

Oracle® Retail WebTrack
Configuration Guide

Release 12.0
May 2006

ii

Copyright © 2006, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are
provided under a license agreement containing restrictions on use and disclosure and are also protected by
copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood
City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear
all risks associated with the use of such content. If you choose to purchase any products or services from a
third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the
quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with
any third party.

 Configuration Guide iii

Contents
Preface.. v

Audience ..v
Related Documents ..v
Customer Support ..v

1 Introduction.. 1
Functional and Technical Capabilities ...1
WebTrack Administration Console ...2

Options..2
Mail...2
Lists ..2
Users ...2

WebTrack User Console ..2
Diary Entry ...2
Track Details...2
Track List Screen..3
Mail...3

A Template-Based Approach...3
Server Side Reporting Template Administration ...4

2 XFO Templates .. 5
XFO Operation ..5

Basic Structure..5
Expressions and Attributes ...5
SF Processing Elements..6
Builtin Values and Functions..10
XFO and Tracks..11
Values ...11
Functions ..15

Configuring XFO Printing in WebTrack ...16
3 Spreadsheet Expression Syntax .. 19

Data Types..19
Lists ..20
Arrays ...20
Object Values ...21
Variable Names ..21
Function Calls...21
Expressions...22
Built-In Functions...25

4 Event Import... 27
Elements and Attributes...27

Identifying Statement..27
Event...27

A Appendix: event.dtd .. 33
Example ..34

 Configuration Guide iv

Preface
Oracle Retail’s WebTrack is a web-based, collaborative critical path management
solution which brings the members of a client’s supply chain together to track critical,
time-sensitive business activities and events. This Configuration Guide should serve as a
reference for anyone using WebTrack to configure these elements throughout the
application to ensure the most efficient business model.

Audience
Anyone with an interest in developing a deeper understanding of the configuration
capabilities surrounding Oracle Retail WebTrack will find valuable information in this
guide.

Related Documents
If you wish to find further information, see the following applicable Oracle Retail
documents:
 Oracle Retail Design Online Help
 Oracle Retail Design User Guide
 Oracle Retail Design Operations Guide
 Oracle Retail Design Release Notes
 Oracle Retail Design Configuration Guide
 Oracle WebTrack Release Notes
 Oracle WebTrack Online Help
 Oracle WebTrack User Guide
 Oracle Retail Retail Server Installation Guide
 Oracle Retail Retail Server Data Model

Customer Support
 https://metalink.oracle.com

When contacting Customer Support, please provide:
 Product version and program/module name.
 Functional and technical description of the problem (include business impact).
 Detailed step-by-step instructions to recreate.
 Exact error message received.
 Screen shots of each step you take.

https://metalink.oracle.com/

Configuration Guide 1

1
Introduction

In today’s business climate, clients wish to take advantage of strategic opportunities. That
is, they may wish to expand the ratio of import to domestic products, or shift to a more
profitable private-label branding strategy. To accomplish these objectives, Oracle Retail
WebTrack’s ability to track and manage the development and global sourcing of goods
becomes paramount to competitive success. WebTrack is a critical path management tool
that binds the client with its multitude of trading partners (such as third-party agents,
manufacturing suppliers, raw materials vendors, and so on) to manage the complex
process of bringing goods to market.
The system provides a solution to issues raised around communication methods, supplier
reaction time, workload balancing, and data management. Enhanced visibility and
improved communication with supply chain partners brings order and control to the event
management process. Using WebTrack to work collaboratively with trading partners, the
client gains a greater ownership of events, reduces lead times, improves communication,
and reduces costs through the supply chain.

Functional and Technical Capabilities
The system offers the following functional and technical capabilities:

 The web-based collaborative architecture enables everyone in the supply chain to
have secure access to the same information, improving visibility, providing one
version of the truth, and allowing for the proactive management of projects.

 The system’s flexible, template-based process allows the client to determine the key
events, dependencies, owners, and lead times that are used to manage processes. The
system thus provides for both a mechanism for business process re-engineering and a
consistent process approach throughout the internal and external community.

 Sophisticated dependency handling among events provides flexibility and allows
clients to determine the complexity they would like to reflect within the track
management process.

 Nested track functionality provides the flexibility to track all events with varying
priorities within the same tool. That is, a parent track might be used to track the
high-level events related to a process, and the nested child track could be linked to
the parent track and used to track the lower-level events that also require tracking
and visibility.

 The system’s mass change capability provides an efficient means of maintaining
track details, improving the overall accuracy and timeliness of the data tracked
within the solution.

 Automated and manual diary entries provide improved controls and accountability
over project management data. The ability to automatically send the diary entry as an
email improves timely communication.

 By centralizing key event data in one place, the system allows the client to perform
the following:
— Evaluate the performance of events, tracks, and trading partners.
— Report event management progress accurately.
— Make strategic, fact-based decisions.

Introduction

2

 Because the system utilizes some features of the Java 2 Enterprise Edition (J2EE)
architecture, clients have a choice in their selection of databases and application
servers.

 Market-proven and industry-standard application programming interfaces (API) are
utilized (that is, RMI, JDBC, and so on).

 Java applications such as Oracle Retail WebTrack have enhanced portability which
means Oracle Retail’s clients are not ‘locked’ into a single platform. Upgrades are
easier to implement, and hardware is easier to change.

WebTrack Administration Console
The WebTrack Administration Console provides the following functionality and more:

Options
Oracle Retail WebTrack provides Event Options. One option allows the blanking of
revised dates on an event if the revised date is the same as the planned date. A second
option is the enabling of an event confirmation column in the Track Details screen.

Mail
The mail administration is used to configure automatic email alerts to users based on
various events.

Lists
Extra fields support configuration of non-standard elements in the integration of Oracle
Retail Design to Oracle Retail WebTrack.

Users
Oracle Retail WebTrack provides a local type in the WebTrack user permissions to
enable a button to launch Oracle Retail Design from the Track List or Track Details
screens.

WebTrack User Console
The WebTrack User Console provides the following functionality and more:

Diary Entry
A ‘Track Name Changed’ diary entry has been introduced for changes made to a track
name through the integration configuration between Oracle Retail Design and Oracle
Retail WebTrack.

Track Details
When enabled by the administrator, a column is available in the Track Details screen to
show the confirmation of a plan or revised date by an event owner.

