
Oracle® Retail Point-of-Service
Operations Guide

Release 8.0.1

June 2007

Oracle Retail Point-of-Service Operations Guide, Release 8.0.1

Copyright © 2007 Oracle. All rights reserved.

Primary Author: Graham Fredrickson

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

v

Contents

List of FiguresList of Tables

Preface ... xv

Audience... xv
Related Documents ... xv
Customer Support ... xv
Conventions ... xvi

1 Architecture

Point-of-Service Architecture... 1-2
Frameworks ... 1-3

Manager/Technician ... 1-3
User Interface.. 1-4
Business Object ... 1-5
Data Persistence.. 1-6
Tour .. 1-7

Design Patterns ... 1-8
MVC Pattern ... 1-8
Factory Pattern.. 1-8
Command Pattern .. 1-9
Singleton Pattern .. 1-9

2 Configuration

Defining Security with Roles .. 2-1
Modifying a Role.. 2-1
Adding a Role ... 2-2
Secured Features .. 2-4
Security Implementation -- Warnings and Advice ... 2-4

Password Policy .. 2-5
Password Reset... 2-6
Password Policy and Password Change... 2-6

Reason Codes .. 2-7
Configuring Transaction ID Lengths... 2-10

Understanding Transaction IDs.. 2-10
Changing Transaction ID Lengths.. 2-11

Configuring RMI Timeout Intervals ... 2-11

vi

Setting the RMI Timeout Interval for the JVM Under Linux.. 2-12
Setting the RMI Timeout Interval for All Manager and Technician Calls 2-12
Setting the RMI Timeout Interval for a Specific Technician ... 2-12

Configuring Third-party Tender Authorization ... 2-13
Enabling the Financial Network Technician ... 2-13
Setting the Merchant Number... 2-13

System Settings.. 2-13
Adding or Changing Language Bundles .. 2-14

Naming Convention for Language Bundles ... 2-14
Creating a New Language Bundle ... 2-14
Configuring the System to Use a New Language Bundle... 2-14

Configuring Logging .. 2-15

3 Development Environment

Preparation... 3-1
Setup ... 3-1

Install Point-of-Service ... 3-1
Build the Database ... 3-2
Create a Sandbox.. 3-2
Configure the IDE .. 3-2
Update Java Security and Policy files ... 3-3
Configure the Version Control System ... 3-3

Run Point-of-Service.. 3-4

4 Tour Framework

Tour Components ... 4-1
Tour Metaphor.. 4-1
Service and Service Region ... 4-3
Bus .. 4-3
Tourmap .. 4-3
Cargo.. 4-5
Sites .. 4-5
System Sites... 4-6
Letters... 4-6
Roads.. 4-6
Common Roads .. 4-7
Aisles .. 4-8
Stations and Shuttles.. 4-8
Signals .. 4-9
Exception Region... 4-10

Role of Java Classes .. 4-11
Tour Cam ... 4-11

Attributes.. 4-12
Letter Processing ... 4-15
Cargo Restoration.. 4-16

Tender Tour Reference.. 4-16

vii

5 UI Framework

Overview .. 5-1
Screens .. 5-2
Beans ... 5-4

PromptAndResponseBean.. 5-4
Bean Properties and Text Bundle ... 5-5
Tour Code .. 5-6

DataInputBean.. 5-7
Bean Properties and Text Bundle ... 5-7
Tour Code .. 5-8

NavigationButtonBean .. 5-9
Bean Properties and Text Bundle ... 5-9

LocalNavigationPanel ... 5-9
GlobalNavigationPanel.. 5-10

Tour Code ... 5-11
DialogBean ... 5-11

Bean Properties and Text Bundle .. 5-11
Tour Code ... 5-12

Field Types ... 5-13
Connections .. 5-14

ClearActionListener .. 5-15
DocumentListener... 5-15
ValidateActionListener... 5-15

Text Bundles ... 5-16
receiptText.. 5-16
parameterText.. 5-17

6 Manager/Technician Framework

New Manager/Technician ... 6-3
Manager Class .. 6-3
Manager Configuration... 6-4
Technician Class ... 6-4
Technician Configuration ... 6-5
Valet Class ... 6-6
Sample Code ... 6-6

Configuration .. 6-6
Tour Code .. 6-7
Manager.. 6-7
Valet .. 6-8
Technician .. 6-9

Manager/Technician Reference ... 6-9
Parameter Manager/Technician... 6-10
UI Manager/Technician... 6-11
Journal Manager/Technician .. 6-12

viii

7 Retail Domain

New Domain Object .. 7-2
Domain Object in Tour Code ... 7-3
Domain Object Reference... 7-4

CodeListMap... 7-4
Currency .. 7-6
Transaction.. 7-7

8 Customization

Parameters.. 8-1
Parameter Hierarchy.. 8-1
Parameter Group.. 8-2
Parameter Properties ... 8-2

Devices ... 8-3
Set Up the Device ... 8-3
Test the Device.. 8-3
Create a Session and ActionGroup.. 8-4
Simulate the Device ... 8-5

Help Files ... 8-6
Modifying Help Files... 8-6

9 Store Database

ARTS Compliance .. 9-1
Understanding Data Managers and Technicians ... 9-1
How Data Transactions Work... 9-3
Creating or Updating Database Tables .. 9-4
Example of Saving Data: Storing Tender Information.. 9-7

Research Table Requirements and Standards.. 9-7
Saving Data from Site Code.. 9-8
Locate Data Operation... 9-9
Modify Data Operation .. 9-12
Test Code.. 9-14
Verify Data ... 9-14

Updating Flat File Configurations ... 9-14
Data Technician Script.. 9-15
Flat File Engine Configuration Script... 9-16
Implementing FlatFileDataOperations .. 9-17
Other Query Types ... 9-20
Complex Query Expressions ... 9-20

10 Extension Guidelines

Conventions.. 10-1
Terms... 10-1
Filename Conventions.. 10-1
Modules .. 10-2
Directory Paths .. 10-2

ix

POS Package... 10-2
Tour ... 10-3

Tour Map... 10-3
Tour Scripts... 10-4
Site .. 10-4
Lane—Road or Aisle.. 10-4
Shuttle .. 10-5
Signal ... 10-5
Cargo.. 10-6

UI Framework.. 10-7
Default UI Config... 10-7
UI Script... 10-8
Bean Model and Bean.. 10-8

Other ... 10-9
Internationalization ... 10-9
Localization... 10-10
Conduit Scripts... 10-11
PLAF .. 10-12
Receipts.. 10-12
Reports... 10-13

Domain Package .. 10-13
Retail Domain .. 10-13

DomainObjectFactory.. 10-13
Retail Domain Object (RDO) .. 10-13

Database ... 10-14
Data Manager and Technician Scripts .. 10-14
Data Actions and Operations ... 10-14
Data Transactions... 10-15

11 General Development Standards

Basics.. 11-1
Java Dos and Don’ts.. 11-1
Avoiding Common Java Bugs... 11-2
Formatting.. 11-2
Javadoc.. 11-3
Naming Conventions.. 11-3
SQL Guidelines.. 11-4

DB2... 11-5
MySQL... 11-5
Oracle... 11-5
PostgreSQL ... 11-6
Sybase .. 11-6

Unit Testing.. 11-6
Architecture and Design Guidelines ... 11-7

AntiPatterns ... 11-7
Designing for Extension ... 11-8

Common Frameworks .. 11-9

x

Internationalization... 11-9
Logging... 11-9

Guarding Code... 11-10
When to Log.. 11-10
Writing Log Messages ... 11-11
Exception Messages ... 11-11
Heartbeat or Life cycle Messages... 11-12
Debug Messages... 11-12

Exception Handling .. 11-12
Types of Exceptions ... 11-13
Avoid java.lang.Exception.. 11-13
Avoid Custom Exceptions .. 11-13
Catching Exceptions .. 11-13

Keep the Try Block Short ... 11-13
Avoid Throwing New Exceptions.. 11-14
Catching Specific Exceptions .. 11-15
Favor a Switch over Code Duplication.. 11-15

12 Point-of-Service Development Standards

Screen Design and User Interface Guidelines... 12-1
Tour Framework... 12-1

Tour Architectural Guidelines .. 12-1
General Tour Guidelines.. 12-1
Foundation ... 12-3
Tours and Services .. 12-3
Sites ... 12-4
Managers and Technicians .. 12-4
Roads... 12-5
Aisles ... 12-5
Signals ... 12-5
Choosing among Sites, Aisles, and Signals ... 12-6
Renaming Letters .. 12-6
Shuttles ... 12-7
Cargo... 12-7

Log Entry Format ... 12-7
Log Entry Description .. 12-7
Fixed Length Header .. 12-7
Additional Logging info... 12-8
Example Log Entry ... 12-9

xi

List of Figures

1–1 Oracle Retail Architecture ... 1-1
1–2 Point-of-Service Architecture Layers ... 1-2
1–3 Manager/Technician Framework .. 1-3
1–4 UI Framework ... 1-4
1–5 Business Object Framework .. 1-6
1–6 Data Persistence Framework... 1-7
1–7 MVC Pattern .. 1-8
1–8 Factory Pattern .. 1-9
1–9 Command Pattern... 1-9
1–10 Singleton Pattern.. 1-10
2–1 Set Access Screen... 2-2
2–2 Add Role Screen.. 2-3
2–3 Set Access Screen... 2-3
2–4 Reason Code Group Screen ... 2-8
2–5 Reason Code List Screen .. 2-9
2–6 Edit Reason Code Screen .. 2-10
4–1 Workflow Example: Tender with Credit Card Option... 4-18
4–2 Workflow Symbols .. 4-18
6–1 Manager, Technician and Valet .. 6-1
7–1 CodeListMap Class Diagrams... 7-5
7–2 Currency Class Diagram.. 7-7
9–1 Data Managers and Data Technicians ... 9-2
9–2 Updating the Database: Simplified Runtime View.. 9-4
9–3 Tender Tour to Point-of-Service Tour Workflow... 9-9
9–4 Diagram: Saving a Transaction .. 9-10
9–5 FlatFileQuery Classes .. 9-18

xii

List of Tables

1–1 Oracle Retail Architecture Components.. 1-2
1–2 Point-of-Service Architecture Layers ... 1-3
1–3 Manager/Technician Framework Components... 1-4
1–4 UI Framework Components.. 1-5
1–5 Business Object Framework Components... 1-6
1–6 Data Persistence Framework Components ... 1-7
2–1 Security Access Points .. 2-4
2–2 Sample Bundle Names .. 2-14
3–1 Point-of-Service Installation Options ... 3-2
3–2 Build Path... 3-3
3–3 Launch Properties ... 3-3
4–1 Metaphor Components .. 4-2
4–2 Component Identification Strategies ... 4-2
4–3 System-called Methods ... 4-11
4–4 Road Tag Element Attributes... 4-13
4–5 Forward TourCam Settings .. 4-14
4–6 Backup Tour Cam Settings ... 4-15
4–7 Tender Package Components... 4-17
5–1 UI Framework Features ... 5-1
5–2 UI Framework Components.. 5-2
5–3 Display Types .. 5-2
5–4 Template Types ... 5-3
5–5 Default Screen Types .. 5-3
5–6 PromptAndResponseBean Property Names and Values.. 5-5
5–7 PromptAndResponseModel Important Methods .. 5-6
5–8 DataInputBean Property Names and Values.. 5-7
5–9 DataInputBeanModel Important Methods ... 5-8
5–10 GlobalNavigationButtonBean Property Names and Values ... 5-10
5–11 NavigationButtonBeanModel Important Methods... 5-11
5–12 DialogBeanModel Important Methods... 5-12
5–13 Dialog Types ... 5-13
5–14 Button Types... 5-13
5–15 Field Types and Descriptions... 5-14
6–1 Manager/Technician Type Examples.. 6-2
6–2 Manager Names and Descriptions ... 6-2
6–3 ManagerIfc Methods... 6-4
6–4 TechnicianIfc Methods ... 6-5
6–5 ValetIfc Method... 6-6
6–6 Important ParameterManagerIfc Methods .. 6-10
6–7 Important POSUIManagerIfc Methods .. 6-12
6–8 Important JournalManagerIfc Methods.. 6-13
7–1 CodeListMap Object Classes and Interfaces ... 7-5
7–2 Currency Object Classes and Interfaces... 7-6
7–3 Transaction Object Classes and Interfaces .. 7-8
8–1 Parameter Directories, Files, and Descriptions... 8-1
8–2 Validator Types ... 8-3
9–1 Database Tables Used in Credit Card Tender Option... 9-8
9–2 FlatFileEngine Query Types ... 9-20
10–1 Required Modules in Dependency Order .. 10-2
11–1 Common Java Bugs.. 11-2
11–2 Naming Conventions .. 11-4
11–3 DB2 SQL Code Problems .. 11-5
11–4 Oracle SQL Code Problems .. 11-6

xiii

11–5 Common AntiPatterns .. 11-7
12–1 Tour Naming Conventions... 12-2
12–2 Log Message Level... 12-8
12–3 Time Stamp Fields ... 12-8

xiv

xv

Preface

Oracle Retail Operations Guides contain the requirements and procedures that are
necessary for the retailer to configure Point-of-Service, and extend code for a
Point-of-Service implementation.

Audience
The audience for this document is developers who develop code for Oracle Retail
Point-of-Service. Knowledge of the following techniques is required:

■ Java Programming Language

■ Object-Oriented Design Methodology (OOD)

■ Extensible Markup Language (XML)

Related Documents
For more information, see the following documents in the Oracle Retail
Point-of-Service Release 8.0 documentation set:

■ Oracle Retail Point-of-Service Release Notes

■ Oracle Retail Point-of-Service Installation Guide

■ Oracle Retail Point-of-Service User Guide

Customer Support
■ https://metalink.oracle.com

When contacting Customer Support, please provide:

■ Product version and program/module name

■ Functional and technical description of the problem (include business impact)

■ Detailed step-by-step instructions to recreate

■ Exact error message received

■ Screen shots of each step you take

xvi

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Architecture 1-1

1
Architecture

This chapter contains information about the Oracle Retail Point-of-Service architecture.
It begins with a general overview of the Oracle Retail architecture. Then it describes
the layers of the Point-of-Service architecture, its frameworks, and design patterns.

Retailers have an increasing demand for enterprise information and customer service
capabilities at a variety of points of service, including the Internet, kiosks and
handheld devices. The retail environment requires that new and existing applications
can be changed quickly in order to support rapidly changing business requirements.
Oracle Retail Platform and Commerce Services enable application developers to
quickly build modifiable, scalable, and flexible applications to collect and deliver
enterprise information to all points of service.

The following image shows a high level view of the Oracle Retail architecture and
components.

Figure 1–1 Oracle Retail Architecture

The following table describes the components in the diagram:

Point-of-Service Architecture

1-2 Oracle Retail Point-of-Service Operations Guide

Advantages of the Oracle Retail architecture include its object-oriented design and
scalability. The system is designed to support existing systems and customer
extensions. Oracle Retail Platform frameworks support integration by adhering to
retail and technology standards. The multi-tier design of the architecture allows the
application to support numerous types of infrastructure.

Point-of-Service Architecture
Oracle Retail Platform contains reusable, highly customizable components for building
and integrating retail applications with user interfaces, devices, databases, legacy
systems, and third-party applications. Oracle Retail Platform also contains integration
points for communicating with external resources. The following diagram shows how
the Tour engine controls the Point-of-Service system. This diagram is a more detailed
view of the components that form the Commerce Services and Oracle Retail Platform
tiers in the previous diagram.

Figure 1–2 Point-of-Service Architecture Layers

Beginning with configuration of the UI and Managers/Technicians, events at the user
interface are handled by the tour engine, which interacts with tour code (Application
Services) and Managers/Technicians (foundation services) as necessary, capturing and
modifying the data stored in Retail Domain objects. Any communication with an
integration point is handled by the Oracle Retail Platform container.

The following table describes the layers of the Point-of-Service architecture:

Table 1–1 Oracle Retail Architecture Components

Component Description

Oracle Retail Platform Oracle Retail Platform provides services to all Oracle Retail applications.
It contains the tour framework, UI framework, and
Manager/Technician frameworks. Oracle Retail Platform is not
retail-specific.

Commerce Services Commerce Services implement business logic. Commerce Services
define data and behavior for retail applications. This component is
referred to as Retail Domain in Point-of-Service.

Oracle Retail Applications All Oracle Retail applications leverage the frameworks and services
provided by Oracle Retail Platform and Commerce Services.

External Interfaces Using frameworks and services, the applications are able to interface to
other applications and resources.

Frameworks

Architecture 1-3

Frameworks
The Oracle Retail architecture uses a combination of technologies that make it flexible
and extensible, and allow it to communicate with other hardware and software
systems. The frameworks that drive the application are implemented by the Java
programming language, distributed objects, and XML scripting. Described below, the
User Interface, Business Object, Manager/Technician, Data Persistence, and
Navigation frameworks interact to provide a powerful, flexible application
framework.

Manager/Technician
The Manager/Technician framework is the component of Oracle Retail Platform that
implements the distribution of data across a network. A Manager provides an API for
the application and communicates with its Technician, which implements the interface
to the external resource. The Manager is always on the same tier, or machine, as the
application, while the Technician is usually on the same tier as the external resource.
The following figure shows an example of the Manager/Technician framework
distributed on two different tiers.

Figure 1–3 Manager/Technician Framework

The following table describes the components:

Table 1–2 Point-of-Service Architecture Layers

Component Description

Configuration Application and system XML scripts configure the layers of the application.

User Interface This layer provides client presentation and device interaction.

Tour Engine This mechanism handles the workflow in the application. The tour engine is the
controller for Point-of-Service.

Application Services This layer provides application-specific business processes. A tour is an
application service for Point-of-Service.

Foundation Services This layer provides stateless, application-independent technical services.
Combined with the Retail Domain objects, it forms the Commerce Services layer.
Technicians provide location-transparent services in Point-of-Service.

Retail Domain Objects Pure retail-specific business objects that contain application data.

Oracle Retail Platform
Container

This is an execution platform and application environment. The Tier Loader is
the Oracle Retail Platform container for Point-of-Service.

Integration This layer provides an integration framework for building standard and custom
interfaces using standard integration protocols.

Frameworks

1-4 Oracle Retail Point-of-Service Operations Guide

User Interface
The UI framework includes all the classes and interfaces in Oracle Retail Platform to
support the rapid development of UI screens. In the application code, the developer
creates a model that is handled by the UI Manager in the application code. The UI
Manager communicates with the UI Technician, which accesses the UI Subsystem. The
following figure illustrates components of the UI framework.

Figure 1–4 UI Framework

The components of the UI framework are described in the following table:

Table 1–3 Manager/Technician Framework Components

Component Description

Manager Managers provide a set of local calls to the application. There are various types of
managers to handle various types of activity. For example, the Data Manager receives
the request to save data from Point-of-Service. It locates the appropriate Technician
that should perform the work and insulates the application from the process of
getting the work accomplished. The Manager is available only on the local tier.

Valet The valet is the object that receives the instructions from the Manager and delivers
them to the Technician. The valet handles data transfer across machines with RMI or
JMS.

Technician The Technician is responsible for communicating with the external resource. When a
Technician receives a valet, it can handle it immediately or queue it for later action.
The Technician can be remote from the Manager or on the local tier.

Frameworks

Architecture 1-5

Business Object
The Commerce Services layer of the architecture contains the Business Object
framework that implements the instantiation of business objects. The Business Object
framework is used to create new business objects for use by Point-of-Service. The

Table 1–4 UI Framework Components

Component Description

Resource Files Resource files are text bundles that provide the labels for a screen. They are
implemented as properties files. Text bundles are used for localizing the application.

Note: The only language currently supported is United States English. Language
bundles are included in this release but are not supported as translated languages.
The bundles are only provided for testing and demonstration purposes.
Oracle Retail does not provide support for any customer extensions made to the base
Point-of-Service product.

Bean Beans are reusable Java program building blocks that can be combined with other
components to form an application. They typically provide the screen components
and data for the workpanel area of the screen.

Specs Specifications define the components of a screen. Display specifications define the
width, height, and title of a window. Template specifications divide displays into
areas. Bean specifications define classes and configurators and additional screen
elements for a component. Default screen specifications map beans to the commonly
used areas and define listeners to the beans. Overlay screen specifications define
additional mappings of beans and listeners to default screens.

Specification Loader Loaders find external specifications and interpret them. The loader instantiates screen
specifications such as overlays, templates, and displays, and places the objects into a
spec catalog.

Catalog A Catalog provides the bean specifications by name. The UI Technician requests the
catalog from the loader to simplify configurations.

Configurator The UI framework interfaces with beans through bean configurator classes, which
control interactions with beans. A configurator is instantiated for each bean
specification. They apply properties from the specifications to the bean, configure a
bean when initialized, reset the text on a bean when the locale changes, set the bean
component data from a model, update a model from the bean component data, and
set the filename of the resource bundle.

Model The business logic communicates with beans through screen models. Each bean
configurator contains a screen model, and the configurator must determine if any
action is to be taken on the model. Classes exist for each model.

UI Manager The UI Manager provides the API for application code to access and manipulate user
interface components. The UI Manager uses different methods to call the UI
Technician.

UI Technician The UI Technician controls the main application window or display. The UI
Technician receives calls from Point-of-Service tours, locates the appropriate screen,
and handles the setup of the screens through the UI Subsystem.

UI Subsystem The UI Subsystem provides UI components for displaying and editing
Point-of-Service screens. The UI subsystem enables application logic to be completely
isolated from the UI components. This component is specific to the technology used,
such as Swing or JSP.

Adapters Adapters are used to provide a specialized response to bean events. Adapters can
handle the events, or the event can cause the adapter to manipulate a target bean.

Adapters implement listener interfaces to handle events on the UI. Adapters come
from the Swing API of controls and support JavaPOS-compliant devices.

Listeners Listeners provide a mechanism for reacting to user interface events. Listeners come
from the Swing API of controls and support JavaPOS-compliant devices.

Frameworks

1-6 Oracle Retail Point-of-Service Operations Guide

business objects contain data and logic that determine the path or option used by an
application.

Figure 1–5 Business Object Framework

The components in the Business Object framework are described in the following
table.

Data Persistence
A specific Manager/Technician pair is the Data Manager and Data Technician used for
data persistence. The Data Persistence framework illustrates how data gets saved to a
persistent resource, such as the database or flat files on the register.

Table 1–5 Business Object Framework Components

Component Description

DomainGateway The DomainGateway class provides a common access point for all business object
classes. It also configures dates, times, decimals, percentages, currency, and numbers.

Domain Object Factory The Domain Object Factory returns instances of business object classes. The
application requests a Factory from the DomainGateway.

Business Object Business objects define the attributes for application data. New instances are created
using the Domain Object Factory.

Frameworks

Architecture 1-7

Figure 1–6 Data Persistence Framework

The components in the Data Persistence framework are described in the following
table.

Tour
The Tour framework establishes the workflow for the application. It models
application behavior as states, events and transitions. The Oracle Retail Platform
engine is modeled on finite state machine behavior. A finite state machine has a
limited number of possible states. A state machine stores the status of something at a
given time and, based on input, changes the status or causes an action or output to
occur. The Tour framework provides a formal method for defining these nested state
machines as a traceable way to handle flow through an application.

Table 1–6 Data Persistence Framework Components

Component Description

Data Manager The Data Manager defines the application entry point into the Data Persistence
Framework. Its primary responsibility is to contact the Data Technician and transport
any requests to the Data Technician.

Data Manager
Configuration Script

The Data Manager processes data actions from the application based on the
configuration information set in the Data Manager Configuration Script. The
Configuration Script defines transactions available to the application.

Data Technician The Data Technician provides the interface to the database or flat file. This class is
part of the Oracle Retail Platform framework. It provides entry points for application
transactions sent by the Data Manager and caches the set of supported data store
operations. It also contains a pool of physical data connections used by the supported
data operations.

Data Technician
Configuration Script

The Data Technician Configuration Script specifies the types of connections to be
pooled, the set of operations available to the application, and the mapping of an
application data action to a specific data operation.

Transaction Queue The Transaction Queue holds data transactions and offers asynchronous data
persistence and offline processing for Point-of-Service. When the database is offline,
the data is held in the queue and posted to the database when it comes back online.
When the application is online, the Data Manager gets the information from the
Transaction Queue to send to the database.

Design Patterns

1-8 Oracle Retail Point-of-Service Operations Guide

Design Patterns
Design patterns describe solutions to problems that occur repeatedly in object-oriented
software development. A pattern is a repeatable, documented method that can be
applied to a particular problem. This section describes four patterns used in the
architecture of Point-of-Service: MVC, Factory, Command, and Singleton.

MVC Pattern
The MVC Pattern divides the functionality of an application into three layers: model,
view, and controller. Different functionality is separated to manage the design of the
application. A model represents business objects and the rules of how they are
accessed and updated. The model informs views when data changes and contains
methods for the views to determine its current state. A view displays the contents of a
model to the user. It is responsible for how the data is presented. Views also forward
user actions to the controller. A controller directs the actions within the application.
The controller is responsible for interpreting user input and triggering the appropriate
model actions. The following diagram illustrates the MVC Pattern.

Figure 1–7 MVC Pattern

Factory Pattern
Another design pattern used in Point-of-Service code is the Factory pattern. The intent
of the Factory pattern is to provide an interface for creating families of related or
dependent objects without specifying their concrete classes. The application requests
an object from the factory, and the factory keeps track of which object is used. Since the
application does not know which concrete classes are used, those classes can be
changed at the factory level without impacting the rest of the application. The
following diagram illustrates this pattern.

Design Patterns

Architecture 1-9

Figure 1–8 Factory Pattern

Command Pattern
Sometimes it is necessary to issue requests to objects without knowing anything about
the operation being requested or the receiver of the request. The Command pattern
encapsulates a request as an object. The design abstracts the receiver of the Command
from the invoker. The command is issued by the invoker and executed on the receiver.
The following diagram illustrates the Command pattern. It is used in the design of the
Manager/Technician framework.

Figure 1–9 Command Pattern

Singleton Pattern
The Singleton pattern ensures a class only has one instance and provides a single,
global point of access. It allows extensibility through subclassing. Singletons allow
retailers to access the subclass without changing application code. If a system only
needs one instance of a class across the system, and that instance needs to be accessible

Design Patterns

1-10 Oracle Retail Point-of-Service Operations Guide

in many different parts of a system, making that class a Singleton controls both
instantiation and access. The following patterns illustrates the Singleton pattern:

Figure 1–10 Singleton Pattern

Configuration 2-1

2
Configuration

This chapter covers options for configuring Point-of-Service normally carried out by
an administrator before the system goes into general use. It covers the following
topics:

■ "Defining Security with Roles"

■ "Password Policy"

■ "Reason Codes"

■ "Configuring Transaction ID Lengths"

■ "Configuring RMI Timeout Intervals"

■ "Configuring Third-party Tender Authorization"

■ "System Settings"

■ "Adding or Changing Language Bundles"

■ "Configuring Logging"

Defining Security with Roles
In Point-of-Service, you specify user access to the application by assigning a role to
each user. Each role contains a list of the security access points of the application,
specifying which access points that role is allowed to use. You can create as many roles
as you need.

Roles are typically named for job titles; by creating a manager role and a clerk role, for
example, you define two classes of employees with different access to the
Point-of-Service functions. All clerks, however, would have the same access rights.

The procedures in this section describe how to modify existing roles or add new ones.
For a list of security access points, see "Secured Features".

Modifying a Role
To modify a role:

1. From the Main Options screen, choose F4/Administration, F4/Security, F3/Roles,
and F2/Find.

2. Select a role name from the list and choose Enter/Next.

The Edit Role screen appears with the selected role displayed.

3. Choose Enter/Next to display the Set Access screen for the selected role.

Defining Security with Roles

2-2 Oracle Retail Point-of-Service Operations Guide

Figure 2–1 Set Access Screen

4. To edit the role, scroll through the list of functions. While a function is selected,
choose F2/Yes/No to toggle the access for that function.

5. When you are finished, choose F3/Done to save the settings.

Adding a Role
To add a role:

1. From the Main Options screen, choose F4/Administration, F4/Security, F3/Roles,
and F3/Add.

The Add Role screen appears.

Defining Security with Roles

Configuration 2-3

Figure 2–2 Add Role Screen

2. Enter the new role name and choose Enter/Next. The Set Access screen appears.
Initially, access for all functions is set to No.

Figure 2–3 Set Access Screen

3. Select the functions that need to be enabled or disabled for the role and choose
F2/Yes/No to toggle to between Yes and No.

4. Continue selecting all functions that need to be changed. When finished, choose
F3/Done to save the settings.

5. Choose Esc/Undo or F12/Cancel to return to the Security Options screen.

Defining Security with Roles

2-4 Oracle Retail Point-of-Service Operations Guide

Secured Features
The following table lists all of the functions within Point-of-Service for which security
access points exist. When a user attempts to use a function protected by one of these
security access points, the system checks whether the user’s role allows that function.

Security Implementation -- Warnings and Advice
Oracle Retail is committed to providing our customers software, that when combined
with overall system security, is capable of meeting or exceeding industry standards for
securing sensitive data. By maintaining solutions based on standards, Oracle Retail
provides the flexibility for retailers to choose the level and implementation of security
without being tied to any specific solution.

Each retailer should carefully review the standards that apply to them with special
emphasis on the Payment Card Industry (PCI) best practices. The Oracle Retail
applications represent one portion of the entire system that must be secured; therefore,
it is important to evaluate the entire system including operating system, network, and
physical access.

The following recommendations are required by Visa:

Table 2–1 Security Access Points

Access Point Access Point Access Point Access Point

Accept Invalid DL Format Administration Override of Soft
Declined Check

Back Office

Bank Deposit Call Referral Accept for
check, credit, or gift card

Cancel Special Order Cancel Transaction

Close Register Close Till Reprint Gift Receipt Customer - Add/Find

Customer Delete Daily Operations Reprint Receipt Discount Rule Add/Modify

Discount rule End Electronic Journal E-mail Employee - Add/Find

Employee Time Maintenance End of Day Training Mode -
Enter/Exit

Item Maintenance

Item/Transaction Discounts Item/Transaction Gift
Registry

Item/Transaction
Sales Associate

Item/Transaction Tax
Modifications

Job Queue Kit Maintenance Layaway Delete Modify Layaway Fees

Modify Markdowns No Sale Open Register Open Till

Orders Override Declined Check Override Declined
Credit

Override Restocking Fee

Override Tender Limits Parameters Add/Modify Customer Discount Point-of-Service

Price Change Price Override Price Promotion Queue Management

Reason Codes Receiving Transaction Details Register Reports

Reset Hard Totals Return Role - Add/Find Schedule Jobs

Service Alert Start of Day Parameter Groups
Access

Store Operations

Till Pay-in Till Pay-out Till Pickup/Loan Till Reconcile

Transfer Void Web Store Add Temp Employee

Cancel Order Clock In Out Customer Discount Money Order

Redeem Reentry On/Off

Password Policy

Configuration 2-5

1. Don’t use database or operating systems administrative accounts for application
accounts. Administrative accounts and any account that has access to sensitive
data should require complex passwords as described below. Always disable
default accounts before use in production.

2. Assign a unique account to each user. Never allow users to share accounts. Users
that have access to more than one customer record should use complex
passwords.

3. Complex passwords should have a minimum length of 7 characters, contain both
numeric and alphabetic characters, be changed at least every 90 days, and not
repeat for at least 4 cycles.

4. Unused accounts should be disabled. Accounts should be temporarily disabled
for at least 15 minutes after six invalid authentication attempts.

5. If sensitive data is transmitted over a wireless network, the network must be
adequately secure, usually through use of WPA, 802.11i, or VPN.

6. Never store sensitive data on machines connected to the internet. Always limit
access using a DMZ and/or firewall.

7. For remote support, be sure to use secure access methods such as two-factor
authentication, SSH, SFTP, and so forth. Use the security settings provided by
third-party remote access products.

8. When transmitting sensitive data, always use network encryption such as SSL.

Following these recommendations does not necessarily ensure a secure
implementation of the Oracle Retail products. Oracle recommends a periodic security
audit by a third-party. Please review the PCI standards for additional information.

Password Policy
One of the most efficient ways to manage user access to a system is through the use of
a password policy. The policy can be defined in the database. One policy is defined
and applied to all users for Oracle Retail Point-of-Service. The Password Policy
consists of the following set of out-of-the-box criteria. For this release, customizing the
password policy criteria is permitted through enabling status code system settings and
updating password policy system settings to the desired setting.

In order to be PCI compliant the Password Policy needs to be set to the following:

■ Force user to change password after 90 days.

■ Warn user of password expiration 5 days before password expires.

■ Lockout user 3 days after password expires or password is reset.

■ Lockout user after 6 consecutive invalid login attempts.

■ Password must be at least 7 characters in length.

■ Password must not exceed 22 characters in length.

■ Password must not match any of the 4 previous passwords.

■ Password must include at least 1 alphabetic character(s).

■ Password must include at least 1 numeric character(s).

Once the desired password policy has been defined, it is applied to all authorized
users of the Oracle Retail Point-of-Service, Oracle Retail Mobile Point-of-Service,

Password Policy

2-6 Oracle Retail Point-of-Service Operations Guide

Oracle Retail Back Office, Oracle Retail Labels and Tags, and Oracle Retail Central
Office application once per database.

Password Reset
Users locked out of the system must request the assistance of an administrator to have
his/her password reset. The administrator resets the password by selecting the reset
password option in Oracle Retail Central Office, Oracle Retail Back Office or Oracle
Retail Point-Of-Service, when applicable. When a user password is reset the system
generates a temporary random password. The reset password status is immediately
set to ‘expired’ prompting the user to change the temporary password at the next
successful login.

Each time a password is changed, the previous password is stored according to the
‘Passwords must not match any of the N previous passwords’ criteria set for the policy
associated with the assigned user role. Temporary passwords may not comply with
the password policy and are not stored in the password list.

Do the following to change the password of another user:

1. Click Administration.

2. Log in.

3. Click Security.

4. Click Employee.

5. Click Find.

6. Search for the user whose password you are resetting. You can search by user ID,
name or role. For example, to search by name, click Emp. Name, then enter the
user’s first name and last name.

7. Review the user’s information.

8. Click Reset Password.

You will see a message asking if you are sure you want to reset the password.
Click Yes.

9. A screen with the user’s new temporary password is shown.

10. Click Enter.

Password Policy and Password Change
Do the following to change your password:

1. Click Administration.

2. Click Change Password.

3. Provide the following:

■ Your user ID

■ Your current password

Note: This temporary password is provided on this screen only.
Record this temporary password. The password is not recorded or
logged, and is not provided by email. Administrators must provide
this temporary password to the user.

Reason Codes

Configuration 2-7

4. Enter a new password.

5. Enter the new password again.

6. You will see a confirmation screen.

7. Click Enter.

Do the following to add a user:

1. Click Administration.

2. Log in.

3. Click Security.

4. Click Employee.

5. Click Add.

6. Click Standard or Temp.

7. Enter the following:

■ First name

■ Last name

■ Employee ID

8. Provide a role, for example, Administrator.

9. Provide a status, for example, Active.

10. Provide a Preferred Language, for example, English (United States).

11. Click Enter.

12. A screen with the new user’s temporary password is shown.

Reason Codes
Reason codes are items offered to the end user as choices in lists, for example, the set
of possible reasons for a price override. These choices normally vary for each
corporation, and they must be configured to suit your local requirements and policies.
The system comes with a predetermined set of reason code groups; within each group,
you can add, remove, and modify the list of codes, all from within the Point-of-Service
interface.

For a complete list of available reason code groups, contact Oracle Retail for a copy of
the Reason Codes Functional Requirements.

To modify reason codes:

Note: The only language currently supported is United States
English.

Note: This temporary password is provided on this screen only.
Record this temporary password. The password is not recorded or
logged, and is not provided by email. Administrators must provide
this temporary password to the user.

Reason Codes

2-8 Oracle Retail Point-of-Service Operations Guide

1. From the Main Options screen, choose F4/Administration, F4/Security, and
F5/Reason Codes.

Figure 2–4 Reason Code Group Screen

2. From the Reason Code Groups screen, select the group you want to view or edit.
The Reason Code List screen appears.

Note: If the Edit Reason Codes parameter is set to No, the reason
codes are for viewing only and the ability to set default, edit, add,
delete, or change a reason code is not offered.

