStr.match(numpat); // match inStr against the search

//string. If only digits are found in the

//input string then the string is assigned

//to matcharray.

if (matchArray == null) { //if matchArray is empty then the string

alert("Number not valid") //contains non-numeric values - //error message

is

displayed.

else alert("Number is valid");

} //end of checkNumber() function

// -->

</script>

<body>

<form name="numberForm" method="post">

<input type="text" name="numberText">

<input type="button" onClick="javascript:checkNumber()">

</form>

</body>

</html>

3.1.4.6.4.3 Ensure that certain fields in a form contain valid dates only

If you wanted to check that a text field in a form contained a valid date in DD/MM/YYYY format, the

following JavaScript function could be used:

Example 0.20
<script language="javascript">

<!--

function checkDate(){

var datePat = /^(\d{2})(\/)(\d{2})(\/)(\d{4})$/; //variable to hold the

search

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 59

//string this string is a regular expression

// the forward slashes at the start of the string the

//delimiters for the start and end of a regular expression

//^ matches at the beginning of the input string,

//(\d{2}) (\d{4})

//(\/) indicates that a forward slash is expected next

//(\d{2}) indicates that 2 (month)digits are expected

//(\/) indicates that a forward slash is expected next

//(\d{4}) indicates that 4 (year)digits are expected

//$ matches at the end of the input string

var matchArray = inStr.match(datePat); // is the format ok?

if (matchArray == null) { //if the format is wrong the array will

alert("Date is not in a valid format.") //be empty - display an alert

return false;

}

// parse date into variables corresponding to

day = matchArray[1]; // Day

month = matchArray[3]; //Month

year = matchArray[5]; //Year

if (month < 1 || month > 12) { // check month range

alert("Month must be between 1 and 12.");

return false;

}

if (day < 1 || day > 31) {

alert("Day must be between 1 and 31.");

return false;

}

if ((month==4 || month==6 || month==9 || month==11) && day==31) {

alert("Month "+month+" doesn’t have 31 days!")

return false;

Front End Framework ■ JSP Front End Framework

60 ■ MCA Services Developer Guide Version 2004.5, Rev. A

}

if (month == 2) { // check for February 29th

var g = parseInt(year / 4);

if (day > 29 || (day == 29 && (year / 4) != g)) { //leap year validation

alert("February in "+year+" doesn’t have "+day+" days!")

return false;

}

}

} // end of checkDate() function

// -->

</script>

3.1.4.6.5 Filling a Hidden Data Field in a Form using Radio Buttons

When working on JSP systems the front-end developer will have to find a way of accessing data in a table

by using radio buttons. To accomplish this, you can add a number of hidden fields to your form in the page.

Using JavaScript, you can determine which radio button has been selected at submission time, and populate

your hidden fields with this information. Consider the following web page as illustrated in the following

diagram:

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 61

When the user clicks one of the radio buttons on the table and then clicks the Delete button, the payment for

the row the radio button is in will be deleted. For this to happen a certain amount of information must be

posted to the server so that the record can be deleted. We will assume that the information needed by the

EJB to delete the payment is: "PAYMENT_NUMBER", "PAYMENT_TYPE", "DATA PACKET NAME", and

"REQUEST_ID". "DATA PACKET NAME" and "REQUEST_ID" are static hidden fields on the form that will be

submitted to the server - their values will never change.
<input type="hidden" name="DATA PACKET NAME" Value="Delete Payment">

<input type="hidden" name="REQUEST_ID" Value="80036">

The value for PAYMENT_NUMBER is taken from the radio buttons on the form. The JSP BankFramePage

object generates the HTML code for these radio buttons – it assigns their values from a database through an

EJB and then sends the appropriate HTML to the browser. When a radio button is selected its value is sent

to the server when the post occurs. The following code produces three radio buttons on the page. If you click

the first one the value "100167" will be associated with the control name "USER_PAYMENT_NUMBER" and

sent to the server when the form is posted.
<INPUT TYPE=RADIO NAME="USER_PAYMENT_NUMBER" VALUE="100167">

<INPUT TYPE=RADIO NAME="USER_PAYMENT_NUMBER" VALUE="100168">

<INPUT TYPE=RADIO NAME="USER_PAYMENT_NUMBER" VALUE="100169">

"PAYMENT_TYPE" must also be sent to the server. However this value is only stored on the table for display.

As only values held on form objects can be posted to the server, we will use a dynamically filled hidden

Front End Framework ■ JSP Front End Framework

62 ■ MCA Services Developer Guide Version 2004.5, Rev. A

field to store the value of the selected payment type - this will be sent with the rest of the information after

the form is posted. First the hidden field is declared in the HTML (note no value is specified here- this will

be filled by JavaScript.)
<input type="hidden" name="PAYMENT_TYPE">

A JavaScript function is written in the <Head> section of the HTML document

to:

• Take the index of the radio button that has been selected

• Use this index to retrieve an element from an array of payment types

• Assign this element to the value of the "PAYMENT_TYPE" hidden field

• Lastly, post the form to the server

This function will be called when the delete button is clicked.

Example 0.21
<script language="javascript">

<!--

function assignType(){

var typeArray = new Array(); //declare array to hold the payment types

var isChecked = 0; //switch to ensure that one of the options is checked

//load the array with transfer types of the payments brought down from the

//server. Note this javascript will be produced by a JSP call to a

function in

//JSP page object. This will send the following 3 lines to the page

typeArray[0] = "Transfer";

typeArray[1] = "Cheque";

typeArray[2] = "Cheque";

//Now the index of the selected radio button will be used to determine the

//value to be assigned to the "Payment Type" hidden field. We will assume

//that the "Payment Type" field is the 4th element (elements[3]) of the

//forms elements array and that there are 6 elements in all. We cannot

refer //to the

field by its name because it contains 2 words separated by a blank -

//javascript

doesn’t like this

for (I=0;I < 4;I++){ //loop through the first 3 elements (the radio

buttons)

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 63

if(document.formname.elements[I].checked){ //if radio button is checked

document.formname.elements[4].value = typeArray[I]; //assign a value to

//the hidden field

isChecked = 1; //set the switch to true to indicate that one was checked

}

} //end for loop

if (isChecked) //if a radio was checked submit the form

document.formname.submit();

else //if no radio buttons were checked display an error message

alert("You must select a payment to delete");

} //end of function assignType()

/ -->

</script>

3.1.5 JSP Version

The version of JavaServer Pages technology that will be supported by an application is dependent on the

JSP engine that you will be using. The EJB or application server that you are deploying your application on

in turn typically controls this. For details on what version of the JSP specification that is supported by your

application server, please refer to the user manual of your application server.

In addition to the JSP specification supported, implementing things like custom tags will rely upon the

version of the Java Servlet API that the application server supports. Once again, please refer to the

documentation of the server vendor for details.

3.1.6 Writing Your JSP: Summary

HTML forms are defined in JSP source files, using JSP tags to pass data between the HTML form and some

type of server-side object, e.g. a JavaBean.

To configure the JSP source file:

• Write a JSP source file.

• Create an HTML form (or WML PostFields) and give each form element a name.

• Write the corresponding BankFramePage Bean in a .java file

• Define the properties in your BankFramePage object that will be needed in the JSP content.

• Implement the handleResponse() method in your BankFramePage object to fill the properties

based on the server response.

• Add a <jsp:useBean> tag to the JSP source file to create or locate an instance of the

BankFramePage JavaBean object.

Front End Framework ■ JSP Front End Framework

64 ■ MCA Services Developer Guide Version 2004.5, Rev. A

• Add the line: <jsp:expression> testPage.executeRequest(…) </jsp:expression> to

the JSP source file for processing the page request

• Add a <jsp:setProperty> tag to the JSP source file to set properties in the BankFramePage

object from the HTML form (if required).

• Add a <jsp:getProperty> tag to retrieve the data from the BankFramePage JavaBean.

• If you need to do more processing on the user data, use a combination of JSP scriptlets,

expressions and custom tags as well as JavaScript or WmlScript languages

3.1.7 MCA Services Widgets

To ensure that all developers use consistent HTML content, MCA Services provides different widgets (or

Java wrapper classes) for generating dynamic content. Java developers then have the option of using these

widgets in their code instead of hard coding HTML strings. There are standard widgets that can be

expressed in HTML. There is one super class for all the HTML widgets

(com.bankframe.fe.html.HtmlWidget). This way a standard interface is provided for all widgets. The

interface provides a method called toHTML(). This method returns the HTML representation of a particular

widget. Another service provided in the super class are methods called quote(String stringToQuote)

and quote(int intToQuote). These are convenience methods that put double quotes (i.e. "...") around

a string or an integer. (Double quotes are required by many HTML tags)

3.1.7.1 HTML Widgets (XHTML)

Standard widgets include:

• Comment

• Image

• TextArea

• TextBox

• Table

• Row

• Cell

• Form

• Hidden

• Password

• CheckBox

• CheckBoxChecked

• RadioButton

• ResetButton

• SubmitButton

3.1.7.2 WML Widgets

WML Widgets include:

Front End Framework ■ JSP Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 65

• Card

• Comment

• Deck

• Hidden

• Image

• MenuOption

• Paragraph

• Password

• Postfield

• Text

• WMLWidget

3.1.7.2.1 When To Use Widgets

The recommended method of generating dynamic content in a JSP page is to write the mark-up language

content directly in the JSP file, and only retrieve the data itself dynamically. For this reason, it is not

recommended that you use the Widget classes when building your application. They are included in the

release of MCA Services for backwards compatibility. The usage of widgets is essentially a design decision

on behalf of the application developer. The difference is whether or not you wish to maintain the creation of

the dynamic output in the JSP page itself, or within the BankFramePage object. When you need to make a

change to the way your data is displayed, using Siebel widgets in the BankFramePage object means that

you will have to modify, recompile and possibly re-package your class file after changing it. If this display

content is maintained in the JSP page, then it is only a matter of using a text editor to change the page for

the effects to take place.

If you choose to do so, widgets are easy to use in your code. It is necessary to instantiate the widgets with

the relevant information passed into the constructor. When the HTML text is required, the toHTML()

method is called on the widget. For example, the following Java code will create a hidden field. It names the

field "firstname" and puts the value "fred" in the field.
StringBuffer output = new StringBuffer()

com.bankframe.fe.html.Hidden hiddenField = new Hidden("firstname","fred");

output.append(hiddenField.toHTML());

System.out.println(output.toString());

The resulting output of this code, in String format will look like the following:
<INPUT TYPE=HIDDEN NAME="firstname" VALUE="fred">

3.1.8 Links and Resources

3.1.8.1 JavaServer Pages

http://java.sun.com/products/jsp/ (Sun JSP Home Page)

http://java.sun.com/products/jsp/

Front End Framework ■ JSP Front End Framework

66 ■ MCA Services Developer Guide Version 2004.5, Rev. A

http://java.sun.com/products/jsp/download.html (JSP Specification)

http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/ (JSP Tutorial)

http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html

(JSP Tutorial)

http://www.serverpages.com/Java_Server_Pages/Tutorials/ (JSP Tutorial)

http://www.jsptutorial.com/ (JSP Reference Site)

http://www.jspinsider.com/ (JSP Reference Site)

3.1.8.2 JSP Tag Libraries and Custom Tags

http://www.jsptags.com (Reference Site)

http://www.orionserver.com/tutorials/tagtut/lesson1/lesson1.html (Tutorial)

http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html (Tutorial)

3.1.8.3 HTML and XHTML

http://utopia.knoware.nl/users/schluter/doc/tags/index.html (HTML Tag Reference)

http://www.w3.org/TR/html401/interact/forms.html (Forms in HTML Documents)

http://www.w3.org/TR/html401/cover.html (HTML 4.01 Specification)

http://www.w3schools.com/xhtml/xhtml_reference.asp (XHTML Reference and Tutorials)

http://www.w3.org/TR/xhtml1/ (W3C XHTML Home Page)

http://www.w3.org/Protocols/HTTP/HTTP2.html (HTTP Reference)

3.1.8.4 WML and WAP

http://www.weblogic.com/docs51/classdocs/wap.html (Using WebLogic and WAP)

http://www-4.ibm.com/software/developer/library/wireless/index.html?dwzone=web

(IBM Java and WAP tutorial)

http://www.w3schools.com/wap/ (WAP Tutorial)

http://www.anywhereyougo.com/ayg/ayg/wap/Index.po (WAP Development)

http://www.webdevelopersjournal.com/articles/wap_java.html (WAP and JSP Article)

3.1.8.5 JavaScript
http://developer.netscape.com/docs/manuals/communicator/jsguide4/index.htm

(Netscape JavaScript User Guide)
http://wsabstract.com/cutpastejava.shtml

3.1.8.6 Java Servlets
http://java.sun.com/docs/books/tutorial/servlets/overview/index.html

http://java.sun.com/products/servlet/ (Sun Servlet Home Page)

http://java.sun.com/products/jsp/download.html
http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/
http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html
http://www.serverpages.com/Java_Server_Pages/Tutorials/
http://www.jsptutorial.com/
http://www.jspinsider.com/
http://www.jsptags.com/
http://www.orionserver.com/tutorials/tagtut/lesson1/lesson1.html
http://java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html
http://utopia.knoware.nl/users/schluter/doc/tags/index.html
http://www.w3.org/TR/html401/interact/forms.html
http://www.w3.org/TR/html401/cover.html
http://www.w3schools.com/xhtml/xhtml_reference.asp
http://www.w3.org/TR/xhtml1/
http://www.w3.org/Protocols/HTTP/HTTP2.html
http://www.weblogic.com/docs51/classdocs/wap.html
http://www-4.ibm.com/software/developer/library/wireless/index.html?dwzone=web
http://www.w3schools.com/wap/
http://www.anywhereyougo.com/ayg/ayg/wap/Index.po
http://www.webdevelopersjournal.com/articles/wap_java.html
http://developer.netscape.com/docs/manuals/communicator/jsguide4/index.htm
http://wsabstract.com/cutpastejava.shtml
http://java.sun.com/docs/books/tutorial/servlets/overview/index.html
http://java.sun.com/products/servlet/

Front End Framework ■ Applet/Application Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 67

3.1.8.7 XML

http://www.oasis-open.org/cover/xmlWG1999.html (XML Reference)

http://www.projectcool.com/developer/xmlz/xmlref/examples.html. (XML Tutorials)

http://wdvl.com/Authoring/Languages/XML/Tutorials/ (XML Articles and Tutorials)

3.2 Applet/Application Front End Framework

3.2.1 Introduction

This document provides an overview of building front-end applications using Java Applets and Java Swing

components. It provides a brief description of the general architecture of a Java Swing application and

specifically discusses how Java Swing technology can be used to build Java applets and applications within

MCA Services. This document is accompanied by a working sample application that provides greater detail

on the structure of a two-tiered Java applet built using MCA Services. The sample code is referenced

extensively throughout this document. The techniques outlined in this document are not strict rules that

must be adhered to when writing a Java application with MCA Services, but are instead recommendations

that will allow you to quickly build and easily maintain such applications. There are additional sections that

provide practical tips and code samples for common tasks that an application developer would require when

building a Java application using MCA Services.

3.2.1.1 Purpose

The purpose of this document is to illustrate to experienced Java developers the various components and

classes within MCA Services that can aid in building a Java Swing application. It describes a recommended

approach for structuring your front-end components in an application, and illustrates this with a sample

implementation.

3.2.1.1.1 Scope

This document assumes that the reader is an experienced developer with the Java Swing components and

applet and application architectures. It is not intended to be a tutorial for using Java Swing or for building

Java applets and applications. If you are unfamiliar with these topics, it is recommended that you visit some

of the sites listed in the resources and links section and later return to this document.

3.2.2 Architecture

A Java Swing front-end can run in two different scenarios. The first is as a Java applet running within a

browser, and the second is as an application that is executed from the command line. The Java code is

nearly identical in each of the two methods. The main differences in the two scenarios deal with restrictions

on security and resource access. If you are unfamiliar with the differences between Java applets and Java

applications, please refer to the links and resources section at the end of this document.

MCA Services contains specialized components that allow you to assemble Java applet and application

based front-ends with ease. The tasks that a front-end must accomplish are divided among the various

http://www.oasis-open.org/cover/xmlWG1999.html
http://www.projectcool.com/developer/xmlz/xmlref/examples.html
http://wdvl.com/Authoring/Languages/XML/Tutorials/

Front End Framework ■ Applet/Application Front End Framework

68 ■ MCA Services Developer Guide Version 2004.5, Rev. A

components seen in the diagram below. The Graphical User Interface (GUI) of MCA Services applets can

be constructed using a combination of Java Swing components and Siebel Java components.

Building an MCA Services Swing application is essentially the same as building a standard Java Swing

application. It utilizes panels, layout managers, event listeners etc. in the same manner that a typical Java

applet or application would. The main difference is that there are several helper classes that allow you to

write code that can easily communicate with Financial Components running on the server and pre-load

panel classes and image files for the application. In addition, Siebel provides a recommended development

architecture that makes it easier to manage the navigation of screens, plug-in new panels and components,

switch between common application structures such as menus, easily change the ordering and structure of

screens through properties files, and more.

The general structure of an application looks like the following:

Front End Framework ■ Applet/Application Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 69

In the diagram above, we have one EApplet and one EPanelContainer class. Below these is a splash

screen for display, and a menu panel for navigating the application. Any number of EPanel classes will be

placed below this, to control the management and navigation of all sub screens. EPanels may have

multiple layers of nesting and contain other EPanels below them. At the bottom level will be instances of

the javax.swing.JPanel class, which will contain all the graphical components such as text boxes, drop

down lists, radio buttons etc. The functions and roles of these classes are covered in more detail in the next

section.

3.2.3 The com.bankframe.fe.ui Package

The application management and container classes for building an MCA Services Java application are found

in the com.bankframe.fe.ui package (fe=Front End, ui=User Interface). The package consists of the

following classes:

ApplicationImages Helper class used to load and store all the images in an

application. You can use this class ‘as is’ and should not

modify or extend it.
EApplet Top-level abstract class for building an application. You

must extend this class when building your application.
EpanelContainer Top-level abstract container class for handling

application structure and loading EPanel classes. You

must extend this class when building your application.
ESplashPanel Abstract class that must be extended when building a

custom panel for the application splash window.
EMenuPanel Abstract class that must be extended when building a

custom menu panel for the application.
EDefaultSplashPanel A default implementation of the splash panel. It extends

ESplashPanel, and can be used ‘as is’ within an

application.
EdefaultMenuPanel A default implementation of the menu panel. It extends

EMenuPanel and can be used ‘as is’ within an

application.
EPanel An abstract upper level panel class that manages one or

more sub JPanel classes or other EPanel classes.

You must extend this class (usually many times) when

building your application.
EPanelLoader A helper class that is used by the EPanelContainer,

EPanel and EApplet classes when loading panels and

sub-panels for an application. It reads EPanel attributes

from the BankFrameFrontEnd properties file. The MCA

Services container classes use this class indirectly.

Front End Framework ■ Applet/Application Front End Framework

70 ■ MCA Services Developer Guide Version 2004.5, Rev. A

ServerDetails An abstract class that must be extended to contain static

constant definitions of all REQUEST_ID’s and names of

Financial Components that the entire application uses.
UserInterfaceException A helper class that extends the common EonException

class. It is used to throw exceptions that are specific to

the User Interface and Front End portion of an MCA

Services application.

3.2.3.1 com.bankframe.fe.ui.AplicationImages

This class provides utility methods to load and store all the images used by an application. It requires that

all the image files exist in an /images directory off the root of where the application is run. Access to

common images is provided via public static variables, while other images are loaded via the

ApplicationImages.properties file, accessed through the getImageIcon(String image)

method. The ApplicationImages.properties file must be placed in the /images directory. This file

contains lines that map one key name to one image file. The image file will be listed as the path plus

filename of the file you wish to use, and the key name is a string constant that will be used to identify that

image in your application code. An example entry for the ApplicationImages.properties file looks

like:
SMALL_SEARCH_BUTTON_ON=searchButtonOn.gif

To load the image you would use the method call:
ImageIcon searchButtonImage =

ApplicationImages.getImageIcon(SMALL_SEARCH_BUTTON);

The ApplicationImages class provides methods to load images by file or URL, to get images by file or

URL, and to set the code base when loading images by URL.

3.2.3.2 com.bankframe.fe.ui.EApplet

This is an abstract class that extends from javax.swing.JApplet. All Siebel applications that are using

the 2-Tier architecture must implement a class that extends the EApplet class. This class provides

methods to

1) Get the host for the client to communicate with (using

BankframeResource.properties)

2) Set and get the initial data received from the main method

3) Load the applications icons

4) Close the application if it was run as an application

5) Provide an abstract init method that must be implemented by subclasses.

It also contains a template method called eMain() that shows how the class can be run as an application,

instead of as an applet. If you wish to run it as an application, you must implement a main() method in

your subclass that calls super.eMain().

Front End Framework ■ Applet/Application Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 71

3.2.3.3 com.bankframe.fe.ui.EPanelContainer

This is an abstract class that implements the ActionListener and KeyListener interfaces. It provides

the top-level container for an application and it can load EPanel classes based on a setting in the

BankframeFrontend.properties file. The EPanelContainer implementation is responsible for

managing and navigating the menu panel and sub application window panels, as well as handling any

communications between the EPanels or JPanel classes, and the server. The abstract class provides

methods for navigating with the EDefaultMenuPanel using a CardLayout structure. It captures key-

press events and button events from the menu panel that allow it to switch between different screens within

the application. If you use a menu panel other than the default, you will have to override or extend your

EPanelContainer implementation to handle the events and navigation from the menu panel class you

use. This class determines what menu panel, splash panel and EPanel classes to load from the

BankFrameFrontEnd.properties file and the BankFrameFrontEndApplication.properties file.

Among other things, these property files are used to specify which EPanels (process managers) must be

loaded for use in the application, and how they will be laid out within the menu structure.

3.2.3.4 com.bankframe.fe.ui.ESplashPanel

This is an abstract class that extends the javax.swing.JPanel class. In a typical MCA Services

applet/application architecture, the applet window will be split into a menu panel along the leftmost border,

and a splash panel that encompasses the rest of the window. By default this ESplashPanel class is

visible only after the application first initializes. Once a user starts navigating through menus, the splash

panel will disappear and be replaced by your EPanel implementations. The ESplashPanel class must be

extended to add any custom functionality or visual display to the main panel in your application window.

Typically, there is very little code in your extension to this class. Basic settings such as background color

and display images might be placed in this main panel.

3.2.3.5 com.bankframe.fe.ui.EMenuPanel

This is an abstract class that also extends the javax.swing.JPanel class. As mentioned above, the

applet window is split into two basic panels and your extension of the EMenuPanel will by default, be placed

along the leftmost border of the window. There is a default menu panel provided for use, however you may

wish to implement your own menu style for the application. In this case, you must subclass the

EMenuPanel class, and build custom functionality into it. This class would handle things such as button

and key presses on menu items, applying a standard look and feel to the menu, and fire specified events to

the EPanelContainer class so that it knows when to switch screens and navigate the menu.

3.2.3.6 com.bankframe.fe.ui.EDefaultSplashPanel

This is the default implementation of the ESplashPanel class. It is simply one large panel, set to a purple

background, with a default image displayed in the middle.

Front End Framework ■ Applet/Application Front End Framework

72 ■ MCA Services Developer Guide Version 2004.5, Rev. A

3.2.3.7 com.bankframe.fe.ui.EDefaultMenuPanel

This is the default implementation of the EMenuPanel class. It sets up a thin panel along the leftmost

border of the application window and uses a tabbed pane and buttons to navigate between different

screens. Each tab pane is set up with one or more buttons aligned vertically down the left side, with a

default title on each tab and a default name on each button. Titles and names are specified in the

BankframeFrontendApplication.properties file. When a button is pushed, it brings up a

corresponding panel or EPanel in the main application window. The number of tabs, buttons and their

corresponding screens are also specified in the BankframeFrontendApplication.properties file.

3.2.3.8 com.bankframe.fe.ui.EPanel

This is an abstract class that extends javax.swing.JPanel. The responsibilities of an EPanel class are

to manage and act as a listener for a set of logically grouped sub-panels. You will likely have many EPanel

classes within one application. In fact, there is typically a one-to-one relationship between EPanels and

Financial Components. (i.e. There will be one EPanel for each Financial Components used in an

application) Each EPanel in your application will handle the navigation between its own sub-panels and its

own sub EPanels, if there are any. The EPanel also handles all communications between the server and

its sub-panels. Therefore, it must listen for events that are fired by its sub-panels to indicate that they need

to retrieve information from the server, or pass control to another sub-panel.

3.2.3.9 com.bankframe.fe.ui.EPanelLoader

This is a utility class that is used to load and create process panel drivers for an application. The

EPanelLoader class is used within the EPanelContainer to perform this loading. It is typically not

necessary to have to utilize the methods in this class directly. Currently, the necessary panels are loaded

using the BankFrameFrontEndApplication.properties file.

3.2.3.10 com.bankframe.fe.ui.ServerDetails

This is an abstract class that should be extended to contain static String variables representing all of the

REQUEST_ID and service names of the Financial Components that are used in the application. It is

beneficial to store all of this information in a central repository so that if changes to REQUEST_ID values or

service names are required, it can be modified in one place only. This makes it easier to plug in or

exchange new services and promotes code-reuse.

3.2.3.11 com.bankframe.fe.ui.UserInterfaceException

This is an exception class that extends the com.bankframe.EonException class. It is used specifically

to throw exceptions that arise from errors originating from the user interface code. It follows the standard

MCA Services exception handling procedures, using integer keys and String messages in the

messages.properties file to specify details of the exception. For more information on MCA Services

exception handling techniques, refer to the Internationalization section of the MCA Services documentation

(which covers exception handling techniques).

Front End Framework ■ Applet/Application Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 73

3.2.4 The MCA Services Sample Application

This section will walk you through some of the main steps in the process of building a Java applet or

application. It follows the sample code that is provided in the com.bankframe.examples.fe.ui.*

package. It concentrates on the aspects of assembling the application that are specific to an MCA Services

environment, and does not go into details regarding panel creation and Java Swing architectures. It is

assumed that the reader already has some level of experience in building GUI applications in Java and

Swing. For this demonstration, we will be using the default menu panel and default splash panel.

3.2.4.1 Define Your Application Structure

The first step in building an application is to decide upon the functionality that you want to provide, and

which Financial Components are needed. The sample application will be a simple application, using only two

processes: The MCA Services Ping process, and the MCA Services Route process. Therefore we will

create implementations of the Siebel EApplet and EPanelContainer classes, and we will utilize the

default MenuPanel and SplashPanel implementations. In this application there will be three EPanels –

one for the Ping process, one for the Route process, and one blank driver that does nothing. Each of the

Ping and Routing EPanels will be split up into two sub-panels. Roughly, it will have one sub-panel

dedicated to user input, and the other sub-panel dedicated to service output. A layout diagram of the

application is provided below.

Front End Framework ■ Applet/Application Front End Framework

74 ■ MCA Services Developer Guide Version 2004.5, Rev. A

3.2.4.2 Extend the EApplet class

The first task involved in building the application, is writing a top-level applet class by extending

com.bankframe.fe.ui.EApplet. This class should implement both main() and init() methods, so

that it may be executed as both an applet and an application. You must also instantiate one instance of an

EPanelContainer class. The application will have only one EPanelContainer class associated with it,

and it should be created in the init() method of your EApplet extension. The main() method

implementation can perform any custom actions it needs, and then simply call the eMain() method of the

super class, which handles execution of the program as a Java application (instead of as an applet). The

sample application that has been written demonstrates this in the com.bankframe.examples.fe.ui.*

package. Take a look at the com.bankframe.examples.fe.ui.SampleApplet class to see how this

step was accomplished.

Front End Framework ■ Applet/Application Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 75

3.2.4.3 Extend the EPanelContainer class

All MCA Services applications will have one EApplet class, and one EPanelContainer class associated

with them. The EPanelContainer class is the top-level container for the entire application. There is not

much you have to write in your extension of this class, as it handles most of the work ‘invisibly’, using the

front-end properties files that you configure. Minimally, your EPanelContainer class should implement

the handleInitialData() method, and implement a default constructor that accepts an EApplet

parameter and an ECommsManager parameter. Your constructor should make a call to the super class

constructor if you do not require it to do any special processing. For details on how this step is performed,

please refer to the com.bankframe.examples.fe.ui.SamplPanelContainer java source file.

3.2.4.4 Select a Menu Type

You must decide upon a menu format to use in the application. You have the option of designing your own

menu panel for the application by extending the com.bankframe.fe.ui.EMenuPanel, or you can use

the default menu panel that is provided with MCA Services. In the sample application, the default panel is

used, which can be found in com.bankframe.fe.ui.EDefaultMenuPanel. The menu panel class used

can be easily changed for another at a later time. In the BankFrameFrontEnd.properties file, it

specifies which class is to be used for the menu. The line that indicates this is of the form:
The menu panel class

MENU_PANEL=com.bankframe.fe.ui.EDefaultMenuPanel

For details on how the default menu class functions, please refer to

com.bankframe.fe.ui.EDefaultMenuPanel. Below is a screen capture of how the default menu

panel displays in the sample application.

3.2.4.5 Select a Default Splash Panel

The default splash panel is what will be displayed upon initial loading of the application, in the main right

hand window. As with the menu panel, you may choose to extend the abstract ESplashPanel class and

build your own custom panel for display. In the sample application, we have used the default splash panel,

found in com.bankframe.fe.ui.EDefaultSplashPanel. It simply displays a purple background, with

Front End Framework ■ Applet/Application Front End Framework

76 ■ MCA Services Developer Guide Version 2004.5, Rev. A

one image loaded into the center of the panel. It contains no real functionality, because as soon as a menu

item is selected, the splash panel disappears, and is replaced by the corresponding EPanel screen.

3.2.4.5.1 Building a Custom Splash Panel

In order to build your own custom panel, you must subclass the com.bankframe.fe.ui.ESplashPanel

class. Since this panel has no interaction with the menu panel, there are no prerequisites to follow when

building it. Ensure that in the constructor, you initialize the panel with layout, colors and images that you

wish to display upon loading.

3.2.4.6 Choose a Method of Application Loading

The method of loading an application is specified in the BankFrameFrontEnd.properties file, with the

line:
Load the STATICALLY (false)

LOAD_DYNAMICALLY=false

You must specify false for this setting. (Alternative methods of application loading will be added in a future

release).

3.2.4.7 Build the Application EPanels

As determined in the design section, the sample application will only contain two Financial Components: the

Ping component, and the Route component. Each process that we plan to utilize will have one

corresponding EPanel class associated with it, which manages all screens and panels required for that

process, and listens for events that make requests to the server.

3.2.4.7.1 The Ping EPanel

The PingEPanel acts as a manager and an interface for the Ping process available within MCA Services.

EPanel classes drive the activity of a set of panels and screens that are associated with a particular

Financial Component. In the sample, we are building a graphical user interface to the simple Ping process

within MCA Services. To do this we have implemented a class named

com.bankframe.examples.fe.ui.PingEPanel that extends the EPanel class. The PingEPanel

class is a panel itself – the main panel for the Ping interface. JPanels and EPanels can be built in any

manner, as long as they conform to a few simple aspects of the MCA Services front-end architecture. In the

PingEPanel, code has been added that will be listening for a button press from one of the sub-panels to

indicate the user wants to call the ping service. Therefore, the PingEPanel class has implemented the

ActionListener interface. In order to listen for any other specific events, such as key press events,

mouse-over events etc., you might also implement KeyListener and MouseListener interfaces. Upon

initialization of this EPanel, we have ensured that it registers itself as a listener to any components on its

sub-panels that will fire events. By convention, all panels should expose their components through public

get methods. This way, the EPanel classes can register themselves with code something like:

this.mainPanel.getsubPanel1().getsubmitButton().addActionListener(this);

Front End Framework ■ Applet/Application Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 77

Adding this line ensures that the EPanel is registered to listen for a button press event from one of the sub-

panels it is managing (in this case, subPanel1). In order to handle this event, the PingEPanel has

implemented an actionPerformed(ActionEvent) method. In this method, we determine which event

was fired, and call the necessary code to handle it appropriately. For Details on how this is done, please

refer to the com.bankframe.examples.fe.ui.PingEPanel class.

3.2.4.7.1.1 The Ping Sub Panels

Most Java Swing applications will often have panels layered upon panels to break down the graphical

components into logical groups. In the sample application, the PingEPanel is broken up into two sub-

panels.

The top panel is called PingSubPanel1 and it contains components that send an event to the

PingEPanel, which in turn uses the SamplEPanelContainer to call the Ping process on the server. For

the sample application, a visual Java development tool was used to design the sub-panels, but they may be

developed any way you like. There are some informational JTextField and JTextArea components, and

two buttons to submit events. All components that are added to panels should have a public get method

associated with them, so that parent panels and other components may easily access them. The first button

on the panel is used to get the name of the host that you are attempting to ping. Since this task requires no

communication with the server, the sub panel will handle the event on its own. This means that the sub

panel must implement the ActionListener interface so that it can listen for button events. During the

initialization of the button, the name of the command that the button will send is set, and the button

component registers its own panel (which is PingSubbPanel1) as an event listener. This is accomplished

with the following lines of code in the initHostButton() method:

hostButton.setActionCommand(GET_HOST_CMD);

hostButton.addActionListener(this);

A second button in this sub panel is used to send a ping request to the server. Since this requires a

DataPacket to be sent to the BankFrameServlet, it is the responsibility of the PingEPanel class to

handle this communication. The name of the command is set in the

PingSubPanel1.initPingButton() method with the following code:

pingButton.setActionCommand(SUBMIT_PING_CMD);

Then, the PingEPanel must register itself as a listener to the ping button. This is accomplished by: 1)

having the PingEPanel class implement the ActionListener interface, and 2) inserting a line of code in

the initialization of the PingEPanel that looks something like:

subPanel1.getPingButton().addActionListener(this);

A screen shot of PingSubPanel1 appears below.

Front End Framework ■ Applet/Application Front End Framework

78 ■ MCA Services Developer Guide Version 2004.5, Rev. A

The bottom panel is called PingSubPanel2 and it contains components that receive the results of the Ping

process, and a pop-up dialog box for demonstration purposes. There is one JTextField component that

will contain the text response as a result of pinging the server. The PingEPanel handles the population of

this component, which follows the convention that EPanel classes will handle any events and actions that

involve server side communication. There is a button in the lower left corner of the panel, which pops up a

dialog box containing text. This button is there to demonstrate that the sub panel itself should handle events

and actions that do not require server communications or menu navigation. Details of the code that

accomplished these tasks can be found in the sample application source directory. Below is a screen shot

of how the PingSubPanel2 looks.

Front End Framework ■ Applet/Application Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 79

TIP: When using IBM Visual Age for Java�� for visually composing panels, create a new class that extends

javax.swing.JPanel and check the box that says “compose visually”. Size your panel to the desired

width and height, then drag and drop the required components onto the screen. It is easiest to create the

initial panel using no layout manager (i.e. Layoutmanager=Null in the panel properties). When you have

everything looking the way you want, change the layout manager to the format you wish, and Visual Age will

attempt to render it for you. GridBagLayout will give you the most flexible layout, but it is by far the most

complicated to maintain and use.

3.2.4.7.2 The Routing EPanel

This class acts as an interface to the Routing service within MCA Services. The route EPanel will listen for

communication events and manage all the sub-panels associated with the Routing service. This class is

named RouteEPanel and extends com.bankframe.fe.ui.EPanel. As determined in the design

process, there is one button that sends a request to the server to retrieve all the current Financial

Components on the server. The response from the server will return a Vector of DataPackets

representing each Financial Component. These DataPackets will then be used to populate the table in the

lower panel of the screen. For reference, please see the sample code in the package
com.bankframe.examples.fe.ui.*

3.2.4.7.2.1 The Routing Sub Panels

As with the Ping screen, the routing screen will have only two sub panels associated with it:

RouteSubPanel1 and RouteSubPanel2. Both are very simplistic in design so that it is easier to read the

code and identify where events are handled. The top panel (RouteSubPanel1) has only one button and an

informational JTextArea component that describes what the button does. The button is set to fire an

ActionEvent to the RouteEPanel class, which handles the event by sending a DataPacket request to

the server to obtain the list of Financial Components available.

 The bottom panel, RouteSubPanel2, contains only a scroll pane and a table, which will be

populated with the results of the Route service response. The population of the table is the responsibility of

the RouteEPanel class. After it captures the button event, it sends a request to the server and waits for

the results. When it obtains these results, it populates the contents of the sub panel’s table by using the

RouteSubPanel2’s public getRouteScrollPaneTable() method. The registering of components as

event listeners, and the submitting of events in the Route section of the screen is accomplished in the same

way that the Ping screen does it, and therefore will not be repeated here. (Please refer to the sample code in

the package com.bankframe.examples.fe.ui.*) A screen shot of the RouteEPanel class (with its

two sub panels) is shown below.

Front End Framework ■ Applet/Application Front End Framework

80 ■ MCA Services Developer Guide Version 2004.5, Rev. A

3.2.4.8 General Tasks

3.2.4.8.1 Building a DataPacket from Panel Components

When an application needs to send a request to the server to execute a Financial Component, it will have to

build a DataPacket containing the relevant request parameters along with the name of the process it wants

to invoke. All server requests should be handled through the EPanel classes, therefore it is the

responsibility of the EPanel class to build the DataPacket and forward it on to the server. Using the

Siebel application framework, any sub-panels that the EPanel is managing must have public getter

methods assigned to their graphical components. This way, the EPanel can access any user-defined

values that these components may contain and build the DataPacket accordingly. For example, assume

Front End Framework ■ Applet/Application Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 81

that we have EPanelA managing a sub-panel called SubPanelA. SubPanelA has one text field

component, which contains a user name that must be built into a DataPacket for a server request.

EPanelA could create a DataPacket with this information in the following manner:
DataPacket dp = new DataPacket();

String username = this.getSubPanelA().getTextFieldComponent().getText();

dp.put(“USERNAME”,username);

3.2.4.8.2 Sending Requests to the Server

3.2.4.8.2.1 Using the EPanelContainer Class

When using the recommended architecture for Java Swing applications, the EPanel classes should handle

all server communications. It does this by utilizing an instance of the EPanelContainer class, which all

EPanels have access to. The EPanelContainer class implements a

sendCommsMessage(DataPacket) method which returns a Vector of DataPackets. Therefore, after

the EPanel builds the DataPacket that it wishes to send to the server, the following line of code would be

used to send the request:
Vector response = super.ePanelContainer.sendCommsMessage(dp);

The resulting server response can now be accessed in the response Vector. If you then wanted to extract

some information from the first DataPacket that is returned in the Vector, and put this information into a

component on a sub-panel, you would do the following:
//Place the results of the response in the text box of bottom sub panel

DataPacket responseDP = (DataPacket)response.elementAt(0);

String result = (String) responseDP.get("Result");

this.subPanel2.getTextArea().setText(result);

3.2.4.8.2.2 Without Using the EPanelContainer Class

If you are creating an application that does not build upon the MCA Services EPanelContainer and

EPanel super classes, then you can use an MCA services Channel Manager class for sending requests to

the server (see the MCA Services documentation on Channel Management). There are several Channel

Manager classes available, depending on the type of transport protocol you wish to use. The typical

communications protocol for an applet would be HTTP. The HttpClient class is found in the

com.bankframe.ei.channel.client package of MCA Services. The following lines of code would

handle sending a DataPacket request to the server, without using the EPanelContainer super class:

import com.bankframe.ei.channel.client.HTTPClient;

…

Front End Framework ■ Applet/Application Front End Framework

82 ■ MCA Services Developer Guide Version 2004.5, Rev. A

HTTPClient httpClient;

httpClient = new EHTTPCommsManager(“http://localhost:80”,”application/x-

eontec-datapacket-xml”);

DataPacket dp = new DataPacket();

Vector vector = new Vector();

…

build dp and vector objects

…

//Send a single DataPacket to the server

Vector response = httpComm.send(dp);

//Send a vector of DataPackets to the server

Vector response = httpComm.send(vector);

3.2.4.8.3 Configuring Front End Properties

There are three Java .properties (configuration) files that are utilized by the MCA Services front-end

framework classes. These are:

BankframeFrontend.properties This file specifies the general

application parameters, such as

application name, loading method,

menu and main default panels to use
BankframeFrontendApplication.properties This file specifies which EPanels

(Financial Components) are to be

included in the application and how

they are ordered in the menu panel.
ApplicationImages.properties This file specifies which image files

are used in the application, and

assigns them a name with which they

can be accessed using the

ApplicationImages class in your

code.

3.2.4.8.3.1 BankFrameFrontEnd.properties

This file is placed in the same directory where all your class files are. (e.g. for WebLogic, this would be <

weblogic root>/classes/) It contains the following parameters that can be configured:

LOAD_DYNAMICALLY Load the application DYNAMICALLY (true) or

STATICALLY (false). Currently, this must be set to

Front End Framework ■ Applet/Application Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 83

false because dynamic loading is not currently

supported.
APPLICATION_NAME The name of your application.

DEFAULT_ROLE The default role of the use if no logon was

specified. Currently built-in support for role-based

access of Financial Components is not provided..
APPLICATION_BUILDER_REQUEST_ID Request ID of the application builder session bean.

Currently the dynamic application builder

components are not utilized.
NUMBER_MENUS True or false – Determines whether numbers will

appear on the menu tabs.
DEFAULT_PANEL The fully qualified Class name of the main panel

class you wish to use.
MENU_PANEL The fully qualified Class name of the menu panel

class you wish to use.

For sample values of this file, refer to the BankFrameFrontEnd.properties file that is used by the

sample application.

3.2.4.8.3.2 BankFrameFrontEndApplication.properties

This file is placed in the same directory where all your class files are. (e.g. for WebLogic, this would be

<weblogic root>/classes/) Each line in this file represents a set of configurable parameters for an

EPanel class (Financial Component). Values in a single line are separated by a semi-colon. There are nine

parameters that go on a line. They are:

N=APPLICATION_NAME A number set to the name of an application.

ROLE A user’s access role. This is not in use for this version of MCA

Services.
PROCESS_NAME A name given to the EPanel or process.

PROCESS_DESC A description of the functionality of this EPanel or process.

PANEL_DRIVER_CLASS Fully qualified package and class name for the implementation of this

EPanel class.

CATEGORY Name of the logical category that this panel driver will be placed

under. Category names appear on the tabs at the top of the menu

panel.
CATEGORY_ORDER A number representing the order in which the menu tabs appear. This

is also how these panels can be ‘hot-key’ accessed by numbers

using the keyboard.
MASTER_CATEGORY Name of a master category for a set of menu categories. This

parameter is not used in the default menu panel implementation, but

might be utilized by a menu implementation that incorporates a tree

Front End Framework ■ Applet/Application Front End Framework

84 ■ MCA Services Developer Guide Version 2004.5, Rev. A

structure.
PROCESS_ORDER A number representing the order in which the menu buttons appear

on a given tab. This is also how panels can be ‘hot-key’ accessed by

numbers using the keyboard.

A line in this file would look like the following:

1=SampApp;SAMPLE;Route;description;com.bankframe.examples.fe.ui.RouteEPane

l;route category;1;TestApp;1

For sample values of this file, refer to the BankFrameFrontEnd.properties file that is used by the

sample application.

3.2.4.8.3.3 ApplicationImages.properties

This file must be placed in an images sub-directory, beneath the directory that all the class files are in (e.g.

for WebLogic, this would be <weblogic root>/classes/images). This file contains lines that map one

key name to one image file. The image file will be listed as the path plus filename of the file you wish to use.

The key name is a string constant that will be used to identify that image in your application code. A line

would look like the following:
IMAGE_KEY=file_name.gif

e.g.
SMALL_SEARCH_BUTTON_ON=searchButtonOn.gif

For sample values of this file, refer to the BankFrameFrontEnd.properties file that is used by the

sample application.

3.2.5 Resources and Links

Tutorial on creating Java Swing applications:
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing1/shortcourse.h

tml

Tutorial (Part II) on creating Java Swing applications:
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing2/shortcourse.h

tml

Tutorial on using Layout Managers:
http://developer.java.sun.com/developer/onlineTraining/GUI/AWTLayoutMgr/shortco

urse.html

The Swing Home page on Sun’s main site:
http://java.sun.com/products/jfc/tsc/index.html

http://developer.java.sun.com/developer/onlineTraining/GUI/Swing1/shortcourse.html
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing1/shortcourse.html
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing2/shortcourse.html
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing2/shortcourse.html
http://developer.java.sun.com/developer/onlineTraining/GUI/AWTLayoutMgr/shortcourse.html
http://developer.java.sun.com/developer/onlineTraining/GUI/AWTLayoutMgr/shortcourse.html
http://java.sun.com/products/jfc/tsc/index.html

Front End Framework ■ Applet/Application Front End Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 85

Applets versus Applications
http://developer.java.sun.com/developer/technicalArticles/Programming/TurningAn

Applet/index.html

http://developer.java.sun.com/developer/technicalArticles/Programming/TurningAnApplet/index.html
http://developer.java.sun.com/developer/technicalArticles/Programming/TurningAnApplet/index.html

Channel Management ■ RMI and HTTP

86 ■ MCA Services Developer Guide Version 2004.5, Rev. A

4 Channel Management

4.1 RMI and HTTP

4.1.1 Introduction

The following is an introduction to MCA Services Channel Management concepts

4.1.1.1 DataPackets

Datapackets are the standard way in which any data is passed to, from and within MCA. Essentially

DataPackets are hashtables that use a simple key, object mapping. There are a number of standard key

names such as REQUEST_ID and DATA PACKET NAME that must be included in all DataPackets in order

for them to be processed by MCA.

All data that is passed between channel clients and MCA is encoded as a Vector of DataPackets. This

provides a standard format for all data used within MCA. All responses from MCA are also encoded as a

Vector of DataPackets. This helps provide a standard view of MCA to all Siebel clients regardless of their

type.

4.1.1.2 Channel Clients

A channel client is a class provided by MCA that is used by any fat client wishing to send data to, and

receive data from MCA. It deals with all communication issues involved in sending a request to MCA and

receiving the corresponding response. This ensures that the view provided by all channel clients to Siebel

clients is consistent. However the data sent by each channel client to MCA will depend entirely on the

network and network protocol over which the data is being sent. Therefore each channel client must be able

to accept requests in a standard format (DataPackets) and convert this to a channel (network) specific

format for transmission.

4.1.1.3 Channel Management

Channel Management is the means by which all clients communicate with MCA and thus to Financial

Components. MCA provides a variety of channel clients that communicate over a variety of protocols.

Requests can be comprised of multiple DataPackets. Most Siebel clients will use channel clients to

communicate with Siebel Retail Finance. These channel clients will in turn communicate with channel

servers that act as gateways to Financial Components. This means that Siebel clients will only ever deal

with a channel client. This level of abstraction prevents Siebel clients from needing to know or understand

the wire protocol over which they are communicating. However not all Siebel clients will need to use a

Channel client to communicate with MCA. The most common example of this is web browsers. Here

browsers will themselves send their request data in a HTTP Post/Get request. There is a mechanism

provided to handle this situation, which is detailed in a later section.

Channel Management ■ RMI and HTTP

MCA Services Developer Guide Version 2004.5, Rev. A ■ 87

4.1.1.4 Channel Servers

The main function of a channel server is to accept requests from a channel client, convert this request to a

DataPacket and pass the DataPacket to the RequestRouter. The channel server will also

appropriately encode the response from the Financial Component and return this to the calling channel

client. This means that for most channel clients there will be a corresponding specific channel server that will

understand the network specific format of the request and build a standard DataPacket request from this.

4.1.1.5 Codecs

Codecs are used to encode data that is sent between some channel clients and channel servers. Siebel

client requests consist of one or more DataPacket objects. However DataPacket objects usually need to

be converted to a specific form before they can be sent over a network connection. This is the job of the

codec. It will convert a DataPacket representation of a request to a format that can be sent over the

network. codecs must also be able to rebuild the original DataPacket request from the encoded request to

allow the channel server to process it.

4.1.1.6 Thin and Fat Clients

The com.bankframe.ei.channel.client package provides two mechanisms for passing

DataPackets over http connections, one to be used with thin clients, the other with fat clients.

4.1.1.6.1 Thin client

A client program, which relies on all of the function of the system being on the Server. Some examples of

thin clients include:

• HTML based clients, all processing is done on the server, and the client is the web-browser, which

is used to present information to the user.

• WAP based clients, all processing is done on the server, and the built-in WAP functionality in the

mobile phone is used to display information to the User.

Thin clients are implemented using a combination of Java Server Pages (JSPs), HTML and JavaScript. It

should be remembered that most thin clients will not need to use a channel client to talk to MCA

4.1.1.7 Fat Client

A client program, which relies on some of the function of the system being in the Client. Some examples of

fat clients include:

• A Java application installed on a user’s PC, the Java application contains functionality for

displaying information and accepting user input, however all of the business logic is on the Server.

• A Java Applet. This is similar to a Java application, the only difference is that the Applet is not

installed on the User’s PC, instead it is downloaded through the Web-Browser that runs the Applet.

Fat clients are implemented using Java and the Java Swing GUI toolkit

4.1.1.7.1 When to use Thin Clients

Channel Management ■ RMI and HTTP

88 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Thin clients are best used in the following scenarios:

• When the solution is accessed over the Internet, for example an online banking solution.

• When the cost of deploying fat clients would be too expensive, for example a large intranet project

that would have thousands of users.

• When the technology requires it, for example all WAP based solutions must use a thin client

architecture.

• When the network bandwidth is limited

4.1.1.7.2 When to use Fat Clients

Fat clients are best used in the following scenarios:

• On a corporate intranet, for example a teller application.

• When the solution needs a complex windowed graphical user interface, for example a call-center

solution.

• When business requirements specify that data validation should be part of the front-end.

4.1.2 Class Descriptions

4.1.2.1 Package: com.bankframe.ei.channel.client

This package contains the classes that are used by Siebel clients to communicate with MCA.

4.1.2.1.1 ChannelClient

All channel clients must implement this interface. It provides one method that all implementing classes must

override. This is the send(Vector) method. This allows Siebel clients to build DataPackets and call the

send method without needing to understand or worry about the underlying wire protocol and subsequent

encoding and decoding of data for that protocol.

4.1.2.1.2 ChannelClientFactory

This class uses the factory pattern to generate com.bankframe.channel.ChannelClient instances

based on properties set in the BankframeResource.properties file. The purpose of this is to remove

the need for code changes should a Siebel client wish to change the way (protocol) by which it transmits

data. By using this factory pattern all the Siebel client needs to do is change the values within the properties

file and the ChannelClientFactory will supply the appropriate class for the new transmission protocol.

The factory can also be configured to return the same instance of a ChannelClient, or a new instance each

time, by setting the enforce.singleton property in BankframeResource.properties. By default the

getChannelClient() method will lookup channel.client property key. However, another property key

can be specified through getChannelClient(String clientName).

4.1.2.1.3 HttpClient

Channel Management ■ RMI and HTTP

MCA Services Developer Guide Version 2004.5, Rev. A ■ 89

This is a client for transmitting DataPackets over any HTTP connection. Fat clients communicating over

HTTP should use this client. This client has a number of properties that must be set in the

BankframeResource.properties file. Settings include what codec class to use to encode and decode a

vector of DataPackets. The HttpClient can also add values from the first DataPacket as request properties to

the http connection. This is all configurable in the properties file. Users of this client should read the

Configuring and Administrating MCA Services document.

4.1.2.1.4 HttpsClient

This is a client for transmitting DataPackets over a secure HTTPS connection using SSL. Any application,

that requires the transfer of information over a secure connection to a server should use this client. Before a

secure connection can be made the client and server must have a truststore and also a keystore created.

The truststore contains trusted certificates and the keystore holds the public-private keys used in SSL. This

client has a number of properties that must be set in the BankframeResource.properties file. Users of this

client should read the properties file section later in the document.

4.1.2.1.5 RmiIiopClient

This class is used to call the RequestRouter directly using an RMI call. RequestRouter stub classes are

needed by the Siebel client when using this class.

4.1.2.2 Package: com.bankframe.ei.channel.server.

This package contains all the classes required to listen for and process incoming Siebel client requests.

Each class will deal with a single combination of transmission protocol (HTTP, RMI) and data (XML etc.)

format.

4.1.2.2.1 HttpServer

This is a servlet that listens for HTTP requests from any HttpClient. The server will decode the incoming

requests to DataPackets and pass them onto the relevant Financial Components. It will then take the

response and appropriately encode this response for transmission back to the HttpClient. Again it uses

settings in the BankframeResource.properties file to deduce the format of the request.

4.1.2.2.2 JspHttpServer

This is the class that processes requests that originate from JSPs. JSPs are generally used when user input

is from HTML forms etc. MCA provides a mechanism by which Siebel client developers can encode multiple

DataPackets within a single HTTP post request. The syntax of this is described in the following section.

The JSPHttpServer will process requests from the JSP bean class. It will interpret the form field names

and data to produce request DataPacket(s). The response received from the Financial Component is

returned to the JSP bean code, where it is handled in the handleResponse() method.

4.1.2.2.3 HttpBoomarangServer

Channel Management ■ RMI and HTTP

90 ■ MCA Services Developer Guide Version 2004.5, Rev. A

This is a test servlet that extends HttpServer. Rather than routing the vector of DataPackets found in the

request, it returns the vector as a response. It is useful for testing channel client and codec configuration.

The vector sent and the vector received by the client should be the same. The servlet can be used by setting

the channel.http.client.url property to the URL of the deployed servlet.

4.1.2.3 Package: com.bankframe.ei.channel.codec

This package contains classes that implement codecs (coders/decoders).

4.1.2.3.1 Codec

All codecs implement this interface. This defines the method signatures for sending and receiving

DataPackets. All codecs will turn a vector of DataPackets into a string representation.

4.1.2.3.2 DPTPCodec

DPTP stands for ‘DataPacket Transmission Protocol’. It is used for encoding character data. This codec

converts a Vector of DataPackets into a string representation. This representation uses an XML format,

however this is not a fully qualified XML representation as it doesn’t specify a DTD. It is however valid XML.

This XML therefore is only used between HttpClients and HttpServers.

4.1.2.3.3 JOTPCodec

JOTP stands for ‘Java Object Transmission Protocol’ and is used for encoding binary data. This

codec turns a DataPacket into a hexadecimal string representation. The advantage of using this codec is

that it can encode any java object as a string representation because it can represent any literal in a string

format. For example the DPTPCodec could not encode DataPackets that contain binary data (such as

integers, classes etc). In this instance the JOTPCodec should be used.

4.1.2.3.4 DPTPPaddingCodec

The DPTPPaddingCodec extends the DPTPCodec and it is used to wrap or pad out the special characters

used by DPTPCodec in encoding and decoding. The special characters are <, > and their corresponding

XML entity reference values < and >. If using DataPackets with XML elements as values, it may

be appropriate to use the DPTPPaddingCodec to ensure data integrity. This codec uses a padding string

defined by channel.codec.paddingstring property. If none is defined, it will default to ^.

4.1.2.4 com.bankframe.fe.jsp.BankframePage

All JSPs consist of two components: a java bean and a .jsp file. The java bean is used to store the

information that is either input by the user or displayed on the HTML page. The .jsp file transforms this

information into HTML.

The com.bankframe.fe.jsp.BankframePage class is the super-class that all java beans used with

JSPs are derived from.

The BankframePage class has the following methods:

Channel Management ■ RMI and HTTP

MCA Services Developer Guide Version 2004.5, Rev. A ■ 91

executeRequest() A JSP sends a request to a Financial Component by invoking the java

bean’s executeRequest() method.

handleResponse() Each java bean overrides this method in order to process the response

data returned from the Financial Component.
isError() This method can be invoked to check if the Financial Component returned

an error.
getErrorMessage() This message will return the error message if the Financial Component

returned an error.

4.1.3 Communicating over HTTP

MCA Services provides a channel client and channel server to send data over HTTP connections. It is

recommended that all data sent over HTTP connections should use these classes.

Currently the majority of requests that are made to Siebel are over HTTP connections. Channel

management provides a customizable method of sending data over HTTP connections known as DPTP

(DataPacket Transmission protocol). It sends a serializable string representation of DataPackets over

the HTTP connection. This is the most common way that fat Siebel clients will use to send and receive data

to and from Financial Components.

When using DPTP, a codec is specified to encode/decode the data over the wire. For each codec there is

an associated MIME type. For instance the MIME type application/x-eontec-datapacket-hex

corresponds to the JOTPCodec class. All MIME types to codec mappings are specified in the

BankframeResource.properties file, while there is a client setting to specify which MIME type the

HTTP channel client should use (and thus which codec to use). See the properties section for more

information on the HTTP client settings.

The HTTP server is an instance of the javax.servlet.http.HTTPServlet class that listens for HTTP

requests on a given port. It also uses the BankframeResource.properties file to determine all the

codecs that it should support. It reads the MIME type to codec mappings and creates Codec objects for

each specified mapping. Upon receiving a HTTP request it will read the content-type field from the HTTP

header information and use the mapping information to select the codec to decode the request data. It will

also use this mapping to encode the response to send back over the HTTP connection.

4.1.4 Thin clients using HTML forms

4.1.4.1 Introduction

A common way whereby clients send and receive data from MCA is through a web browser using HTML

forms. In this case there is no Siebel channel client, instead the web browser is the client. This is because

the browser will indirectly send the data to MCA.

This section shows how HTML forms should be written to allow data to be sent to MCA Services.

Communication with MCA is handled through JSPs, which encapsulate the request data (HTTP post

request) as a ServletRequest object. This object contains the data entered in the form along with the

name of each field of the form. When this object gets passed to MCA, MCA must retrieve all the field names

Channel Management ■ RMI and HTTP

92 ■ MCA Services Developer Guide Version 2004.5, Rev. A

along with the data entered for those fields and convert this data into one or more DataPackets. It is this

requirement that multiple DataPacket requests must be constructed from a single HTTP post request

which has led to the following HTML form syntax.

4.1.4.2 HTML Form Syntax

In order to send data from HTML forms to MCA Services, the names given to each field in the form must be

valid. This allows form designers to name fields in such a way to allow requests to be encoded as either

single or multiple DataPackets.

If data from a HTML form is to be converted to a single DataPacket request, then all form names must not

contain the square brackets ('[' or ']'). Other than this convention any other previously valid names are still

valid.

However if the data from a form should be converted into a multiple DataPacket request there are a

number of rules that must be adhered to. Failure to adhere to these rules will cause the request to fail and

the server to report an exception. The convention is that each field in the form must contain a number

identifying which request DataPacket the data from that field should be part of.

4.1.4.3 Syntax rules

ALL form fields (including hidden fields) must have a valid request packet number in their name if they are to

form a multiple DataPacket request. If the request is to be a single DataPacket request then no packet

numbers are needed.

• This number must be immediately preceded with '[' and immediate followed by ']'.

• No additional characters may follow the ']' character.

• All characters between '[' and ']' must be numeric

• The 'REQUEST_ID' and 'DATA PACKET NAME' fields must be followed with [0], i.e. they must be

contained in the first DataPacket of the request.

• There must be a sequential order for the packets numbers. I.e. if a field exists that has a packet

number 5, then there must exist a field with packet number 4.

It should be noted that all fields in the form will get encoded as HTTP parameters and the Server processing

them will process these HTTP parameters. However HTTP requests can also contain attributes. These can

be set in Java code, and may be set in some classes that extend the BankFramePage class. These

attributes should be named according to the above syntax. Failure to do this will result in these attributes

being ignored. However an exception will not be thrown for an incorrectly formatted attribute as happens for

incorrectly formatted parameters. This is because many application servers will introduce their own

attributes. This means that when processing attributes there is no way of distinguishing between a Siebel

attribute and an application server attribute, so incorrectly formatted attributes will be ignored to ensure that

an exception is not raised for a server attribute.

4.1.4.4 Examples

Valid fields includes
REQUEST_ID[0]

Channel Management ■ RMI and HTTP

MCA Services Developer Guide Version 2004.5, Rev. A ■ 93

DATA PACKET NAME[0]

ADDRESS1[3] - provided there exists a field with packet number 2

Invalid fields include

REQUEST_ID[3] – REQUEST_ID must be in packet number 0

DATA PACKET NAME[56] – must be in packet number 0

ADDRE[1]SS1 – ‘]’ is not at the end of the string

[1]ADDRESS1 – ‘]’ is not at the end of the string

ADDRESS1[3] – if there does not exist a field with packet number 2

ADDRESS1[c3] – packet number is not numeric

Sample valid form

<form method="post" action="jspservertest.jsp">

<table>

<tr>

<td>Field 1:</td>

<td><input type="text" name="FIELD1[1]"></td>

</tr>

<tr>

<td>Field 2:</td>

<td><input type="text" name="FIELD2[2]"></td>

</tr>

<tr>

<td>Field 3:</td>

<td><input type="text" name="FIELD3[1]"></td>

</tr>

</table>

<input type="hidden" name="REQUEST_ID[0]" value="MC999">

<input type="hidden" name="DATA PACKET NAME[0]" value="TEST">

<input type="submit" value="Submit">

</form>

Channel Management ■ RMI and HTTP

94 ■ MCA Services Developer Guide Version 2004.5, Rev. A

4.1.5 Configuring BankframeResource.properties

The channel management function of MCA adds some additional properties to the

BankframeResource.properties file. This is done to allow Siebel clients to specify which channel client

they are going to use without having to do so in code. The ChannelManagerFactory class will pick up

these properties and supply an appropriate channel client class based on these properties.

Some properties are generic to all channel clients, while some are specific to a given channel client. All the

generic properties are prefixed with the keyword channel only, while all specific properties are prefixed with

a prefix specific to that client. The default constructer of all clients should accept no parameters and read all

information needed to construct from the BankframeResource.properties file.

4.1.5.1 Codec mapping properties

These properties map MIME types to codec class names and are used by the HTTP client and server

classes. All mappings are prefixed with channel.http.codec.mapping and followed with the actual

mapping.

E.g. channel.http.codec.mapping.application/x-eontec-datapacket-

xml=com.bankframe.ei.channel.codec.DPTPCodec will map the codec class

DPTPCodec to the MIME type application/x-eontec-datapacket-xml.

By using these mappings, all the valid codecs that a Http server can support are not hard coded into MCA. It

is important to be aware that a HTTP channel property (channel.http.client.contentType) must

match one of the mappings specified in the BankframeResource.properties file.

4.1.5.2 Valid Properties

channel.client – The fully qualified class name of the channel client to be used. This allows the client

channel factory to supply instances of this class.

channel.http.client.url - This specifies the URL of the Http Server (Servlet URL) that the HTTP

client will connect to.

channel.http.client.contentType - A property specific to the Http client manager. This specifies the

MIME type of the encoding that the client will use.

• channel.http.codec.mapping.application/x-eontec-datapacket-

xml=com.bankframe.ei.channel.codec.DPTPCodec - A mapping property

• channel.http.codec.mapping.application/x-eontec-datapacket-

hex=com.bankframe.ei.channel.codec.JOTPCodec - A mapping property

4.1.5.3 Configuring the HttpsClient

The BankframeResource.properties file requires five changes in order to configure the HTTPS client

settings, as follows:
channel.client=com.bankframe.ei.channel.client.HttpsClient

channel.http.client.url=https://<URL of the HTTP server>

Channel Management ■ RMI and HTTP

MCA Services Developer Guide Version 2004.5, Rev. A ■ 95

channel.https.truststore=<path to truststore>

channel.https.keystore=<path to identity keystore>

channel.https.keystorePassword=<keystore password>

4.1.6 Developing custom channel clients and servers

If there is a channel that a Siebel client wishes to communicate over, but channel clients do not exist then

developers can write their own channel client and server classes to handle that particular channel.

If this new channel uses HTTP then the developer need only write a custom codec class that adheres to the

codec interface and edit the BankframeResource.properties file to include the new codec in the MIME

type to codec class name mappings to use this new codec.

If however the channel is not over HTTP then the developer should write a server class (possibly a servlet)

that can process incoming requests in the channel specific format. This means that the server will accept

requests in the channel specific format and convert this to a Vector of DataPackets that is forwarded to

the RequestRouter. The server must then read the response (in DataPackets) from the

RequestRouter and return this over the channel in the channel specific format.

The developer must also develop a channel client class that implements the

com.bankframe.ei.channel.client.ChannelClient interface that mandates that there must be a

send(Vector) method. The developer should write this method to take a Vector of DataPackets and

send it to the server encoded in the channel specific format, handling any channel specific communication

issues that may arise on the way. The aim is to make sending and receiving DataPackets transparent to

the Siebel client. This method should always return a Vector of DataPackets to the Siebel client even if

communication errors occur.

4.1.7 Examples

The following examples illustrate how both thin client and fat client solutions can communicate with MCA

over HTTP. For the sake of simplicity the following assumptions are made

There exists a Siebel Financial Component called eontec.bankframe.examples.CreditTransfer

The Financial Component is an implementation of a Credit Transfer.

The Financial Component is deployed on Route: EX330.

The Financial Component expects a request DataPacket with the following format as input:

KEY VALUE

DATA PACKET NAME CREDIT_TRANSFER

REQUEST_ID EX330

FROM_ACCOUNT A/C Number money comes from

TO_ACCOUNT A/C Number money goes to

AMOUNT Amount to transfer

Channel Management ■ RMI and HTTP

96 ■ MCA Services Developer Guide Version 2004.5, Rev. A

The Financial Component returns a Vector of DataPackets containing a single DataPacket with the

following format:

KEY VALUE

DATA PACKET NAME CREDIT_TRANSFER_RESPONSE

REQUEST_ID 00000

FROM_ACCOUNT A/C Number money came from

TO_ACCOUNT A/C Number money went to

AMOUNT Amount transferred

NEW_BALANCE New balance of a/c money was transferred

from

The following example illustrates how a HTML based solution communicates with MCA. Siebel HTML

solutions are built using Java Server Pages (JSPs) The following example illustrates a simple JSP that

submits some information to a Financial Component.

4.1.7.1 Thin client example

4.1.7.1.1 credittransfer.html
<html>

<head><title>Credit Transfer</title></head>

<body bgcolor="#ffffff">

<form method="post" action="credittransfer.jsp">

<table border="0" width="50%">

<tr><td>To Account:</td><td><input type="text" name="TO_ACCOUNT"

size="25"></td></tr>

<tr><td>From Account:</td><td><input type="text" name="FROM_ACCOUNT"

size="25"></td></tr>

<tr><td>Amount:</td><td><input type="text" name="AMOUNT"

size="25"></td></tr>

</table>

<input type="hidden" name="REQUEST_ID" value="EX330">

<input type="hidden" name="DATA PACKET NAME" value="CREDIT_TRANSFER">

<input type="submit" value="Submit">

</form>

</body>

Channel Management ■ RMI and HTTP

MCA Services Developer Guide Version 2004.5, Rev. A ■ 97

</html>

This HTML code will produce a form that looks like this:

4.1.7.1.2 credittransfer.html explanation

This is the HTML form used to submit the credit transfer information:

Note that the name of the input fields must match the name of the corresponding entry in the DataPacket.

This is a single DataPacket request so we do not use ‘[‘ or ‘]’.

The first hidden input field contains the REQUEST_ID value to put in the DataPacket.

The second hidden input field contains the name to give the DataPacket.

When the Submit button on the HTML form is pressed the form data will be submitted to a JSP called

credittransfer.jsp.

4.1.7.1.3 credittransfer.jsp

<%@ page

import="com.BankFrame.examples.credittransfer.jsp.CreditTransferPage" %>

<jsp:useBean id="creditTransferPage" scope="page"

class="com.BankFrame.examples.credittransfer.jsp.CreditTransferPage" />

<%= creditTransferPage.executeRequest(config,request,response) %>

<html>

<head><title>Credit Transfer Completed</title></head>

<body bgcolor="#ffffff">

<table border="0" width="50%">

<tr><td>To Account:</td><td><jsp:getProperty name="creditTransferPage"

property="toAccount" /></td></tr>

<tr><td>From Account:</td><td><jsp:getProperty name="creditTransferPage"

property="fromAccount" /></td></tr>

<tr><td>Amount:</td><td><jsp:getProperty name="creditTransferPage"

property="amount" /></td></tr>

<tr><td>New Balance:</td><td><jsp:getProperty name="creditTransferPage"

property="newBalance" /></td></tr>

</table>

Channel Management ■ RMI and HTTP

98 ■ MCA Services Developer Guide Version 2004.5, Rev. A

</body>

</html>

4.1.7.1.4 credittransfer.jsp Code Explanation

credittransfer.jsp carries out the following steps:

• Imports a java bean called
com.BankFrame.examples.credittransfer.jsp.CreditTransferPage

• Creates an instance of this java bean called creditTransferPage

• Invokes the creditTransferPage.executeRequest() method to send the data from the

HTML form to MCA.

• When the executeRequest() method is invoked, the HTML Form data is translated into a

DataPacket and the DataPacket is passed to the Financial Component specified by the

REQUEST_ID in the DataPacket. The response data from the Financial Component is returned to

the CreditTransferPage java bean. The CreditTransferPage java bean parses and caches

the response data.

• The JSP uses the <jsp:getProperty/> tags to retrieve the response data cached in the

CreditTransferPage java bean.

• credittransfer.jsp is parsed by the JSP Engine to produce the HTML output. The output

HTML will look something like this:

4.1.7.1.5 CreditTransferPage
package com.BankFrame.examples.credittransfer.jsp;

import java.util.Vector;

import com.BankFrame.bo.DataPacket;

import com.BankFrame.fe.jsp.BankFramePage;

public class CreditTransferPage extends BankFramePage {

private String fromAccount = null;

private String toAccount = null;

private String amount = null ;

private String newBalance = null;

Channel Management ■ RMI and HTTP

MCA Services Developer Guide Version 2004.5, Rev. A ■ 99

public CreditTransferPage() {}

public String getFromAccount() { return this.fromAccount; }

public String getToAccount() { return this.toAccount; }

public String getAmount() { return this.amount;}

public String getNewBalance() { return this.newBalance; }

public void setFromAccount(String fromAccount) { this.fromAccount =

fromAccount; }

public void setToAccount(String toAccount) {this.toAccount = toAccount;

}

public void setAmount(String amount) {this.amount = amount; }

public void setNewBalance(String newBalance) {this.newBalance =

newBalance; }

public void handleResponse(Vector DataPackets) {

super.handleResponse(DataPackets);

if (this.isError() == false) {

DataPacket dp = (DataPacket)DataPackets.elementAt(0);

this.fromAccount = dp.getString("FROM_ACCOUNT");

this.toAccount = dp.getString("TO_ACCOUNT");

this.amount = dp.getString("AMOUNT");

this.newBalance = dp.getString("NEW_BALANCE");

}

}

}

4.1.7.1.6 CreditTransferPage Code Explanation

This java bean enables the JSP and the Financial Component to communicate. The bean has four

attributes: toAccount, fromAccount, amount and newBalance. The first three represent information

input by the user and the final attribute represents data returned from the Financial Component.

The bean is derived from the com.BankFrame.fe.jsp.BankFramePage class. This means the bean

inherits BankFramePage's executeRequest() method.

Channel Management ■ RMI and HTTP

100 ■ MCA Services Developer Guide Version 2004.5, Rev. A

The JSP invokes the bean's executeRequest() method to send the data to the Financial Component.

When the Financial Component has completed processing the bean's handleResponse() method will be

invoked. This enables the bean to process the data returned from the Financial Component. In this case it

stores the toAccount, fromAccount, amount, and newBalance values returned by the Financial

Component. The JSP then uses the <jsp:getProperty/> tags to retrieve these values from the bean.

4.1.7.2 Fat client example

The following example illustrates a console based Client application that communicates with MCA over

HTTP. The application expects the following command line parameters:

to - A/C number to transfer money to

from - A/C number to transfer money from

amount - Amount of money to transfer

4.1.7.2.1 Code
package com.BankFrame.examples.credittransfer;

import java.util.Vector;

import com.BankFrame.bo.DataPacket;

import com.BankFrame.ei.comms.EHTTPCommsManager;

public class Client {

private String toAccount;

private String fromAccount;

private String amount;

public Client() {}

public void init(String[] args) {

for (int i = 0 ; i < args.length ; ++i) {

if (args[i].equals("-to")) {

this.toAccount = args[++i];

}

if (args[i].equals("-from")) {

Channel Management ■ RMI and HTTP

MCA Services Developer Guide Version 2004.5, Rev. A ■ 101

this.fromAccount = args[++i];

}

if (args[i].equals("-amount")) {

this.amount = args[++i];

}

}

}

public void doCreditTransfer() {

try {

HttpClient client = new HttpClient();

DataPacket dp = new DataPacket("CREDIT TRANSFER");

dp.put(DataPacket.REQUEST_ID,"EX330");

dp.put("TO_ACCOUNT",this.toAccount);

dp.put("FROM_ACCOUNT",this.fromAccount);

dp.put("AMOUNT",this.amount);

Vector responses = client.send(dp);

dp = (DataPacket)responses.elementAt(0);

System.out.println("Transferred: " + dp.getString("AMOUNT") +

" from a/c: " + dp.getString("FROM_ACCOUNT") +

" to a/c: " + dp.getString("TO_ACCOUNT") +

" new balance: " + dp.getString("NEW_BALANCE"));

} catch (Exception e) {

System.out.println("An exception occurred: " + ex.toString());

}

}

public static void main(String[] args) {

Client client = new Client();

client.init(args);

Channel Management ■ XML B2B

102 ■ MCA Services Developer Guide Version 2004.5, Rev. A

client.doCreditTransfer();

}

}

4.1.7.2.2 Code Explanation

The above code carries out the following actions:

• Parses the command-line flags, this is done in the init() method

• Sends a DataPacket to the Financial Component, with the credit transfer details

• Parses the response returned from the Financial Component and displays the results

The doCreditTransfer() method does the following:

• Creates a HttpClient instance. This is the channel client used to communicate with MCA. The

HttpClient instance is initialized with no parameters. This indicates that the channel specific

properties from the BankframeResource.properties file should be read to initialize

parameters.

• Creates a DataPacket with the information expected by the

eontec.bankframe.CreditTransfer Financial Component.

• Uses the HttpClient.send() method to send the DataPacket to MCA

• Parses the information returned from the Financial Component and displays this information

4.2 XML B2B

4.2.1 Introduction

The XML/XSL support in MCA Services uses DPTP (DataPacket Transmission Protocol) XML format.

MCA provides three different options for communicating with Financial Components via XML. These options

are:

- A custom XML parser that supports the parsing of DPTP only. This parser is optimized for speed

but requires that all input be formatted correctly. This option is the best choice when performance is

of paramount importance and the client is able to generate correctly formatted DPTP XML.

- A DPTP parser that uses the JAXP parser to parse the XML. This parser is not as fast as the first

option but is more robust in handling incorrectly formatted XML. This option is a good choice for

use during the development phase of a project as the JAXP parser will provide detailed error

messages about any formatting issues with the incoming data.

- An XSL parser that uses XSL to transform an incoming request from an arbitrary XML format into

DPTP XML. This option is the best choice when the client is not able to generate DPTP XML, it

provides the most flexibility in the types of XML that can be processed. However the XSL transform

requires a certain amount of overhead so this option will not be able to deliver the same levels of

performance as the other two options.

These three options are implemented by a number of different codec classes described below:

Channel Management ■ XML B2B

MCA Services Developer Guide Version 2004.5, Rev. A ■ 103

4.2.1.1 Package: com.bankframe.ei.channel.codec

4.2.1.1.1 XMLDOMCodec

This is an abstract class that serves as a base class for codecs that use JAXP to encode XML data. This

class provides methods for transforming String data to an XML DOM object and vice versa.

4.2.1.1.2 DPTPDOMCodec

This codec is similar to DPTPCodec in that it encodes XML data encoded in DPTP format, however it uses

JAXP to parse the XML data. This provides more robust error handling at the expense of slower

performance.

4.2.1.1.3 XMLXSLCodec

This is an abstract class which sub-classes DPTPDOMCodec. This class serves as a base class for codecs

that use XSL to transform arbitrary XML into DPTP XML The incoming XML is parsed into a DOM tree, the

transformation is applied to transform this DOM tree into DPTP XML and then the transformed data is

parsed by the DPTPDOMCodec. On the return trip the reverse process is applied.

4.2.2 Package: com.bankframe.ei.xml

The codec classes defined above rely on the classes defined in the com.bankframe.ei.xml package to

carry out processing of XML streams.

4.2.2.1.1 com.bankframe.ei.xml.EDocumentBuilder

This class is used to build an XML Document from an XML InputSource, the resulting Document can be

XML of any type. The parse method in the EDocumentBuilder class is used to create XML Document

objects. The EDocumentBuilder class also provides a newDocument() method to create an empty XML

Document object, as well as methods that will let you determine the properties of the underlying XML parser

being used.

The default implementation of the EDocumentBuilder class utilizes the Java API for XML Processing

(JAXP), version 1.1 released by Sun. Therefore, the underlying XML parser that you wish the

EDocumentBuilder to use can be specified using Java environment variables as described in the JAXP

specification.

4.2.2.1.2 com.bankframe.ei.xml.EDocumentBuilderFactory

This class is used to obtain an instance of an EDocumentBuilder. The current release of MCA uses only

the default implementation of an EDocumentBuilder, which is described above.

4.2.2.1.3 com.bankframe.ei.xml.XMLTransformer

This class is used to transform an XML Document object from one XML format to another. In most cases,

this class will be used to transform non-Siebel XML Documents into Siebel XML Documents, or to

Channel Management ■ XML B2B

104 ■ MCA Services Developer Guide Version 2004.5, Rev. A

transform Siebel XML Documents into non-Siebel XML Documents. The XMLTransformer class provides

a transform(Document, Document, String) method that will accept a source XML Document, a

result XML Document and the URL of the style sheet to carry out the transformation. The default

implementation of the XMLTransformer utilizes the Java API for XML Processing, version 1.1 released by

Sun. It transforms Documents using a user-defined XSL style sheet. Since the Siebel XMLTransformer

utilizes JAXP, the underlying XML processor that you wish to use can be specified in Java environment

variables, as noted in the JAXP specification.

4.2.2.1.4 com.bankframe.ei.xml.XMLErrorHandler

This class is used to report errors encountered during the processing of XML streams. This class redirects

the error messages produced by the underlying JAXP parser to the BankFrame logging framework.

4.2.2.2 Mapping XML Requests to Financial Components

There are two scenarios to consider when MCA handles a request to a Financial Component in XML format:

4.2.2.2.1 XML Transactions In Siebel Format

The first scenario is when a client (typically some third party B2B application) sends a request that adheres

to the Siebel XML format. Therefore the client sends an XML request encoded in the DPTP XML format.

The client also expects a response from MCA in the same format. In this instance, the Siebel XML Channel

Manager does not require any extra configuration. Since the client will be using the MCA XML format, the

request will be automatically converted into a Vector of DataPackets and passed through the

RequestRouter to the appropriate Financial Component. The Vector of DataPackets response from

the Financial Component will automatically be re-formatted into a Siebel XML Document and sent back to

the client.