Oracle Retail WebTrack 12.0

Configuration Guide 3

Track List Screen
When enabled by the administrator and mapped through the Oracle Retail Design
configuration file, the user is able to add the season attribute and the design vendor (Extra
field) to the Track List screen. In addition, Oracle Retail WebTrack allows the user to
launch Oracle Retail Design from the Track List screen.

Mail
When added to a mail message, the user is able to launch the Oracle Retail Design
application from the mail message via the Oracle Retail Design URL

A Template-Based Approach
The client defines a template to include specific events and associated lead times. Events
are specific tasks that the client monitors for completion. Events that are commonly used
together may be grouped into a template. Using the template and supporting foundation
data such as project or purchase order (PO) data, the client creates a ‘track’. A track
provides a mechanism for communicating expectations, schedules, and event assignments
to all members of the supply chain including trading partners. In sum, to help save time
within supply chain processes, Oracle Retail WebTrack uses tracks to manage the events
associated with projects and, on a more complex level, purchase orders. Because of the
flexibility associated with Oracle Retail WebTrack, a client could use the application to
support the pre-production tracking of a new product, the opening of a new store, or the
production and logistics tracking of items on a purchase order.
Individual event owners are accountable for managing specific events within the track.
Access to all tracks in one place improves visibility to changes. Automatic email alerts
provide reminders to event owners if events become late or overdue. As updates and
changes are made to the track, a diary of all activity is logged. Track details and
summaries can be printed from the tracks and reports windows in WebTrack, and the
system’s robust reporting abilities on track data allow the client to report on progress and
to manage by exception.

Introduction

4

Server Side Reporting Template Administration
Oracle Retail WebTrack supports the generation of printable output on the client and
server side. The client side printing is generated based on specified rules within the code.
If users are expecting an exact format, they may not choose to leverage the client side
print. Format files can be developed using XFO technology and can be uploaded by
browsing to the following URL from within the Oracle Retail WebTrack Administration
Console:

 https://www.retail.com/applications/design/template.jsp

The administrator is prompted to browse and upload the template file, define the format
that it uses, and identify a mode that is used to cross-reference the configuration file. The
template mode is a free-form text field and the value input is used to cross-reference the
uploaded file in other configuration administration steps. Specifically, the mode is used
within the general user view configuration file to identify a format that can be used by the
server side printing options available to the user. In addition, the mode can be referenced
within Oracle Retail Integrator as the ObjectiveSheetType during the setup of the run
type used to support the technical specification export process.

Note: Although the objective sheet template upload process
continues to support the upload of .xmf files, Oracle Retail
recommends that xfo formats be used.

Track report template Upload window in Oracle Retail WebTrack

The actual development of the XFO files can be done in any text editor. A text editor that
supports XML would be most efficient and is recommended. The primary functions
supported within the development of the XFO files are highlighted in “Chapter 2 – XFO
templates”.

https://www.retail.com/applications/design/template.jsp

Configuration Guide 5

2
XFO Templates

The template driven PDF generator used to format print files on the Oracle Retail
WebTrack client is named “XFO.” An XFO template is an XML file containing a
mixture of markup XML and Style File XFO processing elements which are used to
control the output and to include dynamic values.
The first implementation uses the XSL formatting objects (XSL-FO) markup language, in
conjunction with Apache FOP (http://xml.apache.org/fop), which is a XSL-FO to PDF
renderer. FOP implements most of the XSL-FO standard, but there are some limitations –
see documents on the above website for conformance details.

XFO Operation
The XFO processor first reads and parses the template file. Any XML errors found at this
stage are reported by an error PDF produced by the processor. When a PDF is generated
from a set of styles, the ‘style file’ elements are processed to produce pure XSL-FO
output, which is passed directly to the FOP engine for rendering to PDF.

Basic Structure
An XFO template contains elements from the XSL-FO namespace and the ‘style file xfo’
control namespace. Conventionally prefixes fo: and sf: are used for these namespaces.
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format"
 xmlns:sf="http://www.retail.com/XSL/style-files">

The namespace URIs should be included exactly as above. If you need to emded SVG for
advanced graphics, add the SVG namespace to the root element or the svg element when
used:
<svg:svg xmlns:svg="http://www.w3.org/2000/svg”>

Expressions and Attributes
Attributes in fo: (and svg:) elements may contain expressions enclosed in ${ and }. These
expressions are evaluated during the processing phase and final attribute value is passed
to the XSL-FO output. Expressions are written using the standard ‘spec sheet’ expression
language (see expressions.doc) and may refer to variables set earlier in the processor.

Example:
<fo:simple-page-master master-name="one"
 page-height="${pageheight}${unit}"
 page-width="${pagewidth}${unit}">

<fo:block break-before="${index > 0 ? 'page' : 'auto'}">

In the above example, the page dimensions in the page master as set using previously
defined numbers and a unit string (mm, cm, in, etc). In the block element, the value of the
break-before attribute is set to page or auto according to the value of the index variable.
Note that in common with all XML files, any & or < characters in expressions must be
written by the character entities & and <

http://xml.apache.org/fop

XFO Templates

6

SF Processing Elements
The following sf: processing elements are available.
Attributes which are expressions are evaluated directly – they are not enclosed in ${ }.
An attribute defined as a string may contain ${ } expressions.
An attribute defined as a name represents a ‘variable’ name. It must follow the rules for
Java identifiers – essentially, the first character must be a letter or _ and the remainder
can be letters, digits or _.
Any sf: element which contains other elements defines a new ‘context’; variables defined
in this context are not in scope outside it.

sf:str
<sf:str x=”expression”/>

Evaluate the expression and include the result as a string at the current point in the XSL-
FO output.

Example:
<fo:block><sf:str x=”item -> shortname”/></fo:block>

sf:int
<sf:int x=”expression”/>

Evaluate the expression and include the result as an integer at the current point in the
XSL-FO output.

Example:
<fo:block><sf:int x=”item -> quantity”/></fo:block>

sf:float
<sf:float x=”expression” fmt=”string”/>

Evaluate the expression and include the result as a decimal number at the current point in
the XSL-FO output. The optional fmt attribute can be used to supply a format for the
conversion (see java.text.DecimalFormat); if omitted a default format with 2 decimal
places is used.