Reason Codes

Configuration 2-9

Figure 2–5 Reason Code List Screen

3. Select one of the following:

■ To delete a code, select it, then choose F5/Delete.

■ To change the position of a code in the list, select it, then choose F6/Move Up
or F7/Move Down.

■ To add a code, choose F4/Add. The Add Reason Code screen appears. Enter a
name and database ID, then choose Enter/Next.

■ To change the name or database ID of a code, select the code in the list and
choose F3/Edit.

The system displays the Edit Reason Code screen. Edit the values shown, then
choose Enter/Next.

Configuring Transaction ID Lengths

2-10 Oracle Retail Point-of-Service Operations Guide

Figure 2–6 Edit Reason Code Screen

4. Press F2/Make Default to save your changes and make the selected settings the
new default.

5. Choose Enter/Next. The changes are saved, and the system displays the Reason
Code Group screen.

Configuring Transaction ID Lengths
You can change the lengths of some of the most common data values associated with
transactions. These changes affect every aspect of the software and should not be
undertaken lightly. Changes should only be performed before Point-of-Service is
installed. Changes to these settings can require substantial testing to establish that no
problems result from the change.

Understanding Transaction IDs
A transaction ID is a composite key made from the store number, register number, and
sequence number. When combined, these attributes create a unique number for each
transaction. Transaction IDs can also include an eight-digit date to ensure that they are

Configuring RMI Timeout Intervals

Configuration 2-11

unique. For example, if you restart your sequence numbers on a daily basis, the date
value prevents transaction ID repetition.

Key points about the transaction ID and related properties:

■ You can change the length of the store, register, and sequence numbers which
contribute to the Transaction ID. You cannot directly configure the length of the
transaction ID itself.

■ System-generated unique Layaway numbers, Special Order numbers, and Web
Order numbers are not affected by changes to the transaction ID rules.

■ A maximum of 20 digits of transaction ID can be printed on receipts using the
Point-of-Service current barcode format.

■ If the value of a store, register, or sequence number has fewer than the specified
number of digits, Point-of-Service uses leading zeroes to pad the number to the
required number of digits; a four-digit sequence number whose value is 22 shows
up within the transaction ID as 0022.

■ Dates can be used in transaction IDs to help ensure unique IDs. If they are used,
they are expressed as an 8-digit number; this is set by the
TransactionIDBarcodeDateFormat property in the domain.properties
file. The only valid values for this property are no value and yyyyMMdd. The date
format does not vary from one locale to another.

■ You can set the transaction sequence start number in the database.

■ When you enter a transaction ID manually, the trailing date is optional.

Changing Transaction ID Lengths
To change ID lengths, edit the values in the Transaction ID section of the
\OracleRetailStore\domain\config\domain.properties file in your source
code control system. See "Understanding Transaction IDs" for more information on
what these properties mean.

Example 2–1 Changing Transaction ID Length

Transaction ID
TransactionIDStoreIDLength=5
TransactionIDWorkstationIDLength=3
TransactionIDSequenceNumberLength=4
#TransactionIDBarcodeDateFormat=yyyyMMdd
TransactionIDBarcodeDateFormat=
TransactionIDSequenceNumberSkipZero=false
TransactionIDSequenceNumberMaximum=9999

Configuring RMI Timeout Intervals
You can configure remote method invocation (RMI) timeout intervals at two levels:

■ The JVM level (Linux installs only)

■ The level of managers and technicians

If you are performing a Linux installation, configure the JVM as described in "Setting
the RMI Timeout Interval for the JVM Under Linux", below. If you determine that RMI
connections are timing out, you can use one of the other procedures in this section,
"Setting the RMI Timeout Interval for All Manager and Technician Calls" or "Setting
the RMI Timeout Interval for a Specific Technician".

Configuring RMI Timeout Intervals

2-12 Oracle Retail Point-of-Service Operations Guide

Setting the RMI Timeout Interval for the JVM Under Linux
Oracle Retail has found it useful to change the RMI timeout interval for the JVM under
Linux. To do this, change the command that launches the JVM, adding the JVM flag:
Dsun.rmi.transport.connectionTimeout=<X> where <X> represents the
time-out period in milliseconds.

This tells the JVM to time out socket connections used by RMI after X milliseconds of
inactivity. Linux quickly notifies the JVM when a socket connection cannot be
established. Linux is slow, however, to notify the JVM when an open socket connection
has been broken (around 15 minutes). By setting the connection time-out low, you can
cause the sockets to disconnect quickly after each RMI call, thereby requiring a connect
for each subsequent RMI call.

Setting the RMI Timeout Interval for All Manager and Technician Calls
You can change the RMI timeout interval values for connections and reads in the
\OracleRetailStore\pos\bin\comm.properties file. The value for the
following properties apply to all manager and technician calls, unless overridden by a
communication scheme for a specific call.

■ comm.socket.connectTimeout - Specifies how long to wait for a socket
connection to succeed. The value is in milliseconds.

■ comm.socket.readTimeout - Specifies how long to wait before a read times
out. The value is in milliseconds. This property causes the read to time out even if
the socket is alive and well and transmitting data.

Setting the RMI Timeout Interval for a Specific Technician
To set the time-out for a specific technician, edit the
\OracleRetailStore\pos\bin\comm.properties file and the conduit script as
follows:

1. Add a new communication scheme to the
\OracleRetailStore\pos\bin\comm.properties file. The following lines
provide an example:

comm.rmi_longread.readTimeout=120000
comm.rmi_longread.connectTimeout=1000

These lines establish a new communication scheme called rmi_longread with a
read time-out of 120 seconds and a connect time-out of one second (since the
values are in milliseconds).

2. Add the following property to the appropriate technician definition in the conduit
script:

<PROPERTY propname="commScheme" propvalue="rmi_longread"/>

This sets the communication time-outs for all managers that connect to this
technician. A manager who is sending a valet to this technician times out if the
valet fails to complete within 120 seconds. It only attempts to connect to the
technician for 1 second before giving up.

System Settings

Configuration 2-13

Configuring Third-party Tender Authorization
Initially, the Point-of-Service system simulates tender authorization. You can connect
Point-of-Service to a third-party tender authorization service to verify tenders. Setting
up this connection requires two configuration steps:

■ "Enabling the Financial Network Technician"

■ "Setting the Merchant Number"

Enabling the Financial Network Technician
In your conduit script, locate a technician tag with the name
FinancialNetworkTechnician and replace it with the tag shown in the following
example.

<TECHNICIAN name="FinancialNetworkTechnician"
 class="ISDTechnician"
 package="com.extendyourstore.domain.manager.tenderauth.isd"
 export="Y">
 <PROPERTY
 propname="hostName"
 propvalue="<enter a URL here>"
 />
 <PROPERTY
 propname="hostPort"
 propvalue="<enter a port number here>"
 proptype="INTEGER"
 />
 <PROPERTY
 propname="reversalFile"
 propvalue="testRev.ser"
 />
 <PROPERTY
 propname="logFile"
 propvalue="isd.log"
 />
 </TECHNICIAN>

Setting the Merchant Number
Set the Merchant Number parameter to the appropriate value for the authorization
service you are using. Merchant Number is an XML parameter in the Tender
Authorization group. For information on changing the parameter, see the Oracle Retail
Strategic Store Solutions Configuration Guide.

System Settings
System settings are values set in the Oracle Retail database. Changes to these settings
must be made in the database by a database administrator or an application developer.

System settings can have significant effects on the Point-of-Service system; do not
make changes unless you are confident that you understand the effects. For a
description of all available system settings, refer to the Oracle Retail Strategic Store
Solutions Configuration Guide.

Adding or Changing Language Bundles

2-14 Oracle Retail Point-of-Service Operations Guide

Adding or Changing Language Bundles

The procedures in this section describe how to create new bundles and make them
available to the application.

Naming Convention for Language Bundles
Use the following syntax to name language bundles:

<lowercase two-letter language abbreviation>_<uppercase two-letter country
abbreviation>

The following table shows some sample uses of the convention.

Creating a New Language Bundle
To create a new language bundle:

1. Create a new source code directory in \OracleRetailStore\pos\locales for
the language bundle, starting with a copy of the en_US directory.

2. Replace the English text in the properties files and help files in your new directory
with translated text.

3. Generate a .jar file using the naming convention described in the preceding
section.

Configuring the System to Use a New Language Bundle
To add a new language and change the default language:

1. Store the new .jar file in \OracleRetailStore\pos\lib\locales.

2. Change the locale parameter to match the new locale in the
ClientConduit.xml, StoreServerConduit.xml, and
CollapsedConduitFF.xml files. These files are located in
\OracleRetailStore\pos\config\conduit.

<?xml version='1.0' ?>
<!DOCTYPE DISPATCHER SYSTEM
"classpath://com/extendyourstore/foundation/tour/dtd/dispatch.dtd">
<DISPATCHER name="STANDALONE">
 <LOCALE language="es" country="PR"/>
 <APPLICATION name="APPLICATION"

Note: The only language currently supported is United States
English. Language bundles are included in this release but are not
supported as translated languages. The bundles are only provided for
testing and demonstration purposes.

Oracle Retail does not provide support for any customer extensions
made to the base Point-of-Service product.

Table 2–2 Sample Bundle Names

Language Bundle Directory .jar file

Puerto Rican Spanish es_PR es_PR.jar

United States English en_US en_US.jar

Configuring Logging

Configuration 2-15

3. Edit the \OracleRetailStore\pos\config\application.properties
file.

a. If you want the new locale to be the default locale, replace the value of the
default_locale property with your new locale name.

b. Add your new locale name to the list in the supported_locales property.

default_locale=es_PR
supported_locales=en_US,es_PR,fr_CA

4. If the standard installation script is not used, then include the new .jar in the
classpath ahead of pos.jar.

Configuring Logging
Point-of-Service logging uses the Log4J tool. Configure Log4J by editing
\OracleRetailStore\pos\config\log4j.xml. See the Apache documentation
for Log4J at http://logging.apache.org/log4j for more information; a how-to can be
found at http://wiki.apache.org/logging-log4j/Log4jXmlFormat.

http://logging.apache.org/log4j
http://logging.apache.org/log4j
http://logging.apache.org/log4j
http://wiki.apache.org/logging-log4j/Log4jXmlFormat

Configuring Logging

2-16 Oracle Retail Point-of-Service Operations Guide

Development Environment 3-1

3
Development Environment

A development environment for Point-of-Service includes all files, tools and resources
necessary to build and run the Point-of-Service application. While development
environments may vary depending on the choice of IDE, database, and version control
system, configuration of the development environment involves some common steps.
This document addresses components that various development environments have in
common.

Preparation
The following software resources must be installed and configured before the
Point-of-Service development environment can be set up. Ensure that the following are
in place:

Version control system
The Point-of-Service source code must be available from a source control system.

OracleRetailStore database
The OracleRetailStore database should be installed.

Eclipse version 3.0 or another IDE
If installing Eclipse, downloads and instructions are available from
http://www.eclipse.org/downloads/.

JDK 1.4
Downloads and instructions are available at http://java.sun.com/downloads/

Setup
Setting up the development environment requires installing the Point-of-Service
application, populating the database, creating a sandbox, configuring the IDE, and
configuring the version control system.

Install Point-of-Service
Install Point-of-Service using the installation script. While running the Point-of-Service
installation script, accept the default options even when nothing is selected, except for
the options discussed in the following table.

http://www.eclipse.org/downloads/
http://java.sun.com/downloads/

Setup

3-2 Oracle Retail Point-of-Service Operations Guide

Build the Database
The tables should be populated with the item, employee, coupon and other retail data
that the store needs. If a database is being built from scratch, it needs to be populated
with data. The following command can be executed to build the tables and insert a
minimal data set.

C:\>OracleRetailStore\pos\bin\dbbuild.bat

To run the dbbuild.bat, it is necessary to pass an input parameter:

dbbuild.bat [data level]

[data level] can be base_data, seed_data, test_data, demo_data.

base_data contains just enough to get the build running.

seed_data should contain enough to build and run unit/functional tests.

test_data will contain the rest of the data that you expect from previous builds.

Create a Sandbox
If you plan to retrieve all the source code with the version control system, create a local
sandbox with only one directory such as the following.

C:\mySandbox\

Otherwise, create a local working directory with src, config, and locales\en_US
subdirectories. This allows the application code to find all the top-level directories. The
following lists the directories that should be created.

C:\mySandbox\
C:\mySandbox\src
C:\mySandbox\config
C:\mySandbox\locales\en_US

Configure the IDE
The following configuration enables your IDE to build and run the Point-of-Service
application.

1. Set the JRE System Library. In the IDE preferences, point to the JRE included in the
JDK installed earlier.

Point to the root of the Java directory in which JDK 1.4 was installed, not the JRE
directory in the Point-of-Service installation directory. For example, if the JDK
directory is named C:\jdk1.4.1, the JRE Home Directory would be C:\jdk1.4.1.

Table 3–1 Point-of-Service Installation Options

Option Instruction

Server Tier Type Choose the Server Tier Type from the following options.

Stand-alone/Collapsed—Choose this option to run the Point-of-Service client and
server functions in one JVM.

N-Tier Client and N-Tier Store Server—Choose both of these options to run client and
server components on the same machine in separate JVMs.

Database Information Specify the database type and its location. The default is Oracle 10g and DB2 v8.2

JRE Location 3rd Party Jars

Setup

Development Environment 3-3

2. Specify the path for the source directories on the build path to be the same as the
directory or directories created for the sandbox.

3. Specify the following jars on the build path in the order described in the following
table. These directories are the same as the directories in
C:\OracleRetailStore\pos\logs\classpath.log.

4. Set the launch properties listed in the table below.

The program arguments differ depending on the Server Tier type chosen during
the Point-of-Service installation. This option is determined by the Server Tier Type
selected.

Update Java Security and Policy files
Copy the java.security and java.policy files dropped by the Point-of-Service
installation, located in C:\OracleRetailStore\jre\lib\security. Paste these files in the
java\jre\lib\security directory for the JDK that the IDE is referencing.

Configure the Version Control System
Each file from the source code repository should be retrieved to the proper location in
your sandbox. To do this, set the workfile location of the root of each of the product
components displayed in the version control system, such as 360common. Each

Table 3–2 Build Path
Order Directory

1 C:\OracleRetailStore\pos\lib

2 C:\OracleRetailStore\pos\lib\locales

3 C:\OracleRetailStore\pos\3rdparty\lib

4 C:\OracleRetailStore\pos\3rdparty\lib\ibm\surepos750

5 C:\OracleRetailStore\360common\lib

Note: 3rd Party folders specified during installation should also be
added here.

Table 3–3 Launch Properties

Property Value

main class com.extendyourstore.foundation.config.TierLoader

program arguments If the Tier type is Stand-alone, the program argument is
classpath:\\config\conduit\CollapsedConduitFF.xml.

If the Tier type is N-Tier Client and N-Tier Server, there are two sets of launch
properties. The Store Server launch setting has its program argument set to
classpath:\\config\conduit\StoreServerConduit.xml. The Client launch setting has
its program argument set to classpath:\\config\conduit\ClientConduit.xml. Wait for
the StoreServerConduit to finish starting before launching the ClientConduit.

classpath Add the database runtime directory to the classpath. To find this path, open
C:\OracleRetailStore\pos\logs\classpath.log and search for the local database
directory.

Also, add the installation config directory. Choose C:\OracleRetailStore\pos\config.

Run Point-of-Service

3-4 Oracle Retail Point-of-Service Operations Guide

workfile location should be set to the local sandbox. For example, if your sandbox is
named C:\mySandbox, the root of the product components should point to
C:\mySandbox.

Run Point-of-Service
To verify the setup, run the Point-of-Service application using the following steps:

1. Start the OracleRetailStore Database.

2. Build the project.

3. Run Point-of-Service from the IDE.

Tour Framework 4-1

4
Tour Framework

The Tour framework is a component of the OracleOracle Retail Platform layer of the
Point-of-Service architecture. The Tour framework implements a state engine that
controls the workflow of the application. Tour scripts are a part of this framework;
they define the states and transitions that provide instructions for the state engine that
controls the workflow. Java classes are also part of this framework; they implement the
behavior that is accessed by the tour engine, based on instructions in the tour scripts.
The Tour Guide application assists with this development effort by generating the tour
scripts rapidly and creating stubs of the necessary Java classes.

Tour Components
The tour metaphor helps the user visualize how the Oracle Retail Platform engine
interacts with application code. In the following description of the metaphor, the
words in italics are part of a simple tour script language that Oracle Retail Platform
uses to represent the application elements.

Tour Metaphor
For a moment, imagine that you are a traveler about to embark on a journey. You have
the itinerary of a business traveler (changeable at any time), your luggage, and
transportation. In addition, you have a video camera (TourCam) to record your tour so
you can remember it later.

You leave on your journey with a specific goal to achieve. Your itinerary shows a list of
tours that you can choose from to help you accomplish your task. Each tour provides a
tour bus with a cargo compartment and a driver. Each driver has a map that shows the
various service regions that you can visit. These regions are made up of sites (like
cities) and transfer stations (bus stations, airports, etc.). The maps show a finite
number of lanes, which are either roads joining one site to another or aisles within one
site. To notify the driver to start the bus and drive, you must send a letter to the driver.
The driver reads the name on the letter and looks for a lane that matches the letter.

When a matching letter is found, the driver looks for a traffic signal on the road. If
there is no signal, the driver can traverse the road. If there is a signal, the driver can
traverse the road only if the signal is green. If the signal is red, the driver attempts to
traverse the next alternative road that matches the letter. If the driver cannot find any
passable road, he or she returns to the garage. When you arrive at a site or traverse a
lane, you may perform an action to achieve your goal, like take a picture of the
countryside.

Upon arriving at a transfer station, you immediately transfer to another service, and
you load a portion of your cargo onto a shuttle and board the shuttle. The shuttle takes
you and your cargo to the bus that runs in the map of the other tour. Upon arrival at

Tour Components

4-2 Oracle Retail Point-of-Service Operations Guide

the new bus, you unload the shuttle and load the new bus. Then the new driver starts
the bus and your journey begins in the new tour. When the transfer tour itinerary is
complete, you load whatever cargo you want to keep onto a shuttle and return to the
original tour bus. At that time, you unload the shuttle and continue your tour.

These tour script components map to terms in the metaphor. The tour metaphor
provides labels and descriptions of these components that improve understanding of
the system as a whole. The following table includes a metaphor description and a
technical description for the basic metaphor components.

When given a use case, create a tour script by identifying components for the tour
metaphor. Strategies for identifying components are listed in the table below. The
following sections describe each component in more detail.

Follow the naming conventions in the Development Standards when deciding the
names for the components. It is important to understand that the tour metaphor is not
only used to describe the interaction of the components, but the component’s names

Table 4–1 Metaphor Components

Name Metaphor Description Technical Description

Service A group of related cities, for
example “A Mediterranean Tour”

An implementation of workflow and
behavior for a set of functionality

Bus The vehicle that provides
transportation from city to city

The entity that follows the workflow
between the sites

Cargo The baggage that the traveler
takes with him/her from city to
city

The data that follows the workflow,
modified as necessary

Site A city A function point in the workflow

Road A path the bus takes to get from
one city to another

A transition that takes place based on an
event that changes the state

Aisle A path the traveler takes while
staying on the same bus in the
same city

An action that takes place based on an
event, without leaving the current state

Letter A message the bus driver receives
instructing him/her to perform an
action

A message that causes a road or aisle to
be taken

Table 4–2 Component Identification Strategies

Component How to Identify

Service A service generally corresponds to a set of related functionality.

Site Sites generally correspond to points in the workflow that need input from outside the
tour. Outside input sources include the user interface, the database, and devices
among others.

Road At a site, look at the ways control can be moved to another site. There is one road for
each of these cases.

Aisle At a site, there might be a task that you want to handle in a separate module and then
return to the site when the task is complete. There is one aisle for each of these cases.

Letter Letters generally correspond to buttons on a UI screen and responses from the
database and devices. Look for the events that move control from one site to another
or prompt additional behavior within a site to help identify letters.

Tour Components

Tour Framework 4-3

are used in the code. By convention, a site named GetTender has a Java class in the
package named GetTenderSite.java that performs the work done at the site.

Service and Service Region
Tours provide a way of grouping related functionality to minimize maintenance and
increase reusability. All tours provide a bus to maintain state and cargo for data
storage. All sites, lanes, and stations contained within a tour have access to these
resources. A service is essentially a tour, but the terms service and service region are
used by the Tour Guide application to refer to a tour. Furthermore, in the
Point-of-Service source code, the tours are found in the
src\com\extendyourstore\pos\services directory. Generally, this chapter uses the
word tour to refer to a tour. The word service and phrase service region are used in
this section because they are elements in the XML code.

The service region contains all functionality related to running the application when
no exceptions are encountered. The following code sample from
src\com\extendyourstore\pos\services\tender\tender.xml shows the definition of a
service and service region in a tour script.

Example 4–1 tender.xml: Definition of Service and Service Region

<SERVICE name="Tender" package="com.extendyourstore.pos.services.tender"
tourcam="ON">
<SERVICECODE>
...definition of letters, siteaction classes, and laneaction classes...
</SERVICECODE>
<MAP>
<REGION region="SERVICE" startsite="GetTender">
...definition of sites, stations, and lanes...
</REGION>
</MAP>
</SERVICE>

As shown in the code sample, there are two main sections of a tour script. The
SERVICECODE element defines the Java classes in the tour and the letters that may be
sent in the tour code or by the user. The MAP element links the classes and letters to
the sites and lanes. In the following sections, code samples are shown from both
sections of the tour script.

Bus
The bus object is passed as a parameter to all tour methods called by the tour engine.
Methods can be called on the bus to get access to the cargo, managers and other state
information. The following code sample from
src\com\extendyourstore\pos\services\tender\GetCheckInfoSite.java shows a
reference to the bus.

Example 4–2 GetCheckInfoSite.java: Retrieving Cargo from Bus

TenderCargo cargo = (TenderCargo) bus.getCargo();

Tourmap
One problem of tour scripts is that they can be difficult to customize for a particular
retailer’s installation. The new tourmap feature allows customizations to be made
more easily on existing tour scripts. Tour components and tour scripts can be
referenced by logical names in the tour script and mapped to physical names in a

Tour Components

4-4 Oracle Retail Point-of-Service Operations Guide

tourmap file, making it easier to use the product tour and just change the pieces that
need to be changed for a customer implementation. In addition, with tourmaps,
components and scripts can be overridden based on a country, so files specific to a
locale are implemented when appropriate.

The tourmap does not allow you to modify the structure of the tour, specifically the
following:

■ does not allow you to add or remove sites

■ does not allow you to add or remove roads and aisles

■ does not allow you to specify a tour spanning multiple files (i.e. “tour
inheritance”)

Of particular note is the last bullet: the tourmap does not allow you to assemble
fragments of xml into one cohesive tour script. After the application is loaded, there is
only be one tour script that maps to any logical name.

The functionality of tourmapping is implemented via one or more tourmap files.
Multiple tourmap files can be specified via the config\tourmap.files properties.
tourmap.files is a comma delimited list of tourmap files. As each file is loaded, the
application checks the country property of the tourmap file. The order of files is
significant because later files override any values specified in previous files. A file that
overrides a similarly-named file is called an overlay.

Each tourmap file begins with a root element, tourmap, which has an optional country
attribute. The tourmap elements contains multiple tour elements, each one of which
describes a tour's logical name, its physical file, and any overlays to apply. For
instance, a simple tourmap might look like the following:

Example 4–3 Sample Tourmap

<?xml version="1.0" encoding="UTF-8"?>
<tourmap
 country="CA"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="com/extendyourstore/foundation/tour/dtd/tourmap.xsd
">

 <tour name="testService">

<file>classpath://com/extendyourstore/foundation/tour/engine/tourmap.testservice.x
ml</file>
 <SITE
 name="siteWithoutAction"

useaction="com.extendyourstore.foundation.tour.engine.actions.overlay.OverlaySiteA
ction"/>
 <SITEACTION
 class="SampleSiteAction"

replacewith="com.extendyourstore.foundation.tour.engine.actions.overlay.OverlaySit
eAction"/>

 </tour>
</tourmap>

Tour Components

Tour Framework 4-5

In this instance, the tour with the logical name testService references the file
com\extendyourstore\foundation\tour\engine\tourmap.testservice.xml.
Additionally, the values for SITE and SITEACTION are replaced.

Tourmaps are used not only to override XML attributes, but they are used also when
the workflow needs to be changed.

Cargo
Cargo is data that exists for the length of the tour in which it is used. Any data that
needs to be used at different tour components such as sites and aisles needs to be
stored on the cargo. Cargo always has a Java class. The following code sample from
tender.xml defines the Tender cargo.

Example 4–4 tender.xml: Definition of Cargo

<CARGO class="TenderCargo">
</CARGO>

With the concept of a tourmap, a cargo class can be overridden with another class. This
allows you to override the class name for a customer implementation yet still keep the
same workflow for the customer as in the product. The following tourmap definition
specifies the class to override and the new class to use in place of the original class.

Note that replacewith is a fully qualified classname, with both package and classname
specified, unlike the class attribute.

Example 4–5 tourmap.xml: Example of Overriding Cargo Class

<CARGO class="TenderCargo"
replacewith="com.extendyourstore.cargo.SomeCargo"/>

Sites
Sites correspond to nodes in a finite state machine and cities in the tour metaphor. Sites
are usually used as stopping places within the workflow. Arrival at a site usually
triggers access to an external interface, such as a graphical user interface, a database,
or a device. Sites always have a corresponding siteaction class.

The tender.xml code sample below contains the site information from the two main
parts of a tour script: the XML elements SERVICECODE and MAP, respectively.

Example 4–6 tender.xml: Definition of Site Class

<SITEACTION class="GetTenderSite"/>

Example 4–7 tender.xml: Mapping of Site to SiteAction

<SITE name="GetTender" siteaction="GetTenderSite">
... definition of lanes ...
</SITE>

Note: Because of the country in the tourmap element, this only
happens when the default locale of the application is a Canadian
locale, if locale=Locale.CANADA_FRENCH

or locale=Locale.CANADA.

Tour Components

4-6 Oracle Retail Point-of-Service Operations Guide

With the concept of Tourmap, a site’s siteaction can be overridden with another class.
This allows you to override the class name for a customer implementation yet still
keep the same workflow for the customer as in the product. The following tourmap
definition specifies the class to override and the new class to use in place of the
original class. Note that replacewith is a fully qualified classname, with both package
and classname specified, unlike the class attribute.

Example 4–8 tourmap.xml: Overriding Siteaction With Tourmap

<SITEACTION
class="GetTenderSite"replacewith="com.extendyourstore.actions.SomeOtherSiteAction"
/>

System Sites
System sites are defined by the Oracle Retail Platform engine but can be referenced
within a tour script. For example, a road defined by a tour script can have a system site
as its destination. Each system site must have a unique name in the tour script file. The
following code from tender.xml shows the definition of two system sites. The Final
system site stops a bus and returns it to the parent bus, and LastIndexed resumes the
normal bus operation after an exception.

Example 4–9 tender.xml: Definition of System Sites

<REGION>
<MAP>
...definition of sites, lanes, and stations...
<SYSTEMSITE name="Final" action="RETURN" />
<SYSTEMSITE name="LastIndexed" action="BACKUP" />
</MAP>
</REGION>

Letters
Letters are messages that get sent from the application code or the user interface to the
tour engine. Letters indicate that some event has occurred. Typically, letters are sent by
the external interfaces, such as the graphical user interface, database, or device to
indicate completion of a task.

Lanes are defined as roads and aisles. When the system receives a letter, it checks all
lanes defined within the current site or station to see if the letter matches the letter for
a lane. If no matching lane is found, the letter is ignored. Letters do not have a Java
class associated with them.

Standard letter names are used in the application, such as Success, Failure, Undo, and
Cancel. The following code sample shows tender.xml code that defines letters. The
definition is added to the SERVICECODE XML element.

Example 4–10 tender.xml: Definition of Letter

 <LETTER name="Credit"/>

Roads
Roads provide a way for the bus to move between sites and stations. Each road has a
name, destination, and letter that activates the road. A road may have a laneaction
class, depending on whether the road has behavior; only roads that have behavior

Tour Components

Tour Framework 4-7

require a class. Roads are defined within site definitions because they handle letters
received at the site.

Following is tender.xml code that shows the definition of a road. The definition is
added to the SERVICECODE XML element. After the first code sample is another
sample that maps the road to a site and letter, which is contained in the MAP section of
the tour script.

Example 4–11 tender.xml: Definition of Road Class

<LANEACTION class="ValidCreditInfoEnteredRoad"/>
tender.xml: Mapping of Road to Site
<SITE name="GetCreditInfo" siteaction="GetCreditInfoSite">
 <ROAD
 name="ValidCreditInfoEntered"
 letter="Valid"
 laneaction="ValidCreditInfoEnteredRoad"
 destination="GetTender"
 tape="ADVANCE"
 record="OFF"
 index="OFF">
 </ROAD>
...other lanes defined...
</SITE>

With the concept of Tourmap, a road’s laneaction can be overridden with another
class. This allows you to override the class name for a customer implementation yet
still keep the same workflow for the customer as in the product. The following
tourmap definition specifies the class to override and the new class to use in place of
the original class. Note that replacewith is a fully qualified classname, with both
package and classname specified, unlike the class attribute.

Example 4–12 tourmap.xml: Example of Overriding Site Laneaction

<LANEACTION class="ValidCreditInfoEnteredRoad"
replacewith="com.extendyourstore.actions.SomeOtherLaneAction"/>

Common Roads
The COMMON element is defined in the REGION element of the tour script. The
COMMON element can contain roads that are available to all sites and stations in a
tour. Common roads have the same attributes as roads defined within a site, but they
are defined outside of a site so they can be accessed by all sites. If a common road and
a tour road are both activated by the same letter, the site road is taken. The following is
an example that differentiates common roads from tour roads.

Example 4–13 Example of Common Road

<MAP>
 <REGION region="SERVICE" startsite="Example">
 <COMMON>
 <ROAD name="QuitSelected" letter="exit"
 destination="NamedIndex"
 tape="REWIND"/>
 <COMMENT>
 </COMMENT>
 </ROAD>
 </COMMON>
 <SITE name="RequestExample" siteaction="RequestExampleSite">

Tour Components

4-8 Oracle Retail Point-of-Service Operations Guide

 <ROAD name="ExampleSelected" letter="next"
 laneaction="ExampleSelectedRoad"
 destination="ShowExample"
 tape="ADVANCE"
 record="OFF"
 index="ON"/>
 <COMMENT>
 </COMMENT>
 </ROAD>
 </REGION>
</MAP>

Aisles
Aisles provide a means for moving within a site and executing code. Aisles are used
when a change is required but there is no reason to leave the current site or station.
Each aisle contains a name, a letter, and a laneaction. Aisles always require a Java class
because they must have behavior since they do not lead to a different site or station
like roads.

Following is the tender.xml code that shows the definition of an aisle. The definition is
added to the SERVICECODE XML element. The second code sample from the same
tour script maps an aisle to the site and letter, which is contained in the MAP section.

Example 4–14 tender.xml: Definition of Aisle Class

<LANEACTION class="CardInfoEnteredAisle"/>

Example 4–15 tender.xml: Mapping of Aisle to Site

<SITE name="GetCreditInfo" siteaction="GetCreditInfoSite">
 <AISLE
 name="CardInfoEntered"
 letter="Next"
 laneaction="CardInfoEnteredAisle">
 </AISLE>
...other lanes defined...
</SITE>

With the concept of Tourmap, an aisle’s laneaction can be overridden with another
class. This allows you to override the class name for a customer implementation yet
still keep the same workflow for the customer as in the product. The following
tourmap definition specifies the class to override and the new class to use in place of
the original class. Note that replacewith is a fully qualified classname, with both
package and classname specified, unlike the class attribute.

Example 4–16 tourmap.xml: Example of Overriding Aisle Laneaction

<LANEACTION class="CardInfoEnteredAisle"
replacewith="com.extendyourstore.actions.SomeOtherLaneAction"/>

Stations and Shuttles
Transfer stations are used to transfer workflow to another tour and return once the
tour workflow has completed. A transfer station describes a location where another
tour is started and the passenger exits one bus and enters the bus for another tour.

Transfer stations specify the name of the nested tour and define data transport
mechanisms called shuttles. Shuttles are used to transfer cargo to and from the nested

Tour Components

Tour Framework 4-9

tour. These shuttles are either launch shuttles or return shuttles. Launch shuttles
transfer cargo to the nested tour and the return shuttles transfer newly acquired cargo
from the nested tour to the calling tour. Shuttles have Java classes associated with
them, but stations do not.

The following code samples from
src\com\extendyourstore\pos\services\tender\tender.xml contain the station and
shuttle information from the SERVICECODE and MAP elements in the tour script,
respectively.

Example 4–17 tender.xml: Definition of Shuttle Class

 <SHUTTLE class="TenderAuthorizationLaunchShuttle"/>

Example 4–18 tender.xml: Mapping of Station to Service and Shuttle Classes

 <STATION
 name="AuthorizationStation"

servicename="classpath://com/extendyourstore/pos/services/tender/authorization/Aut
horization.xml"
 targettier="APPLICATIONTIER"
 launchshuttle="TenderAuthorizationLaunchShuttle"
 returnshuttle="TenderAuthorizationReturnShuttle">
 ...lane definitions to handle exit letter from nested service...
</STATION>

The servicename can be defined as a logical name like “authorizationService” and
mapped to a filename is the tourmap file. The shuttle names can also be overridden in
the tourmap file. This allows you to override the class name for a customer
implementation yet still keep the same workflow for the customer as in the product.
The code samples below illustrate this.

Example 4–19 tourmap.xml: Example of Mapping Servicename

<tour name=”authorizationService”>
<file>classpath://com/extendyourstore/pos/services/tender/authorization/Authorizat
ion.xml</file>
</tour>

Example 4–20 tourmap.xml: Example of Overriding Shuttle Name

<SHUTTLE class="TenderAuthorizationLaunchShuttle"
replacewith="com.extendyourstore.shuttles.NewShuttle"/>

Nested tours operate independently, with their own XML script and Java classes.
Stations and shuttles simply provide the functionality to transfer control and data
between two independent tours.

Signals
Signals direct the tour to the correct lane when two or more lanes from the same site or
station are activated by the same letter. The lane that has a signal that evaluates to true
is the one that is traversed. Each signal has an associated Java class. Signal classes
evaluate the contents of the cargo and do not modify data.

The following code sample lists the tender.xml code that relates to the definition of
two roads with Light signals defined. The definition is added to the SERVICECODE

Tour Components

4-10 Oracle Retail Point-of-Service Operations Guide

XML element, whereas the road description is added to the MAP XML element. The
negate tag negates the Boolean value returned by the specified signal class.

Example 4–21 tender.xml: Definition of Traffic Signal

 <SIGNAL class="IsAuthRequiredSignal"/>

Example 4–22 tender.xml: Signal Processing With Negate Tag

<STATION>
 name=”AuthorizationStation”
 <ROAD
 name="AuthorizationRequested"
 letter="Next"
 destination="AuthorizationStation"
 tape="ADVANCE"
 record="OFF"
 index="OFF">
 <LIGHT signal="IsAuthRequiredSignal"/>
 </ROAD>
 <ROAD
 name="BalancePaid"
 letter="Next"
 destination="CompleteTender"
 tape="ADVANCE"
 record="OFF"
 index="OFF">
 <LIGHT signal="IsAuthRequiredSignal" negate="Y"/>
 </ROAD>
 ...additional lane definitions...
</STATION>

Exception Region
Continuing the tour metaphor, the bus could break down at any time. If the bus driver
detects that the bus has broken down, the bus driver takes the bus to the nearest
Garage system site. Once the bus is in the garage, the mechanic assumes control of and
diagnoses the breakdown.

■ If the mechanic is able to restore the cargo to a valid state, the mechanic informs
the bus driver by traversing to the Resume system site. The bus driver
subsequently resumes driving by resetting the bus at the site where the
breakdown occurred.