Channel Management ■ XML B2B

MCA Services Developer Guide Version 2004.5, Rev. A ■ 105

4.2.2.2.2 XML Transactions in Non-Siebel Format

In the second scenario, the client will be sending MCA a request that is in an arbitrary XML format (i.e.

FpXML, cXML, fooXML etc.) In this instance, incoming requests must first be transformed into the Siebel

XML format so that it can be parsed into a Vector of DataPackets for processing. In order to accomplish

this, the developer must determine a correspondence between the client XML transaction types, and Siebel

Financial Components. It is assumed that it will be possible to find a mapping pattern between the client

XML format and Siebel Financial Components. Once these mappings are defined, the developer is

responsible for writing an XSL style sheet that transforms the incoming XML Document into a Siebel XML

Document

After the request is processed, the Vector of DataPackets returned by the Financial Component must be

re-formatted back into an XML format that the client expects. Once again, this is accomplished by defining

an XSL stylesheet to transform the Siebel XML format into the client’s XML format. Note that you will

generally write two separate XSL stylesheets for each mapping. One stylesheet to transform incoming

requests into Siebel XML format, and one stylesheet to transform outgoing responses back into the client

XML format. The entire process is represented in the following diagram:

Channel Management ■ XML B2B

106 ■ MCA Services Developer Guide Version 2004.5, Rev. A

The name of the XSL stylesheets to be used in the transformation is defined by sub-classing the

XMLXSLCodec class and defining the content types that the sub-class handles (It is assumed that each

different XML encoding will have a different MIME content type). These content types are then mapped to

the URL of an XSL file via settings defined in the BankFrameResource.properties file.

4.2.3 Configuring BankframeResource.properties

4.2.3.1 XML Properties

xml.eDocBuilder.syste

mId

Specify a default location for DTD files of incoming XML Documents.

(This is used as a back-up if the DTD is not specified with a full URL

in incoming XML Documents)

E.g.
http://localhost/dtd

So, if an incoming XML doc specifies its DTD with a line

SYSTEM “fooXML.dtd”, the parser will look for this file at the

location specified by the systemId property. If the incoming XML

doc specifies its DTD with a line SYSTEM

http://www.siebel.com/xml/dtd/fooXML.dtd then the

systemId property is ignored.

xml.parser.validating Specify whether the underlying XML parser used should be

validating or non-validating. Can be: true or false

http://localhost/dtd

Channel Management ■ XML B2B

MCA Services Developer Guide Version 2004.5, Rev. A ■ 107

xml.parser.ignoreComm

ents

Specify whether the underlying XML parser should ignore comments

or not. Can be: true or false

xml.parser.ignoreElem

entContentWhiteSpace

Specify whether the underlying XML parser should ignore white

space or not. Can be: true or false

xml.parser.nameSpaceA

ware

Specify whether the underlying XML parser is namespace aware or

not. Can be: true or false

4.2.3.2 XSL Properties

For each XML request/response that is processed by applying an XSL transformation a mapping must

be defined to associate the MIME content-type of the request/response with the appropriate XSL

style-sheet to apply. For example:
channel.http.xml.xsl.request.content-type.application/x-foo-request-

xml=http://localhost/eontec/mca/stylesheets/foo-xml-request.xsl

channel.http.xml.xsl.response.content-type.application/x-foo-response-

xml=http://localhost/eontec/mca/stylesheets/foo-xml-response.xsl

The settings above specify that for requests of type: application/x-foo-request-xml the style-

sheet located at: http://localhost/eontec/mca/stylesheets/foo-xml-request.xsl

should be applied to the incoming request.

Similarly for responses of type: application/x-foo-response-xml the style-sheet located at:

http://localhost/eontec/mca/stylesheets/foo-xml-response.xsl should be applied to

the outgoing response.

4.2.4 Developing Custom XML/XSL Codecs

4.2.4.1 Custom XML Codecs

Codecs that must manipulate an XML stream can sub-class the XMLDOMCodec class which provides

methods for marshalling String data to DOM trees and vice versa.

4.2.4.2 Custom XSL Codecs

Codecs that must use XSL to transform XML into DPTP format can sub-class the XMLXSLCodec class. The

sub-class need only specify the content-type of the incoming request and outgoing response. Once this

is done and the relevant BankframeResource.properties settings (see above) are configured this

class will apply the appropriate XSL style-sheet to the incoming request and the outgoing response.

http://localhost/eontec/mca/stylesheets/foo-xml-request.xsl
http://localhost/eontec/mca/stylesheets/foo-xml-response.xsl

Channel Management ■ XML B2B

108 ■ MCA Services Developer Guide Version 2004.5, Rev. A

4.2.5 The DPTPCodec transmission format

The DPTPCodec marshals Vectors of DataPackets to and from an XML based String representation. The

XML format used is very simple and very compact, in order to keep the request and response message

sizes as small as possible. The DPTPCodec parses the XML directly, it does not rely on third-party XML

parsers such as Xerces or JAXP. This ensures that the DPTPCodec marshals data very quickly, but also

requires that the XML data is formatted exactly as described below. The XML data is not validated before

parsing so it is essential that the data is well formed.

4.2.5.1 Sample request file

The example below shows how the CREDIT_TRANSFER request described in the previous example would

be encoded:
<?xml version="1.0"?>

<v n="r">

<d n="CREDIT_TRANSFER">

Siebel Ltd

1400.00

11236745

11246890

EX330

</d>

</v>

o The file starts with the standard XML processing instruction

o Vectors are denoted by the <v> element, every request will have a containing Vector,

this Vector is given the name “r” (denoting root element) by convention

o DataPackets are denoted by the <d> element, each DataPacket has a name which is

defined by the ‘n’ (name) attribute.

o DataPacket attributes are denoted by the <a> element. Each attribute has a name

defined by the ‘n’ attribute. The value of the attribute is given between the enclosing <a>

and tags.

o The XML element and attribute tags are kept short to ensure the message size is as small

as possible.

o The DPTPCodec strips all unnecessary white-space between elements for the same

reason. Carriage returns and indentation have been added to the example above for

clarity. The actual request would look like this:

Channel Management ■ XML B2B

MCA Services Developer Guide Version 2004.5, Rev. A ■ 109

<?xml version="1.0"?><v n="r"><d n="CREDIT_TRANSFER">Siebel

Ltd1400.001123674511246890EX330</d></v>

4.2.5.2 XML Format Description

o The Document must commence with an XML processing instruction

o The root element must a have a Vector element (<v>)

o All <v> elements must have a name attribute (n)

o The root Vector element’s name is always: r

o The root Vector element can contain one or more DataPacket (<d>) elements.

o Each DataPacket element must have a name (n) attribute.

o Each DataPacket element can contain one or more DataPacket attribute (<a>)

elements.

o Each DataPacket attribute element must have a name (n) attribute.

o The DataPacket attribute’s value is located between the <a> and tags.

4.2.6 XML/XSL Examples

This example assumes the reader is familiar with XSL and the DPTP XML format. This example builds on

the example used to explain how the channel management framework works.

This example assumes that an XML stream encoded in the third-party foo-corp-xml format must be

transformed to and from DPTP XML format so that it can be processed by a Siebel Financial component.

The XML contains a credit transfer request which must be processed by a Siebel Financial component.

Below is the input XML:

4.2.6.1 Input XML
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE foo-corp-xml SYSTEM "foo-corp-xml.dtd">

<foo-corp-xml>

<payment type="credit-transfer">

<source-account>1234567890</source-account>

<destination-account>1111222245</destination-account>

<amount currency="EUR">1200.00</amount>

<narrative>J Bloggs</narrative>

</payment>

</foo-corp-xml>

Channel Management ■ XML B2B

110 ■ MCA Services Developer Guide Version 2004.5, Rev. A

The data in this request must be converted to DataPackets of information so that they can be passed to a

Siebel Financial Component which expects data as described in the previous example.

The sender of the above request must ensure that the content-type header field in the HTTP request is

set to the correct MIME type for the XML format. MCA uses the content-type field to determine the

appropriate codec to use to decode the XML

4.2.6.2 XSL Style-sheet

We must define an XSL style-sheet to transform the foo-corp-xml request into a DPTP request. Below is a

style-sheet which does this:
<?xml version="1.0" encoding="UTF-8"?>

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0"

xmlns:xalan="http://xml.apache.org/xslt">

<xsl:template match ="/">

<xsl:call-template name="payment-template"/>

</xsl:template>

<xsl:template name="payment-template">

<v n="r">

<xsl:for-each select="//payment">

<d n="CREDIT_TRANSFER">

EX330

<xsl:value-of select="source-

account"/>

<xsl:value-of

select="destination-account"/>

<xsl:value-of select="amount"/>

</d>

</xsl:for-each>

</v>

</xsl:template>

</xsl:transform>

Note that this style-sheet supplies the DataPacket name and REQUEST_ID which is essential for routing

the request to the correct Financial Component.

Channel Management ■ XML B2B

MCA Services Developer Guide Version 2004.5, Rev. A ■ 111

4.2.6.3 XSL Codec

Now we must define a codec that is capable of applying the above XSL to the incoming request. Below is

the code for this codec:
package com.bankframe.examples.channel.xmlxsl;

import com.bankframe.ei.channel.codec.XMLXSLCodec;

public class FooXmlXslCodec extends XMLXSLCodec {

public static final String REQUEST_CONTENT_TYPE="application/x-foo-

request-xml";

public static final String RESPONSE_CONTENT_TYPE="application/x-foo-

response-xml";

public FooXmlXslCodec() {

super(REQUEST_CONTENT_TYPE,RESPONSE_CONTENT_TYPE);

}

public String getName() {

return this.getClass().getName();

}

}

4.2.6.4 XSL Codec Code Explanation

This class sub-classes com.bankframe.ei.channel.codec.XMLXSLCodec. XMLXSLCodec provides all

the functionality required for applying an XSL transformation to incoming requests and outgoing responses.

All that the FooXmlXslCodec class needs to do is define the content-types of the incoming and

outgoing requests. XMLXSLCodec uses the content-type to determine the XSL file to apply for the

specified request or response.

4.2.6.5 Configuring BankframeResource.properties

To enable XMLXSLCodec to determine which XSL file to apply to the request and response the following

properties must be added to BankframeResource.properties:

channel.http.xml.xsl.request.content-type.application/x-foo-request-

xml=http://localhost/eontec/mca/stylesheets/foo-request.xsl

channel.http.xml.xsl.response.content-type.application/x-foo-response-

xml=http://localhost/eontec/mca/stylesheets/foo-response.xsl

These settings assume that the appropriate style-sheets are located in
http://localhost/eontec/mca/stylesheets/

http://localhost/eontec/mca/stylesheets/

Channel Management ■ XML B2B

112 ■ MCA Services Developer Guide Version 2004.5, Rev. A

4.2.7 Links and Resources

4.2.7.1 Sun XML Resources

http://java.sun.com/xml/white-papers.html XML White Papers

http://java.sun.com/xml/ Sun XML Technology Home Page

http://java.sun.com/xml/jaxp-1_1-spec.pdf Java API for XML Processing (JAXP) Specification 1.1

http://java.sun.com/xml/resources.html Java and XML Resources

http://java.sun.com/xml/faq.html Java and XML FAQ

4.2.7.2 Apache XML Resources

http://xml.apache.org/ Apache XML Home Page

http://xml.apache.org/xerces-j/index.html Xerces XML Parser for Java

http://xml.apache.org/xalan-j/index.html Xalan XSL Processor for Java

http://xml.apache.org/soap/index.html Apache SOAP Implementation

http://xml.apache.org/crimson/index.html Apache/Sun Crimson Parser for Java

http://xml.apache.org/dist/ Apache XML Downloads

4.2.7.3 IBM XML Resources

http://www-105.ibm.com/developerworks/papers.nsf/dw/xml-papers-bytopic?OpenDocument&Count=500

XML Library

http://www-106.ibm.com/developerworks/xml/ IBM Developer Works XML Home

http://www-106.ibm.com/developerworks/xml/library/x-abstract/?dwzone=x Building Front Ends with XML

and XSL

http://www.alphaworks.ibm.com/ IBM Alphaworks (Tools for XML)

4.2.7.4 W3C XML Documentation

http://www.w3c.org/ W3C Home

http://www.w3.org/TR/xslt XSL Specification

http://www.w3.org/XML/ XML Information

http://www.w3.org/DOM/ Document Object Model (DOM) Specification

4.2.7.5 Other

http://www.ucc.ie/xml/ XML FAQ

http://www.oasis-open.org/cover/ SGML/XML Web Page (Oasis)

http://www.cxml.org/ cXML (Commerce XML)

http://www.megginson.com/SAX/index.html SAX API (Megginson)

http://www.xml.org/index.shtml XML Resource Site

http://www.oasis-open.org/cover/xsl.html XML Cover Pages – XSL

http://www.ifxforum.org/ International Financial Exchange Forum (IFX)

http://www.w3schools.com/xhtml/xhtml_reference.asp XHTML Reference

http://java.sun.com/xml/white-papers.html
http://java.sun.com/xml/
http://java.sun.com/xml/jaxp-1_1-spec.pdf
http://java.sun.com/xml/resources.html
http://java.sun.com/xml/faq.html
http://xml.apache.org/
http://xml.apache.org/xerces-j/index.html
http://xml.apache.org/xalan-j/index.html
http://xml.apache.org/soap/index.html
http://xml.apache.org/crimson/index.html
http://xml.apache.org/dist/
http://www-105.ibm.com/developerworks/papers.nsf/dw/xml-papers-bytopic?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/xml/
http://www-106.ibm.com/developerworks/xml/library/x-abstract/?dwzone=x
http://www.alphaworks.ibm.com/
http://www.w3c.org/
http://www.w3.org/TR/xslt
http://www.w3.org/XML/
http://www.w3.org/DOM/
http://www.ucc.ie/xml/
http://www.oasis-open.org/cover/
http://www.cxml.org/
http://www.megginson.com/SAX/index.html
http://www.xml.org/index.shtml
http://www.oasis-open.org/cover/xsl.html
http://www.ifxforum.org/
http://www.w3schools.com/xhtml/xhtml_reference.asp

Channel Management ■ Web Services

MCA Services Developer Guide Version 2004.5, Rev. A ■ 113

http://www.w3schools.com/default.asp General XML Reference Links

http://www.xml.com/ XML Developer Portal

http://www.xml-zone.com/default1.asp?Area=XML Another XML Developer Portal

4.3 Web Services

4.3.1 Introduction

A Web service is any piece of software that makes itself available over the Internet and communicates with

clients using a standardized XML messaging.

XML is used to encode all requests to a Web service. All responses from a Web service will similarly be

encoded in XML. Because all requests and responses are in XML Web services are not tied down to any

single platform or operating system.

This document is a guide to using the Web services provided by MCA Services. It is not a tutorial on Web

services. There is a research pack available from Siebel Engineering that gives a more in-depth overview of

Web services. This will give the reader a good insight into the Web services architecture.

4.3.2 MCA Services Web services

4.3.2.1 Description

MCA services exposes the Request Router session bean as a Web service. This means that any request

that is currently processed by the Request Router can be invoked via this Web service. The Request Router

contains a processDataPackets(Vector dataPackets) method which allows any DataPacket

request to reach any given EJB listed in the Routes database table. The Web service allows this method to

be invoked on the RequestRouter. The Web service allows the processDataPacket method of the

RequestRouter EJB to be invoked by any client regardless of the programming language the client is

written in or operating system that it is run from.

4.3.2.2 Implementation

MCA Services provides a WSDL description of the Request Router Web service. This description describes

the location of the Web service and how a client can interact with it. The WebLogic WSDL is shown below:

<definitions

targetNamespace="java:com.bankframe.services.requestrouter.webservice"

xmlns:tns="java:com.bankframe.services.requestrouter.webservice"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

http://www.w3schools.com/default.asp
http://www.xml.com/
http://www.xml-zone.com/default1.asp?Area=XML

Channel Management ■ Web Services

114 ■ MCA Services Developer Guide Version 2004.5, Rev. A

xmlns:xsd="http://www.w3.org/1999/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

>

<types>

<schema

targetNamespace='java:com.bankframe.services.requestrouter.webservice'

xmlns='http://www.w3.org/1999/XMLSchema'>

</schema>

</types>

<message name="processDataPacketsRequest">

<part name="arg0" type="xsd:string" />

</message>

<message name="processDataPacketsResponse">

<part name="return" type="xsd:string" />

</message>

<portType name="WebserviceRequestRouterPortType">

<operation name="processDataPackets">

<input message="tns:processDataPacketsRequest"/>

<output message="tns:processDataPacketsResponse"/>

</operation>

</portType>

<binding name="WebserviceRequestRouterBinding"

type="tns:WebserviceRequestRouterPortType"><soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="processDataPackets">

<soap:operation soapAction="urn:processDataPackets"/>

<input><soap:body use="encoded" namespace='urn:WebserviceRequestRouter'

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/></input>

<output><soap:body use="encoded" namespace='urn:WebserviceRequestRouter'

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/></output>

</operation>

</binding>

Channel Management ■ Web Services

MCA Services Developer Guide Version 2004.5, Rev. A ■ 115

<service

name="WebserviceRequestRouter"><documentation>todo</documentation><port

name="WebserviceRequestRouterPort"

binding="tns:WebserviceRequestRouterBinding"><soap:address

location="http://localhost:7001/BankFrameMCA/WebServices/RequestRouter"/><

/port></service></definitions>

The <service> tag in the WSDL defines the Web service. The sub-tag <port> defines where to find the

Web service and the operations (methods) supported. In this WSDL we can see the port is called

WebserviceRequestRouterPort. It has one operation called processDataPackets which itself

declares its input and output message. These are defined earlier in the WSDL. The second sub-tag is the

<soap:address> tag which defines the actual location of the Web Service. In this case the Web service

can be invoked by sending a SOAP request adhering to the definitions provided in the WSDL to

http://localhost:7001/BankFrameMCA/WebServices/RequestRouter.

The data types that can be defined in the WSDL must be SOAP data types. SOAP data types map to

primitive java data types such as long, double, float, string, but not to object data types such a

DataPacket, Vector, etc. So in the example WSDL we can see that both messages are defined with a

single part type. The part says that the argument to the message is of type xsd:String. When using

WSDL all the arguments to operations that are declared must be a valid SOAP data type. This means that

DataPackets which are used internally throughout MCA Services and by the Request Routers

processDataPacket() method cannot be used as an input to or an output from the Web service.

Because of this limitation all requests to the Request Router Web service must be represented in XML. This

means that a DataPacket or a Vector of DataPackets request must first be mapped to XML before it

can be invoked using the Web service. To do this the com.bankframe.ei.channel.codec.DPTPCodec

should be used. If the client is not a Java client or does not have this codec class, then they should ensure

that the requests that they submit are correctly encoded. There is a later section describing the format of the

XML produced by the DPTPCodec. This codec will convert a Vector of DataPackets to an XML string.

This string can then be used as the request parameter to the Web service’s processDataPackets

method.

4.3.3 Web Services Application Servers

The MCA Services RequestRouter service provides access to all Siebel Retail Finance Financial

Components. The RequestRouter can be deployed as a web service, effectively web enabling all the

underlying services. For more details on how to do this please consult your application server vendor’s

documentation.

http://localhost:7001/BankFrameMCA/WebServices/RequestRouter

Channel Management ■ Web Services

116 ■ MCA Services Developer Guide Version 2004.5, Rev. A

4.3.4 Class Descriptions

4.3.4.1 Package com.bankframe.services.requestrouter.webservice

This package defines a session bean that talks to the Request Router EJB. This session will map the

incoming XML request to a Vector of DataPacket(s) before forwarding the DataPacket(s) to the

Request Router.

4.3.4.1.1 Class WebserviceRequestRouterBean

This class contains a single method with the following signature:
public String processDataPackets(String request) throws

ProcessingErrorException, RemoteException

This method takes a String as a parameter and uses the DPTPCodec to convert it to a Vector of

DataPackets. It then calls the RequestRouterUtils.processDataPackets(Vector

dataPackets) which passes the generated DataPacket(s) to the Request Router EJB which then

processes them. When a response from the Request Router is received it converts it back to an XML string

using the codec and returns this XML.

4.3.4.2 Package com.bankframe.ei.channel.codec

This package contains codecs that are used in MCA Services. The WebserviceRequestRouter session

bean that that Web service is built on uses the DPTPCodec. An explanation of the codec and its usage

follows.

4.3.4.2.1 Class DPTPCodec

The DPTPCodec marshals Vectors of DataPackets to and from an XML based String representation. The

XML format used is very simple and very compact, in order to keep the request and response message

sizes as small as possible. The DPTPCodec parses the XML directly, it does not rely on third-party XML

parsers such as Xerces or JAXP. This ensures that the DPTPCodec marshals data very quickly, but also

requires that the XML data is formatted exactly as described below. The XML data is not validated before

parsing so it is essential that the data is well formed.

4.3.4.2.1.1 Sample request file

The example below shows how a sample credit transfer request might be encoded using the DPTP codec:
<?xml version="1.0"?>

<v n="r">

<d n="CREDIT_TRANSFER">

eontec Ltd

1400.00

Channel Management ■ Session Affinity

MCA Services Developer Guide Version 2004.5, Rev. A ■ 117

11236745

11246890

EX330

</d>

</v>

- The file starts with the standard XML processing instruction

- Vectors are denoted by the <v> element, every request will have a containing Vector, this

Vector is given the name “r” (denoting root element) by convention

- DataPackets are denoted by the <d> element, each DataPacket has a name which is defined

by the ‘n’ (name) attribute.

- DataPacket attributes are denoted by the <a> element. Each attribute has a name defined by the

‘n’ attribute. The value of the attribute is given between the enclosing <a> and tags.

- The XML element and attribute tags are kept short to ensure the message size is as small as

possible.

- The DPTPCodec strips all unnecessary white-space between elements for the same reason.

Carriage returns and indentation have been added to the example above for clarity.

4.4 Session Affinity

4.4.1 Introduction

Session Affinity is a mechanism whereby a unique string token is placed into all requests under a

configurable key for the duration of a client’s HTTP session. The unique token is placed into a request by the

State Machine and added to the HTTP request’s header within the HTTP Channel Client under a

configurable key specified in the BankframeResource.properties file.

4.4.1.1 Configuring Session Affinity

To configure Session Affinity the BankframeResource.properties file must be modified in two places.

• Firstly to notify the State Machine to include a unique token with every request the following

must be set to true:

include.session.id=true

• Secondly a configurable name must be specified as a key for the unique token when placed

within a HTTP request’s header. Therefore set the following:
channel.http.client.header.HTTP_HEADER_ID=SM_SESSION_ID

where HTTP_HEADER_ID is the configurable key.

Note: the State Machine always places a key named SM_SESSION_ID in each request so this

is not to be altered in the above setting.

Channel Management ■ Session Affinity

118 ■ MCA Services Developer Guide Version 2004.5, Rev. A

4.4.1.2 Sample Application of Session Affinity

Suppose one has an application environment running multiple Java Virtual Machines, e.g. a cluster. Caching

occurs at each node in the cluster so at certain points in time it is possible to have inconsistent caches of

data across each node. To ensure that all requests within a user’s session process data from the same

cache all requests within the user’s session must be routed to the same node in the cluster. Session Affinity

can address this need to route requests to the same node by configuring the load balancing mechanism for

the cluster to determine if requests have come from the same user session via the configured unique token

in the HTTP request’s header. When a request hits the load balancing mechanism the HTTP request’s

header is checked for a pre-defined key, e.g. HTTP_HEADER_ID, that will have been added by the Channel

Client, and the load balancer will search for a mapping between HTTP_HEADER_IDs and IP addresses of

the nodes in the cluster. If a record is not found then a node is chosen at random to route the request to and

a mapping between the HTTP_HEADER_ID and an IP address is created. Otherwise, if a matching record is

found, the request is routed to the node with the IP address matching that of the HTTP_HEADER_ID.

Financial Process Integration ■ Overview

MCA Services Developer Guide Version 2004.5, Rev. A ■ 119

5 Financial Process Integration

5.1 Overview

5.1.1 Introduction

There are two types of component in Siebel Modules such as Branch Teller & Internet Banking: entity

beans, and session beans. Entity beans model the data in the solution, while session beans model the

business logic.

Session beans communicate with host systems via entity beans. Entity beans in turn use the Financial

Process Integrator to communicate with the host system, as illustrated in the diagram below:

Host systems are accessed via software known as middleware. MCA can use a number of different

middleware technologies (IMS, MQ, TUXEDO, and CICS) to communicate with Host systems. These

middleware technologies send request data to host systems and pass back response data from the host

system. However, each middleware layer does this in a different way. One of MCA's main strengths is that it

provides an abstraction layer that hides the differences between different middleware technologies. This

provides Siebel Modules with a simple interface for communicating with host systems. This layer is called

the Financial Process Integrator.

5.1.2 Example

Lets take a simple example: a session bean needs to read some information stored on a host system. At a

high level, this is how this would be modeled:

Financial Process Integration ■ Overview

120 ■ MCA Services Developer Guide Version 2004.5, Rev. A

- The data stored on the host system is modeled as an entity bean

- The session bean requests a specific instance of the entity bean

- This request is transformed by the Financial Process Integrator into a host transaction

- The host system processes the request, and returns some response data

- The Financial Process Integrator transforms this response data into a format the entity bean can

understand

- The entity bean is initialized with the response data

- The initialized entity bean instance is returned to the session bean

The key point to note here is that the session bean does not interact directly with the Financial Process

Integrator. In Siebel Modules all data in the system is modeled as entity beans. Session beans manipulate

these entity beans, rather than interacting directly with the data-store (which in the example above is the

host system). This approach maximizes the flexibility of Siebel Modules: the complexity of interacting with

the data store is hidden within the implementation of entity beans.

5.1.3 Components of the Financial Process Integrator

5.1.3.1 Persister

Entity beans can be implemented using either container managed persistence (CMP) or bean-managed

persistence (BMP). With CMP the task of persisting the entity bean’s state is delegated to the EJB

Container, whereas with BMP the entity bean is responsible for persisting its state itself.

When entity beans are used to model data on host systems they must be implemented using BMP. To do

this they must interact with the Financial Process Integrator.

The task of communicating with the Financial Process Integrator is delegated to a helper object. We call this

helper object a ‘persister’ object.

5.1.3.2 Cache

Typically communication with host systems is expensive, it can take a significant amount of time for a

request to be processed by a host system. In addition the process of transforming data to/from the format

understood by the host system can also be expensive. It is important to cache information so that

communication with the host system and transformation of data is minimized. Caching is used in several

places in the Financial Process Integrator to improve performance.

5.1.3.3 Meta-data

Meta-data is the information that describes how to transform data into the format that the host system

understands. Meta-data information for creating the host request is modeled using the

RequestTransactionField entity. Meta-data information for processing the host system response is

defined by the TransactionMetaData and ResponseTransactionField entities. Information for

handling host system error responses is modeled using the TransactionErrorCondition entity.

Financial Process Integration ■ Overview

MCA Services Developer Guide Version 2004.5, Rev. A ■ 121

5.1.3.4 Data Formatter

The data formatter class is responsible for interpreting the meta-data and using it to transform the request

data into the format that the host system understands, and conversely to transform the response data into a

format the Siebel Module can understand.

5.1.3.5 Transaction Route

The TransactionRoute entity defines the Siebel connector to use for each transaction.

5.1.3.6 Destination

The Destination entity stores the configuration information required by the Siebel connector to locate and

communicate with the host system.

5.1.3.7 Siebel connector

The Siebel connector is responsible for delivering data to and receiving data from the host system.

5.1.3.8 Store and Forward

The Store and Forward mechanism operates between the Siebel mid-tier (i.e. the Siebel Financial

Components) and the host. The Financial Process Integrator’s Store and Forward framework provides the

means to store transactions, in the event of a host going offline, in order to forward them to the host at a

later time. It will only enable the storing of data for update to the host, it will not store data retrieved from the

host.

5.1.4 Putting it all together

The diagram below illustrates how the various components in the Financial Process Integrator interact and

how the Financial Process Integrator interacts with Siebel components

Financial Process Integration ■ Overview

122 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Lets explain this diagram in terms of the example above:

- The client makes a request of a session bean

- This request is routed to the session bean by MCA Services

- To fulfill the request the session bean must retrieve some data from the host

- Since all data on the host is modelled as entity beans, this means the session bean must retrieve

an entity bean instance

- The entity bean must populate itself with data from the host system. It delegates this task to the

persister

- The persister checks if the data is already in the cache. If it is it populates the entity bean with the

cached data, otherwise it sends a request to the host for the required data.

- The Financial Process Integrator retrieves the request meta-data for the specified request, and

passes the request and the associated meta-data to the Data Formatter.

- The Data Formatter uses the meta-data to transform the request into a format the host can

understand

- The Financial Process Integrator retrieves the Transaction Route information for the specified

request and locates the appropriate Siebel connector

- If the Siebel connector is not already initialized, it initializes itself using the Destination information.

- The Siebel connector then passes the formatted request to the host system (using some

middleware technology such as CICS or MQ).

- The host processes the request and returns a response

- The Siebel connector passes the response back to the Financial Process Integrator

Financial Process Integration ■ Financial Process Integrator Meta-Data

MCA Services Developer Guide Version 2004.5, Rev. A ■ 123

- The Financial Process Integrator retrieves the response meta-data and passes the response and

associated meta-data to the Data Formatter

- The Data Formatter uses the meta-data to transform the response from the host into a format the

persister can understand

- The Financial Process Integrator returns the response to the persister

- The persister populates the entity bean with the returned data, and stores the data in the cache

- The session bean interacts with the entity bean as necessary and returns its response to the client.

5.2 Financial Process Integrator Meta-Data

5.2.1 Introduction

The metadata defines the structure of the data that is sent to the host system for a transaction and the

response data from the host system to a transaction request. The metadata is broken into transaction fields.

Each transaction field represents an individual block of data in the host system data. To form a transaction

request the all the appropriate transaction fields are extracted from the metadata and combined. To process

a transaction response the transaction fields that are part of that type of transaction are extracted from the

metadata and used to process and extract information from the host system response. The following sub-

sections introduce some of the features of the Financial Process Integrator.

5.2.1.1 Separation of Request and Response

There are two sets of data that are represented by the Financial Process Integrator metadata:

- The structure of the host system request, which will be a host-specific format.

- The mapping of host system response fields to response DataPacket fields

These two sets of data are represented separately.

The request metadata specifies the sequential transaction fields required for the host system request.

Values necessary for the transaction are extracted from the DataPacket transaction request.

In the case of the host system response the metadata specifies the mappings of result DataPackets to the

host system response data. Only the required fields are extracted from the host system response. The

required fields are referenced in the host system response by offset, the entire host system response does

not have to be parsed, only the required fields.

5.2.1.2 Support for Error Conditions

The Financial Process Integrator has support for error condition responses from the host system. The

Financial Process Integrator can determine if the host system response is an error response from the host

system. Once it has been determined that an error has occurred appropriate action can be taken.

5.2.1.3 Support for Tiered Fields

The meta-data supports tiered fields. This concept is detailed in a later section.

Financial Process Integration ■ Financial Process Integrator Meta-Data

124 ■ MCA Services Developer Guide Version 2004.5, Rev. A

5.2.1.4 Meta-Data Response Access by Offset

The Financial Process Integrator metadata for the host system response specifies the location of required

transaction fields by offset and not by sequence. This means only the required transaction fields will be

parsed out of the host system response. Previously the metadata contained a sequence number to locate

transaction fields in the response. This meant every transaction field in the host system response had to be

parsed in sequence to get to the field that was actually required. Even if only one field in a host system

response of a hundred fields was required for the result all one hundred fields had to be parsed. Now the

metadata contains the offset and not the sequence. Therefore if only one field is required in a host system

response of one hundred fields only that one field is parsed and the remaining fields don’t have to be read.

This greatly improves performance.

5.2.2 Request Transaction Fields

The Financial Process Integrator creates transaction requests using the RequestTransactionField

entity:
com.bankframe.ei.txnhandler.transactionlayout.impl.request.RequestTransact

ionFieldBean

This entity maps to the REQUEST_TXN_LAYOUT database table:

TXN_CODE TXN_TYPE FIELDNAME SEQUENCE LENGTH DP_FIELD

TXN01 TYPE1 Cust-Number 1 2 Customer_Number

TXN01 TYPE1 Acc-Name 2 10 Account_Name
..

MANDATORY DATA FIELD_PAD_CHAR FIELD_ALIGN FIELD_ENCODING

Yes 0 LEFT COMP

No ‘ ‘ RIGHT ASCII
…

ISSIGNED_FIELD DEC_BEFORE DEC_AFTER

0 0 0

0 0 0

The main body of a transaction request, which will be passed to the Siebel Connector, is built by determining

all the necessary transaction fields for the required transaction request. The REQUEST_TXN_LAYOUT

database table specifies the transaction fields necessary for host system requests. Each row of the

REQUEST_TXN_LAYOUT database table represents a transaction field.

A bank’s COBOL Copybook is a typical source for determining the necessary entries in the request meta-

data. Each transaction field, as defined in the COBOL Copybook, must be defined in the metadata to

correctly form a host system request. Typically the TXN_CODE code is the NAME section of the COBOL

Copybook.

The total number and type of columns in the REQUEST_TXN_LAYOUT table depends on the host system

requirements and may be customized for a specific host.

The main columns in the REQUEST_TXN_LAYOUT table are as follows:

Financial Process Integration ■ Financial Process Integrator Meta-Data

MCA Services Developer Guide Version 2004.5, Rev. A ■ 125

• The transaction code, TXN_CODE, specifies the transaction id as defined on the host system, this is

an alphanumeric string that uniquely identifies the transaction

• The transaction type, TXN_TYPE, indicates which host system the transaction request is being

passed to

• The FIELDNAME element identifies the transaction field as defined for the host system

• The SEQUENCE element specifies the order in which the transaction fields are ordered for sending

to the host and receiving from the host system. This element starts at 1

• The LENGTH element is the length of the transaction field as required by the host system

• DP_FIELD defines the name of the field in the Request DataPacket that maps to the request

transaction field FIELDNAME

• The MANDATORY element specifies if the request DataPacket, passed to the Financial Process

Integrator, must contain an element called DP_FIELD with a value to place in the transaction field.

The MANDATORY element has the value ‘yes’ or ‘no’. An Exception is thrown if a transaction

request DataPacket passed to the Financial Process Integrator does not specify a value for a

mandatory element. E.g. CUSTOMER_NAME for a “customer details” request, this element would

likely be mapped to CUST-NAME in the host system data request and would be a mandatory

element in the DataPacket for this type of request.

• The DATA element is a default value for the transaction field which will be passed to the host

system

• The FIELD_PAD_CHAR element specifies the padding character to fill the transaction field data with

if the data is less than LENGTH

• The FIELD_ALIGN element specifies the alignment of padding data in the transaction field.

‘LEFT’ specifies that padding is placed to the left of the data in the transaction field. ‘RIGHT’

specifies that padding is placed to the right of the data in the transaction field.

• The FIELD_ENCODING element specifies the encoding used to format the host system data.

Examples for textual data are ASCII, EBCDIC. Examples for numeric data are the Cobol types

COMP-3, COMP, X, STD.

• The ISSIGNED_FIELD element specifies if the transaction field is signed.

• The DEC_BEFORE element specifies the number of places before the decimal point for numeric

data.

• The DEC_AFTER element specifies the number of places after the decimal point for numeric data.

The Financial Process Integrator passes all transaction processing duties to the BasicDataFormat class.

The BasicDataFormat class calls the RequestTransactionField entity bean home method

findByTransactionCodeAndType (txnCode, txnType) to get the appropriate transaction fields

required for the transaction request being processed by the Financial Process Integrator. This method

returns a List of RequestTransactionField entity beans which are accessed using the interface

TransactionField.

Financial Process Integration ■ Financial Process Integrator Meta-Data

126 ■ MCA Services Developer Guide Version 2004.5, Rev. A

5.2.3 Example Transaction Request

The CustomerSearch example findByLastName operation has a transaction request defined by the

following Cobol Copybook:
000400 01 MAIN-CUSTOMERSEARCH.

001400* INPUT DATA

001600 05 T-CODE PIC X(12).

001800 05 T-RESTART-INDEX PIC X(4).

002000 05 C-LAST-NAME PIC X(20).

The request transaction fields for this transaction have the following form in the REQUEST_TXN_LAYOUT

table:
TXN_CODE TXN_TYPE FIELDNAME SEQUENCE LENGTH DP_FIELD MANDATORY

TESTFIND0002 TEST T-CODE 1 12 TXN_

CODE

YES

TESTFIND0002 TEST T-RESTART-

INDEX

2 4 RESTART_

INDEX

NO

TESTFIND0002 TEST C-LAST-NAME 3 20 LAST_

NAME

YES

The transaction is identified with TXN_CODE=TESTFIND0002 and the host system is defined as

TXN_TYPE=TEST. There are three transaction fields defined according to the Cobol Copybook definition.

• T-CODE is the first transaction field, this field is mapped to TXN_CODE in the request DataPacket

which is passed to the Financial Process Integrator. This field is mandatory in the request

DataPacket.

• T-RESTART-INDEX is the second transaction field, this field is mapped to RESTART_INDEX in the

request DataPacket which is passed to the Financial Process Integrator. This field is not

mandatory in the request DataPacket. The field is used for maintaining an index while making

repeated calls to the host system for results.

• C-LAST-NAME is the third transaction field, this field is mapped to LAST_NAME in the request

DataPacket which is passed to the Financial Process Integrator. This field is mandatory in the

request DataPacket.

5.2.4 Processing Host System Response

The BasicDataFormat class determines the transaction fields in the host system response necessary for

the transaction response by using the following steps:

1. The mapping of entity DataPackets elements to required transaction fields in the host system

response is specified by the TransactionMetaData entities.

2. The form of the transaction fields in the host system response data that are required for step 1 are

specified by the ResponseTransactionField entities.

Financial Process Integration ■ Financial Process Integrator Meta-Data

MCA Services Developer Guide Version 2004.5, Rev. A ■ 127

5.2.5 Response Meta Data mapping

The response from a host system has to be converted from the host system specific format into entity results

which are passed to the persister, which calls the Financial Process Integrator, as DataPackets.

Therefore, the first step in extracting the necessary result data from the host system response is to

determine which elements are necessary for the DataPacket result and map these required elements to

transaction fields in the host system response.

For example a Customer entity might make a request to the Financial Process Integrator, via the persister,

to obtain the customer name and ID from the host system. The result DataPacket would have to contain

the elements CUSTOMER_NAME and CUSTOMER_ID. These elements in the result DataPacket would be

mapped to the host system response fields CUST-ID and CUST_NAME.

The BasicDataFormat class determines the required mappings using the TransactionMetaData entity:

com.bankframe.ei.txnhandler.transactionresponse.metadata.MetaDataBean

This entity maps to the RESPONSE_META_DATA database table:
TXN_CODE TXN01 TXN01 TXN01 TXN01
TXN_TYPE TYPE1 TYPE1 TYPE1 TYPE1
DP_NAME ACCOUNT ACCOUNT CUSTOMER CUSTOMER
DP_FIELD CUSTOMER_NAME ACCOUNT_NAME CUSTOMER_NAME LAST_NAME
DP_INDEX 1 1 2 2
DP_PK_FIELD Yes No Yes No
TXN_FIELDNAME CUST-NAME ACC-NAME CUST-NAME LAST-NAME
DEFAULT_VALUE defaultValue defaultValue defaultValue defaultValue

The columns in the RESPONSE_META_DATA table are as follows:

• The transaction code, TXN_CODE, specifies the transaction ID as defined on the host system, this is

an alphanumeric string that uniquely identifies the transaction

• The transaction type, TXN_TYPE, indicates which host system the transaction request is being

passed to

• The DP_NAME element specifies the name of the entity bean that a response from the host system

belongs to, e.g. ‘TestBean’

• The DP_FIELD element identifies the field member name in the entity bean that the result maps to.

• The DP_INDEX element identifies the entity that the response value belongs to. This is used to

uniquely store each entity result returned from the host system. This number must be greater than

or equal to 1.

• The DP_PK_FIELD element determines if the field is an element of the primary key for the entity

object that is being mapped to. Each entity has a primary key to uniquely identify itself. This primary

key may consist of several elements constructed from the host system response data during

processing. If DP_PK_FIELD is ‘Yes’ then the field is a primary key element for the entity result.

• The TXN_FIELDNAME element identifies the transaction field in the RESPONSE_TXN_LAYOUT table

that this meta-data element maps to.

• The DEFAULT_VALUE element specifies a default value for this field.

Financial Process Integration ■ Financial Process Integrator Meta-Data

128 ■ MCA Services Developer Guide Version 2004.5, Rev. A

The Financial Process Integrator passes all response processing duties to the BasicDataFormat class.

The BasicDataFormat class calls the TransactionMetaData entity bean home method

findByTransactionCodeAndType (txnCode, txnType) to get the required transaction field

mappings for the transaction being processed. This method returns a List of TransactionMetaData

entity beans.

5.2.6 Response Transaction Fields

Once the required mappings from entity DataPackets elements to transaction fields have been determined

it is necessary to obtain the form of each transaction field to be extracted from the host system response.

The Financial Process Integrator determines the form of the required response transaction fields using the

ResponseTransactionField entity:

com.bankframe.ei.txnhandler.transactionlayout.impl.response.ResponseTransa

ctionFieldBean

This entity maps to the RESPONSE_TXN_LAYOUT database table:

FIELDNAME OFFSET LENGTH FIELD_PAD_CHAR

Account_Info[0].Account_Number 0 10 0

Account_Info[0].Account_Name 10 10 ‘ ‘

Account_Info[1].Account_Number 20 10 0

Account_Info[1].Account_Name 30 10 ‘ ‘
…

FIELD_ALIGN FIELD_ENCODING ISSIGNED_FIELD DEC_BEFORE DEC_AFTER

LEFT COMP 0 10 0

RIGHT ASCII 0 0 0

LEFT COMP 0 10 0

RIGHT ASCII 0 0 0

The total number and type of columns in the RESPONSE_TXN_LAYOUT table depends on the host system

requirements and can be customized for a specific host.

The main columns in the RESPONSE_TXN_LAYOUT table are as follows:

• The FIELDNAME element identifies the transaction field as defined for the host system

• The OFFSET element specifies the offset of the transaction field in the host system data

• The LENGTH element is the length of the transaction field in the host system data

• The FIELD_PAD_CHAR element specifies the padding character to fill the transaction field data with

if the data is less than LENGTH

• The FIELD_ALIGN element specifies the alignment of padding data in the transaction field.

‘LEFT’ specifies that padding is placed to the left of the data in the transaction field. ‘RIGHT’

specifies that padding is placed to the right of the data in the transaction field.

Financial Process Integration ■ Financial Process Integrator Meta-Data

MCA Services Developer Guide Version 2004.5, Rev. A ■ 129

• The FIELD_ENCODING element specifies the encoding used to format the host system data.

Examples for textual data are ASCII, EBCDIC. Examples for numeric data are the Cobol types

COMP-3, COMP, X, STD.

• The ISSIGNED_FIELD element specifies if the transaction field is signed.

• The DEC_BEFORE element specifies the number of places before the decimal point for numeric

data.

• The DEC_AFTER element specifies the number of places after the decimal point for numeric data.

The BasicDataFormat class creates a Map of ResponseTransactionField entity beans. The

BasicDataFormat class processes the meta-data mappings using necessary

ResponseTransactionField entities from the Map. The transaction field data is extracted from the host

system data using the ResponseTransactionField. The ResponseTransactionField entity beans

are accessed using the interface TransactionField.

Each of the transaction fields defined in this table must have a unique name and therefore it may be

necessary to append the TXN_CODE and TXN_TYPE to the name of the field where many transactions might

be defined in the meta-data. The naming convention therefore for transaction fields is TXN_CODE-

TXN_TYPE-GROUP_NAME[INDEX]-FIELD_NAME-OFFSET.

5.2.7 Caching the Meta-Data (Transaction Fields)

To improve performance the Financial Process Integrator metadata can be cached. The

transactionHandler.metaData.cache entry in the BankframeResource.properties file specifies

whether caching of metadata is used by the Financial Process Integrator. This is either true or false.

This caching applies to the RequestTransactionField, ResponseTransactionField,

ResponseMetaData and ResponseErrorCondition entities.

If metadata caching is enabled then meta-data is obtained from the database tables and stored to memory

for quick access. The meta-data elements are accessed through the same interface as the entity beans.

The Financial Process Integrator uses the MCA generic caching framework for caching of meta-data.

It may be necessary for the BasicDataFormat class to determine if caching is being enabled. The

BasicDataFormat class can determine this using the following method:

boolean metaDataCached =

com.bankframe.ei.txnhandler.TransactionHandlerUtils.isMetaDataCached();

5.2.8 TransactionField Interface

The BasicDataFormat class interacts with the RequestTransactionField and

ResposneTransactionField entity beans through the interface

com.bankframe.ei.txnhandler.transactionlayout.TransactionField.

The remote interface of these entity beans uses the same interface as the caching mechanism allowing the

entity beans and cached entities to be accessed in the same manner.

The TransactionField interface is defined as follows:

public interface TransactionField {

Financial Process Integration ■ Financial Process Integrator Meta-Data

130 ■ MCA Services Developer Guide Version 2004.5, Rev. A

public String getValue(String colName) throws

ProcessingErrorException, RemoteException;

public Map getValuesMap() throws ProcessingErrorException,

RemoteException;

}

The generic method getValue(String colName) allows the RequestTransactionField entity bean

to work against a REQUEST_TXN_LAYOUT database table with any combination of database columns. This

is necessary to avoid recoding of the RequestTransactionField entity bean for each host system as

each host system may require a different definition of the REQUEST_TXN_LAYOUT database table. The

same applies to the ResponseTransactionField entity with the RESPONSE_TXN_LAYOUT database

table.

The argument to the getValue(String colName) method specifies the column name in the database

table. The method returns the value of the specified column as a java.lang.String. This value has to be

converted to the correct type. See the following BasicDataFormat code example for obtaining a String

entry and an int value from a previously obtained transaction field:

Transaction txnField;

int fieldLength = new Integer(txnField.getValue("LENGTH")).intValue();

String dataPacketField = txnField.getValue("DP_FIELD");

The method getValuesMap() returns the java.util.Map interface to all the column elements. The keys

to entries in the Map are the column names. The Map values are

com.bankframe.ei.txnhandler.transactionlayout.HashTableElement objects describing the

value of the database column.

5.2.9 Example Response mapping

Say we have the following COBOL copybook:
05 Account_Info occurs 2.

010 Account_Number Pic X(10).

010 Account_Name Pic X(10).

This would be represented in our RESPONSE_TXN_LAYOUT table:

FIELDNAME OFFSET LENGTH DATA FIELD_PAD_CHAR

Account_Info[0].Account_Number 0 10 0

Account_Info[0].Account_Name 10 10 ‘ ‘

Account_Info[1].Account_Number 20 10 0

Account_Info[1].Account_Name 30 10 ‘ ‘
…

FIELD_ALIGN FIELD_ENCODING ISSIGNED_FIELD DEC_BEFORE DEC_AFTER

LEFT COMP 0 10 0

Financial Process Integration ■ Financial Process Integrator Meta-Data

MCA Services Developer Guide Version 2004.5, Rev. A ■ 131

RIGHT ASCII 0 0 0

LEFT COMP 0 10 0

RIGHT ASCII 0 0 0

Now say we have a DataPacket called ACCOUNT_INFO that we want to map to the above copy book. The

ACCOUNT_INFO DataPacket contains the following fields:

ACCOUNT_NAME

ACCOUNT_NUMBER

We map these fields to the copybook using the RESPONSE_META_DATA table:
TXN_CODE TXN01 TXN01 TXN01 TXN01
TXN_TYPE TYPE1 TYPE1 TYPE1 TYPE1
DP_NAME ACCOUNT_

INFO
ACCOUNT_

INFO
ACCOUNT_

INFO
ACCOUNT_

INFO
DP_FIELD ACCOUNT_

NAME
ACCOUNT_

NAME
ACCOUNT_

NAME
ACCOUNT_

NAME
TXN_FIELDNAME Account_Info[0].Accou

nt_

Name

Account_Info[0].A

ccount_

Number

Account_Info[

1].Account_

Name

Account_Info[1].Account_

Number

DP_INDEX 1 1 2 2
DP_PK_FIELD No Yes No Yes

DEFAULT_VALUE defaultValue defaultValue defaultValue defaultValue

- The TXN_CODE and TXN_TYPE define what transaction the mapping belongs to

- The DataPacket name, DP_NAME, defines the name of the DataPacket that the persister

expects as a result for this transaction

- The DataPacket field, DP_FIELD, defines the name of the field in the DataPacket result

- The transaction field name, TXN_FIELDNAME, defines the name of the field in the

RESPONSE_TXN_LAYOUT table that this result element maps to

- The DataPacket index, DP_INDEX, value specifies the index of the result entity that the element

belongs to, the index always starts from 1.

- The DP_PK_FIELD column determines if the field is a primary key field of the result entity,

ACCOUNT_NUMBER is the primary key for the entities in the example above

5.2.10 Support for Tier Fields

To understand the concept of tiered fields see the following example copybook:
05 Card_Number Pic X(10).

05 Account_Info occurs 2.

010 Account_Number Pic X(10).

010 Account_Name Pic X(10).

Financial Process Integration ■ Financial Process Integrator Meta-Data

132 ■ MCA Services Developer Guide Version 2004.5, Rev. A

For the purpose of this example all the above fields map to two instances of an Account entity. This means

that to map this data properly we need to create two Account DataPackets, and we need to treat

Card_Number as if it belongs to the Account_Info tier, i.e. the Card_Number field will occur in both

Account DataPackets.

This is an example of a more general problem that can occur when mapping from entities to cobol

copybooks, the cobol copybook defines a hierarchy or grouping of fields that we do not want to impose on

our entity beans.

The table below illustrates how the RESPONSE_TXN_LAYOUT table would be defined for this situation:

FIELDNAME OFFSET LENGTH FIELD_PAD_CHAR FIELD_ALIGN

Card_Number 0 10 0 LEFT

Account_Info[0].Account_Number 10 10 0 LEFT

Account_Info[0].Account_Name 20 10 ‘ ‘ RIGHT

Account_Info[1].Account_Number 30 10 0 LEFT

Account_Info[1].Account_Name 40 10 ‘ ‘ RIGHT
…

FIELD_ENCODING ISSIGNED_FIELD DEC_BEFORE DEC_AFTER

COMP 0 10 0

COMP 0 10 0

ASCII 0 0 0

COMP 0 10 0

ASCII 0 0 0

• The Card_Number is defined once for the host system data.

• A group of entries is put in the RESPONSE_TXN_LAYOUT for each instance of the group

Account_Info. The name of these group fields start with the group name and index of the group

occurrence, e.g. Account_Info[0] being the first occurrence of the group in the host system

data.

The RESPONSE_META_DATA table below then defines how we map these fields to our entity DataPackets:

TXN_CODE TXN_TYPE DP_NAME DP_FIELD TXN_FIELDNA
ME

DP_IN
DEX

DP_PK_F
IELD

DEFAULT_V
ALUE

TXN01 TYPE1 ACCOUNT_

INFO

ACCOUNT_

NAME

Account_Info[0].

Account_

Name

1 No defaultValue

TXN01 TYPE1 ACCOUNT_

INFO

ACCOUNT_

NUMBER

Account_Info[0].

Account_

Number

1 Yes defaultValue

TXN01 TYPE1 ACCOUNT_

INFO

CARD_

NUMBER

Card_Number 1 No defaultValue

TXN01 TYPE1 ACCOUNT_

INFO

ACCOUNT_

NAME

Account_Info[1].

Account_

Name

2 No defaultValue

Financial Process Integration ■ Financial Process Integrator Meta-Data

MCA Services Developer Guide Version 2004.5, Rev. A ■ 133

TXN01 TYPE1 ACCOUNT_

INFO

ACCOUNT_

NUMBER

Account_Info[1].

Account_

Number

2 Yes defaultValue

TXN01 TYPE1 ACCOUNT_

INFO

CARD_

NUMBER

Card_Number 2 No defaultValue

Since each field in the host system data is given an individual explicit name, we can easily map from any

DataPacket element to any transaction field in the host system data.

5.2.11 Deeply nested Cobol Copybooks

What if a cobol copybook has a deeply nested structure like the one below, and we want to map it to a single

flat entity bean?
01 Customer_Details.

02 Customer_Number Pic X(10).

02 Last_Name Pic X(10).

02 First_Name Pic X(10).

02 Contact_Details.

05 Best_Contact_Time Pic X(10).

05 Preffered_Contact Pic X(10).

05 Work_Details.

010 Employer_Name Pic X(10).

010 Phone_No Pic X(10).

05 Home_Details.

010 Phone_No Pic X(10).

010 Home_Address Pic X(20).

The table below illustrates how the RESPONSE_TXN_LAYOUT table would be defined:

FIELDNAME OFFSET LENGTH Fill Char …

Customer_Details.Customer_Number 0 10 0

Customer_Details.Last_Name 20 10 ‘ ’

Customer_Details.First_Name 30 10 ‘ ‘

Customer_Details.Contact_Details.Best_Contact_Time 40 10 ‘ ‘

Customer_Details.Contact_Details.Prefferred_Contact 50 10 ‘ ‘

Customer_Details.Contact_Details.Work_Details.

Employer_Name

60 10 ‘ ‘

Customer_Details.Contact_Details.Work_Details. 70 10 ‘ ‘

Financial Process Integration ■ Financial Process Integrator Meta-Data

134 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Phone_No

Customer_Details.Contact_Details.Home_Details.

Phone_No

80 10 ‘ ‘

Customer_Details.Contact_Details.Home_Details.

Home_Address

90 20 ‘ ‘

Now if we want to map this copybook to a DataPacket with the following fields:

CUSTOMER_NUMBER

LAST_NAME

FIRST_NAME

BEST_CONTACT_TIME

PREFERRED_CONTACT_METHOD

EMPLOYER_NAME

WORK_PHONE_NO

HOME_ADDRESS

HOME_PHONE_NO

We just need to define our RESPONSE_META_DATA table as follows:

TXN_CODE TXN_TYPE DP_NAME DP_FIELD

TXN01 TYPE1 CUSTOMER_DETAILS CUSTOMER_NUMBER

TXN01 TYPE1 CUSTOMER_DETAILS LAST_NAME

TXN01 TYPE1 CUSTOMER_DETAILS FIRST_NAME

TXN01 TYPE1 CUSTOMER_DETAILS BEST_CONTACT_TIME

TXN01 TYPE1 CUSTOMER_DETAILS PREFFERRED_CONTACT_METHOD

TXN01 TYPE1 CUSTOMER_DETAILS EMPLOYER_NAME

TXN01 TYPE1 CUSTOMER_DETAILS WORK_PHONE_NO

TXN01 TYPE1 CUSTOMER_DETAILS HOME_ADDRESS

TXN01 TYPE1 CUSTOMER_DETAILS HOME_PHONE_NO

…..

TXN_FIELDNAME DP_INDEX DP_PK_FIELD

Customer_Details.Customer_Number 1 Yes

Customer_Details.Last_Name 1 No

Customer_Details.First_Name 1 No

Customer_Details.Contact_Details.Best_Contact_Time 1 No

Customer_Details.Contact_Details.Preferred_Contact 1 No

Customer_Details.Contact_Details.Work_Details.Employer_Name 1 No

Customer_Details.Contact_Details.Work_Details.Phone_No 1 No

Customer_Details.Contact_Details.Home_Details.Home_Address 1 No

Customer_Details.Contact_Details.Home_Details.Phone_No 1 No

Financial Process Integration ■ Financial Process Integrator Meta-Data

MCA Services Developer Guide Version 2004.5, Rev. A ■ 135

Each cobol field has its own name so it can be easily mapped to any entity bean layout.

5.2.12 Mapping a subset of transaction fields

This is one situation that this solution makes easy. Taking the previous example, if instead of mapping all

the fields in the copybook we’re only interested in mapping:
CUSTOMER_NUMBER

CUSTOMER_LAST_NAME

CUSTOMER_FIRST_NAME

HOME_ADDRESS

For this case only define the mappings for those fields in the RESPONSE_META_DATA table, don’t add

mappings for the other fields. If the transaction fields are not required by any entity then eliminate the fields

from the RESPONSE_TXN_LAYOUT table.

Padding or “Filler” fields are not required, e.g., to deal with the gap between the CUSTOMER_FIRST_NAME

field and the HOME_ADDRESS field in the host system data. Transaction fields are extracted by their

OFFSET, and not a sequence number, so only the necessary fields have to be processed.

5.2.13 Recurring Fields

The host system data may contain recurring fields as follows:
05 Address_Details

010 Street_Address Pic X(10) occurs 3

010 State Pic X(2)

010 Postcode Pic X(5)

For the system in question this has to be mapped to a single Address Entity, how are the entity members

mapped to the Street_Address field, since entity beans cannot have array fields?

1. Define 3 separate fields in the entity bean to represent each entry in the array, i.e. have 3 fields called:
STREET_ADDRESS1

STREET_ADDRESS2

STREET_ADDRESS3

Now its just a matter of mapping the above fields to the correct transaction fields as follows:
TXN_CODE TXN_TYPE DP_NAME DP_FIELD TXN_FIELDN

AME
DP_IN
DEX

DP_P
K_FIE
LD

DEFAULT_VALUE

TXN01 TYPE1 ADDRESS STATE Address_Deta

ils.

State

1 No default

TXN01 TYPE1 ADDRESS POSTCODE Address_Deta 1 No default

Financial Process Integration ■ Financial Process Integrator Meta-Data

136 ■ MCA Services Developer Guide Version 2004.5, Rev. A

ils.

Postcode

TXN01 TYPE1 ADDRESS STREET_

ADDRESS1

Address_Deta

ils.

Street_Addres

s[0]

1 No default

TXN01 TYPE1 ADDRESS STREET_

ADDRESS2

Address_Deta

ils.

Street_Addres

s[1]

1 No default

TXN01 TYPE1 ADDRESS STREET_

ADDRESS3

Address_Deta

ils.

Street_Addres

s[2]

1 No default

The above approach is the only way that array fields can really be handled in the MCA.

5.2.14 Handling Error Conditions

To determine if the host system response data is an error response the BasicDataFormat class must

analyse the host system data for transaction field values that indicate that the response data is error data.

The TransactionErrorCondition entity provides the information necessary for the BasicDataFormat

class to determine if the host system data is an error result.

TransactionErrorCondition entity maps to the table RESPONSE_ERROR_CONDITION:

TXN_CODE TXN_TYPE SEQUENCE TXN_FIELDNAME CONDITION VALUE

ACCOUNTFIND TEST 1 Error-Flag EQUALS ‘TRUE’

ACCOUNTFIND TEST 2 Error-Type NOT_EQUALS ‘ ‘

COMBINE_WITH_NEXT ERROR_TXN_CODE ERROR_TXN_TYPE

AND ACCFIND_ERROR TEST

NO ACCFIND_ERROR TEST

TXN_CODE defines the transaction the error condition applies to.
TXN_TYPE defines the transaction the error condition applies to.
SEQUENCE determines the order in which the error-conditions are used to determine if a

host system response is an error. SEQUENCE starts at 1.
TXN_FIELDNAME defines the name of the transaction field in the host system response that is

tested, the transaction field being defined in the RESPONSE_TXN_LAYOUT table
CONDITION defines the condition that must be met to indicate an error, this column can

have the following values:

EQUALS - the value of the TXN_FIELDNAME must match the VALUE column

exactly

STARTS_WITH - the value of the TXN_FIELDNAME must start with the string

Financial Process Integration ■ Financial Process Integrator Meta-Data

MCA Services Developer Guide Version 2004.5, Rev. A ■ 137

defined in the VALUE column

ENDS_WITH - the value of the TXN_FIELDNAME must end with the string

defined in the VALUE column

CONTAIN - the value of the TXN_FIELDNAME must contain the string defined in

the VALUE column somewhere in its contents

NOT_EQUAL - reverse of EQUALS

NOT_START_WITH - reverse of STARTS_WITH
VALUE specifies the value to compare the transaction field value to. If the CONDITION

is ‘EQUALS’ then the VALUE must be the same length as the LENGTH specified

in the RESPONSE_TXN_LAYOUT table for the transaction field. The VALUE for

Error-Type in the above sample has to specify 20 spaces as the transaction

field Error-Type defined in RESPONSE_TXN_LAYOUT table has a LENGTH of

20 bytes.
COMBINE_WITH_NEXT allows for combinations of error tests on the host system data. The logical tests

can not be complex nested logical tests, only direct combinations as follows:

AND - the result of this error test will be logically AND’d with the next error test; If

the error is true and the next error is true then the combined error result is true.

OR - the result of this error test will be logically OR’d with the next error test; If

this error is true or the next error is true then the combined error result is true.

XOR - the result of this error test will be logically Exclusively OR’d with the next

error test; If this error is true or the next error is true, but both are not true, then

the combined error result is true.

No - the result of this error test will not be combined with the next error test;

This is used for the last error test only, otherwise the error result will not be

combined in the next or final result.

‘ ‘ - same as No

• The ERROR_TXN_CODE and ERROR_TXN_TYPE allow the error condition to

specify a specific meta-data format for the parsing of the remainder of the error result from the host

system. The remainder of the error result may contain error information specific to that error result

which has to be parsed and returned in a ProcessingErrorException to the user.

• The BasicDataFormat method handleHostSystemError() is over-ridden

to specify what action to take when it has been determined that an error has occurred. This may

involve parsing the remainder of the host system data using the error transaction meta data,

defined by ERROR_TXN_CODE and ERROR_TXN_TYPE, to extract further error information from the

host system response and/or throwing a ProcessingErrorException.

• The ERROR_TXN_CODE and ERROR_TXN_TYPE need not be specified or can be

the same as the TXN_CODE and TXN_TYPE of the transaction currently being processed. This

allows the BasicDataFormat method handleHostSystemError() method to use the meta-

Financial Process Integration ■ Financial Process Integrator Meta-Data

138 ■ MCA Services Developer Guide Version 2004.5, Rev. A

data of the current transaction to be used to extract the remainder of the host system response if

required.

5.2.15 Example Error Condition

For demonstration purposes a transaction with TXN_CODE=TESTFIND and TXN_TYPE=TEST has a host

system response defined by the following Cobol copybook:

000400 01 MAIN-ACCOUNTFIND.

000410 010 ERROR-FLAG PIC X(5).

000420 010 ERROR-TYPE PIC X(20).

001300 010 CARD-NUMBER PIC 9(5).

001500 05 ACCOUNT-INFO OCCURS 10 TIMES.
001700 010 ACCOUNT-NUMBER PIC 9(5).

This results in a transaction defined with the following entries in RESPONSE_TXN_LAYOUT table:

FIELDNAME OFFSET LENGTH Data Fill Char …

Error-flag 0 5 FALSE 0

Error-Type 5 20 ‘ ‘ ‘ ’

Card-Number 25 5 ‘ ‘
…

…

If it was determined that an error was indicated by the field ERROR-FLAG having a value equal to TRUE and

ERROR-TYPE not being empty then the designer creates two entries in the RESPONSE_ERROR_CONDITION

table like:

TXN_CODE TXN_TYPE SEQUENCE TXN_FIELDNAME CONDITION VALUE

ACCOUNTFIND TEST 1 Error-Flag EQUALS ‘TRUE’

ACCOUNTFIND TEST 2 Error-Type NOT_EQUALS ‘ ‘
…

COMBINE_WITH_NEXT ERROR_TXN_CODE ERROR_TXN_TYPE

AND ACCOUNTFIND TEST

NO ACCOUNTFIND TEST

Note: the length of the VALUE field must be equal to the length of the field specified in the cobol copybook,

i.e. the host response field length, the VALUE for the ERROR-TYPE field must be 20 bytes in

RESPONSE_ERROR_CONDITION.

The designer then has to determine what the remainder of the error response contains. The designer will

implement the BasicDataFormat method handleHostSystemError() to handle the error. This might

involve immediately throwing a ProcessingErrorException or might involve parsing the remainder of

the response to extract error information to fill the ProcessingErrorException with useful information.

The RESPONSE_ERROR_CONDITION elements ERROR_TXN_CODE and ERROR_TXN_TYPE specify what

response fields and response metadata to use to parse the error host response.

Note: The values of these two elements can be the same as the TXN_CODE and TXN_TYPE of the

transaction that called the host in which case the current response fields and response metadata are used to

extract information from the host system response.

Financial Process Integration ■ Financial Process Integrator Meta-Data

MCA Services Developer Guide Version 2004.5, Rev. A ■ 139

So it might be determined that the remainder of the error response is described the following Cobol

copybook:

002020 01 HOST-SYSTEM-ERROR.

002030 05 ERROR-CODE PIC 9(5).

002040 05 ERROR-MESSAGE PIC X(30).
Therefore this metadata is entered in the response fields and response metadata tables and given the

transaction code and type: TXN_CODE=ACCOUNTFIND_ERR and TXN_TYPE=TEST.

Now the RESPONSE_ERROR_CONDITION table is updated to contain the following:

TXN_CODE TXN_TYPE SEQUENCE TXN_FIELDNAME CONDITION VALUE

ACCOUNTFIND TEST 1 Error-Flag EQUALS ‘TRUE’

ACCOUNTFIND TEST 2 Error-Type NOT_EQUALS ‘ ‘
…

COMBINE_WITH_NEXT ERROR_TXN_CODE ERROR_TXN_TYPE

AND ACCOUNTFIND_ERR TEST

NO ACCOUNTFIND_ERR TEST

Now the BasicDataFormat method handleHostSystemError() is coded to get the metadata for

TXN_CODE=TESTFIND_ERR and TXN_TYPE=TEST and processes the response extracting the ERROR-

CODE and ERROR-MESSAGE. The method creates a ProcessingErrorException containing the error

information, i.e. "Error processing transaction, host system error code: 1000, host

system error message: ACCOUNT-NUMBER invalid"

Some systems embed the error information in the original transaction response, in that each field in the host

response is appended with an error-flag field and so the same metadata is used for processing the error

response as the normal response.

For example a host response may be defined by the following Cobol copybook:

000400 01 MAIN-ACCOUNTFIND.

000410 010 ERROR-FLAG PIC X(5).

001300 010 CARD-NUMBER PIC 9(5).

001300 010 CARD-NUMBER-ERR PIC X(5).

001500 05 ACCOUNT-INFO OCCURS 10 TIMES.

001700 010 ACCOUNT-NUMBER PIC 9(5).

001700 010 ACCOUNT-NUMBER-ERR PIC X(5).
Each value field in the above transaction definition is followed by an error flag field. I.e. the error flag fields

are CARD-NUMBER-ERR and ACCOUNT-NUMBER-ERR. The host system during processing marks the value

field that caused an error by setting the corresponding error-flag field to TRUE.

In this case the designer codes the handleHostSystemError() method to use the original metadata for

the transaction to parse the remainder of the transaction response as normal. The code then determines

which field in the response is causing the error by checking each error field, CARD-NUMBER-ERR and

ACCOUNT-NUMBER-ERR.

The error flag field that has a value TRUE is shown in the resulting ProcessingErrorException. I.e. the

host system determined that the ACCOUNT-NUMBER is invalid so ACCOUNT-NUMBER-ERR=" TRUE" and the

Financial Process Integration ■ Financial Process Integrator Meta-Data

140 ■ MCA Services Developer Guide Version 2004.5, Rev. A

ProcessingErrorException is created containing the information "Error processing

transaction, host system error field: ACCOUNT-NUMBER".

Notes:

• If ERROR_TXN_CODE and ERROR_TXN_TYPE are equal to TXN_CODE and TXN_TYPE respectively

then the original metadata is used to process the remainder of the host response.

• The RESPONSE_ERROR_CONDITION table only allows specification of one form of error for each

transaction code and type. I.e., only one form of checking for an error condition, checking ERROR-

FLAG and ERROR-TYPE in the example above. And only one form of error response metadata, i.e.

ERROR-CODE and ERROR-MESSAGE in the example above. This should suffice as the error can

contain any error message and so theoretically handle any error.

• error-conditions functionality only handles simple logic combinations of error condition fields, no

nested combinations of error condition fields.

• The last error-condition field checked for a given transaction code and type determines the

ERROR_TXN_CODE and ERROR_TXN_TYPE to use. I.e. the error-condition with the last SEQUENCE.

5.2.16 Transaction Field Naming

The names used for FIELDNAME, in the RESPONSE_TXN_LAYOUT table can be of any form. However, the

following rules are guide lines for how the transaction field name, FIELDNAME, in the

RESPONSE_TXN_LAYOUT table should be named:

- Each row in the RESPONSE_TXN_LAYOUT and REQUEST_TXN_LAYOUT tables represents a single

transaction field. Only fields have entries, field groupings do not have an entry, instead each field in

the group has an entry. If a group is repeated then each group of transaction fields is repeated in

the metadata table.

- The field name will be preceded by the TXN_CODE and TXN_TYPE and OFFSET if necessary to

make the field unique to that transaction code and type.

- The field name will be the name of the field preceded by the name of each of the groups it is nested

within.

- group names are delimited by the ‘.’ Character, e.g. Header-info.restart-flag

- If a group has an occurs clause then the fields for that group must be repeated N times where N is

the value immediately after the occurs clause

- If a group has an occurs clause then each occurrence of the group will be named as follows:

groupname[n] where n is the actual occurrence of the group

- If a field has an occurs clause then each occurrence of that field must be repeated N times where N

is the value immediately after the occurs clause

- If a field has an occurs clause then each occurrence of the field will be named as follows:

fieldname[n] where n is actual occurrence of the group

The example below illustrates these rules:
01 Level1

02 Field1 Pic X(10)

Financial Process Integration ■ Mapping Entity Beans to Transactions

MCA Services Developer Guide Version 2004.5, Rev. A ■ 141

02 Field2 Pic X(15) occurs 2

02 Level2 occurs 2

03 FieldA Pic X(10)

03 FieldB Pic X(20) occurs 2

This copybook will be mapped as follows:

FIELDNAME OFFSET LENGTH FIELD_PAD_CHAR …

Level1.Field1 0 10 ‘ ’

Level1.Field2[0] 10 15 ‘ ’

Level1.Field2[1] 25 15 ‘ ‘

Level2[0].FieldA 40 10 ‘ ‘

Level2[0].FieldB[0] 50 20 ‘ ‘

Level2[0].FieldB[1] 70 20 ‘ ‘

Level2[1].FieldA 90 10 ‘ ‘

Level2[1].FieldB[0] 100 20 ‘ ‘

Level2[1].FieldB[1] 120 20 ‘ ‘

5.3 Mapping Entity Beans to Transactions

Until now we have implicitly assumed that there is a one-to-one mapping between each entity bean and

each transaction, however this is often not the case. A single transaction may contain the information to

populate several entity beans, or conversely a single entity bean may need to be populated from the

results of several transactions.

5.3.1 One transaction to one entity

This is the simplest scenario. The data in the transaction is mapped to a single entity bean instance.

5.3.2 One transaction to many entities

There are several different scenarios where one transaction may map to many entity instances:

5.3.2.1 Repeating entities of the same type

A search transaction returns one or more results. Each result corresponds to a single entity bean

instance. All entity instances are of the same type. For example a search for all accounts could return

several results, each corresponding to a single account instance.

5.3.2.2 Single entity of one type plus repeating entities of the same type

A search transaction returns several results. The first result corresponds to an entity of one type, while

the subsequent results correspond to repeating instances of an entity of a different type. For example

an account statement transaction would return the statement details entity plus one or more account

movement entities.

Financial Process Integration ■ Entity Bean Persistence and the FPI

142 ■ MCA Services Developer Guide Version 2004.5, Rev. A

5.3.2.3 Master entity with dependent entity

A search transaction returns data, which is modeled as two entities of different types. However there is

a dependency between the two objects. For example a customer details transaction could contain the

information for both a Customer entity and its dependent Address entity.

5.4 Entity Bean Persistence and the FPI

5.4.1 Introduction

The job of a Persister is to manage writing and reading data in an Entity Bean instance to/from the data

store. This means all the code for interacting with the data store is encapsulated in the Persister class. The

Entity Bean instance talks to the Persister (through a well-defined interface) rather than directly to the data

store.

This approach has the following advantages:

• The EJB developer does not have to worry about the complexities of talking to the Financial

Process Integrator (e.g. knowing transaction codes etc.) making the EJB simpler to code

• The EJB is protected from changes to the design of the Financial Process Integrator

5.4.2 com.bankframe.ejb.bmp

This package contains the EBMPEntity and the EPersister class interfaces. It also contains the

EPersisterFactory class that is used by an entity to get an instance of the persister.

5.4.2.1 com.bankframe.ejb.bmp.EBMPEntity

This interface defines the methods that all Siebel BMP Entity Beans must provide. To make it possible to

define a single generic Financial Process Integrator persister that can be used by all BMP Entity Beans the

EBMPEntity contains the populate() and the createPrimaryKey() methods, these methods are

defined in the Entity Bean.

getPersister() This method returns an instance of this Entity

Bean’s persister

getPrimaryKey() This method returns an instance of this Entity

Bean’s primary key

getEntityName() This method returns the JNDI name of the Entity

Bean.

createPrimaryKey(DataPacket dp)

This method must be implemented by all sub-

classes. It takes a DataPacket containing the

information necessary to create a primary-key and

returns an instance of the correctly initialised

EPrimaryKey class.

populate(DataPacket dp) This method must be implemented by all sub-

classes. It takes a DataPacket containing the

Financial Process Integration ■ Entity Bean Persistence and the FPI

MCA Services Developer Guide Version 2004.5, Rev. A ■ 143

data for the Entity Bean’s attributes. The

populate() method must initialise the Entity

Bean’s attributes from this information.

Please refer to the ‘Writing a Persister’ section for more detail on how two write a BMP entity bean using the

EBMPEntity interface.

5.4.2.2 com.bankframe.ejb.bmp.EPersister

This interface defines the methods that all Siebel EJB persisters must provide.
public interface EPersister {

public Enumeration find(EBMPEntity entityBean, String methodName,

DataPacket finderData) throws ProcessingErrorException;

public void load(EBMPEntity entityBean) throws ProcessingErrorException;

public void store(EBMPEntity entityBean) throws ProcessingErrorException;

public void amend(EBMPEntity entityBean, String methodName) throws

ProcessingErrorException;

public EPrimaryKey create(EBMPEntity entityBean) throws

ProcessingErrorException;

public void remove(EBMPEntity entityBean) throws

ProcessingErrorException;}

find(EBMPEntity entityBean,

String methodName, DataPacket

finderData)

This method takes an instance of the calling entity;

a methodName that specifies the name of the find

operation to carry out and a finderData

DataPacket that specifies the parameters of the

find operation. This method will be called from

Entity Bean ejbFindBy…() methods. It returns

an Enumeration containing the matching primary

keys for the specified search.

load(EBMPEntity entityBean)

This method takes an instance of the entity and

loads its instance data from the data store. This

method will be called from the Entity Bean’s

ejbLoad() method.

store(EBMPEntity entityBean)

This method takes an instance of the entity and

writes it to the data store. This method will be

called from the Entity Bean’s ejbStore()

method.

amend(EBMPEntity entityBean, This method takes an instance of the entity and a

Financial Process Integration ■ Entity Bean Persistence and the FPI

144 ■ MCA Services Developer Guide Version 2004.5, Rev. A

String methodName) methodName that contains the name of the calling

method and writes it to the data store. This

method will be called from an Entity Bean’s amend

method when some or all of the entity is being

updated.

create(EBMPEntity entityBean)

This method takes an instance of the entity and

creates it in the data store and returns an instance

of the entity’s EPrimaryKey class.

remove(EBMPEntity entityBean) This method takes an instance of the entity and

removes it from the data store.

5.4.2.3 com.bankframe.ejb.bmp.EPersisterFactory

The EPersisterFactory class is responsible for creating and returning an instance of the Entity Bean's

persister.
getPersister(String jndiName)

This method takes a String containing the JNDI name of the entity bean and returns an instance of the EJB's

persister class.

The persister is returned by appending persister. to the JNDI name of the entity bean and checking the

BankframeResource.properties file for the corresponding persister class. If there is no

persister.<EJB_JNDI_NAME> key the default persister will be used instead.

Below is an example of the persister class settings in the BankframeResource.properties:

persister.default=com.bankframe.ei.txnhandler.persister.TxnPersister

 The default persister to be used for all BMP EJBs.
persister.eontec.bankframe.examples.bo.customer=com.bankframe.ei.txnhandle
r.persister.MasterEntityPersister

Specifies the persister to use for the specified EJB JNDI name.

Once the persister class has been identified the factory class checks to see if an instance of the class exists

if one does it will return it, other wise it creates a new instance.

The persister is a stateless class that provides utility functions that need no more information than their

parameters. No state information can be stored in the class.

The factory creates the persister as a singleton, for more information on the singleton design pattern please

refer to the following:
http://c2.com/cgi-bin/wiki?SingletonPattern

5.4.3 Writing a Persister

The following are examples of how to implement methods declared in the EPersister interface using the

com.bankframe.ei.txnhandler.persister.TxnPersister as an example. TxnPersister is the

Financial Process Integrator implementation of the EPersister.

Financial Process Integration ■ Entity Bean Persistence and the FPI

MCA Services Developer Guide Version 2004.5, Rev. A ■ 145

5.4.3.1 find(EBMPEntity entityBean, String methodName, DataPacket
finderData)

The find() method is the entry-point to all search transactions that can be run against the host-system.

This method maps the Entity Bean’s name and the methodName to a transaction code and a transaction

type; it also retrieves the cache policy and decay time for the transaction. If the transaction can be cached it

checks the cache for the data, to do this it calls the Cache’s checkPrimaryKeyInCache() method which

takes a DataPacket containing the primary key of the entity and a long containing the time-out value of

the Transaction. If the transaction is not cached or the decay time has elapsed the transaction code and the

transaction type are added to a DataPacket containing the parameters of the find operation and this

DataPacket is sent to the Financial Process Integrator. The Financial Process Integrator will return a Map

containing the search results. The persister stores the results in the cache by calling the Cache’s store()

method passing it the Map of results returned from the Financial Process Integrator.

public Enumeration find(EBMPEntity entityBean, String methodName, DataPacket
finderData) throws ProcessingErrorException {

Enumeration result = null;

//Using the entity name and the methodName get the txnCode, //txnType,
cachePolicy, and timeOutValue of the transaction from //the
PERSISTER_TXN_MAP database table.