Example:
<fo:block><sf:float x=”item -> elctarget” fmt=”0.000”/></fo:block>

Oracle Retail WebTrack 12.0

Configuration Guide 7

sf:date
<sf:date x=”expression” fmt=”string” tz=”string”/>

Evaluate the expression as in internal date value (a Java time stamp divided by 1000),
convert the date to a string using the supplied format or a default, and include the result in
the XSL-FO output. See java.text.SimpleDateFormat for details of the optional format
string. If the format is omitted a locale-specific date format is used.
The optional tz attribute is used to select the time zone for the formatting. It must be one
of the time zone IDs understood by java.util.TimeZone (that is “Europe/London” or
“PST”). If tz is omitted, the server’s ‘standard’ time zone is used. Most dates in design
(initial availability, bid deadline, etc) represent a ‘day’ and are stored internally using the
standard time zone; tz should not be used with these. Dates which represent a point in
time (last change, log dates, etc) contain a time of day element and the time zone is
relevant.

Examples:
<sf:date x=”item -> biddeadline”/>
<sf:date x="item -> changedate" tz="${tz}" fmt="yyyy-MM-dd HH:mm:ss"/>

The first example displays a date using the default format; the second displays a time
stamp using such as 2004-11-09 12:23:13 with a timezone obtained from a variable.

sf:set
<sf:set n=”name” x=”expression”/>

or
<sf:set n=”name” x=”expression”>
 ... content ...
</sf:set>

The expression is evaluated and assigned to the name. In the first syntax, the name
remains in scope until the end of the current context. In the second example, the name is
in scope during the processing of the embedded content.

Example:
<sf:set n="unit" x="'mm'"/>
<sf:set n=”temp” x=”x * 10>
 ... content ...
</sf:set>

The first example sets unit to the string “mm”; the second defines temp for the processing
of the enclosed content.

XFO Templates

8

sf:update
<sf:update n=”name” x=”expression”/>

or
<sf:update n=”name” x=”expression” index=”expression”/>

The expression is evaluated and assigned to the most recent definition of the name. The
name should have been defined by an earlier sf_set element. In the second form, the
index expression is evaluated and used to set an elemente in the array identified by the
name. The array should have been created earlier using the array function.

 Examples:
<sf:update n="count" x="count+1"/>

Set count to its previous value, plus 1.
<sf:set n=”arr” x=”array(10)”/>
…
<sf:update n=”arr” x=”1” index=”i+1”/>

Set element i+1 in the array arr to 1.

sf:func
<sf:func n=”name” x=”expression”/>

or
<sf:func n=”name” x=”expression”>
 ... content ...
</sf:set>

Define the expression as a function. The rules for the scope of the name are as in sf:set.

Example:
<sf:func n="imwidth" x="$1 * min(1, min(maxwidth/$1, maxheight/$2))"/>

sf:if
<sf:if x=”expression”>
 ... content ...
</sf:if>

If the expression is defined and non-zero then process the content; otherwise ignore the
content.
Alternative format:
<sf:if x=”expression”>
 <sf:then>
 ... content 1 ...
 </sf:then>
 <sf:else>
 ... content 2 ...
 </sf:else>
</sf:if>

In this form, the content in the ‘then’ part is processed if the expression is non-zero;
otherwise the content in the ‘else’ part is processed. The ‘else’ part can be omitted but
that is the same as the more succinct first format.

Oracle Retail WebTrack 12.0

Configuration Guide 9

sf:for
<sf:for n=”name” to=”expression” from=”expression” by=”expression”
 while=”expression” set=”expression” var=”name”>
 ... content ...
</sf:for>

sf:for is used to process content repeatedly. All the attributes are optional, but at least one
of two, while or set must be used. To prevent the server running for ever as a result of
a faulty template, a limit of 8192 iterations is imposed by the processor.
There are three distinct forms of iteration; any combination may be used:

1. Numeric
a. Iterate over the range ‘from’ to ‘to’ inclusive, in steps of ‘by’. If ‘from’ is

omitted, the iteration starts at 1; and ‘by’ is omitted the step is 1. If the name ‘n’
is supplied, the iteration value is assigned to it during the loop. This is roughly
equivalent to the java loop, except that if the step ‘by’ is negative, the loop
counts down and the test is named >= to. That is:
for (name = from; name <= to; name += by)

2. Conditional
a. If while is used, the loop terminates as soon as the expression evaluates to ‘false’

(undefined or zero).
3. Set

a. The set expression should evaluate to a set of items; the loop continues whilst
there are elements in the set; the current item is assigned to the name defined by
var, if present. The item set will be defined outside the processor.

Examples:
<sf:for to=”10”>
 .. content ..
</sf:for>

Process the content 10 times.
<sf:for n="index" from="0" set="items" var="item">
 ... content ...
</sf:for>

Process the content over the set of items; the current item is assigned to item; the
variable index counts up from zero.

sf:macro
<sf:macro n=”name”>
 ... content ...
</sf:macro>

Store the content against the name for later use. The macro is expanded using the sf:call
element. Macros are useful for repeated header components, etc.

XFO Templates

10

sf:call
<sf:call n=”name”>
 <sf:set n=”name1” x=”expression1”/>
 <sf:set n=”name2” x=”expression2”/>
 ...
</sf:call>

Process the content of the macro name; while processing name1, name2 ... are set to
expression1, expression2
The nested sf:set elements are optional.

Builtin Values and Functions
The processor always defines the variable now as the current date. This can be used to
include the time of printing in a footer, that is:
<fo:block font-size="5pt">
 <sf:date x="now" fmt="yyyy-MM-dd HH:mm:ss" tz="Europe/London"/>
</fo:block>

The following functions are always available:

array(n)
Create a 1-dimensional array of size n. The size must not be more than 512.

Example:
<sf:set n=”arr” x=”array(size+1)”/>

geticon(string)
Lookup the ‘icon’ named by the argument. The result is undefined if the icon does not
exist, and an icon object otherwise:

Field Type Meaning

file string Image file name

width integer Image width

height integer Image height

Example:
<fo:external-graphic src="url(${geticon('logo') -> file})"/>

getprop(prop) or getprop(prop, deflt)
Lookup a property passed to the processor. If the property is not defined, the result is
undefined or deflt if there are two arguments.