■ If the mechanic is not successful in repairing the bus, the mechanic stops the bus,
and mails the parent tour a letter informing it of the breakdown.

■ If there is no mechanic within the tour, the bus driver stops the bus, and mails the
parent tour a letter informing it of the breakdown. The bus completes its tour
when it arrives at the final site.

The exception region includes the functionality for handling exceptions. It can contain
sites, roads, and stations just like the service region. There are two ways to exit the
exception region: at the Return system site or the Resume system site. Return shuts
down the application, and Resume starts the application at the last visited site or
station in the service region.

The mechanic operates within the exception region of the tour. Any exception that
occurs within the tour region where the bus driver operates is converted to an
Exception letter and is passed to the mechanic. When the exception is being processed,

Tour Cam

Tour Framework 4-11

the mechanic assumes control of the bus and processes all incoming letters. If the
application developer has created an exception region for the mechanic, the Exception
letter is processed using application-specific actions and traffic lights. However, if the
exception region does not exist, the mechanic stops the bus and informs the parent bus
of the problem.

Depending on the application definition, recovery from exceptions can result in a
rollback, resumption, or a restart of the bus.

Role of Java Classes
All the code samples in this chapter have been from tour scripts. Tour scripts exist in
the form of one XML file per tour. The tour script refers to Java classes that implement
specific behavior, such as the siteaction and laneaction attributes. A tour has the
following Java classes:

■ One for the cargo

■ One for each site

■ One for each aisle

■ One for each road that implements behavior

■ One for each shuttle

■ One for each signal

The Tour Guide application can generate Java stubs for these classes, but the code in
the methods for the sites, roads, aisles, and cargo classes needs to be written. The
following table lists methods that the tour engine looks for when it arrives at a
specified place in the tour.

Tour Cam
TourCam allows you to navigate backward through your application in a controlled
manner while requiring minimal programming to accomplish the navigation. It
provides the ability to back up from a tour or process by tracking the state of the cargo
and the location of the tours. TourCam is turned on or off at the tour level. If there is
no reason to back up, TourCam should not be turned on.

The ability to backup or restore data to a previous state is accomplished using
TourCam. TourCam is used to record the bus path through the map, as well as the
associated cargo changes. TourCam is described using the TourCam metaphor. The
words in italics in the following paragraphs are the TourCam-specific terms.

Table 4–3 System-called Methods

Class Method(s)

Site arrive(), depart()

Road (if behavior) traverse()

Aisle traverse()

Shuttle load(), unload()

Signal roadClear()

Cargo <none>

Tour Cam

4-12 Oracle Retail Point-of-Service Operations Guide

A bus driver records the progress along the bus route using TourCam. The bus driver
records snapshots of the passenger cargo immediately before traversing a road. Each
snapshot is mounted in a frame within the current tape. The frame is stamped with the
current road. Using this method, the bus driver can retrace steps through the map. If
the frame is indexed, the driver stops at that index when retracing his steps.

The bus driver may adjust the TourCam tape while the bus traverses a road between
sites.

■ The bus driver can advance the current TourCam tape, and add the next road and
snapshot of the cargo as a frame in the tape.

■ The bus driver can discard the current TourCam tape, and replace it with a blank
tape.

■ The bus driver can rewind the current tape to restore the cargo to be consistent
with a previously visited site.

■ The bus driver can splice the current TourCam tape by removing all frames that
were recorded since a previously visited site.

When the passenger wants to back up, they instruct the bus driver to traverse a road
whose destination is the Backup system site. The backup road can inform the bus
driver to rewind or splice the TourCam tape while retracing its path along the last
recorded road. Similarly, the passenger can instruct the bus driver to traverse a road to
a specific, previously visited site. That road effectively backs up the bus when it
instructs the bus driver to rewind or splice the TourCam tape.

When the passenger wants to end the trip, they instruct the bus driver to travel down
a road whose destination is the Return system site. The final road may advance or
discard the TourCam tape. A passenger may return to the tour if they back into the
parent transfer station. If the TourCam tape is advanced, a return visit retraces the path
through the map in reverse order. If the TourCam tape is discarded, all return visits
start at the start site, as if the passenger were visiting the tour for the first time.

Attributes
The TourCam processing model places all undo actions on roads and treats sites and
stations as black boxes. The tour attribute that turns TourCam on or off is tourcam. The
following code from tender.xml shows the location in the tour script where the
tourcam is set. The default value is OFF.

Example 4–23 tender.xml: Definition of tourcam

<SERVICE
 name="Tender"
 package="com.extendyourstore.pos.services.tender"
 tourcam="ON">

The rest of the TourCam attributes are set on the road element in the MAP section of
the tour script. The following code from tender.xml shows a road definition with these
attributes set.

Example 4–24 tender.xml: Definition of Road With TourCam Attributes

<SITE name="GetGiftCertificateInfo" siteaction="GetGiftCertificateInfoSite">
 <ROAD name="GiftCertificateInfoEntered"
 letter="Next"
 laneaction="GiftCertificateInfoEnteredRoad"
 destination="GetTender"

Tour Cam

Tour Framework 4-13

 tape="ADVANCE"
 record="OFF"
 index="OFF">
...definitions of lanes...
</SITE>

The following table lists TourCam attributes and their values.

Table 4–4 Road Tag Element Attributes

Tag Description Values Default

tape Indicates what tour
action to take when
traversing the road.

ADVANCE – Adds a
frame representing this
road to the tourcam
tape

DISCARD – Discards
the entire tour cam tape

REWIND – Back up to
the site specified by the
‘destination’ while
calling the backup
method on all roads

SPLICE – Back up to
the site specified by the
‘destination’ without
calling the backup
method on any roads

ADVANCE

record Indicates that a snapshot
of the cargo should be
recorded and saved on
the tourcam tape

ON – Record a
snapshot

OFF – Do not record a
snapshot

ON

Tour Cam

4-14 Oracle Retail Point-of-Service Operations Guide

Each of the following combinations describes a combination of settings and how it is
useful in different situations. The following tables describe the forward and backward
TourCam settings:

index Indicates that an index
should be placed on the
tourcam tape when this
road is traversed

ON – Place an index on
the tape

OFF – Do not place an
index on the tape

ON

namedIndex Indicates that a named
index should be placed
on the tourcam tape
when this road is
traversed

Any string value is
allowed

None

destination Used when the tape has a
value of REWIND or
SPLICE to indicate where
the tourcam should back
the bus up to

<SITENAME> – The
name of a site to back
up to. The site must be
in the current tour.

LastIndexed – The
backup should end at
the site that is the origin
of the first road found
with an unnamed
index.

NamedIndex – The
backup should end at
the at the site that is the
origin of the first road
found with the named
index specified by the

named Index.

None

Table 4–5 Forward TourCam Settings

Settings Behavior

ADVANCE

index=ON

record=ON

This combination permits you to return to the site without specifying it as a
destination and storing the state of the cargo. Use this combination if you are entering
data and making decisions. The UI provides a method for backing up to the previous
step.

tape=ADVANCE

index=OFF

record=ON

This combination allows you to track visited sites, and allows you to attach undo
behavior. However, you cannot back up to this site. A common scenario for use
would be for performing external lookups and the user must backup to the site that
started the lookup. This combination is used, rather than the following combination,
when changes made to the cargo that must be reversible.

tape=ADVANCE

index=OFF

record=OFF

This combination is useful for sites that require external setup from another site, but
do not result in a significant change in cargo. You cannot back up to a site that uses
these settings and you cannot restore cargo at this site. As with the previous
combination, these settings are used for sites that perform external lookups.

Table 4–4 Road Tag Element Attributes

Tag Description Values Default

Tour Cam

Tour Framework 4-15

Letter Processing
In the absence of TourCam, processing of letters is straightforward. If the letter triggers
a lane, the bus simply traverses the lane. With TourCam enabled, the processing of
letters must consider the actions required to retrace the path of the bus. If the letter
triggers an aisle, the bus traverses the aisle. There is no backup over an aisle. If the
letter triggers a road, tape=advance or tape=discard indicate a forward direction, and
tape=rewind or tape=splice indicate a backward direction. The destination of the road
element is used to indicate the backup destination when tape=rewind or tape=splice. It
can be one of the following values: “LastIndexed”, “NamedIndex”, or <sitename>.

tape=ADVANCE

index=ON

record=OFF

This combination is used when a site does not do anything of significance to cargo.
You would use this setting if a site prompts to choose an option from a list and there
is a default, or to respond to a yes/no dialog and you want to ensure the data
collected at the site is reset.

tape=ADVANCE

namedIndex=LOGIN

This combination is used when you want the application to be able to return to a
specific index, even if the backup begins in a child tour.

tape=DISCARD This combination is used when you want the application flow only to go forward
from this site. For example, after a user tenders a credit card for a sale, the user cannot
backup to enter, delete or modify items. This setting does not permit you to backup or
restore cargo to a previously recorded site.

Table 4–6 Backup Tour Cam Settings

Settings Behavior

destination=BACKUP

tape=REWIND

This combination returns the application to the previously marked site and makes the
snapshot available for undo. This is the preferred method of performing a full backup
with restore.

destination=site

tape=REWIND

This combination backs up the application until it reaches the specified site. It is only
used if the site to which you want to backup does not directly precede the current site
or you know that you always want to backup to the specified site. These settings
could produce unpredictable results if new sites are later inserted in the map between
the current site and the target backup site.

destination=LastIndexed

tape=SPLICE

This combination returns the application to the previously marked site without
restoring the cargo. These settings are used in scenarios when the cargo is
inconsequential.

destination=site

tape=SPLICE

This combination backs up the application to the specified site without restoring the
cargo. It is used when the cargo is inconsequential, or when you want to loop back to
a base site in a tour without permitting backup or undoing cargo after returning to
the base site.

For example, the application starts from a menu and permits the user to back up until
a series of steps are complete, but not afterward. In this case, the final road from the
last site returns to the menu. The need to use this combination might indicate a design
flaw in the tour. The developer should question whether the series of sites that branch
from the menu should be a separate tour. If the answer is no, this combination is the
solution.

destination=NamedIndex

namedIndex=LOGIN

This combination backs up the application to the origin of the road with the specified
named index. This is used to back up to a specific index, even if it was set in a parent
tour.

Table 4–5 Forward TourCam Settings

Settings Behavior

Tender Tour Reference

4-16 Oracle Retail Point-of-Service Operations Guide

Cargo Restoration
One of the primary strengths of TourCam is the ability to restore the bus’ cargo to a
previous state. TourCamIfc provides a mechanism for the bus driver to make and
subsequently restore a copy of the cargo when specified by road attributes. Classes
that implement TourCamIfc must implement the makeSnapshot() and
restoreSnapshot() methods. An example of this is
src\com\extendyourstore\pos\services\inquiry\giftreceipt\GiftReceiptCargo.java.

Example 4–25 GiftReceiptCargo.java: TourCamIfc Implementation

public class GiftReceiptCargo implements CargoIfc, TourCamIfc
{
...body of GiftReceiptCargo class...
public SnapshotIfc makeSnapshot()
 {
 return new TourCamSnapshot(this);
 }
public void restoreSnapshot(SnapshotIfc snapshot) throws ObjectRestoreException
{
GiftReceiptCargo savedCargo = (GiftReceiptCargo) snapshot.restoreObject();
this.setPriceCode(savedCargo.getPriceCode());
this.setPrice(savedCargo.getPrice());
 }
}

SnapshotIfc provides a mechanism to create a copy of the cargo. The class that
implements SnapshotIfc is responsible for storing information about the cargo and
restoring it later, by calling restoreObject().

A shuttle allows the optional transfer of cargo from the calling tour to the nested tour
during backups. If defined, this shuttle is used during rewind and splice backup
procedures. The classname for the shuttle is specified in the tour script via the
backupshuttle attribute of the station element.

Example 4–26 Sample Backupshuttle Definition
<STATION servicename="foo.xml"
 launchshuttle="MyLaunchShuttle"
 backupshuttle="MyBackupShuttle"\/>

Tender Tour Reference
The files in the Tender package can be found in
src\com\extendyourstore\pos\services\tender. The following table provides
resources in the Tender package that are common to all tours.

Tender Tour Reference

Tour Framework 4-17

The Tender package is unique in that the workflow is generally similar for all the
tender type options available from the main site. For example, if the user chooses to
pay by check or credit card, the workflow is similar. When the user cancels the form of
payment, the Oracle Retail Platform engine is directed to the
ReverseAuthorizedTenders site. When the user decides to undo the operation, the
engine is directed back to the GetTender site. The workflow for the credit card tender
option is shown in the following figure.

Table 4–7 Tender Package Components

Resource Filename Description

Tour script tender.xml This file defines the components (sites,
letters, roads, etc.) of the Tender tour and
the map of the Tender tour.

Tour screens tenderuicfg.xml This configuration file contains bean
specifications and overlay screen
specifications for the Tender tour.

Starting site GetTenderSite.java Tender types are displayed from this site. If
the selected tender requires input, it is
entered via another site, which then returns
control to this site. When the balance due is
paid, control is returned to the calling
service.

Cargo TenderCargo.java This class represents the cargo for the
Tender tour.

Stations Names (stations do not have
classes):

AuthorizationStation

PINPadStation

AddCustomer

AddBusinessCustomer

FindCustomer

SecurityOverrideStation

LinkCustomerStation

These stations provide access to other
tours. Each of these stations define one or
more shuttle classes which are part of the
Tender package. The workflows are
defined in other packages, but can be called
from the Tender tour. For example,
AuthFailedRoad is defined in the Tender
tour because it handles the exit letter from
the Authorization tour. However,
Authorization.xml, the workflow for the
Authorization tour, is located in
src\com\extendyourstore\pos\services\te
nder\authorization.

Tender Tour Reference

4-18 Oracle Retail Point-of-Service Operations Guide

Figure 4–1 Workflow Example: Tender with Credit Card Option

The symbols are explained in the figure below.

Figure 4–2 Workflow Symbols

UI Framework 5-1

5
UI Framework

This chapter describes the User Interface (UI) Framework that is part of the Oracle
Retail Platform architecture. The UI Framework encompasses all classes and interfaces
included in Oracle Retail Platform to support rapid development of UI screens. It
enables the building of custom screens using existing components.

Overview
For ease of development, the UI Framework hides many of the implementation details
of Java UI classes and containment hierarchies by moving some of the UI specification
from Java code into XML. This eases screen manipulation and layout changes affecting
the look and feel of the entire screen, subsets of screens, and portions of a screen. This
table provides a general description of features of the UI Framework.

The UI Framework is the set of classes and interfaces that define the elements and
behavior of a window-based UI Subsystem. It defines a structure for defining user
interfaces. The following table briefly describes the components of the framework.
This chapter discusses these components in more detail.

Table 5–1 UI Framework Features

Feature Description

Common Design All UI implementations share code and extend or implement base UI classes that are
provided as part of Oracle Retail Platform. The UI Framework provides basic
functionality that does not need to be duplicated within each application.

Reuse The UI Framework allows bean classes to be independent, thereby supporting their
reuse. A UI Technician can be used with multiple applications and UI Framework
components can be used across multiple features in an application.

Externally Configurable
Screens

The UI Framework enables you to configure screens outside the code to accommodate
applications that change frequently. The external screen configurations can be
updated to use new Oracle Retail Platform or application-specific components as they
are developed.

Support for
Internationalization

The UI Framework provides hooks for implementing internationalization, including
language and locale independence.

Note: The only language currently supported is United States English. Language
bundles are included in this release but are not supported as translated languages.
The bundles are only provided for testing and demonstration purposes.
Oracle Retail does not provide support for any customer extensions made to the base
Point-of-Service product.

Extensibility and
Flexibility

Additional formats for specifications can be defined without affecting the internal UI
Framework classes. Portability is achieved through the use of the Java language and
flexible layout managers.

Screens

5-2 Oracle Retail Point-of-Service Operations Guide

Screens
Generally, for each package in an application, one UI script in the form of an XML file
is created to define the screens for the given package. However, because many screens
share basic components, certain components are defined in a default UI script. These
basic screen components, including displays, templates, and default screens, are
defined in src\com\extendyourstore\pos\config\defaults\defaultuicfg.xml. Overlay
screens are then defined in the UI script for the given package. This section describes
the components that are used to build Point of Service screens, except for beans which
are described in the next section.

Displays define window properties. They are basic containers with dimensions and a
title defined. In Point of Service, only two types of windows can be displayed at the
same time—the main application window and a window displaying the Help browser.
The following table describes the two types of displays.

Templates divide displays into geographical areas. The GridBagLayout is used to
define the attributes of each area. The following table describes the typical use of each
template.

Table 5–2 UI Framework Components

Name Description

Display A display is the root container for the UI application window. Displays are any
subclass of java.awt.Container that implement EYSRootPaneContainer.

Screen A screen is a user-level snapshot of a UI window as it relates to an application. The
screen is composed of displays, template areas, assignment beans, and listeners. Each
of these parts can be individually configured and reassembled to compose the screen.

Template A template divides the display into areas that contain the layout information used to
place the information on the display. Templates can be interchanged to define screen
layouts within an application. Each screen specifies the template that is associated
with the screen.

Area An area is a layout placeholder for UI components that operate together to perform a
function. Each area contains a layout constraint that dictates how the area is placed on
the display.

Bean A bean is a user interface component or group of components that operate together to
provide some useful functionality. For example, a bean could be an input form or
group of navigation buttons.

Connection A connection captures relationships between beans, or between devices and beans.
When a bean or device generates an event, another bean responds with a change in
behavior or visual display.

Listener A listener provides a mechanism for reacting to user interface events.

Table 5–3 Display Types

Name Description

EYSPOSDisplaySpec A 600x800 container for all application screens

HelpDialogDisplaySpec A 600x800 container for Point-of-Service Help screens

Screens

UI Framework 5-3

Default screens are partially-defined screens that represent elements common to
multiple screens. Default screens are based on one display and one template. Default
screens map beans to the commonly used areas of the template and define listeners for
the bean. These screens are used by overlay specifications that define more specific
screen components. For example, almost all screens in the Point of Service application
display a status area region. The text displayed in the status region changes, but the
StatusPanelSpec bean is the same from screen to screen, so a default screen would
assign this bean to the StatusPanel area defined by a template. The following table lists
the areas of the template to which beans are assigned, and the display and template
used by each of the six types of default screens.

Each screen in Point of Service has an overlay screen defined in a UI script in the
package to which it belongs or in a package higher in the hierarchy. For example, the
Authorization tour script is found in
src\com\extendyourstore\pos\services\tender\authorization but the UI script is
located in src\com\extendyourstore\pos\services\tender. This overlay screen is
based on a default screen and defines additional properties for the beans on the areas
of the screen. The overlay screen may also specify connections, which are described in
"Connections" in next chapter (XREF). The following code sample shows the definition
of the ALTERATION_TYPE screen defined in
src\com\extendyourstore\pos\services\alterations\alterationsuicfg.xml.

Table 5–4 Template Types

Name Typical Use

BrowserTemplateSpec Back Office screens within the Point-of-Service application

EYSPOSTemplateSpec Point-of-Service screens without required fields

HelpBrowserTemplateSpec Point-of-Service help screens

ValidatingTemplateSpec Point-of-Service screens with required fields that display an information panel
below the work area

Table 5–5 Default Screen Types

Name Typical Use Display Template

BrowserDefaultSpec Back Office screens
within the
Point-of-Service
application

EYSPOSDisplaySpec BrowserTemplateSpec

DefaultHelpSpec Point-of-Service help
screens

HelpDialogDisplaySpec HelpBrowserTemplateSpec

DefaultValidatingSpec Point-of-Service screens
with required fields that
display an information
panel below the work
area

EYSPOSDisplaySpec ValidatingTemplateSpec

EYSPOSDefaultSpec Point-of-Service screens
without required fields

EYSPOSDisplaySpec EYSPOSTemplateSpec

ResponseEntryScreenSpec Point-of-Service screens
with information
captured in the response
area at the top of the
screen

EYSPOSDisplaySpec EYSPOSTemplateSpec

Beans

5-4 Oracle Retail Point-of-Service Operations Guide

Example 5–1 alterationsuicfg.xml: Overlay Screen Definition

<OVERLAYSCREEN
 defaultScreenSpecName="EYSPOSDefaultSpec"
 resourceBundleFilename="alterationsText"
 specName="ALTERATION_TYPE">

 <ASSIGNMENT
 areaName="StatusPanel"
 beanSpecName="StatusPanelSpec">
 <BEANPROPERTY
 propName="screenNameTag" propValue="AlterationTypeScreenName"/>
 </ASSIGNMENT>

 <ASSIGNMENT
 areaName="PromptAndResponsePanel"
 beanSpecName="PromptAndResponsePanelSpec">
 <BEANPROPERTY
 propName="promptTextTag" propValue="AlterationTypePrompt"/>
 </ASSIGNMENT>

 <ASSIGNMENT
 areaName="LocalNavigationPanel"
 beanSpecName="AlterationsOptionsButtonSpec">
 </ASSIGNMENT>

</OVERLAYSCREEN>

Beans
A screen is composed of beans mapped to specific areas on the screen. All beans are
defined in src/com/extendyourstore/pos/ui/beans. The beans described in this
section are commonly used in screen definitions. Each description provides bean
properties that can be defined in assignments of beans to areas. By the Java reflection
utility, properties defined in XML files invoke set() or create() methods in the bean
class that accept a single string parameter or multiple string parameters.

The following section covers the PromptAndResponseBean, DataInputBean,
NavigationButtonBean, and DialogBean.

PromptAndResponseBean
The PromptAndResponseBean configures and displays the text in the top areas of a
Point of Service screen called the prompt region and the response region. This bean is
implemented by
src\com\extendyourstore\pos\ui\beans\PromptAndResponseBean.java and its
corresponding model PromptAndResponseModel.java.

Note: The only language currently supported is United States
English. Language bundles are included in this release but are not
supported as translated languages. The bundles are only provided for
testing and demonstration purposes.

Oracle Retail does not provide support for any customer extensions
made to the base Point-of-Service product.

Beans

UI Framework 5-5

Bean Properties and Text Bundle
PromptAndResponsePanelSpec is the name of a bean specification that defines the
implementation of the PromptAndResponseBean class. The following code sample
shows the bean specification available to all screens, defined in
src\com\extendyourstore\pos\config\defaults\defaultuicfg.xml.

Example 5–2 defaultuicfg.xml: Bean Specification Using PromptAndResponseBean

<BEAN
specName="PromptAndResponsePanelSpec"
beanClassName="PromptAndResponseBean"
beanPackage="com.extendyourstore.pos.ui.beans"
configuratorPackage="com.extendyourstore.pos.ui"
configuratorClassName="POSBeanConfigurator"
cachingScheme="ONE">
</BEAN>

The following property names and values can be defined in overlay specifications
when specifying attributes of a PromptAndResponseBean.

These properties can be defined in UI scripts. The following code sample defines an
overlay specification that assigns the PromptAndResponsePanelSpec defined above to
the PromptAndResponsePanel. This example from
src\com\extendyourstore\pos\services\tender\tenderuicfg.xml defines the
COUPON_AMOUNT overlay screen for the Tender service. The property that
retrieves text from a text bundle is highlighted.

Example 5–3 tenderuicfg.xml: PromptAndResponseBean Property Definition

<OVERLAYSCREEN>
 defaultScreenSpecName="ResponseEntryScreenSpec"
 resourceBundleFilename="tenderText"
 specName="COUPON_AMOUNT">
<ASSIGNMENT
 areaName="PromptAndResponsePanel"
 beanSpecName="PromptAndResponsePanelSpec">
 <BEANPROPERTY
 propName="promptTextTag" propValue="CouponAmountPrompt"/>

Table 5–6 PromptAndResponseBean Property Names and Values

Item Description Example

enterData Indicates whether data can be entered in the response
area

true

promptTextTag The label tag that corresponds to the text bundle GiftCardPrompt

responseField The type of field expected in the response area (see
Field Type section for available types)

com.extendyourstore.pos.
ui.beans.AlphaNumericTe
xtField

maxLength Maximum length of response area input 15

minLength Minimum length of response area input 2

zeroAllowed Indicates whether a zero value is allowed in the
response area

true

negativeAllowed Indicates whether a negative value is allowed in the
response area

false

grabFocus Indicates whether focus should be grabbed when the
screen is first displayed

true

Beans

5-6 Oracle Retail Point-of-Service Operations Guide

 <BEANPROPERTY
 propName="responseField"
 propValue="com.extendyourstore.pos.ui.beans.CurrencyTextField"/>
 <BEANPROPERTY
 propName="maxLength" propValue="9"/>
</ASSIGNMENT>
...
</OVERLAYSCREEN>

The string that should be displayed as the prompt text is defined in a resource bundle.
In the resource bundle for the Tender service, which for the en_US locale is defined in
locales\en_US\config\ui\bundles\tenderText_en_US.properties, the following
includes a line that defines the CouponAmountPrompt.

Example 5–4 tenderText_en_US.properties: PromptAndResponseBean Text Bundle
Example

PromptAndResponsePanelSpec.CouponAmountPrompt=Enter coupon amount and press Next.

Tour Code
In the Tour code, bean models are created to hold the data on the bean components.
The following table lists some of the important methods in the
PromptAndResponseModel class.

The following sample from
src\com\extendyourstore\pos\services\tender\GetPurchaseOrderAmountSite.java
shows creation of a PromptAndResponseModel, prefilling of data in the model, and
display of the model on which the PromptAndResponseModel is set.

Example 5–5 GetPurchaseOrderAmountSite.java: Creating and Displaying
PromptAndResponseModel

PromptAndResponseModel responseModel = new PromptAndResponseModel();
Locale locale = LocaleMap.getLocale(LocaleConstantsIfc.USER_INTERFACE);
responseModel.setResponseText(balance.toFormattedString(locale));
POSBaseBeanModel baseModel = new POSBaseBeanModel();
baseModel.setPromptAndResponseModel(responseModel);
ui.showScreen(POSUIManagerIfc.PURCHASE_ORDER_AMOUNT, baseModel);

For internationalization, Point of Service can use multiple locales at any given time at a
register. There is one default locale, one UI locale based on employee-specific locale,

Table 5–7 PromptAndResponseModel Important Methods

Method Description

boolean isSwiped() Returns the flag indicating whether a card is swiped

void setsScanned(boolean) Sets the flag indicating whether a code is scanned

boolean isResponseEditable() Returns the flag indicating whether the response area is editable

void setGrabFocus(boolean) Sets the flag indicating whether focus should stay on the response field

Note: The only language currently supported is United States
English. Language bundles are included in this release but are not
supported as translated languages. The bundles are only provided for
testing and demonstration purposes.

Beans

UI Framework 5-7

and one customer display and customer receipt locale based on customer-specific
locale.

The screen constant, PURCHASE_ORDER_AMOUNT, is mapped to an overlay screen
name found in the UI script for the package. The screen constants are defined in
src\com\extendyourstore\pos\ui\POSUIManagerIfc.java.

The following sample from PurchaseOrderNumberEnteredRoad.java in the same
directory shows how to retrieve data from the PromptAndResponseModel in a
previous screen. To arrive at this code, a purchase order number is entered and the
user presses Next. This line of code gets the purchase order number from the previous
screen.

Example 5–6 PurchaseOrderNumberEnteredRoad.java: Retrieving Data From
PromptAndResponseModel

POSUIManagerIfc ui = (POSUIManagerIfc) bus.getManager(UIManagerIfc.TYPE);
String poNumber = ui.getInput();

DataInputBean
The DataInputBean is a standard bean that displays a form layout containing data
input components and labels. This bean is implemented by
src\com\extendyourstore\pos\ui\beans\DataInputBean.java and its corresponding
model DataInputBeanModel.java. Field components are commonly defined with the
FIELD element when defining a bean with the DataInputBean, as shown in the code
sample below.

Bean Properties and Text Bundle
The DataInputBean has two properties that can be defined in UI scripts, which
override the settings in the field specifications.

The label tag is used for internationalization purposes, so the application can look for
the correct text bundle in each language. The label tag overrides the value of the
labelText field. The following code from manageruicfg.xml shows a field specification
defined in a DataInputBean bean specification.

Example 5–7 manageruicfg.xml: Bean Specification Using DataInputBean

<BEAN
 specName="RegisterStatusPanelSpec"
 configuratorPackage="com.extendyourstore.pos.ui"
 configuratorClassName="POSBeanConfigurator"

Table 5–8 DataInputBean Property Names and Values

Item Description Example

labelTags Sets the property bundle tags for the
component labels

NameLabel,AddressLabel,StateLabel

labelTexts Sets the text on the component labels Name,Address,State

Note: The only language currently supported is United States
English. Language bundles are included in this release but are not
supported as translated languages. The bundles are only provided for
testing and demonstration purposes.

Beans

5-8 Oracle Retail Point-of-Service Operations Guide

 beanPackage="com.extendyourstore.pos.ui.beans"
 beanClassName="DataInputBean">

 <FIELD fieldName="storeID"
 fieldType="displayField"
 labelText="Store ID:"
 labelTag="StoreIDLabel"
 paramList="storeNumberField"/>
 ...
</BEAN>

The strings that should be displayed as labels on the screen are defined in a resource
bundle. In the resource bundle for the Manager service, which for the en_US locale is
defined in locales\en_US\config\ui\bundles\managerText_en_US.properties, the
following line of code defines the StoreIDLabel.

Example 5–8 managerText_en_US.properties: DataInputBean Text Bundle Example

RegisterStatusPanelSpec.StoreIDLabel=Store ID:

Fields do not have to be defined in the UI script. They can be defined in the beans and
models instead. In the overlay screen specification, two bean properties that can be set
are OptionalValidatingFields and RequiredValidatingFields. If the fields are optional
and the user enters information in them, then they are validated. If the user does not
enter any information, the fields are not validated. On the other hand, required fields
are always validated.

Tour Code
Bean models are created to hold the data managed by the bean. This protects the bean
from being changed. A bean can only be accessed by a model in the Tour code. The
following table lists some of the important methods in the DataInputBeanModel class.

The following sample from
src\com\extendyourstore\pos\services\admin\parametermanager\SelectParamStor
eSite.java shows creation of a DataInputBeanModel and prefilling of data in the model.

Example 5–9 SelectParamStoreSite.java: Creating and Displaying DataInputBeanModel

DataInputBeanModel beanModel = new DataInputBeanModel();
beanModel.setSelectionChoices("choiceList", vChoices);
beanModel.setSelectionValue("choiceList", (String)vChoices.firstElement());

The following sample from Tour code shows how to retrieve data from the
DataInputBeanModel. In this example from
src\com\extendyourstore\pos\services\admin\parametermanager\StoreParamGrou

Table 5–9 DataInputBeanModel Important Methods

Method Description

String getValueAsString(String) Returns the value of the specified field as a string

int getValueAsInt(String) Returns the value of the specified field as an integer

void setSelectionValue(String, Object) Sets the value of the specified field in a vector to the specified
value

void setSelectionChoices(String, Vector) Sets the value of the specified field to the specified vector of
choices

void clearAllValues() Clears the values of all the fields

Beans

UI Framework 5-9

pAisle.java, after the model is created and displayed by the code from the previous
code sample, the model is retrieved from the UI Manager, and data is retrieved from
the model.

Example 5–10 StoreParamGroupAisle.java: Retrieving Data from DataInputBeanModel

DataInputBeanModel model =
(DataInputBeanModel)ui.getModel(POSUIManagerIfc.PARAM_SELECT_GROUP);
ParameterCargo cargo = (ParameterCargo)bus.getCargo();
String val = (String)model.getSelectionValue("choiceList");
cargo.setParameterGroup(val);

NavigationButtonBean
The NavigationButtonBean represents a collection of push buttons and associated key
stroke equivalents. This bean is implemented by
src\com\extendyourstore\pos\ui\beans\NavigationButtonBean.java and its
corresponding model NavigationButtonBeanModel.java. The global navigation area
and the local navigation area both use the NavigationButtonBean.

Bean Properties and Text Bundle
The LocalNavigationPanel and GlobalNavigationPanel bean specifications both use
the NavigationButtonBean. Bean properties are described only for the
GlobalNavigationPanelSpec because the LocalNavigationPanelSpec typically sets its
properties in the bean specification and not the overlay specification.

LocalNavigationPanel The only property available to the NavigationButtonBean in XML
is used to enable and disable buttons. When setting the states of buttons on a
LocalNavigationPanel, the buttons are usually defined with the BUTTON element in
the bean specification as in the following code sample. In fact, any bean that extends
NavigationButtonBean, such as ValidateNavigationButtonBean, can define its buttons
in the bean specification.

This example from
src\com\extendyourstore\pos\services\customer\customeruicfg.xml, defining the
CustomerOptionsButtonSpec bean specification for the Customer service, shows how
button text on a NavigationButtonBean is defined in a UI script.

Example 5–11 customeruicfg.xml: Bean Specification Using NavigationButtonBean

<BEAN
 specName="CustomerOptionsButtonSpec"
 configuratorPackage="com.extendyourstore.pos.ui"
 configuratorClassName="POSBeanConfigurator"
 beanPackage="com.extendyourstore.pos.ui.beans"
 beanClassName="NavigationButtonBean">

<BUTTON
 actionName="AddBusiness"
 enabled="true"
 keyName="F4"
 labelTag="AddBusiness"/>
...
</BEAN>

Beans

5-10 Oracle Retail Point-of-Service Operations Guide

The string that should be displayed on the buttons on the GlobalNavigationPanel is
defined in a resource bundle. In the resource bundle customerText_en_US.properties,
the following entry defines the label for the AddBusiness button.

Example 5–12 customerText_en_US.properties: NavigationButtonBean Text Bundle
Example

CustomerOptionsButtonSpec.AddBusiness= Add Business

GlobalNavigationPanel The GlobalNavigationButtonBean extends the
NavigationButtonBean. The following code sample shows the GlobalNavigationPanel
bean specification defined in
src\com\extendyourstore\pos\config\defaults\defaultuicfg.xml. The bean class is a
subclass of NavigationButtonBean.

Example 5–13 defaultuicfg.xml: Bean Specification Using GlobalNavigationButtonBean

<BEAN
 specName="GlobalNavigationPanelSpec"
 configuratorPackage="com.extendyourstore.pos.ui"
 configuratorClassName="POSBeanConfigurator"
 beanPackage="com.extendyourstore.pos.ui.beans"
 beanClassName="GlobalNavigationButtonBean"
 cachingScheme="ONE">
...
</BEAN>

The following property names and values can be defined in UI scripts when specifying
attributes of a GlobalNavigationButtonBean.

These properties can be defined in overlay specifications, as in the following code
sample from tenderuicfg.xml.

Example 5–14 tenderuicfg.xml: GlobalNavigationButtonBean Property Definitions

<OVERLAYSCREEN>

defaultScreenSpecName="EYSPOSDefaultSpec"
 resourceBundleFilename="tenderText"
specName="TENDER_OPTIONS">
 <ASSIGNMENT
 areaName="GlobalNavigationPanel"
 beanSpecName="GlobalNavigationPanelSpec">
 <BEANPROPERTY
 propName="manageNextButton"
 propValue="false"/>
 <BEANPROPERTY
 propName="buttonStates"

propValue="Help[true],Clear[false],Cancel[false],Undo[true],Next[false]"/>

Table 5–10 GlobalNavigationButtonBean Property Names and Values

Item Description Example

manageNextButton Indicates whether the bean should manage the
enable property of the Next button

true

buttonStates Sets the buttons with the action names listed
to the specified state

Help[true],Clear[false],Ca
ncel[false],Undo[true],Nex
t[false]

Beans

UI Framework 5-11

 </ASSIGNMENT>
...
</OVERLAYSCREEN>

Tour Code
In the Tour code, bean models are created to hold the data on the bean components.
The following table lists some of the important methods in the
NavigationButtonBeanModel class.

The following sample from
src\com\extendyourstore\pos\services\tender\PricingOptionsSite.java shows
creation of a NavigationButtonBeanModel, prefilling of data in the model, and display
of the model on which the NavigationButtonBeanModel is set.