DataPacket txnMap = this.mapTxn(entityBean.getEntityName(), methodName);

String cachePolicy =
txnMap.getString(PersisterTxnMapConstants.CACHE_POLICY);

long timeOutValue = new
Long(txnMap.getString(PersisterTxnMapConstants.TIME_OUT_VALUE)).longValue();

//check the cache policy to see if the data is cached

if (!cachePolicy.equalsIgnoreCase(TxnPersisterConstants.NOT_CACHED)) {

//check cache for the primary key

if (!this.checkPrimaryKeyInCache(finderData, timeOutValue)) {

//calling the processTxnRequest() method to send request to //the
Financial Process Integrator and to receive and cache the
//response.

result = this.processTxnRequest(entityBean,
this.getTxnData(finderData, txnMap), cachePolicy);

}

else {

//the data is in the cache so return an enumeration of the
//primary key

Vector entityPk = new Vector();

entityPk.addElement(entityBean.createPrimaryKey(finderData));

result = new IteratorEnumeration(entityPk.iterator());

}

Financial Process Integration ■ Entity Bean Persistence and the FPI

146 ■ MCA Services Developer Guide Version 2004.5, Rev. A

}

else {

//calling the processTxnRequest() method to send request to
//the Financial Process Integrator and to receive and cache the

//response.

result = this.processTxnRequest(entityBean,
this.getTxnData(finderData, txnMap), cachePolicy);

}

return result;

}

5.4.3.2 processTxnRequest(EBMPEntity entityBean, DataPacket txnData,
String cachePolicy)

This protected method is called by the find() method. It is responsible for passing the transaction details

to the Financial Process Integrator, receiving the response, placing it in the cache and returning an

enumeration of primary keys.

protected Enumeration processTxnRequest(EBMPEntity entityBean, DataPacket
txnData, String cachePolicy) throws ProcessingErrorException {

try {

Vector entityPk = new Vector();

String txnCode =
txnData.getString(TransactionHandlerConstants.TXN_CODE);

if ((txnCode == null) ||
txnCode.equalsIgnoreCase(TransactionHandlerConstants.FIELD_NA)) {

// do nothing

}

else {

//Get an instance of the Financial Process Integrator and send the
transaction //data to the processFindRequest() method.

TransactionHandler transactionHandler = this.getTxnHandler();

Map map = transactionHandler.processFindRequest(txnData);

boolean persistant;

//Before caching the data check to see if it is persistent or not.
//Persistent data will be written to a database as well as to memory.

if
(cachePolicy.equalsIgnoreCase(TxnPersisterConstants.CACHE_PERSISTENT)) {

persistant = true;

}

else if
(cachePolicy.equalsIgnoreCase(TxnPersisterConstants.CACHE_NON_PERSISTENT) ||
cachePolicy.equalsIgnoreCase(TxnPersisterConstants.NOT_CACHED)) {

Financial Process Integration ■ Entity Bean Persistence and the FPI

MCA Services Developer Guide Version 2004.5, Rev. A ■ 147

persistant = false;

}

else {

//throw an exception

}

//get the timeout value for the data and then store it in the cache.

long timeOutValue = new
Long(txnData.getString(PersisterTxnMapConstants.TIME_OUT_VALUE)).longValue();

this.storeInCache(map, timeOutValue, persistant);

//Process the keys of the map returned from the Financial Process Integrator
to //return an enumeration of primary keys.

Set keys = map.keySet();

Enumeration enum = Collections.enumeration(keys);

while (enum.hasMoreElements()) {

EPrimaryKey pk = entityBean.createPrimaryKey((DataPacket)
enum.nextElement());

if (pk != null) {

entityPk.addElement(pk);

}

}

}

return new IteratorEnumeration(entityPk.iterator());

}

catch (CreateException ce) {

throw new ProcessingErrorException(ce);

}

catch (RemoteException re) {

throw new ProcessingErrorException(re);

}

}

5.4.3.3 mapTxn(String entityName, String methodName)

The persister class to get instances of the PersisterTxnMap Entity uses this protected method. Using the

entity name and the methodName the txnCode, txnType, cachePolicy, and timeOutValue of the

transaction from the PERSISTER_TXN_MAP database table.

protected DataPacket mapTxn(String entityName, String methodName) throws
ProcessingErrorException {

try {

Financial Process Integration ■ Entity Bean Persistence and the FPI

148 ■ MCA Services Developer Guide Version 2004.5, Rev. A

PersisterTxnMapHome txnMaphome = (PersisterTxnMapHome)
ObjectLookup.lookup(PersisterTxnMapConstants.PERSISTERTXNMAP_JNDI_NAME,
PersisterTxnMapHome.class);

PersisterTxnMapPK primaryKey = new PersisterTxnMapPK();

primaryKey.entityName = entityName;

primaryKey.methodName = methodName;

PersisterTxnMap persisterTxnMap = (PersisterTxnMap)
txnMaphome.findByPrimaryKey(primaryKey);

DataPacket result = persisterTxnMap.toDataPacket();

return result;

}

catch (FinderException fe) {

throw new ProcessingErrorException(fe);

}

catch (RemoteException re) {

throw new ProcessingErrorException(re);

}

}

5.4.3.4 load(EBMPEntity entityBean)

The load() method is called by the entity bean’s ejbLoad() method. All data returned by the Financial

Process Integrator from the host is cached. The load() method uses the Entity Bean's primary key to

retrieve the entity's data from the cache. It then calls the Entity Bean's populate() method to update the

entity's attributes with the cached data.
public void load(EBMPEntity entityBean) throws ProcessingErrorException {

EPrimaryKey pk = entityBean.getPrimaryKey();

//retrieve the data from the cache.

DataPacket cacheData = cache.retrieve(pk.toDataPacket());

if (cacheData == null) {

//throw an exception

}

//call the entity’s populate method

entityBean.populate(cacheData);

}

5.4.3.5 amend(EBMPEntity entityBean, String methodName)

The amend() method is called by an entity’s amend…() method it takes an instance of the entity and the

methodName, calls the toDataPacket() on the entity bean and then calls the persister’s

amend(EBMPEntity entityBean, String methodName, DataPacket amendData). The

amend() is used for updating some or all of an entity's attributes

Financial Process Integration ■ Entity Bean Persistence and the FPI

MCA Services Developer Guide Version 2004.5, Rev. A ■ 149

public void amend(EBMPEntity entityBean, String methodName) throws
ProcessingErrorException {

try {

this.amend(entityBean, methodName, entityBean.toDataPacket);

}

catch (RemoteException re) {

throw new ProcessingErrorException(re);

}

}

5.4.3.6 amend(EBMPEntity entityBean, String methodName)

The amend() method is called by an entity’s amend…() method, it takes an instance of the entity, the

methodName and a DataPacket of data to use to update the entity and then calls the persister’s protected

amend(EBMPEntity entityBean, String methodName, DataPacket data, Vector

primaryKeys, boolean removeOperation) method. The amend() is used for updating some or all of

an entity's attributes.
public void amend(EBMPEntity entityBean, String methodName, DataPacket
amendData) throws ProcessingErrorException {

Vector pksOfEntitiesToAmend = new Vector();

pksOfEntitiesToAmend.add(entityBean.getPrimaryKey().toDataPacket());

this.amend(entityBean, methodName, amendData, pksOfEntitiesToAmend,
false);

}

5.4.3.7 amend(EBMPEntity entityBean, String methodName, DataPacket
data, Vector primaryKeys, boolean removeOperation)

The protected amend() method is called by the persister’s amend…() method. The amend() checks if the

txnCode is set to CACHE_ONLY, if it is then it will only update the cache, otherwise it adds the transaction

code and the transaction type to a DataPacket containing the entity bean's update attributes and sends the

DataPacket to the Financial Process Integrator. It also takes a boolean value which indicates if a remove

operation is to be carried out on the host or from the cache. The amend() is used for updating some or all

of an entity's attributes.

The key persister.cache.updateOnAmend in BankframeResource.properties determines if the

cache is updated or removed after the amend operation is sent to the Financial Process Integrator.
protected void amend(EBMPEntity entityBean, String methodName, DataPacket data,

Vector primaryKeys, boolean removeOperation) throws ProcessingErrorException {

try {

//Using the entity name and the methodName get the txnCode,

Financial Process Integration ■ Entity Bean Persistence and the FPI

150 ■ MCA Services Developer Guide Version 2004.5, Rev. A

//txnType, cachePolicy, and timeOutValue of the transaction from

//the PERSISTER_TXN_MAP database table.

DataPacket amendData = this.mapTxn(entityBean.getEntityName(),

methodName);

String txnCode =

amendData.getString(TransactionHandlerConstants.TXN_CODE);

String txnType =

amendData.getString(TransactionHandlerConstants.TXN_TYPE);

long timeOutValue = new

Long(amendData.getString(PersisterTxnMapConstants.TIME_OUT_VALUE)).longValue();

if (getIgnoreHost(txnCode) == false) {

TransactionHandler transactionHandler = this.getTxnHandler();

DataPacket update = new DataPacket(data.DATA_PACKET_NAME);

update.append(update, data);

//Add txnCode and txnType

update.put(TransactionHandlerConstants.TXN_CODE, txnCode);

update.put(TransactionHandlerConstants.TXN_TYPE, txnType);

//send data to the Financial Process Integrator processRequest()

method

transactionHandler.processRequest(update);

}

if (removeOperation || getRemoveFromCache()) {

this.removeFromCache(primaryKeys);

}

else {

//put data into a map (same data used for each primary key):

Map entityMap = new HashMap();

for (int index = 0; index < primaryKeys.size(); index++) {

entityMap.put(primaryKeys.elementAt(index), data);

}

String cachePolicy =

amendData.getString(PersisterTxnMapConstants.CACHE_POLICY);

boolean bCachePolicy =

(cachePolicy.equalsIgnoreCase(TxnPersisterConstants.CACHE_PERSISTENT)) ? true :

false;

this.storeInCache(entityMap, timeOutValue, bCachePolicy);

}

}

catch (RemoteException re) {

throw new ProcessingErrorException(re);

}

Financial Process Integration ■ Entity Bean Persistence and the FPI

MCA Services Developer Guide Version 2004.5, Rev. A ■ 151

catch (CreateException ce) {

throw new ProcessingErrorException(ce);

}

}

5.4.3.8 store(EBMPEntity entityBean)

The store() method notifies the Financial Process Integrator of a change to an Entity Bean instance. This

method maps the Entity Bean’s name to a transaction code and a transaction type. It adds the transaction

code and the transaction type to a DataPacket containing the entity bean’s update attributes and sends

the DataPacket to the Financial Process Integrator. The store() is used for updating all of an entity’s

attributes. The store() method is called from the Entity Bean’s ejbStore. This store() method is

provided to allow for it to be overwritten for a specific implementation but typically it calls the

amend(EBMPEntity entityBean, String methodName) method with a methodName variable with a

value of store.

public void store(EBMPEntity entityBean) throws
ProcessingErrorException {

this.amend(entityBean, TxnPersisterConstants.STORE_NAME);

}

5.4.3.9 storeInCache(Map data, long timeOutValue, boolean persistent)

The protected storeInCache() method used by the persister to determine which cache to store the host

data in either the default cache or the time out cache.
protected void storeInCache(Map data, long timeOutValue, boolean
persistent) throws ProcessingErrorException {

if (this.timeoutCache != null) {

this.timeoutCache.store(data, timeOutValue, persistent);

}

else {

cache.store(data, persistent);

}

}

5.4.3.10 create(EBMPEntity entityBean)

The create() method notifies the Financial Process Integrator that a new record needs to be created on

the Host System. The create() method is called form the entity bean’s ejbPostCreate() method to

create a new record on the Host System. This create() method is provided to allow for it to be overwritten

for a specific implementation but typically it calls the amend(EBMPEntity entityBean, String

methodName) method with a methodName variable with a value of create. Returns the primary key if the

create was successful.
public EPrimaryKey create(EBMPEntity entityBean)

Financial Process Integration ■ Entity Bean Persistence and the FPI

152 ■ MCA Services Developer Guide Version 2004.5, Rev. A

throws ProcessingErrorException {

try {

this.amend(entityBean,
TxnPersisterConstants.CREATE_NAME);

EPrimaryKey pk =
entityBean.createPrimaryKey(entityBean.toDataPacket());

return pk;

} catch (RemoteException re) {

throw new ProcessingErrorException(re);

}

}

5.4.3.11 remove(EBMPEntity entityBean)

The remove() method notifies the Financial Process Integrator that a record on the Host System should be

deleted. The remove() method notifies the Financial Process Integrator that a record on the Host System

should be deleted. This remove() method is provided to allow for it to be overwritten for a specific

implementation but typically it calls the amend(EBMPEntity entityBean, String methodName)

method with a methodName variable with a value of remove.

public void remove(EBMPEntity entityBean) throws

ProcessingErrorException {

this.amend(entityBean, TxnPersisterConstants.REMOVE_NAME,
true);

}

5.4.3.12 removeFromCache(EBMPEntity entityBean)

The removeFromCache() method is used to delete an Entity’s cached data from the cache.

public void removeFromCache(EBMPEntity entityBean) throws
ProcessingErrorException {

try {

DataPacket pk =
entityBean.createPrimaryKey(entityBean.toDataPacket()).toDataPacket();

Vector pks = new Vector();

pks.addElement(pk);

this.removeFromCache(primaryKeys);

}

catch (RemoteException re) {

throw new ProcessingErrorException(re);

}

}

Financial Process Integration ■ Entity Bean Persistence and the FPI

MCA Services Developer Guide Version 2004.5, Rev. A ■ 153

5.4.3.13 removeFromCache(Vector primaryKeys)

This protected method is used by the persister to delete an Entity’s cached data from the cache.
protected void removeFromCache(Vector primaryKeys) throws
ProcessingErrorException {

cache.remove(primaryKeys, true);

}

5.4.4 PersisterTxnMap

5.4.4.1 PERSISTER_TXN_MAP Table

The Persister takes care of talking to the Financial Process Integrator. In order to do this it must be able to

match the entity and method called to the txnCode and txnType, to do this it uses the

PERSISTER_TXN_MAP table. Using the method name and the entity’s JNDI name the Persister retrieves the

txnCode and txnType. The PERSISTER_TXN_MAP table also contains details of the caching policy and

decay time for the specified Transaction. The Persister checks the cache to see if the information it needs is

stored there. If the Transaction is cached a time out value is specified so that the Persister can check if the

data in the cache needs to be refreshed or is still valid.
ENTITY_

NAME

METHOD_

NAME

TXN_

CODE

TXN_

TYPE

CACHE_

POLICY

TIME_OUT

_VAULE

eontec.

bankframe.Ac

count

getAccountD

etails()

MQ_ACC01 MQIMS none 5

5.4.4.1.1 ENTITY_NAME

The ENTITY_NAME attribute in the PERSISTER_TXN_MAP table maps to the entityName attribute in the

Persister class. The entityName is the JNDI name of the bean e.g. eontec.bankframe.Account.

5.4.4.1.2 METHOD_NAME

The METHOD_NAME attribute in the PERSISTER_TXN_MAP table maps to the methodName attribute in the

Persister class. The methodName is the name of the method which is being called e.g.

getAccountDetails().

5.4.4.1.3 TXN_CODE

This attribute contains the code number for the host transaction.

5.4.4.1.4 TXN_TYPE

This attribute identifies the middleware associated with a transaction such as MQSeries, IMS, TUXEDO,

CICS.

Financial Process Integration ■ Entity Bean Persistence and the FPI

154 ■ MCA Services Developer Guide Version 2004.5, Rev. A

5.4.4.1.5 CACHE_POLICY

The CACHE_POLICY field states whether the data from the Financial Process Integrator is cached or not.

The CACHE_POLICY should be set to none if the transaction results cannot be cached, to persistent if

the cache is to be written to a database so it is available even if there is a system failure or to memory if it is

to be cached in memory.

5.4.4.1.6 TIME_OUT_VALUE

The TIME_OUT_VALUE attribute in the PERSISTER_TXN_MAP specifies the length of time in milliseconds

that the stored data remains valid. When data is retrieved from the cache its creation time is compared to

the current time and if the difference is greater than the TIME_OUT_VALUE the data is requested from the

host.

5.4.4.2 Example

Please refer to the examples section for more detail on how to configure the PERSISTER_TXN_MAP table.

5.4.4.3 com.bankframe.ei.txnhandler.persistertxnmap

5.4.4.4 PersisterTxnMapBean

PersisterTxnMapBean is a container-managed entity bean that houses information about the relation of

an entity bean’s methods to host transactions. It maps to the PERSISTER_TXN_MAP table in the database.

The PersisterTxnMapBean solution set layer is located in the

com.bankframe.ei.txnhandler.persistertxnmap package and its implementation is in the

com.bankframe.ei.impl.txnhandler.persistertxnmap package.

5.4.5 Configuring BankframeResource.properties

Key Name Example Value Description
persister.cache.

updateOnAmend

yes Determines if the cache is

updated or removed after an

amend operation. Possible

values are yes or no.

persister.default com.bankframe

.ei.txnhandler

.persister.

TxnPersister

The default persister to be

used for all BMP EJBs.

persister.

<EJB_JNDI_NAME>

com.bankframe.

ei.txnhandler.

persister.

MasterEntityPersister

Specifies the persister to use

for the specified EJB JNDI

name.

Financial Process Integration ■ Financial Process Integrator Caching

MCA Services Developer Guide Version 2004.5, Rev. A ■ 155

5.5 Financial Process Integrator Caching

5.5.1 Introduction

In this release of MCA Services the host cache package has been superseded by the caching framework

package. Each cache class in the com.bankrame.ei.txnhandler.hostcache package can be

described by a Cache/CachePolicy combination from the com.bankframe.services.cache package.

Please read the Caching Framework document for more information on caches and cache policies.

5.5.2 Host Cache Examples

Generally it is recommended to create a new com.bankframe.services.cache.Cache instance with a

given cache policy whenever caching is needed. However should you need to create a cache based on the

deprecated host cache settings in BankFrameResource.properties then the following method should

be used:
com.bankframe.services.cache.CacheFactory.getHostCache(String cacheName)

This method will return an instance of com.bankframe.services.cache.Cache. This cache can be

manipulated by methods described in the Caching Framework document. This cache will also have a

Caching Policy associated with it that describes how the cache deals with removal of expired entries.

5.5.3 Configuring BankframeResource.properties

These settings are legacy settings from BankframeResource.properties related to the host cache and

are deprecated. Since all caching should be done through the caching framework, these are retained for

backwards compatibility. These settings are used by the

com.bankframe.services.cache.CacheFactory.getHostCache(String cacheName) method to

return a cache instance from the caching framework that correctly reflects the cache properties described in

these settings.

5.5.3.1 Deprecated Host Cache Settings

Key Name Example Value Description

transactionHandler.hostcache.maxMemCach

eSize

500 The maximum

memory cache

size.

transactionHandler.hostcache.threshold 20 Used to

determine how

many entries to

move at once.

transactionHandler.hostcache.cacheType SINGLEJVM,

LUSTERABLE or

The cache

implementation

Financial Process Integration ■ Financial Process Integrator Engine

156 ■ MCA Services Developer Guide Version 2004.5, Rev. A

CLUSTERABLE or

MEMORY

implementation

to use.

We also require that 0 < threshold < maxMemCacheSize < maxDbCacheSize.

5.6 Financial Process Integrator Engine

The Financial Process Integrator engine is the core of the Financial Process Integrator; it must perform the

following tasks:

- Transform DataPacket requests into data messages of the correct format for the host system.

- Route data messages to the appropriate host system using a Siebel Connector

- Transform incoming data responses from Siebel Connector into DataPacket results.

The Financial Process Integrator has two usage scenarios:

- It is invoked by a persister class, this is usually done in response to a call from an Entity Bean

finder method, i.e. a search operation

- It is invoked from a session bean, this is usually done for amend operations

The Financial Process Integrator provides an interface to support both these usage scenarios.

For each new host system that MCA Services is to transact with, the following have to be customized in the

Financial Process Integrator Engine:

1. The DESTINATION and TXN_ROUTE database tables have to be edited to specify a Siebel

Connector appropriate for the type of host system.

2. The meta-data has to be designed and edited. The meta-data defines the form of the host system

requests and responses. The Financial Process Integrator engine uses the meta-data definitions to

process the transaction requests to and from the host system. The meta-data is explained further

in the meta-data chapter.

3. The BasicDataFormat class may have to be customized. The Financial Process Integrator

engine uses the BasicDataFormat class for host system specific formatting and processing of

transaction requests and responses.

4. The necessary entries in BankframeResource.properties have to be edited. This is detailed

further in the section on configuring BankframeResource.properties.

These steps are described in the following sections.

5.6.1 Financial Process Integrator Engine Interface

The Financial Process Integrator engine is implemented as a stateless EJB session bean called

TransactionHandler. The TransactionHandler solution set layer is located in the

com.bankframe.ei.txnhandler.transactionhandler package and its implementation is in the

com.bankframe.ei.impl.txnhandler.transactionhandler package. Its remote interface provides

the following methods:

java.util.Map processFindRequest

(DataPacket txnData)

process a findBy request transaction. This is a

search.

Vector processRequest process a create, amend or remove operation.

Financial Process Integration ■ Financial Process Integrator Engine

MCA Services Developer Guide Version 2004.5, Rev. A ■ 157

(DataPacket txnData)

5.6.1.1 processFindRequest (DataPacket dataPacket)

This method is called whenever a findBy request transaction needs to be sent to the host system. The

DataPacket parameter txnData specifies values that will be placed in the transaction request that is sent

to the host system. The method processFindRequest() returns a Map that contains all the entities that

make up the host system response. The key to a Map element is a DataPacket of the primary key for that

entity in the Map. This method throws a java.rmi.RemoteException or a

com.bankframe.ejb.ProcessingErrorException if an error occurs.

5.6.1.2 processRequest (DataPacket dataPacket)

This method is called by a session bean to update data on the host system. It takes a DataPacket

indicating what fields to amend. The session bean creates a DataPacket of all the values in the host

system that have to be updated and passes the DataPacket to this method on the Financial Process

Integrator.

The processRequest() returns a Vector containing all the entities that make up the host system

response.

This method throws a java.rmi.RemoteException or a

com.bankframe.ejb.ProcessingErrorException if an error occurs.

5.6.2 Transaction Request DataPacket

The transaction request DataPacket is the DataPacket passed to the Financial Process Integrator by a

client, i.e., the persister, to request that a transaction be processed. The table below shows the elements of

a sample transaction request DataPacket.

TXN_CODE TEST_ACC

TXN_TYPE TXNMQ

ACCOUNT_NAME John Williams

The transaction code, TXN_CODE, specifies the transaction ID as defined on the host system.

The transaction type, TXN_TYPE, specifies which host system the transaction is sent to.

TXN_CODE and TXN_TYPE are used to determine:

1. Which Siebel Connector will be used to communicate with the host system.

2. Which transaction fields the specific transaction request to the host system must contain.

3. Which transaction fields the specific transaction response from the host system contains.

In the sample DataPacket shown above ACCOUNT_NAME is the data value that is required for the host

system to process the transaction request. The name of the customer in this case is ‘John Williams’.

This name will be used in all the transaction fields passed to the host system that require an

ACCOUNT_NAME value.

Financial Process Integration ■ Financial Process Integrator Engine

158 ■ MCA Services Developer Guide Version 2004.5, Rev. A

5.6.3 Transaction Request Processing Steps

A transaction request data object has to be created from the transaction request DataPacket, shown in the

previous section, to pass to the host system. The form of this transaction request depends on the host

system and the Siebel Connector being used to connect to the host system. The transaction request has to

be built by the Financial Process Integrator to work with the appropriate Siebel Connector and host system,

this requires a conversion from the string based transaction request DataPacket to a host system specific

format.

The steps the Financial Process Integrator performs to handle a transaction request are:

1. Build all the necessary fields for the transaction request by querying the entity bean

RequestTransactionField with the TXN_CODE, TXN_TYPE, i.e. obtain all the transaction fields

that are necessary for this type of transaction request to be processed on the host system. This

entity bean is covered further in the meta-data chapter.

2. The BasicDataFormat class fills the appropriate transaction fields with data from the transaction

request DataPacket i.e., using the transaction request DataPacket shown in the previous

section the transaction field values that require a value for the ACCOUNT_NAME are filled with the

value ‘John Williams’. The BasicDataFormat class is described in a later section.

3. The BasicDataFormat class forms a host system formatted data object request consisting of the

selected transaction fields

4. The host system data object is passed to the appropriate Siebel Connector. The appropriate

Siebel Connector is determined by querying the TransactionRoute and Destination entity

beans.

5. The Connector’s responsibility is to pass the request on to the host system. This is covered further

in the Connectors chapter.

6. The data object response is returned by the host system via the Siebel Connector

7. The necessary transaction fields for the host system response are determined by querying the

entity beans ResponseTransactionField and TransactionMetaData with the TXN_CODE,

TXN_TYPE. These entity beans are covered further in the meta-data chapter.

8. The BasicDataFormat class extracts the appropriate fields from the host system response using

the transaction fields determined in 7

9. The BasicDataFormat class determines if the host system response is an error result by

querying the entity bean TransactionErrorCondition with the TXN_CODE, TXN_TYPE and the

host system response data. This is described in more detail in the meta-data chapter.

10. The BasicDataFormat class creates a Map or Vector (depending if the operation is a find or an

amend) of response DataPackets from the extracted data

11. The BasicDataFormat determines if another request has to be sent to the host system due to the

host sending the response data in sub-parts, the entire process is repeated if necessary

The Response DataPackets are returned to the calling client in the form of a Map or Vector.

5.6.4 Transaction Data-Format Class

The Financial Process Integrator uses a data-format class for:

Financial Process Integration ■ Financial Process Integrator Engine

MCA Services Developer Guide Version 2004.5, Rev. A ■ 159

1. Processing of request DataPackets into host system specific data

2. Processing of host system response data into DataPackets

3. Creating/removing and processing of the transaction headers

4. Pre-processing the response before the transaction fields are processed

5. Formatting the transaction fields for making a request to the Siebel Connector

6. Formatting the transaction fields in the response from the Siebel Connector

7. Determine if repeated requests are required to be sent to the host system.

The Financial Process Integrator engine determines the correct data-format class to use at run-time by

querying the TransactionRoute entity bean (the TransactionRoute entity bean will be covered in

more detail in a later section.)

For each form of host system the BasicDataFormat class may have to be customized. The Siebel MCA

class com.bankframe.ei.txnhandler.dataformat.basic.BasicDataFormat is a generic base

data-format class implementation. This can be sub-classed to reuse the main functionality.

5.6.4.1 DataFormat Class Interface

All data-format classes must implement the DataFormat interface

com.bankframe.ei.txnhandler.dataformat.DataFormat. This interface has the following

definition:
import com.bankframe.ejb.ProcessingErrorException;

public interface DataFormat {

public void toDataPacketsMap(Object txnData, Map responseEntitiesMap,

DataPacket txnDataPacket, String txnCode, String txnType) throws

ProcessingErrorException;

public void toDataPacketsVector(Object txnData, Vector

responseEntitiesVector, DataPacket txnDataPacket, String txnCode, String

txnType) throws ProcessingErrorException;

public Object buildRequestTxn(DataPacket txnDataPacket, String

txnCode, String txnType) throws ProcessingErrorException;

public boolean moreToRequest();

public void notifyProcessingFinished();

Financial Process Integration ■ Financial Process Integrator Engine

160 ■ MCA Services Developer Guide Version 2004.5, Rev. A

public void setConnectionSpecification(Object command, String

connectorProperties) throws ProcessingErrorException;

}

Any modifications necessary for transaction processing can be made in the data-format class without

modifying the Financial Process Integrator source code.

The methods buildRequestTxn(), toDataPacketsMap() and toDataPacketsVector() use:

• the utility class com.bankframe.ei.txnhandler.dataformat.DataFormatUtils to

perform common routines such as converting ASCII text to EBCDIC format.

• the following class to get all meta-data required to process the transaction:
com.bankframe.ei.txnhandler.dataformat.TransactionHandlerUtils

5.6.4.2 Instantiating the Data-Format Class

The Financial Process Integrator instantiates the specified data-format class as shown in the following

pseudo-code:
//The Transaction Route Entity Bean used to get the DataFormat class name:

TransactionRoute txnRoute;

//Obtain DataFormat class name from the Transaction Route Entity Bean

String dataFormatClass = txnRoute.getDataFormatName();

//load and instantiate class using reflection

Class classFactory = Class.forName(dataFormatClass);

DataFormat dataFormat = (DataFormat) classFactory.newInstance();

//call the required method, e.g.,

boolean moretoRequest = dataFormat.moreToRequest();

5.6.4.3 Data-Format Class Request Processing Steps

The Financial Process Integrator creates the host system request using the Data-Format method

buildRequestTxn(txnDataPacket, txnCode, txnType). The implementation of the

BasicDataFormat processing depends on the host system format and can be customized depending on

the host system requirements.

buildRequestTxn(txnDataPacket, txnCode, txnType) makes the following processing steps:

1. A byte stream is created to contain the transaction request that will be passed to the host system

via the host Connector.

Financial Process Integration ■ Financial Process Integrator Engine

MCA Services Developer Guide Version 2004.5, Rev. A ■ 161

2. The request transaction fields necessary for the specified transaction code and type are obtained

by calling the TransactionHandlerUtils method generateTxnRequestFields(txnCode,

txnType).

3. For each request transaction field a value for the field is obtained from the request DataPacket,

txnDataPacket. If the field value is not a MANDATORY field in the request DataPacket then the

default value specified in REQUEST_TXN_LAYOUT is used.

4. Each request transaction field value is formatted according to the settings specified in

REQUEST_TXN_LAYOUT and added to the byte stream. This is performed by the method

fillTxnField(TransactionField txnField, String dataValue).

5. The byte stream is returned to the Financial Process Integrator.

5.6.4.4 Data-Format Class Response Processing Steps

The Financial Process Integrator calls the method toDataPacketsMap() to process the host system

response for a find operation. The Financial Process Integrator calls the method

toDataPacketsVector() to process the host system response for an amend operation.

The implementation of the BasicDataFormat processing depends on the host system format and can be

customized depending on the host system requirements.

The two methods make the following processing steps:

1. processTxnResponse () is called for the host system response data.

2. processTxnResponse () calls the method checkForErrorCondition() to test the host

system response to determine if it is an error result from the host system.

3. checkForErrorCondition() calls checkForErrorValue() to determine if a transaction field

value matches an error condition.

4. If an error occurred then processTxnResponse () calls the method

handleHostSystemError(). The method handleHostSystemError() is customised if error

handling is required for a host system. It takes appropriate action such as further processing of

meta-data and throwing of a ProcessingErrorException. See BasicDataFormat class for

an example.

5. If no error occurred then processTxnResponse() calls the method

processTransactionRecord().

6. The method processTransactionRecord() gets the necessary meta-data specified by the

TXN_CODE and TXN_TYPE in the request DataPacket using the class

com.bankframe.ei.txnhandler.dataformat.TransactionHandlerUtils

7. The method processTransactionRecord() calls the method preProcessTxnData() to pre-

process the response data, i.e., removes the header information if necessary.

8. The method processTransactionRecord() processes the host system data extracting data

necessary for each entity specified by the meta-data. Entity DataPacket results processed from

the host system data are added to the Vector of entity bean results, responseEntities. If a

Map of entities is being created (due to toDataPacketMap() starting the process) then for each

element in the Vector responseEntities a Vector of all the associated primary key

Financial Process Integration ■ Financial Process Integrator Engine

162 ■ MCA Services Developer Guide Version 2004.5, Rev. A

DataPackets is added for later processing. The Vector of associated primary keys is updated as

primary key values are extracted from the host system response data.

9. Processing returns at this point to toDataPacketsMap() and toDataPacketsVector()

10. checkIfNoEntitiesFound() is called to check if any entity DataPackets were processed

from the host system data. If none were processed then the BasicDataFormat class returns from

processing.

11. checkIfMoreToRequest() is called to update the flag indicating if this transaction requires

further calls to the host system

12. The method postProcessResponseData() is called to perform any necessary post processing

of the Vector of entities, responseEntities, which were created from the host system data

13. At this point the method toDataPacketsMap() converts the Vector of entities into a Map of

entities. The key to each entity in the Map is the primary key DataPacket created previously

during step 8.

14. The method toDataPacketsMap()returns the Map of entities to the Financial Process Integrator

engine. The method toDataPacketsVector()returns the Vector of entities to the Financial

Process Integrator engine.

The Financial Process Integrator engine will call moreToRequest(…) to check if the request has to be

generated again, more data retrieved from the host system and the above steps repeated to process the

response.

5.6.4.5 toDataPacketsVector()

The method toDataPacketsVector(Object txnData, Vector responseEntitiesVector,

DataPacket txnDataPacket, String txnCode, String txnType)

converts the host system response data object elements into DataPackets to respond to the client. The

method returns the results in a Vector of DataPackets called responsEntitiesVector that will be

sent to the client.

The resulting DataPacket contents depend on the meta-data definition.

The names of the DataPackets in the Vector are specified by the DP_NAME field in the meta-data table

RESPONSE_META_DATA. The names of the elements in the DataPacket are the DP_FIELD values

specified in the meta-data table RESPONSE_META_DATA, this is described in detail in the meta-data chapter.

This is called by the Financial Process Integrator method processRequest() for amending data on the

host system. The session bean that called the Financial Process Integrator in this case expects a Vector

of results DataPackets

5.6.4.6 toDataPacketsMap()

The method toDataPacketsMap(Object txnData, Map responseEntitiesMap, DataPacket

txnDataPacket, String txnCode, String txnType)

converts the response from the host system into DataPackets to respond to the client. The method returns

the results in the Map responseEtitiesMap in the form of DataPackets which will be sent to the client.

This is called by the Financial Process Integrator method processFindRequest() for getting data on the

Financial Process Integration ■ Financial Process Integrator Engine

MCA Services Developer Guide Version 2004.5, Rev. A ■ 163

host system. The entity bean that called the Financial Process Integrator in this case expects a Map of

results DataPackets

The Map elements are the entity elements determined from the host system response.

The key to an element in the map is a DataPacket object containing the primary key elements of the entity

in question.

The name of the DataPacket takes the form: <ENTITYNAME>

For example an entity called TEST could have a primary key DataPacket with the following values:

DATA PACKET NAME = TEST

SORT_CODE = 99-99-99

ACCOUNT_NUMBER = 11223344

This is the key to the entity element in the Map. Associated with the key is an element containing the

DataPacket of values for the entity in question.

The name of the DataPacket is specified by the DP_NAME field in the meta-data table

RESPONSE_META_DATA. The names of the elements in the DataPacket are the DP_FIELD values

specified in the meta-data table RESPONSE_META_DATA, these are the names understood by the persister

object that calls the Financial Process Integrator. The meta-data tables are described in detail in the meta-

data chapter.

For example the element associated with the key shown previously could be a DataPacket with the

following values:
DATAPACKET NAME = TEST

ACCOUNT_NAME = John Williams

SORT_CODE = 99-99-99

ACCOUNT_NUMBER = 11223344

5.6.4.7 moreToRequest ()

When the Financial Process Integrator uses the BasicDataFormat class to process the response data

from the host system the BasicDataFormat class determines if there is more data still to process from the

host system. This may be the case where the header in the response data specifies that the response from

the host system has been broken into several parts. This method allows the Financial Process Integrator to

detect if the host system is finished sending response data or if there is more data to be received and

processed.

The BasicDataFormat class generally determines if there are more requests to send to the host system

as follows:

1. The definition of the meta-data for the host system defines two header fields: a flag indicating that

the host system has to be called again and a counter for the current count of calls made to the host

system for the request.

Financial Process Integration ■ Financial Process Integrator Engine

164 ■ MCA Services Developer Guide Version 2004.5, Rev. A

2. After processing the host system response the BasicDataFormat checks the above flags, this is

performed in the BasicDataFormat method checkIfMoreToRequest(DataPacket

txnRequest, Vector responseEntities).

3. checkIfMoreToRequest(DataPacket txnRequest, Vector responseEntities)

modifies the request settings in txnRequest if necessary for the next call to the host system, i.e.

the current count of calls is incremented and updated in the request settings.

4. If the method checkIfMoreToRequest(DataPacket txnRequest, Vector

responseEntities)determines from the flags in the header fields that there are more requests

to be made then a boolean flag is set to true. The request DataPacket is updated if necessary

with new settings if further requests will be needed to the host system. The method

moreToRequest() returns the value of this boolean flag when called by the Financial Process

Integrator engine.

5. The Financial Process Integrator calls the method moreToRequest(). If the result is true then

the Financial Process Integrator generates another transaction request and posts the request to the

host system requesting further data. The updated request settings are used by the

BasicDataFormat class to process the transaction request.

6. The Financial Process Integrator Engine repeats this process until moreToRequest() returns

false. The default value returned by moreToRequest() is false.

See the example data-format class:
com.bankframe.examples.txnhandler.dataformat.testcustomer.

TestCustomerDataFormat

5.6.4.8 notifyProcessingFinished()

The method notifyProcessingFinished() is called by the Financial Process Integrator engine when

all processing of a transaction is complete. This allows the data-format class to clean up any temporary

data and variables.

5.6.4.9 setConnectionSpecification(Object command, String
connectorProperties)

The method setConnectionSpecification(Object command, String connectorProperties)

is called by the Financial Process Integrator engine to set the Connector Specification of an EAB Command

Bean. These are the Connector properties obtained from the Destination EJB.

5.6.5 TransactionHandlerUtils helper class

The methods buildRequestTxn(), toDataPacketsMap() and toDataPacketsVector() use the

helper class com.bankframe.ei.txnhandler.TransactionHandlerUtils to obtain the necessary

meta-data for processing of transactions.

This class has the following helper methods:
boolean isMetaDataCached() Determines from

Financial Process Integration ■ Financial Process Integrator Engine

MCA Services Developer Guide Version 2004.5, Rev. A ■ 165

BankframeResource.properties

if caching has been enabled for the

meta-data
boolean isRoutesCached() Determines from

BankframeResource.properties

if caching has been enabled for the

routes
TransactionField getTxnFieldFromList(Iterator

txnFields)
returns the next TransactionField

interface from the List

MetaData getMetaDataFromIterator(Iterator

txnMetaData)
returns the interface of the next

MetaData interface from a List

TransactionField

getTxnResponseFieldFromName(ResponseTransactio

nFieldHome txnFieldHome, String txnFieldName,

boolean metaDataCached)

finds the TransactionField

interface to a transaction field entity

from the transaction field name

List generateTxnRequestFields(String txnCode,

String txnType)
generates the Transaction Request

fields List for specified transaction

code and type

List generateTxnResponseMetaData(String

txnCode, String txnType)

generates the Transaction Response

Meta-data List of entity mappings for

specified transaction code and type
Map generateTxnResponseFields(List

txnMetaDataList)
generates a Map of the Response

Transaction Fields from the field

names that are specified in the Meta-

data List.

Map generateTxnResponseErrorConditions(String

txnCode, String txnType)
generates the Map of Transaction

Response Error-Conditions for the

specified transaction code and type.
getErrorConditionFromEnum(Enumeration

txnErrorConditions)

returns a
TransactionErrorCondition

interface from the Enumeration

RequestTransactionFieldHome

getRequestTransactionFieldHome()
returns a
RequestTransactionFieldHome

object

ResponseTransactionFieldHome

getResponseTransactionFieldHome()

returns a
ResponseTransactionFieldHome

interface
MetaDataHome getMetaDataHome() returns a MetaDataHome interface

representation

TransactionErrorConditionHome returns a

Financial Process Integration ■ Financial Process Integrator Engine

166 ■ MCA Services Developer Guide Version 2004.5, Rev. A

getTxnErrorConditionHome() TransactionErrorConditionHome

interface

5.6.6 DataFormatUtils helper class

The methods buildRequestTxn(), toDataPacketsMap() and toDataPacketsVector() use the

helper class com.bankframe.ei.txnhandler.dataformat.DataFormatUtils to perform common

routines such as converting ASCII text to EBCDIC format.

This class has the following helper methods:
byte[] subset(byte data[], int

startIndex, int endIndex)
extracts the specified amount from the data byte-

array and returns the result

byte[] toEbcdic(String input) converts ASCII to EBCDIC
String ebcdicToString(byte ebcdic[]) converts EBCDIC to ASCII String

byte[] toComp(String input, Boolean

signed, int inputSize)
converts the numerical string to a Cobol number

byte[] toComp3(String input, boolean

signed, int maxWholeDigits, int

maxFractionalDigits)

converts numerical String to a Cobol number

COMP-3 format

String compToString(byte input[]) converts a Cobol number into a numerical String

String comp3ToString(byte input[], int

numWholeDigits, int

numFractionalDigits)

converts a Cobol number, Comp 3, into a

numerical String

byte[] toStandard(String input,

boolean signed, int maxWholeDigits,

int maxFractionalDigits)

converts a numerical String to a Cobol Standard

format

String standardToString(byte input[],

int numWholeDigits, int

numFractionalDigits)

converts a Cobol Standard to a numerical String

ToHex(byte input, StringBuffer buf) converts an input byte into a StringBuffer

hexadecimal representation

ToHex(byte input[], StringBuffer buf) converts an input byte[] into a StringBuffer

hexadecimal representation
ToHex(int input, StringBuffer buf) converts an input int into a StringBuffer

hexadecimal representation

String toHexString(byte input) converts an input byte into a String hexadecimal

representation
String toHexString(byte input[]) converts an input byte[] into a String

hexadecimal representation

String toHexString(int input) converts an input int into a String hexadecimal

representation

Financial Process Integration ■ Financial Process Integrator Engine

MCA Services Developer Guide Version 2004.5, Rev. A ■ 167

5.6.7 Transaction Route Entity Bean

To determine which Siebel Connector the Financial Process Integrator will use to communicate with the host

system the TransactionRoute and Destination entity beans are queried. The TransactionRoute

solution set layer is located in the com.bankframe.ei.txnhandler.transactionroute package and

its implementation is in the com.bankframe.ei.txnhandler.impl.transactionroute package.

The TransactionRoute entity bean maps to the TXN_ROUTE database table, which has the following

form:

TXN_CODE TXN_TYPE DESTINATION_ID DATAFORMAT
TEST_ACC TXN_DUMMY C002 com.ims.DataFormat

TEST_ACC TXNMQ C001 com.mqs.DataFormat

The TransactionRoute entity bean is queried with the TXN_CODE and TXN_TYPE specified in the

transaction request DataPacket to determine:

• The Siebel Connector used to communicate with the host system; the DESTINATION_ID

is a key into the DESTINATION database table

• The data-format class used to convert the request transaction into a host-specific format

and to convert the response into a Siebel-specific format

5.6.7.1 Caching of Transaction Routes

The Financial Process Integrator can cache the queried transaction routes to improve performance.

The transactionHandler.routes.cache entry in the BankframeResource.properties file

specifies whether caching of Transaction Routes is enabled for the Financial Process Integrator.

The caching is performed by the class

com.bankframe.ei.txnhandler.transationroute.TransactionRouteCache. This class uses

the MCA generic caching framework.

5.6.8 Destination Entity Bean

To determine which Siebel Connector to instantiate and which Connector properties to use the

Destination entity bean is queried. The Destination solution set layer is located in the

com.bankframe.ei.txnhandler.destination package and its implementation is in the

com.bankframe.ei.txnhandler.impl.destination package.

The Destination entity bean maps to the DESTINATION database table, which has the following form:

DESTINATION_ID CONNECTOR_FACTORY_
CLASSNAME

CONNECTOR_
PROPERTIES

C001 com.bankframe.examples.

txnhandler.connector.

testcustomer.TestCusto

merConnectionFactory

offlineMode=disable;

Port=9999;

channel=SENDER.CHANNEL;

hostname=99.999.999.99;

queueManager=QM test;

Financial Process Integration ■ Financial Process Integrator Engine

168 ■ MCA Services Developer Guide Version 2004.5, Rev. A

queueManager=QM_test;

requestQueue=QUEUE.REQ;

responseQueue=QUEUE.REPL

Y;

wait.interval=200;

characterset=37

C002 com.bankframe.examples.

txnhandler.connector.

coboltest.

CobolTestConnectionFact

ory

offlineMode=fetch;

The DESTINATION table has three fields:

• The DESTINATION_ID is a key index into the table from the TXN_ROUTE table

• The CONNECTOR_FACTORY_CLASSNAME is the Factory class name of the Siebel

Connector Factory, which is instantiated to obtain a Connector.

• The CONNECTOR_PROPERTIES is a semi-colon delimited string containing connector

properties, which the Siebel Connector Factory uses during initialization.

The Siebel Connector properties determine if an off-line Connector will be used for testing the system.

The off-line Connector setting can be either:

• “disable”, not to be used.

• “fetch” mode.

• “store” mode.

The Siebel Connector properties has the following key to specify the off-line mode:
offlineMode=<mode>;

The Siebel Connector properties string is passed to the open() method of the instantiated Siebel

Connector Factory.

5.6.8.1 Caching of Destinations

The Financial Process Integrator can cache the queried destinations to improve performance.

The transactionHandler.routes.cache entry in the BankframeResource.properties file

specifies whether caching of destinations is enabled for the Financial Process Integrator.

The caching is performed in the class

com.bankframe.ei.txnhandler.destination.DestinationCache. This class uses the MCA

generic caching framework.

5.6.9 Posting the Transaction Request data Object to the Host Connector

Once the transaction request DataPacket has been converted into the appropriate data format for the host

system the data object is passed to the specified Siebel Connector. All Connectors implement the interface:

Financial Process Integration ■ Financial Process Integrator Engine

MCA Services Developer Guide Version 2004.5, Rev. A ■ 169

com.bankframe.ei.txnhandler.connector.EConnection

The Financial Process Integrator interacts with all Connectors through the methods of this interface. The

steps to post the transaction request java.lang.Object to the Siebel Connector are:

1. The Siebel Connector Factory class specified by the DESTINATION table is instantiated.

2. An interface to the required Connector is obtained from the Connector Factory using the method

getConnection(String connectorProperties). The parameter

connectionProperties is the Connector Properties String obtained from the DESTINATION

entity bean.

3. The EConnection method public Object post(Object txns) is called. The parameter

Object txns is the host system specific transaction request data object.

4. The method post(Object txns) returns a data Object containing the results from the host

system.

5.6.10 Configuring BankframeResource.properties

The Financial Process Integrator requires a number of entries in the BankframeResource.properties

file to function.
transactionHandler.dataSource.jndiName= jdbc/bankfrm The data source that

the Financial Process

Integrator uses for

database access. E.g.
jdbc/bankfrm

transactionHandler.metaData.cache Specifies if the meta

data caching is

enabled, true or

false.

transactionHandler.routes.cache Specifies if caching for

the transaction routes

and destinations is

enabled, true or

false.

transactionHandler.routes.cache.maxSize Max size of the routes

cache.
transactionHandler.requesttxnlayout.cache.maxSize Max size of the

request transaction

layout cache.

transactionHandler.responsetxnlayout.cache.maxSize Max size of the

response transaction

layout cache.

transactionHandler.errorConditions.cache.maxSize Max size of the

response error

Financial Process Integration ■ Financial Process Integrator Engine

170 ■ MCA Services Developer Guide Version 2004.5, Rev. A

response error

conditions cache.

transactionHandler.metaData.cache.maxSize Max size of the

response metadata

cache.

5.6.11 Financial Process Integrator Testing using Test Servlet

MCA Services supplies several servlets for testing the core functionality of the Financial Process Integrator

Engine. The servlets are described in the following sections

5.6.11.1 TransactionHandlerHomePage

The main Financial Process Integrator servlet is
com.bankframe.ei.txnhandler.TransactionHandlerHomePage

This servlet provides links to all the Financial Process Integrator test servlets and is accessible from the

main MCA ServiceServlet.

5.6.11.2 TransactionHandlerTestServlet

The main servlet for testing the functionality of the Financial Process Integrator is
com.bankframe.ei.txnhandler.TransactionHandlerTestServlet

TransactionHandlerTestServlet tests the entire transaction processing cycle of the Financial

Process Integrator engine. It generates the specified transaction, determines the route and destination,

sends the generated request to the specified Connector, processes the response from the host system and

displays the results of the request. The caching configuration specified in the

BankframeResource.properties file is used for the processing cycle.

To use the servlet to test the Financial Process Integrator the user first creates the necessary request

DataPacket that will be sent to the Financial Process Integrator. The two operations provided for this are:

• “Add a new field”, adds a field to the request DataPacket. The user specifies the

DataPacket field name and its value and clicks on the button “Add”.

• “Remove a field”, removes a field from the request DataPacket. The user specifies the

DataPacket field name to remove and clicks on the button “Remove”.

After the necessary request DataPacket fields have been created and given the correct values for the

transaction request the “Update” button is clicked to update the text box displaying the “Current

DataPacket”.

The user can choose the following requests to send to the Financial Process Integrator:

• find operation, this calls the Financial Process Integrator method processFindRequest() with

the specified DataPacket to simulate a findBy operation being performed.

• amend operation, this calls the Financial Process Integrator method processRequest() with

the specified DataPacket to simulate an amend operation being performed.

For example the AccountSearch findBy example requires the following settings:

Financial Process Integration ■ Financial Process Integrator Engine

MCA Services Developer Guide Version 2004.5, Rev. A ■ 171

• TXN_CODE=ACCOUNTFIND

• TXN_TYPE=TEST

The CustomerSearch findBy example requires the following settings:

• TXN_CODE=TESTFIND0001

• TXN_TYPE=TEST

• OWNER_ID=1234560010

The CustomerSearch findBy example operation requires that the OWNER_ID field is added to the request

DataPacket. The Financial Process Integrator throws an exception if this is missing because it is specified

in the metadata for the example as a mandatory field.

The CustomerSearch amend example requires the following settings:

• TXN_CODE=TESTAMND0001

• TXN_TYPE=TEST

• OWNER_ID=1234560010

• FIRST_NAME=JOHN

This amend operation will amend the first name of the user with the OWNER_ID 1234560010 to JOHN and

remove all the other settings for this user.

The results of the transaction request are displayed on a result page. The results consist of a table of all the

entity DataPacket results. The time to process the transaction request is determined by the servlet and

shown on the result page.

5.6.11.3 TransactionRouteTestServlet

The servlet for testing the transaction route functionality of the Financial Process Integrator is
com.bankframe.ei.txnhandler.transactionroute.TransactionRouteTestServlet

TransactionRouteTestServlet tests that the transaction route details for a given TXN_CODE and

TXN_TYPE can be determined from the MCA database. These details are used for determining which data-

format class to instantiate and which DESTINATION_ID to use. This test however does not instantiate the

data-format class or use the DESTINATION_ID, it just displays details for the transaction route.

The caching configuration specified in the BankframeResource.properties file is used.

The TXN_CODE and TXN_TYPE are modified for the transaction route that has to be tested and the

“Update” button clicked. The transaction route details are requested by clicking on the “Request” button.

If the details are obtained successfully than they are displayed.

The AccountSearch example uses TXN_CODE=ACCOUNTFIND and TXN_TYPE=TEST.

5.6.11.4 DestinationTestServlet

The servlet for testing the destination functionality of the Financial Process Integrator is
com.bankframe.ei.txnhandler.destination.DestinationTestServlet

Financial Process Integration ■ Financial Process Integrator Engine

172 ■ MCA Services Developer Guide Version 2004.5, Rev. A

DestinationTestServlet tests that the destination details for a given DESTINATION_ID can be

determined from the MCA database. These details are used for creating and initializing the Connector for

communicating with the host system. This test however does not communicate with the host system, it just

displays details for the host Connector.

The caching configuration specified in the BankframeResource.properties file is used.

The DESTINATION_ID is modified for the destination that has to be tested and the “Update” button

clicked. The destination details are requested by clicking on the “Request” button.

If the details are obtained successfully than they are displayed.

The AccountSearch example uses the DESTINATION_ID=C002.

5.6.11.5 RequestTransactionFieldServlet

The servlet for testing the transaction request fields functionality of the Financial Process Integrator is
com.bankframe.ei.txnhandler.transactionlayout.impl.request.

RequestTransactionFieldServlet

RequestTransactionFieldServlet tests that the transaction request field details for a given

TXN_CODE and TXN_TYPE can be determined from the MCA database. These details are used for creating

the transaction request to send to the host system. This test however does not generate the host system

specific request, it just displays details for the transaction request fields.

The caching configuration specified in the BankframeResource.properties file is used.

The TXN_CODE and TXN_TYPE are modified for the transaction request fields that have to be tested and the

“Update” button clicked. The transaction request field details are requested by clicking on the “Request”

button.

If the details are obtained successfully than they are displayed as bullet points for each transaction request

field.

The AccountSearch example uses TXN_CODE=ACCOUNTFIND and TXN_TYPE=TEST.

5.6.11.6 ResponseTransactionFieldServlet

The servlet for testing the transaction response fields functionality of the Financial Process Integrator is
com.bankframe.ei.txnhandler.transactionlayout.impl.response.ResponseTransa

ctionFieldServlet

ResponseTransactionFieldServlet tests that the transaction response field details for a given

transaction FIELDNAME can be determined from the MCA database. These details are used for processing

the transaction response data from the host system. This test however does not process a host system

response, it just displays details for the specified transaction response field.

The caching configuration specified in the BankframeResource.properties file is used.

The FIELDNAME is modified for the transaction response field to be tested and the “Update” button

clicked. The transaction response field details are requested by clicking on the “Request” button.

If the details are obtained successfully than they are displayed.

The AccountSearch example uses a transaction field with FIELDNAME=CARD-NUMBER.

Financial Process Integration ■ EIS Connectors

MCA Services Developer Guide Version 2004.5, Rev. A ■ 173

5.6.11.7 MetaDataServlet

The servlet for testing the transaction response metadata functionality of the Financial Process Integrator is
com.bankframe.ei.txnhandler.transactionresponse.metadata.MetaDataServlet

MetaDataServlet tests that the transaction response metadata details for a given TXN_CODE and

TXN_TYPE can be determined from the MCA database. These details are used for mapping transaction

fields in the host system response to result entity DataPacket results. This test however does not process

the mappings, it just displays details for the transaction response metadata.

The caching configuration specified in the BankframeResource.properties file is used.

The TXN_CODE and TXN_TYPE are modified for the transaction response metadata that have to be tested

and the “Update” button clicked. The transaction response metadata details are requested by clicking on

the “Request” button.

If the details are obtained successfully than each entity mapping is displayed as a bullet point.

The AccountSearch example uses TXN_CODE=ACCOUNTFIND and TXN_TYPE=TEST.

5.6.11.8 TransactionErrorConditionServlet

The servlet for testing the transaction response error-condition functionality of the Financial Process

Integrator is
com.bankframe.ei.txnhandler.transactionresponse.errorcondition.Transaction

ErrorConditionServlet

TransactionErrorConditionServlet tests that the transaction response error-condition details for a

given TXN_CODE and TXN_TYPE can be determined from the MCA database. These details are used to

determine if a host system response is an error. This test however does not process any host system

response, it just displays details for the transaction response error-conditions.

The caching configuration specified in the BankframeResource.properties file is used.

The TXN_CODE and TXN_TYPE are modified for the transaction response error-conditions that have to be

tested and the “Update” button clicked. The transaction response error-condition details are requested by

clicking on the “Request” button.

If the details are obtained successfully than each response error-condition is displayed as a bullet point,

otherwise there are no error-conditions for the specified transaction code and type.

The AccountSearch example uses TXN_CODE=ACCOUNTFIND and TXN_TYPE=TEST.

5.7 EIS Connectors

The first section discusses the MCA Services Connector Architecture. The second section discusses JCA

support.

5.7.1 MCA Services Connector Architecture

The MCA Services Connector architecture defines a standard architecture for connecting Siebel applications

to heterogeneous host or middleware systems. Examples of systems that a host connector might

Financial Process Integration ■ EIS Connectors

174 ■ MCA Services Developer Guide Version 2004.5, Rev. A

communicate with include MQSeries, IMS, CICS etc. The Connector architecture allows you utilize pre-built

connectors provided with MCA, or build customized Connectors for any number of enterprise host systems.

An MCA Connector is a package of Java classes, which are used to connect an enterprise Java application

to a Host or middleware system. The connector architecture enables a developer to provide a standard

connector for a given host system. The connector plugs into an application server and provides connectivity

between the Siebel application, the application server, and the host system.

The Siebel Host Connector Architecture is similar in structure to the Java Database Connectivity (JDBC)

interfaces. A Host Connector provides similar functionality to a JDBC driver, except that it connects to a host

system instead of a relational database. In fact, it is possible to write a host connector for a DBMS quite

easily.

Host Connectors can also optionally provide functionality for connection pooling and connection

management. The Connector architecture defines a standard interface for integrating with connection

management implementations, whether they are provided by the connector provider or an application

server.

The Connector architecture also defines the manner in which all clients connect to host system resources.

Once a connector has been successfully deployed on an application server, Siebel applications call the

post(Object) method of the desired connector to forward the request onto the host system. When used

within the Siebel Financial Process Integrator environment, the connectors are called automatically from the

Financial Process Integrator engine. Refer also to the section on JCA support.

Financial Process Integration ■ EIS Connectors

MCA Services Developer Guide Version 2004.5, Rev. A ■ 175

5.7.1.1 Siebel Connector Interfaces/Components

A Siebel Connector is made up of several Java components that make it easy to support connection pooling

and management. The following interfaces make up the generic Siebel Connector architecture, and are

implemented by all MCA Host Connectors. They are found in the package

com.bankframe.ei.txnhandler.connector. They are as follows:

5.7.1.1.1 EConnection Interface

An EConnection represents an application-level handle that is used by a client to access the underlying

physical connection. The actual physical connection associated with an EConnection instance is

represented by an EManagedConnection instance. A client gets an EConnection instance by using the

getConnection() method on an EConnectionFactory instance.

All Siebel Host Connectors must implement the post(Object) and close() methods of the

EConnection interface. The post() method of all connectors should forward a client’s transaction request

to the middleware or host system that the Connector interfaces with, and should return an object

representing the response from the system. The close() method must close the physical connection

between the connector and its host system, or if it is running in a pooled environment it must release the

connection back to the connection pool, for re-use by another client.

5.7.1.1.2 EConnectionEvent Class

Financial Process Integration ■ EIS Connectors

176 ■ MCA Services Developer Guide Version 2004.5, Rev. A

The EConnectionEvent class provides information about the source of a connection related event. An

EConnectionEvent instance contains the following information:

• The type of the connection event, i.e. CONNECTION_CLOSED or CONNECTION_ERROR_OCCURRED

• The EManagedConnection instance that generated the connection event. An

EManagedConnection instance is returned from the method

EConnectionEvent.getSource().

• The EConnection handle associated with the EManagedConnection instance. This is required

for the CONNECTION_CLOSED event and optional for the other event types.

• Optionally, an exception indicating the connection related error. Note that the exception is used for

CONNECTION_ERROR_OCCURRED.

The EConnectionEvent class defines a CONNECTION_CLOSED and a CONNECTION_ERROR_OCCURRED

type of event notifications.

5.7.1.1.3 EConnectionEventListener Interface

The EConnectionEventListener interface provides an event callback mechanism to enable a

Connection Manager to receive notifications from an EManagedConnection instance. A Connection

Manager uses these event notifications to manage its connection pool, and to clean up any invalid or

terminated connections. Typically, the Connection Manager will implement a

ConnectionEventListener interface (or one of its helper classes will). The Connection Manager

registers a connection listener with an EManagedConnection instance by using

EManagedConnection.addConnectionEventListener(EventListener) method.

The Connection Manager (or helper class that implements the EConnectionEventListener interface)

must ensure that it handles the events to close a connection and to handle errors. It does this by

implementing the connectionClosed(EConnectionEvent) and

connectionErrorOccurred(EConnectionEvent) interfaces of the EconnectionEventListener.

5.7.1.1.4 EConnectionFactory Interface

The EConnectionFactory provides an interface for getting a connection to a

Host system. Each individual Siebel connector will provide an implementation of the

EConnectionFactory interface. A client application that wishes to use a Siebel Host Connector must first

instantiate the Connection Factory class.

A client application obtains an EConnection from an EconnectionFactory implementation in the

following manner:

String connectorFactoryClassName=”com.test.MyConnectionFactory”;

Class classFactory = Class.forName(connectorFactoryClass);

EConnectionFactory cxf = (EConnectionFactory)

classFactory.newInstance();

Financial Process Integration ■ EIS Connectors

MCA Services Developer Guide Version 2004.5, Rev. A ■ 177

EConnection connection = cxf.getConnection(connectorProperties);

5.7.1.1.5 EConnectionManager Interface

The EConnectionManager interface provides a hook for a Siebel Connector to pass a connection request

to the application server or Connection Manager. The application server or the Connector provider typically

provides an implementation of the EConnectionManager interface. The EConnectionManager

implementation handles or delegates connection pooling and management. The connector architecture

does not specify how a Connection Manager implements these services; the implementation can be specific

to an application server, or to a specific connector.

After a Connection Manager hooks-in its services, the connection request gets delegated to an

EManagedConnectionFactory instance either for the creation of a new physical connection or for the

matching of an already existing physical connection.

An implementation class for EConnectionManager interface is required to implement the

java.io.Serializable interface. In the non-managed application scenario, the EConnectionManager

implementation class can be provided either by a connector (as a default EConnectionManager

implementation) or by application developers.

5.7.1.1.6 EManagedConnection Interface

The EManagedConnection class represents a physical connection to the underlying Host system.

Managed connections are often re-cycled and used in connection pools to improve performance.

5.7.1.1.7 EManagedConnectionFactory Interface

The EManagedConnectionFactory instance is a factory of both EManagedConnection and connector-

specific connection factory instances. This interface supports connection pooling by providing methods for

the matching and creation of EManagedConnection instances. Implementations of this interface must

provide a createManagedConnection(String) method and a matchManagedConnections(Set,

String) method.

5.7.1.2 Using a Siebel Connector with the Financial Process Integrator

The Siebel Financial Process Integrator engine is set-up to automatically format data for a host or

middleware system, and pass these requests to the Siebel connector that corresponds to that system. This

section of the documentation will describe how the Financial Process Integrator engine integrates with MCA

Connectors. Details on other aspects of the Financial Process Integrator Engine can be found in the

previous section about the Financial Process Integrator engine.

There is a Database table (that is created when you install MCA Services) named DESTINATION. This

table is the key mediator between the Financial Process Integrator engine and Siebel Connectors. The

schema of this table contains the following columns:

Financial Process Integration ■ EIS Connectors

178 ■ MCA Services Developer Guide Version 2004.5, Rev. A

DESTINATION_ID This column corresponds to the foreign key DESTINATION_ID in the

TXN_ROUTE database table. It is used to correlate a particular host

transaction request to its corresponding Siebel Host Connector

information in the DESTINATION table.

e.g. C001

CONNECTOR_FACTORY_

CLASSNAME

This column specifies the Connection Factory class to instantiate.

From this Factory class an EConnection is obtained to the Host

Connector. The Host Connector is used to send a transaction to its

destination host system. This name must correspond to the value of

the
transactionHandler.connector.~~.ConnectionFactory_I

mpl key specified in the BankframeResource.properties file for

the Connector:

CONNECTOR_PROPERTI

ES

This column is a list of properties that are specific to a connection

created by an MCA connector. The properties must be in the format:

<name>=<value>;<name2>=<value2>. Note that multiple

properties are separated by a semi-colon delimiter.

e.g. offlineMode=fetch;user=bankfrm;password=bankfrm…

Note that all Connectors that support OffLine processing must

contain a property called offlineMode in the

CONNECTOR_PROPERTIES field. Details on the OffLine Connector

are covered in a subsequent section.)

Therefore, to configure which connector you want to use through the Financial Process Integrator engine,

you will have to manipulate the DESTINATION database table. For each transaction code you have, you

must insert the correct Connector Factory class name of the connector that you wish to use (in the

CONNECTOR_FACTORY_CLASSNAME column), and insert the desired properties of that connector (in the

CONNECTOR_PROPERTIES column), where individual properties are separated by semi-colons.

For more details on how to configure the Financial Process Integrator engine for processing and formatting

requests, refer to the chapter on the Financial Process Integrator engine.

5.7.1.3 OffLine Connector

One of the pre-built connectors that are provided with MCA is the OffLine Connector. This connector is

designed for testing and development purposes, to simulate posting transactions to a live host system. The

OffLine Connector sits between a standard Siebel connector and a middleware or host system. The OffLine

Connector simulates transactions to a live host system by capturing request and response data that passes

through the original Siebel connector and storing it in a relational database table. Then, the original Siebel

connector has the option of setting its offlineMode property to either fetch, store or disable.

Financial Process Integration ■ EIS Connectors

MCA Services Developer Guide Version 2004.5, Rev. A ■ 179

5.7.1.3.1 OffLine Disable Mode

If a Siebel connector is running in OffLine disable mode (i.e. it is not in fetch or store), then the original

Siebel connector sends all requests directly to the host system, and returns responses directly to the

Financial Process Integrator engine. There is no interaction with the OffLine Connector. This mode should

be the default mode for all connectors.

5.7.1.3.2 OffLine Store Mode

A Siebel connector can run in OffLine store mode by setting its offlineMode property to store. When a

connector is in store mode, it continues to send transaction requests to its live middleware or host system.

However, after the response has been obtained from the host or middleware system, the original connector

makes a call to the OffLine connector to store both the transaction request and the transaction response in

the OffLine database. This ensures that the connector can process this same request at a future time when

running in offline fetch mode.

Financial Process Integration ■ EIS Connectors

180 ■ MCA Services Developer Guide Version 2004.5, Rev. A

1. Financial Process Integrator forwards client request to an MCA Connector

2. MCA Connector posts request to the Host system and waits for the response.

3. MCA Connector sends original request and host response to the OffLine Connector before sending

host response back to the Financial Process Integrator.

4. Siebel OffLine Connector stores the request and response in a Database.

5.7.1.3.3 OffLine Fetch Mode

A Siebel connector can run in OffLine fetch mode by setting its offlineMode property to fetch. When a

connector is in fetch mode, it re-directs all transaction requests to the OffLine Connector, instead of making

a connection to the live host or middleware system. The OffLine Connector will then look-up the response to

the transaction request in the OffLine Database and return the expected response back to the original

connector, which in turn returns to the Financial Process Integrator engine. Note that a request sent to the

OffLine Connector will only be retrieved properly if that same transaction request had previously been made

while the connector was in offline store mode.

Financial Process Integration ■ EIS Connectors

MCA Services Developer Guide Version 2004.5, Rev. A ■ 181

5.7.1.3.4 OffLine Connector Implementation

The Siebel OffLine Connector is a standard implementation of the Siebel Connector interfaces. It also

provides an implementation of a connection manager and a connection pool, which utilize JDBC

DataSource objects to obtain sql connections to the OffLine database table.

The OffLine Connector contains the following Java classes, found in the

com.bankframe.ei.txnhandler.connector.offline package.

5.7.1.3.4.1 OffLineConnection

This class represents an application-level handle to the OffLine Database that is used by a client to access

the underlying physical connection. Siebel Host Connectors will call the post(Object) method of this

connection to either fetch requests from the offline database when they do not want to run against the live

host system, or they will call the post(Object, Object) method to store requests and responses in the

offline database for later offline transactions. All objects sent through the post() method must be

serializable, so that they can be stored offline. If they are not serializable then the post() method will

return null, and requests will not be stored or fetched from the OffLine database. The OffLine connector

writes and retrieves the objects passed into the post() methods as serializable byte streams to the

OffLine Database. The OffLineConnection also provides a close() method that must be called when

you are finished with the connection, so that it can be released back to the pool, or destroyed.

5.7.1.3.4.2 OffLineConnectionFactory

This class provides a means for an MCA Connector to obtain a connection to the OffLine Connector

database. The OffLineConnectionFactory is instantiated by a Connector to enable access to the

Financial Process Integration ■ EIS Connectors

182 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Offline Connector. The application then uses the getConnection(String) method to obtain an instance

of the corresponding EConnection class.

The only parameter that needs to be passed in to the getConnection(String) method of the OffLine

Connector is the offlineMode value. This value can be set to disable, fetch, or store (as described

in the sections above). The getConnection(String) method for setting the OffLine Connector to store

mode would be:

EConnection con = cf.getConnection(“offlineMode=store”);

When an MCA Connector calls the post(Object) method of the OffLine Connector, it will receive back the

exact same type of object that it would expect to receive from the host or middleware system that it

communicates with.

5.7.1.3.4.3 OffLineConnectionManager

This class acts as a resource manager for the OffLine Connector. It provides connection pooling and

management for an application that is using multiple OffLine Connectors. The connection manager is

initialized and associated with the connector at deploy time, and its execution is invisible to the developer

during connector interaction. There are two settings in the BankframeResource.properties file for

configuring the OffLine connection manager. The maxConnections setting lets you specify a maximum

number of settings that you want the OffLine Connector to be allowed. Setting this to 0 will allow unlimited

number of connections to be created by the connector (although, this is in turn limited by a DataSource

and the connection pool settings that you have in your application server).

transactionHandler.connector.OffLineConnector.maxConnections=3

The timeOut setting lets you specify the amount of time to wait for a connection that is in use. If all of the

connections in a pool are currently in use, the connector will wait for a period of timeOut seconds for a

connection. If it does not obtain a connection when this time has expired, it will stop waiting and return

null.

transactionHandler.connector.OffLineConnector.timeOut=10

5.7.1.3.4.4 OffLineConnectionPool

This class is a Connection Pool for the OffLine Connector. It stores and manages a series of physical

(EManaged) connections to the offline database. This class is used in conjunction with the

OffLineConnectionManager, for situations where a JDBC DataSource object is available from the

application server. The OffLineConnectionPool is used by the OffLineConnectionManager, and its

interaction with the connector is invisible to the user.

5.7.1.3.4.5 OffLineManagedConnection

This class is an implementation of the EManagedConnection class for the OffLine Connector. It

represents the physical connection to the offline database. All interaction with the OffLine Connector should

Financial Process Integration ■ EIS Connectors

MCA Services Developer Guide Version 2004.5, Rev. A ■ 183

be through the OffLineConnection, and you should never need to use the

OffLineManagedConnection directly.

5.7.1.3.4.6 OffLineManagedConnectionFactory

The OffLineManagedConnectionFactory class is a factory for OffLineManagedConnection

instances. This class supports connection pooling by providing methods for the matching and creation of

OffLineManagedConnection instances. All interaction with the OffLine Connector should be through the

OffLineConnection, and you should never need to use the OffLineManagedConnection directly.

5.7.1.4 HTTPConnector

One of the pre-built connectors provided with MCA is the HTTPConnector. This connector is designed for

connecting to systems over the HTTP protocol and can be used in a message based SOAP environment. It

has one connection property: URL_STRING. Use the Financial Process Integration tool to config the

URL_STRING connection property for the HTTPConnector.

5.7.1.4.1 XMLDataFormat

HTTPConnector uses XMLDataFormat to encode and decode the request for transport over HTTP.

XMLDataFormat uses DPTPDomCodec to convert a Vector of DataPackets to and from an XML string.

When using DPTPDomCodec, XML validation should be disabled. To do this, set xml.parser.validating=false

in the properties file BankframeResource.properties. The XMLDataFormat can transform the

DPTPDomCodex XML string by applying an XML stylesheet. Different XSLT strings can be defined for

requests and responses using the XSL_STYLESHEET column in REQUEST_TXN_LAYOUT,

RESPONSE_META_DATA and RESPONSE_TXN_LAYOUT tables. Note that for a request or response,

because the XSLT will define the record structure, and the DPTPDomCodec will be used to convert to and

from a Vector of DataPackets, there is only one record required in REQUEST_TXN_LAYOUT,

RESPONSE_META_DATA and RESPONSE_TXN_LAYOUT tables for each host request and response.

For example, RESPONSE_TXN_LAYOUT normally defines the response field positions and the

RESPONSE_META_DATA is used to define the mapping of fields to DataPacket keys. Since the XSLT will

define the response structure, and the DPTPDomCodec will be used to produce the Vector of DataPackets,

there is only one record required for RESPONSE_TXN_LAYOUT with the TXN_CODE and

XSL_STYLESHEET columns set. Other columns, while can have default values. Similarly, the

RESPONSE_META_DATA also only requires one record with the TXN_CODE and XSL_STYLESHEET

columsn set.

5.7.2 JCA Support

This section outlines how the MCA Financial Process Integrator facilitates support for JCA connectors. JCA

is an open-ended specification for connecting to EIS systems from within an application server environment.

JCA resource adapters are packaged within .rar files and deployed on an application server in the same way

as EJBs or Web applications. Generally a middleware vendor will supply this resource adapter for interaction

with their software. These resource adapters are likely to support connection management, transaction

Financial Process Integration ■ EIS Connectors

184 ■ MCA Services Developer Guide Version 2004.5, Rev. A

management and security management. To interact with an EIS via a resource adapter a client API is

needed. This can be a standard API such as the Client Connection Interface (CCI) from JCA, or a

proprietary API supplied by the middleware vender. It is at the discretion of the middleware vendor as to

which API they support.

To demonstrate the potential use of JCA within the Financial Process Integrator, we have developed a

simple resource adapter that mimics a resource adapter that is supplied by a middleware vendor. This is

deployed in the application server. For this example the resource adapter will interact with a file containing

customer data. This is the same file used by the customer search example. Only a brief examination of the

resource adapter follows because in any real world scenario using JCA the resource adapter will be

available from the middleware vendor, and its actual working should be hidden from a client developer.

For demonstration URLs for the CustmerSearch example see the Release Notes

5.7.2.1 Defining the Resource adapter

Below is a resource adapter deployment descriptor that is bundled within our .rar file. The important

elements in this XML are the following tags:

<managedconnectionfactory-class> - This class will be the class that the application

server interacts with to match requests to connections or to create new connections when

required.

<connectionfactory-interface> - This is the interface that the above class implements.

<connectionfactory-impl-class> - This is the factory class that allows an application

component to get a connection to the EIS. This class will be used by the

managedconnectionfactory-class defined above to get the actual connection, thus handing

over responsibility to the application server for connection pooling etc. An object of this type

will be returned from the application when a component does a JNDI lookup on the connector

component.

<connection-interface> - This is the interface that the connection class implements. It

must contain a getConnection() method

<connection-impl-class> - This is the class that provides connectivity to the EIS. This is got from the

connectionfactory implementation class

The complete descriptor follows:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE connector PUBLIC '-//Sun Microsystems, Inc.//DTD Connector

1.0//EN' 'http://java.sun.com/j2ee/dtds/connector_1_0.dtd'>

Financial Process Integration ■ EIS Connectors

MCA Services Developer Guide Version 2004.5, Rev. A ■ 185

<connector>

<display-name>Some JCA</display-name>

<vendor-name>Some Vendor</vendor-name>

<spec-version>1.0</spec-version>

<eis-type>EIS definition</eis-type>

<version>1.0</version>

<resourceadapter>

<managedconnectionfactory-

class>com.bankframe.jca.samplefileadapter.SampleManagedConnectionFactory</

managedconnectionfactory-class>

<connectionfactory-

interface>javax.resource.cci.ConnectionFactory</connectionfactory-

interface>

<connectionfactory-impl-

class>com.bankframe.jca.samplefileadapter.SampleConnectionFactory</connect

ionfactory-impl-class>

<connection-interface>javax.resource.cci.Connection</connection-

interface>

<connection-impl-

class>com.bankframe.jca.samplefileadapter.SampleConnection</connection-

impl-class>

<transaction-support>NoTransaction</transaction-support>

<authentication-mechanism>

<authentication-mechanism-type>BasicPassword</authentication-

mechanism-type>

<credential-

interface>javax.resource.security.PasswordCredential</credential-

interface>

</authentication-mechanism>

<reauthentication-support>false</reauthentication-support>

</resourceadapter>

</connector>

Financial Process Integration ■ Store and Forward

186 ■ MCA Services Developer Guide Version 2004.5, Rev. A

5.7.2.2 Interacting with the resource adapter

Since the adapter is a standard J2EE component it can be found via a JNDI lookup. When we perform a

JNDI lookup on our resource adapter we will get a reference to the ConnectionFactory class. Using this

class the application component (e.g. the Financial Process Integrator bean) can call the

getConnection() method on the ConnectionFactory object. This will return an object with which the

Financial Process Integrator can send requests to the EIS and receive responses. It should be noted that

JCA supports asynchronous communication ONLY.

For the sake of simplicity the sample resource adapter can be sent requests and receive responses in the

form of DataPackets. This is within the scope of the JCA specification as it doesn’t restrict the resource

adapter vendor to follow any specific interface. Rather it specifies that any interfaces that are used must

contain at least a specific method, such as getConnection(), in the case of the ConnectionFactory

class.

In order for the FPI to support a specific JCA adapter a data formatter class will have to be developed to

format the data between DataPackets and the correctly formatted request object needed to interact with

the EIS through the resource adapter. For our sample JCA adapter we just deal with DataPackets. This

negates the need for a data formatter, as we can just pass the DataPacket request to the resource

adapter, which will return a DataPacket response.

To demonstrate the use of JCA from an application component there is a JSP that will perform a JNDI

lookup for the resource adapter and then send a request in DataPacket format, wait for a response and

then display the response. This example demonstrates the core functionality of JCA

5.8 Store and Forward

5.8.1 Introduction

The Financial Process Integrator’s Store and Forward framework provides the means to store transactions,

e.g. in the event of a host going offline, in order to forward them to the host at a later time.

Refer also to the sample file storeandforward.sql supplied in the MCA Services Install folder

5.8.2 Scope

This document describes a store and forward system that operates between the Siebel mid-tier (i.e. the

Siebel Financial Components) and the host. The Store and Forward system will only enable the storing of

data for update to the host, it will not store data retrieved from the host.

Financial Process Integration ■ Store and Forward

MCA Services Developer Guide Version 2004.5, Rev. A ■ 187

5.8.3 Overview

5.8.3.1 Determining if the host is offline

When a transaction fails to go to the host, the host is marked as offline and the transaction is stored for

forwarding. The flow of execution is as follows:

• Each time a transaction is passed to the Financial Process Integrator it will attempt to send it to the

host

• The Financial Process Integrator will check with the host that it received the transaction

• If the host did not receive the transaction or the host cannot be contacted then the transaction is

stored for later forwarding and the host status will be set to offline

• When a host is marked as offline it will remain marked as such for a specified period (e.g. 5

minutes). During that specified period no further attempts will be made to send transactions to that

host; all transactions will instead be stored (except for transactions that are not permitted to be

stored, these instead will result in an exception being thrown). This time period is configurable.

• When the time period has expired the forwarding mechanism will try to send the first entry on the

queue to the host.

• If the first entry is forwarded successfully then the host is determined to be back online. The host

status will be set to read-only and the forwarding thread will commence forwarding all stored

transactions in batches. This batch figure will be configurable.

• If the first entry is not forwarded successfully then the forwarder will wait for the time period

mentioned above, and then attempt to forward the first entry again. It will repeat this process until

the host comes back online.

• When the store has been emptied of stored transactions the host will be marked online.