Example:
<sf:set n="pagewidth" x="getprop('pagewidth', 210)"/>

valuekey(v)
A value which is derived from a parameter lookup (that is the value of a mapped
dropdown list box) may have an associated external value. This function returns the
external value of v, if any, or v if there is no external value.

Oracle Retail WebTrack 12.0

Configuration Guide 11

hasmorevalues(set)
The argument must evaluate to a ‘set’ (see sf:for); return 1 if there are further items in the
set or zero if the set is exhausted. This can be used to determine whether a break is
needed after an item, that is.

XFO and Tracks
When processing WebTrack tracks, there are additional predefined values and functions.

Values
trackcount
This is the number of tracks being processed and should not be used to iterate over the set
– use tracks (below). The count may be used to estimate layouts, and so on,, but is not
guaranteed to be accurate. It is possible that one or more of the tracks selected by the user
have been deleted by another user between selection and processing.

tracks
tracks is a set of style objects. Iterate over the set with an sf:for element (see above).
Each object contains the fields shown below. Boolean fields are represented as a
combined value with a numeric par of 0 or 1 and a string part of “false” or “true”.

Field Type Meaning

name string Track name

ownerid integer Internal ID of track owner

ownername string Name of track owner

owneremail string E-majl address of track owner

toplevelenterpriseid integer ID of enterprise owning top level parent track

ownerenterpriseid integer ID of enterprise owning track

ownerenterprisename string Name of enterprise owning track

departmentid integer Internal ID of track department

departmentname string Track department

departmentnumber string Track department number

divisionid integer Internal ID of track division

divisionname string Track division

divisionnumber string Track division number

state integer Track state1

alert integer Track alert state2

enddate date End date of track

creationdate date Creation date of track

modificationdate date Modification date

XFO Templates

12

Field Type Meaning

suspenddate date Date of track suspension; unset if track is not
suspended

seasonid integer Internal ID of track season; zero if season is not
set

ordernumber string PO or project number

ordered integer Internal ID of order

orderitemid integer Internal ID of order item

quantity integer Track quantity

value decimal Track value (quantity * item value)

orderinfo string Order information string

supplierid integer ID of supplier; zero for projects

suppliername string Name of supplier enterprise

accountid string Contact ID in supplier

itemid integer Internal ID of associated ‘item’ (or project)

itemtype integer Item type (1 = item, 2 = project)

itemname string Item or project name

stylenumber string Item style number

vendornumber string Item vendor number

colourid integer Internal ID of track colour, or zero

colourname string Colour name, or unset

firstopenid integer Internal ID of first open event

firstopenname string Name of first open event

firstopeneventid integer Event type ID in first open event

firstopendate date Date in first open event

firstopenenterprise integer Enterprise ID in first open event

firstopencontact integer Contact (user) ID in first open event

orderattributges attribute array Array of the attributes associated with PO/project

events event array Array of event objects

diary diary array Array of diary entry objects

Note: The state field is 0 for active tracks, 1 for archived
tracks and 2 for cancelled tracks. The alert field is 0 for
green, 1 for orange and 2 for red. ID values (such as
seasonid) can be used for parameter lookups. They are
internal values and have no external meaning.

Oracle Retail WebTrack 12.0

Configuration Guide 13

Subsidiary Objects

Attribute
The value of an attribute object is the attribute value, as a number or string (depending
on the attribute definition). The object also contains these fields:

Field Type Meaning

name string Attribute name

key integer Internal attribute key

format string Attribute display format

The key is the internal key for the attribute. For attributes set by the configurable Design
to WebTrack project creation interface, the key is (60000+2+N) where N is the integer in
the attr.N.name property. The standard attributes with keys 60001 and 60002 are
always set to the internal style ID and supplier name.
The format string is t (or unset) for text values, i for integral values, fN for decimal
values (displayed with N decimal places, 2 by default) or d for date values.

Event
An event object represents an event in a track. It contains the following fields:

Field Type Meaning

pathid integer Internal ID of track

pathowner integer Internal ID of track owner

pathenterpriseid integer ID of track enterprise

eventid integer Internal ID of event

sequencing integer Event sequencing option1

done boolean True if event is complete or cancelled

cancelled boolean True if event was cancelled

plan date Plan date

revised date Revised date

actual date Actual date

amberdays integer Orange alert threshold

reddays integer Red alert threshold

reminderdays integer Event reminder threshold

alert integer Event alert state (as for tracks)

eventnameid integer Internal event type

ownerenterpriseid integer ID of event enterprise

ownerenterprise string Name of event enterprise

XFO Templates

14

Field Type Meaning

owneruserid integer ID of event user (contact)

ownername string Name of event user

owneremail string E-mail address of event user

flags integer event flags2

nestedpathid integer ID of nested track, or zero

Note: The sequencing field is zero if the event has no
dependencies, ‘1’ if the dependency is ‘after previous’, ‘2’ if
the dependency is ‘after all previous,’ or negative for more
complex dependencies. The bottom section of the flags field
is set if the event is ‘confirmed’.

Diary
A diary object represents an entry in a track diary. It contains the following fields:

Field Type Meaning

pathid integer Internal ID of track

action integer Action type of entry

when date Date entry was made

text string Entry text (may be empty).

eventid integer Internal ID of associated event

eventname string Name of associated event

eventnameid integer Internal type of associated event

eventdate date New date for event (may be unset)

userid integer Internal ID of user making entry

username strintg Name of user

useremail string E-mail address of user

userenterpriseid integer ID of user enterprise

userenterprise string Name of user enterprise

emails string array Extra emails in entry

The action field identifies the update associated with the diary entry. It can be used to
filter out unwanted entry types.

Oracle Retail WebTrack 12.0

Configuration Guide 15

Action Meaning Action Meaning

0 Manual user entry 14 Track reinstated

1 Event completed 15 Event deleted

2 Revised date changed 16 Track quantity changed

3 Revised date accepted 17 Track created in suspended state

4 Revised date rejected 18 Track suspended

5 Track created 19 Track unsuspended

6 Track archived 20 Plan date changed

7 Event cancelled 21 Plan and revised dates changed

8 Event added 22 New template applied

9 Event contact updated 23 Event auto-cancelled

10 Track owner updated 24 Track name changed

11 Track split (old form) 25 Event confirmed

12 Track split (new form) 26 Event unconfirmed

13 Track cancelled

To generate suitable text for display, use the format diary function (see below).