Example 5–15 PricingOptionsSite.java: Creating and Displaying
NavigationButtonBeanModel

NavigationButtonBeanModel navModel = new NavigationButtonBeanModel();
navModel.setButtonEnabled("TransDiscAmt",true);
navModel.setButtonEnabled("TransDiscPer",true);
model.setLocalButtonBeanModel(navModel);
ui.showScreen(POSUIManagerIfc.PRICING_OPTIONS, model);

The screen constant, PRICING_OPTIONS, is mapped to an overlay screen name found
in the UI script for the package. The screen constants are defined in
src\com\extendyourstore\pos\ui\POSUIManagerIfc.java.

DialogBean
The DialogBean provides dynamic creation of dialog screens. This bean is
implemented by src\com\extendyourstore\pos\ui\bundles\DialogBean.java and its
corresponding model DialogBeanModel.java.

Bean Properties and Text Bundle
DialogSpec is the name of a bean specification that defines an implementation of the
DialogBean class. The following code sample shows the bean specification defined in
src\com\extendyourstore\pos\services\common\commonuicfg.xml.

Example 5–16 commonuicfg.xml: Bean Specification Using DialogBean

<BEAN
specName="DialogSpec"
configuratorPackage="com.extendyourstore.pos.ui"
configuratorClassName="POSBeanConfigurator"
beanPackage="com.extendyourstore.pos.ui.beans"
beanClassName="DialogBean">
<BEANPROPERTY propName="cachingScheme" propValue="none"/>

Table 5–11 NavigationButtonBeanModel Important Methods

Method Description

ButtonSpec[] getNewButtons() Returns an array of new buttons

void setButtonEnabled(String,
boolean)

Sets the state of the specified action name of the button (the name of the
letter the button mails)

void setButtonLabel(String, String) Sets the label of the button using the specified action name of the button
(the name of the letter the button mails)

Beans

5-12 Oracle Retail Point-of-Service Operations Guide

</BEAN>

The DialogBean does not have any properties that can be defined in UI scripts.
Therefore, all its properties are defined in Tour code discussed in the next section. The
following code sample defines the message displayed in the dialog. This example from
src\com\extendyourstore\pos\services\inquiry\giftcardinquiry\InquirySlipPrintAisle.java
shows how text on a DialogBean is defined in Java code.

Example 5–17 InquirySlipPrintAisle.java: DialogBean Label Definition

DialogBeanModel model = new DialogBeanModel();
model.setResourceID("Retry");

The resourceID corresponds to the name of the text bundle. For all dialog screens in
the en_US locale, dialogText_en_US.properties contains the bundles that define the
text on the screen, as shown in the following code.

Example 5–18 dialogText_en_US.properties: DialogBean Text Bundle Example

DialogSpec.Retry.title=Device is offline
DialogSpec.Retry.description=Device offline
DialogSpec.Retry.line2=<ARG>
DialogSpec.Retry.line5=Press the Retry button to attempt to use the device again.

Tour Code
In the Tour code, bean models are created to hold the data on the bean components.
The following table lists some of the important methods in the DialogBeanModel class.

The following sample from
src\com\extendyourstore\pos\services\tender\LookupStoreCreditSite.java shows
creation of a DialogBeanModel, prefilling of data in the model, and display of the
model on which the DialogBeanModel is set.

Example 5–19 LookupStoreCreditSite.java: Creating and Displaying DialogBeanModel

DialogBeanModel dialogModel = new DialogBeanModel();
DialogModel.setResourceID(“InvalidCashAmount”);
dialogModel.setArgs(new String[] ={cashAmt});
dialogModel.setType(DialogScreensIfc.ACKNOWLEDGEMENT);
dialogModel.setButtonLetter(BUTTON_OK, "Failure");
ui.showScreen(POSUIManagerIfc.DIALOG_TEMPLATE, dialogModel);

The screen constant, DIALOG_TEMPLATE, is mapped to an overlay screen name
found in the UI script for the package. The screen constants are defined in
src\com\extendyourstore\pos\ui\POSUIManagerIfc.java.

When setting the dialog type, refer to the following table that lists the available dialog
types as defined by constants in
src\com\extendyourstore\pos\ui\DialogScreensIfc.java. For each dialog type, the

Table 5–12 DialogBeanModel Important Methods

Method Description

setResourceID(String) Used to locate screen text in the text bundle

setArgs(String []) Sets a string of arguments to replace <ARG> tags in the text bundle

setButtonLetter(int, String) Sets the specified letter to be sent when the specified button is pressed

setType(int) Sets the flag indicating whether focus should stay on the response field

Beans

UI Framework 5-13

buttons on the dialog are specified. In most cases, the letter sent by the button has the
same name as the button, except for the two types noted.

When setting a letter to a button, refer to the following table that lists the available
button types also defined in DialogScreensIfc.java. These constants are used as
arguments to DialogBean methods that modify button behavior.

Field Types
This section defines field types available to all beans. The following field types may be
used by all the beans, but DataInputBean is the only bean that understands the FIELD
element. In other words, DataInputBean is the only bean that defines fields in bean
specifications.

These field types correspond to create() methods in UIFactory.java, such as
createCurrencyField() and createDisplayField(). The application framework uses
reflection to create the fields. Therefore, the field names in the following table can be
set as the fieldType attribute in an XML bean specification using the DataInputBean
class. The corresponding parameter list is a list of strings that can be set as the
paramList attribute.

Table 5–13 Dialog Types

Dialog Type Button(s) Details

ACKNOWLEDGEMENT Enter Button sends OK letter

CONFIRMATION Yes, No

CONTINUE_CANCEL Continue, Cancel

ERROR Enter Button sends OK letter, Screen displays red
in the title bar

RETRY Retry

RETRY_CANCEL Retry, Cancel

RETRY_CONTINUE Retry, Continue

SIGNATURE Places a signature panel to capture the
customer’s signature

Table 5–14 Button Types

Button ButtonID

Enter, OK BUTTON_OK

Yes BUTTON_YES

No BUTTON_NO

Continue BUTTON_CONTINUE

Retry BUTTON_RETRY

Cancel BUTTON_CANCEL

Connections

5-14 Oracle Retail Point-of-Service Operations Guide

Connections
Connections configure the handling of an event in the UI Framework. They are used to
define inter-bean dependencies and behavior and to tie the bean event responses back
to the business logic. When one bean generates an event, another bean can be notified
of the event. Connections have a source bean, a Listener Type for the target, and a
target bean.

Connections attach a source bean to a target bean, which receives event notifications
from the source bean. The Listener Type specifies which type of events can be received.
The XML in the following sections are found in
com\extendyourstore\pos\services\tender\tenderuicfg.xml. Other listeners used in
Point of Service include ConfirmCancelAction, HelpAction, and CloseDialogAction.

Table 5–15 Field Types and Descriptions

Name Description
Parameter List Strings (no
spaces allowed)

alphaNumericField Allows letters and/or numbers,
no spaces or characters

name,minLength,maxLength

constrainedPasswordField Text where the view indicates
something was typed, but does
not show the original characters

name,minLength,maxLength

constrainedTextAreaField Multi-line area that allows plain
text, with restrictions on length

name,minLength,maxLength,colum
ns,wrapStyle,lineWrap

constrainedField Allows letters, numbers, special
characters, and punctuation,
with restrictions on length

name,minLength,maxLength

currencyField Allows decimal numbers only,
representing currency, with two
spaces to the right of the decimal

name,zeroAllowed,negativeAllowe
d,emptyAllowed

decimalField Allows decimal numbers only name,maxLength,negativeAllowed,
emptyAllowed

displayField Display area that allows a short
text string or an image, or both

name

driversLicenseField Allows alphanumeric text that
can contain ‘*’ or ‘ ‘

name

EYSDateField Allows only whole numbers and
the special character/ —the
format is MM/DD/YYYY

name

EYSTimeField Allows only whole numbers and
the special character:—the
format is HH:MM

name

nonZeroDecimalField Allows non-zero decimal
numbers only

name,maxLength

numericField Allows integers only, no special
characters or letters

name,maxLength,minLength

nonZeroNumericField Allows non-zero integers only name,maxLength,minLength

textField Allows letters, numbers, special
characters, and punctuation

name

validatingTextField Line of text that can be validated
by length requirements

name

Connections

UI Framework 5-15

ClearActionListener
ClearActionListener is an interface that extends ActionListener in Swing to make it
unique for its use in Point of Service. The following code shows how this listener is
used in an overlay specification. Adding the ClearActionListener allows the Clear
button to erase the text in the selected field in the work area when the Clear button on
the GlobalNavigationPanelSpec is clicked.

Example 5–20 tender.xml: ClearActionListener XML tag

<CONNECTION
 listenerInterfaceName="ClearActionListener"
 listenerPackage="com.extendyourstore.pos.ui.behavior"
 sourceBeanSpecName="GlobalNavigationPanelSpec"
 targetBeanSpecName="CreditCardSpec"/>

DocumentListener
DocumentListener is an interface defined in Swing. The following code shows how
this listener is used in an overlay specification. Adding the DocumentListener allows
the Clear button on the GlobalNavigationPanelSpec to be disabled until input is
entered in the selected field on the work area.

Example 5–21 tender.xml: DocumentListener XML tag

<CONNECTION
listenerInterfaceName="DocumentListener"
listenerPackage="javax.swing.event“
sourceBeanSpecName="CreditCardSpec"
targetBeanSpecName="GlobalNavigationPanelSpec"/>

ValidateActionListener
ValidateActionListener is an interface that extends ActionListener in Swing to make it
unique for its use in Point of Service. The following code shows how this listener is
defined in an overlay specification. Adding the ValidateActionListener allows the
CreditCardSpec to recognize when the Next button on the GlobalNavigationPanelSpec
is clicked, resulting in the validation of the required fields on the work area. If the
required fields are empty, an error dialog appears stating that the required field(s)
must have data.

Example 5–22 tender.xml: ValidateActionListener XML tag

<CONNECTION
listenerInterfaceName="ValidateActionListener"
listenerPackage="com.extendyourstore.pos.ui.behavior"
sourceBeanSpecName="GlobalNavigationPanelSpec"
targetBeanSpecName="CreditCardSpec"/>

The fields that are required must be specified for this listener in the overlay
specification for the target bean, as in the following XML from tenderuicfg.xml.

Example 5–23 tenderuicfg.xml: ValidateActionListener Required Fields

<ASSIGNMENT
 areaName="WorkPanel"
 beanSpecName="CreditCardSpec">
 <BEANPROPERTY
 propName="RequiredValidatingFields"

Text Bundles

5-16 Oracle Retail Point-of-Service Operations Guide

propValue="CreditCardField,ExpirationDateField"/>
 </ASSIGNMENT>

Text Bundles

Currently, over forty text bundles exist for the Point of Service application. Many of
these bundles are service-specific. A properties file with the same name exists for
every language, located in locales\<locale name>\config\ui\bundles with the locale
name appended to the filename. For example, the Customer service would have its
text defined in the customerText_en_US.properties file in English, and the text would
be similarly defined in the customerText_es_PR.properties file in Spanish. The
following examples show the same text bundle in different languages.

Example 5–24 customerText_en_US.properties: Text Bundle in English

Common.Add=Add Customer
Common.AddBusiness=Add Business

Example 5–25 customerText_es_PR.properties: Text Bundle in Spanish

Common.Add=Añadir Cliente
Common.AddBusiness=Añadir Negocio

A similarly named properties file would exist for each locale. Because they are
discussed earlier in the chapter, service-specific bundles and the dialogText bundle are
not described in this section.

receiptText
From src\com\extendyourstore\pos\config\bundles\BundleConstantsIfc.java, the
following code sets a string constant for the receiptText bundle.

Example 5–26 BundleConstantsIfc.java: String Constant for receiptText

public static String RECEIPT_BUNDLE_NAME = "receiptText";

In Tour Code, methods to print the receipt exist which call methods on the Utility
Manager to get specified text. The following code is from the printDocument() method
in src\com\extendyourstore\pos\receipt\GiftCardInquirySlip.java.

Example 5–27 GiftCardInquirySlip.java: Tour Code to Print Receipt

UtilityManager utility = (UtilityManager)
Gateway.getDispatcher().getManager(UtilityManagerIfc.TYPE);
Properties slipProps = utility.getBundleProperties(BundleConstantsIfc.RECEIPT_
BUNDLE_NAME,
 UtilityManagerIfc.RECEIPT_BUNDLES,

Note: The only language currently supported is United States
English. Language bundles are included in this release but are not
supported as translated languages. The bundles are only provided for
testing and demonstration purposes.

Oracle Retail does not provide support for any customer extensions
made to the base Point-of-Service product.

Text Bundles

UI Framework 5-17

LocaleMap.getLocale(LocaleConstantsIfc.RECEIPT));
String title = slipProps.getProperty("GiftCardTitle", "Gift Card
Inquiry").toString();
String giftCardNumber = slipProps.getProperty("
GiftCardAccount", "Gift Card #").toString();
...define additional properties...
printLineCentered(title);
printLine("");
printLine(blockLine(new StringBuffer(" " + giftCardNumber), new
StringBuffer(cardNumber)));

In the receiptText_<locale>.properties file, the corresponding text is defined.

Example 5–28 receiptText_en_US.properties: Text Bundle

Receipt.GiftCardTitle=BALANCE INQUIRY
Receipt.GiftCardAccount=Account #

parameterText
In overlay specifications, the parameterText bundle is specified to define the text for
particular screens. For example, the following code from
src\com\extendyourstore\pos\services\admin\parametermanager\parameteruicfg.
xml defines text for the PARAM_SELECT_PARAMETER overlay screen. On this
screen, the names of the parameters found in the parameterText properties file are
displayed.

Example 5–29 parameteruicfg.xml: Overlay Specification Using parameterText

<OVERLAYSCREEN
 defaultScreenSpecName="EYSPOSDefaultSpec"
 resourceBundleFilename="parameterText"
 specName="PARAM_SELECT_PARAMETER">

In the utility package, the ParameterManager is used to retrieve parameter values. The
following code from src\com\extendyourstore\pos\utility\GiftCardUtility.java
shows how a parameter is retrieved from the ParameterManager. The handle to the
ParameterManager, pm, is passed into the method but originally retrieved by the code
ParameterManagerIfc pm =
(ParameterManagerIfc)bus.getManager(ParameterManagerIfc.TYPE);

Example 5–30 GiftCardUtility.java: Tour Code to Retrieve Parameter

public static final String DAYS_TO_EXPIRATION_PARAMETER =
"GiftCardDaysToExpiration";
daysToExpiration = pm.getIntegerValue(DAYS_TO_EXPIRATION_PARAMETER);

In the parameterText_<locale>.properties file, the corresponding text is defined. This
text is displayed on the Parameter List screen when viewing Security options and
choosing the Tender parameter group.

Example 5–31 parameterText_en_US.properties: Text Bundle

Common.GiftCardDaysToExpiration=Days To Giftcard Expiration

The value of the parameter is defined in
config\parameter\application\application.xml by the code sample below. Each
parameters belongs to a group, a collection of related parameters.

Text Bundles

5-18 Oracle Retail Point-of-Service Operations Guide

Example 5–32 application.xml: Definition of Parameter

<PARAMETER name="GiftCardDaysToExpiration"
 type="INTEGER"
 final="N"
 hidden="N">
 <VALIDATOR class="IntegerRangeValidator"
 package="com.extendyourstore.foundation.manager.parameter">
 <PROPERTY propname="minimum" propvalue="1" />
 <PROPERTY propname="maximum" propvalue="9999" />
 </VALIDATOR>
 <VALUE value="365"/>
</PARAMETER>

Manager/Technician Framework 6-1

6
Manager/Technician Framework

This chapter describes the Manager/Technician pair relationship and how it is used to
provide business and system services to the application. It also describes how to build
a Manager and Technician and provides sample implementation and sample code.

Oracle Retail Platform provides the technology for distributing business and system
processes across the enterprise through plug-in modules called Managers and
Technicians. Manager and Technician classes come in pairs. A Manager is responsible
for communicating with its paired Technician on the same or different tiers. The
Technician is responsible for performing the work on its tier. By design, Managers
know how to communicate with Technicians through a pass-through remote interface
called a valet. The valet is the component that handles data transfer. The valet can
travel across networks. It receives the instructions from the Manager and delivers
them to the Technician. A valet follows the Command design pattern, described in the
Architecture chapter.

Figure 6–1 Manager, Technician and Valet

There is a M:N relationship between instances of Managers and Technicians. Multiple
Managers may communicate with a Technician, or one Manager may communicate
with multiple Technicians. While most Managers have a corresponding Technician,
there are cases such as the Utility Manager where no corresponding Technician exists.

There are three Manager/Technician categories. These types have different usages and
are started differently. The three types are:

6-2 Oracle Retail Point-of-Service Operations Guide

■ Global—These Managers and Technicians are shared by all tours. They provide
global services to applications.

■ Session—These Managers and Technicians perform services for a single tour. They
are started by each tour and exist for the length of the tour.

■ Embedded—Thread Manager is embedded inside the Oracle Retail Platform
engine. It is essential to the operation of the engine. This is currently the only
embedded Manager.

Examples of each type are listed in the following table.

Session Managers are started up by the tour bus when a tour is invoked and can only
be accessed by the bus in the tour code. Global Managers, on the other hand, can be
used at any time and are not specific to any tour. Each type of Manager has a specific
responsibility. This table lists the functions of some of the Managers.

Table 6–1 Manager/Technician Type Examples

Manager/Technician Type Examples

Global Data

Journal

Log

Resource

Tax

Timer

Tier

Trace

XML

Session Device

Parameter

Session

UI

Web

DomainInterface

TenderAuth

Embedded Thread

Table 6–2 Manager Names and Descriptions

Manager Name Description

Data The Data Manager is the system-wide resource through which the application can
obtain access to persistent resources. The Data Manager tracks all data stores for the
system, and is the mechanism by which application threads obtain logical connections
to those resources for persistence operations.

Device The Device Manager defines the Java interfaces that are available to an application or
class for accessing hardware devices, like printers and scanners.

Journal The Journal Manager is the interface that is used to write audit trail information, such
as start transaction, end transaction, and other interesting register events.

Log The Log Manager is the interface that places diagnostic output in a common location
on one tier for an application, regardless of where the actual tours run.

New Manager/Technician

Manager/Technician Framework 6-3

New Manager/Technician
When creating a new Manager and Technician pair, you must create a Manager and
Technician class, a Valet class, and interfaces for each class. Managers are the
application client to a Technician service, Technicians do the work, and the valet tells
the Technicians what work to do. Managers can be considered proxies for the services
provided by the Technicians. Technicians can serve as the interfaces to resources.
Managers communicate with Technicians indirectly using valets. Valets can be
thought of as commands to be executed remotely by the Technician. Samples for the
new classes that need to be created are organized together in the next section.

Requesting services from the Managers only requires familiarity with the interface
provided by Managers. However, building a new Manager/Technician pair requires
implementing the interfaces for both the new Manager and Technician, as well as
creating a Valet class.

Manager Class
A Manager merely provides an API to tour code. It behaves like any other method
except that the work it performs may be completed remotely. The input to a Manager
is usually passed on to the valet that in turn, passes it on to the Technician, which
actually performs the work.

The Manager class provides methods for sending valets to the Technician. The
sendValet() method makes a single attempt to send a valet to the Manager’s
Technician. The sendValetWithRetry() method attempts to send the valet to the
Manager’s Technician, and if there is an error, reset the connection to the Technician
and then try again.

Managers must implement the ManagerIfc, which requires the following methods:

Parameter The Parameter Manager is the interface that provides access to parameters used for
customization and runtime configuration of applications.

Thread The Thread Manager is a subsystem that provides system threads as a pooled
resource to the system.

Tier The Tier Manager interface starts a tour session and mails letters to existing tour
sessions. The Tier Manager enables the engine to start a tour on any tier specified in a
transfer station, regardless of where that tier runs. In addition, the Tier Manager
enables a bus to mail a letter to any other existing Bus in the system on any tier.

Timer The Timer Manager provides timer resources to applications that require them. It
does not have a Technician because all timers are local on the tier where they are
used.

User Interface The UI Manager is a mechanism for accessing and manipulating user interface
components. The user interface subsystem within a state machine application must
also maintain a parallel state of screens, so the appropriate screens can be matched
with the application state at all times. The user interface subsystem within a
distributed environment must enable application logic to be completely isolated from
the user interface components.

XML The XML Manager locates a specified XML file, parses the file, and returns an XML
parse tree.

Table 6–2 Manager Names and Descriptions

Manager Name Description

New Manager/Technician

6-4 Oracle Retail Point-of-Service Operations Guide

Often, a subclass of Manager can use these methods exactly as written. Unlike the
Technicians, Managers seldom require special startup and shutdown methods,
because most Managers have no special resources associated with them.

Manager Configuration
You can provide runtime configuration settings for each Manager using a conduit
script. The Dispatcher that loads Back Office configures the Managers by reading
properties from the conduit script and calling the corresponding set() method using
the Java reflection utility. All properties are set by the Dispatcher before the
Dispatcher calls startUp() on the Manager.

Every Manager should have the following:

■ Name—Tour code typically locates a Manager using its name. Often this name is
the same as the name of the class and may be defined as a constant within the
Manager. This is what the getName() method returns.

■ Class—This is the name of the class, minus its package.

■ Package—This is the Java package where the class resides.

Managers may have an additional property file defined that specifies additional
information such as the definition of transaction mappings. If a separate configuration
script is defined, the startup() method must read and interpret the configuration script.
The following sample from config\conduit\CollapsedConduitFF.xml shows this.

Example 6–1 CollapsedConduitFF.xml: Data Manager Configuration

<MANAGER name="DataManager" class="DataManager"
 package="com.extendyourstore.foundation.manager.data">
 <PROPERTY propname="configScript"
 propvalue="classpath://config/manager/PosDataManager.xml" />
</MANAGER>

Technician Class
Technicians implement functions needed by Back Office to communicate with external
or internal resources, such as the UI or the store database. Technicians must
implement the TechnicianIfc, which requires the following methods:

Table 6–3 ManagerIfc Methods

Method Description

MailboxAddress
getAddress()

Gets address of Manager

Boolean getExport() Returns if this Manager is exportable

String getName() Gets name of Manager

void setExport(Boolean) Sets whether the Manager is exportable

void setName(String) Sets name of Manager

void shutdown() Shuts this Manager down

void startUp() Starts this Manager

New Manager/Technician

Manager/Technician Framework 6-5

Often, a subclass of Technician can use these methods exactly as written. The most
likely methods to require additional implementation are startUp() and shutdown(),
which needs to handle connections with external systems.

Technician Configuration
The Technician is configured within the conduit script. Each Technician should have
the following:

Name
A Manager typically locates its Technician using its name. Often this name is the same
as the name of the class and may be defined as a constant within the Technician. This
is what Technician.getName() returns.

Class
The name of the class, minus its package

Package
The Java package where the class resides

Export
This should be Y if the Technician may be accessed by an external Java process; N
otherwise. The value returned by Technician.getExport() is based on this. In
Technicians, it indicates whether the Technician can be remotely accessed from
another tier.

commScheme (optional)
Specifies the communication scheme used to communicate with the Technician. The
default is RMI.

encryptValets (optional)
Specifies whether the valets should be encrypted during network transmission. The
default is N.

compressValets (optional)
Specifies whether the valets should be compressed during network transmission. The
default is N.

Some Technicians may require complex configuration. In cases like this, it may be
preferable to define an XML configuration script specific to the Technician, rather than
to rely on the generic property mechanism. Therefore, Technicians may have an
additional property defined that specifies additional information such as log formats
or parameter validators. If a separate configuration script is defined, the startup()
method must read and interpret the configuration script. The following sample from

Table 6–4 TechnicianIfc Methods

Method Description

MailboxAddress
getAddress()

Gets address of Technician

Boolean getExport() Checks if this Technician is exportable

String getName() Gets name of Technician

void shutdown() Shuts this Technician down

void startUp() Starts up Technician process

New Manager/Technician

6-6 Oracle Retail Point-of-Service Operations Guide

config\conduit\CollapsedConduitFF.xml shows an additional script defined in the
configuration of the Tax Technician.

Example 6–2 CollapsedConduitFF.xml: Tax Technician Configuration

<TECHNICIAN name="TaxTechnician" class = "TaxTechnician"
package = "com.extendyourstore.domain.manager.tax"
export = "Y" >
 <PROPERTY
 propname="taxSpecScript"
 propvalue="classpath://config/tax/TaxTechnicianRates.xml"
 />
</TECHNICIAN>

Valet Class
The valet is the intermediary between the Manager and Technician. Valets act as
commands and transport information back and forth between the Manager and
Technician. Valets must implement ValetIfc, which contains a single method.

The execute method is called by the Technician after the valet arrives at its destination
as a result of the Manager’s sendValet() or sendValetWithRetry() methods, as in the
following example from
src\com\extendyourstore\foundation\manager\parameter\ParameterManager.java.

Example 6–3 ParameterManager.java: Valet Passed By Manager

MailboxAddress techAddress = getParameterTechnicianAddress();
retVal = sendValetWithRetry(valet, techAddress);

Sample Code
The examples below illustrate the primary changes that need to be made to create a
Manager/Technician pair. Note that interfaces also need to be created for the new
Manager, Technician, and Valet classes.

Configuration
The conduit script needs to define the location of the Manager and Technician. This
code would be found in a conduit script such as config\conduit\ClientConduit.xml.
These code samples would typically be in different files on separate machines. It
would include snippets like the following.

Example 6–4 Sample Manager and Technician Configuration

 <MANAGER name="MyNewManager"
 class="MyNewManager"
 package="com.extendyourstore.foundation.manager.mynew">
 </MANAGER>

 <TECHNICIAN name="MyNewTechnician"
 class="MyNewTechnician"

Table 6–5 ValetIfc Method

Method Description

Serializable
execute(Object)

Executes the valet-specific processing on the object

New Manager/Technician

Manager/Technician Framework 6-7

 package="com.extendyourstore.foundation.manager.mynew"
 export="Y" >
 <PROPERTY propname="techField" propvalue="importantVal"/>
 <PROPERTY propname="configScript"

propvalue="classpath://com/extendyourstore/pos/config/myconfigscript.xml"/>
 </TECHNICIAN>

Tour Code
Tour code might include a snippet like the following, which might be located in
src\com\extendyourstore\pos\services.

Example 6–5 Sample Manager in Tour Code

 try
 {
 MyNewManagerIfc myManager =
(MyNewManagerIfc)bus.getManager("MyNewManager");
 myManager.doSomeClientWork("From site code ");
 catch (Exception e)
 {
 logger.info(bus.getServiceName(), e.toString());
 }

Manager
This is a minimal Manager class to illustrate how to create a new Manager. A new
Manager interface also needs to be created for this class. Note that this class references
the sample MyNewTechnician class shown in a later code sample.

Example 6–6 Sample Manager Class

package com.extendyourstore.foundation.manager.mynew;

import com.extendyourstore.foundation.manager.log.LogMessageConstants;
import com.extendyourstore.foundation.tour.manager.Manager;
import com.extendyourstore.foundation.tour.manager.ValetIfc;

public class MyNewManager extends Manager implements MyNewManagerIfc
{
 //--
 /**
 Constructs MyNewManager object, establishes the manager's address, and
 identifies the associated technician.
 */
 //--

 public MyNewManager()
 {
 getAddressDispatcherOptional();
 setTechnicianName("MyNewTechnician");
 }

 //--
 /**
 This method processes the input argument (via its technician).
 @param input a String to illustrate argument passing.
 @return a transformed String
 **/
 //--

New Manager/Technician

6-8 Oracle Retail Point-of-Service Operations Guide

 public String doSomeClientWork(String input)
 {
 String result = null;
 ValetIfc valet = new MyNewValet(input);
 try
 {
 result = (String)sendValetWithRetry(valet);
 }
 catch (Exception e) // usually ValetException or CommException
 {
 logger.error(LogMessageConstants.SCOPE_SYSTEM,
 "MyNewManager.doSomeClientWork, " +
 "could not sendValetWithRetry: Exception = {0}", e);
 }
 logger.debug(LogMessageConstants.SCOPE_SYSTEM,
 "MyNewManager.doSomeClientWork, returns {0}", result);
 return result;
 }
}

Valet
The following code defines a valet to send input to MyNewTechnician.

Example 6–7 Sample Valet Class

package com.extendyourstore.foundation.manager.mynew;

import com.extendyourstore.foundation.tour.manager.ValetIfc;
import java.io.Serializable;

public class MyNewValet implements ValetIfc
{
 /** An input used by the Technician. **/
 protected String input = null;
 //--
 /**
 The constructor stores the input for later use by the Technician.
 @param input the input to be stored.
 **/
 //--

 public MyNewValet(String input)
 {
 this.input = input;
 }

 //--
 /**
 This method causes the MyNewTechnician to "doSomething" with the input
 and returns the results.
 @param techIn the technician that will do the work
 @return the results of "MyNewTechnician.doSomething"
 **/
 //--

 public Serializable execute(Object techIn) throws Exception
 {
 if (!(techIn instanceof MyNewTechnician))
 {

Manager/Technician Reference

Manager/Technician Framework 6-9

 throw new Exception("MyNewTechnician must passed into execute.");
 }
 MyNewTechnician tech = (MyNewTechnician)techIn;
 String result = tech.doSomething(input);
 return result;
 }
}

Technician
The following code provides an example of a minimal Technician class. A new
Technician interface also needs to be created for this class.

Example 6–8 Sample Technician Class

package com.extendyourstore.foundation.manager.mynew;

import com.extendyourstore.foundation.manager.log.LogMessageConstants;
import com.extendyourstore.foundation.tour.manager.Technician;
import com.extendyourstore.foundation.tour.manager.ValetIfc;

public class MyNewTechnician extends Technician implements MyNewTechnicianIfc
{
 /** A value obtained from the config script. **/
 protected String techField = null;

 public void setTechField(String value)
 {
 techField = value;
 }

 public void setConfigScript(String value)
 {
 // Complicated configuration could go here
 }

 //--
 /**
 This method processes the input argument (via its Technician).
 @param input a String to illustrate argument passing.
 @return a transformed String
 **/
 //--

 public String doSomething(String input)
 {
 String result = null;
 result = "MyNewTechnician processed " + input + " using " + techField;
 logger.debug(LogMessageConstants.SCOPE_SYSTEM,
 "MyNewTechnician.doSomething, returns {0}", result);
 return result;
 }
}

Manager/Technician Reference
The following sections describe a Manager/Technician pair, important methods on the
Manager, and an example of using the Manager in the application code.

Manager/Technician Reference

6-10 Oracle Retail Point-of-Service Operations Guide

Parameter Manager/Technician
The Parameter Manager is the interface that allows parameters to be used for
customization and runtime configuration of applications. The following code from
config\conduit\ClientConduit.xml specifies the location and properties of the
Parameter Manager and Technician. Note that the Parameter Manager is a Session
Manager because it is defined with a PROPERTY element inside the APPLICATION
tag. This means it can only be accessed via a tour bus.

Example 6–9 ClientConduit.xml: Code to Configure Parameter Manager

<APPLICATION name="APPLICATION"
 class="TierTechnician"
 package="com.extendyourstore.foundation.manager.tier"

startservice="classpath://com/extendyourstore/pos/services/main/main.xml">
<PROPERTY propname="managerData"
propvalue="name=ParameterManager,managerpropname=className,managerpropvalue=com.ex
tendyourstore.foundation.manager.parameter.ParameterManager"/>
<PROPERTY propname="managerData"

propvalue="name=ParameterManager,managerpropname=useDefaults,managerpropvalue=Y"/>
...
</APPLICATION>

Example 6–10 ClientConduit.xml: Code to Configure Parameter Technician

<TECHNICIAN name="ParameterTechnician" class = "ParameterTechnician"
 package = "com.extendyourstore.foundation.manager.parameter"
 export = "Y" >
 <PROPERTY propname="paramScript"

propvalue="classpath://config/manager/PosParameterTechnician.xml"/>
</TECHNICIAN>

The Parameter Manager classes contain methods to retrieve parameter values. The
following table lists the important ParameterManagerIfc methods, implemented in
src\com\extendyourstore\foundation\manager\parameter\ParameterManager.java.
The Customization chapter describes details about where and how parameters are
defined. A list of parameters can be found in the Parameter Names and Values
Addendum.

Table 6–6 Important ParameterManagerIfc Methods

Method Description

Serializable[]
getParameterValues(String
paramName)

Returns the values of the specified parameter

String[]
getStringValues(String
parameterName)

Returns as an array of Strings the values of the specified parameter

Manager/Technician Reference

Manager/Technician Framework 6-11

The following code sample from
src\com\extendyourstore\pos\services\browser\BrowserControlSite.java illustrates
the use of the Parameter Manager to retrieve parameter values.

Example 6–11 BrowserControlSite.java: Tour Code Using ParameterManagerIfc

ParameterManagerIfc pm =
(ParameterManagerIfc)bus.getManager(ParameterManagerIfc.TYPE);
Serializable homeUrl[] = pm.getParameterValues("BrowserHomeUrl");
String cookieString = pm.getStringValue("CookiesEnabled");

UI Manager/Technician
The UI Manager/Technician is used to abstract the UI implementation. User events
captured by the screen are sent to the UI Manager. The UI Manager communicates
with a UI Technician, which updates the screen for a client running the UI. The UI
Technician provides access to the application UI Subsystem. There is one UITechnician
per application.

The model is an object that is used to transport information between the screen and
the UI Manager via the UI Technician. Models and screens have a one-to-one
relationship. The UI Manager allows you to set the model for a screen and retrieve a
model for a screen; it knows which screen to show and which model is associated with
the screen. The model has data members that map to the entry fields on the given
screen. It can also contain data that dictates screen behavior, such as the field that has
the starting focus or the state of a specific field.

The following code samples from config\conduit\ClientConduit.xml specify the UI
Manager and Technician properties. Like the Parameter Manager, the UI Manager can
only be accessed via a tour bus.

Example 6–12 ClientConduit.xml: Code to Configure UI Manager

<APPLICATION name="APPLICATION"
 class="TierTechnician"
 package="com.extendyourstore.foundation.manager.tier"

startservice="classpath://com/extendyourstore/pos/services/main/main.xml">
<PROPERTY propname="managerData"
propvalue="name=UIManager,managerpropname=className,managerpropvalue=com.extendyou
rstore.pos.ui.POSUIManager"/>
...configuration of other Managers...
</APPLICATION>

String
getStringValue(String
parameterName)

Returns as a String the value of the specified parameter

Integer
getIntegerValue(String
parameterName)

Returns as an Integer the value of the specified parameter

Double
getDoubleValue(String
parameterName)

Returns as a Double the value of the specified parameter

Table 6–6 Important ParameterManagerIfc Methods

Method Description

Manager/Technician Reference

6-12 Oracle Retail Point-of-Service Operations Guide

Example 6–13 ClientConduit.xml: Code to Configure UI Technician

<TECHNICIAN
 name="UITechnician"
 class="UITechnician"
 package="com.extendyourstore.foundation.manager.gui" export="Y">

 <CLASS
 name="UISubsystem"
 package="com.extendyourstore.pos.ui"
 class="POSJFCUISubsystem">

 <CLASSPROPERTY
 propname="configFilename"

propvalue="classpath://com/extendyourstore/pos/config/defaults/defaultuicfg.xml"
 proptype="STRING"/>
...
</TECHNICIAN>

The UI is configured in XML scripts. Each tour has its own uicfg file in which screen
specifications are defined. The screen constants that bind to screen specification names
are defined in src\com\extendyourstore\pos\ui\POSUIManagerIfc.java. The UI
Framework chapter discusses screen configuration in more detail.

POSUIManager is the UI Manager for the Back Office application. One is started for
each tour that is created. The following table lists important POSUIManagerIfc
methods, implemented in src\com\extendyourstore\pos\ui\POSUIManager.java.

These methods are used in tour code to display a screen, as in the following code from
src\com\extendyourstore\pos\services\GetCheckInfoSite.java.