• When the host is forwarding the transactions those which are completed successfully will be added

to the SUCCESSFUL_TRANSACTION table while those transactions which return an error from the

host will be added to the ERROR_TRANSACTION table.

5.8.3.2 Host Status

The host has three states; these are:

5.8.3.2.1 ON_LINE

When the host status is set to ON_LINE all transactions are processed normally.

5.8.3.2.2 OFF_LINE

When the host status is set to OFF_LINE any read transactions will throw an exception while write

transactions will be stored to be forwarded later.

5.8.3.2.3 FORCE_OFF_LINE

Financial Process Integration ■ Store and Forward

188 ■ MCA Services Developer Guide Version 2004.5, Rev. A

When the host is set to FORCE_OFF_LINE any read transactions will throw an exception while write

transactions will be stored to be forwarded later. This ensures that when the host is set offline no attempts

will be made to check if the host is back online until it has been set to online.

5.8.3.3 Host Operation types

The Financial Process Integrator Meta data must identify which transactions are read transactions and

which transactions are write transactions.

5.8.3.3.1 Read transactions

• Read transactions cannot be carried out when the host is offline.

• Read transactions should not be stored if the host is offline, an exception should be thrown if an

attempt is made to carry out a read transaction when the host is offline

• Read transactions should become available as soon as the host comes back online

5.8.3.3.2 Write transactions

• Write transactions cannot be carried out when the host is offline, but it is permissible to store some

kinds of write transactions when the host is offline, and forward them when the host is back online.

5.8.4 Destination Entity Bean

To determine which Siebel Connector to instantiate and which Connector properties to use the

Destination entity bean is queried. The DESTINATION table has been extended to include a new field;

HOST_STATUS, which is used by the Financial Components and the Persister to check if the host is online.

The HOST_STATUS field has three settings:

• ON_LINE: host is online - transactions carried out normally

• OFF_LINE: host is offline - transactions are either stored or an offline exception is thrown.

• FORCE_OFF_LINE: host is set to offline - no transactions will be sent to the host until the host is

set back to online.

5.8.5 DestinationEjbMap Entity Bean

The Financial Components will need to know if the host is online or offline so they can apply the appropriate

business logic. In order to do this it must be able to match the EJB and method called to the host

destination, to do this it uses the DESTINATION_EJB_MAP table. Using the method name and the JNDI

name the isHostOnline() method in the StoreAndForwardUtils class retrieves the host destination.

The DESTINATION_EJB_MAP table also contains details of the host operation type; whether the transaction

is read or write, and a setting for backwards compatibility. When current versions of existing Financial

Components are updated to add Store and Forward functionality they must be guaranteed to be able to be

configured to work exactly as they used to work, i.e. any new version of a Financial Component with no

change apart from support for store and forward behavior must continue to work identically to the older

version. This means the call to the Financial Process Integrator to determine if the host is online must

Financial Process Integration ■ Store and Forward

MCA Services Developer Guide Version 2004.5, Rev. A ■ 189

always return true (even if the host is not online), to assure the online business logic is always invoked. This

is done by setting the ALWAYS_ONLINE field to Y. The STOREABLE field is used to check if a transaction,

that was initiated when the host was online but now encounters an offline host, should be stored, or if a

HostOfflineException should be thrown instead. The DestinationEjbMap solution set layer is

located in the com.bankframe.ei.txnhandler.destinationejbmap package and its implementation

is in the com.bankframe.ei.txnhandler.impl.destinationejbmap package.

EJB_NAME EJB_

OPERATION
DESTINATION_

ID
OPERATION_

TYPE
STOREABLE ALWAYS_

ONLINE

eontec.b

p.

retail.

customer

search

retrieveCust

omerDetailsB

y

AccountNumbe

rAndBranchCo

de

C0004 READ N N

5.8.6 Store and Forward Classes and Package Structure

The Store and Forward solution is located in the com.bankframe.ei.txnhandler.storeandforward

package and its implementation is in the com.bankframe.ei.txnhandler.storeandforward.impl

package.

5.8.6.1 StoreAndForwardConstants

The Constants class for Store and Forward is located in the

com.bankframe.ei.txnhandler.storeandforward package.

5.8.6.2 StoreAndForwardUtils

This class provides utility methods for allowing Financial Processes to use the store and forward features of

the Financial Process Integrator and is located in the

com.bankframe.ei.txnhandler.storeandforward package.

It contains the following methods:

isHostOnline(String ejbName,

String ejbOperation)

This method takes two Strings, containing the

name of the calling EJB and the name of the

method, and determines if the host(s) used by the

specified transaction is/are online.

isHostOnline(String ejbName,

String ejbOperation, String

companyCode)

As above except it also takes a String containing

the company code.

setOffline() This method is used to force the host offline by

setting the hostStatus to FORCE_OFF_LINE

Financial Process Integration ■ Store and Forward

190 ■ MCA Services Developer Guide Version 2004.5, Rev. A

setOnline() This method is used to update the host

destinations to ON_LINE.

transactionStoreable(String

ejbName, String ejbOperation)

This method determines if the specified transaction

can be stored if the host goes offline, after it was

initiated online.

5.8.6.2.1 isHostOnline() methods

This method allows the Financial Components to ascertain the host status when initiating a transaction in

order to use the correct set of business rules as often differing rules will apply to online and offline

transactions. In order to check the host status the isHostOnline() method is passed the name of the

calling EJB and the name of the method being called. Using these values the method performs a look up on

the DESTINATION_EJB_MAP table to get the host(s) destination(s) for the transaction as well as the

transaction type. The method then performs the following checks:

• If the ALWAYS_ONLINE value is set to Y then true is returned

• If the transactionHandler.storeAndForward.status setting in the

BankframeResource.Properties is set OFF_LINE and the operation type is WRITE then

false is returned or if the operation type is READ a HostOfflineException is thrown.

• If the DESTINATION hostStatus is ON_LINE true is returned

• If the DESTINATION hostStatus is OFF_LINE and the operation type is WRITE false is

returned or if the operation type is READ a HostOfflineException is thrown.

• If the DESTINATION hostStatus is READ_ONLY and the operation type is WRITE false is

returned or if the operation type is READ true is returned.

5.8.6.3 InternalStoreAndForwardUtils

This class provides utility methods for use by the Store and Forward features of the Financial Process

Integrator and is located in the com.bankframe.ei.txnhandler.storeandforward.impl package.

It contains the following methods:

addToStore(DataPacket txnData) This method takes a DataPacket of request data

and adds it to the store using the

StoreQueueBean.

convertSortedSetToString(SortedSe

t set)

This method is a convenience method to convert a

sorted set to a String that can be passed over

HTTP using the channel management API. This is

only to be used by Store and Forward because it

assumes that the objects in the set are all of type

Integer

convertStringToSortedSet(String

string)

This method is a convenience method to convert a

String back to a sorted set. This is only to be

used by Store and Forward because it assumes

Financial Process Integration ■ Store and Forward

MCA Services Developer Guide Version 2004.5, Rev. A ■ 191

that the objects in the set are all of type Integer

getNextSequenceNo(String

sequencePk)

This method takes a String containing a primary

key value to retrieve the next sequence number

from the SequenceGeneratorBean. It does this

by getting the current sequence number value and

incrementing it by one then updating the table with

the new value. Returns an int.

hostDestinationStatus() This method checks to see if any of the host

destinations in the DESTINATION table have been

set to OFF_LINE or FORCE_OFF_LINE, if so it

returns same, otherwise it returns ON_LINE.

Returns a String containing the host status. (This

method only checks the destination table.)

hostOnline() This method is used to determine the host status. It

returns true if the host is online or false if it is

offline

resetSequenceNo(String

sequencePk)

This method is used to reset the sequence number

on the SequenceGeneratorBean initializing it

back to 0.

setAllDestinations(String status) This method takes a String containing a status

to update all the host destinations with.

updateDestination(String txnCode,

String txnType)

This method is used to update the host destination

to OFF_LINE when a

HostConnectivityException is encountered.

5.8.6.4 StoreTransactionBean

The host transactions are stored in a database table called STORE_TRANSACTION which is mapped by the

StoreTransactionBean. The implementation of this bean is located in the package

com.bankframe.ei.txnhandler.storeandforward.impl.storetransaction

The request DataPacket is converted to a string to be stored using the DPTPCodec which is also used to

convert it back into a DataPacket.

SEQUENCE_NO TIMESTAMP REQUEST_TRANSACTION BATCHED_FOR_FORWARD

Sequence

number of the

transaction.

Timestamp

when the

transaction is

added to the

store.

A string containing the request

transaction details.

Boolean value which indicates

if the transaction has already

been added to a forwarding

batch.

Financial Process Integration ■ Store and Forward

192 ■ MCA Services Developer Guide Version 2004.5, Rev. A

5.8.6.5 StoreQueueBean

This session bean is responsible for processing the transactions contained in the store. The implementation

of this bean is located in the package

com.bankframe.ei.txnhandler.storeandforward.impl.storequeue. It contains the following

methods:

addTransactionToCompleted(int

sequenceNo)

This method removes the transaction from

the store queue and adds the transaction to

the successful queue, with the given

sequence number.

addTransactionToError(int

sequenceNo)

This method removes the transaction from

the store queue and adds it to the error

queue, with the given sequence number.

createStoredTransaction(Vector

request)

This method adds a new transaction to the

store queue.

findAllErrorTransactions() This method will find all the transactions on

the error queue.

findAllSuccessfulTransactions() This method will find all the transactions on

the successful queue.

isStoreEmpty() This method will determine if the store has

transactions in it.

removeTransactionFromError(int

sequenceNo)

This method removes the transaction from

the error queue with the given sequenceNo.

removeTransactionFromSuccessful(int

sequenceNo)

This method removes the transaction from

the successful queue with the given

sequenceNo.

findAllStoredTransactions() This method will find all the transactions on

the store queue.

findNextStoredTransaction() This method will return the transaction at the

head of the store queue.

findStoredTransactionBySequenceNo(i

nt sequenceNo)

This method performs a lookup on the Store

queue by sequenceNo.

findStoredTransactionsInTimePeriod(

long startTime, long endTime)

This method performs a lookup on the store

queue for a specified time period.

nextStoredTransactionBatch()

This method will returns a Vector containing

a “-” delimited String of Sequence

Numbers to be forwarded in the batch. This

method also updates the

BATCHED_FOR_FORWARD flag on the

Financial Process Integration ■ Store and Forward

MCA Services Developer Guide Version 2004.5, Rev. A ■ 193

STORE_TRANSACTION from false to true to

prevent the transaction from being added to

any additional batches.

5.8.6.6 CompletedForwardTransactionBean

The completed host transactions are stored in a database table mapped by the

CompletedForwardTransactionBean. There are two implementations of this bean located in the

packages:
com.bankframe.ei.txnhandler.storeandforward.completedforwardtransaction.impl.su

ccessfultransaction and

com.bankframe.ei.txnhandler.storeandforward.completedforwardtransaction.impl.er

rortransaction

5.8.6.6.1 SuccessfulTransactionBean

This entity maps to the SUCCESSFUL_TRANSACTION database and is used to record successfully forwarded

transactions.

SEQUENCE_NO STORED_TIMESTAMP COMPLETED_TIMESTAMP REQUEST_TRANSACT

ION

Sequence

number of the

transaction.

Timestamp when the

transaction is added to

the store.

Timestamp when the

transaction was forwarded

successfully to the host.

A string containing the

request transaction

details.

5.8.6.6.2 ErrorTransactionBean

This entity maps to the ERROR_TRANSACTION database and is used to record host transactions which

return a ProcessingErrorException when forwarded to the host.

SEQUENCE_NO STORED_TIMESTAMP ERROR_TIMESTAMP REQUEST_TRANSACTION

Sequence

number of the

transaction.

Timestamp when the

transaction is added to

the store.

Timestamp when the

transaction was

forwarded erroneously

to the host.

A string containing the request

transaction details.

5.8.6.7 ForwardTransactionBean

This session bean is responsible for coordinating the forwarding of the stored host transactions. It is

responsible for initiating the host status monitor and once the host is back online starting a thread to forward

all the transactions. It contains the following methods:

forwardAll(String threadName)

This method takes a String containing the name

to call the Forwarding thread. It is used to forward

all the transactions to the host. It will terminate

when the queue is empty or if the queue goes

Financial Process Integration ■ Store and Forward

194 ■ MCA Services Developer Guide Version 2004.5, Rev. A

offline.

forwardAll(String threadName, int

rate)

This method takes a String containing the name

to call the Forwarding thread and an int value

which is the time interval to wait between each

batch of transactions it forwards to the host. It will

terminate when the queue is empty or if the

queue goes offline.

forwardSingle(String threadName, int

sequenceNumber)

This method takes a String containing the name

to call the Forwarding thread. It will forward an

individual request identified by the

sequenceNumber from the queue.

forwardSubset(String threadName,

SortedSet transactions, int rate)

This method takes a String containing the name

to call the Forwarding thread. It will forward a

SortedSet of stored transactions to the host in

batches using the given time interval.

setMonitorStatus(int rate)

This method will set the status of the host

monitor. This method assigns the rate parameter

as the number of milliseconds to delay between

each try to forward a request to the store. If this is

set to -1 then the monitor is suspended

5.8.6.8 ForwardOperationsBean

This session bean is responsible for controlling the rate at which transactions are forwarded to the host. It

contains the following methods:

forwardNextRequest()

This method will try and forward the request

transaction at the head of the store queue. When

the host is offline this method is used to check if it

has gone back online by sending the request to

the host and checking if it has been successfully

sent.

forwardRequest(int sequenceNumber) This method will try and forward a transaction by

sequenceNumber.

isStoreEmpty() This method will test if there are any requests on

the store.

updateDestination(String status)

This method will amend the online/offline status of

the destination associated with the transaction at

the head of the store queue.

Financial Process Integration ■ Store and Forward

MCA Services Developer Guide Version 2004.5, Rev. A ■ 195

5.8.6.9 HostStatusMonitor

This thread class monitors the connection to the host system. It is used with the store class to determine

whether requests in the store can be released to the host system. Every n seconds the thread will attempt to

send a request to the host system. This will only happen if the store is non-empty. The class has the

following constructors:

HostStatusMonitor()

Default HostStatusMonitor constructor. It

reads the BankframeResource.properties

file for the monitor delay value.

HostStatusMonitor(int delay)

HostStatusMonitor constructor. This

constructor takes an int value for the monitor

delay.

And contains the following methods:

run()

This method will check if the store is empty every

n seconds. If it is and the host status is currently

offline, then it tries to send a request from the

store to the host system. If this request is

successful then the online attribute of the

destination entity corresponding to that host is set

to true.

setDelay(int newDelay) This method sets the time that the thread waits

between checking the host status.

start() This method starts the monitor thread at the

lowest priority.

stop() This method will shut down the thread

5.8.6.10 ForwardingThread

This thread class will attempt to send a request to the host system. This class has the following

constructors:

ForwardingThread()

Forwarding thread constructor. This constructor

reads the delay time from the

BankFrameResource.properties file and is

set to forward all transactions in the store

ForwardingThread(int delay)

Forwarding thread constructor. This constructor

takes the delay time from the passed parameter

and is set to forward all transactions in the store.

ForwardingThread(SortedSet list)

Forwarding thread constructor. This constructor

takes the delay time from the

BankframeResource.properties file and is

set to forward a passed subset of transactions in

Financial Process Integration ■ Store and Forward

196 ■ MCA Services Developer Guide Version 2004.5, Rev. A

the store.

ForwardingThread(SortedSet list,

int delay)

Forwarding thread constructor. This constructor

takes the delay time from the passed parameter

and is set to forward a passed subset of

transactions in the store.

It contains the following methods.

forwardAll(ForwardOperations

operations)

This method will forward all the transactions in the

store delaying for the specified delay time

between each forward.

forwardSubset(ForwardOperations

operations)

This method will forward a subset of the

transactions in the store, delaying for the

specified time between each forward.

run() This method forwards transactions from the store.

start() This method starts the forwarding thread at the

lowest priority.

5.8.7 Forcing the host online or offline

It must be possible to force the status of a host to online or offline. This is required for the following reasons:

• To test the store and forward functionality. Since a host is not available for testing, it must be

possible to manually force the host online or offline

• For maintenance reasons. The Financial Institution may want to restrict access to certain hosts to

carry out maintenance on the host. The Financial Institution will want to be able to do this in an

orderly manner.

The forwarding process should not be invoked and transactions should not attempt to be sent until the host

has been forced back online. There are two set…() methods in the StoreAndForwardUtils class for

setting the host either offline or online. The setOffline() method updates all the host destinations with a

hostStatus of FORCE_OFF_LINE, this will ensure that the forwarding process will not be invoked until the

setOnline() method has been used to set all the hostStatus back to ON_LINE.

5.8.8 Exceptions

To apply the appropriate business logic the Financial Component must determine at the start of execution of

the Financial Component whether the host is online or offline. Three new exception classes that extend the

ProcessingErrorException class were added to MCA for Store and Forward:

5.8.8.1 HostConnectivityException

This class is located in the com.bankframe.ei.txnhandler package and is thrown when the Financial

Process Integrator fails to connect to the host.

Financial Process Integration ■ Store and Forward

MCA Services Developer Guide Version 2004.5, Rev. A ■ 197

5.8.8.2 HostOfflineException

This class is located in the com.bankframe.ei.txnhandler package. There are two instances when

this exception will be thrown:

• At the start of execution the host is determined to be online, but when the Financial Process

Integrator attempts to post the transaction the host is offline. In this case the Financial Component

will have applied the ‘online’ business rules, but the host is offline, however online transactions

should never be stored.

• When the host is offline and a read transaction is attempted against the host.

5.8.8.3 HostProcessingErrorException

This class is located in the com.bankframe.ei.txnhandler package and is thrown when the host

returns an error response.

5.8.9 BankframeResource.properties settings

A number of new settings have been added to the BankframeResource.properties file for Store and

Forward. In order to locate them search for the following key:
Transaction Handler Store and Forward Settings

The settings are as follows:

5.8.9.1 transactionHandler.storeAndForward.forwardingDelay

This setting is used by the default constructor of the ForwardingThread to set the time interval, in

milliseconds, between batches being sent to the host:
transactionHandler.storeAndForward.forwardingDelay=2000

5.8.9.2 transactionHandler.storeAndForward.hostStatusDelay

This setting is used by the default constructor of the HostStatusMonitor to set the time interval, in

milliseconds, to wait between checks on the host status:
transactionHandler.storeAndForward.hostStatusDelay=30000

5.8.9.3 transactionHandler.storeAndForward.url

This setting is used to specify the URL of the ForwardTransactionServlet

transactionHandler.storeAndForward.url=http://localhost:7001/ForwardTransa

ctionServlet

5.8.9.4 transactionHandler.storeAndForward.startHostMonitorAutomatically

This setting is used to specify whether or not the HostStatusMonitor starts up automatically when the

App server is started or not. It can have a setting of either true or false.

transactionHandler.storeAndForward.startHostMonitorAutomatically=true

Financial Process Integration ■ Store and Forward

198 ■ MCA Services Developer Guide Version 2004.5, Rev. A

5.8.9.5 transactionHandler.storeAndForward.nextTransactionBatchAmount

This setting is used to specify the amount of transactions the ForwardingThread is to forward in a batch:

transactionHandler.storeAndForward.nextTransactionBatchAmount=50

5.8.10 Implementing Store and Forward

It is assumed that the reader is familiar with the Siebel Financial Process Integrator and EJB lifecycle before

reading this document.

5.8.10.1 StoreAndForwardPersister

This persister class extends from the TxnPersister class. The class overwrites the TxnPersisters

processTxnRequest() and the amend() method.

5.8.10.1.1 processTxnRequest(EBMPEntity entityBean, DataPacket txnData,
String cachePolicy)

This protected method is called by the find() method. It is responsible for passing the transaction details

to the Financial Process Integrator, receiving the response, placing it in the cache and returning an

enumeration of primary keys. The StoreAndForwardPersister version also checks the host status

against the host status when the transaction was initiated, this is so the persister will know whether to store

the transaction, send it to the host or throw an exception.
protected Enumeration processTxnRequest(EBMPEntity entityBean, DataPacket
txnData, String cachePolicy) throws ProcessingErrorException {

try {

Vector entityPk = new Vector();

String txnCode =
txnData.getString(TransactionHandlerConstants.TXN_CODE);

String hostStatus =
txnData.getString(StoreAndForwardConstants.HOST_ONLINE_STATUS);

if (StoreAndForwardUtils.hostOnline()) {

if ((txnCode == null) ||
txnCode.equalsIgnoreCase(TransactionHandlerConstants.FIELD_NA)) {

// do nothing

}

else {

//Get an instance of the transaction handler and send the transaction //data
to the processFindRequest() method.

TransactionHandler transactionHandler =
this.getTxnHandler();

try {

map = transactionHandler.processFindRequest(txnData);

}

Financial Process Integration ■ Store and Forward

MCA Services Developer Guide Version 2004.5, Rev. A ■ 199

catch (HostProcessingErrorException hpex) {

throw new ProcessingErrorException(hpex);

}

catch (HostConnectivityException hcex) {

BankFrameLog.log(BankFrameLog.DEBUG,
BankFrameLogConstants.TXNHANDLER_SUBSYSTEM, "Store
Persister::processTxnRequest:: HostConnectivityException");

StoreAndForwardUtils.updateDestination(txnCode,
txnData.getString(TransactionHandlerConstants.TXN_TYPE),
StoreAndForwardConstants.OFF_LINE);

throw new ProcessingErrorException(new
BankFrameMessage(HOST_OFFLINE_EXCEPTION));

}

boolean persistant;

//Before caching the data check to see if it is persistent or not.
//Persistent data will be written to a database as well as to memory.

if
(cachePolicy.equalsIgnoreCase(TxnPersisterConstants.CACHE_PERSISTENT)) {

persistant = true;

}

else if
(cachePolicy.equalsIgnoreCase(TxnPersisterConstants.CACHE_NON_PERSISTENT) ||
cachePolicy.equalsIgnoreCase(TxnPersisterConstants.NOT_CACHED)) {

persistant = false;

}

else {

//throw an exception

}

//get the timeout value for the data and then store it in the cache.

long timeOutValue = new
Long(txnData.getString(PersisterTxnMapConstants.TIME_OUT_VALUE)).longValue();

this.storeInCache(map, timeOutValue, persistant);

//Process the keys of the map returned from the transaction handler to
//return an enumeration of primary keys.

Set keys = map.keySet();

Enumeration enum = Collections.enumeration(keys);

while (enum.hasMoreElements()) {

EPrimaryKey pk = entityBean.createPrimaryKey((DataPacket)
enum.nextElement());

if (pk != null) {

entityPk.addElement(pk);

}

}

Financial Process Integration ■ Store and Forward

200 ■ MCA Services Developer Guide Version 2004.5, Rev. A

}

return new IteratorEnumeration(entityPk.iterator());

}

else {

BankFrameLog.log(BankFrameLog.DEBUG,
BankFrameLogConstants.TXNHANDLER_SUBSYSTEM,
"TxnPersister::processTxnRequest:: offline");

throw new ProcessingErrorException(new
BankFrameMessage(HOST_OFFLINE_EXCEPTION));

} catch (CreateException ce) {

throw new ProcessingErrorException(ce);

}

catch (RemoteException re) {

throw new ProcessingErrorException(re);

}

}

5.8.10.1.2 amend(EBMPEntity entityBean, String methodName, DataPacket
data, Vector primaryKeys, boolean removeOperation)

The protected amend() method is called by the persister’s amend…() method. The amend() method

checks if the transaction policy is set to CACHE_ONLY, if it is then it will only update the cache, otherwise it

adds the transaction code and the transaction type to a DataPacket containing the entity bean's update

attributes and sends the DataPacket to the Financial Process Integrator. It also takes a boolean value

which indicates if a remove operation is to be carried out on the host or from the cache. The amend()

method is used for updating some or all of an entity's attributes. The StoreAndForwardPersister

version also checks the current host status against the host status when the transaction was initiated, this is

so the persister will know whether to store the transaction, send it to the host or throw an exception.
protected void amend(EBMPEntity entityBean, String methodName, DataPacket data,

Vector primaryKeys, boolean removeOperation) throws ProcessingErrorException,

HostOfflineException, HostConnectivityException {

//DataPacket of data to be updated on the host

DataPacket update = new DataPacket(data.DATA_PACKET_NAME);

//Get txnCode and txnType from PERSISTER_TXN_MAP

DataPacket amendData = this.mapTxn(entityBean.getEntityName(), methodName);

String txnCode = amendData.getString(TransactionHandlerConstants.TXN_CODE);

String txnType = amendData.getString(TransactionHandlerConstants.TXN_TYPE);

long timeOutValue = new

Long(amendData.getString(PersisterTxnMapConstants.TIME_OUT_VALUE)).longValue();

//the host status when the transaction was initiated

String hostTransactionStatus =

data.getString(StoreAndForwardConstants.HOST_ONLINE_STATUS);

try {

Financial Process Integration ■ Store and Forward

MCA Services Developer Guide Version 2004.5, Rev. A ■ 201

update.append(update, data);

//Add txnCode and txnType

update.put(TransactionHandlerConstants.TXN_CODE, txnCode);

update.put(TransactionHandlerConstants.TXN_TYPE, txnType);

//check the host online status

String hostOnlineStatus = StoreAndForwardUtils.hostOnline();

boolean storeable = StoreAndForwardUtils.transactionStoreable(txnCode,

txnType);

//if the host is offline and an offline transaction was initiated store

the transaction

if (hostOnlineStatus == StoreAndForwardConstants.OFF_LINE &&

hostTransactionStatus == StoreAndForwardConstants.OFF_LINE) {

StoreAndForwardUtils.addToStore(update);

}

//if an online transaction was initiated but the host is offline

else if (hostOnlineStatus == StoreAndForwardConstants.OFF_LINE &&

hostTransactionStatus == StoreAndForwardConstants.ON_LINE) {

throw new HostOfflineException(new

BankFrameMessage(HOST_OFFLINE_EXCEPTION));

}

//otherwise forward the transaction to the host

else {

if (getIgnoreHost(txnCode) == false) {

TransactionHandler transactionHandler = this.getTxnHandler();

try {

transactionHandler.processRequest(update);

}

catch (HostProcessingErrorException hpex) {

throw new ProcessingErrorException(hpex);

}

catch (HostConnectivityException hcex) {

StoreAndForwardUtils.updateDestination(txnCode, txnType,

StoreAndForwardConstants.OFF_LINE);

throw new HostConnectivityException(new

BankFrameMessage(HOST_CONNECTIVITY_EXCEPTION));

}

}

if (removeOperation || getRemoveFromCache()) {

this.removeFromCache(primaryKeys);

}

else {

//put data into a map (same data used for each primary key):

Financial Process Integration ■ Store and Forward

202 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Map entityMap = new HashMap();

for (int index = 0; index < primaryKeys.size(); index++) {

entityMap.put(primaryKeys.elementAt(index), data);

}

String cachePolicy =

amendData.getString(PersisterTxnMapConstants.CACHE_POLICY);

boolean bCachePolicy =

(cachePolicy.equalsIgnoreCase(TxnPersisterConstants.CACHE_PERSISTENT)) ? true :

false;

this.storeInCache(entityMap, timeOutValue, bCachePolicy);

}

}

}

catch (CreateException ce) {

throw new ProcessingErrorException(ce);

}

catch (RemoteException re) {

throw new ProcessingErrorException(re);

}

}

5.8.11 Teller Example of Store and Forward

One of the Financial Components of Teller to be enhanced with Store and Forward is Deposit. The changes

to the deposit component are as follows:

5.8.11.1 TransactionDetails

The BMP version of this bean was written implementing the com.bankframe.ejb.bmp.EBMPEntity

interface, for details on this please refer to the Persister documentation. A new variable

hostOnLineStatus was added to the BMP class to pass along the host status at the time the transaction

was initiated. This variable is used to determine if the transaction should be processed or if a

HostOfflineException should be thrown, depending on the host status.

5.8.11.2 IsSystemAvailabilityBean

This session bean is used to interact with the StoreAndForwardUtils class to ascertain the host status.

It contains the following two methods:

imIsHostOnline(String sessionName, String processName, String companyCode) this

method is used to check if the Host is offline or online.

imIsTransactionStoreable(String sessionName, String processName) this method is used

to check whether or not a transaction can be stored.

5.8.11.3 IsMakeDeposit

This has been changed to throw new transaction handler exceptions: HostConnectivityException and

HostOfflineException.

Financial Process Integration ■ Store and Forward

MCA Services Developer Guide Version 2004.5, Rev. A ■ 203

5.8.11.4 MakeDeposit

The makeDepositBC method was updated as follows: to process an online transaction when true is

returned from the imIsHostOnline() method and to process an offline transaction when false is

returned from the imIsHostOnline() method. One of the requirements for Store and Forward is the

status of the host at the time the transaction was initiated. If the host was online when the transaction was

started but has subsequently gone offline either a HostConnectivityException or a

HostOfflineException will be thrown. In the example below these exceptions are caught and if the

transaction is storeable then an offline transaction is sent to the host, otherwise the exception is re-thrown.
public Vector makeDepositBC(FinancialTransactionCommonAttributesVO

financialTransactionCommonAttributesVO,

FinancialTransactionDestinationAccountVO

financialTransactionDestinationAccountVO, Vector

financialTransactionNegotiableInstrumentVOVector) throws

ProcessingErrorException, ValidationException, HostOfflineException,

HostConnectivityException {

Vector batchStateMessageVector = new Vector();

try {

//check the host status

this.online =

this.getIsSystemAvailability().imIsHostOnline(MakeDepositHome.JNDI_LOOKUP_

NAME, "makeDepositBC",

financialTransactionCommonAttributesVO.getCompanyCode()).booleanValue();

//if the host is online try to send an online request

if (online) {

this.getUserAdministration().imIsUserValidForOperation(

financialTransactionCommonAttributesVO.getCompanyCode(),

financialTransactionCommonAttributesVO.getUserId(),

com.bankframe.bfa.Constants.getValueInList(0,

TellerConstantsKeysImpl.TASK_ID_MAKE_DEPOSIT_ONLINE).toString(),

DataTypeConvertor.getDouble(com.bankframe.bfa.Constants.getText(TellerCons

tantsKeysImpl.DEFAULT_LIMIT_VALUE_TEXT)));

try {

batchStateMessageVector =

this.getIsMakeDeposit().imMakeOnlineDepositBC(financialTransactionCommonAt

tributesVO, financialTransactionDestinationAccountVO,

financialTransactionNegotiableInstrumentVOVector, "ON_LINE");

}

Financial Process Integration ■ Store and Forward

204 ■ MCA Services Developer Guide Version 2004.5, Rev. A

//if a HostConnectivityException is returned then check if

//the transaction is storeable

catch (HostConnectivityException hex) {

if

(this.getIsSystemAvailability().imIsTransactionStoreable(MakeDepositHome.J

NDI_LOOKUP_NAME, "makeDepositBC").booleanValue()) {

this.getUserAdministration().imIsUserValidForOperation(financialTransactio

nCommonAttributesVO.getCompanyCode(),

financialTransactionCommonAttributesVO.getUserId(),

com.bankframe.bfa.Constants.getValueInList(0,

TellerConstantsKeysImpl.TASK_ID_MAKE_DEPOSIT_OFFLINE).toString(),

DataTypeConvertor.getDouble(com.bankframe.bfa.Constants.getText(TellerCons

tantsKeysImpl.DEFAULT_LIMIT_VALUE_TEXT)));

batchStateMessageVector =

this.getIsMakeDeposit().imMakeOfflineDepositBC(financialTransactionCommonA

ttributesVO, financialTransactionDestinationAccountVO,

financialTransactionNegotiableInstrumentVOVector, "OFF_LINE");

}

else

throw new HostConnectivityException(hex);

}

//if a HostOfflineException is returned then check if the

//transaction is storeable

catch (HostOfflineException hex) {

if

(this.getIsSystemAvailability().imIsTransactionStoreable(MakeDepositHome.J

NDI_LOOKUP_NAME, "makeDepositBC").booleanValue()) {

Financial Process Integration ■ Store and Forward

MCA Services Developer Guide Version 2004.5, Rev. A ■ 205

this.getUserAdministration().imIsUserValidForOperation(financialTransactio

nCommonAttributesVO.getCompanyCode(),

financialTransactionCommonAttributesVO.getUserId(),

com.bankframe.bfa.Constants.getValueInList(0,

TellerConstantsKeysImpl.TASK_ID_MAKE_DEPOSIT_OFFLINE).toString(),

DataTypeConvertor.getDouble(com.bankframe.bfa.Constants.getText(TellerCons

tantsKeysImpl.DEFAULT_LIMIT_VALUE_TEXT)));

batchStateMessageVector =

this.getIsMakeDeposit().imMakeOfflineDepositBC(financialTransactionCommonA

ttributesVO, financialTransactionDestinationAccountVO,

financialTransactionNegotiableInstrumentVOVector, "OFF_LINE");

}

else

throw new HostOfflineException(hex);

}

}

//if the host is offline send an offline request

else if (!online) {

this.getUserAdministration().imIsUserValidForOperation(financialTransactio

nCommonAttributesVO.getCompanyCode(),

financialTransactionCommonAttributesVO.getUserId(),

com.bankframe.bfa.Constants.getValueInList(0,

TellerConstantsKeysImpl.TASK_ID_MAKE_DEPOSIT_OFFLINE).toString(),

DataTypeConvertor.getDouble(com.bankframe.bfa.Constants.getText(TellerCons

tantsKeysImpl.DEFAULT_LIMIT_VALUE_TEXT)));

batchStateMessageVector =

this.getIsMakeDeposit().imMakeOfflineDepositBC(financialTransactionCommonA

ttributesVO, financialTransactionDestinationAccountVO,

financialTransactionNegotiableInstrumentVOVector, "OFF_LINE");

}

}

catch (RemoteException remoteException) {

Financial Process Integration ■ Financial Process Integrator Examples

206 ■ MCA Services Developer Guide Version 2004.5, Rev. A

//throw new

ProcessingErrorException(TellerErrorNumberImpl.REMOTE_EXCEPTION_NUMBER,

new String[] { "MakeDeposit", "makeDepositBC" });

throw new ProcessingErrorException(remoteException);

}

return batchStateMessageVector;

}

5.8.11.5 MaintainFinancialTransaction

Has been changed to throw new transaction handler exceptions; HostConnectivityException and

HostOfflineException.

5.9 Financial Process Integrator Examples

5.9.1 Customer Example

5.9.1.1 Introduction

This section will illustrate how the Financial Process Integrator works using two entity beans and a

session bean:

Name EJB Type Description

Address Entity Models the common attributes

of a postal address

Customer Entity Models the name attributes of

a customer

CustomerSearch Session Searches for Customer

instances and their associated

Address instances

Allows Customer and

Address details to be

amended

5.9.1.1.1 Aims

These examples aim to show:

- How entity beans interact with the persister

- How the persister interacts with the Financial Process Integrator

- How to configure the Financial Process Integrator meta-data

- How to configure the Financial Process Integrator routes and destinations

Financial Process Integration ■ Financial Process Integrator Examples

MCA Services Developer Guide Version 2004.5, Rev. A ■ 207

5.9.1.1.2 Scope

It is assumed that the reader is familiar with the best practices for modeling entity beans and session

beans.

5.9.1.2 The Address entity

The Address entity has the following attributes:

Attribute Description

ownerId The ID of the entity that the address belongs to

addressLine1 The first line of the address

addressLine2 The second line of the address

addressLine3 The third line of the address

addressLine4 The fourth line of the address

country The country of the address

postcode The postal code

5.9.1.3 The Customer entity

The Customer entity has the following attributes:

Attribute Description

ownerId The customer’s unique ID number

title The customer’s formal title

firstName The customer’s first name

lastName The customer’s last name

5.9.1.4 Relationship between Customer and Address

Every Customer entity must have an associated Address entity. This means that a Customer entity

cannot exist without having a corresponding Address entity. We say that the existence of an Address

entity is dependent on the existence of a Customer entity.

Each Customer entity has a unique ownerId attribute. For each Customer entity there will be a

corresponding Address entity whose ownerId is equal to the Customer’s ownerId attribute.

5.9.1.5 The CustomerSearch session

The CustomerSearch session bean must be able to:

- Find a Customer by ownerId

- Find one or more Customers by last name

Financial Process Integration ■ Financial Process Integrator Examples

208 ■ MCA Services Developer Guide Version 2004.5, Rev. A

- Amend a Customers details, including Address details

5.9.1.6 Interfacing the Entities with the Financial Process Integrator

Below we will describe how we have modelled the Address entity bean, concentrating on issues relevant to

connecting the entity bean to the Financial Process Integrator.

5.9.1.6.1 com.bankframe.examples.impl.address.AddressBMPBean

This class is the Bean Managed Persistence (BMP) implementation of the Address entity bean.

This class must persist its attributes to/from the host system.

5.9.1.6.2 EBMPEntity Methods

As described previously all BMP entity beans must implement the

com.bankframe.ejb.bmp.EBMPEntity interface. Below we will describe how AddressBMPBean

implements each of the methods defined in the EBMPEntity interface.

5.9.1.6.2.1 createPrimaryKey()

public EPrimaryKey createPrimaryKey(DataPacket dp) throws

ProcessingErrorException {

if (dp.getName().equals("ADDRESS")) {

return new AddressPK(dp.getString("OWNER_ID"));

} else {

return null;

}

}

This method must create an instance of the entity bean’s primary key type from the information in the

supplied DataPacket. The method must check that the DataPacket being passed in is of the correct type,

i.e. that the DataPacket name matches the entity bean’s name

5.9.1.6.2.2 getEntityName()

public String getEntityName() {

return AddressHome.JNDI_NAME;

}

This method must provide a String that uniquely identifies this type of entity bean. By convention this

name must be the JNDI name of the entity bean.

Financial Process Integration ■ Financial Process Integrator Examples

MCA Services Developer Guide Version 2004.5, Rev. A ■ 209

5.9.1.6.2.3 getPersister()

public EPersister getPersister() {

try {

return EPersisterFactory.getPersister(this.getEntityName());

} catch (ProcessingErrorException pex) {

BankFrameLog.log(BankFrameLog.WARN, "BANKFRAME.MCA",pex);

throw new RuntimeException(pex.getMessage());

}

}

This method must return an instance of the persister object to be used for persisting this entity bean. This

method delegates the task of locating the persister to the

com.bankframe.ejb.bmp.EPersisterFactory class. This enables the persister used by an entity

bean to be changed without having to recompile or re-deploy the entity bean. Note that all BMP entity beans

will use the exact code shown above.

5.9.1.6.2.4 getPrimaryKey()

public EPrimaryKey getPrimaryKey() {

return (EPrimaryKey)this.ctx.getPrimaryKey();

}

This method must return an instance of this entity bean instance’s primary key object. The primary key for

each entity bean instance is stored in the entity bean’s EntityContext, so this method just returns the

primary key reference stored in the EntityContext. Note that all BMP entity beans will use the exact code

shown above.

5.9.1.6.2.5 populate()

public void populate(DataPacket dp) {

this.ownerId = dp.getString("OWNER_ID");

this.addressLine1 = dp.getString("ADDRESS_LINE1");

this.addressLine2 = dp.getString("ADDRESS_LINE2");

this.addressLine3 = dp.getString("ADDRESS_LINE3");

this.addressLine4 = dp.getString("ADDRESS_LINE4");

this.country = dp.getString("COUNTRY");

Financial Process Integration ■ Financial Process Integrator Examples

210 ■ MCA Services Developer Guide Version 2004.5, Rev. A

this.postCode = dp.getString("POST_CODE");

}

This method must populate the entity bean’s attributes with the data retrieved from the supplied

DataPacket.

5.9.1.6.3 AddressBMPBean methods

AddressBMPBean must implement the methods required by the javax.ejb.EntityBean interface.

Below we will describe how AddressBMPBean implements each of these methods.

5.9.1.6.3.1 ejbActivate()

This method is called by the EJB container when an entity bean instance is about to be used. In this method

the entity bean should acquire any resources it requires. The AddressBMPBean does not need to acquire

any resources so this method is empty.

5.9.1.6.3.2 ejbCreate()

This method is called by the EJB container when a new entity bean instance is being created. This method

must create the corresponding data in the data-store, and return a primary key object for the new instance.

public AddressPK ejbCreate(String ownerId,String addressLine1,

String addressLine2, String addressLine3, String

addressLine4,String country,String postCode) throws

CreateException,ValidationException, ProcessingErrorException {

super.create(ownerId,addressLine1,addressLine2,addressLine3,address

Line4,country,postCode);

return (AddressPK)this.getPersister().create(this);

}

This method first calls the super-classes’ create() method to initialise the new instance. It then calls the

persister’s create() method, which takes care of creating the data on the host system. The persister’s

create() method also returns a primary key object for the new instance.

5.9.1.6.3.3 ejbLoad()

This method is called by the EJB container when the entity bean must refresh its attributes from the data-

store.

public void ejbLoad() {

try {

this.getPersister().load(this);

Financial Process Integration ■ Financial Process Integrator Examples

MCA Services Developer Guide Version 2004.5, Rev. A ■ 211

} catch (ProcessingErrorException pex) {

BankFrameLog.log(BankFrameLog.WARN, "BANKFRAME.MCA",pex);

}

}

This method calls the persister’s load() method, which takes care of reading the data from the data-store,

and calling the entity bean’s populate() method to initialise the entity bean’s attributes.

5.9.1.6.3.4 ejbPassivate()

This method is called by the EJB container when an entity bean instance is about to be de-activated. In this

method the entity bean should release any resources it has been using. The AddressBMPBean does not

use any resources, so this method is empty.

5.9.1.6.3.5 ejbPostCreate()

This method is called by the EJB container immediately after a new entity bean instance has been created.

public void ejbPostCreate(String ownerId,String addressLine1,

String addressLine2, String addressLine3, String

addressLine4,String country,String postCode) {

setModified(false); // reset the modified status

}

This method sets the modified flag to false. This will be explained in more detail in the ejbStore()

section. All BMP entity beans will use the exact code shown above.

5.9.1.6.3.6 ejbRemove()

This method is called by the EJB container when the entity bean instance should be deleted from the data

store.

public void ejbRemove() {

try {

this.getPersister().remove(this);

} catch (ProcessingErrorException pex) {

BankFrameLog.log(BankFrameLog.WARN, "BANKFRAME.MCA",pex);

}

}

Financial Process Integration ■ Financial Process Integrator Examples

212 ■ MCA Services Developer Guide Version 2004.5, Rev. A

This method calls the persister’s remove() method to remove the data from the data store. All BMP entity

beans will use the exact code shown above.

5.9.1.6.3.7 ejbStore()

This method is called by the EJB container when the entity bean instance should be written to the data

store.

public void ejbStore() {

try {

if (this.modified == true) {

this.getPersister().store(this);

this.setModified(false);

}

} catch (ProcessingErrorException pex) {

BankFrameLog.log(BankFrameLog.WARN, "BANKFRAME.MCA",pex);

}

}

This method calls the persister’s store() method to actually store the data to the data store. This method

will only call the persister’s store() method if the modified flag is set to true. This is an optimisation to

prevent unnecessary updates to the data store. It is imperative that all entity bean methods which modify an

entity bean’s attributes must set the modified flag to true.

All BMP entity beans will use the exact code shown above.

5.9.1.6.3.8 setEntityContext()

This method is called by the EJB Container when an entity bean is about to be used. The entity bean must

store the supplied context.

public void setEntityContext(EntityContext newCtx) {

this.ctx = newCtx;

this.setModified(false);

}

All BMP entity beans will use the exact code shown above.

5.9.1.6.3.9 unsetEntityContext()

This method is called by the EJB Container when it is finished using an entity bean. The entity bean must

null its context.

Financial Process Integration ■ Financial Process Integrator Examples

MCA Services Developer Guide Version 2004.5, Rev. A ■ 213

public void unsetEntityContext() {

this.ctx = null;

}

All BMP entity beans will use the exact code shown above.

5.9.1.6.3.10 ejbFindByPrimaryKey()

This method is called by the EJB Container when a findByPrimaryKey() is invoked on the entity bean’s

home interface. It must verify that the specified entity bean instance exists in the data store. If it does exist

then this method must return the supplied primary key, otherwise this method must throw a
javax.ejb.ObjectNotFoundException

public AddressPK ejbFindByPrimaryKey(AddressPK primaryKey) throws

FinderException, ValidationException {

try {

this.validator.validateOwnerId(primaryKey.ownerId);

Enumeration enum =

this.getPersister().find(this,"findByPrimaryKey",primaryKey.toDataP

acket());

if (enum.hasMoreElements() == false) {

throw new

javax.ejb.ObjectNotFoundException(primaryKey.toDataPacket().toStrin

g());

}

return primaryKey;

} catch (ProcessingErrorException pex) {

throw new FinderException(pex.getMessage());

}

}

This method first validates that the primary key object contains a legal value for the ownerId. It then calls

the persister’s find() method passing it the primary key object in DataPacket form. If the instance does

exist then the find() method will return an Enumeration containing the entity’s primary key object,

otherwise it will return an empty Enumeration. If the Enumeration is empty then this method will throw a

javax.ejb.ObjectNotFoundException().

Financial Process Integration ■ Financial Process Integrator Examples

214 ■ MCA Services Developer Guide Version 2004.5, Rev. A

5.9.1.6.3.11 ejbFind<Method>() Methods

The AddressBMPBean has a number of ejbFind<Method>() methods, each of which has a

corresponding method in the AddressHome interface. These methods must return an Enumeration of

primary key objects that match the specified search criteria. It no matches are found then it must return an

empty Enumeration.

Below is the code for the ejbFindByPostCode() method.

public Enumeration ejbFindByPostCode(String postCode) throws

FinderException, ValidationException {

try {

this.validator.validatePostCode(postCode);

DataPacket dp = new DataPacket("FIND_BY_POST_CODE");

dp.put("POST_CODE",postCode);

return this.getPersister().find(this,"findByPostCode",dp);

} catch (ProcessingErrorException pex) {

throw new FinderException(pex.getMessage());

}

}

5.9.1.6.4 The amend() method

All Siebel entity beans have an amend() method which is used to modify the entity bean’s attributes.

public void amend(String addressLine1, String addressLine2,

String addressLine3, String addressLine4,String country,String

postCode) throws ValidationException {

super.amend(addressLine1,addressLine2,addressLine3,addressLine4,cou

ntry,postCode);

this.setModified(true);

}

This method calls its super-classes’ amend() method to actually perform the amend, and then sets the

modified flag to true (as explained in the ejbStore() section).

Financial Process Integration ■ Financial Process Integrator Examples

MCA Services Developer Guide Version 2004.5, Rev. A ■ 215

5.9.1.7 CustomerBMPBean Methods

The com.bankframe.examples.bo.impl.customer.CustomerBMPBean has very similar methods to

the AddressBMPBean. The only difference is some extra methods to handle the relationship between

Customer Entities and Address Entities.

5.9.1.8 Modelling the Customer and Address relationship

The Customer entity is called a master entity because it has an associated entity (or dependent entity) that

cannot exist by itself. An Address entity cannot exist without a corresponding Customer entity also

existing. Secondly, in a real system, an Address entity could be associated with other types of entity other

than a Customer entity; for example, an Address entity could be associated with a BranchOffice entity.

This means that an Address entity cannot know which entity it is associated with.

Thirdly our example host system has only one amend transaction, which must be used for amending both

Customer and Address information. This transaction requires that all the attributes from the Customer

entity and the Address entity be present in the transaction. Therefore, to generate the transaction we must

merge the data from the Customer and Address entities.

When amending the Customer entity it is straightforward to locate the corresponding Address entity, and

merge the two entities to produce the complete amend transaction.

However when amending the Address entity we cannot determine which entity it is associated with. This

means that the Address entity does not have enough information to create a complete amend transaction.

The solution to this problem is to add a new method to the Customer method called amendAddress().

This method is used when the Address details associated with a Customer must be updated. This method

takes care of locating the Address associated with the Customer and calling the Address’s amend()

method, and then merging the data from the two entities to create the complete amend transaction required

by the host.

There is a second problem which must also be addressed: since data is cached when it is read from the

host, we must make sure to remove old entries from the cache when entities are amended. When an

address is amended, it must be removed from the cache and its associated Customer must also be

removed from the cache.

To make sure this happens the Customer entity must implement the

com.bankframe.ejb.bmp.EBMPMasterEntity interface, and must also be configured to use the

com.bankframe.ei.txnhandler.persister.MasterEntityPersister persister.

5.9.1.9 CustomerBean Methods

The com.bankframe.examples.bo.impl.customer.CustomerBean has the following methods to

model the relationship between the Customer entity and the Address entity.

5.9.1.9.1 getAddress()

This method returns an instance of the Address entity associated with the Customer entity.

try {

Financial Process Integration ■ Financial Process Integrator Examples

216 ■ MCA Services Developer Guide Version 2004.5, Rev. A

AddressHome home =

(AddressHome)ObjectLookup.lookup(AddressHome.JNDI_NAME,AddressHome.

class);

return home.findByPrimaryKey(new AddressPK(this.ownerId));

} catch (javax.ejb.FinderException fex) {

BankFrameLog.log(BankFrameLog.WARN, "BANKFRAME.MCA",fex);

throw ExceptionUtils.toProcessingErrorException(fex);

} catch (ValidationException vex) {

BankFrameLog.log(BankFrameLog.WARN, "BANKFRAME.MCA",vex);

throw ExceptionUtils.toProcessingErrorException(vex);

}

This method does a findByPrimaryKey() to find the corresponding Address instance and returns the

corresponding instance.

5.9.1.9.2 amendAddress()

This method amends the Address entity associated with the Customer entity. This method should be

called rather than calling the Address.amend() method directly.

public Address amendAddress(String addressLine1, String

addressLine2, String addressLine3, String addressLine4,String

country,String postCode) throws ProcessingErrorException,

ValidationException, RemoteException {

Address address = this.getAddress();

address.amend(addressLine1,addressLine2,addressLine3,addressLine4,c

ountry,postCode);

this.setModified(true);

return address;

}

This method sets the modified flag to true so that the Customer entity data is stored to the host. This

will cause the Address entity data to be stored as well.

Financial Process Integration ■ Financial Process Integrator Examples

MCA Services Developer Guide Version 2004.5, Rev. A ■ 217

5.9.1.10 CustomerBMPBean Methods

The CustomerBMPBean class has very similar methods to the AddressBMPBean. The only extra methods

are for managing the Customer-Address relationship.

Since CustomerBMPBean is a master entity, it must implement the

com.bankframe.ejb.bmp.EBMPMasterEntity interface. The EBMPMasterEntity interface extends

the com.bankframe.ejb.bmp.EBMPEntity interface, adding the following method:

public Vector getDependentEntities() throws

ProcessingErrorException, RemoteException ;

This method must return a Vector of com.bankframe.ejb.bmp.EEntity instances, where each

instance is a dependent entity of the master entity.

Below is CustomerBMPBean’s implementation of this method:

public Vector getDependentEntities() throws

ProcessingErrorException, RemoteException {

Vector dependents = new Vector(1);

dependents.add(this.getAddress());

return dependents;

}

This method calls the getAddress() method and adds the returned instance to the Vector of dependent

instances.

5.9.1.11 Configuring the PERSISTER_TXN_MAP table

The PERSISTER_TXN_MAP database table must be correctly configured to connect the BMP (bean

managed persistence) entity beans to the Financial Process Integrator. The table below illustrates the data

used to configure the PERSISTER_TXN_MAP table for the Customer and Address entities:
ENTITYNAME METHODNAME TXNCODE TXNTYPE CACHEPOLICY TIMEOUTVALUE

eontec.bankframe.

examples.bo.custome

r

findByPrimaryKe

y TESTFIND0001 TEST memory 100000

eontec.bankframe.

examples.bo.custome

r findByLastName TESTFIND0002 TEST none 0

eontec.bankframe.

examples.bo.custome

r findAll TESTFIND0004 TEST none 0

eontec.bankframe.

examples.bo.custome

r store TESTAMND0001 TEST none 0

Financial Process Integration ■ Financial Process Integrator Examples

218 ■ MCA Services Developer Guide Version 2004.5, Rev. A

eontec.bankframe.

examples.bo.address

findByPrimaryKe

y TESTFIND0001 TEST memory 100000

eontec.bankframe.

examples.bo.address store NA NA memory 100000

eontec.bankframe.

examples.bo.custome

r amendAddress TESTAMND0001 TEST none 0

This table maps entity names and method names to transaction codes and transaction types. Note that

some entity name, method name pairs may be mapped to a special transaction code: ‘NA’. The ‘NA’ value

indicates that the specified method is not connected to the Financial Process Integrator. In the above

example the store() method for the Address entity is marked ‘NA’ because the Address entity is unable

to persist itself.

The CACHEPOLICY value specifies whether the results of the transaction are cacheable. If they are then the

TIMEOUTVALUE specifies how many milliseconds the results should be cached for.

5.9.1.12 Configuring the Meta-Data

The REQUEST_TXN_LAYOUT, RESPONSE_TXN_LAYOUT and RESPONSE_META_DATA database tables must

be correctly configured to map the DataPackets received from the persister to the host transaction fields,

and vice versa.

Note: In the interests of clarity some of the columns in the tables have been omitted from the tables below.

Consult the txnsampledata.sql file supplied with MCA Services for the complete meta-data.

5.9.1.12.1 Format of TESTFIND0001

Transaction TESTFIND0001 corresponds to the Customer entity bean’s findByPrimaryKey() method.

The REQUEST_TXN_LAYOUT table has the following format:

FIELDNAME DP_FIELD LENGTH SEQUENCE Sample value

T-CODE TXN_CODE 12 1 TESTFIND0001

T-RESTART-

INDEX

RESTART_INDEX 4 2 0000

C-OWNER-ID OWNER_ID 10 3 1234560010

The RESPONSE_META_DATA has the following format:

DP_NAME DP_INDEX DP_FIELD TXN_FIELDNAME

HEADER 1 RECORD_COUNT H-RECORDS

HEADER 1 RESTART_FLAG H-RESTART

CUSTOMER 2 OWNER_ID C-OWNER-ID

CUSTOMER 2 FIRST_NAME C-FIRST-NAME

Financial Process Integration ■ Financial Process Integrator Examples

MCA Services Developer Guide Version 2004.5, Rev. A ■ 219

CUSTOMER 2 LAST_NAME C-LAST-NAME

CUSTOMER 2 TITLE C-TITLE

ADDRESS 3 POST_CODE A-POST-CODE

ADDRESS 3 ADDRESS_LINE1 A-LINE-1

ADDRESS 3 ADDRESS_LINE2 A-LINE-2

ADDRESS 3 ADDRESS_LINE3 A-LINE-3

ADDRESS 3 ADDRESS_LINE4 A-LINE-4

ADDRESS 3 COUNTRY A-COUNTRY

The response is parsed into three DataPackets:

- The header DataPacket which contains the header information

- The Customer DataPacket which contains the data for the Customer entity

- The Address DataPacket which contains the data for the Address entity associated with the

Customer entity

5.9.1.12.2 Format of TESTFIND0002

Transaction TESTFIND0002 corresponds to the Customer entity bean’s findByLastName() method.

The REQUEST_TXN_LAYOUT table has the following format:

FIELDNAME DP_FIELD LENGTH SEQUENCE Sample value

T-CODE TXN_CODE 12 1 TESTFIND0002

T-RESTART-

INDEX

RESTART_INDEX 4 2 0000

C-LAST-NAME LAST_NAME 20 3 Walsh

The RESPONSE_META_DATA has the following format:

TXN_FIELDNAME DP_NAME DP_FIELD DP_INDEX

H-RECORDS HEADER RECORD_COUNT 1

H-RESTART HEADER RESTART_FLAG 1

C-OWNER-ID CUSTOMER OWNER_ID 2

C-FIRST-NAME CUSTOMER FIRST_NAME 2

C-LAST-NAME CUSTOMER LAST_NAME 2

C-TITLE CUSTOMER TITLE 2

A-POST-CODE ADDRESS POST_CODE 3

Financial Process Integration ■ Financial Process Integrator Examples

220 ■ MCA Services Developer Guide Version 2004.5, Rev. A

A-LINE-1 ADDRESS ADDRESS_LINE1 3

A-LINE-2 ADDRESS ADDRESS_LINE2 3

A-LINE-3 ADDRESS ADDRESS_LINE3 3

A-LINE-4 ADDRESS ADDRESS_LINE4 3

A-COUNTRY ADDRESS COUNTRY 3

C-OWNER-ID CUSTOMER OWNER_ID 4

C-FIRST-NAME CUSTOMER FIRST_NAME 4

C-LAST-NAME CUSTOMER LAST_NAME 4

C-TITLE CUSTOMER TITLE 4

A-POST-CODE ADDRESS POST_CODE 5

A-LINE-1 ADDRESS ADDRESS_LINE1 5

A-LINE-2 ADDRESS ADDRESS_LINE2 5

A-LINE-3 ADDRESS ADDRESS_LINE3 5

A-LINE-4 ADDRESS ADDRESS_LINE4 5

A-COUNTRY ADDRESS COUNTRY 5

C-OWNER-ID CUSTOMER OWNER_ID 6

C-FIRST-NAME CUSTOMER FIRST_NAME 6

C-LAST-NAME CUSTOMER LAST_NAME 6

C-TITLE CUSTOMER TITLE 6

A-POST-CODE ADDRESS POST_CODE 7

A-LINE-1 ADDRESS ADDRESS_LINE1 7

A-LINE-2 ADDRESS ADDRESS_LINE2 7

A-LINE-3 ADDRESS ADDRESS_LINE3 7

A-LINE-4 ADDRESS ADDRESS_LINE4 7

A-COUNTRY ADDRESS COUNTRY 7

C-OWNER-ID CUSTOMER OWNER_ID 8

Financial Process Integration ■ Financial Process Integrator Examples

MCA Services Developer Guide Version 2004.5, Rev. A ■ 221

C-FIRST-NAME CUSTOMER FIRST_NAME 8

C-LAST-NAME CUSTOMER LAST_NAME 8

C-TITLE CUSTOMER TITLE 8

A-POST-CODE ADDRESS POST_CODE 9

A-LINE-1 ADDRESS ADDRESS_LINE1 9

A-LINE-2 ADDRESS ADDRESS_LINE2 9

A-LINE-3 ADDRESS ADDRESS_LINE3 9

A-LINE-4 ADDRESS ADDRESS_LINE4 9

A-COUNTRY ADDRESS COUNTRY 9

As you can see, the response is quite long! TESTFIND003 is an example of a transaction that has repeating

groups. The response may contain the data for zero or more Customer and Address entities, furthermore

the host will only return four results at a time, so the transaction must be fired against the host multiple times

to get the complete result set.

The H-RECORDS field in the response indicates how many records were returned by the host.

The H-RESTART field indicates whether there are more records to be retrieved from the host. If this field has

a value of ‘1’ then there are more results to be retrieved, otherwise there are no more results.

Since the host returns four results at a time the meta-data for the Customer and Address entities must be

repeated four times, with each entity instance being given a different entity occurrence value.

5.9.1.12.3 Format of TESTAMND0001

Transaction TESTAMND0001 corresponds to the Customer entity’s store() or amendAddress()

methods. Both store() and amendAddress() must use this transaction to amend Customer and/or

Address data because the host only provides a single transaction for amending Customer and Address

attributes.

The REQUEST_TXN_LAYOUT table has the following format:

FIELDNAME SEQUENCE DP_FIELD LENGTH

T-CODE 1 TXN_CODE 12

C-OWNER-ID 2 OWNER_ID 10

C-FIRST-NAME 3 FIRST_NAME 20

C-LAST-NAME 4 LAST_NAME 20

C-TITLE 5 TITLE 5

A-POST-CODE 6 POST_CODE 15

Financial Process Integration ■ Financial Process Integrator Examples

222 ■ MCA Services Developer Guide Version 2004.5, Rev. A

A-LINE-1 7 ADDRESS_LINE1 20

A-LINE-2 8 ADDRESS_LINE2 20

A-LINE-3 9 ADDRESS_LINE3 20

A-LINE-4 10 ADDRESS_LINE4 20

A-COUNTRY 11 COUNTRY 20

The RESPONSE_META_DATA has the following format:

TXN_FIELDNAME DP_INDEX DP_NAME DP_FIELD

H-STATUS 1 CUSTOMER STATUS

The request transaction contains the transaction code and all the attributes of the Customer and Address

entities. The response transaction contains a single field indicating if the amend operation succeeded. If the

operation succeeds the field will contain ‘OK’, otherwise the field will contain ‘ERROR’.

5.9.1.13 Configuring the TXN_ROUTE Table

The TXN_ROUTE table must be correctly configured to map requests to the correct connector and to specify

which data formatter class to use. The table below illustrates the data used to configure the TXN_ROUTE

table:

TXN_CODE TXN_TYPE DESTIONATION_ID DATAFORMAT

TESTFIND0001 TEST C001 com.bankframe.examples.txnhandler.

dataformat.testcustomer.TestCustomerData

Format

TESTFIND0002 TEST C001 com.bankframe.examples.txnhandler.

dataformat.testcustomer.TestCustomerData

Format

TESTFIND0004 TEST C001 com.bankframe.examples.txnhandler.

dataformat.testcustomer.TestCustomerData

Format

TESTAMND0001 TEST C001 com.bankframe.examples.txnhandler.

dataformat.testcustomer.TestCustomerData

Format

In all cases the data formatter class used is:

com.bankframe.examples.txnhandler.dataformat.testcustomer.TestCusto

merDataFormat

Similarly all transactions use the same destination: C001

Financial Process Integration ■ Financial Process Integrator Examples

MCA Services Developer Guide Version 2004.5, Rev. A ■ 223

5.9.1.14 Configuring the DESTINATION Table

The DESTINATION table must be configured to specify which connector to use for communicating with the

host system:

DESTINATIO
N_ID CONNECTOR_FACTORY_CLASSNAME CONNECTOR_PROPERTIES

C001

com.bankframe.examples.txnhandler.

connector.testcustomer.

TestCustomerConnectionFactory offlineMode=disable

Where the connector is defined in the BankframeResource.properties file.

5.9.1.15 Configuring the CustomerSearch Example

If your application server is installed in a folder other than the default location defined in the deployment

guide and you wish to use the CustomerSearch example then the following changes must be made:

- Edit the BankframeResource.properties file and locate the

transactionHandler.test.customerData setting

- Change the value of this setting to point to the correct location of the

TestCustomerData.properties (TestCustomerData.properties will be located in the

same folder as BankframeResource.properties)

- Edit the TestCustomerData.properties file and locate the this.absolutePath setting

- Change the value of this setting to point to the correct location of the
TestCustomerData.properties

5.9.2 Account Example

5.9.2.1 Introduction

This section will illustrate how the Financial Process Integrator works using one simple entity bean and

a session bean:

Name EJB Type Description

Account Entity Models the common

attributes of an account

AccountSearch Session Searches for Account

instances

5.9.2.1.1 Aims

These examples aim to show:

- How an entity bean interacts with the persister

- How the persister interacts with the Financial Process Integrator

- How to configure the Financial Process Integrator meta-data

- How to configure the Financial Process Integrator routes and destinations

Financial Process Integration ■ Financial Process Integrator Examples

224 ■ MCA Services Developer Guide Version 2004.5, Rev. A

- How to configure the example Cobol Test Connector

5.9.2.2 The Account entity

The Account entity has the following attributes:

Attribute Description

cardNumber The customers card number

accountNumber The account number

accountName The account name

5.9.2.3 The AccountSearch session

The AccountSearch session bean must be able to find all the Account entities

5.9.2.4 Interfacing the Entities with the Financial Process Integrator

Below we will describe how we have modelled the Account entity bean, concentrating on issues relevant to

connecting the entity bean to the Financial Process Integrator.

5.9.2.4.1 com.bankframe.examples.impl.account.AccountBMPBean

This class is the Bean Managed Persistence (BMP) implementation of the Account entity bean.

This class must persist its attributes to/from the host system.

5.9.2.4.2 EBMPEntity Methods

As described previously all BMP entity beans must implement the

com.bankframe.ejb.bmp.EBMPEntity interface. This is achieved in a similar manner to the

CustomerBMPBean example described previously. Below we will describe how AddressBMPBean

implements each of the methods defined in the EBMPEntity interface.

5.9.2.5 Configuring the PERSISTER_TXN_MAP table

The PERSISTER_TXN_MAP database table must be correctly configured to connect the BMP entity beans to

the Financial Process Integrator. The table below illustrates the data used to configure the

PERSISTER_TXN_MAP table for the Account entity:
ENTITYNAME METHODNAME TXNCODE TXNTYPE CACHEPOLICY TIMEOUTVALUE

eontec.bankframe.

examples.bo.account findAll ACCOUNTFIND TEST none 0

This table maps entity names and method names to transaction codes and transaction types. The

CACHEPOLICY value specifies whether the results of the transaction are cacheable. If they are then the

TIMEOUTVALUE specifies how many milliseconds the results should be cached for.

Financial Process Integration ■ Financial Process Integrator Examples

MCA Services Developer Guide Version 2004.5, Rev. A ■ 225

5.9.2.6 Configuring the Meta-Data

The REQUEST_TXN_LAYOUT, RESPONSE_TXN_LAYOUT and RESPONSE_META_DATA database tables must

be correctly configured to map the DataPackets received from the persister to the host transaction fields,

and vice versa.

Note: In the interests of clarity some of the columns in the tables have been omitted from the tables below.

Consult the txnsampledata.sql file supplied with MCA Services for the complete meta-data.

5.9.2.6.1 Format of ACCOUNTFIND

Transaction ACCOUNTFIND corresponds to the Account entity’s findAll() method.

The REQUEST_TXN_LAYOUT table has the following format:

FIELDNAME DP_FIELD LENGTH SEQUENCE Sample value

T-CODE TXN_CODE 12 1 TESTFIND0001

The RESPONSE_META_DATA table has the following format:

TXN_FIELDNAME DP_NAME DP_FIELD DP_INDEX

CARD-NUMBER ACCOUNT CARD_NUMBER 1

ACCOUNT-NUMBER ACCOUNT ACCOUNT_NUMBER 1

ACCOUNT-NAME ACCOUNT ACCOUNT_NAME 1

CARD-NUMBER ACCOUNT CARD_NUMBER 2

ACCOUNT-NUMBER ACCOUNT ACCOUNT_NUMBER 2

ACCOUNT-NAME ACCOUNT ACCOUNT_NAME 2

CARD-NUMBER ACCOUNT CARD_NUMBER 3

ACCOUNT-NUMBER ACCOUNT ACCOUNT_NUMBER 3

ACCOUNT-NAME ACCOUNT ACCOUNT_NAME 3

CARD-NUMBER ACCOUNT CARD_NUMBER 4

ACCOUNT-NUMBER ACCOUNT ACCOUNT_NUMBER 4

ACCOUNT-NAME ACCOUNT ACCOUNT_NAME 4

… … … …

The response is parsed into ten Account DataPackets which contain the data for the Account entities.

Financial Process Integration ■ Financial Process Integrator Examples

226 ■ MCA Services Developer Guide Version 2004.5, Rev. A

5.9.2.7 Configuring the TXN_ROUTE Table

The TXN_ROUTE table must be correctly configured to map requests to the correct connector and to specify

which data formatter class to use. The table below illustrates the data used to configure the TXN_ROUTE

table:

TXN_CODE TXN_TYPE DESTINATION_ID DATAFORMAT

ACCOUNTFIND TEST C002

com.bankframe.examples.txnhandler.dataforma

t.

testaccount.TestAccountDataFormat

In all cases the data formatter class used is:

com.bankframe.examples.txnhandler.dataformat.testaccount.TestAccoun

tDataFormat

This data-format class is derived from

com.bankframe.ei.txnhandler.dataformat.basic.BasicDataFormat

Similarly all transactions use the same destination: C002

5.9.2.8 Configuring the DESTINATION Table

The DESTINATION table must be correctly configured to specify the correct connector to use for

communicating with the host system:

DESTINATION_ID CONNECTOR_FACTORY_CLASSNAME CONNECTOR_PROPERTIES

C002

com.bankframe.examples.txnhan

dler.

connector.coboltest.CobolTest

ConnectionFactory

offlineMode=disab

le

The settings for this connector are defined in BankframeResource.properties.

5.9.2.9 Configuring the Cobol Test Connector

The Account example uses the Cobol Test Connector:

com.bankframe.examples.txnhandler.connector.coboltest.*

The Cobol Test Connector generates Cobol binary data from a specified Cobol copybook file and returns the

data to the Financial Process Integrator. This can be used to test the Financial Process Integrator meta-

data and entity bean’s design for a simulated host system.

The Cobol test Connector key transactionHandler.connector.CobolTestConnector.* in

BankframeResource.properties has the following options:

midfile Specifies the path of the cobol copybook that

defines the format of the data request to the host

Financial Process Integration ■ Financial Process Integrator Examples

MCA Services Developer Guide Version 2004.5, Rev. A ■ 227

system.

modfile Specifies the path of the cobol copybook that

defines the format of the cobol data response from

the host system.

cobol.numbtype Specifies the format of the numbers in the created

cobol data; COMP-3, COMP, X, STD

cobol.texttype Specifies the format of text created in the cobol

data; ASCII, EBCDIC

midfile.debug Specifies if debug information is displayed while

host request is being processed; TRUE, FALSE

modfile.debug Specifies if debug information is displayed while the

host response is being processed; TRUE, FALSE

modfile.fillfield.<field

name>=<value>

Specifies a specific value, <value>, for the field

called <field name> in the host response, to

simulate an error response.

The Account example uses the following Cobol copybook, modAccountTestCobol.txt, to define the

request to the host system from the Financial Process Integrator:

000400 01 MAIN-ACCOUNTFIND.

001400* INPUT DATA

001500 03 ACCOUNTFIND-DATA.

001600 05 T-CODE PIC X(5).

The Cobol Test Connector parses the Cobol data request generated by the Financial Process Integrator

using this Cobol copybook. This parsing of Cobol data from the Financial Process Integrator is used to test

the design of the request transaction fields in the Financial Process Integrator meta-data. The

BankframeResource.properties property

transactionHandler.connector.CobolTestConnector.cobol.debug is set to TRUE to view the

results of the parsing.

The Account example uses the following Cobol copybook, midAccountTestCobol.txt, to define the

response from the host system to the Financial Process Integrator:

000400 01 MAIN-ACCOUNTFIND.

000410 010 ERROR-FLAG PIC X(5).

000420 010 ERROR-TYPE PIC X(20).

000430 010 FILLER PIC X(5).

000450* FOLLOWING IS A REPEATING FIELD, USED IN EACH OF

000500* THE FOLLOWING ENTITIES:

001300 010 CARD-NUMBER PIC 9(5).

Financial Process Integration ■ Financial Process Integrator Examples

228 ■ MCA Services Developer Guide Version 2004.5, Rev. A

001400* EACH OCCURANCE OF THIS GROUP MAPS TO AN INSTANCE OF AN

ENTITY:

001500 05 ACCOUNT-INFO OCCURS 10 TIMES.

001700 010 ACCOUNT-NUMBER PIC 9(5).

001800 010 ACCOUNT-NAME PIC X(10).

001850***

001900* APPENDING HOST-SYSTEM ERROR COBOL COPYBOOK HERE

002000* SO IT CAN BE USED BY TXN HANDLER SAMPLE META-DATA

002010* WHEN AN ERROR IS BEING SIMULATED:

002015***

002020 05 HOST-SYSTEM-ERROR.

002030 010 ERROR-CODE PIC 9(5).

002040 010 ERROR-MESSAGE PIC X(30).

The Cobol Test Connector generates the Cobol binary data host system response that is expected by the

Financial Process Integrator for the transaction being tested. This is used to test the design of the response

transaction fields in the Financial Process Integrator meta-data.

The Cobol Test Connector generates values for the transaction fields in the response by one of the following

three methods in this order:

1. The BankframeResource.properties key

transactionHandler.connector.CobolTestConnector.modfile.fillfield.<field

name>=<value> can be used to generate a specific value for transaction fields in the host system

response.

2. Field names in the mod Cobol copybook file that match field names in the mid Cobol copybook file

result in the response transaction field taking the value of that request field when the transaction is

being processed. The full group name is not used for comparing request and response field

names, only the transaction field name, i.e., if the sample modAccountTestCobol.txt, and

hence response, above had a transaction field called T-CODE it would use the value of the T-CODE

given in the request transaction, defined by midAccountTestCobol.txt.

3. A unique sample text is generated for each field in the host response. For text fields the values are

A1, A2, etc. For number fields the values are 1,2,3, etc.

Financial Process Integration ■ Financial Process Integrator Advanced Topics

MCA Services Developer Guide Version 2004.5, Rev. A ■ 229

5.10 Financial Process Integrator Advanced Topics

5.10.1 Handling complex amend and find operations

In some cases, it may be necessary to invoke amend or find operations directly from a session bean, rather

than via the amend() or findByXXX() methods of an entity bean, for example:

- If the data to be amended is not modelled as an entity bean

- If the data from many entities need to be merged, and these entities cannot be modelled using a

master-dependent relationship.

To facilitate these cases a class called:

com.bankframe.ei.txnhandler.broker.TxnHandlerBroker is provided:

5.10.1.1 TxnHandlerBroker

The Financial Process Integrator Broker provides an amend() and find() interface into the Financial Process

Integrator, that is not dependant on mapping entity beans to host transactions. To provide as flexible a

framework as possible, interfaces are provided to allow behaviour to be customised at various stages of the

broker’s operation. Default implementations of these interfaces are provided with the MCA. This can be

extended to provide specific behaviour for a host transaction request and the caching of data.

5.10.1.1.1 HostTransactionObject and HostTransactionObjectFactory

The HostTransactionObject is used to hold data and vector of primary keys to be used by the

TxnHandlerPersister when performing either a find or amend operation. The HostTransactionObjectFactory

is used to create HostTransactionObjects from values in a HashMap. The factory inspects the type of object

in the map and determines how the DataPacket of data and Vector of primary keys will be created. The

getHostTransactionObject method can be overridden to provide different behaviour for a specific ejb or

method name.

5.10.1.1.2 Amend operations

There are two static amend methods in TxnHandlerBroker.Both take ejb name and method name as

parameters. However, one also takes a DataPacket with amend data and Vector of DataPackets

representing the primary keys for data to be stored, or removed from the cache used by the

TxnPersister. The other amend method takes a HashMap of objects that the broker will pass to a

HostTransactionObjectFactory to get the amend data and vector of primary keys to pass to the

former amend method. When performing an amend the TxnHandlerBroker will also check the

transactionHandler.broker.removeFromCacheOperation.<ejb name>.<method name> boolean property to

pass to the persister. If none specified, the transactionHandler.broker.removeFromCacheOperation.default

will be used. The persister will determine what behaviour will be implemented to remove or updated the

persisters cache. The amend methods will return the Vector of DataPackets returned by the persister.

5.10.1.1.3 Find operations

Financial Process Integration ■ Financial Process Integrator Advanced Topics

230 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Similar to amend, there are two static find methods in TxnHandlerBroker.Both take ejb name and method

name as parameters. However, one also takes a DataPacket with finder data to be used by the

TxnPersister. The other amend method takes a HashMap of objects that the broker will pass to a

HostTransactionObjectFactory to get the amend data to pass to the former find method. The find

methods will return the Vector of DataPackets returned by the persister.

5.10.2 Handling create and remove operations

In the EJB model new data is created by calling the create() method of an entity bean’s home interface,

similarly data is deleted by calling the home’s remove() method. It is assumed that these operations are

carried out synchronously and immediately.

In many banking environments create and remove operations may not be performed immediately, instead

they may be batched up to be performed only once per day. For example creation of new customer bank

account’s are usually performed as a batch operation carried out after the close of business.

Create and remove operations which are not carried out immediately should be implemented using a

session bean which calls the TxnHandlerBroker.amend() method.

create and remove operations which are carried out immediately should be implemented by defining the

appropriate operations in the PERSISTER_TXN_MAP table, and the correct meta-data in the TXN_FIELD

table.

5.10.2.1 Immediate create operation example

The example below illustrates how to configure a create operation for the Customer entity (assuming the

create is carried out immediately by the host).

5.10.2.1.1 Configuring the PERSISTER_TXN_MAP table

The PERSISTER_TXN_MAP table should have the following entry:

Entity
Name

Method
Name

Transaction
Code

Transaction
Type

Cache
Policy

Time out
value

eontec.bankfra

me.

examples.

bo.customer create

TESTCRE

A0001 TEST none 0

5.10.2.1.2 Configuring the TXN_FIELD table

The TXN_FIELD table should have the following data:

Field Name Sequence
DataPacket Field
Name Length

T-CODE 1 TXN_CODE 12

C-OWNER-ID 2 OWNER_ID 10

C-FIRST-NAME3 FIRST_NAME 20

Financial Process Integration ■ Financial Process Integrator Advanced Topics

MCA Services Developer Guide Version 2004.5, Rev. A ■ 231

C-LAST-NAME 4 LAST_NAME 20

C-TITLE 5 TITLE 5

A-POST-CODE 6 POST_CODE 15

A-LINE-1 7 ADDRESS_LINE1 20

A-LINE-2 8 ADDRESS_LINE2 20

A-LINE-3 9 ADDRESS_LINE3 20

A-LINE-4 10 ADDRESS_LINE4 20

A-COUNTRY 11 COUNTRY 20

H-STATUS 1 STATUS 5

5.10.3 An example data formatter class

The data formatter class is responsible for interpreting the meta-data and using it to transform the request

data into the format that the host system understands, and conversely to transform the response data into a

format the Financial Process Integrator can understand.