Functions
There are additional functions available to obtain more complex track values. As well as
the functions listed below, the standard parameter lookup and formatting functions are
also available. The parameter lookup functions work with the parameters defined in the
enterprise of the current user. This is generally most useful for ‘my tracks’ displays.

getitemextra(track, number)
Get one of the numbered ‘extra’ values from the item (product or project) associated with
the track.

Example:
getitemextra(track, 1)

XFO Templates

16

getpartnerinfo(track)
Get a ‘partnerinfo’ object for the supplier associated with the PO track. The object
contains the following fields:

Field Type Meaning

accountnumber string Account number for the supplier enterprise

code string Partner code string

info string Partner info string

The result is undefined if the track was created from a project.

findattribute(track, keyorname)
Search for an order attribute on the track. This is a convenience function for accessing the
orderattributes field in a track object. If the second parameter is a number, the search is
against the attribute ‘key’; otherwise the search is against the attribute name. The result is
an attribute object, or ‘undefined’ if the attribute is not found.

Example:
indattribute(track, 60001)
Find the Design style ID attribute for a track.

formatdiary(track, diaryentry)
Generate descriptive text from a diary entry object. The text is produced from the same
resource strings as are used to display the diary in the client code.

Configuring XFO Printing in WebTrack
XFO printing is now available in the WebTrack client as an alternative to the rather basic
client-side PDF generation. XFO is the only solution for track diary printing. Templates
are uploaded by the administrator from:
 http://server/applications/tracks/template.jsp

Templates may be tested using the standalone ‘xfotracks’ application.
To configure XFO printing for tracks, select the Print Templates tab in the WebTrack
administration Options window. Enter a set of print modes, one per line. The syntax is
similar to the modes parameter in print setup for Design.
That is:
Track Summary/tracksumm,prop.type=summ,sel=all
Track Detail/tracksumm,prop.type=detail,sel=either
Track Diary (text mode)/diary,prop.format=text,max=1000,prop.diary=1
Track Diary (list mode)/diary,prop.format=list,max=1000,prop.diary=1

The string before the / on each line is shown in the drop down in the print dialogue box.
The string after the / is the mode string used to find the file name.
The mode strings may be followed by options and properties which are passed to the
formatting engine. In the example here, the same template (xfo-diary-19 or xfo-diary-0) is
used for two modes; tests within the template will control whether the output is in text or
list format. Properties (starting with prop.) can be retrieved in the template using the
getprop function.

Oracle Retail WebTrack 12.0

Configuration Guide 17

The property prop.mine is set automatically to 1 for ‘my tracks’ displays or 0 for ‘other
tracks’. It can be used in the template to show or hide information depending on whether
the user owns the tracks.
There is an additional overhead when loading diary entries for printing. If the template
requires access to the diary, include the prop.diary property with value 1. In the example
above, the first two modes do not use the diary; the second two do.
There are also some built in options which are interpreted in the client.

Option Value Default Meaning

max Integer Maximum number of tracks supported by the mode; can
be used to prevent over-complex reports being generated
for a large number of tracks.

sel list, all
or either

list If list, the tracks which are selected in the list are printed;
if all, all the tracks in the (filtered) list are printed,
irrespective of the selection; if either, the selected tracks
are printed, or the entire list if there is no selection.

Configuration Guide 19

3
Spreadsheet Expression Syntax

This chapter describes spreadsheet expression syntax used throughout the configurable
definition files of Oracle Retail WebTrack. Expressions can be leveraged in user view
configuration files to support the Oracle Retail Design to Oracle Retail WebTrack project
integration, in the tab layout definition files to support configuration sheets, and in XFO
templates used to support printing and export processes.

Data Types
Values in expressions are either numbers or strings.1 A value can also be undefined
(represented internally by the special numeric value NaN, or not-a-number). When an
undefined value is used in an expression, the result is generally also undefined. There are
built-in functions which will test for undefined values.
Numbers are stored in double precision format, with an approximate range of ±5-324 to
±2+308. A numeric constant is a sequence of decimal digits, with an optional decimal
point and exponent. The exponent part is e±integer (or E±integer). If the sign is omitted,
a positive exponent is used.
Examples:
1. 1.0 .023 1e4 1E-10 2.3e+5
2. 3e+5 = 2.3x105 = 230000.

A string constant is a sequence of characters enclosed in ‘ or “ quotes. The quote
character used to start a string must be used to end it (when entering a string constant in
an expression used as an XML attribute, avoid using the quote character used for the
attribute).
Within a string the backslash (\) character is used to introduce escape sequences. The
following sequences are useful:

Sequence Character

\\ \

\” “

\’ ‘

Examples:
“abcd” ‘Please type something’ “A string with a quote \” inside”

1 Values derived from user entry fields can sometimes be both a number and a string. That is a
country dropdown in Design will be linked to a value that contains the internal ID of the country
as a number and the display name of the country as a string. The numeric value is available for
parameter lookups, whilst the string value is used for display in text fields, and so on.

Spreadsheet Expression Syntax

20

Lists
Value list objects are returned by the lookup functions. They are generally used to
populate drop down choices in spec sheets and to populate dynamic row and column sets
in spec sheet matrices.
The number of items in a list can be determined with the length function and individual
elements can be obtained by subscription.

Arrays
An array value has any number of dimensions. The number of elements is b1 × b2 …
where bi are the bounds of each dimension. The bounds may be obtained using the length
function and individual elements may be obtained using subscription.
Arrays are used to represent cells in the dynamic row/column areas of matrices in spec
sheets. A cell which is either in a dynamic row or column area (but not in both) is
represented by a 1-dimensional array, while a cell which is both areas is represented by a
2-dimensional array.
Arrays are also used to represent spec sheet mappings attached to entire forms or
matrices, or matrix rows or columns.
When such an array cell is used in an expression, the context of the expression is taken
into account to determine which element(s) of the array are involved. If the cell is used in
a dynamic array context with the same “dimensions”2, only a single element will be
selected and a normal scalar expression is evaluated.
That is, if x$3.4 represents a cell in the dynamic area of a matrix, and the expression:

‘x$3.4 * 2’

is used in a dynamic area in another matrix with matching dimensions, the expression is
evaluated once for each element in the array and the result used for the matching element
in the destination matrix.
If an array cell is used in a context which has no dimensionality (that is, is not part of a
dynamic area in a matrix) or which has different “dimensions”, then the array value as a
whole is used. In this case, the only valid use of the cell is for aggregation or
subscription.
That is, using the array cell x$3.4, the expression:

‘sum(x$3.4)’

could be used in a numeric field in the spec sheet to display the sum of all the elements in
the cell.