Example 6–14 GetCheckInfoSite.java: Tour Code Using POSUIManagerIfc

POSUIManagerIfc ui = (POSUIManagerIfc) bus.getManager(UIManagerIfc.TYPE);
CheckEntryBeanModel model = new CheckEntryBeanModel();
model.setCountryIndex(countryIndex);
...set additional attributes...
ui.showScreen(POSUIManagerIfc.CHECK_ENTRY, model);

Journal Manager/Technician
The Journal Manager provides location abstraction for journal facilities by
implementing the JournalManagerIfc interface. By communicating with a
JournalTechnicianIfc, the Journal Manager removes your need to know the location of

Table 6–7 Important POSUIManagerIfc Methods

Method Description

void showScreen(String
screenId, UIModelIfc
beanModel)

Displays the specified screen using the specified model

UIModelIfc
getModel(String screenId)

Gets the model from the specified screen

String getInput() Gets the contents of the most recent Response area as a string

void setModel(String
screenId, UIModelIfc
beanModel)

Sets the model for the specified screen

Manager/Technician Reference

Manager/Technician Framework 6-13

resources. The Journal Technician is responsible for providing journal facilities to
other tiers. The Journal Manager must be started on each tier that uses it. There must
be a LocalJournalTechnician running on the local tier or an exported
JournalTechnician running on a remote tier, or both. Transactions should be written to
E-journal only when completed.

The following code samples from config\conduit\CollapsedConduitFF.xml specify
the Journal Manager and Technician properties. Note that this Manager is a Session
Manager; it is defined outside of the APPLICATION element in which the UI Manager
and Parameter Manager were defined. This allows the Journal Manager to be accessed
outside of the bus, meaning it is more accessible and flexible.

Example 6–15 CollapsedConduitFF.xml: Code to Configure Journal Manager

<MANAGER name="JournalManager"
 class="JournalManager"
 package="com.extendyourstore.foundation.manager.journal"
 export="N">
</MANAGER>

Example 6–16 CollapsedConduitFF.xml: Code to Configure Journal Technician

 <TECHNICIAN name="LocalJournalTechnician"
 class="JournalTechnician"
 package="com.extendyourstore.foundation.manager.journal"
 export="Y">
 </TECHNICIAN>

The Journal Manager must be started on each tier that uses it. The Journal Manager
sends journal entries in the following order: (1) Console if consolePrintable is set, (2)
LocalJournalTechnician if defined, (3) JournalTechnician if defined. The following
table lists important JournalManagerIfc methods, implemented in
src\com\extendyourstore\foundation\manager\journal\JournalManager.java.

These methods are used in tour code to configure the E-journal. This code is from
src\com\extendyourstore\pos\services\GetCheckInfoSite.java.

Example 6–17 GetCheckInfoSite.java: Tour Code Using JournalManagerIfc

JournalManagerIfc journal =
(JournalManagerIfc) Gateway.getDispatcher().getManager(JournalManagerIfc.TYPE);
journal.journal(trans.getCashier().getLoginID(),

Table 6–8 Important JournalManagerIfc Methods

Method Description

void journal(String user,
String transaction, String
text)

Adds a new entry to the journal

void
setConsolePrintable(String
printable)

Sets whether journal entries are sent to the console

void index(String
transaction, String key)

Adds a new entry to the index to provide search capabilities to the transaction

void setRegisterID(String
registerID)

Sets a register ID associated with the journal entry

Manager/Technician Reference

6-14 Oracle Retail Point-of-Service Operations Guide

 trans.getTransactionID(),
 purchaseOrder.toJournalString());

Retail Domain 7-1

7
Retail Domain

This chapter contains an overview of the Oracle Retail business objects, including steps
to create, extend, and use them. The Retail Domain is the set of classes that represent
the business objects used by Point-of-Service, which are contained in the Commerce
Services layer of the architecture. Typical domain classes are Customer, Transaction,
and Tender.

The Retail Domain is a set of business logic components that implement retail-oriented
business functionality in Point-of-Service. The Retail Domain is the part of the
Commerce Services layer of the Oracle Retail architecture that is retail-specific. The
Retail Domain provides a common vocabulary that enables the expression of retail
functionality as processes that can be executed by the Oracle Retail Platform engine.

The Retail Domain is a set of retail-oriented objects that have a set of attributes. They
do not implement work flow or a user interface. The Tour scripts executed by Oracle
Retail Platform provide the work flow, and the UI subsystem provides the user
interface. The Retail Domain objects simply define the attributes and logic for
application data.

A significant advantage of Retail Domain objects is that they can be easily used as-is or
can be extended to include attributes and logic that are specific to a retailer’s business
requirements. The Domain objects could be used as a basis for many different types of
retail applications. The objects serve as containers for the transient data used by the
applications. Domain objects do not persist themselves, but they are persisted via the
OracleRetailStore Data Manager interface.

Retail Domain is packaged as domain.jar and domainconfig.jar, which are installed
with the Point-of-Service application. The Data Managers and Technicians, along with
the related Data Transactions and Data Operations classes that they require, are also
packaged within the Retail Domain jars.

All Retail Domain classes extend EYSDomainIfc. This interface ensures the following
interfaces are implemented:

Serializable
This communicates Java's ability to flatten an object to a data stream and, conversely,
reconstruct the object from a data stream, when using RMI.

Cloneable
This communicates that it is legal to make a field-for-field copy of instances of this
class.

The EYSDomainIfc interface also requires that the following methods be implemented:

http://www.microsoft.com

New Domain Object

7-2 Oracle Retail Point-of-Service Operations Guide

equals()
This method accepts an object as a parameter. If the object passed has data attributes
equal to this object, the method returns true, otherwise it returns false.

clone()
This method creates a new instance of the class of this object and initializes all its fields
with exactly the contents of the corresponding fields of this object.

toString()
This method returns a String version of the object contents for debugging and logging
purposes.

New Domain Object
 When an existing Retail Domain object contains attributes and methods that are a
subset of those required, a new Retail Domain object can extend the existing object. For
example, if a new Domain object is necessary for the Tender service, the
AbstractTenderLineItem class can be extended. This class implements
TenderLineItemIfc, which extends the generic EYSDomainIfc interface. If no similar
Domain object exists in the application, create a new Domain object. The usual coding
standards apply; reference the Development Standards document.

1. Create a new interface extending EYSDomainIfc.

All Retail Domain objects extend EYSDomainIfc, but existing Services have an
interface available for Domain objects related to that Service. For example,
TenderLineItemIfc, which extends EYSDomainIfc, is the interface implemented by
each Retail Domain object interface in the Tender service. The following code
sample shows the header of TenderPurchaseOrderIfc, found in
src\com\extendyourstore\domain\tender\TenderPurchaseOrderIfc.java.

Example 7–1 TenderPurchaseOrderIfc.java: Class Header

public interface TenderPurchaseOrderIfc extends TenderLineItemIfc
{
public static final String revisionNumber = "$Revision: 1.0 $";
// begin TenderPurchaseOrderIfc
}

2. Create a new Java class that implements the interface created in the previous step.
The class of a brand new object that does not fit an existing pattern should extend
AbstractRoutable, which defines a “luggage tag” for EYS domain classes;
otherwise, the class should extend the existing class that represents a similar type
of object.

The following code sample shows the header for the TenderPurchaseOrder
Domain object from
src\com\extendyourstore\domain\tender\TenderPurchaseOrder.java.

Example 7–2 TenderPurchaseOrder.java: Class Header

public class TenderPurchaseOrder extends AbstractTenderLineItem implements
TenderPurchaseOrderIfc
{
public static final String revisionNumber = "$Revision: 1.0 $";
//begin TenderPurchaseOrder
}

In the implementation of the class, make sure to do the following:

Domain Object in Tour Code

Retail Domain 7-3

■ Define attributes for the class.

Check the superclass to see if an attribute has already been defined. For
example, the AbstractTenderLineItem class defines the amountTender
attribute, so amountTender should not be redefined in a new Tender Domain
object.

If the new domain object has numerous constants, you might consider
defining ObjectNameConstantsIfc.java

■ Define get and set methods for the attributes as necessary.

■ Implement methods required by EYSDomainIfc: equals(), clone(), toString(),
and getRevisionNumber(). Reference the superclass as appropriate. toString()
should indicate the class name and revision number.

3. To return a new instance of the Domain object, add a method to
src\com\extendyourstore\domain\factory\DomainObjectFactoryIfc.java called
getObjectNameInstance().

Domain objects should always be instantiated by the factory. The following code
sample shows the method interface to return an instance of the
TenderPurchaseOrder object.

Example 7–3 DomainObjectFactoryIfc.java: Method For Instantiating
TenderPurchaseOrder

public TenderPurchaseOrderIfc getTenderPurchaseOrderInstance();

4. To return a new instance of the Domain object, implement the method
src\com\extendyourstore\domain\factory\DomainObjectFactory.java called
getObjectNameInstance().

The following code sample shows the method definition to return an instance of
the TenderPurchaseOrder object.

Example 7–4 DomainObjectFactory.java: Method For Instantiating TenderPurchaseOrder

public TenderPurchaseOrderIfc getTenderPurchaseOrderInstance()
{
return(new TenderPurchaseOrder());
}

Domain Object in Tour Code
Once a Retail Domain class is identified for use, the Java code needs to be written to
instantiate the object and call the object’s methods. This code is typically located in
site, road and aisle classes of application tours. There are two very important things to
keep in mind when using Domain objects in Tour code:

■ Retail Domain objects cannot be instantiated directly. They must be generated by
the factory.

■ All interaction with Domain objects take place through the object’s interface, even
interaction between objects.

The steps to use the object involve the following:

1. Get an instance of the DomainObjectFactory and request the instance of the object
from the factory.

Domain Object Reference

7-4 Oracle Retail Point-of-Service Operations Guide

The factory class is instantiated once for the application and returns instances of
Retail Domain objects. Since different implementations use different classes to
implement the objects, the factory keeps track of which class implements the
requested object.

The following line of code from
src\com\extendyourstore\services\tender\GetCheckInfoSite.java gets an
instance of a Check object.

Example 7–5 GetCheckInfoSite.java: Instantiating Check from DomainObjectFactory

check = DomainGateway.getFactory().getTenderCheckInstance();

2. Call methods on the object.

Now that an instance of the object exists, methods of the class can be called. The
following lines of code from GetCheckInfoSite.java sets attributes on the Check
object.

Example 7–6 GetCheckInfoSite.java: Setting Attributes of Check
check.setTenderLimits(cargo.getTenderLimits());
check.setAmountTender(amount);

Domain Object Reference
The Domain Objects discussed below include a description of the purpose of the
object, classes and interfaces involved in its construction, a class diagram, and
examples in Tour code.

CodeListMap
To implement Point-of-Service metadata such as reasons for return, shipping methods,
and departments, the CodeList objects are used. This data is referred to as “reason
codes” from the UI. Codes are read in from the database at application startup. They
are available from the Utility Manager. The following files are involved in the
formation of CodeLists. All are found in src\com\extendyourstore\domain\utility.

Domain Object Reference

Retail Domain 7-5

The following class diagram illustrates the relationship between these classes.

Figure 7–1 CodeListMap Class Diagrams

Table 7–1 CodeListMap Object Classes and Interfaces

Class or Interface Description Important Methods

CodeEntry

This class handles the functions
associated with an entry in a list of
codes.

void setText(String)
void setCode(int)
void setEnabled(boolean)
String getCodeString()

CodeList This class is used for handling lists
of codes which map to strings, such
as reason codes.

CodeEntryIfc[] getEntries()
void setEntries(CodeEntryIfc[])
void addEntry(CodeEntryIfc)
CodeEntryIfc findListEntry(String)

CodeListMap This class is used for the collection
of code lists used in applications.

CodeListIfc[] getLists()
CodeListIfc
getCodeListInstance(String)
CodeListIfc add(CodeListIfc)

CodeConstantsIfc This class defines constants used for
the implementation of CodeList and
CodeEntry. It includes the constants
for the lists currently defined, such
as
TimekeepingManagerEditReasonCo
des and TillPayOutReasonCodes.

This class does not contain methods.

Domain Object Reference

7-6 Oracle Retail Point-of-Service Operations Guide

To use the CodeListMap, the Utility Manager provides two methods:

■ CodeListMapIfc getCodeListMap()

■ void setCodeListMap(CodeListMapIfc)

Tour code that requires a code entry would retrieve it as in the following code from
src\com\extendyourstore\pos\services\common\ItemInfoEnteredAisle.java.

Example 7–7 ItemInfoEnteredAisle.java: CodeListIfc in Tour Code

CodeListIfc list = utility.getCodeListMap().get(CodeConstantsIfc.CODE_LIST_UNIT_
OF_MEASURE);
CodeEntryIfc uomCodeEntry = list.findListEntry(uomString);
String uomCode = uomCodeEntry.getCodeString();

Currency
All currency representation and behavior is abstracted, so any currency can be
implemented. Currency is a Domain Object that handles the behaviors and attributes
of money used as a medium of exchange. It is important to use Currency objects and
methods to compare and manipulate numbers instead of primitive types. Currency is
implemented by the following classes. They can be found in
src\com\extendyourstore\domain\currency.

All Currency types extend AbstractCurrency and implement CurrencyIfc. For
example, if creating a class to support Canadian currency, the class should extend
CurrencyDecimal and implement CurrencyIfc.

Table 7–2 Currency Object Classes and Interfaces

Class or Interface Description Important Methods

CurrencyIfc This interface defines a common
interface for currency objects.

CurrencyIfc add(CurrencyIfc)
CurrencyIfc negate()
String getCountryCode()

AbstractCurrency This abstract class contains the
behaviors and attributes common to
all currency.

BigDecimal getBaseConversionRate()
void setNationality(String)
String getNationality()

CurrencyDecimal This class contains the behaviors
and attributes common to all
decimal-based currency.

CurrencyIfc add(CurrencyIfc)
CurrencyIfc negate()
String getCountryCode()

Domain Object Reference

Retail Domain 7-7

Figure 7–2 Currency Class Diagram

The following code is an example of the Currency object used in
src\com\extendryourstore\pos\services\tender\PurchaseOrderAmountEnteredAisl
e.java.

Example 7–8 PurchaseOrderAmountEnteredAisle.java: CurrencyIfc in Tour Code

CurrencyIfc balanceDue = totals.getBalanceDue();
CurrencyIfc amount = DomainGateway.getBaseCurrencyInstance(poAmount);
if (!(amount.compareTo(balanceDue) == CurrencyIfc.EQUALS)) {
...display invalid PO Amount message...
}

Transaction
A Transaction is a record of business activity that involves a financial and/or
merchandise unit exchange or the granting of access to conduct business with an
external device. There are various types of Transactions found in
src\com\extendyourstore\domain\transaction such as LayawayTransaction,
StoreOpenCloseTransaction, and BankDepositTransaction. SaleReturnTransaction is a
commonly used Domain Object that extends AbstractTenderableTransaction. The
classes involved in the implementation of a SaleReturnTransaction and its behaviors
are described in the following table.

Domain Object Reference

7-8 Oracle Retail Point-of-Service Operations Guide

The following code sample from
src\com\extendyourstore\domain\arts\JdbcSaveTenderLineItems.java shows how
SaleReturnTransaction is used in Tour code.

Example 7–9 JdbcSaveTenderLineItems.java: SaleReturnTransactionIfc in Tour Code

public void saveTenderLineItems(JdbcDataConnection dataConnection,
 TenderableTransactionIfc transaction) throws
DataException
{
 if (transaction instanceof SaleReturnTransactionIfc)
 {
 SaleReturnTransactionIfc srt = (SaleReturnTransactionIfc)
transaction;
 int numDiscounts = 0;
 if (srt.getTransactionDiscounts() != null)
 {
 numDiscounts = srt.getTransactionDiscounts().length;
 }
 lineItemSequenceNumber = srt.getLineItems().length + 1 +
numDiscounts;
 }
...code to handle different transaction types...

Table 7–3 Transaction Object Classes and Interfaces

Class or Interface Description Important Methods

SaleReturnTransaction This class is a sale or return
transaction.

void addTender(TenderLineItemIfc)
CustomerIfc getCustomer()
TransactionTotalsIfc
getTenderTransactionTotals()

AbstractTenderableTransaction This class contains the behavior
associated with a transaction that
involves the tendering of money.

void
addLineItem(SaleReturnLineItemIfc)
void linkCustomer(CustomerIfc)
void
addLineItem(AbstractTransactionLineIt
emIfc)

Transaction This class represents a record of
business activity that involves a
financial and/or merchandise unit
exchange or the granting of access
to conduct business at a specific
device, at a specific point in time for
a specific employee.

CustomerInfoIfc getCustomerInfo()
String getTillID()
void setCashier(EmployeeIfc)

TenderableTransactionIfc This is the interface for all
transactions that involve the
tendering of money.

void addTender(TenderLineItemIfc)
TenderLineItemIfc[]
getTenderLineItems()
void
setTransactionTotals(TransactionTotal
sIfc)

SaleReturnTransactionIfc This is the interface for all
sale/return transactions.

void addTender(TenderLineItemIfc)
CustomerIfc getCustomer()
TransactionTotalsIfc
getTenderTransactionTotals()

RetailTransactionIfc This is the interface for all retail
transactions.

EmployeeIfc getSalesAssociate()
AbstractTransactionLineItemIfc[]
getLineItems()
String getOrderID()

Domain Object Reference

Retail Domain 7-9

}

Domain Object Reference

7-10 Oracle Retail Point-of-Service Operations Guide

Customization 8-1

8
Customization

This chapter covers additional customization options. Frequently, it is necessary to
customize Point-of-Service to integrate with existing systems and environments.

Parameters
Parameters are used to control flow, set minimums and maximums for data, and allow
flexibility without recompiling code. A user can modify parameter values from the UI
without changing code. Parameter values can be modified by Point-of-Service, and the
changes can be distributed by other Oracle Retail applications. For example, the
maximum cash refund allowed and the credit card types accepted are parameters that
can be defined by Point-of-Service. To configure parameters, you need to understand
the parameter hierarchy, define the group that the parameter belongs to, and define
the parameter and its properties.

Parameter Hierarchy
Parameters are defined in XML files that are organized in a hierarchy. Different XML
files represent different levels in a retail setting at which parameters may be defined.
Understanding the parameter hierarchy helps you define parameters at the
appropriate level. The following table lists the parameter directories, XML filenames,
and file descriptions.

Higher-level parameters by default are overridden by lower-level parameter settings.
For example, store-level configuration parameters override application-level
parameters. The FINAL element in a parameter definition signifies whether the
parameter can be overridden. Below is an excerpt from
config\manager\PosParameterTechnican.xml, showing the order of precedence from
highest level to lowest level.

Table 8–1 Parameter Directories, Files, and Descriptions

Directory Parameter-Related XML File Description

application application.xml Default parameter information provided by
the base product

corporate corporate.xml Company information

store store.xml Local store information

register workstation.xml Register-level information

user role operator.xml User-level information

Parameters

8-2 Oracle Retail Point-of-Service Operations Guide

Example 8–1 Default Parameter Settings

<SELECTOR name="defaultParameters">
 <SOURCE categoryname="application" alternativename="application">
 <SOURCE categoryname="corporate" alternativename="corporate">
 <SOURCE categoryname="store" alternativename="store">
 <SOURCE categoryname="service" alternativename="NO_OP">
 <SOURCE categoryname="uidata" alternativename="NO_OP">
 <SOURCE categoryname="register" alternativename="workstation" >
 <SOURCE categoryname="userrole" alternativename="operator" >
 </SELECTOR

The categoryname specifies the directory name and the alternativename specifies the
name of the XML file. All parameter subdirectories reside in config\parameter.

Parameter Group
Each parameter belongs to a group, which is a collection of related parameters. The
groups are used when modifying parameters within the UI. The user selects the group
first, then has the option to modify the related parameters that belong to that group.
Examples of groups are Browser, Customer, Discount, and Employee.

Adding a parameter requires adding it to the proper group. The following excerpt
from application.xml shows the Tender group and a parameter definition inside the
group. The “hidden” attribute indicates whether or not the group is displayed in the
UI.

Example 8–2 Definition of Tender Group

<GROUP name="Tender"
 hidden="N">
 <PARAMETER name="MaximumCashChange"
 ...
 <PARAMETER>
...
<GROUP>

Parameter Properties
Each parameter file contains parameter definitions organized by group. The following
shows an example of two parameter definitions from
config/parameters/application/application.xml.

Example 8–3 Parameter Definitions From application.xml

<PARAMETER name="CashAccepted"
 type="LIST"
 default="USD"
 final="N"
 hidden="N">
 <VALIDATOR class="EnumeratedListValidator"
 package="com.extendyourstore.foundation.manager.parameter">
 <!-- Use ISO 3 letter currency code -->
 <PROPERTY propname="member" propvalue="None" />
 <PROPERTY propname="member" propvalue="USD" />
 <PROPERTY propname="member" propvalue="CAD" />
 </VALIDATOR>
 <VALUE value="USD"/>

Devices

Customization 8-3

 <VALUE value="CAD"/>

<PARAMETER name="MaximumCashChange"
 type="CURRENCY"
 final="N"
 hidden="N">
 <VALIDATOR class="FloatRangeValidator"
 package="com.extendyourstore.foundation.manager.parameter">
 <PROPERTY propname="minimum" propvalue="0.00" />
 <PROPERTY propname="maximum" propvalue="99999.99" />
 </VALIDATOR>
 <VALUE value="25.00"/>
 </PARAMETER>

The FINAL attribute indicates whether the property definition is final, meaning it
cannot be overridden by lower-level parameter file settings. The VALUE element is the
current setting of the parameter. If multiple values are set, that means the value of the
parameter is a list of values. The three types of VALIDATOR classes are listed in the
following table.

Devices
Point-of-Service devices are configured with the posdevices.xml file, device-specific
property files, and other JavaPOS configuration files. The device vendor typically
provides a JavaPOS configuration file to support the JavaPOS standards. If necessary,
you can create your own configuration file to meet your device requirements.
Interaction of the Point-of-Service application with devices is managed by the Device
Manager and Device Technician.

Set Up the Device
To configure a device to work with Point-of-Service, first consult the user manual for
that device for specific setup requirements. Set up the device drivers and configuration
file so the device is available to applications.

Test the Device
Use the POStest application available internally or at http:www.javapos.com to
determine if a device adheres to existing JavaPOS standards. POStest is a GUI-based
utility for exercising Point-of-Service devices using JavaPOS. Currently it supports the
following devices: POSPrinter, MICR, MSR, Scanner, Cash Drawer, Line Display,
Signature Capture, and PIN Pad. Perform the following steps to use POStest. See
http:www.javapos.com for more details.

Table 8–2 Validator Types

Validator Description

EnumeratedListValidator Determines whether a value supplied is one of an allowable set of values

FloatRangeValidator Ensures that the value lies within the specified minimum and maximum float
range

IntegerRangeValidator Ensures that the value of a parameter lies within the specified minimum and
maximum integer range

http:www.javapos.com
http:www.javapos.com
http:www.javapos.com
http:www.javapos.com

Devices

8-4 Oracle Retail Point-of-Service Operations Guide

1. Configure the classpath for JavaPOS. This means that the classpath should include
the location of POStest, jpos.jar, jcl.jar and the JavaPOS services for the devices.

2. To build POStest, compile the classes in <location of
POStest>\upos\com\jpos\POStest.

3. To run POStest, enter the following at a command line:

java com.jpos.POStest.POStest

Sometimes, the hardware vendor provides test utilities that come with the JavaPOS
implementation. You should test with these tools as well.

Create a Session and ActionGroup
In Point-of-Service code, devices require a Session and an ActionGroup. If you need to
interact with a new JavaPOS device, you must create a new Session and ActionGroup.

Sessions capture input for the application. In UI scripts, device connections are defined
that allow the application code to receive input from a device by connecting the
Session with the screen specification. The Session listens to JavaPOS controls on the
device.

ActionGroups provide the commands that can be used to control the device.
ActionGroups are instantiated by Tour code. When a method on an ActionGroup is
called in Tour code, the DeviceTechnician talks to JavaPOS controls on the device.

To create or modify a Session and ActionGroup, perform the following steps.

1. Configure the Session and ActionGroup in config\pos\posdevices.xml.

To do this, enter the name of the Session and ActionGroup in posdevices.xml. You
must specify the name of the object, its class and its package. In addition, you can
set some attributes available in the corresponding class in posdevices.xml. This file
creates a hash table of ActionGroups and Sessions, which are part of the
DeviceTechnician. Below is a definition of an ActionGroup and Session from
posdevices.xml.

Example 8–4 ActionGroup Configuration

 <ACTIONGROUP name="LineDisplayActionGroupIfc"
 class="LineDisplayActionGroup"
 package="com.extendyourstore.pos.device"/>

Example 8–5 Session Configuration

 <SESSION name="ScannerSession"
 devicename = "defaultScanner"
 class="ScannerSession"
 package="com.extendyourstore.foundation.manager.device"
 defaultmode = "MODE_RELEASED"
 />

2. Define a Session class to get input that extends InputDeviceSession or
DeviceSession.

Each type of device has a Session class defined in
src\com\extendyourstore\foundation\manager\device. A device session like
CashDrawerSession would extend DeviceSession, whereas an input device session
like a ScannerSession would extend InputDeviceSession.

Devices

Customization 8-5

Sessions are not instantiated in Tour code but are accessed by UI scripts in device
connections.

3. Define an ActionGroupIfc interface that extends DeviceActionGroupIfc.

This class should also be located in src\com\extendyourstore\pos\device. The
following line of code shows the header of the CashDrawerActionGroupIfc class.

public interface CashDrawerActionGroupIfc extends DeviceActionGroupIfc

4. Create the ActionGroup class. This class should be located in
src\com\extendyourstore\pos\device, and its purpose is to define specific device
operations available to Point-of-Service. The following line of code shows the
header of the CashDrawerActionGroup class.

public interface CashDrawerActionGroup extends CashDrawerActionGroupIfc

5. If one does not already exist, create a device connection in the UI Subsystem file.
Device connections in the UI Subsystem files allow the application to receive input
data from the Session.

The DeviceSession class is referenced in the device connections for the relevant
screen specifications. For example, the following code is an excerpt from
src\com\extendyourstore\pos\services\tender\tenderuicfg.xml.

Example 8–6 Example of Device Connection

<DEVICECONNECTION
 deviceSessionName="ScannerSession"
 targetBeanSpecName="PromptAndResponsePanelSpec"
 listenerPackage="java.beans"
 listenerInterfaceName="PropertyChangeListener"
 adapterPackage="com.extendyourstore.foundation.manager.gui"
 adapterClassName="InputDataAdapter"
 adapterParameter="setScannerData"
 activateMode="MODE_SINGLESCAN">

6. Access the device manager and input from the Session in the application code.

Using the bean model, data from the Session can be accessed with methods in the
device’s ActionGroupIfc. Other devices such as the printer are accessed through a
device manager as in the following code from
src\com\extendyourstore\pos\services\tender\CompleteTenderSite.java.

Example 8–7 ActionGroup in Tour code

POSDeviceActions pda = new POSDeviceActions((SessionBusIfc) bus);
pda.clearText();
pda.displayTextAt(1,0,displayLine2);

Simulate the Device
It is often practical to simulate devices for development purposes until the hardware is
available or the software is testable. Switching to a simulated device is easily
accomplished by editing config\pos\posdevices.xml. In fact, when you install
Point-of-Service and choose the option to run in Simulated mode, posdevices.xml is
modified accordingly. By default, unselected devices are set up as simulated. The
following code sample shows the configuration of SimulatedPrinterSession.

Help Files

8-6 Oracle Retail Point-of-Service Operations Guide

Example 8–8 Simulated Device Configuration

<SESSION name="SimulatedPrinterSession"
 devicename = "defaultPrinter"
 class="SimulatedPrinterSession"
 package="com.extendyourstore.foundation.manager.device"
 defaultmode = "MODE_RELEASED"
 />

Help Files
The Oracle Retail Point-of-Service application includes help files to provide
information to assist the end-user. When the user chooses Help or F1 from the global
navigation panel, a help browser appears in Point-of-Service to describe the current
screen. An index is provided on the left so the user may choose additional topics to
view. The help is implemented as JavaHelp and includes these components:

■ One HTML help file for each screen. The product help files are Microsoft Word
files saved as HTML. They can be edited with Word, an HTML editor or a text
editor.

■ A Table Of Contents file that defines the index that displays on the left.

■ A properties file that associates overlay screen names with the corresponding
HTML filenames.

Refer to http://www.java.sun.com for more information on JavaHelp.

Modifying Help Files
1. Locate the name of the help file associated with the overlay screen name that

needs to be modified. The help file names are defined in helpscreens.properties
located in config\ui\help.

Example 8–9 JavaHelp—helpscreens.properties

REFUND_OPTIONS refundoptionshelp.htm

2. Locate the help file in the locales\en_US\config\ui\help directory. Open the file
in Microsoft Word or an HTML editor and edit the content. If you are using Word
to edit, be sure to save the file as HTML when the edits are complete.

3. Make identical modifications to the help file for each of the supported languages.
For example, the base product also has help files in locales\es_PR\config\ui\help
and locales\fr_CA\config\ui\help.

Note: If the base product help files are modified, upgrades for help
files will not be available, and you will not be able to take advantage
of updates provided with future maintenance releases of the
application.

Note: The only language currently supported is United States
English.

http://www.java.sun.com

Help Files

Customization 8-7

4. If the index location or text descriptions needs to be modified, change toc.xml
located in locales\en_US\config\ui\help. The order of the items in the index is
also defined by this file.

Example 8–10 JavaHelp—toc.xml

 <tocitem target="REFUND_OPTIONS" text="Refund Options" />

Help Files

8-8 Oracle Retail Point-of-Service Operations Guide

Store Database 9-1

9
Store Database

This chapter describes the database used with Point-of-Service and how to interface
with it, including:

■ Updating tables

■ Rebuilding the database

■ Creating new tables

■ Updating flat file configurations

The chapter includes an example of writing code to store new data in the database
using the Tender function.

ARTS Compliance
The Oracle Retail Point-of-Service system uses an Association of Retail Technology
Standards (ARTS)-compliant database to store transactions and settings. The ARTS
standard (see http://www.nrf-arts.org/) is a key element in maintaining compatibility
with other hardware and software systems.

Although the Point-of-Service system complies with the ARTS guidelines, it does not
implement the entire standard, and contains some tables which are not specified by
ARTS. For example, ARTS tables for store equipment and recipe are not included,
while tables for tender types and reporting have been added.

The ARTSDatabaseIfc.java file defines the mapping of ARTS names to constants in
application code.

Understanding Data Managers and Technicians
The following diagram shows how Data Managers and Data Technicians handle
communication with the database in the Point-of-Service application.

http://www.nrf-arts.org/

Understanding Data Managers and Technicians

9-2 Oracle Retail Point-of-Service Operations Guide

Figure 9–1 Data Managers and Data Technicians

The Point-of-Service system uses the following components to write to the database:

■ The Data Manager’s primary responsibilities are to provide an API to the
application code and to contact the Data Technician and pass it data store requests.
Typically, there are multiple Data Manager instances (one per register).

■ The Data Manager Configuration Script is an XML file that specifies the properties
of the Data Manager.

■ The Data Technician handles the database connection. Configure the Data
Technician with an XML script. The Data Transaction class is the valet from the
manager to the technician. The Data Transaction class has the add, find, and
update methods to the database. Typically, there is one Data Technician that
communicates with the local database and one that communicates with flat files.

■ The Data Technician configuration script is an XML file that specifies the
properties of the Data Technician.

■ The Transaction Queue collects data transactions and guarantees delivery.

■ Flat Files are local register files that are used when the register is offline.

■ The Local Database is the store database.

Note: Most managers create valets when they need talk to
technicians. Data Manager works a little differently: the Data
Transaction class calls the Data Manager and passes itself as a valet.
The valet finds the data operation class, then the valet knows which
technician it is associated with and calls its execute method.

How Data Transactions Work

Store Database 9-3

How Data Transactions Work
This section gives an overview of how Oracle Retail Platform, Data Manager, and Data
Technician components work together to store data in the database.

Oracle Retail Platform is responsible for configuring the system so that the Data
Manager, Data Technician, configuration scripts, and conduit scripts work together to
provide the mechanism to update, store, and retrieve data from a database.

1. The client conduit script defines the name and package for the Data Manager and
Data Manager configuration script, POSDataManager.xml.

2. The server conduit script defines the name and package for the Data Technician
and Data Technician configuration script, DefaultDataTechnician.xml.

3. At runtime, the tour code requests a data transaction object from the Data
Transaction Factory.

4. The Data Transaction Factory verifies that the transaction is defined in
POSDataManager.xml and the transaction object is returned to the tour code.

5. The tour code calls a method on the transaction object that creates a vector of data
actions. A data action corresponds to a set of SQL commands that are executed as
a unit. (Data actions are reused by different transactions.)

6. The method in the transaction object gets a handle to the Data Manager and calls
execute(), sending itself as a parameter. This instructs the Data Manager to send
the Transaction object (a valet) across the network to the Data Technician.

7. On the server side, the Data Technician configuration script,
DefaultDataTechnician.xml, lists all available transactions. It also defines an
operation class for each data action. Each data action is then processed by the
appropriate data operation class.

Note: The notation TXN refers to a data transaction, which can be
any guaranteed transmission of data, not necessarily a sales
transaction in the retail sense.

Note: Most Manager/Technician pairs work differently. The
standard pattern is for the tour code to get a handle to the Manager,
then call a method on the manager that will create the valet object and
send it to the technician. For the Data Manager/Technician pair, the
transaction object (the valet class), gets the handle to the Data
Manager. The tour code is only responsible for getting a transaction
object from the factory and calling the appropriate method.

Creating or Updating Database Tables

9-4 Oracle Retail Point-of-Service Operations Guide

Figure 9–2 Updating the Database: Simplified Runtime View

Creating or Updating Database Tables
Use this procedure when creating a new database table or updating an existing one.
Refer to the ARTS standards when designing tables.

Creating or Updating Database Tables

Store Database 9-5

1. Edit the appropriate database script, or write a new one.

Database scripts can be found in the source directory
commerceservices\trunk\db\sql. In a Point-of-Service installation, see
C:\OracleRetailStore\360common\db\sql.

Start a new file (or edit the appropriate existing file) in the db/sql source directory
file to store SQL commands for creating the new table. Example 9–1 shows the
SQL commands for creating the table that stores the credit card data.

Example 9–1 CreateTableCreditDebitCardTenderLineItem.sql

DROP TABLE TR_LTM_CRDB_CRD_TN;

CREATE TABLE TR_LTM_CRDB_CRD_TN
(
 ID_STR_RT char(5) NOT NULL,
 ID_WS char(3) NOT NULL,
 DC_DY_BSN char(10) NOT NULL,
 AI_TRN integer NOT NULL,
 AI_LN_ITM smallint NOT NULL,
 TY_TND varchar(20),
 ID_ISSR_TND_MD varchar(20),
 TY_CRD VARCHAR(40),
 ...additional column lines omitted here...
);

ALTER TABLE TR_LTM_CRDB_CRD_TN ADD PRIMARY KEY (ID_STR_RT, ID_WS, DC_DY_BSN, AI_
TRN,
AI_LN_ITM);

COMMENT ON TABLE TR_LTM_CRDB_CRD_TN IS 'Credit/Debit Card Tender Line Item';

COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.ID_STR_RT IS 'Retail Store ID';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.ID_WS IS 'Workstation ID';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.DC_DY_BSN IS 'Business Day Date';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.AI_TRN IS 'Transaction Sequence
Number';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.AI_LN_ITM IS 'Retail Transaction
Line Item
Sequence Number';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.ID_ISSR_TND_MD IS 'Tender Media Issuer
ID';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.TY_TND IS TenderTypeCode';
COMMENT ON COLUMN TR_LTM_CRDB_CRD_TN.TY_CRD IS 'Card Type';
...additional comment lines omitted...

Note: When you add or change a table, you need to rebuild the
database for your local copy of Point-of-Service before you can test
your changes. The Point-of-Service system includes scripts for
building the database; the main script, dbbuild.bat, runs multiple
subordinate scripts to create all the necessary tables and populate
them with initial data. The script automatically includes all files in the
sql directory, so the build scripts do not have to be modified in order
to build your files. However, you may have to edit a build script in
order to test foreign key constraints; see step 6.

Creating or Updating Database Tables

9-6 Oracle Retail Point-of-Service Operations Guide

2. Create or edit the insert files (also in the db/sql source directory) for inserting
initial data into the new database table.

This step is used only to insert data into the database table for purposes of initially
logging on, testing, and so on. Example 9–2 contains three inserts from the
db/sql/InsertTableTenderLineItem.sql file.