The Customer and Address examples above require a custom data formatter class which is implemented

by:
com.bankframe.examples.txnhandler.dataformat.testcustomer.TestCustomerData

Format

This class extends the com.bankframe.ei.txnhandler.dataformat.basic.BasicDataFormat

class. The BasicDataFormat class provides a number of methods that can be overridden these are

described below:

5.10.3.1 checkIfMoreToRequest()

This method is called by BasicDataFormat after the response from the host has been parsed into

DataPackets. Its purpose is to determine if the complete result set has been received from the host, if not

then another request transaction must be sent to the host to get more results. Below is the code for the

TestCustomerDataFormat implementation of this method:

protected boolean checkIfMoreToRequest(DataPacket txnRequest, Vector

responseData) throws ProcessingErrorException {

DataPacket header = (DataPacket)responseData.elementAt(0);

if (header != null) {

String restartIndexString = txnRequest.getString("RESTART_INDEX");

String recordCountString = header.getString("RECORD_COUNT");

String restartFlagString = header.getString("RESTART_FLAG");

if(recordCountString == null || restartFlagString == null) {

return false;

}

Financial Process Integration ■ Financial Process Integrator Advanced Topics

232 ■ MCA Services Developer Guide Version 2004.5, Rev. A

int recordCount = Integer.parseInt(recordCountString);

int continueFlag = Integer.parseInt(restartFlagString);

int restartIndex = 0;

if (restartIndexString != null) {

restartIndex = Integer.parseInt(restartIndexString);

} if(continueFlag == 1) {

txnRequest.put("RESTART_INDEX", Integer.toString(restartIndex +

recordCount));

return true;

}

}

return false;

}

This method carries out the following steps:

- Extracts the header DataPacket from the response DataPackets

- Extracts the restart index from the request DataPacket

- Extracts the record count value from the header DataPacket

- Extracts the restart flag from the header DataPacket

- If the restart flag is equal to ‘1’ then modify the request DataPacket to request the next set of

results and return true

- Otherwise return false

5.10.3.2 checkIfNoEntitiesFound()

This method is called by BasicDataFormat after the response from the host has been parsed into

DataPackets. Its purpose is to determine if the response received from the host does not contain any

entity data. Below is the code for the TestCustomerDataFormat implementation of this method:

protected boolean checkIfNoEntitiesFound(Vector responseData) throws

ProcessingErrorException {

if(super.checkIfNoEntitiesFound(responseData)) {

return true;

}

if(responseData.size() == 1) {

DataPacket header = (DataPacket)responseData.elementAt(0);

int recordCount = Integer.parseInt(header.getString("RECORD_COUNT"));

Financial Process Integration ■ Financial Process Integrator Advanced Topics

MCA Services Developer Guide Version 2004.5, Rev. A ■ 233

if(recordCount == 0) {

return true;

}

}

return false;

}

This method carries out the following steps:

- Call the super-classes’ checkIfNoEntitiesFound() method to check that the response data

Vector is not empty or null

- Check if the response data contains only a single DataPacket.

- If it does then assume the DataPacket is the header DataPacket, and check the record count

value.

- If the record count is zero return true otherwise return false

5.10.3.3 postProcessResponseData()

This method is called by BasicDataFormat after the response from the host has been parsed into

DataPackets. Its purpose is to carry out any extra processing that may be necessary on the response

DataPackets.

Enterprise Services ■ Security Provider Framework

234 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6 Enterprise Services

6.1 Security Provider Framework

6.1.1 Introduction

MCA Services provides a customizable Security Provider Framework. As part of the processing of a client

request the MCA request router dispatches the request to the specified Security Provider. A custom security

provider can be written which will invoke any necessary security implementation to verify if the request is

permitted to be processed.

6.1.2 Security Provider Framework Classes and Package Structure

The Security Provider Framework is located in the com.bankframe.services.security package. It

consists of a security provider interface named BankFrameSecurityProvider and comes complete with

two security provider implementations: DefaultBankFrameSecurityProvider and the

NullBankFrameSecurityProvider.

The Security Provider interface (which all providers must implement) consists of the following method:

public Vector dispatch(Vector

request, Route route) throws

ProcessingErrorException,

RemoteException

Takes a Vector of DataPackets (which is the

original client request) and a Route object which the

request router has determined is the correct route to

match the client request’s REQUEST_ID.

This method must verify that the specified request is permitted to be processed.

If this method returns null then it is assumed that the request be permitted. However, if this method returns

a Vector of DataPackets then these will be returned to the client and the request will be considered to be

processed. If a request is not to be permitted then a ProcessingErrorException (or subclass) will be

thrown.

6.1.3 Configuration of the Security Provider

The Security Provider for a solution runtime is configured using the security.provider key in the

BankframeResource.properties configuration file.

The key takes a fully qualified class name of the required Security Provider implementation.

It is imperative that the configured Security Provider implementation fully implements the

com.bankframe.services.security.BankFrameSecurityProvider interface as described above.

Enterprise Services ■ Security Provider Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 235

For example, if a solution wished to switch off security (i.e. switch off user authentication, session

management and access control) and allow all client requests to attempt processing then the included

NullBankFrameSecurityProvider would be used and configured as follows:

security.provider=com.bankframe.services.security.NullBankFrameSecurityPro

vider

There is an example configuration of the Security Provider included in the default

BankframeResource.properties file – which ships with MCA Services.

It is worth noting that the individual Security Providers are likely to require implementation specific

configuration. For an example of this refer to the included DefaultBankFrameSecurityProvider which

uses the following keys: security.sessionMgmtJndiName and security.accessControljndiName

6.1.4 Security Providers included with MCA Services

Included with MCA Services are the following Security Providers:
com.bankframe.services.security.NullBankFrameSecurityProvider

com.bankframe.services.security.DefaultBankFrameSecurityProvider

6.1.4.1 com.bankframe.services.security.NullBankFrameSecurityProvider

6.1.4.1.1 Description

The Null Security Provider will allow all client requests to be processed, and as such is a means of turning

off security if it is not required or is being debugged.

6.1.4.1.2 Configuration

The Null Security Provider is extremely simple to configure. All that needs to be done is set the

security.provider in the BankframeResource.properties configuration file to the

com.bankframe.services.security.NullBankFrameSecurityProvider implementation.

For example:

security.provider=com.bankframe.services.security.NullBankFrameSecurityPro

vider

Caution should be observed if making this change on a production solution as it will effectively disable

security.

Enterprise Services ■ Security Provider Framework

236 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.1.4.2 com.bankframe.services.security.DefaultBankFrameSecurityProvide
r

6.1.4.2.1 Description

The Default Security Provider brings together and uses the User Authentication, Session Management and

Access Control services described in later chapters and exposes them using the MCA Security Provider

Framework.

6.1.4.2.2 Configuration

Configuring the Default Security Provider requires the setting of the following keys in the

BankframeResource.properties configuration file:

security.provider

security.sessionMgmtJndiName

security.accessControljndiName

The security.provider key should be set to

com.bankframe.services.security.DefaultBankFrameSecurityProvider. Both the

security.sessionMgmtJndiName and security.accessControljndiName keys should be set to

the JNDI name of the Session Management EJB and Access Control EJB respectively.

For example,

security.provider=com.bankframe.services.security.DefaultBankFrameSecurity

Provider

security.sessionMgmtJndiName=eontec.bankframe.EJBSessionManagement

security.accessControljndiName=eontec.bankframe.EJBAccessControl

Refer to the chapters on Session Management, Access Control and User Authentication for further details.

6.1.5 Implementing a Security Provider

A custom security provider allows one to customize the implementation of security. To write a security

provider you need to write a class which implements the

com.bankframe.services.security.BankFrameSecurityProvider interface. This interface

prescribes the dispatch() method that will be called by the MCA RequestRouter. When implementing

your own Security Provider then any necessary logic can be inserted into dispatch() to determine if a

particular client request may be permitted. There are three valid types of returns from this method:

Enterprise Services ■ User Authentication

MCA Services Developer Guide Version 2004.5, Rev. A ■ 237

null – Whenever a call to dispatch returns null this will be interpreted by the RequestRouter as having

passed security and to be ready for processing.

Vector of DataPackets – Return a Vector if the security provider has fully processed the request. This

Vector will then be returned to the client by the MCA RequestRouter. This case arises if the client

requests to logon and the security provider can fully process this request and return a response to the client.

Method throws ProcessingErrorException – This exception should be thrown if you do not wish to

continue processing a user’s request, for example, if the user has failed security checks.

The following is a brief overview of how a simple security provider can be implemented and the code behind

the NullBankFrameSecurityProvider.

public class NullBankFrameSecurityProvider implements

BankFrameSecurityProvider {

public Vector dispatch(Vector datapacket, Route route) throws

ProcessingErrorException, RemoteException {

return null;

}

}

As can be seen from this example any request and route passed into the dispatch() method will result in

a return of null, therefore all client requests will continue to be processed.

6.1.6 See Also

• User Authentication

• Session Management

• Access Control

6.2 User Authentication

6.2.1 Introduction

User Authentication is part of the MCA Services Security Provider Framework – refer to the Security

Provider Framework documentation for further information on the Security Provider.

6.2.1.1 Purpose

The purpose of MCA User Authentication is:

Enterprise Services ■ User Authentication

238 ■ MCA Services Developer Guide Version 2004.5, Rev. A

- provide a set of standard authentication mechanisms

- provide a framework for implementing custom authentication mechanisms

User authentication is needed to facilitate the session management and access control mechanisms.

6.2.1.2 Framework for custom authentication mechanisms

In many scenarios a custom authentication mechanism will be needed to capture the data required to

authenticate a user, or to integrate with an existing authentication mechanism. MCA provides an interface

that custom authentication mechanisms must comply with. Authentication mechanisms that implement this

interface can be plugged into MCA.

6.2.1.3 Standard authentication mechanisms

MCA provides 2 standard authentication mechanisms

Authenticating users against a database table

Authenticating users against an LDAP repository

6.2.2 The logon process

Before a client can access MCA it must logon. A client achieves this by carrying out the following steps:

- Send a request for any free services that are required in carrying out user authentication (a 'free

service' is an MCA Service or a Siebel Financial Component that is not session managed). For

example a call may be made to the GenerateRandomNumbers service in order to decide which

digits from a PIN code to prompt the user for.

- Send a request to the user authentication mechanism with the necessary data to authenticate the

user.

- If the request is successful then the user authentication mechanism will return a response to the

client, otherwise an exception DataPacket will be returned to the client.

- If the request is successful then the first returned DataPacket will contain the session ID of the

user session that was created for the user. The client should store this session ID so that it can

pass it back to MCA with all subsequent requests. See Session Management for more detail on

this.

6.2.3 The logoff process

When a user is finished using the client application, then the MCA Session should be terminated. A client

achieves this by carrying out the following steps:

- Send a logoff request with the session ID for the user’s current session to the user authentication

mechanism

- If the request is successful then a response will be sent back to the client confirming the logoff

request succeeded, otherwise an exception DataPacket will be returned to the client

- If the logoff request is successful then the user session will be deleted. Therefore the client must

establish another session before it can again use MCA Services.

Enterprise Services ■ User Authentication

MCA Services Developer Guide Version 2004.5, Rev. A ■ 239

6.2.4 com.bankframe.services.authentication package

The com.bankframe.services.authentication package defines the interfaces that all MCA User

Authentication Mechanisms must comply with. The packages contains the following classes/interface:

AuthenticationBean

Abstract EJB session bean class that defines the

methods that all authentication mechanisms must

implement.

AuthenticationException Exception class thrown when user authentication

fails.

Authentication Remote Interface that the authentication EJBs must

extend.

AuthenticationUtils

Utility class that provides methods for simplifying

interaction with MCA User Authentication

Mechanisms.

6.2.4.1 com.bankframe.services.authentication.AuthenticationBean

 The basic functionality that all authentication methods must provide is defined in the

com.bankframe.services.authentication.AuthenticationBean class. This class defines two

abstract methods:

processLogon(DataPacket data)

processLogoff(DataPacket data)

AuthenticationBean extends the com.bankframe.ejb.ESessionBean class. It provides a standard

implementation of the required processDataPacket() method, which checks if the incoming request is a

logon or a logoff request and passes the request on to processLogon() or processLogoff() as

appropriate. This means that all MCA User Authentication Mechanisms are implicitly standard MCA

Services.

6.2.4.1.1 processLogon(DataPacket data)
public abstract Vector processLogon(DataPacket data) throws

ProcessingErrorException;

This method is responsible for retrieving the authentication information from the DataPacket passed in

and verifying that the information is correct. If the information is not correct then it should throw an

AuthenticationException. If the information is correct it should return a Vector of DataPackets. The

first DataPacket in the Vector must have a field named

com.bankframe.services.authentication.Authentication.USER_ID. This field must have a

String value that is the unique user ID for the authenticated user. The returned Vector of DataPackets will

be passed back to the client.

Enterprise Services ■ User Authentication

240 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.2.4.1.2 processLogoff(DataPacket data)
public abstract Vector processLogoff(DataPacket data) throws

ProcessingErrorException;

This method is called whenever a user attempts to logoff. It allows the custom authentication mechanism to

be notified when the user logs off, and to perform any clean ups that need to be carried out. If an error

occurs then this method should throw a ProcessingErrorException, for example if the user is already

logged off. If the logoff attempt is successful then a Vector of DataPackets with the logoff response is

returned. This Vector of DataPackets will be passed back to the client.

6.2.4.2 com.bankframe.services.authentication.AuthenticationException

This exception class extends the com.bankframe.ejb.ProcessingErrorException class. It should

be thrown by user authentication mechanisms whenever user authentication fails. When this exception class

is converted to a DataPacket, the DataPacket name will be ‘AUTHENTICATION EXCEPTION’

6.2.4.3 com.bankframe.services.authentication.Authentication

This remote interface extends the com.bankframe.ejb.EsessionRemote interface. All MCA

Authentication Mechanisms’ remote interfaces must extend this interface. It defines the following two

methods:
public Vector processLogon(DataPacket data)

throws AuthenticationException;

public Vector processLogoff(DataPacket data)

throws ProcessingErrorException;

6.2.4.4 com.bankframe.services.authentication.AuthenticationUtils

This utility class provides static methods to simplify interaction with MCA Authentication Mechanisms. These

methods are typically used by client applications to create DataPackets that are correctly formatted for

making user authentication requests. The methods provided are:
public static void

makeLogonPacket(DataPacket dp)

Add the data to a DataPacket that

identifies it as a logon request.

Public static void

makeLogoffPacket(DataPacket dp,

String sessionId)

Add the data to a DataPacket that

identifies it as a logoff request.

Public static boolean

checkIsLogonPacket(DataPacket

dp)

Checks if a DataPacket is a logon request.

Public static boolean

checkIsLogoffPacket(DataPacket

Checks if a DataPacket is a logoff request.

Enterprise Services ■ User Authentication

MCA Services Developer Guide Version 2004.5, Rev. A ■ 241

dp)

Public static String

getUserId(DataPacket dp)

Extracts the unique user ID from a

DataPacket.

Public static String

putUserId(DataPacket dp, String

userId)

Puts a user ID field into a DataPacket.

6.2.5 Implementing a custom authentication mechanism

6.2.5.1 Introduction to Custom Authentication

The best way to illustrate how to implement a custom authentication mechanism is through an example.

The example below will implement an MCA Authentication Mechanism that interfaces with an imaginary

third party authentication mechanism defined as follows:
public class ThirdPartyAuthenticationMechanism {

public static void logon(String userId,String password) throws

ThirdPartyException;

public static void logoff(String userId) throws ThirdPartyException;

}

We will call our example bean: SampleAuthenticationBean

6.2.5.2 Create the bean implementation

6.2.5.2.1 The Bean Implementation Class
import com.bankframe.bo.DataPacket;

import com.bankframe.ejb.ProcessingErrorException;

import com.bankframe.services.authentication.AuthenticationBean;

import com.bankframe.services.authentication.AuthenticationException;

import com.bankframe.services.authentication.AuthenticationUtils;

public class SampleAuthenticationBean extends AuthenticationBean {

private final static int LOGON_ERROR=10026;

private final static int LOGOFF_ERROR=10027;

Enterprise Services ■ User Authentication

242 ■ MCA Services Developer Guide Version 2004.5, Rev. A

public Vector processLogon(DataPacket data) throws

AuthenticationException {

String userId = null;

try {

userId = data.getString(SampleAuthentication.USER_ID);

String password = data.getString(SampleAuthentication.PASSWORD);

ThirdPartyAuthenticationMechanism.logon(userId,password);

return this.getLogonResponse(userId);

} catch (ThirdPartyException ex) {

String[] params = new String[1];

params[0] = userId;

throw new AuthenticationException(this.LOGON_ERROR,params);

}

}

public Vector processLogoff(DataPacket data) throws

ProcessingErrorException {

String userId = null;

try {

userId = data.getString(SampleAuthentication.USER_ID);

ThirdPartyAuthenticationMechanism.logoff(userId);

return this.getLogoffResponse(userId);

} catch (ThirdPartyException ex) {

String[] params = new String[1];

params[0] = userId;

throw new ProcessingErrorException(LOGOFF_ERROR,params);

}

}

private Vector getLogonResponse(String userId) {

Vector v = new Vector();

DataPacket response = new DataPacket("LOGON RESULT");

Enterprise Services ■ User Authentication

MCA Services Developer Guide Version 2004.5, Rev. A ■ 243

response.put(AuthenticationUtils.USER_ID,userId);

v.addElement(response);

return v;

}

private Vector getLogoffResponse(String userId) {

Vector v = new Vector();

DataPacket response = new DataPacket("LOGOFF RESULT");

response.put(AuthenticationUtils.USER_ID,userId);

v.addElement(response);

return v;

}

}

6.2.5.2.2 The Bean Implementation Code explanation

The bean implementation is fairly straightforward. The SampleAuthenticationBean class extends the

com.bankframe.services.authentication.AuthenticationBean class. It provides

implementations of the two abstract methods: processLogon() and processLogoff()

6.2.5.2.3 SampleAuthenticationBean.processLogon()

This method carries out the following steps:

- Extract the user ID and password from the incoming DataPacket

- Attempt to authenticate the user by invoking
ThirdPartyAuthenticationMechanism.logon()

- If the authentication is successful then produce a response to be sent back to the client by calling

the getLogonResponse() method.

- If the authentication fails then a ThirdPartyException is raised. This is caught and a

AuthenticationException is thrown

6.2.5.2.4 SampleAuthenticationBean.processLogoff()

This method carries out the following steps:

- Extract the user ID from the incoming DataPacket

- Attempt to logoff the user by invoking ThirdPartyAuthenticationMechanism.logoff()

- If the logoff is successful then produce a response to be sent back to the client by calling the

getLogoffResponse() method

- If the logoff fails then a ThirdPartyException is raised. This is caught and a

AuthenticationException is thrown

Enterprise Services ■ User Authentication

244 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.2.5.2.5 SampleAuthenticationBean.getLogonResponse()

This method simply produces a response DataPacket to be sent back to the client confirming that the

logon was successful

6.2.5.2.6 SampleAuthenticationBean.getLogoffResponse()

This method simply produces a response DataPacket to be sent back to the client confirming that the

logoff was successful

6.2.5.3 Define the Remote Interface

The Remote Interface for the SampleAuthenticationBean is defined as follows:

import com.bankframe.services.authentication.Authentication;

public interface SampleAuthentication extends Authentication {

public final String USER_ID=”userId”;

public final String PASSWORD=”password”;

}

This interface defines two constants; USER_ID and PASSWORD, that define the names of the fields in logon

request DataPackets that the user ID and password, required by the third party authentication mechanism,

are stored in.

6.2.5.4 Define the Home Interface

The Home Interface for the SampleAuthenticationBean is defined as follows:

import java.rmi.RemoteException;

import javax.ejb.EJBHome;

import javax.ejb.CreateException;

public interface SampleAuthenticationHome extends EJBHome {

public SampleAuthentication create() throws

CreateException,RemoteException;

}

This interface simply defines the create() method used to create instances of the

SampleAuthenticationBean.

Enterprise Services ■ User Authentication

MCA Services Developer Guide Version 2004.5, Rev. A ■ 245

6.2.5.5 Define the Deployment Descriptor

The deployment descriptor format differs from one application server to another. Consult your application

server documentation for details on how to create a deployment descriptor.

6.2.5.6 Build & Deploy the bean

Build SampleAuthenticationBean the same as any other session bean using the tools appropriate for

the application server you are targeting. Deploy the bean to the application server as normal. Finally register

the bean with MCA as detailed below.

6.2.5.7 Conclusions

Developing a custom authentication mechanism is a straightforward process. The main task is implementing

the processLogon() and processLogoff() methods. Apart from that the process is identical to

developing any EJB session bean.

6.2.6 Registering Authentication Mechanisms with MCA Services

See the Administrating MCA Services documentation.

6.2.7 Implementing a client application that can authenticate against MCA

In order for client applications to be able to access MCA Services the client must be able to authenticate

itself with MCA. The example below illustrates a simple Java application that authenticates itself with MCA

using the SampleAuthenticationBean example above. The SampleAuthenticationBean is

deployed to Route 30003.

6.2.7.1 The SampleAuthenticationBean
import java.util.Vector;

import com.bankframe.bo.DataPacket;

import com.bankframe.ei.comms.EHTTPCommsManager;

import com.bankframe.services.sessionmgmt.SessionManagementUtils;

import com.bankframe.services.authentication.AuthenticationUtils;

public class SampleClient {

public final static String AUTH_REQUEST_ID=”30003”;

public static void main(String[] args) {

try {

String appserver = args[0];

String userId = args[1];

Enterprise Services ■ User Authentication

246 ■ MCA Services Developer Guide Version 2004.5, Rev. A

String password = args[2];

DataPacket dp = new DataPacket("SAMPLE LOGON REQUEST");

AuthenticationUtils.makeLogonPacket(dp);

dp.put(SampleAuthentication.USER_ID,userId);

dp.put(SampleAuthentication.PASSWORD,password);

dp.put(DataPacket.REQUEST_ID,AUTH_REQUEST_ID);

EHTTPCommsManager commsMgr = new EHTTPCommsManager("sample",appserver);

Vector response = commsMgr.sendDataPacket(dp);

String sessionId =

SessionManagementUtils.getSessionId((DataPacket)response.elementAt(0));

if (sessionId != null) {

System.out.println("user: " + userId + " was successfully

authenticated");

dp = new DataPacket("SAMPLE LOGOFF REQUEST");

AuthenticationUtils.makeLogoffRequest(dp,sessionId);

dp.put(DataPacket.REQUEST_ID,AUTH_REQUEST_ID);

response = commsMgr.sendDataPacket(dp);

userId =

AuthenticationUtils.getUserId((DataPacket)response.elementAt(0));

if (userId != null) {

System.out.println("logged off successfully");

} else {

System.out.println("failed to logoff successfully");

}

} else {

System.out.println("user: " + userID + " was not successfully

authenticated");

}

} catch (Exception ex) {

System.out.println(ex.toString());

Enterprise Services ■ User Authentication

MCA Services Developer Guide Version 2004.5, Rev. A ■ 247

}

}

6.2.7.2 SampleAuthenticationBean Code explanation

The sample client carries out the following steps

6.2.7.2.1 Create the logon request

- The client creates a DataPacket, the name is unimportant, (in this case it is: ‘SAMPLE LOGON

REQUEST’)

- Uses the AuthenticationUtils.makeLogonRequest() to turn the DataPacket into a logon

request

- Adds the userId and password information required by SampleAuthenticationBean to the

DataPacket.

- Sets the DataPacket REQUEST_ID to 30003, so that the request is routed to the

SampleAuthenticationBean.

6.2.7.2.2 Send the DataPacket to MCA

- The client creates an EHTTPCommsManager instance, passing it the URL of the application server

where MCA is running.

- The client calls the comms manager’s sendDataPacket() method to send the logon request to

MCA.

- MCA receives the request and routes it to SampleAuthenticationBean, which in turn

authenticates the request.

- MCA passes back the response from SampleAuthenticationBean to the client. This is the

return value from the sendDataPacket() method call.

6.2.7.2.3 Check if the logon was successful

- The client uses the SessionManagementUtils.getSessionId() method to see if the returned

response contains a session ID.

- If it does then the logon attempt was successful, because MCA will only generate a sessionId when

the client has been successfully authenticated.

- If it does not then the user authentication must have failed.

6.2.7.2.4 Logoff

- If the logon attempt was successful, then the client attempts to logoff

- The client creates another DataPacket.

- It calls AuthenticationUtils.makeLogoffPacket() to convert the DataPacket to a logoff

request.

Enterprise Services ■ User Authentication

248 ■ MCA Services Developer Guide Version 2004.5, Rev. A

- It sets the REQUEST_ID of the DataPacket to 30003 so the logoff request is routed to the

SampleAuthenticationBean.

- If the logoff attempt is successful then, the returned DataPacket will contain an

AuthenticationUtils.USER_ID field.

- If the attempt is not successful then, the DataPacket will not contain an

AuthenticationsUtils.USER_ID field.

6.2.8 LDAP Authentication

6.2.9 Introduction to LDAP Authentication

LDAP based Authentication is implemented in the com.bankframe.services.authentication.ldap

package. It can authenticate any user defined in an LDAP repository.

6.2.9.1 Configuring LDAP Authentication

• Deploy the ldapauthentication.jar EJB on the application server

• Register the ldap authentication bean with MCA. The JNDI for the ldap authentication bean is:
eontec.bankframe.LDAPAuthentication

LDAP Authentication uses the ldap context named: bankframeusers to connect to the LDAP server (See

the MCA LDAP documentation for more detail on LDAP contexts).

The configuration settings for the bankframeusers ldap context must be specified in

BankframeResource.properties as follows:

The following settings are required, if they are not defined then LDAP Authentication will not be able to

function:

bankframeusers.ldap.baseDn – Specifies the location in the LDAP server hierarchy within which to

search for users, e.g. ou=Users,o=SomeOrganization.

bankframeusers.ldap.defaultSearchFilter - Specifies the search filter to use to find a specific

user e.g. cn={0}

All other LDAPServerContext settings can optionally be specified for the bankframeusers context. If

they are not specified then default values will be inherited from the ldap.default.* settings defined

elsewhere in BankframeResource.properties

6.2.10 RDBMS Authentication

6.2.10.1 Introduction to RDBMS Authentication

User authentication within a typical RDBMS is implemented in the

com.bankframe.services.authentication.ejb.user package. It uses one session bean,

EJBUserAuthenticationBean, and one entity bean, EJBUserBean.

Enterprise Services ■ User Authentication

MCA Services Developer Guide Version 2004.5, Rev. A ■ 249

6.2.10.2 Component Overview

6.2.10.2.1 EJBUserBean

EJBUserBean is a container-managed entity bean that houses information about Users. It maps to the

EJBUSERS table in the database. This table has the following attributes.

USERID VARCHAR2(80

)

NOT

NULL

PASSWOR

D

VARCHAR2(80

)

USERNAM

E

VARCHAR2(80

)

The Primary Key Field here is the USERID.

The EJBUserBean provides the following functionality.

getUserId()

getName()

validatePassword()

toDataPacket()

6.2.10.2.2 EJBUserAuthenticationBean

The EJBUserAuthenticationBean is a session bean used to validate users against passwords and to

process user logon and logoff requests. This session bean is a subclass and implementation of the abstract

com.bankframe.services.authentication.AuthenticationBean discussed previously in this

document. It provides the following functionality:

processLogon() This takes a DataPacket with userId and password

and returns a Vector of logon responses.

processLogoff() Takes a DataPacket containing a sessionId and

returns a Vector of logoff responses.

6.2.10.2.2.1 EJBUser table and Access Control to EJBs

The EJBUSER Table is used elsewhere within MCA to perform access control on specific EJBs. This is

discussed further in the “MCA Access Control” document.

Enterprise Services ■ Session Management

250 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.2.10.3 Configuring RDBMS User Authentication

• Deploy userauthentication.jar and ejbuser.jar EJBs on the server.

• Register the beans with MCA. The JNDI for the EJB authentication bean is

eontec.bankframe.EJBUserAuthentication.

The JNDI name for the EJB user entity bean is eontec.bankframe.EJBUser.

6.2.11 Encrypting Sensitive Data

6.2.11.1 Message Digest Overview

A Message Digest is a digital fingerprint of a block of data. A number of algorithms have been designed to

compute message digests – two of the most widely used are SHA, the secure hash algorithm and MD5

6.2.11.2 MCA Message Digest service

MCA Services provides a Message Digest service enabling customers to ensure that sensitive information,

e.g. customer passwords, are stored/transmitted in a non-clear text format. The hashing service is

implemented in the com.bankframe.services.security.MessageDigestUtils class.

6.2.11.3 MCA Message Digest Configuration

The Message Digest service is configured in the BankframeResource.properties file - a name/value

pair entry is configured to the indicate which Message Digest algorithm is to be used. The entry in

BankframeResource.properties is as follows:

Defines the message digest algorithm to use

Possible values are defined by the JCA

Typical values are: MD5 | SHA-1

messageDigest.algorithm=SHA-1

Calling the MessageDigest.digest(clearText) service will return a String in non-clear text format.

This non-clear text string will be based on the MessageDigest algorithm configured in

BankframeResource.properties.

Refer to your JCA documentation and the Configuring MCA Services documentation for further information

6.3 Session Management

6.3.1 Introduction

Session Management is part of the MCA Security Provider Framework – refer to the Security Provider

Framework section for further info on the Security Provider.

Enterprise Services ■ Session Management

MCA Services Developer Guide Version 2004.5, Rev. A ■ 251

6.3.1.1 Purpose

The purpose of session management is to track which users are logged on. MCA provides both a framework

for implementing session management and a standard implementation of session management. This allows

custom solutions to be implemented which are integrated with MCA

6.3.1.2 Relationship to other session management systems

MCA Session Management is independent of, and does not rely on, other session management systems

such as HTTP sessions.

6.3.1.3 Components of MCA Services Session Management

Client Can be a Java applet, application, servlet or JSP.

User Authentication Mechanism.

BankframeServlet or BankframePage Channel Managers

RequestRouter Validates and routes requests to business processes.

SessionManagment implementation Manages user sessions.

BankFrameSessionServlet Provides administration facilities for session

management.

6.3.2 Use Cases

There are four use cases for MCA session management:

Free Services Services that can be used without a user being logged on.

Logging On Authenticating the user.

Normal Use Normal use of Financial Components

Logging Off Ending an MCA Services session.

6.3.2.1 Free Services

Free Services are Financial Components which can be accessed without requiring a user to be logged

on. Typically these services are required in the process of establishing the user session. For example

the GenerateRandomNumbers service is normally a free service because it is required to generate

the random selection of PIN digits that a user logging on should enter.

6.3.2.2 Logging On

Logging on is part of the user authentication process and is covered in more detail in the User

Authentication document. MCA Services requires that all user authentication mechanisms provide a user ID

that uniquely identifies the user. This user ID is used to generate the session ID that uniquely identifies each

user session. When a user is successfully authenticated and a user ID is passed to the session

management system, a new session is created for the user.

Enterprise Services ■ Session Management

252 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.3.2.3 Normal Use

Once a session has been established the client can access the Siebel Financial Components. Each time the

client sends a request to MCA Services it must include the session ID in the request. If the client does not

include the session ID then MCA will refuse to process the request. When MCA receives the request it

validates the session ID (e.g. to make sure that the user session has not timed out through inactivity). If the

session is determined to be valid the request is passed on to the access control mechanism (which will

determine if the user has access rights to the requested business service). If the session is not valid then an

exception will be returned to the client.

6.3.2.4 Logging Off

When a user wishes to log off they must inform MCA. When MCA receives a log off request, it informs the

user authentication mechanism that the user is logging off, and deletes the user’s session.

6.3.3 com.bankframe.services.sessionmgmt

MCA Session Management is implemented in the com.bankframe.services.sessionmgmt package.

This package defines the functionality that all session management implementations must support. The

package contains the following classes/interfaces

BankFrameSession An interface that declares the methods all user sessions

must expose.

SessionManagementBean Abstract base class that all session management beans

must extend.

SessionManagement Remote Interface that declares the methods that session

management beans must expose.

SessionManagementUtils Utility class that facilitates the use of session management

functionality.

InvalidSessionException Exception thrown when an attempt is made to use an

invalid session ID.

Client Test application for testing user authentication and session

management functionality

6.3.3.1 BankFrameSession

This interface defines the methods that all user sessions must have. It is up to the specific implementation to

provide an implementation of this interface.

6.3.3.2 SessionManagementBean

This abstract base class defines the functionality that all session management implementations must

provide. The class defines the following abstract methods:

createSession() Create a new user session.

deleteSession() Delete an existing user session.

Enterprise Services ■ Session Management

MCA Services Developer Guide Version 2004.5, Rev. A ■ 253

retrieveSession() Retrieve a user session instance, using the specified

session ID.

getNumValidSessions() Get the number of valid user sessions.

getSessions() Retrieve a vector of all valid user sessions.

removeInvalidSessions() Remove all invalid (expired) user sessions.

removeAllSessions() Remove all users sessions, effectively logging off all

users.

6.3.3.3 SessionManagement

This remote interface defines the functionality exposed by all session management implementations.

6.3.3.4 SessionManagementUtils

This class is a Utility class that facilitates the use of session management

6.3.3.5 InvalidSessionException

This exception is thrown whenever an attempt is made to use an invalid session ID A session ID is invalid if:

- The session it corresponds to has been deleted because the user has logged off

- The session it corresponds to has timed out through user inactivity

- MCA has not created a session for the specified ID.

6.3.3.6 com.bankframe.services.sessionmgmt.Client

This class is a test application used to test session management functionality

6.3.4 Implementing a session management aware client application

Before a client application can access MCA services it must establish a user session. This requires the client

to authenticate itself with MCA. When the client application is finished it should inform MCA by logging off.

A detailed example of how to logon, access Siebel Services and logoff is provided in the MCA User

Authentication documentation in the section titled ‘Implementing a client application that can authenticate

against MCA’

6.3.5 Implementing a custom session management implementation

In most cases one of the standard MCA implementations of session management should be sufficient,

however in some cases it may be necessary to provide a custom implementation; for example if the session

management system must integrate with some third party product.

All custom implementations must extend the

com.bankframe.services.sessionmgmt.SessionManagementBean class. As described this class

defines a number of abstract methods that must be implemented by the custom implementation.

The custom implementation must also provide an implementation of the

com.bankframe.services.sessionmgmt.BankFrameSession interface.

Enterprise Services ■ Session Management

254 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Consult the JavaDocs reference for a full explanation of what behavior the above methods must implement.

6.3.6 Configuring and Administering Session Management

6.3.6.1 Deploying a Session Management Implementation

The session management implementation must be deployed on the application server, the same as any

other service.

Secondly the session management implementation must be registered with MCA by assigning the

implementation a Siebel Route. Assigning services to routes is covered in the MCA Deployment and

Administration documentation.

Finally MCA must be told which EJB the session management implementation is deployed on. Setting the

security.sessionMgmtJndiName property in BankframeResource.properties does this, e.g.

security.sessionMgmtJndiName=eontec.bankframe.EJBSessionManagement

6.3.6.2 Administering MCA Sessions

MCA sessions are administered using the BankFrameSessionServlet. Check that this servlet has been

deployed on your application server (The servlet is implemented in the

com.bankframe.ei.servlet.BankFrameSessionServlet). The BankFrameSessionServlet

allows you to carry out the following operations:

- List all current sessions

- Remove expired sessions

- Remove all sessions

- Delete a specific session

6.3.6.2.1 List all current sessions

This option presents a list of all users currently logged on to MCA Services

6.3.6.2.2 Remove expired sessions

This option removes all sessions that have timed out due to user inactivity

6.3.6.2.3 Remove all sessions

This option logs off all users from MCA by deleting their sessions

6.3.6.2.4 Delete a specific session

This logs off a specific user by deleting their session

6.3.7 Standard Session Management Implementations

MCA Services provides two standard implementations of session management:

- A container managed Entity bean implementation that stores user sessions in an RDBMS

Enterprise Services ■ Access Control

MCA Services Developer Guide Version 2004.5, Rev. A ■ 255

- A bean managed Entity bean implementation that stores user sessions in an LDAP repository

The first implementation generally gives better performance because user sessions need to have their time-

stamp updated every time the user accesses an MCA service and LDAP servers are typically optimized for

reads, not updates. This causes the LDAP implementation to perform slower than the RDBMS

implementation.

The LDAP implementation may be useful for customers who want to keep all user related information in an

LDAP repository.

6.3.7.1 RDBMS implementation

The RDBMS implementation is contained in the ejbsessionmgmt.jar JAR file. The RDBMS

implementation has the following JNDI name: eontec.bankframe.EJBSessionManagement

The RDBMS implementation requires a database table called SESSIONMGMT to be created. The script to

create this table is supplied with MCA Services.

6.3.7.2 LDAP Implementation

The ldap implementation is contained in the ldapsessionmgmt.jar JAR file. The ldap implementation

has the following JNDI name: eontec.bankframe.LDAPSessionManagement

The LDAP implementation requires that a new object class is defined in the LDAP server’s schema. The

script to define this object class is supplied with MCA

6.4 Access Control

6.4.1 Introduction

Access Control is part of the MCA Security Provider Framework – refer to the Security Provider Framework

documentation.

6.4.1.1 Purpose

MCA Access Control provides secure access to MCA Financial Components. It controls which users can

access which Financial Components.

6.4.1.1.1 Scope

This document assumes familiarity with MCA and Enterprise Java Beans.

6.4.1.2 Overview

6.4.1.2.1 Actors

The following actors exist in the MCA Access Control Model:

Users Individual MCA Users.

User Groups Arbitrary groupings of Users. A User Group contains one or more

Enterprise Services ■ Access Control

256 ■ MCA Services Developer Guide Version 2004.5, Rev. A

members. A User can belong to zero or more Groups.

Financial Component A service available to Users.

MCA Access Control limits access to Financial Components to only those Users and/or Groups that have

been granted access to the Financial Component.

Before a Siebel user can access Siebel Financial Components, they must authenticate themselves. This

process is covered in the MCA User Authentication documentation.

When a user is successfully authenticated, a Siebel Session is created for that user. This session is uniquely

identified by a session ID. Every time the user wishes to access a Siebel Financial Component they must

provide a session ID. Before being granted access to the Financial Component the session ID is checked to

ensure it is valid. After the session ID has been validated the access control rights for the corresponding

user are checked to see if the user has access to the requested Financial Component. The user must have

been granted access rights to the Financial Component, or alternatively be a member of a group with access

to the Financial Component, before s/he can access the Financial Component. If the user does not have

access an error will be reported.

6.4.1.2.2 Dependencies

MCA Access Control is dependent on the MCA User Authentication service to uniquely identify MCA Users.

MCA Access Control is dependent on the MCA Session Management service to ensure users are currently

logged on.

6.4.1.2.3 Implementations

MCA provides two standard implementations of access control:

- An LDAP based Access Control Mechanism that leverages the access control mechanisms

inherent in LDAP servers

- A CMP EJB based mechanism that uses several database tables to implement access control

6.4.1.2.4 Customisation

MCA provides an architecture for custom access control mechanisms to be implemented.

6.4.2 com.bankframe.services.accesscontrol

The MCA Access Control mechanism is implemented in the

com.bankframe.services.accesscontrol package. This package provides a framework for

implementing access control mechanisms. The package contains the following classes/interfaces:

AccessControlBean Abstract base class that all access control mechanisms must

extend.

AccessControl Remote Interface that defines what functionality access control

mechanisms expose.

AccessControlExcepti

on

Exception thrown when an attempt is made to access a

prohibited resource.

Enterprise Services ■ Access Control

MCA Services Developer Guide Version 2004.5, Rev. A ■ 257

on

6.4.2.1 com.bankframe.services.accesscontrol.AccessControlBean

This base class defines the functionality that all access control mechanisms should implement. The class

extends com.bankframe.ejb.ESessionBean. This means that access control mechanisms are standard

Siebel Services. AccessControlBean provides a standard implementation of the required

processDataPacket() method. AccessControlBean defines the following abstract method that must

be defined by implementations:
public abstract boolean validateUserRequest(String userId,String

requestId) throws AccessControlException ;

This method takes a userId and a requestId as parameters and returns true if the user is allowed to

access the Financial Component identified by requestId. If the user is not allowed access to the Financial

Component then an AccessControlException will be thrown. An AccessControlException should

also be thrown if the specified user or Financial Component cannot be located.

6.4.2.2 com.bankframe.services.accesscontrol.AccessControl

This remote interface defines the functionality exposed by access control mechanisms. The interface

extends the com.bankframe.ejb.EsessionRemote interface. It defines the following method:

public boolean validateUserRequest(String userId,String requestId) throws

AccessControlException, RemoteException ;

This method can be invoked to check if a user has access to the Financial Component identified by

requested.

6.4.2.3 com.bankframe.services.accesscontrol.AccessControlException

This exception is thrown when a user attempts to access a prohibited service.

6.4.3 Implementing a custom access control mechanism

To illustrate how to implement a custom access control mechanism we will use an imaginary example where

we need to integrate with a third party product that determines access rights. Assume the third party product

has the following interface:
Public class ThirdPartyAccessControl {

Public static Boolean checkAccess(String user,String resource) throws

ThirdPartyException ;

}

 We will call this example: SampleAccessControlBean

Enterprise Services ■ Access Control

258 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.4.3.1 Create the bean implementation

6.4.3.1.1 The Bean Implementation
import com.bankframe.services.authentication.ldap.LDAPAuthentication;

import com.bankframe.services.accesscontrol.AccessControlBean;

import com.bankframe.services.accesscontrol.AccessControlException;

public class SampleAccessControlBean extends AccessControlBean {

public boolean validateUserRequest(String userId,String requestId)

throws AccessControlException {

try {

ThirdPartyAccessControl.checkAccess(userId,requestId);

return true;

} catch (ThirdPartyException ex) {

String[] errparams = new String[2];

errparams[0] = userId;

errparams[1] = requestId;

return new AccessControlException(10030,errparams);

}

}

}

6.4.3.1.2 The Bean Implementation Code Explanation

The bean implementation needs to implement a single method: validateUserRequest(). In this

example the implementation of validateUserRequest() delegates the task of verifying access rights to

the ThirdPartyAccessControl.checkAccess() method. This method call is wrapped in a try-catch

block which catches any ThirdPartyExceptions. If the user does have access to the resource

(requestId) then the method will return true, otherwise a ThirdPartyException is thrown. This

exception is caught and an AccessControlException is thrown instead.

Enterprise Services ■ Access Control

MCA Services Developer Guide Version 2004.5, Rev. A ■ 259

6.4.3.2 Remote Interface

The remote interface for this bean just extends the

com.bankframe.services.accesscontrol.AccessControl remote interface. It does not add an

extra members or fields:
Import com.bankframe.services.accesscontrol.AccessControl;

Public interface SampleAccessControl extends AccessControl {

}

6.4.3.3 Home Interface

The home interface defines the create() method used to create bean instances:

Import java.rmi.RemoteException;

Import javax.ejb.EJBHome;

Import javax.ejb.CreateException;

Public interface SampleAccessControlHome extends EJBHome {

SampleAccessControl create() throws CreateException,RemoteException;

}

6.4.3.4 Deployment Descriptor

The deployment descriptor format differs from one application server to another. Consult your application

server documentation for details on how to create a deployment descriptor.

6.4.3.5 Conclusion

Implementing a custom access control mechanism is very similar to implementing any other MCA Service;

the only difference is that the validateUserRequest() method must be implemented.

6.4.4 LDAP Access Control Mechanism

6.4.4.1 Introduction to LDAP Access Control Mechanism

The LDAP based Access Control Mechanism is implemented in the:

com.bankframe.services.accesscontrol.ldap package. This implementation leverages the

access control facilities inherent in LDAP servers such as IBM SecureWay Directory.

6.4.4.2 Configuring LDAP Access Control

• Deploy the ldapaccesscontrol.jar EJB on the application server

Enterprise Services ■ Access Control

260 ■ MCA Services Developer Guide Version 2004.5, Rev. A

• Register the ldap access control bean with MCA (see the MCA routing documentation for details on how

to do this). The JNDI for the ldap access control bean is: eontec.bankframe.LDAPAccessControl.

• LDAP Authentication uses two ldap contexts (bankframeusers & bankframeroutes) to connect to

the LDAP server (See the MCA LDAP documentation for more details on LDAP contexts). The

bankframeusers context is used for validating users, and the bankframeroutes context is used for

validating Financial Components.

The configuration settings for the bankframeusers ldap context must be specified in

BankframeResource.properties as follows:

The following settings are required, if they are not defined then LDAP access control will not be able to

function:

bankframeusers.ldap.baseDn – Specifies the location in the LDAP server hierarchy within which to

search for users, e.g. ou=Users,o=SomeOrganization

bankframeusers.ldap.defaultSearchFilter- Specifies the search filter to use to find a specific user

e.g. cn={0}.

All other LDAPServerContext settings can optionally be specified for the bankframeusers context. If

they are not specified then default values will be inherited from the ldap.default.* settings defined

elsewhere in BankframeResource.properties.

The configuration settings for the bankframeroutes ldap context must be specified in

BankframeResource.properties as follows:

The following settings are required, if they are not defined then LDAP access control will not be able to

function:

bankframeroutes.ldap.baseDn – specifies the base distinguished name where MCA route information

is stored.

bankframeroutes.ldap.rdnAttribute – specifies the name of the attribute used to form the relative

distinguished name of each object.

All other LDAPServerContext settings can optionally be specified for the bankframeroutes context. If

they are not specified then default values will be inherited from the ldap.default.* settings defined

elsewhere in BankframeResource.properties.

6.4.4.3 Configuring Access Rights

6.4.4.3.1 Overview

Since the LDAP access control mechanism leverages the access control facilities in the LDAP server, the

process for configuring Siebel Access Rights is identical to the process used to configure access rights to

any other kind of resource in the LDAP server. You will need to consult your LDAP server documentation for

Enterprise Services ■ Access Control

MCA Services Developer Guide Version 2004.5, Rev. A ■ 261

details of how to configure access control, since each LDAP server product has differing implementations of

access control.

The worked example below illustrates how to configure access control rights using IBM SecureWay

Directory.

6.4.4.3.2 Worked Example

This worked example assumes the following settings for the bankframeusers and bankframeroutes

ldap contexts:
bankframeusers.ldap.baseDn=ou=users,ou=usergroups,dc=example,dc=com

bankframeusers.ldap.defaultSearchFilter=uid={0}

bankframeroutes.ldap.basedDn=ou=routes,o=bankframemca,dc=example,dc=com

bankframeroute.ldap.rdnAttribute=eontecServiceId

The example assumes the following tree structure in the LDAP server:

UserId0 and UserId1 are both members of the usergroup0

In this example we want to grant access to the Siebel Financial Component assigned to route 40004. We do

this as follows

1. Launch the IBM Secureway Directory Management Tool

2. Log in using the administrator account

3. Select Browse Tree from the menu on the left

4. Expand the tree until you have selected the

eontecServiceId=40004,ou=routes,o=bankframemca,dc=example,dc=com node.

5. Press the ACL button on the toolbar above the ldap tree window, the following window will appear:

Enterprise Services ■ Access Control

262 ■ MCA Services Developer Guide Version 2004.5, Rev. A

7. In the edit box indicated by the red arrow type:

cn=usergroup0,ou=usergroups,dc=example,dc=com

8. Select group from the drop down list and press the Add button

9. A new ACL entry will appear for usergroup0. Tick all the boxes under the Granted rights heading

for this ACL entry

10. Press the change button.

The members of usergroup0 have now been granted access to the Siebel Financial Component

assigned to route 40004

6.4.5 EJB Access Control Implementation

6.4.5.1 Introduction to EJB Access Control Implementation

MCA supports access control for EJBs within a conventional relational database system. A user can

therefore be configured to only have access to certain Financial Components within this framework.

6.4.5.2 Configuring access rights

6.4.5.2.1 Model overview

There are conceptually two entities within this ejb access control system, users and groups. It behaves as

follows:

• A group can be named and assigned various permissions.

• A user can be assigned to one or more groups. That user in turn inherits all the permissions

assigned to his/her group(s).

Enterprise Services ■ Access Control

MCA Services Developer Guide Version 2004.5, Rev. A ■ 263

• A user can be assigned specific permissions but does not have to be a member of a group.

This model has several advantages:

• Users can be grouped according to organizational status.

• Although a user is part of a group, a user can have permissions that extend beyond those of their

predefined group.

• A user can use Financial Components independently of a group should the need arise.

6.4.5.2.2 Table overview

The system uses the following five database tables.

• EJBUSERS

• EJBUSER_PERMISSIONS

• EJBGROUPS

• EJBGROUP_MEMBERS

• EJBGROUP_PERMISSIONS

EJBUSERS
This table, discussed in the MCA Services User Authentication document, is a representation of all

registered Siebel MCA Users. It has the following fields:
USERID VARCHAR2(80) NOT

NULL

PASSWORD VARCHAR2(80)

USERNAME VARCHAR2(80)

The Primary Key field here is the USERID. This field should be denoted preferably by a non-numeric code,

which is similar to the real name of the user. For example, the userId of “Joe Bloggs” should resemble

something like “jbloggs”.

EJBUSER_PERMISSSIONS:
This table will have one entry for each permission a user is assigned. This table will only have an entry if

either of these conditions is satisfied:

• The user is not a member of a group and wants specific permissions.

• The user wants to be a member of a group but also wants extra permissions beyond the current

scope of his/her assigned group.

It contains the following fields:
USERID VARCHAR2(20

)

NOT

NULL

Enterprise Services ■ Access Control

264 ■ MCA Services Developer Guide Version 2004.5, Rev. A

) NULL

REQUESTI

D

VARCHAR2(15

)

NOT

NULL

The primary key field here is composed of both the userId and requestId to uniquely identify a

userId/requestId pairing.

The userId in this table is a foreign key of userId in the EJBUSERS table. This means that for a user to

have an entry in this table, they must have a corresponding entry in the EJBUSERS table. Similarly, a user

cannot be removed from the EJBUSERS table if they are being referenced by an entry in this table.

EJBGROUPS:
This table is a representation of the various user groups within MCA. It contains the following fields.

GROUPID VARCHAR2(20) NOT

NULL

GROUPNAME VARCHAR2(20)

The primary key field here is the groupId.

EJBGROUP_MEMBERS:
This table assigns users to groups. It contains the following fields. Note that a user can be a member of

more than one group.

USERID VARCHAR2(20) NOT

NULL

GROUPID VARCHAR2(20) NOT

NULL

The primary key field here is a combination of the userId and groupId. This uniquely identifies a

userId/groupId pairing.

UserId here is a foreign key of userId in the EJBUSERS table. A user therefore cannot be removed from

the EJBUSERS table if a record in this table references them. Likewise, a user cannot be added to this table

if they do not have a record to reference in the EJBUSERS table.

EJBGROUP_PERMISSIONS
This table is a list of the permissions assigned to each group. This table will have one entry for each

permission a group is assigned. It is conceptually equivalent to the EJBUSER_PERMISSIONS table. It

contains the following fields,

Enterprise Services ■ Access Control

MCA Services Developer Guide Version 2004.5, Rev. A ■ 265

GROUPID VARCHAR2(20) NOT

NULL

REQUESTID VARCHAR2(20) NOT

NULL

The primary key field here is a combination of the GROUPID and REQUESTID. It uniquely identifies a

groupid/requestId pairing.

GroupId here is a foreign key of groupId in the EJBGROUPS table. This constraint means that a record in

the EJBGroups table cannot be deleted if referenced by an entry in this table. Also, a record cannot be

entered in this table if there is not a corresponding entry for it to reference in the EJBGROUPS table. The

overall layout of these tables is shown through the following entity-relationship diagram.

Enterprise Services ■ Access Control

266 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.4.5.3 EJB Overview

The access control system is implemented via one session bean, (EJBAccessControlBean) and five

entity beans. They are:

EJBUserBean An instance of this bean represents one record in the

EJBUsers table.

EJBGroupBean An instance of this bean represents one record in the

EJBGROUPS table.

EJBGroupMemberBean An instance of this bean represents one record in the

EJBGROUP_MEMBERS table.

EJBGroupPermissionBean An instance of this bean represents a record in the

EJBGROUP_PERMISSIONS table.

EJBUserPermissionBean An instance of this bean represents one row in the

EJBUSER_PERMISSIONS table.

6.4.5.4 Session Bean Overview

The only session bean involved here is the EJBAccessControlBean. This session bean represents an

implementation and subclass of the abstract AccessControlBean, a bean that declares common

functionality to be implemented by all Siebel Access Control Mechanisms.

An instance of this bean exposes a single public method to a client.

validateUserRequest()

Validates a user against a requestId or permission.

Returns true if user has access to the specified

REQUEST_ID. Otherwise throws an

AccessControlException.

6.4.6 User and Group Administration Session Beans

6.4.6.1 UserAdministrationBean

This session bean represents an implementation and subclass of the abstract ESessionBean, it is the class

responsible for the creation and removal of users and their permissions for Siebel MCA.

6.4.6.1.1 com.bankframe.services.accesscontrol.adminstration.user

The MCA User Administration mechanism is implemented in the

com.bankframe.services.accesscontrol.adminstration.user package. This package provides

a framework for implementing User Administration mechanisms. The package contains the following

classes/interfaces:

UserAdministrationBea The User Administration bean implementation.

Enterprise Services ■ Access Control

MCA Services Developer Guide Version 2004.5, Rev. A ■ 267

n

UserAdministration Remote Interface to the User Administration Bean

UserAdministrationHom

e

User Administration home interface.

Client Application to test User Administration bean

functionality

The JNDI name of the UserAdministrationBean is eontec.bankframe.UserAdministration

6.4.6.1.2 The UserAdministrationBean’s Methods

An instance of this bean exposes the following public methods to a client.

getAllUsers() Returns an Enumeration of User objects for all

users registered with MCA Services.

getUser(String userId) Finds a user by userId and returns an instance

of that user.
getUserPermissions(String

userId)

Takes a userId and returns a Vector of that

users permissions.

deleteUser(String userId)
Finds a user by userId and deletes that user.

Returns void.

createUser(String userId,

String userName, String

password)

Creates a new user. Returns void.

deleteUserPermission(Strin

g userId, String

permission)

Takes a userId and a permission and

removes the permission from the user. Returns

void.

addUserPermission(String

userId, String permission)

Takes a userId and a permission and assigns

the permission to the user. Returns void.

addUserToGroup(String

userId, String group)

Takes a userId and a group and adds the user

to the group. Returns void.

deleteUserFromGroup(String

userId, String group)

Takes a userId and a group and removes the

user from the group. Returns void.

unassignedUserPermissions(

String userId)

Takes a userId and returns a Vector of the

permissions the user doesn’t have.

6.4.6.1.3 processDataPacket()

Enterprise Services ■ Access Control

268 ■ MCA Services Developer Guide Version 2004.5, Rev. A

In order to invoke the methods of the UserAdministrationBean the client uses the

processDataPacket() method.

6.4.6.1.3.1 getAllUsers()

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client.
DATA PACKET

NAME

GET_ALL_USERS

REQUEST_ID MC054

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a

DataPacket for each user with the following structure.

DATA PACKET

NAME

USERS_DETAILS

USER_ID The userId of the user

USER_NAME The full name of the user

REQUEST_ID Default REQUEST_ID always 00000

OWNER Usually Eontec LTD

6.4.6.1.3.2 getUser(String userId)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client.

DATA PACKET

NAME

GET_USER

REQUEST_ID MC054

USER_ID The userId of the user

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with the user details in

it. This DataPacket has the same structure as one of the DataPackets returned by getAllUsers().

6.4.6.1.3.3 getUserPermissions(String userId)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client.

Enterprise Services ■ Access Control

MCA Services Developer Guide Version 2004.5, Rev. A ■ 269

DATA PACKET

NAME

GET_USER_PERMISSIONS

REQUEST_ID MC054

USER_ID The userId of the user

OWNER Usually Eontec LTD

The processDataPacket() method returns a vector of one or more DataPackets containing a

DataPacket for each permission with the following structure.

DATA PACKET NAME ROUTE

REQUEST_ID The requestID of the permission

JNDI_NAME JNDI name of the permission

IS_SESSION_MANAG

ED

yes or no

DESCRIPTION Description of the permission

OWNER Usually Eontec LTD

6.4.6.1.3.4 deleteUser(String userId)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client.
DATA PACKET

NAME

DELETE_USER

REQUEST_ID MC054

USER_ID The userId of the user

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET

NAME of DELETE_USER if successful or USER_ADMINISTRATION_EXCEPTION if unsuccessful.

6.4.6.1.3.5 createUser(String userId, String userName, String password)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client.
DATA PACKET

NAME

CREATE_USER

Enterprise Services ■ Access Control

270 ■ MCA Services Developer Guide Version 2004.5, Rev. A

REQUEST_ID MC054

USER_ID The userId of the user

USER_NAME The full name of the user

PASSWORD A password for the user

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET

NAME of CREATE_USER if successful or USER_ADMINISTRATION_EXCEPTION if unsuccessful.

6.4.6.1.3.6 deleteUserPermission(String userId, String permission)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:
DATA PACKET

NAME

DELETE_USER_PERMISSION

REQUEST_ID MC054

USER_ID The userId of the user

PERMISSION The requestId of the permission to be removed.

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET

NAME of DELETE_USER_PERMISSION if successful or USER_ADMINISTRATION_EXCEPTION if

unsuccessful.

6.4.6.1.3.7 addUserPermission(String userId, String permission)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:

DATA PACKET

NAME

ADD_USER_PERMISSION

REQUEST_ID MC054

USER_ID The userId of the user

PERMISSION The requestId of the permission to be assigned.

OWNER Usually Eontec LTD

Enterprise Services ■ Access Control

MCA Services Developer Guide Version 2004.5, Rev. A ■ 271

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET

NAME of ADD_USER_PERMISSION if successful or USER_ADMINISTRATION_EXCEPTION if unsuccessful.

6.4.6.1.3.8 addUserToGroup(String userId, String group)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:
DATA PACKET

NAME

ADD_USER_TO_GROUP

REQUEST_ID MC054

USER_ID The userId of the user

GROUP The groupId of the group to add user to.

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET

NAME of DELETE_USER_PERMISSION if successful or USER_ADMINISTRATION_EXCEPTION if

unsuccessful.

6.4.6.1.3.9 deleteUserFromGroup(String userId, String permission)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client.

DATA PACKET

NAME

DELETE_USER_FROM_GROUP

REQUEST_ID MC054

USER_ID The userId of the user

GROUP The groupId of the group to remove user from.

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET

NAME of ADD_USER_PERMISSION if successful or USER_ADMINISTRATION_EXCEPTION if unsuccessful.

6.4.6.1.3.10 unassignedUserPermissions(String userId)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client.

Enterprise Services ■ Access Control

272 ■ MCA Services Developer Guide Version 2004.5, Rev. A

DATA PACKET

NAME

UNASSIGNED_USER_PERMISSIONS

REQUEST_ID MC054

USER_ID The userId of the user

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a

DataPacket for each permission with the following structure:

DATA PACKET NAME ROUTE

REQUEST_ID The requestID of the permission

JNDI_NAME JNDI name of the permission

IS_SESSION_MANAG

ED

yes or no

DESCRIPTION Description of the permission

OWNER Usually Eontec LTD

6.4.6.1.3.11 USER_ADMINISTRATION_EXCEPTION

When an exception is thrown by the above methods a Vector is returned containing a DataPacket with

the following structure.

DATA PACKET NAME USER_ADMINISTRATION_EXCEPTION

REQUEST_ID Default REQUEST_ID always 00000

Message A description of the problem which caused the

exception to be thrown

OWNER Usually Eontec LTD

6.4.6.2 GroupAdministrationBean

This session bean represents an implementation and subclass of the abstract ESessionBean, it is the class

responsible for the creation and removal of groups, their permissions and members.

6.4.6.2.1 com.bankframe.services.accesscontrol.adminstration.group

The MCA Group Administration mechanism is implemented in the

com.bankframe.services.accesscontrol.adminstration.group package. This package

Enterprise Services ■ Access Control

MCA Services Developer Guide Version 2004.5, Rev. A ■ 273

provides a framework for implementing Group Administration mechanisms. The package contains the

following classes/interfaces:

GroupAdministrationBe

an

The Group Administration bean implementation.

GroupAdministration Remote Interface to the Group Administration Bean

GroupAdministrationHo

me

Group Administration home interface.

Client Application to test Group Administration bean

functionality

The JNDI name of the GroupAdministrationBean is eontec.bankframe.GroupAdministration

6.4.6.2.2 The GroupAdministrationBean’s Methods

An instance of this bean exposes the following public methods to a client:

getAllGroups() Returns an Enumeration of Group objects for all

groups registered with MCA.

getGroup(String groupId) Finds a group by groupId and returns an

instance of that group.
getGroupPermissions(String

groupId)

Takes a groupId and returns a Vector of that

groups permissions.

deleteGroup(String

groupId)

Finds a group by groupId and deletes that group.

Returns void.

createGroup(String

groupId, String groupName)

Creates a new group. Returns void.

deleteGroupPermission(Stri

ng groupId, String

permission)

Takes a groupId and a permission and

removes the permission from the group. Returns

void.

addGroupPermission(String

groupId, String

permission)

Takes a groupId and a permission and

assigns the permission to the group. Returns

void.

getUnassignedGroups(String

userId)

Takes a userId and returns a Vector of the

groups the user is not assigned to.

getGroupMembers(String

groupId)

Takes a groupId and returns a Vector of the

users assigned to it.

Enterprise Services ■ Access Control

274 ■ MCA Services Developer Guide Version 2004.5, Rev. A

getUserGroups(String

userId)

Takes a userId and returns a Vector of the

groups the user is assigned to.

unassignedGroupPermissions

(String groupId)

Takes a groupId and returns a Vector of the

permissions the group doesn’t have.

6.4.6.2.3 processDataPacket()

In order to invoke the methods of the GroupAdministrationBean the client uses the

processDataPacket() method.

6.4.6.2.3.1 getAllGroups()

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:

DATA PACKET

NAME

GET_ALL_GROUPS

REQUEST_ID MC053

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a

DataPacket for each group with the following structure.

DATA PACKET

NAME

GROUPS_DETAILS

GROUP_ID The groupId of the group

GROUP_NAME The name of the group

REQUEST_ID Default REQUEST_ID always 00000

OWNER Usually Eontec LTD

6.4.6.2.3.2 getGroup(String groupId)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:

DATA PACKET

NAME

GET_GROUP

REQUEST_ID MC053

GROUP_ID The groupId of the group

OWNER Usually Eontec LTD

Enterprise Services ■ Access Control

MCA Services Developer Guide Version 2004.5, Rev. A ■ 275

The processDataPacket() method returns a Vector containing a DataPacket with the group details in

it. This DataPacket has the same structure as one of the DataPackets returned by getAllGroups().

6.4.6.2.3.3 getGroupPermissions(String groupId)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:
DATA PACKET

NAME

GET_GROUP_PERMISSIONS

REQUEST_ID MC053

GROUP_ID The groupId of the group

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a

DataPacket for each permission with the following structure:

DATA PACKET NAME ROUTE

REQUEST_ID The requestID of the permission

JNDI_NAME JNDI name of the permission

IS_SESSION_MANAG

ED

yes or no

DESCRIPTION Description of the permission

OWNER Usually Eontec LTD

6.4.6.2.3.4 deleteGroup(String groupId)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:

DATA PACKET

NAME

DELETE_GROUP

REQUEST_ID MC053

GROUP_ID The groupId of the group

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET

NAME of DELETE_GROUP if successful or GROUP_ADMINISTRATION_EXCEPTION if unsuccessful.

6.4.6.2.3.5 createGroup(String groupId, String groupName)

Enterprise Services ■ Access Control

276 ■ MCA Services Developer Guide Version 2004.5, Rev. A

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:
DATA PACKET

NAME

CREATE_GROUP

REQUEST_ID MC053

GROUP_ID The groupId of the group

GROUP_NAME The name of the group

PASSWORD A password for the group

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET

NAME of CREATE_GROUP if successful or GROUP_ADMINISTRATION_EXCEPTION if unsuccessful.

6.4.6.2.3.6 deleteGroupPermission(String groupId, String permission)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:
DATA PACKET

NAME

DELETE_GROUP_PERMISSION

REQUEST_ID MC053

GROUP_ID The groupId of the group

PERMISSION The requestId of the permission to be removed.

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET

NAME of DELETE_GROUP_PERMISSION if successful or GROUP_ADMINISTRATION_EXCEPTION if

unsuccessful.

6.4.6.2.3.7 addGroupPermission(String groupId, String permission)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:

DATA PACKET

NAME

ADD_GROUP_PERMISSION

REQUEST_ID MC053

Enterprise Services ■ Access Control

MCA Services Developer Guide Version 2004.5, Rev. A ■ 277

GROUP_ID The groupId of the group

PERMISSION The requestId of the permission to be assigned.

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket with a DATA PACKET

NAME of ADD_GROUP_PERMISSION if successful or GROUP_ADMINISTRATION_EXCEPTION if

unsuccessful.

6.4.6.2.3.8 getUnassignedGroups(String userId)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:

DATA PACKET

NAME

GET_UNASSIGNED_GROUPS

REQUEST_ID MC053

USER_ID The userId of the user

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector containing a DataPacket for each group with the

following structure:

DATA PACKET

NAME

GROUPS_DETAILS

GROUP_ID The groupId of the group

GROUP_NAME The name of the group

REQUEST_ID Default REQUEST_ID always 00000

OWNER Usually Eontec LTD

6.4.6.2.3.9 getGroupMembers(String groupId)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:

DATA PACKET

NAME

GET_GROUP_MEMBERS

Enterprise Services ■ Access Control

278 ■ MCA Services Developer Guide Version 2004.5, Rev. A

REQUEST_ID MC053

GROUP_ID The groupId of the Group

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a

DataPacket for each user with the following structure:

DATA PACKET

NAME

USERS_DETAILS

USER_ID The userId of the user

USER_NAME The full name of the user

REQUEST_ID Default REQUEST_ID always 00000

OWNER Usually Eontec LTD

6.4.6.2.3.10 getUserGroups(String userId)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:

DATA PACKET

NAME

GET_USER_GROUPS

REQUEST_ID MC053

USER_ID The userId of the user

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a

DataPacket for each group with the following structure:

DATA PACKET

NAME

GROUPS_DETAILS

GROUP_ID The groupId of the group

GROUP_NAME The name of the group

REQUEST_ID Default REQUEST_ID always 00000

OWNER Usually Eontec LTD

6.4.6.2.3.11 unassignedGroupPermissions(String groupId)

Enterprise Services ■ Access Control

MCA Services Developer Guide Version 2004.5, Rev. A ■ 279

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:

DATA PACKET

NAME

UNASSIGNED_GROUP_PERMISSIONS

REQUEST_ID MC053

GROUP_ID The groupId of the group

OWNER Usually Eontec LTD

The processDataPacket() method returns a Vector of one or more DataPackets containing a

DataPacket for each permission with the following structure:

DATA PACKET NAME ROUTE

REQUEST_ID The requestID of the permission

JNDI_NAME JNDI name of the permission

IS_SESSION_MANAGE

D

Yes or no

DESCRIPTION Description of the permission

OWNER Usually Eontec LTD

6.4.6.2.3.12 GROUP_ADMINISTRATION_EXCEPTION

When an exception is thrown by the above methods a Vector is returned containing a DataPacket with

the following structure.

DATA PACKET NAME GROUP_ADMINISTRATION_EXCEPTION

REQUEST_ID Default REQUEST_ID always 00000

Message A description of the problem which caused the

exception to be thrown

OWNER Usually Eontec LTD

Enterprise Services ■ Routing

280 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.5 Routing

6.5.1 Introduction

MCA Services Routing provides a flexible means for multiple clients communicating over multiple delivery

channels to interact with Siebel Financial Components. The Routing Service takes care of delivering

requests from clients to the correct Financial Components and returning the response data from those

Financial Components to the client.

6.5.2 How MCA Services Routing works

Rather than hard-code the name of the Financial Component into a client it is preferable to identify the

Financial Component using a unique identifier called a REQUEST_ID and couple this to the Financial

Component’s name at runtime. (This allows a Financial Component’s implementation to be replaced with a

different implementation without affecting the client). This coupling is what the Routing Service provides.

The Routing Service is implemented using an EJB session bean that contains the business logic for the

Routing Service and an EJB entity bean that is used to store the routing data. The EJB Session bean is

called the RequestRouter bean. The EJB Entity Bean is called the Route bean.

Each channel manager invokes the RequestRouter to route client requests to the correct Financial

Component. The RequestRouter looks for the REQUEST_ID in each DataPacket sent from the client. It

uses this five digit identifier to find a particular service. The RequestRouter maintains a mapping from

REQUEST_IDs to Financial Components. Each time a request is received the RequestRouter looks up this

mapping and translates the REQUEST_ID into the Financial Component name. Once the RequestRouter

has discovered the Financial Components name, it creates an instance of the Financial Component and

passes the client request on to the Financial Component. When the Financial Components has dealt with

the request the RequestRouter returns the response data to the channel manager, which in turn passes

the response back to the client.

This design is dependent on all the Financial Components conforming to the same interface - namely

implementing the method processDataPacket(). This method is defined as abstract in the class

com.bankframe.ejb.EsessionBean class. All Siebel Financial Components extend this class and

provide an implementation of this method.

Note that clients never interact directly with the RequestRouter service; they always interact with the

service via the client connectivity framework.

In addition to performing routing of requests, the RequestRouter bean also uses the User Authentication,

Session Management, and Access Control Services to ensure that clients only access the Financial

Components they have been granted access to.

6.5.2.1 RequestRouter and Transactions

Accessing more than one database within the course of a single J2EE container managed transaction

requires the application server and the JDBC driver to support the Java Transaction API (JTA). Many

application servers and JDBC drivers do not provide full support for JTA specification.

Enterprise Services ■ Routing

MCA Services Developer Guide Version 2004.5, Rev. A ■ 281

The RequestRouter EJB accesses the BANKFRM database (via the EJBRoute EJB), to determine the

appropriate Financial Component to invoke. In turn the Financial Component will usually access some other

application specific database. If the RequestRouter EJB did use a transaction when either the application

server or JDBC does not support JTA then the application server will produce a runtime exception when the

Financial Component attempts to access the second database.

To work around this issue by default the RequestRouter EJB is configured not to use a transaction, thus

only the Financial Component will access a database within the context of a transaction.

This workaround has one caveat which is that the Audit Provider and Security Provider which are invoked by

the RequestRouter EJB cannot participate in the same transaction as the one used by the Financial

Component, therefore it is impossible for the Audit Provider or the Security Provider to cause the rollback of

the Financial Component transaction.

If the application server and JDBC driver being used do fully support the JTA specification then this issue

can be remedied by updating the RequestRouter EJB deployment descriptor to use a container managed

transaction, consult your application server vendor’s documentation for information on how to do this.

If the application server and JDBC driver do not fully support JTA then the only workaround is to change all

Financial Components to use the BANKFRM database, and to update the RequestRouter EJB deployment

descriptor to use a container managed transaction.

6.5.3 The com.bankframe.services.requestrouter package

The business logic for the Routing Service is implemented in the

com.bankframe.services.requestrouter package. This package consists of the following

classes/interfaces:

RequestRouterBean The session bean that implements MCA’s routing logic.

RequestRouter The remote Interface that declares the functionality

RequestRouterBean exposes.

RequestRouterHome The home interface used to create RequestRouterBean

instances.
RequestRouterExcepti

on

Exception thrown when an error occurs during the routing

process.

RequestRouterUtils Utility class to simplify channel manager's interactions with

the RequestRouterBean.

6.5.3.1 RequestRouterBean

This class provides the implementation of MCA’s Routing Service. Every time the RequestRouterBean

receives a DataPacket it carries out the following operations:

Check the DataPacket has a non-zero REQUEST_ID.

Look up the Route identified by the REQUEST_ID.

Check the DataPacket has a valid session ID.

Enterprise Services ■ Routing

282 ■ MCA Services Developer Guide Version 2004.5, Rev. A

If the session ID is not present check to see if the DataPacket is a logon or logoff request; if so send the

request to the User Authentication and Session Management Services.

Otherwise use the Session Management service.

Create an instance of the named Financial Component named in the Route and pass the DataPacket

to the Financial Component, by invoking the EJB’s processDataPacket() method.

Pass back the returned response data from the Financial Component.

6.5.3.2 RequestRouter

This remote interface defines the methods that RequestRouterBean exposes. RequestRouterBean is a

standard MCA Enterprise Service and exposes only the standard processDataPacket() method.

6.5.3.3 RequestRouterHome

This home interface has a single create() method used to create instances of the RequestRouterBean

6.5.3.4 RequestRouterException

Exception is thrown when an error occurs during the routing process.

6.5.3.5 RequestRouterUtils

This utility class contains a single static method:
Vector processDataPacket(DataPacket data) throws RequestRouterException;

This method creates an instance of the RequestRouterBean and passes it the specified DataPacket.

Channel Managers that need to pass DataPackets to the RequestRouterBean should use the above

method to do so.

6.5.4 The com.bankframe.services.route package

This package contains the implementations of two entity beans that are used to persist the mapping of

REQUEST_IDs to JNDI names. The two beans are EJBRouteBean and LDAPRouteBean. EJBRouteBean

persists data to an RDBMS, LDAPRouteBean persists data to an LDAP server. Apart from the datastore

that the beans persist to, they are identical. This is reflected in the fact that both beans share the same

home and remote interfaces and primary key class.

The com.bankframe.services.route package contains the following classes/interfaces:

EJBRouteBean Container managed bean implementation.

LDAPRouteBean Bean managed bean implementation that persists to

LDAP server.

Route Remote Interface that declares the methods of the

Route Entity bean.

RouteHome Home Interface used to create instances of the Route

Entity bean.

Enterprise Services ■ Routing

MCA Services Developer Guide Version 2004.5, Rev. A ■ 283

RoutePK Primary key class used to uniquely identify Route Entity

bean instances.

6.5.4.1 EJBRouteBean

This is the standard container managed implementation of the Route bean

6.5.4.2 LDAPRouteBean

This is the ldap based implementation of the Route bean. It uses the bankframeroutes ldap context

specified in the BankframeResource.properties configuration file

6.5.4.3 Route

This remote interface defines the attributes that the Route bean has. These are:

REQUEST_ID The REQUEST_ID this Financial Component is mapped to.

JNDI_NAME The JNDI name of the Financial Component.

DESCRIPTION Brief description of the Financial Component.

SESSION_MANAGED

Boolean value that indicates if the Financial Component requires a

user session to be established before it can be accessed. Refer to

the MCA Services Session Management documentation for further

detail.

6.5.4.4 RouteHome

This home interface declares the methods that can be used to create Route instances; these are:

Create() Create a new Route instance.

FindByPrimaryKey

()

Retrieve a specific instance.

FindAll() Retrieve an enumeration of all instances.

6.5.4.5 RoutePK

This class uniquely identifies Route bean instances. The Route bean’s primary key attribute is the

REQUEST_ID.

6.5.5 Route Administration Session Bean

This session bean represents an implementation and subclass of the abstract ESessionBean, it is the class

responsible for the creation and removal of Routes.

Enterprise Services ■ Routing

284 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.5.5.1 com.bankframe.services.route.adminstration

The MCA Route Administration mechanism is implemented in the

com.bankframe.services.route.administration package. This package provides a framework for

implementing Route Administration mechanisms. The package contains the following classes/interfaces:

RouteAdministrationB

ean

The Route Administration implementation bean.

RouteAdministration Route Administration remote interface.

RouteAdministrationH

ome

Route Administration home interface.

Client Application to test Route Administration bean

functionality.

The JNDI name of the RouteAdministrationBean is eontec.bankframe.RouteAdministration

6.5.5.2 The RouteAdministrationBean’s Methods

An instance of this bean exposes the following public methods to a client:

getAllRoutes() Returns an Enumeration of Route objects for all

MCA routes.

getRoute(String requestId) Finds a route by requestId and returns an

instance of that route.
deleteRoute (String

requestId)

Finds a route by requestId and deletes that

route. Returns void.

createRoute(String

requestId, String ejbName,

String description,

boolean isSessionManaged)

Creates a new route. Returns void.

6.5.5.3 processDataPacket()

In order to invoke the methods of the RouteAdministrationBean the client uses the

processDataPacket() method.

6.5.5.3.1 getAllRoutes()

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:

DATA PACKET

NAME
GET_ALL_ROUTES

REQUEST_ID MC002

Enterprise Services ■ Routing

MCA Services Developer Guide Version 2004.5, Rev. A ■ 285

OWNER Usually eontec LTD

The processDataPacket() method returns a vector of one or more DataPackets containing a

DataPacket for each route with the following structure.

DATA PACKET NAME ROUTE

REQUEST_ID The requestId of the route

JNDI_NAME JNDI name of the route

IS_SESSION_MANAGE

D
yes or no

DESCRIPTION Description of the route

OWNER Usually eontec LTD

6.5.5.3.2 getRoute(String requestId)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:
DATA PACKET NAME GET_ROUTE

REQUEST_ID MC002

ROUTE_REQUEST_ID The requestId of the route to be found.

OWNER Usually eontec LTD

The processDataPacket() method returns a vector containing a DataPacket with the route details in it.

This DataPacket has the same structure as one of the DataPackets returned by getAllRoutes().

6.5.5.3.3 deleteRoute(String requestId)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:

DATA PACKET

NAME
DELETE_ROUTE

REQUEST_ID MC002

ROUTE_REQUEST_

ID

The requestId of the route

OWNER Usually eontec LTD

The processDataPacket() method returns a vector containing a DataPacket with a DATA PACKET

NAME of DELETE_ROUTE if successful, or ROUTE_ADMINISTRATION_EXCEPTION if unsuccessful.

Enterprise Services ■ Routing

286 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.5.5.3.4 createRoute(String requestId, String ejbName, String description,
boolean isSessionManaged)

To invoke this method using the processDataPacket() method a DataPacket with the following

structure is sent by the client:

DATA PACKET

NAME
CREATE_ROUTE

REQUEST_ID MC002

ROUTE_REQUEST_

ID

The requestId of the route

JNDI_NAME JNDI name of the route

SESSION_MANAGE

D
yes or no

DESCRIPTION Description of the route

OWNER Usually eontec LTD

The processDataPacket() method returns a vector containing a DataPacket with a DATA PACKET

NAME of CREATE_ROUTE if successful, or ROUTE_ADMINISTRATION_EXCEPTION if unsuccessful.

6.5.5.3.5 ROUTE_ADMINISTRATION_EXCEPTION

When an exception is thrown by the above methods a Vector is returned containing a DataPacket with

the following structure:

DATA PACKET NAME ROUTE_ADMINISTRATION_EXCEPTION

REQUEST_ID Default REQUEST_ID always 00000

Message A description of the problem which caused the

exception to be thrown

OWNER Usually eontec LTD

6.5.6 Request Contexts

Request Contexts are objects associated with requests that store some state. This state can then be

maintained across all method invocations within the request call stack. One application of storing this state is

for tracking transactions from start to finish.

6.5.6.1 Request Contexts and Threads

Request Contexts are based on the fact that in an application server a request corresponds to a single

thread of execution. Leveraging this fact it is possible to associate some information with each thread. At

the start of the processing of a request the Request Context object is created and initialized in the

Enterprise Services ■ Routing

MCA Services Developer Guide Version 2004.5, Rev. A ■ 287

RequestRouterBean.processDataPackets() method. This information then exists for the duration of

the request and can be accessed at any time.

6.5.6.2 The com.bankframe.services.requestcontext package

The business logic for the Request Context Service is implemented in the

com.bankframe.services.requestcontext package. This package consists of the following

classes/interfaces:

DataPacketsRequest A wrapper object that maps a Vector of

DataPackets to a Request object.

NullRequestContextFactory The default RequestContextFactory. It does

not associate any context with a request.

Request This is a tagging interface to identify the data that

makes up a request.

RequestContext This is a tagging interface used to identify objects

that are associated with a request.

RequestContextFactory This class creates and configures
RequestContext instances.