2 In other words, the “dimension” attribute strings in the dynamic area definitions in the two
matrices are equal.

Oracle Retail WebTrack 12.0

Configuration Guide 21

Array Items
A single-dimensional array may be used directly in an expression by enclosing a list of
values in { } brackets. That is:
 { 1, 2, 3, 4, x+y, ‘string’}[2]

has the value 2. Array items are useful in conjunction with loops in XFO templates.

Object Values
An object value is analogous to a Java object with public fields. The value is constructed
by client code (often automatically from a real Java object) and made available to the
expression evaluation context.
The fields in an object value are accessed using the -> operator. The right hand side of
this operator must be a name.
That is, assuming that a java.awt.Point object has been mapped into an object value and
stored in ‘pt’:
 pt -> x
 pt -> y

will extract the two fields.

Variable Names
Variable names contain letters, digits, underscore (_), dollar ($) or period (.) characters. A
name should start with a letter or digit (names starting with other characters are reserved
for internal use).
The special name $n, where n is a decimal number, represents a function argument. It has
no meaning outside of a function definition. $1 is the first argument; $2 is the second, and
so on. $0 represents the number of arguments in the call.

Function Calls
A function call is a reference to a built-in or user-defined function. A user defined
function can be used to replace commonly-used expressions by a simple call.
The syntax of a call is:
functionname(arg1, arg2, …)

There may be zero or more arguments.

Aggregate Functions
Some of the built-in functions operate by aggregating the arguments. These functions
treat arrays, lists and iterators specially by including all their elements in the aggregation.
That is, if a and b both represent arrays, then sum(a, b) will sum all the elements in both
arrays.

Spreadsheet Expression Syntax

22

Expressions
Names, constants, and function calls are combined into expressions using operators.
Operators have differing precedence. Higher precedence operators are evaluated before
lower precedence operators. Parentheses (()) may be used to alter the order of evaluation.

Operator Precedence Meaning

?: 1 Conditional expression

| 2 OR – the result is 1 if either operand is non-zero, and 0 otherwise

& 3 AND – the result is 1 if both operands are non-zeo and 0 otherwise

= or == 4 Equals: evaluates to 1 or 0

!= or <> 4 Not equals

< 5 Less than

<= 5 Less than or equals

> 5 Greater than

>= 5 Greater than or equals

+ 6 Addition or concatenation

- 6 Subtraction

|| 6 String concatenation

* 7 Multiplication

/ 7 Division

% 7 Modulus (remainder)

^ 8 Power: a^b = ab

-> 9 Field selection

The addition and comparison operators may be used with string operands; if one operand
is a number and the other is a string, the number is converted to a string before
evaluation. The addition operator (+) performs string concatenation if either operand is a
string; the concatenation operator (||) always converts both arguments to strings before
evaluation.
That is, 1+2 evaluates to 3, while 1 || 2 evaluates to “1.02.0”.
Other operators evaluate to undefined if either argument is a string.

Oracle Retail WebTrack 12.0

Configuration Guide 23

Conditional Expressions
The conditional expression operator ? is used with three operands:
a ? b : c

If a is non-zero the result is b otherwise the result is c.

Subscription
Individual elements of arrays and lists may be obtained using subscripts in [] brackets.
Arrays with more than one dimension require multiple subscripts separated by commas.
All subscripts are zero-based. An alternative is to use the element function.

Iterator Expression
Iterator expressions can be used to perform an aggregate calculation with an expression
calculated over all the elements of an array. Iterators are recognized only as the
arguments to aggregate functions such as sum or avg.
The selection of elements in the array is performed by the evaluation client, possibly
using constraints to limit the set returned.
The syntax is:
{ name : expression }

The expression is evaluated over all the elements of the array represented by ‘name’. The
value is undefined if the client does not support iteration over the array.
Iterators are commonly used in spec sheet matrices to perform some complex aggregation
over the elements in a dynamic row or column set.
That is, assuming that x$3.4 represents a matrix cell in a dynamic region:
sum({ x$3.4 : x$3.4 ^ 2 }

will sum the squares of all the values in the set.
avg({ x$3.4 : lookup(‘parameter’, x$3.4))

will average the results of the lookup call over all the elements in the set.

Spreadsheet Expression Syntax

24

Examples

Expression Notes
1+2
1+2*3^4 This is equivalent to 1 + (2 * (3^4))
((1+2)*3)^4
a ^ 0.5 The square root of a
a = b If a equals b then evaluate to 1 otherwise evaluate to

0.
a = b & c = d If a equals b and c equals d then evaluate to 1

otherwise evaluate to 0.
sum(a,b) < 10 | c >= 5 If sum(a,b) is less than 10 or c is greater than or

equal to 5, then evaluate to 1 otherwise 0.
val3 = 10 ? a+b : a-abs(zz) If val3 equals 10, then the result is a+b; otherwise the

result is a-abs(zz)
x[i] The i’th element in the array or list x.
y[1, e+7, n] An element in the 3-dimensional array y.
value -> name The field ‘name’ in the object value represented by

‘value’
value[i] -> name
(value[i]) -> name The field ‘name’ in the object value stored in the i’th

element of the array ‘value’.
value -> items[x]
(value -> items)[x] The x’th element in the array stored in the field

‘items’ in the object value ‘value’.
avg({ x$3.4 : abs(x$3.4) } Average the absolute value of the elements in the

array represented by x$3.4.

Oracle Retail WebTrack 12.0

Configuration Guide 25

Built-In Functions
A number of built-in functions are available for use in expressions. Some are available in
all contexts; some are specific to spec sheets in all contexts3, and some are specific to
Oracle Retail Design. If a function is used with an incorrect number of arguments, or
arguments of the wrong type, the result is undefined.