Example 9–2 InsertTableTenderLineItem.sql

INSERT INTO TR_LTM_TND
(ID_STR_RT, ID_WS, AI_TRN, AI_LN_ITM, DC_DY_BSN, TY_TND, MO_ITM_LN_TND,
 TS_CRT_RCRD, TS_MDF_RCRD)
VALUES ('04241', '149', 1000, 2, '1999-09-23', 'CASH', 54.11,
 TIMESTAMP('1999-09-05 12:53:06.536'), TIMESTAMP('1999-09-05
12:53:06.536'));

INSERT INTO TR_LTM_TND
(ID_STR_RT, ID_WS, AI_TRN, AI_LN_ITM, DC_DY_BSN, TY_TND, MO_ITM_LN_TND,
 TS_CRT_RCRD, TS_MDF_RCRD)
VALUES ('04241', '149', 1000, 2, '1999-09-30', 'CASH', 4.32,
 TIMESTAMP('1999-09-05 12:53:06.536'), TIMESTAMP('1999-09-05
12:53:06.536'));

INSERT INTO TR_LTM_TND
(ID_STR_RT, ID_WS, AI_TRN, AI_LN_ITM, DC_DY_BSN, TY_TND, MO_ITM_LN_TND,
 TS_CRT_RCRD, TS_MDF_RCRD)
VALUES ('04241', '129', 1, 2, '1999-09-05', 'CASH', 54.11,
 TIMESTAMP('1999-09-05 12:53:06.536'), TIMESTAMP('1999-09-05
12:53:06.536'));

3. Make updates to foreign keys in CreateForeignKeys.sql.

4. If you are creating a new table, add a string constant to the src/com/_
360commerce/domain/arts/ARTSDatabaseIfc.java file. Use a string constant with
a meaningful name to store the official ARTS name of the database table.

Example 9–3 shows two examples of meaningful String constants found in
ARTSDatabaseIfc.java.

Example 9–3 String Constant in ARTSDatabaseIfc.java

public static final String TABLE_TENDER_LINE_ITEM = "tr_ltm_tnd";
public static final String TABLE_CREDIT_DEBIT_CARD_TENDER_LINE_ITEM = "tr_ltm_
crdb_crd_tn";

5. Update the flat file configuration XML files, if needed.

If you are creating a new table, consult functional specifications to determine
whether the table needs to be represented in the flat files.

For existing tables, you can inspect the file pos/config/manager/FFTableDefs.xml
to determine whether the table is represented in the flat files.

See “Updating Flat File Configurations” on page 9-14 for information on updating
the configuration files.

6. Check foreign key constraints.

For performance reasons, the database build scripts do not turn on foreign key
constraints until late. If you make inserts which break foreign key constraints, you
will not be notified. To check this, test all inserts with foreign key constraints in

Example of Saving Data: Storing Tender Information

Store Database 9-7

place, by editing the appropriate database build script. In the following example,
the locations of the CreateK.sql and InsertD.sql scripts have been swapped:

Example 9–4 mysql_builddb.bat: Changes to Implement Foreign Key Checking

COPY /B %_360COMMON_MYSQL_PATH%\mysql_prologue.sql + %_360COMMON_LOGS_
PATH%\CreateS.sql + %_360COMMON_LOGS_PATH%\
CreateK.sql
 + %_360COMMON_LOGS_PATH%\
InsertD.sql
 + %_360COMMON_DB2_PATH%\mysql_epilogue.sql %_360COMMON_LOGS_PATH%\FinalSQL.sq

7. Run c:\OracleRetailStore\pos\bin\dbbuild.bat to rebuild the database.

dbbuild.bat [data level]
[data level] can be base_data, seed_data, test_data, demo_data.

■ base_data contains just enough to get the build running

■ seed_data should contain enough to build and run unit/functional tests.

■ test_data will contain the rest of the data that you expect from previous builds

The dbbuild.bat script performs the following operations:

■ Executes CreateTable*.sql scripts

■ Performs inserts and adds keys

■ Creates flat files in C:\OracleRetailStore\pos\bin*.dat

8. After you verify that the table builds successfully and the code referencing the
table works, check your updates into source control.

Example of Saving Data: Storing Tender Information
This section describes how to save data to the database, using credit card tender
information as an example.

When completing a retail transaction, a customer can offer multiple forms of payment
for a purchase. Each form of payment is a different tender, and the system stores each
one as a tender line item. For example, the customer may pay for a $100 purchase with
a $50 gift card payment, a $20 store credit payment, and a $30 credit card payment.
There are three forms of payment and three tender line items, each potentially
requiring different types of data. The following subsections describe how to store the
credit card tender data.

Research Table Requirements and Standards
To plan your database code, refer to functional requirements documents to determine
what data must be stored. For example, the Credit Functional Requirements specify
that the credit card number and expiration date be stored.

Next, review the ARTS database standards for tables and columns. Determine whether
you need to create a new table. If you need to create a table defined by ARTS but not
currently used in the Store database, follow the ARTS standard. For instructions on
creating a new table, see “Creating or Updating Database Tables” on page 9-4.

For the credit card tender transaction, there are two tables that need to be addressed:
the tender line item table and the credit/debit card transaction table.

Example of Saving Data: Storing Tender Information

9-8 Oracle Retail Point-of-Service Operations Guide

Saving Data from Site Code
To save data to the database from a site:

1. Create and populate the domain object to be saved.

2. Save the data to the cargo’s transaction.

For the credit card tender option, the TenderCargo contains a retail transaction
object that keeps track of all the data for each tender line item, as well as other
pertinent data. TenderCargo is the cargo for the Tender Tour.

In Example 9–5, credit is a domain object that stores the credit card data such as
number, expiration date, type of card, and so on. Credit was already stored in the
cargo as a pending line item in GetCreditInfoSite.java. In the following code, credit
is retrieved from the cargo and added to the cargo’s retail transaction as a tender
line item.

Example 9–5 ValidCreditInfoEnteredRoad.java: Transaction Object

public void traverse(BusIfc bus)
{
 // Get the pending line item
 TenderCargo cargo = (TenderCargo) bus.getCargo();
 TenderChargeIfc credit = (TenderChargeIfc) cargo.getPendingLineItem();
 TenderableTransactionIfc trans = cargo.getTransaction();
 ...
 // Add the credit line item to the transaction
 trans.addTender(credit);
 ...
}

3. Call a method to save the transaction object.

After the credit object is added to the Tender Cargo transaction, the collected data
is saved to the database. In Example 9–6, the
com/extendyourstore/pos/services/common/SaveRetailTransactionAisle.java
file uses the Utility Manager to call the saveTransaction() method.

Example 9–6 SaveRetailTransactionAisle.java: Save Transaction

public void traverse(BusIfc bus)
{
 ...
 UtilityManagerIfc utility =(UtilityManagerIfc)
bus.getManager(UtilityManagerIfc.TYPE);
 ...
 utility.saveTransaction(trans, totals, till, register);
 ...
}

Table 9–1 Database Tables Used in Credit Card Tender Option

ARTS Table Name Description

tr_ltm_tnd Tender line item

tr_ltm_crdb_crd_tn Credit/debit card transactions

Example of Saving Data: Storing Tender Information

Store Database 9-9

Locate Data Operation
The Data Manager and Data Technician work together to provide access to the
database from the application. The developer rarely modifies these. Typically, the site
code and the JDBC code are updated. To identify which JDBC class should be used,
trace through the site code until the DataAction sets the operation name.

As an example, the following figure shows the tour workflow that occurs when a
tender is complete and the data is ready to be saved.

Figure 9–3 Tender Tour to Point-of-Service Tour Workflow

After the Tender Tour has completed, the program returns to the Point-of-Service Tour
via the WriteTransactionSite to the SaveRetailTransactionAisle. The
SaveRetailTransactionAisle initiates the save process.

The conceptual diagram in the following figure illustrates the basic communication
path from the SaveRetailTransactionAisle to the database. For more detail, refer to the
source code.

Example of Saving Data: Storing Tender Information

9-10 Oracle Retail Point-of-Service Operations Guide

Figure 9–4 Diagram: Saving a Transaction

The following descriptions explain the labels in the figure. When creating the credit
card tender option, only the site and road classes for the Tender Tour and the
JdbcSaveTenderLineItems class were changed.

1. SaveRetailTransactionAisle uses the Utility Manager to call the saveTransaction()
method as shown in Example 9–6. The utility.saveTransaction() method uses the
data transaction class TransactionWriteDataTransaction to save the retail
transaction.

The following code samples show details for the previous figure.

Example 9–7 UtilityManager.java: Save Data Transaction

TransactionWriteDataTransaction dbTrans = new
TransactionWriteDataTransaction(tranName);
dbTrans.saveTransaction(trans, totals, till, register);

Example of Saving Data: Storing Tender Information

Store Database 9-11

Example 9–8 TransactionWriteDataTransaction.java: Save Transaction

public void saveTransaction(TransactionIfc transaction,
 FinancialTotalsIfc totals,
 TillIfc till,
 RegisterIfc register)
 throws DataException
{
 ...
 int transactionType = transaction.getTransactionType();
 ...
 switch(transactionType)
 { // begin add actions based on type
 case TransactionIfc.TYPE_SALE:
 case TransactionIfc.TYPE_RETURN:
 addSaveSaleReturnTransactionActions((SaleReturnTransactionIfc)
transaction,totals,till,
 register);
 break;
 ...
}

2. The com/extendyourstore/domain/arts/DefaultDataTechnician.xml file is the
configuration file for the Data Technician and is used to configure the links
between the application and the JDBC class that performs the work. All Data
Transaction classes must be defined in this file, including
TransactionWriteDataTransaction.

Example 9–9 DefaultDataTechnician.xml: Define Data Transaction Class

<DATATECHNICIAN
 package="com.extendyourstore.domain.arts">
 ...
 <TRANSACTION name="TransactionWriteDataTransaction" command="jdbccommand"/>
 ...

3. The TransactionWriteDataTransaction class instantiates the DataAction object and
sets the data operation name to SaveTenderLineItems. Other data actions occurred
before these tender data actions. Data Actions are added in the specific order in
which they should occur.

Example 9–10 TransactionWriteDataTransaction: DataAction

protected void addSaveSaleReturnTransactionActions(SaleReturnTransactionIfc
transaction,
 FinancialTotalsIfc totals,
 TillIfc till,
 RegisterIfc register)
{
 artsTransaction = new ARTSTransaction(transaction);

 // Add a DataAction to save the SaleReturnTransactionIfc
 DataAction dataAction = new DataAction();
 dataAction.setDataOperationName("SaveRetailTransaction");
 dataAction.setDataObject(artsTransaction);
 actionVector.addElement(dataAction);

 // Add a DataAction to save all the line items in the Transaction
 dataAction = new DataAction();
 dataAction.setDataOperationName("SaveRetailTransactionLineItems");

Example of Saving Data: Storing Tender Information

9-12 Oracle Retail Point-of-Service Operations Guide

 dataAction.setDataObject(artsTransaction);
 actionVector.addElement(dataAction);

 // Add a DataAction to save all the tender line items in the Transaction
 DataActionIfc da = new SaveTenderLineItemsAction(this, artsTransaction);
 actionVector.addElement(da);

 //Add a DataAction to save store credit in the Transaction
 dataAction = createDataAction(artsTransaction, "SaveStoreCredit");
 actionVector.addElement(dataAction);
 ...
}

Example 9–11 SaveTenderLineItemsAction: Set Data Operation Name

protected static final String OPERATION_NAME = "SaveTenderLineItems";

4. The DefaultDataTechnician uses the data command to list several data operation
names. The data operation name SaveTenderLineItems points to the name of the
JDBC class, which is JdbcSaveTenderLineItems.

Example 9–12 DefaultDataTechnician.xml: Define Data Operation Class

<DATATECHNICIAN
 package="com.extendyourstore.domain.arts">
 ...
 <TRANSACTION name="TransactionWriteDataTransaction" command="jdbccommand"/>
 ...
 <COMMAND name="jdbccommand"
 class="DataCommand"
 package="com.extendyourstore.foundation.manager.data"

 <COMMENT>
 This command contains all operations supported on a JDBC
 database connection.
 </COMMENT>
 <POOLREF pool="jdbcpool"/>
 ...
 <OPERATION class="JdbcSaveTenderLineItems"
 package="com.extendyourstore.domain.arts"
 name="SaveTenderLineItems">
 <COMMENT>
 This operation saves all tender line items associated with the transaction.
 </COMMENT>
 </OPERATION>
...
</DATATECHNICIAN>

5. The JdbcSaveTenderLineItems class is used to write the credit card data to the
database table. See the next section.

Modify Data Operation
Use this procedure to modify the data operation class to access the database.

1. Add a save method to the data operation class.

The com/extendyourstore/domain/arts/JdbcSaveTenderLineItems.java file
creates the JDBC code that saves the tender line items to the database via the
saveTenderLineItem() method, shown in Example 9–13. This code checks the type

Example of Saving Data: Storing Tender Information

Store Database 9-13

of a line item. If the tender line item is an instance of the TenderChargeIfc, then it
calls the insertCreditDebitCardTenderLineItem() method.

Example 9–13 JdbcSaveTenderLineItems: Saving Tender Line Item

public void saveTenderLineItem(JdbcDataConnection dataConnection,
 TenderableTransactionIfc transaction,
 int lineItemSequenceNumber,
 TenderLineItemIfc lineItem) throws
DataException
{

 if (lineItem instanceof TenderCashIfc)
 {
 insertTenderLineItem(dataConnection,
 transaction,
 lineItemSequenceNumber,
 lineItem);
 }
 else if (lineItem instanceof TenderGiftCardIfc)
 {
 insertGiftCardTenderLineItem(dataConnection,
 transaction,
 lineItemSequenceNumber,
 (TenderGiftCardIfc) lineItem);
 }
 else if (lineItem instanceof TenderChargeIfc)
 {
 /*
 * Charge tender updates the Credit/Debit Card Tender Line Item,
 * Tender Line Item, and Retail Transaction Line Item tables.
 */
 insertCreditDebitCardTenderLineItem(dataConnection,
 transaction,
 lineItemSequenceNumber,
 (TenderChargeIfc)lineItem);
 }
 ...
}

2. Write an implementation for methods written for the data operation class.

Example 9–14 lists the source code for the insertCreditDebitCardTenderLineItem(),
called in Example 9–13. First, the tender line item must be saved to the tender table
using the insertTenderLineItem() method. This code already existed for the other
tender options.

Second, the credit data must be saved to the new database table using SQL factory
methods.

Example 9–14 JdbcSaveTenderLineItems.java: SQL Factory Methods

public class JdbcSaveTenderLineItems extends JdbcSaveRetailTransactionLineItems
 implements ARTSDatabaseIfc
{
 public void insertCreditDebitCardTenderLineItem(JdbcDataConnection
dataConnection,
 TenderableTransactionIfc
transaction,
 int lineItemSequenceNumber,
 TenderChargeIfc lineItem)

Updating Flat File Configurations

9-14 Oracle Retail Point-of-Service Operations Guide

 throws DataException
 {
 /*
 * Update the Tender Line Item table first.
 */
 insertTenderLineItem(dataConnection,
 transaction,
 lineItemSequenceNumber,
 lineItem);

 SQLInsertStatement sql = new SQLInsertStatement();

 // Table
 sql.setTable(TABLE_CREDIT_DEBIT_CARD_TENDER_LINE_ITEM);
 // Fields
 sql.addColumn(FIELD_RETAIL_STORE_ID, getStoreID(transaction));
 sql.addColumn(FIELD_WORKSTATION_ID, getWorkstationID(transaction));
 sql.addColumn(FIELD_BUSINESS_DAY_DATE, getBusinessDayString(transaction));
 sql.addColumn(FIELD_TENDER_AUTHORIZATION_DEBIT_CREDIT_CARD_ACCOUNT_NUMBER,
 getCardNumber(lineItem));
 sql.addColumn(FIELD_TENDER_AUTHORIZATION_CARD_NUMBER_SWIPED_OR_KEYED_CODE,
 getEntryMethod(lineItem));
 sql.addColumn(FIELD_TENDER_AUTHORIZATION_DEBIT_CREDIT_CARD_EXPIRATION_DATE,
 getExpirationDate(lineItem));
 }
 ...
}

Test Code
To test the new code:

1. Run Point-of-Service.

2. Select the path to the screen.

3. Enter the data.

4. Complete the retail transaction.

Verify Data
To verify that the correct data exists in the database table, use a database access
program to view the table that should contain the new information. Verify that the
data in the database table matches the data entered. The following example shows a
sample SQL statement you can use to retrieve the data.

select * from tr_ltm_crdb_crd_tn

Updating Flat File Configurations
A Point-of-Service flat file is a simple database system in which each table is contained
in one file. The Point-of-Service system uses flat files created by the Store Server to
provide access to minimal data when the network or server is down. With the help of
the flat files, the Point-of-Service system can continue to process transactions without
access to the network.

The information provided in flat files includes:

■ Item data, such as price, tax group, SKU

Updating Flat File Configurations

Store Database 9-15

■ Tax rules for the local store

■ User logon and role information

■ Reason codes

When a register is opened at the start of a new business day, the system updates the
flat files on the register. The files can also be updated periodically during the business
day if an optional parameter is set.

The Oracle Retail Platform FlatFileEngine provides access to flat file tables. The
FlatFileEngine integrates with the Data Technician using the DataConnectionIfc and
DataOperationIfc interfaces. A wrapper class, FlatFileDataConnection, implements the
DataConnectionIfc interface. The application developer must provide the classes
implementing the DataOperationIfc interface for the application-specific operations.
Two configuration scripts are required, the Data Technician configuration script and
the FlatFileEngine configuration script.

Data Technician Script
The Data Technician script specifies the data connection class and the data operation
mappings. Two sections of the XML script are highlighted, the first containing the
OPERATION tags and the second containing the CONNECTION and
CONNECTIONPROPERTY tags.

■ The first section specifies the mapping of the data actions to data operations. For
the FlatFileEngine, the FlatFilePLUOperation and
FlatFileEmployeeLookupOperation are classes that implement the
DataOperationIfc interface.

■ The second section declares the use of the FlatFileConnection class for the data
connection and specifies the configSource property for the connection.
Specification of the configSource provides the location of the FlatFileEngine
configuration script and is required for the FlatFileEngine to operate.

Example 9–15 PosLFFDataTechnician.xml: Sample Data Technician Script for Flat Files

<!DOCTYPE DATATECHNICIAN SYSTEM
"classpath://com/extendyourstore/foundation/toru/dtd/datascript.dtd">

<DATATECHNICIAN
 package="com.extendyourstore.domain.arts">

 <TRANSACTION name="PLU" command="flatfilecommand"/>
 <TRANSACTION name="employee" command="flatfilecommand"/>

 <COMMAND name="flatfilecommand"
 class="DataCommand"
 package="com.extendyourstore.foundation.manager.data" >
 <COMMENT>
 This command contains all operations supported
 on a flat file database connection.
 </COMMENT>
 <POOLREF pool="flatfilepool"/>

 <OPERATION class="FlatFilePLUOperation" package="flatfileops"
 name="PLULookup">
 <COMMENT>
 This operation retrieves a priced item from a
 flat file database, given a string lookup key.
 </COMMENT>

Updating Flat File Configurations

9-16 Oracle Retail Point-of-Service Operations Guide

 </OPERATION>
...operation omitted here...
 </COMMAND>
 <POOL name="flatfilepool"
 class="DataConnectionPool"
 package="com.extendyourstore.foundation.manager.data" >
 <COMMENT>
 This pool defines a FlatFile connection to the gift registry database.
 </COMMENT>
 <POOLPROPERTY propname="numConnections"
 propvalue="1" proptype="INTEGER"/>
 <CONNECTION class="FlatFileDataConnection"
 package="com.extendyourstore.foundation.manager.data.flatfile">
 <CONNECTIONPROPERTY propname="configSource"
 propvalue="classpath://datafiles/TableDefs.xml" />
 </CONNECTION>
 </POOL>
</DATATECHNICIAN>

Flat File Engine Configuration Script
The FlatFileEngine configuration script is required for Oracle Retail applications to
access the FlatFileEngine. This script specifies the files where the information is stored,
the physical schema of the file, and the supported indexes on the files. Example 9–16 is
a sample FlatFileEngine configuration script that specifies two tables with associated
fields and indexes.

The XML blocks beginning with the tag FWTABLE declare two fixed-width tables with
table names Item and Employees. The example configuration in FWFIELDS provides
the definitions of the fields within the tables. The field definitions use one base
indexing for the starting positions.

After the fields are declared, the following script defines two indexes for the table
(indexes are optional). The index names are ItemID_Index and ItemName_Index. The
files to store the index information are specified along with the index. Within the
individual index specifications, the fields used to generate the index are specified by
field name. During configuration, the FlatFileEngine validates the index files and
rebuilds the index files if necessary.

Example 9–16 FFTableDefs.xml: Sample FlatFileEngine Configuration File

<?xml version='1.0' ?>
<!DOCTYPE FFENGINE SYSTEM
"classpath://com/extendyourstore/foundation/tour/dtd/flatfile.dtd">

<!—Configuration Script for FlatFileEngine -->

<FFENGINE>
 <FWTABLE>
 <TABLE tablename="Items"
 datasource="datafiles/Items.txt"
 />

 <FWFIELDS>
 <FWFIELD fieldname="ItemID"
 startpos="1" width="10" />
<FWFIELD fieldname="Name"
 startpos="11" width="80" />
 <FWFIELD fieldname="SupplierID"

Updating Flat File Configurations

Store Database 9-17

 startpos="91" width="10" />
<FWFIELD fieldname="CategoryID"
 startpos="101" width="10" />
 ...additional fields omitted...
 </FWFIELDS>

 <INDEXES>
 <INDEX indexname="ItemID_Index"
 indexfile="datafiles/item_id.idx" >
 <INDEXFIELD fieldname="ItemID"/>
 </INDEX>
 <INDEX indexname="ItemName_Index"
 indexfile="datafiles/item_name.idx" >
 <INDEXFIELD fieldname="Name"/>
 </INDEX>
 </INDEXES>
</FWTABLE>

<FWTABLE>
 <TABLE tablename="Employees" datasource="datafiles/Employees.txt"/>
<FWFIELDS>
 <FWFIELD fieldname="EmployeeID"
 startpos="1" width="10" />
 <FWFIELD fieldname="LastName"
 startpos="11" width="20" />
 <FWFIELD fieldname="FirstName"
 startpos="31" width="10" />
 <FWFIELD fieldname="Title"
 startpos="61" width="10" />
...additional fields omitted...
</FWFIELDS>

<INDEXES>
 <INDEX indexname="Employee_Name"
 indexfile="datafiles/emp_name.idx" >
 <INDEXFIELD fieldname="LastName"/>
 <INDEXFIELD fieldname="FirstName"/>
 </INDEX>
 <INDEX indexname="Employee_HireDate"
 indexfile="datafiles/emp_hire.idx">
 <INDEXFIELD fieldname="HireDate"/>
 </INDEX>
</INDEXES>
</FWTABLE>
</FFENGINE>

Implementing FlatFileDataOperations
To create a FlatFileDataOperation, you create a class that extends the
FlatFileDataOperation class and implements the execute method. You must create a
FlatFileQuery to communicate with the FlatFileEngine via the
FlatFileDataConnection.execute() method. The following diagram shows the class
relationships.

Updating Flat File Configurations

9-18 Oracle Retail Point-of-Service Operations Guide

Figure 9–5 FlatFileQuery Classes

The types of FlatFileQueries are:

■ Insert

■ Update

■ Delete

■ Retrieve

■ Clear table

■ Rebuild indexes

The query type and the target table are specified in the constructor for the
FlatFileQuery. Some of the query types (update, delete, and retrieve) require the
creation of a selection clause to identify the set of records on which the operation is to
be performed. The sample code shown below creates a retrieve query, the most
common of the queries that you implement. Differences for other query types are
shown following the sample code (see "Other Query Types", next chapter (XREF)).

The sample code shown below is an implementation for an item retrieve operation:

1. The first lines of the method simply cast the connection and get the relevant
selection criteria from the dataTransaction object.

2. The major work of the method occurs within the try-catch block. Refer to the
comments within the sample code. The input to the FlatFileEngine is a
FlatFileQuery. The FlatFileQuery(Instance) is created in the statements

Updating Flat File Configurations

Store Database 9-19

immediately following the try. First, a new FlatFileQuery instance is created, and
then the target data table is specified. Lastly, the selection clause is set to create a
new SimpleQueryExpression using the target data fields and the item number
supplied in the Data Transaction.

3. Calling the connection.execute() method with the FlatFileQuery as a parameter
returns a FlatFileResultSet or throws a FlatFileException. If an exception is thrown,
it is translated to a DataException by the parent class. If a result set is returned, the
set is iterated record by record and the field values within the records are
translated to appropriate domain objects.

Example 9–17 Item Retrieve Sample Code

 public void execute(DataTransactionIfc dataTransaction,
 DataConnectionIfc dataConnection,
 DataActionIfc action)
 throws DataException
 {
 FlatFileDataConnection connection =
 (FlatFileDataConnection)dataConnection;

 String prodId = (String)action.getDataObject();
 PLUItems[] pluItems = null;

 try
 {
// Create a new query of type retrieve for table Items
 FlatFileQuery query =
 new FlatFileQuery(FlatFileQuery.QUERY_RETRIEVE,
 "Items");
 query.setSelectionClause(
 new SimpleQueryExpression("ItemID",
 QueryExpressionIfc.EQ, itemId));

 connection.execute(query);

 FlatFileResultSet rs =
 (FlatFileResultSet)connection.getResult();

 int recCount = rs.getRecordCount();

 if (recCount == 0)
 {
 throw new DataException(DataException.NO_DATA,
 "No PLU was found proccessing the result "
 + set in FlatFilePLUOperation.");
 }

 items = new PLUItem[recCount];

 FlatFileRecord record = rs.getFirstRecord();
 for (int i = 0; i < recCount; i++)
 {
 /*
 * Grab the fields selected from the database
 */
 // Sting fldValue = record.getFieldValue("FIELDNAME");

 // TRANSFER ATTRIBUTES HERE

Updating Flat File Configurations

9-20 Oracle Retail Point-of-Service Operations Guide

 record = rs.getNextRecord();
 }
 }

 catch (FlatFileException eff)
 {
 throw translateToDataException(eff);
 }

 dataTransaction.setResult((Serializable)items);
 }

Other Query Types
The following table provides additional information for creating the query types
supported by the FlatFileEngine:

Complex Query Expressions
Complex Query Expressions allow the creation of selection clauses with multiple
criteria. To select an employee based on last name and first name, create a
ComplexQueryExpression. The logical operation joining the associated expressions is
set using the constants AND and OR from the QueryExpressionIfc class as the
parameter in the setJoinCondition() method. Two SimpleQueryExpression objects are
created, one for the last name criteria and one for the first name criteria. These two
SimpleQueryExpressions are added to the expressions vector in the
ComplexQueryEpression. The selection clause association of the FlatFileQuery is set to
the ComplexQueryExpression. The ComplexQueryExpression can contain both Simple
and Complex expressions, and supports nested conditions.

Table 9–2 FlatFileEngine Query Types

Query Type Definition

Update The update query allows the application to update field values within a table. The
table name is specified and a selection clause is created to identify the record(s) to
apply the updated field values. The field values are placed in a hash table, keyed by
field name that contains the new field values. The FlatFileQuery.setValues() method is
called and passes the values hashtable as a parameter. The query is passed as a
parameter to the execute method of the collection. The number of records updated is
returned via the getUpdated() method.

Insert The insert query inserts a new record into the flat file table. The table name and the
values are specified in the query. Values are transmitted using a hashtable keyed by
field name. Not all fields require values. A confirmation of the insertion is accessed
using the getInserted() method.

Delete The delete query marks the records matching the selection clause for deletion. The
table name and a selection clause must be specified in this query. After executing the
query, the number of records deleted is available using the getDeleted() method.
Deleting records invalidates the indexes. To rebuild the indexes, a rebuild query must
be executed.

Clear Table A clear table query removes all the records in a specified table. Only the table name is
required. Completion status is available from the FlatFileResultSet.getCleared()
method.

Rebuild The rebuild query type removes records marked for deletion from the table and
rebuilds the associated indexes. Only the table name is required.

Extension Guidelines 10-1

10
Extension Guidelines

Customers who purchase Point-of-Service extend the product to meet their particular
needs. These guidelines speed implementation and simplify the upgrade path for
future work.

Developers on customer projects should also refer to the Development Standards. The
Development Standards address how to code product features to make them less
error-prone and more easily maintained.

Conventions
This section describes conventions used throughout this chapter.

Terms
The following definitions are used throughout the chapter:

■ Product source tree — A directory tree that contains the Oracle Retail product
code. The contents of this tree do not change, with the exception of product
patches. In production code, these files are accessed as external .jar files.

■ Customer source tree — A directory tree separate from the product code that
contains customer-specific files. Some of these files are new files for
customer-specific features; others are extensions or replacements of files from the
product source tree. The customer tree should not contain packages from the
product tree.

■ Customer abbreviation — A short name that represents the customer. For example,
a company named My Bike Store might use MBS as their customer abbreviation.
The MBS example is used throughout this chapter; replace MBS with the customer
abbreviation for your own project when writing code. The customer abbreviation
is added to filenames to clarify that the file is part of the customized code, and is
used as part of the package name in the customer source tree.

Filename Conventions
Filenames in the customer source tree usually include the customer abbreviation.
Name files according to the following rules:

■ If a class in the customer source tree extends or replaces a class in the product
source tree, use the customer abbreviation followed by the original filename as the
new filename (for example, SaleReceipt.java becomes MBSSaleReceipt.java).

■ New Java classes should also begin with the customer abbreviation.

POS Package

10-2 Oracle Retail Point-of-Service Operations Guide

■ Script or properties file names that are hard-coded in Foundation classes must use
the same filename in the customer source tree as was used in the product source
tree (for example, posfoundation.properties).

Modules
The Point-of-Service system is divided into a number of different modules, and each
module corresponds to a project in an integrated development environment (IDE).
When setting up a development environment for modifying code, building
Point-of-Service, and testing changes, you must configure your system to make
MBSpos dependent on all the other modules.

To set up your development environment:

1. Check out each of the required customer modules as shown in the following table.

2. Reference each of the standard modules as external .jar files.

3. Add the required modules to your CLASSPATH environment variable in the order
shown in the following table, with all of the customer modules preceding the set
of standard modules.

Directory Paths
Paths given in this chapter are relative, starting either with the module or with the
source code, as follows:

■ Paths beginning with a module name start from the module location. pos\config
refers to the config directory within the pos module, wherever that module is
located on your system.

■ Paths beginning with com refer to source code. Source code paths are nested
within modules, in \src directories. Multiple \src\com file hierarchies are built
together into one file structure during compilation. For example, a reference to
com_360commerce\pos\services\tender can be found in the pos module’s src
directory. If your pos module is in c:\workspace\OracleRetailStore, then the
full path is:

C:\workspace\OracleRetailStore\pos\src\com_
360commerce\pos\services\tender

POS Package
This section addresses extension of files in the pos package.

Table 10–1 Required Modules in Dependency Order

Customer Modules Standard Modules

MBS pos (root, src, locales_US and other
language directories)1

MBS domain (root and src)

MBS commerce services

MBS common

MBS 3rd-party

1 Directory names in parentheses must be specified individually in the classpath.

pos (root, src, locales_US and other language directories)

domain (root and src)

360common

commerce services

foundation

3rd party

POS Package

Extension Guidelines 10-3

Tour
You extend tours mainly by editing proprietary XML scripts developed by Oracle
Retail. This section describes how to customize tours, beginning with replacing the
Tour Map, and continuing with customization of individual tours or parts of tours.

Tour Map
The product code references tours at transfer stations by logical names, so that you can
change a single tour without having to update references to that tour in various tour
scripts. Tour maps tell the system the specific tour files to use for each logical name.

The tour map also enables overlays of tour classes. If a tour script does not need to be
customized, but some of the Java classes do, the tour map can specify individual
classes to customize. Note that any class files must still use their own unique names
(such as MBScashSelectedAisle.java for a new Aisle used in place of
CashSelectedAisle.java).

Typically, the base product Tour Map file, tourmap.xml, does not change. Instead, you
create a custom Tour Map for your project, and an additional one for each supported
locale beyond your default locale. Each of these Tour Map files contains only the
differences it adds to the base Tour Map.

Follow these steps to add new Tour Map files:

1. Create one custom Tour Map file for each supported country in the pos\config
directory of the customer source tree. Initially, these Tour Map files may be empty;
as you customize tour components, you can add tags. The following sample shows
the initial state of the file:

Example 10–1 MBStourmap_CA.xml: Sample initial tourmap file for Canadian locale

<?xml version="1.0" encoding="UTF-8"?>
<tourmap
 country="CA"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="com/extendyourstore/foundation/tour/dtd/tourmap.xsd
">

...Tour tags can be added here...

</tourmap>

2. Copy the pos\config\posfoundation.properties file to the customer source tree.
Modify the tourmap.files property in this file, adding the names of the new Tour
Map files. Do not rename the posfoundation.properties file, since this filename is
referenced by Foundation classes. It is important to keep the customized tour map
files after the product tour map file in the list, since the files listed later override
earlier files.

Example 10–2 posfoundation.properties: Adding new Tour Maps

comma delimited list of tourmap files to overlay
tourmap.files=tourmap.xml, MBStourmap.xml, MBStourmap_CA.xml

Note: The pos module may be nested within a OracleRetailStore
directory in the source code control system.

POS Package

10-4 Oracle Retail Point-of-Service Operations Guide

3. Refer to the procedures that follow to modify tour scripts and Java components of
a tour.

Tour Scripts
If you need to change the workflow of a tour, you must replace the tour script; you
cannot extend a tour script. To replace a tour script, follow these steps:

1. Create a new XML tour script in the customer source tree.

2. Modify the tour map in the customer source tree to specify the correct package
and filename for the new tour script. The logical tour name must stay the same.

Example 10–3 tourmap_CA.xml: Replacing one tour script

<tour name="tender">
 <file>classpath://com/mbs/pos/services/tender/tender.xml</file>
</tour>

3. Copy and modify sites, roads, aisles, shuttles and signals.

Site
Extending siteactions in the traditional object-oriented sense is not recommended;
letters mailed in the original arrive method would conflict with the arrive method in
the extended class. Since siteactions represent relatively small units of code, they
should be replaced instead of extended. Follow these steps:

1. Create a new siteaction class in the customer source tree, such as
MBScashSelectedSite.java.

2. If you are overlaying a siteaction class, but not modifying the tour script, then all
letters that were mailed from the product version of the siteaction class should also
be mailed from the new version. Do not mail new letters that are not handled by
the product code, unless the tour script and related Java classes are also modified.

3. Edit the appropriate Tour Map for the locale, using the replacewith property in the
<SITEACTION> tag to define the new package and filename for the siteaction
class.

Example 10–4 tourmap_CA.xml: Replacing a siteaction

 <tour name="tender">
 <file>classpath://com/mbs/pos/services/tender</file>
 <SITE
 name="cashSelected"
 useaction="com.extendyourstore.pos.services.tender.cashSelectedSite"/>
 <SITEACTION
 class="cashSelectedSite"
 replacewith="com.mbs.pos.services.tender.MBScashSelectedSite"/>

 </tour>

Lane—Road or Aisle
As with siteactions, extending laneactions in the traditional object-oriented sense is not
recommended, as letters from the original and extended classes could conflict. Replace
laneactions instead of extending them, using the following steps:

1. Create a new laneaction class in the customer source tree, such as
MBSOpenCashDrawerAisle.java.

POS Package

Extension Guidelines 10-5

2. If you are overlaying a siteaction class, but not modifying the tour script, then all
letters that were mailed from the product version of the laneaction class should
also be mailed from the new version. Do not mail new letters that are not handled
by the product code, unless the tour script and related Java classes are also
modified.

3. Edit the appropriate Tour Map for the locale, using the replacewith property in the
<LANEACTION> tag to define the new package and filename for the laneaction.