SampleRequestContextFactory A sample factory for creating RequestContext

objects that store the request DataPacket’s

REQUEST_ID and DATA PACKET NAME.

6.5.6.3 Configuring Request Contexts

To configure Request Contexts the BankframeResource.properties file must be modified as follows:

Specify a RequestContextFactory like below

requestContext.factory=com.bankframe.services.requestcontext.PreferredReq

uestContextFactory

where PreferredRequestContextFactory is used to create and associate state with the preferred

RequestContext.

Note: If this setting is not modified the default NullRequestContextFactory is used which doesn’t

associate any context with a request.

6.5.6.4 Accessing the state of a RequestContext

If one needs to access the state associated with a RequestContext object, then the following code can be

used to obtain the instance of the RequestContext and access the information it holds.

RequestContext rc = RequestContextFactory.getRequestContext()

PreferredRequestContext src = (PreferredRequestContext)rc;

Enterprise Services ■ Routing

288 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Object state = src.get();

The PreferredRequestContextFactory will be the same Request Context Factory specified in

BankframeResource.properties. In the above example the variable state will contain the information

PreferredRequestContext associated with the thread of execution.

6.5.6.5 Writing Custom Request Context Factory Classes

When needing to employ the Request Context mechanism it will be necessary to write a customised

RequestContextFactory and RequestContext to associate one’s desired information with the thread

of execution. This information to be stored needs to be available in the request sent to the RequestRouter

i.e. the Vector of DataPackets. The RequestRouter will then wrap the request in a DataPacketRequest

object and send it to the RequestContextFactory class. At this point the customised

RequestContextFactory and RequestContext will be called. Customising the RequestContext and

RequestContextFactory are described below.

6.5.6.5.1 Customising the Request Context

Firstly write a RequestContext class e.g. MyRequestContext that will specify the data from the request

to be associated with the thread of execution. The MyRequestContext class must implement the

RequestContext interface. The MyRequestContext class should be a simple class with some setter and

getter methods to enable access to the desired fields. However there are performance issues to consider

when deciding what to associate with the thread. This is discussed later in the section ‘Request Contexts

and Performance’

6.5.6.5.2 Customising the Request Context Factory

Once the customised RequestContext, MyRequestContext, is written a RequestContextFactory,

e.g. MyRequestContextFactory must be written. To do this one should subclass the

RequestContextFactory class and implement its abstract methods newRequestContext() and

configureRequestContext(RequestContext, Request).

- The newRequestContext() method should instantiate and return an instance of the new

Request Context class MyRequestContext.

- The configureRequestContext(RequestContext, Request) method should take the

RequestContext object passed as parameter and if it is an instance of the

MyRequestContext class (which it should be), then cast it to the MyRequestContext class.

Now extract the information one wants to associate with the thread of execution from the

Request passed as a parameter and use the setter methods on MyRequestContext to

associate this information with the thread.

Now the information is available at any point in the request through accessing the MyRequestContext

object.

Enterprise Services ■ Routing

MCA Services Developer Guide Version 2004.5, Rev. A ■ 289

6.5.6.6 Request Contexts and Performance

When deciding what information one wants to associate with a thread, one must take some points into

consideration.

- The first point to understand is the lifecycle of the RequestContext object. One and only one

RequestContext instance will be created for each thread in the application server. This

instance will be re-initialized at the start of each request. This avoids unnecessary object

creation overhead by re-using the RequestContext instance for multiple requests.

- The second point is that since there is one instance created per thread and the application

may have hundreds or thousands of threads it is imperative that the RequestContext object

does not require much memory. For example if each RequestContext object required 20Kb

of storage and the application server is serving 5000 customers, with one thread per customer

then you will need 20*5000 = ~100Mb of storage. Obviously this amount of data will cause a

lot of extra page faults and will significantly decrease performance and scalability.

- The third point is that since the RequestContext object may be used several times in the

course of a request, the methods invoked on the RequestContext object should be of

reasonable performance. For example a poor RequestContext implementation might use a

Map or other Collection type internally to store some state. This is inadvisable since

manipulating or interacting with Collection type objects is likely to lead to a lot of temporary

objects being created. When this is being done thousands of times per second this is likely to

significantly impact system performance.

Hence it is important to choose a reasonable amount of data to store and a suitable storage type for the

customized RequestContext object.

6.5.7 Request Context Example

When a DataPacket is sent to the Request Router, this corresponds to a request on some channel. The

Request Router then processes the DataPackets associated with this request. Within the processing the

DataPackets for a request are wrapped inside a DataPacketRequest object, then the

RequestContextFactory is called and this creates a RequestContext object which is used to store the

state information for the request which then exists for the duration of the request.

Enterprise Services ■ Routing

290 ■ MCA Services Developer Guide Version 2004.5, Rev. A

The RequestContextFactory uses the java.lang.ThreadLocal to store the relevant

RequestContext data for a request. Remember that it was previously stated that a request corresponds to

a single thread of execution. ThreadLocal is used to store state for a Thread as long as it remains alive,

and hence is used. The RequestContext can be customized in order to store specific state information for

a request. In the following example the RequestId and Data Packet Name are the only state information that

is stored for each request.

//Customized Request Context
public static class MyRequestContext implements RequestContext {

//declare the state information required
private String requestId;
private String dataPacketName;

protected MyRequestContext() {
super();

}
//get and set methods for request Id
public String getRequestId() {

return requestId;
}
public void setRequestId(String string) {

requestId = string;
}
//get and set methods for the Data Packet Name
public String getDataPacketName() {

return dataPacketName;
}
public void setDataPacketName(String string) {

dataPacketName = string;
}

}

Next the customized Request Context Factory is defined, which allows the creation of new instances of the

customized Request Context (MyRequestContext), and also the setting of the state information.
//Customized Request Context Factory
public class MyRequestContextFactory extends RequestContextFactory {

public MyRequestContextFactory() {
super();

}

protected RequestContext newRequestContext() {
return new MyRequestContext();

}
protected void configureRequestContext(RequestContext
requestContext,Request request) {

if (request instanceof DataPacketsRequest) {
MyRequestContext sample = (MyRequestContext)
requestContext;

DataPacketsRequest dps =(DataPacketsRequest) request;
//set the state information
sample.setRequestId(dps.getRequestId());
sample.setDataPacketName(((DataPacket)dps.getDataPackets().
elementAt(0)).getName());

}
}

}

Enterprise Services ■ Remote Notification

MCA Services Developer Guide Version 2004.5, Rev. A ■ 291

6.6 Remote Notification

6.6.1 Introduction

The Siebel Remote Notification Service provides a means for client applications to transmit notification

messages to any remote machine that is registered with the notification server.

6.6.2 How Siebel Notification Works

6.6.2.1 Peer to peer using mid-tier server

The mid tier acts as a repository in which targets register when they log on. The server maintains a list of

registered addresses, which correspond to users who are logged on. Initially when a user registers as a

registered address any previous entries for that user are removed to ensure that only the latest IP address is

maintained for that user.

When a user logs off the corresponding registered address are removed from the repository. The only

details that must be maintained are a user ID, the IP address from where the user logged on and the Port

number that the target server is listening on. This implementation allows all types of users who are

registered with the Notification Server and who have a local server running on their specific machines

awaiting incoming connections, to communicate with each other.

6.6.2.2 High Level overview

At logon the target user sends the registration request via the HttpClient to the EJB server. This then creates

a record of the registration along with the IP address of the target, in the mid tier database by means of a

RegisteredAddress container managed bean. The source front end communicates with the mid-tier in the

usual manner. Once the target’s IP address is retrieved from the mid-tier the communication from source to

target is carried out by the mid tier forwarding the request to the target on behalf of the client source – this

communication is outlined in the diagram below

Meanwhile the target front-end starts a server listening on the agreed port. This port number is configured

through the BankframeResource.properties file, and is passed to the NotificationServer when the

Target registers and is stored in the database. The NotificationServer communicates with the Target

machine via this port. The server is started upon target logon. This server receives incoming requests from

clients and passes them to a Java thread whose job it is to deal with the message.

Enterprise Services ■ Remote Notification

292 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.6.2.3 Remote Notification Architecture

If an event occurs on the Source workstation requiring notification then the

notifyUser(sourceId,targetId,action,date,payload) method on the NotificationServer is

called. A targetId representing the target user may or may not be passed into this method, if it is then the

targetIp representing the target user’s IP address is obtained using the targetId which is the primary key. If

no targetId is passed in (the source doesn’t know the target’s ID) then the notification server selects a

recipient based on a target selection algorithm specified in

com.bankframe.services.notification.targetselection.

The steps involved in Remote Notification are outlined in the following diagram and explained below:

The steps involved in creating a target RegisteredAddress:

1. The target registers with the notification server

2. The NotificationServer creates the new RegisteredAddress entity using the targets’s ID, target’s IP

address and port number passed in.

The steps involved when a Notification Event occurs:

3. Notification event occurs on the source workstation which initiates a business process on the

server side. The business process then calls notifyUser passing source id, destination id, action,

date and payload to the NotificationServer

4. If a targetId was passed in with the notify message then this is used to determine the appropriate IP

address for the target, if no targetId is passed in then the method getTargetIPForSource is

called. The default implementation of this method is to retrieve all registered addresses (targets)

and select the frst one. This method can be over-ridden to reflect the actual algorithm for selecting

the appropriate target IP address.

Enterprise Services ■ Remote Notification

MCA Services Developer Guide Version 2004.5, Rev. A ■ 293

5. Using the selected target IP address a TCP connection is made to the target machine using the IP

address and a known Port number. The notification event object is constructed and sent to the

target via this connection.

6. The target responds with an appropriate message - either Fail/Success.

6.6.2.4 NotificationServer and Target Communication Procedure

The locations of the response and payload log files, as shown in the diagram below, are configured through

the BankframeResource.properties file. The notification event message is in standard DataPacket

format, within the NotificationServer this DataPacket is transformed into a NotificationEvent object.

This notification event object message is a serialisable object.

The NotificationEvent object consists of the following:

sourceIp The IP address of the Source workstation that the

message originated on.

targetIp The IP address of the Target workstation that the

NotificationServer connected to

Date The date the message was sent

Action The action to perform on the client

payload The notification event message details. This is a

serializable object

6.6.2.5 Timeout and Retry Mechanism

A timeout and retry mechanism is included, which:

■ prevents a socket blocking indefinitely while waiting for a response from a machine which may not

be alive

■ ensures that a target actually receives the Notification Event message and if not reports back a

failure message

A certain number of retries is allowed until eventually a response is received or the notification fails. An

appropriate message is forwarded back to the Source. Two types of messages are reported back to the

Source - either Success or Failure. The timeout value and number of retries are configured in the

BankframeResource.properties file – refer to the Configuring MCA Services documentation for further

information.

Enterprise Services ■ Remote Notification

294 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.6.2.6 Receiving Notification Event messages

When a Target machine registers to receive notifications:

■ The NotificationServer first checks to see if the TargetId is already in the RegisteredAddress table

■ If it is then the TargetId is deleted and the TargetId along with the new TargetIp is updated to the

RegisteredAddress table

Carrying out the registration in this way ensures that:

■ If a Target workstation crashes and the TargetId remains in the RegisteredAddress table then this

old value is over written

■ if a Target user logs off without sending the unregister message to the NotificationServer and re-

logs in on another machine the new IP address associated with this TargetId is updated to the

RegisteredAddress table.

In order for a client to recevive NotificationEvent messages they must have a local server running on their

machines which is listening on a specified port for incoming connections. The registering process can be

seen in the diagram below.

6.6.3 Remote Notification API

6.6.3.1 The com.bankframe.services.notification package

The com.bankframe.services.notification package contains the following:

NotificationEvent This is the NotificationEvent class which

encapsulates the message to be sent to the Target

SourceFrame This is an example Source front-end GUI which

imitates the functionality of the Source machine

TargetFrame This is an example Target front-end GUI which

imitates the functionality of the Target machine

TargetServer The is an example of how the target server listens

for notification event messages from the notification

Enterprise Services ■ Remote Notification

MCA Services Developer Guide Version 2004.5, Rev. A ■ 295

server via a TCP connection

WorkerThread This is an example worker class which shows how

the notification message can be processed by the

Target

6.6.3.1.1 The NotificationEvent Methods

toString() Returns a String representation of the

NotificationEvent details

getSourceId() This method returns the Source ID

setSourceId(String

sourceId)

This method sets the Source ID

getTargetIp() This method gets the Target IP address

setTargetIp(String

targetIp)

This method sets the Target IP address

getPayload() This method gets the payload object

setPayload(Object payload) This method sets the payload

getDate() This method gets the date the message was sent

setDate(String date) This method sets the date

getAction() This method gets the action

setAction(String action) This method sets the action

6.6.3.2 The com.bankframe.services.notification.notificationserver package

NotificationServer The remote Interface that declares the functionality

NotificationServerBean exposes.

NotificationServerBean The session bean that implements MCA Service’s

notification logic.

6.6.3.2.1 The NotificationServer Methods

registerUser(String

targetId, String

targetIp,String

targetPort)

This method allows a target machine to register with

the NotificationServer

Enterprise Services ■ Remote Notification

296 ■ MCA Services Developer Guide Version 2004.5, Rev. A

unregisterUser(String

targetId, String

targetIp,String

targetPort)

This method allows a target machine to un-register

from the NotificationServer

notifyUser(String

sourceId,String

targetId,String

action,String date,Object

payload)

This method is called by the source in order to notify

a target about a particular notification event

6.6.3.3 The com.bankframe.services.notification.registeredaddress package

This package contains the implementations of the entity bean RegisteredAddress

RegisteredAddress Remote Interface that declares the methods of the

RegisteredAddress Entity bean.

RegisteredAddressBean Container managed bean implementation.

RegisteredAddressFinders The RegisteredAddress finders interface

6.6.3.3.1 The RegisteredAddressBean Methods

create(String

targetId,String

targetIp,String

targetPort)

This method creates a new RegisteredAddress

getTargetId() This method gets the Target ID

setTargetId(String

targeted)

This method sets the Target ID

getTargetIp() This method gets the Target IP address

setTargetIp(String

targetIp)

This method sets the Target IP address

getTargetPort() This method gets the Target Port

SetTargetPort(String

targetPort)

This method sets the Target Port

Enterprise Services ■ Internationalization

MCA Services Developer Guide Version 2004.5, Rev. A ■ 297

6.6.4 The com.bankframe.services.notification.targetselection package

This package contains a TargetSelectionFactory which, creates new instances of the

TrargetSelectionFactoryImpl class that is used to select a target specified by the algorithm in the

getTargetForSource(String sourceId) method.

TargetSelectionFactory This class is used to create a new instance of the

TargetSelectionFactory implementation

specified by the targetSelectionFactory setting in
BankframeResource.properties

DefaultTargetSelectionFact

oryImpl

This is the default TargetSelectionFactory

implementation, this default algorithm returns the

first Target IP address found in the

RegisteredAddress table. The method

getTargetForSource(String sourceId)

must be implemented by any new factory

implementations.

6.6.4.1 The TargetSelectionFactory Methods

getInstance() This method returns a TargetSelectionFactory instance

getTargetIPForSource(String

sourceId)

This method returns a target IP address based on the

sourceId passed in.

6.7 Internationalization

6.7.1 Introduction

This document describes the internationalization facilities provided by MCA Services. For information on

date & time localization refer to the MCA Services Data Validation documentation.

6.7.1.1 Internationalization scenarios

In the past the MCA internationalization framework only supported localizing to a single locale, i.e. a single

Siebel Module installation could only support a single locale. In order to support projects that must support

more than one locale simultaneously the MCA internationalization framework has been redesigned.

In previous versions of MCA all internationalization was done on the server side, this was sufficient when

only one locale needed to be supported, however this approach becomes unmanageable when more that

one locale needs to be supported, since each user’s locale information must be propagated throughout all

the server side code.

Enterprise Services ■ Internationalization

298 ■ MCA Services Developer Guide Version 2004.5, Rev. A

The solution to this problem is to do all internationalization on the client-side. This involves making sure that

all data that needs to be localised is passed to the client in addition to any additional information that is

required by the client to localise the data.

6.7.1.2 Resource Bundles

Localised resources (i.e. localised messages) are organised into resource bundles. A resource bundle is a

set of property files, which contain locale specific text. For each locale a property file containing the localised

text is required. The property files must follow the following naming convention:

BundleName_language_country. The country is optional, it is only used if a language has a sub dialect

specific to a country. This naming convention is required as the Java resource manager uses the class

name to locate the most appropriate resource bundle for a locale. For example if a resource bundle for the

Swiss-German locale was requested the resource manager would search for an appropriate resource

bundle class using the following pattern:

 BundleName_de_CH - Swiss-German locale resource bundle.

 BundleName_de - general German language resource bundle.

 BundleName - root resource bundle.

So first of all the resource manager searches for the Swiss German resource bundle, if it cannot find Swiss

German resources it will search for the German resource bundle, and if it cannot find German resources it

will use the default resource bundle.

6.7.1.2.1 BankframeMessages.properties

All messages are stored in a file called BankframeMessages.properties. Each locale will have a

separate file containing the localised text for that locale. The file is named using the convention described

above:

BankframeMessages.properties The default messages file

BankframeMessages_en_US.properties The US English message file

BankframeMessages_de.properties The generic German message file

BankframeMessages_de_CH.properties The Swiss German message file

6.7.2 MCA Internationalization Framework

The MCA Internationalization framework is implemented in the com.bankframe.localization package.

This package contains the following classes:

6.7.2.1 BankFrameMessage

This class represents a message that can be localized. This class has the following methods:

6.7.2.1.1 BankFrameMessage(String messageKey)

Enterprise Services ■ Internationalization

MCA Services Developer Guide Version 2004.5, Rev. A ■ 299

This constructor creates a BankFrameMessage instance that uses the specified messageKey to obtain the

localized message from the BankframeMessages.properties file

6.7.2.1.2 BankFrameMessage(String messageKey, String[] arguments)

This constructor creates a BankFrameMessage instance that uses the specified messageKey to obtain the

localized message from the BankframeMessages.properties file and substitutes the specified

arguments into the localized message.

6.7.2.1.3 BankFrameMessage(DataPacket bankframeMessageDataPacket)

This constructor creates a BankFrameMessage instance that uses the localization information in the

specified DataPacket.

6.7.2.1.4 setMessageKey()

This method is used to set the message key. This method has the following signature:
public void setMessageKey(String messageKey);

- The messageKey parameter identifies the key of the localised message stored in the

BankframeMessages.properties file

6.7.2.1.5 setMessageArguments()

This method is used to set the arguments for a message. This method has the following signature:
public void setMessageArguments(String[] arguments);

- The arguments parameter contains the arguments for the message

6.7.2.1.6 toString()

This method converts the BankFrameMessage to a localised String. This method has two forms:

public String toString();

- This method converts the BankFrameMessage using the default system locale. Use of this method

is not recommended because the system locale may not match the user’s locale.
public String toString(Locale locale);

- This method converts the BankFrameMessage using the specified locale.

6.7.2.1.7 toDataPacket()

This method converts the BankFrameMessage to a DataPacket. This method has the following signature:

public DataPacket toDataPacket();

- This method returns a DataPacket containing the information necessary for localising the

message

6.7.2.1.8 fromDataPacket()

Enterprise Services ■ Internationalization

300 ■ MCA Services Developer Guide Version 2004.5, Rev. A

This method sets the messageKey and arguments for this BankFrameMessage from the information

contained in the specified DataPacket. This method has the following signature:

public void fromDataPacket(DataPacket data);

- The data parameter specifies a DataPacket containing the information for the

BankFrameMessage

6.7.2.2 BankFrameException

This class is the base class for all exceptions. This class works hand in hand with the BankFrameMessage

class. Whereas most Java exceptions are created using a String error message,

BankFrameExceptions are created using a BankFrameMessage error message.

This class contains the following methods:

6.7.2.2.1 BankFrameException()

This constructor creates an instance of BankFrameException using the specified BankFrameMessage

for the error message. This constructor has the following signature:
public BankFrameException(BankFrameMessage message);

6.7.2.2.2 getBankFrameMessage()

This method returns the BankFrameMessage associated with this exception. This method has the following

signature:
public BankFrameMessage getBankFrameMessage();

6.7.2.2.3 getMessage()

This method gets the error message for this BankFrameException. This method has two forms:

public String getMessage();

- Using this method is not recommended since it uses the default system locale to localise the error

message, which may not match the user’s locale
public String getMessage(Locale locale);

- This method gets the error message for this exception, localising the message using the specified

locale

6.7.2.2.4 toDataPacket()

This method converts the exception to a DataPacket. This method has the following signature:

public DataPacket toDataPacket();

Enterprise Services ■ Internationalization

MCA Services Developer Guide Version 2004.5, Rev. A ■ 301

6.7.2.3 BankFrameMessageUtils

This class contains utility methods for manipulating BankFrameMessages. This class contains the following

methods:

6.7.2.3.1 parseDataPacket()

This method converts a DataPacket to a BankFrameMessage. This method has the following signature:

public static BankFrameMessage parseDataPacket(DataPacket data);

- The data parameter is a DataPacket containing the information necessary to construct a

BankFrameMessage.

- A BankFrameMessage instance is returned, or null if the DataPacket does not contain any

BankFrameMessage data.

6.7.2.3.2 toString()

This method converts a DataPacket containing BankFrameMessage data to a String. This method has

the following signature:
public static String toString(DataPacket bankframeMessageDataPacket,

Locale locale);

- The bankframeMessageDataPacket parameter is a DataPacket containing the information

necessary to construct a BankFrameMessage.

- The locale parameter specifies the Locale to use for localizing the message

- The localized message is returned or null if the DataPacket does not contain any

BankFrameMessage data.

6.7.2.3.3 containsBankFrameMessage()

This method determines if the specified DataPacket contains BankFrameMessage data. This method has

the following signature:
public static boolean containsBankFrameMessage(DataPacket data);

- The data parameter is a DataPacket containing the information necessary to construct a

BankFrameMessage.

- This method returns true if the DataPacket contains BankFrameMessage data, false

otherwise.

6.7.2.4 BankFrameExceptionUtils

This class contains utility methods for manipulating BankFrameExceptions. This class contains the

following methods:

6.7.2.4.1 containsBankFrameException()

Enterprise Services ■ Internationalization

302 ■ MCA Services Developer Guide Version 2004.5, Rev. A

This method determines if the specified Vector of DataPackets contains BankFrameException data.

This method has the following signature:
public static boolean containsBankFrameException(Vector dataPackets);

- The dataPackets parameter is a Vector of one or more DataPackets.

- This method returns true if the first DataPacket in the Vector contains BankFrameException

data, or false otherwise.

6.7.2.4.2 getMessage()

This method gets the error message for the BankFrameException data contained in the specified Vector

of DataPackets. This method has the following signature:

public static String getMessage(Vector dataPackets, Locale locale);

- The dataPackets parameter is a Vector of one or more DataPackets.

- The locale parameter specifies the Locale to use for localizing the message

- The localized message is returned or null if the Vector of DataPackets does not contain any

BankFrameException data.

6.7.2.4.3 toBankFrameException()

This method converts a Vector of DataPackets to a BankFrameException. This method has the

following signature:
public static BankFrameException toBankFrameException(Vector dataPackets);

- The dataPackets parameter is a Vector of one or more DataPackets

- The BankFrameException is returned or null if the Vector of DataPackets does not contain

any BankFrameException data.

6.7.2.4.4 toVectorResponse()

This method converts a BankFrameException to a Vector of DataPackets. This method has the

following signature:
public static Vector toVectorResponse(BankFrameException ex);

- The ex parameter is the BankFrameException to be converted.

- A Vector containing a single DataPacket with the BankFrameException data is returned.

6.7.3 Examples

6.7.3.1 Using BankFrameMessage

Below is some sample code that uses the com.bankframe.localization.BankFrameMessage class:

import com.bankframe.localization.BankFrameMessage;

Enterprise Services ■ Internationalization

MCA Services Developer Guide Version 2004.5, Rev. A ■ 303

public class Sample {

public static final String HELLO_MSG_KEY="HELLO";

public static void main(String[] args) {

BankFrameMessage msg = new BankFrameMessage(HELLO_MSG_KEY,new

String[]{getUserName()});

System.out(msg);

}

}

Assuming BankframeMessages.properties contains the following line:

HELLO=Hello {0}

the host system locale is English - en and the getUserName() method returns a string containing 'John

Doe' the above application will produce the following output:

Hello John Doe

6.7.3.2 Using BankFrameException

Below is some sample code that uses the com.bankframe.localization.BankFrameException

class:
import com.bankframe.localization.BankFrameMessage;

import com.bankframe.localization.BankFrameException;

public class Sample {

public static final String ERROR_MSG_KEY="ERROR";

public static void main() {

try {

BankFrameMessage msg = new BankFrameMessage(ERROR_MSG_KEY);

throw new BankFrameException(msg);

} catch (BankFrameException ex) {

System.out.println(ex.getMessage());

}

}

Assuming BankframeMessages.properties contains the line ERROR=An error occurred

And the host system locale is English (en) the above application will produce the output: An error

occurred

Enterprise Services ■ Logging

304 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.7.4 References

6.7.4.1 The Java Tutorial on internationalisation

http://web2.java.sun.com/docs/books/tutorial/i18n/index.html

6.7.4.2 ISO-639 - Language codes

Official site:

http://www.infoterm.org/

W3C's List:

http://www.w3.org/WAI/ER/IG/ert/iso639.htm

6.7.4.3 ISO-3166 - Country Codes

Official site:

http://www.din.de/gremien/nas/nabd/iso3166ma/

Official site full list:

http://www.din.de/gremien/nas/nabd/iso3166ma/codlstp1/en_listp1.html

6.8 Logging

6.8.1 Introduction

Financial Components need messages to be logged at different times while performing processing; to meet

this requirement MCA Services provides an extensible logging service.

The MCA logging service is a thin bridge between different logging libraries. Logging libraries supported

include:

• BEA WebLogic 6.1 Logging Framework

• Apache Foundation LOG4J framework

• Generic Console output

The WebLogic Logging framework is a proprietary API available in WebLogic 6.1 and later. It enables

logging messages to be logged directly into WebLogic’s own log file. The benefits of this are:

• MCA logging messages are logged in sequence in the same file as WebLogic logging messages.

This aids problem determination since it is possible to see the exact order in which events occurred

• Administration and configuration of the logging system can be done via the WebLogic

Administration Console

• Logging Messages can be viewed in the WebLogic Administration Console

http://web2.java.sun.com/docs/books/tutorial/i18n/index.html
http://www.infoterm.org/
http://www.w3.org/WAI/ER/IG/ert/iso639.htm
http://www.din.de/gremien/nas/nabd/iso3166ma/
http://www.din.de/gremien/nas/nabd/iso3166ma/codlstp1/en_listp1.html

Enterprise Services ■ Logging

MCA Services Developer Guide Version 2004.5, Rev. A ■ 305

The LOG4J framework is a widely used logging framework developed under the auspices of the Apache

Foundation. It provides an extremely rich library that be configured to format logging messages into any

required format and to be logged to a number of different destinations including:

- Console output

- File output

- Rolling file output

- UDP datagrams

- Unix Syslog

- NT Event Log

The Generic console support enables log messages to be printed directly to the console. This option is

provided for when neither of the two options above is available.

6.8.2 Classes and Package Structure

The logging service is implemented by the com.bankframe.services.logger package and its sub-

packages.

6.8.2.1 The com.bankframe.services.logger package

The ELogger interface defines the methods that the logging service provides:

boolean isDebugEnabled() Indicates whether DEBUG level messages should

be logged. This method should be called before

logging large DEBUG messages, in order to

improve overall performance
void debug(String msg) Logs the specified message at DEBUG level

void debug(String s, Throwable

throwable)

Logs the specified exception at DEBUG level

void info(String msg) Logs the specified message at INFO level

void info(String s, Throwable

throwable)

Logs the specified exception at INFO level

void warn(String msg) Logs the specified message at WARN level

void warn(String s, Throwable

throwable)

Logs the specified exception at WARN level

void error(String msg) Logs the specified message at ERROR level

void error(String s, Throwable

throwable)

Logs the specified exception at ERROR level

void fatal(String msg) Logs the specified message at FATAL level

Enterprise Services ■ Logging

306 ■ MCA Services Developer Guide Version 2004.5, Rev. A

void fatal(String s, Throwable

throwable)

Logs the specified exception at FATAL level

The ELoggerFactory class is used to create ELogger instances. This class provides the following

method:

public static ELogger

getLogger(Class subsystem)

This method returns the logger for the specified

subsystem. This method should be called by

Siebel Financial Components to create ELogger

instances.

6.8.2.2 The com.bankframe.services.logger.wl61 package

This package contains classes that provide an ELogger instance that communicates with the WebLogic 6.1

Logging Framework. The classes in this package must not be called directly by Siebel Financial

Components

6.8.2.3 The com.bankframe.services.logger.log4j package

This package contains classes that provide an ELogger instance that communicate with the LOG4J logging

framework. The classes in this package must not be called directly by Siebel Financial components

6.8.2.4 The com.bankframe.services.logger.console package

This package contains classes that provide an ELogger instance that prints logging messages directly to

the System.out stream. The classes in this package must not be called directly by Siebel Financial

components

6.8.3 Using the Logging Service

6.8.3.1 Logging Levels

There are five levels of logging which can be used:
FATAL Use only in cases where it is impossible for the

Siebel application to recover or continue.
ERROR Use when the request cannot be processed but the

overall system is still functioning.
WARN Use the WARN level for recording exceptions that

indicate that something may be wrong but do not

prevent the request being processed.

INFO Use the INFO level for providing information about

the running system, for example timing information.

DEBUG Use the DEBUG level for recording information

about how the system works, to aid in determining

the cause of runtime problems.

Enterprise Services ■ Logging

MCA Services Developer Guide Version 2004.5, Rev. A ■ 307

These log levels are used to determine if a log message is of interest for a particular runtime configuration.

For example, in a production system MCA Services could be configured to only log messages which are

FATAL and the actual Siebel Modules could log messages of WARN or higher.

6.8.3.2 Logging Subsystems

In a production system it is useful to be able to filter log messages by the functional area that they belong to,

for example to be able to only view log messages relating to funds transfer. To enable this to be done we

must categorise the logging messages produced by the Siebel Solution. The simplest way to do this is to

categorise messages by the name of the class from which the message was produced. Since the names of

all Siebel classes indicate which functional area they belong too, this becomes a powerful means for filtering

messages by functional area.

6.8.3.3 Logging Best Practices

When writing a log statement in your code you have to determine what the message will be, what log level it

requires and what subsystem it should be sent to. Follow the guidelines below to ensure you log messages

appropriately

6.8.3.3.1 Define a private static log variable

Each Financial component should define a private static final log variable coded as follows:

import com.bankframe.services.logger.ELogger;

import com.bankframe.services.logger.ELoggerFactory;

...

public class Foo {

private static final ELogger log = ELoggerFactory.getLogger(Foo.class);

}

Defining a log instance for each class enables logging to be switched on and off by functional area. This is

important when trying to detect the cause of problems in a production system. In a production system it will

not be feasible to turn on logging in all classes because this would produce such a large volume of logging

information that it would degrade the performance of the system. Instead it must be possible to configure

only a subset of logging messages to be turned on. The full name of each class is used to uniquely identify

each ELogger instance. The ELoggerFactory class caches ELogger instances so that only one instance

will be created per ELogger subsystem.

The log variable must be static so that it can be shared between all instances of that class. It must be

private so that it is not visible by sub-classes. Making the variable final guarantees that it cannot be

reassigned, thus assuring that there will only ever be one logger instance per class, in effect the logger

instance becomes a singleton.

Enterprise Services ■ Logging

308 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.8.3.3.2 Always invoke the logger via the log variable

Always invoke the logger via the log variable as defined above, for example:

public class SomeClass {

...

public void someMethod() {

log.debug(“This is a debug message”);

}

...

}

This ensures that the correct logger for the current class is always invoked.

6.8.3.3.3 Logging exceptions

Always use the overridden logging method provided for logging exceptions, for example:
...

try {

<some code which throws an exception>

} catch (Exception ex) {

log.warn(“An error occurred”, ex);

}

...

This will ensure that the full stack trace for the exception is logged. Having a full stack trace for an exception

makes it much easier to determine the root cause of a problem.

6.8.3.3.4 Use the isDebugEnabled() method

Even though logging output may be turned off in a production system the method calls to the logging

framework are still invoked. If the arguments to the logging method involve time consuming evaluations then

the overall performance of the system will be degraded, sometimes by a large amount. This is particularly

true of DEBUG level log messages, which often print out large amounts of information such as the contents of

a DataPacket. Therefore it is extremely important to ensure that these expensive DEBUG level log

messages are not invoked when the system is running in production mode. This can be accomplished using

code similar to the following:
...

if (log.isDebugEnabled()) {

Enterprise Services ■ Logging

MCA Services Developer Guide Version 2004.5, Rev. A ■ 309

log.debug(“These are the contents of the datapacket : “ +

someDataPacket);

}

...

6.8.3.3.5 Use the correct log level

When a system is running in production mode it should produce very little log output, therefore it is important

to ensure that logging messages are logged at the correct level. For example it might be tempting to log all

exceptions at ERROR level, however this would not be correct. Only exceptions that actually represent a true

error condition, such as a RemoteException should be logged at this level.

6.8.4 The Logging context

When examining a large log file that contains many different log messages from many different threads it

can be difficult to determine which log messages are related. Therefore it can be helpful to prepend

information to each log message to better identify the source of the message. The ELogger.Context

interface provides the means to do this. This interface has the following methods:

void push(String context) This method pushes the specified String onto the

context stack.

void pop() This method removes the topmost element on the

context stack.

Each thread will get its own logging context. This means by pushing a descriptive string onto the logging

context it becomes possible to identify which thread produced a particular log message.

The ELogger.Context interface is accessed via the getContext() method of the ELogger interface.

As an example imagine we want to identify all logging messages from within a financial component, or any

other financial components it invokes - we could do the following:
public class SomeFinancialComponentBean {

...

public Vector processDataPacket(DataPacket dataPacket) {

try {

log.getContext().push(“SomeFinancialComponent”);

log.debug(“This is a debug message”);

...

} finally {

log.getContext().pop();

Enterprise Services ■ Logging

310 ■ MCA Services Developer Guide Version 2004.5, Rev. A

}

}

}

Now all logging calls from within SomeFinancialComponentBean will be prefaced with the string:

‘SomeFinancialComponentBean’ making it easier to identify those logging messages.

6.8.5 Techniques for problem resolution using the logging framework

6.8.5.1 Examine logged stack traces

When an exception is logged, the full stack trace for that exception is logged. This stack trace should show

the class and line number where the exception was raised. Often this information is sufficient to identify the

cause of a problem

6.8.5.2 Filter by functional area

If you are attempting to identify the cause of a problem in a production system you can opt to turn on logging

for only a subset of code. For example, assume we are trying to identify a problem in the Transfers

component of the Teller Module, and we are using LOG4J for doing our logging.

The Transfers component is implemented in two packages:
com.bankframe.bp.retail.solutionset.transfers

com.bankframe.bp.retail.solutionset.impl.transfers

Since we create loggers by passing a Class object to the ELogger.getLogger() method, each logger

instance is categorised by the name of the class that created it. Thus we can configure LOG4J to only log

messages produced by a specific class or package. In this case we want to configure LOG4J to only display

messages produced by the two packages above, to do this we need to configure the LOG4J configuration

file; log4j.properties, as follows:

Default to only logging ERRORs

log4j.rootLogger=ERROR, CONSOLE

log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender

Turn on logging of DEBUG and above messages for the Transfers functional

area

log4j.logger.com.bankframe.bp.retail.solutionset.transfers=DEBUG

log4j.logger.com.bankframe.bp.retail.solutionset.impl.transfers=DEBUG

Enterprise Services ■ Logging

MCA Services Developer Guide Version 2004.5, Rev. A ■ 311

6.8.5.3 Filter by logging context

When there is a large volume of logging information being produced by logs it can become difficult to

determine the flow or order in which events occurred. E.g. if we think we are having a problem somewhere

within the Transfers component but we’re not sure where exactly the problem is arising, we can use the

logging context to easily identify all method calls that are invoked from within the transfers component.

We can do this by adding the code below to the processDataPackets() method of the

TransfersSessionBean class:

public Vector processDataPackets(Vector allData) throws

ProcessingErrorException {

try {

log.push(“Transfers”);

Vector response = super.processDataPackets(allData);

if (!DataPacketUtils.isAValidResponse(response, false, null, false)) {

this.getSessionContext().setRollbackOnly();

}

return response;

} finally {

log.getContext().pop();

}

}

The log.getContext().push(“Transfers”) method call will cause the text ‘Transfers’ to be

prepended to all log messages generated within the Transfers component, or any other components that the

Transfers component calls. Then when examining the log files you can search for the ‘Transfers’ string to

quickly identify those methods invoked from within the Transfers component.

6.8.6 Configuring the Logging Service

This section describes how to configure the Logging Service.

6.8.6.1 Configuration Parameters

The logging service is configured by entries placed in the Java System Properties, or

eloggerfactory.properties in the application classpath. These entries are defined at application server startup

time, and cannot be changed once the application server has started.

6.8.6.1.1 Logging implementation

The first parameter to set is the one that determines which logging implementation to use. The parameter is

set by specifying the following argument in the application server startup script:

Enterprise Services ■ Logging

312 ■ MCA Services Developer Guide Version 2004.5, Rev. A

java -Dcom.eontec.mca.elogger.factory=<logging implementation factory

class>

Where <logging implementation factory class> is the full name of the factory class for the

logging framework that you wish to use

The valid values for this setting are as follows:
com.bankframe.services.logger.wl61.WL61LoggerFactory WebLogic 6.1

logging

com.bankframe.services.logger.log4j.LOG4JLoggerFactory LOG4J logging
com.bankframe.services.logger.console.ConsoleLoggerFactory Console logging

If this setting is not defined as a Java System property, the logging service will look for the property in a

eloggerfactory.properties file. If the file does not exist, or the object defined cannot be instanciated, then the

logging service will default to using an instance of
com.bankframe.services.logger.console.ConsoleLoggerFactory

By checking Java System property first, and then eloggerfactory.properties, the logging service allows for

enterprise applications deployed in the same server to have separate logging factories.

6.8.6.1.2 Enable or disable all logging

The entire logging framework can be enabled or disabled by specifying the following argument in the

application server startup script to true or false:

java -Dcom.eontec.mca.elogger.enabled=<true|false>

The value of this setting is case sensitive.

6.8.6.1.3 WebLogic specific settings

The following settings can be provided in the BankframeResource.properties file when using the

WebLogic logging framework:
wl61.debugLoggingEnabled=<true|false>

This setting determines whether DEBUG level log messages should be forwarded to the WebLogic logging

framework. This setting is case sensitive
wl61.redirectDebugToInfo=<true|false>

This setting determines whether DEBUG level log messages should be forwarded as INFO level messages

to the WebLogic logging framework. This setting is case sensitive

6.8.6.1.4 LOG4J specific settings

The following settings can be provided in the BankframeResource.properties file when using the

LOG4J logging framework:
log4j.config.path=</path/to/some/log4j.properties>

This setting determines which LOG4J configuration file to use for configuring LOG4J. This setting must

specify the absolute path to the properties file
log4j.config.refresh=<some time value in seconds>

Enterprise Services ■ Logging

MCA Services Developer Guide Version 2004.5, Rev. A ■ 313

This sets how often LOG4J checks its configuration file to see if any configuration changes have occurred.

This value is specified in seconds

Please consult the LOG4J website for more detailed information on configuring LOG4J

6.8.7 Integrating with other Logging Frameworks

The MCA Logging Service is designed to be extensible so that it can be adapted to direct logging messages

to any logging service. This section describes the steps required to do this using the

com.bankframe.services.logger.console package as an example

6.8.7.1 Create a class that implements the ELogger interface

This class must do the actual logging of the logging messages. In most implementations this class will really

be an adaptor class that redirects the logging message to third party logging framework. In the case of

ConsoleLogger this class prints the message to the console using calls to System.out.println().

6.8.7.2 Create a class that implements the ELogger.Context interface

This class must maintain a stack of per thread context information. Most implementations can just delegate

this task to the com.bankframe.services.logger.E:oggerContext class:

protected static class ConsoleContext implements ELogger.Context {

public void push(String context) {

ELoggerContext.push(context);

}

public String pop() {

return ELoggerContext.pop();

}

public ConsoleContext() {

}

}

6.8.7.3 Create a factory class that extends ELoggerFactory

This class is responsible for creating ELogger instances. This class must extend ELoggerFactory and

provide an implementation for the abstract createLogger() method. This method must create an

ELogger instance for the specified subsystem. It should not cache instances as ELoggerFactroy does

this itself. Below is the source code for ConsoleLoggerFactory:

public class ConsoleLoggerFactory extends ELoggerFactory {

public ConsoleLoggerFactory() {

Enterprise Services ■ Logging

314 ■ MCA Services Developer Guide Version 2004.5, Rev. A

super();

}

protected ELogger createLogger(String subsystem) {

return instance;

}

protected final static ELogger instance = new ConsoleLogger();

}

Since the console based logger only ever has one instance it creates a single static instance and always

returns that through the createLogger() method.

6.8.7.4 Update application server startup script

To use your custom logger you must update the com.eontec.mca.elogger.factory setting in your

application server startup script as follows:
java -Dcom.eontec.mca.elogger.factory=<logging implementation factory

class>

Where <logging implementation factory class> is the full name of the factory class for the

logging framework that you wish to use.

6.8.8 Deprecations

6.8.8.1 BankFrameLog

The com.bankframe.services.log.BankFrameLog class has been deprecated and the

BankFrameLog class has been updated to redirect all logging messages to the Logging Service described

in this chapter

6.8.8.2 ESystem.out

The com.bankframe.ESystem object has been deprecated. The ESystem class has been updated to

redirect all logging messages to the Logging Service described in this chapter. As there is no argument for

subsystems all messages logged using the ESystem object will be sent to the com.bankframe subsystem.

6.8.9 References

Apache LOG4J service:

http://jakarta.apache.org/log4j/

WebLogic Logging Framework:

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/logging/NonCatalogLogger.html

http://jakarta.apache.org/log4j/
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/logging/NonCatalogLogger.html

Enterprise Services ■ Audit

MCA Services Developer Guide Version 2004.5, Rev. A ■ 315

6.9 Audit

6.9.1 Introduction

The MCA Audit Service provides the means to record an audit of transactions carried out by Siebel Modules.

6.9.2 Audit Classes and Package Structure

The Audit Service is located in the com.bankframe.services.audit package and its implementation is

in the com.bankframe.services.impl.audit package.

6.9.3 Configuring the Audit Service

The Audit Service uses an Audit Provider framework (similar in operation to the Security Provider) to

dispatch Audit requests to an Audit Implementation. The interface of the Audit Provider is

com.bankframe.services.audit.BankFrameAuditProvider and all custom Audit Provider’s must

implement this interface. MCA is supplied with two Audit Provider implementations:

com.bankframe.services.audit.NullBankFrameAuditProvider

com.bankframe.services.audit.DefaultBankFrameAuditProvider

The Audit Provider is configured in the BankframeResource.properties file using the

audit.provider key and its value is set to the Audit Provider class, which is required for use in the

runtime system.

For example, if a test MCA installation does not require any audit functionality than the Null Audit Provider

would be configured as follows:

audit.provider=com.bankframe.services.audit.NullBankFrameAuditProvider

6.9.3.1 com.bankframe.services.audit.NullBankFrameAuditProvider

The com.bankframe.services.audit.NullBankFrameAuditProvider provides a dummy

implementation which does not send any dispatched requests to an Audit Service. This Audit Provider can

be used to switch off all Auditing of an MCA system and is often used in test installations which don’t require

an audit function.

6.9.3.2 com.bankframe.services.audit.DefaultBankFrameAuditProvider

The com.bankframe.services.audit.DefaultBankFrameAuditProvider dispatches to the default

MCA Audit Service. This default service is implemented by three EJBs:

EJB Bean Name EJB Implementation Package EJB Type

Enterprise Services ■ Audit

316 ■ MCA Services Developer Guide Version 2004.5, Rev. A

AuditBean com.bankframe.services.impl.audit Session

AuditRoute com.bankframe.services.impl.audit.aud

itroute

CMP Entity

AuditRecord com.bankframe.services.impl.audit.aud

itrecord

CMP Entity

The AuditBean session EJB contains the logic of the audit service. The AuditRoute is an entity EJB that

maps to a lookup table on the database which maps a Fianancial Component’s REQUEST_ID to the Audit

Service. This allows a BankFrame system to be configured to only a specified set of routes. Finally, the

AuditRecord entity EJB maps to the AUDIT_TRAIL table on the database and contain the details of an

audit.

An AuditRecord stores the following attributes for each Audit event:

AUDIT_DATE

AUDIT_TIME

REQUEST_ID

REQUEST

RESPONSE

The REQUEST and RESPONSE attributes are large strings (stored as VARCHAR(7000) in the underlying

database) which contain an XML representation of the client request and the servers response respectively.

When MCA is configured to use this Audit Provider then the RequestRouter behaves as follows:

• Just before the RequestRouter returns a response to a client it invokes the

com.bankframe.services.audit.DefaultBankFrameAuditProvider

• This provider performs a lookup on the Audit session EJB.

• The provider then calls the audit() method, passing in the current REQUEST_ID, the request and the

response which is about to be returned.

• The Audit Session EJB then looks up the AuditRoutes entity EJB to enquire if the current REQUEST_ID

represents a Fianancial Component which needs to be audited.

• If the route is auditable, then the Audit session EJB creates an AuditRecord entity EJB instance to

contain the current date, time, REQUEST_ID, request and response and then stores them to the database.

6.9.4 Configuring Routes to the Audit Service

If the audit.provider is set to DefaultBankFrameAuditProvider, than the RouteServlet will

show an extra option, as follows:

Enterprise Services ■ Audit

MCA Services Developer Guide Version 2004.5, Rev. A ■ 317

• Configure Default Audit Service

Selecting this displays the options available within the AuditServlet, which are as follows:

• Add a route to the Audit Service

• Delete a route from the Audit Service

• List all routes mapped to the Audit Service

Using these features any Fianancial Component may be added or deleted from the Audit Service, or a list of

all the Fianancial Components currently mapped to the Audit Service is available. It is worth noting that

deleting a Fianancial Component (using its REQUEST_ID) from the Audit Service does not delete it from the

Routing Service.

6.9.5 Calling the Audit Service from within custom code

If an Audit event is required in custom code then the com.bankframe.services.audit.AuditUtils

class can be used. This class contains the following methods,

audit(String requestId, Vector

request, Vector response)

This method is the same as used by the

RequestRouter. It takes a REQUEST_ID and a

request/response set of DataPackets.

audit(Vector datapackets) This method is used when the concept of a

REQUEST_ID and a request/response set of

DataPackets make no sense within the context of

the audit call. In this case then the database will

have the text ‘AUDIT’ in the place of REQUEST_ID

and both the request and response will contain the

same XML representation of the DataPackets.

6.9.6 Exceptions in the Audit Service

Because the Audit Service partakes in the overall transaction (often initiated by the RequestRouter) and is

a critical component, if an exception occurs within the Audit Service then the entire transaction is rolled

back.

If you want this behavior in custom code which calls the Audit Service then calls to the AuditUtils class

should be nested within a try/catch block which catches exceptions of type ProcessingErrorException

and rollback the current transaction (using the setRollbackOnly() method on the EJBContext object) if

the exception is caught.

Enterprise Services ■ Timing Points

318 ■ MCA Services Developer Guide Version 2004.5, Rev. A

If should be noted that the EJBContext object is usually only available within the context of an EJB.

For example,

try {

AuditUtils.audit(requestId, request, responses);

} catch (ProcessingErrorException ex) {

this.getSessionContext().setRollbackOnly(); //rollback tx

}

6.10 Timing Points

6.10.1 Introduction

The Timing Point Service provides a facility for determining the length of time required for Siebel

components to carry out their actions. The service is very useful in aiding the identification of performance

bottlenecks. The service is highly flexible; allowing configuration of output into different formats while writing

to either file or console, providing a framework for writing custom factory classes to create specialized

Timing Points, and allowing for plug-in analyzer classes to carry out heuristics and analysis.

6.10.2 The com.bankframe.services.trace package

The business logic for the Timing Point Service is implemented in the com.bankframe.services.trace

package. This package consists of the following classes/interfaces:

BankFrameTrace

(deprecated - to be replaced by Timing

Point created through

TimingPointFactory class)

Provides a facility for determining the length of

time required for Siebel components to carry out

their actions.

DefaultTimingPointAnalyser

This class logs a Timing Point. It provides no

analyzing of the Timing Point.

DefaultTimingPointFactory

This class is the default class used for the

creation of Timing Points.

EndToEndTrace

(deprecated: to be replaced by Timing

This class enables the sampling of elapsed time

between timing points, aiding the identification of

performance bottlenecks.

Enterprise Services ■ Timing Points

MCA Services Developer Guide Version 2004.5, Rev. A ■ 319

Point created through

TimingPointFactory class)

NullTimingPointAnalyser

This class logs a Timing Point. It provides no

analyzing of the Timing Point.

TimingPoint

This class is a Timing Point. It is used in order to

time events or actions within Siebel code.

TimingPointAnalyser

Implementers of this interface analyze a timing

point. The TimingPointUtil

class will call the analyse() method of an

implementing class to allow some additional

custom analysis to be done.

TimingPointConstants

Constants used for Timing Points.

TimingPointFactory

This class creates and configures Timing Point

instances.

TimingPointProperties

This class is used for the storing of optional key

value pairs for inclusion in the logging of Timing

Points.

TimingPointUtil

This class provides utilities to work with Timing

Points.

6.10.2.1 BankFrameTrace

This class provides a mechanism for creating a Trace object, calling Trace.start() to start recording the

elapsed time, and finally calling Trace.stop() to finish recording. When Trace.stopAndReport() is

called an informational message is displayed in the log indicating the elapsed time, e.g.
Trace trace = new Trace();

trace.start("A sample description here");

...some code here ...

trace.stopAndReport();

Note: The use of this mechanism for time measurement has been deprecated and has been replaced by the

use of a TimingPointFactory for creation of Timing Points.

Enterprise Services ■ Timing Points

320 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.10.2.2 EndToEndTrace

The EndToEndTrace class is similar to the BankFrameTrace class, however it provides the added extra

of being able to specify the logging of timing points at specific intervals through the following setting in the

BankframeResource.properties file:

trace.sampleSize

Configuring this setting to e.g. trace.sampleSize =20 means that after every 20 requests, the tracing

times for the previous 20 requests will be written to the console. The default setting is 1000.

It is also possible to disable the EndToEndTrace utility through the BankframeResource.properties

file. This was not possible in the BankFrameTrace class. Do so by modifying the trace.enabled setting

in the BankframeResource.properties file as follows:

trace.enabled=false

this will disable the utility while setting it to true will enable it.

Note: This class has now been deprecated. This is because recorded timing points are stored by associating

them with the java.lang.ThreadLocal variable via a HashMap. This has a performance overhead,

especially if e.g. one is storing 1000 timing points within the ThreadLocal variable. The EndToEndTrace

class is to be replaced by creating a TimingPoint through a TimingPointFactory class.

6.10.2.3 TimingPoint

The TimingPoint class is used to time events or actions within Siebel code. A Timing Point records the

start time, object and also the subsystem in which the timing point occurs. Subsystems are a mechanism by

which it is possible to group Timing Points together i.e. creating a Timing Point as part of a subsystem and

enabling that subsystem ensures the Timing Point, and all other Timing Points in that subsystem, are logged

to file or disk as appropriate. The Timing Point is recorded by calling the exit() method which will pass the

Timing Point onto a utility class that will then process it.

6.10.2.4 TimingPointProperties

This class is used for the storing of mandatory and optional key/value pairs for inclusion in the logging of

timing points. Its constructor takes as parameter an array of Objects. These objects form the properties to

be included in the timing point logging. This array of Objects must be instantiated in the form:
Object[] objects = new Object[]{key0, value0, key1, value1, key2, value2};

where keyx is the key that indexes valuex.

This array of Objects is then used to instantiate a TimingPointProperties object as follows:

TimingPointProperties properties = new TimingPointProperties(objects);

The variable properties then forms the parameter for the construction of a TimingPoint.

Enterprise Services ■ Timing Points

MCA Services Developer Guide Version 2004.5, Rev. A ■ 321

6.10.2.5 TimingPointFactory

This abstract class is used for the creation of Timing Points. The createTimingPointFactory() method

creates an instance of the concrete singleton TimingPointFactory class as specified by the following

setting in the BankframeResource.properties file:

timingPoint.factory=com.bankframe.services.trace.DefaultTimingPointFactor

y

where DefaultTimingPointFactory is the default TimingPointFactory class.

6.10.2.5.1 Writing Timing Points into Code

To place a Timing Point in a suitable location in the code, the following must be done:

- Create an Object Array containing all the properties one wishes to associate with the Timing

Point.

- Create a TimingPointProperties object using this Object Array.

- Use the TimingPointFactory.getTimingPoint() method to create a Timing Point.

Use the following code as an example:
//create the Object Array

Object[] objects = new

Object[]{TimingPointConstants.TIMING_POINT_SUBSYSTEM,

BankFrameLogConstants.MCA_SUBSYSTEM,

TimingPointConstants.TIMING_POINT_TYPE, "Request Router",

TimingPointConstants.TIMING_POINT_MAJOR_TYPE,

TimingPointUtil.MAJORTYPE_SERVLET_STRING,

TimingPointConstants.TIMING_POINT_REQUEST, this};

//create the TimingPointProperties object and create the Timing Point

TimingPoint tp = TimingPointFactory.getTimingPoint(new

TimingPointProperties(objects));

And to stop or exit this Timing Point:
tp.exit(this);

6.10.2.5.2 Customized TimingPointFactory classes

It is possible to write a customized TimingPointFactory class and specify its use instead of the

DefaultTimingPointFactory. A customized class is useful when adding some extra properties to a

Timing Point which may not be available in the client of the TimingPointFactory.getTimingPoint()

method. It can also serve as a place for doing operations on the contents of the TimingPointProperties

object used to create a Timing Point.

6.10.2.5.2.1 Guidelines for writing a Customized TimingPointFactory class

Enterprise Services ■ Timing Points

322 ■ MCA Services Developer Guide Version 2004.5, Rev. A

This customized class must, at the least, extend the

com.bankframe.services.trace.TimingPointFactory class and provide an implementation of the

configureTimingPoint() method. The configureTimingPoint() method must do the following:

- create a new instance of a TimingPoint.

- set the startTime on the newly created TimingPoint.

- set the user on the newly created TimingPoint.

The following step should be done for any of the following values which appear as a key in the

TimingPointProperties object passed as parameter to the configureTimingPoint() method

TimingPointConstants.TIMING_POINT_START_TIME

TimingPointConstants.TIMING_POINT_END_TIME

TimingPointConstants.TIMING_POINT_ELAPSED_TIME

TimingPointConstants.TIMING_POINT_SUBSYSTEM

TimingPointConstants.TIMING_POINT_USER

TimingPointConstants.TIMING_POINT_REQUEST

TimingPointConstants.TIMING_POINT_RESPONSE

TimingPointConstants.TIMING_POINT_TIMING_POINT_ID

TimingPointConstants.TIMING_POINT_THREAD_ID

TimingPointConstants.TIMING_POINT_TYPE

TimingPointConstants.TIMING_POINT_MAJOR_TYPE

TimingPointConstants.TIMING_POINT_HOST_RECORDING

TimingPointConstants.TIMING_POINT_SERVLET_RECORDING

TimingPointConstants.TIMING_POINT_CUSTOM_RECORDING

TimingPointConstants.TIMING_POINT_TXN_HANDLER_RECORDING

So for example, if the TimingPointProperties object had a key of

TimingPointConstants.TIMING_POINT_MAJOR_TYPE, one should do the following:

set the majorType on the newly created TimingPoint, if there was a value returned for majorType in

the following code:
String

majorType=(String)properties.getProperty(TimingPointConstants.TIMING_POINT

_MAJOR_TYPE);

At this point, if a value was found, the property should be removed from the TimingPointProperties

object named properties using the following code:

properties.removeProperty(TimingPointConstants.TIMING_POINT_MAJOR_TYPE);

Enterprise Services ■ Timing Points

MCA Services Developer Guide Version 2004.5, Rev. A ■ 323

Once all these keys have been addressed and removed from properties, any additional processing or

setting values in the properties object should be done now.

Finally the remaining properties from the passed TimingPointProperties object should be set on

the TimingPoint as follows:

timingPoint.setProperties(properties)

where timingPoint is the TimingPoint created as first step of this configureTimingPoint()

method.

6.10.2.6 DefaultTimingPointFactory

This class is used for the creation of Timing Points. The class extends the abstract class

TimingPointFactory and provides an implementation for the configureTimingPoint() method. The

configureTimingPoint() method uses the TimingPointProperties object passed as parameter to

create and set values on a Timing Point.

6.10.2.7 TimingPointAnalyser

Classes that implement this interface are used to analyze a Timing Point. Implementing classes will write an

analyse() method, taking a TimingPoint object as parameter. The TimingPointUtil class will call

the analyse() method of an implementing class to allow some additional custom analysis to be done. The

default TimingPointAnalyser is the

com.bankframe.services.trace.DefaultTimingPointAnalyzer class that only prints the

TimingPoint object passed as parameter to the console/file log. It is possible to write Custom

TimingPointAnalyser classes and have their analyse() method called during execution. Simply

implement the TimingPointAnalyser interface, replace the default setting in

BankframeResource.properties file with the new custom TimingPointAnalyser class as follows:

timingPoint.analyzerClassName=com.bankframe.services.trace.myCustomTimingP

ointAnalyzer

where com.bankframe.services.trace.myCustomTimingPointAnalyzer is the fully qualified

name of this new custom class.

6.10.3 Configuring Timing Points

The settings in the BankframeResource.properties file that control the configuration of Timing Point

Services are as follows:

6.10.3.1 EndToEndTrace

EndToEndTrace is set as follows:
trace.sampleSize=1000

trace.enabled=true

Enterprise Services ■ Timing Points

324 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.10.3.2 timingPoint

Timing Points are set as follows:
timingPoint.enabled=true

where timingPoint.enabled can have value of true or false

6.10.3.3 timingPoint.writePointsToDisk

timingPoint.writePointsToDisk is set as follows:
timingPoint.writePointsToDisk=true

where timingPoint.writePointsToDisk can have a value of true or false and

timingPoint.writePointsToDisk=true means data will be written to console and not to file.

6.10.3.4 timingPoint.subsystem.BANKFRAME.MCA

timingPoint.subsystem.BANKFRAME.MCA is set as follows:
timingPoint.subsystem.BANKFRAME.MCA=BANKFRAME.MCA

where Timing Points can be grouped in a subsystem named BANKFRAME.MCA. It is possible to have many

settings with the prefix timingPoint.subsystem and this means all subsystems listed here will have their

data flushed to file or console.

6.10.3.5 timingPoint.doSummary

timingPoint.doSummary is set as follows:
timingPoint.doSummary=false

this will flush a summary all timing points to file or console.

6.10.3.6 timingPoint.fileName

timingPoint.fileName is set as follows:
timingPoint.fileName=/export/home/server/bea/user_projects/eontec/timingpo

ints.log

this will flush the timing points to the file
/export/home/server/bea/user_projects/eontec/timingpoints.log

6.10.3.7 timingPoint.bufferSize

timingPoint.bufferSize is set as follows:
timingPoint.bufferSize=1000

the maximum size of buffer to hold timing points. Once this is exceeded all timing points will be flushed to file

or console.

Enterprise Services ■ Timing Points

MCA Services Developer Guide Version 2004.5, Rev. A ■ 325

6.10.3.8 timingPoint.analyzerClassName

timingPoint.analyzerClassName is set as follows:
timingPoint.analyzerClassName=com.bankframe.services.trace.DefaultTimingPo

intAnalyzer

where com.bankframe.services.trace.DefaultTimingPointAnalyzer is the name of the

analyzer class to process timing points.

6.10.3.9 timingPoint.transactionHandler.recording

timingPoint.transactionHandler.recording is set as follows:
timingPoint.transactionHandler.recording=true

where timingPoint.transactionHandler.recording is an alternative to subsystems and would be

placed within Financial Process Integrator code. It can have the value true or false, specifying whether

the timing point is to be recorded or not.

6.10.3.10 timingPoint.custom.recording

timingPoint.custom.recording is set as follows:
timingPoint.custom.recording=true

where timingPoint.custom.recording is an alternative to subsystems and could be placed anywhere

in code. It can have the value true or false, specifying whether the timing point is to be recorded or not.

6.10.3.11 timingPoint.host.recording

timingPoint.host.recording is set as follows:
timingPoint.host.recording=true

where timingPoint.host.recording is an alternative to subsystems and would be placed within host

transaction code. It can have the value true or false, specifying whether the timing point is to be recorded

or not.

6.10.3.12 timingPoint.servlet.recording

timingPoint.servlet.recording is set as follows:
timingPoint.servlet.recording=true

where timingPoint.servlet.recording is an alternative to subsystems and would be placed within

servlet code. It can have the value true or false, specifying whether the timing point be recorded or not.

6.10.3.13 timingPoint.format

timingPoint.format is set as follows:
timingPoint.format=TIMING_POINT_ID;THREAD_ID;MAJOR_TYPE;SUBSYSTEM;

TYPE;USER;START_TIME;END_TIME;ELAPSED_TIME;REQUEST;RESPONSE

Enterprise Services ■ Mail

326 ■ MCA Services Developer Guide Version 2004.5, Rev. A

above is the format string representing how a timing point will be logged to console or file. Above are all the

possible base values that can be arranged in any order as long as they are delimited by a semi-colon.

If upon instantiation of a TimingPoint object in the code an additional parameter has been added to be

output with the Timing Point, e.g. if one has a Timing Point constructed as follows with an additional string

named ‘TRACE_ID’:
Object[] objects = new

Object[]{TimingPointConstants.TIMING_POINT_SUBSYSTEM,

BankFrameLogConstants.MCA_SUBSYSTEM,

TimingPointConstants.TIMING_POINT_TYPE, "Request Router", "TRACE_ID",

“1234”};

Then the timingPoint.format setting should include the ‘TRACE_ID’ as follows:

timingPoint.format=TRACE_ID;TIMING_POINT_ID;THREAD_ID;MAJOR_TYPE;

SUBSYSTEM;TYPE;USER;START_TIME;END_TIME;ELAPSED_TIME;REQUEST;RESPONSE

Note: TRACE_ID can appear anywhere in the format string.

6.11 Mail

6.11.1 Introduction

It is often necessary to provide an application with the ability to send e-mail messages to an administrator or

user on the system, for example, when a user's account is updated, the system might send an e-mail

message to the account holder containing details of the transaction.

The Mail service allows an MCA Services based system to send e-mail messages to a specified user over

the Internet or Intranet. It uses Sun's javax.mail API to create and send e-mail messages and is

implemented using a stateless session EJB.

Note that the MCA mail service only sends e-mail.

6.11.2 Classes and Package Structure

The mail service is contained in the following package.
 com.bankframe.services.mail

It consists of the following files:
SendMailBean The Actual Mail Bean

SendMail Remote Interface to the Mail Bean

SendMailHome SendMailBean home interface

Client Application to test mail bean functionality

Here is a rundown of the methods in the SendMailBean that can be invoked by a MailBean client.

processDataPacket()
Pulls out all the details from the DataPacket and passes them to

sendMail()

sendMail(String mailFrom, Sends the mail via the javax.mail API. This method takes a

Enterprise Services ■ Mail

MCA Services Developer Guide Version 2004.5, Rev. A ■ 327

String[] addresses, String
subject, String message)

String message

sendMail(String mailFrom,
String[] addresses, String
subject, StringBuffer
message)

Sends the mail via the javax.mail API. This method takes a
StringBuffer message

sendMail(String mailFrom,
String[] addresses,
String[] ccAddresses,
String subject, String
text,
String content, String
connTimeout, String debug)

Sends the mail via the javax.mail API. This method takes a
String message. This method has optional parameters for CC’d
addresses, content type, connection timeout and enabling the
javax.mail API debug mode

sendMail(String mailFrom,
String[] addresses,
String[] ccAddresses,
String subject,
StringBuffer message,
String content, String
connTimeout, String debug)

Sends the mail via the javax.mail API. This method takes a
StringBuffer message. This method has optional parameters for
CC’d addresses, content type, connection timeout and enabling
the javax.mail API in debug mode

6.11.3 DataPacket Structure

In order for the processDataPacket() method in the mail service to work properly, the DataPacket

passed as an argument must conform to the following structure:

NAME Name of the DataPacket

REQUEST_ID Request ID of the mail bean

FROM String containing the sender of the mail

SUBJECT String containing mail subject

MESSAGE String containing mail message

ADDRESS_1-n 1- n number of addresses to send the mail to

NUMBER_OF_RECEIVE

RS Number of receivers for the mail

CONNECTION_TIMEOU

T

This is an optional parameter specifying the

connection timeout period for sending the email. E.g.,

15000 => 15 seconds

CONTENT This is an optional parameter specifying the content

type of the e-mail message. E.g., text/html

CC_ADDRESS_1-n 1- n number of addresses to CC the mail to. This is

an optional parameter
NUMBER_OF_CC_RECE

IVERS

Number of CC receivers for the mail. This is an

optional parameter

DEBUG This is an optional parameter specifying that the

javax.mail API operates in debug mode

Enterprise Services ■ Mail

328 ■ MCA Services Developer Guide Version 2004.5, Rev. A

The response DataPacket passed back to the client will be of the following form:

NAME SENT MAIL

TO String concatenated with all the addresses the mail was intended

for.
SUBJECT String containing mail subject

Also note that in addition to deploying the mail bean on the server you must provide a name for an SMTP

mail server using the property mail.smtpServer in the BankframeResource.properties file.

6.11.4 Using the Mail Service

In order to use the mail service, the client must communicate with the EHHTPCommsManager on the server

and pass to it a DataPacket matching the structure discussed previously.

The following client example shows how to do this:

import java.util.Vector;

import com.bankframe.bo.DataPacket;

import com.bankframe.ei.channel.client.HttpClient

public class MailClient {

public static void main(String [] args) {

DataPacket dp = new DataPacket("SEND MAIL");

dp.put("REQUEST_ID", "MC201");

dp.put("FROM", "Administrator@eontec.com");

dp.put("SUBJECT", "Test");

dp.put("MESSAGE", "Testing Mail Bean");

dp.put("ADDRESS_1", "User1@eontec.com");

dp.put("ADDRESS_2", "User2@eontec.com");

dp.put("ADDRESS_3", "User3@eontec.com");

dp.put("NUMBER_OF_RECEIVERS", "3");

dp.put("CC_ADDRESS_1", "User4@eontec.com");

dp.put("NUMBER_OF_CC_RECEIVERS", "1");

dp.put("CONNECTION_TIMEOUT", "10000");//10 seconds timeout

HttpClient client = new HttpClient();

Vector responses = client.send(dp);

}

Enterprise Services ■ Ping

MCA Services Developer Guide Version 2004.5, Rev. A ■ 329

}

This client will return a Vector of response DataPackets, each one matching the structure discussed in

the previous section.

6.12 Ping

6.12.1 Introduction

The Ping utility is used to confirm that an MCA Services installation is working and that the servlets on the

web server are communicating with the MCA installation correctly. This utility should be used when setting

up the environment. It is part of MCA and can be executed from a browser or from the command line.

When a request is sent to the Ping EJB, it will respond with a DataPacket that gives the time of the request

and a message indicating that the deployment environment is live.

6.12.2 Classes and Package Structure

The ping service is contained in the following package.
com.bankframe.services.ping

It consists of the following files:

PingBean The Actual Ping Bean.

Ping Remote Interface to the Ping Bean.

PingHome PingBean home interface.

Client Application to test ping bean functionality.

6.12.3 DataPacket Structure

The DataPacket passed to the server must be supplied the REQUEST_ID of the Ping bean so the server

can find it and route the DataPacket to it.

NAME Name of the DataPacket
REQUEST_ID Request ID of the Ping bean

The returned DataPacket will have the following fields.

NAME PING RESULT

RESULT String representing the result of the Ping

Enterprise Services ■ Ping

330 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.12.4 Using the Ping Service

6.12.4.1 Calling the Ping Service using a client

The following piece of client code will generate a DataPacket by supplying the REQUEST_ID and sending

it to the server via the EHTTPCommsManager for processing.

This client uses the URL http://host name:portnumber as an example http server.

Note also that the REQUEST_ID of the Ping bean is usually “MC999”, but verify this.

import java.util.Vector;

import com.bankframe.bo.DataPacket;

import com.bankframe.ei.comms.EHTTPCommsManager;

public class PingClient {

public static void main(String [] args) {

DataPacket dp = new DataPacket("TEST PING");

dp.put("REQUEST_ID", "MC999");

EHTTPCommsManager commsManager = new EHTTPCommsManager("",

"http://hostname:portnumber/BankframeServlet");

Vector response = commsManager.sendDataPacket(dp);

DataPacket data = (DataPacket) response.elementAt(0);

System.out.println(data.getString(“Result”));

}

}

This client will result in the following being printed to the console:
Tue Nov 28 16:57:47 GMT 2000 EJB Server is t3://hostname:portnumber is

alive

6.12.4.2 Calling the Ping Service using a browser

The Ping Service can also be called from a browser using the MonitorServlet to do this type in the

following url:
http://hostname:portnumber/MonitorServlet

Using the GUI you can input the REQUEST_ID of the Ping Service usually ‘MC999’. The result will be

displayed in a table as illustrated in the screen shot below.

Enterprise Services ■ LDAP Connectivity

MCA Services Developer Guide Version 2004.5, Rev. A ■ 331

Refer to the Administrating MCA documentation for more information on how to use the MonitorServlet.

6.13 LDAP Connectivity

6.13.1 Introduction

This document describes MCA’s support for the LDAP directory protocol.

6.13.1.1 What is LDAP?

LDAP stands for: Lightweight Directory Access Protocol. LDAP defines a standard protocol for accessing

information stored in directory services. Typically directory services are used for storing information such as

User information, names & addresses, phone numbers, e-mail addresses and user ID’s, etc. Information in

LDAP repositories is stored in a hierarchical structure. Each LDAP repository has a schema, which defines

the types of objects that can be stored in the repository.

6.13.1.2 MCA Services & LDAP

In order to ease integration with customers’ existing IT infrastructure MCA needs to be able to access

information stored in LDAP repositories. MCA provides this connectivity through the

Enterprise Services ■ LDAP Connectivity

332 ■ MCA Services Developer Guide Version 2004.5, Rev. A

com.bankframe.ei.ldap package. This package provides facilities for accessing LDAP repositories

directly and for creating Bean Managed Entity beans that persist data to/from LDAP repositories.

6.13.2 com.bankframe.ei.ldap

The com.bankframe.ei.ldap package provides MCA’s LDAP connectivity. The package contains the

following classes/interfaces:

LDAPServerContext Represents a connection to an LDAP server.

LDAPServerContextFact

ory

Creates and manages connections to the LDAP server.

LDAPEntityBean Abstract class used for implementing BMP Entity beans that

map attributes to data stored in the LDAP server.

LDAPPrimaryKey Interface used to encapsulate the data that comprises the

primary key of an LDAPEntityBean instance.

LDAPEntityBeanPK Standard implementation of LDAPPrimaryKey

6.13.2.1 com.bankframe.ei.ldap.LDAPServerContext

This class provides the connectivity to an LDAP server. Connecting to the server requires several

configuration parameters; these are defined as the following constant fields in this class:
PROVIDER_URL URL of the ldap server

INITIAL_CONTEXT_FACT

ORY

The JNDI factory class to use to make the connection.

SECURITY_AUTHENTICAT

ION

The authentication method.

SECURITY_PRINCIPAL The user to authenticate.

SECURITY_CREDENTIALS The password to use for authentication.

SECURITY_PROTOCOL Specifies whether to connect using Secure Sockets Layer.

BASE_DN Specifies the base distinguished name of this context.

RDN_ATTRIBUTE Specifies the name of the attribute that is used to form the dn.

DEFAULT_SEARCH_FILTE

R

Specifies a default search filter to use for searches.

CONTEXT_ALIAS Specifies the name of the alias that defines the above settings.

Enterprise Services ■ LDAP Connectivity

MCA Services Developer Guide Version 2004.5, Rev. A ■ 333

These parameters are passed to the constructor as key-value pairs in a Hashtable. All the parameters

may not be required, for example the LDAP server may not require authentication, so the security

parameters will not need to be specified.

Note: When an LDAPServerContext instance is created the physical connection to the server is not

immediately established. It will only be created when it is required, i.e. when one of its methods is invoked.

The physical connection will be closed when the context is destroyed, it can also be closed explicitly by

calling the close() method. The open() method can be used to explicitly establish the physical

connection. See the JavaDocs for this class for more details of the methods it implements.

6.13.2.2 com.bankframe.ei.ldap.LDAPServerContextFactory

This class simplifies the task of creating correctly configured LDAPServerContext instances. It maps an

alias to sets of LDAPServerContext configuration properties, which are stored in the

BankFrameResource.properties configuration file. Instead of explicitly specifying all the configuration

properties in order to create an LDAPServerContext instance, you can call the

LDAPServerContextFactory.getServerContext(String aliasName) method, which will retrieve

the settings from BankFrameResource.properties and create an LDAPServerContext with those

settings. Here’s an example set of configuration settings:
samplecontext.java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

samplecontext.java.naming.security.authentication=simple

samplecontext.java.naming.security.principal=someUserId

samplecontext.java.naming.security.credentials=somePassword

samplecontext.java.naming.security.protocol=SSL

samplecontext.ldap.baseDn=ou=someOrganizationalUnit,o=someOrganization

samplecontext.ldap.rdnAttribute=cn

samplecontext.ldap.defaultSearchFilter=cn={0}

See the section on LDAPServerContext for an explanation of these values. To retrieve these values and

instantiate an LDAPServerContext with the above values you would do the following:

LDAPServerContext ctx =

LDAPServerContextFactory.getServerContext(“samplecontext”);

When you are finished using the LDAPServerContext instance you should release it as follows:

LDAPServerContextFactory.releaseServerContext(ctx);

LDAPServerContextFactory caches LDAPServerContexts. The first time a request is made for a

specific LDAPServerContext, the context is instantiated, and a reference to the instance is cached. If a

second request is made for the same context, then the reference to the existing context is passed back,

rather than creating another instance of the same context.

Enterprise Services ■ LDAP Connectivity

334 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.13.2.3 com.bankframe.ei.ldap.LDAPEntityBean

While it is possible to access data in LDAP repositories directly using the only the methods in

LDAPServerContext, it is recommended that a Bean Managed Entity Bean is developed to wrap any data

that needs to be accessed in the LDAP repository. This has a number of benefits:

- Scalability, since the Data Access is being managed via an EJB, the application server can

manage and share bean instances

- Reusability, The bean can be changed to Container managed or to some other Bean Managed

implementation, without affecting the business logic that uses the bean.

- Consistency, The bean will be consistent with the MCA Architecture where data is represented as

Entity Beans.

The LDAPEntityBean class simplifies the process of creating an LDAP based BMP Entity Bean. It

takes care of writing and reading data to/from the LDAP repository. It provides standard

implementations of all the methods required by the EJB specification including standard

ejbFindByPrimaryKey() and ejbFindAll() implementations. LDAPEntityBean extends the

com.bankframe.ejb.EntityBean class, therefore LDAPEntityBean subclasses can be treated

the same as any other MCA Entity Bean.

See the section below for an example of how to create an LDAPEntityBean based EJB

6.13.2.4 com.bankframe.ei.ldap.LDAPPrimaryKey

The LDAPPrimaryKey interface defines the methods that LDAPEntityBean expects Primary key

classes to implement:
// Get the value of the relative distinguished name attribute

public String getRdnAttributeValue() ;

// set the value of the relative distinguished name attribute

public void setRdnAttributeValue(String value) ;

// required by the EJB 1.1 specification

public boolean equals(java.lang.Object o) ;

// required by the EJB 1.1 specification

public int hashCode() ;

In LDAP terminology the relative distinguished name is the name that uniquely identifies an object. It is

always of the form: attribute-name=attribute-value, where attribute-name is the name of one

of the attributes in the object. The rdn is equivalent to a primary key.

6.13.2.5 com.bankframe.ei.ldap.LDAPEntityBeanPK

LDAPEntityBeanPK is a standard implementation of the LDAPPrimaryKey class. It can be used as the

primary key class for most LDAP based entity beans. See the section below for an example of how

LDAPEntityBeanPK is used

Enterprise Services ■ LDAP Connectivity

MCA Services Developer Guide Version 2004.5, Rev. A ■ 335

6.13.3 Sample Bean Managed LDAP based Entity Bean

The best way to illustrate how to use MCA’s LDAP functionality is through an example. This example below

defines an Entity Bean that wraps the standard LDAP Person objectclass: The Person objectclass has the

following attributes:

Attributes cn

sn

Optional Attributes userPassword

telephoneNumber

seeAlso

description

6.13.3.1 Bean Implementation

Here’s a bean implementation to wrap the above attributes:
import java.rmi.RemoteException;

import javax.ejb.CreateException;

import com.bankframe.ei.ldap.LDAPEntityBean;

public class LDAPPersonBean extends LDAPEntityBean {

private final String ATTRIBUTE_COMMON_NAME="cn";

private final String ATTRIBUTE_SURNAME="sn";

private final String ATTRIBUTE_PASSWORD="userPassword";

private final String ATTRIBUTE_PHONE_NUMBER="telephoneNumber";

private final String ATTRIBUTE_SEE_ALSO="seeAlso";

private final String ATTRIBUTE_DESCRIPTION="description";

private final String OBJECT_CLASS="person";

// ejb creation method

public LDAPEntityBeanPK ejbCreate(String commonName,String surName,String

password,String phoneNumber,String seeAlso,String description) throws

CreateException {

Enterprise Services ■ LDAP Connectivity

336 ■ MCA Services Developer Guide Version 2004.5, Rev. A

this.putObjectClass(this.OBJECT_CLASS); // set the object class of this

object

// set the attributes of this object

this.put(this.ATTRIBUTE_COMMON_NAME,commonName);

this.put(this.ATTRIBUTE_SURNAME,surName);

this.put(this.ATTRIBUTE_PASSWORD,password);

this.put(this.ATTRIBUTE_PHONE_NUMBER,phoneNumber);

this.put(this.ATTRIBUTE_SEE_ALSO,seeAlso);

this.put(this.ATTRIBUTE_DESCRIPTION,description);

// initialize

return super.ejbCreate();

}

// required method

public void ejbPostCreate(String commonName,String surName,String

password,String phoneNumber,String seeAlso,String description) {

}

// return the name of the attribute that is used as to form the rdn

public String getRdnAttributeName() {

return this.ATTRIBUTE_COMMON_NAME;

}

// EntityBean attribute getter

public String getCommonName() {

return this.get(this.ATTRIBUTE_COMMON_NAME);

}

public String getSurName() {

return this.get(this.ATTRIBUTE_SURNAME);

}

public String getPassword() {

return this.get(this.ATTRIBUTE_PASSWORD);

}

public String getPhoneNumber() {

Enterprise Services ■ LDAP Connectivity

MCA Services Developer Guide Version 2004.5, Rev. A ■ 337

return this.get(this.ATTRIBUTE_PHONE_NUMBER);

}

public String getSeeAlso() {

return this.get(this.ATTRIBUTE_SEE_ALSO);

}

public String getDescription() {

return this.get(this.ATTRIBUTE_DESCRIPTION);

}

public void setDescription(String description) {

this.put(this.ATTRIBUTE_DESCRIPTION,description);

}

}

6.13.3.2 Bean Implementation Explained

As can be seen from the example above the bean implementation only needs to do a few things to be able

to access the data stored in the LDAP repository:

6.13.3.2.1 Specify the ldap objectclass

This is done in the ejbCreate() method using the following method call:

this.putObjectClass(this.OBJECT_CLASS);

This tells LDAPEntityBean what the LDAP objectclass is, so that LDAPEntityBean can create the

correct type of object in the LDAP repository.