Functions Available In All Contexts

Function Arguments Meaning

number(a) Number Return a as a number. This is used for ‘combined’
values which would otherwise be used as strings in
expressions.

floor(a) Number Return the largest integer which is not greater than
a: floor(1.9) = 1 and floor(-1.9) = -2

ceil(a) Number Return the smallest integer which is not less than a:
ceil(1.1) = 2 and ceil(-1.1) = 1

round(a) Number Round a to nearest integer

abs(a) Number Absolute value of a

isset(a) Any If a is defined, return 1; otherwise return 0

ifset(a, b) Any If a is defined, return a otherwise return b

zerop(a, b) Numbers If a is zero, return 0 otherwise return a*b; this
function is useful because b need not be defined if a
is zero.

if(a1, b1, a2, b2 ..) Any If a1 is non-zero, the result is b1; otherwise if a2 is
non-zero, the result is b2, and so on. If none of the
conditions succeed, the result is undefined if there is
an even number of arguments, or the last argument
if there an odd number of arguments.

if(a, b, c) is equivalent to (a ? b : c).

length(a) §
or
length(arr, index)

Array, list or
string.

In the single argument form, return the length of the
one dimensional array, list or string a. If a is a string
the length is the number of characters in the string.
In the two argument form, return the length of the
dimension index in the array arr. If arr is not an
array the result is undefined.

3 That is, within the Spectrum spec sheet application.

Spreadsheet Expression Syntax

26

Function Arguments Meaning

substr(str, m)
or
substr(str, m, n)

String and
numbers

This is equivalent to the Oracle SUBSTR function.
The first argument is converted to a string. The
result is the substring starting at position m which is
n characters long. If n is omitted, the remainder of
the string is returned.

indexof(a, b)
or
indexof(a, b, c)

Strings In the two argument form, return the position of the
substring b in the string a, or -1 if the substring is
not found. In the three-argument form, start the
search at position c. This is analogous to
a.indexOf(b) or a.indexOf(b, c) in Java.

lower(a) String Convert the string a to lower case.

upper(a) String Convert the string a to upper case.

element(a, x1, ..) Array or list Return the element with subscipts x1, … from the
array or list a. This is exactly equivalent to a[x1, …]
- the [] subscripting syntax was introduced after
element.

Aggregate Functions

Function Arguments Meaning

sum(a, b, c …) Numbers Sum all the arguments; if any are undefined the
result is undefined.

zsum(a, b, c …) Numbers Sum all the arguments, ignoring any that are
undefined.

avg(a, b, c …) Numbers Average of the arguments; if any are undefined
the result is undefined.

zavg(a, b, c …) Numbers Average of the arguments, ignoring any that are
undefined.

max(a, b, c …) Numbers or strings Maximum value of all the arguments; if any are
strings, the result is a string otherwise the result
is a number.

min(a, b, c …) Numbers or strings Minimum value of all the arguments.

Configuration Guide 27

4
Event Import

Elements and Attributes
This section provides a reference for elements and attributes used in defining WebTrack
Event Import layouts. Elements are presented in the order in which they appear in the
eventimport.dtd file. For each element, a description, format, and example (where
applicable) are provided.

Identifying Statement
Each event import sheet starts with a statement in the following format:
<?xml version="1.0" encoding="UTF-8"?>

Event
The event element contains the information required to perform updates on a Track’s
events. The subordinate elements are used to identify an order event versus a project
event, as well as the action to take on the event.
Events is the enclosing element. The enterprise ID identifies the enterprise doing the
importing (that is, a Colby Enterprise), NOT necessarily the enterprise owning a style. It
is expected that integrator adds this attribute automatically based on the source of the file.
The version attribute is optional.
<!ELEMENT events (event+)>
<!ATTLIST events
 version CDATA #IMPLIED
 enterprise CDATA #IMPLIED

Multiple event elements can be included within the events element.
Multiple tracks can be updated within the same XML file as well. The action field
determines the type of action the sending enterprise is trying to perform.
Valid values are “A”dd, “U”pdate and “D”elete. You currently cannot add or delete an
event.
The track type is the type of track to be updated. The two valid values for track types are
“P”roject and “O”rder.
The track owner represents whether the sending enterprise is the track creator or not.

Note: If enterprise A creates a nested track, then some child
tracks of this track could be owned by enterprise B. But
enterprise A is the creator of these child tracks.

 -->
<!ELEMENT event (partner_code?, order?, project?, parent_name?,
child_name?, dates?, diary_comments?)>
<!ATTLIST event
 action NMTOKEN #REQUIRED
 track_type NMTOKEN #REQUIRED
 track_owner NMTOKEN #REQUIRED

Event Import

28

Partner Code
The partner code is the trading partner code for track creator enterprise. This is only
required if the sending enterprise is not the track creator.

<!ELEMENT partner_code (#PCDATA)>

The two track-by options are tracking by “O”ption and tracking by “S”tyle. This is the
way the
sending enterprise would like to track the order by.
<!ELEMENT order (order_number, item_number, color_code?,
track_quantity?)>
<!ATTLIST order
 track_by NMTOKEN #REQUIRED

Order
The Order element is provided to allow updates to a WebTrack Order, as opposed to a
Project. This element is required to identify the correct order to be updated.
<!ELEMENT order (order_number, item_number, color_code?,
track_quantity?)>
<!ATTLIST order
 track_by NMTOKEN #REQUIRED

Order Number
This is the order number in WebTrack If the track_type is “O”rder, then the order number
must be present.
<!ELEMENT order_number (#PCDATA)>

Item Number
If the track_type is set to “O”rder and the track_by is set to “O”ption then the
item_number must be populated. This number corresponds the style_id within
WebTrack.
-
<!ELEMENT item_number (#PCDATA)>

Color Code
If the track_type is set to “O”rder and the track_by is set to “O”ption, then the color_code
must be populated. This code corresponds to the color code within WebTrack
Administration.
<!ELEMENT color_code (#PCDATA)>

Oracle Retail WebTrack 12.0

Configuration Guide 29

Track Quantity
The user for the track-quantity is either the email address or user name of a WebTrack
user who
Intends to make the update of track quantity. This user must be a valid user in the sending
enterprise.
<!ELEMENT track_quantity (#PCDATA)>
<!ATTLIST track_quantity
 user CDATA #IMPLIED
>

Project
The project element is provided to allow updates to a WebTrack Project, as opposed to an
Order.
<!ELEMENT project (project_name?, project_number, project_key?)>

Project Key
The project key is only relevant to styles being exported from Design to WebTrack.
When a Style is exported to XML, each colour has this additional attribute key. This
key's format is itemid-orderid, which is associated with the project. orderid is the internal
id of the dummy order associated with the project. orderitemid is the internal id of the
dummy order item in the dummy order associated with the project.
styleid is the internal id of the style. colourid is the internal id of the colour. In each case,
internal id is the primary key.