Example 10–5 tourmap_CA.xml: Replacing a laneaction

<tour name="tender”>
 <file>classpath://com/mbs/pos/services/tender</file>
 <SITE
 name="RefundDueUI"
 useaction="com.mbs.pos.services.tender.refundDueUISite">"/>
 <LANEACTION
 class="OpenCashDrawerAisle"
 replacewith="com.mbs.pos.services.tender.MBSOpenCashDrawerAisle"/>

 </tour>

Shuttle
Since shuttles do not mail letters, they may be extended or replaced; however
extending them is recommended. Follow these steps in either case:

1. Modify the shuttle class.

Create a new class in the customer source tree. If it extends or replaces the product
bean class, add the customer abbreviation to the filename. For example,
TenderAuthorizationLaunchShuttle.java becomes
MBSTenderAuthorizationLaunchShuttle.java.

2. Edit the appropriate Tour Map for the locale, using the replacewith property in the
<SHUTTLE> tag to define the new package and filename for the shuttle.

Example 10–6 tourmap_CA.xml: Replacing or Extending a shuttle

<tour name="tender”>
 <file>classpath://com/mbs/pos/services/tender</file>
 <SITE
 name="RefundDueUI"
 useaction="com.mbs.pos.services.tender.refundDueUISite">"/>
 <SHUTTLE
 class="TenderAuthorizationLaunchShuttle"

replacewith="com.mbs.pos.services.tender.MBSTenderAuthorizationLaunchShuttle"/>

 </tour>

3. Modify the calling and nested tour scripts as necessary to adjust to the change.

Signal
Extending signals in the traditional object-oriented sense is not recommended. This is
because signals are typically so small that extending an original signal class makes
them overly complex.

POS Package

10-6 Oracle Retail Point-of-Service Operations Guide

The REPLACEWITH tag of the TourMap does not work for Signals. The tour script
must be customized to refer to the package and filename of the new signal. Follow
these steps:

1. Create a new signal class in the customer source tree. For example, create a
replacement for IsAuthRequiredSignal.java in the Tender service by creating a
class file com\mbs\pos\services\tender\MBSIsAuthRequiredSignal.java.

2. Customize the appropriate tour script.

Example 10–7 MBStender.xml: Tender tour script with customized signal

<SERVICECODE>
... non-signal declarations omitted...
 <SIGNAL class="IsReturnTransactionSignal" />
 <SIGNAL class="IsSaleTransactionSignal" />
 <SIGNAL class="IsNotVoidTransactionSignal" />
 <SIGNAL class="IsAuthNotRequiredSignal" />
 <SIGNAL class="MBSIsAuthRequiredSignal" package="com.mbs.pos.services.tender"
/>
 <SIGNAL class="IsRemoveTenderSignal" />
 <SIGNAL class="IsNoRemoveTenderSignal" />
 <SIGNAL class="IsValidDriverLicenseSignal" />
 <SIGNAL class="IsInvalidDriverLicenseSignal" />
... more declarations omitted...
</SERVICECODE>
... code omitted...
<ROAD name="AuthorizationRequested"
 letter="Next"
 destination="AuthorizationStation"
 tape="ADVANCE"
 record="OFF"
 index="OFF">
 <LIGHT signal="MBSIsAuthRequiredSignal"/>

Cargo
Since cargos do not mail letters, they may be extended or replaced. Cargo classes are
typically part of a hierarchy of classes. Follow these steps:

1. Modify the cargo class by doing one of the following:

■ To extend the cargo, create a new class in the customer source tree that extends
the cargo in the product source tree. Be sure to extend from the lowest-level
subclass. Add the customer abbreviation to the beginning of the filename.

■ To replace the cargo, create a new cargo class in the customer source tree.

2. Edit the appropriate Tour Map for the locale, using the replacewith property in the
<CARGO> tag to define the new package and filename for the cargo.

Example 10–8 tourmap_CA.xml: Replacing a Cargo

<tour name="tender”>
 <file>classpath://com/mbs/pos/services/tender</file>
 <SITE
 name="RefundDueUI"
 useaction="com.mbs.pos.services.tender.refundDueUISite">"/>
 <CARGO
 class="TenderCargo"
 replacewith="com.mbs.pos.services.tender.MBSTenderCargo"/>

POS Package

Extension Guidelines 10-7

 </tour>

3. Modify the tour map and/or tour scripts and shuttles of the calling and nested
tours to adapt to the cargo modifications. Be sure to address:

■ Classes in the same tour as the modified cargo

■ All tours for which this tour is a nested tour

■ All tours which are called by this tour

UI Framework
The UIManager and UITechnician classes are provided by Foundation. They are
configurable through the Conduit Script and should not be modified directly. This
section describes customization to the default UI configuration and individual screens.

Default UI Config
The product file pos\config\defaults\defaultuicfg.xml contains the building blocks
for the UI (displays, templates and specs) and references to all tour-specific uicfg.xml
files. If you change any UI script in the customer implementation, the defaultuicfg.xml
file must be replaced. It also needs to be replaced if the displays, templates, and basic
bean specs need to be replaced. Follow these steps to replace the file:

1. Copy the file defaultuicfg.xml to the pos\config\defaults directory in the
customer source tree, and rename it (for example, to MBSdefaultuicfg.xml).

2. Modify the displays, templates, default screens, and specs as necessary to
represent the customer’s user interface.

3. Verify that the conduit script for the client tier has been customized and is located
in the customer source tree.

4. Modify the client conduit script to include the new filename and package name for
the MBSdefaultuicfg.xml file, in the configFilename property value in the
UISubsystem section of the UITechnician tag.

Example 10–9 ClientConduit.xml: Conduit script modified to use custom UI
configuration file

<TECHNICIAN
 name="UITechnician"
 class="UITechnician"
 package="com.extendyourstore.foundation.manager.gui" export="Y">

 <CLASS
 name="UISubsystem"
 package="com.extendyourstore.pos.ui"
 class="POSJFCUISubsystem">

 <CLASSPROPERTY
 propname="configFilename"

propvalue="classpath://com/mbs/pos/config/defaults/MBSdefaultuicfg.xml"
 proptype="STRING"/>
...additional class properties omitted...
</CLASS>
</TECHNICIAN>

POS Package

10-8 Oracle Retail Point-of-Service Operations Guide

UI Script
A UI script changes if the overlays or unique bean specifications of one or more
screens in a tour need to be modified. Follow these steps:

1. Create a new UI script in the customer source tree. For example, copy the
tenderuicfg.xml file from the product source tree to the customer source tree and
rename it MBStenderuicfg.xml.

2. Modify the MBSdefaultuicfg.xml file in the customer source tree to refer to the
new filename and package for the UI script.

Example 10–10 MBSdefaultuicfg.xml: Customized Default UI Configuration File

... other include statements omitted...
<INCLUDE filename="classpath://com/_360commerce/pos/services/sale/saleuicfg.xml"/>
 <INCLUDE
filename="classpath://com/mbs/pos/services/tender/MBStenderuicfg.xml"/>
<INCLUDE filename="classpath://com/_
360commerce/pos/services/tender/capturecustomerinfo/capturecustomerinfouicfg.xml"/
>
 <INCLUDE
filename="classpath://com/extendyourstore/pos/services/inquiry/inquiryoptionsuicfg
.xml"/>
... other include statements omitted...

Bean Model and Bean
The Point-of-Service product code provides generalized beans that are designed to be
reused as-is, such as GlobalNavigationButtonBean.java for the global navigation
button bar and DataInputBean.java for the work area of form layout screens. These
classes are not intended to be extended for a specific implementation, though they
may be extended if the general behavior or data must change in all cases.

The classes can be used for different screens within the application without changing
to Java code by modifying parameter values and calling methods on the bean. Use the
generalized beans whenever possible and avoid beans specialized for only one screen.
However, bean and bean model classes in the product code that are specific to an
individual screen, such as CheckEntryBean.java and CheckEntryBeanModel.java, may
be customized. Follow these steps to modify a bean model:

1. Create a new bean model class.

Create a new class in the customer source tree, and add the customer abbreviation
to the filename.

2. Copy tour files that need to reference the new bean model into the customer
source tree. Modify them to create and manipulate data for the new bean model.

Follow these steps to modify the bean:

1. Create a new bean class.

Create a new class in the customer source tree, and add the customer abbreviation
to the filename.

2. Modify the UI config scripts that reference the bean class in the customer source
tree to refer to the new bean class filename and package.

Example 10–11 MBStenderuicfg.xml: Tender UI Configuration with Customized Bean
Reference

<UICFG>

POS Package

Extension Guidelines 10-9

 <BEAN
 specName="TenderOptionsButtonSpec"
 configuratorPackage="com.extendyourstore.pos.ui"
 configuratorClassName="POSBeanConfigurator"
 beanPackage="com.mbs.pos.ui.beans"
 beanClassName="MBSNavigationButtonBean">

 <BUTTON
 actionName="Cash"
 enabled="true"
 keyName="F2"
 labelTag="Cash"/>
...other buttons omitted...
 </BEAN>
...other UI objects omitted...
</UICFG>

Other
This section covers customization of components other than the tour and the UI
framework, including internationalization and localization changes as well as conduit
scripts, PLAF, receipts, and reports.

Internationalization
The process of internationalization includes modifications to the code so that a single
code base can support multiple languages. The base product supports US English. If
additional languages need to be supported, additional internationalization steps need
to be completed by the customer.

1. For each non-product-supported language, create a new directory in the
pos\trunk\locales directory within the customer source tree. Locale names consist
of a two-letter lowercase code for the country, an underscore, and a two-letter
uppercase code for language. Examples are en_US for United States English. Copy
the resource bundles from pos\trunk\locales\en_US\config\ui\bundles to the
config\ui\bundles directory for the given country. Modify the text for that
language and country combination.

2. Create help files for each of the supported languages similar to those for English
located in locales\en_US\config\ui\help.

3. Create images for each of the supported locales similar to those located for English
in locales\en_US\config\ui\images.

4. Maximum lengths for input fields may need to be increased for languages that
generally have longer words (for example, German) or for double- and multi-byte
character set support. The maximum lengths are found in UI scripts located in
pos\trunk\src\com\extendyourstore\pos\services directories, and parameter
files, located in pos\trunk\config\parameter.

Note: The only language currently supported is United States
English. Language bundles are included in this release but are not
supported as translated languages. The bundles are only provided for
testing and demonstration purposes.

Oracle Retail does not provide support for any customer extensions
made to the base Point-of-Service product.

POS Package

10-10 Oracle Retail Point-of-Service Operations Guide

5. Maximum lengths for database fields in internationalized tables may need to be
increased for languages that generally have longer words or for double- and
multi-byte character set support. This requires modifying the field length in the
database and the CreateTableX.sql build script. Data operations classes that refer
to the fields should be checked for length dependencies and modified if necessary.

6. Metadata stored in the database also needs to be internationalized. Tables that
contain text that should be represented for each supported language have a
corresponding table to store text for the non-default languages. For example, the
ORDER table includes fields for all ORDER information including text fields for
the default language. The ORDER_I8 table includes a row for each text field and
locale combination for the ORDER table. If a new language is added, rows could
be added to the _I8 table for the new language.

7. If double- or multi-type character sets are to be supported, I8 tables must be
translated into UTF-8 format. Follow these steps:

■ Install fonts if not installed on the current operating system.

■ Use a translation editor such as NJStar to translate text and save translations in
UTF-8 format.

■ Use the <JAVA_HOME>/bin/native2ascii executable to process the UTF-8 file
and save it as properly named resource bundle file. For example, posText_zh_
CN.properties is the filename for simplified Chinese as Unicode.

■ Modify the font.properties files located in the <JAVA_HOME>/jre/lib
directory. Search for ‘font.properties’ on the http://ww.java.sun.com Web site
for more information on what can be modified in the font.properties files.

■ Refer to the client side conduit script to determine the look-and-feel property
file. The file is defined as a uiPropertyFile classproperty of the UISubSystem
tag. The product default is named tigerplaf.properties. Modify this file to use
only the Helvetica font. This system font allows the double- and multi-byte
character sets to be rendered properly.

Localization
Once the application has been internationalized to support all necessary languages, it
must be customized to reflect default and alternate locales. These modifications affect
default and alternate locales and various formats (for example, date and currency).
Follow these steps:

1. If one does not already exist, place a copy of the conduit script for the client tier in
the customer source tree, where it can be customized.

2. Modify the customer version of the conduit script to update the <LOCALE>
element to specify the default language and country. Also modify the tag to
specify any alternate language and countries.

3. Copy application.properties, located in config, to the customer source tree. Modify
the default_locale and supported_locales properties.

4. Copy domain.properties, located in domain\trunk\config, to the customer source
tree in the domain package. (Most references to the domain package are in the
following section. This reference is kept here to include all localization efforts in
one location.) Modify currency, date, address and other formats.

5. Modify the default and alternate currencies. Edit the InsertTableCurrency.sql file
located in the db\sql directory of the commerceservices package. There is one
INSERT statement for each type of currency. Set the value of the DE_CNY field to
‘1’ for the default currency only. If a supported currency does not have an INSERT

http://www.java.sun.com

POS Package

Extension Guidelines 10-11

statement in this file, you must add one and also add a corresponding Java class in
the currency package. After the .sql file is updated, rebuild the database so that the
change can take effect.

6. Set the exchange rate. Edit the InsertTableExchangeRate.sql file located in the
db\sql directory of the commerceservices package. This file contains exchange
rates for each entry in the currency table. After this .sql file has been updated, the
database needs to be rebuilt for the change to take effect.

7. Set the taxes. The base product supports US and Canadian taxes. To add support
for additional country’s taxes requires custom code. Modify
InsertTableAddress.sql to update the lo_ads table similar to the following, for the
tax locale to be British Columbia, Canada, perform the following SQL statements.

Example 10–12 InsertTableAddress.sql: Sample lo_ads table updates

update lo_ads set ST_CNCT = 'BC' where id_prty = <party id number>;
update lo_ads set CO_CNCT = 'CA' where id_prty = <party id number>;

Run dbbuild.bat to include the new data in the database.

8. Configure devices. They should be updated to reflect the target locale.

Conduit Scripts
The conduit scripts provided with Oracle Retail applications define a typical tier
configuration and are usually replaced with customer conduit scripts for a given
implementation. Conduit scripts include an XML file and a .bat and .sh file to execute
the XML; both .bat and .sh versions of the batch file are provided to support Windows
and Linux.

Follow these steps to set up customer conduit scripts:

1. Copy the conduit scripts (client, server, and collapsed) to the customer source tree.

Copy the XML and .bat and .sh files for each type of conduit script. Rename the
scripts using the customer abbreviation (ClientConduit.xml becomes
MBSClientConduit.xml).

2. Edit each XML file to include only the managers and technicians that should be
loaded on the given tier.

3. Modify the class and package names for any managers, technicians and
configuration scripts that have been customized.

Example 10–13

MBSClientConduit.xml: Customized with New Data Manager
 <MANAGER name="DataManager" class="MBSDataManager"
 package="com.mbs.foundation.manager.data">
 <PROPERTY propname="configScript"
 propvalue="classpath://config/manager/PosDataManager.xml" />
 </MANAGER>

4. Modify your development environment to pass in the new conduit XML file as a
parameter to the TierLoader.

5. Edit the .bat and .sh files to pass the correct conduit XML files to the Java
environment.

POS Package

10-12 Oracle Retail Point-of-Service Operations Guide

PLAF
Point-of-Service implements a pluggable look-and-feel (PLAF) so that customers may
modify the look of the application including screen colors and images. To modify the
PLAF, follow these steps:

1. Create a new properties file that is a copy of one of the following files. Place the
file in the com\mbs\pos\config directory in the customer source tree.

■ tigerplaf.properties — yellow-and-purple, text-based LAF

■ imagePlaf.properties — blue and gold image-based LAF

2. Update the conduit scripts in the customer source tree to specify the package and
filename for the new LAF file in the UI Technician tag.

3. Have new UI beans call uiFactory.configureUIComponent(this, UI_PREFIX) in the
initialize() method to set the look-and-feel.

Receipts
Receipts are composed of two levels:

■ A base receipt that manages data and behavior for all receipts

■ Specific receipt types such as Layaway and Return

The receipt class names are specified in the tour code and there is no factory for
creating receipts. Therefore, modifications to the tour code that accesses the receipts
are required.

If the base receipt and specific receipt classes are both going to be extended, typical
inheritance is not sufficient since Java does not support multiple inheritance. For
example, the MBSLayawayReceipt.java class cannot extend both
MBSPrintableDocument.java and MBSLayawayReceipt.java. The recommended
approach is to extend both classes, and have MBSLayawayReceipt.java extend
LayawayReceipt.java. MBSLayawayReceipt.java then includes an instance of
MBSPrintableDocument.java and methods can be called on the extended class.

Follow these steps to customize receipts:

1. If modifications are required to the base receipt, create a class in the customer
source tree named MBSPrintableDocumentUtility.java. This class is a utility class
since the receipt classes delegate common functionality to it.

2. For each receipt type that needs to be customized, do one of the following:

■ To modify an existing receipt type, create a Java class in the customer source
tree that extends the receipt class in the product code. Add the customer
abbreviation to the beginning of the filename.

■ To create a new receipt type, create a Java class in the customer source tree that
extends MBSPrintableDocument.java.

3. For extended classes, include an instance of the
MBSPrintableDocumentUtility.java class. Call methods on the utility class when a
customized method is required.

4. Modify tours in the customer source tree as necessary to call new() for the
customized receipt types.

5. Modify parameters for the receipt header and footer as necessary.

Domain Package

Extension Guidelines 10-13

Reports
Point-of-Service has a set of reports that print on the slip printer. These reports are in a
proprietary format and do not use a reporting engine. The report class names are
specified in the tour code and there is no factory for creating reports. Therefore,
modifications to tours that access the reports are required.

To modify existing Point-of-Service reports, the report Java files can be extended.
Follow these steps:

1. For each report, do one of the following:

■ To modify an existing report, create a Java class in the customer source tree
that extends the reports class in the product code (found in
pos\trunk\srb\com\extendyourstore\pos\reports).

■ To create a new report, create a Java class in the customer source tree that
extends the abstract RegisterReport class in the product code. Use the
customer abbreviation in the filename.

2. Create, modify or override data and methods as necessary to modify the report.

3. Modify the tour code that creates the report object to call new() for the new report
class.

Domain Package
This section addresses customization of files in the domain package. The domain
package can be found in the \OracleRetailStore\domain directory in your source
control system.

Retail Domain
The Retail Domain provides a retail-specific implementation of business objects. These
objects are easily extended to meet customer’s requirements.

DomainObjectFactory
If any Retail Domain Objects (RDOs) are added or extended, the DomainObject
Factory must be extended. This needs to be done only one time for the application. The
extended class must include getXinstance() methods for all new and extended RDOs,
where X is the name of the RDO. Follow these steps:

1. Create a new Java class that extends DomainObjectFactory.java. It should be
named with the customer abbreviation in the filename
MBSDomainObjectFactory.java and be located in the customer source tree.

2. Copy the domain.properties file to the domain\config directory of the customer
source tree. Modify the setting for the DomainObjectFactory to refer to the new
package and class name created in the previous step.

DomainObjectFactory=com.acmebrick.domain.factory.MBSDomainObjectFactory;
3. Add getXInstance() methods as necessary for new Retail Domain Objects.

Retail Domain Object (RDO)
Follow these steps to create or extend an RDO:

1. Complete one of the following steps:

■ To create a new RDO, create a Java class in the customer source tree in the
appropriate subdirectory of domain\src\com\mbs\domain. Extend an

Domain Package

10-14 Oracle Retail Point-of-Service Operations Guide

appropriate superclass from the product code. At a minimum, the new class
must extend EYSDomainIfc.java.

■ To modify an existing RDO, create a Java class in the customer source tree that
extends an RDO in the product code.

Include the customer abbreviation in the filename; for example, you might name
your class file MBSCustomer.java.

2. Add data attributes and methods required by the customer-specific functionality.

3. Create setCloneAttributes(), equals() and toString() methods to address the new
data attributes and then reference the corresponding superclass method.

4. Complete one of the following steps:

■ For a new RDO, add a new getXInstance() method to
MBSDomainObjectFactory.java for the new RDO.

■ For an extended RDO, override the existing getXInstance() method in
MBSDomainObjectFactory.java to return an object of the new class type.

5. Access the new RDO data and methods from tours located in the customer source
tree. If product tours need to access the new RDO data and methods, the tours
must be modified.

6. If the RDO data is represented on a screen, modify the UI script, bean and bean
model classes to reflect the change.

7. If the RDO is saved to the database, modify the data operation to save the new
data attributes.

Database
This section details how to extend database behavior through changes to the data
operations. The architecture of the Data Technician simplifies this somewhat, because
changes to data operations can be implemented without changes to the
Point-of-Service application code.

Data Manager and Technician Scripts
The Data Manager and Data Technician Scripts, DefaultDataManager.xml and
DefaultDataTechnician.xml, are routinely customized when transactions, data actions,
and data operations are customized. See the next section for details.

Data Actions and Operations
When a new or modified RDO contains data that need to be saved to the database, a
data operation class must be created or extended. A Data Action must be modified if a
unit of database work is changed.

1. Create class files.

Create new class files for each new or modified item in the customer source tree. If
an item extends a product class, add the customer abbreviation to the filename.

2. If a customized version of POSDataManager.xml does not already exist, copy it to
the customer source tree and give it a new name, such as
MBSPOSDataManager.xml.

3. For customized transactions with new filenames, modify the transaction name.

Domain Package

Extension Guidelines 10-15

4. If a customized version of DefaultDataTechnician.xml does not already exist, copy
it to the customer source tree and give it a new name, such as
MBSDefaultDataTechnician.xml.

5. Edit the customized MBSDefaultDataTechnician.xml file, updating package and
class names for data actions and data operations that have been modified.

Example 10–14 MBSDefaultDataTechnician.xml: Customizing a Data Operation

 <OPERATION class="JdbcSaveTenderLineItems"
 package="com.mbs.domain.arts"
 name="MBSSaveTenderLineItems">
 <COMMENT>
 This operation saves all tender line items associated
 with the transaction.
 </COMMENT>
 </OPERATION>

6. Modify the conduit scripts to reference the new package and/or filename of the
technician script.

Example 10–15 CollapsedConduitFF.xml: Customizing the Data Technician

<TECHNICIAN name="LocalDT" class="DataTechnician"
 package="com.mbs.foundation.manager.data"
 export="Y">
 <PROPERTY
 propname="dataScript"
 propvalue="classpath://config/manager/MBSDefautlDataTechnician.xml"
 />
 </TECHNICIAN>

Data Transactions
Data transactions are the valet classes that carry requests from the client to the server.
A data transaction factory implements the factory pattern for data transaction classes.
The application code asks the factory for a transaction object and the factory
determines which Java class is used to create the object. To create or extend a data
transaction class, follow these steps:

1. Create new or modified data transactions.

Create a Java class in the customer source tree and prepend the customer
abbreviation to the filename. If you are modifying an existing transaction, have the
class extend the transaction class in the product code, and overwrite the methods
you are modifying.

2. Copy POSDataManager.xml to the customer source tree.

3. For customized transactions with new filenames, modify the transaction name.

4. Copy DefaultDataTechnician.xml to the customer source tree.

5. Modify package and class names for data actions and data operations that have
been modified.

6. If not already done, modify the conduit scripts to reference the new package
and/or filename of the technician script.

7. Extend DataTransactionKeys.java as MBSDataTransactionKeys.java in the
customer source tree to add or modify the static final String for each transaction
(the file serves as a list of string constants).

Domain Package

10-16 Oracle Retail Point-of-Service Operations Guide

Example 10–16 MBSDataTransactionKeys.java: Adding Strings

public static final String DATA_MAINTENANCE_TRANSACTION=”data.transaction.DATA_
MAINTENANCE_TRANSACTION
public static final String PLU_RETURN_TRANSACTION” =data.transaction.PLU_RETURN_
TRANSACTION”

8. Update domain.properties in the customer source tree to add or modify the
name/value pairs for each transaction.

Example 10–17 domain.properties: Sample Modified and New Data Transactions

Registry of DataTransactionIfc implementations
(try to keep in alphabetical order)
#

data.transaction.ADVANCED_PRICING_DATA_
TRANSACTION=com.extendyourstore.domain.arts.AdvancedPricingDataTransaction
...code omitted here...
data.transaction.REGISTER_STATUS_
TRANSACTION=com.MBS.domain.data.transactions.RegisterStatusTransaction
data.transaction.REGISTRY_DATA_
TRANSACTION=com.extendyourstore.domain.arts.RegistryDataTransaction
data.transaction.STORE_LOOKUP_DATA_
TRANSACTION=com.MBS.domain.data.transactions.StoreLookupDataTransaction

MBSdata.transaction.DATA_MAINTENANCE_
TRANSACTION=com.MBS.domain.data.transactions.DataMaintenanceTransaction
MBSdata.transaction.PLU_RETURN_
TRANSACTION=com.MBS.domain.data.transactions.ReturnPluTransaction

General Development Standards 11-1

11
General Development Standards

The following standards have been adopted by Oracle Retail product and service
development teams. These standards are intended to reduce bugs and increase the
quality of the code. The chapter covers basic standards, architectural issues, and
common frameworks. These guidelines apply to all Oracle Retail applications.

Basics
The guidelines in this section cover common coding issues and standards.

Java Dos and Don’ts
The following dos and don’ts are guidelines for what to avoid when writing Java code.

■ DO use polymorphism

■ DO have only one return statement per function or method; make it the last
statement.

■ DO use constants instead of literal values when possible.

■ DO import only the classes necessary instead of using wildcards.

■ DO define constants at the top of the class instead of inside a method.

■ DO keep methods small, so that they can be viewed on a single screen without
scrolling.

■ DON’T have an empty catch block. This destroys an exception from further down
the line that might include information necessary for debugging.

■ DON’T concatenate strings. Oracle Retail products tend to be string-intensive and
string concatenation is an expensive operation. Use StringBuffer instead.

■ DON’T use function calls inside looping conditionals (for example, while (i
<=name.len())). This calls the function with each iteration of the loop and can
affect performance.

■ DON’T use a static array of strings.

■ DON’T use public attributes.

■ DON’T use a switch to make a call based on the object type.

Basics

11-2 Oracle Retail Point-of-Service Operations Guide

Avoiding Common Java Bugs
The following fatal Java bugs are not found at compile time and are not easily found at
runtime. These bugs can be avoided by following the recommendations in the
following table.

Formatting
Follow these formatting standards to ensure consistency with existing code.

■ Indenting/braces—Indent all code blocks with four spaces (not tabs). Put the
opening brace on its own line following the control statement and in the same
column. Statements within the block are indented. Closing brace is on its own line
and in same column as the opening brace. Follow control statements (if, while,
etc.) with a code block with braces, even when the code block is only one line long.

■ Line wrapping—If line breaks are in a parameter list, line up the beginning of the
second line with the first parameter on the first line. Lines should not exceed 120
characters.

■ Spacing—Include a space on both sides of binary operators. Do not use a space
with unary operators. Do not use spaces around parenthesis. Include a blank line
before a code block.

■ Deprecation—Whenever you deprecate a method or class from an existing release
is deprecated, mark it as deprecated, noting the release in which it was deprecated,
and what methods or classes should be used in place of the deprecated items;
these records facilitate later code cleanup.

■ Header—The file header should include the PVCS tag for revision and log history.

Example 11–1 Header Sample

/* *

 Copyright (c) 1998-2003 Oracle Retail, Inc. All Rights Reserved.

 Log

* */
package com._360commerce.samples;

// Import only what is used and organize from lowest layer to highest.
import com.ibm.math.BigDecimal;
import com._360commerce.common.utility.Util;

//--
/**
 This class is a sample class. Its purpose is to illustrate proper

Table 11–1 Common Java Bugs

Bug Preventative Measure

null pointer exception Check for null before using an object returned by another method.

boundary checking Check the validity of values returned by other methods before using them.

array index out of bounds When using a value as a subscript to access an array element directly, first verify that
the value is within the bounds of the array.

incorrect cast When casting an object, use instanceof to ensure that the object is of that type before
attempting the cast.

Basics

General Development Standards 11-3

 formatting.
 @version $Revision$
**/
//--
public class Sample extends AbstractSample
implements SampleIfc
{
 // revision number supplied by configuration management tool
 public static String revisionNumber = "$Revision$";
 // This is a sample data member.
 // Use protected access since someone may need to extend your code.
 // Initializing the data is encouraged.
 protected String sampleData = "";

 //---
 /**
 Constructs Sample object.
 Include the name of the parameter and its type in the javadoc.
 @param initialData String used to initialize the Sample.
 **/
 //---
 public Sample(String initialData)
 {
 sampleData = initialData;
 // Declare variables outside the loop
 int length = sampleData.length();
 BigDecimal[] numberList = new BigDecimal[length];

 // Precede code blocks with blank line and pertinent comment
 for (int i = 0; i < length; i++)
 {
 // Sample wrapping line.
 numberList[i] = someInheritedMethodWithALongName(Util.I_BIG_DECIMAL_
ONE,
 sampleData,
 length - i);
 }
 }
}

Javadoc
■ Make code comments conform to Javadoc standards.

■ Include a comment for every code block.

■ Document every method’s parameters and return codes, and include a brief
statement as to the method’s purpose.

Naming Conventions
Names should not use abbreviations except when they are widely accepted within the
domain (such as the customer abbreviation, which is used extensively to distinguish
customized code from product code). Additional naming conventions follow:

Basics

11-4 Oracle Retail Point-of-Service Operations Guide

SQL Guidelines
The following general guidelines apply when creating SQL code:

■ Keep SQL code out of client/UI modules. Such components should not interact
with the database directly.

■ Table and column names must be no longer than 18 characters.

■ Comply with ARTS specifications for new tables and columns. If you are creating
something not currently specified by ARTS, strive to follow the ARTS naming
conventions and guidelines.

■ Document and describe every object, providing both descriptions and default
values so that we can maintain an up-to-date data model.

■ Consult your data architect when designing new tables and columns.

Table 11–2 Naming Conventions

Element Description Example

Package Names Package names are entirely lower
case and should conform to the
documented packaging standards.

com.extendyourstore.packagename

com.mbs.packagname

Class Names Mixed case, starting with a capital
letter.

Exception classes end in
Exception; interface classes end in
Ifc; unit tests append Test to the
name of the tested class.

DatabaseException

DatabaseExceptionTest

FoundationScreenIfc

File Names File names are the same as the
name of the class.

DatabaseException.java

Method Names Method names are mixed case,
starting with a lowercase letter.
Method names are an action verb,
where possible. Boolean-valued
methods should read like a
question, with the verb first.
Accessor functions use the
prefixes get or set.

isEmpty()

hasChildren()

getAttempt()

setName()

Attribute Names Attribute names are mixed case,
starting with a lowercase letter.

lineItemCount

Constants Constants (static final variables)
are named using all uppercase
letters and underscores.

final static int NORMAL_SIZE = 400

EJBs -- entity Use these conventions for entity
beans, where ‘Transaction’ is a
name that describes the entity.

TransactionBean

TransactionIfc

TransactionLocal

TransactionLocalHome

TransactionRemote

TransactionHome

EJBs — session Use these conventions for session
beans, where ‘Transaction’ is a
name that describes the session.

TransactionService

TransactionAdapter

TransactionManager

Basics

General Development Standards 11-5

■ Whenever possible, avoid vendor-specific extensions and strive for SQL-92
compliance with your SQL.

■ While Sybase-specific extensions are common in the code base, do not introduce
currently unused extensions, because they must be ported to the DataFilters and
JdbcHelpers for other databases.

■ All SQL commands should be uppercase because the DataFilters currently only
handle uppercase.

■ If database-specific code is used in the source, move it into the JdbcHelpers.

■ All JDBC operations classes must be thread-safe.

Do the following to avoid errors:

■ Pay close attention when cutting and pasting SQL.

■ Always place a carriage return at the end of the file.

■ Test your SQL before committing.

The subsections that follow describe guidelines for specific database environments.

DB2
The following table shows examples of potential problems in DB2 SQL code.

MySQL
MySQL does not support sub-selects.

Oracle
The following table provides some examples of common syntax problems which cause
Oracle to produce errors

Table 11–3 DB2 SQL Code Problems

Problem Problem Code Corrected Code

Don’t use quoted integers or
unquoted char and varchar values;
these cause DB2 to produce errors.

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 CHAR(4)
);
INSERT INTO BLAH (FIELD1,
FIELD2) VALUES ('5', 1020);

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 CHAR(4)
);
INSERT INTO BLAH (FIELD1, FIELD2)
VALUES (5, '1020');

Don’t try to declare a field default
as NULL.

CREATE TABLE BLAH
(
 FIELD1 INTEGER NULL,
 FIELD2 CHAR(4) NOT NULL
);

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 CHAR(4) NOT NULL
);

Basics

11-6 Oracle Retail Point-of-Service Operations Guide

PostgreSQL
PostgreSQL does not currently support the command ALTER TABLE BLAH ADD
PRIMARY KEY. However, it does support the standard CREATE TABLE command
with a PRIMARY KEY specified. For this reason, the PostgresqlDataFilter converts
SQL of the form shown in the first code sample, below, into the standard form shown
in the second code example, below.

Example 11–2 SQL Code Before PostgresqlDataFilter Conversion

CREATE TABLE BLAH
(
 COL1 INTEGER NOT NULL,
 COL2 INTEGER NOT NULL,
 COL3 INTEGER,
);

ALTER TABLE ADD PRIMARY KEY (COL1, COL2)

Example 11–3 SQL Code After PostgresqlDataFilter Conversion

CREATE TABLE BLAH(COL1 INTEGER NOT NULL,
 COL2 INTEGER NOT NULL,
 COL3 INTEGER,
 PRIMARY KEY (COL1, COL2));

Sybase
Sybase does not throw errors if a table element is too large; it truncates the value. If
using a VARCHAR(40), use less than 40 characters.

Unit Testing
For details on how to implement unit testing, see separate guidelines on the topic.
Some general notes apply:

■ Break large methods into smaller, testable units.

Table 11–4 Oracle SQL Code Problems

Problem Problem Code Corrected Code

Blank line in code block
causes error.

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 VARCHAR(20)

);

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 VARCHAR(20)
);

When using NOT NULL
with a default value, NOT
NULL must follow the
DEFAULT statement.

CREATE TABLE BLAH
(
 FIELD1 INTEGER NOT NULL DEFAULT
0,
 FIELD2 VARCHAR(20)
);

CREATE TABLE BLAH
(
 FIELD1 INTEGER DEFAULT 0 NOT NULL,
 FIELD2 VARCHAR(20)
);

In a CREATE or INSERT,
do not place a comma after
the last item.

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 VARCHAR(20),
);

CREATE TABLE BLAH
(
 FIELD1 INTEGER,
 FIELD2 VARCHAR(20)
);

Architecture and Design Guidelines

General Development Standards 11-7

■ Although unit testing may be difficult for tour scripts, apply it for Java
components within the Point-of-Service code.

■ If you add a new item to the codebase, make sure your unit tests prove that the
new item can be extended.

■ In unit tests, directly create the data/preconditions necessary for the test (in a
setup() method) and remove them afterwards (in a teardown() method). JUnit
expects to use these standard methods in running tests.

Architecture and Design Guidelines
This section provides guidelines for making design decisions which are intended to
promote a robust architecture.

AntiPatterns
An AntiPattern is a common solution to a problem which results in negative
consequences. The name contrasts with the concept of a pattern, a successful solution
to a common problem. The following AntiPatterns introduce bugs and reduce the
quality of code.

Table 11–5 Common AntiPatterns

Pattern Description Solution

Reinvent the Wheel Sometimes code is developed in
an unnecessarily unique way
that leads to errors, prolonged
debugging time and more
difficult maintenance.

The analysis process for new features
provides awareness of existing solutions
for similar functionality so that you can
determine the best solution.

There must be a compelling reason to
choose a new design when a proven design
exists. During development, a similar
pattern should be followed in which
existing, proven solutions are implemented
before new solutions.

Copy-and-paste Programming,
classes

When code needs to be reused, it
is sometimes copied and pasted
instead of using a better method.
For example, when a whole class
is copied to a new class when the
new class could have extended
the original class. Another
example is when a method is
being overridden and the code
from the super class is copied
and pasted instead of calling the
method in the super class.

Use object-oriented techniques when
available instead of copying code.