6.13.3.2.2 Specify the ldap attributes

This is also done in the ejbCreate() method by calling the LDAPEntityBean.put() method. The

put method takes two parameters, the name of the attribute and the value of the attribute. The value

can be any simple Java type such as String, Long, Double etc. For example the ‘common name’

attribute is set using the following method call:
this.put(this.ATTRIBUTE_COMMON_NAME,commonName);

6.13.3.2.3 Create the Primary Key instance

The EJB Specification requires that all Bean Managed Entity Beans’ ejbCreate() methods return an

instance of the Primary Key class. LDAPEntityBean provides a standard ldapCreate() method that

creates an initialized instance of LDAPEntityBeanPK.

Enterprise Services ■ LDAP Connectivity

338 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.13.3.2.4 Specify the Rdn Attribute Name

In order for LDAPEntityBean to be able to manage primary keys, it must know which attribute in the object

is used to form the relative distinguished name. In the case of the Person object, this is the ‘cn’ attribute.

This is done using the following code:
public String getRdnAttributeName() {

return this.ATTRIBUTE_COMMON_NAME;

}

6.13.3.2.5 Implementing getter methods

To provide read access to the Entity Bean’s attributes, ‘getter’ methods must be implemented, for example:
public String getDescription() {

return this.get(this.ATTRIBUTE_DESCRIPTION);

}

This method uses the LDAPEntityBean.get() method to retrieve the current value of the description

attribute.

6.13.3.2.6 Implementing setter methods

To enable the value of entity bean attributes to be changed, we must provide ‘setter’ methods, for example:
public void setDescription(String description) {

this.put(this.ATTRIBUTE_DESCRIPTION,description);

}

6.13.3.2.7 Implementing ejbFindByPrimaryKey() and ejbFindAll()

All entity beans must provide an ejbFindByPrimaryKey() method. The ejbFindByPrimaryKey()

method in the above example wraps the LDAPEntityBean.ldapFindByPrimaryKey() method casting

the returned primary key instance to the correct type. Entity beans can optionally provide custom finder

methods, one such common method is an ejbFindAll() method. LDAPEntityBean provides a method:

ldapFindAll() that retrieves all entries in the current ldap context. The ejbFindAll() method in the

above example uses ldapFindAll() passing it the primary key class to use to uniquely identify each

entry.

6.13.3.2.8 Conclusion

Writing an LDAP based Entity Bean is straightforward if you use the LDAPEntityBean class.

LDAPEntityBean takes care of all the EJB implementation code. It provides fully functional

implementations of the ejbLoad(), ejbStore(), ejbActivate(), ejbPassivate(),

ejbRemove(), ejbFindByPrimaryKey(),ejbFindAll(), and toDataPacket() methods. Classes

Enterprise Services ■ LDAP Connectivity

MCA Services Developer Guide Version 2004.5, Rev. A ■ 339

that extend LDAPEntityBean only need to provide ejbCreate(), ejbPostCreate(), and attribute

access methods and finder() methods.

6.13.3.3 The Remote Interface

The Remote Interface for an LDAP based Entity bean is defined in exactly the same manner as any other

Siebel Entity Bean. The interface should extend the com.bankframe.EEntityRemote interface and

define the methods used to access the entity bean’s attributes. The Remote Interface for the example above

would be:
import java.rmi.RemoteException;

import com.bankframe.ejb.EEntityRemote;

public interface LDAPPerson extends EEntityRemote {

public String getCommonName() throws RemoteException;

public String getSurName() throws RemoteException;

public String getPassword() throws RemoteException;

public String getPhoneNumber() throws RemoteException;

public String getSeeAlso() throws RemoteException;

public String getDescription() throws RemoteException;

}

6.13.3.4 The Home Interface

The home interface is also defined in the same manner as other Siebel Entity Beans:
import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.FinderException;

import javax.ejb.EJBHome;

import com.bankframe.ei.ldap.LDAPEntityBeanPK;

public interface LDAPPersonHome extends EJBHome {

public LDAPEntityBeanPK create(String commonName,String surName,String

password,String phoneNumber,String seeAlso,String description) throws

CreateException, RemoteException ;

Enterprise Services ■ LDAP Connectivity

340 ■ MCA Services Developer Guide Version 2004.5, Rev. A

public LDAPEntityBeanPK findByPrimaryKey() throws

FinderException,RemoteException;

public Enumeration findAll() throws FinderException,RemoteException;

}

6.13.3.5 The Deployment Descriptor

The deployment descriptor format differs from one application server to another. Consult your application

server documentation for details on how to create a deployment descriptor.

6.13.4 Advanced Topics

6.13.4.1 Using Custom Primary Keys

In some cases it may not be possible or desirable to use the

com.bankframe.ei.ldap.LDAPEntityBeanPK class as the primary key class for an LDAP Entity Bean.

In these cases a custom Primary Key class needs to be developed that implements the LDAPPrimaryKey

interface. To illustrate how to do this we will modify the example in the previous section to use a custom

primary key class called CustomPK.

Class Definition
import com.bankframe.ei.ldap.LDAPPrimaryKey;

public class CustomPK implements LDAPPrimaryKey {

public String commonName;

public CustomPK() {}

public CustomPK(String commonName) { this.commonName = commonName ;}

public String getRdnAttributeValue() { return this.commonName; }

public void setRdnAttributeValue(String value) { this.commonName =

value;}

public boolean equals(java.lang.Object o) {

if (o instanceof CustomPK) {

CustomPK otherKey = (CustomPK) o;

return ((this.commonName.equalsIgnoreCase(otherKey.commonName)));

} else {

return false;

}

Enterprise Services ■ LDAP Connectivity

MCA Services Developer Guide Version 2004.5, Rev. A ■ 341

}

public int hashCode() { return commonName.hashCode();}

}

6.13.4.2 Modifying the LDAPPerson example to use CustomPK

6.13.4.2.1 Change the ejbCreate() method

The ejbCreate() method must return an instance of the primary key class, i.e. CustomPK. We need to

change the LDAPPerson.ejbCreate() method as follows:

Public CustomPK ejbCreate(…parameters as before…) {

… configure objectclass and attributes as before…

super.ejbCreate();

return new CustomPK((String)this.get(this.ATTRIBUTE_COMMON_NAME));

}

The changes are as follows:

1. Change the return type of the ejbCreate() method to CustomPK

2. Call super.ejbCreate()(to initialize the bean) but do not return the primary key it creates

3. Create a CustomPK() instance, initializing it with the current value of the commonName attribute

6.13.4.2.2 Define type correct ejbFindByPrimaryKey()method

We need an ejbFindByPrimaryKey() method that has a return type of CustomPK. LDAPEntityBean

has a protected method LDAPPrimaryKey (LDAPPrimarykey primaryKey). This method can be

overridden to implement a type correct ejbFindByPrimaryKey() as follows:

CustomPK ejbFindByPrimaryKey(CustomPK primaryKey) throws FinderException {

return (CustomPK)super.ldapFindByPrimaryKey(primaryKey);

}

6.13.4.2.3 Define type correct ejbFindAll() method

We need an ejbFindAll() method that creates instances of the CustomPK. LDAPEntityBean has a

protected method: Enumeration ejbFindAll(Class primaryKeyClass). This method can be used

to create an enumeration of instances of the specified primary key class as follows:
Enumeration ejbFindAll() throws FinderException {

return super.ejbFindAll(CustomPK.class);

}

Enterprise Services ■ LDAP Connectivity

342 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.13.4.2.4 Modify the LDAPPersonHome.findByPrimaryKey() method

The primary key type for the LDAPPersonHome.findByPrimaryKey() method needs to be changed to

CustomPK:

CustomPK findByPrimaryKey(CustomPK primaryKey) throws

FinderException,RemoteException;

6.13.4.2.5 Modify the Deployment Descriptor

The primaryKeyClassName field in the deployment descriptor should be changed to: CustomPK

6.13.4.3 Handling multiple values

Some LDAP attributes can have multiple values. LDAPEntityBean provides two methods for accessing

these kinds of attributes: LDAPEntityBean.getMultiple() and LDAPEntityBean.putMultiple().

getMultiple() retrieves the values of the specified attribute and returns them as an Enumeration.

putMultiple() takes the name of the attribute, and an Enumeration of values to store.

6.13.4.4 Implementing custom finder methods

In some cases the findByPrimaryKey() and findAll() methods will not be sufficient. Custom EJB

finder methods can be implemented as follows:

6.13.4.4.1 Define the method in the implementation bean

We will build on the example above and define a custom finder called ejbFindBySurName():

Enumeration ejbFindBySurname(String surname) throws FinderException {

try {

LDAPServerContext ctx = this.getServerContext();

String[] filterArgs = new String[1];

FilterArgs[0] = surname;

NamingEnumeration enum = ctx.search(“sn={0}”,filterArgs);

Vector v = new Vector();

While (enum.hasMore()) {

SearchResult res = (SearchResult)enum.next();

String surname =

(String)res.getAttributes().get(this.ATTRIBUTE_SURNAME).get();

v.addElement(new CustomPK(surname));

}

Enterprise Services ■ Data Validation

MCA Services Developer Guide Version 2004.5, Rev. A ■ 343

this.releaseServerContext(ctx);

return v.elements();

} catch (Exception ex) {

throw new FinderException(ex.toString());

}

}

LDAPEntityBean contains a protected method getServerContext(), which returns a reference to the

current LDAP connection. The LDAPServerContext.search() method is then used to find all entries

with the specified surname. The search() method returns an Enumeration, which is iterated through,

creating Primary key instances for each result. Finally an Enumeration of these primary key instances is

returned.

6.13.4.4.2 Add the corresponding method to the LDAPPersonHome interface

The second and final step is to add the corresponding finder method in the home interface:

Enumeration findBySurname(String surname) throws

FinderException,RemoteException;

6.14 Data Validation

6.14.1 Introduction

During the execution of Financial Components, certain data types will need to be formatted, validated, or

converted to another data type. The functionality to do this is provided within a number of classes in MCA

Services.

6.14.2 Classes and Package Structure

The validation and data conversion classes are implemented in the package

com.bankframe.validation - this package contains the following classes:

com.bankframe.validation.ValidationException

com.bankframe.validation.DataTypeValidator

com.bankframe.validation.DataTypeConvertor

com.bankframe.validation.DateValidator

com.bankframe.validation.DateConvertor

Enterprise Services ■ Data Validation

344 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.14.2.1 com.bankframe.validation.ValidationException

This exception is thrown whenever a validation error occurs. This class replaces the

com.bankframe.ejb.ValidationException class. This class extends the

com.bankframe.EonException class. This class has the following public methods:

ValidationException(int

errorNumber)

Create a validation exception identified by the

specified errorNumber

ValidationException(int

errorNumber,String[] params

Create a validation exception identified by the

specified errorNumber and with the arguments

specified by the params[] array

ValidationException(int

errorNumber,Locale locale)

Create a validation exception identified by the

specified errorNumber, using the specified

Locale to localise the error message

ValidationException(int

errorNumber,String[]

params,Locale locale)

Create a validation exception identified by the

specified errorNumber and with the arguments

specified by the params[] array, using the

specified Locale to localize the error message

DataPacket toDataPacket() Convert the exception to a DataPacket

6.14.2.2 com.bankframe.DataTypeValidator

This class contains useful methods that can be used to validate various data-types. This class contains the

following public static methods:

boolean isDigitsOnly(String value) This method returns true if the specified

String contains only digits.

isExactLength(String value,int

length)

This method returns true if the specified

String is exactly the specified length.

isLengthLessThanOrEqual(String

value, int maxLength)

This method returns true if the specified

String is less than or equal to the specified

length.

boolean

isLetterOrDigitsOnly(String value)

This method returns true if the specified

String contains only letters or digits

boolean isLettersOnly(String

value)

This method returns true if the specified

String contains only letters.

boolean isNullOrEmpty(Object

value)

This method returns true if the specified value

is null, or empty, or contains the value: ‘null’

Enterprise Services ■ Data Validation

MCA Services Developer Guide Version 2004.5, Rev. A ■ 345

6.14.2.3 com.bankframe.DataTypeConvertor

This class contains useful methods that can be used for converting data from one type to another. This class

contains the following public static methods:

Boolean getBoolean(String value)

throws ValidationException

This method converts a String value to a

Boolean value. It throws a

ValidationException if the String cannot be

converted to a Boolean value

Double getDouble(String value)

throws ValidationException

This method converts a String value to a

Double value. It throws a

ValidationException if the String cannot be

converted to a Double value

Float getFloat(String value)

throws ValidationException

This method converts a String value to a Float

value. It throws a ValidationException if the

String cannot be converted to a Float value

Integer getInteger(String value)

throws ValidationException

This method converts a String value to an

Integer value. It throws a

ValidationException if the String cannot be

converted to an Integer value

String getString(Object value)

throws ValidationException

This method converts an Object value to a

String value. It throws a

ValidationException if the Object cannot be

converted to a String value

String padString(String

value,char padChar,int

length,boolean padRight) throws

ValidationException

This method returns a String padded with the

specified amount of padding characters. The

String can be padded to the left or to the right.

This method throws a ValidationException if

the value is null or too long to be padded

Double round(Double value,int

decimalPlaces)

This method rounds up the specified value to the

specified number of decimal places

Double round(Double value,int

decimalPlaces,int roundMethod)

This method rounds the specified value to the

specified number of decimal place using the

specified rounding method. See the Java API

documentation of java.lang.BigDecimal for

information on rounding methods.

6.14.2.4 com.bankframe.validation.DateValidator

This class contains useful methods for validating dates, times and timestamps. This class contains the

following public static methods:

Enterprise Services ■ Data Validation

346 ■ MCA Services Developer Guide Version 2004.5, Rev. A

int compare(Date dateOrTime1,

Date dateOrTime2) throws

ValidationException

This method compares two Date objects it returns

an int value, DateValidator.EQUALS if the

argument is a Date equal to this Date;

DateValidator.AFTER if the argument is a

Date after this Date; DateValidator.BEFORE

if the argument is a Date before this Date. It

throws a ValidationException if the date/time

inputs are null or empty.
int compare(Date date1, Date

date2) throws

ValidationException

This method compares two Date objects ignoring

the hours minutes and seconds portion of the

Date object. It returns an int value,

DateValidator.EQUALS if the argument is a

Date equal to this Date;

DateValidator.AFTER if the argument is a

Date after this Date; DateValidator.BEFORE

if the argument is a Date before this Date. It

throws a ValidationException if the date/time

inputs are null or empty.
int compare(Time time1, Time

time2) throws

ValidationException

This method compares two Time objects ignoring

the day month and year portion of the Time

object. It returns an int value,

DateValidator.EQUALS if the argument is a

Time equal to this Time;

DateValidator.AFTER if the argument is a

Time after this Time; DateValidator.BEFORE

if the argument is a Time before this Time. It

throws a ValidationException if the date/time

inputs are null or empty.

boolean isValid(String pattern,

String dateOrTime) throws

ValidationException

This method compares a date/time string with a

SimpleDateFormat pattern to ensure that it is

valid. It throws a ValidationException if the

pattern or the date/time inputs are null or empty.

6.14.2.5 com.bankframe.validation.DateConvertor

This class contains methods that can be used to convert Strings to Date, Time or Timestamp objects and

vice versa. This class contains the following public static methods:

Date getDate(String pattern,

String date) throws

This method uses the SimpleDateFormat class

to convert a String to a Date Object. It throws a

Enterprise Services ■ Data Validation

MCA Services Developer Guide Version 2004.5, Rev. A ■ 347

ValidationException ValidationException if the pattern or the date

inputs are null or empty and if the date is invalid.

Time getTime(String pattern,

String time) throws

ValidationException

This method uses the SimpleDateFormat class

to convert a String to a Date Object and then

gets a Time object from the Date. It throws a

ValidationException if the pattern or the time

inputs are null/empty or if the time is invalid.

Timestamp getTimestamp (String

pattern, String timestamp)

throws ValidationException

This method uses the SimpleDateFormat class

to convert a String to a Date Object and then

gets a Timestamp object from the Date. It throws

a ValidationException if the pattern or the

timestamp inputs are null/empty or if the time is

invalid.

String getString(String pattern,

Date dateOrTime) throws

ValidationException

This method uses a SimpleDateFormat pattern

to convert a Date object into a String. It throws

a ValidationException if the pattern or the

date/time inputs are null or empty.

6.14.3 Examples

6.14.3.1 DataTypeValidator Example

Below is some sample code that illustrates how to use the DataTypeValidator class:

public class TestDataTypeValidator {

public static void main(String[] args) {

String value1 = "345123";

String value2 = "Hello World";

boolean result = DataTypeValidator.isDigitsOnly(value1);

// result will be true

result = DataTypeValidator.isDigitsOnly(value2);

// result will be false

result = DataTypeValidator.isExactLength(value1,6);

// result will be true

result = DataTypeValidator.isExactLength(value1,7);

// result will be false

result = DataTypeValidator.isLengthLessThanOrEqual(value1,7);

Enterprise Services ■ Data Validation

348 ■ MCA Services Developer Guide Version 2004.5, Rev. A

// result will be true

result = DataTypeValidator.isLengthLessThanOrEqual(value1,5);

// result will be false

String nullReference = null;

String emptyString = "";

String nullString = "null";

result = DataTypeValidator.isNullOrEmpty(value1);

// result will be false

result = DataTypeValidator.isNullOrEmpty(nullReference);

// result will be true

result = DataTypeValidator.isNullOrEmpty(emptyString);

// result will be true

result = DataTypeValidator.isNullOrEmpty(nullString);

// result will be true

}

}

6.14.3.2 DataTypeConvertor Example

Below is some sample code that illustrates how to use the DataTypeConvertor class:

public class TestDataTypeConvertor {

public static void main(String[] args) {

try {

Boolean booleanValue = DataTypeConvertor.getBoolean("True");

// booleanValue will be true

booleanValue = DataTypeConvertor.getBoolean("FALSE");

// booleanValue will be false (Note case of String is unimportant)

booleanValue = DataTypeConvertor.getBoolean("yes");

// booleanValue will be true, (getBoolean() treats 'yes' as true and

'no' as false)

booleanValue = DataTypeConvertor.getBoolean("No");

Enterprise Services ■ Data Validation

MCA Services Developer Guide Version 2004.5, Rev. A ■ 349

// booleanValue will be false, (getBoolean() treats 'yes' as true

and 'no' as false)

Double doubleValue = DataTypeConvertor.getDouble("2.3123");

// double value will be 2.3123

Integer integerValue = DataTypeConvertor.getInteger("1000");

// integerValue will be 1000

String stringValue = DataTypeConvertor.getString(integerValue);

// stringValue will be '1000'

String paddedString =

DataTypeConvertor.padString(stringValue,'0',8,false);

// paddedString will be '00001000'

Double roundedValue = DataTypeConvertor.round(new

Double(2.0/3.3),3);

// roundedValue will be 0.607

roundedValue = DataTypeConvertor.round(new

Double(2.0/3.3),3,DataTypeConvertor.ROUND_DOWN);

// roundedValue will be 0.606

} catch (ValidationException vex) {

vex.printStackTrace();

}

}

}

6.14.3.3 DateValidator Example
public class TestDateValidator {

public static void main(String[] args) {

try {

Date date1 = DateConvertor.getDate("dd/MM/yyyy HH:mm:ss",

"26/03/2001 14:00:51");

//this creates the following date object: Mon Mar 26 14:00:51 GMT

2001

Date date2 = DateConvertor.getDate("dd/MM/yyyy", "26/02/2001");

Enterprise Services ■ Data Validation

350 ■ MCA Services Developer Guide Version 2004.5, Rev. A

//this creates the following date object: Mon Feb 26 00:00:00 GMT

2001;

Date date3 = DateConvertor.getDate("dd/MM/yyyy hh:mm:ss",

"26/03/2001 12:05:00");

//this creates the following date object: Mon Mar 26 00:05:00 GMT

2001;

Date date4 = DateConvertor.getDate("dd/MM/yyyy HH:mm:ss",

"26/04/2001 16:30:05");

//this creates the following date object: Thu Apr 26 16:30:05 GMT

2001;

Time time1 = DateConvertor.getTime("HH:mm:ss", "13:56:01");

//this creates the following date object: 13:56:01;

Time time2 = DateConvertor.getTime("HH:mm:ss", "11:20:01");

//this creates the following date object: 11:20:01;

Time time3 = DateConvertor.getTime("HH:mm:ss", "13:56:01");

//this creates the following date object: 13:56:01;

Time time4 = DateConvertor.getTime("HH:mm:ss", "22:30:05");

//this creates the following date object: 22:30:05;

int result = DateValidator.compare(date1, date2);

// result will be DateValidator.AFTER

result = DateValidator.compare(date1, date3);

// result will be DateValidator.AFTER dates not equal because of

time

result = DateValidator.compare(date1, date4);

// result will be DateValidator.BEFORE

result = DateValidator.compareDateOnly(date1, date2);

// result will be DateValidator.AFTER

result = DateValidator.compareDateOnly(date1, date3);

// result will be DateValidator.EQUALS as without time element dates

are equal

result = DateValidator.compareDateOnly(date1, date4);

// result will be DateValidator.BEFORE

Enterprise Services ■ Data Validation

MCA Services Developer Guide Version 2004.5, Rev. A ■ 351

result = DateValidator.compareTimeOnly(time1, time2);

// result will be DateValidator.AFTER

result = DateValidator.compareTimeOnly(time1, time3);

// result will be DateValidator.EQUALS

result = DateValidator.compareTimeOnly(time1, time4);

// result will be DateValidator.BEFORE

}

catch (ValidationException vex) {

System.out.println(vex);

}

String date = "26/03/2001";

String time = "22:25:23";

String timestamp = "20/06/2001 22:25:23";

String pattern1 = "dd/MM/yyyy";

String pattern2 = "dd/MMM/yyyy";

String pattern3 = "hh/mm/ss";

String pattern4 = "HH/mm/ss";

String pattern5 = "dd/MM/yyyy hh/mm/ss ";

try {

boolean reponse = DateValidator.isValid(pattern1, date);

// result will be true

reponse = DateValidator.isValid(pattern2, date);

// result will be false

reponse = DateValidator.isValid(pattern3, time);

// result will be false

reponse = DateValidator.isValid(pattern4, time);

// result will be true

reponse = DateValidator.isValid(pattern5, timestamp);

// result will be true

reponse = DateValidator.isValid(pattern1, timestamp);

Enterprise Services ■ Data Validation

352 ■ MCA Services Developer Guide Version 2004.5, Rev. A

// result will be false

}

catch (ValidationException vex) {

System.out.println(vex);

}

}

}

6.14.3.4 DateConvertor Example
public class TestDateConvertor {

public static void main(String[] args) {

String date1 = "23/03/2001";

String time1 = "22:25:23";

String timestamp1 = "20/06/2001 22:25:23";

String pattern1 = "dd/MM/yyyy";

String pattern2 = "HH:mm:ss";

String pattern3 = "dd/MM/yyyy HH:mm:ss";

try {

Date result = DateConvertor.getDate(pattern1, date1);

// result will be Fri Mar 23 00:00:00 GMT 2001

result = DateConvertor.getTime(pattern2, time1);

// result will be 22:25:23

result = DateConvertor.getTimestamp(pattern3, timestamp1);

// result will be 20-06-2001 22:25:23.0

}

catch (ValidationException vex) {

System.out.println(vex);

}

String pattern4 = "dd/MM/yyyy";

String pattern5 = "hh:mm:ss";

String pattern6 = "dd/MM/yyyy hh:mm:ss ";

try {

Date date2 = DateConvertor.getDate("dd/MM/yyyy", "23/03/2001");

//creates the following date object Fri Mar 23 00:00:00 GMT 2001

Time time2 = DateConvertor.getTime("HH:mm:ss", "22:25:23");

//creates the following time object 22:25:23

Timestamp timestamp2 = DateConvertor.getTimestamp("dd/MM/yyyy HH:mm:ss",

"26/04/2001 16:30:05");

//creates the following timestamp object 20-06-2001 22:25:23.0";

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 353

String response = DateConvertor.getString(pattern4, date2);

// result will be 23/03/2001

response = DateConvertor.getString(pattern5, time2);

// result will be 10:25:23

response = DateConvertor.getString (pattern6, timestamp2);

// result will be 20/06/2001 22:25:23

}

catch (ValidationException vex2) {

System.out.println(vex2);

}

}

}

6.15 Peripherals Support

6.15.1 Introduction

This document describes the framework of the peripheral device support built into MCA Services. This

support allows the user to use peripheral devices connected to the system. The architecture of the MCA

device support allows the addition of support for new types of peripherals if required.

6.15.1.1 Scope

This document is a development guide for using the MCA peripheral support. This includes using the

currently supported peripherals and writing support for new types of peripherals into MCA.

MCA currently has implementations for three types of peripheral devices;

• The MagTek MiniMicr cheque reader.

• The MagTek IntelliPIN swipe-card reader.

• The Epson TMU375 slip printer.

These implementations allow the user to control these devices at a basic level. They do not contain any

business logic such as calculating cheque amount totals or swipe card amounts. The device

implementations allow the user access to the raw information processed by the devices.

6.15.1.1.1 MagTek MiniMicr cheque reader

The MCA implementation for this peripheral allows the developer to:

• setup the connection to the peripheral

• prompt the user to swipe a cheque

• read the raw cheque details. The details are read from the foot of the cheque by the MiniMicr

peripheral and MCA returns the raw data to the user for further processing.

Enterprise Services ■ Peripherals Support

354 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.15.1.1.2 MagTek IntelliPIN swipe-card reader

The MCA implementation for this peripheral implements a basic subset of the MagTek IntelliPIN Pad

functionality. This subset allows the developer to:

• setup the device in interactive mode (PC controlled) with a Master encryption key (used to encrypt

and decrypt pin data passed to the PC from the physical device.)

• prompt for a card swipe and read the card track details from the physical device.

• decrypt the pin data returned by the physical device when a user enters a pin number.

• Display string messages and modify the default messages displayed on the physical MagTek

IntelliPIN device LCD display.

It is up to the developer to process the card track details and pin number information and validate the

details.

6.15.1.1.3 Epson TM-U375 slip printer

The MCA implementation for this peripheral allows the user to

• Print text to the printer

• Perform basic printing operations such as line-feed and carriage-return. MCA does not have

business logic for creating receipt information for printing. It is up to the developer to write the

business logic to create specific types of receipts which are then passed to MCA for printing on the

peripheral.

6.15.1.1.4 Adding new types of peripherals to MCA Services

New types of peripherals can be supported by MCA by extending the classes in MCA. This involves coding

and subclassing of the appropriate classes and is not a plug-in mechanism.

Currently MCA has a general Serial-Port implementation which can be subclassed for any peripheral

connected to the serial port (other types of connections will be supported in the future.)

The serial-port support in MCA encapsulates the Java Communications Extension API.

6.15.2 MCA Device Base Classes

MCA has a set of base classes for supporting peripherals. These classes can be subclassed to support new

types of peripherals. Currently MCA has base classes for supporting peripherals connected to the serial-

port. Support for any peripheral device connected to the serial-port can be added to MCA by subclassing

these classes. General base classes for peripherals connected to the system by other means will be added

in the future.

All the base classes for device support in MCA are contained in the package

com.bankframe.services.devices. All implemented classes for specific device types are contained as

sub-packages of this package.

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 355

6.15.2.1 MCADevice base interface

Every type of device object in the MCA framework must implement the

com.bankframe.services.devices.MCADevice interface. This defines the basic set of commands

that an MCA device must implement.

6.15.2.2 MCASerialPort base class

The basic class for serial port communication is the abstract class

com.bankframe.services.devices.MCASerialPort. This class implements the

com.bankframe.services.devices.MCADevice interface and manages the connection to,

communication with and initialization of a serial port. This class encapsulates the Java Communications

Extension API.

Classes subclassing this base class can transmit and receive information on the serial port.

6.15.2.2.1 MCASerialPort.InputReaderThread class

The MCASerialPort class implements a thread

com.bankframe.services.devices.MCASerialPort.InputReaderThread

to asynchronously detect serial port events. MCASerialPort.InputReaderThread implements the

interface javax.comm.SerialPortEventListener in the Java Communications Extension API.

Therefore when an event occurs on the serial port the method

InputReaderThread.serialEvent(javax.comm.SerialPortEvent event) is called by the Java

Comm API.

6.15.2.2.2 MCASerialPort.handleEvent(…)

The MCASerialPort.InputReaderThread class always calls the method

 protected void handleEvent(java.util.EventObject theEvent) which is defined in

com.bankframe.services.devices.MCASerialPort. This method is over-ridden to customize the

handling of serial-port device events. This method processes data from the physical device asynchronously

because it is called by MCASerialPort.InputReaderThread. The method

handleEvent(java.util.EventObject theEvent) calls the method dataAvailable(Object

data) to store the received data for retrieval by the user. The method waitforDataAvailable()

retrieves this data when called by the user.

If a class subclasses MCASerialPort then its implementation of

handleEvent(java.util.EventObject theEvent) parses and validates the data received and

stores the result using dataAvailable(Object data), thereby making more specific information

available for the user.

Any exceptions that occur in handleEvent(java.util.EventObject theEvent) should be stored as

com.bankframe.services.devices.DeviceException using dataAvailable(Object data).

This allows the user to retrieve any exceptions that might have occurred during parsing of the data from the

physical device.

Enterprise Services ■ Peripherals Support

356 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.15.2.2.3 MCASerialPort.waitforDataAvailable()

After a user has instantiated an MCA serial device object the user can query the serial device object for

available data. The method:

 public Object waitforDataAvailable(int timeOut) waits the specified timeout period for data

to be received by the serial device object from the peripheral device connected to the serial port.

6.15.2.2.4 MCASerialPort read() and write() and available()

com.bankframe.services.devices.MCASerialPort wraps the standard serial-port read(),

write() and available() methods for interacting directly with the serial port.

• read(byte[] bytes, int off, int len) and read() reads data from the serial port.

• write(byte[] bytes, int off, int len) and write(int theByte) write data from

the serial port.

• available() determines the number of bytes that can be read from the serial port without

blocking the program.

6.15.2.2.5 MCASerialPort.open() and MCASerialPort.setup()

After a user has instantiated an MCA serial device object the open() method is called to setup the device

for use by the user. In the case of MCA serial port devices this method always calls the method:
 abstract protected void setup()

If MCASerialPort is subclassed the method setup() is over-ridden to initialize the device as required by

the peripheral.

6.15.2.3 MCADeviceProperties class

The class com.bankframe.services.devices.MCADeviceProperties is a class that wraps a static

hashtable of all the properties for the MCA device classes being instantiated by the user. The properties for

the MCA device classes are contained in a single properties file BankframeDevices.properties which

must be on the classpath of the system. The MCADeviceProperties object when created allows a device

to access its properties during initialization. The MCADeviceProperties class contains a hashtable

(called serialPortValueData) of values which translate string values in the

BankframeDevices.properties file into javax.comm.SerialPort defined values for initializing the

serial port.
Note: If the properties file is modified while the program is running the changes will not be detected until the

program is restarted.

Basic serial port entries in the file BankframeDevices.properties are of the form:

COM1.MiniMicr.serialport.portname=COM1

COM1.MiniMicr.serialport.baud=9600

COM1.MiniMicr.serialport.databits=DATABITS_8

COM1.MiniMicr.serialport.stopbits=STOPBITS_1

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 357

COM1.MiniMicr.serialport.parity=PARITY_NONE

COM1.MiniMicr.serialport.flowcontrol=FLOWCONTROL_RTSCTS_OUT,FLOWCONTROL_RTSCT

S_IN

where “COM1.MiniMicr” is the name of the device specified in the constructor when the MCA device object

is created. The serialport entries are settings required for an MCASerialPort derived object. These

entries are used to initialize the serial port. serialport.portname is the name of the port that the device

is attached to on the PC/Unix machine.

On an Windows machine this is of the form:
serialport.portname=COM1

On a Unix machine this would be of the form:
serialport.portname=/dev/term/a

Each property value in the BankframeDevice.properties file is parsed as a comma-separated line.

Using the logical bitwise operator OR (|) the comma separated values are combined to produce the serial

port value required. I.e., the property serialport.flowcontrol shown above will result in the two serial

port defined values FLOWCONTROL_RTSCTS_OUT and FLOWCONTROL_RTSCTS_IN being combined using

the logical bitwise operator OR to produce the serial port flowcontrol type for the device COM1.MiniMicr.

The BankframeDevice.properties can contain specific settings for each instantiated device object e.g.

a MagTek MiniMicr object has the following specific settings:
COM1.MiniMicr.commtype=BAUD_9600,DATAPARITY_8N,CTS_DSR_IGNORE,STOPBITS_1,I

NTERCHAR_DELAY_NO

6.15.2.4 DeviceException class

All exceptions thrown back to a calling class by an MCA device object are of the type

com.bankframe.services.devices.DeviceException. This class inherits from the class

com.bankframe.EonException. This class allows localizable messages to be defined in the

BankframeMessages.properties file.

6.15.2.5 MCADeviceProtocol class

The class com.bankframe.services.devices.MCADeviceProtocol wraps the message protocol

creation for the device. All subclassed device objects should subclass

com.bankframe.services.devices.MCADeviceProtocol for generation of device-specific protocol

messages. Messages or commands which are transmitted to the physical device are created in the

subclassed MCADeviceProtocol class. MCADeviceProtocol contains a byte stream which can be

passed to the peripheral.

6.15.3 MCA device implementations

MCA currently has implementations for three types of peripheral devices:

• The MagTek Mini Micr cheque reader.

Enterprise Services ■ Peripherals Support

358 ■ MCA Services Developer Guide Version 2004.5, Rev. A

• The MagTek IntelliPIN swipe-card reader.

• The Epson TMU375 slip printer.

6.15.3.1 MagTek MiniMicr cheque reader device

The classes for this device implementation are in the package:
com.bankframe.services.devices.MTMiniMicr.

MTMiniMicr is a subclass of the base class

com.bankframe.services.devices.MCASerialPort.

The physical MagTek Mini Micr device is connected to the serial port. The class MTMiniMicr over-rides the

method handleEvent(…) and therefore asynchronously handles serial port events. All the MagTek Mini

Micr specific communication codes are defined in the

com.bankframe.services.devices.MTMiniMicr.MagTekMiniMicrDeviceCodes interface.

The class com.bankframe.services.devices.MTMiniMicr.MagTekMiniMicrDeviceProtocol

defines methods for creating MagTek Mini Micr specific serial commands to send to the physical device.

The class is a subclass of com.bankframe.services.devices.MCADeviceProtocol.

6.15.3.1.1 MTMiniMicr(String deviceName) Constructor

The MTMiniMicr(String deviceName) is used to instantiate a Mini Micr device object. The String

parameter is the unique device name for the device object. This string is used in the

BankframeDevices.properties file to define the serial communications settings for the device object.

The setup() method reads the settings for the device object from BankframeDevices.properties to

setup the device correctly.

6.15.3.1.2 MTMiniMicr.setup()

This method is called by the base class method MCASerialPort.open(…). This method does the

following:

• sets up the serial communications to the physical device.

• Configures the format of the cheque data that the physical Mini Micr device will send to the PC

when a cheque is swiped.

6.15.3.1.3 MTMiniMicr.setCommand(…) and requestCommand(…)

The two forms of the method MTMiniMicr.setCommand(…) creates a MagTek MiniMicr command-

message which is sent to the physical device by the MTMiniMicr object. This is used to set up various

settings in the physical Mini Micr device. The method MTMiniMicr.requestCommand(…) formats a

MagTek MiniMicr request-command which is sent to the physical device by the MTMiniMicr object. The

method requestCommand(…) is used to request information from the physical MiniMicr device. See

"Installation and Configuration of Hardware" section for a description of the commands.

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 359

6.15.3.2 Using the MiniMicr Device in a client application

See the class com.bankframe.services.devices.unittest.MiniMicrTest for a basic example of

a java client using the Mini Micr device classes. The MCA Example

com.bankframe.examples.devices.fe.ui demonstrates a full Swing front-end example using the

device classes.

The following code is a sample client class using a Mini Micr device object:
import com.bankframe.services.devices.*;

import com.bankframe.services.devices.MTMiniMicr.*;

public class myClientClass {

...

MagTekMiniMicr miniMicr;

public void run() {

try {

//The name passed to the device corresponds to the entries

//used in the BankframeDevices.properties file

//These names have to match for the device to be setup

//with the correct serial port setting and specific settings.

miniMicr = new MagTekMiniMicr("COM1.MiniMicr");

//Opens the port device specified in the

//BankframeDevices.properties file:-

miniMicr.open();

} catch (DeviceException ex) {

//exceptions thrown back from device are of type DeviceException

ex.printStackTrace();

}

System.out.println("Swipe check now...");

Enterprise Services ■ Peripherals Support

360 ■ MCA Services Developer Guide Version 2004.5, Rev. A

//Make the MiniMicr object wait for

//data received from the connected device

//(This call times-out after 10 seconds):-

String data = (String)miniMicr.waitforDataAvailable(10000);

if(data!= null && data.length() != 0) {

//

//Check it is data of the correct format, i.e.,

<ESC>CHEQUE_DATA<CR>

//

if(data.length() > 0 &&

data.charAt(0) == MagTekMiniMicrDeviceCodes.ESC) {

System.out.println("\nGot Check code:" + data.substring(1) +

"\n");

}

}

miniMicr.close();

miniMicr = null;

}//end of run()

}//end of myClientClass

NOTES:

1. The MagTekMiniMicr class handles serial events itself including device replies containing the

cheque data. The java sample code shown waits for available cheque data by calling the method

waitforDataAvailable(...).

2. The method open() contains the standard setup procedure for the MiniMicr device. The setup

can be modified by editing the BankframeDevices.properties file before running the test

example.

3. The method waitforDataAvailable(int timeoutMillseconds) waits the specified time

for a message from the Mini Micr physical device. If the data received from the physical Mini Micr

is cheque data then the device classes will return this data when waitforDataAvailable(int

timeoutMillseconds) is called. The cheque data returned is the raw cheque data as

displayed at the foot of the cheque, it is not parsed into separate fields. The device classes do not

do any calculations on the cheque data, such as the cheque amount or account number details. It

is left to the client class using the Mini Micr device classes to parse the cheque data and calculate

the cheque amount or any other details.

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 361

4. When the Mini Micr is no longer required the connection is shut-down using close()

5. The classpath must include mca.jar. The Java Communications Extension API jar (comm.jar)

must also be included in the classpath. mca.jar is located in eontec/Common/lib/eontec/.

6. The standard serial port settings for the Mini Micr are: Baud=9600, data Bits = 8, stop

Bits=1, parity = none, flow control = none.

6.15.3.3 Epson TM-U375 Slip-printer device

The classes for this device implementation are in the package:

com.bankframe.services.devices.SlipPrinter.

The Epson slip-printer device is a subclass of the base class

com.bankframe.services.devices.MCASerialPort.

The physical slip-printer device is connected to the serial port.

The class SlipPrinter over-rides the method handleEvent(…) and therefore asynchronously handles

serial port events.

All the Epson slip-printer specific communication codes are defined in the

com.bankframe.services.devices.SlipPrinter.SlipPrinterDeviceCodes interface.

The class com.bankframe.services.devices.SlipPrinter.SlipPrinterDeviceProtocol

defines methods for creating the slip-printer specific serial commands to send to the physical device. The

class contains methods for implementing all the standard printing facilities on an Epson slip-printer.

6.15.3.3.1 SlipPrinter(String deviceName) Constructor

The SlipPrinter(String deviceName) is used to instantiate a Slip Printer device object. The String

parameter is the unique device name for the device object. This string is used in the

BankframeDevices.properties file to define the serial communications settings for the device object.

The setup() method reads the settings for the device object from BankframeDevices.properties to

setup the device correctly.

6.15.3.3.2 SlipPrinter.setup()

This method is called by the base class method MCASerialPort.open(…). This method does the

following sets up the serial communications to the physical device.

6.15.3.4 Using the SlipPrinter Device in a Client Application

See the class com.bankframe.services.devices.unittest.SlipPrinterTest for a basic

example of a java client using the slip-printer device object. The MCA Example

com.bankframe.examples.devices.fe.ui demonstrates a full Swing front-end example using the

device classes.

The following code is a sample client using the slip-printer device object:
import com.bankframe.services.devices.*;

import com.bankframe.services.devices.SlipPrinter.*;

Enterprise Services ■ Peripherals Support

362 ■ MCA Services Developer Guide Version 2004.5, Rev. A

import javax.comm.SerialPortEvent;

public class myClient Class {

String deviceName = "COM2.SlipPrinter";

SlipPrinter slipPrinter;

Public void run() {

try {

//The name passed to the device

//corresponds to the entries used in the

// BankframeDevices.properties file.

//These names have to match for the device

//to be setup with the correct serial port setting and specific

settings.

slipPrinter = new SlipPrinter(deviceName);

//Opens the port device specified

//in the BankframeDevices.properties file:-

slipPrinter.open();

System.out.println("Testing now...");

slipPrinter.print("hello Ruairi");//prints to printer

slipPrinter.lineFeed();

slipPrinter.clearPrinter();

slipPrinter.test();//prints a few things to printer.

} catch (DeviceException ex) {

ex.printStackTrace();

}

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 363

slipPrinter.close();

slipPrinter = null;

}

}

NOTES:

1. The slip-printer device is created passing the device name to the constructor. The device name

identifies the device's settings in the bankframeDevices.properties file.

2. After the slip-printer device is opened methods on the slip-printer are called to do some sample

printing. No replies are obtained from the printer for these method calls.

3. When the slip-printer device is no longer required the connection is shut-down using close()

4. The classpath must include mca.jar. The Java Communications Extension API jar (comm.jar)

must also be included in the classpath. mca.jar is located in eontec/Common/lib/eontec/.

5. The standard serial port settings for the Epson TM-U375 slip-printer are: Baud=9600, data

Bits = 8, stop Bits=1, parity = none, flow control = none.

6.15.3.5 MagTek IntelliPin Plus swipe-card device

The classes for this device implementation are in the package:

com.bankframe.services.devices.MTPinPad.

The MTPinPad class subclasses the base class

com.bankframe.services.devices.MCASerialPort.

The physical MagTek IntelliPIN device is connected to the serial port.

The class implements the method handleEvent(..) and therefore asynchronously handles serial port

events

All the MagTek MiniMicr specific communication codes are defined in the

com.bankframe.services.devices.MTPinPad.MagTekIntelliPINDeviceCodes interface.

The class com.bankframe.services.devices.MTPinPad.MagTekIntelliPINDeviceProtocol

defines methods for creating MagTek IntelliPIN specific serial commands to send to the physical device.

See "Installation and Configuration of Hardware" section for a description of the hardware.

See "Installation and Configuration of Software" section for a description of the software configuration

process.

As stated earlier the MCA MagTekIntelliPIN object only implements a basic subset of the MagTek

IntelliPIN Pad functionality.

6.15.3.5.1 MagTekIntelliPIN(String deviceName) Constructor

The MagTekIntelliPIN(String deviceName, boolean decryptPinData) is used to instantiate

an IntelliPIN device object. The String parameter deviceName is the unique device name for the device

object. This string is specified in the BankframeDevices.properties file to define the serial

communications settings for the device object. The setup() method reads the settings for the device

Enterprise Services ■ Peripherals Support

364 ■ MCA Services Developer Guide Version 2004.5, Rev. A

object from BankframeDevices.properties to setup the device correctly. The boolean parameter

decryptPinData specifies if pin number data received from the physical device is decrypted by the

MagTekIntelliPIN device object or remains encrypted. It may be desirable not to decrypt the pin number

in the client but to transmit the pin number while still encrypted to a Server where the pin number will be

decrypted and validated.

6.15.3.5.2 MagTekIntelliPIN.open(…)

Once the MagTekIntelliPIN object has been instantiated one of the two open() methods is called to

set up and connect to the physical IntelliPIN device. The open() method has the following two forms:

1. open(long masterKeyResponseTimeout). This form generates a unique master encryption

key for encrypting pin data during communication with the physical IntelliPIN device. The Java

Cryptography API generates the unique encryption key. This open() method is slower than the

second form.

2. open(byte[] theMasterKey, long masterKeyResponseTimeout). This form allows the

user to specify a master encryption key for encrypting pin data during communication with the

physical IntelliPIN device. The byte[] array is an 8 byte DES encryption key.

In both cases the MagTekIntelliPIN object must download the master encryption key to the physical

device. The long argument masterKeyResponseTimeout is the time-out period for a positive response

from the physical device verifying that the encryption key was successfully downloaded. If the device does

not respond in this time then a DeviceException is thrown.

The sequence of method calls within the open() method are as follows:

1. an encryption key is generated using the com.bankframe.util.Cryptography class. This

class wraps the standard Java Cryptography API.

2. the base class MCASerialPort.open() method is called.

3. the base class MCASerialPort.open() method calls the over-ridden

MagTekIntelliPIN.setup() method which sets up the serial communications parameters for

the physical device. The master encryption key is downloaded to the physical IntelliPIN device.

This throws a DeviceException if the physical device does not respond confirming the key within

the period masterKeyResponseTimeout.

6.15.3.5.3 MagTekIntelliPIN.setup()

This method is called by the base class method MCASerialPort.open(…). This method does the

following:

• sets up the serial communications to the physical device.

• The master encryption key is downloaded to the physical IntelliPIN device. This throws a

DeviceException if the physical device does not respond confirming the key within the period

masterKeyResponseTimeout.

6.15.3.5.4 MagTekIntelliPIN.replaceDefaultDisplay(…)

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 365

The method
MagTekIntelliPIN.replaceDefaultDisplay(String displayNumber, String lineOne,

String lineTwo)

replaces one of the default displays on the physical MagTek IntelliPIN pad’s LCD display. This command

can be used to customize the IntelliPIN display for a particular language/bank. This customized display is

stored in the physical device so it appears again when it is next turned on. See java docs for usage.

6.15.3.5.5 MagTekIntelliPIN.enableDefaultDisplay(…)

The method MagTekIntelliPIN.enableDefaultDisplay() disables any previously customized

default displays. The factory installed displays are all enabled on the physical device.

6.15.3.5.6 MagTekIntelliPIN.cardDataEntryRequest (…)

The method
MagTekIntelliPIN.cardDataEntryRequest(String firstMessage, String

secondMessage, long timeOut)

instructs the physical IntelliPIN device to prompt the user for a card swipe. The two messages are displayed

on the IntelliPIN's LCD display. The user has the period timeOut to swipe a card before the method

returns.

6.15.3.5.7 MagTekIntelliPIN.pinEntryRequest (…)

The method
MagTekIntelliPIN.pinEntryRequest(String accountNumber, char keyNumber, String

transactionAmount, long timeout)

instructs the physical IntelliPIN device to prompt the user for a pin number entry. The accountNumber is

used for encrypting the returned pin number. KeyNumber specifies whether to use the Master Key or a

session key. Currently only the master key is supported by the MCA object . The keyNumber to specify use

of a Master Key is ‘4’. TransactionAmount is a decimal string to two decimal places which is displayed

on the IntelliPIN LCD display. The user has the period timeOut to enter a pin number.

6.15.3.5.8 MagTekIntelliPIN.cancelSessionRequest (…)

The method
MagTekIntelliPIN.cancelSessionRequest()

instructs the physical IntelliPIN device to cancel the current request in progress.

6.15.3.5.9 MagTekIntelliPIN.displaySingleString (…)

The method
MagTekIntelliPIN.displaySingleString(String firstMessage, String secondMessage)

instructs the physical IntelliPIN device to display the two strings on its LCD display.

6.15.3.5.10 MagTekIntelliPIN.requestSoftSwitch (…)

Enterprise Services ■ Peripherals Support

366 ■ MCA Services Developer Guide Version 2004.5, Rev. A

The method
MagTekIntelliPIN.requestSoftSwitch(char switchNumber, long timeout)

requests the current configuration settings of the physical IntelliPIN device.

6.15.3.5.11 MagTekIntelliPIN.setSoftSwitch (…)

The method
MagTekIntelliPIN.setSoftSwitch(char switchNumber, byte theSettingData, long

timeOut)

sets the specified configuration settings in the physical IntelliPIN device.

6.15.3.5.12 MagTekIntelliPIN.waitCondition…(…)

The methods
MagTekIntelliPIN.waitConditionCardData(long timeout)

MagTekIntelliPIN.waitConditionKeyLoaded(long timeout)

MagTekIntelliPIN.waitConditionPinData(long timeout)

MagTekIntelliPIN.waitConditionRequestSettings(long timeout)

start a wait cycle in the IntelliPIN device object until the specified condition has occurred.

• waitConditionCardData(…) waits until a card has been swiped and the device object has

received card track details from the physical device.

• waitConditionKeyLoaded(…) waits until the physical device responds indicating that it has

accepted the downloaded Master Encryption key.

• waitConditionPinData(…) waits until a pin number has been entered by the user and the

device object has received the pin number.

• waitConditionRequestSettings(…) waits until the physical device has responded to a

request to change its settings.

6.15.3.5.13 PinPadListener interface

The class com.bankframe.services.devices.MTPinPad.PinPadListener interface has one

method handlePinPad(PinPadEvent event). A client implements this listener interface and calls the

method MagTekIntelliPIN.addPinPadListener(PinPadListener ppl) to register its listener.

The method handlePinPad(PinPadEvent event) is called by the MagTekIntelliPIN device object when

an event occurs. See the next section.

6.15.3.5.14 MagTekIntelliPIN.addPinPadListener (…)

The method
MagTekIntelliPIN.addPinPadListener(PinPadListener ppl)

allows a client object to register a listener class to receive notification of asynchronous MagTekIntelliPIN

events. The listener class will receive PinPadEvent objects when one of the following events occur:

• When a card is swiped

• A pin number is entered

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 367

• An Exception occurs parsing data received from the physical IntelliPIN device.

An alternative to this asynchronous method of receiving IntelliPIN events is to use the base class method

waitforDataAvailable(long timeout) specifying the period to wait for the data to be available. This

method will return any of the above events that occur to the java client object.

6.15.3.5.15 PinPadEvent class

The com.bankframe.services.devices.MTPinPad.PinPadEvent class stores event details to be

passed to the client object. Card track details, Pin number and exception details can be obtained from this

object when passed to the client object.

6.15.3.5.16 PinDataBlock class

The com.bankframe.services.devices.MTPinPad.PinDataBlock class has two purposes:

• It stores the encrypted pin number received from the physical device.

• It provides a method decrypt(SecretKey masterKey, String algorithm, String

provider) for decrypting and un-mangling the received pin data from the physical IntelliPIN. This

method uses the com.bankframe.util.Cryptography class. This class wraps the standard

Java Cryptography API. The masterKey must be the same master encryption key originally

downloaded to the physical device during the device setup. The algorithm and provider must be of

the same form used to generate the original encryption key. If the encryption key was generated

using algorithm=”DES” and provider=”SunJCE” then the decrypt() method has to be

called using a form of the DES algorithm, e.g. “DES/ECB/NoPadding”

6.15.3.5.17 CardData class

The com.bankframe.services.devices.MTPinPad.CardData class stores the card track details

obtained from the physical IntelliPIN device. The object parses the raw card data into the three track details.

6.15.3.6 Using the IntelliPIN Pad Card-Swipe Device in a Client Application

See the class com.bankframe.services.devices.unittest.PinPadTest for a basic example of a

java client using the slip-printer device. The MCA Example com.bankframe.examples.devices.fe.ui

demonstrates a full Swing front-end example using the device classes.

The following are the basic steps that a client java class generally takes to use the IntelliPIN device classes:

1. Instantiate the IntelliPIN device object.

2. Open the IntelliPIN device passing it a Master encryption key. The pin data returned by the

physical IntelliPIN device to the PC will be encrypted using this key.

3. Request the user to swipe their card through the physical IntelliPIN device.

4. Wait for a card to be swiped by the user.

5. Request the user to enter their pin number on the physical IntelliPIN device.

6. Wait for the pin to be entered by the user.

7. Close the IntelliPIN device.

For steps 3 and 5 the returned data can be parsed and validated by the client java class as required.

Enterprise Services ■ Peripherals Support

368 ■ MCA Services Developer Guide Version 2004.5, Rev. A

The following code is a sample client using the MagTekIntelliPIN device object:
import com.bankframe.services.devices.*;

import com.bankframe.services.devices.SlipPrinter.*;

public class PinPadTest extends Object implements PinPadListener{

MagTekIntelliPIN pinPad;

void run() {

try {

//The name passed to the device corresponds to the entries used in

the

//BankframeDevices.properties file

//These names have to match for the device to be setup with the

correct

//serial port setting and specific settings.

pinPad = new MagTekIntelliPIN("COM1.IntelliPinPad",true);

//PinPad object notifys this test object when a check is swiped,

//a pin is entered, or when an exception occurs.

pinPad.addPinPadListener(this);

//Open the port device specified in the BankframeDevices.properties

file:-

//

//There are two forms of this method,

//First Form of open(...):-

//Takes a parameter which is the Master Encryption key

//sent to the IntelliPIN to encrypt all messages.

//Second parameter is the time-out to wait for response

//from device after loading master key.

//DeviceException is thrown if pinPad times-out.

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 369

//Encryption key specified in MagTek Programing reference

// manual:"23AB4589EF6701CD", passed in as a byte array:-

byte[] theMasterKey = {(byte)0x23,(byte)0xAB,(byte)0x45

,(byte)0x89,(byte)0xEF,(byte)0x67

,(byte)0x01,(byte)0xCD};

pinPad.open(theMasterKey, 30000);

//Second form of open(...):-

//Parameter is the time-out to wait for

//response from device after loading master key.

//This method generates an Encryption Master key

//and is therefore slower than the above method.

//DeviceException is thrown if pinPad times-out.

//pinPad.open(30000);

...

BankframeLog.log(Bankframe.DEBUG,BankframeLogConstants.

BANKFRAME_SUBSYSTEM,"Swipe card now...");

if (pinPad.cardDataEntryRequest("swipe your", "card now",10000)) {

//First param = an Account Number which is used in the

//encryption of the returned PIN number, can be blank "":-

//Second param = use the Master key:-

//Third param = the transaction amount to two decimal places,

//can be blank "":-

if (!pinPad.pinEntryRequest("4761234567812348"

,MagTekIntelliPINDeviceCodes.UseMasterKey

Enterprise Services ■ Peripherals Support

370 ■ MCA Services Developer Guide Version 2004.5, Rev. A

,"12300", 20000);

//wait 30 seconds for pin entry then cancel

pinPad.cancelSessionRequest();

}

}

} catch (DeviceException ex) {

BankframeLog.log(Bankframe.ERROR,BankframeLogConstants.

BANKFRAME_SUBSYSTEM,ex);

}

BankframeLog.log(Bankframe.DEBUG,BankframeLogConstants.

BANKFRAME_SUBSYSTEM,"Closing down pinPad...");

pinPad.close();

pinPad = null;

}

public void handlePinPad(PinPadEvent event) {

if (event.getType() == event.EXCEPTION_OCURRED) {

BankframeLog.log(Bankframe.DEBUG,BankframeLogConstants.

BANKFRAME_SUBSYSTEM,event.toString());

BankframeLog.log(Bankframe.DEBUG,BankframeLogConstants.

BANKFRAME_SUBSYSTEM,"Closing down pinPad...");

pinPad.close();

System.exit(1);

}

BankframeLog.log(Bankframe.DEBUG,BankframeLogConstants.

BANKFRAME_SUBSYSTEM,event.toString());

// TODO:

// Do something with the result here, ie., display it or validate it.

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 371

//

}

}

NOTES:

1. The IntelliPIN Pad device is created passing the device name to the constructor. The device name

identifies the devices settings in the bankframeDevices.properties file.

2. The test class implements the

com.bankframe.services.devices.MTPinPad.PinPadListener interface and therefore is

directly notified when a card has been swiped or a pin entered by a user. The test class registers

itself as a Pin Pad listener by calling the method addPinPadListener(). When an IntelliPIN

pad event occurs the method handlePINPad() is called on the test class. This event handler is

also used to capture exceptions which may occur on the input thread of the IntelliPIN device

allowing the test class to handle all exceptions/errors. Note: IntelliPIN events/exceptions could also

be detected directly by using the following code:
// E.g., to wait for pin entry do the following in the code:-

Object data = null;

if (pinPad.waitConditionPinData(30000)) {

data = pinPad.getReceivedData();

//do something with the pin data.

}

3. There are two forms of the IntelliPIN Pad device open() method. The first form of the open()

method takes an array of 8 bytes representing a standard DES encryption key. This key is sent to

the physical IntelliPIN device as a Master Key for encrypting all pin data sent back to the PC. The

second form of the open() method generates a DES encryption key itself, this method is slower

but generates a unique Master Key. The second parameter is the time-out value, the physical

IntelliPIN device must accept the Master Key within this time.

4. The test class tells the IntelliPIN device to request a card swipe by calling the method

cardDataEntryRequest(). The two strings are the text that are shown on the IntelliPIN

device during the request. The third parameter is the time-out period in milliseconds, this specifies

the length of time that the user has to swipe a card

5. The test class tells the IntelliPIN device to request a pin entry from the user by calling the method
pinPad.pinEntryRequest("4761234567812348",MagTekIntelliPINDeviceCodes.Use

MasterKey,"12300", 20000). The first parameter is an account number which is used in the

encryption of the pin number entered by the user on the physical IntelliPIN device. The second

parameter tells the device to use the Master key created previously. The third parameter is the

amount of the transaction to two decimal places. The two strings can be empty. The fourth

Enterprise Services ■ Peripherals Support

372 ■ MCA Services Developer Guide Version 2004.5, Rev. A

parameter is the time-out period in milliseconds, if the user does not enter a pin in this time then the

session is cancelled by calling the method pinPad.cancelSessionRequest().

6. When the IntelliPIN device is no longer required the connection is shut-down using
pinPad.close()

7. The classpath must include mca.jar. The Java Communications Extension API jar (comm.jar)

must also be included in the classpath. mca.jar is located in eontec/Common/lib/eontec/.

8. The Java Cryptography API jar files must also be on the classpath or in the jre\lib\ext folder if

the jre is being used to compile and run the test class.

9. The standard serial port settings for the MagTek IntelliPIN card-swipe are: Baud=9600, data

Bits = 7, stop Bits=1, parity = even, flow control = none.

6.15.4 Implementing a new type of MCA Device

The basic requirements for implementing a new type of MCA device object are:

1. The device classes must be in a subpackage of the package
com.bankframe.services.devices

2. The device object must implement the interface

com.bankframe.services.devices.MCADevice. This interface declares all the standard

device methods.

3. The device object must instantiate the

com.bankframe.services.devices.MCADeviceProperties object to obtain the settings for

the device.

4. To create messages and commands to transmit to the physical device the class

com.bankframe.services.devices.MCADeviceProtocol is subclassed. The subclass

implements message-generating code specific to the physical device's communication protocol.

5. The BankframeDevices.properties file must be present on the classpath and must contain

the necessary entries for each device object being instantiated in the client application. If the file or

necessary entries are missing then the device initialization will fail.

6. All exceptions must be returned to the calling class/client as a

com.bankframe.services.devices.DeviceException. This is generally achieved by

converting an exception to a com.bankframe.services.devices.DeviceException as

follows:
throw (DeviceException) new

DeviceException(0).fromException(theGeneralException);

6.15.4.1 Implementing a new type of Serial-Port device

To design and implement a new type of MCA serial-port device you must, as well as the requirements in the

previous section, implement the following:

1. A serial port device must subclass the basic

com.bankframe.services.devices.MCASerialPort abstract class. MCASerialPort

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 373

implements the MCADevice interface, and contains a

com.bankframe.services.devices.MCADeviceProperties object.

2. The derived device class must implement the MCASerialPort abstract method protected

void setup()

3. The String deviceName member of the MCASerialPort must be initialized during creation of

the derived device class, e.g. “Com1.SlipPrinter”. This is normally performed in the

constructor. During initialization deviceName is passed to the MCADeviceProperties object to

obtain the correct settings for the device object.

4. The device class subclassing MCASerialPort implements void

handleEvent(java.util.EventObject event) if it has to use data sent by the physical

device to the PC. When a serial event occurs this method will always be called by

MCASerialPort.

5. Any data captured, parsed and validated by the method handleEvent(…) must be stored in the

MCASerialPort variable Object receivedData. This is accomplished by calling the

MCASerialPort method dataAvailable(Object data). Therefore the client object can then

query the device object for available data by calling the method public Object

waitforDataAvailable(int timeOut).

6.15.5 Hardware Requirements

MCA has implementations for the following devices:

• A MagTek MiniMicr cheque reader with RS-232 connection, part number 22522003. This requires

a 12v, 800mA power supply Adapter.

• A MagTek non-portable IntelliPIN Plus swipe card reader with RS-232 connection. This requires a

12V 300mA power supply which is plugged into the RS-232 cable supplied with the device,

partnumber 30019304.

• An Epson TM-U375 Slip Printer. This requires a 24V 2A power supply available from PC Cubed

(see References).

The devices are connected to the PC/Unix machine via the Serial port using an RS-232 serial lead. The

IntelliPIN Plus has a serial cable with integrated power supply jack, part number 300115119.

6.15.6 Software Requirements

The Java Communications Extension API is required, see download section.

• The Java Cryptography Extension API is required for the MagTek IntelliPIN device classes, see the

download section.

• The MagTek device drivers for Windows are not used for controlling the MagTek devices. Control

of the MagTek devices is performed directly from the java code using low-level serial port

communication.

Enterprise Services ■ Peripherals Support

374 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.15.7 Installation and configuration of required hardware

See Hardware Requirements section for necessary power supplies for each device. The correct power

supply must be used with each device. The devices are connected to the serial port of the PC/Unix

machine. The serial port is a nine pin RS232 connection.

6.15.7.1 Epson Slip-Printer

The Epson Slip Printer requires no hardware setup other than plugging in the power supply and connecting

the serial lead to the serial port of the PC.

6.15.7.2 MagTek MiniMicr cheque reader

The MagTek MiniMicr cheque reader device configuration is controlled from the PC using text commands

sent via the serial connection. The commands are described in the "MiniMicr RS232 technical reference

manual", part-number 99875057.

The following sub-sections show a subset of these commands necessary for basic operations on the Mini

Micr.

The commands are sent to the physical MiniMicr device by using the following methods in the class

com.bankframe.services.devices.MTMiniMicr.MagTekMiniMicr:

• public void setCommand(String command)

• public void setCommand(String command, byte commandByte)

The current command settings are requested from the physical MiniMicr device by using the following

method in the class com.bankframe.services.devices.MTMiniMicr.MagTekMiniMicr:

• public String requestCommand(String command, boolean bWait, int

waitTimeout)

6.15.7.2.1 MiniMicr Command Syntax

The commands are of the following format:
[COMMAND][DATA]<CR>

where:

[COMMAND] is 2 or 3 alphabetical characters.

[DATA] is optional depending on the command.

<CR> carriage return, 0x0D byte, is always required.

All characters are ASCII.

No spaces, brackets, or angle brackets required.

All the values shown in the following sections are defined in the interface

com.bankframe.services.devices.MTMiniMicr.MagTekMiniMicrDeviceCodes.

6.15.7.2.2 SWA - SWITCH A command

The SWA command controls the communications parameters, shown in the following Table:

BITS PARAMETERS

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 375

7 6 5 4 3 2 1 0

 0 0 0 Reserved

 0 0 1 Baud Rate: 300

 0 1 0 Baud Rate: 600

 0 1 1 Baud Rate: 1200

 1 0 0 Baud Rate: 2400

 1 0 1 Baud Rate: 4800

 1 1 0 Baud Rate: 9600

 1 1 1 Baud Rate: 19200

 0 0 Data and Parity: 8, None.

 0 1 Data and Parity: 7, Mark (1).

 1 0 Data and Parity: 7, Even.

 1 1 Data and Parity: 7, Odd.

 0 CTS/DSR: Use

 1 CTS/DSR:Ignore

 0 Number of Stop Bits:1

 1 Number of Stop Bits:2

0 Intercharacter Delay: No

1 Intercharacter Delay: Yes

The data for this command consists of 8 ASCII characters representing each bit of the above table. To

execute the SWA command the following ASCII text is sent to the serial port output stream:

SWA00100110<CR>

This tells the MiniMicr device to use:

baud rate: 9600,

data and parity: 8 and None,

CTS/DSR: ignore,

Number of stop bits: 1,

intercharacter delay: No.

Each bit of the command shown in the table above is sent as a separate ASCII character. There are no

spaces and the carriage-return, 0x0D, is sent to finish the command. The MiniMicr will not reply after

executing the command. To make the command permanent after the MiniMicr is switched off, use the SA

(Save) command.

NOTE: The new settings for the serial port will not become effective until the RS (Reset) command is

executed.

To request the MiniMicr for its current settings the command is sent to the device as follows:

If the following command is sent:
SWA<CR>

The device replies with its current settings in the following form:
SWA=00100110<CR>

Enterprise Services ■ Peripherals Support

376 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.15.7.2.3 SWB - SWITCH B command

The SWB command controls the message format. When a cheque is swiped the MiniMicr will send the

cheque data to the PC serial port wrapped in the chosen message format. The message formats are shown

in the following table:

BITS PARAMETERS

7 6 5 4 3 2 1 0

 0 <LF>: No

 1 <LF>: Yes

 0 <CR>: No

 1 <CR>: Yes

 0 <ETX>: No

 1 <ETX>: Yes

 0 <ESC>: No

 1 <ESC>: Yes

 0 <STX>: No

 1 <STX>: Yes

 0 Send Data after Error?: No

 1 Send Data after Error?: Yes

 0 Send Status after Error?: No

 1 Send Status after Error?: Yes

0 0 0 0 0 0 Comm Mode: 0 - Data Only

1 0 0 0 0 0 Comm Mode: 1 - Data<CR>

0 0 0 0 0 1 Comm Mode: 2 - Data<LF>

0 0 0 0 1 1 Comm Mode: 3 - Data<CR><LF>

0 0 1 0 0 0 Comm Mode: 4 - <ESC>Data

0 0 1 0 1 0 Comm Mode: 5 - <ESC>Data<CR>

0 1 0 1 0 0 Comm Mode: 6 - <STX>Data<ETX>

1 0 0 0 0 1 Comm Mode: 7 -

<STX>Data<ETX><LRC>

The data for this command consists of 8 ASCII characters representing each bit of the above table. To

execute, send the SWB command as follows to the serial port output stream:

SWB00001010<CR>

Each bit of the command shown in the table above is sent as a separate ASCII character. There are no

spaces and the carriage-return, 0x0D, is sent to finish the command. The MiniMicr will not reply after

executing the command. The new settings become effective immediately. To make the command

permanent after the MiniMicr is switched off, use the SA (Save) command.

The above sample tells the MiniMicr device to use Comm Mode 5 for sending cheque data to the PC serial

port, which has the following form:

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 377

<ESC>DATA<CR>

This message format facilitates easy parsing of the returned cheque data as the start (ESC, 0x1B) and the

end (CR, 0x0D) of the cheque data can be detected in a long stream of data.

The selection of Comm Modes, shown in the above table, is a quick way of selecting multiple control

characters.

If the following command is sent:
SWB<CR>

The device replies with its current settings in the following form:
SWB=00000010<CR>

When used in combination the message format always has the following order of elements:
<STX><ESC>DATA<ETX><CR><LF>

6.15.7.2.3.1 Send Data After Error

The request ‘Send Data After’ Error specifies whether the MiniMicr reader will return data to the HOST after

a read error. If YES is selected and the MiniMicr detects a read error, the MiniMicr will still send the data

back to the Host. If NO is selected and the MiniMicr finds an error, it will discard the data and nothing will be

sent. The error conditions are listed in the table following.

6.15.7.2.3.2 Send Status After Data

The Send Status After Data option makes the MICR append a two-digit error/status code to the end of the

MICR data. For most formats, the error/status code will always be preceded by a forward slash (/). The

error/status codes are listed in the table following. For example, if a Canadian cheque (code 08) is read and

has no errors, and the cheque data is "1234567890", and the message format is <STX>DATA<ETX> then

the message from the MICR will look: <STX>123456780/08<ETX>

The status code is always at the end of the data, not the end of the message.

PRIORITY CODE TYPE DESCRIPTION

9 01 Error No MICR data: no transit and no account found

8 09 Status Mexican cheque

7 08 Status Canadian cheque

6 05 Error Transit error: No transit, bad character, bad length, bad

cheque digit

5 07 Error Account Error: No account, bad character

4 04 Error Cheque # error: Bad character in cheque number

4 04 Status No cheque number

3 03 Status Low MICR signal, good read

2 10 Status Business Cheque

1 11 Status Amount field present

0 00 Status Good read

Enterprise Services ■ Peripherals Support

378 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Notes:
The LED indicator on the MICR will turn red on all error conditions.

The absence of a cheque number is not considered an error.

If a multiple error condition occurs, the error or status code with the highest priority is reported.

All unreadable MICR characters are transmitted as an "?" ASCII character (hex 3F).

6.15.7.2.4 FC - Format change command

Different formats are used by the MICR to process and transmit the cheque data read by the MICR back to

the host (not the same as the message format). This command allows for the selection of a format for

transmitting the cheque data.

The MICR has a built-in list of formats from which the user may select one to become the active format

every time a cheque is read. Each format has a 4-digit number. The first two digits indicate the format

number, and the last two digits are specific parameters used for various functions by each format. For

example, in format "0415" , the "04" refers to the format number 4 and the 15 refers to the maximum number

of characters allowed for the account field as specified in that format.

For a full list of supported formats refer to the MiniMicr RS232 technical reference manual.

The format used in the MCA device is the raw data format, FC0000. This format sends the entire cheque

data to the Host when a cheque is read and does not process the individual fields of the cheque data. This

format can be changed using the FC command at any stage.

To execute, the command is sent in the following form:
FC6600<CR>

To obtain the current format send:
FC<CR>

and the MICR will reply with the format such as follows:
FC=0000<CR>

6.15.7.2.4.1 Data Format 00xx: Raw Data Format

This format sends the entire MICR cheque data back to the Host. The Host then parses it as necessary.

xx -specify what symbol set to use. Choose from the table below.

Add xx + 16 - change multiple spaces to one space.

Add xx + 32 - Remove all spaces.

Examples of received data from the MiniMicr:

FC0000: T122000218T 1234 5678 9U 1321

FC0001: t122000218t 1234 5678 9o 1321

FC0017: t122000218t 1234 5678 9o 1321

FC0033: t122000218t123456789o1321

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 379

XX Transit
symbol

On-Us
symbol

Amount
symbol

Dash symbol Read Error

00 T U $ - ?

01 t O a d ?

02 T O A D ?

03 T U $ - *

04 T U $ 0 ?

05 T U $ 0 *

06 t O a 0 ?

07 T U $ none ?

6.15.7.2.5 VR - Version command

The Version command gives the current software revision in the MICR Reader device. To execute, send the

VR command followed by a carriage return as follows:

VR<CR>

The MiniMicr response is of the following format:
Version AR3.00.13A

6.15.7.2.6 SA - Save command

All changes are considered temporary until the Save command is executed. The Save command saves all

changes to the MICR Reader memory and makes them permanent. The MICR Reader will execute the

command but it will not reply. This command is not necessary as the device can be reinitialized each time it

is started in the desired format without changing the memory settings of the MICR device. To execute, send

the SA command followed by a carriage return as follows:

SA<CR>

6.15.7.2.7 RS - Reset command

The Reset command resets the MICR firmware to the normal operating state of waiting for a cheque to read.

The command also resets the serial port to the most recent settings provided by the SWA command. To

execute, send the RS command followed by a carriage return as follows:

RS<CR>

NOTE: It was found that this command updated the serial communications settings and stopped the

MiniMicr working. So the default serial communications on the device have to be used.

6.15.7.3 MagTek IntelliPIN Plus card-swipe reader

When plugged in the device's console displays the message "Calculating CRC" and "Boot Loader xxx"

where xxx is the boot loader identifier. If the physical IntelliPIN device is configured already for Interactive

Enterprise Services ■ Peripherals Support

380 ■ MCA Services Developer Guide Version 2004.5, Rev. A

mode then the greeting message "Welcome" is displayed on the LCD display. If the physical IntelliPIN

device is configured already for another mode then the message "Ready for program data" is displayed on

the LCD display.

The physical IntelliPIN device can be configured in two ways:

• It can be configured from its console using the LCD display.

• It can also be configured programmatically from the PC.

6.15.7.3.1 Configuring the IntelliPIN device from its console

The three soft round keys at the top of the console under the LCD display are used for menu operation

during device configuration and for activating menus during normal operation. The soft keys allow the use of

display-based prompts.

The mode of operation that is required for the MCA to control the IntelliPIN is the Interactive(PC) mode. In

this mode the device requires the PC, or Host, to interactively control the functions of the IntelliPIN Plus. In

this mode the IntelliPIN Plus cannot initiate any operation without a command from the PC. The steps to set

up the physical IntelliPIN device from its console are described in the following sections. The complete list of

console operations is contained in the “IntelliPIN Installation and Operation Manual”, manual part number:

99875066.

6.15.7.3.1.1 Configuring the IntelliPIN operating mode

To change the mode of operation of the IntelliPIN device to Interactive the following steps are performed on

the device's console:

1. Press the F1 function key (first button on the left below the LCD), and immediately press the 5

numeric key. (This may take a few practice tries as immediately means less than a second.) The

display will be:
Enter Password

_ _ _ _

If the password is not entered within 30 seconds, or if CLEAR is pressed, the display will revert back

to the idle state.

2. Enter the password and press the Enter key. The default password is 7638 or SOFT.

If the password is entered correctly, the next display to appear will be:
Set Operate Mode

Next Edit Exit

3. The function buttons shown above (second line) are from left to right; F1, F2 and F3. If Next is

selected (F1), each setup option will be displayed sequentially. If Edit is selected (F2), the

parameters within each setup option will be selected. If Exit is selected (F3), the display will

revert to the idle state.

If Set Operate Mode is not displayed, press Next until it is displayed.

4. With Set Operate Mode displayed, press Edit, then Sel until the following appears:

Mode:Interactive

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 381

Sel Acpt Skip

5. Press Acpt and the display will return to Set Operate Mode, and the Interactive mode is

selected.

6. The next display will be:
Insert Hdr:No

Sel Acpt Skip

The default is No. A header is inserted when the Mag-Tek Micr Plus is used with the IntelliPin Plus.

Press Acpt after Yes or No is selected.

7. Press Next continually to cycle through the menu. The Setup menu for the Interactive Mode is as

follows:
Set Operate Mode

Communications

Card Reader Trks

PIN Options

Power Time Out

Key Parity Check

6.15.7.3.1.2 Configuring the IntelliPIN RS-232 serial communications

To change the communications mode of the physical IntelliPIN device from the console then the following

steps are performed:

1. From the main menu press the F1 function button, Next, until the following appears:

Communications

Next Edit Exit

2. Press Edit (F2) and the following will appear:

Baud: 9600

Sel Acpt Skip

3. The default value is 9600 baud. To change this value, press Sel until the required value appears.

The baud rates that will appear sequentially as Sel is pressed are 300, 600, 1200, 2400,

4800 and 9600.

4. When the required baud rate appears, press Acpt. The program will accept the value and display

the next option:
Parity: EVEN

Sel Acpt Skip

5. The default is Even. To change parity, press Sel until the required parity appears. The options

shown will be ODD, SPACE, MARK and EVEN.

Enterprise Services ■ Peripherals Support

382 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6. When the required parity appears, press Acpt. The program will accept the parity and display the

next option:
CTS/DSR: Ignore

Sel Acpt Skip

7. The CTS/DSR default is Ignore. The alternative is Use. To change this option, press Sel until

Use appears. This option might be enabled in cases where the PC uses control signal hand-

shaking to synchronize communication with the device.

8. When the selection is made, press Acpt. The program will return to Communications.

6.15.8 Installation and configuration of required software

6.15.8.1 Java Communications Extension API on Windows

To distribute the Java Comms API with a release product the following files must be present on the client

Windows machine:

The comm.jar must be in the JDK or JRE /lib/ext folder.

The javax.comm.properties must be in the JDK or JRE /lib folder or if that is not possible then in the

same folder as the comm.jar. This file must not be edited.

The win32com.dll must be in the JRE or JDK /bin folder, which must be on the system path. If there

are several JREs or JDKs on the system only the one being used must be on the system path, the Comms

Driver will fail otherwise. If the Java Comms API is being used by an applet in a web page then the applet

must have access permissions to win32com.dll.

6.15.8.2 Java Communications Extension API on Solaris

The Solaris implementation of the Java communications API requires the "Solaris Native Threads Pack" for

older, un-patched versions of Solaris and JDK 1.1.6 only.

6.15.8.2.1 To install the Java Communications Extension API on Solaris:

Ensure that the library libSolarisSerialParallel.so can be loaded. You can do this either by

adding libSolarisSerialParallel.so to the environment LD_LIBRARY_PATH or by copying

libSolarisSerialParallel.so to /usr/lib.

Example: Assuming your current working directory is where you extracted the distribution,
% setenv LD_LIBRARY_PATH `pwd`:$LD_LIBRARY_PATH

or
$ export LD_LIBRARY_PATH=$PWD:$LD_LIBRARY_PATH

or, if you have administrative privileges on your machine,
% cp libSolarisSerialParallel.so /usr/lib

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 383

If you are using the JDK (not the JRE) add comm.jar to your classpath.

 Example: If you don't have a CLASSPATH set currently,

% setenv CLASSPATH `pwd`/comm.jar

or, if you have something in your CLASSPATH already,

% setenv CLASSPATH `pwd`/comm.jar:$CLASSPATH

Copy the file javax.comm.properties to your <JDK>/lib or your <JRE>/lib directory.