Note: The project key is only required if there are more than
one project/event combination with the same project names.

<!ELEMENT project_key (#PCDATA)>

Project Name
Project Name is the name of the project in WebTrack. This entry is optional.
<!ELEMENT project_name (#PCDATA)>

Project Number
Project Number is the project number in WebTrack. If the track_type is “P”rojects, then
the project number must be present.
<!ELEMENT project_number (#PCDATA)>

Event Import

30

Parent Name/Child Name
Parent name is the name of the event being updated.

 If both parent_name and child_name are present, then the event appears in a child
track and its name is specified by child_name.

 If parent_name is present and child_name is not present, then the event appears in a
parent

track and its name is specified by parent_name.
 If parent_name is not present and child_name is present, then the event could appear

in a parent track or a child track and its name is specified by child_name. One
restriction for this case is that if two events with the same name appear in a parent
track and a child track respectively, then an error is reported.

--
<!ELEMENT parent_name (#PCDATA)>

<!ELEMENT child_name (#PCDATA)>

Date Type
Date-type specifies what kind of operation the sending enterprise would like to perform
on the event. Valid values are “C” for complete, “R” for revised and “X” for cancel.
User is either the email address or user name of a WebTrack user who is intending to
make the update of the event. This user must be a user in the sending enterprise.
Check specifies whether the sending enterprise would like WebTrack to checks the
following:

 An event has been completed.
 The user who is intending to make the update of the event is the track owner.
 The user who is intending to make the update of the event is the event owner.
 An event to be completed is dependent on other events.
 An event has been suspended.
 Valid values are “Y” and “N”.

-->
<!ELEMENT dates (date)>
<!ATTLIST dates
 date_type NMTOKEN #REQUIRED
 user CDATA #IMPLIED
 check NMTOKEN #IMPLIED
>

Date is the date that the sending enterprise is updating as completed, revised, or cancelled.
-
<!ELEMENT date (#PCDATA)>

Oracle Retail WebTrack 12.0

Configuration Guide 31

Diary Comments
The diary-comments user is the user that this dairy entry should be logged under. This
user must be a valid user in the sending enterprise.
<!ELEMENT diary_comments (#PCDATA)>
<!ATTLIST diary_comments
 user CDATA #IMPLIED

>

Configuration Guide 33

A
Appendix: event.dtd

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT events (event+)>
<!ATTLIST events
 version CDATA #IMPLIED
 enterprise CDATA #IMPLIED
>

<!ELEMENT event (partner_code?, order?, project?, parent_name?,
child_name?, dates?, diary_comments?)>
<!ATTLIST event
 action NMTOKEN #REQUIRED
 track_type NMTOKEN #REQUIRED
 track_owner NMTOKEN #REQUIRED
>

<!ELEMENT parent_name (#PCDATA)>

<!ELEMENT partner_code (#PCDATA)>

<!ELEMENT child_name (#PCDATA)>

<!ELEMENT order (order_number, item_number, color_code?,
track_quantity?)>
<!ATTLIST order
 track_by NMTOKEN #REQUIRED
>

<!ELEMENT item_number (#PCDATA)>

<!ELEMENT order_number (#PCDATA)>

<!ELEMENT color_code (#PCDATA)>

<!ELEMENT track_quantity (#PCDATA)>
<!ATTLIST track_quantity
 user CDATA #IMPLIED
>

<!ELEMENT project (project_name?, project_number, project_key?)>

<!ELEMENT project_key (#PCDATA)>

<!ELEMENT project_name (#PCDATA)>

<!ELEMENT project_number (#PCDATA)>

<!ELEMENT dates (date)>
<!ATTLIST dates
 date_type NMTOKEN #REQUIRED
 user CDATA #IMPLIED
 check NMTOKEN #IMPLIED
>

<!ELEMENT date (#PCDATA)>

Appendix: event.dtd

34

<!ELEMENT diary_comments (#PCDATA)>
<!ATTLIST diary_comments
 user CDATA #IMPLIED

Example
<?xml version="1.0"?>
<events version="1.2" enterprise="100" xmlns:s="x-
schema:https://www.retail.com/import/schemas/eventsschema.xdr">
 <event action="U" track_owner="Y" track_type="P">
 <!-- Action is U for update, A for add, D for delete. You
currently cannot add or delete and event. -->
 <!-- Track owner is Y I have to be the owner, or N Has to be
partner ent -->
 <!-- Track type is P for project, O for order -->
 <project>
 <project_number>Ladies Skirts</project_number>
 <project_key>70949-153033-1472315773-Ladies Skirts/011</project_key>
 </project>
 <partner_code></partner_code>
 <parent_name>Spec Complete and Artwork Sent</parent_name> <!-- Name of the
event -->

 <dates date_type="C" user="genericuser@retailer.com">
 <date>20051215000000</date>
 </dates>
 <diary_comments user="genericuser@retailer.com">This entry made by
genericuser</diary_comments>
 </event>
</events>

	Preface
	Audience
	Related Documents
	Customer Support

	Introduction
	Functional and Technical Capabilities
	WebTrack Administration Console
	Options
	Lists
	Users

	WebTrack User Console
	Diary Entry
	Track Details
	Track List Screen
	Mail

	A Template-Based Approach
	Server Side Reporting Template Administration

	XFO Templates
	XFO Operation
	Basic Structure
	Expressions and Attributes
	SF Processing Elements
	Builtin Values and Functions
	XFO and Tracks
	Values
	Functions

	Configuring XFO Printing in WebTrack

	Spreadsheet Expression Syntax
	Data Types
	Lists
	Arrays
	Object Values
	Variable Names
	Function Calls
	Expressions
	Built-In Functions

	Event Import
	Elements and Attributes
	Identifying Statement
	Event

	Appendix: event.dtd
	Example

	WebTrack-cg-preface.pdf
	Preface
	Audience
	Related Documents
	Customer Support