Architecture and Design Guidelines

11-8 Oracle Retail Point-of-Service Operations Guide

Designing for Extension
This section defines how to code product features so that they may be easily extended.
It is important that developers on customer projects follow these standards as well as
the guidelines in Chapter 10, "Extension Guidelines".

■ Separate external constants such as database table and column names, JMS queue
names, port numbers from the rest of the code. Store them in (in order of
preference):

– Configuration files

– Deployment descriptors

– “Constant” classes/interfaces

■ Make sure the SQL code included in a component does not touch tables not
directly owned by that component.

■ Make sure there is some separation from DTO and ViewBean type classes so we
have abstraction between the service and the presentation.

Copy-and-paste Programming,
XML

A new element (such as a Site
class or an Overlay XML tag) can
be started by copying and
pasting a similar existing
element. Bugs are created when
one or more pieces are not
updated for the new element.
For example, a new screen might
have the screen name or prompt
text for the old screen.

If you copy an existing element to create a
new element, manually verify each piece of
the element to ensure that it is correct for
the new element.

Project Mismanagement/
Common Understanding

A lack of common
understanding between
managers, Business Analysts,
Quality Assurance and
developers can lead to missed
functionality, incorrect
functionality and a
larger-than-necessary number of
defects. An example of this is
when code does not match
Functional Requirements,
including details like maximum
length of fields and dialog
message text.

Read the Functional Requirement before
you code. If there is disagreement with
content, raise an issue with the Product
Manager. Before you consider code for the
requirement finished, all issues must be
resolved and the code must match the
requirements.

Stovepipe Multiple systems within an
enterprise are designed
independently. The lack of
commonality prevents reuse and
inhibits interoperability between
systems. For example, a change
to till reconcile in Back Office
may not consider the impact on
Point-of-Service. Another
example is a making change to a
field in the Oracle Retail
database for a Back Office
feature without handling the
Point-of-Service effects.

Coordinate technologies across
applications at several levels. Define basic
standards in infrastructures for the suite of
products. Only mission-specific functions
should be created independently of the
other applications within the suite.

Table 11–5 Common AntiPatterns

Pattern Description Solution

Common Frameworks

General Development Standards 11-9

■ Consider designing so that any fine grained operation within the larger context of
a coarse grain operation can be factored out in a separate “algorithm” class, so that
it can be replaced without reworking the entire activity flow of the larger
operation.

Common Frameworks
This section provides guidelines which are common to the Oracle Retail applications.

Internationalization

The following are some general guidelines for maintaining an internationalized code
base which can be localized when needed. Refer to other documents for detailed
instructions on these issues.

■ All displayable text must be referenced from the appropriate resource bundle and
properties file, so that the text can be changed when needed.

■ Numbers, currency, and amounts must be displayed using Java
internationalization conventions, so that appropriate symbols and number
dividers can be used for the current locale.

■ Formats and conventions related to dates, times and calendars are locale sensitive.
All the date, time and calendar related operations must use DateFormat,
SimpleDateFormat and Calendar classes, instead of the Date class. Remove
hardcoded dates (mm/dd/yyyy, etc). Use the formats available as part of the
DateFormat class.

■ Properties in the application.properties file specify default and supported locales:

– default_locale=en_US

– supported_locales=en_US, fr_CA, en_CA

■ Help files for new screens must be created in the appropriate locale directory, and
pos\config\ui\help\helpscreens.properties must be updated.

■ Display database driven locale sensitive data according to the current locale.

Logging
Oracle Retail’s systems use Log4J for logging. When writing log commands, use the
following guidelines:

■ Use calls to Log4J rather than System.out from the beginning of your
development. Unlike System.out, Log4J calls are naturally written to a file, and can
be suppressed when desired.

Note: The only language currently supported is United States
English. Language bundles are included in this release but are not
supported as translated languages. The bundles are only provided for
testing and demonstration purposes.

Oracle Retail does not provide support for any customer extensions
made to the base Point-of-Service product.

Common Frameworks

11-10 Oracle Retail Point-of-Service Operations Guide

■ Log exceptions where you catch them, unless you are going to rethrow them. This
is preserves the context of the exceptions and helps reduce duplicate exception
reporting.

■ Logging uses few CPU cycles, so use debugging statements freely.

■ Use the correct logging level:

– FATAL—crashing exceptions

– ERROR—nonfatal, unhandled exceptions (there should be few of these)

– INFO—life cycle/heartbeat information

– DEBUG—information for debugging purposes

The following sections provide additional information on guarding code, when to log,
and how to write log messages.

Guarding Code
Testing shows that logging takes up very little of a system’s CPU resources. However,
if a single call to your formatter is abnormally expensive (stack traces, database access,
network IO, large data manipulations, etc.), you can use Boolean methods provided in
the Logger class for each level to determine whether you have that level (or better)
currently enabled; Jakarta calls this a code guard:

Example 11–4 Wrapping Code in a Code Guard

 if (log.isDebugEnabled()) {
 log.debug(MassiveSlowStringGenerator().message());
 }
An interesting use of code guards, however, is to enable debug-only code, instead of
using a DEBUG flag. Using Log4J to maintain this functionality lets you adjust it at
runtime by manipulating Log4J configurations.

For instance, you can use code guards to simply switch graphics contexts in your
custom swing component:

Example 11–5 Switching Graphics Contexts via a Logging Level Test

protected void paintComponent(Graphics g) {

 if (log.isDebugEnabled()) {
 g = new DebugGraphics(g, this);
 }

 g.drawString("foo", 0, 0);
}

When to Log
There are three main cases for logging:

■ Exceptions—Should be logged at an error or fatal level.

■ Heartbeat/Life cycle—For monitoring the application; helps to make unseen
events clear. Use the info level for these events.

■ Debug—Code is usually littered with these when you are first trying to get a class
to run. If you use System.out, you have to go back later and remove them to keep.
With Log4J, you can simply raise the log level. Furthermore, if problems pop up in
the field, you can lower the logging level and access them.

Common Frameworks

General Development Standards 11-11

Writing Log Messages
When Log4J is being used, any log message might be seen by a user, so the messages
should be written with users in mind. Cute, cryptic, or rude messages are
inappropriate. The following sections provide additional guidelines for specific types
of log messages.

Exception Messages
A log message should have enough information to give the user a good shot at
understanding and fixing the problem. Poor logging messages say something opaque
like “load failed.”

Take this piece of code:

try {
 File file = new File(fileName);
 Document doc = builder.parse(file);

 NodeList nl = doc.getElementsByTagName("molecule");
 for (int i = 0; i < nl.getLength(); i++) {
 Node node = nl.item(i);
 // something here
 }

} catch {
 // see below
}

and these two ways of logging exceptions:

} catch (Exception e){
 log.debug("Could not load XML");
}

} catch (IOException e){
 log.error("Problem reading file " + fileName, e);
} catch (DOMException e){
 log.error("Error parsing XML in file " + fileName, e);
} catch (SAXException e){
 log.error("Error parsing XML in file " + fileName, e);
}

In the first case, you'll get an error that just tells you something went wrong. In the
second case, you're given slightly more context around the error, in that you know if
you can't find it, load it, or parse it, and you're given that key piece of data: the file
name.

The log lets you augment the message in the exception itself. Ideally, with the
messages, the stack trace, and type of exception, you'll have enough to be able to
reproduce the problem at debug time. Given that, the message can be reasonably
verbose.

For instance, the fail() method in JUnit really just throws an exception, and whatever
message you pass to it is in effect logging. It’s useful to construct messages that
contain a great deal of information about what you are looking for:

Common Frameworks

11-12 Oracle Retail Point-of-Service Operations Guide

Example 11–6 JUnit

if (! list.contains(testObj)) {

 StringBuffer buf = new StringBuffer();
 buf.append("Could not find object " + testObj + " in list.\n");
 buf.append("List contains: ");
 for (int i = 0; i < list.size(); i++) {
 if (i > 0) {
 buf.append(",");
 }
 buf.append(list.get(i));
 }
 fail(buf.toString());
}

Heartbeat or Life cycle Messages
The log message here should succinctly display what portion of the life cycle is
occurring (login, request, loading, etc.) and what apparatus is doing it (is it a particular
EJB are there multiple servers running, etc.)

These message should be fairly terse, since you expect them to be running all the time.

Debug Messages
Debug statements are going to be your first insight into a problem with the running
code, so having enough, of the right kind, is important.

These statements are usually either of an intra-method-life cycle variety:

 log.debug("Loading file");

 File file = new File(fileName);
 log.debug("loaded. Parsing...");
 Document doc = builder.parse(file);
 log.debug("Creating objects");
 for (int i ...

or of the variable-inspection variety:

 log.debug("File name is " + fileName);

 log.debug("root is null: " + (root == null));
 log.debug("object is at index " + list.indexOf(obj));

Exception Handling
The key guidelines for exception handling are:

■ Handle the exceptions that you can (File Not Found, etc.)

■ Fail fast if you can’t handle an exception

■ Log every exception with Log4J, even when first writing the class, unless you are
rethrowing the exception

■ Include enough information in the log message to give the user or developer a
fighting chance at knowing what went wrong

■ Nest the original exception if you rethrow one

Common Frameworks

General Development Standards 11-13

Types of Exceptions
The EJB specification divides exceptions into the following categories:

JVM Exceptions
You cannot recover from these; when one is thrown, it’s because the JVM has entered a
kernel panic state that the application cannot be expected to recover from. A common
example is an Out of Memory error.

System Exceptions
Similar to JVM exceptions, these are generally, though not always, “non-recoverable”
exceptions. In the commons-logging parlance, these are “unexpected” exceptions. The
canonical example here is NullPointerException. The idea is that if a value is null,
often you don't know what you should do. If you can simply report back to your
calling method that you got a null value, do that. If you cannot gracefully recover, say
from an IndexOutOfBoundsException, treat as a system exception and fail fast.

Application Exceptions
These are the expected exceptions, usually defined by specific application domains. It
is useful to think of these in terms of recoverability. A FileNotFoundException is
sometimes easy to rectify by simply asking the user for another file name. But
something that's application specific, like JDOMException, may still not be
recoverable. The application can recognize that the XML it is receiving is malformed,
but it may still not be able to do anything about it.

Avoid java.lang.Exception
Avoid throwing the generic Exception; choose a more specific (but standard)
exception.

Avoid Custom Exceptions
Custom exceptions are rarely needed. The specific type of exception thrown is rarely
important; don’t create a custom exception if there is a problem with the formatting of
a string (ApplicationFormatttingException) instead of reusing
IllegalArgumentException.

The best case for writing a custom exception is if you can provide additional
information to the caller which is useful for recovering from the exception or fixing the
problem. For example, the JPOSExceptions can report problems with the physical
device. An XML exception could have line number information embedded in it,
allowing the user to easily detect where the problem is. Or, you could subclass
NullPointer with a little debugging magic to tell the user what method of variable is
null.

Catching Exceptions
The following sections provide guidelines on catching exceptions.

Keep the Try Block Short The following example, from a networking testing application,
shows a loop that was expected to require approximately 30 seconds to execute (since
it calls sleep(3000) ten times):

Example 11–7 Network Test

 for (int i = 0; i < 10; i++) {
 try {
 System.out.println("Thread " + Thread.currentThread().getName() + "
requesting number " + i);

Common Frameworks

11-14 Oracle Retail Point-of-Service Operations Guide

 URLConnection con = myUrl.openConnection();
 con.getContent();
 Thread.sleep(3000);
 } catch (Exception e) {
 log.error("Error getting connection or content", e);
 }
 }

The initial expectation was for this loop to take approximately 30 seconds, since the
sleep(3000) would be called ten times. Suppose, however, that con.getContent() throws
an IOException. The loop then skips the sleep() call entirely, finishing in 6 seconds. A
better way to write this is to move the sleep() call outside of the try block, ensuring
that it is executed:

Example 11–8 Network Test with Shortened Try Block

 for (int i = 0; i < 10; i++) {

 try {
 System.out.println("Thread " + Thread.currentThread().getName() + "
requesting number " + i);
 URLConnection con = myUrl.openConnection();
 con.getContent();
 } catch (Exception e) {
 log.error("Error getting connection or content", e);
 }
 Thread.sleep(3000);
 }

Avoid Throwing New Exceptions When you catch an exception, then throw a new one in
its place, you replace the context of where it was thrown with the context of where it
was caught.

A slightly better way is to throw a wrapped exception:

Example 11–9 Wrapped Exception

1: try {
2: Class k1 = Class.forName(firstClass);
3: Class k2 = Class.forName(secondClass);
4: Object o1 = k1.newInstance();
5: Object o2 = k2.newInstance();
6:
7: } catch (Exception e) {
8: throw new MyApplicationException(e);
9: }

However, the onus is still on the user to call getCause() to see what the real cause was.
This makes most sense in an RMI type environment, where you need to tunnel an
exception back to the calling methods.

The better way than throwing a wrapped exception is to simply declare that your
method throws the exception, and let the caller figure it out:

Example 11–10 Declaring an Exception

public void buildClasses(String firstName, String secondName)
 throws InstantiationException, ... {

Common Frameworks

General Development Standards 11-15

 Class k1 = Class.forName(firstClass);
 Class k2 = Class.forName(secondClass);
 Object o1 = k1.newInstance();
 Object o2 = k2.newInstance();
 }

However, there may be times when you want to deal with some cleanup code and
then rethrow an exception:

Example 11–11 Clean Up First, then Rethrow Exception

try {
 someOperation();
 } catch (Exception e) {
 someCleanUp();
 throw e;
 }

Catching Specific Exceptions There are various exceptions for a reason: so you can
precisely identify what happened by the type of exception thrown. If you just catch
Exception (rather than, say, ClassCastException), you hide information from the user.
On the other hand, methods should not generally try to catch every type of exception.
The rule of thumb is the related to the fail-fast/recover rule: catch as many different
exceptions as you are going to handle.

Favor a Switch over Code Duplication The syntax of try and catch makes code reuse
difficult, especially if you try to catch at a granular level. If you want to execute some
code specific to a certain exception, and some code in common, you're left with either
duplicating the code in two catch blocks, or using a switch-like procedure. The
switch-like procedure, shown below, is preferred because it avoids code duplication:

Example 11–12 Using a Switch to Execute Code Specific to an Exception

 try{
 // some code here that throws Exceptions...
 } catch (Exception e) {
 if (e instanceof LegalException) {
 callPolice((LegalException) e);
 } else if (e instanceof ReactorException) {
 shutdownReactor();
 }
 logException(e);
 mailException(e);
 haltPlant(e);
 }

This example is preferred, in these relatively rare cases, to using multiple catch blocks:

Example 11–13 Using Multiple Catch Blocks Causes Duplicate Code

try{
 // some code here that throws Exceptions...
 } catch (LegalException e) {
 callPolice(e);
 logException(e);
 mailException(e);
 haltPlant(e);
 } catch (ReactorException e) {
 shutdownReactor();

Common Frameworks

11-16 Oracle Retail Point-of-Service Operations Guide

 logException(e);
 mailException(e);
 haltPlant(e);
 }

Exceptions tend to be the backwater of the code; requiring a maintenance developer,
even yourself, to remember to update the duplicate sections of separate catch blocks is
a recipe for future errors.

Point-of-Service Development Standards 12-1

12
Point-of-Service Development Standards

The following standards specific to the Point-of-Service architecture have been
adopted by Oracle Retail product and service development teams. These standards are
intended to reduce bugs and increase the quality of the code.

Screen Design and User Interface Guidelines
■ Avoid creating new screen beans and screen models for every new screen. Look

for ways to reuse existing or generic beans, such as the Data Input Bean, to avoid
complicating the code base.

■ For detailed user interface standards, see the UI Guidelines document, found in
the _resources directory provided with your documentation.

Tour Framework
This section includes general guidelines as well as subsections on specific tour
components.

Tour Architectural Guidelines
Consult these guidelines when making architecture decisions in tour framework
designs.

■ Services—When designing services, consider their size and reusability. Services
that are overlarge create additional work when a portion must be extended.

■ Utility Manager—Put methods used by multiple services in this manager so they
can be easily extended.

■ If the reusable behavior contains flow-dependent behavior, then it is best
implemented as a Site and the Site action can be reused within a Service or across
Services.

■ Large bodies of reusable behavior can be implemented as Managers and
Technicians. This pattern is especially useful if the user might offload the
processing to a separate CPU.

General Tour Guidelines
■ Code that uses bus resources must reside in a Site action, Lane action, Signal or

Shuttle.

■ Never mail a letter from a Road. This causes unpredictable results.

Tour Framework

12-2 Oracle Retail Point-of-Service Operations Guide

■ Never define local data in a Site, Aisle, Road or Signal. Local data is not
guaranteed when processing across multiple tiers. Sites and Lanes must be
stateless. This is the purpose of Cargo.

■ Traffic Signals should not modify Cargo. Signals should only be used to evaluate a
condition as true or false. Anything else is a side effect, reducing the
maintainability of the system.

■ Never implement just one Signal. Always implement Signals when there is more
than one Road that responds to the same letter, or when there is an Aisle and a
Road that respond to the same letter. See "Signals" on page 11-5.

■ Send letters at the end of methods. If the choice of which letter to send depends on
conditions which occur during the method, store the method name and mail it at
the end of the method.

■ Do not mail letters from depart() and undo() in Sites, backup() and traverse() in
Roads, roadClear() in Signals, and load() and unload() in Shuttles. Letters can be
mailed from traverse() in Aisles.

■ Define Shuttles in the calling Service package. If they are reusable Shuttles, define
them in a common package.

Use the following naming conventions for Tour components:

Table 12–1 Tour Naming Conventions

Element Description Example

Service description of the related functionality Login

Site element VerbNoun—indicating the action taking place
at the Site

EnterID

Site class The same as the Site name, with Site as a suffix EnterIDSite.java

Road element NounVerb—indicating the event that caused
the Road to be taken

IDEntered

Road class The same as the Road name, with Road as a
suffix

IDEnteredRoad.java

Aisle element NounVerb- indicating the event that caused
the Aisle to be taken

PasswordEntered

Aisle class The same as the Aisle name, with Aisle as a
suffix

PasswordEnteredAisle.java

Cargo ServiceNameCargo LoginCargo.java

Tour Framework

Point-of-Service Development Standards 12-3

Foundation
■ The best reuse in the Foundation engine takes place at the Service level. Sites

require extra thought because they can affect flow. Lane actions can be reused
without flow implications. Signals and Shuttles are very well suited to reuse
especially when interfaces are developed for accessing Cargo.

■ If validation and database lookup are coded in Aisles, they may be good
candidates for reuse in several Sites as well as in multiple Services.

■ All component pieces need to be designed with care for reuse: they must be
context insensitive or must do a lot of checking to make sure that the managers
they access exist for the bus that is active, the Cargo contains the data they need,
etc.

■ Trying to maximize reuse can result in confusing code with too many discrete
parts. If the reusable unit consists of one or two lines of code, consider whether
there is sufficient payoff in reusing the unit of code. If the code contains a complex
calculation that is subject to change over time, then isolating this logic in one place
may be well worth the effort.

Tours and Services
■ There is often a one-to-one mapping between a Use Case and a Service. The

Service should provide the best opportunity for reuse. If you design for reuse, it
should be focused at the Service level. This is where you get your best return on
investment.

■ Maintenance is a matter of choosing a style and implementing it consistently
within a Service and sometimes within an entire application. When you are
comfortable with how TourCam works, maintaining TourCam Services is easy.

Letter One word action name indicating the event;
see list defined in commonLetterIfc.java

Success

Failure

Continue

Next

Cancel

OK

Retry

Invalid

Add

Yes

No

Undo

Done

Transfer Station element NestedServiceNameStation FindCustomerStation

Shuttle class NestedServiceNameLaunchShuttle

NestedServiceNameReturnShuttle

FindCustomerLaunchShuttle.java

FindCustomerReturnShuttle.java

Traffic Signal class IsCondition.java-indicating the condition
being tested

IsAuthRequiredSignal.java

Table 12–1 Tour Naming Conventions

Element Description Example

Tour Framework

12-4 Oracle Retail Point-of-Service Operations Guide

Maintenance is more difficult in general for TourCam Services, since these
Services are more complex. However, the simulation feature in Tour Guide helps
with this process.

■ Aisles help reduce the total number of Sites in a Service, but they may be harder to
see because they are contained within a Site.

■ When making choices, give making an application as consistent and easy to
maintain as possible the top priority.

■ Consider the performance costs of using TourCam or creating additional Sites
when designing a Service.

■ A Service can often be simplified by reducing the number of individual Sites. You
can do this by using Aisles to replace Sites; Sites with one exit Road can be good
candidates, and Aisles are good candidates for reuse. However, Aisles are less
visible than Roads.

Sites
■ Reusing a Site has flow implications. Site classes can be reused whenever the exit

conditions are identical. Reusable Sites should be packaged in a common package
as opposed to one of the packages that use them. A reusable Site must refer to a
reusable Cargo or a common Cargo interface.

■ Treat the sending of a letter like a return code: put it at the end of your arrive() or
traverse() method. Sending letters in the middle of the arrive() method may cause
duplicate letters (with unpredictable results), or no letters (with no results).

■ Do not try to store state information in instance variables. Pass in state information
through arguments.

■ Do not put a lot of functionality in arrive(), traverse() methods. Decompose them
into logical methods that each have one job. For methods not called from outside
the package, protect the methods.

Managers and Technicians
■ There is a high degree of reuse of Managers and Technicians across the

applications. For example, the DataTransactions and DataActions are reusable. By
design, it is the DataOperations that change with different database
implementations. The UIManager and UITechnician expect a lot of reuse of beans,
adapters, and specification objects. In fact, the UISubsystem looks in the UI Script
for most of the configuration information that effects changes in screen layout,
bean interactions and even bean composition.

■ Utility methods can be useful for capturing behavior that is used by many
Services, but does not lend itself to Site or Aisle behavior. Put Utility methods in a
UtilityManager so they can be easily extended. The Point-of-Service application
contains an example of this called the POSUtilityManager. Service developers can
access these methods through the POSUtilityManagerIfc. The UtilityManager and
UtilityManagerIfc classes can be extended and the new class is specified through
the Conduit Script. For general-purpose behavior that can be called from a Site,
Lane, or even from a Signal, use utility methods to capture the common reusable
behavior rather than extending a common Site.

■ Large bodies of reusable behavior can be implemented as Managers and
Technicians. This pattern is especially useful if the user might off-load the
processing to a separate CPU.

Tour Framework

Point-of-Service Development Standards 12-5

Roads
It is sometimes useful to define multiple Roads from an origin Site to the same
destination if they capture different Road traversal conditions.

Do not trap and change the name of a letter just to reduce the number of Roads in a
Service. This is a poor use of system resources and also hides useful information from
the reader of the Tour Script. Do not rename letters except as noted in "Renaming
Letters" page 12-8.

For example, the Return Transaction Service has two Roads with the same origin
(LookupItem) and the same destination (EnterReturnItemInformation), but the letters
that invoke these two Roads are different.

The use of Road actions is dependent on a number of factors: use of TourCam,
developer conventions for an application, number of classes generated, and
maintainability.

Use Road actions for outcome-specific behavior. If you need to store some data in
Cargo on the sending of a specific letter, do the Cargo storage in the traverse() method
of the Road that is associated with that letter. If the data must be stored in Cargo
before leaving a Site, put the logic in the Site’s depart() method. Code in a Site or
Aisle’s depart() method should not check to see what letter was sent before taking an
action; use a Road in that case.

Aisles
Aisles are used to implement behavior that occurs within a Site. When there is
interaction with an external source (e.g. user, database) use a Site. When you are doing
business validation which may keep you in the same screen, use an Aisle.

While it makes sense to create Roads without corresponding Road actions, Aisles are
useless without an Aisle action. The important thing about an Aisle is that it is not part
of a transition from one Site to another, so the only code that gets executed in an Aisle
is the traverse() method. The arrive() and depart() methods are never executed on a
Site when an Aisle is processed. The Aisle can initiate an action that causes a transition
to another Site, but it cannot transition itself.

Aisle actions can be used to validate data, compute values, provide looping behavior,
and do database lookups. Aisle actions are useful for capturing repeatable behavior
that can occur while the bus is still in a Site.

For example, suppose you define a Site that gathers data from the user. The data
validation is implemented as an Aisle. Because it is an Aisle, the user can repeat the
process of entering data, validating, and re-entering until the data is correct, with little
system overhead. The Aisle behavior can be triggered over and over without calling
the arrive() method on the Site (a Road back to the Site calls the arrive() method).

Aisles are also useful for looping through a list of items when each item may require
error handling. This is done by placing the loop index in the Cargo.

Signals
You cannot use a signal alone; they must be used in groups of two or more. If there is
more than one Lane that responds to the same letter, each Lane must implement a
Signal. The logic in the Signals must be mutually exclusive; there should be only one
valid Road that can be traversed at any time; otherwise, unexpected (and difficult to
debug) behavior could occur.

Tour Framework

12-6 Oracle Retail Point-of-Service Operations Guide

When there are more than two Signals, each of the Signals should evaluate in such a
way that only one Signal is green at any given time. But the presence of more than two
Signals should raise a red flag. Track down the source of the following issues;
determine if the UI or other letter generator needs to be sending more unique letters.

■ Why are there so many Signals?

■ What are they checking?

■ Is the same letter being sent for many different conditions?

Use a Signal only to decide which road to take when you could go to two different
places (such as Sites) with the same Letter, based on Cargo information. It should not
be used to update cargo. The road you take after making a decision at the Signal
should do the updating

Choosing among Sites, Aisles, and Signals
There are many times when an Aisle can do the same work as a Site. Sometimes a
Signal can contain behavior that could be implemented in an Aisle. Sometimes a
separate Service does the work that was once a Site if the Site needs to be reused or
becomes too complicated. Consult the guidelines for your application development
team in order to be consistent with the rest of your team.

If you have the following customer requirement:

■ Display a UI screen that gathers search criteria to be used in a database lookup (for
example, customer lookup). After the user enters the data, validate the data. Once
the data has been validated, do the database lookup.

you have the following design choices:

■ Implement as separate Sites and take advantage of TourCam to back up when the
data is invalid or database lookup results are not correct.

■ Implement as one Site with Aisles that do the validation and lookup.

The database lookup may result in a success or failure letter whether it is coded as a
Site or an Aisle. When using an Aisle for database lookup, the failure letter triggers
another Aisle that could display an error message but allow the user to re-enter the
data and retry the lookup. This can occur without exiting the original Site. When using
a Site, the failure condition can trigger a flow change to back up through the lookup
Site back to the data entry Site.

If the validation and database lookup are coded in Aisles, they may be good
candidates for reuse in several Sites as well as in multiple Services. Reusing the Site is
also possible, especially if the TourCam’s ability to back up to the last indexed Site is
used. But there may be more considerations involving flow when trying to reuse a
Site.

Renaming Letters
Use the following guidelines when deciding whether to rename letters:

■ Do rename Letters when the application developer does not have power over the
Letter that is mailed and there is more than one event associated with a single
Letter.

For example: a single Letter is sent from a button on the UI (such as dialog box
OK), but the content of the retrieved data associated with the UI signals a different
event notification (such as error message notification).

Log Entry Format

Point-of-Service Development Standards 12-7

■ Do rename Letters when a common exit Letter from a nested Service is needed.

■ Don’t rename Letters to reduce the number of Roads in a Service.

Shuttles
If you are creating a sub-tour (i.e. a tour called from other tours via a Station) from
scratch, use only the following final letters:

■ Success

■ Failure

■ Cancel

■ Undo

If you need to provide a reason for a Failure or need to return data to the calling
service on a Success, use the Return Shuttle to update the calling service's cargo. Do
not use letters to reflect sub-tour results.

Within the Tour Framework, Shuttles are used to transfer data in and out of Services.
Shuttles are good candidates for reuse given a common Cargo interface.

Cargo
All Cargo classes should implement the CargoIfc interface.

Log Entry Format
This section describes the format and layout of log entries for the Point-of-Service
application.

Log Entry Description
Log entries adhere to the following format:

LLLLL yyyyy-mm-dd hh:mm:ss,ttt bbbbbbb (<classname>):
 [<classname>.<methodname>(<filename>:<linenumber>)]
 <Log entry content>

Fixed Length Header
The entry begins with a fixed length record header (38 bytes) that adheres to the
following layout:

LLLLL yyyyy-mm-dd hh:mm:ss,ttt bbbbbbb
12345678901234567890123456789012345678

Shuttle Type Launch Shuttle Return Shuttle

Description Used to send parameter data to a
sub-service

Used to return data to the parent service.

Methods load()—can only see the parent
Service's Cargo

unload()—can only see the
sub-service's Cargo

load()—can only see the sub-service's Cargo

unload()—can only see the parent service's
Cargo

Log Entry Format

12-8 Oracle Retail Point-of-Service Operations Guide

LLLLL is the log message level and consists one of the substrings in the following
table:

yyyy-mm-dd is the date.

hh:mm:ss,ttt bbbbbbb is the time stamp of the entry, comprised of the sub-fields
described in the following table:

Additional Logging info
The fixed length record header is followed by a blank space followed by the
parenthesized, fully qualified class name of the logging entity followed by a colon
followed by a carriage return/line feed pair.

(<classname>):<cr><lf>

The next line in a log entry begins with 6 blank spaces and a square-bracketed
sequence containing the following information:

<classname>.<methodname>(<filename>:<linenumber>)

Parentheses are included in the sequence. This sequence reflects the fully qualified
name of the method invoking the logging action and the source line number in the file
where the logging call was made.

The next line(s) in a log entry are the log entry content. The content is comprised of
freeform text supplied by the calling routine. The content reflected in the freeform text
may be multiple lines in length.

The next log entry is delineated with another 38 byte fixed length header beginning in
column one of the text log file.

Table 12–2 Log Message Level

Log Message Level Description

ERROR Highest severity entry; critical

WARN Application warning; serious

INFO For information only

DEBUG For developer use (not displayed by default application
configuration

Table 12–3 Time Stamp Fields

Field Description

hh Time of entry in hours, in 24-hour format

mm Minutes past the full hour

ss Seconds past the last full minute

ttt Milliseconds past the last full second

bbbbbbb Milliseconds since the application was started. Left justified
and blank filled on the right, out to 7 places

Log Entry Format

Point-of-Service Development Standards 12-9

Example Log Entry
INFO 2004-09-02 11:12:41,253 23697
(main:com.extendyourstore.foundation.manager.gui.DefaultBeanConfigurator):

[com.extendyourstore.foundation.manager.gui.DefaultBeanConfigurator.applyPropertie
s(DefaultBeanConfigurator.java:198)]
 Applying property cachingScheme to Class: DialogBean (Revision 1.9)
@12076742

Log Entry Format

12-10 Oracle Retail Point-of-Service Operations Guide

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Related Documents
	Customer Support
	Conventions

	1 Architecture
	Point-of-Service Architecture
	Frameworks
	Manager/Technician
	User Interface
	Business Object
	Data Persistence
	Tour

	Design Patterns
	MVC Pattern
	Factory Pattern
	Command Pattern
	Singleton Pattern

	2 Configuration
	Defining Security with Roles
	Modifying a Role
	Adding a Role
	Secured Features
	Security Implementation -- Warnings and Advice

	Password Policy
	Password Reset
	Password Policy and Password Change

	Reason Codes
	Configuring Transaction ID Lengths
	Understanding Transaction IDs
	Changing Transaction ID Lengths

	Configuring RMI Timeout Intervals
	Setting the RMI Timeout Interval for the JVM Under Linux
	Setting the RMI Timeout Interval for All Manager and Technician Calls
	Setting the RMI Timeout Interval for a Specific Technician

	Configuring Third-party Tender Authorization
	Enabling the Financial Network Technician
	Setting the Merchant Number

	System Settings
	Adding or Changing Language Bundles
	Naming Convention for Language Bundles
	Creating a New Language Bundle
	Configuring the System to Use a New Language Bundle

	Configuring Logging

	3 Development Environment
	Preparation
	Setup
	Install Point-of-Service
	Build the Database
	Create a Sandbox
	Configure the IDE
	Update Java Security and Policy files
	Configure the Version Control System

	Run Point-of-Service

	4 Tour Framework
	Tour Components
	Tour Metaphor
	Service and Service Region
	Bus
	Tourmap
	Cargo
	Sites
	System Sites
	Letters
	Roads
	Common Roads
	Aisles
	Stations and Shuttles
	Signals
	Exception Region

	Role of Java Classes
	Tour Cam
	Attributes
	Letter Processing
	Cargo Restoration

	Tender Tour Reference

	5 UI Framework
	Overview
	Screens
	Beans
	PromptAndResponseBean
	Bean Properties and Text Bundle
	Tour Code

	DataInputBean
	Bean Properties and Text Bundle
	Tour Code

	NavigationButtonBean
	Bean Properties and Text Bundle
	LocalNavigationPanel
	GlobalNavigationPanel

	Tour Code

	DialogBean
	Bean Properties and Text Bundle
	Tour Code

	Field Types

	Connections
	ClearActionListener
	DocumentListener
	ValidateActionListener

	Text Bundles
	receiptText
	parameterText

	6 Manager/Technician Framework
	New Manager/Technician
	Manager Class
	Manager Configuration
	Technician Class
	Technician Configuration
	Valet Class
	Sample Code
	Configuration
	Tour Code
	Manager
	Valet
	Technician

	Manager/Technician Reference
	Parameter Manager/Technician
	UI Manager/Technician
	Journal Manager/Technician

	7 Retail Domain
	New Domain Object
	Domain Object in Tour Code
	Domain Object Reference
	CodeListMap
	Currency
	Transaction

	8 Customization
	Parameters
	Parameter Hierarchy
	Parameter Group
	Parameter Properties

	Devices
	Set Up the Device
	Test the Device
	Create a Session and ActionGroup
	Simulate the Device

	Help Files
	Modifying Help Files

	9 Store Database
	ARTS Compliance
	Understanding Data Managers and Technicians
	How Data Transactions Work
	Creating or Updating Database Tables
	Example of Saving Data: Storing Tender Information
	Research Table Requirements and Standards
	Saving Data from Site Code
	Locate Data Operation
	Modify Data Operation
	Test Code
	Verify Data

	Updating Flat File Configurations
	Data Technician Script
	Flat File Engine Configuration Script
	Implementing FlatFileDataOperations
	Other Query Types
	Complex Query Expressions

	10 Extension Guidelines
	Conventions
	Terms
	Filename Conventions
	Modules
	Directory Paths

	POS Package
	Tour
	Tour Map
	Tour Scripts
	Site
	Lane-Road or Aisle
	Shuttle
	Signal
	Cargo

	UI Framework
	Default UI Config
	UI Script
	Bean Model and Bean

	Other
	Internationalization
	Localization
	Conduit Scripts
	PLAF
	Receipts
	Reports

	Domain Package
	Retail Domain
	DomainObjectFactory
	Retail Domain Object (RDO)

	Database
	Data Manager and Technician Scripts
	Data Actions and Operations
	Data Transactions

	11 General Development Standards
	Basics
	Java Dos and Don’ts
	Avoiding Common Java Bugs
	Formatting
	Javadoc
	Naming Conventions
	SQL Guidelines
	DB2
	MySQL
	Oracle
	PostgreSQL
	Sybase

	Unit Testing

	Architecture and Design Guidelines
	AntiPatterns
	Designing for Extension

	Common Frameworks
	Internationalization
	Logging
	Guarding Code
	When to Log
	Writing Log Messages
	Exception Messages
	Heartbeat or Life cycle Messages
	Debug Messages

	Exception Handling
	Types of Exceptions
	Avoid java.lang.Exception
	Avoid Custom Exceptions
	Catching Exceptions
	Keep the Try Block Short
	Avoid Throwing New Exceptions
	Catching Specific Exceptions
	Favor a Switch over Code Duplication

	12 Point-of-Service Development Standards
	Screen Design and User Interface Guidelines
	Tour Framework
	Tour Architectural Guidelines
	General Tour Guidelines
	Foundation
	Tours and Services
	Sites
	Managers and Technicians
	Roads
	Aisles
	Signals
	Choosing among Sites, Aisles, and Signals
	Renaming Letters
	Shuttles
	Cargo

	Log Entry Format
	Log Entry Description
	Fixed Length Header
	Additional Logging info
	Example Log Entry

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