If you don't have write permission to <JDK>/lib or <JRE>/lib, you can keep

javax.comm.properties in the same directory as comm.jar. The search order for

javax.comm.properties is:

1. <JDK>/lib

2. The directory that contains the first valid comm.jar that is included in the classpath.

The javax.comm.properties file must be installed. If it is not, no ports will be found by the system.

Make sure you have the JDK native thread package installed. This implementation only works with native

thread. Look at http://java.sun.com/products/jdk/ for details.

See the Sun documentation for known limitations of the Solaris Java Comm API.

6.15.8.3 Java Communications API Trouble Shooting

If an applet using the devices fails to start up use the web browser’s java console to view the complete error

messages.

To start the java console in Internet Explorer go to the following menu:
Tools\Internet Options…

Choose the Advanced tab.

In the Microsoft VM section click on the “Java console enabled” . Restart the web browser. The

Java console will be shown the next time an applet is started in the web browser.

The following message is displayed during device initialization if the system has been set up correctly, this

message can be ignored:
Caught java.lang.NullPointerException: name can't be null while loading driver

<driver name>

If an error of the following form is displayed:
java.lang.ExceptionInInitializerError:

java.security.AccessControlException

check the security permissions in the JRE or JDK policy file:
/lib/security/java.policy

or check the security permissions in the policy file in the Windows profile folder:
.java.policy

Enterprise Services ■ Peripherals Support

384 ■ MCA Services Developer Guide Version 2004.5, Rev. A

A sample policy file, javaDev.policy, is in the MCA package:

com.bankframe.examples.devices.fe.ui

The following message is displayed during device initialization if the system has not been set up correctly as

described above:
java.lang.NullPointerException: name can't be null

Check the location of the above files. Ensure there is only one win32com.dll on the system and that it is

in the JRE or JDK /bin folder and that this is the only JRE or JDK /bin folder on the classpath.

The following message is displayed during device initialization if the win32com.dll is not on the system

path:
Error loading win32com: java.lang.UnsatisfiedLinkError: no win32com in

java.library.path

If the applet still fails still then reinstall the Java Plugin, which is required for the Swing front-end examples.

6.15.8.4 Java Cryptography Extension API

To distribute the Java Cryptography API with a release product the following files must be present on the

client machine:

The jce1_2_1.jar, local_policy.jar, sunjce_provider.jar and US_export_policy.jar files

must either be in the jre\lib\ext folder if the JRE is being used to run or compile the classes or the jars

must be in the classpath if the JDK is being used to run or compile the code.

A sample policy file, javaDev.policy, is in the MCA package:

com.bankframe.examples.devices.fe.ui

6.15.8.5 MagTek Device Drivers for Windows

As stated previously the MagTek device drivers for Windows are NOT used for controlling the MagTek

devices in the MCA and therefore are not required to be installed at all. Control of the MagTek devices is

performed directly from the java code using low-level serial port communication.

6.15.9 Topology

Currently the MCA devices support is for client software. It is not in the form of Enterprise Java Beans, this

will be built into the architecture in the future. Currently a java client can use the MCA classes as are

contained in the jar file mca.jar.

6.15.9.1 Client-side Application

For a client-side application to use MCA devices support the classpath must include mca.jar and the Java

Communications API comm.jar.

To use the MagTek IntelliPIN peripheral the Java Cryptography API jar files must also be on the classpath or

in the jre\lib\ext folder if the jre is being used to compile and run the client.

Enterprise Services ■ Peripherals Support

MCA Services Developer Guide Version 2004.5, Rev. A ■ 385

Also found that there are issues with Unix implementations of the Comm extension API (see the Sun

developers' forum pages referenced in the links section of this document). There is a Solaris package, but

this implementation is more restricted than the Windows version, see download instructions for more details.

Support for other flavours of Unix require third party packages.

6.15.9.2 Server-side

Enterprise Java Beans will be developed for the MCA devices in the future. A server-side Servlet can use

the MCA devices support as it is included in mca.jar.

6.15.9.3 Client-side Applet

There are problems using the Comm extension API from an Applet. There is a bug registered by Sun: BUG

4251547 categorized as javax_commapi.

To use the MCA devices support in an Applet a policy file is required with entries of the following form:

grant codebase "http://theAppletSite" signedBy "THE_ALIAS_HERE" {

permission java.lang.RuntimePermission "loadLibrary.win32com";

permission java.io.FilePermission "${java.home}\\lib\\win32com.dll",

"read";

permission java.io.FilePermission

"${java.home}\\lib\\javax.comm.properties", "read";

permission java.io.FilePermission

"${java.home}\\lib\\javax.comm.properties", "delete";

permission java.util.PropertyPermission "java.home", "read";

permission java.util.PropertyPermission "javax.comm.properties",

"read";

permission java.io.FilePermission "BankframeFrontendApplication.properties",

"read";

permission java.util.PropertyPermission

"BankframeFrontendApplication.properties", "read";

permission java.io.FilePermission "BankframeDatePatterns.properties", "read";

permission java.util.PropertyPermission "BankframeDatePatterns.properties",

"read";

permission java.io.FilePermission "BankframeDevices.properties", "read";

permission java.util.PropertyPermission "BankframeDevices.properties",

"read";

permission java.io.FilePermission "BankframeFrontend.properties", "read";

permission java.util.PropertyPermission "BankframeFrontend.properties",

"read";

Enterprise Services ■ Peripherals Support

386 ■ MCA Services Developer Guide Version 2004.5, Rev. A

permission java.io.FilePermission "BankframeMessages.properties", "read";

permission java.util.PropertyPermission "BankframeMessages.properties",

"read";

permission java.io.FilePermission "BankframeResource.properties", "read";

permission java.util.PropertyPermission "BankframeResource.properties",

"read";

};

The MCA example com.bankframe.examples.devices.fe.ui demonstrates a full Swing front-end

example using the device classes. To use this example as an Applet the Sun Java Plug-in is required:
http://java.sun.com/products/plugin/

6.15.9.4 Unit Test classes

The MCA device support classes can be tested by using the unit-test classes in mca.jar. The device unit

tests are in the package com.bankframe.services.devices.unittest. These can be used as

standalone console applications or as an applet. They initialise and start an MCA device. To use a unit test

class the following command is used:
java -classpath ./myClasses/mca.jar $JAVA_HOME/lib/ext/comm.jar

where $JAVA_HOME is the location of the JDK/JRE being used

The Java Communications API must be installed on the machine and the

BankframeDevices.properties file must contain the correct settings to initialize the required device.

The unit-tests can be used:

• As a simple console application with no graphical user interface or

• As an applet in a html page

The MagTek MiniMicr is tested by the class

com.bankframe.services.devices.unittest.MiniMicrTest. If the device is working then the

user will be prompted to swipe a cheque or to exit.

The MagTek IntelliPIN is tested by the class

com.bankframe.services.devices.unittest.PinPadTest. If the device is working then the user

will be prompted to swipe a card or to exit. The Java Cryptography API must be installed on the machine.

The MagTek MiniMicr is tested by the class

com.bankframe.services.devices.unittest.SlipPrinterTest. If the device is working then the

slip-printer will print out test information.

6.15.10 Future development

Server-side Java Beans implementation of the MCA devices support will be developed. Further device

implementations will be added to the MCA. Support for further basic forms of communication to peripherals

will be added, such as communication to parallel port devices, etc.

http://java.sun.com/products/plugin/

Enterprise Services ■ Printing Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 387

6.15.11 References

6.15.11.1 Links:

 http://www.magtek.com/

 http://developer.java.sun.com/

6.15.11.2 Downloads

Java Comm Extension API for Serial communications is located at:

 http://java.sun.com/products/javacomm/

In Unix the .tar.Z file must first be unpacked using GZip -d *.tar.Z and then the .tar file is

decompressed using tar xvf *.tar

Once decompressed, follow the readme instructions to integrate it into the jdk /jre already installed on the

machine, see "Installation and Configuration of Software" section above.

Sun currently support only the Solaris/SPARC and Windows platforms, support for other flavours of unix has

been developed by other third-party developers, see the download readmes for more information.

Java Cryptography Extension API is located at:

 http://java.sun.com/products/jce/index.html/

See the download readme for more information.

6.15.11.3 Sample source code

Sample Serial Port Communication classes are contained in the javacomm extension pack.

See the package com.bankframe.services.devices.unittest for a basic examples of using the

MCA implemented device types. The MCA example com.bankframe.examples.devices.fe.ui

demonstrates a full Swing front-end example using the device classes.

6.15.11.4 Printed Matter

Technical documents on the MagTek devices are downloadable from the MagTek site if you have a

password. E-mail MagTek support for a username and password.

6.16 Printing Framework

6.16.1 Introduction

This document describes MCA’s support for high quality form printing via the third party Accelio product.

http://www.magtek.com/
http://developer.java.sun.com/
http://java.sun.com/products/javacomm/
http://java.sun.com/products/jce/index.html/

Enterprise Services ■ Printing Framework

388 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.16.1.1 The Solution

This solution implements a framework that is used with Accelio. This involves a Session Bean, which

accepts a Vector of DataPackets, and generates an XML file through XSLT, which is then processed by

Accelio to produce an output to the specified printing device.

MCA Services printing is implemented as a standard two layer Siebl Session Bean - in two packages:

- com.bankframe.services.print - the solution set layer

- com.bankframe.services.impl.print - the implementation layer

6.16.2 com.bankframe.services.print

This package defines the MCA printing framework to produce the XML file necessary for use with Accelio. It

contains the following classes:

6.16.2.1 PrintBean

This class provides all the methods for accepting a vector of DataPackets and exporting an XML file for

use with Accelio.

6.16.2.1.1 imPrint()

This method has the following signature:
public Vector imPrint(Vector data)

throws ProcessingErrorException, RemoteException;

This method accepts a Vector of DataPackets containing the data to be printed. This method transforms

the data in the vector into an XML file, acceptable for processing with Accelio.

XML files do not accept tags with white space however the keys in the DataPacket contain white space.

This method replaces space characters within the keys in the DataPacket with underscores _ , before

parsing the Vector of data, transforming the data from the Vector to Siebel XML format then using a

stylesheet, again transforming it to the resulting Accelio XML format.

The first DataPacket in the Vector must contain a Key named JF_JOB_CARD. This key is a requirement for

the Printing process for Accelio. The key specifies values, which define printing information, a minimum

requirement is a jobname to be carried out in Accelio and/or also contains further values for example printer

information. For further reading on JF_JOB_CARD values visit www.accelio.com

6.16.3 Generating the Service

The REQUEST_ID of the first DataPacket in the Vector must have a REQUEST_ID of MC065.

It must also carry forward the JF_JOB_CARD required by Accelio.

Note: For JF_JOB_CARD details refer to the Accelio Architecture section.

For example, from a JSP front end, the following would be specified within the JSP:
<FORM NAME="printPage" ACTION="" METHOD="post">

http://www.accelio.com/

Enterprise Services ■ Printing Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 389

<p>Title

<input type="text" name="Title">

</p>

<p>First Name

<input type="text" name="FirstName">

</p>

<p>Surname

<input type="text" name="Surname">

</p>

<input type="hidden" name="REQUEST_ID" value="MC065">

<input type="hidden" name="JF_JOB_CARD" value="jobname printername">

<input type="submit" name="Submit" value="Submit">

Consult JSP front-end Architecture documentation for further details.

6.16.4 Calling the Service from another Session

When calling the Print service from another session, a Vector of DataPackets must be passed to the

PrintBean and the imPrint method, for example:

import com.bankframe.services.impl.PrintHome;

import com.bankframe.services.Print;

Class SampleBankingProcessBean {

Public testPrint() {

PrintHome home =

(PrintHome)Server.lookup("eontec.bankframe.print");

Print print = home.create();

---- create DataPackets

dp.put("JF_JOB_CARD", "jobname printername");

print.imPrint(dataPackets);

}

}

Enterprise Services ■ Printing Framework

390 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Note: The JF_JOB_CARD must be specified within the Vector, and should be placed as the first

DataPacket in the Vector. For details on JF_JOB_CARD see the following section

6.16.5 Accelio Architecture

BankframeResource.properties holds three properties relating to the XML file produced by the print

service. These three properties are:

Collector Directory location: e.g. print.datFilePath=D:\\JetForm\\Central\\Server\\data\\

The stylesheet location used by the print service e.g.
print.styleSheetLocation=D:\\Mca\\Printing\\stylesheets\\

The stylesheet name used by the print service e.g.
print.styleSheetName=JetFormXSL.XSL

6.16.5.1 Control Process

The MCA Services printing framework requires two instances of Accelio, this involves two installs which sets

up the following directory structure:

Enterprise Services ■ Printing Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 391

• The XML file produced by the printing service is stored temporarily in the Accelio collector directory and

has the extension .DAT

• This .DAT file is then picked up by the Accelio control, and converted to a Field-Nominated Format file

and dropped into another collector directory in the second instance of Accelio. E.g.

D:\JetForm\Central\Server2\data Field-Nominated Format is structured keys and values from

the Vector of DataPackets e.g.

^job jobname printername

^field LoanType

car

^field Occupation

Architect

^field DOB

23/12/74

^field Basic_Income

40000

^field Home_Telephone

5556767

• Dropping the field-nominated format file in the second instance of Accelio is a result of the task table

entry in the first instance of Accelio e.g.
!x JFNOJOB * xmlimport "-config @IniFilename. data.uri=@InFile.

output.uri=D:\jetform\central\server2\data\@InFileBase..dat" "Outputs DAT

to other Central instance"

• The task above is called JFNOJOB as the original XML file contains a JF_JOB_CARD entry and no

specific header information.

• As there is a JF_JOB_CARD entry in the first file, this now gets converted to the jobname header

information in the field-nominated format file and contains the jobname to be carried out on the second

instance of Accelio.

6.16.5.1.1 Example conversion

• The field nominated format file will contain jobname information derived from the original

JF_JOB_CARD: The first instance XML file contains:

<?xml version="1.0" encoding="UTF-8"?>

<v>

<d>

<JF_JOB_CARD>jobname printername</JF_JOB_CARD>

Enterprise Services ■ Printing Framework

392 ■ MCA Services Developer Guide Version 2004.5, Rev. A

<OWNER>eontec Ltd</OWNER>

<DATA_PACKET_NAME>Test1 DP</DATA_PACKET_NAME>

</d>

• This information will be converted to the header of the field-nominated format file in the second

instance:
^job jobname printername

• The jobname then identifies the task to be carried out on the Printer task table of the second instance

of Accelio, e.g.
!f jobname HPLJETU d:\mca\printing\forms\xmltest4.mdf * 1 T JFMERGE * * C

"test print"

• This identifies the task to be carried out jobname, the printer name printername, the path of the form

name used e.g. d:\mca\printing\forms\xmltest4.mdf and other printing task information, and

the standard layout is as follows:

!f <Job name> <Printer name> <Form file> <Preamble file> <Macro number>

<Load flag> <Task id> <Input file> <Output file> <On error> <Comments>

Enterprise Services ■ Caching Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 393

6.16.5.2 Architecture Overview

6.16.6 Further Reading

www.accelio.com

6.17 Caching Framework

6.17.1 Introduction

This document describes the generic caching framework provided by MCA Services.

http://www.accelio.com/

Enterprise Services ■ Caching Framework

394 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.17.1.1 Uses of caching

Caching of data can be used anytime it is expensive (in terms of time) to access some data. By caching data

in local memory unnecessary expensive data accesses can be avoided. Below are some examples of where

caching is used in MCA:

Creating JNDI initial contexts Creating JNDI initial contexts is very expensive. By

caching initial contexts they can be re-used,

meaning that each initial context only needs to be

created once

EJB Home references Looking up EJB home references is also expensive,

so again caching EJB Home references reduces the

number of lookups that have to be done, thus

increasing performance

Financial Process Integrator Typically communicating with legacy systems is an

expensive process, therefore it makes sense to try

and cache data received from hosts, in order to

minimise the communication required with the

legacy system

Configuration information Configuration information is stored in a file called

BankframeResource.properties. Reading from

a file is an expensive process so the contents of the

file are cached in memory to improve performance.

6.17.1.2 In memory and persistent caches

Caches can be divided into two broad categories:

6.17.1.2.1 In memory cache

6.17.1.2.1.1 Local cache

This kind of cache only uses data stored in local memory, i.e. the data in the cache is never stored in a

persistent store. The initial context and EJB home caches are examples of this kind of cache. This kind of

cache is typically used to cache objects that are expensive to instantiate.

6.17.1.2.2 Persistent cache

This kind of cache is used to cache data that is stored in some persistent store. The Financial Process

Integrator and configuration information are examples of this kind of cache. This kind of cache is used to

cache objects that are expensive to read from the persistent store. This category of cache can be sub-

divided into two more categories:

6.17.1.2.2.1 Read-only caches

Read-only caches contain data that is only ever read and can never be updated.

Enterprise Services ■ Caching Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 395

6.17.1.2.2.2 Read-write caches

Read-write caches contain data that can be read, and also re-written to the persistent store

6.17.1.3 Functionality of a cache

Any cache must provide the following functions:

- Associate an object with a key that can be used to retrieve the object at a later time

- Provide a means to iterate over the contents of the cache

- Provide a means to manage the size of the cache, by removing expired data from the cache

In addition persistent caches must provide the following functions:

- Maintain consistency between the in memory cache and the data stored in the persistent store, i.e.

if the data in the persistent store changes, the cache must be updated.

- Read-write caches must provide a means to flush changes made to cached objects to the

persistent store

6.17.1.4 What does the generic framework provide?

The generic cache framework provides:

- A generic implementation of an in memory cache

- A plugable CachePolicy interface that allows the policy used for removing expired objects to be

customized

- A clean up interval to define how often the CachePolicy will be asked to check for expired objects

- A framework for implementing persistent caches that supports maintaining the cache consistency

and flushing updates to the persistent store

- An easy to use API; the Cache class implements the java.util.Map interface so that its API will

be familiar to all Java programmers, and so that it can be easily integrated into code that previously

used Hashtables or HashMaps for caching data.

6.17.2 com.bankframe.services.cache

The generic cache framework is implemented in the com.bankframe.services.cache package. This

package contains the following interfaces:

- Cache: this interface defines the basic methods that all cache implementations must provide

- PersistentCache: this interface extends the Cache interface and must be implemented by all

persistent caches that are configured via BankframeResource.properties.

- CachePolicy; this interface defines a mechanism for customizing the policy used for removing

expired objects from the cache

- ConfigurableCachePolicy: This interface extends CachePolicy and provides a means for

policy objects to be configured via the BankframeResource.properties file. This interface

must be implemented by all policy objects that can be configured via
BankframeResource.properties

- NamedCache; this interface ensures implementing cache classes can be identified by String

names.

Enterprise Services ■ Caching Framework

396 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.17.2.1 com.bankframe.services.cache.Cache

This interface defines all the methods that all caches must implement. It extends the java.util.Map

interface which means that all caches implementing this interface must also implement the map interface.

6.17.2.2 com.bankframe.services.cache.GenericCache

This class provides a generic implementation of a local in memory cache. It also provides the means for this

class to be extended to provide a persistent cache. To establish the clean up interval, this class refers to

cache.cleaninterval property. If not defined, the value defaults to 10000 milliseconds. This class implements

the com.bankframe.services.cache.PersistentCache interface. We discuss that most commonly

used methods and those unique to the GenericCache class.

6.17.2.2.1 Constructors

The GenericCache class has a number of constructors, each of which allows the GenericCache class to

be used in a different fashion. If a constructor does not specify a CachePolicy object then the default

behaviour will be to keep an entry in the GenericCache until it is removed by calling one of: remove(),

removeAll() or clear().

6.17.2.2.1.1 GenericCache()

This constructor can be used to create an in memory cache that has no caching policy. When a

GenericCache is created with this constructor its behaviour will be the same as the java.util.HashMap

class.

6.17.2.2.1.2 GenericCache(CachePolicy policy)

This constructor can be used to create an in memory cache that uses the specified caching policy.

6.17.2.2.1.3 GenericCache(Map persistentMap)

This constructor can be used to create a persistent cache. The persistentMap parameter specifies a

java.util.Map implementation that accesses the persistent store directly. A cache created with this

constructor will have no caching policy.

6.17.2.2.1.4 GenericCache(Map persistentMap, CachePolicy policy)

This constructor can be used to create a persistent cache that uses the specified caching policy.

6.17.2.2.2 put() method

The put() method is used to store an object in the Cache. This method is declared by the

java.util.Map interface and has the following signature:

public Object put(Object key, Object value);

- The key parameter specifies the key for the object to store in the cache

Enterprise Services ■ Caching Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 397

- The value parameter is the object to store in the cache

- This method returns the previous value associated with the key, or null if there was no previous

value

6.17.2.2.3 get() method

The get() method is used to retrieve values from the cache. This method is declared by the

java.util.Map interface and has the following signature:

public Object get(Object key);

- The key parameter specifies the object to retrieve from the cache

- This method returns the cached object or null if the object was not found in the cache

6.17.2.2.4 enableCaching() method

The enableCaching() method is used with persistent caches, it can be used to enable or disable caching.

This method is declared in the com.bankframe.services.cache.Cache interface, it has the following

signature:
public void enableCaching(boolean enableCache);

- The enableCache parameter specifies whether to enable or disable caching.

- When caching is disabled the cache operates in pass-thru mode; it passes get() or put() calls

straight through to the persistent store. This method can be used when it is critical to read or write

values directly from or to the persistent store.

6.17.2.2.5 remove() method

The remove() method is used to remove an object from the cache. With persistent caches the object is

removed from the persistent store as well. The remove() method has two forms, the first is declared by the

java.util.Map interface, the second declared in the Cache interface:

public Object remove(Object key);

- The key parameter specifies the key of the object to remove from the cache

- This method removes a single object from the cache and from the persistent store
public void remove(Set keySet);

- The keySet parameter specifies a Set of keys that identify the objects to remove from the cache

- This method removes the objects from the cache and the persistent store

6.17.2.2.6 removeAll() method

The removeAll() method is used to remove all objects from the cache. With persistent caches all objects

are removed from the persistent store as well. To remove objects from the cache only use the clear()

method. The removeAll() method is specific to the Cache interface and has the following signature:

public void removeAll();

Enterprise Services ■ Caching Framework

398 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.17.2.2.7 cleanup() method

This protected method is used to remove expired objects from the cache. This method uses the

CachePolicy object to determine what objects should be removed. This method is specific to the Cache

interface and has the following signature:
protected void cleanup();

- This method is called whenever the following Cache methods are called:

put()

putAll()

remove()

The cleanup method determines if the number of milliseconds specified by the cache.cleaninterval

property have passed before investigating the cache to remove expired items. This is for performance

reasons, allowing users determine appropriate cleanup times according to the requirements of the specific

application data.

The cache.cleaninterval setting is configured in the BankframeResource.properties file

6.17.2.2.8 createCacheMapInstance() method

This method is used to create the java.util.Map instance that is used to store cached values. In the

GenericCache class, the implementation of this method creates an instance of the java.util.HashMap

class, however this method can be overridden if it is necessary to use another class.

This method is specific to the GenericCache class and has the following signature:

protected Map createCacheMapInstance();

6.17.2.2.9 GetCacheName() method

This method returns the name of the group that this cache is a member of.

6.17.2.3 com.bankframe.services.cache.NullCache

This is a Cache class that is used at runtime when caching is not required. It may be preferred to turn off a

particular cache in some circumstances. This can be achieved by setting the corresponding cache class

property value to com.bankframe.services.cache.NullCache. Policy and persistentMap settings will

be ignored. This Cache class has a substantially less memory overhead than using another Cache with

short timeout values.

6.17.2.4 com.bankframe.services.cache.JMSCache

This class extends the com.bankframe.services.cache.GenericCache class to provide a JMS (Java

Messaging Service) supported distributed caching implementation. This service extends the current caching

framework and can be configured with the different caching policies.

In situations where an environment has caches across multiple JVMs (Java Virtual Machines) it can be

Enterprise Services ■ Caching Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 399

necessary to have data consistency across all instances. The MCA Services JMS Caching does this when a

remove()method is called to remove a key from the local cache. This remove()method publishes a

message onto a JMS Topic to remove all occurrences of this key in caches across the cluster. A JMS Topic

is analogous to a list of messages that is shared among multiple JVMs. Each JVM can have a JMS Client

that publishes messages to the topic and JMS Listeners in other JVMs who are subscribed to this JMS

Topic can read these messages from the topic.

The message driven bean com.bankframe.services.cache.JMSListener subscribes to this JMS

Topic and its onMessage() method is called once a message is placed onto the JMS Topic. This

onMessage() method removes the passed key from its local cache. The JMSCache class overrides the

following methods in GenericCache:

6.17.2.4.1 put() method

The put() method is used to store an object in the local Cache and invalidate objects stored against key in

all other remote caches. This method is declared by the java.util.Map interface and has the following

signature:
public Object put(Object key, Object value);

- The key parameter specifies the key for the object to store in the cache

- The value parameter is the object to store in the cache

- This method returns the previous value associated with the key, or null if there was no previous

value

6.17.2.4.2 putAll() method

The putAll() method is used to store in the local cache all objects represented by the Map keys passed

as parameters. The method also invalidates objects stored against keys in all other remote caches. This

method has the following signature:
public Object put(Map keys);

- The keys parameter specifies the Map of all object keys to be removed.

6.17.2.4.3 remove() method

The remove() method is used to remove an object from the cache and invalidate objects stored against

key in all other remote caches. The remove() method has two forms, the first is declared by the

java.util.Map interface, the second declared in the Cache interface:

public Object remove(Object key);

- The key parameter specifies the key of the object to remove from the cache

public void remove(Set keySet);

- The keySet parameter specifies a Set of keys that identify the objects to remove from the cache

- This method also removes the set of object keys represented by keySet in all remote caches.

Enterprise Services ■ Caching Framework

400 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.17.2.4.4 removeAll() method

The removeAll() method is used to remove all objects from the cache. The method also invalidates all

objects in other remote caches. The removeAll() method is specific to the Cache interface and has the

following signature:
public void removeAll();

The following methods are specific to the com.bankframe.services.cache.JMSCache class:

6.17.2.4.5 initialiseTopic method

The initialiseTopic() method does a JNDI lookup on the Connection Factory which is an object that

enables JMS clients (the JMSCache class) to create JMS connections. A JNDI lookup on the JMS Topic is

also executed and a connection is made from the JMS Client to the JMS Topic so the JMS Client can

publish messages to the topic. The initialiseTopic() method has the following signature:

public void initialiseTopic();

6.17.2.4.6 removeDontSend() method

The removeDontSend() method is used to remove an object from the local cache. However, this method

does not invalidate objects stored in other remote caches. The removeDontSend() method has the

following signature:
public Object remove(Object key);

- The key parameter specifies the key of the object to remove from the cache

public void remove(Set keySet);

- The keySet parameter specifies a Set of keys that identify the objects to remove from the cache

- This method does not remove any objects in remote caches.

6.17.2.4.7 removeAllDontSend() method

The removeAllDontSend() method is used to remove all objects from the cache. The method does not

invalidate any objects in remote caches. The removeAllDontSend() method has the following signature:

public void removeAll();

6.17.2.4.8 addValueToCache method

The addValueToCache() method allows one to add an object value under an object key to a specific JMS

Topic. The method has the following signature:
public Object addValueToCache (String topicName, Object key, Object

value);

- The key parameter specifies the key for the object to store in the cache

- The value parameter is the object to store in the cache

- The topicName parameter is the JMS Topic to publish the message to.

Enterprise Services ■ Caching Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 401

- This method returns the previous value associated with the key, or null if there was no previous

value

6.17.2.5 com.bankframe.services.cache.JMSCache.JMSCacheEvent

The JMSCacheEvent class is a holder for all the information necessary to notify JMS Listeners to perform

some action. A JMS Listener is any MDB (Message Driven Bean) that has subscribed to a JMS Topic and

listens for messages placed onto the topic. The class implements the java.io.Serializable interface

so it can be serialized when being set on the javax.jms.ObjectMessage that is sent to the JMS Topic.

6.17.2.6 com.bankframe.services.cache.JMSListener

The JMSListener class is written as an MDB (Message Driven Bean). An MDB subscribes to a JMS Topic

and listens for messages placed onto the topic. The MDBs subscription to a particular JMS Topic is declared

in its deployment descriptor. The JMSListener listens for messages placed onto its subscribed JMS Topic,

and removes the appropriate entries from its local cache according to the message received. The

onMessage() method of the JMSListener class provides the behaviour for handling a message from the

JMS Topic and determines which entries to remove from the local cache.

6.17.2.7 Configuring JMS Caching

For instructions on how to configure JMS Topic and JMS Connection Factory names in

BankframeResource.properties refer to the Configuring MCA Services documentation for the values

that should be used for these settings.

There are application server specific issues that arise when changing the JMS Topic and JMS Connection

Factory names:

In WebLogic:

When changing the JMS Topic name, it is necessary to change the weblogic-ejb-jar.xml of the

message driven bean com.bankframe.services.cache.JMSListener as the JNDI of the topic is also

specified here.

In WebSphere:

When changing the ‘Listener Port’ name for a ‘Message Listener Service’ in WebSphere Application Server,

the EJB Module WebSphere-MCAMDBs.jar must be imported into WebSphere Studio Application

Developer. The ‘Listener Port Name’ that the MDB (Message Driven Bean)

com.bankframe.services.cache.JMSListener subscribes to must be modified in the ‘EJB

Deployment Descriptor’ for the MDB as depicted below in the red circle:

Enterprise Services ■ Caching Framework

402 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.17.2.8 com.bankframe.services.cache.CachePolicy

The CachePolicy interface defines a means for custom caching policies to be defined and plugged into

the Cache. First of all we will describe the methods defined by the CachePolicy interface and then

describe how the Cache class interacts with CachePolicy objects.

6.17.2.8.1 isCacheEntryValid () method

This method is called to determine if an entry is still valid. An entry is not valid if the caching policy

determines that the entry should be removed from the cache.
public boolean isCacheEntryValid(Object key,Object value);

6.17.2.8.2 updateCacheEntry() method

This method is called every time an entry in the cache is accessed. This enables the CachePolicy object

to determine which objects in the cache are being used.
public void updateCacheEntry(Object key,Object value);

6.17.2.8.3 updateCacheEntries() method

This method is called when multiple entries in the cache are accessed. This enables the CachePolicy

object to determine which objects in the cache are being used.
public void updateCacheEntries(Map values);

Enterprise Services ■ Caching Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 403

6.17.2.8.4 remove() method

This method is called when entries are removed from the cache. This enables the CachePolicy object to

stop tracking objects that are no longer in the cache. This method has two forms; the first is used when a

single object is removed, the second is used when a Set of objects is removed:

public void remove(Object key);

public void remove(Set keySet);

6.17.2.8.5 removeAll() method

This method is called when all entries are removed from the cache. This enables the CachePolicy object

to reset itself.

6.17.2.8.6 cleanup() method

This method is called to determine what entries should be removed from the cache. This method has the

following signature:
public Set cleanup();

- This method returns a java.util.Set containing the keys of the objects that should be removed.

- If no entries should be removed an empty Set is returned.

- If all entries should be removed null is returned.

6.17.3 Cache and CachePolicy Interaction

Whenever the state of the Cache changes the Cache informs the CachePolicy object.

- When the Cache.get() method is called the CachePolicy.updateEntry() method is called

- When the Cache.put() method is called the CachePolicy.updateEntry() method is called

- When the Cache.putAll() method is called the CachePolicy.updateEntries() method is

called

- When the Cache.remove() method is called the CachePolicy.remove() method is called

- When the Cache.removeAll() method is called the CachePolicy.removeAll() method is

called

- When the Cache.clear() method is called the CachePolicy.removeAll() method is called

After the following methods are called the CachePolicy.cleanup() method is called:

- Cache.put()

- Cache.putAll()

- Cache.remove()

The Cache takes the following actions depending on the return value from the CachPolicy.cleanup()

method:

- If the returned value is null all entries in the Cache are removed

- If the returned value is an empty Set no entries are removed from the Cache

- Otherwise the specified objects identified by the returned Set are removed from the Cache.

Enterprise Services ■ Caching Framework

404 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.17.4 Creating persistent caches

Creating a persistent cache requires creating a class that implements the java.util.Map interface and

implements all its methods. This class must interact with the persistent store, for example a call to the class’

get() method should read the requested object from the persistent store. For an example of a persistent

cache implementation see the com.bankframe.resource.cache package, and the

com.bankframe.resource.cache.BankFrameResourcePersister class.

6.17.5 Configuring the Caching Framework

The com.bankframe.services.cache.CacheFactory class enables the configuration of all MCA

caches to be controlled via the BankframeResource.properties file.

6.17.5.1 Configuring BankframeResource.properties

Below is a section of the BankframeResource.properties file showing the configuration for the cache

for the DESTINATION table:

cache.destinationCache.class=com.bankframe.services.cache.GenericCache

cache.destinationCache.persister=com.bankframe.ei.com.bankframe.ei.txnhand

ler.impl.destination.DestinationCachePersister

cache.destinationCache.policy=com.bankframe.services.cache.LruCachePolicy

cache.destinationCache.policy.maxSize=100

cache.destinationCache.policy.thrashAmount=10

Note how the settings are named, they start with a prefix: cache., followed by the name of the cache (in

this case destinationCache) and then a suffix indicating the name of a specific configuration parameter

(for example .class).

Below is an explanation of each setting:

6.17.5.1.1 Cache settings

- class: This is the fully qualified name of the cache class to use for this cache. This class must

implement the com.bankframe.services.cache.Cache interface. If the cache requires a

persister it must implement the com.bankframe.services.cache.PersistentCache

interface.

- persister: This is the fully qualified name of the persister class that should be used with this

cache to retrieve data from the data store. This class must implement the java.util.Map

interface. Some caches do not have a persistent store associated with them, so they will not need

to specify a persister setting, in this case the persister setting should be omitted from the

cache configuration settings. Note that this class is not related to the Financial Process Integrator

concept of a persister.

Enterprise Services ■ Caching Framework

MCA Services Developer Guide Version 2004.5, Rev. A ■ 405

- policy: This is the fully qualified name of the cache policy class to use for this cache. This class

must implement the com.bankframe.services.cache.ConfigurableCachePolicy

interface.

6.17.5.1.2 Policy Specific Settings

Each policy object can have its own settings that configure how it behaves. The settings for each of the

policy objects provided with MCA are detailed below:

6.17.5.1.2.1 LruCachePolicy

This policy uses a least recently used algorithm to limit the cache to a specified maximum size. This policy

has the following configurable settings:

- maxSize: This specifies the maximum number of entries permitted in the cache. When this is

exceeded the least recently used entries are removed from the cache until the cache size is

reduced to the maximum size.

- thrashAmount: When the maximum size of the cache is exceeded this policy tries to remove just

enough entries to reduce the cache to the maximum size. This setting can be used to force the

policy to reduce the number of cache entries to maxSize less thrashAmount. This means that

when the cache size is exceeded and the least recently used entries are removed space will be left

for new entries to be added.

6.17.5.1.2.2 TimeoutCachePolicy

This policy removes entries that have not been used for more than a specified period of time. This policy has

the following configurable setting:

- timeout: This value indicates the maximum time in seconds that an entry can remain in the cache

without being used.

6.17.5.1.2.3 PerEntryTimeoutCachePolicy

This policy is similar to the TimeoutCachePolicy except that each individual entry in the cache can have

its own timeout setting. This timeout value needs to be specified programmatically for each entry in the

cache by calling the setTimeout(Object key, long timeout) or setTimeout(Set keys, long

timeout) methods of this class. Therefore this policy has no configurable settings

6.17.5.2 Extending the Caching Framework

As can be seen from the settings above it is possible to configure all aspects of the caching framework via

the BankframeResource.propertie file. This provides the means for the caching framework to be

extended and optimised to meet customer specific requirements by on-site teams. Customers can extend or

replace the standard caching implementation and policy objects with ones that meet their specific

requirements. For example a customer could extend one of the policy objects to generate report information

about the contents and performance of the cache. Please consult the MCA Services API documentation for

more information on how to extend the caching framework

Enterprise Services ■ Dynamic Configuration

406 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.18 Dynamic Configuration

6.18.1 Introduction

This document describes the dynamic configuration framework in MCA Services

6.18.1.1 The problem

In previous versions of MCA, the standard Java APIs for reading configuration information from

.properties files were used, however these APIs have a major limitation: the contents of the

.properties files are read only once, the first time the file is accessed, therefore any subsequent

modifications made to the file are never detected. This means that it is necessary to stop and restart the

application server to pick up any configuration changes. Obviously this is not desirable for a system that

needs high availability.

6.18.1.2 The solution

The solution is to implement our own framework for reading .properties files. Our framework periodically

refreshes the in memory cache from the disk file. The end result is that it is possible to make changes to

MCA’s configuration without requiring the application server to be restarted. However, dynamic configuration

does have some performance overheads, primarily because methods have to be synchronized for reloading.

6.18.1.3 Configuring com.eontec.mca.bankframeresourcebundle

By default, the dynamic configuration is not used. To enable dynamic configuration, set the Java system

property com.eontec.mca.bankframeresourcebundle to

com.bankframe.services.resource.BankFrameResourceBundle. The default is

com.bankframe.services.resource.NoReloadBankFrameResourceBundle. The default

implementation does not reload property values and the methods for getting property values are not

synchronized.

6.18.1.4 Grouping properties

The standard Java APIs provide no means for grouping related configuration information, the MCA

framework adds support for this facility, allowing only the configuration information relating to a particular

functional area to be retrieved. How this facility works is explained below.

6.18.2 com.bankframe.services.resource

This package defines the MCA dynamic configuration framework; it contains the following classes and

interface:

BankFrameResource Defines the methods that all BankFrameResource

implementations must provide
BankFrameResourceSubset This class provides the functionality for grouping

related properties

Enterprise Services ■ Dynamic Configuration

MCA Services Developer Guide Version 2004.5, Rev. A ■ 407

BankFrameMCAResource This class provides methods for accessing the

standard BankframeResource.properties file

BankFrameResourceBundle This class implements the BankFrameResource

interface and provides functionality for reading data

from .properties files.

BankFrameResourceFactory This class creates instances of

BankFrameResource for the specified URL. It will

use the Java system property
com.eontec.mca.bankframeresourcebundle

to determine which resource bundle to use.

NoReloadBankFrameResourceBundle is the default

value.
NoReloadBankFrameResourceBundle Performance optimized resource bundle class.

Default bundle in framework.
NoReloadBankFrameResource Performance optimized resource class. Default

resource in framework.
ResourceLocator This class provides methods for manipulating files in

the Java class path

6.18.2.1 BankFrameResource

This interface defines the following methods:

6.18.2.1.1 get()

This method gets a value from the resource. This method has the following signature:
public Object get(String key);

• The key parameter specifies the name of the value to retrieve

• The value is returned if found, or null if the value is not found

6.18.2.1.2 getString()

This method gets a value and converts it to a String. This method has the following signature:
public String getString(String key);

• The key parameter specifies the name of the value to retrieve

• The value is returned if found, or null if the value is not found

6.18.2.1.3 getSubset()

This method gets a subset of values whose keys all begin with the specified prefix. This method has the

following signature:
public BankFrameResource getSubset(String prefix);

Enterprise Services ■ Dynamic Configuration

408 ■ MCA Services Developer Guide Version 2004.5, Rev. A

• The prefix parameter specifies the prefix that the subset starts with

• A BankFrameResource instance is returned containing the requested subset. An empty subset is

returned if no values with the specified prefix could be found.

6.18.2.1.4 put()

This method adds or updates a value in the resource. This method is used for changing or adding

configuration values. Note that not all implementations support this method. This method has the following

signature:
public Object put(String key, Object value);

• The key parameter specifies the name of the value

• The value parameter contains the value to be stored

• The previous value associated with the specified key is returned, or null if the key had no

previous association.

6.18.2.1.5 remove()

This method removes a value from the resource. Note that not all implementations support this method. This

method has two forms:
public Object remove(String key);

• The key parameter specifies the name of the value to remove

• The removed value is returned, or null if the key did not exist.

public void remove(Enumeration keys);

• The keys parameter specifies an Enumeration of one or more keys to remove.

6.18.2.1.6 removeAll()

This method removes all values from the resource. Note that not all implementations support this method.

This method has the following signature:
public void removeAll();

6.18.2.1.7 removeSubset()

This method removes a subset of values from the resource. Note that not all implementations support this

method. This method has the following signature:
public void removeSubset(String prefix);

The prefix parameter specifies the prefix that the subset starts with.

6.18.2.1.8 keys()

This method returns an Enumeration of key values. This method has the following signature:

public Enumeration keys();

Enterprise Services ■ Dynamic Configuration

MCA Services Developer Guide Version 2004.5, Rev. A ■ 409

6.18.2.2 BankFrameResourceSubset

This class implements the BankFrameResource interface and provides a standard mechanism for

BankFrameResource implementations to implement support for subsets. A subset of properties is defined

as one or more properties that start with the same prefix, for example:
ldap.default.java.naming.provider.url=ldap://localhost:389

ldap.default.java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

This class provides the same methods as BankFrameResource, in addition is has a single constructor:

6.18.2.2.1 BankFrameResourceSubSet()

This constructor creates a subset for the specified prefix. This method has the following signature:
public BankFrameResourceSubset(String prefix, BankFrameResource parent);

• The prefix value specifies the prefix that all members of the subset begin with

• The parent value specifies the resource which contains this subset

6.18.2.3 BankFrameMCAResource

This class provides methods for easily retrieving values from the standard

BankFrameResource.properties file. This class replaces the deprecated

com.bankframe.BankframeResource class. This class has the following methods:

6.18.2.3.1 getString()

This method gets the value of the specified property. This method has the following signature:
public static String getString(String key);

• The key parameter specifies the name of the property to retrieve

• The specified property is returned or null if the value could not be found

6.18.2.3.2 getKeys()

This method returns an Enumeration containing all the keys in the BankframeResource.properties

file. This method has the following signature:
public static Enumeration getKeys();

6.18.2.3.3 getSubset()

This method returns a subset of keys in the BankframeResource.properties file. This method has the

following signature:
public static BankFrameResource getSubset(String prefix);

• The prefix parameter specifies the prefix that the subset starts with

• A BankFrameResource instance is returned containing the requested subset. An empty subset is

returned if no values with the specified prefix could be found.

Enterprise Services ■ Dynamic Configuration

410 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.18.2.4 BankFrameResourceBundle

This class provides an implementation of the BankFrameResource interface that reads data from

.properties files. The public methods of this class are the same as those of the BankFrameResource

interface. This class has the following constructor:
public BankFrameResource BankFrameResourceBundle(URL resourceUrl);

• The resourceUrl parameter specifies the URL of the .properties file to read

• This class reads the contents of the .properties file the first time a property is requested.

• It caches the entire contents of the .properties file for a specified time period. When that time

period has passed it re-reads the .properties file. This enables changes to the .properties

file to be detected.

• The time period can be configured as follows:

o The time period is specified by adding a property named:

resource.cache.refreshInterval to the .properties file. This property must be

an integer indicating the number of seconds in the time period, for example:
resource.cache.refreshInterval=120

o If the resource.cache.refreshInterval property is not present in the resource file

then the file will be refreshed every 15 minutes.

o If the resource.cache.refreshInterval property has a value of -1 then the

resource file will never be refreshed (This means changes made to the resource file will

not be detected).

• This class provides read only access to .properties files therefore it does not support the

remove(), put() or clear() methods of BankFrameResource.

6.18.2.5 BankFrameResourceFactory

This class is used to create instances of BankFrameResource for a specific URL.

6.18.2.5.1 getInstance()

This method has the following signature:
public static BankFrameResource getInstance(String resourceName);

• This method creates a BankFrameResource instance for the specified .properties file

• The .properties file must be in the class path

• The implementation of this method creates an instance of the BankFrameResourceBundle class

to read from the specified .properties file

6.18.2.6 ResourceLocator

This class provides utility methods for locating resources in the class path, and for accessing resource files.

This class contains the following methods:

Enterprise Services ■ Dynamic Configuration

MCA Services Developer Guide Version 2004.5, Rev. A ■ 411

6.18.2.6.1 getClassInClassPath()

This method gets the URL for the specified class. This method has three forms:

public static URL getClassInClassPath(String className);

• The className parameter specifies the name of the class

• The URL of the class will be returned or null if it is not found in the class path

public static URL getClassInClassPath(String className, Locale locale);

• The className parameter specifies the name of the class

• The locale parameter specifies the locale specific version of this class to locate

• The URL of the class will be returned or null if it is not found in the class path

• public static URL getClassInClassPath(Class clazz,String className,Locale

locale);

• The clazz parameter specifies the Class instance to use to search the class path

• The className parameter specifies the name of the class

• The locale parameter specifies the locale specific version of this class to locate

• The URL of the class will be returned or null if it is not found in the class path

6.18.2.6.2 getResourceInClassPath()

This method gets the URL for the specified resource file. This method has three forms:

public static URL getResourceInClassPath(String resourceName);

• The resourceName parameter specifies the name of the resource

• The URL of the resource will be returned or null if it is not found in the class path

public static URL getResourceInClassPath(String resourceName, locale locale);

• The resourceName parameter specifies the name of the resource

• The locale parameter specifies the locale specific version of this resource to locate

• The URL of the resource will be returned or null if it is not found in the class path

public static URL getResourceInClassPath(Class clazz,String

resourceName,Locale locale);

• The clazz parameter specifies the Class instance to use to search the class path

• The resourceName parameter specifies the name of the resource

• The locale parameter specifies the locale specific version of this resource to locate

• The URL of the resource will be returned or null if it is not found in the class path

6.18.2.6.3 getInputStream()

This method gets an InputStream for the specified URL. This method has the following signature:

public static InputStream getInputStream(URL url) throws IOException;

• The url parameter specifies the URL of the resource

Enterprise Services ■ Dynamic Configuration

412 ■ MCA Services Developer Guide Version 2004.5, Rev. A

• The InputStream for the URL is returned or an IOException is thrown if the resource cannot be

accessed

6.18.2.6.4 getOutputStream()

This method gets an OutputStream for the specified URL. Note that

the resource may be read only, in which case calling this method

will result in an IOException being thrown. This method has the following signature:

public static OutputStream getOutputStream(URL url) throws IOException;

• The url parameter specifies the URL of the resource

• The OutputStream for the URL is returned or an IOException is thrown if the resource cannot be

accessed

6.18.2.6.5 getLastModified()

This method returns the time (in milliseconds) that the resource was last modified. This method has the

following signature:
public static long getLastModified(URL url);

• The url parameter specifies the URL of the resource

• The time of last modification is returned or zero if an error occurs

6.18.2.6.6 isReadOnly()

This method checks if the specified resource is read only. This method has the following signature:
public static boolean isReadOnly(URL url);

• The url parameter specifies the URL of the resource

• This method returns true if the resource is read only, false otherwise

6.18.3 Using the dynamic configuration framework

6.18.3.1 Accessing BankframeResource.properties

Reading values from BankframeResource.properties is straightforward. It’s a matter of using the static

methods of com.bankframe.services.resource.BankFrameMCAResource.

6.18.3.1.1 Reading a single value

Below is a code snippet that illustrates how to read a single value:
String ldapServer =

BankFrameMCAResource.getString(“ldap.default.java.naming.provider.url”);

6.18.3.1.2 Reading a subset

Below is a code snippet that illustrates how to read a subset:

Enterprise Services ■ Dynamic Configuration

MCA Services Developer Guide Version 2004.5, Rev. A ■ 413

BankFrameResource ldapSubset =

BankFrameMCAResource.getSubset(“ldap.default”);

6.18.3.2 Working with subsets

A subset is a set of values that all start with the same prefix. Prefixes are delimited using the ‘.’ character.

Below is an example of a subset:
ldap.default.java.naming.provider.url=ldap://localhost:389

ldap.default.java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

ldap.default.java.naming.security.authentication=simple

ldap.default.java.naming.security.principal=cn=bankframe,dc=eontec,dc=com

ldap.default.java.naming.security.credentials=bankframe

This subset can be retrieved by calling BankFrameMCAResource.getSubset(“ldap.default”). The

returned subset will contain all the values starting with ‘ldap.default’, however the prefix:

‘ldap.default’ will be removed from the names of the values, so the subset above will contain:

java.naming.provider.url=ldap://localhost:389

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory

java.naming.security.authentication=simple

java.naming.security.principal=cn=bankframe,dc=eontec,dc=com

java.naming.security.credentials=bankframe

6.18.3.2.1 Getting a single value from a subset

Assume we have some code similar to that below that creates a subset:
BankFrameResource ldapSubset =

BankFrameMCAResource.getSubset(“ldap.default”);

To retrieve a key from this subset we need to supply its name less the ‘ldap.default’ prefix, for example

to retrieve the key whose full name is ‘ldap.default.java.naming.provider.url’ we need to use

the following code:
String providerUrl = ldapSubset.getString(“java.naming.provider.url”);

6.18.3.2.2 Retrieving a subset of a subset

Subsets can be nested within each other, for example if we wanted to get the security settings in the

example above we would use the following code:
BankFrameResource securitySubset =

ldapSubset.getSubset(“java.naming.security”);

Enterprise Services ■ Dynamic Configuration

414 ■ MCA Services Developer Guide Version 2004.5, Rev. A

6.18.3.3 Accessing arbitrary resource files

The com.bankframe.services.resource.BankFrameMCAResource class provides a means to read

settings from the BankframeResource.properties file. To access properties in other files use the

com.bankframe.services.resource.BankFrameResourceFactory class.

6.18.3.3.1 Accessing a .properties file in the Java class path

To access a file called ‘FrontEnd.properties’ which is somewhere in the Java class path use the

following code:
BankFrameResource resource =

BankFrameResourceFactory.getInstance(“FrontEnd”);

String someProperty = resource.getString(“someProperty”);

Note that you do not supply the filename extension of the .properties file.

6.18.3.3.2 Accessing a .properties file not located in the Java class path

To access a file not located in the class path you must provide a complete URL to the resource file.

6.18.3.3.2.1 To access a file on a http server

Below is an example of accessing a file stored on an http server
BankFrameResource resource = BankFrameResourceFactory.getInstance(new

URL(“http://webserver/SomePropertyFile.properties”));

String someProperty = resource.getString(“someProperty”);

6.18.3.3.2.2 To access a file on a local file system
BankFrameResource resource = BankFrameResourceFactory.getInstance(new

URL(“file:///some/path/to/SomePropertyFile.properties”));

String someProperty = resource.getString(“someProperty”);

6.18.3.3.2.3 To access a file in a .JAR on a local file system
BankFrameResource resource = BankFrameResource.getInstance(new

URL(“jar:///some/path/to/Some.jar/SomePropertyFile.properties”));

String someProperty = resource.getString(“someProperty”);

6.18.3.4 Configuring the refresh interval

To configure how often a resource file should be re-read add the following key to the resource file:
resource.cache.refreshInterval

This setting is specified in seconds, for example:

Enterprise Services ■ Dynamic Configuration

MCA Services Developer Guide Version 2004.5, Rev. A ■ 415

resource.cache.refreshInterval=300

will cause the resource file to re-loaded every five minutes.

If this setting is not specified in the resource file then the default refresh interval of 15 minutes will be used.

6.18.3.5 Backwards Compatibility

In previous versions of MCA configuration values were accessed using the

com.bankframe.BankframeResource class. This class has been deprecated and the

com.bankframe.services.resource.BankFrameMCAResource class should be used instead.

However to provide backwards compatibility with existing code com.bankframe.BankframeResource

has been retrofitted to call the methods of

com.bankframe.services.resource.BankFrameMCAResource.

Appendix I – Glossary

416 ■ MCA Services Developer Guide Version 2004.5, Rev. A

7 Appendix I – Glossary

Baud Rate
The number of times per second that a system changes state.

BMP
Bean Managed Persistence. Applies to Entity EJBs. The Entity is responsible for managing its own

persistence.

Clustering
Connecting two or more machines together in such a way that they behave like a single machine. Clustering

is used for parallel processing, for load balancing and for fault tolerance.

CMP
Container Managed Persistence. Applies to Entity EJBs. The EJB container is responsible for managing the

persistence of the Entity.

Cobol Copybook
A file that describes the layout of transactions implemented in the COBOL programming language. Cobol

copybooks are used to determine the format of requests and responses to be sent from MCA Services to

host systems.

Container
Enterprise beans are software components that run in a special environment called an EJB container. The

container hosts and manages an enterprise bean in the same manner that a Java Web Server hosts a

Servlet or an HTML browser hosts a Java applet. An enterprise bean cannot function outside of an EJB

container. The EJB container manages every aspect of an enterprise bean at run time including remote

access to the bean, security, persistence, transactions, concurrency, and access to and pooling of

resources.

DataPacket
A DataPacket is a Siebel class through which MCA Services organizes data that is passed between

Clients and Siebel Financial Components. It provides a standard format for all data used within Siebel Retail

Finance applications, which greatly simplifies the task of passing data from Clients to Financial Components

and from Financial Components to other Financial Components. Information stored in DataPackets can be

transformed into a string representation or a serialized Java Object. This enables DataPackets to be easily

transmitted over various protocols. There are three required keys in every DataPacket: DATA-

_PACKET_NAME, OWNER and REQUEST_ID. All keys in a DataPacket are unique within that DataPacket

& identify corresponding data, as in a hashtable.

Appendix I – Glossary

MCA Services Developer Guide Version 2004.5, Rev. A ■ 417

DPTP
DataPacket Transmission Protocol

Dynamic Configuration
Standard Java APIs for reading configuration information from .properties files require the application

server to be re-started to pick up any configuration changes made. The MCA Services Dynamic

Configuration framework enables changing MCA’s configuration & enabling these changes to take effect

without having to re-start the application server. The Dynamic Configuration framework re-reads the

.properties file at set intervals (the interval period is configurable).

EAR
A JAR archive that contains a J2EE application – i.e. will contain all the EJB JARs & WARs for that

enterprise application.

EJB
Enterprise JavaBeans is a Java API developed by Sun Microsystems. It’s a component architecture for the

development and deployment of object-oriented, multi-tier client/server systems.

EJBContext
Every EJB obtains an EJBContext object, which is a reference directly to the EJB container. The

EJBContext interface provides methods for interacting with the container so that that bean can request

information about its environment like the identity of its client, the status of a transaction, or to obtain remote

references to itself.

Financial Component
A stateless session EJB. All Siebel Financial Components implement the

com.bankframe.ejb.ESession interface.

Financial Process Integrator
The Financial Process Integrator provides the facility in MCA Services to map data from Siebel Retail

Finance Entity Beans and Financial Components to host transactions.

Free Service
A Financial Component that does not involve a user logged into Siebel Retail Finance- i.e. an EJB session

bean that is not session managed e.g. the GenerateRandomNumbers service/bean which determines

which digits of the end-user’s password to request (e.g. first, third & last) when the user is logging onto

Siebel Retail Finance applications.

Home Interface
A Factory Object, it is responsible for locating or creating instances of the desired EJB, and returning remote

references. It must extend the interface EJBHome and provide method signatures for all the desired

Appendix I – Glossary

418 ■ MCA Services Developer Guide Version 2004.5, Rev. A

create() and find() methods. An object that implements the Home Interface is automatically generated

by the EJB Container tools.

IIOP
Internet Inter-ORB Protocol. A protocol used for communication between CORBA object request brokers.

Internationalization Framework
The MCA Internationalization Framework enables messages to be localized on the cient-side, supporting

localization on a per-client/per-locale basis. The data that needs to be localized is passed to the client in

addition to the data required for the localization – which is held in resource bundles. See also: Localization,

Resource Bundle.

J2EE
Java 2 Platform, Enterprise Edition. A J2EE platform is an enterprise level java platform which complies with

the J2EE open standard. A J2EE platform encompasses one or more of: EJB container, Web container (for

servlets & JSPs), Application client container, Applet container.

J2ME
Java 2 Platform, Micro Edition. Sun has regrouped its Java technologies into three editions: Micro (J2ME),

Standard (J2SE), and Enterprise (J2EE). Each edition contains a JVM, a specialized library of APIs and

tools for deployment and device configuration- grouped for particular devices such as PDAs, screenphones,

etc.

JAR
Java Archive file. The standard, platform-independent, packaging file format for Java technology-based

application components that permits many files to be aggregated into one file.

JavaMail
A Java API for sending and receiving email. Part of the J2EE spec.

JAXP
Java API for XML Processing. Part of the J2EE spec.

JCA
Java Connector Architecture. Part of the J2EE spec.

JDBC
Java API that allows components to access data, typically from an SQL database. Part of the J2EE spec.

JNDI

Appendix I – Glossary

MCA Services Developer Guide Version 2004.5, Rev. A ■ 419

The Java Naming and Directory Interface is an API that provides naming and directory functionality for

applications written using Java. It is defined to be independent of any specific directory service

implementation. Thus a variety of directories- new, emerging, and already deployed- can be accessed in a

common way. MCA Services maintains a mapping of REQUEST_IDs to JNDI names (each Retail Finance

EJB has a unique JNDI name). JNDI is part of the J2EE spec.

JSP
JavaServer Pages. An extensible web technology that uses template data, custom elements, scripting

languages, and server-side Java objects to return dynamic content to a client. Typically the template data is

HTML or XML elements, and in many cases the client is a web browser.

JTA
Java Transaction API. An API that allows applications and J2EE servers to participate in distributed

transactions. JTA is part of the J2EE spec.

LDAP
Lightweight Directory Access Protocol, a set of protocols for accessing information directories. LDAP is

based on the standards contained within the X.500 standard, but is significantly simpler. And unlike X.500,

LDAP supports TCP/IP, which is necessary for any type of Internet access. Because it's a simpler version of

X.500, LDAP is sometimes called X.500-lite. Although not yet widely implemented, LDAP should eventually

make it possible for almost any application running on virtually any computer platform to obtain directory

information, such as email addresses and public keys. Because LDAP is an open protocol, applications

need not worry about the type of server hosting the directory.

Localization
Using the MCA Internationalization framework messages can be localized on a system-wide basis or on a

per-client basis. The information required to convert messages to the client’s local is stored in a

ResourceBundle.

MCA Services
Multi Channel Architecture Services: an infrastructure that can support the delivery of uniform services to all

channels, and be able to incorporate new channels as they emerge. It is implemented using open industry

standards to facilitate integration with diverse channel technologies.

Meta Data
Meta Data means literally data about data. The term meta data in the context of MCA Services is used to

refer to the set of data that maps Siebel Retail Finance Entity Beans to host transactions.

Module
A Siebel Retail Finance Module is a pre-assembled solution set of Siebel Financial Components – e.g.

Siebel Branch Teller and Siebel Internet Banking

Appendix I – Glossary

420 ■ MCA Services Developer Guide Version 2004.5, Rev. A

Persistence
Pertaining to EJBs, the ability of an entity bean to record values in instance variables and then save these

values to a data store (e.g. database) i.e. the data continues to exist after the process accessing it has

finished.

Ping
Packet Internet Groper, a utility to determine whether a specific IP address is accessible. It works by

sending a packet to the specified address and waiting for a reply. Ping is used primarily to troubleshoot

Internet connections.

Pool Manager
The Container which manages EJBs acts as a pool manager- when an EJB has executed it is passivated

and cached in a pool for quick access should it need to be reused.

Process Templates and Sample Screen Code
Process Templates and Sample Screen Code are referred to in this documentation as “MCA Extension

Point”, “Domain Layer Code”, “Swing Front End Code” and “JSP Front End Code”

Protocol
An agreed-upon format for transmitting data between two devices. The protocol determines the following:

the type of error checking to be used, the data compression method, if any, how the sending device will

indicate that it has finished sending a message and how the receiving device will indicate that it has received

a message.

RDN
Relative Distinguished Name- in LDAP it is the name that uniquely identifies an object- i.e. equivalent to a

primary key.

Remote Interface
It extends interface EJBObject, and provides method signatures for all the business methods. The EJB

Container automatically generates a Java class that implements the Remote Interface; it is this object that is

registered with RMI, and a reference to it is returned by the Home Interface.

Resource Bundle
The MCA Services Internationalization Framework uses resource bundles to define message strings. For

each locale there exists a resource bundle/class. Each resource bundle defines the message strings for a

specific locale & extends the class ResourceBundle. The getBundle method is used at run-time to

retrieve the class that matches the current locale’s language, country and, where applicable, variant. The

naming convention for a resource bundle is: BundleName_Language_Country_Variant, e.g. the

general resource bundle for the German language would be: BundleName_de, the resource bundle for

messages specific to Germany would be: BundleName_de_DE & the resource bundle for the Swiss-

Appendix I – Glossary

MCA Services Developer Guide Version 2004.5, Rev. A ■ 421

German locale would be: BundleName_de_CH. The naming convention uses ISO-639 for language codes

& ISO-3166 for country codes.

RMI
Remote Method Invocation, a set of protocols that enables java objects to inter-communicate remotely - a

Java object running in one Java virtual machine can invoke methods on a Java object running in a different

Java virtual machine.

RMI-IIOP
Remote Method Invocation - Internet Inter-ORB Protocol. A version of RMI implemented to use the CORBA

IIOP protocol. RMI over IIOP provides interoperability with CORBA objects implemented in any language if

all the remote interfaces are originally defined as RMI interfaces. RMI-IIOP is part of the J2EE spec.

Sample Screen Code and Process Templates
Sample Screen Code and Process Templates are referred to in this documentation as “MCA Extension

Point”, “Domain Layer Code”, “Swing Front End Code” and “JSP Front End Code”

Servlet
An applet that runs on a server. The term usually refers to a Java applet that runs within a Web server

environment. This is analogous to a Java applet that runs within a Web browser environment. Java servlets

are becoming increasingly popular as an alternative to CGI programs. The biggest difference between the

two is that a Java applet is persistent. This means that once it is started, it stays in memory and can fulfill

multiple requests. In contrast, a CGI program disappears once it has fulfilled a request. The persistence of

Java applets makes them faster because there's no wasted time in setting up and tearing down the process.

Session Affinity
A mechanism whereby a unique string token is placed into all requests under a configurable key for the

duration of a client’s HTTP session

Store and Forward
When the Financial Process Integrator fails to send a transaction to the host, the host is marked as offline

and the transaction is stored for later forwarding. When a host is marked as offline it will remain marked as

such for a specified period (this period is configurable). During this period no further attempts will be made to

send transactions to that host, all transactions will instead be stored (except for transactions that are not

permitted to be stored, these will instead result in an exception being thrown). When the time period has

expired the forwarding mechanism will try to send the first entry on the queue to the host. Only data for

update to the host is stored, it will not store data retrieved from the host.

Swing
An API for building GUIs. The biggest difference between the AWT components and Swing components is

that the Swing components are implemented with absolutely no native code. Since Swing components aren't

Appendix I – Glossary

422 ■ MCA Services Developer Guide Version 2004.5, Rev. A

restricted to the features that are present on every platform -- they can have more functionality than AWT

components.

Tar
tape archive, a UNIX utility that combines a group of files into a single file. The resulting file has a .tar

extension. The tar command does not compress files. Frequently, therefore, a tar file is compressed with

the compress or gzip commands to create a file with a .tar.gz or .tar.Z extension. These are

comparable to files that have been compressed with PKZIP on a PC platform. Most PC compression utilities,

including PKZIP, can open (untar) a tar file.

Thin client
In client/server applications, a client designed to be especially small so that the bulk of the data processing

occurs on the server. Although the term thin client usually refers to software, it is increasingly used for

computers, such as network computers and Net PCs, that are designed to serve as the clients for

client/server architectures. A thin client is a network computer without a hard disk drive, whereas a fat client

includes a disk drive.

Two-phase commit
A feature of transaction processing systems that enables databases to be returned to the pre-transaction

state if some error condition occurs. A single transaction can update many different databases. The two-

phase commit strategy is designed to ensure that either all the databases are updated or none of them, so

that the databases remain synchronized.

Database changes required by a transaction are initially stored temporarily by each database. The

transaction monitor then issues a "pre-commit" command to each database that requires an

acknowledgment. If the monitor receives the appropriate response from each database, the monitor issues

the "commit" command, which causes all databases to simultaneously make the transaction changes

permanent.

WAR
A JAR archive that contains a web module

WML
Wireless Markup Language is an XML language used to specify content and user interface for WAP

devices; the WAP forum provides a DTD (Document Type Definition) for WML. WML is supported by almost

every mobile phone browser around the world. WML pages are requested and served in the same way as

HTML pages.

	What’s New in this Release
	MCA Services Overview
	Introduction
	Channel Management
	Financial Component Framework
	Client to Financial Component Communication
	
	Client creates DataPacket
	Client sends DataPacket to MCA Services
	MCA Services converts the HTTP request back to a DataPacket
	MCA Services determines which Financial Component to invoke
	MCA Services passes the DataPacket to the Financial Component
	CreditTransferBean processes the DataPacket and returns its response data
	MCA Services passes the response data back to the Client
	The Client converts the HTTP response back into DataPackets
	Request Router to EJB
	EJB to Financial Process Integrator

	Financial Process Integration
	
	TxnHandler Find
	TxnHandler Amend

	Security Provider Framework
	Enterprise Services
	
	Routing
	User Authentication, Session Management, and Access Control
	Internationalisation
	Dynamic Configuration
	Audit
	Logging
	Mail
	Ping
	LDAP
	Peripherals Support
	Printing Support
	Caching Framework
	Sequence Diagram
	Sequence Diagram

	Front End Framework
	
	
	Purpose
	Sun’s JSP Technology
	JavaServer Page LifeCycle
	Simple JSP Example
	JSP Objects and Scopes
	JSP Tags
	Overview
	JSP Execution
	Sending User Data to a Module with JSP
	Receiving The HTTP Post Request
	Extending BankFramePage Object
	JSP and WML
	Dynamic Tables with JSP
	Retrieving Data from a BankFramePage Object
	Creating and Filling JSP Tables
	Page Formatting
	Including and Forwarding to Files
	JavaScript and JSP
	HTML Widgets (XHTML)
	WML Widgets
	JavaServer Pages
	JSP Tag Libraries and Custom Tags
	HTML and XHTML
	WML and WAP
	JavaScript
	Java Servlets
	XML

	Applet/Application Front End Framework
	
	Purpose
	com.bankframe.fe.ui.AplicationImages
	com.bankframe.fe.ui.EApplet
	com.bankframe.fe.ui.EPanelContainer
	com.bankframe.fe.ui.ESplashPanel
	com.bankframe.fe.ui.EMenuPanel
	com.bankframe.fe.ui.EDefaultSplashPanel
	com.bankframe.fe.ui.EDefaultMenuPanel
	com.bankframe.fe.ui.EPanel
	com.bankframe.fe.ui.EPanelLoader
	com.bankframe.fe.ui.ServerDetails
	com.bankframe.fe.ui.UserInterfaceException
	Define Your Application Structure
	Extend the EApplet class
	Extend the EPanelContainer class
	Select a Menu Type
	Select a Default Splash Panel
	Choose a Method of Application Loading
	Build the Application EPanels
	General Tasks

	Channel Management
	RMI and HTTP
	
	DataPackets
	Channel Clients
	Channel Management
	Channel Servers
	Codecs
	Thin and Fat Clients
	Fat Client
	Package: com.bankframe.ei.channel.client
	Package: com.bankframe.ei.channel.server.
	Package: com.bankframe.ei.channel.codec
	com.bankframe.fe.jsp.BankframePage
	Introduction
	HTML Form Syntax
	Syntax rules
	Examples
	Codec mapping properties
	Valid Properties
	Configuring the HttpsClient
	Thin client example
	Fat client example

	XML B2B
	
	Package: com.bankframe.ei.channel.codec
	Mapping XML Requests to Financial Components
	XML Properties
	XSL Properties
	Custom XML Codecs
	Custom XSL Codecs
	Sample request file
	XML Format Description
	Input XML
	XSL Style-sheet
	XSL Codec
	XSL Codec Code Explanation
	Configuring BankframeResource.properties
	Sun XML Resources
	Apache XML Resources
	IBM XML Resources
	W3C XML Documentation
	Other

	Web Services
	
	Description
	Implementation
	Package com.bankframe.services.requestrouter.webservice
	Package com.bankframe.ei.channel.codec

	Session Affinity
	
	Configuring Session Affinity
	Sample Application of Session Affinity

	Financial Process Integration
	Overview
	
	Persister
	Cache
	Meta-data
	Data Formatter
	Transaction Route
	Destination
	Siebel connector
	Store and Forward

	Financial Process Integrator Meta-Data
	
	Separation of Request and Response
	Support for Error Conditions
	Support for Tiered Fields
	Meta-Data Response Access by Offset

	Mapping Entity Beans to Transactions
	
	Repeating entities of the same type
	Single entity of one type plus repeating entities of the same type
	Master entity with dependent entity

	Entity Bean Persistence and the FPI
	
	com.bankframe.ejb.bmp.EBMPEntity
	com.bankframe.ejb.bmp.EPersister
	com.bankframe.ejb.bmp.EPersisterFactory
	find(EBMPEntity entityBean, String methodName, DataPacket finderData)
	processTxnRequest(EBMPEntity entityBean, DataPacket txnData, String cachePolicy)
	mapTxn(String entityName, String methodName)
	load(EBMPEntity entityBean)
	amend(EBMPEntity entityBean, String methodName)
	amend(EBMPEntity entityBean, String methodName)
	amend(EBMPEntity entityBean, String methodName, DataPacket data, Vector primaryKeys, boolean removeOperation)
	store(EBMPEntity entityBean)
	storeInCache(Map data, long timeOutValue, boolean persistent)
	create(EBMPEntity entityBean)
	remove(EBMPEntity entityBean)
	removeFromCache(EBMPEntity entityBean)
	removeFromCache(Vector primaryKeys)
	PERSISTER_TXN_MAP Table
	Example
	com.bankframe.ei.txnhandler.persistertxnmap
	PersisterTxnMapBean

	Financial Process Integrator Caching
	
	Deprecated Host Cache Settings

	Financial Process Integrator Engine
	EIS Connectors
	
	HTTPConnector
	Defining the Resource adapter
	Interacting with the resource adapter

	Store and Forward
	
	Determining if the host is offline
	Host Status
	Host Operation types
	StoreAndForwardConstants
	StoreAndForwardUtils
	InternalStoreAndForwardUtils
	StoreTransactionBean
	StoreQueueBean
	CompletedForwardTransactionBean
	ForwardTransactionBean
	ForwardOperationsBean
	HostStatusMonitor
	ForwardingThread
	HostConnectivityException
	HostOfflineException
	HostProcessingErrorException
	transactionHandler.storeAndForward.forwardingDelay
	transactionHandler.storeAndForward.hostStatusDelay
	transactionHandler.storeAndForward.url
	transactionHandler.storeAndForward.startHostMonitorAutomatically
	transactionHandler.storeAndForward.nextTransactionBatchAmount
	StoreAndForwardPersister
	TransactionDetails
	IsSystemAvailabilityBean
	IsMakeDeposit
	MakeDeposit
	MaintainFinancialTransaction

	Financial Process Integrator Examples
	
	Introduction
	The Address entity
	The Customer entity
	Relationship between Customer and Address
	The CustomerSearch session
	Interfacing the Entities with the Financial Process Integrator
	CustomerBMPBean Methods
	Modelling the Customer and Address relationship
	CustomerBean Methods
	CustomerBMPBean Methods
	Configuring the PERSISTER_TXN_MAP table
	Configuring the Meta-Data
	Configuring the TXN_ROUTE Table
	Configuring the DESTINATION Table
	Configuring the CustomerSearch Example
	Introduction
	The Account entity
	The AccountSearch session
	Interfacing the Entities with the Financial Process Integrator
	Configuring the PERSISTER_TXN_MAP table
	Configuring the Meta-Data
	Configuring the TXN_ROUTE Table
	Configuring the DESTINATION Table
	Configuring the Cobol Test Connector

	Financial Process Integrator Advanced Topics
	
	TxnHandlerBroker
	Immediate create operation example
	checkIfMoreToRequest()
	checkIfNoEntitiesFound()
	postProcessResponseData()

	Enterprise Services
	Security Provider Framework
	
	com.bankframe.services.security.NullBankFrameSecurityProvider
	com.bankframe.services.security.DefaultBankFrameSecurityProvider

	User Authentication
	
	Purpose
	Framework for custom authentication mechanisms
	Standard authentication mechanisms
	com.bankframe.services.authentication.AuthenticationBean
	com.bankframe.services.authentication.AuthenticationException
	com.bankframe.services.authentication.Authentication
	com.bankframe.services.authentication.AuthenticationUtils
	Introduction to Custom Authentication
	Create the bean implementation
	Define the Remote Interface
	Define the Home Interface
	Define the Deployment Descriptor
	Build & Deploy the bean
	Conclusions
	The SampleAuthenticationBean
	SampleAuthenticationBean Code explanation
	Configuring LDAP Authentication
	Introduction to RDBMS Authentication
	Component Overview
	Configuring RDBMS User Authentication
	Message Digest Overview
	MCA Message Digest service
	MCA Message Digest Configuration

	Session Management
	
	Purpose
	Relationship to other session management systems
	Components of MCA Services Session Management

	Access Control
	
	Introduction to EJB Access Control Implementation
	Configuring access rights
	EJB Overview
	Session Bean Overview
	UserAdministrationBean
	GroupAdministrationBean

	Routing
	
	RequestRouter and Transactions
	RequestRouterBean
	RequestRouter
	RequestRouterHome
	RequestRouterException
	RequestRouterUtils
	EJBRouteBean
	LDAPRouteBean
	Route
	RouteHome
	RoutePK
	com.bankframe.services.route.adminstration
	The RouteAdministrationBean’s Methods
	processDataPacket()
	Request Contexts and Threads
	The com.bankframe.services.requestcontext package
	Configuring Request Contexts
	Accessing the state of a RequestContext
	Writing Custom Request Context Factory Classes
	Request Contexts and Performance

	Remote Notification
	
	Peer to peer using mid-tier server
	High Level overview
	Remote Notification Architecture
	NotificationServer and Target Communication Procedure
	Timeout and Retry Mechanism
	Receiving Notification Event messages
	The com.bankframe.services.notification package
	The com.bankframe.services.notification.notificationserver package
	The com.bankframe.services.notification.registeredaddress package
	The TargetSelectionFactory Methods

	Internationalization
	
	ISO-639 - Language codes
	ISO-3166 - Country Codes

	Logging
	
	The com.bankframe.services.logger package
	The com.bankframe.services.logger.wl61 package
	The com.bankframe.services.logger.log4j package
	The com.bankframe.services.logger.console package
	Logging Levels
	Logging Subsystems
	Logging Best Practices
	Examine logged stack traces
	Filter by functional area
	Filter by logging context
	Configuration Parameters
	Create a class that implements the ELogger interface
	Create a class that implements the ELogger.Context interface
	Create a factory class that extends ELoggerFactory
	Update application server startup script
	BankFrameLog
	ESystem.out

	Audit
	
	com.bankframe.services.audit.NullBankFrameAuditProvider
	com.bankframe.services.audit.DefaultBankFrameAuditProvider

	Timing Points
	
	BankFrameTrace
	EndToEndTrace
	TimingPoint
	TimingPointProperties
	TimingPointFactory
	DefaultTimingPointFactory
	TimingPointAnalyser
	EndToEndTrace
	timingPoint
	timingPoint.writePointsToDisk
	timingPoint.subsystem.BANKFRAME.MCA
	timingPoint.doSummary
	timingPoint.fileName
	timingPoint.bufferSize
	timingPoint.analyzerClassName
	timingPoint.transactionHandler.recording
	timingPoint.custom.recording
	timingPoint.host.recording
	timingPoint.servlet.recording
	timingPoint.format

	Mail
	Ping
	
	Calling the Ping Service using a client
	Calling the Ping Service using a browser

	LDAP Connectivity
	
	What is LDAP?
	MCA Services & LDAP
	com.bankframe.ei.ldap.LDAPServerContext
	com.bankframe.ei.ldap.LDAPServerContextFactory
	com.bankframe.ei.ldap.LDAPEntityBean
	com.bankframe.ei.ldap.LDAPPrimaryKey
	com.bankframe.ei.ldap.LDAPEntityBeanPK
	Bean Implementation
	Bean Implementation Explained
	The Remote Interface
	The Home Interface
	The Deployment Descriptor
	Using Custom Primary Keys
	Modifying the LDAPPerson example to use CustomPK
	Handling multiple values
	Implementing custom finder methods

	Data Validation
	
	com.bankframe.validation.ValidationException
	com.bankframe.DataTypeValidator
	com.bankframe.DataTypeConvertor
	com.bankframe.validation.DateValidator
	com.bankframe.validation.DateConvertor
	DataTypeValidator Example
	DataTypeConvertor Example
	DateValidator Example
	DateConvertor Example

	Peripherals Support
	
	Scope
	MCADevice base interface
	MCASerialPort base class
	MCADeviceProperties class
	DeviceException class
	MCADeviceProtocol class
	MagTek MiniMicr cheque reader device
	Using the MiniMicr Device in a client application
	Epson TM-U375 Slip-printer device
	Using the SlipPrinter Device in a Client Application
	MagTek IntelliPin Plus swipe-card device
	Using the IntelliPIN Pad Card-Swipe Device in a Client Application
	Implementing a new type of Serial-Port device
	Epson Slip-Printer
	MagTek MiniMicr cheque reader
	MagTek IntelliPIN Plus card-swipe reader
	Java Communications Extension API on Windows
	Java Communications Extension API on Solaris
	Java Communications API Trouble Shooting
	Java Cryptography Extension API
	MagTek Device Drivers for Windows
	Client-side Application
	Server-side
	Client-side Applet
	Unit Test classes
	Links:
	Downloads
	Sample source code
	Printed Matter

	Printing Framework
	
	The Solution
	PrintBean
	Control Process
	Architecture Overview

	Caching Framework
	
	Uses of caching
	In memory and persistent caches
	Functionality of a cache
	What does the generic framework provide?
	com.bankframe.services.cache.Cache
	com.bankframe.services.cache.GenericCache
	com.bankframe.services.cache.NullCache
	com.bankframe.services.cache.JMSCache
	com.bankframe.services.cache.JMSCache.JMSCacheEvent
	com.bankframe.services.cache.JMSListener
	Configuring JMS Caching
	com.bankframe.services.cache.CachePolicy
	Configuring BankframeResource.properties
	Extending the Caching Framework

	Dynamic Configuration
	
	The problem
	The solution
	Configuring com.eontec.mca.bankframeresourcebundle
	Grouping properties
	BankFrameResource
	BankFrameResourceSubset
	BankFrameMCAResource
	BankFrameResourceBundle
	BankFrameResourceFactory
	ResourceLocator
	Accessing BankframeResource.properties
	Working with subsets
	Accessing arbitrary resource files
	Configuring the refresh interval
	Backwards Compatibility

	Appendix I – Glossary

